

Rational Rhapsody
Team Collaboration Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Basic concepts . 1
Project complexity. 1

Number of team members. 2
Number of components. 2
Design complexity . 3
Type of content management . 3
Geographical distribution . 4
Team members and their roles . 4

Methodologies for team collaboration . 6
Share by copy without a CM tool . 7
Share by reference without a CM tool . 8
Conventional CM tools . 10
Accessing the CM archive from Rational Rhapsody . 11

Rational Rhapsody files for content management. 12

Model organization and partition . 15
Possible model organizational methods. 15

Test considerations . 17

Configuration items (CIs) . 18
Considerations for dividing a project into units . 18
Creating unit files . 19
Removing unit files . 20
Packages as units . 20
Classes as units . 20
Diagrams as units . 20

The project file . 21

Multiple Rational Rhapsody projects . 21
Dividing a project into two projects . 22
Two projects into one project . 23
Multiple project workflow . 23

Repository structure . 23
Repository structure planning . 24
Rational Rhapsody iii

Table of Contents
Flat repositories. 25
Hierarchical repositories . 26

Example of project under CM. 27
Restructuring a project . 28
File and directory creation. 29
File and directory deletion . 33
Unit storage. 33
Packages in a new directory . 34
File renaming . 34
Package contained in its own directory renaming. 35
Control moving a file or directory. 35
When Rational Rhapsody cannot update the CM system. 36

CM and Rational Rhapsody . 39
SCC versus Batch mode. 39

Configuration Items window . 40

CM operations . 41
Connect to Archive . 41
Connect to Archive in SCC Mode . 43
Show Items in Archive. 44
Run CM tool . 44
Comparing with the DiffMerge tool . 45
Displaying the properties of a unit . 45
Synchronize Items. 46
Autosynchronize . 46
Check out operation . 47
Check In operation . 48
Using Add to Archive in CM operations. 49
Lock and Unlock operations . 50
Fetching a unit. 50
Using Uncheckout in CM operations. 51
History/Version tree. 51

CM status of units in a project . 51
CM status information in the browser . 52
CM status information in the Configuration Items window . 52
Property to turn off display of CM status . 53

About troubleshooting CM operations . 53

CM Output window . 55

Pre- and post- actions. 56

CM interface extension . 58
iv Team Collaboration Guide

Table of Contents
Unresolved references . 59

Units added by reference . 59

Multi-site collaboration . 61
Webify for collaboration . 61

Rapid prototyping . 62

Parallel development . 63
The DiffMerge tool . 63

What is a unit? . 63
How do you use DiffMerge? . 64

Launching DiffMerge inside Rational Rhapsody . 64
Compare With operation . 66
Comparing two archived versions . 67
Advantages of launching DiffMerge inside Rational Rhapsody. 67

Launching DiffMerge outside Rational Rhapsody . 68
Select units to compare. 68
Selecting units to compare outside Rational Rhapsody . 68
Advantages of launching DiffMerge outside Rational Rhapsody . 69

Examining “left” and “right” value selections . 70

Results displayed in the DiffMerge tool . 71

Differences report in the Output window . 74
Difference Report display . 74
Features of a Difference Report . 75

DiffMerge differences . 76
Differences in the browser . 76
Difference categories and their icons in the browser . 77

Base-aware Diff icons . 78

DiffMerge tool navigation . 79

The external difference/merge textual tool . 80
Using your external difference/merge textual tool . 80

Filtering the comparison in the DiffMerge tool. 81

Inspecting differences in diagrams visually . 82
Graphical differences . 83
Difference Report generation . 85
Printing a Difference Report . 86
Graphical differences suppression . 86
DiffMerge limitations . 87
Rational Rhapsody v

Table of Contents
Logical versus graphical differences . 88
Example of logical difference . 88

DiffMerge reports. 90
Exporting DiffMerge reports . 90

The Rational Rhapsody DiffMerge process . 91
How does the DiffMerge tool make a match? . 91
Examples of how the DiffMerge tool handles renamed elements . 92
How DiffMerge performs a model comparison . 96
How differences are detected in base-aware comparisons. 96
Limitations for match by element ID in DiffMerge . 97
How to examine only major structure differences . 98

Merge units with the DiffMerge tool. 101
Starting a merge operation . 101
Merge renamed elements . 104
Saving the merged unit . 105
Merge units limitations . 105
Automatic merging for base-aware comparisons . 106
About making merge decisions . 108
Merging diagrams graphically for most diagrams . 111
Merging diagrams graphically for statecharts and activity diagrams. 112
About merging sequence diagrams . 114
Merge activity log . 116
Producing merge reports. 116

DiffMerge tool preferences . 117
Changing preferences. 117
Keywords . 118
Colors preferences category . 119
DiffReport preferences category . 119
General preferences category. 121
MergeLog preferences category . 123
Suppressions preferences category . 124
TextDiffMerge preferences category . 127

Command-line options for the DiffMerge tool . 129
Launching the DiffMerge tool interface using the command line. 129
Launching the DiffMerge tool from the command line. 129
DiffMerge command-line syntax options . 130

IBM Rational Synergy . 133
Setting up Rational Rhapsody for use with Rational Synergy . 133

Rational Synergy and Rational Rhapsody . 135
Using Rational Synergy with Rational Rhapsody . 135
vi Team Collaboration Guide

Table of Contents
Connecting to the Rational Synergy archive . 136
Creating new Rational Synergy tasks . 137
Viewing the properties for a Rational Synergy task. 138
Working with a Rational Synergy task in Rational Rhapsody . 138
Checking in Rational Rhapsody work . 138

Rational Synergy and the Rational Rhapsody DiffMerge tool. 139

Customize Rational Rhapsody and Rational Synergy . 139

IBM Rational ClearCase . 141
Batch mode Versus SCC mode . 141

The differences between the Batch and SCC modes . 142
SCC mode or Batch mode? . 145
SCC Mode or Batch Mode Summary . 147

Setting up Rational ClearCase . 148
Controlling case sensitivity in Rational ClearCase . 149
About checking out Rational Rhapsody files . 149
About setting up Rational Rhapsody projects for team members . 149
About adding new files to the archive . 149
Rational ClearCase limitations with Rational Rhapsody . 150

Rational ClearCase semantics . 150

Evil twins issue . 150

Integration issues . 151

Hierarchical repository and Rational ClearCase . 152

Changes to an existing directory structure . 152
Limitations for changing an existing directory structure . 153

Rational ClearCase Type Manager. 153
Setting up the Rational ClearCase Type Manager . 154
Setting up the Rational ClearCase .magic file. 156
Rational Rhapsody models and changing the default properties . 157

Code generation performance improvements . 158

Forced check in of a package with unchanged subunits . 158

When is a Rational ClearCase license consumed? . 159

Customize Rational Rhapsody and Rational ClearCase . 159
Checking out/Checking in a directory once. 160
Storing an existing package in a separate directory . 160
Removing an existing directory for a package and reconciling its contents . 161
Adding a unit to the CM archive automatically . 161
Rational Rhapsody vii

Table of Contents
Serena PVCS Dimensions . 163
Enabling a SCC-compliant CM tool . 163

Access to Dimensions from Rational Rhapsody . 163

Create the initial connection to the SCC tool . 164
Creating the initial connection to the SCC tool in Dimensions . 164

Add to SCC archive operation . 165
Adding a unit to an SCC archive . 165

Check out operation in SCC archive . 166
Checking out a unit in SCC archive. 166

Check in operation in SCC archive . 167
Checking in a unit in SCC archive. 167

Listing the archive in PVCS Dimensions . 167

Fetching in Dimensions . 168

Unchecking Out in Dimensions . 169

Viewing the history of a unit. 169

Viewing the file details for a unit . 169

Customize Rational Rhapsody and PVCS Dimensions . 170

Concurrent Versions System (CVS) . 171
Sharing a Rational Rhapsody project in CVS . 171

Checking out a Rational Rhapsody project from a CVS repository . 172

Collaboration with other users in CVS . 173
Repository synchronization in CVS. 173
Updating a Rhapsody unit in Eclipse to the CVS repository . 174
Adding a unit created in Rational Rhapsody to the CVS repository . 175
Showing the history of a unit in CVS. 175

Subversion (SVN) . 177
Sharing a Rational Rhapsody project in Subversion. 177

Checking out a Rational Rhapsody project from a Subversion repository 178

Collaboration with other users in Subversion . 179
Repository synchronization in Subversion . 179
Updating a Rational Rhapsody unit in Eclipse to the Subversion repository. 180
Adding a unit created in Rational Rhapsody to Subversion repository . 180
Showing the history of a unit in Subversion . 180

IBM Rational Team Concert . 181
viii Team Collaboration Guide

Table of Contents
How changes are accepted and conflicts resolved . 182

Index . 183
Rational Rhapsody ix

Table of Contents
x Team Collaboration Guide

Basic concepts
IBM® Rational® Rhapsody® Team Collaboration describes how multiple Rational Rhapsody users
can collaborate as a team on Rational Rhapsody projects. This information is designed to assist
users in a wide variety of situations. Not all topics apply to all readers. Use the topics in Team
Collaboration to understand the terminology used to describe different teams and team members,
and to determine where to find information that applies to your situation.

Project complexity
There are no formal definitions to classify projects in terms of size or complexity. However, a few
guidelines are necessary to clarify terms used in Team Collaboration. Some topics focus on
specific types of projects. This topic will help you determine the type of project you are working
on and which topics will be useful to you.

Levels of complexity can be measured in all kinds of ways, including the number of team members
or components, complexity of the design, integration of legacy code, type of content management
used, and geographical distribution of the team.
Rational Rhapsody 1

Basic concepts
Number of team members

There are many ways to determine the level of complexity for a project, one consideration is the
number of team members involved.

Use the following table to determine the size of a project based on the number of team members.

Number of components

There are many ways to determine the level of complexity for a project, one consideration is the
number of team components involved.

The following guidelines determine the size of a project based on the number of components:

 Small for 1 to 5 components
 Medium for 6 to 15 components
 Large for more than 15 components

If you are managing medium or large projects, see Model organization and partition.

Number
of People

Project
Size Relevant Topics

1 Individual • Share by copy without a CM tool
• Share by reference without a CM tool
• Parallel development for information about the IBM

Rational Rhapsody DiffMerge tool

2 to 8 Small • Share by copy without a CM tool
• Share by reference without a CM tool
• Parallel development for information about the

DiffMerge tool

9 to 25 Medium • Conventional CM tools
• CM and Rational Rhapsody

More than
25

Large • Conventional CM tools
• CM and Rational Rhapsody
2 Team Collaboration Guide

Project complexity
Design complexity

There are many ways to determine the level of complexity for a project, one consideration is the
design complexity.

The following guidelines may help you determine the complexity of a design for a project:

 Low for up to 5 packages, 20 classes, or 20 events
 Medium for up to 20 packages, 100 classes, or 100 events
 High for up to 100 packages, 1000 classes, or 1000 events
 Extremely complex for more than 100 packages, 1000 classes, or 1000 events

If you are managing medium or high complexity projects, see Model organization and partition. If
you are working with high and extremely complex models, see Multiple Rational Rhapsody
projects.

Type of content management

There are many ways to determine the level of complexity for a project, one consideration is the
type of content management involved.

The following guidelines consider three categories of content management:

 None for a content management process that does not use a CM tool.
 Simple for a simple CM tool that supports basic versioning features, but does not include

complex operation such as branching. See CM and Rational Rhapsody.
 Complex for an advanced CM tool that supports branching and features such as

extensibility and integration with process control. See CM and Rational Rhapsody and in
particular CM interface extension.
Rational Rhapsody 3

Basic concepts
Geographical distribution

There are many ways to determine the level of complexity for a project, one consideration is the
geographical distribution of the team members involved.

The following guidelines consider the proximity of team members to one another:

 Single site when all team members are located at the same site.
 Multiple sites when team members are distributed between several sites.
 Multiple remote sites when team members are distributed between several sites with

large time differences.
For projects that are distributed between different sites, see Multiple Rational Rhapsody projects
and Multi-site collaboration.

Team members and their roles

To be successful, all projects from simple to complex require several organizational roles. In some
cases, one person might perform more than one role. For example, the project manager might also
be the architect; the configuration system manager might also be the integrator; and the developer
of a component might also be the quality assurance person for that component.

Consider the following organizational roles for a project.

Project Manager
The project manager is responsible for assigning work, and defining and monitoring the schedule.
This person defines the project scope, is involved in all key decisions, facilitates communication
among team members, and might define the process or policies for CM. The project manager has
the overall responsibility for the project.

The project manager will find useful information throughout Team Collaboration.

Configuration System Manager
The configuration system manager sets up all the aspects of the CM tool, ensures that the
environment is running with Rational Rhapsody, maintains the system, and assists team members
with issues concerning the CM tool. In addition, this person promotes baselines as new versions or
releases arise. The configuration system manager might manage CM for more than one project or
serve in other roles, depending on the organization.
4 Team Collaboration Guide

Project complexity
The configuration system manager should review the following topics:

 Example of project under CM

 CM and Rational Rhapsody and in particular CM interface extension

 The particular CM tool: IBM Rational Synergy, IBM Rational ClearCase, Serena PVCS
Dimensions, Concurrent Versions System (CVS), or Subversion (SVN)

Architect/Lead Developer
The architect/lead developer is responsible for policies relating to project structure, dividing the
project into several smaller projects, allocating components to projects, and allocating design units
to components.

Architects should review Model organization and partition.

Developer
The developer performs tasks from the basic (such as fixing a defect) to the more complex (such as
working on a six-month project). Developer CM activities include joining a project, editing files
on a local machine, verifying changes, submitting updated files to the CM system, and
synchronizing a local workspace with the updates of other team members.

Developers should review the following topics:

 Model organization and partition

 CM and Rational Rhapsody

 Parallel development

Quality Manager
The quality manager defines quality assurance policies, develops and maintains test suites,
executes testing, and takes responsibility for the overall quality of a project. This person might use
the CM tool to track test cases or determine which version of the project is currently under testing
analysis.

The quality manager should review Test considerations.

Integrator
The integrator (“toolsmith”) creates the integration facilities, makefiles, and special dedicated
scripts for the project. This person derives the formal, deliverable product from a CM baseline,
arranges the installation and deployment procedures, and automates the process of periodic builds
and tests.

The integrator might find useful information throughout Team Collaboration.
Rational Rhapsody 5

Basic concepts
Methodologies for team collaboration
There are several ways to manage files so several team members can collaborate on the same
project at the same time. Rational Rhapsody supports file management with or without the use of a
CM tool.

There are two ways to manage files:

 Without a CM tool, including sharing by copy or reference
 With a CM tool, using either a CM interface included in Rational Rhapsody or a custom

CM interface
When you use a CM tool, the software takes care of most CM issues. However, a file management
system can incorporate a combination of sharing by copy or reference and using a CM tool.

Software development teams with team members located remotely from one another face an
additional challenge. In these cases, technologies that allow team members to collaborate over
long distances (such as the Web) can be incorporated into the overall file management strategy. For
more information, see Multi-site collaboration.

Projects with complicated file systems and diverse teams often require creative solutions to CM
that incorporate more than one method of team collaboration. For example, team members can
check files in and out of a traditional CM tool, while at the same time the project can reference
classes from another project or from other external specification files.
6 Team Collaboration Guide

Methodologies for team collaboration
Share by copy without a CM tool

When sharing by copying, your directory contains a replica of the common directory (as shown in
the following figure). You make your modifications to your local directory, then copy the file to
the common directory to update the project. This strategy is appropriate for individual or small
teams.

This technique has some obvious flaws. For example, there is no mechanism to prevent someone
else from modifying the same file at the same time. This can cause a problem when the two team
members copy files back to the common directory. The second developer overwrites the changes
made by the first, thereby eliminating them. At some point, the two team members must compare
their versions and merge the two sets of changes.

In addition, the copying process can be time-consuming for large projects. There is no method for
parallel development or for tracking the history of changes made to the project.

This form of CM is done using the file system, not the Rational Rhapsody interface. However, you
can use the IBM Rational Rhapsody DiffMerge tool to detect differences between the original file
and the modified file, or to merge changes made to the same file by two different developers. For
more information, see Parallel development.

Your Directory Common Directory

Modify
Copy
Modified File

*

*
Copy
Original
File
Rational Rhapsody 7

Basic concepts
Share by reference without a CM tool

When sharing by reference, team members do not need to copy all project files to their local
directories. Instead, they each have a copy of the .rpy file on their local machine. The .rpy file
references the read-only project files on a common directory. When team members need to update
a file, they add the file to the local machine, make the necessary changes, and then move the
updated file back to the common directory.

By using references to the common directory, files are always up-to-date with the latest changes.
However, processes that prevent two developers from localizing and modifying the same unit at
the same time should be established and followed. In addition, there is no way to track changes
made to a file, or to revert to a previous version when a problem is encountered.

Setting up a local workspace
To create a project that uses sharing by reference for CM:

1. Create a project directory on your local hard drive.

2. Make a copy of the .rpy file from the common directory to your local project directory.

3. Create a <project>_rpy directory inside the project directory. Your local file structure
should resemble the following figure:

4. Start Rational Rhapsody.

5. Open the .rpy file on your local machine, selecting the Without Subunits check box. The
project opens with all units marked as unloaded (U) and read-only (RO).

6. Open the Add to Model window. Choose File > Add to Model.

7. Locate the master project and select the master .rpy file.

8. Select the As Reference radio button, and click Open to open the Add to Model from
Another Project window.

9. In the Unit Type drop-down list, select All and click the Select All button.

10. Select the As reference radio button.
8 Team Collaboration Guide

Methodologies for team collaboration
11. To include associations, aggregations, dependencies, or similar relations, select the Add
Dependents check box.

12. Click OK. All units in your local project are now read-only (RO), but they are no longer
unloaded (U).

Editing files using sharing by reference
To edit a file in a project that uses sharing by reference:

1. Start Rational Rhapsody and open your local project.

2. Open the Add to Model window. Choose File > Add to Model.

3. Locate the master project and select the master .rpy file.

4. Select the As Unit radio button and click Open to open the Add to Model from Another
Project window.

5. Select the units you want to edit:

 Use the Ctrl or Shift key to select multiple units. You can filter the units using the
Unit Type drop-down list.

 To include nested units, select the Add Subunits check box.
 To include associations, aggregations, dependencies, or similar relations, select

the Add Dependents check box.
6. Select the As unit radio button, and then click OK.

7. In the Add to Model window, select Replace existing unit and click OK. The selected
units are loaded into your local project for editing.

8. Choose File > Save to save the added units on your local machine.

9. When you have completed the necessary changes, move the updated unit files to the
master project in the common directory. The unit files should be removed from your local
machine.

The next time you open this project, these units will be missing. Add them as references until you
need to edit them again.
Rational Rhapsody 9

Basic concepts
Conventional CM tools

Using conventional CM tools, you can check files in and out of a central repository. The tool tracks
who has locked the file and protects it from being written to by other users.

One concept of content management using a CM tool is shown in the following figure. A file is
stored in the CM tool repository. When you want to edit the file, you check it out and place a lock
on the file. You make your modifications on your local machine, then check the file back into the
CM repository, removing the lock. The CM tool maintains copies of both the previous version and
the new version, and assigns a unique version number to the new file.

Rational Rhapsody provides an interface to all of the following concepts supported by CM tools:

 Locking files
 Viewing available versions
 File history
 Retrieving previous versions
 Setting baselines
 Process control

See the IBM Rational Rhapsody Readme file for the list of CM tools supported by Rational
Rhapsody. In addition, you can develop a custom interface between Rational Rhapsody and
unsupported CM tools.

2

1

Your Directory CM Repository
Version

Check Out

Check
In

Modify
10 Team Collaboration Guide

Methodologies for team collaboration
Accessing the CM archive from Rational Rhapsody

Rational Rhapsody works with any CM archive in Microsoft® Common Source Code Control
(SCC) mode (Windows only) or other tools in batch mode.

Rational Rhapsody developers might use any of the following CM tools to manage their source
files:

 IBM Rational Synergy in SCC mode
 IBM Rational ClearCase in batch mode and SCC mode
 Serena PVCS Dimensions in SCC mode
 Concurrent Versions System (CVS)

 Subversion (SVN)

Note
For Linux users, you can use batch mode configuration management, and Rational
ClearCase. Rational ClearCase is supported in Linux.

For more information about SCC mode and batch mode, see SCC versus Batch mode.

To access your source controlled files from Rational Rhapsody:

1. Be certain that your source control archive is accessible from the PC you are using for this
comparison.

2. Start Rational Rhapsody and open a project.

3. Open the Configuration Items window. Choose File > Configuration Items.

Note: The look of the window depends on the type of CM system you are using.

Limitation: The Version number of the controlled files does not display in this window.
Rational Rhapsody 11

Basic concepts
Rational Rhapsody files for content management
In a Rational Rhapsody project, some files contain project data and others store local information
that does not need to be shared with other team members. Only files that store project data need to
be included in a CM system.

The following table lists each Rational Rhapsody project file, its purpose, and guidelines for
placing it under content management.

File Name Purpose CM Guidelines

*.rpy Rational Rhapsody project
file

Maintain under CM from Rational
Rhapsody.

unit files
(*.sbs, *.omd, *.cls,
and so on)

Files that store Rational
Rhapsody elements, such
as packages, diagrams, and
classes

Maintain all unit files under CM from
Rational Rhapsody.

*.rpw User-specific workspace
data

Does not require CM.

*.ehl Events history list; stores
animation commands, such
as event generation

Does not require CM.

*.vba A binary file that stores VBA
macros

If the project uses VBA macros, maintain
this file under CM outside of Rational
Rhapsody (from the CM tool).
Note that most CM tools require a specific
signal from the user when archiving a
binary file.
If this file is read-only, Rational Rhapsody
displays the warning message, “Failed to
open document” when you open the
project, and “Failed to save document”
when you save the project.
If the project does not make use of VBA
macros, there is no need to apply CM to
this file.

store.log A log recording when the
project was saved

Does not require CM.

load.log A log of files loaded into
Rational Rhapsody

Does not require CM.

ReverseEngineering.l
og

A log of reverse engineering
activity

Does not require CM.

filestable.dat Internal Rational Rhapsody
cache file

Does not require CM.

*.cg_info Stores information related to
incremental code generation

Does not require CM.
12 Team Collaboration Guide

Rational Rhapsody files for content management
*_auto.rpy Autosave file (optional,
depends on project settings)

Does not require CM.

*_bak1.rpy &
*_bak2.rpy

Backup project files created
by Rational Rhapsody
(optional, depends on
project settings)

Do not require CM.

File Name Purpose CM Guidelines
Rational Rhapsody 13

Basic concepts
14 Team Collaboration Guide

Model organization and partition
When you plan a Rational Rhapsody project, you need a design that facilitates team collaboration.
Good model organization is crucial for achieving reusability in developing frameworks and
components. Once you have decided on an organization, you need to determine how the model
should be partitioned into units.

System organization enables many team members to contribute to the model without corrupting it
or losing previous changes. It also provides the following benefits:

 Allows team members to work with parts of the model that lie outside of their
responsibility

 Manages changes to pieces of the model
 Provides for an efficient build process
 Helps developers locate and work on various model elements
 Facilitates reuse of components
 Helps in developing versions and configurations of the product

Possible model organizational methods
Depending on the type of project, you can organize your model using one of several organizational
methods.

Model organization by use cases

Use cases are central to gathering requirements and are an obvious focal point for organizing the
requirements and analysis model. For example, when you are working on related requirements and
use cases, you typically need access to one or more use cases and actors. When detailing a use
case, you work on a single use case and detailed views (a set of scenarios) and often either an
activity diagram or a statechart (or some other formal specification language). When elaborating a
collaboration, you must create a set of classes related to a single use case, as well as refining the
scenarios bound to that use case. Packages can divide up the use cases into coherent sets (such as
those related by generalization, «includes» or «Extends» relations, or by associating with a
common set of actors). In this case, a package would contain a use case and its actors, activity
diagrams, statecharts, and sequence diagrams.
Rational Rhapsody 15

Model organization and partition
Model organization by framework

A framework-based model organization addresses some of the limitations of the use case-based
approach. It is still targeted at small systems, but it adds a framework package for shared and
common elements. The framework package has subpackages for usage points (classes that will be
used to provide services for the targeted application environment) and extension points (classes
that are grouped into subclasses by classes in the use-case packages). Note also that there are other
ways to organize the framework area that also work well. For example, frameworks often consist
of sets of coherent patterns; the subpackaging of the framework can be organized around those
patterns. While this is particularly apt when constructing small applications against a common
framework, the scheme does hamper reuse in some of the same ways as the use case-based
approach.

Model organization by logical and physical architectures

Another approach is to break up the architecture into the logical (organization of types, classes,
and other design-time model elements) and physical aspects (organization of instances, objects,
subsystems, and other run-time elements). The logical architecture is often organized by domains,
whereas the physical architecture revolves around components or subsystems. If you structure the
model this way, a domain, subsystem, or component becomes a CI to be assigned to a single
worker or team. If the element is large enough, it can be further subdivided into subpackages based
on subtopic within a domain, subcomponents, or another criterion such as team organization.

Model organization by domains

You could also divide the model based on classes. A domain, as defined in the ROPES process, is
a subject area with a common vocabulary, such as device I/O, user interface, or alarm
management. Each domain contains many classes, and system-level use case collaborations will
contain classes from several different domains. Many domains require rather specialized expertise,
such as low-level device drivers, aircraft navigation and guidance, or communication protocols.
From a workflow and logical standpoint, it makes sense to group such elements together because a
single person or team will develop and manipulate them. Grouping classes by domains and having
the domains be CIs might make sense for many projects.
16 Team Collaboration Guide

Possible model organizational methods
Model organization by components

A model can sometimes be organized intuitively by components. A UML™ component in Rational
Rhapsody is a basic building block used to define executables, libraries, and other physical binary
deliverables. Each such component is compiled of code generated from model elements. The
model elements that compose the component are called the component scope. Using top-level
packages that include all the model elements mapped to a certain component creates a simple and
easy-to-use structure. Note that this approach interferes with reuse of the same design elements in
multiple components. However, efficiency can be achieved by component-level reuse; that is,
assigning the design-level elements to be reused into a library, then using this library in multiple
components.

Model organization by team members or groups

A simple solution would be to assign one package per team member. Everything that Sam works
on is in SamPackage; everything that Julie works on is in JuliePackage. For very small project
teams this is a viable model. But again, it brings up the question of what Sam should work on
versus Julie. It can also be problematic if Susan wants to update a few of Sam’s classes while Sam
is working on others in SamPackage. Further, this scheme adds project team organization
dependencies into the model structure, making it more difficult to make changes to the project
team (such as assigning team members to another task) and also limits reusability.

Test considerations

Testing workflows can dictate model organization. Although testing teams require read-only
access to the model elements, they need to manage test plans, procedures, results, scripts, and
fixtures (often at multiple levels of abstraction). Testing typically occurs on primary levels: unit
testing, integration, and validation.

Because unit-level testing consists mainly of white box, design, or code-level tests and often uses
additional model elements constructed as test fixtures, it makes sense to co-locate them with the
corresponding parts of the model. So, if a class myClass has testing support classes, such as
myClass_tester and myClass_stub, they should be kept together, either within the same package
or in another if a peer will do the testing (as long as it is a different CI from that of the model
elements under test).

Integration and validation tests are not as tightly coupled as unit-level tests, but the testing team
might construct model elements and other artifacts to assist them. Because the creators of the
model elements do not typically do these tests, independent access is required, so they should be in
different CIs.
Rational Rhapsody 17

Model organization and partition
Efficiently constructing and testing prototypes is a crucial part of the development life cycle. This
involves both tests against the architecture (integration) and against the requirements (validation)
for the entire prototype. There can be any number of model elements specifically constructed for a
particular prototype that need not be used anywhere else. It makes sense to keep these near that
build or prototype. Store test fixtures, to be applied to many or all prototypes, in a locale that
allows independent access from any given prototype.

Configuration items (CIs)
To implement an infrastructure, you need to determine which model elements should be individual
configuration items (CIs), because certain usage policies apply only if that model element is a CI.

A CI is any element stored in a separate file. The project is always a separate file. In addition,
Rational Rhapsody allows you to store components, packages, classes, and diagrams (except
statecharts and activity diagrams) as individual files.

It would be extreme for the entire model to be a single CI. In that case, only one person could
update the model at any given time. The other extreme would be to make every element (every
class and use case) a separate CI. Again, in simple systems where there are only a few dozen
model elements, it would not be difficult to explicitly check out each element. However, this
method does not scale well, even to medium-sized systems where you might have to list 30 or 40
classes to work on a large collaboration realizing a use case.

UML provides an obvious organizational unit for a C, the package. A UML package is essentially
a bag into which you can throw semantic model elements such as use cases, classes, objects, and
diagrams. So, although you might want to make packages CIs in your source control or
configuration management (CM) system, you need to decide which model elements should go into
one package versus another.

Considerations for dividing a project into units

Using Rational Rhapsody, you control the granularity level of the CIs or units.

By default, every package you create is a unit (a separate file on your file system). In addition,
components and diagrams are units. By default, all other design elements are not units and are
stored in the file of the parent unit. Therefore, a Rational Rhapsody model consists of the project
file (*.rpy), package files (*.sbs), component files (*.cmp), and various diagram files.

However, you can override these defaults according to the organization and requirements for a
project, either on a unit-by-unit basis or by establishing new policies for creating units. For
example, you can choose to make a particular class its own unit. Alternatively, you can set up
Rational Rhapsody so every new class you create is a unit.
18 Team Collaboration Guide

Configuration items (CIs)
Sometimes it makes sense to override the default settings and store a class or several classes in a
separate file, such as when a package is maintained by two team members, who often have usage
conflicts. While team member A works on the behavior of a certain element in the package as
captured in a statechart of one of the classes, team member B defines a new family of types to be
used by all the classes in that package. In this case, you might want to make the class with the
statechart a separate unit.

This applies to diagrams as well. Rational Rhapsody stores diagrams as units, enabling you to
apply changes to the diagram without changing the actual model elements that appear in it;
changes to the colors, element layout, comments, and other graphic characteristics of the diagrams
can be changed regardless of the unit status (read-only or read/write) of the elements it contains.
However, the diagram is often just a “view” that reflects certain aspects of the package to which it
belongs. In this case, changing these aspects (for instance, changing the multiplicity of a relation,
or deleting a class) requires a change in the diagram, and vice versa. Because of the associative
nature of Rational Rhapsody, some changes in the diagram require the design elements to be
checked out (for example, adding relations and changing relations).

Sometimes it makes sense to override the default settings in the opposite direction, to reduce the
complexity, both in the number of files and in the need to perform CM operations. For example,
suppose you need to define 50 events in a package. To keep the design readable, you split these 50
events into three subpackages with meaningful names and appropriate descriptions. You might
want to create the design packages, without ending up with three new files. In this case, you can
override the default behavior to prevent the creation of packages as units.

In addition to defining units individually, you can use properties to define new policies for creating
units. For example, you can prevent all new diagrams from becoming separate units. Or, you can
override the default policy for classes so all new classes are automatically stored as units.

Creating unit files

To create a unit:

1. Right-click the element and select Create Unit.

2. In the Unit window, the Store in Separate File check box is selected by default. You can
edit the default file name, but do not add a file extension.

3. Click OK.
Rational Rhapsody 19

Model organization and partition
Removing unit files

To change an element so it is no longer a separate unit:

1. Right-click the unit and select Unit > Edit Unit.

2. Clear the Store in Separate File check box.

3. Click OK.

The unit file is not removed from the file system, but the file is obsolete. The element is now
stored in its parent unit.

Packages as units

By default, Rational Rhapsody saves all packages as units. To prevent packages from being saved
as separate units, set the General::Model::PackageIsSaveUnit property to Cleared.

Classes as units

Rational Rhapsody does not save classes as units unless explicitly told to do so. You can store
classes as separate files on a class-by-class basis using the Create Unit option. To have Rational
Rhapsody automatically save all new classes as units, set the
General::Model::ClassIsSaveUnit property to Checked.

Diagrams as units

By default, Rational Rhapsody saves all diagrams except statecharts and activity diagrams as units.
You can change a particular diagram so it is stored in its parent unit using the Edit Unit option. To
prevent Rational Rhapsody from automatically saving diagrams as units, set the
General::Model::DiagramIsSaveUnit property to Cleared.
20 Team Collaboration Guide

The project file
The project file
When you save a Rational Rhapsody project, you save a project file with the .rpy extension as
well as supporting files.

The Rational Rhapsody project file contains two types of information. The first is a list of
components, diagrams, packages, and so on that constitute your project. The second is a list of
properties that you have overridden at the project level.

Note
Project-level properties encompass technical aspects that apply to all elements in a project,
such as the CM tool, default editor, autosave preferences, and font settings.

The project file (<Project>.rpy) is a unit that can be checked into a CM archive, which means
you can perform CM operations on this file just like any other unit. Because the .rpy file contains
the latest list of top-level units in your project, you will probably need to check it out for changes
whenever you plan to add new packages or components to the project. (Adding new elements to a
package requires a checkout of the package file, not the .rpy file.) In addition, you need to check
out the .rpy file if you plan on modifying the project-level properties.

Because it is a unit that can be placed under CM, you can use the DiffMerge tool on the .rpy file.
For more information about this tool, see Parallel development.

The project file is a unique, top-level package.

Multiple Rational Rhapsody projects
As the project expands and complexity grows, you have several options for “growing the project.”
In some cases, the best approach is to continue adding new elements into a single Rational
Rhapsody project. In other cases, it is more efficient to create a new project.

No single solution fits all scenarios. Consider the following issues when planning for project
growth and expansion:

 For a single Rational Rhapsody project, it is easy to apply a property or set of properties to
all model elements. For multiple projects, the process must be done for each project.

 The CM archive associated with a project is stored in a project-level property. Therefore,
if a project will be stored in more than one archive, you must create a separate Rational
Rhapsody project for each archive.

 When you want to achieve a situation where all team members are aware of all the design
parts, including those they are not directly involved with, having a single Rational
Rhapsody project is a good approach.
Rational Rhapsody 21

Model organization and partition
 If you want to isolate the work of different team members so each member sees only the
elements relating to their work, create multiple projects (one for each team member).

 Distributed teams working on different components of a system can benefit from splitting
the overall project into several smaller Rational Rhapsody projects.

 If you want to reduce the complexity of a project by limiting it to a defined and
encapsulated functionality, having multiple projects (each dedicated to a well-defined
piece of functionality, essentially a set of components) means that all team members have
access to all the elements in the project.

 When your project is practicing in a binary reuse pattern, split it into several projects.
When using a model reuse pattern, do not split it.

 When the project is mapped to several binary components interleaved together to create a
final product (for example, a set of libraries used by one or more executables), placing
them in a single project helps the team member designing not only the internals for the
component but also the relations between them using component diagrams (makefiles
take into account cross-component relations).

The following issues should not affect the decision to split a project into multiple projects:

 Time to load the project into Rational Rhapsody

The partial load feature enables you to load only the units needed for your current task
without loading the entire project.

 The operating system

If a single design needs to be regenerated to target several operating systems, there is no
need to create multiple projects.

The decision of how to structure the overall project is not irreversible; you can easily divide a
project into two projects, and you can merge two projects into a single project.

Dividing a project into two projects

To divide a Rational Rhapsody project into two projects:

1. Decide on names for the two new projects.
Ideally, a project that you are planning to divide has two separate, complex parts, with no
dependencies between them.

2. Save the project under both of the new names, for example, part1.rpy, and part2.rpy.

3. For each new project, open the project in Rational Rhapsody, delete the unnecessary
elements from the model, and save.

You now have two separate projects stored on your file system. You cannot modify the CM archive
from within Rational Rhapsody (it must be done manually using your CM tool).
22 Team Collaboration Guide

Repository structure
Two projects into one project

Combining two projects into one is more complex than dividing a project. When combining two
projects, make sure that the project-level properties of the two projects do not collide with each
other, causing problems in the composite project.

You can use the DiffMerge tool to accomplish this task. For more information about this tool, see
Parallel development.

Changes to the CM system must be done outside of Rational Rhapsody.

Multiple project workflow

When you have a project that consists of several Rational Rhapsody projects and you want to share
information between them beyond binary reuse, while keeping the design parts separate so you
cannot change one project while working on another, you can add units from one project as
references in another. This is a classic, multiple-parts gray box collaboration.

Only non-referenced units (units loaded in the current model) should be archived with the project.
When new units are added to a referenced project, they must be refreshed in the active project.

Repository structure
By default, Rational Rhapsody stores all the repository files (class files, package files, diagram
files, and so on) in a single directory, creating a “flat” list of files that represents a tree-structured
hierarchy of the UML design elements in Rational Rhapsody. This approach has certain
limitations, especially when projects grow very large and complex.

Rational Rhapsody supports a paradigm known as hierarchical repository. With this feature, as
you save your model, Rational Rhapsody maps UML packages to directories containing the design
elements included in their scope. You are not required to use the hierarchical scheme; by default,
the tool uses the flat structure. You have the choice of moving some or all of your packages to a
hierarchical structure.

Restructuring the project can be done as a one-time effort, or by gradually moving several
packages at a time to their own directories, reducing complexities in specific areas of the model.
Rational Rhapsody 23

Model organization and partition
Repository structure planning

The structure of your repository depends on the organization of your project and, like other project
decisions, involves trade-offs.

On one hand, keeping an entire model in a single file prevents any conflict but practically disables
parallel development. On the other hand, making every single design element and diagram a unit
can be overkill, and leads to a large number of files and much larger overhead in terms of the
number of files you need to check out in order to accomplish a task.

Analogously, when structuring a Rational Rhapsody project repository, keep in mind that moving
from one extreme (where you have hundreds of Rational Rhapsody files located in a single
directory) to the other extreme (where you have hundreds of directories containing a single file
each) is probably not an effective use of the hierarchical repository feature.

For example, consider a project A that contains 200 units, out of which 120 are package (*.sbs)
files and 80 are other types of unit files, and project B with 200 units, out of which 20 are packages.

If moved to a pure tree structure (where every UML package is mapped to a directory in the file
system), each directory in project A will have (on average) 1.66 files; many directories will contain
a single file and many others will have two files. Such a structure provides very little advantage,
and might increase project overhead.

On the other hand, if you moved project B to a pure tree structure, an average directory would
contain 10 files with interrelated functionality, which is a reasonable number. This solves many of
the problems faced by flat repositories, while adding very little overhead in terms of new
directories.

Consider these factors when you decide whether to store a project in a hierarchical structure. Note
that the entire project does not have to have the same structure, some packages can be stored in a
hierarchy, whereas others remain in a flat structure in their parent folder.
24 Team Collaboration Guide

Repository structure
Flat repositories

A flat repository works best for smaller projects that have many packages that contain very few or
no unit files and subpackages. In these cases, dividing packages into folders does not simplify the
project, and might make it more complex.

In contrast, large models typically encounter problems when stored in flat repositories, especially
when the model contains many units and subpackages.

The following list describes typical problems encountered with flat repositories:

 Visibility where a single directory containing hundreds of files cannot be viewed in a clear
way in a single window.

 Focus where in a directory containing hundreds of files, you cannot focus on a single
functional area of the project and detect which elements belong to which functional area.
This is important when you want to check if all the files are present in your view, find the
latest modification date, and so on.

 Portability where copying and sending several Rational Rhapsody files representing a
single functional area to a co-worker or support person poses a serious challenge because
of the difficulty in determining which files are really needed.

 Branching where when checking out several different parts of the model to a branch, it is
difficult to identify the required functionality and check in all related files.

 Integration with other tools and processes where some CM tools assist with process and
control issues by setting permissions on directories. For example, you can lock a directory
called engine or core to prevent modifications, but keep the application directory open
to changes. A flat repository cannot take advantage of these options, but a hierarchical
repository easily facilitates the implementation of a directory-driven process.
Rational Rhapsody 25

Model organization and partition
Hierarchical repositories

By dividing a project into hierarchical directories based on model organization, you can avoid or
resolve many of the problems encountered with flat repositories.

With a hierarchical repository, you can easily identify the correct directory for a particular
functional area. You can then view all related files in a single window, copy them or extract them
for distribution, check them into or out of an archive, and take advantage of CM features that
operate on directories.

However, maintaining directories adds a level of complexity to file management. Operations such
as renaming or moving a package can be more difficult to execute within the CM tool, depending
on the type of tool you are using. Careful analysis of the model will determine whether the added
organization of a hierarchical repository is worth the trade-off of increased complexity.

The repository structure is controlled by the General::Model::DefaultDirectoryScheme
property.
26 Team Collaboration Guide

Example of project under CM
Example of project under CM
A project consists of Rational Rhapsody elements stored as files on the local file system and
archived in a CM repository.

Ideally, both the CM repository and file system mirror the structure of the project in Rational
Rhapsody. The following figure shows a Rational Rhapsody design, file structure, and CM
repository synchronized with each other.

In some cases, changes you make to your Rational Rhapsody model result in changes to the
directories and files stored on the file system. Some examples include creating new units,
renaming units, and moving units to new locations. Rational Rhapsody can update some of these
changes in the CM system automatically, completing the three-way synchronization without any
additional steps. Use the CM tool to manually make the changes that cannot be accomplished
using the CM tool from within Rational Rhapsody.

Rational Rhapsody

File System

CM Repository
Rational Rhapsody 27

Model organization and partition
In other cases, it is easier to make changes to the structure of your project outside of Rational
Rhapsody, particularly when moving files from a flat structure to a hierarchical structure. You can
make these changes to your file system and your CM system directly. When you next open
Rational Rhapsody, you are asked to locate the missing units. Rational Rhapsody prompts you
with two options for restoring synchronization:

 Update the repository with the new location, so the new structure is preserved going
forward.

 Move the files from their current location back into the expected location.

Note
If the CM system has been updated with the new location of the file, it is important that you
not select the Copy unit to project path option. This might affect the integrity of the system.
Instead, update your Rational Rhapsody model with the current location of the file so it
matches the CM system.

Restructuring a project

To make changes to your file system and CM system outside of Rational Rhapsody:

1. Update the file structure on your file system.

2. Update the structure of you CM system outside of Rational Rhapsody using your CM tool.

3. Open Rational Rhapsody.

4. In the Search for File window, locate the new location of the file.

5. Select Update model–Keep unit in current location from the Next Location of Missing
Unit window.
28 Team Collaboration Guide

Example of project under CM
File and directory creation

When you create a new unit in a model, Rational Rhapsody creates a new file in the file system for
that unit. This new file is not automatically placed under CM. Use the Add to Archive operation to
add the file to the CM tool.

When creating a new package unit, if the project uses a hierarchical directory structure, both a file
and a directory are created in the Rational Rhapsody project. You need to create this new directory
in the CM file structure.

Directories in SCC mode
To add a new package and package directory to a CM archive in Microsoft® Common Source
Code Control (SCC) mode, add the unit file to the repository using the Add to Archive operation.
The Add to Archive operation creates directories automatically in the CM system, as necessary.

Directories in batch mode
When you use a CM tool in batch mode, directories are not automatically created in the CM
archive. However, Rational Rhapsody assists you with creating new directories using the
ConfigurationManagement::<CM tool>::MakeCMShadowDirActivation property.

The possible values are as follows:

 Disable means Rational Rhapsody does not create a directory. You need to create the
directory in the CM archive outside of Rational Rhapsody.

 UserConfirmation means Rational Rhapsody asks if you want to create a new directory
in the CM structure whenever you save a project that contains a new directory.

 Automatic means Rational Rhapsody automatically creates the directory in the CM
structure whenever new directories are created by a save in Rational Rhapsody. Note that
Rational Rhapsody creates the directory in the CM archive for every new directory. There
exists the potential for the creation of unneeded (and probably unwanted) directories for
packages that you do not intend to add to the archive.

Once you have created the new directory in the CM archive, you can archive the new package unit
and any of its child unit files using the Add to Archive operation.
Rational Rhapsody 29

Model organization and partition
Keyword expansion in batch mode
When performing CM operations in batch mode, Rational Rhapsody expands keywords.

The following table lists the keywords and their expansion:

Administrative Keywords

Keyword Name Expanded to Comments

$Operation The name of the CM operation
being executed by Rational
Rhapsody

Appears in
CMOperationStartSeparator &
CMOperationEndSeparator

$Time The current system time

$Date The current system date

$User The logged in user name

$temp The current system temporary
directory as specified in the TEMP
environment variable

$OMROOT The value of OMROOT as loaded
into Rational Rhapsody (most likely
from the .ini file)

$projectname The name of the Rational
Rhapsody project

Directories, paths, file names

Keyword Name Expanded to Comments

$projectunitdirname Project unit directory name (_rpy).
This is not the full path to the unit
directory, but just the name of the
directory.

This keyword is different from the
$rhpdirectory, which expands to full
path to the project unit directory.

$FileName This expands to repository file
specified during connect to archive
operation.

$fulldir Name of the CM shadow directory
to be created in the archive

To be used in
$MakeCMShadowDir property.

$parentdir The name of the parent directory of
the CM shadow directory to be
created in the archive

$rhpdirectory Name of the project units directory
(_rpy)
30 Team Collaboration Guide

Example of project under CM
Directories, paths, file names (continued)

Keyword Name Expanded to Comments

$SubDirs This is the sub directory of a CM
unit with respect to its archive root
director.

$targetDir Name of the directory where the
file is put during Fetch operation

$unit Name of the CM unit file name

$UnitDirectory This is the sub-directory of a CM
unit with respect to project units
directory (_rpy).

This is the “PersistsAs”
sub-directory of the CM unit.

$UnitDirPath Full directory name of the CM unit

$UnitPath Complete path name of the CM
unit file name

$currentdirectory Current working directory name

$archivedirectory Directory name of the CM archive

$ArchivePath Directory name of the CM archive

$dir These is the name of the directory
which contains the CM units whose
name is changed.

To be used in “Rename,”
“RenameDirectory,” “Move,”
“MoveDirectory” property.

$oldname Previous name of the CM unit file
name it can be also a directory
name

$newname Changed name of the CM unit file
name it can be also a directory
name

$olddir Name of the directory from which
CM unit has been moved

To be used in “Move” &
“MoveDirectory” property

$newdir Name of the directory where CM
unit is moved

$archive Name of the archive file specified
in “Connect2Archive” operation

$ArchiveRoot NOT USED NOT USED

Administrative Keywords (Continued)
Rational Rhapsody 31

Model organization and partition
Arguments to CM commands

Keyword Name Expanded to Comments

$mode Locked or unlocked check box Reflects value entered by the user
in the UI

$log Comment string

$label Label identifier string

$newdir The new directory in which a unit
will be stored

Used when moving a unit in tree
structure

$olddir The old directory name where unit
used to be stored

$newName The new name for a unit file Used when renaming a unit

$oldName The old name for a unit file

$dir This is the name of the directory,
which contains the CM units whose
names changed.

To be used in “Rename,”
“RenameDirectory,” “Move,”
“MoveDirectory” property

$oldname Previous name of the CM unit file
name it can be also a directory
name

$newname Changed name of the CM unit file
name it can be also a directory
name

$olddir Name of the directory from which
CM unit has been moved

To be used in “Move” &
“MoveDirectory” property

$newdir Name of the directory where CM
unit is moved

Keywords for the Rational Rhapsody DiffMerge Tool

Keyword Name Expanded to Comments

$DiffInvocation The command line used to launch
the Rational Rhapsody DiffMerge
tool

$source1 The full path name of the first file to
be compared

$source2 The full path name of the second
file to be compared

$output The name of the file used by the
merge tool

Administrative Keywords (Continued)
32 Team Collaboration Guide

Example of project under CM
File and directory deletion

When you delete a unit from a project in flat mode (where all units are in one directory), Rational
Rhapsody performs a Delete from CM operation. This process uses properties in batch mode and
the SCC API in SCC mode.

In SCC mode, when you delete a package that is stored in a separate directory, only the package
file is deleted; in Rational ClearCase, both the package file and the package directory are removed
from the CM repository.

The following properties control file deletion (including files of descendant units):

 ConfigurationManagement::SCC::DeleteActivation (SCC mode)
 ConfigurationManagement::<CM tool> (batch mode)

Note
For this operation, the Rational Rhapsody Undo command (Ctrl+Z) works only in the
model, not in the archive. You cannot undo a delete operation in the archive.

In some cases, Rational Rhapsody cannot delete a file from the CM archive. When this occurs,
Rational Rhapsody removes the unit from the model (but does not delete the file on the hard drive
or remove the file from the CM system) and displays an error message informing you that the unit
was not completely removed. Check the Rational Rhapsody Output window for additional
messages.

Unit storage

By definition, units are stored in separate files. However, you can move a unit back into the file of
its parent (usually a package) using the Edit Unit window. When a unit is moved back into the
parent file, the unit file becomes obsolete. Therefore, Rational Rhapsody deletes the unit file
(without descendants) using the Delete from CM command, as described in File and directory
deletion.
Rational Rhapsody 33

Model organization and partition
Packages in a new directory

When a package is saved in its own directory, a new directory is created in its parent folder. When
a package is moved out of its own directory back into the parent folder, a directory is removed
from the project. However, when either of these operations occur, Rational Rhapsody does not
make any changes to the CM system. You must manually add or remove the extra directory in the
CM system.

In these cases, Rational Rhapsody displays an error message stating that the operation could not be
performed in the CM system. For more information, see When Rational Rhapsody cannot update
the CM system.

File renaming

When you rename a unit in your model, Rational Rhapsody uses the Rename in CM operation.
This operation is based on properties in batch mode and the SCC API in SCC mode.

The following properties control renaming a file:

 ConfigurationManagement::SCC::RenameActivation (SCC mode)
 ConfigurationManagement::ClearCase::RenameActivation and Rename (ClearCase)

Note
For this operation, the Rational Rhapsody Undo command (Ctrl+Z) works only in the
model, not in the archive. You cannot undo a rename operation in the archive.

In cases where Rational Rhapsody cannot rename the file in the CM system, Rational Rhapsody
changes the unit name in the model, but not in the CM system. For more information, see When
Rational Rhapsody cannot update the CM system.
34 Team Collaboration Guide

Example of project under CM
Package contained in its own directory renaming

In Rational ClearCase, when you rename a package in its own directory, both the file name and the
directory name are changed (see File renaming). Note that the
ConfigurationManagement::ClearCase::RenameDirectory property controls renaming
directories.

For other CM tools, when you rename a package located in a separate directory, Rational
Rhapsody does not make any changes to the CM system. Instead, Rational Rhapsody displays an
error message stating that the operation could not be performed in the CM system.

If you change the model only, Rational Rhapsody renames the package in the model but does not
change the file or directory name in either the file system or CM system. If you change the model
and the file system, Rational Rhapsody changes the names of the model element, file, and
directory. For more information, see When Rational Rhapsody cannot update the CM system.

Control moving a file or directory

When you move a file from one location to another in the file system, Rational Rhapsody activates
the Move in CM operation. This operation is based on properties in batch mode and the SCC API
in SCC mode.

The following properties control moving a file:

 ConfigurationManagement::SCC::MoveActivation (SCC mode)
 ConfigurationManagement::ClearCase::MoveActivation (batch mode)
 ConfigurationManagement::ClearCase::MoveDirectory (ClearCase)

Note
For this operation, the Rational Rhapsody Undo command (Ctrl+Z) works only in the
model, not in the archive. You cannot undo a move operation in the archive.

When you rename a package that is in a separate directory, Rational Rhapsody does not make any
changes to the CM system. Instead, Rational Rhapsody displays an error message stating that the
operation could not be performed in the CM system.

If you change the model only, Rational Rhapsody moves the package in the model but does not
change the file system or CM system. If you change the model and the file system, Rational
Rhapsody changes both the model and file system. For more information, see When Rational
Rhapsody cannot update the CM system.
Rational Rhapsody 35

Model organization and partition
When Rational Rhapsody cannot update the CM system

In some cases, Rational Rhapsody cannot update the CM system to match the changes made to the
file system. If this occurs, Rational Rhapsody displays a message window.

You have the following options:

 Change the model structure, but keep the physical layout on the hard drive as-is. Rational
Rhapsody does not make any modifications to the CM system. For more information, see
Model only changes.

 Change the model structure and hard drive layout. This requires modifications to the CM
system outside of Rational Rhapsody. For more information, see Model and the file system
changes.

 Cancel the operation. For more information about this tool, see Canceling a change.
To set your current selection as the default (and not display this window in the future), select the
Don’t ask me again, use my current selection as default check box.

The ConfigurationManagement::General::CMConflictResolution property stores the default
selection for this error message. Set the property to AskUser if you want this error message to
appear whenever this situation occurs.

Model only changes
Select the Change only model option to maintain synchronization between the model and CM
system (units do not lose their “CM history,” you do not encounter unrecognized units that are
already under CM, and so on).

When you select this option, you do not need to perform any maintenance operations on the CM
tool outside of Rational Rhapsody and workflow is not interrupted. However, the model structure
does not match the physical layout of the files on the hard drive. This is the simplest solution, but
can lead to problems in later development, especially for large projects. The disparity between the
model layout and the file system can be confusing.

To set this option as default, set the property as follows:

ConfigurationManagement::General::CMConflictResolution to ModelOnly
36 Team Collaboration Guide

Example of project under CM
Model and the file system changes
If you update both the file system and model, a model/CM synchronization problem might result
(some of the units might lose their “CM history,” some units cannot be checked in because they are
not recognized as CM elements, and so on). In addition, you must perform maintenance operations
on the CM tool outside of Rational Rhapsody to synchronize the changes on the hard drive with
the CM system.

The benefit of this option is that the model structure, as seen in the Rational Rhapsody browser,
matches the physical layout on the hard drive. Therefore, this option requires more work to
implement, but results in a better organized system that is less likely to cause problems in the
future.

To set this option as default, set the property as follows:

ConfigurationManagement::General::CMConflictResolution to ModelAndFileSystem

Canceling a change
Click Cancel on the error message box to cancel the changes that caused the CM conflict to occur.
Rational Rhapsody 37

Model organization and partition
38 Team Collaboration Guide

CM and Rational Rhapsody
Rational Rhapsody supports collaboration among several developers or teams by allowing projects
to be divided into multiple files, called units, that can be worked on concurrently. It also has a
built-in interface that connects with several common source control or configuration management
(CM) tools.

This subject describes how to manage units from within Rational Rhapsody using a CM tool.

SCC versus Batch mode
Rational Rhapsody supports common CM operations, such as Connect to Archive, Add Member,
Check In, and Check Out, for a wide variety of CM tools. The Windows version of Rational
Rhapsody also supports SCC operations, such as Get, Un-Check Out, and History, for CM tools
that conform to the SCC standard.

Batch mode is the traditional method of interacting with CM tools that do not conform to the SCC
standard. In this mode, Rational Rhapsody has a custom set of properties for each tool that calls
tool-specific commands for the CM operations. The Lock and Unlock operations are supported
only in batch mode.

SCC mode is an alternate method of interacting with CM tools that conform to the SCC standard.
In SCC mode, you need set only one property to interface with any of dozens of SCC-compliant
CM tools, without further customization. You interact directly with the GUI elements of your CM
tool to perform SCC-supported operations. Return status information, or error information in the
case of failure, comes directly from the CM tool. Thus, you have more direct CM tool interaction
(and receive more complete feedback on CM operations) in SCC mode. The Fetch and Properties
operations are supported in SCC mode only.

Note

As an SCC-compliant IDE, Rational Rhapsody can communicate with any CM tool that
conform to the SCC standard. Note, however, that IBM Rational Synergy, IBM Rational
ClearCase, and Serena PVCS Dimensions are the only SCC tools supported by Rational
Rhapsody.
Rational Rhapsody 39

CM and Rational Rhapsody
Configuration Items window
To begin any CM operation in Rational Rhapsody, open the Configuration Items window. Choose
File > Configuration Items.

Note that the available operations depend on the CM tool you are using and whether you are
running in batch or SCC mode. See CM operations for the list of CM operations supported in either
mode.

The buttons in the Configuration Items window apply commands directly to the CM tool. The
response of the specific tool is displayed in the Rational Rhapsody Output window or, in the case
of SCC tools, in message boxes specially designed for this purpose.

Note
It is important to observe messages from the CM tool because the commands can sometimes
fail. See CM Output window.
40 Team Collaboration Guide

CM operations
CM operations
The are a number of CM operations included in the standard Rational Rhapsody interface. You can
also assign additional operations to any of four customizable buttons. For more information, see
CM interface extension.

Connect to Archive

The Connect to Archive operation connects the project in your workspace to a CM archive. In
addition, it permanently sets properties associated with the archive to be referenced internally
whenever the project needs to communicate with the CM tool. You need to perform this operation
only once for the lifetime of the project.

A Connect operation also triggers actions that should be performed before any other CM
operation.

In batch mode, you must tell Rational Rhapsody which CM tool you are using by setting the
CMTool property. In SCC mode, you need to set a different property because the CMTool property
is ignored. For more information, see Enabling a SCC-compliant CM tool.

Button CM Operation Mode Description

Connect to
Archive

Batch and
SCC

Connects the project to an archive. You need to
perform this task only once for the life of the project.

Show Items in
Archive

Batch and
SCC

Displays units that have been archived. (The
Configuration Items list displays all units, archived or
not.)

Comparing with
the DiffMerge
tool

Batch and
SCC

Compares a unit in the model with its archived unit in
the configuration management (CM) archive.

Synchronize
Items

Batch and
SCC

In Rational ClearCase, this operation synchronizes
your model with the current view.
In batch mode, this operation synchronizes the
model with the latest versions in the CM tool.
In SCC mode, this operation synchronizes the
model with your local file system.

Run CM tool Batch and
SCC

Launches the CM tool assigned to this project. It is
controlled by the RunCMToolCommand property.

Check Out
Branch

Batch and
SCC

Checks out all configuration items in a branch.
Rational Rhapsody 41

CM and Rational Rhapsody
Checking out a
unit

Batch and
SCC

Checks out the file from the archive. The model
element becomes a read/write (RW) unit that can be
edited.

Checking in a
unit

Batch and
SCC

Checks in new versions of configuration items. The
model element becomes read-only (RO).

Using Add to
Archive in CM
operations

Batch and
SCC

Adds new units to the archive.

Locking/
Unlocking a unit

Batch
(except
Rational
ClearCase)

Locks units to prevent them from being modified by
others.

Locking/
Unlocking a unit

Batch
(except
Rational
ClearCase)

Unlocks units that you have previously locked so
others can edit them.

Fetching a unit SCC Loads the checked out unit into your model.

History/Version
tree

SCC and
Rational
ClearCase

In SCC mode, this operation displays the history of
the file in the archive.
For Rational ClearCase in batch mode, this
operation lists all the versions in the archive.

Displaying the
properties of a
unit

SCC Enables you to set the properties of the file in the
CM tool.

Uncheck Out SCC and
Rational
ClearCase

Rolls the file back to the latest version in the archive.
The file is unlocked in the archive, and the local copy
is replaced by the archived version, as if the file had
never been checked out.

Button CM Operation Mode Description
42 Team Collaboration Guide

CM operations
Connect to Archive in SCC Mode

In SCC mode, you must connect to the archive only once (there is no need to reconnect the
project). Once the project is connected to the archive, you are prompted to log into the CM system
when you perform a CM operation.

For more information, see Creating the initial connection to the SCC tool in Dimensions.

Connecting to a different archive
To connect to a different archive, you must first clear the property information from the currently
displayed archive.

To perform this clean-up operation:

1. Choose File > Project Properties.

2. In the Features window, on the Properties tab ensure that the View All option is selected.

3. Navigate to the ConfigurationManagement::SCC group of properties.

4. Clear any information in the AuxProjPath box.

5. Clear any information in the ProjName box.

6. Click OK.

Configuring a CM tool Batch mode
To configure a CM tool in batch mode:

1. Choose File > Project Properties.

2. On the Properties tab, set the ConfigurationManagement::General::CMTool property
to one of the following values:

 ClearCase (In batch mode only.)
 None (You are not using CM.)
Rational Rhapsody 43

CM and Rational Rhapsody
Connecting a project to the archive
To connect the project to the archive:

1. Open the Configuration Items window. Choose File > Configuration Items.

2. Click the Connect to Archive button. Note that in batch mode, the Connect to Archive
window opens. When you use the Browse button, if the archive is represented as a
directory (as in RCS) rather than a file, you must select a file within this directory and edit
the path in the window. Alternatively, type the entire path in the text box.

3. Once you have set the archive, click OK.

Note
Setting the archive might involve additional activities, depending on how your CM tool has
been set up.

The CM tool connects your working project to the archive. If successful, the Output window
displays a confirmation message.

Show Items in Archive

The Show items in Archive operation lists units that have been added and checked into the CM
archive. You must perform a List Archive before checking out a unit that does not currently exist
in your workspace.

To list the archive, click Show items in Archive in the Configuration Items window. The Archive
window opens, listing all the units in the archive.

For an example of using the List Archive operation in SCC mode, see Listing the archive in PVCS
Dimensions.

Run CM tool

You can use this user-defined button to launch your CM application from the Rational Rhapsody
interface. It is controlled by the RunCMToolCommand property. For more information, see CM
interface extension.
44 Team Collaboration Guide

CM operations
Comparing with the DiffMerge tool

The DiffMerge tool in Rational Rhapsody allows you to compare two units (or two versions of the
same unit) and merge them, if you want.

To compare the two units of a model:

1. In the Configuration Items window or the Archive list, select the unit you want to
compare.

2. Click Diff with Rhapsody.

You can launch the DiffMerge tool to compare two archived files with the same name from inside
Rational Rhapsody. If you want to compare units of the same type, but with different names or
entire Rational Rhapsody projects, you must launch the DiffMerge tool outside Rational
Rhapsody. For detailed instructions to use this tool, see Parallel development.

Displaying the properties of a unit

The Properties operation is an SCC operation that retrieves the file details for a unit (such as the
file name and date it was created). The Properties operation is not available in batch mode.

To display the details of a unit that is a member of an archive:

1. Open the Configuration Items window. Choose File > Configuration Items.

2. Highlight a unit that has been added to the archive.

3. Open its Properties window. Click the Properties button.

4. Examine the file details for the highlighted unit.
Rational Rhapsody 45

CM and Rational Rhapsody
Synchronize Items

Depending on the type of CM tool, the Synchronize option enables you to synchronize your model
(workspace) with the local file system or CM archive.

To synchronize a unit in your workspace with the archive, click Synchronize Items. Rational
Rhapsody displays one of the following windows:

 Synchronize with View. When you use Rational ClearCase in batch mode, the
Synchronize with View window synchronizes your model with the current Rational
ClearCase view.

 Model files have been modified outside of Rhapsody. In SCC mode, the synchronize
operation synchronizes elements in your local model (workspace) with your local file
system.

Note
The Synchronize window does not display controlled files when there are newer versions of
these files in the CM system.

Autosynchronize

The AutoSynchronize property is a Boolean value that determines whether Rational Rhapsody
does synchronization. When this property is Checked, each time Rational Rhapsody gets the focus
(for example, if you leave Rational Rhapsody to read e-mail, then switch back to Rational
Rhapsody), Rational Rhapsody calls the synchronize functionality. The synchronize can be a
synchronization with the files on the file system, view, or CM archive, depending on the
environment.

To set this property, set the General::Model::AutoSynchronize value to Checked. For more
information about this property, see the Properties tab of the Features window for it.
46 Team Collaboration Guide

CM operations
Check out operation

In batch mode, the Check Out operation can fetch a unit from the archive with or without a lock.
However, in SCC mode, the Check Out operation always fetches the unit with a lock.

In both batch and SCC modes, the Check Out operation always performs implicit Add to Model
and Update operations using the appropriate CM information (such as version, CM header, and so
on).

Before checking a unit out of the archive, use the List Archive option to confirm that the unit has
been properly added to the archive, and that at least one version of it has already been checked in.

Checking out a unit
To check out a unit from the archive:

1. In the Rational Rhapsody browser, right-click the unit or units you want to check out and
select Configuration Management > Check Out. The Check Out window opens with
information displayed for the selected items. If a selected items in reserved by another
user, the Reserved check box is selected and the check out operation cannot be
performed.

2. Select the Include descendents check box if you want the units checked out with nested
units. For example, if a package that is a unit has a nested package that is also a unit, this
option checks out both packages.

3. Select the Include corresponding source artifacts check box, if available, if you want to
check out corresponding source artifacts. (Code respect information, such as mapping,
ordering, and code snippets, of an element is defined in a SourceArtifact element, which is
typically created by reverse engineering or roundtripping.

4. If your CM tool has advanced options, you can click an Advanced button to open its
Advanced Options window. The Advanced Options window that opens is provided by
your CM tool.

5. If you opened an Advanced Options window, click OK to close it after you make your
selections.

6. Click OK on the Check Out Options window to confirm your settings and check out the
units.
Rational Rhapsody 47

CM and Rational Rhapsody
Depending on what changes you make to a unit that is contained inside a package (for example, a
class), the package information might also change accordingly.

In the following situations, you must check out the containing package and the nested unit:

 You change the package to which the unit belongs.
 You move a nested unit from one unit to another within the package.
 You change the name of a unit.

Check In operation

The Check In operation copies a unit from your working project into the CM archive.

Checking in a unit
To check a unit into the archive:

1. In the Rational Rhapsody browser, right-click the unit or units you want to check into the
configuration management system.

2. Select Configuration Management > Check In. The Check In window displays with
information displayed for the selected items. If a selected items in locked by another user,
the Locked check box is selected and the check in operation cannot be performed.

3. Select the Include descendents check box if you want to check in nested units.

4. Select the Include corresponding source artifacts check box, if available, if you want to
check in corresponding source artifacts. (Code respect information, such as mapping,
ordering, and code snippets, of an element is defined in a SourceArtifact element, which is
typically created by reverse engineering or roundtripping.)

5. Type a Revision Description explaining the changes in this revision. Note that most CM
tools ignore the description the first time you check in a unit.

6. If your CM tool has advanced options, you can click the Advanced button to open its
Advanced Options window; otherwise the button is disabled. The Advanced Options
window that opens is provided by your CM tool.

7. If you opened an Advanced Options window, click OK to close it after you make your
selections.

8. Click OK on the Check In Options window to confirm and check in the units. Rational
Rhapsody saves the project (including concatenating CM headers and footers) before the
CM tool checks the unit into the archive.
48 Team Collaboration Guide

CM operations
9. Click OK to dismiss the confirmation message.

Note

In SCC mode, the Check In operation can be successfully completed only if a unit is already
checked out. If a unit that you are trying to check in is not already checked out, by default,
the Check In operation is ignored. A message to this effect is displayed on the
Configuration Management tab of the Output window.

Using Add to Archive in CM operations

You can add a unit into a CM archive only if the unit is not already in it.

To add one or more units to a CM archive:

1. In the Configuration Items window, select the units you want to add to the archive.

2. Click the Add to Archive button.

3. If your CM tool has advanced options, you can click the Advanced button to open its
Advanced Options window; otherwise the button is disabled. The Advanced Options
window that opens is provided by your CM tool.

4. If you opened an Advanced Options window, click OK to close it after you make your
selections.

5. Click OK on the Add to Archive Options window.

Rational Rhapsody saves the project and the CM tool adds the units to the archive. If the
operation is successful, a confirmation message is displayed. After units are added to the
archive, the CM tool rereads information stored with the unit files, begins load metering,
and processes the information rapidly.
Rational Rhapsody 49

CM and Rational Rhapsody
Lock and Unlock operations

The Lock and Unlock operations are available in batch mode only. When you lock a unit, its
permission becomes read/write for you and read-only for others. When you unlock a unit, its
permission becomes read-only for all users.

Locking/Unlocking a unit
To lock or unlock one or more units:

1. In the Configuration Items window, select the currently unlocked (RO) or locked (RW)
units.

2. Click Lock or Unlock, whichever is applicable.

3. Click OK.
The permission for the unit is changed to read/write (RW) if you locked or to read-only
(RO) if you unlocked.

Fetching a unit

The Fetch operation is an SCC operation that fetches a unit from the archive without a lock (RO).
The alternative is the SCC Check Out operation, which always fetches a unit with a lock (RW).
The Fetch operation is not available in batch mode.

To fetch a unit:

1. In the Configuration Items window, select the units that you want to check out as
unlocked.

2. Click the Fetch button.

3. If your CM tool has advanced options, you can click the Advanced button to open its
Advanced Options window; otherwise the button is disabled. The Advanced Options
window that opens is provided by your CM tool.

4. If you opened an Advanced Options window, click OK to close it after you make your
selections.

5. Click OK on the Get Options window.
50 Team Collaboration Guide

CM status of units in a project
Using Uncheckout in CM operations

The Undo Check Out Options is an SCC operation that reverses the effect of a Check Out,
releasing the lock on a unit (making it RO), and reverting to the file version before the last Check
Out operation. The Undo Check Out operation is not available in batch mode (except with
Rational ClearCase).

To undo a check out:

1. In the Configuration Items window, select a unit that has been checked out (whose mode is
RW).

2. Click the Uncheckout button.

3. If your CM tool has advanced options, you can click the Advanced button to open its
Advanced Options window; otherwise the button is disabled. The Advanced Options
window that opens is provided by your CM tool.

4. If you opened an Advanced Options window, click OK to close it after you make your
selections.

5. Click OK on the Undo Check Out Options window.

History/Version tree

The History operation is an SCC operation that opens an archive for a unit so you can review the
history for the unit and access previously archived revisions if you want. The History operation is
not available in batch mode.

To view the history of a unit, click History in the Configuration Items window.

If you are using Rational ClearCase in batch mode, use this button to view the version tree. The
version tree lists all versions in the Rational ClearCase archive.

CM status of units in a project
If you are using an SCC-compliant configuration management tool in conjunction with Rational
Rhapsody, Rational Rhapsody can keep track of and display the CM status of all units in the
Rational Rhapsody project. This information is displayed in both the Rational Rhapsody browser
and the Configuration Items window.

Note
This feature is available only for CM tools that implement the SCC API.
Rational Rhapsody 51

CM and Rational Rhapsody
CM status information in the browser

In the browser, Rational Rhapsody displays an icon that represents the CM status for the unit along
with the icon for the element. The CM status icons reflect the possible statuses:

 means the unit is not in source control

 means the unit is checked in

 means the unit is checked out by the user

 means the unit is checked out by another user

 means the unit is deleted from CM

The status displayed in the browser is updated when:

 you connect to the CM archive
 a CM operation is completed (status is updated only for the items affected by the

operation)
 you select Configuration Management > Refresh State

The CM status of project units will be updated from the CM repository when a project is opened if
the ConfigurationManagement::SCC::RefreshCMStatusAtProjectOpenup property is set to
Yes. This property can also be set to No and Ask User.

CM status information in the Configuration Items window

The Configuration Items window includes two columns that are used to reflect the CM status of a
unit:

 Controlled by CM can show Yes, No, or Deleted
 Checked Out can show Yes, No, Out by other user

You can click the Refresh Status button to refresh the CM status displayed for the items
listed in the window.
52 Team Collaboration Guide

About troubleshooting CM operations
Property to turn off display of CM status

If you do not want Rational Rhapsody to display the CM status of project units, set the
ConfigurationManagement::SCC::ShowCMStatus property to Cleared. This property is set at
the project level. When the value of this property is set to Cleared:

 Statuses are not displayed in the browser or Configuration Items window.
 The Refresh Status button is not displayed in the Configuration Items window.

The above items will also not be displayed if the
ConfigurationManagement::General::UseSCCtool property is set to No.

About troubleshooting CM operations
This topic contains common problems encountered with CM operations.

Unable to connect to SCC-Compliant CM tool (SCC mode)

When you install an SCC-compliant CM tool, a tool-specific DLL is installed on your PC. When
invoking a CM operation, Rational Rhapsody looks for an entry for this DLL in the system
registry. If it finds one, it loads the DLL and performs the CM operation with that tool. If Rational
Rhapsody cannot find the DLL for the correct SCC tool, it generates an error message. The
ProviderRegKey value of the SourceCodeControlProvider key in the system registry (under
HKEY_LOCAL_MACHINE\SOFTWARE) stores the location of the DLL for the default CM tool.

Note

The SCC interface is currently supported on Windows platforms only.
Rational Rhapsody 53

CM and Rational Rhapsody
It is possible to have multiple SCC-compliant tools installed on the same system. In this case, there
are multiple entries under the InstalledSCCProviders key (under
HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider). For example:

PVCS Dimensions: REG_SZ: Software\SQL Software\PcmcScc

Microsoft Visual SourceSafe: REG_SZ: Software\Microsoft\

SourceSafe

ClearCase: REG_SZ: Software\Atria\ClearCase

If the ProviderRegKey value does not correspond to the CM tool you want, select one of the
installed SCC-compliant CM tools using a registry editor (for example, Regedt32) and edit the
ProviderRegKey value of the SourceCodeControlProvider key with the information from
InstalledSCCProviders for the SCC tool you want to use.

For example, to use PVCS Dimensions, edit the ProviderRegKey value with the following string:

Software\SQL Software\PcmsScc

Unable to create process message (Batch mode)

In some cases, there are problems with the standard echo command on the Windows 98/NT
operating system.

If you receive an “Unable to create process” message while connecting to an archive because
of an echo (either during a Connect operation or as a subtask of another CM operation), try to
execute the same operation from a command prompt.

If the result is another message similar to “Unrecognized command,” correct the PATH variable for
your environment. The PATH variable should include the full path in which the command to be
executed is located.
54 Team Collaboration Guide

CM Output window
CM Output window
Rational Rhapsody captures messages generated by the CM tool and displays them in the CM
output window. It is important to observe messages from the CM tool because the commands
sometimes fail. For example, if you try to check out a unit with a lock when the unit is already
locked, the operation will fail.

To view the CM output window, click the Configuration Management tab on the Rational
Rhapsody Output window.

The messages reported in response to CM operations, whether in the Output window or a special
message box, are always from the CM tool. Error conditions must be corrected before you can
proceed with any further CM operations.

To see all messages received by Rational Rhapsody from the CM tool during the session, scroll up
or down using the scroll bar on the Output window.

To clear the output window of all CM messages, right-click in the window and select Clear.

The following properties control the appearance of text used to separate CM output messages in
the CM output window:

 ConfigurationManagement::General::CMOperationEndSeparator

 ConfigurationManagement::General::CMOperationStartSeparator

To see the definition for an individual property, open the Features window and select the property
on the Properties tab. The box at the bottom portion of the Properties tab shows the definition for
the property selected in the upper left column of the tab.
Rational Rhapsody 55

CM and Rational Rhapsody
Pre- and post- actions
Rational Rhapsody assumes a minimal configuration for all CM operations and takes certain
actions either before (pre-actions) or after (post-actions) CM operations.

In SCC mode, post-actions are performed only if the operation is successful. In batch mode,
Rational Rhapsody performs all post-actions regardless of whether the CM operation succeeds.

The following table lists the pre- and post-actions for SCC operations.

CM Operation Pre-Action Post-Action

ConnectToArchive None None.

CheckIn Save Update CM information.

CheckOut Save
(controlled by a property)

Load the unit into the current
workspace.

AddMember Save Update CM information.

ListArchive None None.

Fetch None Load the unit into the current
workspace.

Diff None None.

History Save None.

Properties Save None.

DeleteMember Save None.

RenameMember Save None.

MoveMember Save None.

Uncheckout None Load the unit into the current
workspace.
56 Team Collaboration Guide

Pre- and post- actions
The following table lists the pre- and post-actions for batch operations.

CM Operation Pre-Action Post-Action

ConnectToArchive Save None.

ListArchive None None.

DiffWithCM None None.

DiffWithRhapsody None None.

CheckIn Save Update CM information.

CheckOut Save
(controlled by a property)

Load the unit into the current
workspace.

SCCAddMember Save Update CM information.

Lock Save Update CM information.

Unlock Save Update CM information.

DeleteMember Save None.

RenameMember Save None.

MoveMember Save None.

CheckoutBrach None None.
Rational Rhapsody 57

CM and Rational Rhapsody
CM interface extension
User-defined buttons enable you to extend the Rational Rhapsody interface to support CM
operations, which are not included in the standard Rational Rhapsody interface. Using Rational
Rhapsody properties, you can assign commands to these buttons, such as submit, report defect on a
version, extract, send by mail, and so on.

There are four properties, one for each definable button, located under
ConfigurationManagement::General::UserDefCommand_1 through UserDefCommand_4.

Items selected from the Configuration Items window are passed as arguments. Rational Rhapsody
expands the keywords for each item selected in the Configuration Items list.

The format of the property is as follows:

Command ["ARG=
[$Path|$Ver|$Archive][additional_parameters]"]
[additional_parameters]

The keywords are as follows:

 $Path for full path + file name
 $Ver for Version
 $Archive for Archive session-specific string. This applies only to SCC model; it is empty

in batch mode.

Note
Rational Rhapsody does not know if the operation completed successfully. The standard
timeout applies in the case of a hanging script.

For example:

 To run the Rational ClearCase version tree on a selected item, set the property to the
following value:

start cleartool.exe lsvtree -graph "ARG= $Path"

 To execute a batch file that uses the full path, version number, and archive string of a list
of units, set the property as follows:

mycommand.bat "ARG= $Path, $Ver, $Archive ;"

Note

Activating various tools from a property is operating system-dependent. On Windows NT,
use the following command:

start notepad.exe
58 Team Collaboration Guide

Unresolved references
Unresolved references
Every Rational Rhapsody configuration item can include references to other configuration items
(CI cross-references). Once a configuration item is moved to another workspace, some of its
references might no longer exist in the new context. These dangling references are called
unresolved references. For example, if you replace an existing package with a newer version and
the new package does not contain an item that appears in a certain view, references to that item
will be unresolved.

The only CM operation allowed on unresolved elements is Check Out (and Fetch in SCC mode).
The Synchronize operation can resolve an unresolved element.

Units added by reference
CM operations cannot be performed on units that have been added to the model as references.
Rational Rhapsody 59

CM and Rational Rhapsody
60 Team Collaboration Guide

Multi-site collaboration
Multi-site collaboration can be accomplished through Webify and rapid prototyping.

Webify for collaboration
Besides Web-enabling a Rational Rhapsody model for the purposes of controlling it and
monitoring it remotely, Web-enabling can also serve as part of your development process. As a
development tool, Web-enabling makes both remote and local collaboration possible and
facilitates building and testing within a rapid prototyping approach.

Collaborating on the development of a Web-enabled model through the Web interface for the
model enables developers to look right into the model's behavior and view its behavior as it is
controlled. As if accessing the device from different windows, developers can collaboratively view
the behavior of a model, or build from a working prototype, whether through the Rational
Rhapsody interface or the Web interface for the model. Members of development teams with
access to the application for the Web server can trigger events and change writable, Web-exposed
element values. Anyone on the development team with access to the Web server for the model can
take an immediate look at, and affect the status of, a model by opening a Web browser. When
changing element values via the Internet through the Web GUI for the model, those changes occur
real-time; immediately, within the animated diagrams of the Rational Rhapsody interface, local
developers can see the model behavior as it is controlled through the Web interface by a remote
team member.

In this way, you can use Web-enabling a model as a real-time use case, modeling a scenario of
device usability, mimicking the device during different processes and testing its performance using
the system itself to observe the system's behavior.
Rational Rhapsody 61

Multi-site collaboration
Rapid prototyping
To facilitate rapid prototyping of the application during development and testing of the device
behavior in the lab on-the-fly, the Web interface can be customized to include other useful pages,
such as an e-mail link for communicating errors and solutions or reporting bugs easily from within
the Web interface.
62 Team Collaboration Guide

Parallel development
This subject describes how multiple users and distributed teams can work in parallel with the use
of the IBM Rational Rhapsody DiffMerge tool. These teams often have a source control tool or
configuration management (CM) software, such as IBM Rational ClearCase, to archive project
units, but not all files might be checked into CM during development.

Engineers in the team need to see the differences between an archived version of a unit and another
version of the same unit or a similar unit that might need to be merged. To accomplish these tasks,
they need to see the graphical differences between the two versions, as well as the differences in
the code. However, source control software does not support graphical comparisons.

Note
Many of the operations for the DiffMerge tool can be run from a command-line interface to
automate some of the tasks associated with software development (for example, to schedule
nightly builds). For more information about this feature, see Command-line options for the
DiffMerge tool.

The DiffMerge tool
The Rational Rhapsody DiffMerge tool supports team collaboration by showing how a design has
changed between revisions and then merging units as needed. It performs a full comparison
including graphical elements, text, and code differences.

What is a unit?

A Rational Rhapsody unit is any project or portion of a project that can be saved as a separate file.

Here are some examples of Rational Rhapsody units with the file extensions for the unit types:

 Class (.cls)
 Package (.sbs)
 Component (.cmp)
 Project (.rpy)
 Any Rational Rhapsody diagram
Rational Rhapsody 63

Parallel development
How do you use DiffMerge?

You can operate the DiffMerge tool inside and/or outside your CM software to access the units in
an archive. There are two locations from which to launch the DiffMerge tool:

 Launching DiffMerge inside Rational Rhapsody

 Launching DiffMerge outside Rational Rhapsody

The DiffMerge tool can compare two units or two units with a base (original) unit.

The units being compared only need to be stored as separate files in directories and accessible
from the PC running the DiffMerge tool. In addition to the comparison and merge functions, this
tool provides these capabilities:

 Graphical comparison of any type of Rational Rhapsody diagram
 Consecutive walk-through of all of the differences in the units
 Generate a Difference Report for a selected element including graphical elements
 Print diagrams, a Difference Report, Merge Activity Log, and a Merge Report

Launching DiffMerge inside Rational Rhapsody
When launching the DiffMerge tool from inside Rational Rhapsody, you can compare two units in
either of these environments:

 An archived version of the unit with the version currently displayed in Rational Rhapsody
 Two archived versions

Rational Rhapsody works with any CM archive in Microsoft® Common Source Code Control
(SCC) mode or other tools in batch mode. Rational Rhapsody developers can use any of the
following CM tools to manage their source files:

 IBM Rational Synergy in SCC mode
 IBM Rational ClearCase in batch mode and SCC mode
 Serena PVCS Dimensions in SCC mode
 Concurrent Versions System (CVS)

 Subversion (SVN)

Note

For Linux users, you can use batch mode configuration management, and Rational
ClearCase. Rational ClearCase is supported in Linux.
64 Team Collaboration Guide

Launching DiffMerge inside Rational Rhapsody
To launch the DiffMerge tool inside Rational Rhapsody:

1. Be certain that your source control archive is accessible from the PC you are using for this
comparison.

2. Start Rational Rhapsody and open a project.

3. Verify that the unit you want to compare (for example, a class) is a unit. A Rational
Rhapsody element is a unit if a small red file appears in the lower left corner of its

standard icon in the browser, as shown in this Class icon .

4. If the element is not yet a unit, change it into a unit by right-clicking the element and
selecting Create Unit, and then click OK.

Note that you must check in any new unit into your CM system before it can be
recognized by the DiffMerge tool.

5. Open the Configuration Items window. Choose File > Configuration Items.

Note: How this window looks depends on your CM system.
Rational Rhapsody 65

Parallel development
Compare With operation

Use the Compare With operation to compare an archived unit to the current version.

Comparing an archived unit to the current version
To compare the archived version of a unit to the current version of the same unit that has not been
archived:

1. In the Configuration Items window, highlight a unit (for example, a class) in the displayed
list that you want to compare to the archived version in your source control management
system.

2. Click the Diff with Rhapsody button . Depending on what CM tool you have, the
following actions might occur:

 If you have Rational Synergy, the DiffMerge tool opens and compares the current
Rational Synergy version with the current version in Rational Rhapsody so that
the engineer can determine which version of the unit is going to be archived next.

 If you have a CM tool other than Rational Synergy, the Compare With window
opens:

– Type either the revision or source control management label of the archived
unit you want to compare to the one currently selected in the Rational
Rhapsody model.

– Select the With Descendant check box if you also want to compare any
nested units inside the current unit to those of the archived version.

Note: The term descendant in the source control management refers to a unit that is
nested inside another unit. For example, if P is a package, it might have a
nested package Q and a global function f() as its descendants. Q might be
stored either in the same file as P or in its own file. In the latter case, Q is a
descendant unit for source control management and comparison purposes.
Taking P with descendants will also include Q (and its file). Taking P without
descendants will not include Q, and the result of the merge will be two files,
one for P and one for Q. The global function f() cannot become a unit because
it is a function, and must always “come and go” with P.

– Click OK.

The DiffMerge tool compares the two versions of the unit so that the engineer
can determine which version of the unit is going to be archived next.
66 Team Collaboration Guide

Launching DiffMerge inside Rational Rhapsody
Comparing two archived versions

To compare two archived versions of the same unit that are both in the archive:

1. In the Configuration Items window, click the Show items in Archive button to open
the Archive window. The buttons that display in this window depend on what CM system
you are using.

2. Select the unit with the two archived versions in the source control system.

3. Click the Diff with CM button to open a Diff window.

 Enter the Revision/Label information for the unit being compared.
 Select the With Descendant check box if you also want to include any nested

units in the comparison.
 Click OK.

The DiffMerge tool compares the two versions so that the engineer can make the
necessary decisions.

Advantages of launching DiffMerge inside Rational Rhapsody

Launching the DiffMerge tool inside Rational Rhapsody is particularly useful if you want to
compare one version of an archived unit quickly with another version of the unit inside or outside
the archive. You can quickly compare the two units using the DiffMerge tool inside Rational
Rhapsody because you already have Rational Rhapsody and the CM system open.

To use the DiffMerge tool inside Rational Rhapsody, follow these rules for the units being
compared:

 At least one of the units must be stored as a separate file in a CM system, such as Rational
ClearCase.

 Units must be the same type and have exactly the same name since you select only one
unit name to set up the comparison.

Compare with Advantages of launching DiffMerge outside Rational Rhapsody.
Rational Rhapsody 67

Parallel development
Launching DiffMerge outside Rational Rhapsody
To launch the DiffMerge tool outside Rational Rhapsody, use any of these methods:

 From the Windows Start menu, choose All Programs > IBM Rational > IBM Rational
Rhapsody version number > Rational Rhapsody DiffMerge.

 Use Windows Explorer to navigate to the Rational Rhapsody installation folder (for
example, <Rhapsody installation path>\Rhapsody75), and double-click the
DiffMerge.exe file.

Select units to compare

Use the Select Files window to specify the units to be used in a comparison in the Rational
Rhapsody DiffMerge tool.

Selecting units to compare outside Rational Rhapsody

To specify the units to be used in the comparison:

1. To be certain you are comparing units of the same type, check the file extensions. They
must be the same. For example, you can compare a project (.rpy file) only to another
(.rpy) project, but not with a component (.cmp file). For more information, see What is a
unit?.

2. From the DiffMerge menu bar, open the Select Files window. Choose File > Compare.
Note that the units might have different names.

3. In the Left side Rhapsody unit box, type the name including the path of the first unit or
browse to the location. This file will be referenced as the “Left” in the comparison results.

4. In the Right side Rhapsody unit box, type the name including the path of the second unit
or browse to the location. This file will be referenced as the “Right” in the comparison
results.

5. Select the Compare with descendants check box if you want to include the nested units
for these two units in the comparison.

6. Select the Base-aware mode check box if you want to browse to select the base or parent
unit of the two previously selected files to use as the base-line for the comparison. If you
use this third unit in the comparison, this creates a base-aware comparison. For more
information about this type of comparison, see For three units.

Note that for more information on this report, you might also want to see Difference
Report generation. Displaying base-aware information in this report is controlled by
several DiffReport preferences category preferences.
68 Team Collaboration Guide

Launching DiffMerge outside Rational Rhapsody
7. Click OK. The DiffMerge tool compares the selected units and displays the results, as
shown in Examining “left” and “right” value selections.

Advantages of launching DiffMerge outside Rational Rhapsody

The advantage to launching the DiffMerge tool outside Rational Rhapsody is that the tool has
greater flexibility. When you are using the DiffMerge tool outside Rational Rhapsody, you must
locate the files to compare and bring them into DiffMerge. Launching the DiffMerge tool outside
Rational Rhapsody is particularly useful if your comparison has any of these characteristics:

 Units are stored as separate files in a CM system or a directory that is not under source
control.

 Units are the same type, but they might have different file names because the selection
step allows you to enter different file names.

Note
Always use the DiffMerge tool outside Rational Rhapsody to compare two units to a base
unit (three units; see For three units). If you are comparing two units, you can use the
DiffMerge tool inside or outside Rational Rhapsody depending on whether or not the units
have different names.

Compare with Advantages of launching DiffMerge inside Rational Rhapsody.
Rational Rhapsody 69

Parallel development
Examining “left” and “right” value selections
To examine the filenames and paths for the selected files:

1. With the compared units displayed in the DiffMerge tool, choose View > Compared
Units File Names.

2. The Compared Units list appears at the bottom of the DiffMerge window, as shown in the
following figure. Examine the following information:

 Paths and file names of the selected units to be certain you have selected the
correct files

 Notice the “Alias” assigned to each unit (in the left column)
 Base unit selected is correct for the comparison of the other two units.

You can use Compared Units File Names at any time to see which file is the “Left” and which is
the “Right.”
70 Team Collaboration Guide

Results displayed in the DiffMerge tool
Results displayed in the DiffMerge tool
The DiffMerge tool contains a menu bar and two work areas, as shown in the following figure:

 Browser (left side) displays comparison results a tree structure. To see all the items in the
browser, choose View > Expand All.

 Attributes pane (right side) provides text descriptions of unit elements.

Browser
Window

Menu Bar

Attributes Pane
Rational Rhapsody 71

Parallel development
For two units

With two units being compared (no base unit), the unit name is displayed in the title bar for the
window and in the title bar for the DiffMerge browser. The first version of the unit selected, when
setting up the comparison, is described in the Left Value column in the Attributes pane. The
second unit selected has its information listed in the Right Value column. For descriptions of the
browser icons, see Difference categories and their icons in the browser.

The Attributes pane lists specific information about the meta-elements (attributes) that are
different in the units being compared, such as the class names and properties. Elements with
differences are displayed in boldface, dark red text.
72 Team Collaboration Guide

Results displayed in the DiffMerge tool
For three units

If the comparison includes a base unit, the Base Value column is added to the columns in the
Attributes pane to create a base-aware comparison. This type of comparison is used when a
baseline for a Rational Rhapsody unit is needed. For example, during a maintenance release the
changed Rational Rhapsody unit files are checked in on a different branch and after the
maintenance release changed unit files needs to be merged back to the main branch.

During this process, the developer finds it easier to make decisions if the two Rational Rhapsody
unit files versions are compared the base (common ancestor) version. The developer can scroll
through any non-trivial differences (described in Trivial Versus Non-trivial Differences) using these
toolbar icons.

In the following figure, the base unit for the Elevator project is compared to two different versions
of the project. In addition to the standard browser symbols, shown in the two unit comparison,
both the browser and the Attributes pane include an additional Diff icon column with visual
representations of each difference located in the base-aware comparison. For definitions of the
Diff icons, see Differences report in the Output window

Next non-trivial difference Previous non-trivial difference

Diff IconsDiff Icons
Rational Rhapsody 73

Parallel development
Differences report in the Output window
To display the Difference Report, use one of the following methods:

 Right-click an element in a diagram and select Report Differences.
 Choose Tools > Report Differences > All to compare all the elements or Tools > Report

Differences > Selected to compare only the selected elements.

Difference Report display

DiffMerge displays the differences in the Difference Report tab of the Output window, as shown
in the following figure for a simple three-unit comparison.
74 Team Collaboration Guide

Differences report in the Output window
Features of a Difference Report

The following illustration identifies important features of a Difference Report.

The Output window uses the following colors to distinguish between the difference categories:

 Red denotes a difference element.
 Blue denotes elements that exist only on the left side.
 Gray denotes a nested difference. A nested difference is an element without any

differences, but that contains an element with either a difference, left-side only, or
right-side only element.

 Black denotes a no difference element.
 Green denotes elements that exist only on the right side.

You can control the text used to mark each difference category, write the output to a file, and
customize the DiffMerge tool by setting the appropriate preferences. For more information, see
Colors preferences category.

Notice that the Output window also displays the Merge activity log and Producing merge reports.

Difference Report header
The AcmeFactory class has
differences from the other
class, AbstractFactory.

In addition to the differences
in the class names, DiffMerge
found differences in the
properties attribute.

The 3 dependency and 1

Three methods have these

 generalization differences only

This difference exists only in
AbstractFactory (right side).

exist in the AcmeFactory.

differences: implementations

properties.
(in ItsBody), Virtual values, and
Rational Rhapsody 75

Parallel development
DiffMerge differences
You can right-click any item in the DiffMerge browser and select Browse from here to limit or
focus the scope of the current view of the browser and Attributes pane. Doing this opens the
Browse From Here browser and associated Attributes pane.

The item you select in the browser specifies the commands that are displayed in the pop-up menu.

For example, if a developer selects a diagram in the browser, additional options for diagrams are
available so that all of the possible options are displayed in the pop-up menu:

 View all diagrams lets you review all the diagrams to help you decide from which side
you want to take your changes.

 View left diagram lets you view only the diagram from the left side.
 View right diagram lets you view only the diagram from the right side.
 View both diagrams lets you view both the diagrams for this selection from the right and

left.
 View base diagrams let you view the base diagram.
 Merge graphically lets view all versions of the object model diagram, including the

newly created merged object model diagram in the Merge window.
 Browse from here opens a new browser and Attributes pane for the selected element.
 Report Differences creates the Difference Report for the selected element.
 Report Merging Differences creates the Merge Report for the selected element.
 Next diff moves the selection in the browser to the next difference in the browser.
 Prev diff moves the selection in the browser to the previous difference in the browser.

Differences in the browser

When selecting the Browse from here command, the DiffMerge tool opens another browser that
displays that element at the top of the browser and the associated attributes in the Attributes pane.
The more focused browser is called the Browse From Here browser.

For more information about the standard icons in the browser, see Difference categories and their
icons in the browser.

Note

After browsing a selected element, you can display the original comparison (if you closed
it) at any time by selecting View > New Diff Browser.
76 Team Collaboration Guide

DiffMerge differences
Difference categories and their icons in the browser

When comparing two units, triangle overlays are displayed in the browser items whether two or
three units were compared. If you want to display the triangles on the icons indicating whether the
difference is on the right, left, or both sides of the comparison, set the
ShowDMMarksInBaseAwareMode preference to be Checked (check box is selected).

 No difference element means the element, including all its nested elements, is identical
on both sides of the comparison. In the browser, a no difference element has the same icon
as in Rational Rhapsody, as in this example:

:

 Right-only element means the element exists only on the right side of the comparison.
For example, the element is new or was deleted from the left unit. In the browser, a right-
only element has a left-facing, green arrow overlaid on the icon, as in this example:

 Left-only element means the element exists only on the left side of the comparison. For
example, the element is new or was deleted from the right unit. In the browser, a left-only
element has a right-facing, blue arrow overlaid on the icon, as in this example:

 Difference element means the element exists in both sides of the comparison, but some of
its fields or properties are different. In the browser, a difference element has dual-facing,
red arrows overlaid on the icon, as in this example:

 Nested difference means the element exists on both sides of the comparison, but some of
its subelements are different. There is no two-unit comparison icon for the Nested
difference, but there is a Nested difference icon in a base-aware comparison.
Rational Rhapsody 77

Parallel development
Base-aware Diff icons
In the Diff column in base-aware comparisons, the icons illustrate the types of differences between
the two units and the base. Move your mouse over an icon to see a definition for it.

The basic design features of these icons are as follows:

 Modification on the right side with a blue triangle (pointing right)
 Modification on the left with an orange triangle (pointing left)
 Deletions have a minus sign on the side that has the deleted item
 Additions have a plus sign on the appropriate side

The icons and what they mean are as follows:

 means the item contains at least one nested difference

 means the item was modified on both sides of the comparison

 means the item was modified on the left and deleted on the right

 means the item was added to the left side only

 means the item was modified on the left side

 means the item was modified on the right side

 means the item was deleted from the right side

To see an example of a DiffMerge browser and Attributes pane with these icons, see For three
units.
78 Team Collaboration Guide

DiffMerge tool navigation
DiffMerge tool navigation
The following buttons let you navigate quickly in the browser and diagrams by changing the view:

Using the commands in the View menu, you can open additional views to compare units in
different ways. In the View > Diff mode, choose:

 View > View all to view all model elements, including those that are the same in both
units.

 View > View diff to view only those model elements that are different in the two units.
 View > View Conflicts to view only those model elements with non-trivial differences

that will require manual merging.
 View > View undecided to view differing elements that are neither in nor out of the

merge. Note that this option is available only in merge mode. For more information, see
Undecided view.

 View > View in merge to view only those elements that are currently in the merge. Note
that this option is available only in merge mode. For more information, see View in merge.

You can also navigate in the list of differences in the Attributes page. Right-click in the Attributes
pane to open the pop-up menu, which contains the following commands:

 Diff text launches the external textual difference/merge tool (such as TkDiff)
 View all displays all the model elements, including those that are the same in both units
 View diff displays only those model elements that are different in the two units
 Next diff displays the next difference in the list
 Prev diff displays the previous difference in the list

See Results displayed in the DiffMerge tool for a description of the Attributes pane.

Button Button Name Explanation

First difference
(diagrams only)

Moves the selection to the first difference in the displayed
diagrams.

Prev difference Moves the selection to the previous difference in the
browser or displayed diagrams.

Next difference Moves the selection to the next difference in the browser or
displayed diagrams.

Last difference
(diagrams only)

Moves the selection to the last difference in the displayed
diagrams.
Rational Rhapsody 79

Parallel development
The external difference/merge textual tool
For some attributes, the space provided in the Attributes pane is insufficient to view them properly
(for example, a multi-line box). In such cases, you can launch an external textual diff tool.

To open a textual diff tool, in the Attributes pane, right-click an element and select Diff text. By
default, Rational Rhapsody opens the TkDiff diff tool to display information about the selected
element.

Using your external difference/merge textual tool

To use your favorite textual diff tool in Rational Rhapsody:

1. Open the Preferences window. Choose View > Preferences.

2. Expand the TextDiffMerge category.

3. Change the DiffInvocation and DiffMergeInvocation preferences, as described in
TextDiffMerge preferences category.

You can also edit the DiffInvocation preference to launch a different Diff editor than TkDiff,
assuming that the editor can be launched from the command line.

To use the textual diff tool supplied with IBM Rational ClearCase, modify the DiffInvocation and
DiffMergeInvocation preferences, as described in TextDiffMerge preferences category.
80 Team Collaboration Guide

Filtering the comparison in the DiffMerge tool
Filtering the comparison in the DiffMerge tool
You can ignore certain meta-elements during the comparison by modifying the settings in the
Preferences window for the DiffMerge tool.

To filter the comparison in the DiffMerge tool:

1. Open the Preferences window. Choose View > Preferences.

2. Expand the Suppressions category.

3. Change the value for the DiffAttributesFilter preference. The default preference is as
follows:

id,lastID,ImportData,cmheader,
state,RequiremenTracabilityHandle,
isSaveUnit,isUR,isNameGenerated,
isReadOnly,errorStatus,version,
baseVersion,defNumber,directoryName,
CPUtype,icon,isTemplate,typeID,
stereotypeID,DependsOnID,DependsOnImportData

4. You can edit the DiffAttributesFilter preference to add other elements to ignore, if you
want. Preferences set in DiffAttributesFilter affect the DiffMerge tool if you change
them in the site.prp file before DiffMerge is launched.

For more information, see:

 DiffMerge tool preferences

 Changing preferences

 Suppressions preferences category
Rational Rhapsody 81

Parallel development
Inspecting differences in diagrams visually
The DiffMerge tool identifies visual differences underlying the model elements.

To show a graphical differences between two diagrams:

1. After displaying the units to be compared in the DiffMerge tool, open the browser tree to
show the diagrams included in the comparison.

2. In the browser, right-click the diagram of interest and select View Diagrams. Read-only
views of the two diagrams open in individual windows.

3. Click the highlighted item. The following illustration displays a comparison of two
versions of a sequence diagram from the same project.

Differences in diagrams are highlighted according to the color scheme described in Differences
report in the Output window.
82 Team Collaboration Guide

Inspecting differences in diagrams visually
Graphical differences

When comparing the graphical features of diagrams, the user can use two features to help identify
the differences between the two diagrams:

 Highlight Differences
 Walk-through Differences

Switching on the difference highlighting
For diagrams that exist on both sides of comparison and a diagram view is active, to use colors to
highlight all different elements of the diagram:

1. Select a diagram in the DiffMerge browser to use for the highlighted comparison.

2. Choose View > Highlight Differences or the toolbar icon .

Note
Differences are highlighted using the settings in Colors preferences category.

Walking through diagram differences
For diagrams that exist on both sides of comparison, you can walk-through the diagram
differences.

To switch on the walk-through features:

1. Select a diagram in the DiffMerge browser to use for the walk-through comparison.

2. Right-click and select one View right diagram, View left diagram, or View both
diagrams to place the selected diagrams in the Attributes pane.
Rational Rhapsody 83

Parallel development
3. Select First, Next, Previous or Last difference options or use the shortcut keys to walk
through the graphical differences in the displayed diagrams, as shown in the following
figure:

Note
At first each difference is highlighted with a heavier, colored line, and the highlighted line
blinks to draw the user’s attention to the item. Then the heavier width of the line disappears,
but the highlighted color of the items remains, as shown in this sequence diagram
comparison. You might want to see about Switching off element blinking for this feature.

The walk-through menu options have the following results:

 First displays the first graphical difference located in the diagrams.
 Next marks the next difference.
 Previous steps back to show that difference displayed before the currently highlighted

one.
 Last marks the last different diagram element.
84 Team Collaboration Guide

Inspecting differences in diagrams visually
You can also use the following shortcut keys to navigate through the graphical differences.

 Press Alt-Home key to go to the first difference

 Press Alt-Right arrow to go to the next difference
 Press Alt-Left arrow to go to the previous difference
 Press Alt-End key to go to the last difference

Switching off element blinking
If you prefer to switch off the blinking feature:

1. From the DiffMerge menu bar, open the Preferences window. Choose View >
Preferences.

2. Expand DiagramViews.

3. Clear the check box for the BlinkWalkingThroughDiffs preference.

Note
Other preferences are described in Changing preferences.

Difference Report generation

To generate a list of the differences for a selected diagram element during graphical comparison,
right-click the diagram element in the DiffMerge browser and select Report Differences. The
differences for that element display in the Output window, as shown in the following figure:
Rational Rhapsody 85

Parallel development
Printing a Difference Report

To print a report showing the differences displayed in the Output window:

1. Decide whether or not you want to ignore graphic differences in the report, choose View >
Ignore Graphical Differences as many times as needed.

A check mark to the left of Ignore Graphical Differences means this option is selected.

2. Display the information in the Output window:

 Right-click an item in the browser select Report Differences, or
 Choose Tools > Report Differences > All or Selected

3. Click the Printer button to print the information in the Output window.

Note
The Difference Report does not specify details about graphical differences. Only the
existence of a graphical difference is reported so that the developer can perform any
required analysis.

Graphical differences suppression

If the graphical differences between two units are not important to the comparison, you can
suppress the graphical differences from the comparison and the differences report. With the
compared units displayed in the DiffMerge tool, to suppress the graphical differences, choose
View > Ignore Graphical Differences to make a check mark appear to the left of Ignore
Graphical Differences.

Note
You use Ignore Graphical Differences to toggle this feature on and off, but only when the
tool is in comparison mode. As soon as you start merging, this menu option is disabled.
Therefore, you must determine whether or not to ignore graphical differences before starting
a merge operation.

To merge two classes with different statecharts, use the browser (see Starting a merge operation) or
the graphical DiffMerge function (see Merging diagrams graphically for statecharts and activity
diagrams).
86 Team Collaboration Guide

Inspecting differences in diagrams visually
DiffMerge limitations

Note these limitations:

 In terms of the display, DiffMerge only provides partial support for specialized profiles
such as SysML. For example, the icons displayed in the DiffMerge browser are the
standard Rational Rhapsody icons, not the specialized icons included in the profile.

 When comparing sequence diagrams, DiffMerge reports message re-ordering as logical
differences (see Logical versus graphical differences). However, only message re-ordering
is detected, while sequence modifications of other sequence diagram elements (such as
Condition Mark, Interaction Occurrence, and Destruction Event) are disregarded.
Rational Rhapsody 87

Parallel development
Logical versus graphical differences
For the purposes of DiffMerge model difference detection, a logical difference is one that changes
the logic of a model. This is also known as a model difference. In comparison, a graphic difference
is a visual difference that does not have an effect on a model.

DiffMerge always reports logical differences, while it might ignore graphical differences (see
Graphical differences suppression).

Example of logical difference

The following examples shows a logical difference on a sequence diagram.

Example 1a: Sequence diagram with evStart()
The following figure shows a partial view of the Dishwasher Cycle sequence diagram for the
Dishwasher sample project provided with the Rational Rhapsody product. Notice the location of
evStart() above setup(). For aesthetic reasons, you could reposition evStart() (say, move it
down slightly so that it does not touch the partition line) but leave it still above the position of
setup() and this movement is ignored by DiffMerge because it does not affect the logic of the
model.
88 Team Collaboration Guide

Logical versus graphical differences
Example 1b: Sequence diagram with evStart() Moved
Notice the location of evStart(), which has been moved below setup(). This change has an
effect on the logic of the model.

Example 1c: DiffMerge
The following figure shows in DiffMerge a comparison of the sequence diagrams shown in
Example 1a (Left Value column) and 1b (Right Value column) in base-aware mode (Base Value
column). As you can see, the logical difference is noted in the Right Value column.
Rational Rhapsody 89

Parallel development
DiffMerge reports
DiffMerge allows you to export reports that summarize the differences found between compared
units.

Note
These reports summarize only the differences found between the compared units, not any
merges that were subsequently made.

Exporting DiffMerge reports

To export a report:

1. Choose Tools > Export Report > Rich Text Format or Tools > Export Report > CSV
Format.

2. When prompted, provide the path where you would like the report to be saved.

The CSV format is useful when you want to perform further analysis on the difference data.

The reports contain information regarding the following types of differences:

 element-level differences
 attribute-level differences
 diagram differences
 code-level differences

Note
The content of these reports is not identical, the Rich Text Format (RTF) report contains a
greater level of detail, while the CSV format report focuses on the kind of information that
you would want to use for statistical analysis.

In RTF report reports:

 When differences are found in diagrams, the report displays the different versions of the
diagrams, using color to indicate the differences between the versions.

 When differences are found in attributes of type text, the differences are displayed
line-by-line, using the following symbols: <> (exists on both sides), ++ (exists on this
side only), __ (does not exist on this side).

 Code-level differences are reported as attribute-level differences (the attribute name is
IsBody).
90 Team Collaboration Guide

The Rational Rhapsody DiffMerge process
When exporting reports, remember that:

 You cannot create more than one report at a time.

 You should not close DiffMerge until creation of the report has been completed.

The Rational Rhapsody DiffMerge process
This topic provides you with an overview of the Rational Rhapsody DiffMerge process. The
Rational Rhapsody DiffMerge tool makes a comparison of two units and looks for matches of the
elements within their respective units. The units can be from the same Rational Rhapsody project
or two different versions of the same unit. In the case of base-aware mode, you can also designate
a third unit, which is the base unit. See What is a unit?.

How does the DiffMerge tool make a match?

By default, the Rational Rhapsody DiffMerge tool tries to make a match by the name of elements
and then by ID if there is no name match. This means the DiffMerge tool can detect and report if
an element has been renamed and has a different name on each comparison side. This method
makes it clearer for a developer/engineer what the differences are so that they can more easily
decide which name from which side to take as the merge result for a particular element.

If you prefer, you can set the DiffMerge tool to only make matches by name only. This means the
name of an element in one unit must match the name of an element in the other unit for a match to
be made. If you prefer to compare the elements in units with this method, you can specify this in
the ElementMatchRule preference.

For examples of results of the two compare methods, see Example 1: Element is renamed.

Note

When a name change is a trivial difference, DiffMerge automatically merges it. See Trivial
Versus Non-trivial Differences.
Rational Rhapsody 91

Parallel development
Examples of how the DiffMerge tool handles renamed elements

The following examples show you various scenarios of how the DiffMerge tool handles renamed
elements.

Example 1: Element is renamed
The following figure shows a comparison that found a match by element ID when a name match
could not be found. This is the default method used by the DiffMerge tool. As you can see, the
Dishwasher class (in the Left Value column) has been renamed to NewDishwasher (in the Right
Value column). The Difference Report shows the change as a trivial diff.
92 Team Collaboration Guide

The Rational Rhapsody DiffMerge process
The following figure shows a comparison by name of element only. As you can see, the renamed
class (NewDishwasher, as shown in the Right Value column in the previous figure) does not
appear in the Right Value column in this comparison method. Notice that the Difference Report
reports that the unit (Dishwasher) has been deleted, which is untrue. As you can see from the
previous figure, the class was only renamed.
Rational Rhapsody 93

Parallel development
Example 2: More than one element is renamed
The following figure shows a comparison where more than one element has been renamed. In
addition, nested elements have been renamed.
94 Team Collaboration Guide

The Rational Rhapsody DiffMerge process
Example 3: Element is renamed and type is changed
The following figure shows a comparison that found matches by element IDs where the
MyOriginalObject element was renamed to MyObjectBecameABlock, and then was converted
into a block. Notice that the DiffMerge tool reports two different elements as before.
Rational Rhapsody 95

Parallel development
How DiffMerge performs a model comparison

The Rational Rhapsody DiffMerge tool makes a comparison of two units and looks for matches of
the elements within their respective units. The units can be from the same Rational Rhapsody
project or two different versions of the same unit. In the case of base-aware mode, you can also
designate a third unit, which is the base unit. See What is a unit?. The compare algorithm works as
follows:

 When two model elements have the same type (or, as known in Rational Rhapsody,
metaclass), name, and parent model element, then they are considered to be a match. If an
element has no match by name, DiffMerge tries to find a match by ID. Matching elements
always belong to the same parent and have the same metaclass.

 When two model elements are matched, then all their attributes and references to other
model elements are compared to check if there are any differences.

 When two model elements are matched, then their aggregated model elements are
compared the same way to check for differences. They are matched by metaclass and
name or ID, their attributes and relations are checked for differences, and their aggregates
(if any) are compared the same way. Basically, the process goes recursively through all
aggregates.

You might also want to see Automatic merging for base-aware comparisons and Trivial Versus Non-
trivial Differences.

How differences are detected in base-aware comparisons

In two-way comparison, the ability for the DiffMerge tool to describe difference is
straightforward. It reports the difference, but does not explain why.

In base-aware mode, the DiffMerge tool reports differences with more details that describe what
caused the differences. DiffMerge is able to do so because it takes into account the third unit, the
base unit. So each element (in the Left Value column) is matched not only with an element from
another side (in the Right Value column) but also a base element (in the Base Value column).

For more information about base-aware difference detection, see Base-aware Diff icons.

All differences identified will be compared and put together to determine if they are trivial or
non-trivial differences. See Trivial Versus Non-trivial Differences.
96 Team Collaboration Guide

The Rational Rhapsody DiffMerge process
Limitations for match by element ID in DiffMerge

Note these limitations for the match by element ID function in the DiffMerge tool:

 DiffMerge will neither detect renamed nor suppressed propagated renamed differences
when the renamed object is out of the comparison scope. (For information about
suppressing propagated renamed differences, see How to examine only major structure
differences.) For example:

– When comparing sequence diagrams, the base classes for a classifier role are
displayed as “single” nodes though it is the same class with modified name,
but this class is not within this comparison, as shown in the following figure:

– When comparing packages, a class stereotype difference is not suppressed
though it is the same stereotype having different names. That might be
because the stereotype belongs to a package named, for example, Terms, that
is out of the scope of this comparison.
Rational Rhapsody 97

Parallel development
 When performing a merge of units containing renamed elements, in some cases,
DiffMerge does not properly update merged attributes values. This happens with the
following attributes:

– DependsOn in generalizations and dependencies when the related class is
renamed.

– Stereotype in all model elements when the stereotype is renamed.
– Type when the type is renamed, and in all model elements when type is

applicable, including: methods and operation return types; arguments,
variables, and attributes types; template instance parameter types, and basic
types of a typedef type.

How to examine only major structure differences

A manager for a project might want to examine at a high level the differences for a project, while a
developer/engineer will want to see all the differences so that they can determine which elements
should be merged. You can set the SuppressRenamePropagatedDiffs preference to specify whether
propagated differences related to detected renaming should be filtered out.

Note
The SuppressRenamePropagatedDiffs preference is intended for comparison or reporting
purposes. While this preference is active, to avoid any possible unintentional merge
decisions and model corruption, all commands to merge units are disabled.

Comparison of propagated differences view and major structure differences
view

The illustrations in this topic compare the DiffMerge view of showing all propagated differences
versus the view of showing only major structure differences.

Show all propagated differences

The following illustration shows all propagated differences. This means that the
SuppressRenamePropagatedDiffs preference is turned off (the check box is cleared), which is the
default. For example, you renamed a package. When you show all propagated differences, this
means all elements related to the package will show as secondary differences. Therefore, in this
example:

 The top DiffMerge browser in the following illustration shows that the Default package
was renamed to NewDefault.
98 Team Collaboration Guide

The Rational Rhapsody DiffMerge process
 The bottom DiffMerge browser shows that the object model diagram has a dependency to
the Default package. Therefore, the DiffMerge tool reports a change for the dependency
also.
Rational Rhapsody 99

Parallel development
Show only major differences

The following illustration shows only major structure differences. This means that the
SuppressRenamePropagatedDiffs is turned on (the check box is selected), which means that all
elements related to the package will not show as secondary differences. Therefore, in this
illustration:

 The top DiffMerge browser shows that the Default package was renamed to NewDefault.
 The bottom DiffMerge browser shows that the object model diagram has a dependency to

the Default package, but the DiffMerge tool does not report a change for the dependency.
This is because when the SuppressRenamePropagatedDiffs setting is turned on, all
secondary differences are suppressed.
100 Team Collaboration Guide

Merge units with the DiffMerge tool
Merge units with the DiffMerge tool
You can merge the two compared units into a third unit to create a new entity of the same type as
the original two units or merge features from one unit into the other. By default, the initial merge
(created when you start the merge) is taken from the unit on the left side. To take the initial merge
from the right side, set the following flag in the General section of the Diffmerge.ini file:

 "ReverseDiffOrder=TRUE"

Note
Before beginning the merge, you must also decide whether or not to include the graphical
differences, as described in Graphical differences suppression.

Starting a merge operation

To merge specific elements listed in the browser:

1. Choose Edit > Start merge or click Start merge in the DiffMerge toolbar. The
Edit > Take from left, Edit > Take from right, and Edit > Take from base arrows then
become active in the DiffMerge toolbar, when applicable.

2. If you are working with a base-aware comparison (For three units), DiffMerge identifies
all Trivial Versus Non-trivial Differences and displays a window asking if you want to
merge all trivial differences automatically. You can select to not display this window
again if you always handle trivial differences in the same manner.

3. Whether you are using a base-aware comparison or a comparison of two units, at this point
you can navigate to a difference using the up and down keyboard arrows.

4. To restrict the view to only the conflicting items for either comparison, choose
View > View Conflicts.
Rational Rhapsody 101

Parallel development
5. If you are comparing two or three units, for each element that exists on both sides of the
comparison determine whether you want to perform these operations:

a. Take the element from the left or right along with its descendants (aggregates and
associations which are nested elements in the browser).

b. In addition, you can optionally take a value for a particular attribute for the element
from the left or from the right (or from the base when performing a base-aware
comparison). This might be done when you have chosen to take an element from the
left in Step a, but for the value for a particular attribute, you prefer to take the right
side.

Note that you might also follow this step for any descendants of the element you
chose in Step a.

c. Alternatively, if the particular attribute you want to change is a textual attribute, such
as code and description, you could select Merge Text and the external textual
DiffMerge tool (tkdiff by default) opens.
102 Team Collaboration Guide

Merge units with the DiffMerge tool
6. Use the Edit > Take from Left or Take from right options or click one of the following
toolbar buttons to select a difference that you want to merge. Note that these buttons
operate on the selected element, as well as all of its nested elements.

7. If you are using a base-aware comparison for the merge, you can scroll through any
non-trivial difference using the following toolbar icons when you want to make a merge
decision.

 Next non-trivial difference

 Previous non-trivial difference

8. If you want to include or exclude an element manually, right-click the element select
Include from merge or Exclude from merge.

Button Button Name Explanation

Take from left Adds the element from the left unit to the
right unit.

Take from right Adds the element from the right unit to the
left unit.
Rational Rhapsody 103

Parallel development
9. Once a difference is resolved for either type of comparison, the difference arrow or arrows
on the browser icon turn gray. Therefore, all gray items are not going to be displayed in an
Undecided view of the merged elements.

Note
You cannot exclude from the merge any elements that are in both the left and the right units.
See Rules for merging from a two-unit comparison.

Merge renamed elements

In the DiffMerge browser, the DiffMerge tool displays element names from the left (column)
comparison side by default. The left side has more priority than the right side.

However, when switching to merging mode, DiffMerge displays actual names (meaning the names
from the chosen side either by a user or automatically).

When a name difference is trivial, the DiffMerge tool will merge elements automatically. See
Trivial Versus Non-trivial Differences.

For example, in the case of the modification of MyClassBefore to MyClassAfter, the new class
name, MyClassAfter is taken as the merge result. Note that in the merging mode, DiffMerge
displays the actual element names. So in this example, MyClassAfter instead of MyClassBefore
(that was displayed in comparison mode), as shown in the following figure:

Before Merge: After Merge:
104 Team Collaboration Guide

Merge units with the DiffMerge tool
If you decide to take another name value, the DiffMerge browser refreshes accordingly, as shown
in the following figure:

Saving the merged unit

To save the merged unit, choose File > Save Merge As. If you started DiffMerge from within
Rational Rhapsody, select Merge to Rational Rhapsody. The new, merged unit is saved as a
separate file for use in the existing project or another project.

Merge units limitations

Note these limitations for merge units:

 After a graphical merge, referenced model elements that are not accessible are displayed
as “unresolved” in the resulting sequence diagram. For example, model elements that are
outside of Rational Rhapsody but referred to by diagram elements inside Rational
Rhapsody refer are displayed as “unresolved”).

 Model elements cannot be edited in diagram graphical merge mode.
 Many of the model diagrams are displayed in read-only mode with the exception of

merged statecharts, activity diagrams, and sequence diagrams. Therefore, some Rational
Rhapsody functionality is not available in read-only diagram views, for example:

– Movement
– Changing the element properties
– Opening referenced diagrams
Rational Rhapsody 105

Parallel development
Automatic merging for base-aware comparisons

If two units are being compared with a base unit, this base-aware comparison makes it possible for
the DiffMerge tool to determine automatically the need for some merges using the concept of
Trivial Versus Non-trivial Differences.

This three-unit comparison includes detecting differences in the model elements, such as new class
that was added or removed. It also locates textual differences in the attribute values of the model
elements, such as change in the class description.

All the differences identified are compared to determine the trivial versus non-trivial differences.
During an automatic merge operation, all of the trivial differences are automatically accepted for
merging.

Trivial Versus Non-trivial Differences
For a difference in which only one unit differs from the base unit, it is identified as a
non-conflicting difference or trivial difference. Similarly, if both of the units are different from the
base contributor but the differences are the same, then it is also a trivial difference. This applies to
differences in model elements or differences between the attributes of the model elements.

However, if both units differ from the base unit, this is a non-trivial or conflicting difference that
must be resolved by the developer manually.
106 Team Collaboration Guide

Merge units with the DiffMerge tool
Merge icons for base-aware comparisons
To understand the steps required to merge elements, see Starting a merge operation.

After an element is merged in a base-aware comparison, the DiffMerge tool marks the merged item
in a new Merge column, as shown in the following figure:

Note
The icon in the browser displays a gray arrow if the element has already been merged.

To see a description of each merge, position the mouse over a merge icon and read the description
that displays at the bottom of the DiffMerge window, as shown in the following figure:

The Merge icons are used in both the browser and Attributes pane.

 means an undecided element

 means both elements were automatically merged (usually in an external textual DiffMerge
tool)

 means that based on a developer’s decision, this element was manually merged from both the
right and left

 means the element was merged automatically from the right

 means the element was merged automatically from the left

 means the right-side element was automatically excluded from the merge
Rational Rhapsody 107

Parallel development
 means the left-side element was automatically excluded from the merge

 means that based on a developer’s decision, this element was manually merged from the right.

Compare with .

 means that based on a developer’s decision, this element was manually merged from the left.

Compare with .

 means that the left-side element was manually excluded from the merge

 means the right-side element was manually excluded from the merge

About making merge decisions

After Starting a merge operation, developers might use the automatic merging capabilities to
resolve trivial, non-conflicting differences. However, developers often must make some decisions
about what needs to be merged and how it should be merged. The following tools can be used to
help make decisions and manually merge the non-trivial differences:

 DiffMerge merging navigation and views
 Merge Report
 External text editors
 From Rational ClearCase launch DiffMerge

If a base-aware comparison is being used, the DiffMerge tool has more information about the left
and right units. It is likely that the developer might need to make fewer manual merges with a
three-unit (base-aware) comparison than with a two-unit comparison.
108 Team Collaboration Guide

Merge units with the DiffMerge tool
Navigation menu options for merging
The type of comparison (two units or three) being used affects the items displayed on this menu. If
two units were used for the comparison, these menu options have the following uses:

 Take from right adds the element from the right unit to the left unit.
 Take from left adds the element from the left unit to the right unit
 Browse from here repositions the browser view to start with the select element. To switch

back to the original view, choose View > New Diff Browser.
 Next Diff highlights the next difference in the browser.
 Previous Diff highlights the previous difference in the browser.

If three units (base-aware) were used for the comparison, these additional options are available:

 Next Conflict highlights the next non-trivial (conflicting) difference in the browser.
 Previous Conflict highlights the previous non-trivial (conflicting) difference in the

browser.

Undecided view
To view differing elements that are neither in nor out of the merge for either type of comparison,
the View > View undecided option shows only the remaining, unmerged differences. In other
words, those differences that are not yet “in” or “out” of the merge. Units are not displayed that
you have either explicitly marked as “in” or “out” of the merge or are always implicitly in the
merge.

View in merge
To view only those elements that are currently in the merge with either type of comparison, the
View > View in merge option displays only those elements that are currently in the merge
(without recognition of the method used to include the element in the merge) are displayed.

Base-aware comparison merging
When using the base-aware comparison as the basis for a merge operation, the DiffMerge tool
shows the status of all the identified changes with respect to the base version of your CM tool. This
additional information for the merging task avoids running more diff operations to pinpoint the
source of differences.

When using the automatic merge feature in a base-aware comparison, the developer only needs to
define the merging required for the non-trivial differences. See Automatic merging for base-aware
comparisons for additional information about the merging capabilities in base-aware comparisons.
See Trivial Versus Non-trivial Differences for an explanation of these concepts.
Rational Rhapsody 109

Parallel development
Rules for merging from a two-unit comparison
When creating a merged unit from a two-unit comparison, the DiffMerge tool uses these rules:

 All identical elements are always included in the merge; they cannot be removed.
 All elements appearing in both sides must be in the merge, with attributes either from the

left or from the right, or with some from the left and some from the right. The element
itself must always be included.

 Elements appearing in only the left or the right side can be either in or out of the merge.
Examine the icons in the browser to identify the elements that are going to be automatically
included in the merge, and those that are not.

DiffMerge inserts a small plus (+) or minus (-) sign in front of an element name to indicate the
following meanings:

 Plus (+) means the element will be included in the merge, for example:

 Minus (-) means the element will not be included, for example:
110 Team Collaboration Guide

Merge units with the DiffMerge tool
Merging diagrams graphically for most diagrams

You can use the DiffMerge tool to merge graphical elements in any of the Rational Rhapsody
diagrams. This procedure tells you how to merge diagrams graphically for most diagrams in
Rational Rhapsody, except statecharts and activity diagrams. To do this for statecharts and activity
diagrams, see Merging diagrams graphically for statecharts and activity diagrams.

You can copy an element in one diagram that you would like to have in another diagram. You can
copy the graphic elements from the left or right window and place them in the merge window, or
create new elements in the merge window and move or size them as needed.

To merge existing graphic elements in the DiffMerge interface:

Note
While this procedure shows how to merge graphic elements in an object model diagram,
you can use the same method to merge elements for the other Rational Rhapsody diagrams
(except statecharts and activity diagrams).

1. Optionally, right-click the object model diagram in the DiffMerge browser and select
View All Diagrams to review the diagrams to help you decide from which side you want
to take your changes.

2. Right-click the object model diagram and select Take from Right or Take from Left. See
Making merge decisions from the graphical view.

3. Right-click the object model diagram and select Merge Graphically. Rational Rhapsody
opens windows to show all versions of the object model diagram, including the newly
created merged object model diagram in the Merge window.

4. Review the merged object model diagram in the Merge window.

5. Edit the merged object model diagram, if necessary.

– Right-click an element in the merged diagram and use the options on the
pop-up menu; for example, Take from Left, Take from Right, Exclude
from Merge.

– You can move and delete elements. In addition, you can modify a textual
element through its Features window.

6. When you have completed the merge operation, save the merged file as described in
Saving the graphically merged unit.
Rational Rhapsody 111

Parallel development
Merging diagrams graphically for statecharts and activity diagrams

This procedure tells you how to merge diagrams graphically for statecharts and activity diagrams.
To do this for the other Rational Rhapsody diagrams (such as object model diagrams and structure
diagrams), see Merging diagrams graphically for most diagrams.

Note
Use this approach when you have an element in one diagram that you would like to have in
another diagram.

You can copy the graphical elements from the left or right window and place them in the Merge
window, or create new elements in the Merge window and move or size them as needed.

To merge existing graphic elements in a statechart or activity diagram in the DiffMerge interface:

Note

While this procedure shows how to merge graphic elements in a statechart, you can use the
same method to merge elements for activity diagrams. For additional information, see Tips
for graphical merging for statecharts and activity diagrams.

1. Select the statechart in the DiffMerge browser, right-click and select Merge Graphically
to open the diagrams.

2. Select one or more elements to copy, and then press Ctrl+C (or choose Edit > Copy).

3. Click in the Merge window (You can create a new statechart or merge elements into one of
the original statecharts).

4. Press Ctrl+V (or choose Edit > Paste) to place the elements. Use your mouse to
drag-and-drop one or more new elements to move them to the appropriate position within
the merged diagram.

5. Drag an element to position it precisely. In the case of statecharts, you can copy:

 Any state or connector.
 Any group of elements (including states, transitions, and connectors), provided

that, if it includes a transition, it also includes its source and target.
 A label of a transition. This is the only way to copy or create a transition.

6. Note that you can copy a transition only with its source and target.

7. Repeat Steps 1–5 to merge additional elements.

8. Edit the merged statechart if necessary. For example, you can draw new elements using
the toolbar icons and you can click anywhere in the window to unselect a new element.
112 Team Collaboration Guide

Merge units with the DiffMerge tool
9. When you have completed the merge operation, save the merged file as described in
Saving the graphically merged unit.

Tips for graphical merging for statecharts and activity diagrams
To locate the original transition and select its label, you can:

 Use Ctrl+C to copy the label.
 Draw the new transition in the merge window.
 Use Ctrl+V to paste in the new label.

To view any elements not visible within a new (active) statechart merge window, either maximize
the window or choose View > Zoom to Fit while the window is active.

If necessary, modify textual elements of graphic items using their Features windows.

If appropriate, work on any nested statecharts recursively.

Saving the graphically merged unit
To save the graphically merged file, choose File > Save Merge As.

Keep in mind:

 If you started the merge from within Rational Rhapsody, select Merge to Rhapsody. The
new, merged unit is saved as a separate file for use in the existing project or another
project.

 In some cases, there might be no Save Merge As. There might just be a Save if the
filename and its location was defined when DiffMerge was launched (for example, from
Rational ClearCase merge manager, or Rational Team Concert merge process in Eclipse).
Rational Rhapsody 113

Parallel development
About merging sequence diagrams

DiffMerge allows you to merge differing versions of sequence diagrams that you have compared
with DiffMerge. This is possible for both two-way comparisons and three-way (base-aware)
comparisons.

The merge ability is a manual merge process. There is no automatic merging of differences when
merging sequence diagrams.

Note
The operation mode of the sequence diagram (analysis or design) does not affect the
merging of sequence diagrams.

When merging sequence diagrams, you can make merge decisions directly from the DiffMerge
browser (structural merging), or, alternatively, you can display the various versions of the diagram
and make your merge decisions from within the diagrams (graphical merging).

Note
When merging sequence diagrams, you can use structural or graphical merging, or both.
However, once you begin using graphical merging, you cannot return to structural merging
unless you “reset” the diagram by including one of the versions of the diagram in its
entirety. In addition, structural merging of diagram elements (for example, instance lines,
messages, and so forth) is only available for sequence diagrams.

When making merge decisions, whether in “structural” mode or “graphical” mode, the following
principles apply:

 when an element exists in only one of the versions (“left” or “right”), you can choose to
include it in the merge or exclude it from the merge.

 when an element exists in both the “left” and “right” version, but it differs in the two
versions, you can choose to include either the “left” or “right” version in the merge.

Making merge decisions from the DiffMerge browser
To merge diagram elements from within the DiffMerge browser:

1. In the browser, right-click the relevant element.

2. Depending on your situation:

 For elements that exist in both versions, select Take from Left or Take from
Right.

 For elements that exist in only one of the versions, select Include in Merge or
Exclude from Merge.
114 Team Collaboration Guide

Merge units with the DiffMerge tool
Making merge decisions from the graphical view
To merge elements from the graphical view:

1. In the browser, right-click the relevant diagram, and select View All Diagrams.

2. Right-click the relevant element in the diagram, and depending on your situation:

 For elements that exist in both versions, select Take from Left or Take from
Right.

 For elements that exist in only one of the versions, select Include in Merge or
Exclude from Merge.

Additional changes permitted in graphical merge mode
When working in graphical mode, in addition to making merge decisions:

 You can move diagram elements on the “merged” version of the diagram that is displayed.
 You can delete diagram elements from the “merged” version of the diagram that is

displayed.
 You can change element attributes such as arguments.

However, you cannot create new elements to add to the diagram.

About “referring” elements
Sequence diagrams contain certain elements that are not dependent on the presence of any other
element, for example, classifier roles. Sequence diagrams also contain elements that require the
presence of other elements, for example, messages, which require the presence of the sending and
receiving elements. Dependent elements such as these are referred to here as “referring” elements.

When you are making merge decisions, referring elements can be included in the merge only if all
of the elements they refer to are included in the merge. For example, a message can be included in
the merge only if the sending and receiving classifier roles are included in the merge.

If you choose to exclude an element which other elements require, then these dependent elements
will be excluded from the merge as well.

Note

If a menu command to include an element in a merge is disabled on a pop-up menu, be sure
that you have not previously chosen to exclude an element upon which the selected element
depends.

In general, DiffMerge does not check whether the diagram resulting from a merge is correct. It it
the user's responsibility to ensure that merge decisions result in a correct sequence diagram.
Rational Rhapsody 115

Parallel development
Elements that realize Sequence diagram elements
Merge decisions regarding instance lines in a diagram do not affect the inclusion/exclusion of the
class that realizes the instance line, if one is specified.

Merge decisions regarding messages in a diagram do not affect the inclusion/exclusion of the
event that realizes the message, if one is specified.

Merge activity log

DiffMerge writes a textual log of a merge operation to the Merge Activity Log tab of the Output
window, based on the current preference settings.

See MergeLog preferences category for the list of preferences and their default values.

Producing merge reports

After some or all of the elements are merged, you can produce a Merge Report to see what you
have merged and any conflicting elements that still remain.

To produce a Merge Report:

1. If you want to have a report on a specific element, highlight it.

2. Choose Tools > Report Merging Decisions > All to select the whole project or Tools >
Report Merging Decisions > Selected for only the element selected in Step 1. The
Merge Report is displayed in the Output window.

Note

You can also create a Merge Report by right-clicking the element in the browser and
selecting Report Merging Decisions.

DiffMerge writes the Merge Report based on the current preference settings. See MergeLog
preferences category for information about these settings.
116 Team Collaboration Guide

DiffMerge tool preferences
DiffMerge tool preferences
To change the default characteristics of the DiffMerge tool, use the Preferences window (choose
View > Preferences). The preferences settings are stored in the user’s .ini file.

Note
While the Preferences window for the DiffMerge tool looks similar to the Properties
window in Rational Rhapsody, they are different. Changing your DiffMerge preferences
does not affect Rational Rhapsody units in any way.

Use the Preferences window to control the following categories of settings:

 Colors controls the colors used in by the DiffMerge tool. For more information, see Colors
preferences category.

 DiagramViews contains only the BlinkWalkingThroughDiffs preference that switches
the graphical walk-through blinking feature on or off. For more information, see
Switching off element blinking.

 DiffReport controls the appearance of the log of the results of a diff operation. For more
information, see DiffReport preferences category.

 General controls the general aspects and default behavior of the DiffMerge tool.
 MergeLog control the appearance of the log of the results of a merge operation. For more

information, see MergeLog preferences category.
 Suppressions specifies which items should be ignored by the DiffMerge tool. For more

information, see Suppressions preferences category.
 TextDiffMerge control textual DiffMerge operations. For more information, see

TextDiffMerge preferences category.

Changing preferences

To change the value of a preference:

1. Open the Preferences window. Choose View > Preferences.

2. Click the + sign next to a category to expand its list.

3. Click the box to the right of the preference you want to change.

4. Type a new value, or select or clear a control, as applicable.

5. Click OK.
Rational Rhapsody 117

Parallel development
Restoring default settings
To revert to the default values of the preferences:

1. On the Preferences window, click Restore Defaults.

2. When asked to confirm your requested action, click Yes.

Keywords

Note that some of the default values of the preferences include the following keywords:

 $diffs means the number of differences found
 $elemname means the name of the model element
 $elemtype means the model element type (class, component, and so on)
 $itemname means the name of the attribute
 $leftonly means the number of elements that exist only on the left side of the comparison
 $parentname means the name of the parent
 $parenttype means the parent type (class, component, and so on)
 $rightonly means the number of elements that exist only on the right side
 $BaseAwareDiffInvocation means the command to launch the external textual three-unit

comparison in the DiffMerge tool (used in the TextDiffMerge preferences category
preferences)

 $DiffInvocation means the command to launch the external textual two-unit comparison
in the DiffMerge tool (used in the TextDiffMerge preferences category preferences)

 $sourceBase means the text file containing compared value from the base (used in the
TextDiffMerge preferences category preferences)
118 Team Collaboration Guide

DiffMerge tool preferences
Colors preferences category

The Colors preferences category on the Preferences window enables you to change the default
colors used by the DiffMerge tool. To learn how to change preferences, see Changing preferences.

The following table lists the possible settings and their default values.

DiffReport preferences category

The DiffReport preferences category enables you to control the appearance of the textual report
on the differences found by the DiffMerge tool. To learn how to change preferences, see Changing
preferences.

The following table lists the possible settings and their default values.

Preference Name Description Default Value

DiffColor Specifies the color used to print the items with differences,
highlight graphical differences, and print the merge activity.

RGB (255, 0, 0)

LeftOnlyColor Specifies the color used to print the items in the left-only
category, highlight graphical differences, and print the merge
activity.

RGB (0, 0, 255)

NestedDiffColor Specifies the color used to print the items with nested
differences.

RGB (153 153, 153)

NoDiffColor Specifies the color used to print the “no differences” category
for an item and highlight graphical differences.

RGB (0, 0, 0)

RightOnlyColor Specifies the color used to print the items in the right-only
category, highlight graphical differences, and print the merge
activity.

RGB (0, 0, 0)

ReportFooterColor Specifies the color used in the report footer. RGB (0, 0, 0)

ReportHeaderColor Specifies the color used in the report header. RGB (0, 128, 64)

UseDefault Specifies whether to use the default color or not. Checked

Preference Name Description Default Value

BaseAwareDiffAttrChanged Specifies that the attribute was
modified on one side.

: * Attribute "$itemname" changed
$side ($triviality)

BaseAwareDiffAttrChngBoth Specifies that the attribute was
modified on both side.

: # Attribute "$itemname" changed
on both sides ($triviality)

BaseAwareDiffAttrDelAndChng Specifies that the attribute was
deleted on one side and changed on
the other side.

: % Attribute "$itemname" deleted
$side and changed on the other
side ($triviality)

BaseAwareDiffElemAdded Specifies that the model element was
added

+ $elemtype $elemname added
$side ($triviality)
Rational Rhapsody 119

Parallel development
BaseAwareDiffElemChanged Specifies that the model element was
changed on one side

* $elemtype $elemname changed
$side ($triviality)

BaseAwareDiffElemChngBoth Specifies that the model element was
modified on both sides.

$elemtype $elemname changed
on both sides ($triviality)

BaseAwareDiffElemDelAndChng Specifies that the model element was
deleted on one side and changed on
the other side.

% $elemtype $elemname deleted
$side and changed on the other
side ($triviality)

BaseAwareDiffElemDeleted Specifies that the model element was
deleted

- $elemtype $elemname deleted
$side ($triviality)

BaseAwareDiffMergeAutoNo Specifies the string indicating that the
compared element cannot be merged
automatically.

cannot be merged automatically

BaseAwareDiffMergeAutoYes Specifies the string indicating that the
compared elements can be merged
automatically.

can be merged automatically

BaseAwareDiffReportFooter Specifies the footer of base-aware
Difference Report.

--- Found $diffs elements with
differences, $leftonly elements
exists only on left side, $rightonly
elements exists only on right side

BaseAwareDiffReportHeader Specifies the header of base-aware
Difference Report.

=== Reporting differences for
$elemtype $elemname
($mergeauto) ===

BaseAwareDiffSideLeft Specifies the string indicating the left
side of comparison.

on the left

BaseAwareDiffSideRight Specifies the string indicating the
right side of comparison.

on the right

BaseAwareDiffTrivialNo Specifies the string indicating the n-n-
trivial (conflict) difference of the
element.

non-trivial diff

BaseAwareDiffTrivialYes Specifies the string indicating the
trivial (non-conflict) difference of the
element.

trivial diff

DiffPrefix Describes the elements with
differences

<> Differences
found for $elemtype
$elemname

LeftOnlyPrefix Describes the elements that exist
only on the left side of the
comparison

< $elemtype $elemname exists
only on left side

NestedDiffPrefix Describes the elements with nested
differences

>> $elemtype $elemname:

NestedElementPrefix Specifies the text to be appended to
each nested element

a tab character

NoDiffPrefix Describes the elements with no
differences

= No differences found for
$elemtype $elemname

Preference Name Description Default Value
120 Team Collaboration Guide

DiffMerge tool preferences
General preferences category

The General preferences category controls the general aspects and default behavior of the
DiffMerge tool. To learn how to change preferences, see Changing preferences.

Note
The RepPLUScmdline, ReporterPLUSPath, and ReporterPLUSTemplateDir
preferences are for internal use only by Rational Rhapsody staff. Any changes to these
preferences should only be done by or under the direction of the Rational Rhapsody staff.

ElementMatchRule
The ElementMatchRule preference specifies which rule DiffMerge will apply to match the
elements within the units being compared.

Possible values:

 Default (default)
 Without Renaming Support

Select Default if you want DiffMerge to try to match elements by ID if there are not matches by
name. Note that this means that the DiffMerge tool will be able to detect and report if an element
has been renamed and has a different name on each comparison side.

Select Without Renaming Support if you want DiffMerge to match elements only by name. Note
that this means that two of the same elements in the same units (in the two Rational Rhapsody
projects you are comparing) will never be matched because they have different names.

PrintLineNumbers Determines whether line numbers
are printed in the report

Cleared (do not include)

PrintNoDiffLines Determines whether to report
elements without differences

Cleared (do not report)

PrintSubDiffs Determines whether to report
subdifferences

Checked (report subdifferences)

ReportFooter Specifies the text to be appended to
the end of each report

Found $diffs elements with
differences, $leftonly elements
exists only on left side, $rightonly
elements exists only on right side

ReportHeader Specifies the text to be appended to
the beginning of each report

===Reporting differences for
$elemtype $elemname===

RightOnlyPrefix Describes the elements that exist
only on the right side of the
comparison

> $elemtype $elemname exists
only on right side

Preference Name Description Default Value
Rational Rhapsody 121

Parallel development
ResolveAutomaticallyWhenStartingMerge
The ResolveAutomaticallyWhenStartingMerge preference specifies wether DiffMerge should
or should not resolve all trivial differences when performing a merge in a base-aware comparison

The Do you want to automatically merge trivial differences? message appears every
time until a user selects Use my current reply as default. After that, DiffMerge will or will not
resolve differences automatically without asking a user, for example, not displaying that message
any more.

Possible values:

 Ask (default)
 Yes
 No

ShowDMMarksInBaseAwareMode
The ShowDMMarksinBaseAwareMode preference specifies what DiffMerge should or should
not display the legacy difference and merging state marks when performing a base-aware
comparison.

Default Value: Cleared
122 Team Collaboration Guide

DiffMerge tool preferences
MergeLog preferences category

The MergeLog preferences category enables you to control the appearance of the Merge activity
log and Producing merge reports of the results from a merge operation. To learn how to change
preferences, see Changing preferences.

The following table lists the possible settings and their default values.

Preference Name Description Default Value

AllLeftItemMerge Specifies all the items from the left side to add
to the merge

$elemtype "$elemtype": All items
from left added to merge

AllRightItemMerge Specifies all the items from the right side to
add to the merge

$elemtype "$elemtype": All items
from right added to merge

ExcludeFromMerge Specifies the model elements that will not be
included in the merge

$elemtype "$elemname" removed
from merge

GraphicalMerge Specifies that a statechart or activity diagram
was graphically merged

$elemtype of "$parenttype
$parentname" merged graphically

IncludeInMerge Specifies the model element to add to the
merge

$elemtype "$elemname" added to
merge

ItemMerge Specifies that the item has been merged $elemtype "$elemname": Item
"$itemname" merged

LeftItemMerge Specifies that the item from the left was added
to the merge

$elemtype "$elemtype": Item
"$itemname" from left added to
merge

LeftMerge Specifies that the model elements from the left
were added to the merge

$elemtype "$elemname" from left
added to merge.

MergeToRhapsody Specifies that the current merge has been
added to Rational Rhapsody

$elemtype "$elemname" merged
with Rational Rhapsody

RepDecidedAuto Specifies the string indicating the automatically
resolved element.

automatically

RepDecidedMan Specifies the string indicating the manually
resolved element.

manually

RepElemExcluded Specifies that the model element is excluded
from merge.

- $elemtype $elemname excluded
from merge $decided

RepElemIncluded Specifies that the model element is included
into merge.

+ $elemtype $elemname included
into merge $side $decided

RepElemMerged Specifies that the model element existing on
both sides is merged (a user took some part
from the left, some part from the right, or
merged attribute values by external textual
DiffMerge tool).

* $elemtype $elemname merged
$decided

RepElemTakenFrom Specifies that the model element existing on
both sides is included into merge from
particular side.

* $elemtype $elemname added
into merge $side $decided

RepElemUndecided Specifies that the model element existing on
both sides is still undecided.

$elemtype $elemname is
undecided
Rational Rhapsody 123

Parallel development
Suppressions preferences category

The Suppressions preferences category enables you to specify which items should be ignored by
the DiffMerge tool. To learn how to change preferences, see Changing preferences.

DiffAttributesFilter
Specifies a comma-separated list of attributes that should be ignored by the DiffMerge tool. For
example, if this value is id,name the DiffMerge tool ignores the differences in the ID and name of
objects.

Default value:

id,lastID,ImportData,cmheader,
state,RequiremenTracabilityHandle,
isSaveUnit,isUR,isNameGenerated,
isReadOnly,errorStatus,version,baseVersion,
defNumber,directoryName,CPUtype,icon,
isTemplate,typeID,stereotypeID,DependsOnID,
DependsOnImportData

RepFooter Specifies the footer of the Merge Report.

RepHeader Specifies the header of the Merge Report. === Reporting merging decisions
for $elemtype $elemname ===

RepItemDecided Specifies that the item (the attribute) is
manually included into merge from particular
side whereas its model element is taken into
merge from the other side.

: Attribute \"$itemname\" added
into merge $side manually

RepItemMerged Specifies that merged value of the item (the
attribute) is manually edited by user.

: Attribute \"$itemname\" merged
manually

RepSideLeft Specifies the string indicating the left side of
comparison.

from the left

RepSideRight Specifies the string indicating the right side of
comparison.

from the right

RightItemMerge Specifies that the item from the right was
added to the merge

$elemtype "$elemtype": Item
"$itemname" from right added to
merge

RightMerge Specifies that the model elements from the left
were added to the merge

$elemtype "$elemname" from right
added to merge

SaveMerge Specifies that the merge has been saved Saved merged $elemtype
"$elemname" to $filename

StartMerge Specifies that the merge has started Started merge for $elemtype
"$elemname"

Preference Name Description Default Value
124 Team Collaboration Guide

DiffMerge tool preferences
ExcludeGraphTypesVLess6
Specifies a comma-separated list of Rational Rhapsody classes that should be ignored by
DiffMerge tool when comparing diagrams from Rational Rhapsody version older than 6.0 (to
provide DiffMerge backward compatibility).

Default value:

CGIMessageLabel,CGIFreeText

IgnoreGraphDiffs
Specifies the initial value of the Ignore Graphical Differences option.

Default value: Checked

ShowMetaInfoInBrowser
Determines whether meta information is displayed in the DiffMerge browser. This preference
turns on/off displaying element types (metaclasses) in the right part of the DiffMerge browser.

Default value: Cleared

ShowStereotypeInBrowser
Determines whether element stereotypes are displayed in the DiffMerge browser.

Default value: Cleared
Rational Rhapsody 125

Parallel development
SuppressRenamePropagatedDiffs
In cases when the DiffMerge tool detects that there are Rational Rhapsody element name changes,
the SuppressRenamePropagatedDiffs preference specifies whether propagated differences
related to the detected name changes should be filtered out.

Default value: Cleared (meaning this preference is turned off)

When turned on (meaning the check box is selected), the DiffMerge tool suppresses all attribute
differences that correspond to detected name changes.

Because of the purpose of this preference, this preference value is disregarded when DiffMerge is
launched:

 From the command line when you use the merge, xmerge, compare, or xcompare
commands

 From the Configuration Management window in Rational Rhapsody when you try to
compare
and/or merge unit versions

 From an integrated CM tool (Rational Synergy, Rational ClearCase, and so forth)

Note
This use of the SuppressRenamePropogatedDiffs preference is for comparison and
reporting purposes only. There is no merging allowed when this preference is turned on to
avoid unintentional merging and corrupting a model.
126 Team Collaboration Guide

DiffMerge tool preferences
TextDiffMerge preferences category

The TextDiffMerge preferences category controls the appearance of textual DiffMerge operations,
including the Rational ClearCase ClearDiff and ClearDiffMrg tools. Rational Rhapsody searches
for the preferred external, textual diff/merge tool in this sequence:

 Choose View > Preferences for any changes in the DiffMerge.ini file
 Current source control management tool metaclass
 Under DiffMerge::TextDiffMerge in the preferences file

The following table lists the TextDiffMerge preference settings and their default values.

Preference Name Description Default Value

BaseAwareAutoMergeInvocation Specifies how to launch the external
textual DiffMerge tool supporting
base-aware (three-unit) detection of
triviality of textual difference and
three-unit automatic merging.

BaseAwareAutoMergeableAttributes Specifies a list of attribute names,
which contain text values and are
allowed to merge automatically. The
value of attribute can be also All
(meaning all attribute can be
textually merged) and None
(meaning no automatic textual
merge should be done). The default
value, ItsBody, determines that
only the implementation for the
methods or/and operations will be
merged automatically when
possible.

ItsBody

BaseAwareDiffInvocation Specifies how to launch the external
textual DiffMerge tool supporting a
base-aware comparison and
merging in Base Aware Diff mode.

$OMROOT\etc\tkdiff.exe
$source1 $source2 -a
$sourceBase

BaseAwareDiffMergeInvocation Specifies how to launch the external
textual DiffMerge tool supporting
base-aware comparison and
merging in Base Aware Merge
mode.

$BaseAwareDiffInvocation
-o $output

BaseAwareTextDiffMergeEnabled Determines whether a base-aware
(three-unit) textual DiffMerge tool is
available to be launched.

Cleared (check box cleared)
Rational Rhapsody 127

Parallel development
Note
The metaclass General::DiffMerge and its preferences (MergeOutput, DiffInvocation,
and DiffMergeInvocation) were removed in Version 4.1 of Rational Rhapsody. Therefore,
if you previously overrode those properties in your site.prp file, Rational Rhapsody
ignores them (they will have no effect) unless you move them under
DiffMerge::TextDiffMerge.

DiffInvocation Specifies how to launch the external
textual DiffMerge tool in Diff mode.
For example, if the value is tkdiff
$source1 $source2, DiffMerge
calls the TkDiff tool.

$OMROOT\etc\tkdiff.exe
$source1 $source2

The keywords are as follows:
• $OMROOT means the location

of the Share subdirectory
under the Rational
Rhapsody installation

• $source1 means the text
file containing left value of
compared attribute

• $source2 means the text
file containing right value of
compared attribute

DiffMergeInvocation Specifies how to launch the external
textual DiffMerge tool in the Merge
mode. For example, if the value is
tkdiff $source1 $source2 -o
$output,
DiffMerge calls the TkDiff tool.

$DiffInvocation -o
$output

The keyword is $output means
the text file that the merged
result will be written to (is
replaced by value of the
MergeOutput preference).

MergeOutput Specifies the text file path and name
that the merging result will be
written to. For example, if the value
is c:\temp\out.txt, DiffMerge
looks for the merging result in the
out.txt file in the c:\temp folder.

$temp\out.txt

The keyword is $temp means
the folder specified in the
operational system to store
temporary files.

Preference Name Description Default Value
128 Team Collaboration Guide

Command-line options for the DiffMerge tool
Command-line options for the DiffMerge tool
The DiffMerge CLI (command line interface) supports all of the DiffMerge tool features including
automatically accepting all trivial, non-conflicting differences for a merge operation (except where
noted). The CLI can also be launched from IBM Rational ClearCase to perform the same tasks that
can be performed using the DiffMerge interface, as described previously.

Developers use DiffMerge CLI to create batch files that launch the DiffMerge command-line
interface and automate some of the tasks associated with software development, particularly
scheduled nightly builds.

Launching the DiffMerge tool interface using the command line

To launch the DiffMerge tool interface using the command line:

1. Open a command-line prompt window.

2. Change the command-line path to the Rational Rhapsody installation folder.

3. Type Diffmerge.exe and press the Enter key to open the DiffMerge window.

This interface provides all of the features available for two-way and base-aware comparisons.

Launching the DiffMerge tool from the command line

If you do not want to work through the interface, you can run the DiffMerge tool completely from
the command line:

1. Open a command-line prompt window.

2. Change to the Rational Rhapsody installation folder.

3. Type Diffmerge.exe <options> as listed in DiffMerge command-line syntax options. The
interface does not appear, unless you use the -xcompare or -xmerge option.
Rational Rhapsody 129

Parallel development
DiffMerge command-line syntax options

The Rational Rhapsody DiffMerge tool basic syntax is the diffmerge.exe command with the
options described in the following table.

Diffmerge.exe <options>

For example, you might enter the following code to create a base-aware comparison/merge that
includes the subunits (-recursive) and specifies the output file in C:\Radio_Merge\Radio.rpy:

Diffmerge.exe -merge -recursive
C:\Radio_Main\Radio.rpy
C:\Radio_Branch\Radio.rpy
-base C:\Radio_Base\Radio.rpy
-out C:\Radio_Merge\Radio.rpy

The following table lists the command-line options.

Option Description Syntax

-base <filename> Specifies the name of the file that is the
common ancestor of the two compared files
(file1 and file2 in the syntax) for a base-
aware comparison, as described in For
three units.

Diffmerge.exe -base <base
file name> <file1>
<file2>
-compare

-compare Starts the DiffMerge tool in Compare mode
for two units, but does not display the
DiffMerge interface. (To start a compare and
display the interface, use the
-xcompare command.)
Graphical mode performs the comparison
and then exits to the system prompt. The
results of the comparison are as follows:
0 = identical Rational Rhapsody units
1 = differences between the two units were
identified
This result can be retrieved by the
ERRORLEVEL MSDOS variable. For
example, echo Exit code =
%ERRORLEVEL%

Diffmerge.exe <file1>
<file2> -compare

-diffReport
<Difference
Report file>

Writes all the text in the Difference Report
tab to the specified file. For more
information, see Difference Report
generation.
Use only when using -compare or -merge,
otherwise -DiffReport will not be
executed.

Diffmerge.exe -compare
<file1> <file2>
-diffReport <filename>
or
Diffmerge.exe -merge
<file1> <file2>
-base <file0>
-diffReport <filename>
130 Team Collaboration Guide

Command-line options for the DiffMerge tool
-merge Starts the DiffMerge tool in merge mode, but
does not display the DiffMerge interface. (To
start a merge and display the interface, use
the -xmerge command.)
If the tool detects a merge conflict, the
merge action is stopped, and the tool
returns a “1” exit code.
This result can be retrieved by the
ERRORLEVEL MSDOS variable. For
example, echo Exit code =
%ERRORLEVEL%
If the merge can be completed automatically
(without conflicts), the merged unit is saved
using the file named in the -out command.
If no -out command is specified, the Save
window appears to allow the developer to
enter a name for the new file.
Note: The -merge command is applicable
for base-aware mode only, therefore you
must specify a base unit (see -base).

Diffmerge.exe <file1>
<file2> -base <file0>
-merge

-mergeLog <Merge
Activity Log
file>

Writes all the text in the Merge Activity Log
tab to the specified file. For more
information, see Merge activity log.
If the file does not exist, DiffMerge creates
the file. If it already exists, the new
information is appended to the existing file.
Use only when using -merge, otherwise
-mergeLog will not be executed.

Diffmerge.exe -merge
<file1> <file2> -base
<file0> -mergeLog
<filename>

-mergeReport
<Merge Report
file>

Writes all the text in the Merge Report tab
to the specified file. For more information,
see Producing merge reports.
If the file does not exist, DiffMerge creates
the file. If it already exists, the new
information is appended to the existing file.
Use only when using -merge, otherwise
-mergeReport will not be executed.

Diffmerge.exe -merge
<file1> <file2> -base
<file0> -mergeReport
<filename>

-out <fileName> Replaces the Save merge as option with an
option to save the merge results to the
specified file.
Use only when using <file1> and
<file2> to merge two files.

Diffmerge.exe <file1>
<file2>
-out <filename>

-recursive Compares with subunits. DiffMerge loads
the subunit files automatically. By default,
DiffMerge compares without the subunits.

Diffmerge.exe <file1>
<file2> -recursive

-xcompare Starts the DiffMerge tool in Compare mode
and displays the interface.

Diffmerge.exe <file1>
<file2> -xcompare

-xmerge Starts the DiffMerge tool in Merge mode and
displays the interface.

Diffmerge.exe <file1>
<file2> -xmerge

Option Description Syntax
Rational Rhapsody 131

Parallel development
132 Team Collaboration Guide

IBM Rational Synergy
Rational Rhapsody supports CM tools, including IBM® Rational® Synergy®. This subject
provides information and procedures on Rational Synergy and Rational Rhapsody.

Setting up Rational Rhapsody for use with Rational
Synergy

Before you can use Rational Synergy with Rational Rhapsody, you need to set up Rational
Rhapsody so that the two systems can communicate with each other using SCC mode. Be certain
that the following operations are performed to establish that communication:

1. Install the SCC add-on for Rational Synergy. Download it from the IBM Web site at http:/
/www-01.ibm.com/support/docview.wss?uid=swg21380569:

a. Select your Rational Synergy product version.

b. Sign in with your IBM ID and password.

c. On the Downloads page, in the Integrations section, select the check box for an
applicable PC Integration and download the file.

2. To enable the integration and display the Rational Synergy toolbar within Rational
Rhapsody, add the following flag to the General section of rhapsody.ini file:
ShowSynergyTaskBar=TRUE

3. Be certain that the location of the ccm.exe file (in <Synergy Installation
Directory>\bin) is in the PATH environment variable.

4. When using Rational Synergy and the Rational Rhapsody DiffMerge tool, you need to
include the location of the DiffMerge.exe file that is in the Rational Rhapsody installation
folder (for example, <Rhapsody installation path>\Rhapsody73) in the PATH
environment variable.
Rational Rhapsody 133

http://www-01.ibm.com/support/docview.wss?uid=swg21380569
http://www-01.ibm.com/support/docview.wss?uid=swg21380569

IBM Rational Synergy
5. Import the Rational Rhapsody type definition file into Rational Synergy/CM. This adds
Rational Rhapsody types to the Rational Synergy Type Manager. It also links the Rational
Rhapsody DiffMerge tool to perform comparison and merging on Rational Rhapsody files
within Rational Synergy. Download this file from the IBM Web site at http://www-
01.ibm.com/support/docview.wss?uid=swg21380564.

a. Select your Rational Rhapsody product version.

b. Sign in with your IBM ID and password.

c. On the Downloads page, in the Integrations section, select the check box for the
Rational Rhapsody Type Definition File and Application Note File and download the
file.

d. After it has completed downloading, see the instructions provided with the file.

6. Add the following code to your ccm.ini file:

rhapsodytypes_merge_cmd = DiffMerge.exe -xmerge %file1
%file2 -base %ancestor -out %outfile
134 Team Collaboration Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21380564
http://www-01.ibm.com/support/docview.wss?uid=swg21380564

Rational Synergy and Rational Rhapsody
Rational Synergy and Rational Rhapsody
With Rational Synergy and Rational Rhapsody, you can perform all of the standard configuration
management operations and these additional operations:

 Creating new Rational Synergy tasks

 Checking in Rational Rhapsody work

 Viewing the properties for a Rational Synergy task

 Viewing assigned tasks and setting up or changing the current task
 Refreshing the Rational Synergy task list in Rational Rhapsody to display newly created

tasks

Using Rational Synergy with Rational Rhapsody

To begin using Rational Synergy with Rational Rhapsody:

1. To determine where to save your Rational Rhapsody project within Rational Synergy,
right-click the Rational Synergy project (in which you want to save a Rational Rhapsody
project) in the Rational Synergy work area and select Explore, and then note the path to
the project on your local disk.

2. Within Rational Rhapsody, create a new Rational Rhapsody project and save it in the
directory for the Rational Synergy project in the Rational Synergy work area on your local
drive.

3. Set the Rational Rhapsody Configuration Management::General::UseSCCtool
property to Yes to indicate that you are using Rational Synergy and not one of the other
configuration management tools. Other CM tools are selected with the CMTool property.

If you do not see the Rational Synergy toolbar, as shown in the following figure, you must change
the ShowSynergyTaskBar flag in the General section of rhapsody.ini file to TRUE. Or if the
flag is set correctly, make sure that viewing the toolbar has not been switched off. Choose View >
Toolbars Synergy tasks to reset it.
Rational Rhapsody 135

IBM Rational Synergy
Connecting to the Rational Synergy archive

To connect to the Rational Synergy archive with Rational Rhapsody:

1. In Rational Rhapsody, open the Configuration Items window. Choose File >
Configuration Items.

2. Click the Connect to Archive button . The Startup Info window opens.

3. Make any changes needed on the Startup Info window, and click Continue. The Open
Synergy/CM Project window opens.

4. On the Open Synergy/CM Project window, select the Scope to list the groups of projects
managed in Rational Synergy. Then select the Project Name and Project Version for the
specific project you are going to use.

5. Click OK to close the Open Synergy/CM Project window.

6. Click OK to dismiss the confirmation message.
136 Team Collaboration Guide

Rational Synergy and Rational Rhapsody
Creating new Rational Synergy tasks

In Rational Rhapsody, to create each Rational Synergy task that you want to use:

1. Click the Create New Task button on the Rational Synergy toolbar in Rational
Rhapsody.

2. In the window that opens, type the Task Synopsis name that you want to appear in the
drop-down list on the Rational Synergy toolbar in Rational Rhapsody.

3. Enter any necessary information on this window. The entries in these boxes become the
properties of the task. That information is accessible for each task, as described in Viewing
the properties for a Rational Synergy task.

4. Click Assign to save the task in Rational Synergy and make it available for use in Rational
Rhapsody.

Note
When you create a task, Rational Synergy names it, by default, as Task <task_number>.
This is also the default for the ConfigurationManagement::Synergy::
AssignedTasksItsTaskId property in Rational Rhapsody. However, when you configure
your DCM server, you can set it to insert a prefix before <task_number>. In this case, you
might want to update the
ConfigurationManagement::Synergy::AssignedTasksItsTaskId property to use the
regular expression you want. For example, if you set the prefix ukan# on your DCM server
and you want this to appear in Rational Rhapsody too, then you should set the value for this
property to Task ukan#([0-9\.]+) otherwise the default is Task ([0-9\.]+). The value
in this property must match the value set on your DCM server for created tasks to appear as
you want in the drop-down list on the Rational Synergy toolbar in Rational Rhapsody.

You might also want to set the ConfigurationManagement::Synergy::
AssignedTasksItsTitle property and the ConfigurationManagement::
Synergy::GetCurrentTaskItsTaskId property. Use AssignedTasksItsTitle to specify a
regular expression for the title of a task. It default value is Task (.*). You would use
GetCurrentTaskItsTaskId while getting the current task from Rational Synergy to check
if the ID for the current task is matching the given regular expression. Its default is
(([^#]*#)?[0-9\.]+).
Rational Rhapsody 137

IBM Rational Synergy
Viewing the properties for a Rational Synergy task

Each Rational Synergy task has information supplied when it is created. These are the properties
of each task.

To examine the properties for a task:

1. With the task appearing in the drop-down list on the Rational Synergy toolbar, click the

Task Properties button .

2. You can view the task properties, but not change them.

Working with a Rational Synergy task in Rational Rhapsody

To create elements in Rational Rhapsody and use Rational Synergy for configuration management:

1. Be certain that the Rational Rhapsody project is open in the Rational Synergy work area.

2. Select the Rational Synergy task from the drop-down list on the Rational Synergy toolbar,
Create Use Cases, as shown in the following figure:

Note
If the tasks you created in Rational Synergy do not appear in the drop-down list, click the
Refresh button . In addition, see the note in Creating new Rational Synergy tasks.

Checking in Rational Rhapsody work

After working on the selected task in Rational Rhapsody, check it into Rational Synergy.

1. Click the Checkin Current Task button on the Rational Synergy toolbar.

2. All units in the task are checked into Rational Synergy, and the processing messages
display on the Configuration Management tab of the Rational Rhapsody Output window.
138 Team Collaboration Guide

Rational Synergy and the Rational Rhapsody DiffMerge tool
Rational Synergy and the Rational Rhapsody
DiffMerge tool

To use Rational Synergy with the Rational Rhapsody DiffMerge tool, use these methods:

 Include the location of the DiffMerge.exe file that is in the Rational Rhapsody installation
folder (for example, <Rhapsody installation path>\Rhapsody73) in the PATH
environment variable.

 Import the Rational Rhapsody type definition file into Rational Synergy/CM. This adds
Rational Rhapsody types to the Rational Synergy Type Manager. It also links the Rational
Rhapsody DiffMerge tool to perform comparison and merging on Rational Rhapsody files
within Rational Synergy. For instructions on how to import this file, see step 5 in Setting
up Rational Rhapsody for use with Rational Synergy.

 To use the Rational Synergy Text Diff tool from the Rational Rhapsody DiffMerge tool,
specify these settings from the Rational Rhapsody DiffMerge through View >
Preferences and set the following values. After you set and save any changes to these
preferences, they are set for every time you use the DiffMerge tool.

– BaseAwareTextDiffMergeEnabled. Select the check box (TRUE)
– BaseAwareAutoMergeInvocation. Enter value of ccm_merge.exe -3edu -l
$source1 -r $source2 -a $sourceBase -z $output

Customize Rational Rhapsody and Rational Synergy
To customize Rational Rhapsody and Rational Synergy operations on the task toolbar you can use
the properties available in the ConfigurationManagement::SYNERGY metaclass from the
Properties tab in the Features window.
Rational Rhapsody 139

IBM Rational Synergy
140 Team Collaboration Guide

IBM Rational ClearCase
Rational Rhapsody supports CM tools, including IBM® Rational® ClearCase®, in either of two
main modes: Batch and SCC. This subject discusses the Rational Rhapsody and Rational
ClearCase integration, mostly in Batch mode.

To determine which mode might be best for your situation, review Batch mode Versus SCC mode.

Batch mode Versus SCC mode
Rational Rhapsody supports CM tools, including Rational ClearCase, in either of two main modes:
Batch and SCC.

Batch mode is the traditional method of interacting with CM tools that do not conform to the SCC
standard. In this mode, Rational Rhapsody has a custom set of properties for each tool that launch
tool-specific commands for the CM operations.

SCC mode is an alternate method of interacting with CM tools that conform to the SCC standard.
In SCC mode, you need set only one property to interface with any of dozens of SCC-compliant
CM tools, without further customization. You interact directly with the GUI elements for the CM
tool to perform SCC-supported operations. Return status information, or error information in the
case of failure, comes directly from the CM tool. In this way, you have more direct CM tool
interaction, and receive more complete feedback on CM operations, in SCC mode.

Each mode has pros and cons in the Rational Rhapsody and Rational ClearCase integration. To
help you decide which mode might be best for your situation, this topic provides you with an
in-depth understanding of these differences. It also provides you with a decision-making process to
help Rational Rhapsody and Rational ClearCase users determine which mode might better address
their needs.
Rational Rhapsody 141

IBM Rational ClearCase
The differences between the Batch and SCC modes

The following table lists all the differences between the Batch and SCC modes of Rational
Rhapsody/Rational ClearCase integration.

CM Operation Batch Mode SCC Mode Comments

Operating System

OS Windows and
Linux

Windows SCC mode is available only on Windows, while
Batch mode is available on both Windows and
Linux.
Note that this is the operating system that Rational
Rhapsody and the Rational ClearCase client are
installed on. It is not the operating system that the
Rational ClearCase server is installed on.

Basic CM Operations

Checkout You can specify
which version to
check out

You cannot specify
the version to
check out. It
depends on the
configuration
specification.

In Batch mode, you never know what version should
be typed in the window. Best practice in both cases
is the same, check out directly from the version tree
and reload the unit using “synchronize.”

Fetch N/A N/A N/A (Not Applicable) in Rational ClearCase. The
view concept means the file is always “fetched.”

Uncheckout Supports
uncheckout of
multiple items with
descendant.

A single item can
be unchecked out
and descendants
are not supported.

Although Uncheckout is available in both modes,
SCC does not have Uncheckout With Descendants.

Exploring History and Past Views

History No Yes History and version tree provides the same
information but in different form. While version tree
provides a graphical view, history just lists the
versions. It is possible to switch from one view to the
other in both cases.

Version Tree Yes No

Diff with Rhapsody Yes Yes This operation can be performed successfully in
SCC only if the hybrid mode is enabled. Therefore,
the ConfigurationManagement::General::
UseHybridModeWhenPossible property should
be set to Checked in this case.

Properties No Yes Available only in SCC mode. In Batch mode it is
possible through user-defined buttons (needs a
simple command: describe -graphical).

Advanced CM Interaction and UCM

UCM support and
other Advanced
Options

No Yes If using SCC mode, during the CM operations you
can get to advanced options.
142 Team Collaboration Guide

Batch mode Versus SCC mode
Customization Yes No While advanced options are not available in Batch
mode in the same way, it is possible to achieve
many of those functionalities through properties
customization in Batch mode.

Repository Restructuring

Rename Member Yes Yes Available in both modes depending on the value of
ConfigurationManagement::ClearCase::
RenameActivation (if you are using Batch mode)
or ConfigurationManagement::SCC::
RenameActivation (if you are using SCC mode)
When this operation is performed on a package-as-
directory in SCC, the repository can be restructured
successfully only if hybrid mode is enabled.
Therefore, the ConfigurationManagement::
General::UseHybridModeWhenPossible
property should be set in this case.

Move Member Yes Yes Available in both modes depending on the value of
ConfigurationManagement::ClearCase::
MoveActivation (if you are using Batch mode) or
ConfigurationManagement::SCC::
MoveActivation (if you are using SCC mode).
When this operation is performed on a package-as-
directory in SCC, the repository can be restructured
successfully only if hybrid mode is enabled.
Therefore, the ConfigurationManagement::
General::UseHybridModeWhenPossible
property should be set in this case.

Delete Member Yes Yes Available in both modes depending on the value of
ConfigurationManagement::ClearCase::
DeleteActivation (if you are using Batch mode)
or ConfigurationManagement::SCC::
DeleteActivation (if you are using SCC mode).
When this operation is performed on a package-as-
directory in SCC, the repository can be restructured
successfully only if hybrid mode is enabled.
Therefore, the ConfigurationManagement::
General::UseHybridModeWhenPossible
property should be set in this case.

CM Operation Batch Mode SCC Mode Comments
Rational Rhapsody 143

IBM Rational ClearCase
Set a package to
be stored in its own
directory

Yes Yes Available in both modes depending on the value of
ConfigurationManagement::ClearCase::
StoreInSeparateDirectoryActivation (if
you are using Batch mode) or
ConfigurationManagement::SCC::
StoreInSeparateDirectoryActivation (if
you are using SCC mode).
The corresponding directory will be created in CM
archive as well, and the relevant .sbs file with its
entire descendants will be moved to this directory.
In SCC, this operation is executed in hybrid mode.
Therefore, in addition to the above-mentioned
property, the ConfigurationManagement::
General::UseHybridModeWhenPossible
property should be set as well.

Set a package not
to be stored in its
own directory

Yes Yes Available in both modes depending on the value of
ConfigurationManagement::ClearCase::
StoreInSeparateDirectoryActivation (if
you are using Batch mode) or
ConfigurationManagement::SCC::
StoreInSeparateDirectoryActivation (if
you are using SCC mode).
The relevant .sbs file with its entire descendants
will be moved to the parent directory, and the
directory created for this package will be removed
from the archive.
In SCC, this operation is executed in hybrid mode.
Therefore, in addition to above-mentioned property,
the ConfigurationManagement::
General::UseHybridModeWhenPossible
property should be set as well.

CM Commands Execution Mode

User interaction
and feedback

Commands are
executed in a shell
as batch
commands. Errors
or other messages
are shown to the
user in the
Rational
Rhapsody Output
window. Rational
Rhapsody is not
able to react to
CM errors.

Interacts directly
with CM tool using
their UI and API.
Rational
Rhapsody is
aware of CM
errors and reacts
accordingly.

The user interacts directly with the CM tool's GUI
elements to perform SCC-supported operations.
Return status information, or error information in the
case of failure, comes directly from the CM tool. In
this way, Rational Rhapsody has direct CM tool
interaction, and receives more complete feedback
on CM operations, in SCC mode.

CM State Awareness

CM State
Awareness

No Yes CM State Awareness is available in SCC if
ConfigurationManagement::SCC::
ShowCMStatus is set to Checked (check box is
selected).

CM Operation Batch Mode SCC Mode Comments
144 Team Collaboration Guide

Batch mode Versus SCC mode
SCC mode or Batch mode?

In order to decide whether Batch mode or SCC mode better addresses your needs, you should
answer the following questions in order. Based on your response to each question, you will
progress through the set of questions as applicable until you are finally advised as to what
particular mode might be best for your situation. The following figure illustrates the questions
graphically.

Question 1: Which operating system are you using?
Rational Rhapsody runs both on Windows and Linux.

 If all of your team members run Rational Rhapsody on Linux, you have to use Batch mode
because SCC is not available on Linux.

 If all of your team members run Rational Rhapsody on Windows, continue with Question
4: Are you going to use Rational ClearCase UCM from the Rational Rhapsody interface?.

 If some of your team members run Rational Rhapsody on Linux while others run it on
Windows, or if some members run Rational Rhapsody on both operating systems,
continue with the next question.
Rational Rhapsody 145

IBM Rational ClearCase
Question 2: Is an identical Rational Rhapsody/Rational ClearCase integration
experience required?

 If it is significant that all users have the same Rational Rhapsody/Rational ClearCase
integration experience, or if some users run Rational Rhapsody on both operating
systems, then you should prefer Batch mode.

 If an identical experience is not mandatory, continue with the next question.

Question 3: Is Rational Rhapsody run on Windows or Linux?
 If Rational Rhapsody is going to run on Linux, you have to use Batch mode because SCC

is not available on Linux.
 If not, continue with the next question.

Question 4: Are you going to use Rational ClearCase UCM from the Rational
Rhapsody interface?

 If you are going to use Rational ClearCase UCM (Unified Change Management) from the
Rational Rhapsody interface, then SCC mode is the only option because UCM from the
Rational Rhapsody interface is not supported in Batch mode. When you use Rational
ClearCase in SCC mode, Rational Rhapsody supports UCM so that you can make use of
“activities” to enforce defect and change tracking with the code development. Note,
however, that you can use UCM in Batch mode and set “activities” externally although
Rational Rhapsody does not provide you this capability through its interface.

 If you do not have to use UCM from the Rational Rhapsody interface, continue with the
next question.

Question 5: Are you going to use CM State Awareness feature of Rational
Rhapsody?

 Rational Rhapsody has the CM State Awareness feature only in SCC mode. Therefore, if
you want to make use of state information of units (for example, checked in, checked out),
you should prefer SCC mode.

 If CM State Awareness is not required, continue with the next question.

Question 6: Are you going to use custom properties for CM operations?
 If you have already made an investment in customizing the properties in Rational

Rhapsody for CM operations (for example, you have a custom script that handles check in
and set the ConfigurationManagement::ClearCase::CheckIn property to launch this
script) and if you want to continue using these custom properties, you have to use Batch
mode because SCC does not let you do such a customization.

 If you have not made an investment in customizing properties or you do not have to use
these custom properties, you can use SCC mode.
146 Team Collaboration Guide

Batch mode Versus SCC mode
SCC Mode or Batch Mode Summary

The Rational Rhapsody/Rational ClearCase integration is available in Batch or SCC mode with the
following considerations:

 Windows users might use either mode.
 Linux users must use Batch mode because SCC is not available on Linux.

See The differences between the Batch and SCC modes and SCC mode or Batch mode?

For those who can use it, the SCC mode has the following advantages:

 Improved stability and error detection
 Ability to use Rational ClearCase UCM from the Rational Rhapsody interface
 Can benefit from the CM State Awareness feature of Rational Rhapsody

For those who can use SCC mode but who already have custom Rational Rhapsody properties, you
should decide which one is more significant for you: UCM and CM State Awareness or
customized CM behavior through these properties.
Rational Rhapsody 147

IBM Rational ClearCase
Setting up Rational ClearCase
To set up a Rational ClearCase environment, consult the documentation that accompanies the
Rational ClearCase application. Conceptually, the following steps should accomplish the task.
However, the process might differ depending on your Rational ClearCase environment and which
version of Rational ClearCase you are using.

To set up Rational ClearCase to use as your Rational Rhapsody source control management tool:

1. Using Rational ClearCase, create a directory to serve as the VOB mounting point.

2. Create the VOB (mkvob) and mount it (mount). Alternatively, you can use the VOB
Creation Wizard.

3. Create a view (mkview) and activate it (startview). Alternatively, you can use the View
Creation Wizard.

4. Add to version control (mkelem) any directory that is a parent to the Rational Rhapsody
workspace repository (the _rpy directory). This includes the directory that you can
optionally create as part of a new Rational Rhapsody project.

Note
Check out (reserve) this directory before connecting to the archive. Connect to Archive
basically makes the <project>_rpy directory a VOB element, and therefore should be done
only once, by one user. In Rational ClearCase, adding a new VOB element performs a
Check In operation as well.

You should place a Rational Rhapsody project within a directory with the same name as the
project. For example, create a directory called MyProject and save your Rational Rhapsody
project to this directory so it contains the MyProject.rpy file and MyProject_rpy directory.
148 Team Collaboration Guide

Setting up Rational ClearCase
Controlling case sensitivity in Rational ClearCase

When you save a model in a Rational ClearCase directory (under source control), it is assigned a
name in lowercase letters. When you connect it to an archive, Rational Rhapsody creates the
directory with an uppercase name. This leaves you with the file <project>.rpy in lowercase and
the directory <PROJECT>_RPY in uppercase, which does not work in Rational ClearCase.

To fix the problem:

1. Change the MVFS settings in the Control Panel > ClearCase applet to be “case
preserving.”

2. Reboot the machine to make the changes take effect.

If this setting is not changed and a project name has uppercase characters, then, in some cases,
Rational ClearCase will not be able to find the correct _rpy files.

About checking out Rational Rhapsody files

In Rational ClearCase, you must pay careful attention to which version of a file needs to be
checked out. The default file is usually the most recently archived version. To check out an earlier
version, you must specify the earlier version even if that version is already selected by a Rational
ClearCase configuration specification.

Note
If you check out the file without specifying the earlier version you wanted, the most recent
version of the Rational Rhapsody file is checked out.

About setting up Rational Rhapsody projects for team members

Rational Rhapsody users can create views on their machines, and the Rational ClearCase MVFS
automatically makes the Rational Rhapsody projects that exist in the VOB visible in those views.
No additional steps are required; any user can launch Rational Rhapsody and open the .rpy file
located in the newly created view.

About adding new files to the archive

When users add new elements to their models, team members might see them in the Show Items
window (Archive Members window) as eligible for checkout, because adding a member with
Rational ClearCase also checks it in. To avoid conflicts, the user creating the new element should
immediately check out the element after adding it to the archive.
Rational Rhapsody 149

IBM Rational ClearCase
Rational ClearCase limitations with Rational Rhapsody

Note the following Rational ClearCase limitation with Rational Rhapsody:

 Rational Rhapsody does not support the Rational ClearCase “snapshot” view.
 Upgrading Rational Rhapsody on UNIX does not automatically update the soft links (as

opposed to Windows installation that will update the registry).

Rational ClearCase semantics
The following list shows the semantics of common CM operations as specifically implemented for
Rational ClearCase.

 The Connect to Archive operation makes the <project>_rpy directory a VOB element
and creates a new version-controlled directory for it.

 The List Archive operation lists the files that appear in the current view that are under
version control.

 The Add Member operation adds the configuration item file to version control.
 The Check In operation checks in configuration items, even if the current items are

identical to those already in the archive. Rational ClearCase does not have Check In with
Lock capabilities, so selecting the Lock option has no effect.

 The Check Out operation checks out the configuration item. The Lock option activates the
Rational ClearCase Reserved option.

Evil twins issue
In Rational ClearCase, you should avoid using the same name for different elements. This type of
situation creates what is called “evil twins.” For an explanation and guidance about the evil twins
issue in the Rational ClearCase environment, see the technote provided on the IBM Web site at
(http://www-1.ibm.com/support/docview.wss?rs=984&uid=swg21125072).
150 Team Collaboration Guide

http://www-1.ibm.com/support/docview.wss?rs=984&uid=swg21125072

Integration issues
Integration issues
You can set up your Rational ClearCase environment so diff and merge commands from within
Rational ClearCase (either from the command line, version tree, or Rational ClearCase Merge
Manager) automatically launch the Rational Rhapsody DiffMerge tool. See Setting up the Rational
ClearCase Type Manager.

To perform difference identification and merging operations, you might want to integrate these
Rational ClearCase textual difference tools with the Rational Rhapsody DiffMerge tool:

 cleardiffmrg

 cleardiff

To integrate these tools, you need to set the following Rational ClearCase values as shown:

 BaseAwareAutoMergeInvocation. Set to cleardiff.exe -out $output -base
$sourceBase -abo -qui $source1 $source2

 BaseAwareDiffInvocation. Set to cleardiffmrg.exe -base $sourceBase $source1
$source2

 BaseAwareDiffMergeInvocation. Set to $BaseAwareDiffInvocation -out $output
 BaseAwareTextDiffMergeEnabled. Set to TRUE
 DiffInvocation. Set to cleardiffmrg.exe $source1 $source2
 DiffMergeInvocation. Set to $DiffInvocation -out $output

These value setting changes launch the Rational ClearCase textual merge tool cleardiffmrg from
the Rational Rhapsody DiffMerge tool when a user performs diff/merge of operation bodies.
Similarly, DiffMerge silently launches cleardiff to determine if the given differences are trivial
or non-trivial and to merge them automatically in base-ware mode.

This approach is made possible because all elements stored in a Rational ClearCase VOB have a
type. Rational ClearCase administrators can define a new type and associate it with a Diff tool
and a Merge tool.
Rational Rhapsody 151

IBM Rational ClearCase
Hierarchical repository and Rational ClearCase
To perform CM operations on Rational Rhapsody files, the directory containing them must be a
VOB element. Directories created by Rational Rhapsody could be either the project directory (for
example, MyProject_rpy) or directories created to contain packages.

The *_rpy directory becomes a VOB element once you connect to the archive.

In addition, package directories can be made into VOB elements when you initially create them
(for more information, see the property definitions of
ConfigurationManagement::ClearCase::MakeCMShadowDirActivation and
ConfigurationManagement::ClearCase::MakeCMShadowDir on the Properties tab of the
Features window in Rational Rhapsody).

However, in the situation where you try to “add to source control” for a Rational Rhapsody
element and the operation fails because the parent directory is not a VOB element, you can make
the directory a VOB element using Rational ClearCase, then continue working in Rational
Rhapsody.

Changes to an existing directory structure
If you want to change the directory structure of the repository files (for example, from flat to
hierarchical), you must make changes to both Rational Rhapsody and Rational ClearCase.
Although branch creation, maintenance of configuration specification files, and the overall policy
of branch and merge is done outside of the scope of Rational Rhapsody, the merge process requires
the usage of the Rational Rhapsody DiffMerge tool. The DiffMerge tool allows you to examine the
differences between Rational Rhapsody units in a clear, visual interface and to merge two versions
of the same unit into a third, new unit.

For detailed information about the DiffMerge tool, see Parallel development.

However, using the Rational Rhapsody DiffMerge tool to make these changes requires some
adjustments:

 You must manually type in the unique identifier of each of the versions to be compared.
 You must manually create a Rational ClearCase link (merge arrow) from the merge source

to the merge target.
 By working from within Rational Rhapsody, you are not using the Rational ClearCase

visual version tree representation efficiently.
152 Team Collaboration Guide

Rational ClearCase Type Manager
Limitations for changing an existing directory structure

Note the following limitation for changing an existing directory structure:

 When the Rational Rhapsody DiffMerge tool is activated from the Rational ClearCase
version tree (see Rational ClearCase Type Manager), the DiffMerge tool does not expose
the option With Descendant.

 The Rational Rhapsody DiffMerge tool can compare two versions of a file (as opposed to
the Rational ClearCase default text diffmerge tool that can handle up to 32 files).

 If a client machine needs to work with two different versions of Rhapsody
simultaneously, the map file pointer on Windows, which is based on a registry key, needs
to be manually set to the correct version of the Rational Rhapsody DiffMerge tool. The
registry key is set by the Rational Rhapsody installation wizard. Similarly, a UNIX client
will need to modify the compare, xcompare, merge, xmerge soft links to ensure
invocation of the correct version of the DiffMerge tool.

Rational ClearCase Type Manager
Using a Rational ClearCase extension mechanism called type_manager, you can launch the
Rational Rhapsody DiffMerge tool directly from the Rational ClearCase version tree tool, merge a
unit from one branch to another, and draw the hyperlink arrow (all as a single atomic operation).
For more information about this feature, see Launching DiffMerge inside Rational Rhapsody.

All elements stored in a Rational ClearCase VOB have a type. Rational ClearCase administrators
can define a new type and associate it with a Diff tool and a Merge tool. For more information
about this approach, see the Rational ClearCase documentation (search keywords: type_manager,
map file, magic file, magic_path). Your Rational ClearCase administrator should be familiar with
these concepts prior to the implementation phase.

Your Rational ClearCase administrator needs to implement the necessary changes for this
enhancement, coordinating all changes with project management, for the following reasons:

 Not all users will need this enhancement.
 Not all projects will need this enhancement.
 The setup involves modifying the Rational ClearCase setup and configuration files, which

is usually not handled by end users.
Rational Rhapsody 153

IBM Rational ClearCase
Setting up the Rational ClearCase Type Manager

To set up the Rational ClearCase Type Manager:

Note
Step 1 – 4 are described using the Windows GUI. To implement the same functionality on
UNIX servers, use the following sample command:

jupiter 21> cleartool mkeltype -super text_file -manager _rhp
-mergetype auto rhp_file
Comments for “rhp_file”:
Rhapsody units files
.
Created element type “rhp_file”.
jupiter 22>

1. Run the Rational ClearCase Home Base tool. The Home Base window opens.

2. On the VOBs tab, click Type Explorer.

3. In the Type Explorer window, select the required VOB and open the element type.

4. Open the Create window. Choose Type > Create.

5. Define a new type, rhp_file and click OK.

6. Edit the properties for the new type manager using the Properties window. Set the
following values:

 Make sure Supertype is text_file.
 Select the Override type manager check box and type _rhp in the text box.
 For the Merge Type, select the Use type manager’s merge method radio button.
154 Team Collaboration Guide

Rational ClearCase Type Manager
7. On Windows NT servers, open the map file (usually located in the directory
<ClearCase home dir>\lib\mgrs) and add the following section to the map file (in, for
example, C:\Program Files\Rational\ClearCase\lib\mgrs):

_rhpconstruct_version <same entry used for text_file_delta>
_rhpcreate_branch <same entry used for text_file_delta>
_rhpcreate_element <same entry used for text_file_delta>
_rhpcreate_version <same entry used for text_file_delta>
_rhpdelete_branches_versions<same entry used for text_file_delta>
_rhpcompare <path for Rhapsody files>\DiffMerge.exe
_rhpxcompare <path for Rhapsody files>\DiffMerge.exe
_rhpmerge <path for Rhapsody files>\DiffMerge.exe
_rhpxmerge <path for Rhapsody files>\DiffMerge.exe
_rhpannotate <same entry used for text_file_delta>
_rhpget_cont_info <same entry used for text_file_delta>

In this syntax:

 <same entry used for text_file_delta> means you should copy the entry
that already exists for the text file type_manager into the Rational Rhapsody file
type_manager.

 <path for Rhapsody files> is the full path to the Rational Rhapsody DiffMerge
tool.

Example:

If the DiffMerge.exe is installed on all users’ machines on
D:\Rhapsody\DiffMerge.exe and all the text_file_delta entries are
..\..\bin\tfdmgr.exe, add the following section to the map file:

_rhpconstruct_version ..\..\bin\tfdmgr.exe
_rhpcreate_branch ..\..\bin\tfdmgr.exe
_rhpcreate_element ..\..\bin\tfdmgr.exe
_rhpcreate_version ..\..\bin\tfdmgr.exe
_rhpdelete_branches_versions ..\..\bin\tfdmgr.exe
_rhpcompare D:\Rhapsody\DiffMerge.exe
_rhpxcompare D:\Rhapsody\DiffMerge.exe
_rhpmerge D:\Rhapsody\DiffMerge.exe
_rhpxmerge D:\Rhapsody\DiffMerge.exe
_rhpannotate ..\..\bin\tfdmgr.exe
_rhpget_cont_info ..\..\bin\tfdmgr.exe

Instead of D:\Rhapsody\DiffMerge.exe, you can use:

HKEY_LOCAL_MACHINE\SOFTWARE\Telelogic\Rhapsody\DiffMerge\
Install Path

This creates a new key.

Note: The old key, created in Rhapsody versions before 7.1, was under
HKEY_LOCAL_MACHINE\SOFTWARE\I-Logix\Rhapsody\DiffMerge\
Install Path. This key is no longer used and should be changed to the new
key listed above.
Rational Rhapsody 155

IBM Rational ClearCase
8. On UNIX/Solaris servers, do the following steps:

 Under the <clearcase install dir>/mgrs directory, create a _rhp directory.
 Under the _rhp directory, create the following links:

– compare, xcompare, merge, and xmerge should point respectively to the
DiffMerge_Compare.exe, Diffmerge_XCompare.exe, DiffMerge_Merge.exe,
and DiffMerge_XMerge.exe. (The Rational Rhapsody installation program
creates these files in the installation directory.)

– All other links should point to the text_delta_file entry.

Setting up the Rational ClearCase .magic file

To be able to use the Rational ClearCase Type Manager with Rational Rhapsody or the Rational
Rhapsody Eclipse plug-in for the Eclipse platform, you must set up the Rational ClearCase .magic
file. By default, the .magic file is named default.magic. However, yours might have a different
name.

Note
The supported Rational ClearCase Eclipse plug-in is version 7.0.0.20080131A.

To set up the Rational ClearCase .magic file:

1. Open the .magic file that is visible to all users at your site and add the following lines to
the beginning of the
Match by name without examining data core file : -name "core" ;

and before the

(seems printable, but has binary at the end of it)
lisp_object object_module file : -name "*.lbin" ;

sections of the .magic file.

Rhapsody file types (begin)
rhp_file: -name "*.rpy";
rhp_file: -name "*.sbs";
rhp_file: -name "*.cls";
rhp_file: -name "*.omd";
rhp_file: -name "*.cmp";
rhp_file: -name "*.ctd";
rhp_file: -name "*.clb";
rhp_file: -name "*.ucd";
rhp_file: -name "*.msc";
rhp_file: -name "*.std";
rhp_file: -name "*.dpd";
rhp_file: -name "*.fil";
rhp_file: -name "*.fol";
Rhapsody file types (end)
156 Team Collaboration Guide

Rational ClearCase Type Manager
2. Save your changes to the .magic file.

For more information about setting up the Rational ClearCase .magic file, see the technote
provided on the IBM Web site at (http://www-1.ibm.com/support/
docview.wss?rs=0&uid=swg21118099).

Rational Rhapsody models and changing the default properties

For the enhancement to work, Rational Rhapsody files should be of type rhp_file, not
text_file. This issue has two aspects:

 Ensuring that the development team is adding new Rational Rhapsody units as type
rhp_file, not text_file

 Converting Rational Rhapsody units that are already stored under a Rational ClearCase
VOB from type text_file to rhp_file

To ensure new Rational Rhapsody units are being added as type rhp_file, change the following
property in the Rational Rhapsody properties file (usually site.prp):

Subject: ConfigurationManagement

MetaClass: ClearCase

Property: AddMember

Note
The only difference is the –eltype flag for the Rational ClearCase mkelem command
(shown in bold).

To convert Rational Rhapsody units that are already stored under a Rational ClearCase VOB from
text_file to rhp_file, use the Rational ClearCase chtype command.
Rational Rhapsody 157

http://www-1.ibm.com/support/docview.wss?rs=0&uid=swg21118099
http://www-1.ibm.com/support/docview.wss?rs=0&uid=swg21118099

IBM Rational ClearCase
Code generation performance improvements
If you notice that performance is reduced, you might need to change the location of the temporary
files.

To change the location for temporary files, change the following entry in the Rhapsody.ini file,
as follows:

[CodeGen]
TemporaryFilesDirectory=<the temporary code generation

files directory (for example, C:\TEMP)>

When the entry is not present, temporary files are created in the project directory where the .rpy
file is stored. By changing the location to a directory outside of a Rational ClearCase VOB
domain, code generation performance improves.

Note
When you initially generate code inside a Rational ClearCase VOB, there is still
performance loss due to VOB overhead (creating the code directories and files). You will
see the full performance gain beginning with the second code generation.

Forced check in of a package with unchanged subunits
If you check out a package with descendants and change only a few subunits, checking in the
package can be problematic because Rational ClearCase will sometimes refuse to check in an
unchanged element. To overcome this problem, use the SensitiveCheckin.bat file provided in
the Rational Rhapsody distribution. The file is located in <root>/Share/etc.

The batch file compares each file to the version that was checked out. If the two versions are the
same, an Undo Checkout operation is performed. Otherwise, the changed version is checked in.

To use this file, it must be in the $OMROOT/etc directory. In addition, you must set the
ConfigurationManagement::ClearCase::CheckIn property to the following value:

$OMROOT/etc/SensitiveCheckin.bat $UnitPath $log
158 Team Collaboration Guide

When is a Rational ClearCase license consumed?
When is a Rational ClearCase license consumed?
In general, any Rational ClearCase operation that involves the database (MVFS access) or the
albd_server will most likely cause a license to be activated for that user. This means that the user
has “accessed” Rational ClearCase and that a license has been consumed for that session.

Most anything you do that involves the product consumes a license, for example:

 When you are in a VOB or looking at data through a view. This is whether you are on a
Rational ClearCase host or a non-supported host via an exported view.

 Use any cleartool commands that modify data (for example, checkout and checkin).
 Call any metadata operations on labels, branches, attributes, triggers, and so forth.
 Use any listing or reporting commands like lsvob, lsview, describe, find, and so forth.
 Use ClearMake and merge.

For the CM interface license on the Rational Rhapsody side, it is consumed for the entire Rational
Rhapsody session.

Regarding the Rational ClearCase license itself, any Rational ClearCase client utility you run
(such as cleartool) tries to get a license. If it is successful, you keep it for 60 minutes by default.
When you enter a Rational ClearCase command during this period of time, the license is renewed.
Otherwise, after the period of time, another user can take the license. All this applies when you use
the cleartool commands from the batch interface.

Regarding the SCC interface, it would depend whether you initialize/uninitialize the interface with
each command, or at the first usage/after closing Rational Rhapsody.

Customize Rational Rhapsody and Rational ClearCase
To customize Rational Rhapsody and Rational ClearCase you can use the properties available in
the ConfigurationManagement::ClearCase metaclass from the Properties tab in the Features
window.
Rational Rhapsody 159

IBM Rational ClearCase
Checking out/Checking in a directory once

This feature is applicable with Rational ClearCase in batch mode.

By default, when you add multiple files that are contained in the same directory to the archive,
Rational Rhapsody checks out/checks in the directory for these files multiple times. (You can see
this on the Rational Rhapsody Output window.)

To set it so that Rational Rhapsody check outs/checks to the same directory for multiple files only
once, you can set the ConfigurationManagement::ClearCase::
CheckOutCheckInDirectoryOnceDuringAddToArchive property to Checked.

Storing an existing package in a separate directory

This feature is applicable with Rational ClearCase in batch mode.

With the use of the ConfigurationManagement::ClearCase::
StoreInSeparateDirectoryActivation property, you can set it so that when an existing flat
package is converted to a package as directory (you selected the Store in separate Directory
check box on the Unit Information window) the directory is created on the configuration
management side and the children of this package are moved to this directory. The following
values are available for the StoreInSeparateDirectoryActivation property:

 Automatic if you want Rational Rhapsody to automatically do so without asking you to
confirm your request.

 UserConfirmation if you want Rational Rhapsody to ask you to confirm your request.
 Disable (the default) means the unit is not added.
160 Team Collaboration Guide

Customize Rational Rhapsody and Rational ClearCase
Removing an existing directory for a package and reconciling its
contents

This feature is applicable with Rational ClearCase in batch mode.

With the use of the ConfigurationManagement::ClearCase::
StoreInSeparateDirectoryActivation property, you can set it so that when an existing package
as directory is converted to a flat package (you cleared the Store in separate Directory check box
on the Unit Information window) the directory is removed on the configuration management side
and the children of this package are removed as well. The following values are available for the
StoreInSeparateDirectoryActivation property:

 Automatic if you want Rational Rhapsody to automatically do so without asking you to
confirm your request.

 UserConfirmation if you want Rational Rhapsody to ask you to confirm your request.
 Disable (the default) means the unit is not added.

Note
Files that are not added to the archive in this directory (which will be removed) will not be
moved by the configuration management tool. Therefore, if there are any such files, they
might be lost after this directory is removed from the archive.

Adding a unit to the CM archive automatically

This feature is applicable with Rational ClearCase in batch mode.

To make it so that Rational Rhapsody adds the relevant file to the configuration management
archive after creating a unit, you can, you can use the ConfigurationManagement::ClearCase::
AddToArchiveAfterCreateUnitActivation property. The following values are available for this
property:

 Automatic if you want Rational Rhapsody to automatically do so without asking you to
confirm your request.

 UserConfirmation if you want Rational Rhapsody to ask you to confirm your request.
 Disable (the default) means the unit is not added.
Rational Rhapsody 161

IBM Rational ClearCase
162 Team Collaboration Guide

Serena PVCS Dimensions
Rational Rhapsody supports CM tools, including Serena® PVCS® Dimensions®. This subject
describes how to use Rational Rhapsody with PVCS Dimensions in SCC mode.

Enabling a SCC-compliant CM tool
To enable any SCC-compliant CM tool with Rational Rhapsody, you must set the
ConfigurationManagement::General::UseSCCtool property to Yes. When the UseScctool
property is set to Yes, all other tool-specific CM properties are ignored. Rational Rhapsody uses
the alternative (batch mode) for traditional CM tools (such as ClearCase) when the UseSCCtool
property is set to No.

Access to Dimensions from Rational Rhapsody
The CM tool administrator must set up access to Dimensions from Rational Rhapsody. The
administrator can do this by using the IDE Setup utility in PVCS Dimensions.
Rational Rhapsody 163

Serena PVCS Dimensions
Create the initial connection to the SCC tool
To create the initial connection to the SCC tool, use the Connect to Archive tool. Once connected,
you can use SCC API commands (such as Check In and Check Out), which will prompt you to log
in to the archive, if required.

Once connected, only use the Connect to Archive tool again if you want to disconnect and
reconnect to a different archive.

Creating the initial connection to the SCC tool in Dimensions

To connect to an archive with PVCS Dimensions:

1. Open the Configuration Items window. Choose File > Configuration Items.

2. Click the Connect to Archive button. Rational Rhapsody searches for the PVCS
Dimensions DLL (specified by the SourceCodeControlProvider registry key).

 If it finds the DLL, Rational Rhapsody launches PVCS Dimensions to perform the
Connect to Archive operation.

 If it does not find the DLL, the CM tool might not be registered properly in the
Windows registry. See Unable to connect to SCC-Compliant CM tool (SCC mode)
for troubleshooting information.

 You should see whether the specific version of the tool you are using is
SCC-compliant. Some tools that are SCC-compliant in one version are not
compliant in earlier versions (for example, version 5.0 versus 6.0).

3. If the PVCS Dimensions DLL is found, the PVCS Dimensions Remote Login window
opens.

4. Type your user password in the Password box, then click the Connect button to open the
Select Workset Directory for Project window.

5. Click OK. PVCS Dimensions connects the project to the archive and confirms completion
of the Connect operation.

6. Click OK.

An effect of the Connect to Archive operation is that Rational Rhapsody stores project information
in both the ConfigurationManagement::SCC::ProjName and
ConfigurationManagement::SCC::AuxProjPath properties, so the project is automatically
connected to the same archive the next time you open it. You should never need to modify these
properties manually, unless you want to connect the project to a different archive.
164 Team Collaboration Guide

Add to SCC archive operation
Add to SCC archive operation
When you set the ConfigurationManagement:General:UseSCCtool property to Yes, you can use
the Add to Archive Options window to add a unit to an SCC archive. This property sets for use the
standard SCC interface between Rational Rhapsody and your CM tool.

Adding a unit to an SCC archive

To add a unit to an SCC archive:

1. In the Configuration Items window, select a unit.

2. Click the Add to Archive button to open the SCC Options window.

3. Select the Include descendants check box on the SCC Options window if you want to
include nested units in the Add operation.

4. Type a comment describing the units you are adding.

5. If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opens is provided by your CM tool.

6. If you opened an Advanced Options window, click OK to close it after you make your
selections.

7. Click OK on the SCC Options window.

 PVCS Dimensions might display a message box to confirm that the Add operation
has completed. Click Close.

 The PVCS Dimensions output might be displayed in the Rational Rhapsody
Output window on the Configuration Management tab. This behavior is
controlled by the ConfigurationManagement::SCC::
RedirectOutputToRhapsody property. By default, this property is set to
Checked, so messages are seen in Rational Rhapsody.

PVCS Dimensions adds the unit to the archive and changes its mode to read-only (RO) or
unlocked.
Rational Rhapsody 165

Serena PVCS Dimensions
Check out operation in SCC archive
In SCC mode, units are always checked out with a lock (RW). You must add a unit to the archive
before you can check it out.

Checking out a unit in SCC archive

To check out a unit from an SCC archive:

1. In the Configuration Items window, select a unit that has been added to the archive.

2. Click the Check Out button to open the SCC Options window.

3. Select the Include descendants check box on the SCC Options window if you want to
include nested units in the Check Out operation.

4. Type a comment describing the units you are checking out.

5. If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opens is provided by your CM tool.

6. If you opened an Advanced Options window, click OK to close it after you make your
selections.

7. Click OK on the SCC Options window.

 PVCS Dimensions might display a message box to confirm that the Check Out
operation has completed. Click Close.

 You might see the PVCS Dimensions output in the Rational Rhapsody Output
window on the Configuration Management tab. This is controlled by the
ConfigurationManagement::SCC::RedirectOutputToRhapsody property. By
default, this property is set to Checked, so messages are seen in Rational
Rhapsody.

PVCS Dimensions copies the unit from the archive to your workspace and changes the mode for
the unit to read/write (RW) or locked.
166 Team Collaboration Guide

Check in operation in SCC archive
Check in operation in SCC archive
In SCC mode, you must add a unit to the archive and check it out before you can check it in.

Checking in a unit in SCC archive

To check a unit into an SCC archive:

1. In the Configuration Items window, select a unit that has already been added to the archive
and checked out.

2. Click the Check In button to open the SCC Options window.

3. Select the Include descendants check box on the SCC Options window if you want to
include nested units in the operation.

4. Type a comment describing the units you are checking in.

5. If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opens is provided by your CM tool.

6. If you opened an Advanced Options window, click OK to close it after you make your
selections.

7. Click OK on the SCC Options window.

8. PVCS Dimensions displays a message box to confirm the Check In operation. Click OK
to dismiss the message box.

PVCS Dimensions copies the unit from your workspace into the archive and changes its mode to
read-only or unlocked.

Listing the archive in PVCS Dimensions
To list an archive in SCC mode, click the List Archive button on the Configuration Items window.
Rational Rhapsody displays the Archive window, which lists the units that have been added to the
archive.

Note

In SCC mode, it is possible to see the version number of the file currently loaded in Rational
Rhapsody in both the List Archive and CM Items windows. For more information, see the
definitions for the ConfigurationManagement::PVCS::HeaderFile and
ConfigurationManagement::PVCS::CMHeaderItsVersion properties on the Properties
tab of the Features window.
Rational Rhapsody 167

Serena PVCS Dimensions
Fetching in Dimensions
The Fetch operation fetches the latest version of a unit from the archive without a lock (RO). The
alternative is the SCC Check Out operation, which always fetches a unit with a lock (RW).

To fetch:

1. In the Configuration Items window, select the units that you want to check out as
unlocked.

2. Click the Fetch button to open the SCC Options window.

3. Select the Include descendants check box on the SCC Options window if you also want
to fetch nested units.

4. If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opens is provided by your CM tool.

5. If you opened an Advanced Options window, click OK to close it after you make your
selections.

6. Click OK on the SCC Options window.

PVCS Dimensions confirms the Fetch operation has completed.

7. Click Close.

PVCS Dimensions copies the unit from the archive into your workspace without a lock.
168 Team Collaboration Guide

Unchecking Out in Dimensions
Unchecking Out in Dimensions
The Uncheck Out operation reverses the effect of a Check Out, releasing the lock on a unit
(making it RO) and reverting to the file version before the last Check Out operation.

To uncheck out:

1. In the Configuration Items window, select a unit that has been checked out (whose mode is
RW).

2. Click the Un-Check Out button to open the SCC Options window.

3. If your CM tool has advanced options, you can click the Advanced button on the SCC
Options window to open its Advanced Options window; otherwise the button is disabled.
The Advanced Options window that opens is provided by your CM tool.

4. If you opened an Advanced Options window, click OK to close it after you make your
selections.

5. Click OK on the SCC Options window.

PVCS Dimensions changes the mode for the unit mode to read-only (RO) and makes the version
that was archived prior to the last Check Out the latest working version.

Viewing the history of a unit
The History operation is available in SCC mode only. It is an SCC command that opens the
archive for a unit so you can review the history of the unit and access previously archived
revisions.

To view the history of a unit, click the History button on the Configuration Items window.

Viewing the file details for a unit
The Properties command retrieves the file details for a unit, such as the file name, the date it was
created, and so on.

To display the SCC file details of a unit that is a member of an archive:

1. In the Configuration Items window, select a unit that has been added to the archive.

2. Click the Properties button. PVCS Dimensions displays the file details for the unit.
Rational Rhapsody 169

Serena PVCS Dimensions
Customize Rational Rhapsody and PVCS Dimensions
To customize Rational Rhapsody and PVCS Dimensions you can use the properties available in
the ConfigurationManagement::PVCS metaclass from the Properties tab in the Features window.
170 Team Collaboration Guide

Concurrent Versions System (CVS)
This subject provides some information that helps you get started with using the Rational
Rhapsody/CVS integration in Eclipse. Concurrent Versions System (CVS) is an open source
configuration management (CM) tool. The Rational Rhapsody Platform Integration lets software
developers work on a Rational Rhapsody project within the Eclipse platform.

For details about how to use Eclipse and CVS, see the documentation provided for those products.

Sharing a Rational Rhapsody project in CVS
This topic assumes you know how to create a CVS repository and connect to an existing CVS
repository.

To share a Rational Rhapsody project in CVS:

1. Switch to the Rational Rhapsody Unit View.

a. In Eclipse, open the Show View window. Choose Window > Show View > Other.

b. Select Rhapsody > Unit View and click OK.

2. In the Unit View window, right-click your project and then select Team > Share Project
to open the Share Project window, which has various views.

3. On the Enter Repository Location Information view of the Share Project window, enter the
repository location information and then click Next.

4. On the Enter Module Name view of the Share Project window, make sure the Use project
name as module name radio button is selected and then click Next.

5. On the Share Project Resources view, notice that there is an arrow overlay added to the

icons for all the files/folders in your project . This means that those files/folders
will be added to the repository. Click Finish.

6. Because Eclipse/CVS is not familiar with Rational Rhapsody file extensions (for
example,.sbs, .cmp), it asks you if the content of those files are binary or ASCII text. On
the Add Resources view of the Commit Files window, select ASCII Text as the content
for each extension and then click Next.
Rational Rhapsody 171

Concurrent Versions System (CVS)
7. Enter a commit comment on the next view of the Commit Files window and then click
Finish to commit the operation. This adds those marked units into the repository.

You can switch to the Eclipse perspective to Rational Rhapsody Modeling to keep working on
your Rational Rhapsody model. Notice in the Unit View window there is a database overlay added

to the icons for the files/folders in your project . This means that the files/folders are
checked in units in a CVS repository.

Checking out a Rational Rhapsody project from a CVS
repository

To check out a Rational Rhapsody project from a CVS repository:

1. Start Eclipse.

2. Open the New Project window. Choose File > New > Project.

3. Expand the CVS folder, select Projects from CVS, and then click Next to open the
Checkout from CVS window, which has various views.

4. On the Checkout from CVS window, select the Use existing repository location radio
button, select the repository that you want, and then click Next.

5. On Select Module view of the Checkout from CVS window, select the Use an existing
module (this will allow you to browse the modules in the repository) radio button,
select the Rational Rhapsody project that you want to check out, and then click Finish.

You can now switch to the Rational Rhapsody Modeling perspective in Eclipse to work on the
Rational Rhapsody project you have checked out.
172 Team Collaboration Guide

Collaboration with other users in CVS
Collaboration with other users in CVS
You can use other related CM operations while working on a project that you already checked out
so that you can successfully collaborate with other users working on the same Rational Rhapsody
project.

Repository synchronization in CVS

In order to see if a Rational Rhapsody unit is still in sync with the repository after you checked it
out, right-click the unit in the Unit View window and select Team > Synchronize with
repository.

 If there are no differences between the workspace unit and the remote, a message box tells
you that there are no changes between the workspace resource and the remote.

You can do an Updating a Rhapsody unit in Eclipse to the CVS repository to get the
incoming changes.

 If this message does not appear when you synchronize with the repository, it means that
there are some differences between the workspace unit and the corresponding repository
unit. This means either you modified this unit and/or somebody else has committed some
changes on this unit to the repository.

In this case, you can click the Invoke Rhapsody DiffMerge to compare and merge
manually button to launch the Rational Rhapsody DiffMerge tool. After you merge, you
should right-click the unit and select Mark as Merged.

If a Rational Rhapsody unit is out-of-sync with the repository, one of the following overlays will
appear on the icon for the unit:

 means you have created this unit and it is not added to the repository yet (outgoing new file)

 means the repository contains this new unit that does not exist in your workspace (incoming
new unit)

 means this unit is changed in your workspace (outgoing modification)

 means this unit is changed in the repository (incoming modification)

 means this unit is modified both in the repository and in your workspace so there is a conflict
Rational Rhapsody 173

Concurrent Versions System (CVS)
Updating a Rhapsody unit in Eclipse to the CVS repository

While you are working on a Rational Rhapsody unit in Eclipse, other members of your team might
have committed changes to the copy of the unit in the repository. To get these changes, you can
update your Rational Rhapsody unit to match the repository. You can do this in the following
ways:

 Right-click the unit in the Unit View window and select Team > Update.
 Switch to the Synchronization perspective. Right-click the unit, and select Update.

Eclipse lets you configure the Update operation to do one of the following choices:

 Update all non-conflicting changes and then preview the remaining changes: All
non-conflicting incoming changes will be merged in automatically and any remaining
conflicts will be displayed either in the Sync View window (default) or in a window. You
can specify where to display conflicts through the Update/Merge Preference window.

 Preview all incoming changes before updating: All changes will be displayed in either
the Sync View window or a window (depending on your settings).

 Never preview and use CVS text markup to indicate conflicts: This option will
automatically merge all changes without any user interaction. Conflicting changes will be
merged in using the CVS text markup:

<<<<<<< original file revision

[original code]

= = = = = = =

[incoming code]

>>>>>>> incoming file revision

Note: You should not configure Update to use the Never preview and use CVS text
markup to indicate conflicts option because this will corrupt the repository
with CVS text markups.

Limitation: After doing Team > Update, new descendants become unresolved in the model
although they exist on the hard disk. To remedy this situation, after doing the update, right-click
the unresolved unit in the Rational Rhapsody browser and select Load with descendants.
174 Team Collaboration Guide

Collaboration with other users in CVS
Configuring how Update behaves
To configure how the Update operation behaves:

1. Open the Preferences window. Choose Window > Preferences.

2. Expand Team > CVS > Update/Merge and make your selection on the Update/Merge
pane.

3. Click OK.

Adding a unit created in Rational Rhapsody to the CVS repository

When you create a new unit in Rational Rhapsody, you can add it to the repository.

To add to version control:

1. Make sure that you save your Rational Rhapsody model so that Unit View is refreshed to
contain this new unit as well. The new unit should appear in Unit View with an icon with

a question mark overlay to signify that it is new file that is not added to version
control yet.

2. Right-click the unit to be added and select Team > Add to Version Control.

Showing the history of a unit in CVS

To view the history of a Rational Rhapsody unit in version control:

1. Open the History window for the unit. Right-click the unit in the Unit View window and
select Team > Show History.

2. If you want to get content for a particular revision, right-click the revision and select Get
Contents.

3. From the History window, you can also compare different revisions. For example, you can
click the Invoke Rhapsody DiffMerge to compare and merge manually button on the
Compare Editor in Eclipse. The Rational Rhapsody DiffMerge tool will open for you to
do the compare/merge of Rational Rhapsody elements.
Rational Rhapsody 175

Concurrent Versions System (CVS)
176 Team Collaboration Guide

Subversion (SVN)
This subject provides some information that helps you get started with using the Rational
Rhapsody/Subversion integration in Eclipse. Subversion (SVN) is an open source configuration
management (CM) tool. The Rational Rhapsody Platform Integration lets software developers
work on a Rational Rhapsody project within the Eclipse platform.

For details about how to use Eclipse and Subversion, see the documentation provided for those
products.

Sharing a Rational Rhapsody project in Subversion
This topic assumes you know how to create a Subversion repository and connect to an existing
Subversion repository.

To share a Rational Rhapsody project in Subversion:

1. Switch to the Rational Rhapsody Unit View.

a. In Eclipse, open the Show View window. Choose Window > Show View > Other.

b. Select Rhapsody > Unit View and click OK.

2. In the Unit View window, right-click the project and then select Team > Share Project to
open the Share Project window, which has various views.

3. On the Enter Repository Location Information view of the Share Project window, enter the
repository location information and then click Next.

4. On the Enter Module Name view of the Share Project window, make sure the Use project
name as module name radio button is selected and then click Next.

5. Enter a commit comment on the Ready to Share Project view of the Share Project window
and click Finish.

6. Switch to the Team Synchronizing perspective of Eclipse. Choose Window >
Show View > Other to open the Show View window, and then select Team >
Synchronize.
Rational Rhapsody 177

Subversion (SVN)
7. Notice the new units marked with arrow overlay . To add those units into the
repository, right-click the project and select Commit.

You can now switch to the Eclipse perspective to Rational Rhapsody Modeling to keep working on
your Rational Rhapsody model.

Checking out a Rational Rhapsody project from a
Subversion repository

To check out a Rational Rhapsody project from a Subversion repository:

1. Start Eclipse.

2. Open the New Project window. Choose File > New > Project.

3. Expand the SVN folder, select Checkout Projects from SVN and then click Next.

4. If you have not already connected to your Subversion repository in this workspace, select
Create a new repository location and then click Next.

5. Select the Rational Rhapsody project that you want to check out and then click Finish.

You can now switch to the Rational Rhapsody Modeling perspective in Eclipse to work on the
Rational Rhapsody project you have checked out.
178 Team Collaboration Guide

Collaboration with other users in Subversion
Collaboration with other users in Subversion
You can use other related CM operations while working on a project that you already checked out
so that you can successfully collaborate with other users working on the same Rational Rhapsody
project.

Repository synchronization in Subversion

In order to check if a Rational Rhapsody unit is still in sync with the repository after you checked
it out, right-click the unit in Unit View window and select Team > Synchronize with repository.

 If there are no differences between the workspace unit and the remote, a message box tells
you that there are no changes between the workspace resource and the remote.

You can do an Updating a Rational Rhapsody unit in Eclipse to the Subversion repository to
get the incoming changes.

 If this message does not appear when you synchronize with the repository, it means that
there are some differences between the workspace unit and the corresponding repository
unit. This means either you modified this unit and/or somebody else has committed some
changes on this unit to the repository.

In this case, you can click the Invoke Rhapsody DiffMerge to compare and merge
manually button to launch Rational Rhapsody DiffMerge. After you merge, you should
right-click on the unit and select Mark as Merged.

If a Rational Rhapsody unit is out-of-sync with the repository, one of the following overlays will
appear on the icon for the unit:

 means you have created this unit and it is not added to the repository yet (outgoing new file)

 means the repository contains this new unit that does not exist in your workspace (incoming
new unit)

 means this unit is changed in your workspace (outgoing modification)

 means this unit is changed in the repository (incoming modification)

 means this unit is modified both in the repository and in your workspace so there is a conflict
Rational Rhapsody 179

Subversion (SVN)
Updating a Rational Rhapsody unit in Eclipse to the Subversion
repository

While you are working on a Rational Rhapsody unit in Eclipse, other members of your team might
have committed changes to the copy of the unit in the repository. To get these changes, you can
update your Rational Rhapsody unit to match the repository. You can do this in the following
ways:

 Right-click the unit in the Unit View window and select Team > Update.
 Switch to the Synchronization perspective. Right-click the unit, and select Update.

Adding a unit created in Rational Rhapsody to Subversion repository

When you create a new unit in Rational Rhapsody, you can add it to the repository.

To add to version control:

1. Make sure that you save your Rational Rhapsody model so that Unit View is refreshed to
contain this new unit as well. The new unit should appear in Unit View with an icon with

a question mark overlay to signify that it is new file that is not added to version
control yet.

2. Right-click the unit to be added and select Team > Add to Version Control.

Showing the history of a unit in Subversion

To view the history of a Rational Rhapsody unit in version control:

1. Open the History window for the unit. Right-click the unit in the Unit View window and
select Team > Show History.

2. If you want to get content for a particular revision, right-click the revision and select Get
Contents.

3. From the History window, you can also compare different revisions. For example, you can
click the Invoke Rhapsody DiffMerge to compare and merge manually button on the
compare editor in Eclipse. DiffMerge will open for you to do the compare/merge of
Rational Rhapsody elements.
180 Team Collaboration Guide

IBM Rational Team Concert
The IBM® Rational Team Concert™ collaborative software delivery environment uses the IBM®
Rational® Jazz™ technology platform, enabling collaborative teams to work together. You can use
the Rational Rhapsody Platform Integration if you have Eclipse, Rational Rhapsody with plug-ins,
and Rational Jazz/Rational Team Concert.

Rational Jazz is an initiative to transform software delivery to make it more collaborative,
productive, and transparent. Rational Team Concert is a collaborative work environment for
developers, architects, and project managers with workitem, source control, build management,
and iteration planning support. The Rational Rhapsody Platform Integration lets software
developers work on a Rational Rhapsody project within the Eclipse platform.

For details on how to use Rational Jazz, Rational Team Concert, and Eclipse, see the
documentation provided for those products.
Rational Rhapsody 181

IBM Rational Team Concert
How changes are accepted and conflicts resolved
Each team member has an Eclipse Rational Team Concert workspace connected to the Rational
Jazz server and works with Rational Rhapsody projects that are acquired from the Rational Jazz
repository. When a team member initiates acceptance of changes made by other team members,
Rational Team Concert replaces the local Rational Rhapsody units with ones fetched from the
Rational Jazz repository. However, if you have already modified some of these Rational Rhapsody
units, Rational Team Concert merges local and incoming units. The Rational Rhapsody DiffMerge
tool is used to perform the merge.

When Rational Team Concert detects that some of the local units cannot just be replaced with new
ones, it reports a conflict and it gives you the opportunity to try to merge automatically or to merge
later. The following options are possible.

 Auto-Merge. In this case, Rational Team Concert launches the Rational Rhapsody
DiffMerge tool and, if it is possible, automatically merges differences in silent mode.
However, if there are any conflicts from the Rational Rhapsody DiffMerge perspective,
Rational Team Concert displays a message box stating that auto-merge is not possible for
some of the files and suggests you do the merge manually for them. All units that could
not be merged automatically are put into the Rational Team Concert Merge required list,
for which you must do a manual merge. See the next bullet for how to do this.

 Merge Later. When you click this button, whatever that can be replaced is replaced
(without having to open the DiffMerge tool). All conflicting units are put into the Rational
Team Concert Merge required list. You will need to manually merge them later. Note
that among those units there might be differences that can be auto-merged.

To merge units that were postponed (either due to the inability of the Rational Rhapsody
DiffMerge tool to merge them automatically or because you decided to merge conflicts
later), you can right-click Merge required in Rational Team Concert and select Open in
compare editor to open the Compare Editor window.

– You can then try (or retry) to merge the conflicts automatically by clicking the
Auto-Merge button (to call the DiffMerge tool in silent mode).

– You can click the Invoke Rhapsody DiffMerge to compare or merge
manually button so that you can resolve conflicts by merging manually. You
must save your changes in the DiffMerge tool and click the Resolve as
Merged button to commit the results when you return to the Compare Editor
window.

For more information about the DiffMerge tool, see Parallel development.
182 Team Collaboration Guide

Index
Symbols
.magic file (Rational ClearCase) 156

A
Activity diagrams 18

as units 20
to define a use case 15

AddToArchiveAfterCreateUnitActivation property 161
AllLeftItemMerge preference 123
AllRightItemMerge 123
Application 16

CM 44
rapid prototyping 62

Architect 5
Architecture 16
Archive 42, 49, 165

adding to 49
batch mode 43, 44
cannot update 36
CM tool 44
connect to 136
connecting to 41, 44
connecting to different 43
connecting to PVCS Dimensions 164
creating files 29
directory structure changes 152
list 167
multiple 21
operations 56
PVCS Dimensions 165
Rational ClearCase adding to 149
Rational Synergy 136
showing items 41, 44
tools 11, 63, 64
units for comparison 64
updating 27

AssignedTasksItsTaskId 137
AssignedTasksItsTitle property 137
Attributes 80

differences 81
pane 71
text 102

Autosave file 13
Autosynchronize 46

B
Backup file 13
Base-aware comparisons 68, 70, 73, 96

automatic merging 106
command-line 129
Diff icons 78
example of command-line 130
merge icons 107
merging CM branches 109
reporting preferences 119
resolving conflicts in 109
show DiffMerge marks preference 122
trivial versus non-trivial differences 106

BaseAwareAutoMergeableAttributes preference 127
BaseAwareAutoMergeInvocation preference 127
BaseAwareDiffAttrChanged preference 119
BaseAwareDiffAttrChngBoth preference 119
BaseAwareDiffAttrDelAndChng preference 119
BaseAwareDiffElemAdded preference 119
BaseAwareDiffElemChanged preference 120
BaseAwareDiffElemChngBoth preference 120
BaseAwareDiffElemDelAndChng preference 120
BaseAwareDiffElemDeleted preference 120
BaseAwareDiffInvocation preference 127
BaseAwareDiffMergeAutoNo preference 120
BaseAwareDiffMergeAutoYes preference 120
BaseAwareDiffMergeInvocation preference 127
BaseAwareDiffReportFooter preference 120
BaseAwareDiffReportHeader preference 120
BaseAwareDiffSideLeft preference 120
BaseAwareDiffSideRight preference 120
BaseAwareDiffTrivialNo preference 120
BaseAwareDiffTrivialYes preference 120
BaseAwareTextDiffMergeEnabled preference 127
Batch mode 39, 163

actions 56
Connect to Archive 43, 44
creating directories in 29
deleting files 33
DiffMerge command line 129
keyword expansion 30
Linux 11, 64
moving a file or directory 35
renaming a file 34
renaming a package 35
troubleshooting 54
Rational Rhapsody 183

Index
versus SCC mode 39
BlinkWalkingThroughDiffs preference 85, 117
Browse From Here browser 76
Browsers 37, 65

Browse From Here 76
DiffMerge 71, 76, 125
DiffMerge differences 76
DiffMerge symbols 77
DiffMerge tool navigation 79
icons 65

C
Case sensitivity 149
Check in 42, 48

PVCS Dimensions 167
Rational ClearCase 150
Rational Synergy task 138
SCC mode 167

Check out 42, 47
PVCS Dimensions 166
Rational ClearCase 150

Check Out Branch 41
CheckOutCheckInDirectoryOnceDuringAddToArchive

property 160
CI (configuration items) 18
Classes 16

as units 20
automatic unit creation 18
divide model based on 16
reference from other project 6

ClassIsSaveUnit property 20
CLS file 12
CM operations 49

check in 48
check out 47
Connect to Archive 44
DiffMerge tool 45
fetch 50
history 51
List Archive 44
list of supported 41
Lock 50
Properties 45
Synchronize 46
undo check out 51
unlock 50
version tree 51

CM status 52, 53
CM tool 41

comparing units stored in 67
configuring 43
extend interface 58
messages 55
pre- and post-actions 56
PVCS Dimensions in SCC mode 163
Rational ClearCase 148

Rational Synergy 133
troubleshooting common problems 53
unable to update 36

CMConflictResolution property 36
CMHeaderItsVersion property 167
CMOperationEndSeparator 55
CMOperationStartSeparator 55
CMTool property 135
Code generation 17

improving performance 158
incremental 12

Collaboration 1
designing for 15
methodologies 6
multiple site 6
remote 6
sharing by copying 7
using CM tools 39
using Web-enabled devices 61

Colors 19
codes for DiffMerge categories 75
DiffMerge settings 119
DiffMerge showing differences 72

Command line 32
DiffMerge options 129
launch the external tool 80

Comments 19
Comparing 63

three units 73
two units 72
units 45
units graphically 82

Complexity of projects 1
Components 2

organizing by 17
scope 17

Concurrent Versions System (CVS) 171
adding unit created in Rational Rhapsody to

repository 175
checking out a Rational Rhapsody project 172
collaborating with other users 173
repository synchronization 173
sharing a Rational Rhapsody project 171
updating a Rational Rhapsody unit 175
viewing unit history 175

Configuration Items 136
Configuration items (CIs) 18
Configuration management (CM) 11, 63, 64, 163

merging from a base-aware comparison 109
Rational Synergy 133
SCC compliant 163
with Rational ClearCase 148

Configurations
items accessing 40
items dividing projects 18
of the CM tool 43
system manager 4
184 Team Collaboration Guide

Index
Connect to Archive 41
in batch mode 44
PVCS Dimensions 164

Content management 3
CVS 171

D
DAT file 12
DefaultDirectoryScheme property 26
Delete 33
DeleteActivation property 33
Descendant 66

adding to an SCC archive 165
checking in 167
fetching 168

Design 3
Designing

for collaboration 15
for readability 19

Developer 5
DiagramIsSaveUnit property 20
Diagrams 19

as unit 20
comparing 76
file 18
graphically merging 111, 112
storing as units 19

DiffAttributesFilter preference 124
DiffColor preference 119
Differences

filtering 81
graphical 88
high level view 98, 100
logical 88
major 98, 100
propagated view 98
reporting 74
trivial versus non-trivial 106

DiffInvocation preference 128
DiffMerge tool 7, 21, 23, 41, 63

advantages of launching inside Rational Rhapsody 67
advantages of launching outside Rational

Rhapsody 69
Attributes pane 71
attributes pane 79
base-aware icons 78
base-aware mode 68, 70, 73
browser 71, 76, 77, 125
browser navigation 79
changing preferences 117
color coded categories 75
color preferences 119
command-line options 129, 130
compare archived unit with current 66
compare archived units 67
comparing diagrams 76

comparing units 64
configuration management tools 64
descendant 66
Diff text option 80
Difference Report 85
Difference Report preferences 130
difference symbols 77
Diffmerge.ini 101
display difference in red 72
examining selected file paths 70
exporting reports 90
external textual tool 79, 118
filtering comparisons 81
for collaboration 45
graphical comparisons 82
graphically merging diagrams 111, 112
highlight graphical differences 83
how performs a model comparison 96
interface 71
keywords for command line 32
keywords for preference values 118
launch from Rational ClearCase 153
launching inside Rational Rhapsody 64
launching outside Rational Rhapsody 68
left value 68, 70, 72
limitations 87, 97, 105, 153
making merge decisions 108
merge icons 107
merge output setting 128
merging menu options 109
merging sequence diagrams 114
merging units 101
nested difference icon 78
nested differences in subelements 77
nested units 68
Output window 74
parallel development 63
preference keywords 118
preferences 117
print report 86
Printing 64
process 91
properties 128
Rational ClearCase 156
Rational Team Concert 182
renamed elements 92
renaming support 121
report preferences 119
reporting differences 74
resolving conflicts in base-aware comparisons 109
right value 68, 70, 72
running from command line 129
saving merged unit 105
selecting units to compare 68
setting Rational ClearCase tools to launch 127
starting a merge 101
suppress graphical differences 86
Rational Rhapsody 185

Index
suppression preferences 124
switch off graphics blinking 85
text merge 127
trivial/non-trivial differences 106
using with Rational ClearCase 151
walk-through graphical differences 83
with CM tools 45
with Rational Synergy 139

DiffMergeInvocation preference 128
DiffPrefix preference 120
Directories 29

creating 29
creating in SCC mode 29
moving 35
of package 34
structure 152

Distributed team 4, 22, 63
Dividing

model based on classes 16
project in two projects 22
project into units 18
use cases 15

Domains 16
organizing by 16
Rational ClearCase VOB 158

E
Eclipse 156, 171, 177, 181
Editing

files 9
units 33

EHL file 12
ElementMatchRule preference 121
Elements 21

code generation for 17
how DiffMerge makes a match 91
merging of renamed 104
merging referring 115
referenced model 105
renamed 92
reuse of 17
sequence diagram merging 115
sequence diagrams 116
testing 17

Errors 12
failed to open document 12
failed to save document 12
unable to create process 54
unable to rename package 35
unable to store package in new directory 34

Events 19
Events history list 12
Evil twins issue (Rational ClearCase) 150
ExcludeFromMerge preference 123
ExcludeGraphTypesVLess6 preference 125
External textual tool 79, 80, 118

F
Features window

configuration management properties 139, 159, 170
property definitions 152
PVCS Dimensions properties 170
Rational ClearCase properties 159
Rational Synergy properties 139

Fetch 42, 50
PVCS Dimensions 168
supported mode 39

Files 6
autosave 13
backup 13
base-aware comparisons 68, 70, 73
checking in and out 10
creating 29
DAT 12
Diffmerge.ini 101
editing 9
EHL 12
locking 10
LOG 12
management by reference 8
management in CM tool 10
moving 35
permissions 50
project 21
renaming 34
RPW (workspace) 12
RPY 12, 21
RPY dividing projects 18
sharing 7
sharing by copy 7
sharing by reference 9
table 12
types 12
units 12
VBA 12

Filtering 9, 81
Flat repository 23, 25
Framework 16

G
Geographical distribution 4
GetCurrentTaskItsTaskId property 137
Graphical differences 76, 82, 88

highlight 83
ignored in merge 86
suppressing 86
walk-through 83

Graphically merging diagrams 111, 112, 115
tips 113

GraphicalMerge preference 123
Groups 17
186 Team Collaboration Guide

Index
H
Hierarchical repository 23, 26, 152
High level differences 98, 100
History 42, 51, 169

I
Icons 65

base-aware comparison 78
Diffmerge browser 77
DiffMerge trivial vs. non-trivial 73
merge 107

IgnoreGraphDiffs preference 125
IncludeInMerge preference 123
Integrator 5
Interface, custom 10
ItemMerge preference 123

K
Keywords 30

administrative 30
arguments to CM commands 32
DiffMerge preferences 118
DiffMerge tool 32
expansion in CM batch mode 30

L
Layout 19
Lead developer 5
LeftItemMerge preference 123
LeftMerge preference 123
LeftOnlyColor preference 119
LeftOnlyPrefix preference 120
Licensing

Rational ClearCase 159
Limitations

CVS 174
DiffMerge tool 87, 97, 105, 153
graphical merging 105
merged units 105
no CM version number display 11
Rational Rhapsody with Rational ClearCase 150
read-only diagrams 105
UNIX 153

Linux 11, 64
DiffMerge with Rational ClearCase 156

List Archive 44
PVCS Dimensions 167

Lock 42, 50
LOG file 12
Logical differences 88

M
Macros (VBA) 12
Major structure differences 98, 100
MakeCMShadowDirActivation 29
Makefile 22
mergeLog option 131
MergeOutput preference 128
MergeToRhapsody preference 123
Merging 101

activity log preferences 123
automatic 106
automatic resolve preference 122
base-aware 106
CM branches 109
diagrams graphically 111, 112, 115
graphical limitations 105
icons 107
include graphical differences 86
log of 116
manually 108
navigation for manual 109
referenced model elements 105
renamed elements 104
report on 116
saving merged unit 105
sequence diagram elements 114, 115
sequence diagrams 114
starting 101
text 102
trivial versus non-trivial differences 106
two units 110
units 45
using command line options 131

Message 55
Methodology 6

collaboration 6
combining 6
sharing by copy 7
sharing by reference 6, 8
using a CM tool 6

mkelem 148
mkview 148
mkvob 148
Mode 29

batch creating directories in 29
batch keyword expansion 30

Model comparisons 96
Models 16

framework organization 16
organizing and partitioning 15
organizing by domains 16
testing 17
upgrading 157

mount 148
MoveActivation property 35
MoveDirectory property 35
Rational Rhapsody 187

Index
Multiple projects
issues 21
workflow 23

N
Nested 66, 67

differences 78
units 9, 67, 68

NestedDiffColor preference 119
NestedDiffPrefix preference 120
NestedElementPrefix preference 120
NoDiffColor preference 119
NoDiffPrefix preference 120

O
OMD file 12
Operating system 22
Operation semantics, Rational ClearCase 150
Operations 41

add to Archive 49
check in 48
check out 47
Connect to Archive 44
fetch 50
history 51
List Archive 44
list of supported 41
Lock 50
Synchronize 46
undo check out 51
unlock 50
version tree 51

Organizing 15
by components 17
by domain 16
by logical and physical architectures 16
by team members 17
by use case 15
model 15

Output window 55

P
PackageIsSaveUnit property 20
Packages 15

adding elements 21
as unit 18
as unit property setting 20
dividing use cases 15
in directory 34
rename 35

Parallel development 63
Partial load 22
Partition model 15
Permission 50

Preferences 117
AllLeftItemMerge 123
AllRightItemMerge 123
base-aware reporting 68
BaseAwareAutoMergeableAttributes 127
BaseAwareAutoMergeInvocation 127
BaseAwareDiffAttrChanged 119
BaseAwareDiffAttrChngBoth 119
BaseAwareDiffAttrDelAndChng 119
BaseAwareDiffElemAdded 119
BaseAwareDiffElemChanged 120
BaseAwareDiffElemChngBoth 120
BaseAwareDiffElemDelAndChng 120
BaseAwareDiffElemDeleted 120
BaseAwareDiffInvocation 127
BaseAwareDiffMergeAutoNo 120
BaseAwareDiffMergeAutoYes 120
BaseAwareDiffMergeInvocation 127
BaseAwareDiffReportFooter 120
BaseAwareDiffReportHeader 120
BaseAwareDiffSideLeft 120
BaseAwareDiffSideRight 120
BaseAwareDiffTrivialNo 120
BaseAwareDiffTrivialYes 120
BaseAwareTextDiffMergeEnabled 127
BlinkWalkingThroughDiffs 85, 117
DiffAttributesFilter 124
DiffColor 119
DiffInvocation 128
DiffMerge tool 81
DiffMergeInvocation 128
DiffPrefix 120
DiffReport 119
ElementMatchRule 121
ExcludeFromMerge 123
ExcludeGraphTypesVLess6 125
filtering difference attributes 81
GraphicalMerge 123
IgnoreGraphDiffs 125
IncludeInMerge 123
ItemMerge 123
LeftItemMerge 123
LeftMerge 123
LeftOnlyColor 119
LeftOnlyPrefix 120
MergeOutput 128
MergeToRhapsody 123
NestedDiffColor 119
NestedDiffPrefix 120
NestedElementPrefix 120
NoDiffColor 119
NoDiffPrefix 120
PrintLineNumbers 121
PrintNoDiffLines 121
PrintSubDiffs 121
RepDecidedAuto 123
RepDecidedMan 123
188 Team Collaboration Guide

Index
RepElemExcluded 123
RepElemIncluded 123
RepElemMerged 123
RepElemTakenFrom 123
RepElemUndecided 123
RepFooter 124
RepHeader 124
RepItemDecided 124
RepItemMerged 124
ReportFooter 121
ReportFooterColor 119
ReportHeader 121
ReportHeaderColor 119
RepSideRight 124
ResolveAutomaticallyWhenStartingMerge 122
RightItemMerge 124
RightMerge 124
RightOnlyColor 119
RightOnlyPrefix 121
RightSideLeft 124
SaveMerge 124
ShowDMMarksInBaseAwareMode 122
ShowMetaInfoInBrowser 125
ShowStereotypeInBrowser 125
StartMerge 124
Suppressions 124
SuppressRenamePropagatedDiffs 126
SuppressRenamePropogatedDiffs 126
TextDiffMerge 127
UseDefault 119

Printing 64
diagrams 64
DiffMerge reports 64, 86
settings for DiffMerge 119

PrintLineNumbers preference 121
PrintNoDiffLines preference 121
PrintSubDiffs preference 121
Process message 54
Projects 1

adding elements 21
by type of CM 3
CM status 51
combining two 23
design complexity 3
dividing files 18
dividing into units 18
dividing one in two 22
file 12, 21
geographical distribution 4
guidelines 1
manager 4
managing multiple 21, 23
properties 21
restructuring 23
restructuring under CM 27
setting up for teams 149
size by component 2

size by team members 2
splitting 22

Propagated differences 98
Properties 19, 157, 159

AddToArchiveAfterCreateUnitActivation 161
archived file 45
AssignedTasksItsTaskId 137
AssignedTasksItsTitle 137
AutoSynchronize 46
changing default 157
CheckOutCheckInDirectoryOnceDuringAddToArchi

ve 160
ClassIsSaveUnit 20
CMConflictResolution 36
CMHeaderItsVersion 167
CMOperationEndSeparator 55
CMOperationStartSeparator 55
CMTool 41
command 169
configuration management 139, 159, 170
DefaultDirectoryScheme 26
DeleteActivation 33
DiagramIsSaveUnit 20
DiffMerge tool 128
GetCurrentTaskItsTaskId 137
MakeCMShadowDirActivation 29
MoveActivation 35
MoveDirectory 35
operation 42
PackageIsSaveUnit 20
project-level 21
PVCS Dimensions 170
Rational ClearCase 152, 159
Rational Synergy 139
RedirectOutputToRhapsody 166
Rename 34
RenameActivation 34
RenameDirectory 35
RunCMToolCommand 44
ShowCMStatus 53
StoreInSeparateDirectoryActivation 160, 161
supported mode 39
UserDefCommand_x 58
UseSCCtool 135, 163, 165
viewing details 45

Prototyping 62
PVCS Dimensions

archive 165
Check in 167
Check out 166
Connect to Archive 164
Fetch 168
History 169
Properties command 169
SCC tool 39
setting up access from Rational Rhapsody 163
Rational Rhapsody 189

Index
Q
Quality manager 5

R
Rapid prototyping 62
Rational ClearCase 11, 63

.magic file 156
adding members 148
adding new members 149
adding relevant file to the CM archive after creating a

unit 161
administrators 151
Batch mode 141, 142
case sensitivity 149
checking out files 149
checking out/checking in a directory once 160
ClearDiff 127
ClearDiffMrg 127
configuration for DiffMerge 151
consumed license 159
creating a view 148
deciding between Batch and SCC modes 145
DiffMerge for Linux 156
DiffMerge tool limitations 153
evil twins issue 150
in batch mode only 43, 44
launch the Rational Rhapsody DiffMerge tool 153
license 159
limitations with Rational Rhapsody 150
Linux 11, 64
moving a file or directory 35
operation semantics 150
Rational Rhapsody DiffMerge tool with 151
removing an existing directory for a package and rec-

onciling its contents 161
renaming a directory or file 34
SCC mode 141, 142
SCC tool 39
set textual tool for DiffMerge 80
setting up 148
storing an existing package in a separate

directory 160
synchronizing workspace 46
team environments 149
Type Manager 153, 154, 156
Unified Change Management (UCM) 146
VOB mounting point 148

Rational Jazz technology platform 181
Rational Rhapsody 1, 12

checking out files in Rational ClearCase 149
Concurrent Versions System 171
CVS 171
DiffMerge tool 41, 45
DiffMerge with Rational ClearCase 151
Eclipse plug-in 156

files 12
launching DiffMerge inside 64
launching DiffMerge outside 68
project components 2
properties 157
PVCS Dimensions 163
Rational ClearCase 141
Rational Synergy 133
Serena PVCS Dimensions 163
setting up access to Dimensions 163
Subversion 177
SVN 177
units 63
upgrading models 157
using with Rational Synergy 135
Web pages for customization 62

Rational Rhapsody Platform Integration (Eclipse and
Rational Rhapsody) 171, 177, 181

Rational Synergy 11, 133
checking in Rational Rhapsody work 138
communication with Rational Rhapsody 133
comparing an archived unit to the current version 66
connect to archive 136
create new task 137
how names tasks 137
SCC tool 39
selection in properties 135
set up 133
task properties 138
tasks in Rational Rhapsody 138
text differences tool 139
toolbar in Rational Rhapsody 135
Type Manager 134, 139
with Rational Rhapsody 135

Rational Team Concert 181
Recursive option 131
RedirectOutputToRhapsody property 166
Reference 8

adding by 23
sharing by 8
units 59
unresolved 59

Remote collaboration 6
Removing

units 19
Rename 34

files 34
in CM operation 34
package 35

Rename property 34
RenameActivation property 34
Renamed elements 92
RenameDirectory property 35
Renaming support in DiffMerge 121
RepDecidedAuto preference 123
RepDecidedMan preference 123
RepElemExcluded preference 123
190 Team Collaboration Guide

Index
RepElemIncluded preference 123
RepElemMerged preference 123
RepElemTakenFrom preference 123
RepElemUndecided preference 123
RepFooter preference 124
RepHeader preference 124
RepItemDecided preference 124
RepItemMerged preference 124
ReportFooter preference 121
ReportFooterColor preference 119
ReportHeader preference 121
ReportHeaderColor preference 119
Reports 86

differences 74, 86
DiffMerge differences 85
DiffReport 119
exporting DiffMerge 90
merge information 116
print DiffMerge differences 86
RTF 90

Repository 23
flat 23
flat using 25
hierarchical 23, 152
hierarchical using 26
structuring 23

RepSideRight preference 124
reserve 148
ResolveAutomaticallyWhenStartingMerge

preference 122
RightItemMerge preference 124
RightMerge preference 124
RightOnlyColor preference 119
RightOnlyPrefix preference 121
RightSideLeft preference 124
Roles 4

architect 5
configuration system manager 4
developer 5
integrator 5
lead developer 5
list of team members 4
project manager 4
quality manager 5

RPW file 12
RPY file 12, 21

dividing projects 18
Run CM Tool 41
RunCMToolCommand property 44

S
SaveMerge preference 124
SBS file 12
SCC mode 11

actions 56
check in 167

Connect to Archive 43
creating directories 29
deleting files 33
moving a directory or file 35
property 163
renaming a directory or file 34
renaming a package 35
supported tools 39
synchronizing workspace 46
troubleshooting 53
versus batch mode 39

Scope 17
Sequence diagrams 116

elements 116
limitations of graphical merge 105
merging 114
merging "referring" elements 115
merging elements 114, 115

Serena PVCS Dimensions 163
Setting up

comparisons 72
local workspace 8
Rational ClearCase 148
Rational Rhapsody for use with Rational Synergy 133
Rational Rhapsody projects 149
Type Manager for Rational ClearCase 154

Share 8
by copy 7
by reference 8
editing files 9
setting up workspace 8

Show items in archive 41, 44
ShowCMStatus property 53
ShowDMMarksInBaseAwareMode preference 122
ShowMetaInfoInBrowser preference 125
ShowStereotypeInBrowser preference 125
Source artifacts 47, 48
Source control management (CM) 3

selecting files types for 12
supported tools 10
using conventional tools 10

Splitting projects 22
StartMerge preference 124
startview 148
Statecharts 18

as units 20
nested 113
to define a use case 15

Status of CM 52, 53
StoreInSeparateDirectoryActivation property 160, 161
Subelements, nested differences 77
Subversion (SVN) 177

adding unit created in Rational Rhapsody to
repository 180

checking out a Rational Rhapsody project 178
collaborating with other users 179
repository synchronization 179
Rational Rhapsody 191

Index
sharing a Rational Rhapsody project 177
updating a Rational Rhapsody unit 180
viewing unit history 180

Suppressions 124
SuppressRenamePropagatedDiffs preference 126
SuppressRenamePropogatedDiffs preference 126
SVN 177
Synchronize 41, 46

files modified outside of Rational Rhapsody 46
with view 46

T
Take from left 101
Take from right 101
Tasks 138

checking into Rational Synergy 138
create new Rational Synergy 137
view Rational Synergy properties 138
working with Rational Synergy 138

Team 6
collaboration 6
environment 149
member roles 4
members 17
number of members 2
organizing by member 17
remote member 6

Testing 17
Text 102

attributes 102
differences 106
external editor 79, 80
merging 102
modifying in graphics 113

TextDiffMerge 127
Trivial versus non-trivial differences 106
Troubleshooting 53

.magic file (Rational ClearCase) 156
batch mode 54
Rational ClearCase Type Manager 156
SCC mode 53
unresolved references 59

Type Manager
Rational ClearCase 154, 156
Rational Synergy 134, 139

U
UCM 146
Uncheck Out 42, 169

Undo 33
Undo check out 51
Unified Change Management 146
Units 12, 18, 63

added by reference 59
attributes 71
class 20
CM status 51
compare archived 67
compare graphically 82
compare nested 68
comparing 45
creating 19, 20, 65
diagram 20
dividing project into 18
editing 20, 33
examining selections 70
merging 45, 101
moving 33
package 20
removing 19
selecting to compare 68
testing 17

UNIX 150, 153, 154, 156
Unlock 42, 50
Unresolved reference 59
Update 27

CM system error message 36
configuration management (CM) archive 27

Use cases 15
UseDefault preference 119
UserDefCommand_x 58
User-defined button 58
UseSCCTool & CMTool properties 135
UseSCCtool property 135, 163, 165

V
VBA file 12
Version Tree 42, 51
View 148
VOB mounting point 148

W
Web collaboration 61
Webify Toolkit 61
Workflow 16, 17, 23
Workspace 8

file 12
synchronizing 46
192 Team Collaboration Guide

	Contents
	Basic concepts
	Project complexity
	Number of team members
	Number of components
	Design complexity
	Type of content management
	Geographical distribution
	Team members and their roles

	Methodologies for team collaboration
	Share by copy without a CM tool
	Share by reference without a CM tool
	Setting up a local workspace
	Editing files using sharing by reference

	Conventional CM tools
	Accessing the CM archive from Rational Rhapsody

	Rational Rhapsody files for content management

	Model organization and partition
	Possible model organizational methods
	Test considerations

	Configuration items (CIs)
	Considerations for dividing a project into units
	Creating unit files
	Removing unit files
	Packages as units
	Classes as units
	Diagrams as units

	The project file
	Multiple Rational Rhapsody projects
	Dividing a project into two projects
	Two projects into one project
	Multiple project workflow

	Repository structure
	Repository structure planning
	Flat repositories
	Hierarchical repositories

	Example of project under CM
	Restructuring a project
	File and directory creation
	Directories in SCC mode
	Directories in batch mode
	Keyword expansion in batch mode

	File and directory deletion
	Unit storage
	Packages in a new directory
	File renaming
	Package contained in its own directory renaming
	Control moving a file or directory
	When Rational Rhapsody cannot update the CM system
	Model only changes
	Model and the file system changes
	Canceling a change

	CM and Rational Rhapsody
	SCC versus Batch mode
	Configuration Items window
	CM operations
	Connect to Archive
	Connect to Archive in SCC Mode
	Connecting to a different archive
	Configuring a CM tool Batch mode
	Connecting a project to the archive

	Show Items in Archive
	Run CM tool
	Comparing with the DiffMerge tool
	Displaying the properties of a unit
	Synchronize Items
	Autosynchronize
	Check out operation
	Checking out a unit

	Check In operation
	Checking in a unit

	Using Add to Archive in CM operations
	Lock and Unlock operations
	Locking/Unlocking a unit

	Fetching a unit
	Using Uncheckout in CM operations
	History/Version tree

	CM status of units in a project
	CM status information in the browser
	CM status information in the Configuration Items window
	Property to turn off display of CM status

	About troubleshooting CM operations
	CM Output window
	Pre- and post- actions
	CM interface extension
	Unresolved references
	Units added by reference

	Multi-site collaboration
	Webify for collaboration
	Rapid prototyping

	Parallel development
	The DiffMerge tool
	What is a unit?
	How do you use DiffMerge?

	Launching DiffMerge inside Rational Rhapsody
	Compare With operation
	Comparing an archived unit to the current version

	Comparing two archived versions
	Advantages of launching DiffMerge inside Rational Rhapsody

	Launching DiffMerge outside Rational Rhapsody
	Select units to compare
	Selecting units to compare outside Rational Rhapsody
	Advantages of launching DiffMerge outside Rational Rhapsody

	Examining “left” and “right” value selections
	Results displayed in the DiffMerge tool
	Differences report in the Output window
	Difference Report display
	Features of a Difference Report

	DiffMerge differences
	Differences in the browser
	Difference categories and their icons in the browser

	Base-aware Diff icons
	DiffMerge tool navigation
	The external difference/merge textual tool
	Using your external difference/merge textual tool

	Filtering the comparison in the DiffMerge tool
	Inspecting differences in diagrams visually
	Graphical differences
	Switching on the difference highlighting
	Walking through diagram differences
	Switching off element blinking

	Difference Report generation
	Printing a Difference Report
	Graphical differences suppression
	DiffMerge limitations

	Logical versus graphical differences
	Example of logical difference

	DiffMerge reports
	Exporting DiffMerge reports

	The Rational Rhapsody DiffMerge process
	How does the DiffMerge tool make a match?
	Examples of how the DiffMerge tool handles renamed elements
	How DiffMerge performs a model comparison
	How differences are detected in base-aware comparisons
	Limitations for match by element ID in DiffMerge
	How to examine only major structure differences
	Comparison of propagated differences view and major structure differences view

	Merge units with the DiffMerge tool
	Starting a merge operation
	Merge renamed elements
	Saving the merged unit
	Merge units limitations
	Automatic merging for base-aware comparisons
	Trivial Versus Non-trivial Differences
	Merge icons for base-aware comparisons

	About making merge decisions
	Navigation menu options for merging
	Undecided view
	View in merge
	Base-aware comparison merging
	Rules for merging from a two-unit comparison

	Merging diagrams graphically for most diagrams
	Merging diagrams graphically for statecharts and activity diagrams
	Tips for graphical merging for statecharts and activity diagrams
	Saving the graphically merged unit

	About merging sequence diagrams
	Making merge decisions from the DiffMerge browser
	Making merge decisions from the graphical view
	Additional changes permitted in graphical merge mode
	About “referring” elements
	Elements that realize Sequence diagram elements

	Merge activity log
	Producing merge reports

	DiffMerge tool preferences
	Changing preferences
	Restoring default settings

	Keywords
	Colors preferences category
	DiffReport preferences category
	General preferences category
	MergeLog preferences category
	Suppressions preferences category
	TextDiffMerge preferences category

	Command-line options for the DiffMerge tool
	Launching the DiffMerge tool interface using the command line
	Launching the DiffMerge tool from the command line
	DiffMerge command-line syntax options

	IBM Rational Synergy
	Setting up Rational Rhapsody for use with Rational Synergy
	Rational Synergy and Rational Rhapsody
	Using Rational Synergy with Rational Rhapsody
	Connecting to the Rational Synergy archive
	Creating new Rational Synergy tasks
	Viewing the properties for a Rational Synergy task
	Working with a Rational Synergy task in Rational Rhapsody
	Checking in Rational Rhapsody work

	Rational Synergy and the Rational Rhapsody DiffMerge tool
	Customize Rational Rhapsody and Rational Synergy

	IBM Rational ClearCase
	Batch mode Versus SCC mode
	The differences between the Batch and SCC modes
	SCC mode or Batch mode?
	SCC Mode or Batch Mode Summary

	Setting up Rational ClearCase
	Controlling case sensitivity in Rational ClearCase
	About checking out Rational Rhapsody files
	About setting up Rational Rhapsody projects for team members
	About adding new files to the archive
	Rational ClearCase limitations with Rational Rhapsody

	Rational ClearCase semantics
	Evil twins issue
	Integration issues
	Hierarchical repository and Rational ClearCase
	Changes to an existing directory structure
	Limitations for changing an existing directory structure

	Rational ClearCase Type Manager
	Setting up the Rational ClearCase Type Manager
	Setting up the Rational ClearCase .magic file
	Rational Rhapsody models and changing the default properties

	Code generation performance improvements
	Forced check in of a package with unchanged subunits
	When is a Rational ClearCase license consumed?
	Customize Rational Rhapsody and Rational ClearCase
	Checking out/Checking in a directory once
	Storing an existing package in a separate directory
	Removing an existing directory for a package and reconciling its contents
	Adding a unit to the CM archive automatically

	Serena PVCS Dimensions
	Enabling a SCC-compliant CM tool
	Access to Dimensions from Rational Rhapsody
	Create the initial connection to the SCC tool
	Creating the initial connection to the SCC tool in Dimensions

	Add to SCC archive operation
	Adding a unit to an SCC archive

	Check out operation in SCC archive
	Checking out a unit in SCC archive

	Check in operation in SCC archive
	Checking in a unit in SCC archive

	Listing the archive in PVCS Dimensions
	Fetching in Dimensions
	Unchecking Out in Dimensions
	Viewing the history of a unit
	Viewing the file details for a unit
	Customize Rational Rhapsody and PVCS Dimensions

	Concurrent Versions System (CVS)
	Sharing a Rational Rhapsody project in CVS
	Checking out a Rational Rhapsody project from a CVS repository
	Collaboration with other users in CVS
	Repository synchronization in CVS
	Updating a Rhapsody unit in Eclipse to the CVS repository
	Configuring how Update behaves

	Adding a unit created in Rational Rhapsody to the CVS repository
	Showing the history of a unit in CVS

	Subversion (SVN)
	Sharing a Rational Rhapsody project in Subversion
	Checking out a Rational Rhapsody project from a Subversion repository
	Collaboration with other users in Subversion
	Repository synchronization in Subversion
	Updating a Rational Rhapsody unit in Eclipse to the Subversion repository
	Adding a unit created in Rational Rhapsody to Subversion repository
	Showing the history of a unit in Subversion

	IBM Rational Team Concert
	How changes are accepted and conflicts resolved

	Index

