Rhapsody

Ada Tutorial






Ada Tutorial for Rational Rhapsody




Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.4 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.



Contents

Getting Started . ... .. 1
Rational Rhapsody in Ada Tutorial OVerview. . ... e e 1
Audience for this Tutorial . . ... ... 1
Before YOU Begin . ... .o e 2
Tutorial ObjeCtiVES . . . .o 3
Documentation CONVENLIONS . . . . . .ottt et e e e e e e e e 4
About the Rational Rhapsody Product . . ....... ... . . e e 4
Setting up for the Tutorial. . .. ... . 6
Starting the Rational Rhapsody Product. . . ... ... . e e e e 6
Closing the Rational Rhapsody Product . . . . . ... ... . e 6
Creating a Rational Rhapsody Project . . . ... ... e e e 7
Renaming the Default Package . ... .. ... ... e 9
Saving a Rational Rhapsody Project. . . . ... e 10
Opening the Dishwasher Model . . ... .. e e e e e e 11
About a Rational Rhapsody Project .. ... .. e 12
About Project Files and Folders . . .. ... ... e 13
Using Naming Conventions and Project Guidelines . . . ... . i e 14
Rational Rhapsody User Interface. . ... . i e 15
TO0IDArS ..o 16
BI O S . . . ot 17
DraWinNg Al . . . oottt 18
OUIPUE WINAOW . . o e e e e 18
Drawing TOOIDars . .. .o 18
Features Dialog BOX . . .. ..o e 19
SUMIMAIY . o ot e e e e 23
Lesson 1: Creating aUse Case Diagram ..............uuiiuinnannn.. 25
Goals for this LeSSON . .. ..o 25
Exercise 1: Analyzing the Dishwasher System . ......... . ... . . .. 25
Exercise 2: Creating the Dishwasher Use Case Diagram .. ............ ... 27
Task 2a: Creating the Dishwasher Use Case Diagram. . . . ... ittt 28
Task 2b: Drawing the Boundary Box and ACtOrS. . . .. ...t e e 30

Rational Rhapsody



Table of Contents

Task 2c: Drawing the USe Cases . . . . ..ottt e e e e e e e 31
Task 2d: Associating Actors with Use Cases . . . ... ...t e e 33
Task 2e: Adding a Diagram Title. . . ... ... 34
SUMMIAIY . . e e e e e e e 35
Lesson 2: Creating an Object Model Diagram . .............. ... ....... 37
Goals fOr this LeSSON .. ..o 37
Exercise 1: Creating the Dishwasher Object Model Diagram . . .......................... 38
Task 1a: Creating the Dishwasher Object Model Diagram . ... ...t 39
Task 1b: Drawing Classes and Dependencies . . . . ... ...t e 40
Task 1c: Creating a Singleton . . . . ... .o e e e e e 42
Task 1d: Adding AttribUtes . . . . ... 43
Task 1e: Creating Operations . . . . . ..ottt e e e e e e e e 44
Task 1f: Displaying Attributes and Operationsinthe OMD. . ... ... ... . . i 46
Task 1g: Adding the setup Operation . . . . ... ...t e e 48
Task 1h: Adding a main Operation to the Display Class. . . ...t e 50
Task 1i: Using the Entrypoint Stereotype . . ... oot e e e e e e 53
Exercise 2: Other Necessary Tasks. . .. ... e 55
Task 2a: Saving Packages Separately . . .. ... .. e 55
Task 2b: Using Predefined Packages. . . . ... . e 56
Task 2c: Establishing the Package Dependency . .. ......... .. i 59
Task 2d: Setting a Package Dependency Property. . . ... ...t 60
Task 2e: Adding a default CONSIIUCTIOr. . . . . ... oot e e 62
SUMMIAIY . . e e e e e e e e 63
Lesson 3: Generating Code and Building Your Model ................... 65
Goals for this LeSSON . . ..o 65
Exercise 1: Preparing for Generating Code . .......... ... i 65
Task 1a: Creating @ CoOMPONENT . . . . . oottt e e e e e 66
Task 1b: Setting the Component Features . . ... ... . e e 67
Task 1c: Creating a Configuration. . . ... ... i e e e e e 69
Exercise 2: Generating Code . . .. ...t e 69
Task 2a: Generating Code . . . ... .t e 69
Task 2b: Fixing Code Generation Errors. . . ... ... e 70
Exercise 3: Building Your Model . ... . 71
Task 3a: Building your Model . . .. ... e 71
Task 3b: FiXing BUild EITOrS . . ..o o 72
Task 3C: VIieWing Code . . . ..o 73
SUMIMIAIY . . e e e e e e e 73

iv Ada Tutorial



Table of Contents

Lesson 4: Creating a Statechart ........... ... ... . . . . 75
Goals for this LesSSON . .. ..o e 75
Exercise 1: Creating the Dishwasher Statechart . ........ ... ... ... . . . . .. ... 76
Task la: Creating a Statechart . . . .. ... e 77
Task 1b: Drawing the Dishwasher Statechart. . . ... . . . . e 77
Task 1c: Drawing History and Diagram CONNECLOrS . . . . ... oottt e e e e e 79
Task 1d: Drawing Default Connectors. . . .. ... . 81
Task 1e: Adding Ada Operations . . . .. ...ttt e e 82
Task 1f: Drawing the Transitions. . .. ... ... e e e e e 83
Task 1g: Adding ACIONS t0 StateS . . . . . ..t e 85
Task 1h: Changing Operation Synchronization. . .. ........ ... e 88
Task 1i: Adding a Diagram Title . . ... ... e 90
Exercise 2: Generating Code and Building Your Model ............ .. ... ... ... .. ...... 91
Task 2a: Generating Code . .. ... .t e 91
Task 2b: Building the Model . . . ... . 92
SUMMIAIY . . e e e e e e e 92
Lesson 5: Creating a Sequence Diagram .............iiiiinnnn.. 93
Goals fOr this LeSSON .. ..o 93
Exercise 1: Creating the KeyPress EVent . ... ... . i e e e 94
Task 1a: Creating an EVENL. . . . ..ot e 94
Exercise 2: Creating the Execution Sequence Diagram . ............. ... 95
Task 2a: Creating the Sequence Diagram . .. ... ...t e 97
Task 2b: Creating the Workflow for Your Sequence Diagram. . .. ...t 98
SUMMIAIY . . e e e e e e e e 100
Lesson 6: Building and RunningtheModel .............. ... ... ....... 101
Goals fOr this LeSSON . .. ..o 101
Exercise 1: Creating the Build Object Model Diagram. . ........... ... ... 102
Task la: Creating the Build Object Model Diagram . . ........ ... e 103
Task 1b: Creating a DishwasherBuilder Class .. ........... . e 103
Exercise 2: Generating Code and Building Your Model ......... .. ... .. ... .. ... .. ..... 105
Task 2a: Creating Another Configuration . . . ... ... . e 105
Task 2b: Generating Code . . . ... .t e 107
Task 2c: Troubleshooting the Build. . . . .. .. .. 110
Task 2d: ROUNALIPPING . .« o oo e e e 111
Exercise 3: Running Your Model . ... ... . . e 111
Task 3a: Running your Dishwasher Model . . ... ... . . . i e i 111
SUMMIAIY . . e e e e e e e e 113

Rational Rhapsody v



Table of Contents

Lesson 7: Animating Your Application . .............. .. ... ., 115
Goals for this LEeSSON . ... o 115
Exercise 1: Animating your Application . ... . 116
Task la: Starting Animation . . ... ... e 116
Task 1b: Viewing the Animated Statechart. . .. ... ... 117
Task 1c: Invoking Commands for your Program. . . ... . 118
Task 1d: Setting Breakpoints . . ... ..ot 121
Task 1e: QUItting ANIMAtiON . . . . . ..t 122
SUMMIAIY . . e e e e e e e e e 122
N EX . o 123

Vi Ada Tutorial



Getting Started

Welcome to the Ada Tutorial for IBM Rational Rhapsody! IBM® Rational® Rhapsody® is the
Model-Driven Devel opment environment of choice for systems engineers and software devel opers
of either embedded or real-time systems.

Rational Rhapsody in Ada Tutorial Overview

Thistutorial shows you how to use the Rational Rhapsody product to analyze, design, and build a
model of a dishwasher using a file-based modeling approach. Before you begin creating this
model, you need to consider the functions of the dishwasher.

A dishwasher has users who use it to wash dishes. Another user would be a service person who
makes repairs and the like. When you use a dishwasher, you start functions that the dishwasher
must perform, such as turning on and changing cycles.

For thistutorial, you are going to create a project called Dishwasher.

Thistutorial helps you become familiar with the Rational Rhapsody product. You should consider
it part of the Rational Rhapsody learning process, in addition, for example, to the Rhapsody
Essential Tool Training class and the Rational Rhapsody el earning courses, both of which are
available at an additional cost.

The Rational Rhapsody product contains a number of sample modelsin Adathat you can review to
help familiarize yourself with Rational Rhapsody in Ada. These Ada sample models arein the
<Rational Rhapsody installations\Samples\AdaSamples Subfolder. If you make changesto
one of the sample models, you might want to save your version in another folder, in case you want
to refer to the original state of the provided sample model later. Choose File > Save Asto save
your version of a sample model.

Audience for this Tutorial

The intended audiencefor thistutoria is system engineers and software engineers who are familiar
with the Ada language. The tutorial assumes that you are familiar with UML ™ (Unified Modeling
Language'") and Object Oriented concepts.

Rational Rhapsody 1



Getting Started

Before You Begin

Before you work through this tutorial, you might find it helpful to review the Getting Sarted
Guide for the Rational Rhapsody product. It provides afunctional overview for the Rational
Rhapsody product for system designers, system engineers, and software developers with more
functions (meaning how to do something), explanations, and details than this tutorial provides.

In addition, throughout the tutorial, references are made to other Rational Rhapsody
documentation where appropriate. Note also that the IBM Rational Rhapsody User Guide has a
Glossary section that you might find useful.

Note the following:

¢ Thistutorial assumes that Rational Rhapsody (version 7.1 or greater) isinstalled on your
system and that you have avalid permanent license. Contact the Rational Rhapsody
Technical Support staff if you need assistance with installation or licensing.

¢ You must have installed the compiler necessary to generate code. You should have done
this before you installed the Rational Rhapsody product because during the Rational
Rhapsody installation process you identify the path to the compiler.

¢ Before you can work through any of the lessonsin this tutorial, you must create the
Dishwasher project, which is detailed in Setting up for the Tutorial.

¢ You should work through the tutorial in the order of the lessons. During the course of
working through this tutorial, you generate code as well as build your model at various
stages. For example, in the lesson where you first learn how to generate code, you will get
error messages because you have not yet created certain operations that you refer to in
your code. Once you work through the next lesson, you will no longer get those error
messages (though you might get others).

You might also find it useful to review documentation found within the Rational Rhapsody
installation path (for example, <Rational Rhapsody installation>\Sodius\RiA CG\help).

2 Ada Tutorial



Rational Rhapsody in Ada Tutorial Overview

Tutorial Objectives

This tutorial develops an example of an embedded system for a dishwasher. This dishwasher
example shows you how to use the Rational Rhapsody product to create the software that controls
the ssimplified operation of a dishwasher. The operations of the dishwasher are simplified to
minimize the complexity of the tutorial.

Thistutorial includes Ada code examples within instructions where code entries are required.
When you have completed this tutorial, you will have performed the following standard tasks:

¢ Created aproject

+ Created use case diagrams, which show the main functions of the system (use cases) and
the entities that are outside the system

+ Created object model diagrams, which specify the structure of the classes, objects, and
interfaces in the system and the static relationships that exist between them

* Created statecharts, which define the behavior of classifiers (actors, use cases, or classes),
objects, including the states that they can enter over their lifetime and the messages,
events, or operations that cause them to transition from state to state

+ Created sequence diagrams, which show structural elements communicating with one
another over time

+ Generated code
+ Built amodel

¢  Runamode

+ Animate amodel

Rational Rhapsody 3



Getting Started

Documentation Conventions
This document uses the following conventions:
+ Boldtype for names of GUI objects and controls, including selection choices; and
emphasis. Examples:

On the General tab, in the Ster eotype box, select the entrypoint in
PredefinedTypesAda check box from the drop-down menu.

Drag-and-drop the Display class onto the Packages object model diagram.

Click the Create Boundary box button on the Drawing toolbar.
— If the Rational Rhapsody browser does not display, select View > Browser.
— A project file, called <project_name>.rpy.

¢ Courier font in 10 point for pathnames, system messages, and items that you haveto
type. Examples:

— The Output window displays the message Animation session terminated.

— Inthe Project name box, replace the default project name with pishwasher.

— Draw atransition from the Running to the Open state and label it op_open.
¢ [talicsfor the first mention of a concept with an explanation.

About the Rational Rhapsody Product

Rational Rhapsody uses visual design to devel op embedded software allowing you to perform
these tasks:

* Analyze, during which you can define system requirements, identify necessary
components, and define their structure and behavior using the (UML) diagrams.

+ Design, during which you can specify and design the architecture, taking into account
architectural, mechanistic, and detailed design considerations.

+ Implement, during which you can automatically generate code from the analysis model
and then build and run it within the Rational Rhapsody product.

¢ Test, during which you can animate the model on the local host or aremote target to
perform design-level debugging within animated views.

4 Ada Tutorial



Rational Rhapsody in Ada Tutorial Overview

UML Diagrams
The following are the UML diagrams in Rational Rhapsody:

*

Use Case Diagrams show the main functions of the system (use cases) and the entities
(actors) outside the system.

Sructure Diagrams show the system structure and identify the organizational pieces of
the system.

Object Model Diagrams show the structure of the system in terms of classes, objects, and
the relationships between these structural elements.

Sequence Diagrams show sequences of steps and messages passed between structural
elements when executing a particul ar instance of a use case.

Activity Diagrams specify aflow for classifiers (classes, actors, use cases), objects, and
operations.

Satecharts show the behavior of aparticular classifier (class, actor, use case) or object
over itsentire life cycle.

Collaboration Diagrams provide the same information as sequence diagrams,
emphasi zing structure rather than time.

Component Diagr ams describe the organization of the software units and the
dependencies among units.

Deployment Diagrams show the nodes in the final system architecture and the
connections between them.

Rational Rhapsody 5



Getting Started

Setting up for the Tutorial

Before you can work through this tutorial, you must create and set up the Dishwasher project,
which you do in this section. The following tasks show you how to:

¢ Create the Dishwasher project
¢ Saveaproject

Starting the Rational Rhapsody Product

Windows

To start the Rational Rhapsody product in Windows: Select Sart > Programs> |BM Rational >
IBM Rational Rhapsody Version# > Rhapsody Development Edition > Rhapsody in Ada; or,
if available, click the Rhapsody in Ada icon on your the desktop.

Linux
To start the Rational Rhapsody product in Linux, use these steps:
1. Fromthe Terminal, browse to the Rational Rhapsody home directory.

2. Execute the RhapsodyInada Script. For example:

[RhapsodyUser@MyHostMachinel # cd /home/Rhapsody
[RhapsodyUser@MyHostMachine Rhapsodyl# ./RhapsodyInAda

In this example, “ RhapsodyUser” isthe username, “mMyHostMachine” iSthe host machine
and “/home/Rhapsody” isthe installation directory.

Closing the Rational Rhapsody Product

To close the Rational Rhapsody product, follow these steps:

1. Saveyour changes.

2. Choose File > Exit or click the Close button I.

6 Ada Tutorial



Setting up for the Tutorial

Creating a Rational Rhapsody Project
To create a new Rational Rhapsody project, follow these steps:

1. Start the Rational Rhapsody product if it is not already running. If necessary, see Starting
the Rational Rhapsody Product.

2. Click the New button I} on the main toolbar or select File > New to open the New
Project dialog box.

3. Inthe Project name box, replace the default project name with pishwasher.

4. Intheln folder box, browse to find an existing folder or enter a new folder name.
Note: To avoid potentialy long pathnames, do not create the project on the desktop.

5. Inthe Type box, accept Default, which provides all of the basic UML structures. It is

useful for most Rational Rhapsody projects. Your dialog box should resemble the
following figure:

x
Prajest name: IDighwaghe[
In folder: ID:\Hhapsod}l?'I\Dishwasher Browse. .. |
Type: |Default j

] I Caticel | Help |

A

Note: The Default and AdaCodeGener ation choices are equivalent and provide
standard UML featurestailored for Ada code generation. The SPARK choice
isthe Rational Rhapsody product’s Ada SPARK profile. For a description of
the available project profile typesthat you can select from the Type drop-down
list, refer to the IBM Rational Rhapsody User Guide. (Do a search of the user
guide PDF file for “speciaized profile.”)

Rational Rhapsody 7



Getting Started

6. Click OK. The Rational Rhapsody product verifies that the specified location exists. If it
does not exist, Rational Rhapsody asks whether you want to create it. Click Yes.

Rational Rhapsody creates your project in the new Dishwasher subfolder, opens the
project, and displays the Rational Rhapsody browser in the left pane and the drawing area
for an object model diagram (by default because of your Type [project profile] choice on
the New Project dialog box), as shown in the following figure. For more information
about a Rational Rhapsody project, see About a Rational Rhapsody Project.

ﬂ Fie Edit Wiew Code Layout Tools Window Help - |8 x
N=a= ? MG D X & & R o | o H & 4l %] |
i} |DefauItCDmpDnent ﬂ|DefauItCanig ﬂ Bl & = LU |

SO v e O AR || Beada

S —1
Entire Model Wiew g 8
SRSE] Cishwasher B .
+-_1 Components -
+ % Cbiect Model Diagrams
+ Packages
+-(1 Profiles T h
L ¢
+ Y
e m
- Jﬂ
Q |4 | >
| UWE|CDmE...J£ todell * J

7. Rename the default package; see Renaming the Default Package.

8 Ada Tutorial



Setting up for the Tutorial

Renaming the Default Package

When you create a Rational Rhapsody project, the system creates a package for you called
Default. In this task, you are going to rename it to something that better reflects this project.

Packages can be used to divide the model into functional domains or subsystems, which consist of
objects, object types, functions, variables, and other logical artifacts. They can be organized into
hierarchiesto provide a high level of partitioning.

To rename the Default package, follow these steps:
1. Inthe Rational Rhapsody browser, expand the Packages category.

2. Double-click the Default package or right-click it and select Features to open the
Features dialog box.

3. Onthe General tab, in the Name box, replace pefault With Dishwasherpkg, asshownin
the following figure:

Package : Default in Dishwasher * = |

General |Descri|:utiu:un| Helationsl Tags | Prupertiesl

M ame: IDishwasherF‘kg Ll
Stereotype I j Gy %
b4 ain Diagram: I j _l_l

Lucatel 1] 4 | Apply ||

4. Click OK.

Your Rational Rhapsody browser should resemble the following figure:

[ A
Entire Model Yiew A +

=+ Dishwasher

l:l Components

l:l Object Model Diagrams

E|D Parkages

L F5 bishwasherPka
; P PredefinedTypes (REF)
ﬁ PredefinedTypesida (REF)
- Profiles

Rational Rhapsody 9



Getting Started

Saving a Rational Rhapsody Project

To save a Rational Rhapsody project in the current location, use one of the following methods:

+  Click the Save button /B on the main toolbar
¢ Select File> Save.
To save the project to a new location, select File > Save As.

Note that the Save command saves only the modified units, reducing the time required to save
large projects.

A unit is acomposite model element stored in its own file that you can check in and out of a
Content Management system. A model element can be made into a unit aslong asit can be saved
as aseparate file. Some elements that can be saved as units are the entire model, packages, classes,
any type of Rational Rhapsody diagram, and components. The project, represented by the root

node displayed in the browser, is always a unit. The primary purpose of unitsis to support
collaboration with other developers.

About Autosave

The Rational Rhapsody product automatically performs an autosave every ten minutes to back up
changes made between saves. Modified units are saved in an autosave folder
(<project_name>_auto_rpy), along with any units that have atime stamp older than the project
file. Note that the autosave folder appears only when necessary (after ten minutesif a save has not
been made) and disappears after you save.

About Backups

You can set a property (General: :Model : : BackUps) to create backups of your model every time
you save your project. This gives you the opportunity to revert to apreviously saved version if you
encounter a problem. By default, Rational Rhapsody does not create backups. Refer to the IBM
Rational Rhapsody User Guide for more information about creating backups. (Do a search of the
user guide PDF file for “backups.”)

10 Ada Tutorial



Setting up for the Tutorial

Opening the Dishwasher Model

Once you have created, saved, and closed the Dishwasher model, you can open and work on it at
any time.

To open the Dishwasher model, follow these steps:

1. Start Rational Rhapsody if it is not already running. If necessary, see Starting the Rational
Rhapsody Product.

2. Click the Open button = on the main toolbar or select File > Open to open the Open
dialog box.

3. Navigate to the location in which you saved the Dishwasher project.

4. Select Dishwasher.rpy, or type the name of the project file in the File name box, as
shown in the following figure:

Lok ir: I_} Dishwaazher j = ﬁ{ -

|\ )Dishwasher_rpy % wfith Al Subunits
Lishwasher oy = Without Suburits

" Restore Last Session

File narne: IDishwasher.rp_l.J Open I
Filez of bype: IHhapsndy Project(s] [*.rpy:".1pl) j Cancel |

5. Accept the default With All Subunits option.

This choice means that the Rational Rhapsody product will load all unitsin the project.
Refer to the IBM Rational Rhapsody User Guide for information about the options. (Do a
search of the user guide PDF file by the option names.)

6. Click Open. Rational Rhapsody opens the Dishwasher model.

Rational Rhapsody 11



Getting Started

About a Rational Rhapsody Project

A Rational Rhapsody project includes the UML diagrams, packages, and code generation
configurations that define the model and the code generated from it. When you create a new
project, Rational Rhapsody creates a project folder that contains the project files in the specified
location. The name you choose for your new project is used to name project files and folders, as
shown in the following figure.

D:Rhapsody 71" Dishwasher = x
8% DR dy71%Dishwash jm]
File Edit “iew Favorites Tools Help | .','
O Back - J - ? 7 ! Zearch l‘ Folders |2 | 3~ x n | '
Falders X || Mame =~ | Date Modified I SizeI Twpe |
() Rhapsody71 :I | Dishwasher_rpy 712512007 9:54 AM File Folder
B £ [m— Dishwsasher bl 7125/2007 9:54 AM 1KE EHL File
() Dishwwasher_rpy Dishwwasher . rpy 7/25{2007 9:54 AM 2KBE Rhapsody Projeck
& share - Distwwasher . vba 7/25/2007 9:54 AM 16KE WYBA File
3 Tauworkspace _I E] Flugins.lag 7/25/2007 9:49 AM 1KB Text Document
L DVD-RW Drive (E2) = r;_] rte.log 7/25/2007 9:49 AM OKE Text Document
P I I Ll—l |'3=_<] store.log 712512007 9:54 AM 3KE Text Document
e S == = e

For more information about the folders and files that are part of a Rational Rhapsody model, see
About Project Files and Folders.

In addition, the name appears at the top level of the project hierarchy in the Rational Rhapsody
browser. Rational Rhapsody provides several default elementsin the new project: a object model
diagram, package, component, and configuration, as shown in the following figure:

N |
Entire Model Wiew - + +

B4 Dishwasher
L:_ID Companents
EE DefaultComponent
EI{:l Configurations
E\ DefaultConfig
Hyperlinks
I'_—'ID Cbject Model Diagrams
o egH Madell
=] ({1 Packages
& Default
F PredefinedTypes (REF)
ﬁ Predefined Typesida (REF)
-1 Profiles

An element is an atomic constituent of amodel. In the Rational Rhapsody product, primary model
elements within the browser are packages, classes, object model diagrams, associations,
dependencies, operations, variables, events, event receptions, triggered operations, constructors,
destructors, and types. Primary model elements in object model diagrams are packages, classes,
associations (links), dependencies, and actors.

12

Ada Tutorial



About a Rational Rhapsody Project

About Project Files and Folders

The Rational Rhapsody product creates the following files and subfolders in the project folder.
Some folders and files are created when you initially create a project, others only when applicable.

*

A project folder, caled <project_name>_rpy, which contains the unit files for the
project, including UML diagrams, packages, and code generation configurations.

A project file, called <project_name>.rpy.

A subfolder, caled <project_name>_auto_rpy, which appears only when necessary
(after ten minutes if a save has not been made) and disappears after you save.

An event history file, called <project_name>.ehl, which contains arecord of events
injected during animation, and active and nonactive breakpoints. This file appears after
your first save of a project.

L og files, which record when projects were loaded and saved in the product; for example,
load.log and store.log.

A .vbafile, caled <project_name >.vba, which contains macros or wizards.

Backup project files and folders (<project_name>_bak1 rpy,
<project_name>_bak?2_rpy), which are optional, depending on project settings.

An_RTC subfolder, when applicable, which holds any tests created using the Rational
Rhapsody TestConductor™ add-on.

The <project_name>.rpy file and the <project_name>_rpy folder are necessary for the
generation of source code.

The following figure shows the project folder for the Dishwasher project and some of itsfilesand

subfolders.
@ D Rhapsody 71" Dishwasher - | Ellél
File Edit Wiew Favorites Tools Help | ﬂ'
Q Back ~ () - ? P ) Search [~ Folders > F x n | El'
Folders X || Mame = | Date Madified | Sizel Twpe |
[ Rhapsody71 ;I |Z)Dishwasher _auto_rpy 7/25/2007 10:04 AM File Falder
ER&]0istasher | Dishwasher_rpy 712512007 9:54 AM File Folder
() Dishwasher_rpy Dishwwasher.ehl 7/25{2007 9:54 AM 1KE EHLFile
& share - Dishwwasher . rpy 7125/2007 9:54 AM 2KE Rhapsody Project
3 Tauworkspace J Distwwasher.vba 7/25/2007 9:54 AM 16KE WYBA File
2, DVD-RW Drive (E:) |'§_] Flugins.log 7/25/2007 9:49 AM 1KB Text Document
[Z] rtc.lag 7/25/2007 9:49 AM OKB  Text Document
-
P I I LI—I E] store.log 712512007 9:54 AM 3KB Text Document

Rational Rhapsody

13



Getting Started

Using Naming Conventions and Project Guidelines

To assist all members of your team in understanding the purpose of individual itemsin the model,
it isagood ideato define naming conventions. These conventions help team members to read the
diagram quickly and remember the model element names easily.

Note

Remember that the names used in the Rational Rhapsody models are going to be
automatically written into the generated code. Therefore, the names should be simple and
clearly label al of the elements.

Prefixes
Lower and upper case prefixes are useful for model elements. The following isalist of common
prefixes with examples of each:
¢ Event names="ev’ (evStart)
¢ Trigger operations = “op” (opPress)
¢ Condition operations = “is’ (isPressed)
* Interface classes="“1" (IHardware)

Model Element Names
The names of the e ements themselves should follow conventions such as these:

+ File, block, and class names begin with an upper case letter, such as “ System.”
+ Functions and variables begin with lower case letters, such as “restartSystem.”
+ Upper case letters to separate concatenated words, such as “checkStatus.”

Rational Rhapsody Project Guidelines
The following guidelines can help you design and structure your Rational Rhapsody project:

¢ Do not give the same name to several different elements of the model (for example,
packages and classes). As shown in thistutorial, you could add a*“Pkg” suffix to your
packages (such as “ DishwasherPkg”).

¢ Usean iterative approach for your model. Periodically save/generate/make/animate your
model to seeif it isworking as expected. Thisway, you can catch errors earlier in the
process when it should be easier to fix problems.

¢ Do not try to put everything into asingle diagram. This can make reading the diagram
difficult. Creating different diagramsto give you different views can really help you
understand the model more.

14 Ada Tutorial



Rational Rhapsody User Interface

Rational Rhapsody User Interface

Before proceeding with this tutorial, you should become familiar with the main features of the
Rationa Rhapsody graphical user interface (GUI). The Rational Rhapsody GUI is made up of
three key windows and different toolbars for each of the UML diagram types. The following figure

shows the Rational Rhapsody GUI.

[0 Fle £dt Vies Code Javour Took Wpdow el Menu Bar_] B
DEE % B &% 2 MHD ®QHME R0 v o H ] €
E oo |DefaultCorn|:-onerrt OQﬁ leefauItC-:nfig v| Y] B | O EE
§ O 2™ Oh & S ANOvYeOA ' Aral
Entire Model View - g Dishwasher Dis
B [ Dishwasher_2008 — 3
{13 Components E:E
(L] Object Model Diagrams -0 $
= Packages Q Drawing Area
= B Default Browser > 5 g
=B Classes L&“
B bishwasher [&)
g Display $ L
=20 Object Model Diagrams Q$:£ AN
a_ﬁj Dishwasher .
£ PredefinedTypes (REF) bl -
E:E PredefinedTypesAda (REF) (? ﬁ —
=23 Profiles < I >
[ AdaCodeGeneration (REF) s Welcome to... 55 Dishwasheri...
x|
4 .
Output Window
\Logl/{‘ Check Model )\Build .)\ Configuration Management .}\\ Animation f
|
15

Rational Rhapsody



Getting Started

Toolbars

The Rational Rhapsody toolbars provide quick access to the commonly used commands. These
commands are also available from the menus. The Rational Rhapsody product has the following
toolbars:

*

Standard has buttons for the frequently used options on the File, Edit, and Help menus.
Examples: New, Open, Save; Copy, Paste, Locate in Browser; About.

Code has buttons for the frequently used options on the Code menu, such as Make, Run
executable and GMR (for Generate/M ake/Run).

Windows has buttons for the frequently used options on the View menu, such as Show/
Hide Browser and Show/Hide output window.

Diagrams has buttons for the part of the Tools menu that give you quick accessto the
diagrams in the project, such as Sequence Diagrams and Open Statechart.

VBA has buttons to provide access to the VBA options, such as VBA Editor and Show
Macros Dialog. Note that VBA isfor Windows only.

Animation has buttons for the animation options during an animation session, such as Go,
Animation Break, and Quit Animation.

L ayout has buttons that help you with the layout of elementsin your diagram, such as
Snap to Grid, Align Top, and Align Left.

Drawing has buttons for the graphics editor used to create and edit diagrams. Each
Drawing toolbar is unique to its particular diagram type. For example, the Drawing
toolbar for a sequence diagram is different from that for a statechart.

Common Drawing has buttons to add requirements, comments, and other annotations to
any diagram, such as Note and Requirement.

Free Shapes has buttons for basic drawing shapes, such as Polyline and Polycurve.
Zoom has buttons to zoom options, such as Zoom In, Zoom Out, and Pan.

Format has buttons for various text formatting options and lineffill options, such asltalic
and Font Color.

16

Ada Tutorial



Rational Rhapsody User Interface

Browser

The Rational Rhapsody browser shows the contents of the project in an expandable tree structure.
By default, it is the upper, left-hand part of the Rational Rhapsody GUI. The top-level folder,
which contains the name of the project, isthe project folder or project node. Although this folder
contains no elements, the folders that reside under it contain € ements that have similar
characteristics. These folders are referred to as categories.

A project consists of at |east one package in the Packages category. A package contains UML
elements, such as classes, files, and diagrams. Rational Rhapsody automatically creates a default
package called Default, which it uses to save model parts unless you specify a different package.
The following figure shows an example of the browser.

B £
Browser Filter —— | Erijre Model view  ~| [ % ¥4 |<€——— Up/Down (Ordering)
Project Folder FS-L ] Dishevasher Buttons
Category ——— =1-_| Components
. =] DefaultComponent
: =7 Configurations
; El‘k DefaultConfig
Hyperlinks
Click the plus (+) {:I Object Model Diagrams
to expand a branch. =] Packages
Click the minus (=) 3 Default
to collapse a - {7 PredefinedTypes (REF)
branch. - £ PredefinedTypesada (REF)
-] Profiles

Filtering the Browser
The browser filter lets you display only the elements relevant to your current task.

To filter the Rational Rhapsody browser, click the drop-down arrow at the top of the browser
window, and select the view you want to see from the menu. Refer to the IBM Rational Rhapsody
User Guide for information on the view options.

Repositioning the Browser

To make more room for you to work on diagrams, you can move the browser outside of the
Rational Rhapsody GUI and reposition it as a separate window on the desktop. To reposition the
Rational Rhapsody browser, click the bar at the top of the browser and drag it to another desktop
location.

Rational Rhapsody 17



Getting Started

Drawing Area

The drawing area displays the graphic editors and code editors, and it is the region for drawing
diagrams. By default, it is the upper, right-hand section of the Rational Rhapsody GUI. Rational
Rhapsody displays each diagram with atab that includes the name of the diagram and an icon that
denotes the diagram type. When you make changes to a diagram, Rational Rhapsody displays an
asterisk after the name of the diagram in the title bar to indicate that you must save your changes.

Output Window

The Output window displays Rational Rhapsody messages. By default, it is the lower section of
the Rational Rhapsody GUI. It includes tabs that display the following types of messages:

*

*

*

*

*

*

Log

Check Model

Build

Configuration Management
Animation

Search Results

If the Output window does not appear, choose View > Output Window.

Drawing Toolbars

The Rational Rhapsody product displays a separate Drawing toolbar for each UML diagram type.
By default, it places the Drawing toolbar to the left of the diagram.

To move the toolbar, click and drag it to another location.

18

Ada Tutorial



Rational Rhapsody User Interface

Features Dialog Box

The Features dialog box lets you view and edit the features of an element in the Rational Rhapsody
product.

To open the Features dialog box, do one of the following:

*

*

*

*

Double-click an element (for example, Out [an interface])

Right-click an element (for example, Subsystem Architecture [adiagram]) and then
select Features

Select an element and press Alt + Enter
Select an element and select View > Features

You can resize the Features dialog box and hide the tabs on it if you want. For more information
about the Features dialog box, refer to the section on it in the IBM Rational Rhapsody User Guide.

Keeping Open the Features Dialog Box

Once you open the Features dialog box, you can leave it open and select other elementsto view
their features. This meansthat after you make changesto the Features dialog box for an element in
your drawing or on the Rational Rhapsody browser, you can click Apply. Then, without closing
the dialog box, you can select another element to view its features. Once you are done with the
Features dialog box, you click OK to closeit.

Note

Even though you clicked Apply or OK for your changesin the Features dialog box, you
must still save your model to save all the changes you made. Clicking Apply or OK
applies any changes to the currently opened model. However, to save the changes
for the model so that they arein effect the next time you open it, you must save your
model.

Note the following about the Apply and OK buttons on the Features dialog box:

*

*

Click Apply when you want to apply any changes you made to the Features dialog box but
want keep it open. For example, you might need to apply a change before you can
continue with using the Features dialog box, or you want to apply a change and seeiits
effect before continuing making any more changes on the dialog box.

Click OK when you want to apply your changes and close the Features dialog box at the
sametime.

Rational Rhapsody 19



Getting Started

Tabs for the Features Dialog Box

The Features dialog box has different tabs at the top of the dialog box and different boxes on the
tabs depending on the element type.

Thefollowing tabs are common to all types of elements. For more information about these tabs, as
well as the other tabs that you might see in the Features dialog box, refer to the section oniit in the
IBM Rational Rhapsody User Guide.

¢ General typically contains the name of the element and other general options, asshownin
the following figure:

Use Case : Wash Dishes in DishwasherPkg :lﬁll

rs

General |Descriptiu:un| Flelatiu:unsl Tags I F'ru:upertiesl

M arne: IWash Dizhes Ll
Sterentype: I j El&l
k ain Diagranm: I j
Extension Paints:

M arne | MNew I

Delete |

Lucatel 0K | Apply | |

+ Description, asitstitle implies and as shown in the following figure, contains the
description of the element, if it has been included.

Use Case : Wash Dishes in DishwasherPkg |

General Description I Flelaliu:nnsl Tagz I Propertiesl

—

General function of the system is to wash dishes.

Lucatel 1] 4 | Apply | |

20 Ada Tutorial



Rational Rhapsody User Interface

*

Relationslists al the relationships (dependencies, associations, and so on) an element is
engaged with, as shown in the following figure:

Use Case : Wash Dishes in DishwasherPkg

EE|
Generall Description  Relations |Tag$ | F'ropertiesl
Wiew Belations -
MHame | Type | Diirection | From/Ta | [ata |
L itsCleansing... Azsociation End  To CleanzingEngin...
L itsw'ash Dis... Association End  From

CleanzingE ngin...

Locate | 1] 4 | Apply | |

*

Tags lists any tags available for an element. Tags enable you to add information to certain
kinds of elements to reflect characteristics of the specific domain or platform for the

modeled system. Refer to the IBM Rational Rhapsody User Guide for more information
about tags.

*

Properties lists the properties associated with the Rational Rhapsody el ement.

— The top left column on this tab shows the metaclass and property (for
example, Settings and ShowPredefinedPackage).

— Thetop right column shows the default for the selected property, if thereis
one (for example, Cleared).

Rational Rhapsody

21



Getting Started

— The box at the bottom portion of the Properties tab shows the definition for
the property selected in the upper left column of the tab. The definition
display shows the names of the subject, metaclass, property, and the definition

for the property, as shown in the following figure:

1%
General I Dezcription | Relationz I Tags Properties I
Wiew Al ~
=l| Browser |
| Settings
DeleteConfirmation Alugys
DisplayMode Meta-class
ShowattributesCodefsToolkip
ShowContextForAssociation D
ShowFeatures
ShowImplementationArgument D
ShowImplementationMameInTres D
ShowLabels D
Showhultiplestereotypes
ShowCrder
owPredefinedPackage D
------ ShowStereobypes Prefix
CG ;I
Browser:Settings:ShowPredefinedPackage -
The ShowPredefinedPackage property iz a Boolean value that determines whether
the PredefinedTypes package iz dizplayed in the broveser. “When the property iz st
to Clzared, the package iz hidden.
Diefault = Checked =

Lucatel 0K | Apply | |

Note: Rational Rhapsody documentation uses a notation method with double colons

to identify the location of a specific property. For example, for the property in

the above figure, the location is

Browser: :Settings: : ShowPredefinedPackage Where Browser iSthe
subject, settings isthe metaclass, and showPredefinedPackage iSthe

property.

22

Ada Tutorial



Summary

Moving the Features Dialog Box

The Features dialog box is a floating window that can be positioned anywhere on the screen, or
docked to the Rational Rhapsody GUI.

To dock the Features dialog box in the Rational Rhapsody window, do one of the following:
*

Double-click thetitle bar. The dialog box docks. You can now drag it to another location if
you want.

Right-click thetitle bar and select Docking by Drag. Then drag the dialog box to another
location.

To undock the Features dialog box, do one of the following:

+ Double-click thetitle bar to undock it.

*

Right-click the title bar and clear Docking by Drag, and then drag the dialog box to
another location.

Note: Anasterisk (*) in atitle bar for the Rational Rhapsody window and any dialog
box means that data has been modified and a save has not been done yet.

If the Rational Rhapsody browser does not display, select View > Browser.
Summary

In this section, you became familiar with the Rational Rhapsody product and its features. You
performed the following:

*

Created the Dishwasher project
+ Saved the project

You are now ready to proceed to the next section where you are going to create the Dishwasher

model. You are going to model the requirements of the dishwasher and the functions of using a
dishwasher using use case diagrams.

Rational Rhapsody 23



Getting Started

24

Ada Tutorial



Lesson 1: Creating a Use Case Diagram

Use case diagrams (UCDs) show the main functions of the system (use cases) and the entities that
are outside the system (actors). Use case diagrams allow you to specify the requirements for the
system and show the interactions between the system and external actors.

Note

You must complete all the tasks in Setting up for the Tutorial in the Getting Started Section
before you start this lesson.

Goals for this Lesson

In this lesson, you are going to determine who are the users of the system and what are the
requirements for the embedded system. Then you are going to create the Dishwasher use case
diagram.

Exercise 1: Analyzing the Dishwasher System

Before using Rational Rhapsody, you should determine the requirements for the embedded system.
To analyze the dishwasher system used in this tutorial, answer these questions:

¢ Who might use the system?

¢ How they might useit?

¢ What are the major actions of the system?

+ When do these actions occur?

¢ What arethe relationships, similarities, or differences between the actions?

¢ What is standard behavior?

¢ What can go wrong?
Some simplified answers to these questions might be as follows:

¢ Thesystem usersor “actors’ would include a“cleansing engineer” and a " service person.”
¢ The system washes, rinses, and then dries dishes.

Rational Rhapsody 25



Lesson 1: Creating a Use Case Diagram

¢ The*cleansing engineer” loads the dishes into the dishwasher, starts the dishwasher, and
removes dishes after they are washed.

¢ The system might fail to wash, rinse, or dry the dishes and require service.
During this analysis phase, you identify actors for the system. The three types of actors are as
follows:

¢ Usersof the system

¢ Externa component providing information to the system

¢ Externa component receiving information from the system

26 Ada Tutorial



Exercise 2: Creating the Dishwasher Use Case Diagram

Exercise 2: Creating the Dishwasher Use Case

Diagram

In this exercise you are going to create the Dishwasher use case diagram. A use case diagram

showstypical interactions between the system being designed and the external actors who might

interact with it.

The following figure shows the Dishwasher use case diagram that you are going to create in this

exercise.

Dishwasher Use Case Diagram

Entire Model Yiew @

41\

E--@ Dishwasher
{:l Cormponents
D Chject Model Diagrams
EID Packages
EB DishwasherPhkg
E| jl,%‘ Actaors

Eﬁ ServicePerson

E|C) Use Cases
B Wash Dishes

-2 Profiles
|'_—‘|D Use Case Diagrams
Rt} Cishvvasher

Elﬁ CleansingEngineer
.| ELy Association Ends
; iy iks'Wash Dishes

[l Association Ends
feely itsService Dishwasher

L Association Ends
E L itsCleansingEnginesr
-7 Service Dishwasher
E||—| Association Ends
. L, itsServicePerson
[]---& PredefinedTypes (REF)
[]---ﬁ PredefinedTypesada (REF)

e+ 1P 0%

il=

Dishwasher Use Case Diagram

|»

CleansingEngineer

O

ServicePerson

Dighwasher

Serice Dishwasher

ull|

W Welcome to...lﬂ Modell |ﬂ Dishwasher |

Rational Rhapsody

27



Lesson 1: Creating a Use Case Diagram

Task 2a: Creating the Dishwasher Use Case Diagram

Thistask is the starting point for the design.
To create the Dishwasher use case diagram, follow these steps:

1. Start Rational Rhapsody in Ada and open the Dishwasher model if they are not already
open.

2. Right-click the top-level Dishwasher in the Rational Rhapsody browser, and select
Add New > Use Case Diagram to open the New Diagram dialog box.

3. Typebpishwasher, asshown in the following figure, and then click OK.

x

Selected Owrner,  usecasediagram_0

U ENTS
IDishwasher

Populate Diagrarm [

(1] 4 I Help

28 Ada Tutorial



Exercise 2: Creating the Dishwasher Use Case Diagram

Rationa Rhapsody automatically adds the Use Case Diagrams category and the name of the new
diagram to the Rational Rhapsody browser and opens the new diagram in the drawing area, as
shown in the following figure:

3 |
Entire Model Yiew - | + +

[l Dishwasher
-] Components
{3 Ohiject Model Diagrams
- Packages
D Profiles
ED Use Case Diagrams
[ lﬁj Dishwwasher

£ B|¢ » 5|0 0[5

-
«| | »

W Welcome to...lﬂ todell ﬂ Dishwasher *

Note

You can a'so create adiagram by using the Tools menu or the Diagr amstoolbar. Also, once
you create a diagram you can open it using the Diagramstoolbar. Refer to the IBM Rational
Rhapsody User Guide for more information.

Rational Rhapsody 29



Lesson 1: Creating a Use Case Diagram

Task 2b: Drawing the Boundary Box and Actors

The boundary box delineates the system under design from the external actors. Use cases are
inside the boundary box; actors are outside the boundary box. In this task, you are going to draw
the boundary box and actors using the Dishwasher Use Case Diagram figure as a reference.

To draw the boundary box and actors, follow these steps:

1. Click the Create Boundary box button on the Drawing toolbar.

2. Click the drawing area and drag to create a boundary box. Rational Rhapsody creates a
boundary box named System Boundary Box.

3. Rename the boundary box pishwasher and then press Enter.

4. Click the Create Actor button PAS on the Drawing toolbar.

5. Onthedrawing area, click to the left side of the boundary box. Rational Rhapsody creates
an actor with a default name of actor_n, where n is greater than or equal to 0.

6. Renamethe actor cleansingEngineer and then press Enter.

Note: Because code can be generated using the specified names, do not include
spaces in the names of actors.

7. Draw another actor named servicePerson.

8. Usethetoolson the Layout toolbar to help you with the layout of selected elements
(including labels) in your diagram. For example, to adjust the size of your actors, do the
following:

a. Select an actor and then use the Sizing handles to adjust the size of the actor.

b. Select the other (original size) actor.

c. Use Shift+Click to select the size-adjusted actor and then click Same Size B onthe
L ayout toolbar to resize the actors so that they are the same size. The last element
selected is used as the defaullt.

Refer to the IBM Rational Rhapsody User Guide for more information about the
L ayout toolbar.

Note: If you want to move adrawn element on adrawing more precisely than clicking
and dragging it, click one or more elements, press the Ctrl key and use the
standalone directional arrow keys to move your element(s). You can also use
the directional arrows on the numeric keypad with NumLock not active.

30

Ada Tutorial



Exercise 2: Creating the Dishwasher Use Case Diagram

9. Inthebrowser, expand the Dishwasher Pkg package and the Actor s category to view your
newly created actors, as shown in the following figure:

Note: You created the Dishwasher Pkg package in Renaming the Default Package.

B [ r
Entire Model Yiew - + + ‘ -
- O
ED Dishwwasher
- Companents = Dishwasher
D Object Madel Diagrams B O
=1 Packages p—
- - Dishwasherpkg [
----- CleansingEngineer T
L.5¥ ServicePerson RS
[ & PredefinedTypes (REF) — ) . 1
(-5 PredefinedTypesAda (REF) CleansingEngineer
D Profiles §
ED Use Case Diagrams
3| Dishwasher
ServicePerson
| | 2
W Welcome to...lﬂ Modell |ﬂ Dishwasher"l

Note: To quickly find the Actors category in the Rational Rhapsody browser,
right-click an actor on the use case diagram and click L ocate or press Ctrl+L.
You can use this technique with other objects on a diagram.

Task 2c: Drawing the Use Cases

During the analysis phase, you identified user-visible functions or important goals of the system.
These are use cases. A use case represents a particular function of the system. In thistask, you are
going to draw the following use cases using the Dishwasher Use Case Diagram figure asa
reference.

¢ \Wash Dishes
¢ Service Dishwasher

Rational Rhapsody 31



Lesson 1: Creating a Use Case Diagram

Ei

To draw the use cases, follow these steps:

1. Click the Create Use Case button & on the Drawing toolbar.

2. Click insidethetop half of the boundary box. Rational Rhapsody creates ause case with a
default name of usecase n, where n is equal to or greater than O.

3. Renamethe use case wash Dishes and then press Enter.

Note: For use case names, you can use spaces because use case names do not
correspond to actual generated code. In the previous task where you drew
actors, you did not use spaces in actor names because code can be generated
using the specified actor names.

4. Create another use case inside the boundary box named service Dishwasher.

5. Inthe browser, under the Dishwasher Pkg package, expand the new Use Cases category
to view the use cases you created, as shown in the following figure:

B

61“

ritire Madel Yiew hd

E--g Dishwwasher
D Components
[ Ohijert Model Diagrams
EID Packages

EIE DishwasherPkg
| E-9F Actars

ﬁ CleansingEngineer
i ServicePerson
| E4D Use Cases

----- ) Wash Dishes

[ ) Service Dishwasher
B PredefinedTypes (REF)
(-5 PredefinedTypesAda (REF)

[E

/- Profiles

= Use Case Diagrams

[ lﬁj Dishwasher

£ [B|v 5 5[0 0=

CleansingEngineer

O

SenvicePerson

4

Dishwasher

Senwice Dishwasher
|

W Welcome to...l ﬂ Modell

ﬂ Dishweazher *

32

Ada Tutorial




Exercise 2: Creating the Dishwasher Use Case Diagram

Task 2d: Associating Actors with Use Cases

The CleansingEngineer washes dishes and configures the washing mode, while the
Ser vicePer son only services the dishwasher as needed.

To incorporate the relationships of the actors to the use casesinto the design, you draw association
lines between the actors and use cases. An association represents a connection between objects or
users. In this task, you associate actors with use cases using the Dishwasher Use Case Diagram
figure as areference.

To draw association lines, follow these steps:

1. Click the Create Association button = on the Drawing toolbar.
Notice that once you move your cursor over the drawing area the mouse pointer turnsinto
acrosshairs pointer to signify that it is enabled and that it changesinto acircled crosshairs
pointer when drawing is possible.

2. Click the edge of the CleansingEngineer actor and then click the edge of the Wash
Dishes use case. Rational Rhapsody creates an association line with the name label
highlighted. You do not need to name this association, so click the mouse button again
(thisisthe same as pressing Enter).

Note: To keep aline straight asyou draw it, pressthe Ctrl key as you are drawing the
line.

3. Create an association between the ServicePer son actor and the Service Dishwasher use
case, and then click the mouse button again or press Enter.

Rational Rhapsody 33



Lesson 1: Creating a Use Case Diagram

4. Click the Save button & to save your model.

Your use case diagram should resembl e the following figure:

ﬂ
&?‘

|»

Entire Model Yiew =

=-f ] Dishwasher
D Components ]
D Ohject Model Diagrams Dishwasher
ED Packages

EE DishwasherPlkg

i‘g Actars

ﬁ CleansingEngineer

ﬁ ServicePerson

i [ Use Cases

: [T Wash Dishes

: B Service Dishwasher

& PredefinedTypes (REF)

& PredefinedTypesAda (REF)

-2 Profiles

=-{_1 Use Case Diagrams
e Iﬁj Dishwasher O
Serice Dishwasher

ServicePerson

=
«| | »

CleansingEngineer

#E e 5P 05

¥ \Welcome to...lﬂ todel1 ﬂ Dishwasher

Task 2e: Adding a Diagram Title

Each diagram has its name in the diagram table and in the title bar of the window that displaysthe
diagram. However, it is also useful to add atitle onto the diagram itself to help other members of
your team understand the content and purpose of a diagram.

To add an optional title to your diagram, follow these steps:

1. With the diagram displayed in the drawing area, click A ontheFree Shapes toolbar.

2. Click above the system boundary box in the diagram and type, for example, pishwasher
Use Case Diagram, and press Ctrl+Enter.

Note: If you press Enter, you move your cursor to anew line. In this case, to exit
typing mode, you have to press Ctrl+Enter to end your action. Or you can
click out of the typing area.

34 Ada Tutorial




Summary

3.

4,

Make the following changesif you want:
a. Reposition thetitle by dragging it into another location.

b. Usethetoolson the Format toolbar to change the font styles.

Click the Save button & to save your model.

For more information about the Free Shapes and For mat toolbars, refer to the IBM Rational
Rhapsody User Guide.

You have completed drawing the Dishwasher use case diagram. It should resemble the Dishwasher

Use Case Diagram figure.

Summary

In thislesson, you determined who are the users of the system and what are the requirements for
the embedded system. Then you created a use case diagram that shows the functions and
reguirements of the dishwasher. You became familiar with the parts of a use case diagram and
created the following:

*

*

*

*

*

System boundary box
Actors

Use cases
Association lines
Title for your diagram

You are now ready to proceed to the next lesson, where you are going to define how the system
components are interconnected using an object model diagram.

Rational Rhapsody 35



Lesson 1: Creating a Use Case Diagram

36

Ada Tutorial



Lesson 2: Creating an Object Model
Diagram

Object model diagrams (OMDs) specify the types of objects in the system, the attributes and
operations that belong to those objects, the static relationship that can exist between classes
(types), and the constraints that might apply. The Rational Rhapsody code generator directly
trangdlates the elements and relationships modeled in OMDs into Ada source code.

Goals for this Lesson

In thislesson, you are going to create the Dishwasher object model diagram. In thislesson, you are
going to:

¢ Create an object model diagram

¢ Create classesin the object model diagram

+ Draw dependencies

+  Specify features of aclass

*  Set attributes of aclass

¢ Add operationsto aclass

Rational Rhapsody 37



Lesson 2: Creating an Object Model Diagram

Exercise 1: Creating the Dishwasher Object Model
Diagram

Dishwasher Object Model Diagram

Object model diagrams show the types of objectsin the system, the attributes and operations that
belong to those objects, and the static relationships that can exist between classes (types).

The following figure shows the Dishwasher object model diagram that you are going to createin
this exercise.

= r
Ertire Model View = ‘ + 5 ‘ E
- Singletons
E--g Dishwasher - Do-‘
- = ishwasher
D Zomponents E
g gbj:;t Moded Diagrams M rinsetime: IntegersD
=i Tackages . M washtime:Integer=0
&2 DishwasherPig = drytime: Integer=0 Prm——
- 38 actors = M cycles: Integer=0 e e
=B Classes ? yeles.integ . Display
Eg «entrypoints Display T . e
| B\ Dependencies 5
T ; T
LMy ald Dishwwash L
=3 O-;e?atsi:::» swasher L HisDried():Boolean «Usages
] ) isWWashed(): Boolean
R men) | | Sisw
EIQ «3ingletons Dishwasher * ElsRlnsedOI:Eloolean Emaino:void
oM attributes . & setup():void
P e cycles X
= drytime B
= rinsetime \
M washtime N
EE Cperations |
- [ isDriediy ?
& isRinsed() b
: & iswwashed() :'/% -
. B setupl) 4 I I »
B+ Object Model Diagrams T
[ BB DisFiy.asher = W Welcome to...lﬂ Modell Iﬂ Dishwasher |ﬂDishwasher...
38 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram

Task la: Creating the Dishwasher Object Model Diagram

You draw an object model diagram using the following general steps:
1. Draw objects.
2. Draw links.
The following tasks describe each of these stepsin detail.
To create an object model diagram, follow these steps:
1. Start Rational Rhapsody and open the Dishwasher modé if they are not already open.

2. Inthe browser, expand the Packages category, right-click the Dishwasher Pkg package,
and then select Add New > Object M odel Diagram to open the New Diagram dialog
box.

3. Typebpishwasher and then click OK.

Rational Rhapsody adds the Object M odel Diagrams category and the name of the new object
model diagram to the browser. Rational Rhapsody also opens the new object model diagram in the
drawing area, as shown in the following figure:

]
61“

|»

Entire: Made! Yiew -

E--g Dishwasher
D Components
{2 Ohject Mode Diagrams
E|{:| Packages
£ DistwasherPkg
i Ackars
{21 Object Model Diagrams
[ lﬂj Dishwasher
) Use Cases
B PredefinedTypes (REF)
E PredefinedTypesada (REF)
[+ Profiles
-2 Use Case Diagrams

(Bo e rrRre s PEDAE

-
«| | »

UWeIcometo...Iﬂ todell |ﬂ Dishwwasher ﬂDishwasheri...l

Rational Rhapsody 39



Lesson 2: Creating an Object Model Diagram

Task 1b: Drawing Classes and Dependencies

In thistask, you are going to draw classes for your Dishwasher object model diagram and then
draw a dependency between the two classes. In addition, you are going to set a stereotype for that
dependency. Use the Dishwasher Object Model Diagram figure as areference.

Rationa Rhapsody uses classes to represent the major elements of the abject model. Classes are
groupings of similar kinds of abjects into types. There are two types of classes represented in the
object model diagrams:

+ Simple (Specification) Class shows only the class hame, without any attributes or
operations.

¢ Composite (Structured) Class contains other classes. The parts come into being and are
destroyed with the creation and destruction of the composite class.

All instances of a class have the same attributes and operations, although their individual values
can vary. The top compartment holds the name of the class, the middle compartment holds the
attributes, and the bottom compartment holds the operations.

A dependency is adirect relationship in which the function of an element requires the presence of
and might change another element.

A stereotype is amodeling element that extends the semantics of the UML metamodel by typing
UML entities. Rational Rhapsody includes predefined stereotypes, and you can aso define your
own stereotypes. Stereotypes are enclosed in angle quotes (or guillemets) on diagrams, for
example, «Usage».

To draw classes, a dependency, and set a stereotype, follow these steps:

1. Click the Classbutton 5 onthe Drawing toolbar.
Notice that once you move your mouse pointer over the drawing area, aclassicon appears
along withiit.

2. Click-and-drag on the drawing area and create a tall rectangular class.
3. Renamethe class pishwasher and then press Enter.

4. Create another class beside the Dishwasher class and nameit pisplay.

5. Click the Dependency button I;l on the Drawing toolbar.

6. Click theleft edge of the Display class and click the right edge of the Dishwasher class.
This arrow shows the dependency relationship between the Display class and the
Dishwasher class and, therefore, changes the definitions of both classes.

7. Double-click the dependency line or right-click it and select Featur esto open the Features
dialog box.

40

Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram

8. Onthe General tab, in the Stereotype box, select the Usage in PredefinedTypes check

box from the drop-down menu. (Usage appears in the Ster eotype box after you do so.)

9. Click Apply to apply your changes and then OK to close the dialog box.

10.

Save your project.

Your object model diagram should resemble the following figure:

E|

Entire Model Wigw < | + + ‘

2@
w1
=&

120
=-E3

(-1 Dishwasher

Components
(bject Model Diagrams
Packages

Elb DistwwasherPlg

ﬁ‘ Actors

BB Classes

. B bishwasher

. =8 Display

; [EBMS¥C=pendencies
! L *y) «lsages Dishwasher
=13 Ohject Madel Diagrams

: - lﬂj Dishwasher

¢ Use Cases

[]---ﬁ PredefinedTypes (REF)
[]---ﬁ PredefinedTypesada (REF)

Profiles
Use Case Diagrams

KA T PRe 3 PEDAF

[ o

Dishwasher

=

Display

H“""-\-\.
T

T
zUsages T~

<

i Welcome to...l ﬂ M odell

Iﬂ Dishwasher |£ Dishwasher ...

Rational Rhapsody

41



Lesson 2: Creating an Object Model Diagram

Task 1c: Creating a Singleton

A singleton is a simple pattern or mechanism that creates a single, global instance of aclass. In
Rational Rhapsody, you can instruct the Ada code generator to create a singleton by creating a
Singleton stereotype. Singleton classes are instantiated only once throughout the life of the system.

To create asingle global instance of the Dishwasher class, follow these steps:

1

Double-click the Dishwasher classin the Rational Rhapsody browser or the diagram or
right-click it and select Features to open the Features dialog box.

On the General tab, in the Stereotype box, select the Singleton in PredefinedTypes
check box from the drop-down menu. (Singleton appears in the Stereotype box after you
do so.)

Click Apply and then OK.
Save your model.

Your object model diagram should display the Singleton stereotype for your Dishwasher
class, as shown in the following figure:

K|

|»

Entire Model Wigw < | + 1 ‘

aSingletons

[=)-f ] Dishwasher
Dishwasher

D Components

D (bject Model Diagrams
E|{:| Packages

EIE DishiwwasherPlka
;ﬁq Actars

2B Classes
Singletan Dishwasher

Display

R

T
T
T

zUsages T —

-y Dependencies
‘u «Usagew Dishwasher
ED Object Model Diagrams
[ lﬂj Dishwasher
-4 Use Cases
[]---& PredefinedTypes (REF)
[]---ﬁ PredefinedTypesada (REF)
Profiles
Use Case Diagrams

=-E3
H-E0

ol e rrre s DEDAl

=
«| | »

i Welcome to...lﬂ M odell Iﬂ Dishwasher |£Dishwasher...

42

Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram

Task 1d: Adding Attributes

In this task, you add attributes to your Dishwasher class. Attributes are the data members of a
class.

To add attributes describing the dishwasher’s behavior, follow these steps:

1. Double-click the Dishwasher classin the Rational Rhapsody browser or diagram to open
the Features dialog box.

2. OntheAttributestab, click <News to create a blank row for an attribute.
3. Todefinethe rinsetime attribute, fill in the row with these values:
a. For Name, type rinsetime.

b. For Visibility, select Public from the drop-down list if necessary. It should be set by
default.

c. For Type, select Integer if necessary. It should be set by default.
d. For Initial Value, type o (zero).

4. Repeat steps 2 — 3 to create the remaining attributes, as shown in the following figure.
Give them the same Visibility, Type, and I nitial Value as you did the first attribute.

washtime

drytime

¢  cycles

Class : Dishwasher in DishwasherPkg * |

General | Description  Attributes I Dperationsl Parts | Flelationsl Tags | Properliesl

i x
Mame I YWisibility I Twpe I Initial Yalue
= rinsetime Pubilic Integer a
= washtime Public Inkeger a
E drytime Puhblic Inteqger i
Public hl Integer
<Mew=
| | ©

Locate | 0K | Apply | ‘

5. Click Apply to apply your changes.

6. Do not close the Features dialog box. Continue with Task le: Creating Operations.

Rational Rhapsody 43



Lesson 2: Creating an Object Model Diagram

Task le: Creating Operations

In this task, you are going to create operations that signal when a dishwasher action is complete.
An operationisaservice that can be requested from an object to affect behavior. An operation has
asignature, which might restrict the actual parameters that are possible.

Thistask includes typing code for the operation.
To create operations that signal when a dishwasher action is complete, follow these steps:

1. Continuing from the previous task, with the Features dialog box still opened for the
Dishwasher class, on the Operationstab, click <New> and select Primitive Operation
to add a blank row for an operation.

2. Todefinethe ispried operation, fill in the row with these values:
a. For Name, type ispried.

b. For Visibility, select Public from the drop-down list if necessary. It should be set by
default.

c. For Return Type, select Boolean.

3. Repeat steps 1 — 2 to create the remaining operations, as shown in the following figure.
Give them the same Visibility, Type, and Return Type asyou did for the first operation.

¢ isWashed

¢ isRinsed

Class : Dishwasher in DishwasherPkg ) |

Generall Descriptiu:unl Attibutes  Operations I Ports I Helatiu:unsl Tags | F'n:upertiesl

=T

Mame | Yisibiliky | Return Type |
ﬁ isDiried Public Boolean
E isashed Public Boolzan
ﬁ isRinsed Public g Eoolzan
=Mew >

IBou:ulean izRinzed(]

Lucalel 0K | Apply ||

4. Click Apply to apply your changes.
5. Highlight the isRinsed operation, as shown above.

44 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram

6. Click ‘ on the upper right corner of the tab (thisisthe Invoke Features Dial og button) to
open the Features dialog box opens for the operation.
7. Onthe Implementation tab, type the following code in the Oper ation Body box, which
is also shown in the following figure:
return (Dishwasher unique instance.rinsetime = 0);

Note: Theunique instance naming convention is used because we made the
Dishwasher classasingleton. The Rational Rhapsody code generator generates
the attributes based on this naming convention.

Primitive Operation : isRinsed in Dishwasher [T x|
General I Description  Implementation | Argumentz | Relationz I Tagz | Fropertiez
IBDDbanisHkmedU
Local Variables
=
« | _I_I
Operation Body:
return (Dishwasher unigque instance.rinsetime = 0] ; j
I _>IJ
Locate | 0K | Apply | |
Note: You can copy the code you just entered so that you can use it again for the other
operationsin this task. Just be sure to change the operation name after each
time you pasteiit.
8.

Click OK to save your changes and return to the list of operations you entered previoudly.

9. Double-click the Operation icon = totheleft of theisDried operation to open the Features
dialog box for this operation.
10. OntheImplementation tab, type the following code in the Oper ation Body box:
return (Dishwasher unique instance.drytime = 0);
11. Click OK.

12. Open the Features dialog box for the isWWashed operation.

Rational Rhapsody 45



Lesson 2: Creating an Object Model Diagram

13. Onthe Implementation tab, type the following code in the Operation Body box:

return (Dishwasher unique instance.washtime = 0);

14. Click OK to apply your changes and close the Features dialog box for the operation.
15. Click OK to close the Features dialog box for the class.

Task 1f: Displaying Attributes and Operations in the OMD

To display the attributes and operations defined for the Dishwasher class on the Dishwasher
object model diagram, follow these steps:

1. Onthe Dishwasher object model diagram, right-click the Dishwasher class and then
select Display Options to open the Display Options dialog box.

2. Onthe Attributes tab, select the Explicit option button if it is not already selected.

3. Highlight all of the attributes listed in the All Elements box and then click the Display
button.

This moves all of the attributes into the Shown in Diagram box, as shown in the
following figure:

Display options of Dishwasher ﬂ

General Attributes I Dperatiu:unsl

Shows
’}" Mone ¢ &l 7 Public % E=plicit

Shown In Diagram All Elerments

Mowve Up

0
Mowve Dn |
[ Fewsea |

Remowve

Note: If you select the All option button, the notations would be included in the
attributes and operations display.

46 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram

On the Oper ations tab, use the same method as described above to move all the

operations from the All Elements box to the Shown in Diagram box, as shown in the

following figure:

Display options of Dishwasher

Eenerall Aitributes  Dperations I

Show
’71"' Mone Al

" Public & Explicit

Shown In Diagram

All Elementz

x|

Click OK to apply your changes and close the dialog box.

Your object model diagram should resemble the following figure:

Entire Model Wigw < | + + ‘

(-1 Dishwasher
-] Companents
D (bject Model Diagrams
ED Packages
Elﬁ DishwasherPlg
ﬁ‘ Actors
= B cClasses

Eg Displary
: E-*y) Dependencies

=13 Ohject Madel Diagrams
[ lﬂj Dishwasher

#-¢7) Use Cases

[]---ﬁ PredefinedTypes (REF)
[]---ﬁ PredefinedTypesada (REF)
0] Profiles

[]--D Use Case Diagrams

v «Singletans Dishwasher

“v) #lsages Dishwasher

‘»3:-0|u"!u'fr'r0Jfﬂ>|hD3HDﬂEﬂ|§[

aSingletons
Dishwasher

M rinzetime:Integer=0
M washtime:Integer=0
M drytime: Integer=0
M cycles:integer=0

T

HisDried():Boalean
HisWashed(:Boolean
HisRinsed():Boolean

<

|»

Display

T
T

zUsages T~

W Welcome to...lﬂ Modell Iﬂ Dishwasher ﬂDishwasher i

Save your model.

Rational Rhapsody

47



Lesson 2: Creating an Object Model Diagram

Task 1g: Adding the setup Operation

To add a setup operation for use during system installation, follow these steps:

1. Double-click the Dishwasher classin the Rational Rhapsody browser or the diagram to
open the Features dialog box for the class.

2. Onthe Operationstab, click <New> and select Primitive Operation to add a blank row
for an operation.

3. Type setup asthe new operation name and accept al of the default settings, as shown in
the following figure:

Class : Dishwasher in DishwasherPkg 2=

Generall Descriptiu:unl Aftibutes  Dperations I Parts I Helatiu:unsl Tags | F'n:upertiesl

w3 B X

Mame I YWisibility I Return Tyvpe I
E isDried Public Boolean
E s ashed Public Boolean
ﬁ isRinsed Public Boolean
| Public
<hew >
I\-'l:nil:l zetup(]

analel 1] .4 | Apply ||

4. Click Apply.

5. Open the Features dialog box for the setup operation:
— Double-click theicon ® to the left of the operation, or

— Highlight the operation and click the Invoke Features Dialog button .

48 Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram

6. Onthelmplementation tab, type the following code in the Operation Body box:

Dishwasher.Dishwasher unique instance.washtime := 5;
Dishwasher.Dishwasher unique instance.drytime := 3;
Dishwasher.Dishwasher unique instance.rinsetime :=
Dishwasher.Dishwasher unique instance.cycles :=
Dishwasher.Dishwasher unique instance.cycles + 1;

4;

Primitive Dperation : setup in Dishwasher [T =]

Generall Description  |mplementation |.-’-‘«rguments| Helatiu:unsl Tags I F'n:upertiesl

Ivu:uiu:l zehupl]

Local ¥ anables:

J |

Operation Body:

Dishwasher.Dishwasher unigue instance.washtime := 5:
Dishwasher.Dishwasher unigue instance.drytime := 3;
Dishwasher.Dishwasher unigue instance.rinsetime :=
Dishwasher.Dishwasher unigue instance.cycles :=
Dishwasher.Dishwasher unigue instance.cycles + 1)

al |

4;

I;I*_I_ILILILIL

Locate | 114 | Apply | ‘

7. Click OK to close Features dialog box for the operation.

8. Click OK to apply your changes and close the Features dialog box for the class.

Rational Rhapsody 49



Lesson 2: Creating an Object Model Diagram

10.

Use the method described in Task 1f: Displaying Attributes and Operations in the OMD tO
display the setup operation for the Dishwasher class.

Save your model.

You Dishwasher object model diagram should resemble the following figure:

Entire Model Yiew ~ ‘ + 4 ‘ E
E--Q Dishwasher = «Singletons
-2 Components B Dishwasher
{:l Cbject Model Diagrams B rinesti nt 0
B2 Packages rinsetime: Integer=
55 DishwasherPkg | B washtime:Integer=0 Display
- 9E Actars -0 B drytime: Integer=0 i
2B Classes N H cycles:Integer=0 = e
E|§ «Singletons Dishwasher T ey
- Attributes '—| cUsages ™ =
: Ly HisDried():Boolean
< Hiswashed():Boolean
HisRinsed():Boolean
B oyeles * & setupvoid
=@ Operations L,
----- i isDried)
- (@ iswashed() "y
- [ isRinsed()
o [ setup() :%
=-8 Display i
E---‘_u Dependencies ?
iy wllsages Dishwash
-1 Object Model Diagrams ?%
F- Use Cases
I:I---B PredefinedTypes (REF) pl | —— _I;I
(-5 PredefinedTypesAda (REF) | | 4
( & Profiles | Ll;‘ W Welcome to...lﬂ tadel |ﬂ Dishwasher ﬂDishwasher ||

Task 1h: Adding a main Operation to the Display Class

In thistask you are going to create the main operation that will serve as the entry point procedure
in the Ada executable.

To add the main Operation, follow these steps:

1

Double-click the Display classin the Rational Rhapsody browser or the diagram to open
the Features dialog box.

On the Operations tab, click <New> and select Primitive Operation to add a blank row
for an operation.

Typemain asthe new operation name and accept al of the default settings.

Open the Features dialog box for the operation.

50

Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram

5.  Onthelmplementation tab, type the following code in the Operation Body area:

Dishwasher.Initialize;
Dishwasher.start behavior (success) ;
if success then

ada.text io.put_line("Start OK");
else

ada.text _io.put_line("Start NOT OK");
end if;

loop
ada.text _lo.get immediate (c,success) ;
case ¢ 1is
when 's' => Dishwasher.op_ start;
when 'o' => Dishwasher.op open;
when 'c' => Dishwasher.op close;
when 'x' => exit;
when others => null;
end case;
delay (1.0);
Dishwasher.op tick;
Ada.text _io.put ("Tick = ");
int io.put (Dishwasher.get washtime) ;
int_io.put (Dishwasher.get_rinsetime) ;
int io.put (Dishwasher.get drytime) ;
int io.put (Dishwasher.get cycles) ;
ada.text io.new line;
end loop;

Primitive Operation : main in Display * (E2ES |

Ganerall Description  Implementation IArgumenls F\elationsl Tags I F‘ropertiesl

|v0id main(]

Local Yariables:

KT I—

Operation Body:

il e

Dishwasher.Initialize:
Dishwasher.start_behavior (success):
if succes= then
ada.text_io.put_line("Start OEM):
else
ada.text io.put line ("Start NOT O™
end if: - -

loop
ada.text_io.get_immediate|c, success):
case ¢ is

when 's' => Dishwasher.op_ start;

when 'o' => Dishwasher.op open:

when 'c' => Dishwasher.op_close; oo
when 'x' => exit:

when others => null:
end case:;
delay (1.0);
Dishwasher.op_tick;
Ada.text_io.put("Tick = "):
int_io.put (Dishwasher.get washtime):
int_io.put Dishwasher.get rinsetime):
int_io.put (Dishwasher.get drytime);
int_io.put (Dishwasher.get cycles):
ada.text_io.new line;

end loop: -
4| I »

6. Click Apply.

Rational Rhapsody 51



Lesson 2: Creating an Object Model Diagram

7. Specify variables that you want to appear in the declaration of the entrypoint or operation.
Type the following code in the L ocal Variables box on the | mplementation tab:

success : Boolean := false;
c: character;

package int io is new ada.text io.integer io(Integer) ;
use int_io;

Primitive Operation : main in Display (LJES |

Generall Description  Implementation |.ﬁ.lguments Helationsl Tags I Properties

Ivoid main[]

Local Warigbles:

success @ Boolean := false; ;I

o character: -
T
Operation Body:

Dishwasher.Initialize; ;I

Dishwasher.start_behavior (success) ! -
4| | b|

8. Click OK to close the Features dialog box.

9. Usethe method described in Task 1f: Displaying Attributes and Operations in the OMD tO
display the main operation for the Display class.

10. Saveyour model.

52

Ada Tutorial



Exercise 1: Creating the Dishwasher Object Model Diagram

Task 1i: Using the Entrypoint Stereotype

For the Dishwasher model, you want to use the «entrypoint» stereotype to direct the code
generator and make the main Adaoperation into the application entry point.

To use the «entrypoint» stereotype, follow these steps:

1. Double-click the Display classin the Rational Rhapsody browser or on your object model
diagram to open the Features dialog box.

2. Onthe General tab, in the Stereotype box, select the entrypoint in
PredefinedTypesAda check box from the drop-down menu. (entrypoint appearsin the
Sereotype box after you do so.)

3. Click Apply.

Your General tab should resemble the following figure:

Class : Display in DishwasherPkg o

General |Descriptiu:un| .-’-‘«ttribute&l Dperatiuml Parts | Helatiu:unsl Tags I F'ru:upertiesl =

M arne: IDiSIJ|a_'r' LI

Stereotype: I entrppoint

=
b air Diagrarn: IDiShwaSher j
Concurrency: Isequential j

=l

Defined In - IDishwasherF‘kg

Clazs Tupe
@ Fegular © Template € Instantiation

Lucatel 0K | Apply | |

KN

4. Click OK.

Rational Rhapsody 53



Lesson 2: Creating an Object Model Diagram

5. Saveyour model.

Your Dishwasher object model diagram should resemble the following figure:

Entire Model Yiew =

B2

58

E--g Dishwwasher

D Components
+-{Z1] Object Model Diagrams
E|{:| Packages

DishiwasherPlkg

jl,%‘ Actaors
EIQ Classes

28 «entrypoints Display

| - Dependencies

: -“s) «Usagex Dishwasher
Ea Operations

. & main()

EIQ «3ingleton: Dishwasher
- attributes

o cycles

- drytime

E rinsetime

- washtime

a Operations

- ﬁ isDiried()

. ﬁ isRinsed()

. ﬁ isWashed()

...... ﬁ setup()

El{:l Obiject Model Diagrams

L g5 Dishwasher

|»

KA TeCe s PEDAE

e

aSingletons
Dishwasher

= rinzetime:Integer=0
B washtime: Integer=0
B drytime: Integer=0
M cycles:Integer=0

HisDried():Boalean
HiswWashed():Boolean
HisRinsed():Boolean
& setup():vaid

i

|»

sentrypoints
Display

& main{:vaid

w Welcome to...l ﬂ Model

S

|ﬂ Dishwasher ﬂDishwasher ||

54

Ada Tutorial




Exercise 2: Other Necessary Tasks

Exercise 2: Other Necessary Tasks

In this exercise you perform some other tasks that are necessary for the Dishwasher model before
you proceed further.

Task 2a: Saving Packages Separately

To assist with configuration management and improve project organization, you might want to

store packages in separate subfolders within a parent folder. Rational Rhapsody has two directory
schemes: flat and hierarchical.

+ Inflat mode, all package files are stored in the project directory, regardless of their
location in the project hierarchy.

¢ Inhierarchical mode, apackageis stored in asubdirectory onelevel below its parent. Itis

possibleto have ahybrid project, where some packages are stored in flat mode, and others
are organized in a hierarchy of folders.

To change the directory scheme so new packages are stored in separate folders by default, follow
these steps:

1. Double-click the top-level Dishwasher in the Rational Rhapsody browser hierarchy to
open the Features dialog box.

2. Onthe Propertiestab, select All from the drop-down list in the upper-left corner of the
dialog box. (The label appears as View All after you make the selection.).

3. Expand the General subject and the M odel metaclass, and then highlight the
DefaultDirector yScheme property.

Note: Rational Rhapsody documentation uses a notation method with double colons
to identify the location of a specific property, for example,
General: :Model: :DefaultDirectoryScheme. INnthisexample, General isthe
name of the subject, M odel is the name of the metaclass, and
DefaultDirectoryScheme is the name of the property.

Refer to the IBM Rational Rhapsody User Guide for more information on
setting properties. (Do a search of the user guide PDF file for “ properties tab.”)

Rational Rhapsody 55



Lesson 2: Creating an Object Model Diagram

4. Click the box next to DefaultDirectoryScheme and use the drop-down list to change the
value to PackageAsDirectory, as shown in the following figure:

Project : Dishwasher EE|
Generall Descriptianl Flelaticnnsl Tags Properties I
Wiew Al ~
ClassiCodeEditor Internal ;I
ClassIsSavedUnit D
|
CommonTypes
CompareBuildMurmberInfepositary D
ComponentFilelsSavednit D
ComponentIsSayedUnit
DefaultDirects PackagensDireckory j

General:Model-DefaultDirectoryS cheme
The DefaulDirectorpS cheme property iz uzed by the hierarchical repositony functionaliby. This property iz
available only at the project level, but activates or deactivates the Save in Subdirectony check box on
the Linit Infarmation far Package dialog bos.

The pozsible values are as follows:

* Flat - All unitz are stored in the project _ipy directon [as in previous versions of Bhapzody).

* PackagedsDirectory - Hew packages [and their descendants] are nested in a separate directory, no
more than one level below the parent. The package subdirectony has the same name as the package it
containg.

[Drefault = Flat)

Lucatel 0K | Apply | |

5. Click OK.
6. Saveyour model.

Task 2b: Using Predefined Packages

Adadevelopers use a standard library to input/output text. A stub model of thislibrary isavailable
from Ada.sbs package in the behavioral services model of Rational Rhapsody in Ada. To refine
this stub library, the following instructions add the standard Text 10 package.

To add this set of predefined standard packages to your model, follow these steps:

1. Select File> Add to Modé to open the Add To Model dialog box.
2. Navigate to this path:

<Rational Rhapsody installations>\Share\LangAda83\model\RiAServices_rpy.

56 Ada Tutorial



Exercise 2: Other Necessary Tasks

3. IntheFilesof type box, select All Files (*.*) and then select the ADA .sbsfile, as shown
in the following figure:

Add To Model 2l x|
Loak in: I_,‘I RidS ervices_py j = I'j‘ ‘
o lPrez004GESkin.shs ¥ Add Subunits
‘E_iRiﬂ.sI:ns [T Add Dependents
DeFaultCDmpDnent.cmp ‘EiRi.q_Language_Independent_T\,.pr % Az Uit
|| FilesTable. dat Flservices.sbs " &g Reference

ELanguage_Independent_T'y'pes.sl:us
o _cmp.cmp

L | i
File: narne: |ADA.sbs Open I
Files of type; I,-’.\II Files [*.7] = Cancel |

4. Accept the default settings and click Open. The ADA package is added to the browser, as
shown in the following figure:

A

E =
Entire Model Wiew - + +

E--g Dishwwasher
l:l Components
D Ohject Model Diagrams
EH:I Packages
Ada
ﬁ CishwasherPlg
- @-§3 PredefinedTypes (REF)
ﬁ PredefinedTypesada (REF)
[#-{_1 Profiles
D Use Case Diagrams

5. Inthe Rational Rhapsody browser, expand the Object M odel Diagrams category
(directly below the Components category on the Rational Rhapsody browser).

6. Right-click Model1 (the default object model diagram) and select Featuresto open the
Features dialog box.

Rational Rhapsody 57



Lesson 2: Creating an Object Model Diagram

7.
8.

10.

12.
13.

On the Gener al tab, rename this model as packages.

Click OK.

Your Rational Rhapsody browser should resemble the following figure:

[ =
Entire Model View - + +

EI--D Dishwasher
D Components
EI{:I Cbject Model Diagrams
b g5 Packages
{:l Packages
-0 Profiles
{:l Use Case Diagrams

Double-click Packages object model diagram to bring its drawing area forward.

Drag-and-drop the Display class onto the Packages object model diagram you just
created.

Right-click the Ada package you added to the model earlier, and then select
Add New > Class.

Name the new class Text 10 and press Enter.

Drag-and-drop the Text_| O class onto the Packages object model diagram.

58

Ada Tutorial



Exercise 2: Other Necessary Tasks

14. Saveyour model. Your Packages object mode diagram should resemble the following

figure:

Ertire Model Wisw - ‘ ¥ + ‘

(-1 Dishwasher
-] Companents
ED (bject Model Diagrams
Iﬂj Packages
E|D Packages
2-F8 ada
=B Classes

=1 DishwasharPkg

ﬁ' Ackors
=B Classes

D Objeck Model Diagrams
- Use Cases
(-5 PredsfinedTypes (REF)

- Profiles
-] Use Case Diagrams

----- B unchecked_Corversion
“H Unchecked_Deallocation

5 «entrypoints Display
. @8 «singletons Dishwasher

(-5 PredefinedTypesAda (REF)

(BolK A Trre e PEmAl

AdanText [0

wentrypoints
Dizplay

4 |

|»

il

o Wielcome to... ﬂ Packages Iiﬂ Dishwasher "lﬂDishwasher

15.

Continue with Task 2c: Establishing the Package Dependency.

Task 2c: Establishing the Package Dependency

To establish the package dependency, follow these steps:

1.

Continuing from the @/ious task, for your Packages object model diagram, click the

Dependency button _¥ and draw adependency arrow from the Display classto the

Text 10 class.

Double-click the Dependency line to open the Features dialog box.

In the Stereotype box, select the Usage In PredefinedTypes check box from the

drop-down menu and click Apply.

L eave the Features dialog box open. Move it aside if necessary.

Drag-and-drop the Dishwasher class onto the object model diagram.

Create a dependency from the Dishwasher classto the Text_| O class and set the line to

the Usage stereotype.
Click Apply and then OK.

Rational Rhapsody

59



Lesson 2: Creating an Object Model Diagram

8. Saveyour model.

Now the Display and Dishwasher classes can use the Text_| O package. Your Packages
object model diagram should resemble the following figure:

B

|»

Entire Model Yiew - ‘ + ‘

E--Q Dishwasher
D Components
ED Obiject Model Diagrams
ﬂj Packages
B Packages
= ada

AdanText_|O

wSingletonas
Dishwasher

slsages s
|
|
|
|

aentrpaints
Dizplay

EIE DishwwasherPkg «lsages
?i‘g‘ Ackars

B dasses

. @8 «entrypoints Display

. ®-8 «Singletons Dishwasher
{1 Ohject Model Diagrams
B Use Cases

[]---& PredefinedTypes (REF)

[]---& PredefinedTypesada (REF)
[#-{_1 Profiles

[]--D Use Case Diagrams

(oK Ay TrRe s s PEDAl

=
«| | »

W Weloome to... ﬂ Packages liﬂ Dishwasher “lﬂDishwasher

Task 2d: Setting a Package Dependency Property

Rational Rhapsody enables you to specify whether the dependency should generate the context
clause in the unit specification or the unit body. Because the Display class has only a body, you
must set the generation location of the context clause to implementation body.

To set the property, follow these steps:

1. Double-click the Display classin the Rational Rhapsody browser or on the diagram to
open the Features dialog box.

2. Onthe Propertiestab, make sure that all the subjects are available.

3. Locatethecc: :Dependency: : UsageType property.

60 Ada Tutorial



Exercise 2: Other Necessary Tasks

4. Click the box next to this property and select |mplementation from the drop-down list, as
shown in the following figure:

Class : Display in DishwasherPkg 2=

Generall Descriptiu:unl .&ttributesl Dperatiunsl Ports I Helatiu:unsl Tags Properties

Wiew Al -
= e -

[+

Class

[+]

Argument
Attribute

[+]

[

Dependency

Configur ationDependencies

GenerakeRelationWithactars WhenactorIsGener ated

PropagatelmplementationToDerivedClasses

CG:Dependency:UzageType

The UsageT ype property specifies how a provider is to be made available to a dependent clazs or
package if the Usage stereotype is attached to the dependency. The pozsible values are as follows:
* Emiztence - If the provider is a class, a forward class declaration iz generated in the dependent.

* Implementation - An Hinclude statement iz generated in the implementation file of the dependent.

* Specification - An Hinclude statement is generated in the specification file of the dependent.
[Default = Specification)

Lucatel 0K | Apply | |

5. Click OK to apply your changes and close the dialog box.

Note: Becauseyou set this property for the class and not on an individual dependency,
it appliesto all the dependenciesin this class.

6. Saveyour model.

Rational Rhapsody 61



Lesson 2: Creating an Object Model Diagram

Task 2e: Adding a default constructor

In preparation for the next esson where you generate code and try to build your model for the first
time, you want to add a constructor to the Dishwasher class. A constructor is called when an object
isinstantiated. An object can use a constructor to explicitly initialize object members or
dynamically allocate space for member pointers. For our model, the constructor makes it possible
for the code to compile correctly when not using animation, which you will not get to until later in
thistutorial.

To add a default constructor, follow these steps:

1. Onthe Rational Rhapsody browser, right-click the Dishwasher class and select Add New
> Constructor to open the Constructor Arguments dialog box.

2. Click OK.

3. Expand the Operations category for the Dishwasher class and notice that Rational
Rhapsody adds an Initialize operation for the Dishwasher class, as shown in the
following figure:

[ =
Entire Model Yigw - +

E--Q Dishwwasher
{:l Components
D Chiject Model Diagrams
I_——_l{:l Packages

-8 Ada

Eﬁ DishwasherPlg

?i’ Ackars

EIE Classes

Q «entrypoint: Display

E-B «Singletons Dishwasher
- attributes
s} Dependencies
EIE Operations

i [ isRinsedi)
----- & iswwashed()
i & setup)
-Z1 Object Madel Diagrams
- Use Cases

E]---ﬁ PredefinedTypes (REF)
E]---ﬁ PredefinedTypesada (REF)
-] Profiles

-2 Use Case Diagrams

62

Ada Tutorial



Summary

Summary

In thislesson, you created use object model diagrams that specified the types of objectsin the
system, and the attributes and operations that belong to those objects. You became familiar with
the parts of an object model diagram and created the following:

*

*

*

*

*

*

Classes
Dependencies
Attributes
Operations
Stereotypes
Packages
Constructors

You are now ready to proceed to the next lesson, where you are going to generate code and try to
build your model inits current state. This lets you determine whether the model meets the
requirements and identify defects early on in the design process.

Rational Rhapsody 63



Lesson 2: Creating an Object Model Diagram

64

Ada Tutorial



Lesson 3: Generating Code and Building
Your Model

It is good practice to test the model incrementally using model execution. You can animate pieces
of the model asit is developed. This gives you the opportunity to determine whether the model
meets the requirements and find defects early on. Then you can test the entire model. In this way,
you iteratively build the model, and then with each iteration perform an entire model validation.

Goals for this Lesson

In thislesson, you are going to prepare for generating code, generate code, and try to build your
model.

Exercise 1: Preparing for Generating Code

Before you generate code, you must do the following general steps.
1. Create acomponent and set its features.

2. Create aconfiguration.
The following tasks describe these steps in detail.

Rational Rhapsody 65



Lesson 3: Generating Code and Building Your Model

Task la: Creating a Component

A component is a physical subsystem in the form of alibrary or executable program. It plays an
important role in the modeling of large systems that contain several libraries and executables. Each
component contains configuration and file specification categories, which are used to generate,
build, and run the executable model.

The name of the component becomes the name of the executable application to build. This
component defines classes for which to generate code and options to apply to the generated code.

Each project contains a default component, named pefaultcomponent. You can use the default
component or create a new component. In this task, you are going to create a new component
called exe. Later you will use the EXE component to animate the model.

To use create a component, follow these steps:

1. Inthe Rational Rhapsody browser, expand the top-level Dishwasher category.

2. Right-click Components and select Add New Component.

Rational Rhapsody creates a new component called component n, Wherenisgreater than

or equal to 0.

3. Rename the component exe and press Enter. Rational Rhapsody displays the renamed
component in the browser, as shown in the following figure:

Al

Entire Model Yiew v

+ *

ElD Dishwasher
ED Components

. @-§ EXE

l:l Packages
I:I Prafiles
l:l Uze Case Diagrams

E:l DefaultComponent

I:I Object Model Diagrams

4. Because the DefaultComponent is not used in this project and to unclutter the browser,
right-click DefaultComponent and select Delete from M odel, and then click Yesto
confirm the requested action.

5. Continue with Task 1b: Setting the Component Features.

66

Ada Tutorial



Exercise 1: Preparing for Generating Code

Task 1b: Setting the Component Features

Once you have created the component, you must set its features.

To set the features for your component, follow these steps:

1.

Continuing from Task la: Creating a Component, double-click the EXE component or
right-click and select Features to open the Features dialog box.

2. Onthe General tab, in the Type group, select the Executable option button if it is not
already selected.

3. On the Scope tab, select the All Elements option button, as shown in the following figure:

Component : EXE in Dishwasher * I E

General Scope |Descriptiu:un| Helatiu:unsl Tagz I F'ru:upertiesl
Language: I j

& Al Elements
" Selected Elemerts

= O Ada
= [ DishwasherPlkg

-
1 | >

Locate | 1] .4 | Apply | |

Rational Rhapsody 67



Lesson 3: Generating Code and Building Your Model

4. Do thefollowing to deactivate the automatically generated main so that only the
user-defined one is used:

a.

On the Properties tab, make sure all the subjects are available. This should be set

from the last time you used this tab.

Locatethe ca: :configuration: :MainGenerationScheme property.

Click the value next to the property name and use the drop-down list to change the
property value to User I nitializationOnly, as shown in the following figure:

Component : EXE in Dishwasher

21
General | Scope | Description I Relations | Tage FProperties I
Wiew &l -
e =
Component
Argument
Attribute
CiaGeneral
Class b
=] Canfiguration
AllowCollisionwithComponentfame D
CodeGeneratorTool External
ExternalGener ationTimeout o
ExternalGener atorFileMappingRules AsRhapsody
GenerateDirectoryPerModelComponent
GenerateForwardDeclarations
1]
UserInitializationCnly
-
CG:Configuration:MainGenerationScheme =
The MainGenerationScheme property controls how the main procedure iz generated. This property is
required for compliance with MISRAE [Motor Industry Software Reliability Azzociation] rules. The
posszible values are as folloves:
* Full - The main procedure iz generated as uzual.
* UzerlnitiaizationOnly - The main contents generation is switched off and iz replaced with only the
initialization code field. Thiz means that users can rewrite the main exactly az thew want and will have
to add any code that would normally be generated automatically by Rhapsody.
* For example, you would have to add the code for DefaultComponent_rit{):
int mainfint arge, char® argy([]] {
S H[ configuration DefaultComponent;:DefaulkConfig */
/4 This iz the initialization code added by the user
P
1 —
[Default = Full] LI
Locate | (1] 4 | Apply | |
5. Click OK.

68

Ada Tutorial



Exercise 2: Generating Code

Task 1c: Creating a Configuration

A component can contain many configurations. A configuration specifies how the component isto
be produced. Each component contains a default configuration, named pefaultconfig. Inthis
task, you are going to rename the default configuration to tost.

To rename the default configuration, follow these steps:

1

In the Rational Rhapsody browser, expand the EXE component and the Configurations
category.

Double-click DefaultConfig or right-click and select Featur esto open the Features dialog
box.

On the General tab, in the Name box, replace pefaultconfig With Host.

Click Apply and OK.

Exercise 2: Generating Code

In this exercise, you generate code for the first time for your application.

Task 2a: Generating Code

In this task you generate code in Rational Rhapsody. Before you generate code, you must first set
the active configuration. The active configuration is the configuration for which you generate
code. The active configuration appears in the drop-down list on the Code toolbar.

To set the active configuration and generate code for the Host configuration, follow these steps:

1

In the Rational Rhapsody browser, right-click the Host configuration and then select Set
asActive Configuration.

Note: You can aso select the active configuration from the drop-down list on the
Code toolbar.

Select Code > Generate > Host. Rational Rhapsody displays a message that the Host
directory does not yet exist and asks you to confirm its creation.

Click Yes. Rational Rhapsody places the files generated for the active configuration in the
new zost directory.

Rational Rhapsody 69



Lesson 3: Generating Code and Building Your Model

Rationa Rhapsody generates the code and displays output messagesin the Build tab of the Output
window, as shown in the following figure:

=

Ewaluation
Fenerating
Generating
Generating
Generating
Generating
Fenerating
Generating
Generating
Fenerating
Generating
Generating
Generating

Checker Done
0 Erroris), 0 Warningis)

Zl[a11 Checks Terminated Zuccesstully

Loading external generator...
Invoking FulesPlayer

of Rid CG Project.

I:

il
D
D
o
D:
D
o
il
D
o

“Bhapsody71hyDishwasher'EXEY Host readne. tXL.

ZBhapsody71yDishwasher\EXE\Host\DishwasherPkg\ CleansingEngineer. ads.
:%YBhapsody71\Dishwasher\EXE\Host\Dishwasher Pk Dishwasher. ads.
:YWEhapzody7lhDishwasher\EXE\Hoat\Dishwasher Py ServicePeraon, ada.
:AZBhapszody7 1y Dishwasher\EXEYHost\Dishwasher Pk Dishwasher. adhb.

YFhapsody714DishwasherEXE\Host\Dishwasher Po) Dii shwasherPlog. ads.

:WFhapzody7lhDishwasherh\EXE\Hoat\Dishwasher Py Display. adh,
:A\Fhapsody71yDishwasher \EXEVHost\Rik Bidirectional.ads.
:4Bhapsody7 1y DishwashertEXEYHost\Rid Bidirectional. adh.
:%YFhap=zody71\Dishwasher\EXE\HoscEXE . har.
:ZFhapzody?1yDishwasher\EXEY Host\MappingFile. txt.

D:
Code Generaticn Done

“Fhapsody71hDishwasher’\EXE)Hosth gnat. adc.

Y IE! I 4 I bl HI'-. Build A Check Model ,}\ Canfiguration Management ,]\' Anirmation ,}\ Search Results jf

The messages inform you of the code generation status, including:

* Successor failure of internal checks for the correctness and completeness of your model.
These checks are performed before code generation begins.

+ Names of files generated for classes and packages in the configuration.

+ Names of filesinto which the main() function is generated.

+ Location of the generated makefile.

¢ Completion of code generation.

Task 2b: Fixing Code Generation Errors

If you receive code generation errors, double-click the error in the Output window to go to the
source of the error. The source of the error appears as a highlighted element. Once you fix the
problem, regenerate the code (choose Code > Re Generate > Host) until there are no error

Messages.

70

Ada Tutorial



Exercise 3: Building Your Model

About Code Generation Warnings

If you receive code generation warnings, double-click the warning in the Output window to go to
the source of the warning. The source of the warning appears as a highlighted element. You might
be ableto fix the warning. Or you might leave the warning asis because your model is not yet fully
formed.

Keep in mind that you might receive warnings because your model is not yet fully formed, so that,
for example, all your port connections might not yet in place.

In other cases, if you do have warnings that are valid for the current state of your mode, fix them,
regenerate the code, and rebuild the application until those warnings are no longer appearing.

Examining Generated Source Files
To examine any of the generated source files, go to the nost subfolder of the Dishwasher project.

Using External Elements

The Rational Rhapsody product enables you to visualize frozen legacy code or edit external code
as external elements. This external code is code that is developed and maintained outside of the
Rational Rhapsody product. This code will not be regenerated by the Rational Rhapsody product,
but will participate in the code generation and build process of Rational Rhapsody models that
interact or interface with this external code. You can create external elements by reverse
engineering the files or by modeling. Refer to the IBM Rational Rhapsody User Guide for more
information on using external elements.

Exercise 3: Building Your Model
In this exercise, you try to build your model for the first time.

Task 3a: Building your Model

Once you generate code without any errors, you are ready to build the model.
To build the model, do one of the following:

¢ Select Code > Build EXE.exe, or

o

¢ Click the Make button =] on the Code toolbar.

Rational Rhapsody 71



Lesson 3: Generating Code and Building Your Model

Rationa Rhapsody builds the model by performing the following tasks:

¢ Executesthe makefile that it generated for the configuration.
¢ Setsup the environment for the compiler.

+  Startsthe compiler and linker, which run on the generated code. Once the codeis compiled
and linked, the Rational Rhapsody product displays the message Build Done inthe
Output window.

Asyou can see from the following figure, when you try to build your model code you receive error
messages about not declared op_ operations for the dishwasher. Thisis because you have not
defined these operations yet. You will do so in the next lesson. You can also ignore the message
about start_behavior. So for now, you can ignore these message.

If you see other error messages, you should correct them; continue with Task 3b: Fixing Build
Errors.

If you have no error messages, continue with Task 3c: Viewing Code.

Building ----------—-- EXE.exe  ——--—--——eeo

Executing: "C:\Rhapsody711l%3harebetchGnatMake.bat”™ EXE.bat build
Invoking MakeFile

Building Dishwasher

goc -c -I.zDishwasherPkgy -g -I- .\DishwasherPkgh\display.adhb
display.adb:25:15: "start behavior™ not declared in "Dishwasher”
display.adb:35:39: "op_start™ not declared in "Dishwasher™
display.adb:36:39: "op_open” not declared in "Dishwasher’
display.adb:37:39: "op_close™ not declared in "Dishwasher™
display.adb:42:19: "op_tick™ not declared in "Dishwasher™
mmatwake: ".\DishwasherPkoghdisplay.adb™ cowmpilation error
Finished Building Dishwasher

x|
i

Build Done

Y IE! I 4 I bl HI'-. Build A Check Model ,}\ Canfiguration Management ,]\' &nirnation ,]‘-\ Search Results {r

Task 3b: Fixing Build Errors

If you receive build errors, double-click the error in the Output window to go to the source of the
error. The source of the error appears as a highlighted element. Once you fix the problem,
regenerate the code and rebuild the application until there are no error messages.

Any time you make changes to the model, you need to regenerate the code (choose

Code > Re Generate > Hogt, in this case) and rebuild the model (choose

Code > Rebuilt Exe.exe, in this case). For more information about full code generation and an
incremental code generation, refer to the IBM Rational Rhapsody User Guide. (Do a search of the
user guide PDF for “incremental code generation.”) You might also find it useful to use the Clean
function. Do a search of the user guide PDF for “deleting old objects.”

72

Ada Tutorial



Summary

Task 3c: Viewing Code

To view the generated code, perform these steps:

1. For example, select the Dishwasher class on the Dishwasher object model diagram and
choose View > Active Code View.
2. Review the code on the Dishwasher.abs tab.
3. If you want to see line numbers on the Active Code View window, do the following:
a. Right-click inthe window and select Properties to open the Windows Properties
dialog box.
b. OntheMisctab, inthe Line Numbering area, select a numbering style from the
drop-down list (for example, Decimal).
c. Click OK.
4. To closethe Active Code View window, click x| (the Hide Docked Window button) for
that window.
Summary

In thislesson, you prepared for code generation, generated code, and tried to build your model at
its current point. You performed the following:

*

*

*

*

*

Created a component and set its features

Created a configuration and set it as the active configuration
Generated code in Rational Rhapsody

Tried to build the Dishwasher model at its current point
Viewed code

You are now ready to proceed to the next lesson, where you continue to create your Dishwasher
model. You are going to define the behavior of objects, including the various states that an object
can enter into over itslifetime and the messages or events that cause it to transition from one
another by drawing statecharts. You also get to regenerate code and try to build your model again.

Rational Rhapsody 73



Lesson 3: Generating Code and Building Your Model

74

Ada Tutorial



Lesson 4: Creating a Statechart

Satecharts (SCs) define the behavior of objects, including the various states that an object can

enter into over itslifetime and the messages or events that cause it to transition from one state to

another. Each statechart defines the life cycle behavior of asingle reactive class. Therefore, a
single reactive class can be associated with only one statechart.

Goals for this Lesson

In this lesson you will perform the following tasks:

¢ Draw astatechart

¢ Draw states, transitions, and nested states
¢ Put Adatimeouts on transitions

¢ Put actions on transitions

¢ Specify entry and exit actions

¢ Draw history connectors

¢ Change operations synchronization

Rational Rhapsody

75



Lesson 4: Creating a Statechart

Exercise 1: Creating the Dishwasher Statechart

Statecharts define the behavior of objects, including the various states that an object can enter into
over itslifetime and the messages or events that cause it to transition from one state to another.

The following figure shows the Dishwasher statechart that you are going to create in this exercise.

Dishwasher Statechart
Dishwasher Statechart =l

Entite: Model view = ‘ + 1 |

[=l-f) Dishwasher
-] Components
({0 Object Mode! Diagrams
£ Packages
-8 ads
=i DishwasherPkg
‘2% Actars
EIE Classes
®-E «entrypoints Display
E\"% «Singletorss Dishwasher
= attributes
--‘u Dependencies
B Operations
E1-%)| Statechart
i, default of OFF
-5 States
@ Done
{8 Done
#-(3) Off
Open
(=] Running

op_start/setup; l

Running

Wyashing e

0

op_tickfdec_wash_time;

0ff e

F 3

[is¥azhed]

2
Rinsing ? op_tick/dec_rinse_time; | | —

[isRinzed]

Dryin
[ %, Events yne
-1 Object Model Diagrams
[+ Use Cases

- PredefinedTypes (REF)

lgronre00-000 0/ /07|

op_close

: op_tickfdec_dry_time;
[]-B PredefinedTypesada (REF)

[0 Profiles ‘_/ [isDried]
{2 Use Case Diagrams Cone

-
4 | »

W "Welcome to...lﬂ Packages |ﬂ Dishwasher’IﬂDishwasher .. B Dishwasher I

76 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart

Task la: Creating a Statechart

You can create either astatechart or an activity diagramto model the behavior of your system. For
example, objectsin amodel can have different states, such as On or Off. An activity diagramis
used to incorporate these states into amodel if no transitions are needed between the states. In this
case, the pishwasher Needs to transition from state to state in reaction to events, so a statechart is
used instead of an activity diagram.

You can use the Rational Rhapsody browser, the Tools menu, or the Open Satechart button on
the Diagrams toolbar to create a new statechart. This task describes how to create a statechart
through use of the browser.

To create a statechart, follow these steps:

1
2.
3.

Start Rational Rhapsody and the Dishwasher model if they are not already open.
In the Rational Rhapsody browser, right-click the Dishwasher class.
Select Add New > Satechart.

Rational Rhapsody automatically adds the new statechart under the Dishwasher classin
the browser. In addition, Rational Rhapsody opens the new statechart in the drawing area.

Task 1b: Drawing the Dishwasher Statechart

The genera steps for drawing the Dishwasher statechart are as follows:

1
2
3
4,
5

6.

Draw states.

Draw history and diagram connectors.
Draw default connectors.

Add Ada operations.

Draw transitions.

Add actions to states.

The following sections describe these stepsin detail.

Rational Rhapsody 77



Lesson 4: Creating a Statechart

To draw a state, follow these steps:

1
2.

Click the State button & in the Drawing tool bar.

Click-and-drag on the drawing areato create alarge state with adefault name of state_n,

where n is greater than or equal to 0.

Rename the stateé Running.

Using the Dishwasher Statechart asareference, draw three more states inside the Running

state, as shown in the following figure:

- Washing
- Rinsing
- Drying

i

Running

DreoB+t®0 0000/ 0l

|

r

W Welcome to...Iﬂ Packages |ﬂ Dishwasher"lﬂDishwasher...E Dishwasherl

5. Totheleft and outside the Running state, draw two more states and name them ot £ and

6.

Open.

Continue with the next task.

78

Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart

Task 1c: Drawing History and Diagram Connectors

If you open and close the door during operation, the dishwasher must start up again where it left
off in the wash cycle. In other words, you want the dishwasher to saveits history so it can continue
whereit |eft off after an interruption. History connector s store the most recent active configuration
of astate. A transition to a history connector restores this configuration.

When the dishwasher is done drying, the cycle should start over again at the beginning, to handle
futureloads. To define the cycle restart, use diagram connectorsto connect the end of one part of a
statechart to the beginning of another part. These connectors physically join distant transition
segments. Diagram connectors have the same name to indicate they are a pair of connectors. This
tells the system to jump from one to the other even if they are located on different statecharts.

To draw the connectors, follow these steps:

1. Click the History connector button ® | on the Drawing toolbar and then click in the
lower left corner inside the Running state.

2. Click the Diagram connector button ® onthe Drawing toolbar and create the
following diagram connectors and label them pone in the following locations:
— Below the Off state. Thisis the source diagram connector.

— Outside the Running state below the Drying state. Thisisthe target diagram
connector.

Rational Rhapsody 79



Lesson 4: Creating a Statechart

3. Saveyour model.

Your statechart should resemble the following figure:

P E LR L L Epal

4]

Dane

|»

Running

W Welcome to...lﬂ Packages |ﬂ Dishwasher"lﬂDishwasher...E Dighwasher I

80

Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart

Task 1d: Drawing Default Connectors

One object must be assigned the default state. In the default state, the object knows to start the
system. When the dishwasher first starts, it isin the Off state.

Note that once you have drawn a default connector in a statechart, Rational Rhapsody does not
allow you to draw another one in the same chart. Each object can have only one default state.

To assign the default states for classes in the statechart, follow these steps:

1. Click the Default connector button ™ in the Drawing toolbar, click in the drawing area
to above the Off state, and then move your cursor to the Off state and click the edge of the
state.

2. Click away from the label box to skip naming the connector.

3. Usethe same method to draw a default connector to the Washing state, keeping the
connector inside the Running state.

4. Click away from the label box to skip naming the connector.

At this point your statechart should resemble the following figure:

|»

Running

.

-
< | »

W Welcome to...lﬂ Packages |ﬂ Dishwasher "lﬂDishwashel E Dishwasher * I

DreE*E®e-000 |0/ 0

Rational Rhapsody 81



Lesson 4: Creating a Statechart

Task le: Adding Ada Operations

You need to create additional operations to determine the duration for the previously created
operations.

To define these operations, follow these steps:
1. Expand the Packages category in the Rational Rhapsody browser.

2. Double-click the Dishwasher class or right-click and select Featuresto open the Features
dialog box for the class.

3. Onthe Operationstab, click <new> and select PrimitiveOperation to create ablank line
for anew operation.

4. Namethisoperation dec_dry time and accept the other default settings.

5. Click Apply.

6. Double-click theicon to theleft of dec_dry_timeor highlight it and click to open the
Features dialog box for the operation.

7. Onthelmplementation tab, type the following text in the Operation Body area:

Dishwasher unique instance.drytime:=
Dishwasher unique_instance.drytime - 1;

8. Click OK to apply your changes and close the Features dialog box for the operation and
return to the Features dialog box for the class.
9. Repeat Steps 3 — 8 to create the following operations and enter implementations for each.

— dec_rinse_time With the following implementation code.

Dishwasher unique_ instance.rinsetime :=
Dishwasher unique instance.rinsetime - 1;

— dec_wash_time With the following implementation code:

Dishwasher unique_instance.washtime :=
Dishwasher unique instance.washtime - 1;

82 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart

10. Your Operations tab should resemble the following figure:

Class : Dishwasher in DishwasherPkg |

Generall De&criptiunl Aitiibutes  Operations |F'|:urt$ I Helatiu:unsl Tags I F'ru:upertiesl

K

Mame I Wisibility I Return Tvpe I

ﬁ isDried Public Boolean

E is'iashed Public Boolean

ﬁ isRinsed Public Boolean

E sekup Public woid

W Initialize Puklic

E dec_dry_time Public wiid

E dec_rinse_time Public wiid

ﬁ dec_wash_time Public wiid

“Mew >

|\-'0i|:| dec_wash_time[]

Lucatel 1] 4 | Apply | |

11. When done, click OK to close all Feature dialog boxes.

Task 1f: Drawing the Transitions

A transition represents a message or event that causes an object to switch from one state to
another. Use the Dishwasher Statechart as a reference to do this task.

To add transitions, follow these steps:

Click the Transition button ™~ in the Drawing toolbar.
Click the edge of the Off state to anchor the start of the transition.

Move the cursor to the Running state and click its to anchor the transition line.

A WD

In the label box, type op start/setup; and press Ctrl+Enter. (Pressing only Enter
inserts anew line))

This creates an event and an action with the same name.

Rational Rhapsody 83



Lesson 4: Creating a Statechart

10.
11.

12.

13.

For purposes of illustrating the possible line shapes, this task uses two line shapes. By
default, Rational Rhapsody uses the Spline line shape. To change the line shape for a
transition, right-click the linein the drawing area, select Line Shape, and then one of the
following options:

— Sraight to changethe lineto a straight line.

— Splineto change the line to a curved line.

— Rectilinear to change the line to a group of line segments connected at right
angles.

— Re-Routeto remove excess control points to make the line more fluid.
Draw atransition from the Running to the Open state and labél it op_open.

Draw atransition from the Open state to the history connector and label it op_close.

Inside the Running state, draw atransition from the Washing state to the Rinsing state
and label it [iswashed].

Note: The square brackets must be included because they denote aguard condition. A
guard is aBoolean condition that, if specified, must be true for the transition to
be taken. In this case, when the dishes are washed (iswashed iS true), the
dishwasher transitions from the Washing to the Rinsing state. Previously in this
tutorial, you specified transitions only with event triggers. However, transition
labels can have up to three parts, all of which are optional: trigger, guard,
action. You can specify the trigger, guard, and action textually in the transition,
or enter them in the features dialog box for the transition. Refer to the IBM
Rational Rhapsody User Guide to learn more about transition labels.

Draw atransition from the Rinsing state to the Drying state and label it [isRinsed].
Draw atransition from Drying state to the Done connector and label it [isDried].

Draw a self-directed transition (shown by an arrow that bends back to the sending state)
on the Washing state and labdl it:

op_tick/dec_wash time;

Note: Thistransition keeps the Dishwasher in washing mode for dec_wash_time;
when the specified timeis up and the guard [iswashed] iStrue, the
Dishwasher transitions from Washing to Rinsing mode.

Add a self-directed message on the Rinsing state and label it:

op_tick/dec_rinse time;

Add a self-directed message on the Drying state and label it:

op_tick/dec_dry time;

84

Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart

14. Draw an unlabeled transition from the target diagram connector (Done under the Off
state) to the Off state.

At this point your statechart includes the time descriptions for al of the major operations.

15. Saveyour model.

Your statechart and should resemble the following figure:

E —
(]
N op_start/setup; l
AN Running
0
— Wiiashin
@ 9 op_tick/dec_wash_time,
@ Off -
@
[} lis¥Washed]
)
& —
e DGiE Rinsing 0p_tickfc|ec:_rinse_time;| s
% -t
— op_open
= FoP [isRinzed]
Open
o [ |
*y
= - Drymg
@ op_tickddec_dry_time;
op_close -
J [isDried]
Dane
4| | _’l_l
W Welcome to...lﬂ Packages |ﬂ Dishwasher"lﬂDishwasher...E Dishwasher I

Task 1g: Adding Actions to States

Actions on entry are actions specified for a state that an object performs when it enters that state.
Similarly, actions on exit are actions that an object performs when it exits the state. In this
example, the pishwasher Sends an enter or exit action to each of the states.

To specify actions on entry and exit, follow these steps:

1. Double-click the Off state or right-click and select Features to open the Features dialog
box.

2. Onthe General tab, in the following boxes, type the following code, which is also shown
in the following figure:

Rational Rhapsody 85



Lesson 4: Creating a Statechart

— Action on entry:

ada.text io.put line("Enter Off");
— Action on exit:

ada.text io.put_ line("Exit Off");

State : Off in StatechartOfDishwasher * EE

General I Descriptiunl Helatiu:unsl Tags I Prnpertiesl

M ame: Ifo

L
Sterentype: I j EIEI

Action an entry

ada. text_io.put line("Enter 0O£E"): =] ™| Overidden
= L
Action on exit :

ada, text_io.put_line("Exit 0ff"): =] I Oxeridden

= ]

;I My |

Edit |
_I Delete | e
hd

— Reactions |n State

Locate | 1] 4 | Apply | ‘

3. Click Apply to apply your changes and keep the Features dialog box open. On your
statechart, notice that the Off state has a symbol ﬂ that indicates that the Off state now
has underlying actions.

4. Double-click the Washing state and in the following boxes, type the corresponding code:

— Action on entry:
ada.text io.put line("Enter Washing") ;
— Action on exit:

ada.text io.put line("Exit Washing") ;

86 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart

10.

11.

Click Apply.
Double-click the Rinsing state and in the following boxes, type the corresponding code:

— Action on entry:
ada.text io.put_line("Enter Rinsing");
— Action on exit:
ada.text io.put line("Exit Rinsing");

Click Apply.
Double-click the Drying state and in the following boxes, type the corresponding code:

— Action on entry:
ada.text io.put line("Enter Drying");

— Action on exit:
ada.text io.put line("Exit Drying") ;

Click Apply.
Double-click the Open state and in the following boxes, type the corresponding code:

— Action on entry:
ada.text io.put line("DOOR OPEN!!!");
— Action on exit:
ada.text io.put_line("Door Closed") ;

Click Apply and then OK to close the Features dialog box.

Rational Rhapsody 87



Lesson 4: Creating a Statechart

12. Saveyour model.

Your statechart should resemble the following figure:

|»

op_start/setup; l

Running

Washing @'x

K’—Oﬁ_ 2l op_tick/dec_wash_time;
“Eadatext_io.p...

lis¥Washed]

4

Rinsi 2 - - -
insing “ op_t|ckfdec_r|nse_tlm9;| E

o

[isRinsed]

Drying @

Dren*E®e.006|0 s/ 0

op_tick/dec_dry_time;
@ Loeeing

op_close

J [isDried]
Dane
4| | _’l_l

W Welcome to...lﬂ Packages |ﬂ Dishwasher "lﬂDishwashel E Dishwasher * I

Task 1h: Changing Operation Synchronization

Events and operations relate statecharts to the rest of the model by triggering transitions.
Operations specified by a statechart are called triggered operations (as opposed to operations
specified in object model diagrams, called primitive operations).

Eventsfacilitate asynchronous col laborations and operations facilitate synchronous collaborations.
Triggered operations have areturn type and reply. Triggered operations have a higher priority than
events.

To change each asynchronous operation to be synchronous, follow these steps:

1. Inthe browser, expand the Dishwasher class (in the Dishwasher Pkg package) and then
expand Operations so that you see alist of all the operations.

2. Noticetheop_ elements (for example, op_close), especially notice theicon ® forthemas
it will change once you change the type operation.

88 Ada Tutorial



Exercise 1: Creating the Dishwasher Statechart

3. Double-click one of the op_ elements or right-click it (for example, op_close) and select
Features to open the Features dialog box.

4. Onthe General tab, in the Type box, use the drop-down list to change Reception to
Triggered Operation, as shown in the following figure:

Triggered Operation : op_close in Dishwasher * |

General I Descriptiunl Implementation Argumentsl Helatiu:unsl Tags I F'n:upertiesl

Ivuid op_cloze()

M amne: Inp_cluse Ll
Stereotype: I j El&l
=

Visibilty: | Fublic
Type:

— Returnz
[ Useesistngtype [ Constant

Type: I\-‘Did j EI

— Modifiers
I~ wittual | Static [T Inline | Constant [ Abstract

Locate | 1].4 | Apply | ‘

5. Click Apply to apply your change. On the Rational Rhapsody browser, notice that theicon

& for the operation has changed.

6. With the Features dialog box still opened, select another op_ operation and repeat this
change for each op_ operation in the browser list (op_close, op_open, op_start, and
op_tick). Click Apply after each change.

7. Click OK to close the Features dialog box.

Rational Rhapsody 89



Lesson 4: Creating a Statechart

8. Saveyour project.

Your Rational Rhapsody browser should resemble the following figure.

Entire Model View - + +

B

EI--D Dishwvasher
D Components
-2 Object Madel Di
=] Packages
- Ada

?i’ Actars
L——_IE Classes
g e

oy
En=

agrams

Elﬁ DishwasherPlg

Erwpoinks Display

E--% #5ingletons Dishwasher

Attributes
Dependencies
Operations

& dec_dry_timel)
o dec_rinse_timel)
& dec_wash_time()
Wiy Initialized)

& isDried()

& isRinsed(

& iswashed()

E op_close)

& op_open()

E op_start()

& op_tick()

& setopd)

=

Task li: Adding a Diagram Title

To add atitle to your statechart diagram, see Task 2e: Adding a Diagram Title.

If you do this task, remember to save your project.

90

Ada Tutorial



Exercise 2: Generating Code and Building Your Model

Exercise 2: Generating Code and Building Your Model

In the previous lesson you generated code and tried to build your Dishwasher model for the first
time. In this exercise, you will generate code and try to build your model again now that you have
added a statechart to your model.

Task 2a: Generating Code

To generate code, follow these steps:

1. If necessary, in the Rational Rhapsody browser, right-click the Host configuration and
then select Set as Active Configuration.

2. Select Code > Re Generate > Host.

Rationa Rhapsody generates the code and displays output messagesin the Build tab of the Output
window, as shown in the following figure. If you have any error messages, see Task 2b: Fixing
Code Generation Errors.

=

o

411 Checks Terminated 3uccesstfully

Checker Done
0 Error(s), 0 Warning(s)

Loading external gernerator...

Invoking FulesPlayer

Evaluation of Rid CG_Project.

Generating D:\Bhapsody71\Dishwasher\EXE\Hosthreadne. txt.

Generating D:\BFhapsody71\Dishwasher\EXEYHost\DishwasherPkgtCleansingEngineer. ads.
Generating D:\Bhapsody71\Dishwasher\EXE\Host\DishwasherPkgyDizhwasher. ads.
Generating D:‘\PFhapsody7lyDishwasher\EXE\Host\DishwasherPkohServicePerson., ads.
Fenerating D:‘\Bhapsody71\Dishwasher\EXE\ Host\DizhwasherPg'Dishwasher. adb.
Generating D:\Ehapsody71l\DishwashertEXE\Host\DishwasherPkg,DishwasherPkg. ads.
Generating D:‘\Bhapsody7l\Dishwasher\EXE\Host\DishwasherPkghDisplay. adb.
Generating D:\RhapsDdy?l\Dishwasher\EXE\Hast\RiA_Bidirectiunal.ads.

Generating D:\Rhapsody7l\DishwasherhEXEYHost\Rid Bidirectional.adhb.

Generating D:\Bhapsody71l\Dishwasher\EXE\Host\EXE.bat.

Fenerating D:‘Bhapsody?1\Dishwasher\EXE\Hozt\MappingFile. txt.

Generating D:\Rhap=sody7l\DishirasherhEXEY Host) gnat. ade.
Code Generation Done
14 nnm Build ;{ Check Madel ,]\.. Configuration Managernent }\ Anirnation ,]\.. Search Results f‘

Rational Rhapsody 91



Lesson 4: Creating a Statechart

Task 2b: Building the Model

Once you regenerate code without any errors, you are ready to rebuild the model.
To rebuild the model, do one of the following:

¢ Select Code > Rebuild EXE.exe, or

Asyou can see from the following figure, you should no longer get messages about op__ elements
because you created them in thislesson. You can ignore the warning message. If you do have error
messages, you should correct them; see Task 3b: Fixing Build Errors.

EEuilding --—--------- EXE.EXE  —-—————mm—mm

=—|Executing: "C:%Fhapsody7lliSharetetchGnatllake.bat™ EXE.bat rebuild

Invoking MakeFile

Building Dishwasher

goc —c¢ -L.\DishwasherPkgy -g -IC:%Rhapsody711%3hare’Langddalsrc\Rid_Framework’GNAT Win3Z -I- .\DishwasherPkgidisplay.adb
goo - -L.\DishwasherPkgh -g -IC:%\Rhapsody7l1YShare’Langddalsrc\Rid Framework’GHNAT Win32 -I- .\DishwasherPkg)dishwasherpky. ads
gec -¢ -I.\DishwasherPkgh -g -IC:yRhapsody7l1lYShare\LangaddalsrciRid Framework)GNAT Win32 -I-_.\DishwasherPko)dishwasher.adb
dishwasher,adb:88:05: warning: wariable "singleton” is read but newer assigmed

gnatbind -al.% -alC:%\Rhapsody711Y3hare)Langhdasrc\Rid Framework)GNAT Win32 -I- -x display.ali

gnatlink display.ali -g -o EXE.exe

Finished Building Dishwasher

Euild Done

AP euild £ Check Madel }, Configuration Management #, Animation iy Search Results ]

Summary

In this lesson, you created a statechart, which identifies the state-based behavior for your
dishwasher model. You became familiar with the parts of a statechart and created the following:
¢ States and nested states
¢ Default connectors
+ Transitions
+ Actions
¢ Operation synchronization
You also regenerated code and built your model.

You are now ready to proceed to the next lesson, where you are going to define the message
exchange between subsystems and subsystem modules using a sequence diagram.

92 Ada Tutorial



Lesson 5: Creating a Sequence Diagram

Sequence diagrams show structural elements communicating with one another over time. They
aso identify required relationships and messages. A high-level sequence diagram shows the
interactions between actors, use cases, and blocks. Lower-level sequence diagrams show
communication between classes and objects.

Sequence diagrams have an executabl e aspect and are a key application animation tool. When you
animate the model to see the application’s operations, Rational Rhapsody dynamically builds
seguence diagrams that record the object-to-object or block-to-block messaging.

Goals for this Lesson

In thislesson you will learn to perform the following tasks:

+ Create an event in preparation for its use in the sequence diagram

+ Draw aseguence diagram

Rational Rhapsody 93



Lesson 5: Creating a Sequence Diagram

Exercise 1: Creating the KeyPress Event

To create the “ starter” for the dishwasher application, you need to define the KeyPress event,
which will be called by the sequence diagram.

Task la: Creating an Event

To create the KeyPress event, perform these steps:

1. Start Rational Rhapsody and open the Dishwasher project if they are not already open.

N

In the Rational Rhapsody browser, expand the Dishwasher Pkg package, right-click
Events, and select Add New Event.

Rename the event evkeypress and press Enter.
Double-click evK eyPress to open the Features dialog box.

On the Argumentstab, click <New> to create a blank row for a new argument.

o o &~ w

To define the xey argument, fill in the row with the following values, as shown in the
following figure:

a. For Name, type key.

b. For Type, select Integer from the drop-down list if necessary. It should be set by
default.

c. For Value, enter o (zero).

Event : e¥KeyPress in DishwasherPkg * |

General Arguments |Descri|:utiu:un Helationsl Tagz | Prupertiesl

evleyPress(]

Mame I Twpe I Yalue I

Inkeger

=Mew >

Locate | 1] 4 | Apply | ‘

7. Click OK.

94 Ada Tutorial



Exercise 2: Creating the Execution Sequence Diagram

Exercise 2: Creating the Execution Sequence Diagram
Before you start you want to define the system workflow. The dishwasher application needs this
high-level workflow:

1. Themain() loopinpisplay checksfor acharacter every second.
2. The one-second timer message, op_tick, isdelivered in every iteration through the loop.
3. Each character relatesto atriggered event in the pishwasher, asfollows:

— s Dispatchesthe op_start message to start the processing.
— o Dispatchesthe op_open message to open the door.
— ¢ Dispatchesthe op_close message to close the door.

The Execution sequence diagram shows how subsystems interact during the scenario of
successfully turning on and off a dishwasher.

You draw a sequence diagram using the following general steps:
Draw the actor lines.

Draw classifier roles.

w NP

Draw messages.
4. Draw interaction occurrences.

This exercise describes each of these steps in detail.

Rational Rhapsody 95



Lesson 5: Creating a Sequence Diagram

The following figure shows the Execution sequence diagram that you are going to create in this

exercise.

Execution Sequence Diagram

.:Dishwasher

Entire: Model Yiew =

E--Q Dishwasher

D Cormponents

{:l Object Model Diagrams
D Packages

D Profiles

= D Sequence Diagrams
[ Execution

#-{1] Use Case Diagrams

4

uWeIcome...lﬂ Packages H Execution |£ Dishwas...lﬂ Build Iﬂ Dishwa... |E Dishwa...

B F ENY | Displa
+ + — EMY Display Dishwasher ;I
§T$
%+
- % | l&clo el
N f evkeyPress(key = 0) | |
7 | -
+ “
7 | |
i 7
o | setup
h é processkey(akey=O0) |
% “
\ Z | —
P 7
. % | is¥Washed()
= “
& 7z | op_start) |
ol 7 | I
l:l é maing | |
- 7 isRinsed(
= Z | =
= 7 |
= 7
= 7 | op_ticko =
Z D | isDriedg
7 ==
7 |
“
7 | -
f op_openi
é | I
7 | o

Rational Rhapsody separates sequence diagrams into a Names pane and a Message pane. The
Names pane contains the name of each instance line or classifier role. The Message pane contains
the elements that make up the interaction.

96

Ada Tutorial



Exercise 2: Creating the Execution Sequence Diagram

Task 2a: Creating the Sequence Diagram

To create a sequence diagram, follow these steps:

1. Inthe Rational Rhapsody browser, right-click the top-level Dishwasher, and select Add
New > Sequence Diagram.

2. Renamethe diagram Execution and click OK.

3. Click the System Border button 2 onthe Drawing toolbar and click on your sequence
diagram. Rational Rhapsody creates an item named ENV (for environment) that
represents the system border.

4. Dragthe Display class and the Dishwasher class from the Rational Rhapsody browser
onto the sequence diagram.

Your diagram should resemble the following figure:

EMY | Displa: Dishwasher

E|
Entire: Model View - * =]
=-p] Distwasher
"{:I Components EMY Display :Dishwasher

[+{Z2 Object Model Diagrams
E|{:| Packages

-8 ada

E& DishwasherPkg

2%‘ Actars

EE Classes

[ B =entrypoints Displ
% «5ingletons Dishw
: B bishwasherBuilder
\ Ewents

{3 Ohject Model Diagram
- Use Cases

[]---ﬁ PredefinedTypes (REF)
E]---& PredefinedTypesada (REF
-2 Profiles

I'_—'l{:l Sequence Diagrams

IEJ Execution

D Use Case Diagrams

‘ﬂﬂ@ﬂ|ﬂ0«|¢|“@“ﬂ;ﬁ.é i Q‘I/|*3*—:ﬂ|§[[

ACERRRERRERRRERRE R R R R R R R R R R R R SRR RN

: =
«| | »

/ [ uWeIcome...lﬂ Packageslﬂ Dishwas... |£ Build |ﬂ Dishwa... IE Dishwa... H Execution *

Rational Rhapsody 97



Lesson 5: Creating a Sequence Diagram

Task 2b: Creating the Workflow for Your Sequence Diagram

To define the workflow for your sequence diagram, use the events and operations you created in

the earlier exercises.

To add the flow instructions for your sequence diagram (use the Execution Sequence Diagram as a

reference), follow these steps:

1. Click the Message button ™ on the Drawi ng toolbar.

2. Click thelinefor the ENV column and then click the line for the Display column to create

adownward-danted line, and rename the message evkeyPress (key = 0).

3. Select the M essage button N
rename the message processKey (akey = 0).

and draw a message-to-self line on the Display line and

Note: For areactive class, the “message to self” isinterpreted as an event. If itisa

non-reactive class, it would be viewed as a primitive operation.

Use the M essage button to draw a straight-line message from Display to Dishwasher and
renameit op_start ().

Note: The () should automatically be entered when you press Enter.

Use the M essage button and draw a message-to-self lines of main () andop_tick () onthe
Display line.

Use the M essage button to add the following to the Dishwasher line:

- op_close()
- setup()

- isWashed()
- isRinsed()
- isDried()
- op_open()

Ada Tutorial



Exercise 2: Creating the Execution Sequence Diagram

7. Saveyour model.

Your sequence diagram should resemble the following figure:

Al EMY | Displa: | .:Dishwasher
Entire Model Yiew  ~ | + @ EMY ‘Display Dishwasher -l
= $T§
ED Dishwasher g
-3 Components 2
D Ohbject Model Diagrams L é | licm el
..{“_‘| Packages N 7 evikeyPressikey = 0) | |
-2 Profiles G A
EI{:I Sequence Diagrams % |
Dy Execution i ? | |
-7 Use Case Diagrams e é | ——
2' % processkey(akiey =0)
o 7 |
+ o
Z |
P 7
. ? |is_Washed0
~ 2 | op_start) |
< e »
Z | [
l:l Z maing | |
- 7 isRinseds
) i
é | —
= o |
£ 7
Z | op_ticko ‘
2 | isDrisdg
“
“
Z
7
Z
o
“
o
e
“
“
7

- B

Es

|
UWeIcome...lﬂ Packages E Execution |£ Dishwas...lﬂ Build |ﬂ Dighwta... |E Dishwa. .

Rational Rhapsody 99



Lesson 5: Creating a Sequence Diagram

Summary

In thislesson, you created a sequence diagram, which show structural elements communicating
with one ancther over time for your dishwasher model. You became familiar with the parts of a
sequence diagram and created the following:

¢ System border
¢ Classifier roles
¢ Workflow with messages, events, and time intervals

You are now ready to proceed to the next lesson, where you are going to generate code and build
your mode!.

100 Ada Tutorial



Lesson 6: Building and Running the

Model

Rationa Rhapsody uses the following sources to generate code for the model:

*

Project Type or profile selected when you created the project, as described in Creating a
Rational Rhapsody Project.

Component definition, as described in Task 1a: Creating a Component.

Code you entered for operations, asin Task 1e: Creating Operations and Task le: Adding
Ada Operations.

Communication you defined in a sequence diagram, as described in Lesson 5: Creating a
Sequence Diagram.

State actions you defined, as described in Task 1g: Adding Actions to States.

Compiler and instrumentation mode sel ections made when defining the configuration, as
described in Task 1c: Creating a Configuration.
Ada code that Rational Rhapsody automatically generates to support the design you

created in the diagrams and from any predefined packages you selected, as described in
Task 2b: Using Predefined Packages.

Goals for this Lesson

In thislesson you are going to create a Build object model diagram and then you are going to
generate code and run your model.

Rational Rhapsody 101



Lesson 6: Building and Running the Model

Exercise 1: Creating the Build Object Model Diagram

In this exercise you are going to create a new object model diagram called Build andinit a

composite class called pi shwasherBuilder.

The following figure shows the Build object model diagram that you are going to createin this

exercise.

Build Object Model Diagram

Entire Model Wigw < | + + ‘

]

[E

[=)-f 1 Dishwasher
D Components
ED (bject Model Diagrams

=+ Packages

@ Ada

-5 DishwasherPka
jl,%‘ Actars
-8B Classes

+ \ Events
D Ohbject Madel Diagrams
- Use Cases

]ﬁ PredefinedTypes (REF)

E
- Profiles

-{Z] Sequence Diagrams
-] Use Case Diagrams

]ﬁ PredefinedTypesada (REF)

(B0l frrpee | PEDAl

4]

DishwasherBuilder

1

«Singletons
itsDishwasher:Dishwasher

M ringetime:Integer
= washtime:Integer
= drytime:Integer
M cycles:Integer

HisDried(): Boolean
HisWashed():Boolean
HisRinsed():Boalean
& setup()vaid

Ha Initialize()

Hdec_dry_time(:void
Hdec_rinse_time():void
Edec_wash_time():void
Bop_close()void

B op_open(yvaid
Bop_start(rvoid
Bop_tick(void

|»

i

(%] Welco...lﬂ Packa...lﬂ Execu... |£Dishwa...l ﬂDishwa...lE Dishwa...lﬂ Build

102

Ada Tutorial



Exercise 1: Creating the Build Object Model Diagram

Task la: Creating the Build Object Model Diagram

To create anew object model diagram, follow these steps:

1
2.

Start Rational Rhapsody and the Dishwasher model if they are not already open.

Right-click the Object M odel Diagrams category in the Rational Rhapsody browser and
then select Add New Object M odel Diagram to open the New Diagram dialog box.

Type Build and click OK.

The new object model diagram displaysin the drawing area.

Task 1b: Creating a DishwasherBuilder Class

To draw the DishwasherBuilder class, use the Build Object Model Diagram as a reference.

To create a composite class in the Build object model diagram, follow these steps:

Select the Composite Class button == from the Drawing toolbar and draw the composite
classin the Build object model diagram.

Rename the composite class pishwasherBuilder and then press Enter.

Your Build object model diagram should resemble the following figure:

|»

Fl
&?‘

DishwasherBuilder

Entire Model Yiew =

(151 Dishwasher
D Components
ED (bject Model Diagrams
g Buid
ﬂj Packages
D Packages
- Profiles
D Sequence Diagrams
-] Use Case Diagrams

Bolk A ST PR 56 PEmAE

3. Drag the Dishwasher classinto the Dishwasher Builder composite class.

Rational Rhapsody 103



Lesson 6: Building and Running the Model

4. Right-click the DishwasherBuilder class and select M ake an Object.

5. Resize the object on the diagram so that you can see al of its attributes and operations.

Your Build object model diagram should resemble the following figure:

Enttire Maode! Yiew <

41\

B D

£

ishwasher

{:l Components

EID Object Model Diagrams
..... Iﬂj Build

i) Iﬂj Packages

=1 Packages

@ Ada

= DishwasherPka

‘}2@‘ Ackors

-8 Classes

B «entrypoints Display

«Singletons Dishwasher

-3 Dishwasherbuilder
\ Ewents
{1 Ohject Model Diagrams
(D Use Cases

]E PredefinedTypes (REF)

£

]E] PredefinedTypesAda (REF)

-1 Profiles
[]--{:I Sequence Diagrams
#-{_7] Use Case Diagrams

(B0 e TP e s s DEDAE

|

|»

DishwasherBuilder

1 wSingletons
itsDishwasher. Dishwasher

M rinsetime:Integer
B washtime: Integer
B drytime: Integer
M cycles:Integer

HisDried():Baolean
Hisvashed():Baolean
HisRinsed(:Boolean

H setup(:void

H Initialize()

S dec_dry_time(void
S dec_rinse_time():void
S dec_wash_time():vaid
Bop_close(vaid

B op_open(yvaid
aop_stano:void
Bop_tick(:void

o

(%] Welco...lﬂ Packa...lﬂ Execu... IﬂDishwa...lﬂDishwa...lEDishwa...l ﬂ Build *

6. Saveyour project.

i

104

Ada Tutorial



Exercise 2: Generating Code and Building Your Model

Exercise 2: Generating Code and Building Your Model

In this exercise, you generate code and build your model.

As part of Lesson 4: Creating a Statechart, you generated code and successfully built your
Dishwasher model at that point in time. In this exercise, you will create another configuration for
your EXE component, which you will use later to animate your model.

Task 2a: Creating Another Configuration

Asyou learned earlier, acomponent can contain many configurations. In thistask, you are going to
create a configuration called HostAnimated by copying the Host configuration you aready have
in the EXE component.

To create another configuration by copying a current one, follow these steps:

1. Inthe Rational Rhapsody browser, expand the EXE component and the Configurations
category.

2. Hold down the Ctrl key while you use the mouse to drag the Host configuration onto the
EXE component.

3. Double-click the Host_copy configuration to open the Features dial og box.

Note: You might find it useful to arrange it so that you can see the Rational Rhapsody
browser while you have the Features dialog box opened.

4. Onthe General tab, in the Name box, replace Host _copy With Hostanimated.

Rational Rhapsody 105



Lesson 6: Building and Running the Model

5. Click Apply.

Notice the name change on the Rational Rhapsody browser. Your browser should
resemble the following figure:

Entire Model View - + 4

El--D Dishwwasher
ED Components
=4 EXE
E|{:| Configurations
‘k Host
‘\“ Hostanimated
i-{_ Object Model Diagrams
i1 Packages
7-{_7 Profiles
:Il:l Zequence Diagrams
b1 Use Case Diagrams

IE

o O O e |

6. Onthe Setting tab, in the I nstrumentation M ode box, select Animation, as showninthe
following figure:

onfiguration : HostAnimated in EXE * 0 |

Generall Descriptionl Initilization ~ Settings | Ehecksl Helationsl Tags | Propertiesl o

Directorny: ID:.-"F!hapsody?‘I ADishwasher/EXE/Hos . | ¥ Usze Default

Libraries: I _I

Additional Sources:

|
Standard Headers: |
Include Path: I

r Instrumentation

Instrumentation kMode: Y=l

Advanced .. |
—wiehify
= | web Enabling Sdvanced.. |

Tirne: Model: * Real € Simulated
Statechart Implementation: ¢ Reusable * Flat

r Erwironment Setting
E nwironment: IGNAT J Default |
Build Set: I Diebug J
Compiler Switches: _I
-]
Link Switches: _I
Cll P

Lucatel 0K I Apply | |

106 Ada Tutorial



Exercise 2: Generating Code and Building Your Model

7. Notice that Rational Rhapsody sets the values in the Environment Settings group based
on the compiler settings you configured during installation of the Rational Rhapsody
product. This example uses a system with the GNAT compiler, as shown in the above
figure.

8. Onthelnitialization tab, select the Explicit option button if it is not already selected.

Note: Because we are using the entrypoint stereotype in this model, you do not have
to select which instance to initialize on this tab. Click the + signs and notice
that none of the check boxes are selected, which is as it should be for this
model.

9. Click OK.
10. Saveyour model.

Task 2b: Generating Code

To generate code and the instances necessary for animation, follow these steps:
1. Set HostAnimated as the active configuration:

— Right-click HostAnimated and select Select as Active Configuration, or
— Select HostAnimated from the drop-down list on the Code toolbar.

Once HostAnimated is set as the active configuration it should appear in
boldtype on your browser, as shown in the following figure:

[ =
Entire Madel Yiew - + 4+

=l Dishweasher
Ell:l Coampanents
=& EXE
EI{:I Configurations
‘k‘ Hosk
‘k HostAnimated
-1 Object Model Diagrams
-2 Packages
[+ Prafiles
[#
E

:H:I Sequence Diagrams
:H:I IUse Case Diagrams

2. From the Code toolbar, click the GMR button ! . This generates code, builds the
configuration, and runs the executable image for the active configuration. It isthe same as
choosing Code > Generate/M ake/Run.

3. If you are asked if you want to create the Hostanimated directory, click Yes.

Rational Rhapsody 107



Lesson 6: Building and Running the Model

4. If you are asked if you want to run the executable, click Yes. (You might not be asked.)

An Application window opens, as shown in the following figure:

& REE

5. Inthe browser, check to be certain that instances were created.
a. Expand the Dishwasher Pkg package, the Classes category, and then each class.

b. Seethat thereisan Instances category under the Display, Dishwasher,
DishwasherBuilder classes, as shown in the following figure:

[ =
Entire Model View - + +
=l Dishwwasher =]

l:l Components

l:l Object Model Diagrams

Ell:l Packages

& ada

E& DishwwasherPlg

?2@ Ackars

=B Classes

E-E  «entrypoints Display

---‘;] Dependencies

l@] Instances

E Operations

EI% «Singletons Dishwwasher

[+ W Attributes

- *y) Dependencies | |

@ In

E Operations

[ Statechart

-8 bishwasherBuider
l@] Instances

[T Parts =l

skances

108 Ada Tutorial



Exercise 2: Generating Code and Building Your Model

6. If you are successful, continue with Exercise 3: Running Your Model. If not, continue with
Task 2c: Troubleshooting the Build.

Rational Rhapsody 109



Lesson 6: Building and Running the Model

Task 2c: Troubleshooting the Build

If the instances were not created, there are two typical reasons:

*

*

You might not have an Ada compiler installed on your machine or the current version of
the compiler available on your computer for Rational Rhapsody to use. If that isthe
problem, an error message displays at the bottom of the Output window. Be certain the
correct compiler for your code is accessible to Rational Rhapsody to correct the problem.
Thisisusually set up when Rational Rhapsody is installed. Refer to the Rational
Rhapsody Release Notes for the supported Ada compilers.

One or more steps might have been skipped or entered with typographical errors during
the design process. Examine the error message and return to the section of the tutorial

covering that feature. A typographical error prevents the system from recognizing
relationships and items.

If these two problems did cause the error, follow these steps:

1

2.

Double-click the error in the message list in the Output window.

The system displays the code containing the error in the drawing area. Examine the code
and click on the diagram tabs and browser to research the problem and make the
necessary changes.

Continue with Task 2d: Roundtripping.

110

Ada Tutorial



Exercise 3: Running Your Model

Task 2d: Roundtripping

Roundtripping is an on-the-fly method used to update the model quickly with small changes
entered to previously generated code. If you have made small changes in the code in the previous
section, follow these steps to incorporate it into the model:

1. Choose Code > Roundtrip > Host.
2. Look at the results display in the Output window.

However, roundtripping should not be used for magjor changes in the model that would require the
model to be rebuilt. Do not use roundtripping to incorporate changes to any of the followingin a
model:

+ Packages

¢ Dependencies

*  Stereotypes

*  States

* Transitions

+ Component / Configuration information

Exercise 3: Running Your Model

In this exercise, you are going to run your model.

Task 3a: Running your Dishwasher Model

To run your dishwasher model, follow these steps:

1. If needed, click the GMR button ' vou might not need to if you successfully did thisin
Task 2b: Generating Code.

2. Arrange your desktop so that you can view the Rational Rhapsody browser, drawing area,
and the Output window; and the Application window.

Rational Rhapsody 111



Lesson 6: Building and Running the Model

3. Click the Go button b . The following occurs:

— On the Application window, the first lines of output display, as shown on the

following figure:

“Rhapsody711'rhapsody.exe

Enter Off
Start OK
Tick =
Tick =

P 4

— On the Rational Rhapsody browser, a relationship item (Dishwasher[Q])
appears for the Dishwasher class, as shown on the following figure:

|

Entire Model Yiew v + *

=l Dishwasher

D Camponents

-2 Object Model Diagrams

ED Packages
o) B ada
EI& DishwwasherPlg
?2@ Ackors
EIE Classes
EE «enkrypoints Display
[y} Dependencies
1@] Instances
E Qperations
[—]% «Singlekans Dishwasher
- Attributes
---';] Dependencies
E@] Instances
[ Dishwiasher[0]
E Operations
[ | Statechart
=8 DishwasherBuilder
1@] Insktances

ﬁ Parts

112

Ada Tutorial



Summary

— Your sequence diagram should resemble the following figure:

Dishwasher

4. To end the program, click the Stop Make/Execution button O .

This stops all processes and closes the Application window.

Summary

EMY Display

o Createl) |_ _.,l

o Lreately o o o | _ _ _ _

é_np_tickﬂ | o

é op_tick() ! __:!

o op tick

2 | o

Z | |

A

Z | |

A

7 | |
4| |

B

In thislesson, you built the Build object model diagram, set up your project for animation,
generated code, built your model, and ran your executable for your model.

You are now ready to proceed to the next lesson, where you are going to animate your model.

Rational Rhapsody

113



Lesson 6: Building and Running the Model

114 Ada Tutorial



Lesson 7: Animating Your Application

Animation is the observable execution of behaviors and associated definitions in the model.
Rational Rhapsody animates the model by executing the code generated, with instrumentation, for
classes, operations, and associations. Once you start model animation, you can open animated
diagrams, which let you observe the model asit is running and perform design-level debugging.
You can step through the model, set and clear breakpoints, inject events, and generate an output
trace.

It is good practice to test the model incrementally using model execution, which you have
practiced in earlier lessons. You can animate pieces of the model asit is developed. This givesyou
the opportunity to determine whether the model meets the requirements and find defects early on.
Then you can test the entire model. In thisway, you iteratively build the model, and then with each
iteration perform an entire model validation.

Goals for this Lesson

In thislesson you are going to animate your application by stepping through the program, invoking
commands, and setting breakpoints.

Rational Rhapsody 115



Lesson 7: Animating Your Application

Exercise 1: Animating your Application

In this exercise you are going to animate your model, step through it, invoke commands for it, set
breakpoints, and exit animation mode.

Task la: Starting Animation

Because you compiled the application with animation instrumentation in the previous lesson,
when the application starts, it connects to the Rational Rhapsody application viaa TCP/IP socket
whose number is set in the rhapsody . ini file.

Note: Thistask assumes you are starting after having completed Task 3a: Running
your Dishwasher Model from Lesson 6: Building and Running the Model.

To start animation, follow these steps:

1. Choose Code > Run EXE.exe.

Rationa Rhapsody displays the animation toolbar, which includes tools that enable you to
control and test the application. In addition, an Application window opens.

2. Position and resize the Rational Rhapsody window and the Application window so that
both are easily visible on your desktop.

3. Notice that the following output panes are displayed at the bottom of the Rational
Rhapsody window:

¢ Animation shows run-time messages from the application.

¢ Call Stack displaysthelogical call stack of the executing model at the design
level, rather than the code level.

You can adjust the horizontal dliders between the panes as needed to view the
contents. These windows are dockable, so you can move them out of the Rational
Rhapsody client areaif you want to increase the viewable area for animations.
Simply click and hold the double bars at the left edge of a dockable window,
move the window, and drop it where you want.

116 Ada Tutorial



Exercise 1. Animating your Application

Task 1b: Viewing the Animated Statechart

Asyou do thistask, in addition to looking at the Call Stack tab, look at what is happening on the
Application window too. To do this, you have to arrange your desktop so that you can view
Rational Rhapsody and the Application window clearly.

To step through the model animation, follow these steps:
1. Click the Go Step button M The call Stack displays nothing.

2. Click Go Step button M The Call Stack displaysthe message 1nitialize ().
3. Click Go Step button. The 1nitialize () messageisremoved from the Call Stack.

4. Click Go Step button. The message pishwasher [0] -> Start Behavior isdisplayedin
the Call Stack and the browser shows the new instance, Dishwasher[0]. To seeit in the
browser, expand the | nstances category under the Dishwasher class.

5. Inthe browser, right-click the Dishwasher[0] instance and then select Open I nstance
Satechart. Rational Rhapsody displays an animated version of your Dishwasher
statechart.

6. Click Go Step button. The message is removed from the Call Stack, and your statechart
should resemble the following figure:

Dishwasher Statechart
op_start/setup; - ¥ -
Funning
of : :
Wiashing %_ ap_tickidec_wash_time;

T [is¥Washed)

Done . ol
[ Rinsing @I . op tick/dec rinse time; |

Note: Magenta denotes what is active and olive denotes what isinactive.

7. Continue with Task 1c: Invoking Commands for vour Program.

Rational Rhapsody 117



Lesson 7: Animating Your Application

Task 1c: Invoking Commands for your Program

You can invoke commands for your program with the use of the Application window because this
model used triggered operations.

Note that if the model used eventsinstead, you could generate events for your model. For more
information about events, refer to the IBM Rational Rhapsody User Guide.

To invoke commands for your program, follow these steps:

1. If not already, arrange your desktop so that you can view the Rational Rhapsody window
and the Application window clearly.

2. Click the Go button B on the Animation toolbar.

3. Notice on the Application window that your program starts running. Because op_tick is
set for every second, thereis atick every second, as shown in the following figure:

e CRhapsody 711\ rhapsody.exe
Enter OFF

4. With focus on the Application window, press s on your keyboard.

118 Ada Tutorial



Exercise 1. Animating your Application

5. Notice what happens on your statechart and the Application window.

On your statechart, in the Running state, the dishwasher cycles through the Washing (as
shown in the following figure) Rinsing, and Drying states, until it goes to the Off state.

Dishwasher Statechart
op_stam’setup;r ¥ —
Running m_
~ Off
'—\ tap 0K
of @ — ik - 0
é Washing (2] op_tick/dec_wash_time; | - 8
i - a
= [}
lisWWashed] C ;ff a
Enter Washing
B Exit I.-Jashir_lg
Rinsing @'J‘op_tickfdec_rinse_time; | E'}Lﬁi“:‘ ¥
iy Exit Washing
Er_ltel- Washing
lisRinsed] Tick =
op_ope Drying )
Open [ op_tick/dec_dry_time;
[isDiried]
T ®
f
N
op_close ‘
Dane

Note: Magenta denotes what is active and olive denotes what is inactive. Depending
on what is timer functions might be coded for a program, the color changes

might happen rapidly. You can click the Animation Pause button I on the

Animation toolbar to pause the animation. Click the Go button B again to
continue.

6. Onceyou areinthe Off state, press s again to start the dishwasher.

Rational Rhapsody 119



Lesson 7: Animating Your Application

7. When it getsto the Running state, press o and notice what happens. The dishwasher door
is opened so the program stops (though op_tick continues to tick off the seconds), as
shown in the following figure:

Dishwasher Statechart

op_start/setup;

¥

Running

of @

Daone

Open (% ;p_open
op_close

Washing 2

op_tick/dec_wash_time;

Rinsing

op_tick/dec_dry_time;

¢

[isWWashed]

@‘ op_tick/dec_ringe_time;
lisRinsed]
Drying )

[isDried]

Dane

Rinsing
» Rinsing

Rinsing
~ Rinsing

MNMNNNNNMNNN

8. Pressc and notice what happens on your statechart. At whatever state the dishwasher

stopped, it continues with the program, as shown in the following figure:

Off

Done

Open

Rinsing
» Rinsing

ﬁinsing
OPEN!*?

» Closed
Enter Rinsing

w

[

MNMNNNMNMNMNNMNMNDMNMNNR

Done

Dishwasher Statechart
0;:|_sstam’setu;:|‘r ¥ '
Rurnning
2
Washing 2  op_tickidec_wash_time;
\ [isWashed)
Rinsing @‘ op_tickfdec_rinse_time; |
[isRinsed]
op_ope Drying 2
2l op_tick/dec_dry_time;
[isDiried]
T &
F
h,
op_close

120

Ada Tutorial



Exercise 1. Animating your Application

0.

Optional. For another view, watch what happens on your animated sequence diagram
when you do this task.

10. Let the program get to the Off state (as seen on your animated statechart).

Task 1d: Setting Breakpoints

Breakpoints enable you to stop the execution at a point that is entirely under your control so you
can examine the state of the application. For more information about breakpoints, refer to the IBM
Rational Rhapsody User Guide.

To set a breakpoint, follow these steps.

1

Right-click the Rinsing state and select Add Breakpoint to open the Define Breakpoint
dialog box.

Click the Select button to open the Instances Selection dialog box.
Select Dishwasher[0] and then click OK

On the Define Breakpoint dialog box, leave the default valuesin the Reason and Data
boxes and click OK.

On the Application window, press s on your keyboard. Notice that when your program
enters Rinsing state, execution stops and a message displays on the Output window, as
shown in the following figure:

Executahle iz Idle
b o e e e e e e e e e e e e e o

<%tate Entered Dishwasher[0] ROOT.Running.Rinsing= Break point Actiwve
e e e i e i el ol i e i el i e e ol e e e o

Executahle reached breakpoint

[ENEY

k] I 4 I }I Hr‘\ Ewild ,}\ Check Model )-.' Configuration Management ,}\Animalion l,’-r.' Seatch Results !

Rational Rhapsody 121



Lesson 7: Animating Your Application

6. To disable the breakpoint:

a. Click the Breakpoints button Y on the Animation toolbar to open the Breakpoints
dialog box.

b. Select the breakpoint you want to disable and then click the Disable button.
c. Click OK to close the Breakpoints dialog box.

Note: You can use the Breakpoints dialog box to see alist of the available
breakpoints; plus add, enable, disable, and delete breakpoints.

7. Click the Go button B% ato restart the program.

Task le: Quitting Animation

To end the animation session, follow these steps:

1. If necessary, click the Animation Pause button ﬂ

2. Click the Quit Animation button = .
3. Click Yesto confirm ending the animation session.
The message animation session terminated displayson the Animation tab of the Output

window.

Note that you can also click the Stop Make/Execution button o .

Summary

In this lesson, you became familiar with animation and animated your model. You performed the
following:

¢ Generated code, built the model, and ran the program

¢ Animated the statechart and sequence diagram

¢ Stepped through and invoked commands to your application and saw it progress through
states and pass messages

122 Ada Tutorial



Index

Symbols

_rpy file 13
_RTC directory 13

A

Actions 85

Active configuration 69

Activity diagrams 5, 77

Actors 25, 26, 30

Ada code examples 3
main operation 50
setup operation 49

Animation 107, 115, 116
breakpoints 121
configuration 69, 105
generating code 69

invoking commands for your program 118

output windows 116

quitting 122

running the application 115

starting 116

statecharts 117

tab 122

viewing 117
Application 115

running 111, 115

workflow 98
Application window 108, 112, 118, 119
Argumentstab 94
Association 33
Asynchronous 88
Attributes 43

viewing in diagram 46
Autosave 10

B

Backup 10

Boundary boxes 30
Breakpoints 121

Browser 15,17, 23

Build 18

Build object model diagram 102
Build tab 70, 91

Building the model 71, 92

C

Call Stack 116
Categories 17
Classes 40
create operations 44
predefined for Ada 56
singleton 42
Code
examples 3
generated from 101
roundtripping 111
Code generation 69, 107
creating configurations 69, 105
debugging 70, 71, 72
sourcefiles 71
Collaboration diagrams 5
Compilers 107, 110
Component diagrams 5
Components 66
creating 66
creating configurations 69, 105
default description 66
features 67
Configurations 69, 105
creating animation 69, 105
default 69
Host 69
HostAnimated 105
set as active 69, 107
Connectors 79
default 81
diagram 79
history 79
transitions 83
Constructors 62
Creating
animation configuration 69, 105
components 66
dishwasher project 6
object model diagram 39
sequence diagram 97
statechart 77
use case diagram 25

Rational Rhapsody

123



Index

D

Debugging 70, 71, 72
Default
component 66
configuration 69
Dependencies 40
Dependency 40
Deployment diagrams 5
Description tab 20
Diagram connectors 79
Diagrams 4,5
Build 102
Dishwasher 27, 38
Dishwasher object model diagram 37, 38
Dishwasher statechart 76
Dishwasher use case diagram 25
Execution sequence diagram 93, 96
object model 38, 76
UML 5
Directory structure 55
Dishwasher 1
animating 115, 117
creating 6
creating statecharts 77
instance 117
object model diagram 37, 38
opening 11
statechart 75, 76
use case diagram 25, 27
Display options 46, 47
Docking the Features dialog box 23
Domains 9
Drawing 16
area 15, 18
default connectors 81
diagram connectors 79
history connectors 79
object model diagrams 39
sequence diagrams 97
statecharts 77
toolbar 18
toolbars 15
transition connectors 83
use case diagrams 28

E

ehl file 13
Elements, external 71
Entrypoint 53
Environment settings 107
Error messages 110
Errors 110
Event history file 13
Events 94

naming conventions 14

Sequence diagrams 98
evKeyPress event 94
Executable configuration 69, 105
Execution sequence diagram 93, 96
Externa elements 71

F

Features dialog box 19
Apply and OK buttons 19
Description tab 20
docking 23
General tab 20
keeping open 19
moving 23
Propertiestab 21
Relationstab 21
tabs 20
Tagstab 21

Files 13
code generation 71
log 13
project 12
source 71

Folders 13

G

General tab 20

Generate 101

Generated source files 71
Generating code for animation 69
Graphical user interface 15
Guards 84

Guidelines 14

H

History connectors 79
Host configuration 69, 107
HostAnimated configuration 105

Implementation code 50
Instance area 96
Instances 117
Interfaces 14

K

KeyPress event 94

L
Legacy code 71

124

Ada Tutorial



Index

Linux 6
Log 18
files 13

M

Message pane 96

Messages 110

Model 1
building 71, 92, 107
naming conventions 14
running 111
stepping through 118
system behavior 77
troubleshooting 110

N

Names pane 96
Naming conventions 12, 14

O

Object model diagrams 5, 39
composite classes 40
Dishwasher 37, 38
simple classes 40
viewing attributes 46
viewing operations 47

Opening
project 11
Rational Rhapsody 6

Operations 44
changing synchronization 88
names 14
naming conventions 14
setup 48
viewing in diagram 47

Output window 15, 18, 70, 71, 72, 110
check model tab 18
log tab 18

P

Packages 9, 17, 55
adjust dependency 60
establish dependency 59
predefined 56
setting dependency 60
stereotypes 54
storing separately 55
SubsystemsPkg 39

Panes
Message 96
Name 96

Profiles 7

Project files 12, 13
Project folder 17
Project node 17
Project profiles 7
Project subfolders 13
Project types 7
Projects 7

creating 6,7

directory structure 55

files 13

opening 11

saving 10

saving as 1
Properties 68

change directory scheme 55

dependency 60

tab 21

R

Rational Rhapsody 4
autosave 10
backup 10
browser 17,23
closing 6
configuration 69, 105
drawing area 18
Drawing toolbar 18
events 94
exiting 6
Features dialog box 19
GUI 15
guidelines 14
interface 15
naming conventions 12
Output window 18
project types 7
sample models 1
starting 6
toolbars 16
UML diagrams 5
Rebuilding the application 70, 71, 72
Regenerating code 70, 71, 72
Relationstab 21
Repository directory 13
Reguirements 25
rhapsody.ini file 116
Roundtripping 111
rpy file 13
Running application 111

S

Sample models 1
Sequence diagrams 5, 97
define flow 98
events 98

Rational Rhapsody

125



Index

Execution 93
instance area 96
Message pane 96
Names pane 96
set border 97
Set as active configuration 69, 107
Simple classes 40
Singleton 42
Source diagram connectors 79
Sourcefiles 71
Specialized profiles 7
Starting animation 116
Statecharts 5, 75, 77
Build 76
creating 77
default connector 81
Dishwasher 75
drawing 77
guard transitions 84
transitions 83
triggered operations 88
States
adding actions 85
drawing 78

Stepping through the program 117, 118

Stereotypes 40
entrypoint 53
singleton 42
usage 41

Structure diagram 5

Subfolders 13

Subsystems 9

Synchronization 88

T

Tabs
build 18
check model 18
log 18
Tagstab 21
Target diagram connectors 79
Toolbars 15, 16, 18
Transitions 83, 84
Triggers 84
Troubleshooting 110

U

Units 10

Use case diagrams 5, 25
actors 30
boundary boxes 30
Dishwasher 25, 27
use cases 31

Use cases 31, 32

V

vbafile 13

Viewing
animation 117
attributes 46
operations 47

W

Windows 6
Workflow 95, 98

126

Ada Tutorial



	Contents
	Getting Started
	Rational Rhapsody in Ada Tutorial Overview
	Audience for this Tutorial
	Before You Begin
	Tutorial Objectives
	Documentation Conventions
	About the Rational Rhapsody Product
	UML Diagrams


	Setting up for the Tutorial
	Starting the Rational Rhapsody Product
	Closing the Rational Rhapsody Product
	Creating a Rational Rhapsody Project
	Renaming the Default Package
	Saving a Rational Rhapsody Project
	About Autosave
	About Backups

	Opening the Dishwasher Model

	About a Rational Rhapsody Project
	About Project Files and Folders
	Using Naming Conventions and Project Guidelines
	Prefixes
	Model Element Names
	Rational Rhapsody Project Guidelines


	Rational Rhapsody User Interface
	Toolbars
	Browser
	Filtering the Browser
	Repositioning the Browser

	Drawing Area
	Output Window
	Drawing Toolbars
	Features Dialog Box
	Keeping Open the Features Dialog Box
	Tabs for the Features Dialog Box
	Moving the Features Dialog Box


	Summary

	Lesson 1: Creating a Use Case Diagram
	Goals for this Lesson
	Exercise 1: Analyzing the Dishwasher System
	Exercise 2: Creating the Dishwasher Use Case Diagram
	Task 2a: Creating the Dishwasher Use Case Diagram
	Task 2b: Drawing the Boundary Box and Actors
	Task 2c: Drawing the Use Cases
	Task 2d: Associating Actors with Use Cases
	Task 2e: Adding a Diagram Title

	Summary

	Lesson 2: Creating an Object Model Diagram
	Goals for this Lesson
	Exercise 1: Creating the Dishwasher Object Model Diagram
	Task 1a: Creating the Dishwasher Object Model Diagram
	Task 1b: Drawing Classes and Dependencies
	Task 1c: Creating a Singleton
	Task 1d: Adding Attributes
	Task 1e: Creating Operations
	Task 1f: Displaying Attributes and Operations in the OMD
	Task 1g: Adding the setup Operation
	Task 1h: Adding a main Operation to the Display Class
	Task 1i: Using the Entrypoint Stereotype

	Exercise 2: Other Necessary Tasks
	Task 2a: Saving Packages Separately
	Task 2b: Using Predefined Packages
	Task 2c: Establishing the Package Dependency
	Task 2d: Setting a Package Dependency Property
	Task 2e: Adding a default constructor

	Summary

	Lesson 3: Generating Code and Building Your Model
	Goals for this Lesson
	Exercise 1: Preparing for Generating Code
	Task 1a: Creating a Component
	Task 1b: Setting the Component Features
	Task 1c: Creating a Configuration

	Exercise 2: Generating Code
	Task 2a: Generating Code
	Task 2b: Fixing Code Generation Errors
	About Code Generation Warnings
	Examining Generated Source Files
	Using External Elements


	Exercise 3: Building Your Model
	Task 3a: Building your Model
	Task 3b: Fixing Build Errors
	Task 3c: Viewing Code

	Summary

	Lesson 4: Creating a Statechart
	Goals for this Lesson
	Exercise 1: Creating the Dishwasher Statechart
	Task 1a: Creating a Statechart
	Task 1b: Drawing the Dishwasher Statechart
	Task 1c: Drawing History and Diagram Connectors
	Task 1d: Drawing Default Connectors
	Task 1e: Adding Ada Operations
	Task 1f: Drawing the Transitions
	Task 1g: Adding Actions to States
	Task 1h: Changing Operation Synchronization
	Task 1i: Adding a Diagram Title

	Exercise 2: Generating Code and Building Your Model
	Task 2a: Generating Code
	Task 2b: Building the Model

	Summary

	Lesson 5: Creating a Sequence Diagram
	Goals for this Lesson
	Exercise 1: Creating the KeyPress Event
	Task 1a: Creating an Event

	Exercise 2: Creating the Execution Sequence Diagram
	Task 2a: Creating the Sequence Diagram
	Task 2b: Creating the Workflow for Your Sequence Diagram

	Summary

	Lesson 6: Building and Running the Model
	Goals for this Lesson
	Exercise 1: Creating the Build Object Model Diagram
	Task 1a: Creating the Build Object Model Diagram
	Task 1b: Creating a DishwasherBuilder Class

	Exercise 2: Generating Code and Building Your Model
	Task 2a: Creating Another Configuration
	Task 2b: Generating Code
	Task 2c: Troubleshooting the Build
	Task 2d: Roundtripping

	Exercise 3: Running Your Model
	Task 3a: Running your Dishwasher Model

	Summary

	Lesson 7: Animating Your Application
	Goals for this Lesson
	Exercise 1: Animating your Application
	Task 1a: Starting Animation
	Task 1b: Viewing the Animated Statechart
	Task 1c: Invoking Commands for your Program
	Task 1d: Setting Breakpoints
	Task 1e: Quitting Animation

	Summary

	Index

