




Ada Tutorial for Rational Rhapsody



Before using the information in this manual, be sure to read the “Notices” section of the Help or 
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.4 and to all subsequent releases and 
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP 
Schedule Contract with IBM Corp.
ii



Contents
Getting Started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Rational Rhapsody in Ada Tutorial Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Audience for this Tutorial  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Before You Begin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Tutorial Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Documentation Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
About the Rational Rhapsody Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Setting up for the Tutorial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Starting the Rational Rhapsody Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Closing the Rational Rhapsody Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Creating a Rational Rhapsody Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Renaming the Default Package  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Saving a Rational Rhapsody Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Opening the Dishwasher Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

About a Rational Rhapsody Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
About Project Files and Folders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Using Naming Conventions and Project Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Rational Rhapsody User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Toolbars  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Drawing Area  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Output Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Drawing Toolbars  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Features Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Lesson 1: Creating a Use Case Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Goals for this Lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Exercise 1: Analyzing the Dishwasher System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Exercise 2: Creating the Dishwasher Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Task 2a: Creating the Dishwasher Use Case Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Task 2b: Drawing the Boundary Box and Actors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Rational Rhapsody  iii 



Table of Contents
Task 2c: Drawing the Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Task 2d: Associating Actors with Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Task 2e: Adding a Diagram Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Lesson 2: Creating an Object Model Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Goals for this Lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Exercise 1: Creating the Dishwasher Object Model Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Task 1a: Creating the Dishwasher Object Model Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Task 1b: Drawing Classes and Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Task 1c: Creating a Singleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Task 1d: Adding Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Task 1e: Creating Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Task 1f: Displaying Attributes and Operations in the OMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Task 1g: Adding the setup Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Task 1h: Adding a main Operation to the Display Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Task 1i: Using the Entrypoint Stereotype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Exercise 2: Other Necessary Tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Task 2a: Saving Packages Separately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Task 2b: Using Predefined Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Task 2c: Establishing the Package Dependency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Task 2d: Setting a Package Dependency Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Task 2e: Adding a default constructor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Lesson 3: Generating Code and Building Your Model  . . . . . . . . . . . . . . . . . . . 65
Goals for this Lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Exercise 1: Preparing for Generating Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Task 1a: Creating a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Task 1b: Setting the Component Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Task 1c: Creating a Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Exercise 2: Generating Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Task 2a: Generating Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Task 2b: Fixing Code Generation Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Exercise 3: Building Your Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Task 3a: Building your Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Task 3b: Fixing Build Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Task 3c: Viewing Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
iv Ada Tutorial



Table of Contents
Lesson 4: Creating a Statechart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Goals for this Lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Exercise 1: Creating the Dishwasher Statechart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Task 1a: Creating a Statechart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Task 1b: Drawing the Dishwasher Statechart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Task 1c: Drawing History and Diagram Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Task 1d: Drawing Default Connectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Task 1e: Adding Ada Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Task 1f: Drawing the Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Task 1g: Adding Actions to States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Task 1h: Changing Operation Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Task 1i: Adding a Diagram Title  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Exercise 2: Generating Code and Building Your Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Task 2a: Generating Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Task 2b: Building the Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Lesson 5: Creating a Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Goals for this Lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Exercise 1: Creating the KeyPress Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Task 1a: Creating an Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Exercise 2: Creating the Execution Sequence Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Task 2a: Creating the Sequence Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Task 2b: Creating the Workflow for Your Sequence Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Lesson 6: Building and Running the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Goals for this Lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Exercise 1: Creating the Build Object Model Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Task 1a: Creating the Build Object Model Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Task 1b: Creating a DishwasherBuilder Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Exercise 2: Generating Code and Building Your Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Task 2a: Creating Another Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Task 2b: Generating Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Task 2c: Troubleshooting the Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Task 2d: Roundtripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Exercise 3: Running Your Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Task 3a: Running your Dishwasher Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Rational Rhapsody v



Table of Contents
Lesson 7: Animating Your Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Goals for this Lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Exercise 1: Animating your Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Task 1a: Starting Animation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Task 1b: Viewing the Animated Statechart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Task 1c: Invoking Commands for your Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Task 1d: Setting Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Task 1e: Quitting Animation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
vi Ada Tutorial



Getting Started
Welcome to the Ada Tutorial for IBM Rational Rhapsody! IBM® Rational® Rhapsody® is the 
Model-Driven Development environment of choice for systems engineers and software developers 
of either embedded or real-time systems.

Rational Rhapsody in Ada Tutorial Overview
This tutorial shows you how to use the Rational Rhapsody product to analyze, design, and build a 
model of a dishwasher using a file-based modeling approach. Before you begin creating this 
model, you need to consider the functions of the dishwasher.

A dishwasher has users who use it to wash dishes. Another user would be a service person who 
makes repairs and the like. When you use a dishwasher, you start functions that the dishwasher 
must perform, such as turning on and changing cycles.

For this tutorial, you are going to create a project called Dishwasher.

This tutorial helps you become familiar with the Rational Rhapsody product. You should consider 
it part of the Rational Rhapsody learning process, in addition, for example, to the Rhapsody 
Essential Tool Training class and the Rational Rhapsody eLearning courses, both of which are 
available at an additional cost.

The Rational Rhapsody product contains a number of sample models in Ada that you can review to 
help familiarize yourself with Rational Rhapsody in Ada. These Ada sample models are in the 
<Rational Rhapsody installation>\Samples\AdaSamples subfolder. If you make changes to 
one of the sample models, you might want to save your version in another folder, in case you want 
to refer to the original state of the provided sample model later. Choose File > Save As to save 
your version of a sample model.

Audience for this Tutorial

The intended audience for this tutorial is system engineers and software engineers who are familiar 
with the Ada language. The tutorial assumes that you are familiar with UML™ (Unified Modeling 
Language™) and Object Oriented concepts.
Rational Rhapsody  1 



Getting Started
Before You Begin

Before you work through this tutorial, you might find it helpful to review the Getting Started 
Guide for the Rational Rhapsody product. It provides a functional overview for the Rational 
Rhapsody product for system designers, system engineers, and software developers with more 
functions (meaning how to do something), explanations, and details than this tutorial provides.

In addition, throughout the tutorial, references are made to other Rational Rhapsody 
documentation where appropriate. Note also that the IBM Rational Rhapsody User Guide has a 
Glossary section that you might find useful. 

Note the following:

� This tutorial assumes that Rational Rhapsody (version 7.1 or greater) is installed on your 
system and that you have a valid permanent license. Contact the Rational Rhapsody 
Technical Support staff if you need assistance with installation or licensing.

� You must have installed the compiler necessary to generate code. You should have done 
this before you installed the Rational Rhapsody product because during the Rational 
Rhapsody installation process you identify the path to the compiler.

� Before you can work through any of the lessons in this tutorial, you must create the 
Dishwasher project, which is detailed in Setting up for the Tutorial.

� You should work through the tutorial in the order of the lessons. During the course of 
working through this tutorial, you generate code as well as build your model at various 
stages. For example, in the lesson where you first learn how to generate code, you will get 
error messages because you have not yet created certain operations that you refer to in 
your code. Once you work through the next lesson, you will no longer get those error 
messages (though you might get others).

You might also find it useful to review documentation found within the Rational Rhapsody 
installation path (for example, <Rational Rhapsody installation>\Sodius\RiA_CG\help).
2 Ada Tutorial



Rational Rhapsody in Ada Tutorial Overview
Tutorial Objectives

This tutorial develops an example of an embedded system for a dishwasher. This dishwasher 
example shows you how to use the Rational Rhapsody product to create the software that controls 
the simplified operation of a dishwasher. The operations of the dishwasher are simplified to 
minimize the complexity of the tutorial.

This tutorial includes Ada code examples within instructions where code entries are required. 

When you have completed this tutorial, you will have performed the following standard tasks:

� Created a project
� Created use case diagrams, which show the main functions of the system (use cases) and 

the entities that are outside the system
� Created object model diagrams, which specify the structure of the classes, objects, and 

interfaces in the system and the static relationships that exist between them
� Created statecharts, which define the behavior of classifiers (actors, use cases, or classes), 

objects, including the states that they can enter over their lifetime and the messages, 
events, or operations that cause them to transition from state to state

� Created sequence diagrams, which show structural elements communicating with one 
another over time

� Generated code
� Built a model
� Run a model
� Animate a model
Rational Rhapsody 3



Getting Started
Documentation Conventions

This document uses the following conventions:

� Boldtype for names of GUI objects and controls, including selection choices; and 
emphasis. Examples:

–  On the General tab, in the Stereotype box, select the entrypoint in 
PredefinedTypesAda check box from the drop-down menu.

–  Drag-and-drop the Display class onto the Packages object model diagram.

–  Click the Create Boundary box button  on the Drawing toolbar.
–  If the Rational Rhapsody browser does not display, select View > Browser.
–  A project file, called <project_name>.rpy.

� Courier font in 10 point for pathnames, system messages, and items that you have to 
type. Examples:

–  The Output window displays the message Animation session terminated.
–  In the Project name box, replace the default project name with Dishwasher.
–  Draw a transition from the Running to the Open state and label it op_open.

� Italics for the first mention of a concept with an explanation.

About the Rational Rhapsody Product

Rational Rhapsody uses visual design to develop embedded software allowing you to perform 
these tasks:

� Analyze, during which you can define system requirements, identify necessary 
components, and define their structure and behavior using the (UML) diagrams.

� Design, during which you can specify and design the architecture, taking into account 
architectural, mechanistic, and detailed design considerations.

� Implement, during which you can automatically generate code from the analysis model 
and then build and run it within the Rational Rhapsody product.

� Test, during which you can animate the model on the local host or a remote target to 
perform design-level debugging within animated views.
4 Ada Tutorial



Rational Rhapsody in Ada Tutorial Overview
UML Diagrams
The following are the UML diagrams in Rational Rhapsody:

� Use Case Diagrams show the main functions of the system (use cases) and the entities 
(actors) outside the system.

� Structure Diagrams show the system structure and identify the organizational pieces of 
the system. 

� Object Model Diagrams show the structure of the system in terms of classes, objects, and 
the relationships between these structural elements. 

� Sequence Diagrams show sequences of steps and messages passed between structural 
elements when executing a particular instance of a use case. 

� Activity Diagrams specify a flow for classifiers (classes, actors, use cases), objects, and 
operations. 

� Statecharts show the behavior of a particular classifier (class, actor, use case) or object 
over its entire life cycle.

� Collaboration Diagrams provide the same information as sequence diagrams, 
emphasizing structure rather than time.

� Component Diagrams describe the organization of the software units and the 
dependencies among units.

� Deployment Diagrams show the nodes in the final system architecture and the 
connections between them.
Rational Rhapsody 5



Getting Started
Setting up for the Tutorial
Before you can work through this tutorial, you must create and set up the Dishwasher project, 
which you do in this section. The following tasks show you how to:

� Create the Dishwasher project
� Save a project

Starting the Rational Rhapsody Product

Windows

To start the Rational Rhapsody product in Windows: Select Start > Programs > IBM Rational > 
IBM Rational Rhapsody Version# > Rhapsody Development Edition > Rhapsody in Ada; or, 
if available, click the Rhapsody in Ada icon on your the desktop.

Linux

To start the Rational Rhapsody product in Linux, use these steps:

1.    From the Terminal, browse to the Rational Rhapsody home directory.

2.    Execute the RhapsodyInAda script. For example: 

[RhapsodyUser@MyHostMachine]# cd /home/Rhapsody 
[RhapsodyUser@MyHostMachine Rhapsody]# ./RhapsodyInAda

In this example, “RhapsodyUser” is the username, “MyHostMachine” is the host machine 
and “/home/Rhapsody” is the installation directory.

Closing the Rational Rhapsody Product

To close the Rational Rhapsody product, follow these steps:

1.    Save your changes.

2.    Choose File > Exit or click the Close button .
6 Ada Tutorial



Setting up for the Tutorial
Creating a Rational Rhapsody Project

To create a new Rational Rhapsody project, follow these steps:

1.    Start the Rational Rhapsody product if it is not already running. If necessary, see Starting 
the Rational Rhapsody Product.

2.    Click the New button  on the main toolbar or select File > New to open the New 
Project dialog box.

3.    In the Project name box, replace the default project name with Dishwasher.

4.    In the In folder box, browse to find an existing folder or enter a new folder name. 

Note:  To avoid potentially long pathnames, do not create the project on the desktop.

5.    In the Type box, accept Default, which provides all of the basic UML structures. It is 
useful for most Rational Rhapsody projects. Your dialog box should resemble the 
following figure:

Note:  The Default and AdaCodeGeneration choices are equivalent and provide 
standard UML features tailored for Ada code generation. The SPARK choice 
is the Rational Rhapsody product’s Ada SPARK profile. For a description of 
the available project profile types that you can select from the Type drop-down 
list, refer to the IBM Rational Rhapsody User Guide. (Do a search of the user 
guide PDF file for “specialized profile.”)
Rational Rhapsody 7



Getting Started
6.    Click OK. The Rational Rhapsody product verifies that the specified location exists. If it 
does not exist, Rational Rhapsody asks whether you want to create it. Click Yes. 

Rational Rhapsody creates your project in the new Dishwasher subfolder, opens the 
project, and displays the Rational Rhapsody browser in the left pane and the drawing area 
for an object model diagram (by default because of your Type [project profile] choice on 
the New Project dialog box), as shown in the following figure. For more information 
about a Rational Rhapsody project, see About a Rational Rhapsody Project.

7.    Rename the default package; see Renaming the Default Package.
8 Ada Tutorial



Setting up for the Tutorial
Renaming the Default Package

When you create a Rational Rhapsody project, the system creates a package for you called 
Default. In this task, you are going to rename it to something that better reflects this project.

Packages can be used to divide the model into functional domains or subsystems, which consist of 
objects, object types, functions, variables, and other logical artifacts. They can be organized into 
hierarchies to provide a high level of partitioning.

To rename the Default package, follow these steps:

1.    In the Rational Rhapsody browser, expand the Packages category.

2.    Double-click the Default package or right-click it and select Features to open the 
Features dialog box.

3.    On the General tab, in the Name box, replace Default with DishwasherPkg, as shown in 
the following figure:

4.    Click OK.

Your Rational Rhapsody browser should resemble the following figure:
Rational Rhapsody 9



Getting Started
Saving a Rational Rhapsody Project

To save a Rational Rhapsody project in the current location, use one of the following methods:

� Click the Save button  on the main toolbar
� Select File > Save.

To save the project to a new location, select File > Save As.

Note that the Save command saves only the modified units, reducing the time required to save 
large projects.

A unit is a composite model element stored in its own file that you can check in and out of a 
Content Management system. A model element can be made into a unit as long as it can be saved 
as a separate file. Some elements that can be saved as units are the entire model, packages, classes, 
any type of Rational Rhapsody diagram, and components. The project, represented by the root 
node displayed in the browser, is always a unit. The primary purpose of units is to support 
collaboration with other developers.

About Autosave
The Rational Rhapsody product automatically performs an autosave every ten minutes to back up 
changes made between saves. Modified units are saved in an autosave folder 
(<project_name>_auto_rpy), along with any units that have a time stamp older than the project 
file. Note that the autosave folder appears only when necessary (after ten minutes if a save has not 
been made) and disappears after you save.

About Backups
You can set a property (General::Model::BackUps) to create backups of your model every time 
you save your project. This gives you the opportunity to revert to a previously saved version if you 
encounter a problem. By default, Rational Rhapsody does not create backups. Refer to the IBM 
Rational Rhapsody User Guide for more information about creating backups. (Do a search of the 
user guide PDF file for “backups.”)
10 Ada Tutorial



Setting up for the Tutorial
Opening the Dishwasher Model

Once you have created, saved, and closed the Dishwasher model, you can open and work on it at 
any time. 

To open the Dishwasher model, follow these steps:

1.    Start Rational Rhapsody if it is not already running. If necessary, see Starting the Rational 
Rhapsody Product.

2.    Click the Open button  on the main toolbar or select File > Open to open the Open 
dialog box.

3.    Navigate to the location in which you saved the Dishwasher project.

4.    Select Dishwasher.rpy, or type the name of the project file in the File name box, as 
shown in the following figure:

5.    Accept the default With All Subunits option. 

This choice means that the Rational Rhapsody product will load all units in the project. 
Refer to the IBM Rational Rhapsody User Guide for information about the options. (Do a 
search of the user guide PDF file by the option names.)

6.    Click Open. Rational Rhapsody opens the Dishwasher model.
Rational Rhapsody 11



Getting Started
About a Rational Rhapsody Project
A Rational Rhapsody project includes the UML diagrams, packages, and code generation 
configurations that define the model and the code generated from it. When you create a new 
project, Rational Rhapsody creates a project folder that contains the project files in the specified 
location. The name you choose for your new project is used to name project files and folders, as 
shown in the following figure. 

For more information about the folders and files that are part of a Rational Rhapsody model, see 
About Project Files and Folders.

In addition, the name appears at the top level of the project hierarchy in the Rational Rhapsody 
browser. Rational Rhapsody provides several default elements in the new project: a object model 
diagram, package, component, and configuration, as shown in the following figure:

An element is an atomic constituent of a model. In the Rational Rhapsody product, primary model 
elements within the browser are packages, classes, object model diagrams, associations, 
dependencies, operations, variables, events, event receptions, triggered operations, constructors, 
destructors, and types. Primary model elements in object model diagrams are packages, classes, 
associations (links), dependencies, and actors.
12 Ada Tutorial



About a Rational Rhapsody Project
About Project Files and Folders

The Rational Rhapsody product creates the following files and subfolders in the project folder. 
Some folders and files are created when you initially create a project, others only when applicable.

� A project folder, called <project_name>_rpy, which contains the unit files for the 
project, including UML diagrams, packages, and code generation configurations.

� A project file, called <project_name>.rpy.
� A subfolder, called <project_name>_auto_rpy, which appears only when necessary 

(after ten minutes if a save has not been made) and disappears after you save. 
� An event history file, called <project_name>.ehl, which contains a record of events 

injected during animation, and active and nonactive breakpoints. This file appears after 
your first save of a project.

� Log files, which record when projects were loaded and saved in the product; for example, 
load.log and store.log.

� A .vba file, called <project_name_>.vba, which contains macros or wizards.
� Backup project files and folders (<project_name>_bak1_rpy, 

<project_name>_bak2_rpy), which are optional, depending on project settings.
� An _RTC subfolder, when applicable, which holds any tests created using the Rational 

Rhapsody TestConductor™ add-on.
The <project_name>.rpy file and the <project_name>_rpy folder are necessary for the 
generation of source code.

The following figure shows the project folder for the Dishwasher project and some of its files and 
subfolders.
Rational Rhapsody 13



Getting Started
Using Naming Conventions and Project Guidelines

To assist all members of your team in understanding the purpose of individual items in the model, 
it is a good idea to define naming conventions. These conventions help team members to read the 
diagram quickly and remember the model element names easily. 

Note
Remember that the names used in the Rational Rhapsody models are going to be 
automatically written into the generated code. Therefore, the names should be simple and 
clearly label all of the elements.

Prefixes
Lower and upper case prefixes are useful for model elements. The following is a list of common 
prefixes with examples of each:

� Event names = “ev” (evStart)
� Trigger operations = “op” (opPress)
� Condition operations = “is” (isPressed)
� Interface classes = “I” (IHardware)

Model Element Names
The names of the elements themselves should follow conventions such as these:

� File, block, and class names begin with an upper case letter, such as “System.”
� Functions and variables begin with lower case letters, such as “restartSystem.”
� Upper case letters to separate concatenated words, such as “checkStatus.”

Rational Rhapsody Project Guidelines
The following guidelines can help you design and structure your Rational Rhapsody project:

� Do not give the same name to several different elements of the model (for example, 
packages and classes). As shown in this tutorial, you could add a “Pkg” suffix to your 
packages (such as “DishwasherPkg”).

� Use an iterative approach for your model. Periodically save/generate/make/animate your 
model to see if it is working as expected. This way, you can catch errors earlier in the 
process when it should be easier to fix problems.

� Do not try to put everything into a single diagram. This can make reading the diagram 
difficult. Creating different diagrams to give you different views can really help you 
understand the model more.
14 Ada Tutorial



Rational Rhapsody User Interface
Rational Rhapsody User Interface
Before proceeding with this tutorial, you should become familiar with the main features of the 
Rational Rhapsody graphical user interface (GUI). The Rational Rhapsody GUI is made up of 
three key windows and different toolbars for each of the UML diagram types. The following figure 
shows the Rational Rhapsody GUI.

Browser

Output Window

Drawing Area

Menu Bar
Toolbars

Dr
aw

in
g 

To
ol

ba
r

Rational Rhapsody 15



Getting Started
Toolbars

The Rational Rhapsody toolbars provide quick access to the commonly used commands. These 
commands are also available from the menus. The Rational Rhapsody product has the following 
toolbars: 

� Standard has buttons for the frequently used options on the File, Edit, and Help menus. 
Examples: New, Open, Save; Copy, Paste, Locate in Browser; About.

� Code has buttons for the frequently used options on the Code menu, such as Make, Run 
executable and GMR (for Generate/Make/Run).

� Windows has buttons for the frequently used options on the View menu, such as Show/
Hide Browser and Show/Hide output window.

� Diagrams has buttons for the part of the Tools menu that give you quick access to the 
diagrams in the project, such as Sequence Diagrams and Open Statechart.

� VBA has buttons to provide access to the VBA options, such as VBA Editor and Show 
Macros Dialog. Note that VBA is for Windows only.

� Animation has buttons for the animation options during an animation session, such as Go, 
Animation Break, and Quit Animation.

� Layout has buttons that help you with the layout of elements in your diagram, such as 
Snap to Grid, Align Top, and Align Left.

� Drawing has buttons for the graphics editor used to create and edit diagrams. Each 
Drawing toolbar is unique to its particular diagram type. For example, the Drawing 
toolbar for a sequence diagram is different from that for a statechart.

� Common Drawing has buttons to add requirements, comments, and other annotations to 
any diagram, such as Note and Requirement.

� Free Shapes has buttons for basic drawing shapes, such as Polyline and Polycurve.
� Zoom has buttons to zoom options, such as Zoom In, Zoom Out, and Pan.
� Format has buttons for various text formatting options and line/fill options, such as Italic 

and Font Color.
16 Ada Tutorial



Rational Rhapsody User Interface
Browser

The Rational Rhapsody browser shows the contents of the project in an expandable tree structure. 
By default, it is the upper, left-hand part of the Rational Rhapsody GUI. The top-level folder, 
which contains the name of the project, is the project folder or project node. Although this folder 
contains no elements, the folders that reside under it contain elements that have similar 
characteristics. These folders are referred to as categories.

A project consists of at least one package in the Packages category. A package contains UML 
elements, such as classes, files, and diagrams. Rational Rhapsody automatically creates a default 
package called Default, which it uses to save model parts unless you specify a different package. 
The following figure shows an example of the browser.

Filtering the Browser
The browser filter lets you display only the elements relevant to your current task.

To filter the Rational Rhapsody browser, click the drop-down arrow at the top of the browser 
window, and select the view you want to see from the menu. Refer to the IBM Rational Rhapsody 
User Guide for information on the view options.

Repositioning the Browser
To make more room for you to work on diagrams, you can move the browser outside of the 
Rational Rhapsody GUI and reposition it as a separate window on the desktop. To reposition the 
Rational Rhapsody browser, click the bar at the top of the browser and drag it to another desktop 
location. 

Click the plus (+) 
to expand a branch.
Click the minus (–) 
to collapse a 
branch.

Project Folder

Browser Filter

Category

Up/Down (Ordering) 
Buttons
Rational Rhapsody 17



Getting Started
Drawing Area

The drawing area displays the graphic editors and code editors, and it is the region for drawing 
diagrams. By default, it is the upper, right-hand section of the Rational Rhapsody GUI. Rational 
Rhapsody displays each diagram with a tab that includes the name of the diagram and an icon that 
denotes the diagram type. When you make changes to a diagram, Rational Rhapsody displays an 
asterisk after the name of the diagram in the title bar to indicate that you must save your changes. 

Output Window

The Output window displays Rational Rhapsody messages. By default, it is the lower section of 
the Rational Rhapsody GUI. It includes tabs that display the following types of messages: 

� Log
� Check Model
� Build
� Configuration Management
� Animation
� Search Results

If the Output window does not appear, choose View > Output Window.

Drawing Toolbars

The Rational Rhapsody product displays a separate Drawing toolbar for each UML diagram type. 
By default, it places the Drawing toolbar to the left of the diagram. 

To move the toolbar, click and drag it to another location.
18 Ada Tutorial



Rational Rhapsody User Interface
Features Dialog Box

The Features dialog box lets you view and edit the features of an element in the Rational Rhapsody 
product.

To open the Features dialog box, do one of the following:

� Double-click an element (for example, Out [an interface])
� Right-click an element (for example, Subsystem Architecture [a diagram]) and then 

select Features
� Select an element and press Alt + Enter
� Select an element and select View > Features

You can resize the Features dialog box and hide the tabs on it if you want. For more information 
about the Features dialog box, refer to the section on it in the IBM Rational Rhapsody User Guide.

Keeping Open the Features Dialog Box
Once you open the Features dialog box, you can leave it open and select other elements to view 
their features. This means that after you make changes to the Features dialog box for an element in 
your drawing or on the Rational Rhapsody browser, you can click Apply. Then, without closing 
the dialog box, you can select another element to view its features. Once you are done with the 
Features dialog box, you click OK to close it.

Note
Even though you clicked Apply or OK for your changes in the Features dialog box, you 
must still save your model to save all the changes you made. Clicking Apply or OK 
applies any changes to the currently opened model. However, to save the changes 
for the model so that they are in effect the next time you open it, you must save your 
model.

Note the following about the Apply and OK buttons on the Features dialog box:

� Click Apply when you want to apply any changes you made to the Features dialog box but 
want keep it open. For example, you might need to apply a change before you can 
continue with using the Features dialog box, or you want to apply a change and see its 
effect before continuing making any more changes on the dialog box.

� Click OK when you want to apply your changes and close the Features dialog box at the 
same time.
Rational Rhapsody 19



Getting Started
Tabs for the Features Dialog Box
The Features dialog box has different tabs at the top of the dialog box and different boxes on the 
tabs depending on the element type.

The following tabs are common to all types of elements. For more information about these tabs, as 
well as the other tabs that you might see in the Features dialog box, refer to the section on it in the 
IBM Rational Rhapsody User Guide.

� General typically contains the name of the element and other general options, as shown in 
the following figure:

� Description, as its title implies and as shown in the following figure, contains the 
description of the element, if it has been included.
20 Ada Tutorial



Rational Rhapsody User Interface
� Relations lists all the relationships (dependencies, associations, and so on) an element is 
engaged with, as shown in the following figure:

� Tags lists any tags available for an element. Tags enable you to add information to certain 
kinds of elements to reflect characteristics of the specific domain or platform for the 
modeled system. Refer to the IBM Rational Rhapsody User Guide for more information 
about tags.

� Properties lists the properties associated with the Rational Rhapsody element.
–  The top left column on this tab shows the metaclass and property (for 

example, Settings and ShowPredefinedPackage).
–  The top right column shows the default for the selected property, if there is 

one (for example, Cleared).
Rational Rhapsody 21



Getting Started
–  The box at the bottom portion of the Properties tab shows the definition for 
the property selected in the upper left column of the tab. The definition 
display shows the names of the subject, metaclass, property, and the definition 
for the property, as shown in the following figure:

Note:  Rational Rhapsody documentation uses a notation method with double colons 
to identify the location of a specific property. For example, for the property in 
the above figure, the location is 
Browser::Settings::ShowPredefinedPackage where Browser is the 
subject, Settings is the metaclass, and ShowPredefinedPackage is the 
property.
22 Ada Tutorial



Summary
Moving the Features Dialog Box
The Features dialog box is a floating window that can be positioned anywhere on the screen, or 
docked to the Rational Rhapsody GUI.

To dock the Features dialog box in the Rational Rhapsody window, do one of the following:

� Double-click the title bar. The dialog box docks. You can now drag it to another location if 
you want.

� Right-click the title bar and select Docking by Drag. Then drag the dialog box to another 
location.

To undock the Features dialog box, do one of the following:

� Double-click the title bar to undock it.
� Right-click the title bar and clear Docking by Drag, and then drag the dialog box to 

another location.
Note:  An asterisk (*) in a title bar for the Rational Rhapsody window and any dialog 

box means that data has been modified and a save has not been done yet. 

If the Rational Rhapsody browser does not display, select View > Browser.

Summary
In this section, you became familiar with the Rational Rhapsody product and its features. You 
performed the following:

� Created the Dishwasher project
� Saved the project

You are now ready to proceed to the next section where you are going to create the Dishwasher 
model. You are going to model the requirements of the dishwasher and the functions of using a 
dishwasher using use case diagrams.
Rational Rhapsody 23



Getting Started
24 Ada Tutorial



Lesson 1: Creating a Use Case Diagram
Use case diagrams (UCDs) show the main functions of the system (use cases) and the entities that 
are outside the system (actors). Use case diagrams allow you to specify the requirements for the 
system and show the interactions between the system and external actors.

Note
You must complete all the tasks in Setting up for the Tutorial in the Getting Started section 
before you start this lesson.

Goals for this Lesson
In this lesson, you are going to determine who are the users of the system and what are the 
requirements for the embedded system. Then you are going to create the Dishwasher use case 
diagram. 

Exercise 1: Analyzing the Dishwasher System
Before using Rational Rhapsody, you should determine the requirements for the embedded system. 
To analyze the dishwasher system used in this tutorial, answer these questions:

� Who might use the system?
� How they might use it? 
� What are the major actions of the system? 
� When do these actions occur?
� What are the relationships, similarities, or differences between the actions?
� What is standard behavior?
� What can go wrong?

Some simplified answers to these questions might be as follows:

� The system users or “actors” would include a “cleansing engineer” and a “service person.”
� The system washes, rinses, and then dries dishes.
Rational Rhapsody  25 



Lesson 1: Creating a Use Case Diagram
� The “cleansing engineer” loads the dishes into the dishwasher, starts the dishwasher, and 
removes dishes after they are washed. 

� The system might fail to wash, rinse, or dry the dishes and require service.
During this analysis phase, you identify actors for the system. The three types of actors are as 
follows:

� Users of the system
� External component providing information to the system
� External component receiving information from the system
26 Ada Tutorial



Exercise 2: Creating the Dishwasher Use Case Diagram
Exercise 2: Creating the Dishwasher Use Case 
Diagram

In this exercise you are going to create the Dishwasher use case diagram. A use case diagram 
shows typical interactions between the system being designed and the external actors who might 
interact with it.

The following figure shows the Dishwasher use case diagram that you are going to create in this 
exercise.

Dishwasher Use Case Diagram
Rational Rhapsody 27



Lesson 1: Creating a Use Case Diagram
Task 2a: Creating the Dishwasher Use Case Diagram

This task is the starting point for the design.

To create the Dishwasher use case diagram, follow these steps:

1.    Start Rational Rhapsody in Ada and open the Dishwasher model if they are not already 
open.

2.    Right-click the top-level Dishwasher in the Rational Rhapsody browser, and select 
Add New > Use Case Diagram to open the New Diagram dialog box.

3.    Type Dishwasher, as shown in the following figure, and then click OK.
28 Ada Tutorial



Exercise 2: Creating the Dishwasher Use Case Diagram
Rational Rhapsody automatically adds the Use Case Diagrams category and the name of the new 
diagram to the Rational Rhapsody browser and opens the new diagram in the drawing area, as 
shown in the following figure:

Note
You can also create a diagram by using the Tools menu or the Diagrams toolbar. Also, once 
you create a diagram you can open it using the Diagrams toolbar. Refer to the IBM Rational 
Rhapsody User Guide for more information.
Rational Rhapsody 29



Lesson 1: Creating a Use Case Diagram
Task 2b: Drawing the Boundary Box and Actors

The boundary box delineates the system under design from the external actors. Use cases are 
inside the boundary box; actors are outside the boundary box. In this task, you are going to draw 
the boundary box and actors using the Dishwasher Use Case Diagram figure as a reference.

To draw the boundary box and actors, follow these steps:

1.    Click the Create Boundary box button  on the Drawing toolbar.

2.    Click the drawing area and drag to create a boundary box. Rational Rhapsody creates a 
boundary box named System Boundary Box.

3.    Rename the boundary box Dishwasher and then press Enter.

4.    Click the Create Actor button  on the Drawing toolbar.

5.    On the drawing area, click to the left side of the boundary box. Rational Rhapsody creates 
an actor with a default name of actor_n, where n is greater than or equal to 0.

6.    Rename the actor CleansingEngineer and then press Enter.

Note:  Because code can be generated using the specified names, do not include 
spaces in the names of actors.

7.    Draw another actor named ServicePerson.

8.    Use the tools on the Layout toolbar to help you with the layout of selected elements 
(including labels) in your diagram. For example, to adjust the size of your actors, do the 
following:

a.    Select an actor and then use the Sizing handles to adjust the size of the actor.

b.    Select the other (original size) actor.

c.    Use Shift+Click to select the size-adjusted actor and then click Same Size  on the 
Layout toolbar to resize the actors so that they are the same size. The last element 
selected is used as the default.

Refer to the IBM Rational Rhapsody User Guide for more information about the 
Layout toolbar.

Note:  If you want to move a drawn element on a drawing more precisely than clicking 
and dragging it, click one or more elements, press the Ctrl key and use the 
standalone directional arrow keys to move your element(s). You can also use 
the directional arrows on the numeric keypad with NumLock not active.
30 Ada Tutorial



Exercise 2: Creating the Dishwasher Use Case Diagram
9.    In the browser, expand the DishwasherPkg package and the Actors category to view your 
newly created actors, as shown in the following figure:

Note:  You created the DishwasherPkg package in Renaming the Default Package.

Note:  To quickly find the Actors category in the Rational Rhapsody browser, 
right-click an actor on the use case diagram and click Locate or press Ctrl+L. 
You can use this technique with other objects on a diagram.

Task 2c: Drawing the Use Cases

During the analysis phase, you identified user-visible functions or important goals of the system. 
These are use cases. A use case represents a particular function of the system. In this task, you are 
going to draw the following use cases using the Dishwasher Use Case Diagram figure as a 
reference.

� Wash Dishes
� Service Dishwasher
Rational Rhapsody 31



Lesson 1: Creating a Use Case Diagram
To draw the use cases, follow these steps:

1.    Click the Create Use Case button  on the Drawing toolbar.

2.    Click inside the top half of the boundary box. Rational Rhapsody creates a use case with a 
default name of usecase_n, where n is equal to or greater than 0.

3.    Rename the use case Wash Dishes and then press Enter.

Note:  For use case names, you can use spaces because use case names do not 
correspond to actual generated code. In the previous task where you drew 
actors, you did not use spaces in actor names because code can be generated 
using the specified actor names.

4.    Create another use case inside the boundary box named Service Dishwasher.

5.    In the browser, under the DishwasherPkg package, expand the new Use Cases category 
to view the use cases you created, as shown in the following figure:
32 Ada Tutorial



Exercise 2: Creating the Dishwasher Use Case Diagram
Task 2d: Associating Actors with Use Cases

The CleansingEngineer washes dishes and configures the washing mode, while the 
ServicePerson only services the dishwasher as needed.

To incorporate the relationships of the actors to the use cases into the design, you draw association 
lines between the actors and use cases. An association represents a connection between objects or 
users. In this task, you associate actors with use cases using the Dishwasher Use Case Diagram 
figure as a reference.

To draw association lines, follow these steps:

1.    Click the Create Association button  on the Drawing toolbar.
Notice that once you move your cursor over the drawing area the mouse pointer turns into 
a crosshairs pointer to signify that it is enabled and that it changes into a circled crosshairs 
pointer when drawing is possible.

2.    Click the edge of the CleansingEngineer actor and then click the edge of the Wash 
Dishes use case. Rational Rhapsody creates an association line with the name label 
highlighted. You do not need to name this association, so click the mouse button again 
(this is the same as pressing Enter).

Note:  To keep a line straight as you draw it, press the Ctrl key as you are drawing the 
line.

3.    Create an association between the ServicePerson actor and the Service Dishwasher use 
case, and then click the mouse button again or press Enter.
Rational Rhapsody 33



Lesson 1: Creating a Use Case Diagram
4.    Click the Save button  to save your model.

Your use case diagram should resemble the following figure:

Task 2e: Adding a Diagram Title

Each diagram has its name in the diagram table and in the title bar of the window that displays the 
diagram. However, it is also useful to add a title onto the diagram itself to help other members of 
your team understand the content and purpose of a diagram.

To add an optional title to your diagram, follow these steps:

1.    With the diagram displayed in the drawing area, click  on the Free Shapes toolbar.

2.    Click above the system boundary box in the diagram and type, for example, Dishwasher 
Use Case Diagram, and press Ctrl+Enter.

Note:  If you press Enter, you move your cursor to a new line. In this case, to exit 
typing mode, you have to press Ctrl+Enter to end your action. Or you can 
click out of the typing area.
34 Ada Tutorial



Summary
3.    Make the following changes if you want:

a.    Reposition the title by dragging it into another location.

b.    Use the tools on the Format toolbar to change the font styles.

4.    Click the Save button  to save your model.

For more information about the Free Shapes and Format toolbars, refer to the IBM Rational 
Rhapsody User Guide.

You have completed drawing the Dishwasher use case diagram. It should resemble the Dishwasher 
Use Case Diagram figure.

Summary
In this lesson, you determined who are the users of the system and what are the requirements for 
the embedded system. Then you created a use case diagram that shows the functions and 
requirements of the dishwasher. You became familiar with the parts of a use case diagram and 
created the following:

� System boundary box
� Actors
� Use cases
� Association lines
� Title for your diagram

You are now ready to proceed to the next lesson, where you are going to define how the system 
components are interconnected using an object model diagram.
Rational Rhapsody 35



Lesson 1: Creating a Use Case Diagram
36 Ada Tutorial



Lesson 2: Creating an Object Model 
Diagram
Object model diagrams (OMDs) specify the types of objects in the system, the attributes and 
operations that belong to those objects, the static relationship that can exist between classes 
(types), and the constraints that might apply. The Rational Rhapsody code generator directly 
translates the elements and relationships modeled in OMDs into Ada source code.

Goals for this Lesson
In this lesson, you are going to create the Dishwasher object model diagram. In this lesson, you are 
going to:

� Create an object model diagram
� Create classes in the object model diagram

� Draw dependencies
� Specify features of a class
� Set attributes of a class
� Add operations to a class
Rational Rhapsody  37 



Lesson 2: Creating an Object Model Diagram
Exercise 1: Creating the Dishwasher Object Model 
Diagram

Object model diagrams show the types of objects in the system, the attributes and operations that 
belong to those objects, and the static relationships that can exist between classes (types).

The following figure shows the Dishwasher object model diagram that you are going to create in 
this exercise.

Dishwasher Object Model Diagram
38 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram
Task 1a: Creating the Dishwasher Object Model Diagram

You draw an object model diagram using the following general steps:

1.    Draw objects.

2.    Draw links.

The following tasks describe each of these steps in detail.

To create an object model diagram, follow these steps:

1.    Start Rational Rhapsody and open the Dishwasher model if they are not already open.

2.    In the browser, expand the Packages category, right-click the DishwasherPkg package, 
and then select Add New > Object Model Diagram to open the New Diagram dialog 
box. 

3.    Type Dishwasher and then click OK.

Rational Rhapsody adds the Object Model Diagrams category and the name of the new object 
model diagram to the browser. Rational Rhapsody also opens the new object model diagram in the 
drawing area, as shown in the following figure:
Rational Rhapsody 39



Lesson 2: Creating an Object Model Diagram
Task 1b: Drawing Classes and Dependencies

In this task, you are going to draw classes for your Dishwasher object model diagram and then 
draw a dependency between the two classes. In addition, you are going to set a stereotype for that 
dependency. Use the Dishwasher Object Model Diagram figure as a reference.

Rational Rhapsody uses classes to represent the major elements of the object model. Classes are 
groupings of similar kinds of objects into types. There are two types of classes represented in the 
object model diagrams:

� Simple (Specification) Class shows only the class name, without any attributes or 
operations.

� Composite (Structured) Class contains other classes. The parts come into being and are 
destroyed with the creation and destruction of the composite class.

All instances of a class have the same attributes and operations, although their individual values 
can vary. The top compartment holds the name of the class, the middle compartment holds the 
attributes, and the bottom compartment holds the operations.

A dependency is a direct relationship in which the function of an element requires the presence of 
and might change another element.

A stereotype is a modeling element that extends the semantics of the UML metamodel by typing 
UML entities. Rational Rhapsody includes predefined stereotypes, and you can also define your 
own stereotypes. Stereotypes are enclosed in angle quotes (or guillemets) on diagrams, for 
example, «Usage».

To draw classes, a dependency, and set a stereotype, follow these steps:

1.    Click the Class button  on the Drawing toolbar.
Notice that once you move your mouse pointer over the drawing area, a class icon appears 
along with it.

2.    Click-and-drag on the drawing area and create a tall rectangular class.

3.    Rename the class Dishwasher and then press Enter.

4.    Create another class beside the Dishwasher class and name it Display.

5.    Click the Dependency button  on the Drawing toolbar.

6.    Click the left edge of the Display class and click the right edge of the Dishwasher class. 
This arrow shows the dependency relationship between the Display class and the 
Dishwasher class and, therefore, changes the definitions of both classes.

7.    Double-click the dependency line or right-click it and select Features to open the Features 
dialog box.
40 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram
8.    On the General tab, in the Stereotype box, select the Usage in PredefinedTypes check 
box from the drop-down menu. (Usage appears in the Stereotype box after you do so.)

9.    Click Apply to apply your changes and then OK to close the dialog box.

10.    Save your project.

Your object model diagram should resemble the following figure:
Rational Rhapsody 41



Lesson 2: Creating an Object Model Diagram
Task 1c: Creating a Singleton

A singleton is a simple pattern or mechanism that creates a single, global instance of a class. In 
Rational Rhapsody, you can instruct the Ada code generator to create a singleton by creating a 
Singleton stereotype. Singleton classes are instantiated only once throughout the life of the system.

To create a single global instance of the Dishwasher class, follow these steps:

1.    Double-click the Dishwasher class in the Rational Rhapsody browser or the diagram or 
right-click it and select Features to open the Features dialog box.

2.    On the General tab, in the Stereotype box, select the Singleton in PredefinedTypes 
check box from the drop-down menu. (Singleton appears in the Stereotype box after you 
do so.)

3.    Click Apply and then OK.

4.    Save your model.

Your object model diagram should display the Singleton stereotype for your Dishwasher 
class, as shown in the following figure:
42 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram
Task 1d: Adding Attributes

In this task, you add attributes to your Dishwasher class. Attributes are the data members of a 
class. 

To add attributes describing the dishwasher’s behavior, follow these steps:

1.    Double-click the Dishwasher class in the Rational Rhapsody browser or diagram to open 
the Features dialog box.

2.    On the Attributes tab, click <New> to create a blank row for an attribute.

3.    To define the rinsetime attribute, fill in the row with these values:

a.    For Name, type rinsetime.

b.    For Visibility, select Public from the drop-down list if necessary. It should be set by 
default.

c.    For Type, select Integer if necessary. It should be set by default.

d.    For Initial Value, type 0 (zero).

4.    Repeat steps 2 – 3 to create the remaining attributes, as shown in the following figure. 
Give them the same Visibility, Type, and Initial Value as you did the first attribute.

� washtime

� drytime

� cycles

5.    Click Apply to apply your changes.

6.    Do not close the Features dialog box. Continue with Task 1e: Creating Operations.
Rational Rhapsody 43



Lesson 2: Creating an Object Model Diagram
Task 1e: Creating Operations

In this task, you are going to create operations that signal when a dishwasher action is complete. 
An operation is a service that can be requested from an object to affect behavior. An operation has 
a signature, which might restrict the actual parameters that are possible.

This task includes typing code for the operation.

To create operations that signal when a dishwasher action is complete, follow these steps:

1.    Continuing from the previous task, with the Features dialog box still opened for the 
Dishwasher class, on the Operations tab, click <New> and select Primitive Operation 
to add a blank row for an operation.

2.    To define the isDried operation, fill in the row with these values:

a.    For Name, type isDried.

b.    For Visibility, select Public from the drop-down list if necessary. It should be set by 
default.

c.    For Return Type, select Boolean.

3.    Repeat steps 1 – 2 to create the remaining operations, as shown in the following figure. 
Give them the same Visibility, Type, and Return Type as you did for the first operation.

� isWashed

� isRinsed

4.    Click Apply to apply your changes.

5.    Highlight the isRinsed operation, as shown above.
44 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram
6.    Click  on the upper right corner of the tab (this is the Invoke Features Dialog button) to 
open the Features dialog box opens for the operation.

7.    On the Implementation tab, type the following code in the Operation Body box, which 
is also shown in the following figure:

return (Dishwasher_unique_instance.rinsetime = 0);

Note:  The unique_instance naming convention is used because we made the 
Dishwasher class a singleton. The Rational Rhapsody code generator generates 
the attributes based on this naming convention.

Note:  You can copy the code you just entered so that you can use it again for the other 
operations in this task. Just be sure to change the operation name after each 
time you paste it.

8.    Click OK to save your changes and return to the list of operations you entered previously. 

9.    Double-click the Operation icon  to the left of the isDried operation to open the Features 
dialog box for this operation.

10.    On the Implementation tab, type the following code in the Operation Body box:

return (Dishwasher_unique_instance.drytime = 0);

11.    Click OK.

12.    Open the Features dialog box for the isWashed operation.
Rational Rhapsody 45



Lesson 2: Creating an Object Model Diagram
13.    On the Implementation tab, type the following code in the Operation Body box:

return (Dishwasher_unique_instance.washtime = 0);

14.    Click OK to apply your changes and close the Features dialog box for the operation.

15.    Click OK to close the Features dialog box for the class.

Task 1f: Displaying Attributes and Operations in the OMD

To display the attributes and operations defined for the Dishwasher class on the Dishwasher 
object model diagram, follow these steps:

1.    On the Dishwasher object model diagram, right-click the Dishwasher class and then 
select Display Options to open the Display Options dialog box.

2.    On the Attributes tab, select the Explicit option button if it is not already selected.

3.    Highlight all of the attributes listed in the All Elements box and then click the Display 
button.

This moves all of the attributes into the Shown in Diagram box, as shown in the 
following figure:

.

Note:  If you select the All option button, the notations would be included in the 
attributes and operations display. 
46 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram
4.    On the Operations tab, use the same method as described above to move all the 
operations from the All Elements box to the Shown in Diagram box, as shown in the 
following figure:

5.    Click OK to apply your changes and close the dialog box.

Your object model diagram should resemble the following figure:

6.    Save your model.
Rational Rhapsody 47



Lesson 2: Creating an Object Model Diagram
Task 1g: Adding the setup Operation

To add a setup operation for use during system installation, follow these steps:

1.    Double-click the Dishwasher class in the Rational Rhapsody browser or the diagram to 
open the Features dialog box for the class.

2.    On the Operations tab, click <New> and select Primitive Operation to add a blank row 
for an operation.

3.    Type setup as the new operation name and accept all of the default settings, as shown in 
the following figure:

4.     Click Apply.

5.    Open the Features dialog box for the setup operation:

–  Double-click the icon  to the left of the operation, or 

–  Highlight the operation and click the Invoke Features Dialog button .
48 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram
6.    On the Implementation tab, type the following code in the Operation Body box:

  Dishwasher.Dishwasher_unique_instance.washtime := 5;
  Dishwasher.Dishwasher_unique_instance.drytime := 3;
  Dishwasher.Dishwasher_unique_instance.rinsetime := 4;
  Dishwasher.Dishwasher_unique_instance.cycles := 
  Dishwasher.Dishwasher_unique_instance.cycles + 1;

7.    Click OK to close Features dialog box for the operation.

8.    Click OK to apply your changes and close the Features dialog box for the class.
Rational Rhapsody 49



Lesson 2: Creating an Object Model Diagram
9.    Use the method described in Task 1f: Displaying Attributes and Operations in the OMD to 
display the setup operation for the Dishwasher class.

10.    Save your model.

You Dishwasher object model diagram should resemble the following figure:

Task 1h: Adding a main Operation to the Display Class

In this task you are going to create the main operation that will serve as the entry point procedure 
in the Ada executable.

To add the main operation, follow these steps:

1.    Double-click the Display class in the Rational Rhapsody browser or the diagram to open 
the Features dialog box.

2.    On the Operations tab, click <New> and select Primitive Operation to add a blank row 
for an operation. 

3.    Type main as the new operation name and accept all of the default settings.

4.    Open the Features dialog box for the operation.
50 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram
5.    On the Implementation tab, type the following code in the Operation Body area:

Dishwasher.Initialize;
Dishwasher.start_behavior(success);
if success then

ada.text_io.put_line("Start OK");
else

ada.text_io.put_line("Start NOT OK");
end if;

loop
ada.text_io.get_immediate(c,success);
case c is

when 's' => Dishwasher.op_start;
when 'o' => Dishwasher.op_open;
when 'c' => Dishwasher.op_close;
when 'x' => exit;
when others => null;

 end case;
 delay (1.0);
 Dishwasher.op_tick;

Ada.text_io.put("Tick = ");
 int_io.put(Dishwasher.get_washtime);
 int_io.put(Dishwasher.get_rinsetime);
 int_io.put(Dishwasher.get_drytime);
 int_io.put(Dishwasher.get_cycles);
 ada.text_io.new_line;
end loop;

6.    Click Apply.
Rational Rhapsody 51



Lesson 2: Creating an Object Model Diagram
7.    Specify variables that you want to appear in the declaration of the entrypoint or operation. 
Type the following code in the Local Variables box on the Implementation tab:

success : Boolean := false;
c: character;
package int_io is new ada.text_io.integer_io(Integer);
use int_io;

8.    Click OK to close the Features dialog box.

9.    Use the method described in Task 1f: Displaying Attributes and Operations in the OMD to 
display the main operation for the Display class.

10.    Save your model.
52 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram
Task 1i: Using the Entrypoint Stereotype

For the Dishwasher model, you want to use the «entrypoint» stereotype to direct the code 
generator and make the main Ada operation into the application entry point.

To use the «entrypoint» stereotype, follow these steps:

1.    Double-click the Display class in the Rational Rhapsody browser or on your object model 
diagram to open the Features dialog box.

2.    On the General tab, in the Stereotype box, select the entrypoint in 
PredefinedTypesAda check box from the drop-down menu. (entrypoint appears in the 
Stereotype box after you do so.)

3.    Click Apply.

Your General tab should resemble the following figure:

4.    Click OK.
Rational Rhapsody 53



Lesson 2: Creating an Object Model Diagram
5.    Save your model.

Your Dishwasher object model diagram should resemble the following figure:
54 Ada Tutorial



Exercise 2: Other Necessary Tasks
Exercise 2: Other Necessary Tasks
In this exercise you perform some other tasks that are necessary for the Dishwasher model before 
you proceed further.

Task 2a: Saving Packages Separately

To assist with configuration management and improve project organization, you might want to 
store packages in separate subfolders within a parent folder. Rational Rhapsody has two directory 
schemes: flat and hierarchical. 

� In flat mode, all package files are stored in the project directory, regardless of their 
location in the project hierarchy.

� In hierarchical mode, a package is stored in a subdirectory one level below its parent. It is 
possible to have a hybrid project, where some packages are stored in flat mode, and others 
are organized in a hierarchy of folders.

To change the directory scheme so new packages are stored in separate folders by default, follow 
these steps:

1.    Double-click the top-level Dishwasher in the Rational Rhapsody browser hierarchy to 
open the Features dialog box.

2.    On the Properties tab, select All from the drop-down list in the upper-left corner of the 
dialog box. (The label appears as View All after you make the selection.).

3.    Expand the General subject and the Model metaclass, and then highlight the 
DefaultDirectoryScheme property.

Note:  Rational Rhapsody documentation uses a notation method with double colons 
to identify the location of a specific property, for example, 
General::Model::DefaultDirectoryScheme. In this example, General is the 
name of the subject, Model is the name of the metaclass, and 
DefaultDirectoryScheme is the name of the property.

Refer to the IBM Rational Rhapsody User Guide for more information on 
setting properties. (Do a search of the user guide PDF file for “properties tab.”)
Rational Rhapsody 55



Lesson 2: Creating an Object Model Diagram
4.    Click the box next to DefaultDirectoryScheme and use the drop-down list to change the 
value to PackageAsDirectory, as shown in the following figure:

5.    Click OK.

6.    Save your model.

Task 2b: Using Predefined Packages

Ada developers use a standard library to input/output text. A stub model of this library is available 
from Ada.sbs package in the behavioral services model of Rational Rhapsody in Ada. To refine 
this stub library, the following instructions add the standard Text_IO package.

To add this set of predefined standard packages to your model, follow these steps:

1.    Select File > Add to Model to open the Add To Model dialog box.

2.    Navigate to this path: 
<Rational Rhapsody installation>\Share\LangAda83\model\RiAServices_rpy.
56 Ada Tutorial



Exercise 2: Other Necessary Tasks
3.    In the Files of type box, select All Files (*.*) and then select the ADA.sbs file, as shown 
in the following figure:

4.    Accept the default settings and click Open. The ADA package is added to the browser, as 
shown in the following figure:

.

5.    In the Rational Rhapsody browser, expand the Object Model Diagrams category 
(directly below the Components category on the Rational Rhapsody browser).

6.    Right-click Model1 (the default object model diagram) and select Features to open the 
Features dialog box.
Rational Rhapsody 57



Lesson 2: Creating an Object Model Diagram
7.    On the General tab, rename this model as Packages.

8.    Click OK.

Your Rational Rhapsody browser should resemble the following figure:

9.    Double-click Packages object model diagram to bring its drawing area forward.

10.    Drag-and-drop the Display class onto the Packages object model diagram you just 
created.

11.    Right-click the Ada package you added to the model earlier, and then select 
Add New > Class.

12.    Name the new class Text_IO and press Enter.

13.    Drag-and-drop the Text_IO class onto the Packages object model diagram.
58 Ada Tutorial



Exercise 2: Other Necessary Tasks
14.    Save your model. Your Packages object model diagram should resemble the following 
figure:

15.    Continue with Task 2c: Establishing the Package Dependency.

Task 2c: Establishing the Package Dependency

To establish the package dependency, follow these steps:

1.    Continuing from the previous task, for your Packages object model diagram, click the 

Dependency button  and draw a dependency arrow from the Display class to the 
Text_IO class.

2.    Double-click the Dependency line to open the Features dialog box.

3.    In the Stereotype box, select the Usage In PredefinedTypes check box from the 
drop-down menu and click Apply.

4.    Leave the Features dialog box open. Move it aside if necessary.

5.    Drag-and-drop the Dishwasher class onto the object model diagram.

6.    Create a dependency from the Dishwasher class to the Text_IO class and set the line to 
the Usage stereotype.

7.    Click Apply and then OK.
Rational Rhapsody 59



Lesson 2: Creating an Object Model Diagram
8.    Save your model. 

Now the Display and Dishwasher classes can use the Text_IO package. Your Packages 
object model diagram should resemble the following figure:

Task 2d: Setting a Package Dependency Property

Rational Rhapsody enables you to specify whether the dependency should generate the context 
clause in the unit specification or the unit body. Because the Display class has only a body, you 
must set the generation location of the context clause to implementation body.

To set the property, follow these steps:

1.    Double-click the Display class in the Rational Rhapsody browser or on the diagram to 
open the Features dialog box.

2.    On the Properties tab, make sure that all the subjects are available.

3.    Locate the CG::Dependency::UsageType property.
60 Ada Tutorial



Exercise 2: Other Necessary Tasks
4.    Click the box next to this property and select Implementation from the drop-down list, as 
shown in the following figure:

5.    Click OK to apply your changes and close the dialog box.

Note:  Because you set this property for the class and not on an individual dependency, 
it applies to all the dependencies in this class.

6.    Save your model.
Rational Rhapsody 61



Lesson 2: Creating an Object Model Diagram
Task 2e: Adding a default constructor

In preparation for the next lesson where you generate code and try to build your model for the first 
time, you want to add a constructor to the Dishwasher class. A constructor is called when an object 
is instantiated. An object can use a constructor to explicitly initialize object members or 
dynamically allocate space for member pointers. For our model, the constructor makes it possible 
for the code to compile correctly when not using animation, which you will not get to until later in 
this tutorial.

To add a default constructor, follow these steps:

1.    On the Rational Rhapsody browser, right-click the Dishwasher class and select Add New 
> Constructor to open the Constructor Arguments dialog box.

2.    Click OK.

3.    Expand the Operations category for the Dishwasher class and notice that Rational 
Rhapsody adds an Initialize operation for the Dishwasher class, as shown in the 
following figure:
62 Ada Tutorial



Summary
Summary
In this lesson, you created use object model diagrams that specified the types of objects in the 
system, and the attributes and operations that belong to those objects. You became familiar with 
the parts of an object model diagram and created the following:

� Classes
� Dependencies
� Attributes
� Operations
� Stereotypes
� Packages
� Constructors

You are now ready to proceed to the next lesson, where you are going to generate code and try to 
build your model in its current state. This lets you determine whether the model meets the 
requirements and identify defects early on in the design process.
Rational Rhapsody 63



Lesson 2: Creating an Object Model Diagram
64 Ada Tutorial



Lesson 3: Generating Code and Building 
Your Model
It is good practice to test the model incrementally using model execution. You can animate pieces 
of the model as it is developed. This gives you the opportunity to determine whether the model 
meets the requirements and find defects early on. Then you can test the entire model. In this way, 
you iteratively build the model, and then with each iteration perform an entire model validation. 

Goals for this Lesson
In this lesson, you are going to prepare for generating code, generate code, and try to build your 
model.

Exercise 1: Preparing for Generating Code
Before you generate code, you must do the following general steps:

1.    Create a component and set its features.

2.    Create a configuration.

The following tasks describe these steps in detail.
Rational Rhapsody  65 



Lesson 3: Generating Code and Building Your Model
Task 1a: Creating a Component

A component is a physical subsystem in the form of a library or executable program. It plays an 
important role in the modeling of large systems that contain several libraries and executables. Each 
component contains configuration and file specification categories, which are used to generate, 
build, and run the executable model. 

The name of the component becomes the name of the executable application to build. This 
component defines classes for which to generate code and options to apply to the generated code.

Each project contains a default component, named DefaultComponent. You can use the default 
component or create a new component. In this task, you are going to create a new component 
called EXE. Later you will use the EXE component to animate the model. 

To use create a component, follow these steps:

1.    In the Rational Rhapsody browser, expand the top-level Dishwasher category. 

2.    Right-click Components and select Add New Component.

Rational Rhapsody creates a new component called component_n, where n is greater than 
or equal to 0.

3.    Rename the component EXE and press Enter. Rational Rhapsody displays the renamed 
component in the browser, as shown in the following figure:

4.    Because the DefaultComponent is not used in this project and to unclutter the browser, 
right-click DefaultComponent and select Delete from Model, and then click Yes to 
confirm the requested action.

5.    Continue with Task 1b: Setting the Component Features.
66 Ada Tutorial



Exercise 1: Preparing for Generating Code
Task 1b: Setting the Component Features

Once you have created the component, you must set its features.

To set the features for your component, follow these steps:

1.    Continuing from Task 1a: Creating a Component, double-click the EXE component or 
right-click and select Features to open the Features dialog box.

2.    On the General tab, in the Type group, select the Executable option button if it is not 
already selected.

3.    On the Scope tab, select the All Elements option button, as shown in the following figure:
Rational Rhapsody 67



Lesson 3: Generating Code and Building Your Model
4.    Do the following to deactivate the automatically generated main so that only the 
user-defined one is used:

a.    On the Properties tab, make sure all the subjects are available. This should be set 
from the last time you used this tab.

b.    Locate the CG::Configuration::MainGenerationScheme property.

c.    Click the value next to the property name and use the drop-down list to change the 
property value to UserInitializationOnly, as shown in the following figure:

5.    Click OK.
68 Ada Tutorial



Exercise 2: Generating Code
Task 1c: Creating a Configuration

A component can contain many configurations. A configuration specifies how the component is to 
be produced. Each component contains a default configuration, named DefaultConfig. In this 
task, you are going to rename the default configuration to Host.

To rename the default configuration, follow these steps:

1.    In the Rational Rhapsody browser, expand the EXE component and the Configurations 
category.

2.    Double-click DefaultConfig or right-click and select Features to open the Features dialog 
box.

3.    On the General tab, in the Name box, replace DefaultConfig with Host.

4.    Click Apply and OK.

Exercise 2: Generating Code
In this exercise, you generate code for the first time for your application.

Task 2a: Generating Code

In this task you generate code in Rational Rhapsody. Before you generate code, you must first set 
the active configuration. The active configuration is the configuration for which you generate 
code. The active configuration appears in the drop-down list on the Code toolbar. 

To set the active configuration and generate code for the Host configuration, follow these steps:

1.    In the Rational Rhapsody browser, right-click the Host configuration and then select Set 
as Active Configuration.

Note:  You can also select the active configuration from the drop-down list on the 
Code toolbar.

2.    Select Code > Generate > Host. Rational Rhapsody displays a message that the Host 
directory does not yet exist and asks you to confirm its creation.

3.    Click Yes. Rational Rhapsody places the files generated for the active configuration in the 
new Host directory.
Rational Rhapsody 69



Lesson 3: Generating Code and Building Your Model
Rational Rhapsody generates the code and displays output messages in the Build tab of the Output 
window, as shown in the following figure:

The messages inform you of the code generation status, including:

� Success or failure of internal checks for the correctness and completeness of your model. 
These checks are performed before code generation begins.

� Names of files generated for classes and packages in the configuration.
� Names of files into which the main() function is generated.
� Location of the generated make file.
� Completion of code generation.

Task 2b: Fixing Code Generation Errors

If you receive code generation errors, double-click the error in the Output window to go to the 
source of the error. The source of the error appears as a highlighted element. Once you fix the 
problem, regenerate the code (choose Code > Re Generate > Host) until there are no error 
messages.
70 Ada Tutorial



Exercise 3: Building Your Model
About Code Generation Warnings
If you receive code generation warnings, double-click the warning in the Output window to go to 
the source of the warning. The source of the warning appears as a highlighted element. You might 
be able to fix the warning. Or you might leave the warning as is because your model is not yet fully 
formed.

Keep in mind that you might receive warnings because your model is not yet fully formed, so that, 
for example, all your port connections might not yet in place.

In other cases, if you do have warnings that are valid for the current state of your mode, fix them, 
regenerate the code, and rebuild the application until those warnings are no longer appearing.

Examining Generated Source Files
To examine any of the generated source files, go to the Host subfolder of the Dishwasher project.

Using External Elements
The Rational Rhapsody product enables you to visualize frozen legacy code or edit external code 
as external elements. This external code is code that is developed and maintained outside of the 
Rational Rhapsody product. This code will not be regenerated by the Rational Rhapsody product, 
but will participate in the code generation and build process of Rational Rhapsody models that 
interact or interface with this external code. You can create external elements by reverse 
engineering the files or by modeling. Refer to the IBM Rational Rhapsody User Guide for more 
information on using external elements.

Exercise 3: Building Your Model
In this exercise, you try to build your model for the first time.

Task 3a: Building your Model

Once you generate code without any errors, you are ready to build the model.

To build the model, do one of the following:

� Select Code > Build EXE.exe, or

� Click the Make button  on the Code toolbar.
Rational Rhapsody 71



Lesson 3: Generating Code and Building Your Model
Rational Rhapsody builds the model by performing the following tasks:

� Executes the makefile that it generated for the configuration.

� Sets up the environment for the compiler.
� Starts the compiler and linker, which run on the generated code. Once the code is compiled 

and linked, the Rational Rhapsody product displays the message Build Done in the 
Output window.

As you can see from the following figure, when you try to build your model code you receive error 
messages about not declared op_ operations for the dishwasher. This is because you have not 
defined these operations yet. You will do so in the next lesson. You can also ignore the message 
about start_behavior. So for now, you can ignore these message.

If you see other error messages, you should correct them; continue with Task 3b: Fixing Build 
Errors.

If you have no error messages, continue with Task 3c: Viewing Code.

Task 3b: Fixing Build Errors

If you receive build errors, double-click the error in the Output window to go to the source of the 
error. The source of the error appears as a highlighted element. Once you fix the problem, 
regenerate the code and rebuild the application until there are no error messages.

Any time you make changes to the model, you need to regenerate the code (choose 
Code > Re Generate > Host, in this case) and rebuild the model (choose 
Code > Rebuilt Exe.exe, in this case). For more information about full code generation and an 
incremental code generation, refer to the IBM Rational Rhapsody User Guide. (Do a search of the 
user guide PDF for “incremental code generation.”) You might also find it useful to use the Clean 
function. Do a search of the user guide PDF for “deleting old objects.”
72 Ada Tutorial



Summary
Task 3c: Viewing Code

To view the generated code, perform these steps:

1.    For example, select the Dishwasher class on the Dishwasher object model diagram and 
choose View > Active Code View.

2.    Review the code on the Dishwasher.abs tab.

3.    If you want to see line numbers on the Active Code View window, do the following:

a.    Right-click in the window and select Properties to open the Windows Properties 
dialog box.

b.    On the Misc tab, in the Line Numbering area, select a numbering style from the 
drop-down list (for example, Decimal).

c.    Click OK.

4.    To close the Active Code View window, click  (the Hide Docked Window button) for 
that window.

Summary
In this lesson, you prepared for code generation, generated code, and tried to build your model at 
its current point. You performed the following:

� Created a component and set its features
� Created a configuration and set it as the active configuration
� Generated code in Rational Rhapsody
� Tried to build the Dishwasher model at its current point
� Viewed code

You are now ready to proceed to the next lesson, where you continue to create your Dishwasher 
model. You are going to define the behavior of objects, including the various states that an object 
can enter into over its lifetime and the messages or events that cause it to transition from one 
another by drawing statecharts. You also get to regenerate code and try to build your model again.
Rational Rhapsody 73



Lesson 3: Generating Code and Building Your Model
74 Ada Tutorial



Lesson 4: Creating a Statechart
Statecharts (SCs) define the behavior of objects, including the various states that an object can 
enter into over its lifetime and the messages or events that cause it to transition from one state to 
another. Each statechart defines the life cycle behavior of a single reactive class. Therefore, a 
single reactive class can be associated with only one statechart. 

Goals for this Lesson
In this lesson you will perform the following tasks:

� Draw a statechart
� Draw states, transitions, and nested states
� Put Ada timeouts on transitions
� Put actions on transitions
� Specify entry and exit actions
� Draw history connectors
� Change operations synchronization
Rational Rhapsody  75 



Lesson 4: Creating a Statechart
Exercise 1: Creating the Dishwasher Statechart
Statecharts define the behavior of objects, including the various states that an object can enter into 
over its lifetime and the messages or events that cause it to transition from one state to another. 

The following figure shows the Dishwasher statechart that you are going to create in this exercise.

Dishwasher Statechart
76 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart
Task 1a: Creating a Statechart

You can create either a statechart or an activity diagram to model the behavior of your system. For 
example, objects in a model can have different states, such as On or Off. An activity diagram is 
used to incorporate these states into a model if no transitions are needed between the states. In this 
case, the Dishwasher needs to transition from state to state in reaction to events, so a statechart is 
used instead of an activity diagram.

You can use the Rational Rhapsody browser, the Tools menu, or the Open Statechart button on 
the Diagrams toolbar to create a new statechart. This task describes how to create a statechart 
through use of the browser.

To create a statechart, follow these steps:

1.    Start Rational Rhapsody and the Dishwasher model if they are not already open.

2.    In the Rational Rhapsody browser, right-click the Dishwasher class.

3.    Select Add New > Statechart.

Rational Rhapsody automatically adds the new statechart under the Dishwasher class in 
the browser. In addition, Rational Rhapsody opens the new statechart in the drawing area.

Task 1b: Drawing the Dishwasher Statechart

The general steps for drawing the Dishwasher statechart are as follows:

1.    Draw states.

2.    Draw history and diagram connectors.

3.    Draw default connectors.

4.    Add Ada operations.

5.    Draw transitions.

6.    Add actions to states.

The following sections describe these steps in detail.
Rational Rhapsody 77



Lesson 4: Creating a Statechart
To draw a state, follow these steps:

1.    Click the State button  in the Drawing toolbar.

2.    Click-and-drag on the drawing area to create a large state with a default name of state_n, 
where n is greater than or equal to 0.

3.    Rename the state Running.

4.    Using the Dishwasher Statechart as a reference, draw three more states inside the Running 
state, as shown in the following figure:

–  Washing

–  Rinsing

–  Drying

5.    To the left and outside the Running state, draw two more states and name them Off and 
Open.

6.    Continue with the next task.
78 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart
Task 1c: Drawing History and Diagram Connectors

If you open and close the door during operation, the dishwasher must start up again where it left 
off in the wash cycle. In other words, you want the dishwasher to save its history so it can continue 
where it left off after an interruption. History connectors store the most recent active configuration 
of a state. A transition to a history connector restores this configuration.

When the dishwasher is done drying, the cycle should start over again at the beginning, to handle 
future loads. To define the cycle restart, use diagram connectors to connect the end of one part of a 
statechart to the beginning of another part. These connectors physically join distant transition 
segments. Diagram connectors have the same name to indicate they are a pair of connectors. This 
tells the system to jump from one to the other even if they are located on different statecharts. 

To draw the connectors, follow these steps:

1.    Click the History connector button  on the Drawing toolbar and then click in the 
lower left corner inside the Running state.

2.    Click the Diagram connector button  on the Drawing toolbar and create the 
following diagram connectors and label them Done in the following locations:

–  Below the Off state. This is the source diagram connector.
–  Outside the Running state below the Drying state. This is the target diagram 

connector.
Rational Rhapsody 79



Lesson 4: Creating a Statechart
3.    Save your model.

Your statechart should resemble the following figure:
80 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart
Task 1d: Drawing Default Connectors

One object must be assigned the default state. In the default state, the object knows to start the 
system. When the dishwasher first starts, it is in the Off state. 

Note that once you have drawn a default connector in a statechart, Rational Rhapsody does not 
allow you to draw another one in the same chart. Each object can have only one default state.

To assign the default states for classes in the statechart, follow these steps:

1.    Click the Default connector button  in the Drawing toolbar, click in the drawing area 
to above the Off state, and then move your cursor to the Off state and click the edge of the 
state.

2.    Click away from the label box to skip naming the connector.

3.    Use the same method to draw a default connector to the Washing state, keeping the 
connector inside the Running state.

4.    Click away from the label box to skip naming the connector.

At this point your statechart should resemble the following figure:
Rational Rhapsody 81



Lesson 4: Creating a Statechart
Task 1e: Adding Ada Operations

You need to create additional operations to determine the duration for the previously created 
operations. 

To define these operations, follow these steps:

1.    Expand the Packages category in the Rational Rhapsody browser.

2.    Double-click the Dishwasher class or right-click and select Features to open the Features 
dialog box for the class.

3.    On the Operations tab, click <New> and select PrimitiveOperation to create a blank line 
for a new operation.

4.    Name this operation dec_dry_time and accept the other default settings.

5.    Click Apply.

6.    Double-click the icon to the left of dec_dry_time or highlight it and click  to open the 
Features dialog box for the operation.

7.    On the Implementation tab, type the following text in the Operation Body area:

   Dishwasher_unique_instance.drytime:= 
      Dishwasher_unique_instance.drytime - 1;

8.    Click OK to apply your changes and close the Features dialog box for the operation and 
return to the Features dialog box for the class.

9.    Repeat Steps 3 – 8 to create the following operations and enter implementations for each.

–  dec_rinse_time with the following implementation code.
   Dishwasher_unique_instance.rinsetime := 
      Dishwasher_unique_instance.rinsetime - 1;

–  dec_wash_time with the following implementation code:
   Dishwasher_unique_instance.washtime := 
      Dishwasher_unique_instance.washtime - 1;
82 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart
10.    Your Operations tab should resemble the following figure:

11.    When done, click OK to close all Feature dialog boxes.

Task 1f: Drawing the Transitions

A transition represents a message or event that causes an object to switch from one state to 
another. Use the Dishwasher Statechart as a reference to do this task.

To add transitions, follow these steps:

1.    Click the Transition button  in the Drawing toolbar.

2.    Click the edge of the Off state to anchor the start of the transition.

3.    Move the cursor to the Running state and click its to anchor the transition line.

4.    In the label box, type op_start/setup; and press Ctrl+Enter. (Pressing only Enter 
inserts a new line.)

This creates an event and an action with the same name.
Rational Rhapsody 83



Lesson 4: Creating a Statechart
5.    For purposes of illustrating the possible line shapes, this task uses two line shapes. By 
default, Rational Rhapsody uses the Spline line shape. To change the line shape for a 
transition, right-click the line in the drawing area, select Line Shape, and then one of the 
following options:

–  Straight to change the line to a straight line.
–  Spline to change the line to a curved line.
–  Rectilinear to change the line to a group of line segments connected at right 

angles.
–  Re-Route to remove excess control points to make the line more fluid.

6.    Draw a transition from the Running to the Open state and label it op_open.

7.    Draw a transition from the Open state to the history connector and label it op_close.

8.    Inside the Running state, draw a transition from the Washing state to the Rinsing state 
and label it [isWashed].

Note:  The square brackets must be included because they denote a guard condition. A 
guard is a Boolean condition that, if specified, must be true for the transition to 
be taken. In this case, when the dishes are washed (isWashed is true), the 
dishwasher transitions from the Washing to the Rinsing state. Previously in this 
tutorial, you specified transitions only with event triggers. However, transition 
labels can have up to three parts, all of which are optional: trigger, guard, 
action. You can specify the trigger, guard, and action textually in the transition, 
or enter them in the features dialog box for the transition. Refer to the IBM 
Rational Rhapsody User Guide to learn more about transition labels.

9.    Draw a transition from the Rinsing state to the Drying state and label it [isRinsed].

10.    Draw a transition from Drying state to the Done connector and label it [isDried].

11.    Draw a self-directed transition (shown by an arrow that bends back to the sending state) 
on the Washing state and label it:

   op_tick/dec_wash_time;

Note:  This transition keeps the Dishwasher in washing mode for dec_wash_time; 
when the specified time is up and the guard [isWashed] is true, the 
Dishwasher transitions from Washing to Rinsing mode.

12.    Add a self-directed message on the Rinsing state and label it:

  op_tick/dec_rinse_time;

13.    Add a self-directed message on the Drying state and label it:

  op_tick/dec_dry_time;
84 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart
14.    Draw an unlabeled transition from the target diagram connector (Done under the Off 
state) to the Off state.

At this point your statechart includes the time descriptions for all of the major operations.

15.    Save your model.

Your statechart and should resemble the following figure:

Task 1g: Adding Actions to States

Actions on entry are actions specified for a state that an object performs when it enters that state. 
Similarly, actions on exit are actions that an object performs when it exits the state. In this 
example, the Dishwasher sends an enter or exit action to each of the states. 

To specify actions on entry and exit, follow these steps:

1.    Double-click the Off state or right-click and select Features to open the Features dialog 
box.

2.    On the General tab, in the following boxes, type the following code, which is also shown 
in the following figure:
Rational Rhapsody 85



Lesson 4: Creating a Statechart
–  Action on entry:
   ada.text_io.put_line("Enter Off");

–  Action on exit:
   ada.text_io.put_line("Exit Off");

3.    Click Apply to apply your changes and keep the Features dialog box open. On your 

statechart, notice that the Off state has a symbol  that indicates that the Off state now 
has underlying actions.

4.    Double-click the Washing state and in the following boxes, type the corresponding code:

–  Action on entry:
ada.text_io.put_line("Enter Washing");

–  Action on exit:
ada.text_io.put_line("Exit Washing");
86 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart
5.    Click Apply.

6.    Double-click the Rinsing state and in the following boxes, type the corresponding code:

–  Action on entry:
ada.text_io.put_line("Enter Rinsing");

–  Action on exit:
ada.text_io.put_line("Exit Rinsing");

7.    Click Apply.

8.    Double-click the Drying state and in the following boxes, type the corresponding code:

–  Action on entry:
ada.text_io.put_line("Enter Drying");

–  Action on exit:
ada.text_io.put_line("Exit Drying");

9.    Click Apply.

10.    Double-click the Open state and in the following boxes, type the corresponding code:

–  Action on entry:
ada.text_io.put_line("DOOR OPEN!!!");

–  Action on exit:
ada.text_io.put_line("Door Closed");

11.    Click Apply and then OK to close the Features dialog box.
Rational Rhapsody 87



Lesson 4: Creating a Statechart
12.    Save your model.

Your statechart should resemble the following figure:

Task 1h: Changing Operation Synchronization

Events and operations relate statecharts to the rest of the model by triggering transitions. 
Operations specified by a statechart are called triggered operations (as opposed to operations 
specified in object model diagrams, called primitive operations).

Events facilitate asynchronous collaborations and operations facilitate synchronous collaborations. 
Triggered operations have a return type and reply. Triggered operations have a higher priority than 
events.

To change each asynchronous operation to be synchronous, follow these steps:

1.    In the browser, expand the Dishwasher class (in the DishwasherPkg package) and then 
expand Operations so that you see a list of all the operations.

2.    Notice the op_ elements (for example, op_close), especially notice the icon  for them as 
it will change once you change the type operation.
88 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart
3.    Double-click one of the op_ elements or right-click it (for example, op_close) and select 
Features to open the Features dialog box.

4.    On the General tab, in the Type box, use the drop-down list to change Reception to 
Triggered Operation, as shown in the following figure:

5.    Click Apply to apply your change. On the Rational Rhapsody browser, notice that the icon 

 for the operation has changed.

6.    With the Features dialog box still opened, select another op_ operation and repeat this 
change for each op_ operation in the browser list (op_close, op_open, op_start, and 
op_tick). Click Apply after each change.

7.    Click OK to close the Features dialog box.
Rational Rhapsody 89



Lesson 4: Creating a Statechart
8.    Save your project.

Your Rational Rhapsody browser should resemble the following figure.

Task 1i: Adding a Diagram Title

To add a title to your statechart diagram, see Task 2e: Adding a Diagram Title.

If you do this task, remember to save your project.
90 Ada Tutorial



Exercise 2: Generating Code and Building Your Model
Exercise 2: Generating Code and Building Your Model
In the previous lesson you generated code and tried to build your Dishwasher model for the first 
time. In this exercise, you will generate code and try to build your model again now that you have 
added a statechart to your model.

Task 2a: Generating Code

To generate code, follow these steps:

1.    If necessary, in the Rational Rhapsody browser, right-click the Host configuration and 
then select Set as Active Configuration.

2.    Select Code > Re Generate > Host.

Rational Rhapsody generates the code and displays output messages in the Build tab of the Output 
window, as shown in the following figure. If you have any error messages, see Task 2b: Fixing 
Code Generation Errors.
Rational Rhapsody 91



Lesson 4: Creating a Statechart
Task 2b: Building the Model

Once you regenerate code without any errors, you are ready to rebuild the model.

To rebuild the model, do one of the following:

� Select Code > Rebuild EXE.exe, or

� Click the Make button  on the Code toolbar.
As you can see from the following figure, you should no longer get messages about op_ elements 
because you created them in this lesson. You can ignore the warning message. If you do have error 
messages, you should correct them; see Task 3b: Fixing Build Errors.

Summary
In this lesson, you created a statechart, which identifies the state-based behavior for your 
dishwasher model. You became familiar with the parts of a statechart and created the following:

� States and nested states
� Default connectors
� Transitions
� Actions
� Operation synchronization

You also regenerated code and built your model.

You are now ready to proceed to the next lesson, where you are going to define the message 
exchange between subsystems and subsystem modules using a sequence diagram.
92 Ada Tutorial



Lesson 5: Creating a Sequence Diagram
Sequence diagrams show structural elements communicating with one another over time. They 
also identify required relationships and messages. A high-level sequence diagram shows the 
interactions between actors, use cases, and blocks. Lower-level sequence diagrams show 
communication between classes and objects.

Sequence diagrams have an executable aspect and are a key application animation tool. When you 
animate the model to see the application’s operations, Rational Rhapsody dynamically builds 
sequence diagrams that record the object-to-object or block-to-block messaging.

Goals for this Lesson
In this lesson you will learn to perform the following tasks:

� Create an event in preparation for its use in the sequence diagram
� Draw a sequence diagram
Rational Rhapsody  93 



Lesson 5: Creating a Sequence Diagram
Exercise 1: Creating the KeyPress Event
To create the “starter” for the dishwasher application, you need to define the KeyPress event, 
which will be called by the sequence diagram.

Task 1a: Creating an Event

To create the KeyPress event, perform these steps:

1.    Start Rational Rhapsody and open the Dishwasher project if they are not already open.

2.    In the Rational Rhapsody browser, expand the DishwasherPkg package, right-click 
Events, and select Add New Event.

3.    Rename the event evKeyPress and press Enter.

4.    Double-click evKeyPress to open the Features dialog box.

5.    On the Arguments tab, click <New> to create a blank row for a new argument.

6.    To define the Key argument, fill in the row with the following values, as shown in the 
following figure:

a.    For Name, type Key.

b.    For Type, select Integer from the drop-down list if necessary. It should be set by 
default.

c.    For Value, enter 0 (zero).

7.    Click OK.
94 Ada Tutorial



Exercise 2: Creating the Execution Sequence Diagram
Exercise 2: Creating the Execution Sequence Diagram
Before you start you want to define the system workflow. The dishwasher application needs this 
high-level workflow:

1.    The main() loop in Display checks for a character every second.

2.    The one-second timer message, op_tick, is delivered in every iteration through the loop.

3.    Each character relates to a triggered event in the Dishwasher, as follows:

–  s   Dispatches the op_start message to start the processing.
–  o   Dispatches the op_open message to open the door.
–  c   Dispatches the op_close message to close the door.

The Execution sequence diagram shows how subsystems interact during the scenario of 
successfully turning on and off a dishwasher.

You draw a sequence diagram using the following general steps:

1.    Draw the actor lines.

2.    Draw classifier roles.

3.    Draw messages.

4.    Draw interaction occurrences.

This exercise describes each of these steps in detail.
Rational Rhapsody 95



Lesson 5: Creating a Sequence Diagram
The following figure shows the Execution sequence diagram that you are going to create in this 
exercise.

Execution Sequence Diagram

Rational Rhapsody separates sequence diagrams into a Names pane and a Message pane. The 
Names pane contains the name of each instance line or classifier role. The Message pane contains 
the elements that make up the interaction. 
96 Ada Tutorial



Exercise 2: Creating the Execution Sequence Diagram
Task 2a: Creating the Sequence Diagram

To create a sequence diagram, follow these steps:

1.    In the Rational Rhapsody browser, right-click the top-level Dishwasher, and select Add 
New > Sequence Diagram. 

2.    Rename the diagram Execution and click OK.

3.    Click the System Border button  on the Drawing toolbar and click on your sequence 
diagram. Rational Rhapsody creates an item named ENV (for environment) that 
represents the system border.

4.    Drag the Display class and the Dishwasher class from the Rational Rhapsody browser 
onto the sequence diagram. 

Your diagram should resemble the following figure:
Rational Rhapsody 97



Lesson 5: Creating a Sequence Diagram
Task 2b: Creating the Workflow for Your Sequence Diagram

To define the workflow for your sequence diagram, use the events and operations you created in 
the earlier exercises.

To add the flow instructions for your sequence diagram (use the Execution Sequence Diagram as a 
reference), follow these steps:

1.    Click the Message button  on the Drawing toolbar.

2.    Click the line for the ENV column and then click the line for the Display column to create 
a downward-slanted line, and rename the message evKeyPress(key = 0).

3.    Select the Message button  and draw a message-to-self line on the Display line and 
rename the message processKey(aKey = 0). 

Note:  For a reactive class, the “message to self” is interpreted as an event. If it is a 
non-reactive class, it would be viewed as a primitive operation.

4.    Use the Message button to draw a straight-line message from Display to Dishwasher and 
rename it op_start().

Note:  The () should automatically be entered when you press Enter.

5.    Use the Message button and draw a message-to-self lines of main() and op_tick() on the 
Display line.

6.    Use the Message button to add the following to the Dishwasher line:

–  op_close()

–  setup()

–  isWashed()

–  isRinsed()

–  isDried()

–  op_open()
98 Ada Tutorial



Exercise 2: Creating the Execution Sequence Diagram
7.    Save your model.

Your sequence diagram should resemble the following figure:
Rational Rhapsody 99



Lesson 5: Creating a Sequence Diagram
Summary
In this lesson, you created a sequence diagram, which show structural elements communicating 
with one another over time for your dishwasher model. You became familiar with the parts of a 
sequence diagram and created the following:

� System border
� Classifier roles
� Workflow with messages, events, and time intervals

You are now ready to proceed to the next lesson, where you are going to generate code and build 
your model.
100 Ada Tutorial



Lesson 6: Building and Running the 
Model
Rational Rhapsody uses the following sources to generate code for the model:

� Project Type or profile selected when you created the project, as described in Creating a 
Rational Rhapsody Project.

� Component definition, as described in Task 1a: Creating a Component.
� Code you entered for operations, as in Task 1e: Creating Operations and Task 1e: Adding 

Ada Operations.
� Communication you defined in a sequence diagram, as described in Lesson 5: Creating a 

Sequence Diagram.
� State actions you defined, as described in Task 1g: Adding Actions to States.

� Compiler and instrumentation mode selections made when defining the configuration, as 
described in Task 1c: Creating a Configuration. 

� Ada code that Rational Rhapsody automatically generates to support the design you 
created in the diagrams and from any predefined packages you selected, as described in 
Task 2b: Using Predefined Packages.

Goals for this Lesson
In this lesson you are going to create a Build object model diagram and then you are going to 
generate code and run your model.
Rational Rhapsody  101 



Lesson 6: Building and Running the Model
Exercise 1: Creating the Build Object Model Diagram
In this exercise you are going to create a new object model diagram called Build and in it a 
composite class called DishwasherBuilder.

The following figure shows the Build object model diagram that you are going to create in this 
exercise.

Build Object Model Diagram
102 Ada Tutorial



Exercise 1: Creating the Build Object Model Diagram
Task 1a: Creating the Build Object Model Diagram

To create a new object model diagram, follow these steps:

1.    Start Rational Rhapsody and the Dishwasher model if they are not already open.

2.    Right-click the Object Model Diagrams category in the Rational Rhapsody browser and 
then select Add New Object Model Diagram to open the New Diagram dialog box.

3.    Type Build and click OK.

The new object model diagram displays in the drawing area.

Task 1b: Creating a DishwasherBuilder Class

To draw the DishwasherBuilder class, use the Build Object Model Diagram as a reference.

To create a composite class in the Build object model diagram, follow these steps:

1.    Select the Composite Class button  from the Drawing toolbar and draw the composite 
class in the Build object model diagram.

2.    Rename the composite class DishwasherBuilder and then press Enter.

Your Build object model diagram should resemble the following figure:

3.    Drag the Dishwasher class into the DishwasherBuilder composite class.
Rational Rhapsody 103



Lesson 6: Building and Running the Model
4.    Right-click the DishwasherBuilder class and select Make an Object.

5.    Resize the object on the diagram so that you can see all of its attributes and operations.

Your Build object model diagram should resemble the following figure:

6.    Save your project.
104 Ada Tutorial



Exercise 2: Generating Code and Building Your Model
Exercise 2: Generating Code and Building Your Model
In this exercise, you generate code and build your model.

As part of Lesson 4: Creating a Statechart, you generated code and successfully built your 
Dishwasher model at that point in time. In this exercise, you will create another configuration for 
your EXE component, which you will use later to animate your model.

Task 2a: Creating Another Configuration

As you learned earlier, a component can contain many configurations. In this task, you are going to 
create a configuration called HostAnimated by copying the Host configuration you already have 
in the EXE component.

To create another configuration by copying a current one, follow these steps:

1.    In the Rational Rhapsody browser, expand the EXE component and the Configurations 
category.

2.    Hold down the Ctrl key while you use the mouse to drag the Host configuration onto the 
EXE component.

3.    Double-click the Host_copy configuration to open the Features dialog box.

Note:  You might find it useful to arrange it so that you can see the Rational Rhapsody 
browser while you have the Features dialog box opened.

4.    On the General tab, in the Name box, replace Host_copy with HostAnimated.
Rational Rhapsody 105



Lesson 6: Building and Running the Model
5.    Click Apply.

Notice the name change on the Rational Rhapsody browser. Your browser should 
resemble the following figure:

6.    On the Setting tab, in the Instrumentation Mode box, select Animation, as shown in the 
following figure:
106 Ada Tutorial



Exercise 2: Generating Code and Building Your Model
7.    Notice that Rational Rhapsody sets the values in the Environment Settings group based 
on the compiler settings you configured during installation of the Rational Rhapsody 
product. This example uses a system with the GNAT compiler, as shown in the above 
figure.

8.    On the Initialization tab, select the Explicit option button if it is not already selected.

Note:  Because we are using the entrypoint stereotype in this model, you do not have 
to select which instance to initialize on this tab. Click the + signs and notice 
that none of the check boxes are selected, which is as it should be for this 
model.

9.    Click OK.

10.    Save your model.

Task 2b: Generating Code

To generate code and the instances necessary for animation, follow these steps:

1.    Set HostAnimated as the active configuration:

–  Right-click HostAnimated and select Select as Active Configuration, or
–  Select HostAnimated from the drop-down list on the Code toolbar.

Once HostAnimated is set as the active configuration it should appear in 
boldtype on your browser, as shown in the following figure:

2.    From the Code toolbar, click the GMR button . This generates code, builds the 
configuration, and runs the executable image for the active configuration. It is the same as 
choosing Code > Generate/Make/Run.

3.    If you are asked if you want to create the HostAnimated directory, click Yes.
Rational Rhapsody 107



Lesson 6: Building and Running the Model
4.    If you are asked if you want to run the executable, click Yes. (You might not be asked.)

An Application window opens, as shown in the following figure:

5.    In the browser, check to be certain that instances were created.

a.    Expand the DishwasherPkg package, the Classes category, and then each class.

b.    See that there is an Instances category under the Display, Dishwasher, 
DishwasherBuilder classes, as shown in the following figure:
108 Ada Tutorial



Exercise 2: Generating Code and Building Your Model
6.    If you are successful, continue with Exercise 3: Running Your Model. If not, continue with 
Task 2c: Troubleshooting the Build.
Rational Rhapsody 109



Lesson 6: Building and Running the Model
Task 2c: Troubleshooting the Build

If the instances were not created, there are two typical reasons:

� You might not have an Ada compiler installed on your machine or the current version of 
the compiler available on your computer for Rational Rhapsody to use. If that is the 
problem, an error message displays at the bottom of the Output window. Be certain the 
correct compiler for your code is accessible to Rational Rhapsody to correct the problem. 
This is usually set up when Rational Rhapsody is installed. Refer to the Rational 
Rhapsody Release Notes for the supported Ada compilers.

� One or more steps might have been skipped or entered with typographical errors during 
the design process. Examine the error message and return to the section of the tutorial 
covering that feature. A typographical error prevents the system from recognizing 
relationships and items.

If these two problems did cause the error, follow these steps:

1.    Double-click the error in the message list in the Output window.

2.    The system displays the code containing the error in the drawing area. Examine the code 
and click on the diagram tabs and browser to research the problem and make the 
necessary changes.

3.    Continue with Task 2d: Roundtripping.
110 Ada Tutorial



Exercise 3: Running Your Model
Task 2d: Roundtripping

Roundtripping is an on-the-fly method used to update the model quickly with small changes 
entered to previously generated code. If you have made small changes in the code in the previous 
section, follow these steps to incorporate it into the model:

1.    Choose Code > Roundtrip > Host. 

2.    Look at the results display in the Output window.

However, roundtripping should not be used for major changes in the model that would require the 
model to be rebuilt. Do not use roundtripping to incorporate changes to any of the following in a 
model:

� Packages
� Dependencies
� Stereotypes 
� States
� Transitions
� Component / Configuration information

Exercise 3: Running Your Model
In this exercise, you are going to run your model.

Task 3a: Running your Dishwasher Model

To run your dishwasher model, follow these steps:

1.    If needed, click the GMR button . You might not need to if you successfully did this in 
Task 2b: Generating Code.

2.    Arrange your desktop so that you can view the Rational Rhapsody browser, drawing area, 
and the Output window; and the Application window.
Rational Rhapsody 111



Lesson 6: Building and Running the Model
3.    Click the Go button . The following occurs:

–  On the Application window, the first lines of output display, as shown on the 
following figure:

–  On the Rational Rhapsody browser, a relationship item (Dishwasher[0]) 
appears for the Dishwasher class, as shown on the following figure:
112 Ada Tutorial



Summary
–  Your sequence diagram should resemble the following figure:

4.    To end the program, click the Stop Make/Execution button .

This stops all processes and closes the Application window.

Summary
In this lesson, you built the Build object model diagram, set up your project for animation, 
generated code, built your model, and ran your executable for your model.

You are now ready to proceed to the next lesson, where you are going to animate your model.
Rational Rhapsody 113



Lesson 6: Building and Running the Model
114 Ada Tutorial



Lesson 7: Animating Your Application
Animation is the observable execution of behaviors and associated definitions in the model. 
Rational Rhapsody animates the model by executing the code generated, with instrumentation, for 
classes, operations, and associations. Once you start model animation, you can open animated 
diagrams, which let you observe the model as it is running and perform design-level debugging. 
You can step through the model, set and clear breakpoints, inject events, and generate an output 
trace.

It is good practice to test the model incrementally using model execution, which you have 
practiced in earlier lessons. You can animate pieces of the model as it is developed. This gives you 
the opportunity to determine whether the model meets the requirements and find defects early on. 
Then you can test the entire model. In this way, you iteratively build the model, and then with each 
iteration perform an entire model validation.

Goals for this Lesson
In this lesson you are going to animate your application by stepping through the program, invoking 
commands, and setting breakpoints.
Rational Rhapsody  115 



Lesson 7: Animating Your Application
Exercise 1: Animating your Application
In this exercise you are going to animate your model, step through it, invoke commands for it, set 
breakpoints, and exit animation mode.

Task 1a: Starting Animation

Because you compiled the application with animation instrumentation in the previous lesson, 
when the application starts, it connects to the Rational Rhapsody application via a TCP/IP socket 
whose number is set in the rhapsody.ini file.

Note:  This task assumes you are starting after having completed Task 3a: Running 
your Dishwasher Model from Lesson 6: Building and Running the Model.

To start animation, follow these steps:

1.    Choose Code > Run EXE.exe.

Rational Rhapsody displays the animation toolbar, which includes tools that enable you to 
control and test the application. In addition, an Application window opens.

2.    Position and resize the Rational Rhapsody window and the Application window so that 
both are easily visible on your desktop.

3.    Notice that the following output panes are displayed at the bottom of the Rational 
Rhapsody window: 

� Animation shows run-time messages from the application.
� Call Stack displays the logical call stack of the executing model at the design 

level, rather than the code level.

You can adjust the horizontal sliders between the panes as needed to view the 
contents. These windows are dockable, so you can move them out of the Rational 
Rhapsody client area if you want to increase the viewable area for animations. 
Simply click and hold the double bars at the left edge of a dockable window, 
move the window, and drop it where you want.
116 Ada Tutorial



Exercise 1: Animating your Application
Task 1b: Viewing the Animated Statechart

As you do this task, in addition to looking at the Call Stack tab, look at what is happening on the 
Application window too. To do this, you have to arrange your desktop so that you can view 
Rational Rhapsody and the Application window clearly.

To step through the model animation, follow these steps:

1.    Click the Go Step button . The Call Stack displays nothing.

2.    Click Go Step button . The Call Stack displays the message Initialize().

3.    Click Go Step button. The Initialize() message is removed from the Call Stack.

4.    Click Go Step button. The message Dishwasher[0]-> Start Behavior is displayed in 
the Call Stack and the browser shows the new instance, Dishwasher[0]. To see it in the 
browser, expand the Instances category under the Dishwasher class.

5.    In the browser, right-click the Dishwasher[0] instance and then select Open Instance 
Statechart. Rational Rhapsody displays an animated version of your Dishwasher 
statechart.

6.    Click Go Step button. The message is removed from the Call Stack, and your statechart 
should resemble the following figure:

Note:  Magenta denotes what is active and olive denotes what is inactive.

7.    Continue with Task 1c: Invoking Commands for your Program.
Rational Rhapsody 117



Lesson 7: Animating Your Application
Task 1c: Invoking Commands for your Program

You can invoke commands for your program with the use of the Application window because this 
model used triggered operations.

Note that if the model used events instead, you could generate events for your model. For more 
information about events, refer to the IBM Rational Rhapsody User Guide.

To invoke commands for your program, follow these steps:

1.    If not already, arrange your desktop so that you can view the Rational Rhapsody window 
and the Application window clearly.

2.    Click the Go button  on the Animation toolbar.

3.    Notice on the Application window that your program starts running. Because op_tick is 
set for every second, there is a tick every second, as shown in the following figure:

4.    With focus on the Application window, press s on your keyboard.
118 Ada Tutorial



Exercise 1: Animating your Application
5.    Notice what happens on your statechart and the Application window.

On your statechart, in the Running state, the dishwasher cycles through the Washing (as 
shown in the following figure) Rinsing, and Drying states, until it goes to the Off state.

Note:  Magenta denotes what is active and olive denotes what is inactive. Depending 
on what is timer functions might be coded for a program, the color changes 

might happen rapidly. You can click the Animation Pause button  on the 

Animation toolbar to pause the animation. Click the Go button  again to 
continue.

6.    Once you are in the Off state, press s again to start the dishwasher.
Rational Rhapsody 119



Lesson 7: Animating Your Application
7.    When it gets to the Running state, press o and notice what happens. The dishwasher door 
is opened so the program stops (though op_tick continues to tick off the seconds), as 
shown in the following figure:

8.    Press c and notice what happens on your statechart. At whatever state the dishwasher 
stopped, it continues with the program, as shown in the following figure:
120 Ada Tutorial



Exercise 1: Animating your Application
9.    Optional. For another view, watch what happens on your animated sequence diagram 
when you do this task.

10.    Let the program get to the Off state (as seen on your animated statechart).

Task 1d: Setting Breakpoints

Breakpoints enable you to stop the execution at a point that is entirely under your control so you 
can examine the state of the application. For more information about breakpoints, refer to the IBM 
Rational Rhapsody User Guide.

To set a breakpoint, follow these steps:

1.    Right-click the Rinsing state and select Add Breakpoint to open the Define Breakpoint 
dialog box.

2.    Click the Select button to open the Instances Selection dialog box.

3.    Select Dishwasher[0] and then click OK

4.    On the Define Breakpoint dialog box, leave the default values in the Reason and Data 
boxes and click OK.

5.    On the Application window, press s on your keyboard. Notice that when your program 
enters Rinsing state, execution stops and a message displays on the Output window, as 
shown in the following figure:
Rational Rhapsody 121



Lesson 7: Animating Your Application
6.    To disable the breakpoint:

a.    Click the Breakpoints button  on the Animation toolbar to open the Breakpoints 
dialog box.

b.    Select the breakpoint you want to disable and then click the Disable button.

c.    Click OK to close the Breakpoints dialog box.

Note:  You can use the Breakpoints dialog box to see a list of the available 
breakpoints; plus add, enable, disable, and delete breakpoints.

7.    Click the Go button  a to restart the program.

Task 1e: Quitting Animation

To end the animation session, follow these steps:

1.    If necessary, click the Animation Pause button .

2.    Click the Quit Animation button .

3.    Click Yes to confirm ending the animation session.

The message Animation session terminated displays on the Animation tab of the Output 
window.

Note that you can also click the Stop Make/Execution button .

Summary
In this lesson, you became familiar with animation and animated your model. You performed the 
following:

� Generated code, built the model, and ran the program
� Animated the statechart and sequence diagram
� Stepped through and invoked commands to your application and saw it progress through 

states and pass messages
122 Ada Tutorial



Index
Symbols
_rpy file 13
_RTC directory 13

A
Actions 85
Active configuration 69
Activity diagrams 5, 77
Actors 25, 26, 30
Ada code examples 3

main operation 50
setup operation 49

Animation 107, 115, 116
breakpoints 121
configuration 69, 105
generating code 69
invoking commands for your program 118
output windows 116
quitting 122
running the application 115
starting 116
statecharts 117
tab 122
viewing 117

Application 115
running 111, 115
workflow 98

Application window 108, 112, 118, 119
Arguments tab 94
Association 33
Asynchronous 88
Attributes 43

viewing in diagram 46
Autosave 10

B
Backup 10
Boundary boxes 30
Breakpoints 121
Browser 15, 17, 23
Build 18
Build object model diagram 102
Build tab 70, 91

Building the model 71, 92

C
Call Stack 116
Categories 17
Classes 40

create operations 44
predefined for Ada 56
singleton 42

Code
examples 3
generated from 101
roundtripping 111

Code generation 69, 107
creating configurations 69, 105
debugging 70, 71, 72
source files 71

Collaboration diagrams 5
Compilers 107, 110
Component diagrams 5
Components 66

creating 66
creating configurations 69, 105
default description 66
features 67

Configurations 69, 105
creating animation 69, 105
default 69
Host 69
HostAnimated 105
set as active 69, 107

Connectors 79
default 81
diagram 79
history 79
transitions 83

Constructors 62
Creating

animation configuration 69, 105
components 66
dishwasher project 6
object model diagram 39
sequence diagram 97
statechart 77
use case diagram 25
Rational Rhapsody 123



Index
D
Debugging 70, 71, 72
Default

component 66
configuration 69

Dependencies 40
Dependency 40
Deployment diagrams 5
Description tab 20
Diagram connectors 79
Diagrams 4, 5

Build 102
Dishwasher 27, 38
Dishwasher object model diagram 37, 38
Dishwasher statechart 76
Dishwasher use case diagram 25
Execution sequence diagram 93, 96
object model 38, 76
UML 5

Directory structure 55
Dishwasher 1

animating 115, 117
creating 6
creating statecharts 77
instance 117
object model diagram 37, 38
opening 11
statechart 75, 76
use case diagram 25, 27

Display options 46, 47
Docking the Features dialog box 23
Domains 9
Drawing 16

area 15, 18
default connectors 81
diagram connectors 79
history connectors 79
object model diagrams 39
sequence diagrams 97
statecharts 77
toolbar 18
toolbars 15
transition connectors 83
use case diagrams 28

E
ehl file 13
Elements, external 71
Entrypoint 53
Environment settings 107
Error messages 110
Errors 110
Event history file 13
Events 94

naming conventions 14

Sequence diagrams 98
evKeyPress event 94
Executable configuration 69, 105
Execution sequence diagram 93, 96
External elements 71

F
Features dialog box 19

Apply and OK buttons 19
Description tab 20
docking 23
General tab 20
keeping open 19
moving 23
Properties tab 21
Relations tab 21
tabs 20
Tags tab 21

Files 13
code generation 71
log 13
project 12
source 71

Folders 13

G
General tab 20
Generate 101
Generated source files 71
Generating code for animation 69
Graphical user interface 15
Guards 84
Guidelines 14

H
History connectors 79
Host configuration 69, 107
HostAnimated configuration 105

I
Implementation code 50
Instance area 96
Instances 117
Interfaces 14

K
KeyPress event 94

L
Legacy code 71
124 Ada Tutorial



Index
Linux 6
Log 18

files 13

M
Message pane 96
Messages 110
Model 1

building 71, 92, 107
naming conventions 14
running 111
stepping through 118
system behavior 77
troubleshooting 110

N
Names pane 96
Naming conventions 12, 14

O
Object model diagrams 5, 39

composite classes 40
Dishwasher 37, 38
simple classes 40
viewing attributes 46
viewing operations 47

Opening
project 11
Rational Rhapsody 6

Operations 44
changing synchronization 88
names 14
naming conventions 14
setup 48
viewing in diagram 47

Output window 15, 18, 70, 71, 72, 110
check model tab 18
log tab 18

P
Packages 9, 17, 55

adjust dependency 60
establish dependency 59
predefined 56
setting dependency 60
stereotypes 54
storing separately 55
SubsystemsPkg 39

Panes
Message 96
Name 96

Profiles 7

Project files 12, 13
Project folder 17
Project node 17
Project profiles 7
Project subfolders 13
Project types 7
Projects 7

creating 6, 7
directory structure 55
files 13
opening 11
saving 10
saving as 1

Properties 68
change directory scheme 55
dependency 60
tab 21

R
Rational Rhapsody 4

autosave 10
backup 10
browser 17, 23
closing 6
configuration 69, 105
drawing area 18
Drawing toolbar 18
events 94
exiting 6
Features dialog box 19
GUI 15
guidelines 14
interface 15
naming conventions 12
Output window 18
project types 7
sample models 1
starting 6
toolbars 16
UML diagrams 5

Rebuilding the application 70, 71, 72
Regenerating code 70, 71, 72
Relations tab 21
Repository directory 13
Requirements 25
rhapsody.ini file 116
Roundtripping 111
rpy file 13
Running application 111

S
Sample models 1
Sequence diagrams 5, 97

define flow 98
events 98
Rational Rhapsody 125



Index
Execution 93
instance area 96
Message pane 96
Names pane 96
set border 97

Set as active configuration 69, 107
Simple classes 40
Singleton 42
Source diagram connectors 79
Source files 71
Specialized profiles 7
Starting animation 116
Statecharts 5, 75, 77

Build 76
creating 77
default connector 81
Dishwasher 75
drawing 77
guard transitions 84
transitions 83
triggered operations 88

States
adding actions 85
drawing 78

Stepping through the program 117, 118
Stereotypes 40

entrypoint 53
singleton 42
usage 41

Structure diagram 5
Subfolders 13
Subsystems 9
Synchronization 88

T
Tabs

build 18
check model 18
log 18

Tags tab 21
Target diagram connectors 79
Toolbars 15, 16, 18
Transitions 83, 84
Triggers 84
Troubleshooting 110

U
Units 10
Use case diagrams 5, 25

actors 30
boundary boxes 30
Dishwasher 25, 27
use cases 31

Use cases 31, 32

V
vba file 13
Viewing

animation 117
attributes 46
operations 47

W
Windows 6
Workflow 95, 98
126 Ada Tutorial


	Contents
	Getting Started
	Rational Rhapsody in Ada Tutorial Overview
	Audience for this Tutorial
	Before You Begin
	Tutorial Objectives
	Documentation Conventions
	About the Rational Rhapsody Product
	UML Diagrams


	Setting up for the Tutorial
	Starting the Rational Rhapsody Product
	Closing the Rational Rhapsody Product
	Creating a Rational Rhapsody Project
	Renaming the Default Package
	Saving a Rational Rhapsody Project
	About Autosave
	About Backups

	Opening the Dishwasher Model

	About a Rational Rhapsody Project
	About Project Files and Folders
	Using Naming Conventions and Project Guidelines
	Prefixes
	Model Element Names
	Rational Rhapsody Project Guidelines


	Rational Rhapsody User Interface
	Toolbars
	Browser
	Filtering the Browser
	Repositioning the Browser

	Drawing Area
	Output Window
	Drawing Toolbars
	Features Dialog Box
	Keeping Open the Features Dialog Box
	Tabs for the Features Dialog Box
	Moving the Features Dialog Box


	Summary

	Lesson 1: Creating a Use Case Diagram
	Goals for this Lesson
	Exercise 1: Analyzing the Dishwasher System
	Exercise 2: Creating the Dishwasher Use Case Diagram
	Task 2a: Creating the Dishwasher Use Case Diagram
	Task 2b: Drawing the Boundary Box and Actors
	Task 2c: Drawing the Use Cases
	Task 2d: Associating Actors with Use Cases
	Task 2e: Adding a Diagram Title

	Summary

	Lesson 2: Creating an Object Model Diagram
	Goals for this Lesson
	Exercise 1: Creating the Dishwasher Object Model Diagram
	Task 1a: Creating the Dishwasher Object Model Diagram
	Task 1b: Drawing Classes and Dependencies
	Task 1c: Creating a Singleton
	Task 1d: Adding Attributes
	Task 1e: Creating Operations
	Task 1f: Displaying Attributes and Operations in the OMD
	Task 1g: Adding the setup Operation
	Task 1h: Adding a main Operation to the Display Class
	Task 1i: Using the Entrypoint Stereotype

	Exercise 2: Other Necessary Tasks
	Task 2a: Saving Packages Separately
	Task 2b: Using Predefined Packages
	Task 2c: Establishing the Package Dependency
	Task 2d: Setting a Package Dependency Property
	Task 2e: Adding a default constructor

	Summary

	Lesson 3: Generating Code and Building Your Model
	Goals for this Lesson
	Exercise 1: Preparing for Generating Code
	Task 1a: Creating a Component
	Task 1b: Setting the Component Features
	Task 1c: Creating a Configuration

	Exercise 2: Generating Code
	Task 2a: Generating Code
	Task 2b: Fixing Code Generation Errors
	About Code Generation Warnings
	Examining Generated Source Files
	Using External Elements


	Exercise 3: Building Your Model
	Task 3a: Building your Model
	Task 3b: Fixing Build Errors
	Task 3c: Viewing Code

	Summary

	Lesson 4: Creating a Statechart
	Goals for this Lesson
	Exercise 1: Creating the Dishwasher Statechart
	Task 1a: Creating a Statechart
	Task 1b: Drawing the Dishwasher Statechart
	Task 1c: Drawing History and Diagram Connectors
	Task 1d: Drawing Default Connectors
	Task 1e: Adding Ada Operations
	Task 1f: Drawing the Transitions
	Task 1g: Adding Actions to States
	Task 1h: Changing Operation Synchronization
	Task 1i: Adding a Diagram Title

	Exercise 2: Generating Code and Building Your Model
	Task 2a: Generating Code
	Task 2b: Building the Model

	Summary

	Lesson 5: Creating a Sequence Diagram
	Goals for this Lesson
	Exercise 1: Creating the KeyPress Event
	Task 1a: Creating an Event

	Exercise 2: Creating the Execution Sequence Diagram
	Task 2a: Creating the Sequence Diagram
	Task 2b: Creating the Workflow for Your Sequence Diagram

	Summary

	Lesson 6: Building and Running the Model
	Goals for this Lesson
	Exercise 1: Creating the Build Object Model Diagram
	Task 1a: Creating the Build Object Model Diagram
	Task 1b: Creating a DishwasherBuilder Class

	Exercise 2: Generating Code and Building Your Model
	Task 2a: Creating Another Configuration
	Task 2b: Generating Code
	Task 2c: Troubleshooting the Build
	Task 2d: Roundtripping

	Exercise 3: Running Your Model
	Task 3a: Running your Dishwasher Model

	Summary

	Lesson 7: Animating Your Application
	Goals for this Lesson
	Exercise 1: Animating your Application
	Task 1a: Starting Animation
	Task 1b: Viewing the Animated Statechart
	Task 1c: Invoking Commands for your Program
	Task 1d: Setting Breakpoints
	Task 1e: Quitting Animation

	Summary

	Index

