Rhapsody

Team Collaboration Guide

Rational Rhapsody
Team Collaboration Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

BasSiC CONCEPLS ... o 1
Project COMPIEXItY. . o o 1
Number of team members. 2
NUumber of COMPONENTS. 2
Design COMPIEXItY e 3
Type of CoNteNt MaNagEMENTo e e e e e e 3
Geographical distribution e e e 4
Team members and their roles 4
Methodologies for team collaboration 6
Share by copy without a CM t0O0l e 7
Share by reference without a CM tool. e 8
Conventional CM t0O0IS e 10
Accessing the CM archive from Rational Rhapsody. i 11
Rational Rhapsody files for content management. 12
Model organization and partition 15
Possible model organizational methods. 15
TeSt CONSIAEIAtIONS o ot e e e e 17
Configuration items (ClS) 18
Considerations for dividing a project into UNitS ot 18
Creating Unit files e e 19
Removing Unit fileso 20
Packages as UNitS. e 20
Classes @S UNItSo 20
Diagrams @S UNILSottt e e e e e e 20
The project file. 21
Multiple Rational Rhapsody projects e 21
Dividing a project into tWO PrOJECES ottt et 22
TWO Projects int0 ONE PrOJECE ottt ittt e e e e e 23
Multiple project WOrkflow e 23
REPOSITOrY StTUCTUIE oo e e e e e 23
Repository structure planning e 24

Rational Rhapsody

Table of Contents

Flat rePOSIHONIES. . . . oo o e 25
Hierarchical repoSItOrieso e 26
Example of project under CM. 27
RESIIUCIUNING @ PrOJECT oottt e e e e e e e e e e e e e 28
File and directory Creation. 29
File and directory deletion 33
UNIE SIOrage . - . o ettt e 33
Packages in anew direCtory e 34
File renamIingo 34
Package contained in its own directory renaming.ttt 35
Control moving a file Or direCtory. 35
When Rational Rhapsody cannot update the CM system. i 36
CM and Rational Rhapsody e 39
SCCversus Batch mode. e 39
Configuration tems WiNdOW e 40
CM 0P eratiONS . e e 41
CoNNECELO ATCRIVE . . . o 41
Connectto Archive in SCC MOUEot 43
Show [tems iN ArChiVe. 44
RUN CM 100l 44
Comparing with the DiffMerge tool 45
Displaying the properties of a Unit. 45
SYNCNIONIZE HEMS. e e e 46
AULOSYNCHIONIZE e 46
Check OUL OPEratioN e e e e e e 47
Check In Operation 48
Using Add to Archive in CM OPerations.o vttt e e e 49
Lock and UnloCK Operationsot 50
FetChing a Unit. 50
Using Uncheckout in CM Operations.t e e 51
HISTOrY/VerSION trEe. o e e e 51
CM status of UNits in @ projeCt.o e e e e e 51
CM status information in the browser 52
CM status information in the Configuration Itemswindow 52
Property to turn off display of CM Status. e 53
About troubleshooting CM operations e e 53
CM OUtPUL WINAOW . . . oot e e e e e e e e 55
Pre- and post- aCtioNs. 56
CMinterface eXtenSiON e 58

iv Team Collaboration Guide

Table of Contents

Unresolved referenCes 59
Units added by reference 59
Multi-site collaboration 61
Webify for collaboration e 61
Rapid PrototypinNg . ..o o 62
Parallel development 63
The DIffMerge tool 63
What iS @ UNIt? . ..o e 63
How do you use DiffMerge? e 64
Launching DiffMerge inside Rational Rhapsody 64
Compare With operation 66
Comparing two archived VEISIONS 67
Advantages of launching DiffMerge inside Rational Rhapsody. 67
Launching DiffMerge outside Rational Rhapsody 68
SeleCt UNItS 10 COMPAIE.ottt e e e e e e e e 68
Selecting units to compare outside Rational Rhapsody i 68
Advantages of launching DiffMerge outside Rational Rhapsody 69
Examining “left” and “right” value selections i 70
Results displayed in the DiffMerge tool i 71
Differences report in the OQutput window i e 74
Difference Report displayo e 74
Features of a Difference RepOrt o 75
DiffMerge differenCes 76
Differences in the browWser 76
Difference categories and theiriconsinthe browser 77
Base-aware Diff ICONS 78
DiffMerge tool navigation e 79
The external difference/merge textual tool 80
Using your external difference/merge textual tool. 80
Filtering the comparison in the DiffMergetool. i 81
Inspecting differences in diagrams visually 82
Graphical differenCes 83
Difference Report generation e 85
Printing a Difference RepOrt 86
Graphical differences SUPPIrESSION oot 86
DiffMerge limitations e 87

Rational Rhapsody v

Table of Contents

Logical versus graphical differences i e 88
Example of logical difference 88
DIffMerge TP OIS . . o oo 90
Exporting DiffMerge reportso e 90
The Rational Rhapsody DiffMerge proCess e 91
How does the DiffMerge tool make amatch? 91
Examples of how the DiffMerge tool handles renamed elements. 92
How DiffMerge performs a model comparison e 96
How differences are detected in base-aware COmparisons.ttt 96
Limitations for match by element ID in DiffMerge 97
How to examine only major structure differences e 98
Merge units with the DiffMerge tool. 101
Starting a merge OPerationttt e 101
Merge renamed ElemeNtS e 104
Savingthe merged Unit. 105
Merge Units lIMItatioNSo 105
Automatic merging for base-aware CoOmpariSoNSttt e 106
About making mMerge deCiSiONSot e e 108
Merging diagrams graphically for mostdiagrams e 111
Merging diagrams graphically for statecharts and activity diagrams. 112
About merging sequence diagramsSttt e 114
Merge actiVity [0g oot 116
Producing merge OIS,ot 116
DiffMerge tool preferences. 117
Changing PreferenCes. . . . oo 117
KBYWOIAS . . oo e 118
Colors preferenCes CategOryottt e e 119
DiffReport preferences category e 119
General preferenCes CatEgOrY. oottt e e e e 121
MergelLog preferences Category ottt e 123
SuppPressions PreferenCes Categoryo v ittt e e e 124
TextDiffMerge preferences Category.ot e 127
Command-line options for the DiffMergetool i 129
Launching the DiffMerge tool interface using the commandline. 129
Launching the DiffMerge tool from the command line. 129
DiffMerge command-line Syntax OptioNS ottt 130
IBM Rational Synergy 133
Setting up Rational Rhapsody for use with Rational Synergy 133
Rational Synergy and Rational Rhapsody i 135
Using Rational Synergy with Rational Rhapsody i, 135

Vi Team Collaboration Guide

Table of Contents

Connecting to the Rational Synergy archive. e 136
Creating new Rational Synergy tasks 137
Viewing the properties for a Rational Synergy task. 138
Working with a Rational Synergy task in Rational Rhapsody 138
Checking in Rational Rhapsody WOrk 138
Rational Synergy and the Rational Rhapsody DiffMergetool............ 139
Customize Rational Rhapsody and Rational Synergy 139
IBM Rational ClearCase e 141
Batch mode Versus SCC mode 141
The differences between the Batchand SCCmodes i 142
SCC mode or Batch Mmode? 145
SCC Mode or Batch Mode SUMMAIY e e 147
Setting up Rational ClearCasettt e e e e e 148
Controlling case sensitivity in Rational ClearCase i 149
About checking out Rational Rhapsody files. 149
About setting up Rational Rhapsody projects forteammembers. 149
About adding new filestothe archive 149
Rational ClearCase limitations with Rational Rhapsody 150
Rational ClearCase SemantiCSo e e 150
EVIl tWINS 1SS UE .« . . e 150
INEEgratioN 1SSUBS . . ot 151
Hierarchical repository and Rational ClearCase, 152
Changes to an existing directory structure e 152
Limitations for changing an existing directory structure i, 153
Rational ClearCase Type Manager.ottt e e e e e e 153
Setting up the Rational ClearCase Type Managerttt e e e e 154
Setting up the Rational ClearCase .magicfile. e 156
Rational Rhapsody models and changing the default properties 157
Code generation performance improvementst 158
Forced check in of a package with unchanged subunits 158
When is a Rational ClearCase license consumed? 159
Customize Rational Rhapsody and Rational ClearCase 159
Checking out/Checking in @ direCtory ONCe.ottt e e e e e 160
Storing an existing package in a separate direCtory 160
Removing an existing directory for a package and reconcilingitscontents 161
Adding a unit to the CM archive automatically 161

Rational Rhapsody

Vii

Table of Contents

Serena PVCS DIMENSIONS . ..ottt e et e e 163
Enabling a SCC-compliant CM tool 163
Access to Dimensions from Rational Rhapsody i 163
Create the initial connection to the SCCtool i 164
Creating the initial connection to the SCC tool in DImensions i, 164
Add to SCC archive Operation e 165
Addingaunitto an SCC archive e 165
Check out operation in SCC arChive i e e e 166
Checking out a unitin SCC archive. 166
Check in operation in SCC arChive i e e e e 167
Checkingina unitin SCC archive. e 167
Listing the archive in PVCS DIMENSIONS e 167
Fetching in DIMeNSIONS e e e e 168
Unchecking Out in DIMeNnSioNS e e e 169
Viewing the history of a unit. 169
Viewing the file details fora unit 169
Customize Rational Rhapsody and PVCS DImMensionsot 170
Concurrent Versions System (CVS) ... e 171
Sharing a Rational Rhapsody project in CVS. i e e e 171
Checking out a Rational Rhapsody project from a CVSrepository 172
Collaboration with other users in CVS e 173
Repository synchronization in CVS e 173
Updating a Rhapsody unit in Eclipse to the CVS repository 174
Adding a unit created in Rational Rhapsody to the CVSrepository 175
Showing the history of a unitin CVS. e 175
Subversion (SVN) ... 177
Sharing a Rational Rhapsody project in Subversion. 177
Checking out a Rational Rhapsody project from a Subversion repository................ 178
Collaboration with other users in Subversion i 179
Repository synchronization in SUBVEISION e 179
Updating a Rational Rhapsody unit in Eclipse to the Subversion repository. 180
Adding a unit created in Rational Rhapsody to Subversion repository 180
Showing the history of a unitin Subversion 180
IBM Rational Team CoNCert i 181

Viii Team Collaboration Guide

Table of Contents

Rational Rhapsody iX

Table of Contents

X Team Collaboration Guide

Basic concepts

IBM® Rational® Rhapsody® Team Collaboration describes how multiple Rational Rhapsody users
can collaborate as a team on Rational Rhapsody projects. Thisinformation is designed to assist
usersin awide variety of situations. Not al topics apply to all readers. Use the topicsin Team
Collaboration to understand the terminology used to describe different teams and team members,
and to determine where to find information that appliesto your situation.

Project complexity

There are no formal definitionsto classify projectsin terms of size or complexity. However, afew
guidelines are necessary to clarify terms used in Team Collaboration. Some topics focus on
specific types of projects. Thistopic will help you determine the type of project you are working
on and which topics will be useful to you.

Levelsof complexity can be measured in all kinds of ways, including the number of team members
or components, complexity of the design, integration of legacy code, type of content management
used, and geographical distribution of the team.

Rational Rhapsody 1

Basic concepts

Number of team members

There are many ways to determine the level of complexity for a project, one consideration is the
number of team membersinvolved.

Use the following table to determine the size of a project based on the number of team members.

Number Project

of People Size Relevant Topics

1 Individual e Share by copy without a CM tool
* Share by reference without a CM tool

« Parallel development for information about the IBM
Rational Rhapsody DiffMerge tool

2t08 Small e Share by copy without a CM tool
* Share by reference without a CM tool

« Parallel development for information about the
DiffMerge tool

9to 25 Medium e Conventional CM tools
¢ CM and Rational Rhapsody

More than Large » Conventional CM tools
25 + CM and Rational Rhapsody

Number of components

There are many ways to determine the level of complexity for a project, one consideration is the
number of team componentsinvolved.

The following guidelines determine the size of a project based on the number of components:

¢ Small for 1to 5 components
¢ Medium for 6 to 15 components
¢ Largefor more than 15 components
If you are managing medium or large projects, see Model organization and partition.

2 Team Collaboration Guide

Project complexity

Design complexity

There are many ways to determine the level of complexity for a project, one consideration is the
design complexity.

The following guidelines may help you determine the complexity of a design for a project:

¢ Low for up to 5 packages, 20 classes, or 20 events

¢ Medium for up to 20 packages, 100 classes, or 100 events

+ High for up to 100 packages, 1000 classes, or 1000 events

¢+ Extremely complex for more than 100 packages, 1000 classes, or 1000 events

If you are managing medium or high complexity projects, see Model organization and partition. If
you are working with high and extremely complex models, see Multiple Rational Rhapsody
projects.

Type of content management

There are many ways to determine the level of complexity for a project, one consideration is the
type of content management involved.

The following guidelines consider three categories of content management:

+ Nonefor acontent management process that does not use aCM tool.

¢ Simplefor asimple CM tool that supports basic versioning features, but does not include
complex operation such as branching. See CM and Rational Rhapsody.

¢ Complex for an advanced CM tool that supports branching and features such as
extensibility and integration with process control. See CM and Rational Rhapsody and in
particular CM interface extension.

Rational Rhapsody 3

Basic concepts

Geographical distribution

There are many ways to determine the level of complexity for a project, one consideration is the
geographical distribution of the team members involved.

The following guidelines consider the proximity of team members to one another:

¢ Single site when al team members are located at the same site.
+ Multiple sites when team members are distributed between severd sites.

+ Multipleremote sites when team members are distributed between several sites with
large time differences.

For projects that are distributed between different sites, see Multiple Rational Rhapsody projects
and Multi-site collaboration.

Team members and their roles

To be successful, al projects from simple to complex require several organizational roles. In some
cases, one person might perform more than one role. For example, the project manager might also
be the architect; the configuration system manager might also be the integrator; and the developer
of acomponent might also be the quality assurance person for that component.

Consider the following organizational rolesfor a project.

Project Manager

The project manager is responsible for assigning work, and defining and monitoring the schedule.
This person defines the project scope, isinvolved in al key decisions, facilitates communication
among team members, and might define the process or policies for CM. The project manager has
the overall responsibility for the project.

The project manager will find useful information throughout Team Collaboration.

Configuration System Manager

The configuration system manager sets up all the aspects of the CM tool, ensures that the
environment is running with Rational Rhapsody, maintains the system, and assists team members
with issues concerning the CM tool. In addition, this person promotes baselines as new versions or
releases arise. The configuration system manager might manage CM for more than one project or
serve in other roles, depending on the organization.

4 Team Collaboration Guide

Project complexity

The configuration system manager should review the following topics:

¢ Example of project under CM

¢ CM and Rational Rhapsody and in particular CM interface extension

¢ Theparticular CM tool: IBM Rational Synergy, IBM Rational ClearCase, Serena PVCS
Dimensions, Concurrent Versions System (CVS), Or Subversion (SVN)

Architect/Lead Developer

The architect/lead developer is responsible for policies relating to project structure, dividing the
project into several smaller projects, allocating componentsto projects, and alocating design units
to components.

Architects should review Model organization and partition.

Developer

The developer performstasks from the basic (such asfixing a defect) to the more complex (such as
working on asix-month project). Developer CM activities include joining a project, editing files
on aloca machine, verifying changes, submitting updated files to the CM system, and
synchronizing alocal workspace with the updates of other team members.

Developers should review the following topics:

¢ Model organization and partition

¢ CMand Rational Rhapsody

¢ Parallel development

Quality Manager

The quality manager defines quality assurance policies, develops and maintains test suites,
executes testing, and takes responsibility for the overall quality of aproject. This person might use
the CM tool to track test cases or determine which version of the project is currently under testing
analysis.

The quality manager should review Test considerations.

Integrator

Theintegrator (“toolsmith”) creates the integration facilities, makefiles, and special dedicated
scripts for the project. This person derives the formal, deliverable product from a CM baseline,
arranges the installation and deployment procedures, and automates the process of periodic builds
and tests.

The integrator might find useful information throughout Team Collaboration.

Rational Rhapsody 5

Basic concepts

Methodologies for team collaboration

There are several ways to manage files so several team members can collaborate on the same
project at the sametime. Rational Rhapsody supports file management with or without the use of a
CM tool.

There are two ways to manage files:

¢ Without aCM tooal, including sharing by copy or reference

¢+ WithaCM tool, using either a CM interface included in Rational Rhapsody or a custom
CM interface

When you use aCM tool, the software takes care of most CM issues. However, afile management
system can incorporate a combination of sharing by copy or reference and using a CM tool.

Software devel opment teams with team members |located remotely from one another face an
additional challenge. In these cases, technologies that allow team members to collaborate over
long distances (such as the Web) can be incorporated into the overall file management strategy. For
more information, see Multi-site collaboration.

Projects with complicated file systems and diverse teams often require creative solutions to CM
that incorporate more than one method of team collaboration. For example, team members can
check filesin and out of atraditional CM tool, while at the same time the project can reference
classes from another project or from other external specification files.

6 Team Collaboration Guide

Methodologies for team collaboration

Share by copy without a CM tool

When sharing by copying, your directory contains a replica of the common directory (as shown in
the following figure). You make your modifications to your local directory, then copy the file to
the common directory to update the project. This strategy is appropriate for individual or small
teams.

Your Directory Common Directory

I I

Copy
*Qriginal
File

Modify

Copy
Modified File

This technique has some obvious flaws. For example, there is no mechanism to prevent someone
€else from modifying the same file at the same time. This can cause a problem when the two team
members copy files back to the common directory. The second developer overwrites the changes
made by the first, thereby eliminating them. At some point, the two team members must compare
their versions and merge the two sets of changes.

In addition, the copying process can be time-consuming for large projects. There is no method for
paralel development or for tracking the history of changes made to the project.

Thisform of CM is done using thefile system, not the Rational Rhapsody interface. However, you
can use the IBM Rational Rhapsody DiffMerge tool to detect differences between the original file
and the modified file, or to merge changes made to the same file by two different developers. For
more information, see Parallel development.

Rational Rhapsody 7

Basic concepts

Share by reference without a CM tool

When sharing by reference, team members do not need to copy all project files to their local
directories. Instead, they each have a copy of the . rpy file on their local machine. The . rpy file
references the read-only project files on acommon directory. When team members need to update
afile, they add the file to the local machine, make the necessary changes, and then move the
updated file back to the common directory.

By using references to the common directory, files are aways up-to-date with the latest changes.
However, processes that prevent two devel opers from localizing and modifying the same unit at
the same time should be established and followed. In addition, there is no way to track changes
madeto afile, or to revert to a previous version when a problem is encountered.

Setting up a local workspace
To create a project that uses sharing by reference for CM:

1
2.
3.

10.

Create a project directory on your local hard drive.
Make a copy of the . rpy file from the common directory to your local project directory.
Create a <project>_rpy directory inside the project directory. Your local file structure

should resemble the following figure:

Projects

Project

(22 Project_py JProjecty.rpy

Start Rational Rhapsody.

Openthe . rpy file on your local machine, selecting the Without Subunits check box. The
project opens with all units marked as unloaded (U) and read-only (RO).

Open the Add to Model window. Choose File > Add to Model.
L ocate the master project and select the master . rpy file.

Select the As Reference radio button, and click Open to open the Add to Model from
Another Project window.

In the Unit Type drop-down list, select All and click the Select All button.

Select the As reference radio button.

Team Collaboration Guide

Methodologies for team collaboration

11. Toinclude associations, aggregations, dependencies, or similar relations, select the Add
Dependents check box.

12. Click OK. All unitsinyour local project are now read-only (RO), but they are no longer
unloaded (U).

Editing files using sharing by reference
To edit afilein aproject that uses sharing by reference:
Start Rational Rhapsody and open your local project.
Open the Add to Model window. Choose File > Add to Model.

L ocate the master project and select the master . rpy file.

A 0w P

Select the As Unit radio button and click Open to open the Add to Model from Another
Project window.

5. Select the units you want to edit:

+ Usethe Ctrl or Shift key to select multiple units. You can filter the units using the
Unit Type drop-down list.
¢ Toinclude nested units, select the Add Subunits check box.

+ Toinclude associations, aggregations, dependencies, or similar relations, select
the Add Dependents check box.

6. Select the Asunit radio button, and then click OK.

7. Inthe Add to Model window, select Replace existing unit and click OK. The selected
units are loaded into your local project for editing.

8. Choose File > Save to save the added units on your local machine.

9. When you have completed the necessary changes, move the updated unit files to the
master project in the common directory. The unit files should be removed from your local
machine.

The next time you open this project, these units will be missing. Add them as references until you
need to edit them again.

Rational Rhapsody 9

Basic concepts

Conventional CM tools

Using conventional CM taools, you can check filesin and out of acentral repository. Thetool tracks
who has locked the file and protects it from being written to by other users.

One concept of content management using a CM tool is shown in the following figure. A fileis
stored in the CM tool repository. When you want to edit the file, you check it out and place alock
on the file. You make your modifications on your local machine, then check the file back into the
CM repository, removing the lock. The CM tool maintains copies of both the previous version and
the new version, and assigns a unique version number to the new file.

Your Directory CM Repository

Version
|

o |

Check Out

<
o
II|| \%‘

o——»

| Check

| ‘\ In

Rationa Rhapsody provides an interface to al of the following concepts supported by CM tools:

*

*

Locking files

Viewing available versions
File history

Retrieving previous versions
Setting baselines

Process control

See the IBM Rational Rhapsody Readme file for the list of CM tools supported by Rational
Rhapsody. In addition, you can develop a custom interface between Rational Rhapsody and

unsupported CM tools.

10

Team Collaboration Guide

Methodologies for team collaboration

Accessing the CM archive from Rational Rhapsody

Rational Rhapsody works with any CM archive in Microsoft® Common Source Code Control
(SCC) mode (Windows only) or other toolsin batch mode.

Rationa Rhapsody developers might use any of the following CM tools to manage their source

files:
*
*
*
*

*

IBM Rational Synergy in SCC mode

IBM Rational ClearCase in batch mode and SCC mode

Serena PVCS Dimensions in SCC mode

Concurrent Versions System (CVS)

Subversion (SVN)

Note

For Linux users, you can use batch mode configuration management, and Rational
ClearCase. Rational ClearCase is supported in Linux.

For more information about SCC mode and batch mode, see SCC versus Batch mode.

To access your source controlled files from Rational Rhapsody:

1

Be certain that your source control archive is accessible from the PC you are using for this
comparison.

Start Rational Rhapsody and open a project.
Open the Configuration Items window. Choose File > Configuration ltems.

Note: Thelook of the window depends on the type of CM system you are using.

Limitation: The Version number of the controlled files does not display in this window.

Rational Rhapsody 11

Basic concepts

Rational Rhapsody files for content management

In aRational Rhapsody project, some files contain project data and others store local information
that does not need to be shared with other team members. Only filesthat store project data need to
beincludedinaCM system.

The following table lists each Rational Rhapsody project file, its purpose, and guidelines for
placing it under content management.

File Name Purpose CM Guidelines
*.rpy Rational Rhapsody project Maintain under CM from Rational
file Rhapsody.
unit files Files that store Rational Maintain all unit files under CM from
(*.sbs,*.omd, *.cl s Rhapsody elements, such Rational Rhapsody.
and so 6n) ' ' as packages, diagrams, and
classes
*.rpw User-specific workspace Does not require CM.
data
* . ehl Events history list; stores Does not require CM.

animation commands, such
as event generation

*.vba A binary file that stores VBA | If the project uses VBA macros, maintain
macros this file under CM outside of Rational
Rhapsody (from the CM tool).

Note that most CM tools require a specific
signal from the user when archiving a
binary file.

If this file is read-only, Rational Rhapsody
displays the warning message, “Failed to
open document” when you open the
project, and “Failed to save document”
when you save the project.

If the project does not make use of VBA
macros, there is no need to apply CM to

this file.

store.log A log recording when the Does not require CM.
project was saved

| oad. | og A log of files loaded into Does not require CM.
Rational Rhapsody

Rever seEngi neeri ng. | | Alog of reverse engineering | Does not require CM.

og activity

filestabl e. dat Internal Rational Rhapsody | Does not require CM.
cache file

*.cg_info Stores information related to | Does not require CM.

incremental code generation

12 Team Collaboration Guide

Rational Rhapsody files for content management

File Name

Purpose

CM Guidelines

*_auto.rpy

Autosave file (optional,
depends on project settings)

Does not require CM.

* bakl.rpy &
* bak2. rpy

Backup project files created
by Rational Rhapsody
(optional, depends on
project settings)

Do not require CM.

Rational Rhapsody

13

Basic concepts

14

Team Collaboration Guide

Model organization and partition

When you plan a Rational Rhapsody project, you need a design that facilitates team collaboration.
Good model organization is crucial for achieving reusability in developing frameworks and
components. Once you have decided on an organization, you need to determine how the model
should be partitioned into units.

System organization enables many team members to contribute to the model without corrupting it
or losing previous changes. It aso provides the following benefits:

+ Allowsteam members to work with parts of the model that lie outside of their
responsibility

+ Manages changes to pieces of the model

+ Providesfor an efficient build process

+ Helpsdeveloperslocate and work on various model elements
+ Facilitates reuse of components

+ Helpsin developing versions and configurations of the product

Possible model organizational methods

Depending on the type of project, you can organize your model using one of several organizational
methods.

Model organization by use cases

Use cases are central to gathering requirements and are an obvious focal point for organizing the
regquirements and analysis model. For example, when you are working on related requirements and
use cases, you typically need access to one or more use cases and actors. When detailing a use
case, you work on asingle use case and detailed views (a set of scenarios) and often either an
activity diagram or a statechart (or some other formal specification language). When elaborating a
collaboration, you must create a set of classes related to a single use case, as well asrefining the
scenarios bound to that use case. Packages can divide up the use cases into coherent sets (such as
those related by generalization, «includes» Of «Extends» relations, or by associating with a
common set of actors). In this case, a package would contain a use case and its actors, activity
diagrams, statecharts, and sequence diagrams.

Rational Rhapsody 15

Model organization and partition

Model organization by framework

A framework-based model organization addresses some of the limitations of the use case-based
approach. It is still targeted at small systems, but it adds a framework package for shared and
common elements. The framework package has subpackages for usage points (classes that will be
used to provide services for the targeted application environment) and extension points (classes
that are grouped into subclasses by classes in the use-case packages). Note also that there are other
ways to organize the framework areathat also work well. For example, frameworks often consist
of sets of coherent patterns; the subpackaging of the framework can be organized around those
patterns. While thisis particularly apt when constructing small applications against acommon
framework, the scheme does hamper reuse in some of the same ways as the use case-based
approach.

Model organization by logical and physical architectures

Another approach isto break up the architecture into the logical (organization of types, classes,
and other design-time model elements) and physical aspects (organization of instances, objects,
subsystems, and other run-time elements). The logical architecture is often organized by domains,
whereas the physical architecture revolves around components or subsystems. If you structure the
model this way, a domain, subsystem, or component becomes a Cl to be assigned to asingle
worker or team. If the element islarge enough, it can be further subdivided into subpackages based
on subtopic within a domain, subcomponents, or another criterion such as team organization.

Model organization by domains

You could also divide the model based on classes. A domain, as defined in the ROPES process, is
a subject area with a common vocabulary, such as device I/O, user interface, or alarm
management. Each domain contains many classes, and system-level use case collaborations will
contain classesfrom several different domains. Many domains require rather specialized expertise,
such as low-level device drivers, aircraft navigation and guidance, or communication protocols.
From aworkflow and logical standpoint, it makes sense to group such elements together because a
single person or team will develop and manipulate them. Grouping classes by domains and having
the domains be Cls might make sense for many projects.

16 Team Collaboration Guide

Possible model organizational methods

Model organization by components

A model can sometimes be organized intuitively by components. A UML ™ component in Rational
Rhapsody is a basic building block used to define executables, libraries, and other physical binary
deliverables. Each such component is compiled of code generated from model elements. The
model elements that compose the component are called the component scope. Using top-level
packages that include all the model elements mapped to a certain component creates a simple and
easy-to-use structure. Note that this approach interferes with reuse of the same design elementsin
multiple components. However, efficiency can be achieved by component-level reuse; that is,
assigning the design-level elementsto be reused into alibrary, then using this library in multiple
components.

Model organization by team members or groups

A simple solution would be to assign one package per team member. Everything that Sam works
0N isin sampackage; everything that Julie works on isin Juliepackage. For very small project
teamsthisis aviable model. But again, it brings up the question of what Sam should work on
versus Julie. It can also be problematic if Susan wantsto update afew of Sam’s classes while Sam
isworking on othersin sampackage. Further, this scheme adds project team organization
dependencies into the model structure, making it more difficult to make changes to the project
team (such as assigning team members to another task) and also limits reusability.

Test considerations

Testing workflows can dictate model organization. Although testing teams require read-only
access to the model elements, they need to manage test plans, procedures, results, scripts, and
fixtures (often at multiple levels of abstraction). Testing typically occurs on primary levels: unit
testing, integration, and validation.

Because unit-level testing consists mainly of white box, design, or code-level tests and often uses
additional model elements constructed as test fixtures, it makes sense to co-locate them with the
corresponding parts of the model. So, if aclassmyclass hastesting support classes, such as
myClass_ tester aNdmyClass_stub, they should be kept together, either within the same package
or in another if apeer will do the testing (aslong asit isadifferent CI from that of the model
€lements under test).

Integration and validation tests are not astightly coupled as unit-level tests, but the testing team
might construct model elements and other artifacts to assist them. Because the creators of the
model elements do not typically do these tests, independent accessis required, so they should bein
different Cls.

Rational Rhapsody 17

Model organization and partition

Efficiently constructing and testing prototypesisacrucia part of the development life cycle. This
involves both tests against the architecture (integration) and against the requirements (validation)
for the entire prototype. There can be any number of model elements specifically constructed for a
particular prototype that need not be used anywhere else. It makes sense to keep these near that
build or prototype. Store test fixtures, to be applied to many or all prototypes, in alocale that
allows independent access from any given prototype.

Configuration items (CIs)

To implement an infrastructure, you need to determine which model elements should be individual
configuration items (Cls), because certain usage policies apply only if that model element isa Cl.

A Cl isany element stored in a separate file. The project is aways a separate file. In addition,
Rational Rhapsody allows you to store components, packages, classes, and diagrams (except
statecharts and activity diagrams) as individual files.

It would be extreme for the entire model to be asingle CI. In that case, only one person could
update the model at any given time. The other extreme would be to make every element (every
class and use case) a separate Cl. Again, in simple systems where there are only afew dozen
model elements, it would not be difficult to explicitly check out each element. However, this
method does not scale well, even to medium-sized systems where you might have to list 30 or 40
classes to work on alarge collaboration realizing a use case.

UML provides an obvious organizational unit for a C, the package. A UML packageis essentially
abag into which you can throw semantic model elements such as use cases, classes, objects, and
diagrams. So, although you might want to make packages Clsin your source control or
configuration management (CM) system, you need to decide which model elements should go into
one package versus another.

Considerations for dividing a project into units

Using Rational Rhapsody, you control the granularity level of the Cls or units.

By default, every package you create is a unit (a separate file on your file system). In addition,
components and diagrams are units. By default, all other design elements are not units and are
stored in the file of the parent unit. Therefore, a Rational Rhapsody model consists of the project
file (x.rpy), packagefiles (. sbs), component files (x . cmp), and various diagram files.

However, you can override these defaults according to the organization and requirements for a
project, either on a unit-by-unit basis or by establishing new policies for creating units. For
example, you can choose to make a particular class its own unit. Alternatively, you can set up
Rational Rhapsody so every new class you create is a unit.

18

Team Collaboration Guide

Configuration items (CIs)

Sometimes it makes sense to override the default settings and store a class or several classesin a
separate file, such as when a package is maintained by two team members, who often have usage
conflicts. While team member A works on the behavior of a certain element in the package as
captured in a statechart of one of the classes, team member B defines a new family of typesto be
used by al the classesin that package. In this case, you might want to make the class with the
statechart a separate unit.

This applies to diagrams as well. Rational Rhapsody stores diagrams as units, enabling you to
apply changes to the diagram without changing the actual model elements that appear in it;
changes to the colors, element layout, comments, and other graphic characteristics of the diagrams
can be changed regardless of the unit status (read-only or read/write) of the elementsit contains.
However, the diagramis often just a“view” that reflects certain aspects of the package to which it
belongs. In this case, changing these aspects (for instance, changing the multiplicity of arelation,
or deleting a class) requires a change in the diagram, and vice versa. Because of the associative
nature of Rational Rhapsody, some changes in the diagram require the design elementsto be
checked out (for example, adding relations and changing relations).

Sometimes it makes sense to override the default settings in the opposite direction, to reduce the
complexity, both in the number of files and in the need to perform CM operations. For example,
suppose you need to define 50 events in a package. To keep the design readable, you split these 50
events into three subpackages with meaningful names and appropriate descriptions. You might
want to create the design packages, without ending up with three new files. In this case, you can
override the default behavior to prevent the creation of packages as units.

In addition to defining unitsindividually, you can use properties to define new policiesfor creating
units. For example, you can prevent all new diagrams from becoming separate units. Or, you can
override the default policy for classes so all new classes are automatically stored as units.

Creating unit files

To create a unit:
1. Right-click the element and select Create Unit.

2. Inthe Unit window, the Storein Separ ate File check box is selected by default. You can
edit the default file name, but do not add a file extension.

3. Click OK.

Rational Rhapsody 19

Model organization and partition

Removing unit files
To change an element so it isno longer a separate unit:
1. Right-click the unit and select Unit > Edit Unit.
2. Clear the Sore in Separate File check box.

3. Click OK.

The unit file is not removed from the file system, but the file is obsolete. The element is now
stored in its parent unit.

Packages as units

By default, Rational Rhapsody saves all packages as units. To prevent packages from being saved
as separate units, set the general : :Model: : PackageIsSaveUnit property 0o cleared.

Classes as units

Rational Rhapsody does not save classes as units unless explicitly told to do so. You can store
classes as separate files on a class-by-class basis using the Create Unit option. To have Rational
Rhapsody automatically save all new classes as units, set the

General: :Model: :ClassIsSaveUnit Property to checked.

Diagrams as units

By default, Rational Rhapsody saves all diagrams except statecharts and activity diagrams as units.
You can change aparticular diagram so it isstored in its parent unit using the Edit Unit option. To
prevent Rational Rhapsody from automatically saving diagrams as units, set the

General: :Model: :DiagramIsSaveUnit property to cleared.

20 Team Collaboration Guide

The project file

The project file

When you save a Rational Rhapsody project, you save a project file with the . rpy extension as
well as supporting files.

The Rational Rhapsody project file contains two types of information. Thefirstisalist of

components, diagrams, packages, and so on that constitute your project. The second is alist of
properties that you have overridden at the project level.

Note

Project-level properties encompass technical aspects that apply to all elementsin a project,
such asthe CM tool, default editor, autosave preferences, and font settings.

The project file (<Project>. rpy) iSaunit that can be checked into a CM archive, which means
you can perform CM operations on thisfile just like any other unit. Becausethe . rpy file contains
the latest list of top-level unitsin your project, you will probably need to check it out for changes
whenever you plan to add new packages or components to the project. (Adding new elementsto a
package requires a checkout of the package file, not the . rpy file.) In addition, you need to check
out the . rpy fileif you plan on modifying the project-level properties.

Because it isa unit that can be placed under CM, you can use the DiffMerge tool on the . rpy file.
For more information about thistool, see parallel development.

The project fileis aunique, top-level package.

Multiple Rational Rhapsody projects

Asthe project expands and complexity grows, you have severa optionsfor “growing the project.”
In some cases, the best approach isto continue adding new elementsinto a single Rational
Rhapsody project. In other cases, it is more efficient to create a new project.

No single solution fits al scenarios. Consider the following issues when planning for project
growth and expansion:

*

For asingle Rational Rhapsody project, it is easy to apply aproperty or set of propertiesto
all model elements. For multiple projects, the process must be done for each project.

The CM archive associated with a project is stored in a project-level property. Therefore,
if aproject will be stored in more than one archive, you must create a separate Rational
Rhapsody project for each archive.

*

¢ When you want to achieve a situation where al team members are aware of al the design

parts, including those they are not directly involved with, having a single Rational
Rhapsody project is a good approach.

Rational Rhapsody 21

Model organization and partition

If you want to isolate the work of different team members so each member sees only the
elements relating to their work, create multiple projects (one for each team member).

Distributed teams working on different components of a system can benefit from splitting
the overall project into several smaller Rational Rhapsody projects.

If you want to reduce the complexity of a project by limiting it to a defined and
encapsulated functionality, having multiple projects (each dedicated to awell-defined
piece of functionality, essentially a set of components) means that all team members have
accessto all the elementsin the project.

When your project is practicing in abinary reuse pattern, split it into several projects.
When using a model reuse pattern, do not split it.

When the project is mapped to several binary components interleaved together to create a
final product (for example, a set of libraries used by one or more executables), placing
them in asingle project helps the team member designing not only the internals for the
component but also the relations between them using component diagrams (makefiles
take into account cross-component relations).

The following issues should not affect the decision to split a project into multiple projects:

*

*

Timeto load the project into Rational Rhapsody

The partial 1oad feature enables you to load only the units needed for your current task
without loading the entire project.
The operating system

If asingle design needs to be regenerated to target several operating systems, thereis no
need to create multiple projects.

The decision of how to structure the overall project is not irreversible; you can easily divide a
project into two projects, and you can merge two projects into asingle project.

Dividing a project into two projects

To divide a Rational Rhapsody project into two projects:

1

Decide on names for the two new projects.

Ideally, a project that you are planning to divide has two separate, complex parts, with no
dependencies between them.

Save the project under both of the new names, for example, parti.rpy, and part2.rpy.

For each new project, open the project in Rational Rhapsody, delete the unnecessary
elements from the model, and save.

You now have two separate projects stored on your file system. You cannot modify the CM archive
from within Rational Rhapsody (it must be done manually using your CM tool).

22

Team Collaboration Guide

Repository structure

Two projects into one project

Combining two projects into one is more complex than dividing a project. When combining two
projects, make sure that the project-level properties of the two projects do not collide with each
other, causing problems in the composite project.

You can use the DiffMerge tool to accomplish this task. For more information about this tool, see
Parallel development.

Changes to the CM system must be done outside of Rational Rhapsody.

Multiple project workflow

When you have a project that consists of several Rational Rhapsody projects and you want to share
information between them beyond binary reuse, while keeping the design parts separate so you
cannot change one project while working on another, you can add units from one project as
references in another. Thisis a classic, multiple-parts gray box collaboration.

Only non-referenced units (units loaded in the current model) should be archived with the project.
When new units are added to areferenced project, they must be refreshed in the active project.

Repository structure

By default, Rational Rhapsody stores all the repository files (class files, package files, diagram
files, and so on) in asingle directory, creating a“flat” list of files that represents a tree-structured
hierarchy of the UML design elementsin Rational Rhapsody. This approach has certain
limitations, especially when projects grow very large and complex.

Rational Rhapsody supports a paradigm known as hierarchical repository. With this feature, as
you save your model, Rational Rhapsody maps UML packagesto directories containing the design
elementsincluded in their scope. You are not required to use the hierarchical scheme; by default,
the tool usesthe flat structure. You have the choice of moving some or all of your packagesto a
hierarchical structure.

Restructuring the project can be done as a one-time effort, or by gradually moving severa
packages at atimeto their own directories, reducing complexitiesin specific areas of the model.

Rational Rhapsody 23

Model organization and partition

Repository structure planning

The structure of your repository depends on the organization of your project and, like other project
decisions, involves trade-offs.

On one hand, keeping an entire model in asingle file prevents any conflict but practically disables
paralel development. On the other hand, making every single design element and diagram a unit
can be overkill, and leads to alarge number of files and much larger overhead in terms of the
number of files you need to check out in order to accomplish atask.

Anaogously, when structuring a Rational Rhapsody project repository, keep in mind that moving
from one extreme (where you have hundreds of Rational Rhapsody files located in asingle
directory) to the other extreme (where you have hundreds of directories containing asinglefile
each) is probably not an effective use of the hierarchical repository feature.

For example, consider aproject a that contains 200 units, out of which 120 are package (* . sbs)
filesand 80 are other types of unit files, and project 8 with 200 units, out of which 20 are packages.

If moved to a pure tree structure (where every UML package is mapped to adirectory in thefile
system), each directory in project a will have (on average) 1.66 files; many directorieswill contain
asingle file and many others will have two files. Such a structure provides very little advantage,
and might increase project overhead.

On the other hand, if you moved project B to a pure tree structure, an average directory would
contain 10 fileswith interrelated functionality, which is a reasonable number. This solves many of
the problems faced by flat repositories, while adding very little overhead in terms of new
directories.

Consider these factors when you decide whether to store a project in a hierarchical structure. Note
that the entire project does not have to have the same structure, some packages can be stored in a
hierarchy, whereas others remain in aflat structure in their parent folder.

24 Team Collaboration Guide

Repository structure

Flat repositories

A flat repository works best for smaller projects that have many packages that contain very few or
no unit files and subpackages. In these cases, dividing packages into folders does not simplify the
project, and might make it more complex.

In contrast, large models typically encounter problems when stored in flat repositories, especially
when the model contains many units and subpackages.

The following list describes typical problems encountered with flat repositories:

+ Visibility where asingle directory containing hundreds of files cannot be viewed in aclear
way in asingle window.

+ Focuswherein adirectory containing hundreds of files, you cannot focus on asingle
functional area of the project and detect which elements belong to which functional area.
Thisisimportant when you want to check if all the files are present in your view, find the
latest modification date, and so on.

+ Portability where copying and sending several Rational Rhapsody files representing a
single functional areato a co-worker or support person poses a serious challenge because
of the difficulty in determining which files are really needed.

+ Branching where when checking out severa different parts of the model to abranch, itis
difficult to identify the required functionality and check in all related files.

+ Integration with other toolsand processes where some CM tools assist with process and
control issues by setting permissions on directories. For example, you can lock adirectory
called engine Of core to prevent modifications, but keep the app1ication directory open
to changes. A flat repository cannot take advantage of these options, but a hierarchical
repository easily facilitates the implementation of a directory-driven process.

Rational Rhapsody 25

Model organization and partition

Hierarchical repositories

By dividing a project into hierarchical directories based on model organization, you can avoid or
resolve many of the problems encountered with flat repositories.

With a hierarchical repository, you can easily identify the correct directory for a particular
functional area. You can then view al related filesin a single window, copy them or extract them
for distribution, check them into or out of an archive, and take advantage of CM features that
operate on directories.

However, maintaining directories adds alevel of complexity to file management. Operations such
as renaming or moving a package can be more difficult to execute within the CM tool, depending
on the type of tool you are using. Careful analysis of the model will determine whether the added
organization of a hierarchical repository isworth the trade-off of increased complexity.

The repository structure is controlled by the General: :Model : :DefaultDirectoryScheme
property.

26

Team Collaboration Guide

Example of project under CM

Example of project under CM

A project consists of Rational Rhapsody elements stored as files on the local file system and
archived in a CM repository.

Ideally, both the CM repository and file system mirror the structure of the project in Rational

Rhapsody. The following figure shows a Rational Rhapsody design, file structure, and CM
repository synchronized with each other.

E RHAP_PROD:SCC_DEMO_WKST - Work Set Directory

‘work St [FHAP_PROD:SCC_DEMO_WKST

=] [tems (4] SIES R

Direchom ID:\

Filename | R

=18 RHAP_PROD:SCC_DEMO_WKST
ER
&

L] Tree

@Explming - G:\projectsitstitst_rpy

Eile Edit Wiew Took Help

L1 -3 B tsthtst_pyhclass_D.cls

L1 -3 B tststst_rpy\DefaultComponent.crmp
L1 = B tathtst_rpuFlat zbs

L1 = B tathtst_rpuModel . omd

14 |

E‘{:I tst ;I M ame
SR} s Dy [Tree
1 Tree B class_O.cls
I | A Defoul
Uit i IﬂlDefaultComponent.cmp
niview T | [flesT able. dat
B 2

EEI Cormpotient:
: Byl DefaultComponent

Flat.shs

= [Madert.omd

=-£3 Object Madel Diagrams
i LBE Moden
-3 Packages

=@ [Flat

. B Classes

E clazz [
R Tree

Rational Rhapsody

File System

CM Repository

In some cases, changes you make to your Rational Rhapsody model result in changes to the
directories and files stored on the file system. Some examples include creating new units,
renaming units, and moving units to new locations. Rational Rhapsody can update some of these
changesin the CM system automatically, completing the three-way synchronization without any
additional steps. Use the CM tool to manually make the changes that cannot be accomplished
using the CM tool from within Rational Rhapsody.

Rational Rhapsody

27

Model organization and partition

In other cases, it is easier to make changes to the structure of your project outside of Rational
Rhapsody, particularly when moving files from aflat structure to a hierarchical structure. You can
make these changes to your file system and your CM system directly. When you next open
Rational Rhapsody, you are asked to locate the missing units. Rational Rhapsody prompts you
with two options for restoring synchronization:

+ Update the repository with the new location, so the new structure is preserved going
forward.

+ Movethefilesfrom their current location back into the expected location.

Note

If the CM system has been updated with the new location of thefile, it isimportant that you
not select the Copy unit to project path option. This might affect the integrity of the system.
Instead, update your Rational Rhapsody model with the current location of the file so it
matches the CM system.

Restructuring a project
To make changes to your file system and CM system outside of Rational Rhapsody:
Update the file structure on your file system.
Update the structure of you CM system outside of Rational Rhapsody using your CM tool.
Open Rationa Rhapsody.

In the Search for File window, locate the new location of thefile.

a b~ w NP

Select Update model—K eep unit in current location from the Next Location of Missing
Unit window.

28 Team Collaboration Guide

Example of project under CM

File and directory creation

When you create a new unit in amodel, Rational Rhapsody creates a new filein the file system for

that unit. Thisnew fileis not automatically placed under CM. Use the Add to Archive operation to
add the file to the CM tool.

When creating anew package unit, if the project uses a hierarchical directory structure, both afile

and a directory are created in the Rational Rhapsody project. You need to create this new directory
in the CM file structure.

Directories in SCC mode

To add a new package and package directory to aCM archivein M icrosoft® Common Source
Code Control (SCC) mode, add the unit file to the repository using the Add to Archive operation.
The Add to Archive operation creates directories automatically in the CM system, as necessary.

Directories in batch mode

When you use a CM tool in batch mode, directories are not automatically created in the CM
archive. However, Rational Rhapsody assists you with creating new directories using the
ConfigurationManagement: :<CM tools::MakeCMShadowDirActivation property.

The possible values are as follows:

¢ Disable Means Rationa Rhapsody does not create a directory. You need to create the

directory in the CM archive outside of Rational Rhapsody.

UserConfirmation Means Rational Rhapsody asksif you want to create a new directory
in the CM structure whenever you save a project that contains a new directory.

automatic means Rational Rhapsody automatically creates the directory in the CM
structure whenever new directories are created by a save in Rational Rhapsody. Note that
Rational Rhapsody creates the directory in the CM archive for every new directory. There
exists the potential for the creation of unneeded (and probably unwanted) directories for
packages that you do not intend to add to the archive.

Once you have created the new directory in the CM archive, you can archive the new package unit
and any of its child unit files using the Add to Archive operation.

*

*

Rational Rhapsody 29

Model organization and partition

Keyword expansion in batch mode
When performing CM operations in batch mode, Rational Rhapsody expands keywords.

The following table lists the keywords and their expansion:

Administrative Keywords

Rhapsody project

Keyword Name Expanded to Comments
$Operation The name of the CM operation Appears in
being executed by Rational CMOperationStartSeparator &
Rhapsody CMOperationEndSeparator
$Time The current system time
$Date The current system date
$User The logged in user name
$temp The current system temporary
directory as specified in the TEMP
environment variable
$OMROOT The value of OMROOT as loaded
into Rational Rhapsody (most likely
from the .ini file)
$projectname The name of the Rational

Directories, paths, file names

Keyword Name

Expanded to

Comments

$projectunitdirname

Project unit directory name (_rpy).
This is not the full path to the unit
directory, but just the name of the
directory.

This keyword is different from the
$rhpdirectory, which expands to full
path to the project unit directory.

$FileName

This expands to repository file
specified during connect to archive
operation.

$fulldir

Name of the CM shadow directory
to be created in the archive

To be used in
$MakeCMShadowDir property.

$parentdir

The name of the parent directory of
the CM shadow directory to be
created in the archive

$rhpdirectory

Name of the project units directory

Crpy)

30

Team Collaboration Guide

Example of project under CM

Administrative Keywords (Continued)

Directories, paths, file names (continued)

Keyword Name

Expanded to

Comments

$SubDirs This is the sub directory of a CM
unit with respect to its archive root
director.

$targetDir Name of the directory where the
file is put during Fetch operation

$unit Name of the CM unit file name

$UnitDirectory

This is the sub-directory of a CM
unit with respect to project units
directory (_rpy).

This is the “PersistsAs”
sub-directory of the CM unit.

$UnitDirPath

Full directory name of the CM unit

$UnitPath

Complete path name of the CM
unit file name

$currentdirectory

Current working directory name

$archivedirectory

Directory name of the CM archive

$ArchivePath Directory name of the CM archive
$dir These is the name of the directory | To be used in “Rename,”
which contains the CM units whose | “RenameDirectory,” “Move,”
name is changed. “MoveDirectory” property.
$oldname Previous name of the CM unit file
name it can be also a directory
name
$newname Changed name of the CM unit file
name it can be also a directory
name
$olddir Name of the directory from which | To be used in “Move” &
CM unit has been moved “MoveDirectory” property
$newdir Name of the directory where CM
unit is moved
$archive Name of the archive file specified
in “Connect2Archive” operation
$ArchiveRoot NOT USED NOT USED

Rational Rhapsody

31

Model organization and partition

Administrative Keywords (Continued)

Arguments to CM commands

Keyword Name Expanded to Comments
$mode Locked or unlocked check box Reflects value entered by the user
in the UI
$log Comment string
$label Label identifier string
$newdir The new directory in which a unit Used when moving a unit in tree
will be stored structure
$olddir The old directory name where unit
used to be stored
$newName The new name for a unit file Used when renaming a unit
$oldName The old name for a unit file
$dir This is the name of the directory, To be used in “Rename,”
which contains the CM units whose | “RenameDirectory,” “Move,”
names changed. “MoveDirectory” property
$oldname Previous name of the CM unit file
name it can be also a directory
name
$newname Changed name of the CM unit file
name it can be also a directory
name
$olddir Name of the directory from which | To be used in “Move” &
CM unit has been moved “MoveDirectory” property
$newdir Name of the directory where CM

unit is moved

Keywords for the Rational Rhapsody DiffMerge Tool

Keyword Name Expanded to Comments
$DifflInvocation The command line used to launch
the Rational Rhapsody DiffMerge
tool
$sourcel The full path name of the first file to
be compared
$source2 The full path name of the second
file to be compared
$output The name of the file used by the
merge tool

32 Team Collaboration Guide

Example of project under CM

File and directory deletion

When you delete a unit from a project in flat mode (where al units are in one directory), Rational
Rhapsody performs a Delete from CM operation. This process uses properties in batch mode and
the SCC API in SCC mode.

In SCC mode, when you delete a package that is stored in a separate directory, only the package
fileisdeleted; in Rational ClearCase, both the package file and the package directory are removed
from the CM repository.

The following properties control file deletion (including files of descendant units):

¢ ConfigurationManagement::SCC: :DeleteActivation (SCC mode)

¢ ConfigurationManagement::<CM tools (batch mode)

Note

For this operation, the Rational Rhapsody Undo command (Ctrl+Z) works only in the
model, not in the archive. You cannot undo a delete operation in the archive.

In some cases, Rational Rhapsody cannot delete afile from the CM archive. When this occurs,
Rational Rhapsody removes the unit from the model (but does not delete the file on the hard drive
or remove the file from the CM system) and displays an error message informing you that the unit
was not completely removed. Check the Rational Rhapsody Output window for additional

messages.

Unit storage

By definition, units are stored in separate files. However, you can move a unit back into the file of
its parent (usually a package) using the Edit Unit window. When a unit is moved back into the
parent file, the unit file becomes obsolete. Therefore, Rational Rhapsody deletes the unit file
(without descendants) using the Delete from CM command, as described in File and directory
deletion.

Rational Rhapsody 33

Model organization and partition

Packages in a new directory

When a package is saved in its own directory, a new directory is created in its parent folder. When
apackage is moved out of its own directory back into the parent folder, adirectory isremoved
from the project. However, when either of these operations occur, Rational Rhapsody does not

make any changesto the CM system. You must manually add or remove the extra directory in the
CM system.

In these cases, Rational Rhapsody displays an error message stating that the operation could not be
performed in the CM system. For more information, see When Rational Rhapsody cannot update
the CM system.

File renaming

When you rename a unit in your model, Rational Rhapsody uses the Rename in CM operation.
This operation is based on properties in batch mode and the SCC API in SCC mode.

The following properties control renaming afile:

¢ ConfigurationManagement::SCC: :RenameActivation (SCC mode)

¢ ConfigurationManagement::ClearCase: :RenameActivation and Rename (ClearCase)

Note

For this operation, the Rational Rhapsody Undo command (Ctrl+Z) works only in the
model, not in the archive. You cannot undo a rename operation in the archive.

In cases where Rational Rhapsody cannot rename the file in the CM system, Rational Rhapsody
changes the unit name in the model, but not in the CM system. For more information, see When
Rational Rhapsody cannot update the CM system.

34

Team Collaboration Guide

Example of project under CM

Package contained in its own directory renaming

In Rational ClearCase, when you rename a packagein its own directory, both the file name and the
directory name are changed (SeeEile renaming). Note that the

ConfigurationManagement: :ClearCase: :RenameDirectory Property controls renaming
directories.

For other CM tools, when you rename a package located in a separate directory, Rational
Rhapsody does not make any changes to the CM system. Instead, Rational Rhapsody displays an
error message stating that the operation could not be performed in the CM system.

If you change the model only, Rational Rhapsody renames the package in the model but does not
change thefile or directory name in either the file system or CM system. If you change the model
and the file system, Rational Rhapsody changes the names of the model element, file, and
directory. For more information, see When Rational Rhapsody cannot update the CM system.

Control moving a file or directory

When you move afile from one location to another in the file system, Rational Rhapsody activates
the Move in CM operation. This operation is based on properties in batch mode and the SCC API
in SCC mode.

The following properties control moving afile:

¢ ConfigurationManagement: :SCC::MoveActivation (SCC mode)
¢ ConfigurationManagement: :ClearCase::MoveActivation (baIch mode)

¢ ConfigurationManagement::ClearCase: :MoveDirectory (CIearCase)

Note

For this operation, the Rational Rhapsody Undo command (Ctrl+Z) works only in the
model, not in the archive. You cannot undo a move operation in the archive.

When you rename a package that is in a separate directory, Rational Rhapsody does not make any
changes to the CM system. Instead, Rational Rhapsody displays an error message stating that the
operation could not be performed in the CM system.

If you change the model only, Rational Rhapsody moves the package in the model but does not
change the file system or CM system. If you change the model and the file system, Rational
Rhapsody changes both the model and file system. For more information, see When Rational
Rhapsody cannot update the CM system.

Rational Rhapsody 35

Model organization and partition

When Rational Rhapsody cannot update the CM system

In some cases, Rational Rhapsody cannot update the CM system to match the changes made to the
file system. If this occurs, Rational Rhapsody displays a message window.

You have the following options:

+ Change the model structure, but keep the physical layout on the hard drive as-is. Rational
Rhapsody does not make any modifications to the CM system. For more information, see
Model only changes.

¢ Change the model structure and hard drive layout. This requires modifications to the CM
system outside of Rational Rhapsody. For more information, see Model and the file system

changes.
+ Cancel the operation. For more information about thistool, see Canceling a change.

To set your current selection as the default (and not display this window in the future), select the
Don’t ask me again, use my current selection as default check box.

The configurationManagement : :General: : CMConflictResolution property storesthe default
selection for this error message. Set the property to askuser if you want this error message to
appear whenever this situation occurs.

Model only changes

Select the Change only model option to maintain synchronization between the model and CM
system (units do not lose their “CM history,” you do not encounter unrecognized units that are
already under CM, and so on).

When you select this option, you do not need to perform any maintenance operations on the CM
tool outside of Rational Rhapsody and workflow is not interrupted. However, the model structure
does not match the physical layout of the files on the hard drive. Thisisthe simplest solution, but
can lead to problemsin later development, especially for large projects. The disparity between the
model layout and the file system can be confusing.

To set this option as default, set the property as follows:

ConfigurationManagement: :General: :CMConflictResolution to ModelOnly

36 Team Collaboration Guide

Example of project under CM

Model and the file system changes

If you update both the file system and model, a model/CM synchronization problem might result
(some of the units might lose their “CM history,” some units cannot be checked in because they are
not recognized as CM elements, and so on). In addition, you must perform maintenance operations
on the CM tool outside of Rational Rhapsody to synchronize the changes on the hard drive with
the CM system.

The benefit of this option is that the model structure, as seen in the Rational Rhapsody browser,
matches the physical layout on the hard drive. Therefore, this option requires more work to
implement, but resultsin a better organized system that is less likely to cause problemsin the
future.

To set this option as default, set the property as follows:

ConfigurationManagement: :General: :CMConflictResolution to ModelAndFileSystem

Canceling a change
Click Cancel on the error message box to cancel the changes that caused the CM conflict to occur.

Rational Rhapsody 37

Model organization and partition

38

Team Collaboration Guide

CM and Rational Rhapsody

Rational Rhapsody supports collaboration among several devel opers or teams by allowing projects
to be divided into multiple files, called units, that can be worked on concurrently. It also has a
built-in interface that connects with several common source control or configuration management
(CM) tooals.

This subject describes how to manage units from within Rational Rhapsody using a CM tool.

SCC versus Batch mode

Rational Rhapsody supports common CM operations, such as Connect to Archive, Add Member,
Check In, and Check Out, for awide variety of CM tools. The Windows version of Rational
Rhapsody also supports SCC operations, such as Get, Un-Check Out, and History, for CM tools
that conform to the SCC standard.

Batch modeis the traditional method of interacting with CM tools that do not conform to the SCC
standard. In this mode, Rational Rhapsody has a custom set of properties for each tool that calls
tool-specific commands for the CM operations. The Lock and Unlock operations are supported
only in batch mode.

SCC mode is an aternate method of interacting with CM tools that conform to the SCC standard.
In SCC mode, you need set only one property to interface with any of dozens of SCC-compliant
CM tooals, without further customization. You interact directly with the GUI elements of your CM
tool to perform SCC-supported operations. Return status information, or error information in the
case of failure, comes directly from the CM tool. Thus, you have more direct CM tool interaction
(and receive more complete feedback on CM operations) in SCC mode. The Fetch and Properties
operations are supported in SCC mode only.

Note

As an SCC-compliant IDE, Rational Rhapsody can communicate with any CM tool that
conform to the SCC standard. Note, however, that IBM Rational Synergy, IBM Rational
ClearCase, and Serena PV CS Dimensions are the only SCC tools supported by Rational
Rhapsody.

Rational Rhapsody 39

CM and Rational Rhapsody

Configuration Items window

To begin any CM operation in Rational Rhapsody, open the Configuration Items window. Choose
File> Configuration Items.

Note that the avail able operations depend on the CM tool you are using and whether you are
running in batch or SCC mode. See CM operations for thelist of CM operations supported in either
mode.

The buttons in the Configuration Items window apply commands directly to the CM tool. The
response of the specific tool is displayed in the Rational Rhapsody Output window or, in the case
of SCC tools, in message boxes specialy designed for this purpose.

Note

It isimportant to observe messages from the CM tool because the commands can sometimes
fail. See CM Output window.

40

Team Collaboration Guide

CM operations

CM operations

The are anumber of CM operationsincluded in the standard Rational Rhapsody interface. You can
also assign additional operations to any of four customizable buttons. For more information, see
CM interface extension.

Connect to Archive

The Connect to Archive operation connects the project in your workspace to aCM archive. In
addition, it permanently sets properties associated with the archive to be referenced internally
whenever the project needs to communicate with the CM tool. You need to perform this operation
only once for the lifetime of the project.

A Connect operation also triggers actions that should be performed before any other CM
operation.

In batch mode, you must tell Rational Rhapsody which CM tool you are using by setting the
cMTool property. In SCC mode, you need to set a different property because the cmToo1 property
isignored. For more information, see Enabling a SCC-compliant CM toaol.

Button | CM Operation Mode Description

Connect to Batch and Connects the project to an archive. You need to
Archive SCC perform this task only once for the life of the project.

Show ltems in Batch and Displays units that have been archived. (The
Archive SCC Configuration Items list displays all units, archived or
not.)

Comparing with | Batch and Compares a unit in the model with its archived unit in

EL;‘ZE the DiffMerge SCC the configuration management (CM) archive.

b tool

= Synchronize Batch and In Rational ClearCase, this operation synchronizes
J' ltems SCC your model with the current view.

BER In batch mode, this operation synchronizes the

model with the latest versions in the CM tool.

In SCC mode, this operation synchronizes the
model with your local file system.

Run CM tool Batch and Launches the CM tool assigned to this project. It is
ﬁ SCC controlled by the RunCMToolCommand property.
Ed

Check Out Batch and Checks out all configuration items in a branch.
E—Ell Branch SCC

Rational Rhapsody 41

CM and Rational Rhapsody

Button | CM Operation Mode Description
=1 | Checking out a | Batch and Checks out the file from the archive. The model
* unit SCC element becomes a read/write (RW) unit that can be
= edited.
+' Checking in a Batch and Checks in new versions of configuration items. The
= unit SCC model element becomes read-only (RO).
: Using Add to Batch and Adds new units to the archive.
+ Archive in CM SCC
b operations
Locking/ Batch Locks units to prevent them from being modified by
é Unlocking a unit | (except others.
Rational
ClearCase)
Locking/ Batch Unlocks units that you have previously locked so
é‘ Unlocking a unit | (except others can edit them.
Rational
ClearCase)
= Fetching aunit | SCC Loads the checked out unit into your model.
A
: History/Version | SCC and In SCC mode, this operation displays the history of
I tree Rational the file in the archive.
ClearCase | For Rational ClearCase in batch mode, this
operation lists all the versions in the archive.
: Displaying the SCC Enables you to set the properties of the file in the
r_, properties of a CM tool.
£ @ |unit
&= 51 | Uncheck Out SCC and Rolls the file back to the latest version in the archive.
-"" Rational The file is unlocked in the archive, and the local copy
b ClearCase | is replaced by the archived version, as if the file had

never been checked out.

42

Team Collaboration Guide

CM operations

Connect to Archive in SCC Mode

In SCC mode, you must connect to the archive only once (there is no need to reconnect the
project). Once the project is connected to the archive, you are prompted to log into the CM system
when you perform a CM operation.

For more information, see Creating the initial connection to the SCC tool in Dimensions.

Connecting to a different archive

To connect to a different archive, you must first clear the property information from the currently
displayed archive.

To perform this clean-up operation:
Choose File > Project Properties.
In the Features window, on the Properties tab ensure that the View All option is selected.
Navigate to the configurationManagement : : SCC group of properties.

1

2.

3

4. Clear any information in the AuxProj Path box.
5. Clear any information in the ProjName box.

6

Click OK.
Configuring a CM tool Batch mode
To configure a CM toal in batch mode:
1. ChooseFile> Project Properties.

2. Onthe Propertiestab, set the configurationManagement : : General : : CMTool property
to one of the following values:

¢ (Clearcase (In batch mode only.)
+ none (You are not using CM.)

Rational Rhapsody 43

CM and Rational Rhapsody

Connecting a project to the archive
To connect the project to the archive:

1. Open the Configuration Items window. Choose File > Configuration Items.

2. Click the Connect to Archive button. Note that in batch mode, the Connect to Archive
window opens. When you use the Browse button, if the archiveis represented as a
directory (asin RCS) rather than afile, you must select afile within thisdirectory and edit
the path in the window. Alternatively, type the entire path in the text box.

3. Onceyou have set the archive, click OK.

Note

Setting the archive might involve additional activities, depending on how your CM tool has
been set up.

The CM tool connects your working project to the archive. If successful, the Output window
displays a confirmation message.

Show Items in Archive

The Show itemsin Archive operation lists units that have been added and checked into the CM
archive. You must perform a List Archive before checking out a unit that does not currently exist
in your workspace.

To list the archive, click Show itemsin Archivein the Configuration Items window. The Archive
window opens, listing all the unitsin the archive.

For an example of using the List Archive operation in SCC mode, see Listing the archive in PVCS
Dimensions.

Run CM tool

You can use this user-defined button to launch your CM application from the Rational Rhapsody

interface. It is controlled by the RuncMToolcommand property. For more information, see CM
interface extension.

44 Team Collaboration Guide

CM operations

Comparing with the DiffMerge tool

The DiffMergetool in Rational Rhapsody allows you to compare two units (or two versions of the
same unit) and merge them, if you want.

To compare the two units of amodel:

1. Inthe Configuration Items window or the Archive list, select the unit you want to
compare.

2. Click Diff with Rhapsody.

You can launch the DiffMerge tool to compare two archived files with the same name from inside
Rational Rhapsody. If you want to compare units of the same type, but with different names or
entire Rational Rhapsody projects, you must launch the DiffMerge tool outside Rational
Rhapsody. For detailed instructions to use thistool, see Parallel development.

Displaying the properties of a unit

The Properties operation is an SCC operation that retrieves the file details for a unit (such asthe
file name and date it was created). The Properties operation is not available in batch mode.

To display the details of a unit that is a member of an archive:
Open the Configuration Items window. Choose File > Configuration Items.
Highlight a unit that has been added to the archive.

Open its Properties window. Click the Properties button.

A w Dd P

Examine the file details for the highlighted unit.

Rational Rhapsody 45

CM and Rational Rhapsody

Synchronize Iltems

Depending on the type of CM tool, the Synchronize option enables you to synchronize your model
(workspace) with the local file system or CM archive.

To synchronize a unit in your workspace with the archive, click Synchronize Items. Rational
Rhapsody displays one of the following windows:

¢ Synchronize with View. When you use Rational ClearCase in batch mode, the

Synchronize with View window synchronizes your model with the current Rational
ClearCase view.

* Mode files have been modified outside of Rhapsody. In SCC mode, the synchronize

operation synchronizes elementsin your local model (workspace) with your local file
system.

Note

The Synchronize window does not display controlled files when there are newer versions of
thesefilesin the CM system.

Autosynchronize

The autosynchronize property isaBoolean value that determines whether Rational Rhapsody
does synchronization. When this property is checked, each time Rational Rhapsody gets the focus
(for example, if you leave Rational Rhapsody to read e-mail, then switch back to Rational
Rhapsody), Rational Rhapsody calls the synchronize functionality. The synchronize can be a
synchronization with the files on the file system, view, or CM archive, depending on the
environment.

To set this property, set the general: :Model : : AutoSynchronize Value to checked. For more
information about this property, see the Properties tab of the Features window for it.

46 Team Collaboration Guide

CM operations

Check out operation

In batch mode, the Check Out operation can fetch a unit from the archive with or without alock.
However, in SCC mode, the Check Out operation always fetches the unit with alock.

In both batch and SCC modes, the Check Out operation always performsimplicit Add to Model
and Update operations using the appropriate CM information (such as version, CM header, and so

on).

Before checking a unit out of the archive, use the List Archive option to confirm that the unit has
been properly added to the archive, and that at least one version of it has aready been checked in.

Checking out a unit
To check out a unit from the archive:

1

In the Rational Rhapsody browser, right-click the unit or units you want to check out and
select Configuration Management > Check Out. The Check Out window opens with
information displayed for the selected items. If a selected items in reserved by another
user, the Reserved check box is selected and the check out operation cannot be
performed.

Select the Include descendents check box if you want the units checked out with nested
units. For example, if a package that is a unit has a nested package that is also a unit, this
option checks out both packages.

Select the I nclude corresponding sour ce artifacts check box, if available, if you want to
check out corresponding source artifacts. (Code respect information, such as mapping,
ordering, and code snippets, of an element is defined in a SourceArtifact element, whichis
typically created by reverse engineering or roundtripping.

If your CM tool has advanced options, you can click an Advanced button to open its
Advanced Options window. The Advanced Options window that opensis provided by
your CM tool.

If you opened an Advanced Options window, click OK to closeit after you make your
selections.

Click OK on the Check Out Options window to confirm your settings and check out the
units.

Rational Rhapsody 47

CM and Rational Rhapsody

Depending on what changes you make to a unit that is contained inside a package (for example, a
class), the package information might also change accordingly.

In the following situations, you must check out the containing package and the nested unit:

*

*

*

You change the package to which the unit belongs.
You move a nested unit from one unit to another within the package.
You change the name of a unit.

Check In operation

The Check In operation copies a unit from your working project into the CM archive.

Checking in a unit
To check a unit into the archive:

1

In the Rational Rhapsody browser, right-click the unit or units you want to check into the
configuration management system.

Select Configuration Management > Check In. The Check In window displays with
information displayed for the selected items. If a selected itemsin locked by another user,
the L ocked check box is selected and the check in operation cannot be performed.

Select the Include descendents check box if you want to check in nested units.

Select the I nclude corresponding sour ce artifacts check box, if available, if you want to
check in corresponding source artifacts. (Code respect information, such as mapping,
ordering, and code snippets, of an element is defined in a SourceArtifact element, whichis
typically created by reverse engineering or roundtripping.)

Type aRevision Description explaining the changesin thisrevision. Note that most CM
tools ignore the description the first time you check in a unit.

If your CM tool has advanced options, you can click the Advanced button to open its
Advanced Options window; otherwise the button is disabled. The Advanced Options
window that opensis provided by your CM tool.

If you opened an Advanced Options window, click OK to closeit after you make your
selections.

Click OK on the Check In Options window to confirm and check in the units. Rational
Rhapsody saves the project (including concatenating CM headers and footers) before the
CM tool checks the unit into the archive.

48

Team Collaboration Guide

CM operations

0.

Click OK to dismiss the confirmation message.

Note

In SCC mode, the Check In operation can be successfully completed only if aunit isaready
checked out. If a unit that you are trying to check in is not already checked out, by default,
the Check In operation isignored. A message to this effect is displayed on the
Configuration Management tab of the Output window.

Using Add to Archive in CM operations

You can add aunit into aCM archive only if the unit isnot aready in it.

To add one or more unitsto aCM archive:

1
2.
3.

In the Configuration Items window, select the units you want to add to the archive.
Click the Add to Archive button.

If your CM tool has advanced options, you can click the Advanced button to open its
Advanced Options window; otherwise the button is disabled. The Advanced Options
window that opensis provided by your CM tool.

If you opened an Advanced Options window, click OK to close it after you make your
selections.

Click OK on the Add to Archive Options window.

Rational Rhapsody saves the project and the CM tool adds the unitsto the archive. If the
operation is successful, a confirmation message is displayed. After units are added to the
archive, the CM tool rereads information stored with the unit files, begins load metering,
and processes the information rapidly.

Rational Rhapsody 49

CM and Rational Rhapsody

Lock and Unlock operations

The Lock and Unlock operations are available in batch mode only. When you lock a unit, its
permission becomes read/write for you and read-only for others. When you unlock a unit, its
permission becomes read-only for all users.

Locking/Unlocking a unit
To lock or unlock one or more units:

1

In the Configuration Items window, select the currently unlocked (RO) or locked (RW)
units.

Click Lock or Unlock, whichever is applicable.

Click OK.
The permission for the unit is changed to read/write (RW) if you locked or to read-only
(RO) if you unlocked.

Fetching a unit

The Fetch operation is an SCC operation that fetches a unit from the archive without alock (RO).
The dternative is the SCC Check Out operation, which aways fetches a unit with alock (RW).
The Fetch operation is not available in batch mode.

To fetch aunit:

1. Inthe Configuration Items window, select the units that you want to check out as
unlocked.

2. Click the Fetch button.

3. If your CM tool has advanced options, you can click the Advanced button to open its
Advanced Options window; otherwise the button is disabled. The Advanced Options
window that opensis provided by your CM tool.

4. |If you opened an Advanced Options window, click OK to close it after you make your
selections.

5. Click OK on the Get Options window.

50

Team Collaboration Guide

CM status of units in a project

Using Uncheckout in CM operations

The Undo Check Out Optionsis an SCC operation that reverses the effect of a Check Out,
releasing the lock on a unit (making it RO), and reverting to the file version before the last Check
Out operation. The Undo Check Out operation is not available in batch mode (except with
Rational ClearCase).

To undo a check out:

1. Inthe Configuration Itemswindow, select aunit that has been checked out (whose modeis
RW).

2. Click the Uncheckout button.

3. If your CM tool has advanced options, you can click the Advanced button to open its
Advanced Options window; otherwise the button is disabled. The Advanced Options
window that opensis provided by your CM taool.

4. |If you opened an Advanced Options window, click OK to close it after you make your
selections.

5. Click OK on the Undo Check Out Options window.

History/Version tree

The History operation is an SCC operation that opens an archive for a unit so you can review the
history for the unit and access previously archived revisions if you want. The History operation is
not available in batch mode.

To view the history of aunit, click History in the Configuration Items window.

If you are using Rational ClearCase in batch mode, use this button to view the version tree. The
version treelists all versionsin the Rational ClearCase archive.

CM status of units in a project

If you are using an SCC-compliant configuration management tool in conjunction with Rational
Rhapsody, Rational Rhapsody can keep track of and display the CM status of all unitsin the
Rational Rhapsody project. Thisinformation is displayed in both the Rational Rhapsody browser
and the Configuration Items window.

Note
Thisfeatureis available only for CM tools that implement the SCC API.

Rational Rhapsody 51

CM and Rational Rhapsody

CM status information in the browser

In the browser, Rational Rhapsody displays an icon that represents the CM status for the unit along
with the icon for the element. The CM status icons reflect the possible statuses:

" means the unit is not in source control

@ means the unit is checked in

' means the unit is checked out by the user

® means the unit is checked out by another user

X means the unit is deleted from CM
The status displayed in the browser is updated when:

¢ you connect to the CM archive

+ aCM operation is completed (status is updated only for the items affected by the
operation)

+ you sdect Configuration Management > Refresh State

The CM status of project unitswill be updated from the CM repository when aproject is opened if
the configurationManagement : : SCC: : RefreshCMStatusAtProjectOpenup property is set to
ves. This property can also be set to o and ask User.

CM status information in the Configuration Items window

The Configuration Items window includes two columns that are used to reflect the CM status of a
unit:

¢ Controlled by CM can show Yes, No, or Deleted
¢ Checked Out can show Yes, No, Out by other user

il oy
You can click the Refresh Status button 221 to refresh the CM status displayed for the items
listed in the window.

52 Team Collaboration Guide

About troubleshooting CM operations

Property to turn off display of CM status

If you do not want Rational Rhapsody to display the CM status of project units, set the
ConfigurationManagement : : SCC: : ShowCMStatus Property to cieared. This property is set at
the project level. When the value of this property is set to cileared:

¢ Statusesare not displayed in the browser or Configuration Items window.
¢ The Refresh Status button is not displayed in the Configuration Items window.

The above items will aso not be displayed if the
ConfigurationManagement : : General : : UseSCCtool property is set to vo.

About troubleshooting CM operations

This topic contains common problems encountered with CM operations.

Unable to connect to SCC-Compliant CM tool (SCC mode)

When you install an SCC-compliant CM tool, a tool-specific DLL isinstalled on your PC. When
invoking a CM operation, Rational Rhapsody looks for an entry for this DLL in the system
registry. If it finds one, it loadsthe DLL and performs the CM operation with that tool. If Rational
Rhapsody cannot find the DLL for the correct SCC toal, it generates an error message. The
ProviderRegKey Value Of the sourcecodecontrolprovider key in the system registry (under
HKEY_ TLOCAI, MACHINE\SOFTWARE) Storesthe location of the DLL for the default CM tool.

" Registry Editor - [HKEY_LOCAL_MACHIME on Local Machine]

W Beagistry Edit Tree Wiew Secunty Options Window Help ;Iilﬂ
1 Secure a l|ProviderRegkey . REG_SZ . Software\S0L Software\FocmsSce

& SourceCodeControlProvider
£ InstalledSCCProviders
SOL Software

Stac -

Note

The SCC interface is currently supported on Windows platforms only.

Rational Rhapsody 53

CM and Rational Rhapsody

Itispossible to have multiple SCC-compliant toolsinstalled on the same system. In this case, there
are multiple entries under the Installedsccproviders key (under
HKEY LOCAL MACHINE\SOFTWARE\SourceCodeControlProvider). FOr example:

PVCS Dimensions: REG_SZ: Software\SQL Software\PcmcScc

Microsoft Visual SourceSafe: REG SZ: Software\Microsoft\
SourceSafe

ClearCase: REG_SZ: Software\Atria\ClearCase

If the Providerregkey Value does not correspond to the CM tool you want, select one of the
installed SCC-compliant CM tools using aregistry editor (for example, regedt32) and edit the
ProviderRegKey Value Of the sourcecodecontrolprovider key with the information from
Installedsccproviders for the SCC tool you want to use.

For example, to use PVCS Dimensions, edit the providerregkey value with the following string:

Software\SQL Software\PcmsScc

Unable to create process message (Batch mode)

In some cases, there are problems with the standard echo command on the Windows 98/NT
operating system.

If you receive an “unable to create process” message while connecting to an archive because
of an echo (either during a Connect operation or as a subtask of another CM operation), try to
execute the same operation from a command prompt.

If the result is another message similar to “unrecognized command,” correct the paTu variable for
your environment. The paTu variable should include the full path in which the command to be
executed is located.

54

Team Collaboration Guide

CM Output window

CM Qutput window

Rationa Rhapsody captures messages generated by the CM tool and displays them in the CM
output window. It isimportant to observe messages from the CM tool because the commands
sometimes fail. For example, if you try to check out a unit with alock when the unit is already
locked, the operation will fail.

To view the CM output window, click the Configuration Management tab on the Rational
Rhapsody Output window.

The messages reported in response to CM operations, whether in the Output window or a specia
message box, are always from the CM tool. Error conditions must be corrected before you can
proceed with any further CM operations.

To see all messages received by Rational Rhapsody from the CM tool during the session, scroll up
or down using the scroll bar on the Output window.

To clear the output window of all CM messages, right-click in the window and select Clear.

The following properties control the appearance of text used to separate CM output messagesin
the CM output window:

¢ ConfigurationManagement: :General: :CMOperationEndSeparator

¢ ConfigurationManagement: :General::CMOperationStartSeparator
To see the definition for an individual property, open the Features window and select the property

on the Propertiestab. The box at the bottom portion of the Proper ties tab shows the definition for
the property selected in the upper left column of the tab.

Rational Rhapsody 55

CM and Rational Rhapsody

Pre- and post- actions

Rational Rhapsody assumes a minimal configuration for all CM operations and takes certain
actions either before (pre-actions) or after (post-actions) CM operations.

In SCC mode, post-actions are performed only if the operation is successful. In batch mode,
Rationa Rhapsody performs all post-actions regardless of whether the CM operation succeeds.

The following table lists the pre- and post-actions for SCC operations.

CM Operation Pre-Action Post-Action
ConnectToArchive None None.
Checkin Save Update CM information.
CheckOut Save Load the unit into the current
(controlled by a property) workspace.
AddMember Save Update CM information.
ListArchive None None.
Fetch None Load the unit into the current
workspace.
Diff None None.
History Save None.
Properties Save None.
DeleteMember Save None.
RenameMember Save None.
MoveMember Save None.
Uncheckout None Load the unit into the current
workspace.

56 Team Collaboration Guide

Pre- and post- actions

The following table lists the pre- and post-actions for batch operations.

CM Operation Pre-Action Post-Action
ConnectToArchive Save None.
ListArchive None None.
DiffWithCM None None.
DiffwWithRhapsody None None.
Checkin Save Update CM information.
CheckOut Save Load the unit into the current

(controlled by a property) workspace.

SCCAddMember Save Update CM information.
Lock Save Update CM information.
Unlock Save Update CM information.
DeleteMember Save None.
RenameMember Save None.
MoveMember Save None.
CheckoutBrach None None.

Rational Rhapsody 57

CM and Rational Rhapsody

CM interface extension

User-defined buttons enable you to extend the Rational Rhapsody interface to support CM
operations, which are not included in the standard Rational Rhapsody interface. Using Rational
Rhapsody properties, you can assign commands to these buttons, such as submit, report defect on a
version, extract, send by mail, and so on.

There are four properties, one for each definable button, located under
ConfigurationManagement : :General : : UserDefCommand_1 through userDefCommand 4.

Items selected from the Configuration Items window are passed as arguments. Rational Rhapsody
expands the keywords for each item selected in the Configuration Items list.

The format of the property is as follows:

Command ["ARG=
[$Path|$Ver|$Archive] [additional parameters]"]
[additional parameters]

The keywords are as follows:

¢ spath for full path + file name
* sver for Version

¢ sarchive for Archive session-specific string. This applies only to SCC model; it is empty
in batch mode.

Note

Rational Rhapsody does not know if the operation completed successfully. The standard
timeout appliesin the case of a hanging script.

For example:

¢ Torunthe Rational ClearCase version tree on a selected item, set the property to the
following value:

start cleartool.exe lsvtree -graph "ARG= $Path"

¢ To execute abatch file that uses the full path, version number, and archive string of alist
of units, set the property as follows:

mycommand.bat "ARG= $Path, Ver, SArchive ;"

Note

Activating various tools from a property is operating system-dependent. On Windows NT,
use the following command:

start notepad.exe

58 Team Collaboration Guide

Unresolved references

Unresolved references

Every Rational Rhapsody configuration item can include references to other configuration items
(ClI cross-references). Once a configuration item is moved to another workspace, some of its
references might no longer exist in the new context. These dangling references are called
unresolved references. For example, if you replace an existing package with a newer version and
the new package does not contain an item that appears in a certain view, references to that item
will be unresolved.

The only CM operation allowed on unresolved elements is Check Out (and Fetch in SCC mode).
The Synchronize operation can resolve an unresolved element.

Units added by reference

CM operations cannot be performed on units that have been added to the model as references.

Rational Rhapsody 59

CM and Rational Rhapsody

60

Team Collaboration Guide

Multi-site collaboration

Multi-site collaboration can be accomplished through Webify and rapid prototyping.

Webify for collaboration

Besides Web-enabling a Rational Rhapsody model for the purposes of controlling it and
monitoring it remotely, Web-enabling can also serve as part of your development process. Asa
development tool, Web-enabling makes both remote and local collaboration possible and
facilitates building and testing within a rapid prototyping approach.

Collaborating on the development of a Web-enabled model through the Web interface for the
model enables developersto look right into the model's behavior and view its behavior asitis
controlled. Asif accessing the device from different windows, devel opers can collaboratively view
the behavior of amaodel, or build from aworking prototype, whether through the Rational
Rhapsody interface or the Web interface for the model. Members of development teams with
access to the application for the Web server can trigger events and change writable, Web-exposed
element values. Anyone on the devel opment team with access to the Web server for the model can
take an immediate ook at, and affect the status of, a model by opening a Web browser. When
changing element values via the Internet through the Web GUI for the model, those changes occur
real-time; immediately, within the animated diagrams of the Rational Rhapsody interface, local
developers can see the model behavior asit is controlled through the Web interface by a remote
team member.

In this way, you can use Web-enabling a model as a real-time use case, modeling a scenario of
device usability, mimicking the device during different processes and testing its performance using
the system itself to observe the system's behavior.

Rational Rhapsody 61

Multi-site collaboration

Rapid prototyping

To facilitate rapid prototyping of the application during development and testing of the device
behavior in the lab on-the-fly, the Web interface can be customized to include other useful pages,
such asan e-mail link for communicating errors and solutions or reporting bugs easily from within
the Web interface.

62 Team Collaboration Guide

Parallel development

This subject describes how multiple users and distributed teams can work in parallel with the use
of the IBM Rational Rhapsody DiffMerge tool. These teams often have a source control tool or
configuration management (CM) software, such as |BM Rational ClearCase, to archive project
units, but not all files might be checked into CM during development.

Engineersin the team need to see the differences between an archived version of a unit and another
version of the same unit or asimilar unit that might need to be merged. To accomplish these tasks,
they need to see the graphical differences between the two versions, as well as the differencesin
the code. However, source control software does not support graphical comparisons.

Note

Many of the operations for the DiffMerge tool can be run from a command-line interface to
automate some of the tasks associated with software development (for example, to schedule
nightly builds). For more information about this feature, see Command-line options for the

DiffMerge tool.

The DiffMerge tool

The Rational Rhapsody DiffMerge tool supports team collaboration by showing how a design has
changed between revisions and then merging units as needed. It performs afull comparison
including graphical elements, text, and code differences.

What is a unit?

A Rational Rhapsody unit is any project or portion of a project that can be saved as a separate file.
Here are some examples of Rational Rhapsody units with the file extensions for the unit types:

¢ Class(.clg)

+ Package (.shs)

¢ Component (.cmp)

¢ Project (.rpy)

+ Any Rational Rhapsody diagram

Rational Rhapsody 63

Parallel development

How do you use DiffMerge?

You can operate the DiffMerge tool inside and/or outside your CM software to access the unitsin
an archive. There are two locations from which to launch the DiffMerge tool:

¢ lLaunching DiffMerge inside Rational Rhapsody

¢ lLaunching DiffMerge outside Rational Rhapsody

The DiffMerge tool can compare two units or two units with a base (original) unit.

The units being compared only need to be stored as separate filesin directories and accessible
from the PC running the DiffMerge tool. In addition to the comparison and merge functions, this
tool provides these capabilities:

+ Graphical comparison of any type of Rational Rhapsody diagram

+ Consecutive walk-through of al of the differencesin the units

+ Generate a Difference Report for a selected element including graphical elements

+ Print diagrams, a Difference Report, Merge Activity Log, and a Merge Report

Launching DiffMerge inside Rational Rhapsody

When launching the DiffMerge tool from inside Rational Rhapsody, you can compare two unitsin
either of these environments:

¢ Anarchived version of the unit with the version currently displayed in Rational Rhapsody
¢ Two archived versions

Rationa Rhapsody works with any CM archivein Microsoft® Common Source Code Control
(SCC) mode or other tools in batch mode. Rational Rhapsody devel opers can use any of the
following CM toolsto manage their source files:

¢ |BM Rational Synergy in SCC mode

¢ |BM Rational ClearCase in batch mode and SCC mode

*® Serena PVCS Dimensions in SCC mode

¢ Concurrent Versions System (CVS)

¢ Subversion (SVN)

Note

For Linux users, you can use batch mode configuration management, and Rational
ClearCase. Rational ClearCase is supported in Linux.

64 Team Collaboration Guide

Launching DiffMerge inside Rational Rhapsody

To launch the DiffMerge tool inside Rational Rhapsody:

1. Becertain that your source control archiveis accessible from the PC you are using for this
comparison.

2. Start Rational Rhapsody and open a project.

3. Verify that the unit you want to compare (for example, a class) isaunit. A Rational
Rhapsody element isaunit if asmall red file appearsin the lower left corner of its

standard icon in the browser, as shown in this Classicon E .

4. If the element is not yet a unit, change it into a unit by right-clicking the element and
selecting Create Unit, and then click OK.

Note that you must check in any new unit into your CM system before it can be
recognized by the DiffMerge tool.

5. Open the Configuration Items window. Choose File > Configuration Items.

Note: How this window looks depends on your CM system.

Rational Rhapsody 65

Parallel development

Compare With operation

Use the Compare With operation to compare an archived unit to the current version.

Comparing an archived unit to the current version

To compare the archived version of a unit to the current version of the same unit that has not been
archived:

1. Inthe Configuration Items window, highlight a unit (for example, aclass) in the displayed
list that you want to compare to the archived version in your source control management
system.

2. Click the Diff with Rhapsody button S | Depending on what CM tool you have, the

following actions might occur:

¢ |f you have Rationa Synergy, the DiffMerge tool opens and compares the current
Rationa Synergy version with the current version in Rational Rhapsody so that
the engineer can determine which version of the unit is going to be archived next.

+ If you have aCM tool other than Rational Synergy, the Compare With window
opens:

— Type either the revision or source control management label of the archived
unit you want to compare to the one currently selected in the Rational
Rhapsody model.

— Select the With Descendant check box if you also want to compare any
nested units inside the current unit to those of the archived version.

Note: The term descendant in the source control management refersto a unit that is
nested inside another unit. For example, if » is a package, it might have a
nested package ¢ and a global function £ () asits descendants. o might be
stored either in the samefileasp or initsown file. In the latter case, g isa
descendant unit for source control management and comparison purposes.
Taking » with descendants will also include q (and itsfile). Taking » without
descendants will not include ¢, and the result of the merge will be two files,
onefor » and onefor ¢. The global function £ () cannot become a unit because
itisafunction, and must always “come and go” with .

— Click OK.

The DiffMerge tool compares the two versions of the unit so that the engineer
can determine which version of the unit is going to be archived next.

66 Team Collaboration Guide

Launching DiffMerge inside Rational Rhapsody

Comparing two archived versions

To compare two archived versions of the same unit that are both in the archive:

1. Inthe Configuration Itemswindow, click the Show itemsin Archive button ===1 to open
the Archive window. The buttons that display in thiswindow depend on what CM system
you are using.

2. Select the unit with the two archived versions in the source control system.

%
3. Click the Diff with CM button to open a Diff window.

¢ Enter the Revision/L abel information for the unit being compared.

+ Sdlect the With Descendant check box if you also want to include any nested
units in the comparison.

¢ Click OK.

The DiffMerge tool compares the two versions so that the engineer can make the
necessary decisions.

Advantages of launching DiffMerge inside Rational Rhapsody

Launching the DiffMerge tool inside Rational Rhapsody is particularly useful if you want to
compare one version of an archived unit quickly with another version of the unit inside or outside
the archive. You can quickly compare the two units using the DiffMerge tool inside Rational
Rhapsody because you already have Rational Rhapsody and the CM system open.

To use the DiffMerge tool inside Rational Rhapsody, follow these rules for the units being
compared:

+ At least one of the units must be stored as a separate file in a CM system, such as Rational
ClearCase.

+ Units must be the same type and have exactly the same name since you select only one
unit name to set up the comparison.

Compare with Advantages of launching DiffMerge outside Rational Rhapsody.

Rational Rhapsody 67

Parallel development

Launching DiffMerge outside Rational Rhapsody

To launch the DiffMerge tool outside Rational Rhapsody, use any of these methods:

*

From the Windows Start menu, choose All Programs > |BM Rational > IBM Rational
Rhapsody version number > Rational Rhapsody DiffMerge.

Use Windows Explorer to navigate to the Rational Rhapsody installation folder (for
exampl €, <Rhapsody installation path>\Rhapsody75), and double-click the
DiffMerge.exe file.

Select units to compare

Use the Select Files window to specify the unitsto be used in a comparison in the Rational
Rhapsody DiffMerge toal.

Selecting units to compare outside Rational Rhapsody

To specify the units to be used in the comparison:

1

To be certain you are comparing units of the same type, check the file extensions. They
must be the same. For example, you can compare a project (. rpy file) only to another
(.rpy) project, but not with a component (. cmp fil€). For more information, see What is a

From the DiffMerge menu bar, open the Select Files window. Choose File > Compare.
Note that the units might have different names.

In the L eft side Rhapsody unit box, type the name including the path of the first unit or
browse to the location. Thisfile will be referenced asthe “Left” in the comparison results.

In the Right side Rhapsody unit box, type the name including the path of the second unit
or browse to the location. Thisfile will be referenced asthe “Right” in the comparison
results.

Select the Compar e with descendants check box if you want to include the nested units
for these two units in the comparison.

Select the Base-awar e mode check box if you want to browse to select the base or parent
unit of the two previoudly selected files to use as the base-line for the comparison. If you
use this third unit in the comparison, this creates a base-aware comparison. For more
information about this type of comparison, see For three units.

Note that for more information on this report, you might also want to see Difference
Report generation. Displaying base-aware information in this report is controlled by
several DiffReport preferences category preferences.

68

Team Collaboration Guide

Launching DiffMerge outside Rational Rhapsody

7. Click OK. The DiffMerge tool compares the selected units and displays the results, as
shown in Examining “left” and “right” value selections.

Advantages of launching DiffMerge outside Rational Rhapsody

The advantage to launching the DiffMerge tool outside Rational Rhapsody is that the tool has
greater flexibility. When you are using the DiffMerge tool outside Rational Rhapsody, you must
locate the files to compare and bring them into DiffMerge. Launching the DiffMerge tool outside
Rational Rhapsody is particularly useful if your comparison has any of these characteristics:

¢ Unitsare stored as separate filesin a CM system or adirectory that is not under source

control.

Units are the same type, but they might have different file names because the selection
step allows you to enter different file names.

Note

Always use the DiffMerge tool outside Rational Rhapsody to compare two unitsto a base
unit (three units; see For three units). If you are comparing two units, you can use the

DiffMerge tool inside or outside Rational Rhapsody depending on whether or not the units
have different names.

Compare with Advantages of launching DiffMerge inside Rational Rhapsody.

Rational Rhapsody 69

Parallel development

Examining “left” and “right” value selections

To examine the filenames and paths for the selected files:

1. With the compared units displayed in the DiffMerge tool, choose View > Compared
Units File Names.

2. The Compared Units list appears at the bottom of the DiffMerge window, as shown in the
following figure. Examine the following information:

¢ Paths and file names of the selected units to be certain you have selected the
correct files
¢ Noticethe“Alias’ assigned to each unit (in the left column)

¢ Base unit selected is correct for the comparison of the other two units.

f_!‘!] File Edit Wew Tools Window Help ;Iilil
Flrriziz=zzes ke aasaoas|z o
. «| D | Attribute Left Yalue | Right Yalue Ease Yalue | -
ct] fileMame elevator elevator elevator
+ E| Default [Package] stereotype
+ FgElevatorPkg [Package] isStub 0] 0
} +11°|call when elevator idle above or b... persistas
+ | call when elevator idle above or b... displayMarne
} +111°|call when elevator idle at Floor [Co.., descripkion
+ B |call when elevator idle at floor [Se... legalDisclaimer
+ B |call when elevator moving down a... isheference i} 1] i}
+ | call when elevator moving down b license
+| | call when elevator moving up abo... name elevator elevator elevator
+ B |call when elevator moving up belo,.. || persistAsGenerated |0 1] i}
+ 2] qui [Component] language C++ T+ C++
Lo + &] quilib [Component] properties Subject Test,., Subject Test.., Subject Test...
+ &] host [Component] defaultsubsystem Default Default Default
B9 host configuration [ObjectModelDi. . LI defaultComponent qui qui qui LI
ﬂ Alias | Rhapsad i Uit File Mame |
Left Ci\Telelogic\Rhapsody720\Samples\CppSamples|\Elevatorelevator . rpy
Right C:\Telelogic\Rhapsody?11\Samples\CppSamples|\Elevatorelevator . rpy
Base (C!\Telelogic\Rhapsody720\SamplesiCppSamples|Elevatorielevatar. rpy
L] I 4 I 'I NI'\Compared Units f

You can use Compared Units File Names at any time to see which fileisthe “Left”

the “Right.”

70

Team Collaboration Guide

and whichis

Results displayed in the DiffMerge tool

Results displayed in the DiffMerge tool

The DiffMerge tool contains amenu bar and two work areas, as shown in the following figure:

¢ Browser (left side) displays comparison results atree structure. To see al theitemsin the
browser, choose View > Expand All.

¢ Attributes pane (right side) provides text descriptions of unit elements.

[EiFie Edt vew Took Widow telp | Menu Bar

o[-

- - L _1=n=] | — wy
a v -
]\n{l\ i|gf:'ll . .

| %% |[% &

RaEamEE 2

Project elevator | || attribute Left Walue | Right Yalue
- Qelevator [Project] fileMame ElevatorPhg ElervatorPlg
+ Py Default [Package] sterenkype
= .Iitl ElewatorPkg [Package] eventsBaseID 16601 16601
& (BOTTOM_FLOGR) [Type] is5tub a 0
£ (MUMEBER_OF _ELEWATORS) [Type] T ||Persistas)
& (NUMEER _OF _FLOORS) [Type] displayMame Attributes Pane
& (TOP_FLOOR) [Type] ulkiplicity
& (CBYTE) [Type] description
» (tDirection) [Type] legalDisclaimer
+ %Building [Class] Browser isReference 1] 1]
+ %Door [Class] Window license
+ %Elevator [Class] narne ElervatorPkg ElevatorPka
+/8 Hardware [Class] persistisGenerated i} i}
+/H Itinerary [Class] language C++ C++
+ %Motor [Class] LIl Propetties

Rational Rhapsody

71

Parallel development

For two units

With two units being compared (no base unit), the unit nameis displayed in thetitle bar for the
window and in thetitle bar for the DiffMerge browser. The first version of the unit selected, when
setting up the comparison, is described in the L eft Value column in the Attributes pane. The
second unit selected has its information listed in the Right Value column. For descriptions of the
browser icons, see Difference categories and their icons in the browser.

Bl Ele Edt Wiew Tools Window Help =121 x]
Flrezizzzzee ke |RaEaEE 2 ||l
Project elevator I a | | Attribute Left Yalue Right Yalue |
- Qelevator [Project] fileMamne ElevatorPlg lerwatarPlkg
+ B Default [Package] sterectype
I_-Iitl ElewatarPkg [Package] eventsBaselD 16601 16601
& (BOTTOM_FLOGR) [Type] isStub a
£ (NUMEBER_OF_ELEWATORS) [Type] = |Persistas
& (MUMEER_OF_FLOORS) [Type] displayhiarne
& (TOP_FLOOR) [Type] riulkiplicity
& (cBYTE) [Type] description
& (tDirection) [Type] legalDisclaimer
+ %Building [Class] isPeference i}
+ %Door [Class] license
+ %Elevator [Class] narne ElevatorPlg levatorPkg
+/B Hardware [Class] persistAsGenerated]
+/E Itinerary [Class] language C++ 4+
+ %Motor [Class] LI properties

The Attributes pane lists specific information about the meta-elements (attributes) that are
different in the units being compared, such as the class names and properties. Elements with

differences are displayed in boldface, dark red text.

72

Team Collaboration Guide

Results displayed in the DiffMerge tool

For three units

If the comparison includes a base unit, the Base Value column is added to the columns in the
Attributes pane to create a base-aware comparison. This type of comparison is used when a

baseline for a Rational Rhapsody unit is needed. For example, during a maintenance release the

changed Rationa Rhapsody unit files are checked in on adifferent branch and after the
maintenance rel ease changed unit files needs to be merged back to the main branch.

During this process, the developer finds it easier to make decisionsiif the two Rational Rhapsody
unit files versions are compared the base (common ancestor) version. The developer can scroll
through any non-trivial differences (described in Trivial Versus Non-trivial Differences) using these

toolbar icons.

K
=l

Next non-trivial difference

Previous non-trivial difference

In the following figure, the base unit for the Elevator project is compared to two different versions
of the project. In addition to the standard browser symbols, shown in the two unit comparison,
both the browser and the Attributes pane include an additional Diff icon column with visual

representations of each difference located in the base-aware comparison. For definitions of the
Diff icons, see Differences report in the Qutput window

1
i

Ej Project elevator

+BEL Door

+/Eh Elevator
+B Harcdware
+3 Ttinerary

+1Bh Maotor
+Ocal elevator

¥ evAtFloor
+ % evCal

% evChanged
¥ evClosed

+1 % evizoto
Diff Icons

O Projectdevator |

3 .. [ElrandomElevator
ErandomFloor
ErandomTime

+7 theElevator
~BuLilding

+Orenter elevator
% evChangeDirection

¥ eviGotObstacle

O.| Atribute Left Value Right Value Base Yalue
CONCUrrency Sequential Sequential
sterectype
preferBodyToACvityGra... 1 1
profection |iFublic iPLblic
returnTypelsCnTherhy 0 o]
returnType FredefinedTypesCpp: ;.| | PredefinedTypesCp..

P |constant 1 0
displayhame
description returns either Elevataor,] | reftums either Elevat,
"B |Static 1 0
abstract 0 8]
[tsBody return (rand(% 2 3; | |retum (rand() % 2
Wirtual 0 8]
name randomElevator randomElevator
propertes
final 0 8]
Diff Icons

Rational Rhapsody

73

Parallel development

Differences report in the Output window

To display the Difference Report, use one of the following methods:

¢ Right-click an element in adiagram and select Report Differences.

¢ Choose Tools> Report Differences > All to compare all the elements or Tools > Report
Differences > Selected to compare only the selected elements.

Difference Report display

-
u
=

o]
"l
14
M

DiffMerge displays the differences in the Difference Report tab of the Output window, as shown
in the following figure for a simple three-unit comparison.

b
-
o ~al

L. | Project elevator | D.| Atribute Left Value Right value Base valL
£ SrandomElesator CONCUrrency Sequential Seduentia
ErandomFloor stereotype
IR ando preferBody ToActvityGra... 1 1
+[7) theElevator protection iPLblic Public
~Building returnTypelsCnThery 0 0
b +BEhDoor returnType PredefinedTypesCpp:..in... Predefinec
+Eh Elevator constant]]
+8 Hardware displayhame
+H Iinerary description random time between 2 ... random ti
+ Bk Motor Static 0 0
ﬂ === Reporting differences for Project elevator (cannot be merged automatically) === ~

>> Project elevator:
>> Package ElevatorPkg:
>> Class Building:
Primitive Operation configure changed on both sides (non-trivial diff)
1 # Attribute "lItsBody" changed on both sides [non-trivial diff)
¥ Primitive Operation dispatch changed on both sides (non-trivial diff) 5
1 # Attribute "ItsBody" changed on both sides (non-trivial diff)
- Primitive Operation randomTime deleted on the left (trivial diff)
% Primitive Operation randomElevator deleted on the left and changed on the other side (non-
trivial diff)
1 % Attribute "Static” deleted on the left and changed on the other side (non-trivial diff)
1 % Attribute "constant” deleted on the left and changed on the other side (non-trivial diff) v
Difference Report /, Merge Activity Log J, Merge Report. [

74

Team Collaboration Guide

Differences report in the Output window

Features of a Difference Report

The following illustration identifies important features of a Difference Report.

/ Difference Report header
===Heporting differences for Class AcmeFactory=== T

he AcmeFactory class has
<> Differences found for Class AcmeFactury/ differences from the other

:Iaﬂrr:mﬂ class, AbstractFactory.
properties In addition to the differences

> Dependency AcmeHeater exists only on left side
> Dependency AcmeJet exists only on left side

> Dependency AcmeTank exists only on left side
> Generalization AbstractFactory exists only on left side
< PrimitiveOperation theFactory exists only on right side
<> Differences found for PrimitiveOperation createTank he 3 dependency and 1

lisBody generalization differences only

in the class names, DiffMerge
found differences in the
properties attribute.

Virtual) exist in the AcmeFactory.
properties

<> Differences found for PrimitiveOperation createJet This difference exists only in
ltsBody AbstractFactory (right side).
Virtual
properties \

<> Differences found for PrimitiveOperation createHeater Three methods have these
It_sEmj'j.-r differences: implementations
Virtual . (in ItsBody), Virtual values, and
properties properties.

' Difference Report A Merge Activity Log .;"\ Merge Report ."F

The Output window uses the following colors to distinguish between the difference categories:

¢ Red denotes a difference element.
¢ Bluedenotes elements that exist only on the left side.

¢ Gray denotes a nested difference. A nested difference is an element without any
differences, but that contains an element with either adifference, |eft-side only, or
right-side only element.

¢ Black denotes a no difference element.
¢ Green denotes elements that exist only on the right side.

You can control the text used to mark each difference category, write the output to afile, and
customize the DiffMerge tool by setting the appropriate preferences. For more information, see
Colors preferences category.

Notice that the Output window also displays the Merge activity log and Producing merge reports.

Rational Rhapsody 75

Parallel development

DiffMerge differences

You can right-click any item in the DiffMerge browser and select Browse from hereto limit or
focus the scope of the current view of the browser and Attributes pane. Doing this opens the
Browse From Here browser and associated Attributes pane.

The item you select in the browser specifies the commands that are displayed in the pop-up menu.

For example, if adeveloper selects adiagram in the browser, additional options for diagrams are
available so that all of the possible options are displayed in the pop-up menu:

+ View all diagramsletsyou review all the diagramsto help you decide from which side
you want to take your changes.

¢ View left diagram lets you view only the diagram from the left side.

¢ View right diagram letsyou view only the diagram from the right side.

¢ View both diagramslets you view both the diagrams for this selection from the right and
left.

+ View base diagramslet you view the base diagram.

¢ Mergegraphically letsview al versions of the object model diagram, including the
newly created merged object model diagram in the Merge window.

¢ Browsefrom here opens anew browser and Attributes pane for the selected element.
¢ Report Differences creates the Difference Report for the selected element.

¢ Report Merging Differences creates the Merge Report for the selected element.

+ Next diff moves the selection in the browser to the next difference in the browser.

+ Prev diff moves the selection in the browser to the previous difference in the browser.

Differences in the browser

When selecting the Browse from here command, the DiffMerge tool opens another browser that
displays that element at the top of the browser and the associated attributes in the Attributes pane.
The more focused browser is called the Browse From Here browser.

For more information about the standard icons in the browser, see Difference categories and their
icons in the browser.

Note

After browsing a selected element, you can display the original comparison (if you closed
it) at any time by selecting View > New Diff Browser.

76 Team Collaboration Guide

DiffMerge differences

Difference categories and their icons in the browser

When comparing two units, triangle overlays are displayed in the browser items whether two or
three units were compared. If you want to display the triangles on the iconsindicating whether the
difference is on the right, left, or both sides of the comparison, set the
ShowDMMarksInBaseAwareMode preference to be checkea (check box is selected).

*

No difference element means the element, including all its nested elements, isidentical
on both sides of the comparison. In the browser, ano difference element hasthe sameicon
asin Rational Rhapsody, asin this example:

H IHardware

Right-only element means the element exists only on the right side of the comparison.
For example, the element is new or was deleted from the left unit. In the browser, aright-
only element has a left-facing, green arrow overlaid on the icon, asin this example:

E‘ Guiltizplay

L eft-only element means the element exists only on the left side of the comparison. For
example, the element is new or was deleted from the right unit. In the browser, aleft-only
element has aright-facing, blue arrow overlaid on the icon, asin this example:

ﬁ andrm

Difference element means the element existsin both sides of the comparison, but some of
itsfields or properties are different. In the browser, a difference element has dual-facing,
red arrows overlaid on the icon, asin this example:

pd Homedlarm

Nested difference means the element exists on both sides of the comparison, but some of
its subelements are different. Thereis no two-unit comparison icon for the Nested
difference, but there is a Nested difference icon in a base-aware comparison.

Rational Rhapsody 77

Parallel development

Base-aware Diff icons

In the Diff column in base-aware comparisons, the iconsillustrate the types of differences between
the two units and the base. Move your mouse over an icon to see a definition for it.

The basic design features of these icons are as follows:

*

*

*

*

Modification on the right side with a blue triangle (pointing right)
Modification on the left with an orange triangle (pointing left)
Deletions have a minus sign on the side that has the deleted item
Additions have a plus sign on the appropriate side

Theicons and what they mean are as follows:

L

means the item contains at least one nested difference

“® means the item was modified on both sides of the comparison

"B means the item was modified on the left and deleted on the right

P means the item was added to the left side only

K means the item was modified on the |eft side

|"» meansthe item was modified on the right side

P means the item was deleted from the right side

To see an example of a DiffMerge browser and Attributes pane with these icons, see For three

units.

78

Team Collaboration Guide

DiffMerge tool navigation

DiffMerge tool navigation

The following buttons let you navigate quickly in the browser and diagrams by changing the view:

Button Button Name Explanation
= First difference Moves the selection to the first difference in the displayed
- (diagrams only) diagrams.
— Prev difference Moves the selection to the previous difference in the
F

browser or displayed diagrams.

I

Next difference Moves the selection to the next difference in the browser or
displayed diagrams.

44

Last difference Moves the selection to the last difference in the displayed
(diagrams only) diagrams.

Using the commands in the View menu, you can open additional viewsto compare unitsin
different ways. In the View > Diff mode, choose:

*

View > View all to view all model elements, including those that are the same in both
units.

View > View diff to view only those model elements that are different in the two units.

View > View Conflictsto view only those model elements with non-trivial differences
that will require manual merging.

View > View undecided to view differing elements that are neither in nor out of the
merge. Note that this option is available only in merge mode. For more information, see
Undecided view.

View > View in mergeto view only those elements that are currently in the merge. Note
that this option is available only in merge mode. For more information, see View in merge.

You can also navigate in the list of differencesin the Attributes page. Right-click in the Attributes
pane to open the pop-up menu, which contains the following commands:

*

*

*

*

*

Diff text launches the external textual difference/merge tool (such as TkDiff)

View all displays al the model elements, including those that are the same in both units
View diff displays only those model elements that are different in the two units

Next diff displays the next differencein thelist

Prev diff displays the previous difference in the list

See Results displayed in the DiffMerge tool for adescription of the Attributes pane.

Rational Rhapsody 79

Parallel development

The external difference/merge textual tool

For some attributes, the space provided in the Attributes pane is insufficient to view them properly
(for example, a multi-line box). In such cases, you can launch an external textual diff tool.

To open atextual diff tool, in the Attributes pane, right-click an element and select Diff text. By
default, Rational Rhapsody opens the TKDiff diff tool to display information about the selected
element.

Using your external difference/merge textual tool

To use your favorite textual diff tool in Rational Rhapsody:
1. Open the Preferences window. Choose View > Prefer ences.
2. Expand the TextDiffM er ge category.

3. Changethe Diffl nvocation and DiffM er gel nvocation preferences, as described in
TextDiffMerge preferences category.

You can aso edit the Diffl nvocation preference to launch a different Diff editor than TkDiff,
assuming that the editor can be launched from the command line.

To use the textua diff tool supplied with IBM Rational ClearCase, modify the Diffl nvocation and
DiffMer gel nvocation preferences, as described in TextDiffMerge preferences category.

80 Team Collaboration Guide

Filtering the comparison in the DiffMerge tool

Filtering the comparison in the DiffMerge tool

You can ignore certain meta-elements during the comparison by modifying the settingsin the
Preferences window for the DiffMerge tool.

To filter the comparison in the DiffMerge tool:
1. Open the Preferences window. Choose View > Preferences.
2. Expand the Suppressions category.

3. Changethe valuefor the DiffAttributesFilter preference. The default preferenceis as
follows:

id, lastID, ImportData, cmheader,
state,RequiremenTracabilityHandle,
isSaveUnit, 1sUR, isNameGenerated,

isReadOnly, errorStatus, version,
baseVersion,defNumber, directoryName,
CPUtype, icon, isTemplate, typelD,
stereotypelID, DependsOnID, DependsOnImportData

4. You can edit the DiffAttributesFilter preference to add other elementstoignore, if you
want. Preferences set in DiffAttributesFilter affect the DiffMerge tool if you change
theminthesite.prp file before DiffMerge islaunched.

For more information, see:

¢ DiffMerge tool preferences

¢ Changing preferences

¢ Suppressions preferences category

Rational Rhapsody 81

Parallel development

Inspecting differences in diagrams visually

The DiffMerge tool identifies visua differences underlying the model elements.
To show agraphical differences between two diagrams:

1. After displaying the units to be compared in the DiffMerge tool, open the browser tree to
show the diagrams included in the comparison.

2. Inthe browser, right-click the diagram of interest and select View Diagrams. Read-only
views of the two diagrams open in individual windows.

3. Click the highlighted item. The following illustration displays a comparison of two
versions of a sequence diagram from the same project.

File Edit “iew Layout ‘Window Help

Tr GBIz 3 BE& ARIEMHEHR
2] 3 iz 11 HTE [Z] Left - Sequence Diagram: call when elevator idle ... E|@|
EMW | Buildli... | Elevator | tdotor | :DDDr| = :Buildi... | Elevatar
-
i O ol O el O e A e i O il il el A i
‘i CEEN] - | | | | ‘wral CEEN] - | | |
- | | | I z | | | |
Es -
e o0 w m atvci) et Rl T=—r—
;““——-—4,.,,....._“.1 | | ;““——qmm...,_m.l | |
/ felecew | | | 7 oo | | |
f | | | ? | i | |
Es -
- a0 ety - W
’ | I— | ’ | I— |
rs LU] ; LU
; | Pl | 7 | k) |
ﬁ | pmr{ ankd, oF k) j | ik, = kaa)
< -]
: | | | e : |]
- y
/ | | : | | | |
’ | | | - ’ | | | | B
2 A

Differences in diagrams are highlighted according to the color scheme described in Differences
report in the Output window.

82 Team Collaboration Guide

Inspecting differences in diagrams visually

Graphical differences

When comparing the graphical features of diagrams, the user can use two features to help identify
the differences between the two diagrams:

+ Highlight Differences
+ Walk-through Differences

Switching on the difference highlighting

For diagrams that exist on both sides of comparison and a diagram view is active, to use colors to
highlight all different elements of the diagram:

1. Select adiagram in the DiffMerge browser to use for the highlighted comparison.

2. Choose View > Highlight Differences or the toolbar icon E’_E'.

Note

Differences are highlighted using the settingsin Colors preferences category.

Walking through diagram differences

For diagrams that exist on both sides of comparison, you can walk-through the diagram
differences.

To switch on the walk-through features:
1. Select adiagram in the DiffMerge browser to use for the walk-through comparison.

2. Right-click and select one View right diagram, View left diagram, or View both
diagramsto place the selected diagrams in the Attributes pane.

Rational Rhapsody 83

Parallel development

3. Select First, Next, Previous or L ast difference options or use the shortcut keysto walk
through the graphical differencesin the displayed diagrams, as shown in the following

figure:

File Edt Wiew Layout ‘Window Help

& & & KEOTEE

E Bl Left - Sequence Diagram: call when elevator id... |Z||E|E|

| ‘Elewator ‘Elewator
. + | (aFqur,aDirectiDr)S j
hiaFloar, aDirectio | |
(aFloon) | | aFloor | I
| iSAIF ID0H()
izAtFloor) | |
evMaove(aDirection) | |
M | E\-‘AtFlDDr0|
| e\rArrivedol M
TsAtFloor) | —
isAtFloor | ’L—_l
evOpenianld, aFloon |
evOpenianld, aFloor) l—_—_——_—_'—————_
| | awizh
| |

Note

At first each differenceis highlighted with a heavier, colored line, and the highlighted line
blinks to draw the user’s attention to the item. Then the heavier width of the line disappears,
but the highlighted color of the items remains, as shown in this sequence diagram
comparison. You might want to see about Switching off element blinking for this feature.

The walk-through menu options have the following results:

+ First displaysthefirst graphical difference located in the diagrams.
* Next marksthe next difference.

+ Previous steps back to show that difference displayed before the currently highlighted
one.

¢ Last marksthelast different diagram element.

84 Team Collaboration Guide

Inspecting differences in diagrams visually

You can also use the following shortcut keys to navigate through the graphical differences.

¢ Press Alt-Home key to go to the first difference

¢ Press Alt-Right arrow to go to the next difference

¢ Press Alt-Left arrow to go to the previous difference
¢ Press Alt-End key to go to the last difference

Switching off element blinking
If you prefer to switch off the blinking feature:

1. From the DiffMerge menu bar, open the Preferences window. Choose View >
Preferences.

2. Expand DiagramViews.
3. Clear the check box for the BlinkWalkingT hroughDiffs preference.

Note

Other preferences are described in Changing preferences.

Difference Report generation

To generate alist of the differences for a selected diagram element during graphical comparison,
right-click the diagram element in the DiffMerge browser and select Report Differences. The
differences for that element display in the Output window, as shown in the following figure:

L%

===Heporting differences for SequenceDiagram call when elevator idle above or below floor===
<> Differences found for SequenceDiagram call when elevator idle above or below floor
< Message evhrrived exists only on right side
> Message evAtFloor exists only on left side
<> Differences found for Message evCall
description
Found 2 elements with differences, 1 elements exists only on left side, 1 elements exists only on right side |

\Differenl:e Repork l/{‘ Merge Activity Log)\ Merge Report ,"

Rational Rhapsody 85

Parallel development

Printing a Difference Report

To print areport showing the differences displayed in the Output window:

1. Decidewhether or not you want to ignore graphic differencesin the report, choose View >
Ignore Graphical Differences as many times as needed.

A check mark to the left of Ignore Graphical Differences meansthis option is selected.
2. Display the information in the Output window:

¢ Right-click an item in the browser select Report Differences, or
¢ Choose Tools> Report Differences > All or Selected

3. Click the Printer button € to print the information in the Output window.

Note

The Difference Report does not specify details about graphical differences. Only the
existence of agraphical differenceis reported so that the developer can perform any
required anaysis.

Graphical differences suppression

If the graphical differences between two units are not important to the comparison, you can
suppress the graphical differences from the comparison and the differences report. With the
compared units displayed in the DiffMerge tool, to suppress the graphical differences, choose
View > Ignore Graphical Differencesto make a check mark appear to the left of Ignore
Graphical Differences.

Note

You use Ignore Graphical Differencesto toggle this feature on and off, but only when the
tool isin comparison mode. As soon as you start merging, this menu option is disabled.
Therefore, you must determine whether or not to ignore graphical differences before starting
amerge operation.

To merge two classes with different statecharts, use the browser (see Starting a merge operation) Or
the graphical DiffMerge function (see Merging diagrams graphically for statecharts and activity

diagrams).

86 Team Collaboration Guide

Inspecting differences in diagrams visually

DiffMerge limitations
Note these limitations:

+ Interms of the display, DiffMerge only provides partial support for specialized profiles
such as SysML. For example, the icons displayed in the DiffMerge browser are the
standard Rational Rhapsody icons, not the specialized icons included in the profile.

+ When comparing sequence diagrams, DiffMerge reports message re-ordering as logical
differences (see Logical versus graphical differences). However, only message re-ordering
is detected, while sequence modifications of other sequence diagram elements (such as
Condition Mark, Interaction Occurrence, and Destruction Event) are disregarded.

Rational Rhapsody 87

Parallel development

Logical versus graphical differences

For the purposes of DiffMerge model difference detection, alogical differenceis one that changes
thelogic of amodel. Thisisaso known asamodel difference. In comparison, agraphic difference
isavisual difference that does not have an effect on a model.

DiffMerge always reports logical differences, while it might ignore graphical differences (see
Graphical differences suppression).

Example of logical difference

The following examples shows alogical difference on a sequence diagram.

Example la: Sequence diagram with evStart()

The following figure shows a partial view of the Dishwasher Cycle sequence diagram for the
Dishwasher sample project provided with the Rational Rhapsody product. Natice the location of
evstart () above setup (). For aesthetic reasons, you could reposition evstart () (Say, moveit
down dightly so that it does not touch the partition line) but leave it still above the position of
setup () and thismovement isignored by DiffMerge because it does not affect the logic of the
model.

B
EMY MewDishwasher AcmeTank Acmedet AcmeHeater J
Start() l l l l
ashl [=3Tpe] 2|
y the ;: | | | |
nt the ? | | |
7 setup()
Z | | |
Z | | L8
s 1 1 1 1
4] | _>I_I

88

Team Collaboration Guide

Logical versus graphical differences

Example 1b: Sequence diagram with evStart() Moved

Notice the location of evstart (), which has been moved below setup () . This change has an
effect on the logic of the model.

7
.

Example 1c: DiffMerge

The following figure shows in DiffMerge a comparison of the sequence diagrams shown in
Example la (Left Value column) and 1b (Right VValue column) in base-aware mode (Base Value
column). Asyou can see, thelogical difference is noted in the Right Value column.

B} Fle Edit View Tools Window Help

EMY MNewDishwasher AcmeTank Acmedet AcmeHeater
z ! ! ! !
ash,
y the é | | | |
nt the % | | | |
“ setup()
7 | | |
Z
ﬁ evatart() | | |
“
72 | | |
% . : : .
4] |

5t

==l x]

ey £
b v
77 e s =

tlerba |aamoEsg|kbe

DL I SequenceDiagram Dishwasher Cycle |

’. - _HjDishwasher Cydle [SequenceDiagram]

= evStart [Message]

D[Attribute

Left Value

| Right Value | Base Value

|stereotype
|Returnyal
_Ach.laIArgs
|FreeText

|Type

_descriph'on

|name

_properh'es
D [order

_displayName

EVENT

evStart

EVENT EVENT

evstart evStart

Moved Down on the Right

Lelx

* i

evStart ch

i

— Found 1 el

=== Reporting differences for Message evStart [can be merged automatically] ===
ged on the right [trivial diff]
. * Attribute ""Order" changed on the right [trivial diff]

ts with differences, 0 el

ts exists only on left side, 0 elements exists only on right side —

4[4[F[¥1], pifference Report § Merge Activty Log i, Merg= Report 7

Rational Rhapsody

89

Parallel development

DiffMerge reports

DiffMerge allows you to export reports that summarize the differences found between compared
units.

Note

These reports summarize only the differences found between the compared units, not any
merges that were subsequently made.

Exporting DiffMerge reports
To export areport:

1. Choose Tools > Export Report > Rich Text Format or Tools > Export Report > CSV
Format.

2. When prompted, provide the path where you would like the report to be saved.
The CSV format is useful when you want to perform further analysis on the difference data.
The reports contain information regarding the following types of differences:

+ element-level differences
+ attribute-level differences
+ diagram differences

* code-level differences

Note

The content of these reportsis not identical, the Rich Text Format (RTF) report contains a
greater level of detail, while the CSV format report focuses on the kind of information that
you would want to use for statistical analysis.

In RTF report reports:

+ When differences are found in diagrams, the report displays the different versions of the
diagrams, using color to indicate the differences between the versions.

+ When differences are found in attributes of type text, the differences are displayed

line-by-line, using the following symbols: <> (exists on both sides), ++ (exists on this
sideonly), _ (doesnot exist on this side).

¢ Code-level differences are reported as attribute-level differences (the attribute nameis
I sBody).

a0 Team Collaboration Guide

The Rational Rhapsody DiffMerge process

When exporting reports, remember that:

¢ You cannot create more than one report at atime.
¢ You should not close DiffMerge until creation of the report has been completed.

The Rational Rhapsody DiffMerge process

This topic provides you with an overview of the Rational Rhapsody DiffMerge process. The
Rational Rhapsody DiffMerge tool makes a comparison of two units and looks for matches of the
elements within their respective units. The units can be from the same Rational Rhapsody project
or two different versions of the same unit. In the case of base-aware mode, you can also designate
athird unit, which is the base unit. See What is a unit?.

How does the DiffMerge tool make a match?

By default, the Rational Rhapsody DiffMerge tool tries to make a match by the name of elements
and then by 1D if there is no name match. This means the DiffMerge tool can detect and report if
an element has been renamed and has a different name on each comparison side. This method
makes it clearer for a devel oper/engineer what the differences are so that they can more easily
decide which name from which side to take as the merge result for a particular element.

If you prefer, you can set the DiffMerge tool to only make matches by name only. This means the
name of an element in one unit must match the name of an element in the other unit for a match to
be made. If you prefer to compare the elements in units with this method, you can specify thisin
the ElementMatchRule preference.

For examples of results of the two compare methods, see Example 1: Element is renamed.

Note

When a name changeis atrivial difference, DiffMerge automatically mergesit. See Trivial
Versus Non-trivial Differences.

Rational Rhapsody 91

Parallel development

Examples of how the DiffMerge tool handles renamed elements

The following examples show you various scenarios of how the DiffMerge tool handles renamed

elements.

Example 1: Element is renamed

The following figure shows a comparison that found a match by element ID when a name match
could not be found. This is the default method used by the DiffMerge tool. As you can see, the
Dishwasher class (in the Left Value column) has been renamed to NewDishwasher (in the Right
Value column). The Difference Report shows the change as atrivia diff.

|

= T -

l—;,_‘_'| File Edit Wew Tools MWindow Help - |ﬁ'|1|

Firrziz==zeeRa|laaBoaE g|ke

0. Package Default [0. attribute Left Value M Right Yalue Base Yalue a

La |- E|Default [Package] license

Ebl::lisl'u.-'-.lasl'uer [Class] b name Dishwasher IINewD' h h Dish h
Ly + %Tank [Class] classModifier Unspecified Unspecified Unspecified _I
persistAsizensarated i} i} i} -

| ;I_I

Leix

Class Dishwasher changed on the right [trivial di
: 7 Attribute "name” changed on the right [trivial di

merged automatically] ===

— Found 1 elements with differences, 0 elements exists only on left side, 0 elements exists only on right side —

14 nnm Difference Report d Merge Activity Log }\ Merge Report [‘

Attribute: name *** Ikem was modified on the right

I T

92

Team Collaboration Guide

The Rational Rhapsody DiffMerge process

The following figure shows a comparison by name of element only. As you can see, the renamed
class (NewDishwasher, as shown in the Right Value column in the previous figure) does not
appear in the Right Value column in this comparison method. Notice that the Difference Report

reports that the unit (Dishwasher) has been deleted, which is untrue. As you can see from the
previous figure, the class was only renamed.

Bl Fle Edit Yiew Tools Window Help

=181
Firrziz==zz|eepa|laapgae 2|k
D..I Package Default | D..| Attribute Left value IRight alue Base Yalue | :I
Lo, | = By Default [Package] mulkiplicity:
= I+ Ehl::lisl'u.-'-.lasl'uer [Class] description
b + %NewDishwasher [Class] legalDisclaimer
Lo + %Tank [Class] isReference |0 ul
license
.......... nams Dishwasher Dishwasher
classModifier [Unspecified Unspecified ;I

Lix

=== Reporting differences for Class Dishwasher [can be merged automatically] ===
Class Dishwasher deleted on the right [trivial di

— Found U elements with differences, 1 elements exists only on left side, 0 elements exists only on right side —
=== Reporting differences for Class NewDishwasher [can be merged automatically] ===
+ Class NewDishwasher added on the right [trivial diff]

— Found 0 elements with differences, 0 elements exists only on left side, 1 elements exists only on right side —
14 nnm Difference Report d Merge Activity Log }\ Merge Report [‘

Attribute: narme *** Mo difference UM v

Rational Rhapsody 93

Parallel development

Example 2: More than one element is renamed

The following figure shows a comparison where more than one element has been renamed. In

addition, nested elements have been renamed.

ﬂ] File Edit Yiew Tools Window Help

8| x|

-
¥ 2 ¥

AR %% B &

ERY:EEEEEE

+ Q Mylassz [Class]

D..| Project Project | «|allD,.| Attribute Left Yalue | Right Yalue | EBase Yalue |
} —| (L Project [Project] } FileName Default MewDefault Default

— mm|Cefaul [Package] b) name Default NewDefault Default
» + /B MyClass1 [Class] |
b =l

=

== Reporting differences for Package Default [can be merged automatically]
Package Default changed on the right [trivial diff]
. * Attribute "fileName" changed on the right [trivial diff]
: * Attribute "name' changed on the right [trivial diff]
* Class MyClass2 changed on the right [trivial diff]
: * Attribute "de scription” changed on the right [trivial diff]
* Generalization MyClass1 changed on the right [trivial diff]
: * Attribute "DependsOn" changed on the right [trivial diff]
o> PrimitiveDperation somemMetnod:
- Argument argument_0 deleted on the right [trivial diff]

L
=

* Primitive Operation GetSomeMyClass1 changed on the right [trivial diff]
. * Attribute "name" changed on the right [trivial diff]
* AssociationEnd itsMyClass1 changed on the right [trivial diff)
: * Attribute "name" changed on the right [trivial diff]
* Class MyClass1 changed on the right [trivial diff]
 * Attribute "name'' changed on the right [trivial diff]

— Found b elements with differences, T elements exists only on left side, T elements exists only on right side —

I I 4 I ’I M I\Difference Report ,l{ Merge Activity Lag)\ Merge Report ,"

Component DefaultComponent *** Item contains nested differences

[T

94

Team Collaboration Guide

The Rational Rhapsody DiffMerge process

Example 3: Element is renamed and type is changed

The following figure shows a comparison that found matches by element 1Ds where the
MyOriginalObject element was renamed to M yObjectBecameABlock, and then was converted
into ablock. Notice that the DiffMerge tool reports two different elements as before.

[E} Fle Edit Wiew Tools Window Help 1= x|
wiEF=lz== e balaaagnez |
D.J Project Project | [0.] Attribute Left Value | Right Value | Base value |
P |- (3 Project [Project] p fileName Default NewDefault Default
E]ef‘.iult[F'ackar_Je] } [name Default NewDefault Default
3 B MyClssBefore [Class]
2 +[E] MyObjectBecameABlock [Block]
-3 +[7] MyOriginalobject [Object]
xl[-== Reporting differences for Package Default [can be merged automatically] === d

2 Package Default changed on the right [trivial diff]
1 * Attribute "fileName" changed on the right [trivial diff]
1 * Attribute "'name" changed on the right [trivial diff]
- Object MyOriginalObject deleted on the right [trivial diff]
+ Block MyObjectBecameABlock added on the right [trivial diff]
*Class MyClassBefore changed on the right [irrvial dif)
: * Attribute "'name'’ changed on the right [trivial diff]
— Found 2 elements with differences, 1 elements exists only on left side, 1 elements exists only on right side — =

4[4 [P/, ifference Report & Mergs Activity Log J, Merge Repart §

Rational Rhapsody 95

Parallel development

How DiffMerge performs a model comparison

The Rational Rhapsody DiffMerge tool makes a comparison of two units and looks for matches of
the elements within their respective units. The units can be from the same Rational Rhapsody
project or two different versions of the same unit. In the case of base-aware mode, you can also

designate athird unit, which isthe base unit. See What is a unit?. The compare algorithm works as
follows:

+ When two model elements have the same type (or, as known in Rational Rhapsody,
metaclass), name, and parent model element, then they are considered to be amatch. If an
element has no match by name, DiffMerge tries to find amatch by I1D. Matching elements
aways belong to the same parent and have the same metaclass.

* When two model elements are matched, then all their attributes and references to other
model elements are compared to check if there are any differences.

+ When two model elements are matched, then their aggregated model elements are
compared the same way to check for differences. They are matched by metaclass and
name or 1D, their attributes and relations are checked for differences, and their aggregates
(if any) are compared the same way. Basically, the process goes recursively through all
aggregates.

You might also want to see Automatic merging for base-aware comparisons and Trivial Versus Non-
trivial Differences.

How differences are detected in base-aware comparisons

In two-way comparison, the ability for the DiffMerge tool to describe differenceis
straightforward. It reports the difference, but does not explain why.

In base-aware mode, the DiffMerge tool reports differences with more details that describe what

caused the differences. DiffMerge is able to do so because it takes into account the third unit, the
base unit. So each element (in the Left Value column) is matched not only with an element from

another side (in the Right Value column) but also a base element (in the Base Va ue column).

For more information about base-aware difference detection, see Base-aware Diff icons.

All differences identified will be compared and put together to determine if they aretrivial or
non-trivial differences. See Trivial Versus Non-trivial Differences.

96

Team Collaboration Guide

The Rational Rhapsody DiffMerge process

Limitations for match by element ID in DiffMerge
Note these limitations for the match by element ID function in the DiffMerge tool:

+ DiffMerge will neither detect renamed nor suppressed propagated renamed differences
when the renamed object is out of the comparison scope. (For information about
suppressing propagated renamed differences, see How to examine only major structure
differences.) For example:

— When comparing sequence diagrams, the base classes for a classifier role are
displayed as “single” nodes though it is the same class with modified name,
but this class is not within this comparison, as shown in the following figure:

[Zf Fle Edit View Tools Window Help ==l x|
FEFEE = (et e | [RaEqE =2 B

D.] sequenceDiagram Dishwasher Cycle || D.] Attribute | Left value | Right val... | Base value | <]

P | -1 Bl |Dishwasher Cycle [SequenceDiagram] displayName
B [:Dishwasher [ClassifierRole] description

b B Dishwasher (U) [Base] name

-2 H NewDishwasher (U) [Base] properties

RoleType CLASS CLASS CLASS
[

— When comparing packages, a class stereotype difference is not suppressed
though it is the same stereotype having different names. That might be
because the stereotype belongs to a package named, for example, Terms, that
isout of the scope of this comparison.

IS File Edit View Tools Window Help 1=l x|
RE ==z = = jernalaas gz o
D.] Package Default | D.] Attribute Left Value | Right Value | Base Value Al
L, |[-|Fy Default [Package] p stereotype |Terms::.OrgStereotype... Terms::.RenamedStereotype... Terms::.Org
[E] SomeChss [Class] Concurrency |sequential sequential sequential
isStub 0 0 0
nersistAs hd
« | _>l_I
Attribute: Concurrency *** Mo difference 4

Rational Rhapsody 97

Parallel development

¢ When performing a merge of units containing renamed elements, in some cases,
DiffMerge does not properly update merged attributes values. This happens with the
following attributes:

— DependsOn in generalizations and dependencies when the related classis
renamed.

— stereotype in al model elements when the stereotype is renamed.

— Type When the type is renamed, and in all model elements when typeis
applicable, including: methods and operation return types; arguments,
variables, and attributes types; template instance parameter types, and basic
types of atypedef type.

How to examine only major structure differences

A manager for aproject might want to examine at ahigh level the differencesfor aproject, while a
developer/engineer will want to see all the differences so that they can determine which elements
should be merged. You can set the SuppressRenamePropagatedDiffs preference to specify whether
propagated differences related to detected renaming should be filtered out.

Note

The SuppressRenamePr opagatedDiffs preferenceisintended for comparison or reporting
purposes. While this preference is active, to avoid any possible unintentional merge
decisions and model corruption, all commands to merge units are disabled.

Comparison of propagated differences view and major structure differences
view
Theillustrations in this topic compare the DiffMerge view of showing all propagated differences
versus the view of showing only major structure differences.

Show all propagated differences

The following illustration shows all propagated differences. This means that the
SuppressRenamePropagatedDiffs preference is turned off (the check box is cleared), which isthe
default. For example, you renamed a package. When you show all propagated differences, this
means all elements related to the package will show as secondary differences. Therefore, in this
example:

+ Thetop DiffMerge browser in the following illustration shows that the Default package
was renamed to NewDefault.

98 Team Collaboration Guide

The Rational Rhapsody DiffMerge process

¢ Thebottom DiffMerge browser shows that the object model diagram has a dependency to
the Default package. Therefore, the DiffMerge tool reports a change for the dependency

also.

File Edit Wew Tools MWindow Help

ezl e 2 =

I E R R EE

;‘;] Project Project

D..| Project Project I [..| Attribute | Right Yalue | EBase Yalue
} - DPro]ect [Project] ’ FileName NewDefault Default
0 stereotype
Loy + EDeFauItCUmponent [Component] eventsBaseID -1 -1
} - _JOMD [ObjectModelDiagram] isStub i} i}
} *+j Default [Dependency] persistas
Loy | [+ [EgPkgzCmp [Package] displayMame
Loy + EPkgReF [Package] mulkiplicity
» + {9 5ameName [Packags] description
legalDisclaimer
isReference a a
license
P name HewDefault Default

||||

D..| Project Project I D..| Attribute
} -1[CdProject [Project] } DeperHSOn ::.Default {(Package) ::.MewDefault {Package) i Default {Package)
} + EDeFauIt [Package] stereotype
Ly + &] DefaultComponent [Component] displayMame
} - 5_§JOMD [ObjectModelbiagram] description
0 0gl::nzeFault [Dependency] } name NewDefault Default
L + E|Pkg2Cmp [Package] properties
Loy + EgPkaRef [Package]
» + {7 5ameName [Package]

Rational Rhapsody

99

Parallel development

Show only major differences

The following illustration shows only major structure differences. This means that the

SuppressRenamePropagatedDiffs iSturned on (the check box is selected), which means that all

elements related to the package will not show as secondary differences. Therefore, in this

illustration:

+ Thetop DiffMerge browser shows that the Default package was renamed to NewDefault.

+ Thebottom DiffMerge browser shows that the object model diagram has a dependency to
the Default package, but the DiffMerge tool does not report a change for the dependency.
This is because when the Suppr essRenamePropagatedDiffs setting is turned on, all
secondary differences are suppressed.

File Edit ‘“iew Tools Window Help
Firriziz==zzeena|acapoam 2|k
:[{ Project Project i ;IEIEI
D..| Project Project I [..| Attribute Left Yalue | Right Yalus | Base Yaluz | -
Lo, | =] Praject [Project] FileMarne Default MewDefault Default
+ [Default [Package] stereotype
+ &] Default Component [Component] eventsBaseID -1 -1 -1
} - E_EJOMD [ObjectModelDiagram] isStub o i} i}
*s) Default [Dependency] persistis
+ EPngCmp [Package] displayMarne
+/[E9PkgRef [Package] multiplicity
} + ESameName [Package] description
legalDisclaimer | |
isReference i}]]
license
P name Default MNewDefault Default LI
:[{ Project Project ;Iglﬂ
D..| Project Project I [..| Attribute Left Yalue Right Yalue | Ease Yalue |
Lo, | = Praject [Project] DependsOn 11.Default {Package) i1 MewDefault (Package) i Default {Package)
} + EDeFauIt [Package] stereotype
+ &] Default Component [Component] displayMarne
} - 5_§JOMD [ObjectMadelDiagram] description
0gl::nzeFault [Dependency] narne Default MewDefault Default
+ E|Pkg2Cmp [Package] properties
+/[E9PkgRef [Package]
» +/[F5ameName [Package]

100

Team Collaboration Guide

Merge units with the DiffMerge tool

Merge units with the DiffMerge tool

You can merge the two compared units into a third unit to create a new entity of the same type as

the original two units or merge features from one unit into the other. By default, the initial merge

(created when you start the merge) is taken from the unit on the left side. To take the initial merge
from the right side, set the following flag in the General section of the piffmerge. ini file:

"ReverseDiffOrder=TRUE"

Note

Before beginning the merge, you must also decide whether or not to include the graphical
differences, as described in Graphical differences suppression.

Starting a merge operation

To merge specific elements listed in the browser:

-
kT

1. Choose Edit > Sart mergeor click Sart merge '= inthe DiffMerge toolbar. The
Edit > Takefrom left, Edit > Take from right, and Edit > Take from base arrows then
become active in the DiffMerge toolbar, when applicable.

2. If you are working with a base-aware comparison (Eor three units), DiffMerge identifies
all Trivial Versus Non-trivial Differences and displays awindow asking if you want to
merge al trivial differences automatically. You can select to not display this window
again if you always handle trivial differencesin the same manner.

3. Whether you are using a base-aware comparison or a comparison of two units, at this point
you can navigate to a difference using the up and down keyboard arrows.

4. To restrict the view to only the conflicting items for either comparison, choose
View > View Conflicts.

Rational Rhapsody 101

Parallel development

5. If you are comparing two or three units, for each element that exists on both sides of the
comparison determine whether you want to perform these operations:

a. Takethe element from the left or right along with its descendants (aggregates and
associations which are nested elements in the browser).

B File Edt Yiew Tools Window Help

Firriziz=zz ek laagoaEs)

| Project Project | Attribute Left value
- D+Project fileName Default
I+ Take From Right I elereckype
+ ﬂ+DeFauItCom; Take From Left eventsBaselD -1
+ [+OMD isStub i
- E1+Pkg2Cmp Browse from Here persistis
+/fEq +PkaRef Report Differences displayhame
as E]+SameName Report Merging Decisions multiplicity
s e
Prey diff
isReference a

b. Inaddition, you can optionally take avalue for aparticular attribute for the element
from the left or from the right (or from the base when performing a base-aware
comparison). This might be done when you have chosen to take an element from the
left in Step a, but for the value for a particular attribute, you prefer to take the right
side.

Note that you might also follow this step for any descendants of the element you
chosein Step a

c. Alternatively, if the particular attribute you want to changeis atextual attribute, such
as code and description, you could select M er ge Text and the external textual
DiffMerge tool (tkaiff by default) opens.

102 Team Collaboration Guide

Merge units with the DiffMerge tool

Ieoks Window Hep
] euinke | Lelt Yobow | Right Vahom | Herge
sl FETCUTETGY |seamnbal Tacpuandigl Desuer
 Presorecermin) [MU -
[Predryelreration| pred prifoahy T olet el g] i 1
protection ubiic bl bl
T s o e b VS & [i] o
ety Fretelnedl el pp: | voad (Troel PreahaliredT yvpeslop: | vod {Type) Frediel)
pofdLand a o
derplasdianss |
i] |
g Lo g] |
st e 0 o
sberect P L LB
Doy]_ ook 5 < Tl Tk from Hha rghi I
g [? T
hame Furshion [Furstion 0 Furctic
et | o Wi ol
Tl .J o Wirws Ll o
et T
Pres 7
All from left
Al brom right

6. Usethe Edit > Takefrom Left or Take from right options or click one of the following
toolbar buttons to select a difference that you want to merge. Note that these buttons
operate on the selected element, aswell as al of its nested elements.

Button Button Name Explanation
= Take from left Adds the element from the left unit to the
- right unit.
= Take from right Adds the element from the right unit to the
= left unit.

7. If you are using a base-aware comparison for the merge, you can scroll through any
non-trivia difference using the following toolbar icons when you want to make a merge
decision.

"' . . .
™ Next non-trivial difference

L , o
“ Previous non-trivial difference

8. If youwant to include or exclude an element manualy, right-click the element select
Include from merge or Exclude from merge.

Rational Rhapsody 103

Parallel development

9. Onceadifferenceisresolved for either type of comparison, the difference arrow or arrows
on the browser icon turn gray. Therefore, al gray items are not going to be displayed in an
Undecided view of the merged elements.

Before Merge: After Merge:
pid ondm =R

Note

You cannot exclude from the merge any elementsthat arein both the left and the right units.
See Rules for merging from a two-unit comparison.

Merge renamed elements

In the DiffMerge browser, the DiffMerge tool displays element names from the left (column)
comparison side by default. The left side has more priority than the right side.

However, when switching to merging mode, DiffMerge displays actual names (meaning the names
from the chosen side either by a user or automatically).

When a name differenceistrivial, the DiffMerge tool will merge elements automatically. See
Trivial Versus Non-trivial Differences.

For example, in the case of the modification of MyClassBefore to MyClassAfter, the new class
name, MyClassAfter istaken asthe merge result. Note that in the merging mode, DiffMerge
displaysthe actual element names. So in this example, MyClassAfter instead of MyClassBefore
(that was displayed in comparison mode), as shown in the following figure:

[Zh Ele Edit Wiew Tools Window Help == x|
FiE2(=z == 2(esbanasgEE2 e
D.] M.] Praject Project | [D.] M.] Attribute Left Value | Right Value | Base Value | Merged Va... | =]
» - L Project [Project] isReference |0 0 0 0
» - By NewDefault [Package] license
@[F] Bl MyClassafter [Class]) name NyClassBefore MyClassAfter MyClassBefore MyClassAfter J
3 +/[E]l MyObjectBecameABlock [Blo... classModifier |Unspecified Unspecified Unspecified Unspecified
b a +/[7] MyOriginalobject [Object] persistAsGe... |0] 0 0 LI
x| -
=== Reporting merging decisions for Class MyClassBefore ===
=
* Class MyClassBefore added into merge from the right automatically
A[4 T [r I oiference Report } Merge Activty Log h Merge Report
Class MyClassBefore : MyClassAfter *** Itamn was modified on the right *** Item is included in merge autormaticaly fromi| | [

104 Team Collaboration Guide

Merge units with the DiffMerge tool

If you decide to take another name value, the DiffMerge browser refreshes accordingly, as shown
in the following figure:

IS} Fle Edit Wiew Tools Window Help - (= x|
FiE2(=z == 2[esbalnasgEE e
D.] M.] Praject Project | [D.] M.] Attribute Left Value | Right Value | Base Value | Merged Va... | =]
» -1 Project [Project] license
» - EaNewDefault [Package] » name MyClassBefore MyClassAfter MyClassBefore MyClassBefore
| HEl MyClassBefore [Class] classModifier |Unspecified Unspecified Unspecified Unspecified J
3 +/[E]l MyObjectBecameABlock [Blo... persistAsGe... |0 0 0 0
b a +/[7] Myariginalobject [Object] language |
ﬂ === Reporting merging decisions for Class MyClassBefore === -
* Class MyClassBefore added into merge from the left manually
-
A[A T [F}, Ciference Report } Merge Activty Log Merge Report
Class MyClassBefore : MyClassAfter *** Item was modified on the right *** Item is manually included in merge from the | A

Saving the merged unit

To save the merged unit, choose File > Save Merge As. If you started DiffMerge from within
Rational Rhapsody, select Merge to Rational Rhapsody. The new, merged unit is saved as a
separate file for use in the existing project or another project.

Merge units limitations
Note these limitations for merge units:

+ After agraphical merge, referenced model elements that are not accessible are displayed
as “unresolved” in the resulting sequence diagram. For example, model elementsthat are
outside of Rational Rhapsody but referred to by diagram elements inside Rational
Rhapsody refer are displayed as “ unresolved”).

+ Model elements cannot be edited in diagram graphical merge mode.

¢ Many of the model diagrams are displayed in read-only mode with the exception of
merged statecharts, activity diagrams, and sequence diagrams. Therefore, some Rational
Rhapsody functionality is not available in read-only diagram views, for example:

— Movement
— Changing the element properties
— Opening referenced diagrams

Rational Rhapsody 105

Parallel development

Automatic merging for base-aware comparisons

If two units are being compared with a base unit, this base-aware comparison makesit possible for
the DiffMerge tool to determine automatically the need for some merges using the concept of
Trivial Versus Non-trivial Differences.

Thisthree-unit comparison includes detecting differencesin the model elements, such as new class
that was added or removed. It also locates textual differencesin the attribute values of the model
elements, such as change in the class description.

All the differences identified are compared to determine the trivial versus non-trivial differences.
During an automatic merge operation, all of the trivial differences are automatically accepted for
merging.

Trivial Versus Non-trivial Differences

For adifference in which only one unit differs from the base unit, it isidentified asa
non-conflicting difference or trivial difference. Similarly, if both of the units are different from the
base contributor but the differences are the same, then it isalso atrivial difference. This appliesto
differencesin model elements or differences between the attributes of the model elements.

However, if both units differ from the base unit, thisis anon-trivial or conflicting difference that
must be resolved by the developer manually.

106

Team Collaboration Guide

Merge units with the DiffMerge tool

Merge icons for base-aware comparisons
To understand the steps required to merge elements, see Starting a merge operation.

After an element is merged in abase-aware comparison, the DiffM erge tool marksthe merged item
in anew Merge column, as shown in the following figure:

|| Ciff | Merge | Class AcmeFackory @ AceFac,., |
[. B | AcreFactory
“T abstractFactory

g8l acme Dishwasher ...
P2l AcmeHeater

Ppa) Acme et

COCe
EcoBRBEES

P2l AcmeTank
% + E createHeater
+ ’E createlet

+ g createTank

Note

Theicon in the browser displays agray arrow if the element has already been merged.

To see adescription of each merge, position the mouse over amerge icon and read the description
that displays at the bottom of the DiffMerge window, as shown in the following figure:

IDependencv AcreTank *¥*#* Trem was added on the left #** Tkem is included in merge aukomatically Fram the left side

The Merge icons are used in both the browser and Attributes pane.
<& means an undecided element

A means both elements were automatical ly merged (usually in an external textual DiffMerge
tool)

2 means that based on a devel oper’s decision, this element was manually merged from both the
right and left

&M means the element was merged automatically from the right

& means the element was merged automatically from the left

B meansthe right-side element was automatically excluded from the merge

Rational Rhapsody 107

Parallel development

& means the | eft-side element was automatical ly excluded from the merge

i means that based on a devel oper’s decision, this element was manually merged from the right.
Compare with A

28 means that based on a devel oper’s decision, this element was manually merged from the | eft.

Compare with i

A means that the left-side element was manual ly excluded from the merge

B meansthe right-side element was manually excluded from the merge

About making merge decisions

After Starting a merge operation, developers might use the automatic merging capabilities to
resolve trivial, non-conflicting differences. However, devel opers often must make some decisions
about what needs to be merged and how it should be merged. The following tools can be used to
help make decisions and manually merge the non-trivial differences:

+ DiffMerge merging navigation and views

¢ Merge Report

¢ External text editors

¢ From Rationa ClearCase launch DiffMerge

If a base-aware comparison is being used, the DiffMerge tool has more information about the left
and right units. It islikely that the developer might need to make fewer manual merges with a
three-unit (base-aware) comparison than with atwo-unit comparison.

108 Team Collaboration Guide

Merge units with the DiffMerge tool

Navigation menu options for merging
Thetype of comparison (two units or three) being used affects the items displayed on this menu. If
two units were used for the comparison, these menu options have the following uses:
¢ Takefrom right adds the element from the right unit to the left unit.
¢ Takefrom left adds the element from the left unit to the right unit

¢ Browsefrom hererepositions the browser view to start with the select element. To switch
back to the original view, choose View > New Diff Browser.

*

Next Diff highlights the next difference in the browser.
¢ Previous Diff highlights the previous difference in the browser.
If three units (base-aware) were used for the comparison, these additional options are available:

¢ Next Conflict highlights the next non-trivial (conflicting) difference in the browser.

¢ Previous Conflict highlights the previous non-trivia (conflicting) differencein the
browser.

Undecided view

To view differing elements that are neither in nor out of the merge for either type of comparison,
the View > View undecided option shows only the remaining, unmerged differences. In other
words, those differences that are not yet “in” or “out” of the merge. Units are not displayed that
you have either explicitly marked as“in” or “out” of the merge or are aways implicitly in the
merge.

View in merge

To view only those elements that are currently in the merge with either type of comparison, the
View > View in merge option displays only those elements that are currently in the merge
(without recognition of the method used to include the element in the merge) are displayed.

Base-aware comparison merging

When using the base-aware comparison as the basis for a merge operation, the DiffMerge tool
showsthe status of all the identified changes with respect to the base version of your CM tool. This
additional information for the merging task avoids running more diff operations to pinpoint the
source of differences.

When using the automatic merge feature in a base-aware comparison, the developer only needs to
define the merging required for the non-trivia differences. See Automatic merging for base-aware

comparisons for additional information about the merging capabilitiesin base-aware comparisons.
See Trivial Versus Non-trivial Differences for an explanation of these concepts.

Rational Rhapsody 109

Parallel development

Rules for merging from a two-unit comparison
When creating a merged unit from atwo-unit comparison, the DiffMerge tool uses these rules:

¢ All identical elements are always included in the merge; they cannot be removed.

¢ All elements appearing in both sides must be in the merge, with attributes either from the
left or from the right, or with some from the left and some from the right. The element
itself must always be included.

¢ Elements appearing in only the left or the right side can be either in or out of the merge.

Examine theiconsin the browser to identify the elements that are going to be automatically
included in the merge, and those that are not.

DiffMerge inserts asmall plus (+) or minus (-) sign in front of an element name to indicate the
following meanings:

¢ Plus (+) means the element will be included in the merge, for example:

E +Homedlarm

¢ Minus (-) means the element will not be included, for example:

E‘ -Hioazt

110 Team Collaboration Guide

Merge units with the DiffMerge tool

Merging diagrams graphically for most diagrams

You can use the DiffMerge tool to merge graphical elementsin any of the Rational Rhapsody
diagrams. This procedure tells you how to merge diagrams graphically for most diagramsin
Rational Rhapsody, except statecharts and activity diagrams. To do thisfor statecharts and activity
diagrams, see Merging diagrams graphically for statecharts and activity diagrams.

You can copy an element in one diagram that you would like to have in another diagram. You can
copy the graphic elements from the left or right window and place them in the merge window, or
create new elements in the merge window and move or size them as needed.

To merge existing graphic elementsin the DiffMerge interface:

Note

While this procedure shows how to merge graphic elements in an object model diagram,
you can use the same method to merge elements for the other Rational Rhapsody diagrams
(except statecharts and activity diagrams).

1. Optionaly, right-click the object model diagram in the DiffMerge browser and select
View All Diagramsto review the diagrams to help you decide from which side you want
to take your changes.

2. Right-click the object model diagram and select Take from Right or Take from L eft. See

Making merge decisions from the graphical view.

3. Right-click the object model diagram and select M erge Graphically. Rational Rhapsody
opens windows to show all versions of the object model diagram, including the newly
created merged object model diagram in the Merge window.

4. Review the merged object model diagram in the Merge window.
5. Edit the merged object model diagram, if necessary.

— Right-click an element in the merged diagram and use the options on the
pop-up menu; for example, Take from Left, Take from Right, Exclude
from Merge.

— You can move and delete elements. In addition, you can modify atextual
element through its Features window.

6. When you have completed the merge operation, save the merged file as described in
Saving the graphically merged unit.

Rational Rhapsody 111

Parallel development

Merging diagrams graphically for statecharts and activity diagrams

This procedure tells you how to merge diagrams graphically for statecharts and activity diagrams.
To do thisfor the other Rational Rhapsody diagrams (such as object model diagrams and structure
diagrams), see Merging diagrams graphically for most diagrams.

Note

Use this approach when you have an element in one diagram that you would like to havein
another diagram.

You can copy the graphical elements from the left or right window and place them in the Merge
window, or create new elementsin the Merge window and move or size them as needed.

To merge existing graphic elementsin a statechart or activity diagram in the DiffMerge interface:

Note

While this procedure shows how to merge graphic elementsin a statechart, you can use the
same method to merge elements for activity diagrams. For additional information, see Tips
for graphical merqing for statecharts and activity diagrams.

1. Select the statechart in the DiffMerge browser, right-click and select M erge Graphically
to open the diagrams.

2. Select one or more elements to copy, and then press CtrI+C (or choose Edit > Copy).

3. Click inthe Merge window (You can create anew statechart or merge elementsinto one of
the original statecharts).

4. PressCtrl+V (or choose Edit > Paste) to place the elements. Use your mouse to
drag-and-drop one or more new el ements to move them to the appropriate position within
the merged diagram.

5. Drag an element to position it precisely. In the case of statecharts, you can copy:

*+ Any state or connector.

+ Any group of elements (including states, transitions, and connectors), provided
that, if it includes atransition, it aso includes its source and target.

+ A label of atransition. Thisisthe only way to copy or create atransition.
6. Note that you can copy atransition only with its source and target.

7. Repeat Steps 1-5 to merge additional elements.

8. Edit the merged statechart if necessary. For example, you can draw new elements using
the toolbar icons and you can click anywhere in the window to unselect a new element.

112

Team Collaboration Guide

Merge units with the DiffMerge tool

9. When you have completed the merge operation, save the merged file as described in
Saving the graphically merged unit.

Tips for graphical merging for statecharts and activity diagrams
To locate the original transition and select itslabel, you can:

¢ Use Ctrl+C to copy the label.
+ Draw the new transition in the merge window.
¢ UseCtrl+V to paste in the new label.

To view any elements not visible within a new (active) statechart merge window, either maximize
the window or choose View > Zoom to Fit while the window is active.

If necessary, modify textual elements of graphic items using their Features windows.

If appropriate, work on any nested statecharts recursively.

Saving the graphically merged unit
To save the graphically merged file, choose File > Save Merge As.

Keep in mind:

+ |f you started the merge from within Rational Rhapsody, select M er ge to Rhapsody. The

new, merged unit is saved as a separate file for use in the existing project or another
project.

* In some cases, there might be no Save M erge As. There might just be a Save if the
filename and its location was defined when DiffMerge was launched (for example, from
Rational ClearCase merge manager, or Rational Team Concert merge process in Eclipse).

Rational Rhapsody 113

Parallel development

About merging sequence diagrams

DiffMerge allows you to merge differing versions of sequence diagrams that you have compared
with DiffMerge. Thisis possible for both two-way comparisons and three-way (base-aware)
comparisons.

The merge ability is amanua merge process. There is no automatic merging of differences when
merging segquence diagrams.

Note

The operation mode of the sequence diagram (analysis or design) does not affect the
merging of sequence diagrams.

When merging sequence diagrams, you can make merge decisions directly from the DiffMerge
browser (structural merging), or, alternatively, you can display the various versions of the diagram
and make your merge decisions from within the diagrams (graphical merging).

Note

When merging sequence diagrams, you can use structural or graphical merging, or both.
However, once you begin using graphical merging, you cannot return to structural merging
unlessyou “reset” the diagram by including one of the versions of the diagram in its
entirety. In addition, structural merging of diagram elements (for example, instance lines,
messages, and so forth) is only available for sequence diagrams.

When making merge decisions, whether in “structural” mode or “graphical” mode, the following
principles apply:

+ when an element existsin only one of the versions (“left” or “right™), you can choose to
include it in the merge or exclude it from the merge.

+ when an element existsin both the “left” and “right” version, but it differsin the two
versions, you can choose to include either the “left” or “right” version in the merge.

Making merge decisions from the DiffMerge browser
To merge diagram elements from within the DiffMerge browser:
1. Inthe browser, right-click the relevant element.
2. Depending on your situation:

+ For elements that exist in both versions, select Take from Left or Take from
Right.

¢ For elements that exist in only one of the versions, select Includein Merge or
Excludefrom Merge.

114

Team Collaboration Guide

Merge units with the DiffMerge tool

Making merge decisions from the graphical view
To merge elements from the graphical view:

1. Inthe browser, right-click the relevant diagram, and select View All Diagrams.
2. Right-click the relevant element in the diagram, and depending on your situation:
* For elementsthat exist in both versions, select Take from Left or Take from

Right.

+ For elementsthat exist in only one of the versions, select Includein Merge or
Excludefrom Merge.

Additional changes permitted in graphical merge mode
When working in graphical mode, in addition to making merge decisions:

¢ You can move diagram elements on the “merged” version of the diagram that is displayed.

¢ You can delete diagram elements from the “merged” version of the diagram that is
displayed.
¢ You can change element attributes such as arguments.
However, you cannot create new elements to add to the diagram.

About “referring” elements

Sequence diagrams contain certain elements that are not dependent on the presence of any other
element, for example, classifier roles. Sequence diagrams also contain elements that require the
presence of other elements, for example, messages, which require the presence of the sending and
receiving elements. Dependent elements such as these are referred to here as “referring” elements.

When you are making merge decisions, referring elements can be included in the merge only if all
of the elements they refer to are included in the merge. For example, amessage can beincluded in
the merge only if the sending and receiving classifier roles are included in the merge.

If you choose to exclude an element which other elements require, then these dependent elements
will be excluded from the merge as well.

Note

If amenu command to include an element in amergeis disabled on a pop-up menu, be sure
that you have not previously chosen to exclude an element upon which the selected element
depends.

In general, DiffMerge does not check whether the diagram resulting from amerge s correct. It it
the user's responsibility to ensure that merge decisions result in a correct sequence diagram.

Rational Rhapsody 115

Parallel development

Elements that realize Sequence diagram elements

Merge decisions regarding instance lines in a diagram do not affect the inclusion/exclusion of the
class that realizes the instance line, if oneis specified.

Merge decisions regarding messages in adiagram do not affect the inclusion/exclusion of the
event that realizes the message, if one is specified.

Merge activity log

DiffMerge writes atextual log of a merge operation to the Merge Activity L og tab of the Output
window, based on the current preference settings.

See Mergelog preferences category for the list of preferences and their default values.

Producing merge reports

After some or al of the elements are merged, you can produce a Merge Report to see what you
have merged and any conflicting elementsthat still remain.

To produce a Merge Report:
1. If youwant to have areport on a specific element, highlight it.
2. Choose Tools > Report Merging Decisions > All to select the whole project or Tools >

Report Merging Decisions > Selected for only the element selected in Step 1. The
Merge Report is displayed in the Output window.

Note

You can also create a Merge Report by right-clicking the element in the browser and
selecting Report Merging Decisions.

DiffMerge writes the Merge Report based on the current preference settings. See Mergel og
preferences category for information about these settings.

116 Team Collaboration Guide

DiffMerge tool preferences

DiffMerge tool preferences

To change the default characteristics of the DiffMerge tool, use the Preferences window (choose
View > Preferences). The preferences settings are stored in the user’s . ini file.

Note

While the Preferences window for the DiffMerge tool looks similar to the Properties
window in Rational Rhapsody, they are different. Changing your DiffMerge preferences
does not affect Rational Rhapsody unitsin any way.

Use the Preferences window to control the following categories of settings:

¢ Colorscontrolsthe colorsused in by the DiffMerge tool. For moreinformation, see Colors
preferences category.

+ DiagramViews contains only the BlinkWalkingT hroughDiffs preference that switches
the graphical walk-through blinking feature on or off. For more information, see
Switching off element blinking.

+ DiffReport controls the appearance of the log of the results of a diff operation. For more
information, see DiffReport preferences category.

+ General controlsthe general aspects and default behavior of the DiffMerge tool.

¢ Mergel og control the appearance of the log of the results of a merge operation. For more
information, see MergelLog preferences category.

* Suppressions specifies which items should be ignored by the DiffMerge tool. For more
information, see Suppressions preferences category.

+ TextDiffMerge control textual DiffMerge operations. For more information, see
TextDiffMerge preferences category.

Changing preferences

To change the value of a preference:

Open the Preferences window. Choose View > Preferences.
Click the + sign next to a category to expand itslist.

Click the box to the right of the preference you want to change.

Type anew value, or select or clear acontrol, as applicable.

a ~ w D P

Click OK.

Rational Rhapsody 117

Parallel development

Keywords

Restoring default settings
To revert to the default values of the preferences:

1
2.

On the Preferences window, click Restore Defaults.

When asked to confirm your requested action, click Yes.

Note that some of the default values of the preferences include the following keywords:

*

$diffs meansthe number of differences found

$elemname Means the name of the model element

selemtype Meansthe model element type (class, component, and so on)

$itemname Means the name of the attribute

$leftonly meansthe number of elementsthat exist only on the left side of the comparison
$parentname Means the name of the parent

$parenttype means the parent type (class, component, and so on)

$rightonly meansthe number of elementsthat exist only on theright side

$BaseAwareDiffInvocation meansthe command to launch the external textual three-unit
comparison in the DiffMerge tool (used in the TextDiffMerge preferences category
preferences)

$DiffInvocation Meansthe command to launch the external textual two-unit comparison
in the DiffMerge tool (used in the TextDiffMerge preferences category preferences)

$sourceBase means the text file containing compared value from the base (used in the
TextDiffMerge preferences category preferences)

118

Team Collaboration Guide

DiffMerge tool preferences

Colors preferences category

The Color s preferences category on the Preferences window enables you to change the default
colors used by the DiffMerge tool. To learn how to change preferences, see Changing preferences.

The following table lists the possible settings and their default values.

Preference Name

Description

Default Value

DiffColor

Specifies the color used to print the items with differences,

RGB (255, 0, 0)

highlight graphical differences, and print the merge activity.

LeftOnlyColor

Specifies the color used to print the items in the left-only
category, highlight graphical differences, and print the merge
activity.

RGB (0, 0, 255)

NestedDiffColor

Specifies the color used to print the items with nested
differences.

RGB (153 153, 153)

NoDiffColor Specifies the color used to print the “no differences” category | RGB (0, 0, 0)
for an item and highlight graphical differences.
RightOnlyColor Specifies the color used to print the items in the right-only RGB (0, 0, 0)
category, highlight graphical differences, and print the merge
activity.
ReportFooterColor Specifies the color used in the report footer. RGB (0, 0, 0)
ReportHeaderColor Specifies the color used in the report header. RGB (0, 128, 64)
UseDefault Specifies whether to use the default color or not. Checked

DiffReport preferences category

The DiffReport preferences category enables you to control the appearance of the textual report
on the differences found by the DiffMerge tool. To learn how to change preferences, see Changing

preferences.

The following table lists the possible settings and their default values.

Preference Name

Description

Default Value

BaseAwareDiffAttrChanged

Specifies that the attribute was
modified on one side.

. * Attribute "$itemname" changed
$side ($triviality)

BaseAwareDiffAttrChngBoth

Specifies that the attribute was
modified on both side.

: # Attribute "$itemname" changed
on both sides ($triviality)

BaseAwareDiffAttrDelAndChng

Specifies that the attribute was
deleted on one side and changed on
the other side.

: % Attribute "$itemname" deleted
$side and changed on the other
side (S$triviality)

BaseAwareDiffElemAdded

Specifies that the model element was
added

+ $elemtype $elemname added
$side (Striviality)

Rational Rhapsody

119

Parallel development

Preference Name

Description

Default Value

BaseAwareDiffElemChanged

Specifies that the model element was
changed on one side

* $elemtype $elemname changed
$side ($triviality)

BaseAwareDiffElemChngBoth

Specifies that the model element was
modified on both sides.

$elemtype $elemname changed
on both sides ($triviality)

BaseAwareDiffElemDelAndChng

Specifies that the model element was
deleted on one side and changed on
the other side.

% $elemtype $elemname deleted
$side and changed on the other
side ($triviality)

BaseAwareDiffElemDeleted

Specifies that the model element was
deleted

- $elemtype $elemname deleted
$side ($triviality)

BaseAwareDiffMergeAutoNo

Specifies the string indicating that the
compared element cannot be merged
automatically.

cannot be merged automatically

BaseAwareDiffMergeAutoYes

Specifies the string indicating that the
compared elements can be merged
automatically.

can be merged automatically

BaseAwareDiffReportFooter

Specifies the footer of base-aware
Difference Report.

--- Found $diffs elements with
differences, $leftonly elements
exists only on left side, $rightonly
elements exists only on right side

BaseAwareDiffReportHeader

Specifies the header of base-aware
Difference Report.

=== Reporting differences for
$elemtype $elemname

trivial (non-conflict) difference of the
element.

($mergeauto) ===
BaseAwareDiffSideLeft Specifies the string indicating the left | on the left
side of comparison.
BaseAwareDiffSideRight Specifies the string indicating the on the right
right side of comparison.
BaseAwareDiffTrivialNo Specifies the string indicating the n-n- | non-trivial diff
trivial (conflict) difference of the
element.
BaseAwareDiffTrivialYes Specifies the string indicating the trivial diff

DiffPrefix

Describes the elements with
differences

<> Differences
found for $elemtype
$elemname

LeftOnlyPrefix

Describes the elements that exist
only on the left side of the
comparison

< $elemtype $elemname exists
only on left side

NestedDiffPrefix

Describes the elements with nested
differences

>> $elemtype $elemname:

NestedElementPrefix

Specifies the text to be appended to
each nested element

a tab character

NoDiffPrefix

Describes the elements with no
differences

= No differences found for
$elemtype $elemname

120

Team Collaboration Guide

DiffMerge tool preferences

Preference Name

Description

Default Value

PrintLineNumbers

Determines whether line numbers
are printed in the report

Cl ear ed (do not include)

PrintNoDiffLines

Determines whether to report
elements without differences

Cl ear ed (do not report)

PrintSubDiffs

Determines whether to report
subdifferences

Checked (report subdifferences)

the beginning of each report

ReportFooter Specifies the text to be appended to Found $diffs elements with
the end of each report differences, $leftonly elements
exists only on left side, $rightonly
elements exists only on right side
ReportHeader Specifies the text to be appended to ===Reporting differences for

$elemtype $elemname===

RightOnlyPrefix

Describes the elements that exist
only on the right side of the
comparison

> $elemtype $elemname exists
only on right side

General preferences category

The Gener al preferences category controls the general aspects and default behavior of the
DiffMerge tool. To learn how to change preferences, see Changing preferences.

Note

The RepPL UScmdline, Reporter PLUSPath, and Reporter PLUSTemplateDir
preferences are for internal use only by Rational Rhapsody staff. Any changes to these
preferences should only be done by or under the direction of the Rational Rhapsody staff.

ElementMatchRule

The ElementM atchRule preference specifies which rule DiffMerge will apply to match the
elements within the units being compared.

Possible values:

¢ Default (default)
¢ Without Renaming Support

Select Default if you want DiffMerge to try to match elements by ID if there are not matches by
name. Note that this means that the DiffMerge tool will be able to detect and report if an element
has been renamed and has a different name on each comparison side.

Select Without Renaming Support if you want DiffMerge to match elements only by name. Note
that this means that two of the same elementsin the same units (in the two Rational Rhapsody
projects you are comparing) will never be matched because they have different names.

Rational Rhapsody 121

Parallel development

ResolveAutomaticallyWhenStartingMerge

The ResolveAutomaticallyWhenSartingM er ge preference specifies wether DiffMerge should
or should not resolve al trivial differences when performing a merge in a base-aware comparison

Thepo you want to automatically merge trivial differences? message appears every
time until auser selects Use my current reply as default. After that, DiffMerge will or will not
resolve differences automatically without asking a user, for example, not displaying that message
any more.

Possible values:

¢ Ask (default)
¢ Yes
¢+ No

ShowDMMarksInBaseAwareMode

The ShowDM M ar ksinBaseAwar eM ode preference specifies what DiffMerge should or should
not display the legacy difference and merging state marks when performing a base-aware
comparison.

Default Value: cleared

122 Team Collaboration Guide

DiffMerge tool preferences

MergeLog preferences category

The Mergel og preferences category enables you to control the appearance of the Merge activity
log and Producing merge reports Of the results from a merge operation. To learn how to change

preferences, see Changing preferences.

The following table lists the possible settings and their default values.

Preference Name

Description

Default Value

AllLeftltemMerge

Specifies all the items from the left side to add
to the merge

$elemtype "$elemtype": All items
from left added to merge

AlIRightltemMerge

Specifies all the items from the right side to
add to the merge

$elemtype "$elemtype": All items
from right added to merge

ExcludeFromMerge

Specifies the model elements that will not be
included in the merge

$elemtype "$elemname" removed
from merge

GraphicalMerge

Specifies that a statechart or activity diagram
was graphically merged

$elemtype of "$parenttype
$parentname” merged graphically

IncludelnMerge

Specifies the model element to add to the
merge

$elemtype "$elemname” added to
merge

ItemMerge

Specifies that the item has been merged

$elemtype "$elemname™: ltem
"$itemname" merged

LeftitemMerge

Specifies that the item from the left was added
to the merge

$elemtype "$elemtype”: Item
"$itemname" from left added to
merge

LeftMerge Specifies that the model elements from the left | $elemtype "$elemname" from left
were added to the merge added to merge.
MergeToRhapsody Specifies that the current merge has been $elemtype "$elemname" merged

added to Rational Rhapsody

with Rational Rhapsody

RepDecidedAuto

Specifies the string indicating the automatically
resolved element.

automatically

RepDecidedMan

Specifies the string indicating the manually
resolved element.

manually

RepElemExcluded

Specifies that the model element is excluded
from merge.

- $elemtype $elemname excluded
from merge $decided

RepElemincluded

Specifies that the model element is included
into merge.

+ $elemtype $elemname included
into merge $side $decided

RepElemMerged

Specifies that the model element existing on
both sides is merged (a user took some part
from the left, some part from the right, or
merged attribute values by external textual
DiffMerge tool).

* $elemtype $elemname merged
$decided

RepElemTakenFrom

Specifies that the model element existing on
both sides is included into merge from
particular side.

* $elemtype $elemname added
into merge $side $decided

RepElemUndecided

Specifies that the model element existing on
both sides is still undecided.

$elemtype $elemname is
undecided

Rational Rhapsody

123

Parallel development

Preference Name Description Default Value
RepFooter Specifies the footer of the Merge Report.
RepHeader Specifies the header of the Merge Report. === Reporting merging decisions
for $elemtype $elemname ===
RepltemDecided Specifies that the item (the attribute) is : Attribute \"$itemname\" added
manually included into merge from particular into merge $side manually

side whereas its model element is taken into
merge from the other side.

RepltemMerged Specifies that merged value of the item (the : Attribute \"$itemname\" merged
attribute) is manually edited by user. manually
RepSideLeft Specifies the string indicating the left side of from the left
comparison.
RepSideRight Specifies the string indicating the right side of from the right
comparison.
RightltemMerge Specifies that the item from the right was $elemtype "$elemtype”: Item
added to the merge "$itemname" from right added to
merge
RightMerge Specifies that the model elements from the left | $elemtype "$elemname" from right
were added to the merge added to merge
SaveMerge Specifies that the merge has been saved Saved merged $elemtype
"$elemname" to $filename
StartMerge Specifies that the merge has started Started merge for $elemtype
"$elemname”

Suppressions preferences category

The Suppressions preferences category enables you to specify which items should be ignored by
the DiffMerge tool. To learn how to change preferences, see Changing preferences.

DiffAttributesFilter

Specifies acomma-separated list of attributes that should be ignored by the DiffMerge tool. For
example, if thisvalueis id, name the DiffMerge tool ignores the differencesin the ID and name of
objects.

Default value:

id, lastID, ImportData, cmheader,
state,RequiremenTracabilityHandle,
isSaveUnit, isUR, isNameGenerated,
isReadOnly, errorStatus,version,baseVersion,
defNumber, directoryName, CPUtype, icon,
isTemplate, typelD, stereotypelID, DependsOnlID,
DependsOnImportData

124 Team Collaboration Guide

DiffMerge tool preferences

ExcludeGraphTypesVLess6

Specifies acomma-separated list of Rational Rhapsody classes that should be ignored by
DiffMerge tool when comparing diagrams from Rational Rhapsody version older than 6.0 (to
provide DiffMerge backward compatibility).

Default value;

CGIMessagelabel, CGIFreeText

IgnoreGraphDiffs
Specifiestheinitial value of the Ignore Graphical Differences option.

Default value: checked

ShowMetalnfolnBrowser

Determines whether meta information is displayed in the DiffMerge browser. This preference
turns on/off displaying element types (metaclasses) in the right part of the DiffMerge browser.

Default value: cleared
ShowsStereotypelnBrowser
Determines whether element stereotypes are displayed in the DiffMerge browser.

Default value: cleared

Rational Rhapsody 125

Parallel development

SuppressRenamePropagatedDiffs

In cases when the DiffMerge tool detects that there are Rational Rhapsody €lement name changes,
the SuppressRenamePropagatedDiffs preference specifies whether propagated differences
related to the detected name changes should be filtered out.

Default value: cieared (meaning this preferenceis turned off)

When turned on (meaning the check box is selected), the DiffMerge tool suppresses all attribute
differences that correspond to detected name changes.

Because of the purpose of this preference, this preference value is disregarded when DiffMergeis
launched:

¢ From the command line when you use the merge, xmerge, compare, O xcompare
commands

¢ From the Configuration Management window in Rational Rhapsody when you try to
compare
and/or merge unit versions

¢ From anintegrated CM tool (Rational Synergy, Rational ClearCase, and so forth)
Note

This use of the SuppressRenamePropogatedDiffs preference is for comparison and
reporting purposes only. There is no merging allowed when this preference is turned on to
avoid unintentional merging and corrupting a model.

126 Team Collaboration Guide

DiffMerge tool preferences

TextDiffMerge preferences category

The TextDiffM er ge preferences category controlsthe appearance of textual DiffMerge operations,
including the Rational ClearCase ClearDiff and ClearDiffMrg tools. Rational Rhapsody searches
for the preferred external, textual diff/merge tool in this sequence:

¢ Choose View > Preferencesfor any changesinthe piffmerge. ini file

¢ Current source control management tool metaclass

¢ Under piffMerge: : TextDiffMerge in the preferencesfile

The following table lists the TextDiffM er ge preference settings and their default values.

Preference Name

Description

Default Value

BaseAwareAutoMergelnvocation

Specifies how to launch the external
textual DiffMerge tool supporting
base-aware (three-unit) detection of
triviality of textual difference and
three-unit automatic merging.

BaseAwareAutoMergeableAttributes

Specifies a list of attribute names,
which contain text values and are
allowed to merge automatically. The
value of attribute can be also A11
(meaning all attribute can be
textually merged) and None
(meaning no automatic textual
merge should be done). The default
value, ItsBody, determines that
only the implementation for the
methods or/and operations will be
merged automatically when
possible.

| t sBody

BaseAwareDiffInvocation

Specifies how to launch the external
textual DiffMerge tool supporting a
base-aware comparison and
merging in Base Aware Diff mode.

$OVROOT\ et c\ t kdi f f. exe
$sourcel $source2 -a
$sour ceBase

BaseAwareDiffMergelnvocation

Specifies how to launch the external
textual DiffMerge tool supporting
base-aware comparison and
merging in Base Aware Merge
mode.

$BaseAwar eDi ff | nvocati on
-0 $out put

BaseAwareTextDiffMergeEnabled

Determines whether a base-aware
(three-unit) textual DiffMerge tool is
available to be launched.

Cl ear ed (check box cleared)

Rational Rhapsody

127

Parallel development

Preference Name

Description

Default Value

Difflnvocation

Specifies how to launch the external
textual DiffMerge tool in Diff mode.

For example, if the value is tkdiff
$sourcel Ssource2, DiffMerge

calls the TKDiff tool.

SOMROOT\etc\tkdiff.exe
Ssourcel S$source2

The keywords are as follows:

* SOMROOT means the location
of the Share subdirectory
under the Rational
Rhapsody installation

* $sourcel means the text
file containing left value of
compared attribute

* $source2 means the text

file containing right value of
compared attribute

DiffMergelnvocation

Specifies how to launch the external
textual DiffMerge tool in the Merge
mode. For example, if the value is
tkdiff $sourcel $source2 -o
Soutput,

DiffMerge calls the TkDiff tool.

$DiffInvocation -o
Soutput

The keyword is $output means
the text file that the merged
result will be written to (is
replaced by value of the
MergeOutput preference).

MergeOutput Specifies the text file path and name | $t enp\ out . t xt
that the merging result will be The keyword is $temp means
written to. For example, if the value the folder specified in the
is c: \temp\out . txt, DiffMerge operational system to store
looks for the merging result in the temporary files.
out.txt file in the c: \ temp folder.
Note

The metaclass ceneral : :DiffMerge and its preferences (M er geOutput, Difflnvocation,
and DiffM er gel nvocation) were removed in Version 4.1 of Rational Rhapsody. Therefore,
if you previously overrode those propertiesin your site.prp file, Rational Rhapsody
ignores them (they will have no effect) unless you move them under

DiffMerge: :TextDiffMerge.

128

Team Collaboration Guide

Command-line options for the DiffMerge tool

Command-line options for the DiffMerge tool

The DiffMerge CLI (command lineinterface) supports all of the DiffMerge tool featuresincluding
automatically accepting al trivial, non-conflicting differences for amerge operation (except where
noted). The CLI can aso be launched from [BM Rational ClearCase to perform the same tasks that
can be performed using the DiffMerge interface, as described previously.

Developers use DiffMerge CL1 to create batch files that launch the DiffMerge command-line
interface and automate some of the tasks associated with software development, particularly
scheduled nightly builds.

Launching the DiffMerge tool interface using the command line

To launch the DiffMerge toal interface using the command line:
1. Open acommand-line prompt window.
2. Change the command-line path to the Rational Rhapsody installation folder.
3. Typepiffmerge.exe and pressthe Enter key to open the DiffMerge window.

Thisinterface provides al of the features available for two-way and base-aware comparisons.

Launching the DiffMerge tool from the command line

If you do not want to work through the interface, you can run the DiffMerge tool completely from
the command line:

1. Open acommand-line prompt window.
2. Changeto the Rational Rhapsody installation folder.

3. Typepiffmerge.exe <options> aslistedin DiffMerge command-line syntax options. The
interface does not appear, unless you use the -xcompare OF -xmerge option.

Rational Rhapsody 129

Parallel development

DiffMerge command-line syntax options

The Rational Rhapsody DiffMerge tool basic syntax isthe dif fmerge . exe cOmmand with the
options described in the following table.

Diffmerge.exe <optionss>

For example, you might enter the following code to create a base-aware comparison/merge that
includes the subunits (- recursive) and specifies the output file in c: \Radio Merge\Radio.rpy:

Diffmerge.exe -merge -recursive
C:\Radio Main\Radio.rpy
C:\Radio Branch\Radio.rpy

-base C:\Radio Base\Radio.rpy
-out C:\Radio Merge\Radio.rpy

The following table lists the command-line options.

Option Description Syntax

-base <fil enane> Specifies the name of the file that is the Di f f ner ge. exe - base <base
common ancestor of the two compared files | fil e nane> <fil el>
(filel and file2 in the syntax) for a base- <file2>
aware comparison, as described in For - conpare
three units.

- conpare Starts the DiffMerge tool in Compare mode Di ffnerge. exe <filel>
for two units, but does not display the <file2> -conpare

DiffMerge interface. (To start a compare and
display the interface, use the
- Xxconpar e command.)

Graphical mode performs the comparison
and then exits to the system prompt. The
results of the comparison are as follows:

0 = identical Rational Rhapsody units

1 = differences between the two units were
identified

This result can be retrieved by the

ERRORLEVEL MSDCS variable. For
example, echo Exit code =

YERRORLEVEL %
-di ff Report Writes all the text in the Difference Report Di f f nerge. exe -conpare
<Di fference tab to the specified file. For more <filel> <file2>
Report file> information, see Difference Report -di ff Report <filenane>
generation. or
Use only when using - conpar e or-nerge, | pjff ner ge. exe - nerge
otherwise - Di f f Repor t will not be <filel> <file2>
executed. -base <fil e0>

-di ff Report <filenanme>

130 Team Collaboration Guide

Command-line options for the DiffMerge tool

Option

Description

Syntax

- mer ge

Starts the DiffMerge tool in merge mode, but
does not display the DiffMerge interface. (To
start a merge and display the interface, use
the - xmer ge command.)

If the tool detects a merge conflict, the
merge action is stopped, and the tool
returns a “1” exit code.

This result can be retrieved by the
ERRORLEVEL WMBDOS variable. For
example, echo Exit code =
UERRORLEVEL %

If the merge can be completed automatically
(without conflicts), the merged unit is saved
using the file named in the - out command.
If no - out command is specified, the Save
window appears to allow the developer to
enter a name for the new file.

Note: The - mer ge command is applicable
for base-aware mode only, therefore you
must specify a base unit (see - base).

Di fferge. exe <fil el>
<file2> -base <file0>
- mer ge

-nmergeLog <Merge
Activity Log
file>

Writes all the text in the Merge Activity Log
tab to the specified file. For more
information, see Merge activity log.

If the file does not exist, DiffMerge creates
the file. If it already exists, the new
information is appended to the existing file.

Use only when using - ner ge, otherwise
- mer geLog will not be executed.

Di f f mer ge. exe -nerge
<filel> <fil e2> -base
<fil e0> -mergelLog
<fil ename>

- mer geReport
<Mer ge Report
file>

Writes all the text in the Merge Report tab
to the specified file. For more information,
see Producing merge reports.

If the file does not exist, DiffMerge creates
the file. If it already exists, the new
information is appended to the existing file.

Use only when using - ner ge, otherwise
- mer geReport will not be executed.

Di f f mer ge. exe -nerge
<filel> <fil e2> -base
<fil e0> - mergeReport
<fil ename>

-out <fil eNanme>

Replaces the Save merge as option with an
option to save the merge results to the
specified file.

Use only when using <fi | e1> and
<fil e2> to merge two files.

Di ffnerge. exe <filel>
<file2>
-out <fil enanme>

displays the interface.

-recursive Compares with subunits. DiffMerge loads Di fferge. exe <filel>
the subunit files automatically. By default, <file2> -recursive
DiffMerge compares without the subunits.

- xconpar e Starts the DiffMerge tool in Compare mode Di ffnerge. exe <filel>
and displays the interface. <file2> -xcomnpare

- XImer ge Starts the DiffMerge tool in Merge mode and | Di ff merge. exe <fil el>

<file2> -xnerge

Rational Rhapsody

131

Parallel development

132 Team Collaboration Guide

IBM Rational Synergy

Rational Rhapsody supports CM tools, including IBM® Rational® Synergy®. This subject
provides information and procedures on Rational Synergy and Rational Rhapsody.

Setting up Rational Rhapsody for use with Rational
Synergy

Before you can use Rational Synergy with Rational Rhapsody, you need to set up Rational
Rhapsody so that the two systems can communicate with each other using SCC mode. Be certain
that the following operations are performed to establish that communication:

1. Ingtall the SCC add-on for Rational Synergy. Download it from the IBM Web site at http:/
/www-01.ibm.com/support/docview.wss?uid=swg21380569:

a. Select your Rational Synergy product version.
b. Signinwithyour IBM ID and password.

c. Onthe Downloads page, in the Integrations section, select the check box for an
applicable PC Integration and download thefile.

2. To enabletheintegration and display the Rational Synergy toolbar within Rational

Rhapsody, add the following flag to the General section of rhapsody . ini file:
ShowSynergyTaskBar=TRUE

3. Becertain that the location of the ccm.exefile (in <synergy Installation
Directory>\bin) iSin the PATH environment variable.

4. When using Rational Synergy and the Rational Rhapsody DiffMerge tool, you need to
include the location of the DiffMerge.exe file that isin the Rational Rhapsody installation
folder (fOI’ example, <Rhapsody installation path>\Rhapsody73) inthe PATH
environment variable.

Rational Rhapsody 133

http://www-01.ibm.com/support/docview.wss?uid=swg21380569
http://www-01.ibm.com/support/docview.wss?uid=swg21380569

IBM Rational Synergy

5. Import the Rational Rhapsody type definition file into Rational Synergy/CM. This adds
Rational Rhapsody typesto the Rational Synergy Type Manager. It also linksthe Rational
Rhapsody DiffMerge tool to perform comparison and merging on Rational Rhapsody files
within Rational Synergy. Download thisfile from the IBM Web site at http://www-
Ol.ibm.com/support/docview.wss?uid=swg21380564.

a. Select your Rational Rhapsody product version.

b. Signinwithyour IBM ID and password.

c. Onthe Downloads page, in the Integrations section, select the check box for the
Rational Rhapsody Type Definition File and Application Note File and download the
file.

d. After it has completed downloading, see the instructions provided with the file.

6. Add thefollowing codeto your ccm. ini file:

rhapsodytypes merge cmd = DiffMerge.exe -xmerge %$filel
$file2 -base %ancestor -out %outfile

134 Team Collaboration Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21380564
http://www-01.ibm.com/support/docview.wss?uid=swg21380564

Rational Synergy and Rational Rhapsody

Rational Synergy and Rational Rhapsody

With Rational Synergy and Rational Rhapsody, you can perform all of the standard configuration
management operations and these additional operations:

*

*

*

*

*

Creating new Rational Synergy tasks

Checking in Rational Rhapsody work

Viewing the properties for a Rational Synerqgy task

Viewing assigned tasks and setting up or changing the current task

Refreshing the Rational Synergy task list in Rational Rhapsody to display newly created
tasks

Using Rational Synergy with Rational Rhapsody

To begin using Rational Synergy with Rational Rhapsody:

1

2.

3.

To determine where to save your Rational Rhapsody project within Rational Synergy,
right-click the Rational Synergy project (in which you want to save a Rational Rhapsody
project) in the Rational Synergy work area and select Explore, and then note the path to
the project on your local disk.

Within Rational Rhapsody, create a new Rational Rhapsody project and saveit in the

directory for the Rational Synergy project in the Rational Synergy work areaon your local
drive.

Set the Rational Rhapsody configuration Management::General: :UseSCCtool
property to ves to indicate that you are using Rational Synergy and not one of the other
configuration management tools. Other CM tools are selected with the cMTool property.

If you do not see the Rational Synergy toolbar, as shown in the following figure, you must change
the showSynergyTaskBar flag in the General section of rhapsody. ini fileto TRUE. Or if the
flag is set correctly, make sure that viewing the toolbar has not been switched off. Choose View >
Toolbars Syner gy tasksto reset it.

IEREEGEEEAEEIEEN S BT

Rational Rhapsody 135

IBM Rational Synergy

Connecting to the Rational Synergy archive

To connect to the Rational Synergy archive with Rational Rhapsody:

1. InRational Rhapsody, open the Configuration Items window. Choose File >
Configuration Items.

2. Click the Connect to Archive button k. The Startup Info window opens.

3. Make any changes needed on the Startup Info window, and click Continue. The Open
Synergy/CM Project window opens.

4. On the Open Synergy/CM Project window, select the Scopeto list the groups of projects
managed in Rational Synergy. Then select the Project Name and Project Version for the
specific project you are going to use.

5. Click OK to close the Open Synergy/CM Project window.

6. Click OK to dismiss the confirmation message.

136 Team Collaboration Guide

Rational Synergy and Rational Rhapsody

Creating new Rational Synergy tasks

In Rational Rhapsody, to create each Rational Synergy task that you want to use:

=
1. Click the Create New Task button on the Rational Synergy toolbar in Rationa
Rhapsody.

2. Inthewindow that opens, type the Task Synopsis hame that you want to appear in the
drop-down list on the Rational Synergy toolbar in Rational Rhapsody.

3. Enter any necessary information on this window. The entriesin these boxes become the
properties of thetask. That information is accessible for each task, as described in Viewing
the properties for a Rational Synergy task.

4. Click Assign to savethetask in Rational Synergy and make it available for use in Rational
Rhapsody.

Note

When you create atask, Rational Synergy namesiit, by default, as Task <task numbers.
Thisis aso the default for the configurationManagement : : Synergy: :
AssignedTasksItsTaskId property in Rational Rhapsody. However, when you configure
your DCM server, you can set it to insert a prefix before <task_numbers. In this case, you
might want to update the

ConfigurationManagement : : Synergy: : AssignedTasksItsTaskId property to usethe
regular expression you want. For example, if you set the prefix ukan# on your DCM server
and you want this to appear in Rational Rhapsody too, then you should set the value for this
property to Task ukan# ([0-9\.]+) OtherwisethedefaultisTask ([0-9\.1+). Thevalue
in this property must match the value set on your DCM server for created tasks to appear as
you want in the drop-down list on the Rational Synergy toolbar in Rational Rhapsody.

You might also want to set the configurationManagement : : Synergy: :
AssignedTasksItsTitle property and the configurationManagement: :

Synergy: :GetCurrentTaskItsTaskId property. Use assignedTasksItsTitle to Specify a
regular expression for thetitle of atask. It default valueistask (.*). You would use
GetCurrentTaskItsTaskId While getting the current task from Rational Synergy to check
if the ID for the current task is matching the given regular expression. Its default is
(([*#1*#)2[0-9\.1+).

Rational Rhapsody 137

IBM Rational Synergy

Viewing the properties for a Rational Synergy task

Each Rational Synergy task hasinformation supplied when it is created. These are the properties
of each task.

To examine the properties for atask:

1. With thetask appearing in the drop-down list on the Rational Synergy toolbar, click the
Task Properties button &

2. You can view the task properties, but not change them.

Working with a Rational Synergy task in Rational Rhapsody

To create elements in Rational Rhapsody and use Rational Synergy for configuration management:
1. Becertain that the Rational Rhapsody project is open in the Rational Synergy work area.

2. Select the Rational Synergy task from the drop-down list on the Rational Synergy toolbar,
Create Use Cases, as shown in the following figure:

i=ERE @HMB:Create lUse Cases ﬂl

Note

If the tasks you created in Rational Synergy do not appear in the drop-down list, click the
Refresh button . In addition, see the note in Creating new Rational Synergy tasks.

Checking in Rational Rhapsody work

After working on the selected task in Rational Rhapsody, check it into Rational Synergy.

1. Click the Checkin Current Task button ¥ on the Rational Synergy toolbar.

2. All unitsin the task are checked into Rational Synergy, and the processing messages
display on the Configuration Management tab of the Rational Rhapsody Output window.

138 Team Collaboration Guide

Rational Synergy and the Rational Rhapsody DiffMerge tool

Rational Synergy and the Rational Rhapsody
DiffMerge tool

To use Rational Synergy with the Rational Rhapsody DiffMerge tool, use these methods:

+ Includethelocation of the DiffMerge.exefilethat isin the Rational Rhapsody installation

folder (fOi’ example, <Rhapsody installation path>\Rhapsody73) inthe PATH
environment variable.

+ Import the Rational Rhapsody type definition file into Rational Synergy/CM. This adds
Rational Rhapsody typesto the Rational Synergy Type Manager. It aso links the Rational
Rhapsody DiffMerge tool to perform comparison and merging on Rational Rhapsody files

within Rational Synergy. For instructions on how to import thisfile, see step 5 in Setting
up Rational Rhapsody for use with Rational Syneray.

+ Tousethe Rational Synergy Text Diff tool from the Rational Rhapsody DiffMerge toal,
specify these settings from the Rational Rhapsody DiffMerge through View >
Preferences and set the following values. After you set and save any changes to these
preferences, they are set for every time you use the DiffMerge tool.

— BaseAwareTextDiffMergeEnabled. Select the check box (TRUE)

— BaseAwareAutoMergeInvocation. Enter value of ccm_merge.exe -3edu -1
$sourcel -r $source2 -a $sourceBase -z Soutput

Customize Rational Rhapsody and Rational Synergy

To customize Rational Rhapsody and Rational Synergy operations on the task toolbar you can use
the properties available in the configurationManagement : : SYNERGY metaclass from the
Propertiestab in the Features window.

Rational Rhapsody 139

IBM Rational Synergy

140 Team Collaboration Guide

IBM Rational ClearCase

Rational Rhapsody supports CM tools, including IBM® Rational® ClearCase®, in either of two
main modes: Batch and SCC. This subject discusses the Rational Rhapsody and Rational
ClearCase integration, mostly in Batch mode.

To determine which mode might be best for your situation, review Batch mode Versus SCC mode.

Batch mode Versus SCC mode

Rational Rhapsody supports CM tools, including Rational ClearCase, in either of two main modes:
Batch and SCC.

Batch mode is the traditional method of interacting with CM tools that do not conform to the SCC
standard. In this mode, Rational Rhapsody has a custom set of properties for each tool that launch
tool-specific commands for the CM operations.

SCC mode is an aternate method of interacting with CM tools that conform to the SCC standard.
In SCC mode, you need set only one property to interface with any of dozens of SCC-compliant
CM tools, without further customization. You interact directly with the GUI elements for the CM
tool to perform SCC-supported operations. Return status information, or error information in the
case of failure, comes directly from the CM tool. In this way, you have more direct CM tool
interaction, and receive more complete feedback on CM operations, in SCC mode.

Each mode has pros and consin the Rational Rhapsody and Rational ClearCase integration. To
help you decide which mode might be best for your situation, this topic provides you with an
in-depth understanding of these differences. It aso provides you with a decision-making processto
help Rational Rhapsody and Rational ClearCase users determine which mode might better address
their needs.

Rational Rhapsody 141

IBM Rational ClearCase

The differences between the Batch and SCC modes

The following table lists al the differences between the Batch and SCC modes of Rational
Rhapsody/Rational ClearCase integration.

CM Operation

Batch Mode

SCC Mode

Comments

Operating Sy

stem

other Advanced
Options

os Windows and Windows SCC mode is available only on Windows, while
Linux Batch mode is available on both Windows and
Linux.
Note that this is the operating system that Rational
Rhapsody and the Rational ClearCase client are
installed on. It is not the operating system that the
Rational ClearCase server is installed on.
Basic CM Operations
Checkout You can specify You cannot specify | In Batch mode, you never know what version should
which version to the version to be typed in the window. Best practice in both cases
check out check out. It is the same, check out directly from the version tree
depends on the and reload the unit using “synchronize.”
configuration
specification.

Fetch N/A N/A N/A (Not Applicable) in Rational ClearCase. The
view concept means the file is always “fetched.”

Uncheckout Supports A single item can | Although Uncheckout is available in both modes,

uncheckout of be unchecked out | SCC does not have Uncheckout With Descendants.
multiple items with | and descendants
descendant. are not supported.
Exploring History and Past Views
History No Yes History and version tree provides the same
- information but in different form. While version tree

Version Tree Yes No provides a graphical view, history just lists the
versions. It is possible to switch from one view to the
other in both cases.

Diff with Rhapsody | Yes Yes This operation can be performed successfully in
SCC only if the hybrid mode is enabled. Therefore,
the Confi gur ati onManagenent : : General : :
UseHybr i dMbdeWhenPossi bl e property should
be set to Checked in this case.

Properties No Yes Available only in SCC mode. In Batch mode it is
possible through user-defined buttons (needs a
simple command: describe -graphical).

Advanced CM Interaction and UCM
UCM support and No Yes If using SCC mode, during the CM operations you

can get to advanced options.

142

Team Collaboration Guide

Batch mode Versus SCC mode

CM Operation

Batch Mode

SCC Mode

Comments

Customization

Yes

No

While advanced options are not available in Batch
mode in the same way, it is possible to achieve
many of those functionalities through properties
customization in Batch mode.

Repository Restr

ucturing

Rename Member

Yes

Yes

Available in both modes depending on the value of
ConfigurationManagement: :ClearCase: :
RenameActivation (if you are using Batch mode)
or ConfigurationManagement: : SCC: :
RenameActivation (if you are using SCC mode)

When this operation is performed on a package-as-
directory in SCC, the repository can be restructured
successfully only if hybrid mode is enabled.
Therefore, the ConfigurationManagement: :
General: :UseHybridModeWhenPossible
property should be set in this case.

Move Member

Yes

Yes

Available in both modes depending on the value of
ConfigurationManagement: :ClearCase: :
MoveActivation (if you are using Batch mode) or
ConfigurationManagement: :SCC: :
MoveActivation (if you are using SCC mode).

When this operation is performed on a package-as-
directory in SCC, the repository can be restructured
successfully only if hybrid mode is enabled.
Therefore, the ConfigurationManagement: :
General: :UseHybridModeWhenPossible
property should be set in this case.

Delete Member

Yes

Yes

Available in both modes depending on the value of
ConfigurationManagement: :ClearCase: :
DeleteActivation (if you are using Batch mode)
or ConfigurationManagement: : SCC: :
DeleteActivation (if you are using SCC mode).

When this operation is performed on a package-as-
directory in SCC, the repository can be restructured
successfully only if hybrid mode is enabled.
Therefore, the ConfigurationManagement: :
General: :UseHybridModeWhenPossible
property should be set in this case.

Rational Rhapsody

143

IBM Rational ClearCase

CM Operation

Batch Mode

SCC Mode

Comments

Set a package to
be stored in its own
directory

Yes

Yes

Available in both modes depending on the value of
ConfigurationManagement: :ClearCase: :
StoreInSeparateDirectoryActivation (if
you are using Batch mode) or
ConfigurationManagement: :SCC: :
StoreInSeparateDirectoryActivation (if
you are using SCC mode).

The corresponding directory will be created in CM
archive as well, and the relevant .sbs file with its
entire descendants will be moved to this directory.

In SCC, this operation is executed in hybrid mode.
Therefore, in addition to the above-mentioned
property, the ConfigurationManagement: :
General: :UseHybridModeWhenPossible
property should be set as well.

Set a package not
to be stored in its
own directory

Yes

Yes

Available in both modes depending on the value of
ConfigurationManagement: :ClearCase: :
StoreInSeparateDirectoryActivation (if
you are using Batch mode) or
ConfigurationManagement: :SCC: :
StoreInSeparateDirectoryActivation (if
you are using SCC mode).

The relevant . sbs file with its entire descendants
will be moved to the parent directory, and the
directory created for this package will be removed
from the archive.

In SCC, this operation is executed in hybrid mode.
Therefore, in addition to above-mentioned property,
the ConfigurationManagement: :

General: :UseHybridModeWhenPossible
property should be set as well.

CM Commands Execution Mode

User interaction
and feedback

Commands are
executed in a shell
as batch
commands. Errors
or other messages
are shown to the
user in the
Rational
Rhapsody Output
window. Rational
Rhapsody is not
able to react to

Interacts directly
with CM tool using
their Ul and API.
Rational
Rhapsody is
aware of CM
errors and reacts
accordingly.

The user interacts directly with the CM tool's GUI
elements to perform SCC-supported operations.
Return status information, or error information in the
case of failure, comes directly from the CM tool. In
this way, Rational Rhapsody has direct CM tool
interaction, and receives more complete feedback
on CM operations, in SCC mode.

CM errors.
CM State Awareness
CM State No Yes CM State Awareness is available in SCC if
Awareness ConfigurationManagement: :SCC: :
ShowCMStatus is set to Checked (check box is
selected).
144 Team Collaboration Guide

Batch mode Versus SCC mode

SCC mode or Batch mode?

In order to decide whether Batch mode or SCC mode better addresses your needs, you should
answer the following questions in order. Based on your response to each question, you will
progress through the set of questions as applicable until you are finally advised as to what
particular mode might be best for your situation. The following figure illustrates the questions

graphically.

[Linux] [Windows] [Yes]

085 used? Use UCIM?

[Both/Hyhrid]
[Yes] ’ ;
MNeed ldentical Experience?

[Linux]

Use State Awareness?

[Ma]

Use Custom Froperties?

[Ma]

> [Windows]
05 used?

-

Question 1: Which operating system are you using?
Rationa Rhapsody runs both on Windows and Linux.
¢ If all of your team members run Rational Rhapsody on Linux, you have to use Batch mode
because SCC is not available on Linux.

+ If dl of your team members run Rational Rhapsody on Windows, continue with Question
4: Are you going to use Rational ClearCase UCM from the Rational Rhapsody interface?.

¢ If some of your team members run Rational Rhapsody on Linux while othersrun it on
Windows, or if some members run Rational Rhapsody on both operating systems,
continue with the next question.

Rational Rhapsody 145

IBM Rational ClearCase

Question 2: Is an identical Rational Rhapsody/Rational ClearCase integration
experience required?

+ Ifitissignificant that all users have the same Rational Rhapsody/Rational ClearCase

integration experience, or if some users run Rational Rhapsody on both operating
systems, then you should prefer Batch mode.

+ If anidentical experienceis not mandatory, continue with the next question.

Question 3: Is Rational Rhapsody run on Windows or Linux?

¢ If Rational Rhapsody is going to run on Linux, you have to use Batch mode because SCC

is not available on Linux.

¢ If not, continue with the next question.

Question 4: Are you going to use Rational ClearCase UCM from the Rational
Rhapsody interface?

+ If you are going to use Rational ClearCase UCM (Unified Change Management) from the

Rational Rhapsody interface, then SCC mode is the only option because UCM from the
Rational Rhapsody interface is not supported in Batch mode. When you use Rational
ClearCase in SCC mode, Rational Rhapsody supports UCM so that you can make use of
“activities’ to enforce defect and change tracking with the code development. Note,
however, that you can use UCM in Batch mode and set “ activities’ externally although
Rational Rhapsody does not provide you this capability through itsinterface.

If you do not have to use UCM from the Rational Rhapsody interface, continue with the
next question.

Question 5: Are you going to use CM State Awareness feature of Rational
Rhapsody?

¢ Rationa Rhapsody hasthe CM State Awareness feature only in SCC mode. Therefore, if

you want to make use of state information of units (for example, checked in, checked out),
you should prefer SCC mode.

If CM State Awarenessis not required, continue with the next question.

Question 6: Are you going to use custom properties for CM operations?

+ If you have aready made an investment in customizing the propertiesin Rational
Rhapsody for CM operations (for example, you have a custom script that handles check in
and set the configurationManagement : : ClearCase: : CheckIn property to launch this
script) and if you want to continue using these custom properties, you have to use Batch
mode because SCC does not let you do such a customization.

If you have not made an investment in customizing properties or you do not have to use
these custom properties, you can use SCC mode.

146

Team Collaboration Guide

Batch mode Versus SCC mode

SCC Mode or Batch Mode Summary

The Rational Rhapsody/Rational ClearCase integration isavailablein Batch or SCC mode with the
following considerations:

¢ Windows users might use either mode.

¢ Linux users must use Batch mode because SCC is not available on Linux.
See The differences between the Batch and SCC modes and SCC mode or Batch mode?

For those who can use it, the SCC mode has the following advantages.

+ Improved stability and error detection
+ Ability to use Rational ClearCase UCM from the Rational Rhapsody interface
¢ Can benefit from the CM State Awareness feature of Rational Rhapsody

For those who can use SCC mode but who aready have custom Rational Rhapsody properties, you
should decide which one is more significant for you: UCM and CM State Awareness or
customized CM behavior through these properties.

Rational Rhapsody 147

IBM Rational ClearCase

Setting up Rational ClearCase

To set up aRational ClearCase environment, consult the documentation that accompanies the
Rational ClearCase application. Conceptually, the following steps should accomplish the task.
However, the process might differ depending on your Rational ClearCase environment and which
version of Rational ClearCase you are using.

To set up Rational ClearCase to use as your Rational Rhapsody source control management tool:

1
2.

Using Rational ClearCase, create a directory to serve as the VOB mounting point.

Create the VOB (mkvob) and mount it (mount). Alternatively, you can use the VOB
Creation Wizard.

Create aview (mkview) and activate it (startview). Alternatively, you can use the View
Creation Wizard.

4. Addto version control (mkelem) any directory that is a parent to the Rational Rhapsody
workspace repository (the rpy directory). Thisincludes the directory that you can
optionally create as part of anew Rational Rhapsody project.

Note

Check out (reserve) this directory before connecting to the archive. Connect to Archive
basically makesthe <project> rpy directory aVOB element, and therefore should be done
only once, by one user. In Rational ClearCase, adding a new VOB element performs a
Check In operation as well.

You should place a Rational Rhapsody project within a directory with the same name as the
project. For example, create adirectory called myproject and save your Rational Rhapsody
project to this directory so it contains the myproject . rpy file and Myproject_rpy directory.

148

Team Collaboration Guide

Setting up Rational ClearCase

Controlling case sensitivity in Rational ClearCase

When you save a model in a Rational ClearCase directory (under source control), it is assigned a
name in lowercase |etters. When you connect it to an archive, Rational Rhapsody creates the
directory with an uppercase name. This leaves you with the file <project>. rpy in lowercase and
the directory <proJeCcT> RPY in uppercase, which does not work in Rational ClearCase.

To fix the problem:

1. Changethe MVFS settings in the Control Panel > Clear Case applet to be “case
preserving.”

2. Reboot the machine to make the changes take effect.

If this setting is not changed and a project name has uppercase characters, then, in some cases,
Rational ClearCase will not be able to find the correct _rpy files.

About checking out Rational Rhapsody files

In Rational ClearCase, you must pay careful attention to which version of afile needsto be
checked out. The default fileis usually the most recently archived version. To check out an earlier
version, you must specify the earlier version even if that version is already selected by a Rational
ClearCase configuration specification.

Note

If you check out the file without specifying the earlier version you wanted, the most recent
version of the Rational Rhapsody file is checked out.

About setting up Rational Rhapsody projects for team members

Rational Rhapsody users can create views on their machines, and the Rational ClearCase MV FS
automatically makes the Rational Rhapsody projects that exist in the VOB visible in those views.
No additional steps are required; any user can launch Rational Rhapsody and open the . rpy file
located in the newly created view.

About adding new files to the archive

When users add new elements to their models, team members might see them in the Show Items
window (Archive Members window) as eligible for checkout, because adding a member with
Rational ClearCase also checksit in. To avoid conflicts, the user creating the new element should
immediately check out the element after adding it to the archive.

Rational Rhapsody 149

IBM Rational ClearCase

Rational ClearCase limitations with Rational Rhapsody
Note the following Rational ClearCase limitation with Rational Rhapsody:

+ Rational Rhapsody does not support the Rational ClearCase “ snapshot” view.

+ Upgrading Rational Rhapsody on UNIX does not automatically update the soft links (as
opposed to Windows installation that will update the registry).

Rational ClearCase semantics

Thefollowing list shows the semantics of common CM operations as specifically implemented for
Rational ClearCase.

¢ The Connect to Archive operation makes the <project>_ rpy directory aVOB element
and creates a new version-controlled directory for it.

¢ ThelList Archive operation lists the files that appear in the current view that are under
version control.

+ The Add Member operation adds the configuration item file to version control.

+ The Check In operation checksin configuration items, even if the current items are
identical to those already in the archive. Rational ClearCase does not have Check In with
Lock capabilities, so selecting the Lock option has no effect.

+ The Check Out operation checks out the configuration item. The Lock option activates the
Rational ClearCase Reserved option.

Evil twins issue

In Rational ClearCase, you should avoid using the same name for different elements. This type of
situation creates what is called “evil twins.” For an explanation and guidance about the evil twins
issue in the Rational ClearCase environment, see the technote provided on the IBM Web site at
(http://www-1.ibm.com/support/docview.wss?rs=984&uid=swg21125072).

150 Team Collaboration Guide

http://www-1.ibm.com/support/docview.wss?rs=984&uid=swg21125072

Integration issues

Integration issues

You can set up your Rational ClearCase environment so diff and merge commands from within
Rational ClearCase (either from the command line, version tree, or Rational ClearCase Merge
Manager) automatically launch the Rational Rhapsody DiffMerge tool. See Setting up the Rational
ClearCase Type Manager.

To perform difference identification and merging operations, you might want to integrate these
Rational ClearCase textual difference tools with the Rational Rhapsody DiffMerge tool:

¢ cleardiffmrg
® cleardiff
To integrate these tools, you need to set the following Rational ClearCase values as shown:
¢ BaseAwareAutoMergeInvocation. SEttO cleardiff.exe -out S$output -base
$sourceBase -abo -qui $sourcel $source?2

¢ BaseAwareDiffInvocation. SE{ {0 Cleardiffmrg.exe -base $sourceBase S$sourcel
$Ssource?2

¢ BaseAwareDiffMergeInvocation. SEf {0 $BaseAwareDiffInvocation -out $output
¢ BaseAwareTextDiffMergeEnabled. Set tO TRUE

¢ DiffInvocation. Setto cleardiffmrg.exe $sourcel $source?2

¢ DiffMergeInvocation. Sett0 $DiffInvocation -out $output

These value setting changes launch the Rational ClearCase textual mergetool cleardif fmrg from
the Rational Rhapsody DiffMerge tool when a user performs diff/merge of operation bodies.
Similarly, DiffMerge silently launches c1eardiff to determineif the given differences are trivial
or non-trivial and to merge them automatically in base-ware mode.

This approach is made possible because all elements stored in a Rational ClearCase VOB have a
type. Rational ClearCase administrators can define a new type and associate it with a Diff tool
and aMerge tool.

Rational Rhapsody 151

IBM Rational ClearCase

Hierarchical repository and Rational ClearCase

To perform CM operations on Rational Rhapsody files, the directory containing them must be a
VOB element. Directories created by Rational Rhapsody could be either the project directory (for
example, mypProject rpy) Of directories created to contain packages.

The »_rpy directory becomes a VOB element once you connect to the archive.

In addition, package directories can be made into VOB el ements when you initially create them
(for more information, see the property definitions of

ConfigurationManagement : : ClearCase: :MakeCMShadowDirActivation and
ConfigurationManagement : : ClearCase : :MakeCMShadowDir ON the Propertiestab of the
Features window in Rational Rhapsody).

However, in the situation where you try to “add to source control” for a Rational Rhapsody
element and the operation fails because the parent directory is not aVVOB element, you can make
the directory aVVOB element using Rational ClearCase, then continue working in Rational
Rhapsody.

Changes to an existing directory structure

If you want to change the directory structure of the repository files (for example, from flat to
hierarchical), you must make changes to both Rational Rhapsody and Rational ClearCase.
Although branch creation, maintenance of configuration specification files, and the overall policy
of branch and merge is done outside of the scope of Rational Rhapsody, the merge process requires
the usage of the Rational Rhapsody DiffMergetool. The DiffMergetool allowsyou to examinethe
differences between Rational Rhapsody unitsin aclear, visua interface and to merge two versions
of the same unit into athird, new unit.

For detailed information about the DiffMerge tool, see Parallel development.

However, using the Rational Rhapsody DiffMerge tool to make these changes requires some
adjustments:
¢ You must manualy type in the unique identifier of each of the versions to be compared.

¢ You must manually create aRationa ClearCase link (merge arrow) from the merge source
to the merge target.

¢ By working from within Rational Rhapsody, you are not using the Rational ClearCase
visual version tree representation efficiently.

152

Team Collaboration Guide

Rational ClearCase Type Manager

Limitations for changing an existing directory structure
Note the following limitation for changing an existing directory structure:
+ When the Rational Rhapsody DiffMerge tool is activated from the Rational ClearCase

version tree (see Rational ClearCase Type Manager), the DiffMerge tool does not expose
the option With Descendant.

¢+ TheRationa Rhapsody DiffMergetool can comparetwo versions of a file (as opposed to
the Rational ClearCase default text diffmerge tool that can handle up to 32 files).

+ If aclient machine needs to work with two different versions of Rhapsody
simultaneously, the map file pointer on Windows, which is based on aregistry key, needs
to be manually set to the correct version of the Rational Rhapsody DiffMerge tool. The
registry key is set by the Rational Rhapsody installation wizard. Similarly, a UNIX client
will need to modify the compare, xcompare, merge, xmerge SOft linksto ensure
invocation of the correct version of the DiffMerge tool.

Rational ClearCase Type Manager

Using a Rational ClearCase extension mechanism called type manager, you can launch the
Rational Rhapsody DiffMerge tool directly from the Rational ClearCase version tree tool, merge a
unit from one branch to another, and draw the hyperlink arrow (all as a single atomic operation).
For more information about this feature, see Launching DiffMerge inside Rational Rhapsody.

All elements stored in a Rational ClearCase VOB have atype. Rationa ClearCase administrators
can define a new type and associate it with a Diff tool and a Merge tool. For more information
about this approach, see the Rational ClearCase documentation (search keywords:. type _manager,
map file, magic file, magic_path). Your Rational ClearCase administrator should be familiar with
these concepts prior to the implementation phase.

Your Rational ClearCase administrator needs to implement the necessary changes for this
enhancement, coordinating all changes with project management, for the following reasons:
* Not all userswill need this enhancement.
+ Not al projects will need this enhancement.

+ Thesetup involves modifying the Rational ClearCase setup and configuration files, which
isusualy not handled by end users.

Rational Rhapsody 153

IBM Rational ClearCase

Setting up the Rational ClearCase Type Manager

To set up the Rational ClearCase Type Manager:

Note

Step 1 — 4 are described using the Windows GUI. To implement the same functionality on
UNIX servers, use the following sample command:
jupiter 21> cleartool mkeltype -super text file -manager _rhp
-mergetype auto rhp file
Comments for “rhp file”:
Rhapsody units files

Created element type “rhp file”.
jupiter 22>

Run the Rational ClearCase Home Basetool. The Home Base window opens.

On the VOBSstab, click Type Explorer.

In the Type Explorer window, select the required VOB and open the element type.
Open the Create window. Choose Type > Create.

Defineanew type, rhp_file and click OK.

o o M~ w D P

Edit the properties for the new type manager using the Properties window. Set the
following values:

¢ Makesure Supertypeistext file.
¢ Select the Override type manager check box and type _rhp in the text box.
* FortheMerge Type, select the Use type manager’s mer ge method radio button.

154 Team Collaboration Guide

Rational ClearCase Type Manager

7. OnWindows NT servers, open the map file (usually located in the directory

<ClearCase home dir>\1lib\mgrs) and add the following section to the map file (in, for
exaﬂuﬂe,c:\Program Files\Rational\ClearCase\lib\mgrsy

rhpconstruct_version <same entry used for text file delta>
rhpcreate branch <same entry used for text file delta>
rhpcreate_element <same entry used for text file delta>
rhpcreate version <same entry used for text file delta>
_rhpdelete branches versions<same entry used for text file delta>

rhpcompare <path for Rhapsody files>\DiffMerge.exe
rhpxcompare <path for Rhapsody files>\DiffMerge.exe
rhpmerge <path for Rhapsody files>\DiffMerge.exe
rhpxmerge <path for Rhapsody files>\DiffMerge.exe
rhpannotate <same entry used for text file deltas>
rhpget_cont_info <same entry used for text file delta>
In this syntax:

<same entry used for text file deltas mMeansyou should copy the entry
that already exists for the text file type manager into the Rational Rhapsody file

type_ manager.

<path for Rhapsody filess iSthefull pathto the Rational Rhapsody DiffMerge

tool.
Example:

If the piffMerge.exe iSinstaled on all users’ machines on

D:\Rhapsody\DiffMerge.exe and al thetext file delta entriesare

..\..\bin\tfdmgr.exe, add the following section to the map file:

rhpconstruct_version
rhpcreate branch
rhpcreate element

..\..\bin\tfdmgr.
..\..\bin\tfdmgr.
..\..\bin\tfdmgr.

rhpcreate version ..\..\bin\tfdmgr.exe
rhpdelete_branches_versions ..\..\bin\tfdmgr.exe
rhpcompare D:\Rhapsody\DiffMerge.
rhpxcompare D:\Rhapsody\DiffMerge.
rhpmerge D:\Rhapsody\DiffMerge.
rhpxmerge D:\Rhapsody\DiffMerge.
rhpannotate ..\..\bin\tfdmgr.exe

rhpget_cont_info ..\..\bin\tfdmgr.

Instead of D: \Rhapsody\DiffMerge . exe, yOU Can USE;

exe
exe
exe

exe

exe
exe
exe
exe

HKEY LOCAL MACHINE\SOFTWARE\Telelogic\Rhapsody\DiffMerge\
Install Path

Note: The old key, created in Rhapsody versions before 7.1, was under
HKEY LOCAL MACHINE\SOFTWARE\I-Logix\Rhapsody\DiffMerge\

This creates a new key.

Install path. Thiskey isno longer used and should be changed to the new

key listed above.

Rational Rhapsody

155

IBM Rational ClearCase

8. On UNIX/Solaris servers, do the following steps:

¢ Underthe <clearcase install dir>/mgrs directory, createa rhp directory.
¢ Under the rhp directory, create the following links:

— compare, xcompare, merge, aNd xmerge should point respectively to the
DiffMerge_Compare.exe, Diffmerge_XCompare.exe, DiffMerge_Merge.exe,
and DiffMerge_XMerge.exe. (The Rational Rhapsody installation program
creates these files in the install ation directory.)

— All other links should point to the text_delta file entry.

Setting up the Rational ClearCase .magic file

To be able to use the Rational ClearCase Type Manager with Rational Rhapsody or the Rational
Rhapsody Eclipse plug-in for the Eclipse platform, you must set up the Rational ClearCase .magic
file. By default, the .magic fileisnamed default .magic. However, yours might have a different
name.

Note
The supported Rational ClearCase Eclipse plug-in isversion 7.0.0.20080131A.

To set up the Rational ClearCase .magic file:

1. Openthe.magicfilethat isvisibleto all usersat your site and add the following lines to
the beginning of the
Match by name without examining data corefile: -name"core" ;

and before the

(seems printable, but has binary at the end of it)
lisp object object module file : -name "*.lbin" ;

sections of the .magic file.

Rhapsody file types (begin)
rhp file: -name "*.rpy";

rhp file: -name "*.sbs";
rhp file: -name "*.cls";
rhp file: -name "*.omd";
rhp file: -name "*.cmp";
rhp file: -name "*.ctd";
rhp file: -name "*.clb";
rhp file: -name "*.ucd";
rhp file: -name "*.msc";
rhp file: -name "*.std";
rhp file: -name "*.dpd";
rhp file: -name "*.fil";

rhp file: -name "*.fol";
Rhapsody file types (end)

156 Team Collaboration Guide

Rational ClearCase Type Manager

2. Saveyour changesto the .magic file.

For more information about setting up the Rational ClearCase .magic file, see the technote
provided on the IBM Web site at (http:/www-1.ibom.com/support/
docview.wss?2rs=0&uid=swg21118099).

Rational Rhapsody models and changing the default properties

For the enhancement to work, Rational Rhapsody files should be of type rhp_file, not
text file. Thisissue hastwo aspects:

+ Ensuring that the development team is adding new Rational Rhapsody units as type
rhp file, NOt text file

¢ Converting Rational Rhapsody units that are already stored under a Rational ClearCase
VOB fromtype text filetOrhp file

To ensure new Rational Rhapsody units are being added astype rhp_file, change the following
property in the Rational Rhapsody properties file (usually site.prp):

Subject: ConfigurationManagement
MetaClass: ClearCase

Property: AddMember

Note

The only differenceisthe —e1type flag for the Rational ClearCase mke1lem command
(shownin bold).

To convert Rational Rhapsody unitsthat are already stored under a Rational ClearCase VOB from
text filetOrhp file, Usethe Rational ClearCase chtype command.

Rational Rhapsody 157

http://www-1.ibm.com/support/docview.wss?rs=0&uid=swg21118099
http://www-1.ibm.com/support/docview.wss?rs=0&uid=swg21118099

IBM Rational ClearCase

Code generation performance improvements

If you notice that performance is reduced, you might need to change the location of the temporary
files.

To change the location for temporary files, change the following entry in the Rhapsody . ini file,
asfollows:
[CodeGen]

TemporaryFilesDirectory=<the temporary code generation
files directory (for example, C:\TEMP) >

When the entry is not present, temporary files are created in the project directory where the . rpy
fileis stored. By changing the location to a directory outside of a Rational ClearCase VOB
domain, code generation performance improves.

Note

When you initially generate code inside a Rational ClearCase VOB, thereis till
performance loss due to VOB overhead (creating the code directories and files). You will
see the full performance gain beginning with the second code generation.

Forced check in of a package with unchanged subunits

If you check out a package with descendants and change only a few subunits, checking in the
package can be problematic because Rational ClearCase will sometimes refuse to check in an
unchanged element. To overcome this problem, usethe sensitivecheckin.bat file provided in
the Rational Rhapsody distribution. The fileislocated in <root>/share/etc.

The batch file compares each file to the version that was checked out. If the two versions are the
same, an Undo Checkout operation is performed. Otherwise, the changed version is checked in.

To use thisfile, it must be in the somMrooT/etc directory. In addition, you must set the
ConfigurationManagement : : ClearCase: : CheckIn property to the following vaue:

SOMROOT/etc/SensitiveCheckin.bat $UnitPath $log

158 Team Collaboration Guide

When is a Rational ClearCase license consumed?

When is a Rational ClearCase license consumed?

In general, any Rational ClearCase operation that involves the database (MVFS access) or the
albd_server will most likely cause alicense to be activated for that user. This means that the user
has “accessed” Rational ClearCase and that a license has been consumed for that session.

Most anything you do that involves the product consumes a license, for example:
¢ Whenyou areinaVOB or looking at data through aview. Thisis whether you are on a
Rational ClearCase host or a non-supported host via an exported view.
¢ Useany cleartool commands that modify data (for example, checkout and checkin).
¢ Cadll any metadata operations on labels, branches, attributes, triggers, and so forth.
¢ Useany listing or reporting commands like 1svob, 1sview, describe, find, and so forth.
¢ Use ClearMake and merge.
For the CM interface license on the Rational Rhapsody side, it is consumed for the entire Rational
Rhapsody session.

Regarding the Rational ClearCase license itself, any Rational ClearCase client utility you run
(such as cleartoal) triesto get alicense. If it is successful, you keep it for 60 minutes by default.
When you enter a Rational ClearCase command during this period of time, the license is renewed.
Otherwise, after the period of time, another user can take the license. All this applieswhen you use
the cleartool commands from the batch interface.

Regarding the SCC interface, it would depend whether you initialize/uninitialize the interface with
each command, or at the first usage/after closing Rational Rhapsody.

Customize Rational Rhapsody and Rational ClearCase

To customize Rational Rhapsody and Rational ClearCase you can use the properties available in
the configurationManagement : : ClearCase metaclass from the Propertiestab in the Features
window.

Rational Rhapsody 159

IBM Rational ClearCase

Checking out/Checking in a directory once

Thisfeature is applicable with Rational ClearCasein batch mode.

By default, when you add multiple files that are contained in the same directory to the archive,
Rationa Rhapsody checks out/checks in the directory for these files multiple times. (You can see
this on the Rational Rhapsody Output window.)

To set it so that Rational Rhapsody check outs/checks to the same directory for multiple files only
once, you can set the configurationManagement : : ClearCase: :
CheckOutCheckInDirectoryOnceDuringAddToArchive Property to checked.

Storing an existing package in a separate directory

Thisfeature is applicable with Rational ClearCasein batch mode.

With the use of the configurationManagement : : ClearCase: :
StoreInSeparateDirectoryActivation property, you can set it so that when an existing flat
package is converted to a package as directory (you selected the Store in separ ate Directory
check box on the Unit Information window) the directory is created on the configuration
management side and the children of this package are moved to this directory. The following
values are available for the storeTnseparateDirectoryactivation property:

¢ Automatic if you want Rational Rhapsody to automatically do so without asking you to
confirm your request.

¢ UserConfirmation if you want Rational Rhapsody to ask you to confirm your request.

¢ Disable (the default) meansthe unit is not added.

160 Team Collaboration Guide

Customize Rational Rhapsody and Rational ClearCase

Removing an existing directory for a package and reconciling its
contents

Thisfeatureis applicable with Rational ClearCasein batch mode.

With the use of the configurationManagement : : ClearCase: :
StoreInSeparateDirectoryActivation Property, you can set it so that when an existing package
asdirectory is converted to aflat package (you cleared the Sorein separate Directory check box
on the Unit Information window) the directory is removed on the configuration management side
and the children of this package are removed as well. The following values are available for the
StorelnSeparateDirectoryActivation Property:

¢ automatic if you want Rational Rhapsody to automatically do so without asking you to
confirm your request.
¢ UserConfirmation if you want Rational Rhapsody to ask you to confirm your request.

¢ Disable (the default) means the unit is not added.

Note

Files that are not added to the archive in this directory (which will be removed) will not be
moved by the configuration management tool. Therefore, if there are any such files, they
might be lost after this directory is removed from the archive.

Adding a unit to the CM archive automatically

Thisfeature is applicable with Rational ClearCasein batch mode.

To make it so that Rational Rhapsody adds the relevant file to the configuration management
archive after creating a unit, you can, you can use the configurationManagement : : ClearCase: :
AddToArchiveAfterCreateUnitActivation property. Thefollowing values are availablefor this

property:
¢ Automatic if you want Rational Rhapsody to automatically do so without asking you to
confirm your request.
¢ UserConfirmation if you want Rational Rhapsody to ask you to confirm your request.
¢ Disable (the default) meansthe unit is not added.

Rational Rhapsody 161

IBM Rational ClearCase

162 Team Collaboration Guide

Serena PVCS Dimensions

Rational Rhapsody supports CM tools, including Serena® PV CS® Dimensions®. This subject
describes how to use Rational Rhapsody with PV CS Dimensionsin SCC mode.

Enabling a SCC-compliant CM tool

To enable any SCC-compliant CM tool with Rational Rhapsody, you must set the
ConfigurationManagement : : General : : UseSCCtool property to ves. When the usescctool
property is set to ves, all other tool-specific CM properties are ignored. Rational Rhapsody uses
the alternative (batch mode) for traditional CM tools (such as ClearCase) when the usescctool
property is set to No.

Access to Dimensions from Rational Rhapsody

The CM tool administrator must set up access to Dimensions from Rational Rhapsody. The
administrator can do this by using the IDE Setup utility in PV CS Dimensions.

Rational Rhapsody 163

Serena PVCS Dimensions

Create the initial connection to the SCC tool

To create the initial connection to the SCC tool, use the Connect to Archive tool. Once connected,

you can use SCC APl commands (such as Check In and Check Out), which will prompt you to log
in to the archive, if required.

Once connected, only use the Connect to Archive tool again if you want to disconnect and
reconnect to a different archive.

Creating the initial connection to the SCC tool in Dimensions

To connect to an archive with PV CS Dimensions:
1. Open the Configuration Items window. Choose File > Configuration Items.

2. Click the Connect to Archive button. Rational Rhapsody searches for the PVCS
Dimensions DLL (specified by the sourcecodecontrolprovider registry key).

¢ Ifitfindsthe DLL, Rationa Rhapsody launches PV CS Dimensionsto perform the
Connect to Archive operation.

+ If it doesnot find the DLL, the CM tool might not be registered properly in the

Windows registry. See Unable to connect to SCC-Compliant CM tool (SCC mode)
for troubleshooting information.

¢ You should see whether the specific version of the tool you areusing is
SCC-compliant. Some tools that are SCC-compliant in one version are not
compliant in earlier versions (for example, version 5.0 versus 6.0).

3. If the PVCSDimensions DLL isfound, the PVCS Dimensions Remote Login window
opens.

4. Typeyour user password in the Password box, then click the Connect button to open the
Select Workset Directory for Project window.

5. Click OK. PVCS Dimensions connects the project to the archive and confirms completion
of the Connect operation.

6. Click OK.

An effect of the Connect to Archive operation isthat Rational Rhapsody stores project information
in both the conf igurationManagement: : SCC: : ProjName and

ConfigurationManagement : : SCC: : AuxProjPath properties, so the project is automatically
connected to the same archive the next time you open it. You should never need to modify these
properties manually, unless you want to connect the project to a different archive.

164

Team Collaboration Guide

Add to SCC archive operation

Add to SCC archive operation

When you set the configurationManagement : General : UseSCCtool Property to ves, you can use
the Add to Archive Optionswindow to add a unit to an SCC archive. This property setsfor usethe
standard SCC interface between Rational Rhapsody and your CM tool.

Adding a unit to an SCC archive

To add a unit to an SCC archive;

1
2.
3.

In the Configuration Items window, select a unit.
Click the Add to Archive button to open the SCC Options window.

Select the I nclude descendants check box on the SCC Options window if you want to
include nested units in the Add operation.

Type acomment describing the units you are adding.

If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opensis provided by your CM toal.

If you opened an Advanced Options window, click OK to closeit after you make your
selections.

Click OK on the SCC Options window.

+ PVCSDimensions might display amessage box to confirm that the Add operation
has completed. Click Close.

¢+ The PVCS Dimensions output might be displayed in the Rational Rhapsody
Output window on the Configuration M anagement tab. This behavior is
controlled by the configurationManagement: : SCC: :
RedirectOutputToRhapsody property. By default, this property is set to
Checked, SO messages are seen in Rational Rhapsody.

PV CS Dimensions adds the unit to the archive and changes its mode to read-only (RO) or
unlocked.

Rational Rhapsody 165

Serena PVCS Dimensions

Check out operation in SCC archive

In SCC mode, units are always checked out with alock (RW). You must add a unit to the archive
before you can check it out.

Checking out a unit in SCC archive

To check out a unit from an SCC archive;

1
2.

In the Configuration Items window, select a unit that has been added to the archive.
Click the Check Out button to open the SCC Options window.

Select the I nclude descendants check box on the SCC Options window if you want to
include nested units in the Check Out operation.

Type a comment describing the units you are checking out.

If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opensis provided by your CM tool.

If you opened an Advanced Options window, click OK to closeit after you make your
selections.

Click OK on the SCC Options window.

¢ PVCSDimensions might display a message box to confirm that the Check Out
operation has completed. Click Close.

¢ You might see the PV CS Dimensions output in the Rational Rhapsody Output
window on the Configuration M anagement tab. Thisis controlled by the
ConfigurationManagement: :SCC: :RedirectOutputToRhapsody property. By
default, this property is set to checked, SO messages are seen in Rational
Rhapsody.

PV CS Dimensions copies the unit from the archive to your workspace and changes the mode for
the unit to read/write (RW) or locked.

166

Team Collaboration Guide

Check in operation in SCC archive

Check in operation in SCC archive

In SCC mode, you must add a unit to the archive and check it out before you can check it in.

Checking in a unit in SCC archive

To check aunit into an SCC archive:

1. Inthe Configuration Itemswindow, select aunit that has already been added to the archive
and checked out.

2. Click the Check In button to open the SCC Options window.

3. Select the Include descendants check box on the SCC Options window if you want to
include nested units in the operation.

4. Type acomment describing the units you are checking in.

5. If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opensis provided by your CM tool.

6. If you opened an Advanced Options window, click OK to closeit after you make your
selections.

7. Click OK on the SCC Options window.

8. PVCS Dimensions displays a message box to confirm the Check In operation. Click OK
to dismiss the message box.

PV CS Dimensions copies the unit from your workspace into the archive and changes its mode to
read-only or unlocked.

Listing the archive in PVCS Dimensions

To list an archive in SCC mode, click the List Archive button on the Configuration Items window.

Rationa Rhapsody displays the Archive window, which lists the units that have been added to the
archive.

Note

In SCC mode, it is possible to see the version number of thefile currently loaded in Rational
Rhapsody in both the List Archive and CM Items windows. For more information, see the
definitions for the configurationManagement : : PVCS: :HeaderFile and

ConfigurationManagement: :PVCS: :CMHeaderItsVersion properties on the Properties
tab of the Features window.

Rational Rhapsody 167

Serena PVCS Dimensions

Fetching in Dimensions

The Fetch operation fetches the latest version of a unit from the archive without alock (RO). The
aternative is the SCC Check Out operation, which always fetches a unit with alock (RW).

To fetch:

1

7.

In the Configuration Items window, select the units that you want to check out as
unlocked.

Click the Fetch button to open the SCC Options window.

Select the I nclude descendants check box on the SCC Options window if you also want
to fetch nested units.

If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opensis provided by your CM tool.

If you opened an Advanced Options window, click OK to close it after you make your
selections.

Click OK on the SCC Options window.
PV CS Dimensions confirms the Fetch operation has compl eted.

Click Close.

PV CS Dimensions copies the unit from the archive into your workspace without alock.

168

Team Collaboration Guide

Unchecking Out in Dimensions

Unchecking Out in Dimensions

The Uncheck Out operation reverses the effect of a Check Out, releasing the lock on a unit
(making it RO) and reverting to the file version before the last Check Out operation.

To uncheck out:

1. Inthe Configuration Itemswindow, select aunit that has been checked out (whose modeis
RW).

2. Click the Un-Check Out button to open the SCC Options window.

3. If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opensis provided by your CM tool.

4. |If you opened an Advanced Options window, click OK to close it after you make your
selections.

5. Click OK on the SCC Options window.

PV CS Dimensions changes the mode for the unit mode to read-only (RO) and makes the version
that was archived prior to the last Check Out the latest working version.

Viewing the history of a unit

The History operation is available in SCC mode only. It is an SCC command that opens the
archive for aunit so you can review the history of the unit and access previously archived
revisions.

To view the history of a unit, click the History button on the Configuration I1tems window.

Viewing the file details for a unit
The Properties command retrieves the file details for a unit, such as the file name, the date it was
created, and so on.
To display the SCC file details of a unit that is a member of an archive:
1. Inthe Configuration Items window, select a unit that has been added to the archive.

2. Click the Properties button. PV CS Dimensions displays the file details for the unit.

Rational Rhapsody 169

Serena PVCS Dimensions

Customize Rational Rhapsody and PVCS Dimensions

To customize Rational Rhapsody and PV CS Dimensions you can use the properties available in
the configurationManagement : : Pvcs metaclass from the Propertiestab in the Features window.

170 Team Collaboration Guide

Concurrent Versions System (CVS)

This subject provides some information that hel ps you get started with using the Rational
Rhapsody/CV S integration in Eclipse. Concurrent Versions System (CV'S) is an open source
configuration management (CM) tool. The Rational Rhapsody Platform Integration lets software
developers work on a Rational Rhapsody project within the Eclipse platform.

For details about how to use Eclipse and CV'S, see the documentation provided for those products.

Sharing a Rational Rhapsody project in CVS

This topic assumes you know how to create a CV S repository and connect to an existing CVS
repository.

To share a Rational Rhapsody project in CVS:

1

Switch to the Rational Rhapsody Unit View.
a. InEclipse, open the Show View window. Choose Window > Show View > Other.
b. Select Rhapsody > Unit View and click OK.

In the Unit View window, right-click your project and then select Team > Share Project
to open the Share Project window, which has various views.

On the Enter Repository Location Information view of the Share Project window, enter the
repository location information and then click Next.

On the Enter Module Name view of the Share Project window, make sure the Use proj ect
name as module name radio button is selected and then click Next.

On the Share Project Resources view, notice that there is an arrow overlay added to the
8 Rhpc

icons for all the files/foldersin your project =% e This means that those files/folders

will be added to the repository. Click Finish.

Because Eclipse/CV Sis not familiar with Rational Rhapsody file extensions (for
example, . sbs, .cmp), it asksyou if the content of those files are binary or ASCII text. On
the Add Resources view of the Commit Files window, select ASCII Text as the content
for each extension and then click Next.

Rational Rhapsody 171

Concurrent Versions System (CVS)

7. Enter acommit comment on the next view of the Commit Files window and then click

Finish to commit the operation. This adds those marked units into the repository.

You can switch to the Eclipse perspective to Rational Rhapsody Modeling to keep working on
your Rational Rhapsody model. Noticein the Unit View window thereis a database overlay added

E‘} Defal

to the icons for the files/folders in your project #! o=f=t, This means that the files/folders are
checked in unitsin a CV S repository.

Checking out a Rational Rhapsody project from a CVS
repository

To check out a Rational Rhapsody project from a CV S repository:

1
2.
3.

Start Eclipse.
Open the New Project window. Choose File > New > Project.

Expand the CV Sfolder, select Projectsfrom CV'S, and then click Next to open the
Checkout from CV S window, which has various views.

On the Checkout from CV S window, select the Use existing repository location radio
button, select the repository that you want, and then click Next.

On Select Module view of the Checkout from CV'S window, select the Use an existing
module (thiswill allow you to browse the modulesin therepository) radio button,
select the Rational Rhapsody project that you want to check out, and then click Finish.

You can now switch to the Rational Rhapsody Modeling perspective in Eclipse to work on the
Rational Rhapsody project you have checked out.

172

Team Collaboration Guide

Collaboration with other users in CVS

Collaboration with other users in CVS

You can use other related CM operations while working on a project that you already checked out

so that you can successfully collaborate with other users working on the same Rational Rhapsody
project.

Repository synchronization in CVS

In order to see if a Rational Rhapsody unit is till in sync with the repository after you checked it
out, right-click the unit in the Unit View window and select Team > Synchronize with
repository.

+ If there are no differences between the workspace unit and the remote, a message box tells
you that there are no changes between the workspace resource and the remote.

You can do an Updating a Rhapsody unit in Eclipse to the CVS repository t0 get the
incoming changes.

¢ If this message does not appear when you synchronize with the repository, it means that
there are some differences between the workspace unit and the corresponding repository
unit. This means either you modified this unit and/or somebody el se has committed some
changes on this unit to the repository.

In this case, you can click the Invoke Rhapsody DiffMer ge to compare and merge
manually button to launch the Rational Rhapsody DiffMerge tool. After you merge, you
should right-click the unit and select Mark as Merged.

If aRational Rhapsody unit is out-of-sync with the repository, one of the following overlays will
appear on the icon for the unit:

2 means you have created this unit and it is not added to the repository yet (outgoing new file)

a means the repository contains this new unit that does not exist in your workspace (incoming
new unit)

® meansthisunitis changed in your workspace (outgoing modification)
a means this unit is changed in the repository (incoming modification)

@ means this unit is modified both in the repository and in your workspace so thereis a conflict

Rational Rhapsody 173

Concurrent Versions System (CVS)

Updating a Rhapsody unit in Eclipse to the CVS repository

While you are working on a Rational Rhapsody unit in Eclipse, other members of your team might
have committed changes to the copy of the unit in the repository. To get these changes, you can
update your Rational Rhapsody unit to match the repository. You can do thisin the following
ways:

¢ Right-click the unit in the Unit View window and select Team > Update.
+ Switch to the Synchronization perspective. Right-click the unit, and select Update.
Eclipse lets you configure the Update operation to do one of the following choices:

¢ Update all non-conflicting changes and then preview the remaining changes: All
non-conflicting incoming changes will be merged in automatically and any remaining
conflicts will be displayed either in the Sync View window (default) or in awindow. You
can specify where to display conflicts through the Update/Merge Preference window.

+ Preview all incoming changes before updating: All changes will be displayed in either
the Sync View window or awindow (depending on your settings).

¢ Never preview and use CVStext markup toindicate conflicts: This option will
automatically merge all changes without any user interaction. Conflicting changeswill be
merged in using the CV S text markup:

<<<<<<< original file revision

[original codel

[incoming code]
>>>>>>> incoming file revision

Note: You should not configure Update to use the Never preview and use CVStext

markup to indicate conflicts option because thiswill corrupt the repository
with CV S text markups.

Limitation: After doing Team > Update, new descendants become unresolved in the model
although they exist on the hard disk. To remedy this situation, after doing the update, right-click
the unresolved unit in the Rational Rhapsody browser and select L oad with descendants.

174 Team Collaboration Guide

Collaboration with other users in CVS

Configuring how Update behaves
To configure how the Update operation behaves:

1. Open the Preferences window. Choose Window > Preferences.

2. Expand Team > CVS > Update/M er ge and make your selection on the Update/Merge
pane.

3. Click OK.

Adding a unit created in Rational Rhapsody to the CVS repository

When you create a new unit in Rational Rhapsody, you can add it to the repository.

To add to version control ;

1. Make surethat you save your Rational Rhapsody model so that Unit View is refreshed to
contain this new unit aswell. The new unit should appear in Unit View with an icon with

aquestion mark overlay Ba e 1o signify that it isnew file that is not added to version
control yet.

2. Right-click the unit to be added and select Team > Add to Version Control.

Showing the history of a unit in CVS
To view the history of a Rational Rhapsody unit in version control:

1. Open the History window for the unit. Right-click the unit in the Unit View window and
select Team > Show History.

2. If you want to get content for a particular revision, right-click the revision and select Get
Contents.

3. From the History window, you can also compare different revisions. For example, you can
click the Invoke Rhapsody DiffMerge to compare and mer ge manually button on the
Compare Editor in Eclipse. The Rational Rhapsody DiffMerge tool will open for you to
do the compare/merge of Rational Rhapsody el ements.

Rational Rhapsody 175

Concurrent Versions System (CVS)

176 Team Collaboration Guide

Subversion (SVN)

This subject provides some information that hel ps you get started with using the Rational
Rhapsody/Subversion integration in Eclipse. Subversion (SVN) is an open source configuration
management (CM) tool. The Rational Rhapsody Platform Integration lets software devel opers
work on a Rational Rhapsody project within the Eclipse platform.

For details about how to use Eclipse and Subversion, see the documentation provided for those
products.

Sharing a Rational Rhapsody project in Subversion

This topic assumes you know how to create a Subversion repository and connect to an existing
Subversion repository.

To share a Rational Rhapsody project in Subversion:

1

Switch to the Rational Rhapsody Unit View.
a. InEclipse, open the Show View window. Choose Window > Show View > Other.
b. Select Rhapsody > Unit View and click OK.

In the Unit View window, right-click the project and then select Team > Share Project to
open the Share Project window, which has various views.

On the Enter Repository Location Information view of the Share Project window, enter the
repository location information and then click Next.

On the Enter Module Name view of the Share Project window, make sure the Use proj ect
name as module name radio button is selected and then click Next.

Enter acommit comment on the Ready to Share Project view of the Share Project window
and click Finish.

Switch to the Team Synchronizing perspective of Eclipse. Choose Window >
Show View > Other to open the Show View window, and then select Team >
Synchronize.

Rational Rhapsody 177

Subversion (SVN)

e rh
7. Notice the new units marked with arrow overlay =% -, To add those unitsinto the
repository, right-click the project and select Commit.

You can now switch to the Eclipse perspective to Rational Rhapsody Modeling to keep working on
your Rational Rhapsody model.

Checking out a Rational Rhapsody project from a
Subversion repository

To check out a Rational Rhapsody project from a Subversion repository:
Start Eclipse.
Open the New Project window. Choose File > New > Project.

Expand the SVN folder, select Checkout Projectsfrom SVN and then click Next.

A 0w DdoP

If you have not already connected to your Subversion repository in this workspace, select
Create a new repository location and then click Next.

5. Select the Rational Rhapsody project that you want to check out and then click Finish.

You can now switch to the Rational Rhapsody Modeling perspective in Eclipse to work on the
Rational Rhapsody project you have checked out.

178 Team Collaboration Guide

Collaboration with other users in Subversion

Collaboration with other users in Subversion

You can use other related CM operations while working on a project that you already checked out
so that you can successfully collaborate with other users working on the same Rational Rhapsody
project.

Repository synchronization in Subversion

In order to check if a Rational Rhapsody unit is still in sync with the repository after you checked
it out, right-click the unit in Unit View window and select Team > Synchronize with repository.

+ If there are no differences between the workspace unit and the remote, a message box tells
you that there are no changes between the workspace resource and the remote.

You can do an Updating a Rational Rhapsody unit in Eclipse to the Subversion repository to
get the incoming changes.

+ If thismessage does not appear when you synchronize with the repository, it means that
there are some differences between the workspace unit and the corresponding repository
unit. This means either you modified this unit and/or somebody el se has committed some
changes on this unit to the repository.

In this case, you can click the Invoke Rhapsody DiffMer ge to compare and merge
manually button to launch Rational Rhapsody DiffMerge. After you merge, you should
right-click on the unit and select Mark as Merged.

If aRational Rhapsody unit is out-of-sync with the repository, one of the following overlays will
appear on the icon for the unit:

b means you have created this unit and it is not added to the repository yet (outgoing new file)

a means the repository contains this new unit that does not exist in your workspace (incoming
new unit)

® meansthisunitis changed in your workspace (outgoing modification)
< means this unit is changed in the repository (incoming modification)

@ means this unit is modified both in the repository and in your workspace so thereis a conflict

Rational Rhapsody 179

Subversion (SVN)

Updating a Rational Rhapsody unit in Eclipse to the Subversion
repository

While you are working on a Rational Rhapsody unit in Eclipse, other members of your team might
have committed changes to the copy of the unit in the repository. To get these changes, you can

update your Rational Rhapsody unit to match the repository. You can do thisin the following
ways:

¢ Right-click the unit in the Unit View window and select Team > Update.

+ Switch to the Synchronization perspective. Right-click the unit, and select Update.

Adding a unit created in Rational Rhapsody to Subversion repository

When you create a new unit in Rational Rhapsody, you can add it to the repository.
To add to version control:
1. Make surethat you save your Rational Rhapsody model so that Unit View is refreshed to
contain this new unit aswell. The new unit should appear in Unit View with an icon with

aquestion mark overlay Ba e 1o signify that it isnew file that is not added to version
control yet.

2. Right-click the unit to be added and select Team > Add to Version Control.

Showing the history of a unit in Subversion
To view the history of a Rational Rhapsody unit in version control:

1. Open the History window for the unit. Right-click the unit in the Unit View window and
select Team > Show History.

If you want to get content for a particular revision, right-click the revision and select Get
Contents.

3. From the History window, you can also compare different revisions. For example, you can
click the Invoke Rhapsody DiffMer ge to compare and mer ge manually button on the

compare editor in Eclipse. DiffMerge will open for you to do the compare/merge of
Rational Rhapsody el ements.

180 Team Collaboration Guide

IBM Rational Team Concert

The IBM® Rational Team Concert™ collaborative software delivery environment uses the IBM®

Rational® Jazz™ technology platform, enabling collaborative teams to work together. You can use
the Rational Rhapsody Platform Integration if you have Eclipse, Rational Rhapsody with plug-ins,
and Rational Jazz/Rational Team Concert.

Rational Jazz is an initiative to transform software delivery to make it more collaborative,
productive, and transparent. Rational Team Concert is a collaborative work environment for
developers, architects, and project managers with workitem, source control, build management,
and iteration planning support. The Rational Rhapsody Platform Integration lets software
developers work on a Rational Rhapsody project within the Eclipse platform.

For details on how to use Rational Jazz, Rational Team Concert, and Eclipse, see the
documentation provided for those products.

Rational Rhapsody 181

IBM Rational Team Concert

How changes are accepted and conflicts resolved

Each team member has an Eclipse Rational Team Concert workspace connected to the Rational
Jazz server and works with Rational Rhapsody projects that are acquired from the Rational Jazz
repository. When ateam member initiates acceptance of changes made by other team members,
Rational Team Concert replaces the local Rational Rhapsody units with ones fetched from the
Rational Jazz repository. However, if you have already modified some of these Rational Rhapsody
units, Rational Team Concert mergeslocal and incoming units. The Rational Rhapsody DiffMerge
tool is used to perform the merge.

When Rational Team Concert detects that some of the local units cannot just be replaced with new
ones, it reports aconflict and it gives you the opportunity to try to merge automatically or to merge
later. The following options are possible.

*

*

Auto-Merge. In this case, Rational Team Concert launches the Rational Rhapsody
DiffMerge tool and, if it is possible, automatically merges differencesin silent mode.
However, if there are any conflicts from the Rational Rhapsody DiffMerge perspective,
Rational Team Concert displays a message box stating that auto-mergeis not possible for
some of the files and suggests you do the merge manually for them. All units that could
not be merged automatically are put into the Rational Team Concert Mergerequired list,
for which you must do a manual merge. See the next bullet for how to do this.

Merge Later. When you click this button, whatever that can be replaced is replaced
(without having to open the DiffMergetool). All conflicting units are put into the Rational
Team Concert Merge required list. You will need to manually merge them later. Note
that among those units there might be differences that can be auto-merged.

To merge units that were postponed (either due to the inability of the Rational Rhapsody
DiffMerge tool to merge them automatically or because you decided to merge conflicts
later), you can right-click Mergerequired in Rational Team Concert and select Open in
compar e editor to open the Compare Editor window.

— You can then try (or retry) to merge the conflicts automatically by clicking the
Auto-Mer ge button (to call the DiffMergetool in silent mode).

— You can click the Invoke Rhapsody DiffMerge to compare or merge
manually button so that you can resolve conflicts by merging manually. You
must save your changes in the DiffMerge tool and click the Resolve as
M er ged button to commit the results when you return to the Compare Editor
window.

For more information about the DiffMerge tool, see Parallel development.

182

Team Collaboration Guide

Index

Symbols

.magic file (Rational ClearCase) 156

A

Activity diagrams 18

asunits 20

to define ause case 15
AddToArchiveAfterCreateUnitActivation property 161
AllLeftitemMerge preference 123
AllRightltemMerge 123
Application 16

CM 44

rapid prototyping 62
Architect 5
Architecture 16
Archive 42, 49, 165

adding to 49

batch mode 43, 44

cannot update 36

CM tool 44

connect to 136

connecting to 41, 44

connecting to different 43

connecting to PVCS Dimensions 164

creating files 29

directory structure changes 152

list 167

multiple 21

operations 56

PVCS Dimensions 165

Rational ClearCase adding to 149

Rational Synergy 136

showing items 41, 44

tools 11, 63, 64

units for comparison 64

updating 27
AssignedTasksltsTaskld 137
AssignedTasksltsTitle property 137
Attributes 80

differences 81

pane 71

text 102
Autosavefile 13
Autosynchronize 46

B

Backup file 13
Base-aware comparisons 68, 70, 73, 96

automatic merging 106

command-line 129

Diff icons 78

example of command-line 130

merge icons 107

merging CM branches 109

reporting preferences 119

resolving conflictsin 109

show DiffMerge marks preference 122

trivial versus non-trivial differences 106
BaseAwareAutoM ergeabl eAttributes preference 127
BaseAwareA utoM ergel nvocation preference 127
BaseAwareDiff AttrChanged preference 119
BaseAwareDiff AttrChngBoth preference 119
BaseAwareDiff AttrDel AndChng preference 119
BaseAwareDiffElemAdded preference 119
BaseAwareDiffElemChanged preference 120
BaseAwareDiffElemChngBoth preference 120
BaseAwareDiffElemDel AndChng preference 120
BaseAwareDiffElemDeleted preference 120
BaseAwareDiffInvocation preference 127
BaseAwareDiffMergeAutoNo preference 120
BaseAwareDiffMergeAutoYes preference 120
BaseAwareDiffMergel nvocation preference 127
BaseAwareDiffReportFooter preference 120
BaseAwareDiffReportHeader preference 120
BaseAwareDiff Sidel eft preference 120
BaseAwareDiff SideRight preference 120
BaseAwareDiff TrivialNo preference 120
BaseAwareDiffTrivial Yes preference 120
BaseAwareTextDiffM ergeEnabled preference 127
Batch mode 39, 163

actions 56

Connect to Archive 43, 44

creating directoriesin 29

deleting files 33

DiffMerge command line 129

keyword expansion 30

Linux 11,64

moving afile or directory 35

renaming afile 34

renaming a package 35

troubleshooting 54

Rational Rhapsody

183

Index

versus SCC mode 39
BlinkwWalkingThroughDiffs preference 85, 117
Browse From Here browser 76
Browsers 37, 65

Browse From Here 76

DiffMerge 71, 76, 125

DiffMerge differences 76

DiffMerge symbols 77

DiffMerge tool navigation 79

icons 65

C

Case sensitivity 149

Check in 42, 48
PVCS Dimensions 167
Rational ClearCase 150
Rational Synergy task 138
SCC mode 167

Check out 42, 47
PVCS Dimensions 166
Rational ClearCase 150

Check Out Branch 41

CheckQOutChecklInDirectoryOnceDuringAddToArchive

property 160
ClI (configuration items) 18
Classes 16
as units 20
automatic unit creation 18
divide model based on 16
reference from other project 6
ClasslsSaveUnit property 20
CLSfile 12
CM operations 49
check in 48
check out 47
Connect to Archive 44
DiffMergetool 45
fetch 50
history 51
List Archive 44
list of supported 41
Lock 50
Properties 45
Synchronize 46
undo check out 51
unlock 50
version tree 51
CM status 52, 53
CM tool 41
comparing units stored in 67
configuring 43
extend interface 58
messages 55
pre- and post-actions 56
PVCS Dimensions in SCC mode 163
Rational ClearCase 148

Rational Synergy 133
troubleshooting common problems 53
unable to update 36
CMConflictResolution property 36
CMHeaderltsVersion property 167
CM OperationEndSeparator 55
CMOperationStartSeparator 55
CMTool property 135
Code generation 17
improving performance 158
incremental 12
Collaboration 1
designing for 15
methodologies 6
multiple site 6
remote 6
sharing by copying 7
using CM tools 39
using Web-enabled devices 61
Colors 19
codes for DiffMerge categories 75
DiffMerge settings 119
DiffMerge showing differences 72
Command line 32
DiffMerge options 129
launch the external tool 80
Comments 19
Comparing 63
three units 73
two units 72
units 45
units graphically 82
Complexity of projects 1
Components 2
organizing by 17
scope 17
Concurrent Versions System (CVS) 171
adding unit created in Rational Rhapsody to
repository 175
checking out a Rational Rhapsody project 172
collaborating with other users 173
repository synchronization 173
sharing a Rational Rhapsody project 171
updating a Rational Rhapsody unit 175
viewing unit history 175
Configuration Items 136
Configuration items (Cls) 18
Configuration management (CM) 11, 63, 64, 163
merging from a base-aware comparison 109
Rational Synergy 133
SCC compliant 163
with Rational ClearCase 148
Configurations
items accessing 40
items dividing projects 18
of the CM tool 43
system manager 4

184

Team Collaboration Guide

Index

Connect to Archive 41
in batch mode 44
PVCS Dimensions 164

Content management 3

CVS 1711

D

DAT file 12
DefaultDirectoryScheme property 26
Delete 33
DeleteActivation property 33
Descendant 66

adding to an SCC archive 165

checking in 167

fetching 168
Design 3
Designing

for collaboration 15

for readability 19
Developer 5
DiagramlsSaveUnit property 20
Diagrams 19

asunit 20

comparing 76

file 18

graphically merging 111, 112

storing as units 19
DiffAttributesFilter preference 124
DiffColor preference 119
Differences

filtering 81

graphical 88

high level view 98, 100

logical 88

major 98, 100

propagated view 98

reporting 74

trivial versus non-trivial 106
DiffInvocation preference 128
DiffMergetool 7,21, 23, 41, 63

advantages of launching inside Rational Rhapsody 67
advantages of launching outside Rational

Rhapsody 69
Attributes pane 71
attributes pane 79
base-awareicons 78
base-aware mode 68, 70, 73
browser 71, 76, 77, 125
browser navigation 79
changing preferences 117
color coded categories 75
color preferences 119
command-line options 129, 130
compare archived unit with current 66
compare archived units 67
comparing diagrams 76

comparing units 64

configuration management tools 64
descendant 66

Diff text option 80

Difference Report 85

Difference Report preferences 130
difference symbols 77

Diffmerge.ini 101

display differenceinred 72
examining selected file paths 70
exporting reports 90

external textual tool 79, 118

filtering comparisons 81

for collaboration 45

graphical comparisons 82
graphically merging diagrams 111, 112
highlight graphical differences 83
how performs a model comparison 96
interface 71

keywords for command line 32
keywords for preference values 118
launch from Rational ClearCase 153
launching inside Rational Rhapsody 64
launching outside Rational Rhapsody 68
left value 68, 70, 72

limitations 87, 97, 105, 153

making merge decisions 108

merge icons 107

merge output setting 128

merging menu options 109

merging sequence diagrams 114
merging units 101

nested differenceicon 78

nested differences in subelements 77
nested units 68

Output window 74

paralel development 63

preference keywords 118
preferences 117

print report 86

Printing 64

process 91

properties 128

Rational ClearCase 156

Rational Team Concert 182
renamed elements 92

renaming support 121

report preferences 119

reporting differences 74

resolving conflicts in base-aware comparisons 109

right value 68, 70, 72

running from command line 129
saving merged unit 105
selecting units to compare 68

setting Rational ClearCasetoolsto launch 127

starting amerge 101
suppress graphical differences 86

Rational Rhapsody

185

Index

suppression preferences 124 F
switch off graphics blinking 85 .
text merge 127 Features window _
trivial/non-trivial differences 106 configuration management properties 139, 159, 170
using with Rational ClearCase 151 property definitions 152
walk-through graphical differences 83 PVCS Dimensions properties 170
with CM tools 45 Rational ClearCase properties 159
with Rational Synergy 139 Rational Synergy properties 139
DiffMergelnvocation preference 128 Fetch 42,50
DiffPrefix preference 120 PVCS Dimensions 168
Directories 29 “supported mode 39
creating 29 Files 6
creating in SCC mode 29 autosave 13
moving 35 backup 13 _
of package 34 base-aware comparisons 68, 70, 73
structure 152 checking in and out 10
Distributed team 4, 22, 63 creating 29
Dividing DAT 12
mode!l based on classes 16 Diffmerge.ini 101
project in two projects 22 editing 9
project into units 18 EHL 12
use cases 15 locking 10
Domains 16 LOG 12
organizing by 16 management by reference 8
Rational ClearCase VOB 158 management in CM tool 10
moving 35
permissions 50
E project 21
i renaming 34
Eglllt ?ﬁg 156, 171, 177, 181 RPW (Workspace) 12
files 9 RPY 12,21 _
UNiS 33 RPY dividing projects 18
EHL file 12 igmg b7y copy 7
El%a&ﬂ ichRuIe preference 121 ?balri ng by reference 9
. table 12
code generation for 17 types 12

how DiffMerge makes a match 91 units 12

merging of renamed 104 VBA 12

merging referring 115 Filtering 9, 81
referenced model 105 Flat repository 23, 25

£$$$ 1972 Framework 16
sequence diagram merging 115
sequence diagrams 116 G
testing 17
Errorsl, % Geographical distribution 4
failed to open document 12 GetCurrentTaskltsTaskld property 137
failed to save document 12 Graphical differences 76, 82, 88
unable to create process 54 highlight 83
unable to rename package 35 ignored in merge 86
unable to store package in new directory 34 suppressing 86
Events 19 walk-through 83
Events history list 12 Graphically merging diagrams 111, 112, 115
Evil twinsissue (Rational ClearCase) 150 tips 113
ExcludeFromMerge preference 123 GraphicalMerge preference 123
ExcludeGraphTypesV Less6 preference 125 Groups 17

External textual tool 79, 80, 118

186 Team Collaboration Guide

Index

H

Hierarchical repository 23, 26, 152
High level differences 98, 100
History 42,51, 169

Icons 65
base-aware comparison 78
Diffmerge browser 77
DiffMerge trivial vs. non-trivial 73
merge 107
IgnoreGraphDiffs preference 125
IncludelnMerge preference 123
Integrator 5
Interface, custom 10
ItemMerge preference 123

K

Keywords 30
administrative 30
argumentsto CM commands 32
DiffMerge preferences 118
DiffMergetool 32
expansion in CM batch mode 30

L

Layout 19
Lead developer 5
LeftitemMerge preference 123
LeftMerge preference 123
LeftOnlyColor preference 119
LeftOnlyPrefix preference 120
Licensing
Rational ClearCase 159
Limitations
CVS 174
DiffMergetool 87, 97, 105, 153
graphical merging 105
merged units 105
no CM version number display 11
Rational Rhapsody with Rational ClearCase 150
read-only diagrams 105
UNIX 153
Linux 11,64
DiffMerge with Rational ClearCase 156
List Archive 44
PVCS Dimensions 167
Lock 42,50
LOG file 12
Logical differences 88

M

Macros (VBA) 12
Major structure differences 98, 100
MakeCM ShadowDirActivation 29
Makefile 22
mergel.og option 131
MergeQutput preference 128
MergeToRhapsody preference 123
Merging 101
activity log preferences 123
automatic 106
automatic resolve preference 122
base-aware 106
CM branches 109
diagrams graphically 111, 112, 115
graphical limitations 105
icons 107
include graphical differences 86
log of 116
manually 108
navigation for manual 109
referenced model elements 105
renamed elements 104
report on 116
saving merged unit 105
sequence diagram elements 114, 115
sequence diagrams 114
starting 101
text 102
trivial versus non-trivia differences 106
two units 110
units 45
using command line options 131
Message 55
Methodology 6
collaboration 6
combining 6
sharing by copy 7
sharing by reference 6, 8
usingaCM tool 6
mkelem 148
mkview 148
mkvob 148
Mode 29
batch creating directoriesin 29
batch keyword expansion 30
Model comparisons 96
Models 16
framework organization 16
organizing and partitioning 15
organizing by domains 16
testing 17
upgrading 157
mount 148
MoveActivation property 35
MoveDirectory property 35

Rational Rhapsody

187

Index

Multiple projects Preferences 117
issues 21 AllLeftitemMerge 123
workflow 23 AllRightltemMerge 123
base-aware reporting 68
N BaseAwareAutoM ergeabl eAttributes 127
BaseAwareAutoMergelnvocation 127
Nested 66, 67 BaseAwareDiffAttrChanged 119
differences 78 BaseAwareDiffAttrChngBoth 119
units 9, 67, 68 BaseAwareDiffAttrDelAndChng 119
NestedDiffColor preference 119 BaseAwareDiffElemAdded 119
NestedDiffPrefix preference 120 BaseAwareDiffElemChanged 120
NestedElementPrefix preference 120 BaseAwareDiffElemChngBoth 120
NoDiffColor preference 119 BaseAwareDiffElemDelAndChng 120
NoDiffPrefix preference 120 BaseAwareDiffElemDeleted 120

BaseAwareDifflnvocation 127
BaseAwareDiffMergeAutoNo 120

@) BaseAwareDiffMergeAutoYes 120
OMD file 12 BaseAwareDiffMergelnvocation 127
Operating system 22 BaseAwareDiffReportFooter 120
Operation semantics, Rational ClearCase 150 BaseAwareDiffReportHeader 120
Operations 41 BaseAwareDiffSideL eft 120

add to Archive 49 BaseAwareDiffSideRight 120

check in 48 BaseAwareDiffTrivialNo 120

check out 47 BaseAwareDiffTrivial Yes 120

Connect to Archive 44 BaseAwareTextDiffMergeEnabled 127

fetch 50 BlinkWalkingThroughDiffs 85, 117

history 51 DiffAttributesFilter 124

List Archive 44 DiffColor 119

list of supported 41 Difflnvocation 128

Lock 50 DiffMerge tool 81

Synchronize 46 DiffMergelnvocation 128

undo check out 51 DiffPrefix 120

unlock 50 DiffReport 119

version tree 51 ElementMatchRule 121
Organizing 15 ExcludeFromMerge 123

ExcludeGraphTypesVLess6 125
Ez nggpﬁ e1r16ts . filtering difference attributes 81
by logical and physical architectures 16 GraphicaMerge 123

IgnoreGraphDiffs 125
% Les?enggeerggers o IncludelnMerge 123

e ItemMerge 123

_ LeftitemMerge 123
Output window 55 LeftMerge 123
LeftOnlyColor 119

P LeftOnlyPrefix 120
. MergeOutput 128
Packagel sSaveUnit property 20 MergeToR%apsody 123
Paggggese}S NestedDiffColor 119
Ing elements 21 NestedDiffPrefix 120
asunit 18 . NestedElementPrefix 120
as unit property setting 20 NoDiffColor 119
dividing use cases 15 NoDiffPrefix 120
in directory 34 PrintLineNumbers 121
rename 35 PrintNoDiffLines 121
Parallel development 63 PrintSubDiffs 121
E:rrg'fidolr??ndoégl 5 RepDecidedAuto 123
PR s RepDecidedMan 123

188 Team Collaboration Guide

Index

RepElemExcluded 123
RepElemincluded 123
RepElemMerged 123
RepElemTakenFrom 123
RepElemUndecided 123
RepFooter 124
RepHeader 124
RepltemDecided 124
RepltemMerged 124
ReportFooter 121
ReportFooterColor 119
ReportHeader 121
ReportHeaderColor 119
RepSideRight 124
ResolveAutomaticallyWhenStartingMerge 122
RightitemMerge 124
RightMerge 124
RightOnlyColor 119
RightOnlyPrefix 121
RightSideleft 124
SaveMerge 124
ShowDMMarksInBaseAwareM ode 122
ShowMetalnfolnBrowser 125
ShowStereotypel nBrowser 125
StartMerge 124
Suppressions 124
SuppressRenamePropagatedDiffs 126
SuppressRenamePropogatedDiffs 126
TextDiffMerge 127
UseDefault 119
Printing 64
diagrams 64
DiffMerge reports 64, 86
settings for DiffMerge 119
PrintLineNumbers preference 121
PrintNoDiffLines preference 121
PrintSubDiffs preference 121
Process message 54
Projects 1
adding elements 21
by type of CM 3
CM status 51
combining two 23
design complexity 3
dividing files 18
dividing into units 18
dividing oneintwo 22
file 12,21
geographical distribution 4
guidelines 1
manager 4
managing multiple 21, 23
properties 21
restructuring 23
restructuring under CM 27
setting up for teams 149
size by component 2

size by team members 2
splitting 22

Propagated differences 98
Properties 19, 157, 159
AddToArchiveAfterCreateUnitActivation 161

archived file 45
AssignedTasksltsTaskld 137
AssignedTasksltsTitle 137
AutoSynchronize 46
changing default 157

CheckOutCheckInDirectoryOnceDuringAddToArchi

ve 160
ClasslsSaveUnit 20
CMConflictResolution 36
CMHeaderltsVersion 167

CMOperationEndSeparator 55
CMOperationStartSeparator 55

CMTool 41
command 169

configuration management 139, 159, 170

DefaultDirectoryScheme 26
DeleteActivation 33
DiagramlsSaveUnit 20
DiffMergetool 128

GetCurrentTaskltsTaskld 137
MakeCM ShadowDirActivation 29

MoveActivation 35
MoveDirectory 35
operation 42

Packagel sSaveUnit 20
project-level 21

PVCS Dimensions 170
Rational ClearCase 152, 159
Rational Synergy 139

RedirectOutputToRhapsody 166

Rename 34
RenameActivation 34
RenameDirectory 35
RunCMToolCommand 44
ShowCM Status 53

Storel nSeparateDirectoryActivation 160, 161

supported mode 39
UserDefCommand_x 58
UseSCCtool 135, 163, 165
viewing details 45

Prototyping 62
PVCS Dimensions

archive 165

Check in 167

Check out 166

Connect to Archive 164
Fetch 168

History 169

Properties command 169
SCC tool 39

setting up access from Rational Rhapsody 163

Rational Rhapsody

189

Index

Q

Quality manager 5

R

Rapid prototyping 62
Rational ClearCase 11, 63
.magic file 156
adding members 148
adding new members 149
adding relevant file to the CM archive after creating a
unit 161
administrators 151
Batch mode 141, 142
case sensitivity 149
checking out files 149
checking out/checking in adirectory once 160
ClearDiff 127
ClearDiffMrg 127
configuration for DiffMerge 151
consumed license 159
creating aview 148
deciding between Batch and SCC modes 145
DiffMerge for Linux 156
DiffMerge tool limitations 153
evil twinsissue 150
in batch mode only 43, 44
launch the Rational Rhapsody DiffMerge tool 153
license 159
limitations with Rational Rhapsody 150
Linux 11, 64
moving afile or directory 35
operation semantics 150
Rational Rhapsody DiffMerge tool with 151
removing an existing directory for a package and rec-
onciling its contents 161
renaming a directory or file 34
SCC mode 141, 142
SCCtool 39
set textual tool for DiffMerge 80
setting up 148
storing an existing package in a separate
directory 160
synchronizing workspace 46
team environments 149
Type Manager 153, 154, 156
Unified Change Management (UCM) 146
VOB mounting point 148
Rational Jazz technology platform 181
Rational Rhapsody 1, 12
checking out filesin Rational ClearCase 149
Concurrent Versions System 171
CVS 171
DiffMergetool 41, 45
DiffMerge with Rational ClearCase 151
Eclipse plug-in 156

files 12

launching DiffMerge inside 64

launching DiffMerge outside 68

project components 2

properties 157

PVCS Dimensions 163

Rational ClearCase 141

Rational Synergy 133

Serena PV CS Dimensions 163

setting up access to Dimensions 163

Subversion 177

SVN 177

units 63

upgrading models 157

using with Rational Synergy 135

Web pages for customization 62
Rational Rhapsody Platform Integration (Eclipse and

Rational Rhapsody) 171, 177, 181
Rational Synergy 11, 133

checking in Rational Rhapsody work 138

communication with Rational Rhapsody 133

comparing an archived unit to the current version 66

connect to archive 136

create new task 137

how names tasks 137

SCC tool 39

selection in properties 135

set up 133

task properties 138

tasks in Rational Rhapsody 138

text differences tool 139

toolbar in Rational Rhapsody 135

Type Manager 134, 139

with Rational Rhapsody 135
Rational Team Concert 181
Recursive option 131
RedirectOutputToRhapsody property 166
Reference 8

adding by 23

sharing by 8

units 59

unresolved 59
Remote collaboration 6
Removing

units 19
Rename 34

files 34

in CM operation 34

package 35
Rename property 34
RenameActivation property 34
Renamed elements 92
RenameDirectory property 35
Renaming support in DiffMerge 121
RepDecidedAuto preference 123
RepDecidedMan preference 123
RepElemExcluded preference 123

190

Team Collaboration Guide

Index

RepElemincluded preference 123
RepElemMerged preference 123
RepElemTakenFrom preference 123
RepElemUndecided preference 123
RepFooter preference 124
RepHeader preference 124
RepltemDecided preference 124
RepltemMerged preference 124
ReportFooter preference 121
ReportFooterColor preference 119
ReportHeader preference 121
ReportHeaderColor preference 119
Reports 86

differences 74, 86

DiffMerge differences 85

DiffReport 119

exporting DiffMerge 90

merge information 116

print DiffMerge differences 86

RTF 90
Repository 23

flat 23

flat using 25

hierarchical 23, 152

hierarchical using 26

structuring 23
RepSideRight preference 124
reserve 148
ResolveA utomaticallyWhenStartingMerge

preference 122
RightitemMerge preference 124
RightMerge preference 124
RightOnlyColor preference 119
RightOnlyPrefix preference 121
RightSidel eft preference 124
Roles 4

architect 5

configuration system manager 4

developer 5

integrator 5

lead developer 5

list of team members 4

project manager 4

quality manager 5
RPW file 12
RPY file 12,21

dividing projects 18
Run CM Tool 41
RunCM Tool Command property 44

S

SaveMerge preference 124
SBSfile 12
SCC mode 11

actions 56

check in 167

Connect to Archive 43
creating directories 29
deleting files 33
moving adirectory or file 35
property 163
renaming adirectory or file 34
renaming a package 35
supported tools 39
synchronizing workspace 46
troubleshooting 53
versus batch mode 39
Scope 17
Sequence diagrams 116
elements 116
limitations of graphical merge 105
merging 114
merging "referring” elements 115
merging elements 114, 115
Serena PVCS Dimensions 163
Setting up
comparisons 72
local workspace 8
Rational ClearCase 148
Rational Rhapsody for use with Rational Synergy 133
Rational Rhapsody projects 149
Type Manager for Rational ClearCase 154
Share 8
by copy 7
by reference 8
editing files 9
setting up workspace 8
Show itemsin archive 41, 44
ShowCM Status property 53
ShowDMMarkslnBaseAwareM ode preference 122
ShowM etalnfolnBrowser preference 125
ShowsStereotypel nBrowser preference 125
Source artifacts 47, 48
Source control management (CM) 3
selecting filestypesfor 12
supported tools 10
using conventional tools 10
Splitting projects 22
StartMerge preference 124
startview 148
Statecharts 18
as units 20
nested 113
to define a use case 15
Status of CM 52, 53
Storel nSeparateDirectoryActivation property 160, 161
Subelements, nested differences 77
Subversion (SVN) 177
adding unit created in Rational Rhapsody to
repository 180
checking out a Rational Rhapsody project 178
collaborating with other users 179
repository synchronization 179

Rational Rhapsody

191

Index

sharing a Rational Rhapsody project 177
updating a Rational Rhapsody unit 180
viewing unit history 180
Suppressions 124
SuppressRenamePropagatedDiffs preference 126
SuppressRenamePropogatedDiffs preference 126
SVN 177
Synchronize 41, 46
files modified outside of Rational Rhapsody 46
with view 46

T

Take from left 101
Take fromright 101
Tasks 138
checking into Rational Synergy 138
create new Rational Synergy 137
view Rational Synergy properties 138
working with Rational Synergy 138
Team 6
collaboration 6
environment 149
member roles 4
members 17
number of members 2
organizing by member 17
remote member 6
Testing 17
Text 102
attributes 102
differences 106
external editor 79, 80
merging 102
modifying in graphics 113
TextDiffMerge 127
Trivial versus non-trivial differences 106
Troubleshooting 53
.magic file (Rational ClearCase) 156
batch mode 54
Rational ClearCase Type Manager 156
SCC mode 53
unresolved references 59
Type Manager
Rationa ClearCase 154, 156
Rational Synergy 134, 139

U

UCM 146
Uncheck Out 42, 169

Undo 33
Undo check out 51
Unified Change Management 146
Units 12, 18, 63
added by reference 59
attributes 71
class 20
CM status 51
compare archived 67
compare graphically 82
compare nested 68
comparing 45
creating 19, 20, 65
diagram 20
dividing project into 18
editing 20, 33
examining selections 70
merging 45, 101
moving 33
package 20
removing 19
selecting to compare 68
testing 17
UNIX 150, 153, 154, 156
Unlock 42, 50
Unresolved reference 59
Update 27
CM system error message 36
configuration management (CM) archive 27
Use cases 15
UseDefault preference 119
UserDefCommand_x 58
User-defined button 58
UseSCCTool & CMTool properties 135
UseSCCtool property 135, 163, 165

Vv

VBA file 12

Version Tree 42,51

View 148

VOB mounting point 148

W

Web collaboration 61
Webify Toolkit 61
Workflow 16, 17, 23
Workspace 8
file 12
synchronizing 46

192

Team Collaboration Guide

	Contents
	Basic concepts
	Project complexity
	Number of team members
	Number of components
	Design complexity
	Type of content management
	Geographical distribution
	Team members and their roles

	Methodologies for team collaboration
	Share by copy without a CM tool
	Share by reference without a CM tool
	Setting up a local workspace
	Editing files using sharing by reference

	Conventional CM tools
	Accessing the CM archive from Rational Rhapsody

	Rational Rhapsody files for content management

	Model organization and partition
	Possible model organizational methods
	Test considerations

	Configuration items (CIs)
	Considerations for dividing a project into units
	Creating unit files
	Removing unit files
	Packages as units
	Classes as units
	Diagrams as units

	The project file
	Multiple Rational Rhapsody projects
	Dividing a project into two projects
	Two projects into one project
	Multiple project workflow

	Repository structure
	Repository structure planning
	Flat repositories
	Hierarchical repositories

	Example of project under CM
	Restructuring a project
	File and directory creation
	Directories in SCC mode
	Directories in batch mode
	Keyword expansion in batch mode

	File and directory deletion
	Unit storage
	Packages in a new directory
	File renaming
	Package contained in its own directory renaming
	Control moving a file or directory
	When Rational Rhapsody cannot update the CM system
	Model only changes
	Model and the file system changes
	Canceling a change

	CM and Rational Rhapsody
	SCC versus Batch mode
	Configuration Items window
	CM operations
	Connect to Archive
	Connect to Archive in SCC Mode
	Connecting to a different archive
	Configuring a CM tool Batch mode
	Connecting a project to the archive

	Show Items in Archive
	Run CM tool
	Comparing with the DiffMerge tool
	Displaying the properties of a unit
	Synchronize Items
	Autosynchronize
	Check out operation
	Checking out a unit

	Check In operation
	Checking in a unit

	Using Add to Archive in CM operations
	Lock and Unlock operations
	Locking/Unlocking a unit

	Fetching a unit
	Using Uncheckout in CM operations
	History/Version tree

	CM status of units in a project
	CM status information in the browser
	CM status information in the Configuration Items window
	Property to turn off display of CM status

	About troubleshooting CM operations
	CM Output window
	Pre- and post- actions
	CM interface extension
	Unresolved references
	Units added by reference

	Multi-site collaboration
	Webify for collaboration
	Rapid prototyping

	Parallel development
	The DiffMerge tool
	What is a unit?
	How do you use DiffMerge?

	Launching DiffMerge inside Rational Rhapsody
	Compare With operation
	Comparing an archived unit to the current version

	Comparing two archived versions
	Advantages of launching DiffMerge inside Rational Rhapsody

	Launching DiffMerge outside Rational Rhapsody
	Select units to compare
	Selecting units to compare outside Rational Rhapsody
	Advantages of launching DiffMerge outside Rational Rhapsody

	Examining “left” and “right” value selections
	Results displayed in the DiffMerge tool
	Differences report in the Output window
	Difference Report display
	Features of a Difference Report

	DiffMerge differences
	Differences in the browser
	Difference categories and their icons in the browser

	Base-aware Diff icons
	DiffMerge tool navigation
	The external difference/merge textual tool
	Using your external difference/merge textual tool

	Filtering the comparison in the DiffMerge tool
	Inspecting differences in diagrams visually
	Graphical differences
	Switching on the difference highlighting
	Walking through diagram differences
	Switching off element blinking

	Difference Report generation
	Printing a Difference Report
	Graphical differences suppression
	DiffMerge limitations

	Logical versus graphical differences
	Example of logical difference

	DiffMerge reports
	Exporting DiffMerge reports

	The Rational Rhapsody DiffMerge process
	How does the DiffMerge tool make a match?
	Examples of how the DiffMerge tool handles renamed elements
	How DiffMerge performs a model comparison
	How differences are detected in base-aware comparisons
	Limitations for match by element ID in DiffMerge
	How to examine only major structure differences
	Comparison of propagated differences view and major structure differences view

	Merge units with the DiffMerge tool
	Starting a merge operation
	Merge renamed elements
	Saving the merged unit
	Merge units limitations
	Automatic merging for base-aware comparisons
	Trivial Versus Non-trivial Differences
	Merge icons for base-aware comparisons

	About making merge decisions
	Navigation menu options for merging
	Undecided view
	View in merge
	Base-aware comparison merging
	Rules for merging from a two-unit comparison

	Merging diagrams graphically for most diagrams
	Merging diagrams graphically for statecharts and activity diagrams
	Tips for graphical merging for statecharts and activity diagrams
	Saving the graphically merged unit

	About merging sequence diagrams
	Making merge decisions from the DiffMerge browser
	Making merge decisions from the graphical view
	Additional changes permitted in graphical merge mode
	About “referring” elements
	Elements that realize Sequence diagram elements

	Merge activity log
	Producing merge reports

	DiffMerge tool preferences
	Changing preferences
	Restoring default settings

	Keywords
	Colors preferences category
	DiffReport preferences category
	General preferences category
	MergeLog preferences category
	Suppressions preferences category
	TextDiffMerge preferences category

	Command-line options for the DiffMerge tool
	Launching the DiffMerge tool interface using the command line
	Launching the DiffMerge tool from the command line
	DiffMerge command-line syntax options

	IBM Rational Synergy
	Setting up Rational Rhapsody for use with Rational Synergy
	Rational Synergy and Rational Rhapsody
	Using Rational Synergy with Rational Rhapsody
	Connecting to the Rational Synergy archive
	Creating new Rational Synergy tasks
	Viewing the properties for a Rational Synergy task
	Working with a Rational Synergy task in Rational Rhapsody
	Checking in Rational Rhapsody work

	Rational Synergy and the Rational Rhapsody DiffMerge tool
	Customize Rational Rhapsody and Rational Synergy

	IBM Rational ClearCase
	Batch mode Versus SCC mode
	The differences between the Batch and SCC modes
	SCC mode or Batch mode?
	SCC Mode or Batch Mode Summary

	Setting up Rational ClearCase
	Controlling case sensitivity in Rational ClearCase
	About checking out Rational Rhapsody files
	About setting up Rational Rhapsody projects for team members
	About adding new files to the archive
	Rational ClearCase limitations with Rational Rhapsody

	Rational ClearCase semantics
	Evil twins issue
	Integration issues
	Hierarchical repository and Rational ClearCase
	Changes to an existing directory structure
	Limitations for changing an existing directory structure

	Rational ClearCase Type Manager
	Setting up the Rational ClearCase Type Manager
	Setting up the Rational ClearCase .magic file
	Rational Rhapsody models and changing the default properties

	Code generation performance improvements
	Forced check in of a package with unchanged subunits
	When is a Rational ClearCase license consumed?
	Customize Rational Rhapsody and Rational ClearCase
	Checking out/Checking in a directory once
	Storing an existing package in a separate directory
	Removing an existing directory for a package and reconciling its contents
	Adding a unit to the CM archive automatically

	Serena PVCS Dimensions
	Enabling a SCC-compliant CM tool
	Access to Dimensions from Rational Rhapsody
	Create the initial connection to the SCC tool
	Creating the initial connection to the SCC tool in Dimensions

	Add to SCC archive operation
	Adding a unit to an SCC archive

	Check out operation in SCC archive
	Checking out a unit in SCC archive

	Check in operation in SCC archive
	Checking in a unit in SCC archive

	Listing the archive in PVCS Dimensions
	Fetching in Dimensions
	Unchecking Out in Dimensions
	Viewing the history of a unit
	Viewing the file details for a unit
	Customize Rational Rhapsody and PVCS Dimensions

	Concurrent Versions System (CVS)
	Sharing a Rational Rhapsody project in CVS
	Checking out a Rational Rhapsody project from a CVS repository
	Collaboration with other users in CVS
	Repository synchronization in CVS
	Updating a Rhapsody unit in Eclipse to the CVS repository
	Configuring how Update behaves

	Adding a unit created in Rational Rhapsody to the CVS repository
	Showing the history of a unit in CVS

	Subversion (SVN)
	Sharing a Rational Rhapsody project in Subversion
	Checking out a Rational Rhapsody project from a Subversion repository
	Collaboration with other users in Subversion
	Repository synchronization in Subversion
	Updating a Rational Rhapsody unit in Eclipse to the Subversion repository
	Adding a unit created in Rational Rhapsody to Subversion repository
	Showing the history of a unit in Subversion

	IBM Rational Team Concert
	How changes are accepted and conflicts resolved

	Index

