

Rational Rhapsody
API Reference Manual

Before using the information in this manual, be sure to read the IBM “Notices” section of the IBM
Rational Help.

This edition applies to IBM® Rational® Rhapsody® 7.4 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
The Rational Rhapsody API . 1
Information Available to the API . 1

Hierarchy of API Interfaces. 2

Rational Rhapsody Java API Basic Concepts . 5
Java API Features . 5

Java API Differences from COM API . 6

Rational Rhapsody Environment Initialization before Using Rational Rhapsody API on Linux . 6

COM API Basic Concepts and Examples . 7
COM API Tools and Languages . 7

COM API with Visual Basic . 7
COM API with VBScript. 9
Setting Up the COM Interface for Visual C++ . 12

Manipulating Project Elements . 18
Creating a Project Element . 18
Modifying an Element . 19
Deleting an Element . 19

Handling Properties Using the API . 20
Propagation of Default Property Values . 20
Methods for Manipulating Properties. 21

Error Handling . 22
Catching an Error Condition in VB . 22
Error Codes. 23

Installing Custom Helpers . 24

Adding Helpers to Rational Rhapsody . 24

Rational Rhapsody API Interface . 25
Rational Rhapsody API Examples . 26

Running the RPYReporter Example . 26
Rational Rhapsody iii

Table of Contents
Running the RPYExplorer Example . 27

Running RPYReporter in Visual Basic . 29
VB Forms . 31
Running RPYReporter Step-by-Step. 32

Starting and Saving Your Own VB IDE Work . 41
Saving the Examples as New Projects . 41
Making Your Own New Projects . 41
Compiling and Making Your Executables . 41

Creating Applications with Microsoft Word VB IDE. 42
Specifying the Macro Content . 43
Comments on the Code . 45
Modifying the Example to Print Classes . 46

Rhapsody API Interfaces . 49
Access to VB Properties. 50

API Conventions . 50

Rhapsody Interfaces . 51
IRPAction Interface . 53
IRPActor Interface. 54
IRPAnnotation Interface . 54
IRPApplication Interface . 56
IRPArgument Interface . 98
IRPASCIIFile Interface . 100
IRPAssociationClass Interface . 103
IRPAssociationRole Interface . 103
IRPAttribute Interface . 106
IRPBlock Interface . 107
IRPClass Interface . 108
IRPClassifier Interface . 125
IRPClassifierRole Interface . 159
IRPCollaboration Interface . 160
IRPCollaborationDiagram Interface. 182
IRPCollection Interface . 183
IRPComment Interface . 185
IRPComponent Interface. 185
IRPComponentDiagram Interface . 203
IRPComponentInstance Interface . 203
IRPConfiguration Interface . 204
IRPConnector Interface. 220
IRPConstraint Interface. 232
IRPControlledFile . 232
IRPDependency Interface . 233
iv API Reference Manual

Table of Contents
IRPDeploymentDiagram Interface. 233
IRPDiagram Interface . 233
IRPEnumerationLiteral Interface . 238
IRPEvent Interface . 239
IRPEventReception Interface . 240
IRPExecutionOccurrence Interface. 241
IRPExternalCodeGenerator Interface . 241
IRPExternalCodeGeneratorInvoker Interface . 257
IRPFile Interface . 259
IRPFlow Interface . 269
IRPFlowchart Interface . 274
IRPFlowItem Interface. 277
IRPGeneralization Interface . 280
IRPGraphEdge Interface. 281
IRPGraphElement Interface . 281
IRPGraphicalProperty Interface . 286
IRPGraphNode Interface. 286
IRPGuard Interface . 286
IRPHyperLink Interface . 287
IRPImageMap . 290
IRPInstance Interface . 291
IRPInteractionOccurrence Interface . 296
IRPInterfaceItem Interface . 297
IRPLink Interface. 303
IRPMessage Interface. 304
IRPMessagePoint Interface . 306
IRPModelElement Interface . 308
IRPModule Interface . 341
IRPNode Interface. 341
IRPObjectModelDiagram Interface . 344
IRPOperation Interface . 344
IRPPackage Interface . 349
IRPPin Interface . 402
IRPPort Interface. 404
IRPProfile Interface . 410
IRPProject Interface . 410
IRPRelation Interface . 429
IRPRequirement Interface. 434
IRPSequenceDiagram Interface . 434
IRPState Interface. 436
IRPStatechart Interface. 457
IRPStateVertex Interface . 465
IRPStereotype Interface . 470
IRPStructureDiagram Interface . 470
Rational Rhapsody v

Table of Contents
IRPSwimlane Interface . 470
IRPTag Interface . 471
IRPTemplateInstantiation Interface. 471
IRPTemplateInstantiationParameter Interface . 472
IRPTemplateParameter Interface . 472
IRPTransition Interface . 474
IRPTrigger Interface . 487
IRPType Interface . 490
IRPUnit Interface. 506
IRPUseCase Interface . 512
IRPUseCaseDiagram Interface. 519
IRPInternalOEMPlugin . 519
IRPVariable Interface . 519

The Callback API . 521
Callback API Introduction. 521

Events with Callback Methods . 522

API Details . 523
IRPApplicationListener . 523
IRPRoundTripListener. 525
IRPCodeGeneratorListener. 525

Callback Logging. 526

Disabling Callback Notification . 526

Disabling Cancellable Actions . 526

Sample Client Applications . 527

Quick Reference . 529

Index . 545
vi API Reference Manual

The Rational Rhapsody API
The Rational Rhapsody API allows you write applications that access and manipulate Rational
Rhapsody model elements. Two versions of the API are provided with Rational Rhapsody:

 COM
 Java

Information Available to the API
The Rational Rhapsody API facilitates reading, changing, adding to, and deleting from all model
elements that are available in the Rational Rhapsody browser. The browser displays the static
elements of a model including, but not limited to, the following:

 Model information
 Descriptions and other information within browser forms
 Information describing the model hierarchy, components, and packages
 Configurations and profiles
 Features and properties
 File and directory names
 Diagrams in a form that can be printed or included in external files for printing, such as

Microsoft® Word®
Rational Rhapsody 1

The Rational Rhapsody API
Hierarchy of API Interfaces
The class diagram depicts the hierarchical relationships between the API interfaces. The
application (IRPApplication) is the top-level object of the Rational Rhapsody object model.
The hierarchy of the API interfaces is as follows:

IRPApplication
IRPASCIIFile
IRPCollection
IRPExternalCodeGenerator
IRPExternalCodeGeneratorInvoker
IRPFlow
IRPGraphElement

IRPGraphEdge
IRPGraphNode

IRPGraphicalProperty
IRPModelElement

IRPAction
IRPAnnotation

IRPComment
IRPConstraint
IRPRequirement

IRPAssociationRole
IRPClassifierRole
IRPCollaboration
IRPComponentInstance
IRPConfiguration
IRPDependency

IRPHyperLink
IRPEnumerationLiteral
IRPExecutionOccurrence
IRPFile
IRPGeneralization
IRPGuard
IRPInteractionOccurrence
IRPInterfaceItem

IRPEvent
IRPEventReception
IRPOperation

IRPLink
IRPMessage
IRPMessagePoint
IRPStateVertex

IRPConnector
IRPState

IRPStereotype
IRPSwimlane
IRPTemplateInstantiation
IRPTemplateInstantiationParameter
IRPTransition
IRPTrigger
IRPUnit

IRPClassifier
IRPActor
IRPClass
IRPAssociationClass
IRPFlowItem
IRPNode
IRPType
IRPUseCase
2 API Reference Manual

Hierarchy of API Interfaces
IRPComponent
IRPDiagram

IRPCollaborationDiagram
IRPComponentDiagram
IRPDeploymentDiagram
IRPObjectModelDiagram
IRPSequenceDiagram
IRPStatechart
IRPFlowchart
IRPStructureDiagram
IRPUseCaseDiagram

IRPPackage
IRPProfile
IRPProject

IRPRelation
IRPInstance
IRPBlock
IRPModule
IRPPort

IRPVariable
IRPArgument
IRPAttribute
IRPTag
IRPTemplateParameter
Rational Rhapsody 3

The Rational Rhapsody API
4 API Reference Manual

Rational Rhapsody Java API Basic
Concepts
In terms of its capabilities, the Rational Rhapsody Java API is identical to the Rational Rhapsody
COM API. The reference material for the COM API can be used to see what you can do with the
Java API. The names of the objects, attributes, and methods in the Java API are more or less the
same as those in the COM API.

For the details of the Rational Rhapsody Java API, see the Javadoc output for the API, which can
be found at [rhapsody installation directory]\Doc\java_api\index.html.

A sample that uses the Java version of the Rational Rhapsody API can be found in the directory:

[Rhapsody installation directory]\Samples\JavaAPI

A more advanced sample can be found in the directory:

[Rhapsody installation directory]\Samples\CustomCG
Samples\Statechart_Simplifier_Writer\Statechart_Java_Simplifier

Java API Features
Rational Rhapsody includes a Java version of the Rational Rhapsody API that can be used for
working with Rational Rhapsody models. Since the Java API can be used on both Windows and
Linux, this API allows you to write cross-platform applications.

Rational Rhapsody provides two files that can be found in the directory [installation
directory]Share/JavaAPI:

 Rhapsody.jar—contains the Java classes and interfaces
 Rhapsody.dll (or Rhapsody.so for Linux)—native implementation of the Java interfaces

The .jar file should be included in the CLASSPATH of the Java project, and the .dll (or .so file)
should be included in the lib path.

To access the Rational Rhapsody application, you use the object RhapsodyAppServer. See the API
javadoc output for details.
Rational Rhapsody 5

Rational Rhapsody Java API Basic Concepts
Java API Differences from COM API
The following are specific differences between the Rational Rhapsody Java API and the Rational
Rhapsody COM API:

 Methods in the Java version of the API throw RhapsodyAPIException exceptions. You
can use the toString method to get the description of the exception.

 IRPCollection provides a method called toList that returns a native Java list container
populated with the elements of the collection. This is the recommended method of
iterating over collections with the Java version of the API. (In Java 1.5, you can cast the
list to a types list and thus benefit from the for-each iterator.)

 Unlike the COM version of the API, where you have to use the
IDispatch::QueryInterface method, in the Java version, you can use the native Java
operator instanceOf.

 To check whether two interfaces point to the same model element, you should use the
native boolean Object.equals(Object) method.

Rational Rhapsody Environment Initialization before
Using Rational Rhapsody API on Linux

An initialization script called rhp_env (located in the root of the Rational Rhapsody installation
directory) must be run before using Rational Rhapsody on Linux.

This is done automatically when Linux users launch Rational Rhapsody as described in the
documentation. However, this script must also be run by Linux users who run Java applications
that include use of the Rational Rhapsody API.

When you write a Java application that includes use of the Rational Rhapsody API, make sure to
inform the users of the application that they must run the initialization script prior to running the
Java application.

Alternatively, you can try to automate this process for the users of your application, for example,
by having the script run as part of each users Linux startup process, or by including a call to this
script in the script file you provide for launching your Java application (provided, of course, that
Rational Rhapsody is installed in the same location on each users computer).
6 API Reference Manual

COM API Basic Concepts and Examples
The Rational Rhapsody Repository API consists of a set of COM interfaces that supports dual
interfaces (COM and automation). This allows access from Visual Basic and any language
implemented with COM bindings. COM interfaces allow access from either Visual Basic® or
VBScript, even when type information is not available (for example, OLE automation).

Note
See http://www.urc.bl.ac.yu/manuals/vbscript/ch13fi.htm for a comparison of Visual Basic,
VBA, and VBScript.

Each interface represents a class in the Rational Rhapsody repository, and the set of interfaces
forms the Rational Rhapsody object model. Each instance in the Rational Rhapsody repository
returns a reference to a particular COM interface based on its metaclass. For example, access to an
event in the Rational Rhapsody repository is via the IRPEvent interface.

COM API Tools and Languages
The following sections describe how to use the Rhapsody COM API tools and languages

COM API with Visual Basic

Like all COM-based APIs, two components are required to create Rational Rhapsody automation
scripts:

 The Rational Rhapsody COM type library, rhapsody.tlb. COM type libraries are self-
documenting and easy to browse using COM object viewers.

 A Rational Rhapsody executable providing COM server functionality.
In Visual Basic, attach the rhapsody.tlb library to the project by selecting Project >
References. This familiarizes the VB environment with the Rational Rhapsody API interfaces. No
further action is required. VB implicitly connects to the Rhapsody server (rhapsody.exe) once
the VB application is executed.
Rational Rhapsody 7

http://www.urc.bl.ac.yu/manuals/vbscript/ch13fi.htm

COM API Basic Concepts and Examples
Example
The following VB program shows an example of how to traverse all the classes and add a serial
number property (initialized to 0) to each one.

Public Sub SetClassesInPackage(p As IRPPackage)
‘
‘ Routine to add recursively a property to all classes in
‘a package
‘

Dim allClassifiers As RPCollection
Set allClassifiers = p.nestedClassifiers
Dim c As RPClassifier
For each c in allClassifiers

isClass = c.isOfMetaClass ‘Class’
If isClass Then

On error resume next
If not c.addProperty(‘general:class:serialNo’,

‘int’, ‘0’) then
If not err.Number then
Print ‘class can’t be assigned a
property’, c.name
end if

Else ‘ Check for nested packages
isPackage = c.isOfMetaClass ‘Package’
If isPackage Then ‘ nested package case
Dim nestedP as Package
Set nestedP = c ‘ cast classifier to package
SetClassesInPackage nestedP
End If

End If
Next

End Sub
‘
‘ The main program
‘
Dim Rph As Object
Dim ProjName As String
Dim Prj As RPProject
Dim Packages As RPCollection

Set Rph = CreateObject("Rhapsody.Application")
ProjName = ‘D:\Rhapsody\Examples\PingPong.rpy’
Rph.OpenProject projName
Set Prj = Rph.activeProject
Packages = Prj.packages
Dim p As RPPackage
For each p in allProjectClassifiers

SetClassesInPackage p
Next
8 API Reference Manual

COM API Tools and Languages
COM API with VBScript

Most Rational Rhapsody users on Windows platforms can use the Visual Basic IDE programming
environment or VBA, which are not available on a Solaris platform. However, Rational Rhapsody
users on Solaris platforms can access the Rational Rhapsody API using VBScript (Visual Basic
Scripting edition), a cross-platform development language.

Running VBScript
The setup for running VBScript scripts is done during installation. Note the following:

1. Before running a VBScript script, you must run Rational Rhapsody at least once for
registration of the COM interfaces in the registry.

2. Run the VBS script located in the Rational Rhapsody home directory.

3. Use the vbstest program by Mainsoft™ to run vbs programs.

VBScript samples are available in the Samples/Vbs directory of the Rational Rhapsody
installation.

Writing Files from VBScript
Some of the elements of Visual Basic are not included in VBScript, such as file input/output
functions. Rhapsody compensates for this with the addition of a File object to the Rational
Rhapsody COM library to facilitate reading and writing to files. To write to files, use code similar
to the following in your script:

rem Create a rhapsody object.
.
.
.

rem Create and open a file object.
Set F = CreateObject("Rhapsody.RPASCIIFile")

rem Use it to open a file.
F.open "/tmp/show.txt"

rem Use is to write to the file with VB script commands.
F.write "Succeeded in opening project " + vbLf

rem Close the file when finished with it.
F.close
Rational Rhapsody 9

COM API Basic Concepts and Examples
Example VBScript
The following VBScript script dumps packages, classes, and events. It is included in the Rhapsody
installation.

Dim rappl
Dim appl
Dim p
Dim s
Dim c
Dim pack
Dim F
Set rappl = CreateObject("Rhapsody.Application")
Set F = CreateObject("Rhapsody.RPASCIIFile")
F.open "/tmp/show.txt"
F.write "Succeeded in opening project " + vbLf

MsgBox "Started Rhapsody"+rappl.version

s = "/disk1/RP/Samples/Pingpong/pingpong.rpy"
rappl.openProject s
Set p = rappl.activeProject

Set c = p.components
For Each pack In c

MsgBox pack.Name
Next

dim NextPack, NextOperation

rem Lets send them to a file

level=1
ShowPackages p, level

F.close
MsgBox "Done listing the Project"

sub ShowPackages(p, levelPack)
CallLevelPack = levelPack + 1
Set Pk = p.packages
For Each Pack In Pk

PrintSpace levelPack
F.write"Package:"+pack.Name+vbLf
ShowClasses Pack, CallLevelPack
CallLevelClass = levelClass + 1
ShowEvents Pack, CallLevelPack

Next
End Sub

sub ShowClasses(Pack, levelClass)
CallLevelClass = levelClass + 1

set NextPack = Pack.Classes
PrintSpace levelClass
F.write"Classes::"+vbLf
For Each Class In NextPack

PrintSpace levelClass
F.writeClass.Name+"::"+vbLf
10 API Reference Manual

COM API Tools and Languages
ShowOperations Class, CallLevelClass
CallLevelClass = levelClass + 1
ShowAttributes Class, CallLevelClass

Next
End Sub

sub ShowOperations(Class, levelOperation)
CallLevelOperation = levelOperation + 1
set NextOperation = Class.Operations
PrintSpace levelOperation
F.write"Operations::"+vbLf

for Each Operation in NextOperation
PrintSpace CallLevelOperation
F.write"::"+Operation.name+vbLf
CallLevelClass = levelOperation + 1

Next
End Sub

sub ShowAttributes(Class, levelAttribute)
CallLevelAttribute = levelAttribute + 1
set NextAttribute = Class.Attributes
PrintSpace levelAttribute
F.write"Attributes::"+vbLf
for Each Attribute in NextAttribute

PrintSpace CallLevelAttribute
F.write"::"+Attribute.name+vbLf

Next
End Sub

sub ShowEvents(Pack, levelEvent)
CallLevelEvent = levelEvent + 1
set NextEvent = Pack.Events
PrintSpace levelEvent
F.write"Events::"+vbLf
for Each RHPEvent in NextEvent

PrintSpace CallLevelEvent
F.write"::"+RHPEvent.name+vbLf

Next
End Sub

sub PrintSpace (levelPrint)
For x = 1 to levelPrint

F.write ""
Next

End sub
Rational Rhapsody 11

COM API Basic Concepts and Examples
Setting Up the COM Interface for Visual C++

Like all COM-based APIs, two components are required to create Rational Rhapsody automation
scripts:

 The Rational Rhapsody COM type library, rhapsody.tlb. COM type libraries are self-
documenting and easy to browse using COM object viewers. One such viewer is provided
in the Share directory of the installation.

 A Rhapsody executable providing COM server functionality.
The class wizard can create Rhapsody proxy objects by attaching to the rhapsody.tlb library.
This requires the VC++ project also to be COM-enabled.

The important steps in setting up the COM interface are as follows:

1. Include an #import statement. For example:

#import "C:\Rhapsody\rhapsody.tlb" no_namespace
named_guids

This statement makes C++ recognize the various interfaces as C++ classes.

2. Invoke the rhapsody.application object. For example:

IRPApplication apl = NULL;
hr = CoCreateInstance(CLSID_RPApplication,
NULL,CLSCTX_ALL, IID_IRPApplication, (void**)&apl);

3. Access elements of the rhapsody.application object through API methods. For
example:

// Get project file name
IRPProjectPtr proj = NULL;
hr = apl->openProject (projectFileName, &proj);

// Get count of packages in project
IRPCollectionPtr collection;
hr = proj->get_packages(&collection);
long elementsCollectionCount;
hr = collection->get_Count(&elementsCollectionCount);

The following two examples demonstrate how to invoke Rhapsody from a C++ client using direct
COM calls to the Rational Rhapsody API interface.
12 API Reference Manual

COM API Tools and Languages
Sample: Reading from the API
The following example is the primary file in a Visual C++ workspace application that reads from a
Rational Rhapsody project using the COM API interface.

//
// ReadAPI.cpp : Defines the entry point for the console
//application.
//

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <atlbase.h>
// The following depends on the place that Rhapsody is
//installed
#import "F:\Documents\RiCPP_2.3MR1\Rhapsody\rhapsody.tlb"
raw_interfaces_only, no_namespace, named_guids

void printBSTR(BSTR errorMessage)
{

LPCWSTR tmpName = errorMessage;
char buf[1000];
int tmpNameLen = tmpName != NULL ? wcslen(tmpName) :0;

if (tmpNameLen != 0)
{

wcstombs(buf, tmpName, (tmpNameLen*2)+1);
printf(buf);
printf("\n");

}
}

void printErrorMessageIfError(HRESULT hr,
IRPModelElement* modelElement)

{
if (FAILED(hr))
{

BSTR errorMessage;
HRESULT tmpHr;
tmpHr = modelElement

>getErrorMessage(&errorMessage);
printBSTR(errorMessage);

}
}

int loadProject(const char* rpyFileName)
{

HRESULT hr;
CLSID clsid;
hr = CLSIDFromProgID(OLESTR("Rhapsody.Application"),
&clsid);

if (FAILED(hr))
{

printf(_T("Failed to resolve CLSID. HR =
0x%8x"),hr);

return 0;
}
// Create CoClass instance from ClassId, using

dispatch iid
IRPApplicationPtr apl;
hr = ::CoCreateInstance(CLSID_RPApplication, NULL,

CLSCTX_ALL, IID_IRPApplication, (void**)&apl);
Rational Rhapsody 13

COM API Basic Concepts and Examples
if (FAILED(hr))
{

printf(_T("Failed to create instance. HR =
0x%8x"),hr);

return 0;
}
int len = MultiByteToWideChar(CP_ACP, 0, rpyFileName,

strlen(rpyFileName), NULL, NULL);
BSTR projectFileName = SysAllocStringLen(NULL, len);
MultiByteToWideChar(CP_ACP, 0, rpyFileName,

strlen(rpyFileName), projectFileName, len);
IRPProjectPtr proj = NULL;
hr = apl->openProject (projectFileName,&proj);
SysFreeString(projectFileName);
IRPCollectionPtr collection;
hr = proj->get_packages(&collection);
long elementsCollectionCount;
hr = collection->get_Count(&elementsCollectionCount);
BSTR packageName;
VARIANT r;
for (int i = 1; i <= elementsCollectionCount; i++)
{

IRPPackagePtr p;
hr = collection->get_Item(i, &r);
hr = r.pdispVal->QueryInterface(IID_IRPPackage,

(void**)&p);
hr = p->get_name(&packageName);
printBSTR(packageName);

}

hr = apl->quit();
return 0;

}
void Usage()
{

printf("Usage: ReadAPI rpyFile\n");
}
// General remark: In the following, in most cases there
// is no check on the returned hr for readability.
int main(int argc, char* argv[])
{

HRESULT hr;
hr = CoInitialize(0);

if (FAILED(hr))
{

printf(_T("Failed to initialize COM"));
return 0;

}
if (argc == 2)

loadProject(argv[2]);
else

Usage();
// loadProject("D:\\Temp\\Project.rpy");

CoUninitialize();
return 0;

}

14 API Reference Manual

COM API Tools and Languages
Sample: Writing to the API
The following example is the primary file in a Visual C++ workspace application that writes to a
Rational Rhapsody project using the COM API interface.

Note
Change the #import line to match your own project.

//
// WriteAPI.cpp : Defines the entry point for the console
// application.

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <atlbase.h>
// The following depends on the place that Rhapsody is
// installed
#import "D:\Rhapsody\rhapsody.tlb" raw_interfaces_only,

no_namespace, named_guids
void printBSTR(BSTR errorMessage)
{

LPCWSTR tmpName = errorMessage;
char buf[1000];
int tmpNameLen = tmpName != NULL ? wcslen(tmpName) :0;
if (tmpNameLen != 0)

{
wcstombs(buf, tmpName, (tmpNameLen*2)+1);
printf(buf);
printf("\n");

}
}
void printErrorMessageIfError(HRESULT hr,

IRPModelElement* modelElement)
{

if (FAILED(hr))
{

BSTR errorMessage;
HRESULT tmpHr;
tmpHr = modelElement->getErrorMessage(
&errorMessage);
printBSTR(errorMessage);

}
}

int createNewProject(const char* userDirectoryName, const
char* userProjectName)

{
HRESULT hr;
hr = CoInitialize(0);
if (FAILED(hr))

{
printf(_T("Failed to initialize COM"));
return 0;

}
CLSID clsid;
hr = CLSIDFromProgID(OLESTR("Rhapsody.Application"),

&clsid);
if (FAILED(hr))
{

printf(_T("Failed to resolve CLSID. HR =
Rational Rhapsody 15

COM API Basic Concepts and Examples
0x%8x"),hr);
return 0;

}
// Create CoClass instance from ClassId, using
// dispatch iid
IRPApplicationPtr apl;
hr = ::CoCreateInstance(CLSID_RPApplication, NULL,

CLSCTX_ALL, IID_IRPApplication, (void**)&apl);
if (FAILED(hr))
{

printf(_T("Failed to create instance. HR =
0x%8x"),hr);

return 0;
}
IRPProjectPtr proj = NULL;
int len = MultiByteToWideChar(CP_ACP, 0,

userDirectoryName, strlen(userDirectoryName), NULL,
NULL);

BSTR projectLocation = SysAllocStringLen(NULL, len);
MultiByteToWideChar(CP_ACP, 0, userDirectoryName,

strlen(userDirectoryName), projectLocation, len);
len = MultiByteToWideChar(CP_ACP, 0, userProjectName,

strlen(userProjectName), NULL, NULL);
BSTR projectName = SysAllocStringLen(NULL, len);
MultiByteToWideChar(CP_ACP, 0, userProjectName,

strlen(userProjectName), projectName, len);

hr = apl->createNewProject(projectLocation, projectName);
hr = apl->activeProject(&proj);
SysFreeString(projectLocation);
SysFreeString(projectName);

IRPPackagePtr package;
BSTR packageName = SysAllocString(L"myPackage");
hr = proj->addPackage(packageName, &package);
SysFreeString(packageName);

IRPClassPtr newClass;
BSTR className = SysAllocString(L"myClass");
hr = package->addClass(className, &newClass);
SysFreeString(className);

IRPOperationPtr operation;
BSTR operationName = SysAllocString(L"myOperation");
hr = newClass->addOperation(operationName,

&operation);
SysFreeString(operationName);

IRPAttributePtr attribute;
BSTR attributeName = SysAllocString(L"myAttribute");
hr = newClass->addAttribute(attributeName,

&attribute);
SysFreeString(attributeName);

hr = proj->save();
hr = apl->quit();
CoUninitialize();
return 0;

}

void Usage()
{

printf("Usage: WriteAPI directoryName projectName\n");
}

16 API Reference Manual

COM API Tools and Languages
// General remark: In the following, in most cases there
// is no check on the returned hr for readability.
int main(int argc, char* argv[])
{

HRESULT hr;
hr = CoInitialize(0);

if (FAILED(hr))
{

printf(_T("Failed to initialize COM"));
return 0;

}

if (argc == 3)
createNewProject(argv[2], argv[3]);

else
Usage();

// createNewProject("D:\\temp\\Project", "Project");
CoUninitialize();
return 0;

}

Rational Rhapsody 17

COM API Basic Concepts and Examples
Manipulating Project Elements
The following sections describe how to create, modify, and delete Rhapsody project elements.

Creating a Project Element

There are two ways to add a new Rhapsody element:

 Add a new object while the project is still open in Rational Rhapsody using the method
addNewAggr on an owner object, supplying the metatype, name, and receiving the newly
created object.

The syntax for the call is as follows:

owner.addNewAggr(metaType, name);

In this call, metaType and name are String expressions for the type
and name of an object with which to form an aggregation relation with
an owner object.

For example, if a package p is present in your open model, you can execute the
following code in Visual Basic:

Dim c as RPClass
c = p.AddNewAggr("Class","C");

When finished, the new class c is added to package p.

 There are also addObject methods available for every object. For example:

Dim cl as RPClass
Dim attr as RPAttribute
Set cl = Package.AddClass("C");
Set attr = Class.AddAttribute("att");

The objects created are connected to their owner. Even a new project
can be created using a special method.

Note: Do not use the VB methods createObject or createInstance to create
new elements. The only correct way to create new elements is with the
addNewAggr method or the specific addObject methods.
18 API Reference Manual

Manipulating Project Elements
Modifying an Element

When you attempt to modify an object through an API method, you call the appropriate method,
such as setName(newName). Rhapsody checks the permissions, and returns one of the values
listed in the following table.

Deleting an Element

The method deleteFromProject deletes an object from its package. In addition, there are
DeleteXXXX methods that delete elements of a core object.

In the following examples, cl and att are wrappers to their core objects.

Package.DeleteClass(cl);
Class.DeleteAttribute(att);

Only cl = NULL and att = NULL in a Visual Basic application will delete the wrapper itself.

Return State Description

YES The operation is performed and returns without error.
For example, you want to name a class “A”.

NOOP The operation is not performed and returns without error.
For example, you want to name a class “A”, but it already
has that name.

NO The operation is not performed and returns with an error.
For example, you want to name a class “A”, but it is read-
only, or there is already a class named “A” present. The
error message RP_CANT_MODIFY is returned as the
error message for this method.

WARNING You can choose from two working modes:
• Force mode on? WARNING is regarded as YES.
• Force mode off? WARNING is regarded as NO.

MERGE The operation is not performed as if a NO is returned.
Merge routines are available.
Rational Rhapsody 19

COM API Basic Concepts and Examples
Handling Properties Using the API
Rhapsody model elements can have name/value pairs, known as properties, that extend the model
in some way. They provide, for example, instructions for code generation, additional application-
dependent properties, and so on.

The name (or key) part of the name/value pair is a string that must consist of three qualifying fields
separated by a period. For example:

<lang>_CG.Configuration.Environment

The first of the three fields designates a subject, such as code generation, reverse engineering, and
so on. The second field designates the metaclass (or stereotype) to which the property applies. The
third field designates the name of the property.

The value part of the name/value pair is a string that can be interpreted as either a string value, an
integer, a Boolean, or an enumerated type. For example, “Microsoft” is one of the enumerated
values “Microsoft, MicrosoftDLL, VxWorks, Solaris2, Borland, MSStandardLibrary, PsosX86,
PsosPPC, MicrosoftWinCE, OseSfk, Linux, Solaris2GNU, QNXNeutrinoGCC,
QNXNeutrinoCW, OsePPCDiab” for the key <lang>_CG.Configuration.Environment.

For a given property name, a Rhapsody model element can have either a specific value (a value
given to it by either a user or Rhapsody), or a default value, which it finds by searching a
predefined search path. For some keys, it is possible to have no value at all.

Propagation of Default Property Values

To facilitate assignment of values to groups of model elements rather than a single model element
each time, Rhapsody implements a propagation mechanism where property values propagate
along the containment hierarchy. The propagation originates at the factory.prp file, continues
to the project through the site.prp file, and then on to the configuration and model containment
hierarchy.

For example, consider a class C1 that is nested in a package P11 that is nested in a package P1.
Class C1 is denoted by the expression P1::P11::C1. Assume that for all the classes in P11 the
statecharts should not be implemented (generated). To do this, the property
CG.Class.ImplementStatechart should be set to False for package P11. By default, all
classes within P11 (recursively) “inherit” this value, unless overridden. If this behavior is required
for the entire project, this property should be set to False at the project level.

Note
The propagation mechanism referred to resembles inheritance, although the word
“inheritance” is intentionally not used to avoid confusion.
20 API Reference Manual

Handling Properties Using the API
Methods for Manipulating Properties

The API provides a number of functions that enable you to add or modify Rhapsody properties.
These methods belong to the IRPModelElement interface and include the following:

 addProperty

 getPropertyValue

 getPropertyValueExplicit

 removeProperty

 setPropertyValue

You can use properties set in the site.prp file to create customized documentation. These
properties can also be accessed by the API and changed as required.
Rational Rhapsody 21

COM API Basic Concepts and Examples
Error Handling
All COM methods return a status of HRESULT indicating the success status of the method. In
Visual Basic (VB), HRESULT is not visible and a failure status raises a VB error condition that, if
not handled, aborts the calling program.

Most of the API functions do not create side effects, and therefore there is no reason for them to
flag an error. However, the API might flag errors if permission on an update is not given.

The following table lists the methods that flag errors and might require error handling.

Catching an Error Condition in VB

Catching an error condition in VB is performed using an On Error statement. A practical way to
handle errors flagged by method calls is demonstrated by the following example:

On Error Resume Next
getSelectedElement.getPropertyValue("no.property.exists")
Dim s As String
getSelectedElement.getErrorMessage s
MsgBox s

In this example:

 Resume Next makes the program continue to execute at the statement immediately
following the one that caused the error.

 The method getErrorMessage, defined for every model element, fetches a message of
the most recent error occurrence. This message can be displayed to diagnose the error, as
shown in the example.

Method Member Of

addProperty IRPModelElement

getPropertyValue IRPModelElement

getPropertyValueExplicit IRPModelElement

removeProperty IRPModelElement

setPropertyValue IRPModelElement

save IRPProject

saveAs IRPProject
22 API Reference Manual

Error Handling
Error Codes

A return value of zero indicates success. The following table lists the non-zero values that
represent Rhapsody API error codes.

Error Description

RP_CANT_ADD_AGGREGATE Could not add the element.

RP_CANT_MODIFY The item cannot be modified.

RP_CANT_DELETE The item cannot be deleted.

RP_NO_OPEN_PROJECT There is no open project with which to interface.

RP_DELETED_OBJECT_ERROR Indicates a reference to a deleted object.

RP_BAD_ENUMERATED_VALUE The enumerated type used does not exist.

RP_BAD_PROPERTY_KEY_ERROR Illegal property key syntax (not in
<subject>.<metaclass>.<name>
format).

RP_MISSING_PROPERTY_ERROR The property requested does not exist.

RP_PROPERTY_EXISTS_ERROR Attempt to add a property that already exists.

RP_CONFIGURATION_NOT_IN_COMPONENT_
ERROR

Attempt to set an active configuration a
nonexistent one.

RP_OPERATION_FAILED_ERROR Applying an operation that cannot be handled
by certain objects, although defined by its base
interface. An example is addProperty,
which is defined for all model elements, but
currently generalization and reception cannot
apply it.

RP_SAVE_FAILED_ERROR The save or save as operation failed, probably
because of lack of file writing privileges.

RP_CANNOT_WRITE_TO_FILE_ERROR The provided file name cannot be opened for
writing. Currently, this applies to the
getPicture method of IRPDiagram.
Rational Rhapsody 23

COM API Basic Concepts and Examples
Installing Custom Helpers
Helpers are custom programs that can be attached to Rhapsody to extend it. Helpers can be either
external programs (executables) or VBA macros:

 An external program helper is typically either a VB or a C++ program that uses the COM
API and connects to the Rhapsody instance via the GetObject COM service.

Note: Currently, GetObject is not supported on Linux systems.

 A VBA macro helper is a VBA macro defined in a VBA module promoted to be a helper.
Helpers are attached to the Tools menu of Rational Rhapsody using the Customize option.

Adding Helpers to Rational Rhapsody
To add a helper, select Tools > Customize in Rational Rhapsody. The Helpers dialog box is
displayed. This dialog box is similar to the Visual Studio external tools menu. You manipulate the
menu and create new entries using the toolbar at the top of the dialog box, which includes the
following tools:

 New
 Delete
 Move Up
 Move Down
24 API Reference Manual

Rational Rhapsody API Interface
Rational Rhapsody includes a interface tool for users who want to programmatically interact with
their Rational Rhapsody projects for useful applications such as the preparation of custom reports.
This interface is referred to as the Rational Rhapsody application programming interface (Rational
Rhapsody API or simply API).

Without going into excessive detail, this lesson describes how to use the Visual Basic® API
examples that come with Rational Rhapsody to make your own Visual Basic API applications.

This chapter describes how to perform the following tasks:

 Generate a report using RPYReporter.
 Generate a model tree using RPYExplorer.
 View the Visual Basic source code for RPYReporter and RPYExplorer.

The Rational Rhapsody API functions through a set of methods and attributes that act as a set of
Microsoft COM interfaces. Using these methods and attributes, users of languages with COM
bindings such as C++, Java, and Visual Basic (VB) can programmatically access a Rational
Rhapsody project and all its model elements. Currently, access is restricted to read-only access for
model elements and write access for model properties.
Rational Rhapsody 25

Rational Rhapsody API Interface
Rational Rhapsody API Examples
The Rational Rhapsody distribution includes two example applications prepared in Visual Basic
that access Rational Rhapsody projects through the Rational Rhapsody API. The following
sections describe these examples in detail.

Running the RPYReporter Example

to run the RPYReporter example:

1. Double-click on the executable file RPYReporter.exe in the
Samples\CppSamples\Api\RPYReporter directory under your Rational Rhapsody
installation directory. The RPY Project Reporter dialog box is displayed.

2. Click Load Project and browse for the Dishwasher project you completed in the
tutorial.

3. Select your Dishwasher project, then click OK. Rational Rhapsody displays a wait
screen while the project is being loaded.

4. Click Report on Project.

After preparing the report, the application displays the name and location of the text
file containing the report so you can access it at any time.

5. Click OK to display the report in Notepad.

The report contains detailed information about your model, including data types
used, stereotypes, names of events, classes, operations, and so on.

6. Click File > Exit to close Notepad.

7. Click Exit to exit the application.

8. Click Yes when asked if you really want to quit.
26 API Reference Manual

Rational Rhapsody API Examples
Running the RPYExplorer Example

To run the RPYExplorer example, follow these steps:

1. Double-click the executable file RPYExplorer.exe in the
Samples\CppSamples\API\RPYExplorer directory under your Rational Rhapsody
installation directory. Rational Rhapsody displays the RPY Explorer window, as shown in
the following figure.

2. In the window, select File > Load RPY Project.

3. In the resultant dialog box, browse for your Dishwasher project, then click Open. The
root of an expandable Dishwasher tree is displayed, with a plus sign in front of it.

4. Click the plus sign to expand the Dishwasher project.

At the categories level, expandable segments appear for Packages, Object Diagrams,
Sequence Diagrams, and so on.

5. Expand each category to reveal its contents.
Rational Rhapsody 27

Rational Rhapsody API Interface
6. To expand individual elements of a category, simply select them.

The RPYExplorer example has a browser similar to the Rational Rhapsody browser.
Information for each highlighted model element is displayed on the right-hand side
of the dialog box.

Tools Menu Options
The Tools menu options provide the following capabilities:

 Get, set, add and remove project properties using property dot notation
(Subject.MetaClass.Property).

 Get nested elements recursively for a selected element. For example, if you highlight a
component and select Get Nested Elements Recursive from the Tools menu, you receive
a small report on all configurations and files in the component.

 Save a report of an element’s properties and methods to a text file.
 Report on a model.
 View diagrams. You can view a diagram only after storing a diagram as an.emf file.

Storing and Viewing Diagram Files
To store and view diagram files, follow these steps:

1. Highlight an individual diagram in the tree. The properties and methods for the diagram
are displayed in the right-hand pane.

When you highlight a diagram in the VB browser, VB automatically creates an.emf
file of the diagram in your system’s temporary directory (for example, C:\TEMP).
VB displays the message “getPicture: see metaFile in your TMP folder” in the right-
hand panel.

2. To save the file to a different location (in addition to the one in your temporary directory),
select Tools> Create EMetaFile from the RPDiagram. You are prompted for the name
and location of a file in which to store the diagram.

3. To view a stored diagram file, select Tools > RPDiagram Viewer.

4. In the resultant dialog box, highlight the appropriate .emf file, then click View Selected
RPDiagrams. The diagram is displayed.
28 API Reference Manual

Running RPYReporter in Visual Basic
Running RPYReporter in Visual Basic
The intent of this lesson is to describe how the examples were prepared so you can create your own
applications.

The RPYReporter and RPYExplorer examples were created in the Microsoft Visual Basic 6.0 IDE
(Interface Development Environment). Although the intent of this lesson is not to instruct you in
Visual Basic, the features are explained as encountered in order to see how the examples were
prepared. Note that although this tutorial uses Visual Basic version 6.0, version 5.0 is also
compatible.

Do the following:

1. Start Microsoft Visual Basic 6.0 IDE using the Windows Start menu or from within
Rational Rhapsody by selecting Tools > VBA > Visual Basic Editor.

2. In the New Project dialog box, select Standard EXE and click Open. The Microsoft
Visual Basic design window is displayed with an empty, default project.

3. Select File > Open Project and browse for the RPYReporter project file,
Project1.vbp, located in the subdirectory
Samples\CppSamples\API\RPYReporter of the Rational Rhapsody installation
directory. This is the same directory with the executable RPYReporter.exe.

4. Select Project1.vbp, then click OK to load it.

When the RPYReporter project is loaded, you should see several open windows in
the VB IDE. The Project Explorer window has a browser-like appearance with the
window title Project - RPYReporter, as shown in the following figure.

If this window is not displayed, select View > Project Explorer on the VB desktop.
Rational Rhapsody 29

Rational Rhapsody API Interface
5. In the Project Explorer, double-click on the form RPYReportDumpForm. A window
containing this form is displayed, as shown in the following figure.

This form is similar to the dialog box in the RPY Report executable.

Another window that should be present on the VB IDE is the Properties window,
shown in the following figure.

:

If this window is not open, select View > Properties Window.
30 API Reference Manual

Running RPYReporter in Visual Basic
VB Forms

Forms are the basis for writing programs in Visual Basic. Each form consists of elements such as
buttons, text fields, and pull-downs.

The form and its elements each have properties that are listed in the Properties window. Currently,
the Properties window displays the properties for the entire form. You can show the properties of
each form element by clicking on an individual element, then examining the Properties window.

Placing Elements on Forms
To place elements on a form, follow these steps:

1. Click the appropriate type of form element in the Form toolbox on the left.

2. Double-click a location for the element, or click and drag to establish its outline.

Viewing the Element Properties and Code
Each element has many properties, such as Appearance, BackColor, Caption, and Label. For
example, if you click the Load Project button, you can see its properties consist of a name
(cmdLoad), a type (CommandButton), and others such as Caption (“Load Project”), which
labels the button. Note that the name cmdLoad begins with the three character prefix “cmd” which,
by denotes a command button. Note the different prefixes used for the other elements.

Each form element automatically has code associated with it that reacts to different events on the
element. The most common of these is the “Click” event. For each element that you can click,
there is a Visual Basic subprogram that services that click, whose name is the same as the
element’s name with the “_Click”suffix.

To view the properties and code associated with an element, follow these steps:

1. Click on each form element and observe the element type and name. These appear in the
pull-down box at the top of the Properties window.

2. On the form, double-click the Load Project button to see the subprogram
cmdLoad_Click() in the VB desktop.

A window appears with all of the code for the RPYReportDumpForm form that has
been scrolled so the start of the cmdLoad_Click() subprogram is at the top, as
shown in the following figure.
Rational Rhapsody 31

Rational Rhapsody API Interface
Note that the subprogram cmdLoad_Click() calls the subprogram mnuFileLoad_Click().
You can scroll through the entire contents of this code window to find mnuFileLoad(), or select
it directly using the left pull-down at the top of the code window. The mnuFileLoad_Click()
calls the subprogram loadRPYProject(), with the argument projectNameText.Text.

The RPYReporter example was originally built with menu commands instead of button
commands, which is why cmdLoad_Click() calls mnuFileLoad_Click(). Currently, the
menu command elements are invisible and therefore unusable.

To enable them, follow these steps:

1. Select Tools > Menu File Editor.

2. Check the Visible check box for the rows &File, &Tools, and &Help.

3. Uncheck these boxes for now because you do not want to use menus for the application.

Running RPYReporter Step-by-Step

To step through the code of the RPYReporter example, follow these steps:

1. Press the F8 key to begin the RPYReporter example.

In the RPYReportDumpForm, the first line of the Form_Load() subprogram is
highlighted. This subprogram loads the form and sets the variable doc to the special
value of Nothing.

If you scroll to the very top of the code window, you can see the variable doc
declared as an Object. VB enables you to create an object so it can be subsequently
used to refer to an actual object. That object will eventually be the Rhapsody API
Application object, which you will see later. For now, doc is assigned the value of
Nothing, which keeps it from referencing anything.
32 API Reference Manual

Running RPYReporter in Visual Basic
Note: The keyword Private is used to indicate that a variable or subprogram is
available only within the module in which it is declared. Therefore, the variable
doc is relevant only to this code module, the one accompanying the form
RPYReportDumpForm.

2. Press F8 three times until the Form_Load() subprogram is ended and the
RPYReportDumpForm form is displayed.

3. Click Load Project to continue program execution.

Selecting Load Project calls the local subprogram cmdLoad_Click(), which is
now displayed and highlighted in the code window.

4. Continue pressing F8 to verify that cmdLoad_Click() calls the subprogram
mnuFileLoad(), which calls mnuFileLoad_Click(), which calls the subprogram
loadRPYProject() with the argument projectNameText.Text.

5. Press F8 to proceed to the first line of the subprogram loadRPYProject().

The projectNameText element is the name of the long text box at the top of the
RPYReportDumpForm form. This element has a property called Text, which is the
actual text contents of that text box. The program can designate the contents of the
text property using the expression projectNameText.Text. Thus, if you typed
the project name in the projectNameText field, the subprogram
loadRPYProject() would now have it as an argument. As it is, its value is
currently an empty, or blank, string.

Note: The following steps assume that you have clicked F8 to move to next section of
code to be described.

6. The On Error GoTo CancelHandler line enables the Cancel button on the dialog box.
If you click Cancel, execution continues at the code line following the line labeled
CancelHandler:, located at the bottom of the loadRPYProject() subprogram that
exits the subprogram.

7. rpyModelName is a string variable that will hold the name of the project you are loading.
Its value is initialized to an empty string.

8. The next few lines involve properties and an operation of the object RPYModelDlg. This
element, a common dialog box, does not appear on the form during execution until its
operation ShowOpen is executed.

The first three RPYModelDlg lines change the properties of the dialog for its initial
directory, default file search pattern, and the name of the project (which was passed
as an argument). Finally, the ShowOpen operation of the RPYModelDlg object is
executed and the Open dialog box is displayed with the appropriate property
changes.

9. Browse for your Dishwasher project, then click OK.
Rational Rhapsody 33

Rational Rhapsody API Interface
The step rpyModelName = RPYModelDlg.FileName is ready for execution. This
step sets the string variable rpyModelName to the name of the project you selected
in the Open dialog box.

10. Press F8.

In the following line, the variable rpyModelName is checked to see if it is empty. If
so, the loadRPYProject subprogram exits. Otherwise, it loads the waitForm
object, followed by the execution of the waitForm object’s Show operation
(waitForm.show), which displays the waitForm form to tell the user the project is
loading.

Before continuing program execution, you need to learn more about the Rational Rhapsody API.
34 API Reference Manual

Running RPYReporter in Visual Basic
The Rational Rhapsody API: A Closer Look
The Rational Rhapsody API is a set of classes consisting of operations and attributes that enable
you to programmatically interact with a Rational Rhapsody project (repository) using a
programming environment that supports Microsoft COM (Component Object Model). This allows
an application to interface programs using COM, such as Rational Rhapsody. In this way, standard
interfaces to obtain system services or provide functionality to other programs can be established.

You can make the Rational Rhapsody API classes available for the RPYReporter project file
(Project1.vbp) using references, which allow the use of objects from other applications.

To see the list of references in this project, follow these steps:

1. Stop execution of the RPYReporter application by selecting Run > End in the VB
integrated development environment (IDE).

2. Select Project > References in the VB IDE. VB displays the References dialog box, as
shown in the following figure.

Access to the Rational Rhapsody API classes is made possible by referencing the RHAPSODY.tlb
library file included in the Rational Rhapsody distribution. Without it, the Rational Rhapsody API
is not available. Be sure to check this part of your project if this becomes questionable. When you
create a new project to access a Rational Rhapsody model, the very first step is to make sure that
your project references RHAPSODY.tlb.
Rational Rhapsody 35

Rational Rhapsody API Interface
The Rational Rhapsody API classes that come from the RHAPSODY.tlb reference, along with
their operations and attributes, are visible in the VB design area. In Visual Basic, interface classes
are implemented with names that begin with the letter “I.” However, when the interfaces are seen
in the VB IDE, they appear without the “I.” For example, the IRPModelElement class appears as
RPModelElement.

To display the Rational Rhapsody API classes and their methods and properties, follow these
steps:

1. Select View > Object Browser. The Object Browser dialog box is displayed, as shown in
the following figure.
36 API Reference Manual

Running RPYReporter in Visual Basic
2. Select the rhapsody library from the pull-down field. VB displays the Rational Rhapsody
API classes, as shown in the following figure.

3. Click on one of the API classes to see its attributes and operations.

4. Click on an attribute or operation of the selected API class to view a small report on it at
the bottom of the display area.

5. Click the “X” in the upper, right-hand corner to dismiss the dialog box.

Continuing the Step-by-Step Execution of RPYReporter
Now that you have seen how the Rational Rhapsody API is made available to the RPYReporter
project, you can continue step-by-step execution of the RPYReporter application to see how it is
used.

Continue executing each step of the program, as follows:

1. If you halted execution earlier, press F8 to begin step-by-step execution again.

2. The next execution step in the loadRPYProject subprogram calls the
disableAllButtons subprogram, which sets all the enabled properties of all
RPYReportDumpForm buttons to False, rendering the buttons unusable (grayed-out).
Press F8 to move through the subprogram.

3. The next step compares Not doc (recall that doc is an object of type Object) against the
value Nothing. Because doc was created a few steps ago and was initialized to
Nothing, execution steps into the Else part of the If-Then-Else statement that
follows it.
Rational Rhapsody 37

Rational Rhapsody API Interface
4. Because the module-level variable THE_APPLICATION has been set to the string
“rhapsody.Application” (scroll to the top of the window to see the declaration) the
line Set doc = CreateObject(THE_APPLICATION) makes doc a reference to the
Rhapsody Application object and a stepping stone for upcoming use of the Rhapsody
API.

Note: Rhapsody is started as an application during the execution of the line
CreateObject(THE_APPLICATION).

5. Because doc is now a reference to the Application object, you can use API class
operations and attributes through it. Therefore, the line doc.openProject
rpyModelName actually calls the openProject subprogram of the Application
object referenced by doc, and opens the project file you selected.

6. The next line, Set theProject = doc.activeProject, calls the activeProject
method of the Application object referenced by doc and sets the project you loaded as
the active project in Rational Rhapsody.

7. The unload waitForm line unloads wait dialog box.

8. The next line, projectNameText.text is set to the name and path of the Dishwasher
model (rpy file) you selected.

9. Now that the project is loaded, the program calls EnableAllButtons to
re-enable all the buttons on the main form. Press F8 to step through each button.

10. Now that a project has been loaded, the property Enabled of the mnuToolsReport
object is set to True. The function of this menu item is equivalent to that of the Report
on Project button.

11. Press F8 to step through the exiting of all subprograms that have been entered as part of
project loading. These include, in order:

a. loadRPYProject()

b. mnuFileLoad_Click()

c. cmdLoad_Click()

The program now waits in stasis for the next event to occur through other button clicks on the RPY
Project Reporter window.

Code Summary of Loading a Project

The following is a code summary of the project-loading process in VB:

Private doc As Object
Private ProjectName As String
Private theProject As RPModelElement

~
’ Get project name and store as ProjectName

~

38 API Reference Manual

Running RPYReporter in Visual Basic
’ Open the Rhapsody API Application Object
Set doc = CreateObject(“rhapsody.Application”)
doc.openProject ProjectName
Set theProject = doc.activeProject

Reporting on a Project
Reporting requires the execution of several important API operations. The following instructions
assume that you have performed the previous project loading example and are continuing
uninterrupted. However, if you have stopped the program, press F8 to enter the program in step-
by-step mode and repeat all steps from the previous section. Otherwise, continue stepping through
the program, as follows:

1. In the RPYReportDumpForm form, click Report on Project.

2. The subprogram cmdReport_Click() is called, which calls the subprogram
mnuToolsReport_Click.

Within the mnuToolsReport_Click subprogram, the waitForm form is loaded
and displayed, and the buttons of the RPYReportDumpForm form are disabled.

3. Because the report will be written to a file, the function getDefaultLogFileName
generates a name for the file using the project name string rpyModelName as a base.

4. After the name of the report output file is generated in the variable logFileName, it is
opened by a call to the VB subprogram Open, which opens it for output and assigns it the
reference number of FILE_NUMBER (set to 1 at the top of the code file) for future calls on
this file.

5. Finally, the subprogram Report_on_Model is called with the arguments theProject
and FILE_NUMBER. The variable theProject has been typed to be an API object type
RPModelElement.

6. In the Report_on_Model subprogram, the calling arguments are passed by value using
the keyword ByVal, which makes a local copy of them.

Note that in the diagram for the Rational Rhapsody API hierarchy (see The Rational
Rhapsody API: A Closer Look) that all the remaining classes, except for the
Application class, inherit from RPModelElement. By using an object of type
RPModelElement, you can access objects of subclasses corresponding to
hierarchical project elements in a generic fashion. Many of the properties of an
RPModelElement have been developed to make its identification and consequent
action possible.

Before proceeding to other steps in Report_on_Model, note the typing of local
variables col as RPCollection, and e as RPModelElement. An RPCollection
is a collection of RPModelElement objects used for holding and accessing the
result of a “get” that obtains multiple or numerous objects satisfying the
requirements of the get.
Rational Rhapsody 39

Rational Rhapsody API Interface
7. After setting the variable tb to an empty string, the second line performs the following get:

Set col = aProject.getNestedElementsRecursive()

The getNestedElementsRecursive() method, a member of object class
RPModelElements, is called for the current project, aProject, and returns a
collection of RPModelElements that is accessed through the variable col. The
method getNestedElementsRecursive() retrieves all owned elements of the
calling object and places the results in a collection. Because the calling object in this
case is a project, getNestedElementsRecursive() returns all packages, classes,
diagrams, and so on that belong to the project.

The remaining code opens the report file and writes a header to it, followed by a large for loop
over each element in col (for e in col). Within the loop, each element is analyzed for its type
and is reported accordingly. As previously mentioned, a variety of properties of the element
identify it (the element’s metaClass (e.metaClass)), making this computed action possible.

Code Summary of Reporting a Project

The following is a code summary of the project-reporting process in VB:

Dim col As RPCollection
Dim e As RPModelElement
Private logFileName As String
Private Const FILE_NUMBER As Integer = 1

~
‘Open file logFileName: FILE_NUMBER’

~
‘Set col = theProject.getNestedElementsRecursive()

~
‘ Write header to file=FILE_NUMBER

~
for e In col

~
‘ Identify model element e based on e.xxxx properties

~
‘ Write report of e based on e.xxxx properties

~
Next
‘Close file=FILE_NUMBER
40 API Reference Manual

Starting and Saving Your Own VB IDE Work
Starting and Saving Your Own VB IDE Work
If you want to use the API, spend some time studying the RPYReporter example and the more
complex RPYExplorer example. In conjunction with the examples, you can use the online help,
which contains the methods and properties of each API class along with descriptions of required
arguments.

If you want to use these Rational Rhapsody API examples as a starting point for your own
applications, the following sections describe how to perform some common tasks.

Saving the Examples as New Projects

If you want to create your own applications by modifying one of the supplied examples, a good
starting point is to save the appropriate example as a new project in its own directory. Note that VB
projects consist of a project file (.vbp), a form file for each form (.frm), and module files (.bas).
Use the File > Save As options for projects, forms, and modules, and save to a new directory.

Making Your Own New Projects

You might decide to start from scratch and build your own project. When you open Visual Basic,
VB displays a default new project environment, complete with a blank form. Alternatively, you
can create a new project environment by selecting File > New Project > Standard EXE in the VB
IDE.

Once you have started a new project or begun working with an existing one, you can add new
forms or modules to a project by right-clicking on the forms folder in the VB Explorer window,
then select either Add > Form or
Add > Module.

Compiling and Making Your Executables

To create your own applications, you must compile and make your projects into executable files.

In Visual Basic 6.0, compiling is seen as part of making so when you make, you compile.
Compiling appears as a separate step only when you test run your project in the Visual Basic IDE
by selecting Run > Start With Full Compile.

To make your application’s executable, select File > Make [Project].exe.
Rational Rhapsody 41

Rational Rhapsody API Interface
Creating Applications with Microsoft Word VB IDE
In addition to the Visual Basic IDE, you can use the Visual Basic editor of Microsoft Word to
create applications that use the Rational Rhapsody API.

Follow these steps:

1. Start Microsoft Word.

2. Select File > New to start a new document.

3. In the New dialog box, select the template labeled Blank Document, then click OK.

4. Select File > Save As and save the new, blank document as Word_API.doc.

5. Start a new Word macro by selecting Tools > Macro > Record New Macro.

6. In the Record Macro dialog box, follow these steps:

a. For the Name field, type “CountPackages.”

b. For the Store macro in field, select Word_API.doc from the pull-down list.

c. Click the Keyboard icon.

7. In the Customize Keyboard dialog box, follow these steps:

a. If it is not there already, move the cursor to the Press new shortcut key field. While
holding down the Alt key, type the characters “CP”. When finished, you should see
the following entry:

Alt+C,P

b. In the Save changes in field, select Word_API.doc.

c. Click Assign and Close, in that order.

A small dialog box (shown below) appears to stop and pause the recording of the
macro that you are currently recording.

8. Click the small square to stop recording the macro.

You now have a macro named CountPackages saved in the file Word_API.doc that you can
trigger at any time within this document with the keyboard sequence Alt+C,P. Currently, the macro
has no content.
42 API Reference Manual

Creating Applications with Microsoft Word VB IDE
Specifying the Macro Content

To alter the content of the CountPackages macro, follow these steps:

1. With the file Word_API.doc still loaded in Word, select Tools > Macro > Macros.

2. In the Macros dialog box, follow these steps:

a. In the Macros in field, select Word_API.doc.

b. In the list of available macros, select CountPackages.

c. Click Edit.

The Microsoft Word Visual Basic IDE opens, so you can edit the contents of the
macro CountPackages.

3. Select Tools > References.

4. In the Reference - Project dialog box, scroll down until you find the reference rhapsody.

5. Mark the rhapsody check box, then click OK. Its location is reported in a small area at the
bottom of the dialog box, referencing the RHAPSODY.tlb file located in the Rhapsody
installation directory.

6. Insert the following code between the lines Sub CountPackages() and End Sub, but
after the comments that appear identifying the macro, date, and author.
Rational Rhapsody 43

Rational Rhapsody API Interface
Make sure the projName path is correct for your Rational Rhapsody installation.

'
' Start Rhapsody
'
Dim rhapApp As Object
Set rhapApp = CreateObject("rhapsody.Application")
'
' Set Project Name String
'
Dim projName As String
projName =
 "C:\Rhapsody40\Samples\CppSamples\Radio\Radio.rpy"
'
' Open Project
'
Dim theProject As RPModelElement
rhapApp.openProject projName
Set theProject = rhapApp.activeProject
'
' Get Packages
'
Dim packages As rhapsody.RPCollection
Set packages = theProject.packages
'
' Report Packages to Current Word Doc (ThisDocument)
'
Dim package As rhapsody.RPPackage
For Each package In packages

ThisDocument.Range.InsertAfter package.name &
vbCrLf

Next
'
' Close Application When Finished
'
If Not rhapApp Is Nothing Then rhapApp.Quit

7. Run the macro by selecting Run > Run Sub/UserForm.

If you encounter an error, click Debug on the error dialog window to see the
offending line of code highlighted.

If the macro works, you will see the packages of the Rhapsody project radio
displayed in the document screen of Word. There are three packages:

 guiPkg

 hardwarePkg

 radioPkg

Once you are sure that the macro works, you can execute it in the Word document area by simply
typing the macro key sequence (Alt+C,P).
44 API Reference Manual

Creating Applications with Microsoft Word VB IDE
Comments on the Code

The following sequence loads the project:

Dim rhapApp As Object
Set rhapApp = CreateObject("rhapsody.Application")
Dim projName As String
projName = "C:\Rhapsody\some_project.rpy"
Dim theProject As RPModelElement
rhapApp.openProject projName
Set theProject = rhapApp.activeProject

An alternative sequence is as follows:

Dim rhapApp As rhapsody.Application
Set rhapApp = CreateObject("rhapsody.Application")
Dim projName As String
projName = "C:\Rhapsody\some_project.rpy"
Dim theProject As RPProject
rhapApp.openProject projName
Set theProject = rhapApp.activeProject

Note the use of RPCollection in the following sequence:

Dim packages As rhapsody.RPCollection
Set packages = theProject.packages

Unlike the RPYReporter example, a “get” method was not used to obtain the elements (in this
case, packages). You can use this method for obtaining model elements on one level.

Finally, note the following for loop over the packages:

For Each package In packages
ThisDocument.Range.InsertAfter package.name & vbCrLf

Next

Printing to the Word document is accomplished through the second line of code. The object called
ThisDocument is the highest level object of Word, representing the document itself. You can see
it in the explorer window in the upper, left-hand corner of the VB desktop. Highlight it to examine
some its properties.
Rational Rhapsody 45

Rational Rhapsody API Interface
Modifying the Example to Print Classes

Suppose that instead of printing the names of all the classes in the radio model, you want to print
the names of all the classes for a particular package, such as radioPkg. To modify the previous
code and save it to another macro, follow these steps:

1. Start a new Word macro by selecting Tools > Macro > Record New Macro.

2. In the Record Macro dialog box, follow these steps:

a. For the Name field, type “CountClassesForPackage.”

b. For the Store macro in field, select Word_API.doc from the pull-down list.

c. Click the Keyboard icon.

3. In the Customize Keyboard dialog box, follow these steps:

a. If it is not there already, move the cursor to the Press new shortcut key field. While
holding down the Alt key, type the “CC” characters. When finished, you should see
the following entry:

Alt+C,C

b. In the Save changes in field, select Word_API.doc.

c. Click Assign and Close, in that order.

A small dialog box appears to stop and pause the recording of the current macro.

4. Click the small square to stop recording the macro.

5. With the file Word_API.doc still loaded in Word, select Tools > Macro > Macros.

6. In the Macros dialog box, follow these steps:

a. In the Macros in field, select Word_API.doc.

b. In the list of available macros, select CountClassesForPackage.

c. Click Edit. The focus switches to the VB editor.

Note the presence of the new, empty CountClassesForPackage subprogram. If
you scroll up, you can see the code you created for the CountPackages macro.

7. Cut and paste the code between the lines Sub CountPackages() and End Sub in the
CountPackages macro, but after the comments that appear identifying the macro, date,
and author.
46 API Reference Manual

Creating Applications with Microsoft Word VB IDE
8. Replace this section:

'
' Report Packages to Current Word Doc (ThisDocument)
'
Dim package As rhapsody.RPPackage
For Each package In packages

ThisDocument.Range.InsertAfter package.name &
vbCrLf

Next
'
' Close Application When Finished
'
If Not rhapApp Is Nothing Then rhapApp.Quit

With this:

'
' Report Classes of Package "radioPkg" to Current
' Document
'
Dim package As rhapsody.RPPackage
For Each package In packages

If (package.name = "radioPkg") Then
Dim classes As rhapsody.RPCollection
Dim class As rhapsody.RPClass
Set classes = package.classes
For Each class In classes
ThisDocument.Range.InsertAfter class.name &
vbCrLf
Next

End If
Next
'
' Close Application When Finished
'
If Not rhapApp Is Nothing Then rhapApp.Quit

9. Run the macro by selecting Run > Run Sub/UserForm.

If you encounter an error, click Debug on the error dialog window to see the
offending line of code highlighted.

If the macro works, you will see the classes of the radioPkg package displayed in
the document screen of Word, as follows:

 Frequency

 IDisplay

 ITuner

 Radio

 Waveband
Rational Rhapsody 47

Rational Rhapsody API Interface
48 API Reference Manual

Rhapsody API Interfaces
This section contains reference information describing the classes and methods that comprise the
abstract factory interface. For ease of use, the interfaces are presented in alphabetical order.

Note
Only the public and protected methods are documented.

The reference material for each of the Rhapsody API interfaces is shown in VB-compliant form
(except for the interface class names). This means the following:

 Each COM interface has attributes and methods. In Visual Basic, the attributes are
identified as properties.

 The actual identity of the interface classes used in the Rhapsody API varies with the
language platform of the client application attempting to interface with the Rhapsody
repository. In COM, all interface names start with “I”, such as IRPModelElement.
Visual C++ connects directly with the COM tables, which are C++ (or C++-related), and
sees the “I”. However, Visual Basic (VB) tries to be user-friendly by avoiding the use of
the “I” so, for example, the IRPModelElement interface is RPModelElement in VB. If
you open the object browser in the Microsoft Visual Basic IDE, you can see which classes
are there and what they are called. Nevertheless, in the reference material, interface
objects are identified with the “IRP” prefix and not the “RP” prefix seen in VB.

 Void returns are not shown as void—they are simply not shown.
 Pointers are not displayed. In C++, interfaces and collections of interfaces are handled

with pointers. VB has no pointers.
 Each method has an implied argument: an instance of its interface referred to as “this.”

Thus, the reference on a method of IRPClass will refer to something done to “this
Class.”

 String returns and arguments are shown as String. For C++, this type is BSTR.
 There is only one collection object type: IRPCollection. In the reference material,

however, collections are displayed as “xxxxs” where xxxx refers to the object type of the
collection and the “s” indicates it is a collection.
Rational Rhapsody 49

Rhapsody API Interfaces
Access to VB Properties
The COM API interface consists of data and methods. In Visual Basic, the data is identified as
properties. These properties are implemented with invisible operations that enable some properties
to be read/write (RW). In other words, the property can be used to set a value in a Rhapsody 6.1
model or retrieve it. Thus, if A is a read/write property, you can set the model value it points to
through an "A=…" statement or retrieve it through a "…=A" statement.

Note
Not all properties are implemented with write ability. These are identified as read-only
(RO).

API Conventions
The Rhapsody Repository API is a set of COM interfaces specified in terms of COM properties
and methods, using COM types. The API listings have two syntaxes to describe the various
attributes and methods provided by each interface:

 The VB syntax that follows indicates that the function takes a string argument for the
property key and then returns a string:

getProperty (propertyKey As String) As String

The C/C++ prototype for the same function is:

HRESULT getProperty (String propertyKey,
String*** retVal);

 All interfaces are prefixed with “IRP” (“I” for interface, “RP” for Rhapsody 6.1). For
example, the interface for a package is IRPPackage.

 Calls returning multiple objects return the equivalent of a VBA “collection.” To enhance
readability, collectionsare treated as “typed,” for example, “Collection of IRPClasses.”
However, in the API, all collections are implemented as “Collection of
IRPModelElements.”

 Enumerated types are treated as strings. For example, the getVisibility method of an
attribute returns the string “Public,” “Protected,” or “Private.”
50 API Reference Manual

Rhapsody Interfaces
Rhapsody Interfaces
The Rhapsody API interfaces are as follows:

 IRPAction Interface

 IRPActor Interface

 IRPAnnotation Interface

 IRPApplication Interface

 IRPArgument Interface

 IRPASCIIFile Interface

 IRPAssociationClass Interface

 IRPAssociationRole Interface

 IRPAttribute Interface

 IRPBlock Interface

 IRPClass Interface

 IRPClassifier Interface

 IRPClassifierRole Interface

 IRPCollaboration Interface

 IRPCollaborationDiagram Interface

 IRPCollection Interface

 IRPComment Interface

 IRPComponent Interface

 IRPComponentDiagram Interface

 IRPComponentInstance Interface

 IRPConfiguration Interface

 IRPConnector Interface

 IRPConstraint Interface

 IRPControlledFile

 IRPDependency Interface

 IRPDeploymentDiagram Interface

 IRPDiagram Interface

 IRPEnumerationLiteral Interface

 IRPEvent Interface
Rational Rhapsody 51

Rhapsody API Interfaces
 IRPEventReception Interface

 IRPExecutionOccurrence Interface

 IRPExternalCodeGenerator Interface

 IRPExternalCodeGeneratorInvoker Interface

 IRPFile Interface

 IRPFlow Interface

 IRPFlowchart Interface

 IRPFlowItem Interface

 IRPGeneralization Interface

 IRPGraphEdge Interface

 IRPGraphElement Interface

 IRPGraphicalProperty Interface

 IRPGraphNode Interface

 IRPGuard Interface

 IRPHyperLink Interface

 IRPImageMap

 IRPInstance Interface

 IRPInteractionOccurrence Interface

 IRPInterfaceItem Interface

 IRPLink Interface

 IRPMessage Interface

 IRPMessagePoint Interface

 IRPModelElement Interface

 IRPModule Interface

 IRPNode Interface

 IRPObjectModelDiagram Interface

 IRPOperation Interface

 IRPPackage Interface

 IRPPort Interface

 IRPProfile Interface

 IRPProject Interface

 IRPRelation Interface
52 API Reference Manual

Rhapsody Interfaces
 IRPRequirement Interface

 IRPSequenceDiagram Interface

 IRPState Interface

 IRPStatechart Interface

 IRPStateVertex Interface

 IRPStereotype Interface

 IRPStructureDiagram Interface

 IRPSwimlane Interface

 IRPTag Interface

 IRPTemplateInstantiation Interface

 IRPTemplateInstantiationParameter Interface

 IRPTemplateParameter Interface

 IRPTransition Interface

 IRPTrigger Interface

 IRPType Interface

 IRPUnit Interface

 IRPUseCase Interface

 IRPUseCaseDiagram Interface

 IRPVariable Interface

IRPAction Interface

The IRPAction interface represents the action of a transition in a statechart. It inherits from
IRPModelElement.

VB Properties

Name Type Access Description

body String RW The entered body of this
action
Rational Rhapsody 53

Rhapsody API Interfaces
IRPActor Interface

The IRPActor interface represents Rhapsody actors. It inherits from IRPClassifier.

IRPAnnotation Interface

The IRPAnnotation interface represents Rhapsody annotations—notes, comments,
constraints, and requirements. It inherits from IRPModelElement.

VB Properties

Method Summary

Name Type Access Description

anchoredByMe RPCollection RO The list of model elements
that are anchored to the
annotation

body Deprecated

body String RW The body text of the
remark

specification String RW The body text for the
annotation

addAnchor Adds an anchor from the annotation to the
specified model element.
54 API Reference Manual

Rhapsody Interfaces
addAnchor
Read method

Description

The addAnchor method adds an anchor from the annotation to the specified model element.

Visual Basic

Syntax

addAnchor(target As RPModelElement)

Arguments

target

The model element to which to anchor the annotation

C/C++ Prototype

HRESULT addAnchor (IRPModelElement* target)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 55

Rhapsody API Interfaces
IRPApplication Interface

The application is the top-level object of the Rhapsody object model, which represents the
Rhapsody application shell. It conceptually provides the functionality available through the
Rhapsody menu bars. Initially, the application object exposes the minimal set of functionality
required to open a project.

When you use VB or VC++ to interface to the COM API, the IRPApplication object needs
to be created before any other API interface objects are used. However, if you use the
Rhapsody VBA interface, you are automatically connected to the IRPApplication object.
56 API Reference Manual

Rhapsody Interfaces
VB Properties

Method Summary

Name Type Access Description

BuildNo CString RO The current build number

Language String RW The current language
setting

OMROOT String RO The value for OMROOT

SerialNo CString RO The serial number

ToolSet CString RO The current tool setting
(demo, Designer, and so
on)

activeProject Returns a pointer to the active (open)
project

addToModel Adds a Rhapsody unit located in the
specified file to the current model with or
without descendant elements

addToModelByReference Adds the Rhapsody unit you specify to
your model as a reference.

addToModelFromURL Adds a Rhapsody unit located at the
specified URL to the current model

arcCheckOut Checks out files from the CM archive into
the model

build Builds the application

checkIn Checks in the specified unit within the
model into the CM archive you have
already connected to (using
connectToArchive)

checkModel Checks the current model

checkOut Refreshes a unit in the model by checking
it out from the CM archive

connectToArchive Connects the Rhapsody 6.1 project to the
specified CM archive

createNewProject Creates a new project named
<projectName> in <projectLocation>

enterAnimationCommand Specifies the command to begin animation

errorMessage Returns the most recent error message

forceRoundtrip Forces a roundtrip of the code back into
the Rhapsody 6.1 model, and vice versa

generate Generates code for the active
configuration of the active component

getDiagramOfSelectedElement Retrieves the diagram of the current
element
Rational Rhapsody 57

Rhapsody API Interfaces
getErrorMessage Returns the most recent error message

getListOfFactoryProperties Retrieves the list of properties in the
<lang>_factory.prp file

getListOfSelectedElements Returns the collection of model elements

getListOfSiteProperties Retrieves the list of properties in the
<lang>_site.prp file

getSelectedElement Retrieves the current model element

getTheExternalCodeGeneratorInvoker Retrieves the invoker for the external code
generator

highlightByHandle Highlights an element, given its handle

highLightElement Highlights the specified element

importClasses Imports classes according to the reverse
engineering setting stored in the current
configuration

make Builds the current component following
the current configuration

openProject Opens a Rhapsody 6.1 project

openProjectFromURL Opens the Rhapsody 6.1 product at the
specified URL

openProjectWithLastSession Opens the project using the settings from
the previous Rhapsody 6.1 session

openProjectWithoutSubUnits Opens the Rhapsody 6.1 project without
subunits

quit Closes the active Rhapsody 6.1 project

rebuild Rebuilds the application

refreshAllViews Refreshes all the views

regenerate Regenerates the active configuration of
the active component

report Generates a report in ASCII or RTF into
the specified file

roundtrip Roundtrips code changes back into the
open model

setComponent Sets the current component for the open
project

setConfiguration Sets the current configuration for the open
project

setLog Creates a log file that records all the
information that is normally displayed in
the Rhapsody 6.1 output window

version Returns the version of Rhapsody 6.1 that
corresponds to the current COM API
version
58 API Reference Manual

Rhapsody Interfaces
activeProject
Read method

Description

The activeProject method returns a pointer to the active (open) project.

Visual Basic

Syntax

activeProject() As RPProject

Return Value

A pointer to the current open project (an RPProject)

C/C++ Prototype

HRESULT activeProject (IRPProject** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

addToModel
Write method

Description

The addToModel method adds a Rhapsody unit located in the specified file to the current model
with or without descendant elements.

Note: When adding a file with descendants, all the file subunits must be in the unit
directory of the project before you issue the command.

Visual Basic

Syntax

addToModel (filename As String, withDescendant As Long)

Arguments

filename

The full file name of the file that contains the unit to be added

withDescendants

Specifies whether to bring in descendants of the unit to be added to
the model
Rational Rhapsody 59

Rhapsody API Interfaces
C/C++ Prototype

HRESULT addToModel (BSTR filename, long withDescendant)

Return Value

HRESULT (0 for success, or a signed integer error code)
60 API Reference Manual

Rhapsody Interfaces
addToModelByReference
The method addToModelByReference adds the Rhapsody unit you specify to your model as a
reference.

Syntax

addToModelByReference (filename As String)

Arguments

filename

The name of the file that contains the unit to be added. The full path to the file must be
specified.

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Sub addJavadocProfile()

Dim app As Object

Set app = GetObject(, "Rhapsody.Application")

On Error GoTo aa

app.addToModelByReference ("C:\temp\JavaDocProfile.sbs")

Exit Sub

aa:

MsgBox errorMessage

End Sub
Rational Rhapsody 61

Rhapsody API Interfaces
addToModelFromURL
Write method

Description

The addToModelFromURL method adds a Rhapsody unit located at the specified URL to the
current model. This method is used to support the Webify Toolkit.

Visual Basic

Syntax

addToModelFromURL (url As String)

Arguments

url

The URL that contains the unit to be added

C/C++ Prototype

HRESULT addToModelFromURL (BSTR url)

Return Value

HRESULT (0 for success, or a signed integer error code)

arcCheckOut
Write method

Description

The arcCheckOut method checks out files from the configuration management (CM) archive
into the model.

Note: The difference between arcCheckOut and checkOut is that arcCheckOut
refers to files in the archive, whereas checkOut refers to units in the model. To
add new units to the model, use arcCheckOut. The method checkOut is
intended to refresh elements already existing in the model.

Visual Basic

Syntax

arcCheckOut (filename As String, label As String,
isLocked As Long, isRecursive As Long)

Arguments

filename
62 API Reference Manual

Rhapsody Interfaces
Specifies the name of the file.

label

Specifies the revision or label to be checked out. If this is set to
NULL, the last revision on the main trunk (the default) will be checked
out.

isLocked

Specifies whether the file is locked. The possible values are as
follows:

1--Designates that a writable file be checked out and the archive
locked from other checkouts of the file.

0--The file is checked out as read-only and the archive not locked to
other checkouts.

isRecursive (1 or 0)

If this is set to 1, the file and all the other elements that it
contains are checked out.

C/C++ Prototype

HRESULT arcCheckOut (BSTR filename, BSTR label,
long isLocked, long isRecursive)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 63

Rhapsody API Interfaces
build

Note
Currently, this method has not been implemented.

Read method

Description

The build method builds the application.

Visual Basic

Syntax

build()

C/C++ Prototype

HRESULT build()

Return Value

HRESULT (0 for success, or a signed integer error code)

checkIn
Read method

Description

The checkIn method checks in the specified unit within the model into the configuration
management (CM) archive you have already connected to (using connectToArchive).

Visual Basic

Syntax

checkIn (unitName As String, label As String,
isLocked As Long, isRecursive As Long,
description As String)
64 API Reference Manual

Rhapsody Interfaces
Arguments

unitName

The name of the unit.

label

The label to apply when you check in the file to the archive. If it is
not needed, set this argument to NULL.

isLocked (1 or 0)

Specifies whether to lock the archive after checkin.

isRecursive

If set to 1, check in the unit and all the elements contained in it.

description

The description to add to the unit when you check it in to the archive.

C/C++ Prototype

HRESULT checkIn (BSTR unitName, BSTR label,
long isLocked, long isRecursive, BSTR description)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 65

Rhapsody API Interfaces
checkModel
Read method

Description

The checkModel method checks the current model. This is equivalent to the Rhapsody 6.1
command Tools > Check Model for the current configuration.

Visual Basic

Syntax

checkModel()

C/C++ Prototype

HRESULT checkModel()

Return Value

HRESULT (0 for success, or a signed integer error code)
66 API Reference Manual

Rhapsody Interfaces
checkOut
Write method

Description

The checkOut method refreshes a unit in the model by checking it out from the CM archive.

Visual Basic

Syntax

checkOut (unitName As String, label As String,
isLocked As Long, isRecursive As Long)

Arguments

unitName

The name of the unit.

label

The revision or label to be checked out. If you set this to NULL, the
last revision on the main trunk (the default) will be checked out.

isLocked

Specifies whether to lock the archive after checkout. The possible
values are as follows:

1--Designates that a writable unit is to be checked out and the archive
locked from other checkouts of the unit.

0--The unit is checked out as read-only and the archive not locked to
other checkouts.

isRecursive

If this is set to 1, check out the unit and all the elements contained
in it.

C/C++ Prototype

HRESULT checkOut (BSTR unitName, BSTR label,
long isLocked, long isRecursive)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 67

Rhapsody API Interfaces
connectToArchive
Read method

Description

The connectToArchive method connects the Rhapsody 6.1 project to the specified CM archive.

This operation is necessary only for the following cases:

 There is no current association in the project.
 The association needs to be modified.

Visual Basic

Syntax

connectToArchive (archivePath As String)

Arguments

archivePath

The path to location of archive

C/C++ Prototype

HRESULT connectToArchive (BSTR archivePath)

Return Value

HRESULT (0 for success, or a signed integer error code)
68 API Reference Manual

Rhapsody Interfaces
createNewProject
Write method

Description

The createNewProject method creates a new project named <projectName> in
<projectLocation>. You should call this operation before a project has been opened, or after a
project has been saved.

Note that helper applications might not close the current document. This means that the
createNewProject method should not be used in a VBA macro that you specify as a helper.

Visual Basic

Syntax

createNewProject (projectLocation As String,
projectName As String)

Arguments

projectLocation

The location of the project

projectName

The name of the project

C/C++ Prototype

HRESULT createNewProject (BSTR projectLocation,
BSTR projectName)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 69

Rhapsody API Interfaces
deferredAddToModel
Write method

Description

The deferredAddToModel method TBS.

Visual Basic

Syntax

deferredAddToModel(filename As String,
withDescendants As Long, orijPrjId As String,
eraseDir As Long)

Arguments

filename

The full name of the file that contains the unit to be added

withDescendants

Specifies whether to bring in descendants of the unit to be added to
the model

orijPrjId

The project ID

eraseDir

Specifies whether to delete the directory after the unit has been added
to the model

C/C++ Prototype

HRESULT deferredAddToModel (BSTR filename,
long withDescendants, BSTR orijPrjId, long eraseDir);

Return Value

HRESULT (0 for success, or a signed integer error code)
70 API Reference Manual

Rhapsody Interfaces
enterAnimationCommand
Read method

Description

The enterAnimationCommand method specifies the command to begin animation.

Visual Basic

Syntax

enterAnimationCommand (command As String)

Arguments

command

The animation command

C/C++ Prototype

HRESULT enterAnimationCommand (BSTR command)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 71

Rhapsody API Interfaces
errorMessage
Read method

Description

The errorMessage method returns the most recent error message.

Visual Basic

Syntax

errorMessage() As String

Return Value

A pointer to the most recent error message (a string)

C/C++ Prototype

HRESULT errorMessage (BSTR* __MIDL_0016)

Arguments

BSTR*

A pointer to most recent error message

Return Value

HRESULT (0 for success, or a signed integer error code)
72 API Reference Manual

Rhapsody Interfaces
forceRoundtrip
Read method

Description

The forceRoundtrip method forces a roundtrip of the code back into the Rhapsody 6.1 model,
and vice versa.

Visual Basic

Syntax

forceRoundtrip()

C/C++ Prototype

HRESULT forceRoundtrip()

Return Value

HRESULT (0 for success, or a signed integer error code)

generate
Read method

Description

The generate method generates code for the active configuration of the active component.

Visual Basic

Syntax

generate()

C/C++ Prototype

HRESULT generate()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 73

Rhapsody API Interfaces
getDiagramOfSelectedElement
Read method

Description

The getDiagramOfSelectedElement method retrieves the diagram of the current element.

Visual Basic

Syntax

getDiagramOfSelectedElement() As RPDiagram

Return Value

The RPDiagram

C/C++ Prototype

HRESULT getDiagramOfSelectedElement (IRPDiagram** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
74 API Reference Manual

Rhapsody Interfaces
getErrorMessage
Read method

Description

The getErrorMessage method returns the most recent error message.

Visual Basic

Syntax

getErrorMessage(__MIDL_0014 As String) As String

Return Value

A pointer to the most recent error message (a string)

C/C++ Prototype

HRESULT getErrorMessage (BSTR* _MIDL_0014)

Arguments

BSTR*

A pointer to most recent error message

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 75

Rhapsody API Interfaces
getListOfFactoryProperties

Note
Currently, this method has not been implemented.

Read method

Description

The getListOfFactoryProperties method returns the list of properties in the
<lang>_factory.prp file.

Visual Basic

Syntax

getListOfFactoryProperties() As RPCollection

Return Value

The list of properties defined in the <lang>_factory.prp file

C/C++ Prototype

HRESULT getListOfFactoryProperties (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
76 API Reference Manual

Rhapsody Interfaces
getListOfSelectedElements
Read method

Description

The getListOfSelectedElements method returns a collection of model elements.

In Version 4.1, this method was modified as follows:

 If the instance is selected in the context of an OMD, the method returns an
IRPInstance instead of IRPClass or IRPActor. See “IRPInstance Interface”
for more information on this interface.

 If a link is selected in the context of an OMD, the method returns an IRPLink
instead of IRPRelation. See “IRPLink Interface” for more information on this
interface.

 If an instance is selected in the context of a sequence diagram, the method returns
an IRPClassifierRole instead of IRPClass. See “IRPClassifierRole
Interface” for more information on this interface.

Visual Basic

Syntax

getListOfSelectedElements () As RPCollection

Return Value

The collection of elements

C/C++ Prototype

HRESULT getListOfSelectedElements (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 77

Rhapsody API Interfaces
getListOfSiteProperties

Note
Currently, this method has not been implemented.

Read method

Description

The getListOfSiteProperties method returns the list of properties in the <lang>_site.prp
file.

Visual Basic

Syntax

getListOfSiteProperties() As RPCollection

Return Value

The list of properties defined in the <lang>_site.prp file

C/C++ Prototype

HRESULT getListOfSiteProperties (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
78 API Reference Manual

Rhapsody Interfaces
getSelectedElement
Read method

Description

The getSelectedElement method retrieves the current model element.

In Version 4.1, this method was modified as follows:

 If the instance is selected in the context of an OMD, the method returns an
IRPInstance instead of IRPClass or IRPActor. See “IRPInstance Interface”
for more information on this interface.

 If a link is selected in the context of an OMD, the method returns an IRPLink
instead of IRPRelation. See “IRPLink Interface” for more information on this
interface.

 If an instance is selected in the context of a sequence diagram, the method returns
an IRPClassifierRole instead of IRPClass. See “IRPClassifierRole
Interface” for more information on this interface.

Visual Basic

Syntax

getSelectedElement() As RPModelElement

Return Value

The current model element

C/C++ Prototype

HRESULT getSelectedElement (IRPModelElement** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

VBA Example

The following example assumes that a link is selected.

Dim m As RPModelElement
Dim link as RPLink
Dim fromCls as RPClass
Dim toCls as RPClass
Dim from as RPInstance
Dim to as RPInstance
Dim rel as RPRelation

Set m = getSelectedElement
If m.metaClass = "Link" then
Rational Rhapsody 79

Rhapsody API Interfaces
link = m
from = link.from
to = link.to
fromCls = from.otherClass
toCls = to.otherClass
rel = link.instantiates

'Variable content:
'link points to the selected link.
'from points to the "source" instance.
'to points to the "target" instance.
'fromCls points to the class of the "source" instance.
'toCls points to the class of the "target" instance.
'rel points to the relation instantiated by the link.

MsgBox m.name & " is a link from instance " &
from.name &" of class " + clsFrom.name & " to
instance " & to.name & " of class " + toCls.name
& " which instantiates the " & rel.name
& " relation."

End If
80 API Reference Manual

Rhapsody Interfaces
getTheExternalCodeGeneratorInvoker
Read method

Description

The getTheExternalCodeGeneratorInvoker method returns the invoker for the external code
generator.

Visual Basic

Syntax

getTheExternalCodeGeneratorInvoker() As
RPExternalCodeGeneratorInvoker

Return Value

The RPExternalCodeGeneratorInvoker singleton. The external code generator queries
the application for this interface.

C/C++ Prototype

HRESULT getTheExternalCodeGeneratorInvoker (
IRPExternalCodeGeneratorInvoker** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

highlightByHandle
Read method

Description

The highlightByHandle method highlights the specified model element, given its handle.

The rules for developing the handle for each element type are as follows:

1. The metaclass in the beginning is the value of the metaClass property.

2. The GUID at the end of the name is the value of the GUID property.

3. The structure of the name is as follows:

<Package name>::<Class name>.<Element name>

In this syntax:
 <Package name> is the full path of the package of the element (for example,

P1::P2).
Rational Rhapsody 81

Rhapsody API Interfaces
– <Class full name> is the full path of the class of the element (for example,
C1::C2).

– <Element name> is the name of the element.
See the section “Example” for a code example that uses this method.

Visual Basic

Syntax

highlightByHandle (strHandle As String)

Arguments

strHandle

The handle to the element to highlight. Call the method with this
argument using the following string:

"(<metaclass>)<FullPathName>(<GUID>)"

C/C++ Prototype

HRESULT highlightByHandle (BSTR strHandle)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Dim proj As RPProject
Dim m As RPModelElement
Dim str As String

Dim app As Object
set app = GetObject(, "Rhapsody.Application")

On Error GoTo aa

Set proj = getProject
Set m = proj.findNestedElementRecursive("state_0", "State")
str = "(" & m.metaClass & ")" & m.getFullPathName & "(" & m.GUID & ")"
app.highlightByHandle (str)

Exit Sub

aa:

MsgBox errorMessage
82 API Reference Manual

Rhapsody Interfaces
highLightElement
Read method

Description

Highlights the specified element.

Visual Basic

Syntax

highLightElement (val As RPModelElement)

Arguments

val

The element to highlight

C/C++ Prototype

HRESULT highLightElement (IRPModelElement* val)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 83

Rhapsody API Interfaces
importClasses
Write method

Description

The importClasses method imports classes according to the reverse engineering setting stored
in the current configuration. This is equivalent to selecting the Rhapsody 6.1 command Tools
> Reverse Engineering.

Visual Basic

Syntax

importClasses()

C/C++ Prototype

HRESULT importClasses ()

Return Value

HRESULT (0 for success, or a signed integer error code)

make
Read method

Description

The make method builds the current component following the current configuration.

Visual Basic

Syntax

make()

C/C++ Prototype

HRESULT make()

Return Value

HRESULT (0 for success, or a signed integer error code)
84 API Reference Manual

Rhapsody Interfaces
openProject
Read method

Description

The openProject method opens a Rhapsody 6.1 project.

Note that helper applications might not close the current document. This means that you
should not use the openProject method in a VBA macro that you specify as a helper:

Visual Basic

Syntax

openProject (filename As String) As RPProject

Arguments

filename

The name of the file that contains the project

Return Value

A pointer to the opened project (an RPProject)

C/C++ Prototype

HRESULT openProject (BSTR filename, IRPProject** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 85

Rhapsody API Interfaces
openProjectFromURL
Write method

Description

The openProjectFromURL method opens the Rhapsody 6.1 product at the specified URL. This
method is used to support the Webify Toolkit.

Visual Basic

Syntax

openProjectFromURL (url As String)

Arguments

url

The URL of the project to open

C/C++ Prototype

HRESULT openProjectFromURL (BSTR url)

Return Value

HRESULT (0 for success, or a signed integer error code)
86 API Reference Manual

Rhapsody Interfaces
openProjectWithLastSession
Write method

Description

The openProjectWithLastSession method opens the project using the settings from the
previous Rhapsody 6.1 session.

Visual Basic

Syntax

openProjectWithLastSession (filename As String)
As RPProject

Arguments

filename

The name of the project to open

Return Value

The RPProject that was opened

C/C++ Prototype

HRESULT openProjectWithLastSession (BSTR filename,
IRPProject** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 87

Rhapsody API Interfaces
openProjectWithoutSubUnits
Write method

Description

The openProjectWithoutSubUnits method opens the Rhapsody 6.1 project without subunits.

Visual Basic

Syntax

openProjectWithoutSubUnits (filename As String)
As RPProject

Arguments

filename

The name of the project to open

C/C++ Prototype

HRESULT openProjectWithoutSubUnits (BSTR filename,
IRPProject** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
88 API Reference Manual

Rhapsody Interfaces
quit
Read method

Description

The quit method closes the active Rhapsody 6.1 project.

Note that helper applications might not close the current document. This means that you
should not use the quit method in a VBA macro that you specify as a helper:

Visual Basic

Syntax

quit()

C/C++ Prototype

HRESULT quit()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 89

Rhapsody API Interfaces
rebuild

Note
Currently, this method has not been implemented.

Read method

Description

The rebuild method rebuilds the application.

Visual Basic

Syntax

rebuild()

C/C++ Prototype

HRESULT rebuild()

Return Value

HRESULT (0 for success, or a signed integer error code)
90 API Reference Manual

Rhapsody Interfaces
refreshAllViews
Read method

Description

The refreshAllViews method refreshes the views.

Visual Basic

Syntax

refreshAllViews()

C/C++ Prototype

HRESULT refreshAllViews()

Return Value

HRESULT (0 for success, or a signed integer error code)

regenerate
Read method

Description

The regenerate method regenerates the active configuration of the active component.

Visual Basic

Syntax

regenerate()

C/C++ Prototype

HRESULT regenerate()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 91

Rhapsody API Interfaces
report
Read method

Description

The report method generates a report in ASCII or RTF into the specified file. The report is
generated for the elements found in the scope of the current component.

Visual Basic

Syntax

report (format As String, outputFileName As String)

Arguments

format

The file format. The possible values are as follows:

ASCII

RTF

outputFileName

The name of the output file, including the path.

C/C++ Prototype

HRESULT report (BSTR format, BSTR outputFileName)

Return Value

HRESULT (0 for success, or a signed integer error code)
92 API Reference Manual

Rhapsody Interfaces
roundtrip
Write method

Description

The roundtrip method roundtrips code changes back into the open model.

Visual Basic

Syntax

roundtrip()

C/C++ Prototype

HRESULT roundtrip()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 93

Rhapsody API Interfaces
setComponent
Write method

Description

The setComponent method sets the current component for the open project.

Visual Basic

Syntax

setComponent (component As String)

Arguments

component

The name of component in the project

C/C++ Prototype

HRESULT setComponent (BSTR component)

Return Value

HRESULT (0 for success, or a signed integer error code)
94 API Reference Manual

Rhapsody Interfaces
setConfiguration
Write method

Description

The setConfiguration method sets the current configuration for the open project.

Note: This method fails if the configuration is not found within the current
component. Therefore, you should call setComponent before
setConfiguration.

Visual Basic

Syntax

setConfiguration (configuration As String)

Arguments

configuration

The name of the configuration in the project. This refers to the simple name of the
configuration, not the full name, i.e., not packageA::componentB::configC.

C/C++ Prototype

HRESULT setConfiguration (BSTR configuration)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 95

Rhapsody API Interfaces
setLog
Write method

Description

The setLog method creates a log file that records all the information that is normally displayed
in the Rhapsody 6.1 output window.

Visual Basic

Syntax

setLog (logFile As String)

Arguments

LogFile

The name of the log file, including the path

C/C++ Prototype

HRESULT setLog (BSTR logFile)

Return Value

HRESULT (0 for success, or a signed integer error code)
96 API Reference Manual

Rhapsody Interfaces
version
Read method

Description

The version method returns the version of Rhapsody 6.1 that corresponds to the current COM
API version.

Visual Basic

Syntax

version() As String

Return Value

The version of Rhapsody that corresponds to the COM API version

C/C++ Prototype

HRESULT version (BSTR* __MIDL_0015)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 97

Rhapsody API Interfaces
IRPArgument Interface

The IRPArgument interface represents an argument of an operation or an event. It inherits
from IRPVariable.

VB Properties

Method Summary

Name Type Access Description

argumentDirection String RW The direction of the
argument (In, Out, or
InOut)

declaration String RW A string that represents an
inline declaration of this
argument

defaultValue String RW The default value of this
argument

typeOf RPType RW The type of this argument

setTypeDeclaration Sets the C++ type declaration for this argument
98 API Reference Manual

Rhapsody Interfaces
setTypeDeclaration
Write method

Description

The setTypeDeclaration method sets the C++ type declaration for this argument.

Visual Basic

Syntax

setTypeDeclaration (newVal As String)

Arguments

NewVal

The C++ type declaration for this argument

C/C++ Prototype

HRESULT setTypeDeclaration (BSTR newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 99

Rhapsody API Interfaces
IRPASCIIFile Interface

The IRPASCIIFile interface represents a disk file that you can open, close, and write to. It is
a top-level interface in the Rhapsody 6.1 object model.

Method Summary

close
Write method

Description

The close method closes the file.

Visual Basic

Syntax

close()

C/C++ Prototype

HRESULT close

Return Value

HRESULT (0 for success, or a signed integer error code)

close Closes a file

open Opens a file

write Writes to the specified file
100 API Reference Manual

Rhapsody Interfaces
open
Write method

Description

The open method opens a file.

Visual Basic

Syntax

open (filename As String)

Arguments

filename

The name of file to open

C/C++ Prototype

HRESULT open (BSTR filename)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 101

Rhapsody API Interfaces
write
Write method

Description

The write method writes to the specified file.

Visual Basic

Syntax

write (data As String)

Arguments

Data

The ASCII string data to write to the disk file

C/C++ Prototype

HRESULT write (BSTR data)

Return Value
102 API Reference Manual

Rhapsody Interfaces
HRESULT (0 for success, or a signed integer error code)

IRPAssociationClass Interface

The IRPAssociationClass interface represents a Rhapsody 6.1 association (bi-directional,
directed, composition, or aggregation). IRPAssociationClass inherits from the
IRPClass.

VB Properties

IRPAssociationRole Interface

The IRPAssociationRole interface represents a channel or relation through which objects
in a collaboration communicate. This object is meaningful only for collaborations displayed in
collaboration diagrams. IRPAssociationRole inherits from the IRPModelElement.

VB Properties

Method Summary

Name Type Access Description

end1 RPRelation RO The first end of the
association line

end2 RPRelation RO The second end of the
association line

Name Type Access Description

roleType String RO The role type (specified or
unspecified)

getClassifierRoles Returns a collection of IRPClassifierRoles
linked by the current association role

getFormalRelations Returns a collection of IRPRelations for the
current association role
Rational Rhapsody 103

Rhapsody API Interfaces
getClassifierRoles
Read method

Description

The getClassifierRoles method returns a collection of IRPClassifierRoles linked by the
current association role.

Note that an association role in a collaboration diagram is always bidirectional.

Visual Basic

Syntax

getClassifierRoles () As RPCollection

Return Value

A collection of classifier roles

C/C++ Prototype

HRESULT getClassifierRoles (
IRPCollection** classifierRoles)

Return Value

HRESULT (0 for success, or a signed integer error code)
104 API Reference Manual

Rhapsody Interfaces
getFormalRelations
Read method

Description

The getFormalRelations method returns a collection of IRPRelations for the current
association role. Pass one of the following values to the method:

 0—Get the unspecified relations.
 1—Get the directional relations.
 2—Get the bidirectional relations.

Visual Basic

Syntax

getFormalRelations() As RPCollection

Return Value

A collection of RPRelations

C/C++ Prototype

HRESULT getFormalRelations (
IRPCollection** classifierRoles)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 105

Rhapsody API Interfaces
IRPAttribute Interface

The IRPAttribute interface represents a class attribute. It Inherits from IRPVariable.

VB Properties

Name Type Access Description

declaration String RW The declaration of this
attribute. For an inline
declaration, this is an
uninterpreted string.

defaultValue String RW The default value of this
attribute, if one has been
defined.

isConstant Long RW A flag that indicates
whether the attribute is
read-only or modifiable.

isOrdered Long RW A flag that specifies
whether the order of the
reference type items is
significant.

isReference Long RW A flag that specifies
whether the attribute is
referenced as a reference
(such as a pointer (*) or an
address (&) in C++).

isStatic Long RW A flag that indicates
whether this attribute is a
static class attribute. Static
status implies that the
attribute belongs to the
class as a whole rather
than to an individual
instance.

multiplicity String RW The multiplicity of the
attribute. If this is greater
than 1, use the
isOrdered property to
specify whether the order
of the reference type items
is significant.

typeOf RPType RW The type of this attribute.
For Rhapsody predefined
types, this is a reference to
that type.

visibility String RW The visibility of this
attribute (public, protected,
or private).
106 API Reference Manual

Rhapsody Interfaces
IRPBlock Interface

The IRPBlock interface was removed in version 7.2 of Rhapsody.

Use IRPInstance instead.
Rational Rhapsody 107

Rhapsody API Interfaces
IRPClass Interface

The IRPClass interface represents Rhapsody 6.1 classes. It inherits from IRPClassifier.

VB Properties

Method Summary

Name Type Access Description

isActive Long RW Indicates whether this class is
an active class.

isBehaviorOverridden Long RW Indicates whether the
statechart of the subclass
overrides the statechart of this
class.
A statechart is not inherited.

isComposite Long RO Indicates whether this class is
a composite class.

isReactive Long RO Indicates whether this class
has a statechart that is, it’s a
reactive class).

addClass Adds a class to the current class

addConstructor Adds a constructor to the current class

addDestructor Adds a destructor to the current class

addEventReception Adds an event reception to the current class

addLink Adds a link between two objects to the current class

addReception Adds a reception to the current class

addSuperclass Adds a superclass to the current class

addTriggeredOperation Adds a triggered operation to the current class

addType Adds a type to the current class

deleteClass Deletes a class from the current class

deleteConstructor Deletes a constructor from the current class

deleteDestructor Deletes a destructor from the current class

deleteEventReception Deletes the specified event reception from the
current class

deleteReception Deletes the specified reception from the current
class

deleteSuperclass Deletes a superclass from the current class

deleteType Deletes a type from the current class
108 API Reference Manual

Rhapsody Interfaces
addClass
Write method

Description

The addClass method adds a class to the current class.

Visual Basic

Syntax

addClass (name As String) As RPClass

Arguments

name

The name of the new class

Return Value

The new class

C/C++ Prototype

HRESULT addClass (BSTR name, IRPClass** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 109

Rhapsody API Interfaces
addConstructor
Write method

Description

The addConstructor method adds a constructor to the current class.

Visual Basic

Syntax

addConstructor (argumentsData As String) As RPOperation

Arguments

argumentsData

The arguments for the constructor

Return Value

The new constructor for this class

C/C++ Prototype

HRESULT addConstructor (BSTR argumentsData,
IRPOperation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Sub addNetwork(c As RPClass)
Dim o As RPOperation
c.addOperation ("serialize")
c.addOperation ("unserialize")
c.addConstructor ("")
On Error Resume Next
c.addDestructor ("")
x = c.addStereotype("G3Network", "Class")
End Sub
110 API Reference Manual

Rhapsody Interfaces
addDestructor
Write method

Description

The addDestructor method adds a destructor to the current class.

Visual Basic

Syntax

addDestructor() As RPOperation

Return Value

The new destructor for this class

C/C++ Prototype

HRESULT addDestructor (IRPOperation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Sub addNetwork(c As RPClass)
Dim o As RPOperation
c.addOperation ("serialize")
c.addOperation ("unserialize")
c.addConstructor ("")
On Error Resume Next
c.addDestructor ("")
x = c.addStereotype("G3Network", "Class")
End Sub
Rational Rhapsody 111

Rhapsody API Interfaces
addEventReception
Write method

Description

The addEventReception method adds an event reception to the current class.

Visual Basic

Syntax

addEventReception (name As String) As RPEventReception

Arguments

name

The name of the new event reception for this class

Return Value

The new event reception

C/C++ Prototype

HRESULT addEventReception (BSTR name,
IRPEventReception** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
112 API Reference Manual

Rhapsody Interfaces
addLink
The addLink method adds a link between two objects to the current class.

Syntax

addLink(fromPart As RPInstance, toPart As RPInstance, assoc As RPRelation,
fromPort As RPPort, toPort As RPPort) As RPLink

Arguments

fromPart, toPart

The objects that are being linked.

assoc

Association that is being instantiated (optional).

fromPort, toPort

Ports that are being linked (optional).
Rational Rhapsody 113

Rhapsody API Interfaces
addReception
Write method

Description

The addReception method adds a reception to the current class.

Visual Basic

Syntax

addReception (name As String) As RPEventReception

Arguments

name

The name of the new reception for this class

Return Value

The new reception

C/C++ Prototype

HRESULT addReception (BSTR name,
IRPEventReception** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
114 API Reference Manual

Rhapsody Interfaces
addSuperclass
Write method

Description

The addSuperclass method inherits this class from a new superclass.

Visual Basic

Syntax

addSuperclass (superClass As RPClass)

Arguments

superClass

Specifies the RPClass from which this class will inherit

C/C++ Prototype

HRESULT addSuperclass (IRPClass* superClass)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 115

Rhapsody API Interfaces
addTriggeredOperation
Write method

Description

The addTriggeredOperation method adds a new triggered operation to the current class.

Visual Basic

Syntax

addTriggeredOperation (name As String) As RPOperation

Arguments

name

A string that specifies the name of the new trigger

Return Value

The new trigger for this class

C/C++ Prototype

HRESULT addTriggeredOperation (BSTR name,
IRPOperation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
116 API Reference Manual

Rhapsody Interfaces
addType
Write method

Description

The addType method adds a type to the current class.

Visual Basic

Syntax

addType (name As String) As RPType

Arguments

name

The name of the new type

Return Value

The new type for this class

C/C++ Prototype

HRESULT addType (BSTR name, IRPType** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 117

Rhapsody API Interfaces
deleteClass
Write method

Description

The deleteClass method deletes a class from the current class.

Visual Basic

Syntax

deleteClass (name As String)

Arguments

name

The name of the class to delete

C/C++ Prototype

HRESULT deleteClass (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
118 API Reference Manual

Rhapsody Interfaces
deleteConstructor
Write method

Description

The deleteConstructor method deletes a constructor from the current class.

Visual Basic

Syntax

deleteConstructor (constructor As RPOperation)

Arguments

constructor

The constructor to delete

C/C++ Prototype

HRESULT deleteConstructor (IRPOperation* constructor)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 119

Rhapsody API Interfaces
deleteDestructor
Write method

Description

The deleteDestructor method deletes a destructor from the current class.

Visual Basic

Syntax

deleteDestructor()

C/C++ Prototype

HRESULT deleteDestructor()

Return Value

HRESULT (0 for success, or a signed integer error code)
120 API Reference Manual

Rhapsody Interfaces
deleteEventReception
Write method

Description

The deleteEventReception method deletes the specified event reception.

Visual Basic

Syntax

deleteEventReception (pVal As RPEventReception)

Arguments

pVal

The event reception to delete

C/C++ Prototype

HRESULT deleteEventReception (IRPEventReception* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 121

Rhapsody API Interfaces
deleteReception
Write method

Description

The deleteReception method deletes the specified reception.

Visual Basic

Syntax

deleteReception (pVal As RPEventReception)

Arguments

pVal

The event reception to delete

C/C++ Prototype

HRESULT deleteReception (IRPEventReception* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
122 API Reference Manual

Rhapsody Interfaces
deleteSuperclass
Write method

Description

The deleteSuperclass method deletes the superclass for the current class.

Visual Basic

Syntax

deleteSuperclass (superClass As RPClass)

Arguments

superClass

The superclass (base class) to delete

C/C++ Prototype

HRESULT deleteSuperclass (IRPClass* superClass)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 123

Rhapsody API Interfaces
deleteType
Write method

Description

The deleteType method deletes a type from the current class.

Visual Basic

Syntax

deleteType (name As String)

Arguments

name

The type to delete

C/C++ Prototype

HRESULT deleteType (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
124 API Reference Manual

Rhapsody Interfaces
IRPClassifier Interface

The IRPClassifier interface is an abstract interface consisting of all the shared features of
classes, actors, use cases, and (data) types. It inherits from IRPUnit.

VB Properties

Name Type Access Description

activityDiagram RPFlowchart RO The activity diagram

attributes Collection of
RPAttributes

RO A collection of attributes
belonging to this classifier

baseClassifiers Collection of
RPClassifiers

RO A collection of classifiers
from which this classifier is
derived (inherits)

derivedClassifiers Collection of
RPClassifiers

RO A collection of classifiers
that derive (inherit) from
this classifier

flows Collection of
RPInformationFlows

RO A collection of flows
belonging to this classifier

flowItems Collection of
RPInformationItems

A collection of flowItems
belonging to this classifier

generalizations Collection of
RPGeneralizations

RO A collection of
generalizations that
generalize this classifier
(for which this classifier is
a specialization)

interfaceItems Collection of
RPInterfaceItems

RO A collection of operations,
events, and event
receptions belonging to
this classifier

nestedClassifiers Collection of
RPClassifiers

RO A collection of classifiers
defined in this classifier

operations Collection of
RPOperations

RO A collection of operations
belonging to this classifier

ports RPCollection RO A collection of ports
belonging to this classifier

relations Collection of
RPRelations

RO A collection of all relations
belonging to this classifier

statechart RPStatechart* RO The handle to the
statechart of this class, if it
has one
Rational Rhapsody 125

Rhapsody API Interfaces
Method Summary

addActivityDiagram Adds an activity diagram to the current class

addAttribute Adds an attribute to the current class

addFlowItems Adds the specified flowItem to the collection
of flowItems

addFlows Adds the specified flow to the collection of
flows

addGeneralization Adds a generalization to the current class

addOperation Adds an operation to the current class

addRelation Adds a symmetric relation between the
current class and another one

addStatechart Adds a statechart to the current class

addUnidirectionalRelation Adds a directional relation from the current
class to another class

deleteActivityDiagram Deletes the specified activity diagram from
the current class

deleteAttribute Deletes the specified attribute from the
current class

deleteFlowItems Deletes the specified flowItem from the
collection of flowItems

deleteFlows Deletes the specified flow from the
collection of flows

deleteGeneralization Deletes the specified generalization from
the current class

deleteOperation Deletes the specified operation from the
current class

deleteRelation Deletes the specified relation from the
current class

deleteStatechart Deletes the specified statechart from the
current class

findAttribute Retrieves the specified attribute of the
classifier

findBaseClassifier Retrieves a base (parent) classifier of a
classifier

findDerivedClassifier Retrieves the specified derived classifier of
a classifier

findGeneralization Retrieves the specified generalization of a
classifier

findInterfaceItem Retrieves an operation or event reception of
the given signature that belongs to a
classifier
126 API Reference Manual

Rhapsody Interfaces
Note
Some of the properties and methods are meaningful only for some of the derived interfaces.
When meaningless, the call will return nothing (NULL) or an empty collection.

findNestedClassifier Retrieves the specified classifier defined
within this object

findNestedClassifierRecursive Retrieves the specified classifier defined in
this object and in objects defined within this
object

findRelation Retrieves the specified relation that belongs
to the current classifier

findTrigger Retrieves the specified trigger in the
statechart of the current class

getAttributesIncludingBases Retrieves the attributes defined for this
class and the ones inherited from its
superclasses

getInterfaceItemsIncludingBases Retrieves the operations and event
receptions defined for this class and the
ones it inherited from its superclasses

getRelationsIncludingBases Retrieves the relations defined for this class
and the ones it inherited from its
superclasses
Rational Rhapsody 127

Rhapsody API Interfaces
addActivityDiagram
Write method

Description

The addActivityDiagram method adds an activity diagram to the current class.

Visual Basic

Syntax

addActivityDiagram () As RPFlowchart

Return Value

The new activity diagram

C/C++ Prototype

HRESULT addActivityDiagram (IRPFlowchart** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
128 API Reference Manual

Rhapsody Interfaces
addAttribute
Write method

Description

The addAttribute method adds an attribute to the current class.

Visual Basic

Syntax

addAttribute (name As String) As RPAttribute

Arguments

name

The name of the new attribute

C/C++ Prototype

HRESULT addAttribute (BSTR name, IRPAttribute** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 129

Rhapsody API Interfaces
addFlowItems
Write method

Description

The addFlowItems method adds the specified flowItem to the collection of flowItems.

Visual Basic

Syntax

addFlowItems (name As String) As RPFlowItem

Arguments

name

The name of the new flowItem

C/C++ Prototype

HRESULT addFlowItems (BSTR name, IRPFlowItem** ppItem)

Return Value

HRESULT (0 for success, or a signed integer error code)
130 API Reference Manual

Rhapsody Interfaces
addFlows
Write method

Description

The addFlows method adds the specified flow to the collection of flows.

Visual Basic

Syntax

addFlows (name As String) As RPFlow

Arguments

name

The name of the new flow

C/C++ Prototype

HRESULT addFlows (BSTR name, IRPFlow** ppFlow)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 131

Rhapsody API Interfaces
addGeneralization
Write method

Description

The addGeneralization method adds a generalization to the current class.

Visual Basic

Syntax

addGeneralization (pVal As RPClassifier)

Arguments

pVal

The generalization to add to this class

C/C++ Prototype

HRESULT addGeneralization (IRPClassifier *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Sub addUi(c As RPClass)
Dim x As Object
Dim p As RPPackage
Dim theClass As RPClass
'all gui objects are derived from GUI.UIBase
c.Description = "gui class"
On Error Resume Next
Set p = pr.findNestedElement("GUI", "Package")
Set theClass = p.findNestedElement("UIBase", "Class")
c.addGeneralization theClass

If Not Err.Number = 0 Then
 MsgBox (errorMessage)
End If

c.addStereotype "G3UI", "Class"
End Sub
132 API Reference Manual

Rhapsody Interfaces
addOperation
Write method

Description

The addOperation method adds an operation to the current class.

Visual Basic

Syntax

addOperation (name As String) As RPOperation

Arguments

name

The name of the new operation

Return Value

The operation added to this class

C/C++ Prototype

HRESULT addOperation (BSTR name, IRPOperation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Sub addNetwork(c As RPClass)
Dim o As RPOperation
c.addOperation ("serialize")
c.addOperation ("unserialize")
c.addConstructor ("")
On Error Resume Next
c.addDestructor ("")
x = c.addStereotype("G3Network", "Class")
End Sub
Rational Rhapsody 133

Rhapsody API Interfaces
addRelation
Write method

Description

The addRelation method adds a symmetric relation between the current class and another one.

Visual Basic

Syntax

addRelation (otherClassName As String,
otherClassPackageName As String,
roleName1 As String, linkType1 As String,
multiplicity1 As String, roleName2 As String,
linkType2 As String, multiplicity2 As String,
linkName As String) As RPRelation

Arguments

OtherClassName

The name of the other class involved in the new relation with the
current class.

OtherClassPackageName

The name of the package containing the other class.

roleName1

The role name of the other class, from the point of view of the current
class.

roleName2

The role name of the current class, from the point of view of the other
class.

linkType1

The relation type. The possible values are as follows:

Aggregation

Association

Composition

linkType2

The second relation type. The possible values are as follows:

Aggregation

Association

Composition

multiplicity1

The multiplicity of instances for the other class.

multiplicity2
134 API Reference Manual

Rhapsody Interfaces
The multiplicity of instances for the current class.

linkName

The name of the link. This is a descriptive and explanatory field that
plays no part in code generation.

Notes

The valid combinations of linkType1 and linkType2 are as follows:

Association/Association--I know you; you know me.

Aggregation/Association--I belong to you; you know me.

Composition/Association--I strongly belong to you; you know me.

Association/Aggregation--I know you; you belong to me.

Association/Composition--I know you; you strongly belong me.

Return Value

The new relation

C/C++ Prototype

HRESULT addRelation (BSTR otherClassName,
BSTR otherClassPackageName, BSTR roleName1,
BSTR linkType1, BSTR multiplicity1, BSTR roleName2,
BSTR linkType2, BSTR multiplicity2, BSTR linkName,
IRPRelation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 135

Rhapsody API Interfaces
addStatechart
Write method

Description

The addStatechart method adds a statechart to the current class.

Visual Basic

Syntax

addStatechart() As RPStatechart

Return Value

The new statechart

C/C++ Prototype

HRESULT addStatechart (IRPStatechart** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
136 API Reference Manual

Rhapsody Interfaces
addUnidirectionalRelation
Write method

Description

The addUnidirectionalRelation method adds a directional relation from the current class to
another class.

Visual Basic

Syntax

addUnidirectionalRelation (otherClassName As String,
otherClassPackageName As String,
roleName As String, linkType As String,
multiplicity As String,
linkName As String) As RPRelation

Arguments

OtherClassName

The name of the other class involved in the new relation with the
current class.

OtherClassPackageName

The name of the package containing the other class.

roleName

The role name of the other class, from the point of view of the current
class.

linkType

The relation type. The possible values are as follows:

Aggregation

Association

Composition

multiplicity

The multiplicity of instances for the other class.

linkName

The name of the link. This is a descriptive and explanatory field that
plays no part in code generation.

Return Value

The new relation
Rational Rhapsody 137

Rhapsody API Interfaces
C/C++ Prototype

HRESULT addUnidirectionalRelation (BSTR otherClassName,
BSTR otherClassPackageName, BSTR roleName,
BSTR linkType, BSTR multiplicity, BSTR linkName,
IRPRelation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

deleteActivityDiagram
Write method

Description

The deleteActivityDiagram method deletes the specified activity diagram from the current
class.

Visual Basic

Syntax

deleteActivityDiagram ()

C/C++ Prototype

HRESULT deleteActivityDiagram()

Return Value

HRESULT (0 for success, or a signed integer error code)
138 API Reference Manual

Rhapsody Interfaces
deleteAttribute
Write method

Description

The deleteAttribute method deletes the specified attribute from the current class.

Visual Basic

Syntax

deleteAttribute (attribute As RPAttribute)

Arguments

attribute

The attribute to delete

C/C++ Prototype

HRESULT deleteAttribute (IRPAttribute* attribute)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 139

Rhapsody API Interfaces
deleteFlowItems
Write method

Description

The deleteFlowItems method deletes the specified flowItem from the collection of flowItems.

Visual Basic

Syntax

deleteFlowItems (pItem As RPFlowItem)

Arguments

pFlowItem

The flowItem to delete

C/C++ Prototype

HRESULT deleteFlowItems (IRPFlowItem* pItem)

Return Value

HRESULT (0 for success, or a signed integer error code)
140 API Reference Manual

Rhapsody Interfaces
deleteFlows
Write method

Description

The deleteFlows method deletes the specified flow from the collection of flows.

Visual Basic

Syntax

deleteFlows (pFlow As RPFlow)

Arguments

pFlow

The flow to delete

C/C++ Prototype

HRESULT deleteFlows (IRPFlow* pFlow)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 141

Rhapsody API Interfaces
deleteGeneralization
Write method

Description

The deleteGeneralization method deletes the specified generalization from the current class.

Visual Basic

Syntax

deleteGeneralization (superClass As RPClassifier)

Arguments

superClass

The superclass of the current class to be deleted

C/C++ Prototype

HRESULT deleteGeneralization (IRPClassifier* superClass)

Return Value

HRESULT (0 for success, or a signed integer error code)
142 API Reference Manual

Rhapsody Interfaces
deleteOperation
Write method

Description

The deleteOperation method deletes the specified operation from the current class.

Visual Basic

Syntax

deleteOperation (operation As RPOperation)

Arguments

operation

The operation to delete

C/C++ Prototype

HRESULT deleteOperation (IRPOperation* operation)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 143

Rhapsody API Interfaces
deleteRelation
Write method

Description

The deleteRelation method deletes the specified relation from the current class.

Visual Basic

Syntax

deleteRelation (relation As RPRelation)

Arguments

relation

The relation to delete

C/C++ Prototype

HRESULT deleteRelation (IRPRelation* relation)

Return Value

HRESULT (0 for success, or a signed integer error code)
144 API Reference Manual

Rhapsody Interfaces
deleteStatechart
Write method

Description

The deleteStatechart method deletes the specified statechart from this class.

Visual Basic

Syntax

deleteStatechart()

C/C++ Prototype

HRESULT deleteStatechart()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 145

Rhapsody API Interfaces
findAttribute
Read method

Description

The findAttribute method retrieves the specified attribute of the classifier.

Visual Basic

Syntax

findAttribute (name As String) As RPAttribute

Arguments

name

The name of the attribute to find

Return Value

The named attribute of the classifier

C/C++ Prototype

HRESULT findAttribute (BSTR newVal, IRPAttribute** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
146 API Reference Manual

Rhapsody Interfaces
findBaseClassifier
Read method

Description

The findBaseClassifier method retrieves a base (parent) classifier of a classifier.

Visual Basic

Syntax

findBaseClassifier (newVal As String) As RPClassifier

Arguments

newVal

The name of the base classifier

Return Value

The base classifier of this classifier

C/C++ Prototype

HRESULT findBaseClassifier (BSTR newVal,
IRPClassifier** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 147

Rhapsody API Interfaces
findDerivedClassifier
Read method

Description

The findDerivedClassifier method retrieves the specified derived classifier of a classifier.

Visual Basic

Syntax

findDerivedClassifier (newVal As String) As RPClassifier

Arguments

newVal

The name of the derived classifier of this classifier

Return Value

The derived classifier of this classifier

C/C++ Prototype

HRESULT findDerivedClassifier (BSTR newVal,
IRPClassifier** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
148 API Reference Manual

Rhapsody Interfaces
findGeneralization
Read method

Description

The findGeneralization method retrieves the specified generalization that belongs to this
classifier.

Visual Basic

Syntax

findGeneralization (newVal As String) As RPGeneralization

Arguments

newVal

The name of the generalization

Return Value

The RPGeneralization

C/C++ Prototype

HRESULT findGeneralization (BSTR newVal,
 IRPGeneralization** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 149

Rhapsody API Interfaces
findInterfaceItem
Read method

Description

The findInterfaceItem method retrieves an operation or event reception of the given signature
that belongs to a classifier.

Visual Basic

Syntax

findInterfaceItem (signature As String)
As RPInterfaceItem

Arguments

signature

The signature of the operation or event reception of this classifier

Return Value

The operation or event reception

C/C++ Prototype

HRESULT findInterfaceItem (BSTR signature,
IRPInterfaceItem** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
150 API Reference Manual

Rhapsody Interfaces
findNestedClassifier
Read method

Description

The findNestedClassifier method retrieves the specified classifier defined within this object.

Visual Basic

Syntax

findNestedClassifier (newVal As String) As RPClassifier

Arguments

newVal

The name of the nested classifier

Return Value

The nested classifier within this classifier

C/C++ Prototype

HRESULT findNestedClassifier (BSTR newVal,
IRPClassifier** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 151

Rhapsody API Interfaces
findNestedClassifierRecursive
Read method

Description

The findNestedClassifierRecursive method recursively retrieves the specified classifier defined
in this object and in objects defined within this object.

Visual Basic

Syntax

findNestedClassifierRecursive (newVal As String)
As RPModelElement

Arguments

newVal

The name of the nested classifier (at any level of ownership)

Return Value

The nested classifier

C/C++ Prototype

HRESULT findNestedClassifierRecursive (BSTR newVal,
IRPModelElement** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
152 API Reference Manual

Rhapsody Interfaces
findNestedGeneralization
Read method

Description

The findNestedGeneralization method retrieves the specified generalization relation.

Visual Basic

Syntax

findGeneralization (name As String) As IRPGeneralization

Arguments

name

A string that specifies the name of the generalization to find

Return Value

The generalization for this classifier (an IRPGeneralization)

C/C++ Prototype

HRESULT findGeneralization(BSTR newVal,
 IRPGeneralization** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 153

Rhapsody API Interfaces
findRelation
Read method

Description

The findRelation method retrieves the specified relation that belongs to the current classifier.

Visual Basic

Syntax

findRelation (newVal As String) As RPRelation

Arguments

newVal

The name of the relation to find

Return Value

The classifier’s relation

C/C++ Prototype

HRESULT findRelation (BSTR newVal, IRPRelation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
154 API Reference Manual

Rhapsody Interfaces
findTrigger
Read method

Description

The findTrigger method retrieves the specified trigger in the statechart of the current class.

Visual Basic

Syntax

findTrigger (name As String) As RPInterfaceItem

Arguments

name

The name of the trigger to find

Return Value

The trigger

C/C++ Prototype

HRESULT findTrigger (BSTR name, IRPInterfaceItem** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 155

Rhapsody API Interfaces
getAttributesIncludingBases
Read method

Description

The getAttributesIncludingBases method retrieves the attributes defined for this class and the
ones inherited from its superclasses.

Visual Basic

Syntax

getAttributesIncludingBases() As RPCollection

Return Value

A collection of class attributes (RPAttributes)

C/C++ Prototype

HRESULT getAttributesIncludingBases (
IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
156 API Reference Manual

Rhapsody Interfaces
getInterfaceItemsIncludingBases
Read method

Description

The getInterfaceItemsIncludingBases method retrieves the operations and event receptions
defined for this class and the ones it inherited from its superclasses.

Visual Basic

Syntax

getInterfaceItemsIncludingBases() As RPCollection

Return Value

A collection of interface items

C/C++ Prototype

HRESULT getInterfaceItemsIncludingBases(
IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 157

Rhapsody API Interfaces
getRelationsIncludingBases
Read method

Description

The getRelationsIncludingBases method retrieves the relations defined for this class and the
ones it inherited from its superclasses.

Visual Basic

Syntax

getRelationsIncludingBases() As RPRelations

Return Value

A collection of relations

C/C++ Prototype

HRESULT getRelationsIncludingBases (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
158 API Reference Manual

Rhapsody Interfaces
IRPClassifierRole Interface

The IRPClassifierRole interface represents an object participating in the collaboration. It
usually corresponds to some object of a given class or actor. It inherits from
IRPModelElement.

VB Properties

Name Type Access Description

formalClassifier RPClassifier RO The classifier (NULL
(unspecified),
systemBorder, or
multipleObjects)

referencedSequenceDiagram RPSequence
Diagram

RW The referenced sequence
diagram

roleType String RO The role type (unspecified,
systemBorder, class,
actor, or multipleObjects)
Rational Rhapsody 159

Rhapsody API Interfaces
IRPCollaboration Interface

The IRPCollaboration interface represents the logical collaboration, devoid of any
sequence diagram or collaboration diagram graphics. Note that the two diagrams give rise to
similar but slightly different IRPCollaboration objects. This class inherits from
IRPModelElement.

VB Properties

Name Type Access Description

activationCondition CString RO The activation condition. This
can be empty.

activationMode CString RO The activation mode (initial,
invariant, or unspecified).

associations RPAssociationRoles RO A collection of
RPAssociationRoles in
the collaboration diagram.
This applies only to
collaboration diagram-based
IRPCollaborations.

classifier RPClassifierRoles RO A collection of
RPClassifierRoles in
the collaboration diagram.

messagePoints RPMessagePoints RO A collection of
RPMessagePoints. For
sequences, this is the way of
obtaining full information
about the order of messages
in the sequence diagram. For
collaborations, each send
messagepoint is immediately
followed by a receive
messagepoint on the same
message.

messages RPMessages RO A collection of
RPMessages. For
collaborations, this list
contains all information
regarding the order of
elements in the model. For
sequences, some information
is lost and the message list is
ordered by the send time (as
opposed to the receive time).

mode Cstring RO The mode (existential,
universal, or unspecified).
160 API Reference Manual

Rhapsody Interfaces
Method Summary

addCancelledTimeout Adds a cancelled timeout to the diagram

addClassifierRole Adds a classifier role

addClassifierRoleByName Adds a classifier role, given its name

addCtor Adds a constructor

addDestructionEvent Adds a destruction event to a classifier role in
a sequence diagram

addDtor Adds a destructor

addFoundMessage Adds a found message to a classifier role in a
sequence diagram

addInteractionOccurrence Adds an interaction occurrence (reference
diagram) to the diagram

addInteractionOperator Adds an interaction operator to a sequence
diagram

addLostMessage Adds a lost message to a classifier role in a
sequence diagram

addMessage Adds a message

addSystemBorder Adds a system border

addTimeInterval Adds a time interval to the diagram

addTimeout Adds a timeout the diagram

generateSequence Generates the specified sequence diagram

getConcurrentGroup Retrieves the activation messages

getConcurrentGroup Retrieves all the messages concurrent with
the input message, including the input
message itself

getMessagePoints Returns an ordered collection of all
messagepoints occurring on this classifier

getPredecessor Retrieves the message that precedes the
specified message

getSuccessor Retrieves the message that follows the
specified message
Rational Rhapsody 161

Rhapsody API Interfaces
addCancelledTimeout
Write method

Description

The addCancelledTimeout method adds a cancelled timeout to a collaboration diagram.

Visual Basic

Syntax

addCancelledTimeout (receiver As RPClassifierRole)
As RPMessage

Arguments

receiver

The receiver object for the timeout

Return Value

The new cancelled timeout

C/C++ Prototype

HRESULT addCancelledTimeout (IRPClassifierRole *receiver,
IRPMessage **pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
162 API Reference Manual

Rhapsody Interfaces
addClassifierRole
Write method

Description

The addClassifierRole method adds a classifier role.

Visual Basic

Syntax

addClassifierRole (newVal As String, cls As RPClass)
As RPClassifierRole

Arguments

newVal

The name of the new classifier role

cls

The name of the class

Return Value

The new RPClassifierRole

C/C++ Prototype

HRESULT addClassifierRole (BSTR newVal, IRPClass *cls,
IRPClassifierRole** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 163

Rhapsody API Interfaces
addClassifierRoleByName
Write method

Description

The addClassifierRoleByName method adds the specified classifier role.

Visual Basic

Syntax

addClassifierRoleByName (newVal As String,
classFullPath As String) As RPClassifierRole

Arguments

newVal

The name of the classifier role to add

classFullPath

The full path to the class

Return Value

The new RPClassifierRole

C/C++ Prototype

HRESULT addClassifierRoleByName (BSTR newVal,
BSTR classFullPath, IRPClassifierRole** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
164 API Reference Manual

Rhapsody Interfaces
addCtor
Write method

Description

The addCtor method adds a constructor.

Visual Basic

Syntax

addCtor (interItem As RPInterfaceItem,
actualParamList As String, sender As RPClassifierRole,
receiver As RPClassifierRole) As RPMessage

Arguments

interItem

The interface item

actualParamList

The list of parameters for the constructor

sender

The RPClassifierRole that acts as the sender

receiver

The RPClassifierRole that acts as the receiver

Return Value

An RPMessage

C/C++ Prototype

HRESULT addCtor (IRPInterfaceItem *interItem,
BSTR actualParamList, IRPClassifierRole *sender,
IRPClassifierRole *receiver, IRPMessage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 165

Rhapsody API Interfaces
addDestructionEvent
Write method

Description

The addDestructionEvent method is used to add a destruction event to a classifier role in a
sequence diagram.

Visual Basic

Syntax

addDestructionEvent (classifier As RPClassifierRole) As RPMessage

Arguments

classifier

The classifier role to which the destruction event should be added.

Return Value

An RPMessage

Return Value

HRESULT (0 for success, or a signed integer error code)
166 API Reference Manual

Rhapsody Interfaces
addDtor
Write method

Description

The addDtor method adds a destructor.

Visual Basic

Syntax

addDtor (interItem As RPInterfaceItem,
actualParamList As String, sender As RPClassifierRole,
receiver As RPClassifierRole) As RPMessage

Arguments

interItem

The interface item

actualParamList

The list of parameters for the constructor

sender

The RPClassifierRole that acts as the sender

receiver

The RPClassifierRole that acts as the receiver

Return Value

An RPMessage

C/C++ Prototype

HRESULT addDtor (IRPInterfaceItem *interItem,
BSTR actualParamList, IRPClassifierRole *sender,
IRPClassifierRole *receiver, IRPMessage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 167

Rhapsody API Interfaces
addFoundMessage
Write method

Description

The addFoundMessage method is used to add a found message to a classifier role in a sequence
diagram.

Visual Basic

Syntax

addFoundMessage (receiver As RPClassifierRole) As RPMessage

Arguments

receiver

The classifier role that receives the message from an unknown sender.

Return Value

An RPMessage

Return Value

 HRESULT (0 for success, or a signed integer error code)
168 API Reference Manual

Rhapsody Interfaces
addInteractionOccurrence
Write method

Description

The addInteractionOccurrence method adds a new interaction occurrence (reference diagram)
to the collaboration diagram.

Visual Basic

Syntax

addInteractionOccurrence () As RPInteractionOccurrence

Return Value

The new interaction occurrence

C/C++ Prototype

HRESULT addInteractionOccurrence (
IRPInteractionOccurrence** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 169

Rhapsody API Interfaces
addInteractionOperator
Write method

Description

The addInteractionOperator method is used to add an interaction operator to a sequence
diagram.

Visual Basic

Syntax

addInteractionOperator() As RPInteractionOperator

Arguments

None

Return Value

An RPInteractionOperator

Return Value

HRESULT (0 for success, or a signed integer error code)
170 API Reference Manual

Rhapsody Interfaces
addLostMessage
Write method

Description

The addLostMessage method is used to add a lost message to a classifier role in a sequence
diagram.

Visual Basic

Syntax

addLostMessage (sender As RPClassifierRole) As RPMessage

Arguments

sender

The classifier role that sent the message that did not reach its
target.

Return Value

An RPMessage

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 171

Rhapsody API Interfaces
addMessage
Write method

Description

The addMessage method adds a message.

Visual Basic

Syntax

addMessage (interItem As RPInterfaceItem,
actualParamList As String, sender As RPClassifierRole,
receiver As RPClassifierRole) As RPMessage

Arguments

interItem

The interface item

actualParamList

The list of parameters for the constructor

sender

The RPClassifierRole that acts as the sender

receiver

The RPClassifierRole that acts as the receiver

Return Value

The new message

C/C++ Prototype

HRESULT addMessage (IRPInterfaceItem *interItem,
BSTR actualParamList, IRPClassifierRole *sender,
IRPClassifierRole *receiver, IRPMessage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
172 API Reference Manual

Rhapsody Interfaces
addSystemBorder
Write method

Description

The addSystemBorder method adds a system border to the collaboration diagram.

Visual Basic

Syntax

addSystemBorder () As RPClassifierRole

Return Value

The new system border

C/C++ Prototype

HRESULT addSystemBorder (IRPClassifierRole** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 173

Rhapsody API Interfaces
addTimeInterval
Write method

Description

The addTimeInterval method adds a time interval to the diagram.

Visual Basic

Syntax

addTimeInterval (receiver As RPClassifierRole)
As RPMessage

Arguments

interItem

The interface item

Return Value

The new time interval

C/C++ Prototype

HRESULT addTimeInterval (IRPClassifierRole *receiver,
IRPMessage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
174 API Reference Manual

Rhapsody Interfaces
addTimeout
Write method

Description

The addTimeout method adds a timeout.

Visual Basic

Syntax

addTimeout (interItem As RPInterfaceItem,
actualParamList As String, sender As RPClassifierRole,
receiver As RPClassifierRole) As RPMessage

Arguments

interItem

The interface item

actualParamList

The list of parameters for the constructor

sender

The RPClassifierRole that acts as the sender

receiver

The RPClassifierRole that acts as the receiver

Return Value

The new timeout

C/C++ Prototype

HRESULT addTimeout (IRPInterfaceItem *interItem,
BSTR actualParamList, IRPClassifierRole *sender,
IRPClassifierRole *receiver, IRPMessage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 175

Rhapsody API Interfaces
generateSequence
Write method

Description

The generateSequence method generates the specified sequence diagram.

Visual Basic

Syntax

generateSequence (newVal As String, owner As RPPackage)
As RPSequenceDiagram

Arguments

newVal

The name of the sequence diagram to generate

owner

The owner package

Return Value

The new RPSequenceDiagram

C/C++ Prototype

HRESULT generateSequence (BSTR newVal, IRPPackage* owner,
 IRPSequenceDiagram** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
176 API Reference Manual

Rhapsody Interfaces
getActivator
Read method

Description

The getActivator method retrieves the activation messages.

Visual Basic

Syntax

getActivator (msg As RPMessage) As RPMessage

Arguments

msg

The message to retrieve

Return Value

A collection of RPMessages

C/C++ Prototype

HRESULT getActivator (IRPMessage* msg,
IRPMessage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 177

Rhapsody API Interfaces
getConcurrentGroup
Read method

Description

The getConcurrentGroup method retrieves all the messages concurrent with the input message,
including the input message itself. If the message does not have any concurrent messages
because it is sequential, the method returns only the message itself.

Visual Basic

Syntax

getConcurrentGroup (message As RPMessage) As RPMessages

Arguments

message

The group of messages to retrieve

Return Value

A collection of RPMessages

C/C++ Prototype

HRESULT getConcurrentGroup (IRPMessage* message,
IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
178 API Reference Manual

Rhapsody Interfaces
getMessagePoints
Read method

Description

The getMessagePoints method returns an ordered collection of all messagepoints occurring on
this classifier.

Visual Basic

Syntax

getMessagePoints (classifier As RPClassifierRole)
As RPCollection

Arguments

classifier

The RPClassifier whose messagepoints you want to retrieve

Return Value

A collection of RPMessagePoints

C/C++ Prototype

HRESULT getMessagePoints (IRPClassifier* classifier,
IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 179

Rhapsody API Interfaces
getPredecessor
Read method

Description

The getPredecessor method retrieves the message that precedes the specified message.

Visual Basic

Syntax

getPredecessor (message As RPMessage) As RPMessage

Arguments

message

The message whose predecessor you want

Return Value

The message that precedes the specified message

C/C++ Prototype

HRESULT getPredecessor (IRPMessage *message,
IRPMessage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
180 API Reference Manual

Rhapsody Interfaces
getSuccessor
Read method

Description

The getSuccessor method retrieves the message that follows the specified message.

Visual Basic

Syntax

getSuccessor (message As RPMessage) As RPMessage

Arguments

message

The message whose successor you want

Return Value

The message that follows the specified message

C/C++ Prototype

HRESULT getSuccessor (IRPMessage *message,
IRPMessage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 181

Rhapsody API Interfaces
IRPCollaborationDiagram Interface

The IRPCollaborationDiagram interface represents a collaboration diagram. It inherits
from IRPDiagram.

Method Summary

getLogicalCollaboration
Read method

Description

The getLogicalCollaboration method retrieves the logic behind the collaboration diagram.

Visual Basic

Syntax

getLogicalCollaboration() As RPCollaboration

Return Value

The collaboration diagram

C/C++ Prototype

HRESULT getLogicalCollaboration (IRPCollaboration** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

getLogicalCollaboration Retrieves the logic behind the collaboration
diagram
182 API Reference Manual

Rhapsody Interfaces
IRPCollection Interface

The IRPCollection interface is a utility class used to return collections of
IRPModelElements. Methods and attributes that need to return more than one element
always return a pointer to an IRPCollection.

IRPCollection also supports VB iteration via the following construct:

For Each obj in col

VB Properties

Method Summary

Name Type Access Description

Count Long RO The number of elements
currently in the collection

Item(long i) RPModelElement* RO The ith element in the
collection

addItem Adds an item to the collection
Rational Rhapsody 183

Rhapsody API Interfaces
addItem
Write method

Description

The addItem method adds an item to the collection.

Visual Basic

Syntax

addItem (newVal As RPModelElement)

Arguments

newVal

The new item to add

C/C++ Prototype

HRESULT addItem (IRPModelElement* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
184 API Reference Manual

Rhapsody Interfaces
IRPComment Interface

The IRPComment interface represents Rhapsody comments. It inherits from
IRPAnnotation.

IRPComponent Interface

The IRPComponent interface represents a code generation component. It inherits from
IRPUnit.

VB Properties

Name Type Access Description

additionalSources String RW The additional source files
to be compiled with the
component.

buildType String RW The build type (library or
executable).

configurations Collection of
RPConfiguration

RW The configurations of this
component.

files Collection of RPFiles RO The files of this
component.

includePath String RW The path to standard
headers to be linked with
the component.

libraries String RW The libraries to be linked
with the component (for
example, "x.lib,
y.lib, z.lib").

nestedComponents Collection of
RPComponent

RO The components nested in
this component.

path(fullPath) String(path)

Boolean(fullPath)

RO The string containing the
path to the component.If
fullPath is True, the
full path is returned:
 <drive>:\
 <model dir>\
 <component dir>\
 <config dir>)
If fullPath is False, the
path relative to the project
is returned:
 <component dir>\
 <config dir>
Rational Rhapsody 185

Rhapsody API Interfaces
Method Summary

scopeElements Collection of
RPModelElement

RO The logical elements
allocated to this
component.

standardHeaders String RW The standard header files
to be linked with the
component.

addConfiguration Adds a configuration to this component

addFile Adds an empty file to the current component

addFolder Adds an empty folder to the current component

addNestedComponent Adds a component to the current component

addScopeElement Places a model element within the scope of the
current component

addToScope Places the specified file, classes, and packages
within the scope of the current component

allElementsInScope Places all model elements within the scope of
the current component

deleteConfiguration Deletes the specified configuration from the
current component

deleteFile Deletes the specified file from the current
component

findConfiguration Retrieves the specified configuration in the
current component

getConfigByDependency Retrieves the appropriate configuration to use
in the component on which the current
component depends

getFile Returns the file in which the specified classifier
will be generated

getFileName Retrieves the name of the file to which the
specified classifier will be generated in this
component

getModelElementFileName Gets the file name of the specified model
element

getPackageFile Returns the package file

removeScopeElement Deletes a scope element

setPath Sets the path of the application built for this
component

Name Type Access Description
186 API Reference Manual

Rhapsody Interfaces
addConfiguration
Write method

Description

The addConfiguration method adds a configuration to the current component.

Visual Basic

Syntax

addConfiguration (name As String) As RPConfiguration

Arguments

name

The name of the new configuration

Return Value

The new configuration

C/C++ Prototype

HRESULT addConfiguration (BSTR name,
IRPConfiguration** configuration)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 187

Rhapsody API Interfaces
addFile
Write method

Description

The addFile method adds an empty file to the current component.

Visual Basic

Syntax

addFile (name As String) As RPFile

Arguments

name

The name of the new file

Return Value

The file added to the component

C/C++ Prototype

HRESULT addFile (BSTR name, IRPFile** file)

Return Value

HRESULT (0 for success, or a signed integer error code)
188 API Reference Manual

Rhapsody Interfaces
addFolder
Write method

Description

The addFolder method adds an empty folder to the current component.

Visual Basic

Syntax

addFolder (name As String) As RPFile

Arguments

name

The name of the new folder

Return Value

The folder added to the component

C/C++ Prototype

HRESULT addFolder (BSTR name, IRPFile** file)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 189

Rhapsody API Interfaces
addNestedComponent
Write method

Description

The addNestedComponent method adds a component to the current component.

Visual Basic

Syntax

addNestedComponent (name As String) As RPComponent

Arguments

name

The name of the component to add

Return Value

The component added to the current component

C/C++ Prototype

HRESULT addNestedComponent (BSTR name,
IRPComponent** pval)

Return Value

HRESULT (0 for success, or a signed integer error code)
190 API Reference Manual

Rhapsody Interfaces
addScopeElement
Write method

Description

The addScopeElement method places a model element within the scope of the current
component.

Visual Basic

Syntax

addScopeElement (pVal As RPModelElement)

Arguments

pVal

The RPModelElement to place in the scope of the current component

C/C++ Prototype

HRESULT addScopeElement (IRPModelElement* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 191

Rhapsody API Interfaces
addToScope
Write method

Description

The addToScope method places the specified file, classes, and packages within the scope of
the current component.

Visual Basic

Syntax

addToScope (file As RPFile,
classes As RPCollection, packages As RPCollection)

Arguments

file

The file to place in scope of the current component

classes

The classes to place in scope of the current component

packages

The packages to place in scope of the current component

C/C++ Prototype

HRESULT addToScope (IRPFile* file,
IRPCollection* classes, IRPCollection* packages)

Return Value

HRESULT (0 for success, or a signed integer error code)
192 API Reference Manual

Rhapsody Interfaces
allElementsInScope
Write method

Description

The allElementsInScope method places all model elements within the scope of the current
component.

Visual Basic

Syntax

allElementsInScope()

C/C++ Prototype

HRESULT allElementsInScope()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 193

Rhapsody API Interfaces
deleteConfiguration
Write method

Description

The deleteConfiguration method deletes the specified configuration from the current
component.

Visual Basic

Syntax

deleteConfiguration (configuration As RPConfiguration)

Arguments

configuration

The configuration to delete

C/C++ Prototype

HRESULT deleteConfiguration (
IRPConfiguration* configuration)

Return Value

HRESULT (0 for success, or a signed integer error code)
194 API Reference Manual

Rhapsody Interfaces
deleteFile
Write method

Description

The deleteFile method deletes the specified file from the current component.

Visual Basic

Syntax

deleteFile (file As RPFile)

Arguments

file

The file to delete

C/C++ Prototype

HRESULT deleteFile (IRPFile* file)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 195

Rhapsody API Interfaces
findConfiguration
Read method

Description

The findConfiguration method retrieves the specified configuration in the current component.

Visual Basic

Syntax

findConfiguration (name As String) As RPConfiguration

Arguments

name

The name of the configuration to retrieve

Return Value

The Rhapsody configuration

C/C++ Prototype

HRESULT findConfiguration (BSTR name,
IRPConfiguration** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
196 API Reference Manual

Rhapsody Interfaces
getConfigByDependency
Used in cases where there are dependencies between components, this method retrieves the
appropriate configuration to use in the component on which the current component depends. The
argument required is the name of the dependency between the components.

getFile
Read method

Description

The getFile method returns the file in which the specified classifier will be generated.

Visual Basic

Syntax

getFile (c As RPClassifier, spec As Long) As RPFile

Arguments

c

The classifier.

spec (1 or 0)

If this is set to 1, the file is a specification file.

Return Value

The file in which the specified classifier is generated

C/C++ Prototype

HRESULT getFile (IRPClassifier* c, long spec,
IRPFile** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 197

Rhapsody API Interfaces
getFileName
Read method

Description

The getFileName method retrieves the name of the file to which the specified classifier will be
generated in this component.

Visual Basic

Syntax

getFileName (c As RPClassifier, spec As Long,
withExt As Long) As String

Arguments

c

The classifier.

spec (1 or 0)

If this is set to 1, the file is a specification file.

withExt (1 or 0)

If this is set to 1, the file extension is included in the retrieval.

Return Value

The name of the file that contains the generated classifier

C/C++ Prototype

HRESULT getFileName (IRPClassifier* c, long spec,
long withExt, BSTR* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
198 API Reference Manual

Rhapsody Interfaces
getModelElementFileName
Read method

Description

The getModelElementFileName method gets the file name of the specified model element.

Visual Basic

Syntax

getModelElementFileName (c As RPModelElement,
long spec As Long, withExt As Long) As String

Arguments

c

The model element.

spec (1 or 0)

If this is set to 1, this is a specification file.

withExt (1 or 0)

If this is set to 1, the extension is included in the returned file
name.

Return Value

The file name

C/C++ Prototype

HRESULT getModelElementFileName (IRPModelElement *c,
long spec, long withExt, BSTR *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 199

Rhapsody API Interfaces
getPackageFile
Read method

Description

The getPackageFile method returns the package file.

Visual Basic

Syntax

getPackageFile (c as RPPackage, spec As Long spec)
As RPFile

Arguments

c

The model element.

spec (1 or 0)

If this is set to 1, this is a specification file.

Return Value

The file name

C/C++ Prototype

HRESULT getPackageFile (IRPPackage* c, long spec,
IRPFile** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
200 API Reference Manual

Rhapsody Interfaces
removeScopeElement
Write method

Description

The removeScopeElement method deletes the scope element.

Visual Basic

Syntax

removeScopeElement (pVal As RPModelElement)

Arguments

pVal

The element to delete

C/C++ Prototype

HRESULT removeScopeElement (IRPModelElement* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 201

Rhapsody API Interfaces
setPath
Write method

Description

The setPath method sets the path of the application built for this component.

Visual Basic

Syntax

setPath (path As String)

Arguments

path

The path to which this component is built

C/C++ Prototype

HRESULT setPath (BSTR path)

Return Value

HRESULT (0 for success, or a signed integer error code)
202 API Reference Manual

Rhapsody Interfaces
IRPComponentDiagram Interface

The IRPComponentDiagram interface represents a component diagram. It inherits from the
IRPDiagram.

Currently, IRPComponentDiagram does not expose additional functionality to the diagram.

IRPComponentInstance Interface

The IRPComponentInstance interface represents a component instance. It inherits from the
IRPComponent.

VB Properties

Name Type Access Description

componentType RPComponent RW The component type

node RPNode RO The node
Rational Rhapsody 203

Rhapsody API Interfaces
IRPConfiguration Interface

The IRPConfiguration interface represents a code generation configuration within a given
IRPComponent. It inherits from IRPModelElement.

VB Properties

Name Type Access Description

additionalSources String RW The additional source files to
be compiled with this
configuration.

allElementsIn
InstrumentationScope

Long RW A Boolean value that reflects
the All Elements and
Selected Elements options
of the instrumentation scope.
The property defines the
following accessor and
mutator:
propget, HRESULT
allElementsIn-
Instrumentation-Scope
([out, retval] BOOL
*pVal);
propput, HRESULT
allElementsIn-
Instrumentation-Scope
([in] BOOL newVal);

buildSet String RW The build set of this
configuration (debug or
release).

compilerSwitches String RW The compiler switches to be
applied to this configuration
in addition to those already
specified in property
<lang>_CG::<env>::
CPPCompileSwitches.

generateCodeForActors Boolean RW If this is TRUE, code is
generated for actors when
this configuration is
generated.

includePath String RW The path to standard headers
to be linked with the
configuration.

initialInstances RPCollection RO The initial instances.
204 API Reference Manual

Rhapsody Interfaces
initializationCode String RW The string containing the
initialization code to be added
to the main program after any
initialization done by
Rhapsody and before the
main program loop.

instrumentationScope RPCollection RW A container of elements in the
selected instrumentation
scope, if the All Elements
option is selected.
The property defines the
following accessor:
propget, HRESULT
instrumentationScope(
[out], retval]
IRPCollection**
pVal);

instrumentationType String RW The type of instrumentation in
this configuration (None,
Trace, or Animate).

libraries String RW The libraries to be linked with
the component (for example,
"x.lib, y.lib,
z.lib").

linkSwitches String RW The link switches to be
applied to the configuration in
addition to those already
specified in the property
<lang>_CG::<env>::
LinkSwitches.

path(fullPath) String(path)

Boolean(fullPath)

RO The string containing the path
to the component.If
fullPath is true, the full
path is returned:
 <drive>:\
 <model dir>\

 <component dir>\

 <config dir>)

If fullPath is false, the
path relative to the project is
returned:
 <component dir>\

 <config dir>

scopeType String RW The scope type of the
configuration (explicit or
derived).

Name Type Access Description
Rational Rhapsody 205

Rhapsody API Interfaces
Method Summary

standardHeaders String RW The standard header files to
be linked with the
configuration.

statechartImplementation String RW The statechart
implementation of the
configuration (flat or
reusable).

timeModel String RW The time model of the
configuration (real or
simulated).

addInitialInstance Adds an instance to the list of initial instances
for the current configuration

addPackageToInstrumentationScope Adds a classifier to the instrumentation scope

addToInstrumentationScope Adds explicit initial instances to the
instrumentation scope

deleteInitialInstance Deletes an instance from the list of build
instances for the current configuration

getDirectory Retrieves the build directory specified for the
current configuration

getItsComponent Retrieves the component to which the current
configuration belongs

getMainName Retrieves the name of the file where the
main() routine for the current configuration
resides

getMakefileName Retrieves the name of the makefile generated
for the current configuration

getTargetName Retrieves the build name of the file to be
generated for the current configuration

removeFromInstrumentationScope Removes the classifier from the
instrumentation scope

removePackageFromInstrumentationScope Removes the specified package from the
instrumentation scope. including all its
aggregated classes, actors, and nested
packages

setDirectory Sets the directory for the current configuration

setItsComponent Sets the owning component for the current
configuration

Name Type Access Description
206 API Reference Manual

Rhapsody Interfaces
addInitialInstance
Write method

Description

The addInitialInstance method adds an instance to the list of initial instances for the current
configuration.

Visual Basic

Syntax

addInitialInstance (newVal As RPModelElement)

Arguments

newVal

The new instance to add to list of initial instances for this
configuration

C/C++ Prototype

HRESULT addInitialInstance (IRPModelElement* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 207

Rhapsody API Interfaces
addPackageToInstrumentationScope
Write method

Description

The addPackageToInstrumentationScope method adds the specified package to the
instrumentation scope, including all its aggregated classes, actors, and nested packages.

Visual Basic

Syntax

addPackageToInstrumentationScope (pVal As RPPackage)

Arguments

pVal

The package to add to the instrumentation scope

C/C++ Prototype

HRESULT addPackageToInstrumentationScope (
IRPPackage* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
208 API Reference Manual

Rhapsody Interfaces
addToInstrumentationScope
Write method

Description

The addToInstrumentationScope method adds explicit initial instances to the instrumentation
scope.

Beginning with Version 5.0, Rhapsody 6.1 does not include explicit initial instances as part of
the scope. In other words, in explicit mode, code is not generated for a class just because it is
in the list of initial instances for the configuration.

For existing models, Rhapsody 6.1 sets the
CG::Configuration::AddExplicitInitialInstancesToScope property to True at
the project level to maintain the old behavior.

This change enables you to use the list of initial instances to create instances that their classes
defined in related components (libraries).

Visual Basic

Syntax

addToInstrumentationScope (pVal As RPClassifier)

Arguments

pVal

The initial instance to add to the instrumentation scope

C/C++ Prototype

HRESULT addToInstrumentationScope (
IRPClassifier* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 209

Rhapsody API Interfaces
deleteInitialInstance
Write method

Description

The deleteInitialInstance method deletes an instance from the list of build instances for the
current configuration.

Visual Basic

Syntax

deleteInitialInstance (newVal As RPModelElement)

Arguments

NewVal

The initial instance to delete from list of initial instances for this
configuration

C/C++ Prototype

HRESULT deleteInitialInstance (IRPModelElement* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
210 API Reference Manual

Rhapsody Interfaces
getDirectory
Read method

Description

The getDirectory method retrieves the build directory specified for the current configuration.

Visual Basic

Syntax

getDirectory (fullPath As Long, newName As String)
As String

Arguments

fullPath

If this is 1, the returned directory contains the full path.

newName

Reserved for future use.

Return Value

The build directory for the current configuration

C/C++ Prototype

HRESULT getDirectory (long fullPath, BSTR newName,
BSTR* retVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 211

Rhapsody API Interfaces
getItsComponent
Read method

Description

The getItsComponent method retrieves the component to which the current configuration
belongs.

Visual Basic

Syntax

getItsComponent() As RPComponent

Return Value

The component to which this configuration belongs

C/C++ Prototype

HRESULT getItsComponent (IRPComponent** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
212 API Reference Manual

Rhapsody Interfaces
getMainName
Read method

Description

The getMainName method retrieves the name of the file where the main() routine for the
current configuration resides.

Visual Basic

Syntax

getMainName() As String

Return Value

The location of the file that contains the main()

C/C++ Prototype

HRESULT getMainName (BSTR* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 213

Rhapsody API Interfaces
getMakefileName
Read method

Description

The getMakefileName method retrieves the name of the makefile generated for the current
configuration.

Visual Basic

Syntax

getMakefileName (fullPath As Long) As String

Arguments

fullPath

Set this to one of the following values:

1--Return the full path.
0--Return the path relative to the project directory.

Return Value

The name of the makefile

C/C++ Prototype

HRESULT getMakefileName (long fullPath, BSTR* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
214 API Reference Manual

Rhapsody Interfaces
getTargetName
Read method

Description

The getTargetName method retrieves the build name of the file to be generated for the current
configuration.

Visual Basic

Syntax

getTargetName (fullPath As Long) As String

Arguments

fullPath

Set this to one of the following values:

1--Return the full path.

0--Return the path relative to the project directory.

Return Value

The name of the build file (for example, BuildName.exe or BuildName.lib)

C/C++ Prototype

HRESULT getTargetName (long fullPath, BSTR* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 215

Rhapsody API Interfaces
removeFromInstrumentationScope
Write method

Description

The removeFromInstrumentationScope method removes the classifier from the instrumentation
scope.

Visual Basic

Syntax

removeFromInstrumentationScope (pVal As RPClassifier)

Arguments

pVal

The classifier to remove from the instrumentation scope

C/C++ Prototype

HRESULT removeFromInstrumentationScope (
IRPClassifier *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
216 API Reference Manual

Rhapsody Interfaces
removePackageFromInstrumentationScope
Write method

Description

The removePackageFromInstrumentationScope method removes the specified package from
the instrumentation scope. including all its aggregated classes, actors, and nested packages.

Visual Basic

Syntax

removePackageFromInstrumentationScope (pVal As RPPackage)

Arguments

pVal

The package to remove from the instrumentation scope

C/C++ Prototype

HRESULT removePackageFromInstrumentationScope (
IRPPackage* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 217

Rhapsody API Interfaces
setDirectory

Note
Currently, this method has not been implemented.

Write method

Description

The setDirectory method sets the directory for the current configuration.

Visual Basic

Syntax

setDirectory (fullpath As Long, newName As String)

Arguments

fullpath (1 or 0)

Set this to 1 to include the full directory path.

newName

The new name for the directory.

C/C++ Prototype

HRESULT setDirectory (long fullpath, BSTR newName)

Return Value

HRESULT (0 for success, or a signed integer error code)
218 API Reference Manual

Rhapsody Interfaces
setItsComponent
Write method

Description

The setItsComponent method sets the owning component for the current configuration.

Visual Basic

Syntax

setItsComponent (newVal As RPComponent)

Arguments

newVal

The new owner component for this configuration

C/C++ Prototype

HRESULT setItsComponent (IRPComponent* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 219

Rhapsody API Interfaces
IRPConnector Interface

The IRPConnector interface represents a connector in a statechart diagram. It inherits from
IRPStateVertex.

VB Properties

Method Summary

Name Type Access Description

connectorType String RW The connector type
(Termination, History,
Condition, Fork, Join, or
Unknown)

getDerivedInEdges Retrieves the incoming transitions for the connector

getDerivedOutEdge Retrieves the outgoing transition for the connector

getOfState Returns the state connected to the current
connector if it is a history connector

isConditionConnector Determines whether the current connector is a
condition connector

isDiagramConnector Determines whether the current connector is a
diagram connector

isForkConnector Determines whether the current connector is a fork
synch bar connector

isHistoryConnector Determines whether the current connector is a
history connector

isJoinConnector Determines whether the current connector is a join
synch bar connector

isJunctionConnector Determines whether the current connector is a
junction connector

isStubConnector Determines whether the current connector is a stub
connector

isTerminationConnector Determines whether the current connector is a
termination connector

setOfState Updates the source state of the current connector
with a new state
220 API Reference Manual

Rhapsody Interfaces
getDerivedInEdges
Read method

Description

The getDerivedInEdges method retrieves the incoming transitions for the connector.

Visual Basic

Syntax

getDerivedInEdges() As RPCollection

Return Value

The incoming transitions

C/C++ Prototype

HRESULT getDerivedInEdges (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 221

Rhapsody API Interfaces
getDerivedOutEdge
Read method

Description

The getDerivedOutEdge method retrieves the outgoing transition for the connector.

Visual Basic

Syntax

getDerivedOutEdge() As Transition

Return Value

The outgoing transition

C/C++ Prototype

HRESULT getDerivedOutEdge (IRPTransition** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
222 API Reference Manual

Rhapsody Interfaces
getOfState
Read method

Description

The getOfState method returns the state connected to the current connector if it is a history
connector. This is the state for which the history connector maintains historical state
information.

Visual Basic

Syntax

getOfState() As RPState

Return Value

The state for which the history connector maintains state information

C/C++ Prototype

HRESULT getOfState (IRPState** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 223

Rhapsody API Interfaces
isConditionConnector
Read method

Description

The isConditionConnector method determines whether the current connector is a condition
connector.

Visual Basic

Syntax

isConditionConnector() As Long

Return Value

1 if the connector is a condition connector; 0 otherwise

C/C++ Prototype

HRESULT isConditionConnector (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
224 API Reference Manual

Rhapsody Interfaces
isDiagramConnector
Read method

Description

The isDiagramConnector method determines whether the current connector is a diagram
connector.

Visual Basic

Syntax

isDiagramConnector() As Long

Return Value

1 if the connector is a diagram connector; 0 otherwise

C/C++ Prototype

HRESULT isDiagramConnector (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 225

Rhapsody API Interfaces
isForkConnector
Read method

Description

The isForkConnector method determines whether the current connector is a fork synch bar
connector.

Visual Basic

Syntax

isForkConnector() As Long

Return Value

1 if the connector is a fork synch bar connector; 0 otherwise

C/C++ Prototype

HRESULT isForkConnector (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
226 API Reference Manual

Rhapsody Interfaces
isHistoryConnector
Read method

Description

The isHistoryConnector method determines whether the current connector is a history
connector.

Visual Basic

Syntax

isHistoryConnector() As Long

Return Value

1 if the connector is a history connector; 0 otherwise

C/C++ Prototype

HRESULT isHistoryConnector (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 227

Rhapsody API Interfaces
isJoinConnector
Read method

Description

The isJoinConnector method determines whether the current connector is a join synch bar
connector.

Visual Basic

Syntax

isJoinConnector() As Long

Return Value

1 if the connector is a join synch bar connector; 0 otherwise

C/C++ Prototype

HRESULT isJoinConnector (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
228 API Reference Manual

Rhapsody Interfaces
isJunctionConnector
Read method

Description

The isJunctionConnector method determines whether the current connector is a junction
connector.

Visual Basic

Syntax

isJunctionConnector() As Long

Return Value

1 if the connector is a junction connector; 0 otherwise

C/C++ Prototype

HRESULT isJunctionConnector (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 229

Rhapsody API Interfaces
isStubConnector
Read method

Description

The isStubConnector method determines whether the current connector is a stub connector.

Visual Basic

Syntax

isStubConnector() As Long

Return Value

1 if the connector is a stub connector; 0 otherwise

C/C++ Prototype

HRESULT isStubConnector (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isTerminationConnector
Read method

Description

The isTerminationConnector method determines whether the current connector is a termination
connector.

Visual Basic

Syntax

isTerminationConnector() As Long

Return Value

1 if the connector is a termination connector; 0 otherwise

C/C++ Prototype

HRESULT isTerminationConnector (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
230 API Reference Manual

Rhapsody Interfaces
setOfState
Write method

Description

The setOfState method updates the source state of the current connector with a new state.

Visual Basic

Syntax

setOfState (OfState As RPState)

Arguments

OfState

The new source state for the connector

C/C++ Prototype

HRESULT setOfState (IRPState* OfState)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 231

Rhapsody API Interfaces
IRPConstraint Interface

The IRPConstraint interface represents a constraint in a Rhapsody model. It inherits from
IRPAnnotation.

VB Properties

IRPControlledFile

Represents controlled files.

fullPathFileName
Property that represents the full path of the file.

open
Method that can be used to open the controlled file.

Name Type Access Description

body String RW The body of the constraint.

constraintsByMe Collection of
RPModelElements

RO The model elements
affected by this constraint.

For example, if a
constraint says that each
Airplane must have at
least two Pilots, this
collection will contain both
the Airplane and Pilot
classes.
232 API Reference Manual

Rhapsody Interfaces
IRPDependency Interface

The IRPDependency interface represents the dependencies between model elements, for
example, in terms of either an include or a friend relationship between classes. It inherits from
IRPModelElement.

VB Properties

IRPDeploymentDiagram Interface

The IRPDeploymentDiagram interface represents deployment diagrams. It inherits from
IRPDiagram.

IRPDiagram Interface

The IRPDiagram interface is an abstract interface that provides the common functionality of
Rhapsody diagrams. Currently, the functionality provided by IRPDiagram (in addition to
IRPModelElement) is to render the view as a metafile. This class inherits from IRPUnit,
because diagrams are also units.

Method Summary

Name Type Access Description

dependent RPModelElement RW The source element in the
dependency relation

dependsOn RPModelElement RW The target element in the
dependency relation

getElementsInDiagram Returns a collection of all the model
elements in the current diagram

getPicture Renders this diagram into the specified
extended metafile

getPictureAs Saves a Rhapsody diagram in a specific
graphic format.

getPictureAsDividedMetafiles Enables you to split a large diagram into
several metafiles when you export it
Rational Rhapsody 233

Rhapsody API Interfaces
getElementsInDiagram
Read method

Description

The getElementsInDiagram method returns a collection of all the model elements in the current
diagram.

Visual Basic

Syntax

getElementsInDiagram() As RPCollection

Return Value

A collection of all the model elements in the diagram

C/C++ Prototype

HRESULT getElementsInDiagram (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

getPicture
Read method

Description

The getPicture method renders this diagram into the specified extended metafile.

Note: If the file cannot be written, this method flags the error.

Visual Basic

Syntax

getPicture (filename As String)

Arguments

filename

The name of the metafile that will contain the current diagram.The format of the created metafile
is .emf. The created metafile is used later by the VB function LoadPicture, which creates a VB
function object that can be used for placing pictures in documents.
234 API Reference Manual

Rhapsody Interfaces
C/C++ Prototype

HRESULT getPicture (BSTR filename)

Return Value

HRESULT (0 for success, or a signed integer error code)

getPictureAs
This method can be used to save a Rhapsody diagram in a specific graphic format. The method can
also be used to retrieve diagram element information that can be used to create an HTML image
map.

The method returns a list of the graphic files created.

getPictureAs(firstFileName As String, imageFormat As String, getImageMaps As
Long, diagrammap As RPCollection, fileNames As RPCollection) As RPCollection

firstFileName

The naming convention to use for the files that will be created. For a detailed explanation, see
getPictureAsDividedMetafiles.

imageFormat

The graphic format in which the diagram should be saved. This can be one of the following: EMF,
BMP, JPEG, JPG, TIFF.

getImageMaps

Use this argument to indicate whether the function should also return a collection of objects that
can be used to construct an HTML image map for the diagram. (Use 1 if you want this
information, else use 0.)

diagrammap

The collection to use when returning objects containing the required information for constructing
an HTML image map.

fileNames

The collection to use for the names of the graphic files created.
Rational Rhapsody 235

Rhapsody API Interfaces
getPictureAsDividedMetafiles
Read method

Description

The getPictureAsDividedMetafiles method enables you to split a large diagram into several
metafiles when you export it.

This method is influenced by the property
General::Graphics::ExportedDiagramScale. See the definition provided for the
property on the applicable Properties tab of the Features dialog box.

Note: If the file cannot be written, this method flags the error.

Visual Basic

Syntax

getPictureAsDividedMetafiles (firstFileName As String)
As RPCollection

Arguments

firstFileName

The naming convention for the created files. For example, if you passed
the value “Foo” as the firstFileName:

If the diagram can be drawn on one page, the name of the metafile is
Foo.

If the diagram is split into multiple pages, the first file will be
named FooZ_X_Y. The variables used in the name are as follows:

 Z—The number of the created file
 X—The number of the page along the X vector
 Y—The number of the page along the Y vector
 For example, the file Foo2_1_2 means that this is the second metafile created and

it contains one page, which is the second page along the Y vector (the X vector is
1).

All the file names will be inserted in the sent strings list
(fileNames).

Return Value

A collection that contains the names of the files that were created
236 API Reference Manual

Rhapsody Interfaces
C/C++ Prototype

HRESULT getPictureAsDividedMetafiles (
[in] BSTR firstFileName,
[out, retval] IRPCollection** fileNames)

Return Value

HRESULT (0 for success, or a signed integer error code)

VBA Sample

Private Sub CommandButton1_Click()
Dim proj As RPProject
Dim d As RPDiagram
Dim col As RPCollection
On Error GoTo aa
Set proj = getProject
Set d = proj.findNestedElementRecursive(

"Dishwasher Cycle", "SequenceDiagram")
Set col = d.getPictureAsDividedMetafiles(

"D:\Temp\Diagram.emf")
Exit Sub
aa:
MsgBox errorMessage
End Sub
Rational Rhapsody 237

Rhapsody API Interfaces
IRPEnumerationLiteral Interface

The IRPEnumerationLiteral interface supports the language-independent types
introduced in Rhapsody 5.0. It inherits from IRPModelElement.

VB Properties

Name Type Access Description

value RPEvent RW An optional value for the
literal
238 API Reference Manual

Rhapsody Interfaces
IRPEvent Interface

The IRPEvent interface represents an event. It derives from IRPInterfaceItem.

VB Properties

Name Type Access Description

baseEvent RPEvent RW The pointer to the base
event (if this event is
inherited from it).

superEvent RPEvent RW The pointer to the super
event (if this event is
inherited from it)
As a read method,
superEvent()
provides the base event
that an event was derived
from. Thus, if event B is
inherited from event A,
B.superEvent()
returns a pointer to A.As a
write method,
superEvent() inherits
or reinherits an event from
a new base (super) event.
Thus, if you want event B
to be inherited from A, set
B.superEvent() = A.
Rational Rhapsody 239

Rhapsody API Interfaces
IRPEventReception Interface

The IRPEventReception interface represents a relationship between a class and an event
that is part of its interface. It derives from IRPInterfaceItem.

Method Summary

getEvent
Read method

Description

The getEvent method returns the event for the current event reception that serves as part of the
interface for a class.

Visual Basic

Syntax

getEvent() As RPEvent

Return Value

The RPEvent related to a class through the event reception interface

C/C++ Prototype

HRESULT getEvent (IRPEvent** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

getEvent Returns the event for the current event reception that
serves as part of the interface for a class
240 API Reference Manual

Rhapsody Interfaces
IRPExecutionOccurrence Interface

The IRPExecutionOccurrence interface represents an execution occurrence in a sequence
diagram. It derives from IRPModelElement.

VB Properties

IRPExternalCodeGenerator Interface

The IRPExternalCodeGenerator interface is a dispatch interface that defines events that
must be handled by the external code generator.

The interface inherits from IDispatch.

Using an External Code Generator
Beginning with Version 4.1, you can integrate an external code generator with Rhapsody 6.1.
The code generator application is loaded when Rhapsody 6.1 is loaded. This code generator
should be a full-featured code generator that can generate all the model code. When you
specify an external code generator, Rhapsody 6.1 does not generate any code. Rhapsody 6.1 in
Ada uses an external code generator.

You can set the environment variable ExternalGenerator in the [codegen] section of the
rhapsody.ini file to the path of the external code generator executable. This executable will
be loaded when Rhapsody 6.1 is loaded and terminates when Rhapsody 6.1 exits. If you do not
set this environment variable, you must manually load your code generator after Rhapsody 6.1
is loaded. Note the following:

 This variable setting applies only to full-featured external code generators.
 If you do not load your external code generator, it cannot display messages in the

Rhapsody 6.1 output window.
In addition, you can integrate makefiles generated by a makefile generator other than the
Rhapsody 6.1 generator; all other code generation is done by Rhapsody 6.1.

Name Type Access Description

message RPMessage RO The start message for the
execution occurrence
Rational Rhapsody 241

Rhapsody API Interfaces
Restrictions
Note the following restrictions:

 Because the active code view uses the annotations generated by Rhapsody 6.1 to find the
location of a model element in a source file, searching a file generated by an external code
generator (unannotated) might not be accurate. There are other annotation issues
concerning roundtrip and error highlighting. Therefore, the external code generator must
generate annotations to make all of these features work properly.

 If you specify an external code generator, you cannot use the CG In Browser feature to
generate code.

 You can integrate a single external code generator with one instance of a Rhapsody 6.1
application, running on the same machine.

 You can integrate an external code generator with Rhapsody 6.1 on a Solaris platform only
if the client supports the COM framework.

 This functionality is supported only by Rhapsody 6.1 Developer Edition as a separate,
add-on feature.

Event Handling
When you trigger code generator operations, Rhapsody 6.1 fires events that are handled by the
registered, external code generator. The following table lists the different events and when
they are fired.

Event When Fired

generate When you invoke any kind of generation command (forced or
incremental), for selected classifiers, files, or for the entire
configuration. The invocation can be explicit or by DMCA.
When called, the external code generator generates the elements
according to the settings for the active configuration.
This method is called with all model elements that need to be
generated.

Abort Is invoked when the user selects the Abort option during code
generation. When the external code generator receives this event, it
stops the code generation process and notifies Rhapsody 6.1 that it is
done.

getFileName Is invoked when Rhapsody 6.1 needs the file name and path of a
model element.
If the event is not handled, Rhapsody 6.1 displays an error message
stating that it could not get the file name from the external code
generator.
Note that if the external code generator uses the same file mapping
scheme as Rhapsody 6.1, you do not need to implement this event.
242 API Reference Manual

Rhapsody Interfaces
Implementing the External Code Generator
To implement an external code generator, follow these steps:

1. Implement the event handlers for the IRPExternalCodeGenerator events:

 Invoke the code generation process on another thread to return from the call to
generate as soon as possible.

 Notify the IRPExternalCodeGeneratorInvoker when the generation session
has ended.

2. Instantiate your event handler class when the external code generator is loaded.

3. Get the IRPApplication object.

4. Get the IRPExternalCodeGeneratorInvoker singleton from the IRPApplication
interface. See the method getTheExternalCodeGeneratorInvoker for more information.

5. Register the implemented IRPExternalCodeGenerator as the external code generator
on the IRPExternalCodeGeneratorInvoker interface.

6. Print code generation messages using standard output. For example:

cout<<"Generating"<<class_name<<endl;

7. Terminate the external code generator process when Exit is called.

GetMainFileName Is invoked when Rhapsody 6.1 needs the main file name and path for
a configuration.
If the event is not handled, Rhapsody 6.1 displays an error message
stating that it could not get the file name from the external code
generator.

GetTargetfileName Is invoked when Rhapsody 6.1 needs the target name and path for a
configuration.
If the event is not handled, Rhapsody 6.1 displays an error message
stating that it could not get the makefile name from the external code
generator.
Note that if the external code generator uses the same file mapping
scheme as Rhapsody 6.1, you do not need to implement this event.

WhoAmI Is invoked to identify the external code generator.

Exit Is invoked before Rhapsody 6.1 exits. When the external code
generator receives this event, it performs the necessary cleanup and
terminates its process.

Event When Fired
Rational Rhapsody 243

Rhapsody API Interfaces
Rhapsody Settings
You must set the following environment variables and properties:

 Set the ExternalGenerator environment variable in the rhapsody.ini file to
the path to the implemented code generator executable. See “Using an External
Code Generator”for more information.

 Set the <lang>_CG::<Environment>::CodeGeneratorTool property for
the configuration that should be generated with the external code generator.

 Set the <lang>_CG::Configuration::ExternalGenerationTimeout
property with a reasonable time for an average class generation session.

See the definition provided for the property on the applicable Properties tab of the Features
dialog box.
244 API Reference Manual

Rhapsody Interfaces
Sample
///
// MyCodeGenerator.h: interface for the CMyCodeGenerator
// class.
///

...

class CMyCodeGenerator:
public
IDispEventImpl<1,CMyCodeGenerator,

&DIID_IRPExternalCodeGenerator, &LIBID_rhapsody,1,0>
{

public:
CMyCodeGenerator();
virtual ~CMyCodeGenerator();
void Register();

//event handlers

HRESULT __stdcall Generate(
IDispatch* configuration,
IDispatch* classifiers,IDispatch* files,
BOOL genMain,BOOL genMake);

BSTR __stdcall WhoAmI();
BSTR __stdcall GetFileName(IDispatch* modelElement,

IDispatch* configuration, int pathType,
BOOL withExt);

BSTR __stdcall GetTargetfileName(IDispatch*
configuration, int pathType,BOOL withExt);

BSTR __stdcall GetMainFileName(
IDispatch* configuration, int pathType,
BOOL withExt);

BSTR __stdcall GetMakefileName(
IDispatch* configuration, int pathType,
BOOL withExt);

VOID __stdcall OnExit();
VOID __stdcall Abort();
BEGIN_SINK_MAP(CMyCodeGenerator)
SINK_ENTRY_EX(/*nID =*/ 1,

DIID_IRPExternalCodeGenerator,
/*dispid =*/ 0x1, Generate)

SINK_ENTRY_EX(/*nID =*/ 1,
DIID_IRPExternalCodeGenerator,
/*dispid =*/ 0x2, OnExit)

SINK_ENTRY_EX(/*nID =*/ 1,
DIID_IRPExternalCodeGenerator,
/*dispid =*/ 0x3, GetFileName)

SINK_ENTRY_EX(/*nID =*/ 1,
DIID_IRPExternalCodeGenerator,
/*dispid =*/ 0x4, GetTargetfileName)

SINK_ENTRY_EX(/*nID =*/ 1,
DIID_IRPExternalCodeGenerator,
/*dispid =*/ 0x5, GetMainFileName)

SINK_ENTRY_EX(/*nID =*/ 1,
DIID_IRPExternalCodeGenerator,
/*dispid =*/ 0x6, GetMakefileName)

SINK_ENTRY_EX(/*nID =*/ 1,
DIID_IRPExternalCodeGenerator,
/*dispid =*/ 0x7, WhoAmI)
Rational Rhapsody 245

Rhapsody API Interfaces
SINK_ENTRY_EX(/*nID =*/ 1,
DIID_IRPExternalCodeGenerator,
/*dispid =*/ 0x8, Abort)

END_SINK_MAP()
...

Method Summary

Abort Is invoked when the user selects the Abort option
during code generation

Exit Is invoked before Rhapsody 6.1 exits

generate Is invoked whenever a generation command of any
kind is invoked

getFileName Is invoked when Rhapsody 6.1 needs the file name
and path of a model element

GetMainFileName Is invoked when Rhapsody 6.1 needs the main file
name and path for a configuration

getMakefileName Is invoked when Rhapsody 6.1 needs the makefile
name and path for a configuration

GetTargetfileName Is invoked when Rhapsody 6.1 needs the target name
and path for a configuration

WhoAmI Is invoked to identify the external code generator
246 API Reference Manual

Rhapsody Interfaces
Abort

Description

The Abort event is invoked when the user selects the Abort option during code generation.
When the external code generator receives this event, it stops the code generation process and
notifies Rhapsody 6.1 that it is done.

Visual Basic

Syntax

Event Abort()

C/C++ Prototype

void Abort()

Exit

Description

The Exit event is invoked before Rhapsody 6.1 exits. When the external code generator
receives this event, it performs the necessary cleanup and terminates its process.

Visual Basic

Syntax

Event Exit()

C/C++ Prototype

void Exit()
Rational Rhapsody 247

Rhapsody API Interfaces
generate

Description

The generate event is invoked whenever a generation command of any kind is invoked
(including forced or incremental generation for selected classifiers; or files for the entire
configuration either explicitly by the user or by DMCA).

When called, the external code generator generates the elements according to the settings for
the active configuration.

Visual Basic

Syntax

Event generate (activeConfiguration As Object,
classifiersCollection As Object,
filesCollection As Object, generateMainFile As Long,
generateMakefile As Long)

Arguments

activeConfiguration

A pointer to the active configuration for this generation session. If
this value is not NULL, configuration files (main and make) are
generated.

The external code generator queries the activeConfiguration for its
RPConfiguration interface.

classifiersCollection

The container of classes and package interfaces to be generated. The
container can be NULL if no classifiers need to be generated. Packages
in this container are generated without their aggregates (the
package’s classes).

The external code generator queries the classifiersCollection for
its RPCollection interface.

filesCollection

The container of file and folder interfaces (RPFiles) to be generated.
The container can be NULL if no files need to be generated.

Model elements that are mapped to a file or folder in the
filesCollection container will be added to the
classifiersCollection. Therefore, the external generator does not
query the file for its mapped classifiers. However, the code generator
does check the files for text elements.

The external code generator queries the filesCollection for its
RPCollection interface.

generateMainFile (1 or 0)

Set this to 1 to generate the main configuration files.

generateMakefile (1 or 0)
248 API Reference Manual

Rhapsody Interfaces
Set this to 1 to generate the makefile for the configuration.

C/C++ Prototype

HRESULT generate (IDispatch* activeConfiguration,
IDispatch* classifiersCollection,
IDispatch* filesCollection, long generateMainFile,
long generateMakefile)

Return Value

S_0K for success, or an error code. If an error occurs, code generation is aborted.
Rational Rhapsody 249

Rhapsody API Interfaces
getFileName

Description

The getFileName method is invoked when Rhapsody 6.1 needs the file name and path of a
model element.

If the event is not handled, Rhapsody 6.1 displays an error message stating that it could not get
the file name from the external code generator.

Note: If the external code generator uses the same file mapping scheme as Rhapsody
6.1, you do not need to implement this event.

Visual Basic

Syntax

Event getFileName (modelElement As Object,
configuration As Object, pathType As Long,
withExtensions As Long)

Arguments

modelElement

The model element whose name you want to retrieve. The model element can be a
class, actor, package, event, or file.

The external code generator queries the modelElement for its RPModelElement
interface.

configuration

The configuration for which the file name is requested.

The external code generator queries the configuration for its RPConfiguration
interface.

pathType

The requested path format. The possible values are as follows:

1. Include the full path. For example: C:\Project\Component\Config\Class1.h

2. Include only the name of the file. For example: Class1.h

3. Include the path relative from the project directory. For example:
Component\Config\Class1.h

4. Include the path relative from the active configuration to the requested file.
250 API Reference Manual

Rhapsody Interfaces
For example, if the file is located under
C:\Project\Component\Subfolder\Class1.h, the external code generator
includes the following path: Subfolder\Class1.h.

withExtensions

Specifies whether to include the extension in the returned file name. For example,
Class1.h instead of Class1.

Return Value

The file names of the model elements, separated by commas. If there is more than one file in
the list, Rhapsody 6.1 assumes that the first file is the specification file and the others are
implementation files.

C/C++ Prototype

BSTR getFileName (IDispatch* modelElement,
IDispatch* configuration, int pathType,
long withExtensions)
Rational Rhapsody 251

Rhapsody API Interfaces
GetMainFileName

Description

The GetMainFileName method is invoked when Rhapsody 6.1 needs the main file name and
path for a configuration.

If the event is not handled, Rhapsody 6.1 displays an error message stating that it could not get
the file name from the external code generator.

Visual Basic

Syntax

Event GetMainFileName (configuration As Object,
pathType As Long, withExtensions As Long)

Arguments

configuration

The configuration for which the main file name is requested.

The external code generator queries the configuration for its RPConfiguration
interface.

pathType

The requested path format. The possible values are as follows:

1—Include the full path. For example: C:\Project\Component\Config\Class1.h

2—Include only the name of the file. For example: Class1.h

3—Include the path relative from the project directory. For example:
Component\Config\Class1.h

4—Include the path relative from the active configuration to the requested file.

For example, if the file is located under
C:\Project\Component\Subfolder\Class1.h, the external code generator will
include the following path: Subfolder\Class1.h.

withExtensions

Specifies whether to include the extension in the returned file name. For example,
mainfile.cpp instead of mainfile.
252 API Reference Manual

Rhapsody Interfaces
Return Value

The main file names of the model elements, separated by commas. If there is more than one
file in the list, Rhapsody 6.1 assumes that the first file is the specification file and the second is
the implementation file.

C/C++ Prototype

BSTR GetMainFileName (IDispatch* configuration,
int pathType, long withExtensions)
Rational Rhapsody 253

Rhapsody API Interfaces
getMakefileName

Description

The getMakefileName method is invoked when Rhapsody 6.1 needs the makefile name and
path for a configuration.

If the event is not handled, Rhapsody 6.1 displays an error message stating that it could not get
the makefile name from the external code generator.

Visual Basic

Syntax

Event getMakefileName (configuration As Object,
pathType As Long, withExtensions As Long)

Arguments

configuration

The configuration for which the file name is requested.

The external code generator queries the configuration for its RPConfiguration
interface.

pathType

The requested path format. The possible values are as follows:

1—Include the full path. For example: C:\Project\Component\Config\Class1.h

2—Include only the name of the file. For example: Class1.h

3—Include the path relative from the project directory. For example:
Component\Config\Class1.h

4—Include the path relative from the active configuration to the requested file.

For example, if the file is located under
C:\Project\Component\Subfolder\Class1.h, the external code generator will
include the following path: Subfolder\Class1.h.

withExtensions

Specifies whether to include the extension in the returned file name. For example,
makefile.mak instead of makefile.

Return Value

The name of the makefile
254 API Reference Manual

Rhapsody Interfaces
C/C++ Prototype

BSTR getMakefileName (IDispatch* configuration,
int pathType, long withExtensions)

GetTargetfileName

Description

The GetTargetfileName method is invoked when Rhapsody 6.1 needs the target name and path
for a configuration.

If the event is not handled, Rhapsody 6.1 displays an error message stating that it could not get
the makefile name from the external code generator.

Note: If the external code generator uses the same file mapping scheme as Rhapsody
6.1, you do not need to implement this event.

Visual Basic

Syntax

Event GetTargetfileName (configuration As Object,
pathType As Long, withExtensions As Long)

Arguments

configuration

The configuration for which the file name is requested.

The external code generator queries the configuration for its
RPConfiguration interface.

pathType

The requested path format. The possible values are as follows:

1—Include the full path. For example: C:\Project\Component\Config\Class1.h

2—Include only the name of the file. For example: Class1.h

3—Include the path relative from the project directory. For example:
Component\Config\Class1.h

4—Include the path relative from the active configuration to the requested file.

For example, if the file is located under
C:\Project\Component\Subfolder\Class1.h, the external code generator will
include the following path: Subfolder\Class1.h.
Rational Rhapsody 255

Rhapsody API Interfaces
withExtensions

Specifies whether to include the extension in the returned file name. For example,
target.exe instead of target.

Return Value

The name of the target file

C/C++ Prototype

BSTR GetTargetfileName (IDispatch* configuration,
int pathType, long withExtensions)

WhoAmI

Description

The WhoAmI event is invoked to identify the external code generator.

Visual Basic

Syntax

Event WhoAmI()

C/C++ Prototype

BSTR WhoAmI()

Return Value

A string that identifies the name and version number of the external code generator. It is
printed to the output window before the generate event is invoked.
256 API Reference Manual

Rhapsody Interfaces
IRPExternalCodeGeneratorInvoker Interface

The IRPExternalCodeGeneratorInvoker is the interface that invokes the external code
generator. The invoker is the object that fires all the events defined by the
IRPExternalCodeGenerator interface. The external code generator registers the invoker
instance to get events, and notifies the IRPExternalCodeGeneratorInvoker when a code
generation session is over.

This interface inherits from IDispatch.

Method Summary

notifyGenerationDone Is called by the external code generator after a
generation session invoked by the generate event is
done
Rational Rhapsody 257

Rhapsody API Interfaces
notifyGenerationDone

Description

The notifyGenerationDone method is called by the external code generator after a generation
session invoked by the generate event is done. You cannot invoke a new code generation
session or make any changes to the model between the call to the generate and
notifyGenerationDone events. However, you can set the timeout period using the property
<lang>_CG::Configuration::ExternalGenerationTimeout. See the definition
provided for the property on the applicable Properties tab of the Features dialog box.

Note: The external code generator must call this method after a code generation
session (invoked by the generate event) was done or aborted (by the Abort
event).

Visual Basic

Syntax

notifyGenerationDone()

C/C++ Prototype

HRESULT notifyGenerationDone()

Return Value

HRESULT (0 for success, or a signed integer error code)
258 API Reference Manual

Rhapsody Interfaces
IRPFile Interface

The IRPFile interface represents a file or folder to be generated during code generation. It
inherits from IRPModelElement.

VB Properties

Name Type Access Description

elements Collection of
RPClassifiers

RO The elements to be
mapped to the file or
folder.

files Collection of RPFiles RO If fileType is “folder,”
files is the collection of
all files contained in that
folder.

fileType String RW The file type (“folder,”
“implementation,”
“specification,” “logical,” or
“other”).

path(fullPath) String(path)

Boolean(
fullPath)

RO The string containing the
path to the component.If
fullPath is true, the full
path is returned:
 <drive>:\
 <model dir>\
 <component dir>\
 <config dir>)
If fullPath is false, the
path relative to the project
is returned:
 <component dir>\
 <config dir>
Rational Rhapsody 259

Rhapsody API Interfaces
Method Summary

addElement Adds an element to the current file

addPackageToScope Adds the specified package to the scope of the file or
folder

addTextElement Adds text to the file

addToScope Places an element within the scope of the current file or
folder

getImpName Retrieves the name of the current file’s implementation
file, including its extension and, if specified, its relative
path

getSpecName Retrieves the name of the current file’s specification
file, including its extension and, if specified, its relative
path

isEmpty Determines whether the current file is empty

setPath Sets the path to the specified file
260 API Reference Manual

Rhapsody Interfaces
addElement
Write method

Description

The addElement method adds an element to the current file or folder.

Visual Basic

Syntax

addElement (element As RPClassifier,
fileFragmentType As String)

Arguments

element

An RPClassifier that specifies the new element to be mapped to the
current file. The possible values are as follows:

Actors

Classes

Data

Use cases

fileFragmentType

One of the following strings:

undefFragment—The element is not defined.

textFragment—The element is text.

implFragment—The implementation of the element is added to the file.

specFragment—The specification of the element is added to the file.

moduleFragment—Both implementation and specification of the element
are added to the file.

C/C++ Prototype

HRESULT addElement (IRPClassifier *element,
BSTR fileFragmentType)

Return Value

 HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 261

Rhapsody API Interfaces
addPackageToScope
Write method

Description

The addPackageToScope method adds the specified package to the scope of the file or folder.

Visual Basic

Syntax

addPackageToScope (p As RPPackage)

Arguments

p

The package to add

C/C++ Prototype

HRESULT addPackageToScope (IRPPackage *p)

Return Value

HRESULT (0 for success, or a signed integer error code)
262 API Reference Manual

Rhapsody Interfaces
addTextElement
Write method

Description

The addTextElement method adds text to the file.

Visual Basic

Syntax

addTextElement (text As String)

Arguments

text

The text to add to the file

C/C++ Prototype

HRESULT addTextElement (BSTR text)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 263

Rhapsody API Interfaces
addToScope
Write method

Description

The addToScope method places an element within the scope of the current file or folder. If the
file represents a file, both the implementation and specification of the element are added to the
file. If the file represents a folder, the element is added to the folder scope.

Visual Basic

Syntax

addToScope (element As RPClassifier)

Arguments

element

The element to place in the scope of the file

C/C++ Prototype

HRESULT addToScope (IRPClassifier *element)

Return Value

HRESULT (0 for success, or a signed integer error code)
264 API Reference Manual

Rhapsody Interfaces
getImpName
Read method

Description

The getImpName method retrieves the name of the current file’s implementation file, including
its extension and, if specified, its relative path.

Visual Basic

Syntax

GetImpName (includingPath As Long) As String

Arguments

includingPath (1 or 0)

Set this to 1 to include the relative path in the implementation file
name.

Return Value

The name of the implementation file

C/C++ Prototype

HRESULT getImpName (long includingPath, BSTR* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 265

Rhapsody API Interfaces
getSpecName
Read method

Description

The getSpecName method retrieves the name of the current file’s specification file, including
its extension and, if specified, its relative path.

Visual Basic

Syntax

getSpecName (includingPath As Long) As String

Arguments

includingPath(1 or 0)

Set this to 1 to include the relative path in the specification file
name.

Return Value

The name of the specification file

C/C++ Prototype

HRESULT getSpecName (long includingPath, BSTR* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
266 API Reference Manual

Rhapsody Interfaces
isEmpty
Read method

Description

The isEmpty method determines whether the current file is empty.

Visual Basic

Syntax

IsEmpty() As Long

Return Value

1 if the file is empty; otherwise 0

C/C++ Prototype

HRESULT isEmpty (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 267

Rhapsody API Interfaces
setPath
Write method

Description

The setPath method sets the path to the specified file.

Visual Basic

Syntax

setPath (path As String)

Arguments

path

The file path

C/C++ Prototype

HRESULT setPath (BSTR path)

Return Value

HRESULT (0 for success, or a signed integer error code)
268 API Reference Manual

Rhapsody Interfaces
IRPFlow Interface

The IRPFlow interface represents a flow. It inherits from IRPModelElement.

VB Properties

Method Summary

Name Type Access Description

conveyed RPCollection RO A read-only collection of
information elements
conveyed by the flow.

direction String RW A string specifying the
direction of the flow. The
possible values are:

• toEnd1
• toEnd2
• bidirectional

end1 RPModelElement RW An association to a model
object that is one of the
ends of the flow.

end1Port RPPort RO Valid when end1 is an
RPInstance that is
connected via a port
defined by the class of the
instance.

end2 RPModelElement RW An association to a model
object that is one of the
ends of the flow.

end2Port RPPort RO Valid when end2 is an
RPInstance that is
connected via a port
defined by the class of the
instance.

addConveyed Adds an information element to the conveyed
collection

removeConveyed Removes an information element to the
conveyed collection

setEnd1ViaPort Connects end1 of the flow to the specified
instance via the given port (defined by the instance
class)

setEnd2ViaPort Connects end2 of the flow to the specified
instance via the given port (defined by the instance
class)
Rational Rhapsody 269

Rhapsody API Interfaces
addConveyed
Write method

Description

The addConveyed method adds an information element to the conveyed collection.

Visual Basic

Syntax

addConveyed (pElement As RPModelElement)

Arguments

pElement

The information element to add

C/C++ Prototype

HRESULT addConveyed (IRPModelElement* pElement)

Return Value

HRESULT (0 for success, or a signed integer error code)
270 API Reference Manual

Rhapsody Interfaces
removeConveyed
Write method

Description

The removeConveyed method removes an information element from the conveyed collection.

Visual Basic

Syntax

removeConveyed (pElement As RPModelElement)

Arguments

pElement

The information element to remove

C/C++ Prototype

HRESULT removeConveyed (IRPModelElement* pElement)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 271

Rhapsody API Interfaces
setEnd1ViaPort
Write method

Description

The setEnd1ViaPort method connects end1 of the flow to the specified instance via the given
port (defined by the instance class).

Visual Basic

Syntax

setEnd1ViaPort (pInstance As RPInstance, pPort As RPPort)

Arguments

pInstance

The instance to which to connect end1 of the flow

pPort

The port used to connect end1 of the flow to pInstance

C/C++ Prototype

HRESULT setEnd1ViaPort (IRPInstance* pInstance,
IRPModelElement* pPort)

Return Value

HRESULT (0 for success, or a signed integer error code)
272 API Reference Manual

Rhapsody Interfaces
setEnd2ViaPort
Write method

Description

The setEnd2ViaPort method connects end2 of the flow to the specified instance via the given
port (defined by the instance class).

Visual Basic

Syntax

setEnd2ViaPort (pInstance As RPInstance, pPort As RPPort)

Arguments

pInstance

The instance to which to connect end2 of the flow

pPort

The port used to connect end2 of the flow to pInstance

C/C++ Prototype

HRESULT setEnd2ViaPort (IRPInstance* pInstance,
IRPModelElement* pPort)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 273

Rhapsody API Interfaces
IRPFlowchart Interface

The IRPFlowchart interface represents an activity diagram (formerly referred to as a
flowchart). It inherits from IRPStatechart.

VB Properties

Method Summary

Name Type Access Description

isAnalysisOnly Long RW If this is set to 1 (as
opposed to 0), this
IRPFlowchart is for
analysis only.

itsOwner RPOperation RW The operation that owns
this activity diagram

swimlanes RPCollection RO The collection of
swimlanes in the activity
diagram

addReferenceActivity Adds a reference activity to the activity diagram

addSwimlane Adds a swimlane to the activity diagram
274 API Reference Manual

Rhapsody Interfaces
addReferenceActivity

Note
Currently, this method has not been implemented.

Write method

Description

The addReferenceActivity method adds the specified reference activity to the activity diagram.

Visual Basic

Syntax

addReferenceActivity (referenced As RPModelElement)
As RPState

Arguments

referenced

The referenced activity or activity chart

Return Value

The new reference activity

C/C++ Prototype

HRESULT addReferenceActivity (
IRPModelElement* referenced, IRPState** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 275

Rhapsody API Interfaces
addSwimlane

Note
Currently, this method has not been implemented.

Write method

Description

The addSwimlane method adds the specified swimlane to the activity diagram.

Visual Basic

Syntax

addSwimlane (name As String) As RPSwimlane

Arguments

name

The name for the new swimlane

Return Value

The new RPSwimlane

C/C++ Prototype

HRESULT addSwimlane (BSTR name, IRPSwimlane** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
276 API Reference Manual

Rhapsody Interfaces
IRPFlowItem Interface

The IRPFlowItem interface represents a flowItem. It inherits from IRPClassifier.
IRPFlowItem is a limited classifier (it cannot own attributes, operations, types, and so on),
but the interface does support generalization.

VB Properties

Method Summary

Name Type Access Description

represented Collection of
RPFlowItems

RO A read-only collection of
flow items represented by
the flowItem

addRepresented Adds a flowItem to the represented collection

removeRepresented Removes a flowItem from the represented
collection
Rational Rhapsody 277

Rhapsody API Interfaces
addRepresented
Write method

Description

The addRepresented method adds a flowItem to the represented collection.

Visual Basic

Syntax

addRepresented (pElement As RPModelElement)

Arguments

pElement

The flow item to add

C/C++ Prototype

HRESULT addRepresented (IRPModelElement* pElement)

Return Value

HRESULT (0 for success, or a signed integer error code)
278 API Reference Manual

Rhapsody Interfaces
removeRepresented
Write method

Description

The removeRepresented method removes a flowItem from the represented collection.

Visual Basic

Syntax

removeRepresented (pElement As RPModelElement)

Arguments

pElement

The flow item to remove

C/C++ Prototype

HRESULT removeRepresented (IRPModelElement* pElement)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 279

Rhapsody API Interfaces
IRPGeneralization Interface

The IRPGeneralization interface represents an inheritance relation between two
classifiers (class/use case/actor). It inherits from IRPModelElement.

VB Properties

The baseClass and derivedClass properties allow write access to update the
generalization. For example, if class C is derived from class A and you want to derive it from
class B instead, follow these steps:

C.getGeneralization.baseClass = B

Here, getGeneralization is used as pseudo-operation shorthand for the procedure
involved in actually obtaining a Generalization object from a class.

Similarly, if class C is derived from A and you want to derive it from B instead, follow these
steps:

B.getGeneralization.derivedClass = C

Name Type Access Description

baseClass RPClassifier RW The base class of the
generalization

derivedClass RPClassifier RW The derived class of
the generalization

extensionPoint String RW The extension point

isVirtual Long RO A flag that indicates
whether the
generalization is
virtual

visibility String RO The visibility of the
generalization (public,
protected, or private)
280 API Reference Manual

Rhapsody Interfaces
IRPGraphEdge Interface

The IRPGraphEdge interface represents a linear element of a diagram, such as a transition. It
represents the UML GraphEdge class. IRPGraphEdge inherits from IRPGraphElement.

VB Properties

IRPGraphElement Interface

The IRPGraphElement interface is the base for all graphical elements on a diagram. It
represents the UML Interchange GraphElement class. IRPGraphElement inherits from
IRPDispatch.

VB Properties

Method Summary

Name Type Access Description

source RPGraphNode RO The point at which the
edge is connected to the
source

target RPGraphNode RO The point at which the
edge is connected to the
target

Name Type Access Description

graphicalParent RPGraphElement RO The owning object

modelObject RPModelElement RO The graphical object

getAllGraphicalProperties Returns the list of graphical properties for a
diagram element

getGraphicalProperty Returns the specified graphical property for a
diagram element

setGraphicalProperty Allows the setting of graphical properties for a
diagram element
Rational Rhapsody 281

Rhapsody API Interfaces
getAllGraphicalProperties
Read method

Description

The getAllGraphicalProperties method returns the list of graphical properties for a diagram
element.

Visual Basic

Syntax

getAllGraphicalProperties() As RPCollection

Return Value

An RPCollection that contains the read-only list of graphical properties

C/C++ Prototype

HRESULT getAllGraphicalProperties (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
282 API Reference Manual

Rhapsody Interfaces
getGraphicalProperty
Read method

Description

The getGraphicalProperty method returns the value of the specified graphical property for a
diagram element.

Visual Basic

Syntax

getGraphicalProperty(name As String)
As RPGraphicalProperty

Arguments

name

The name of the property whose value you want to retrieve (note that
only the actual property name is required here, there is no need to
specify the hierarchy, as is the case with getPropertyValue)

Return Value

The value of the specified property, or null if the specified key is unsupported or invalid

C/C++ Prototype

HRESULT getGraphicalProperty (BSTR name,
IRPGraphicalProperty **pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 283

Rhapsody API Interfaces
setGraphicalProperty
Write method

Description

The setGraphicalProperty method allows the setting of graphical properties for a
diagram element.

Visual Basic

Syntax

setGraphicalProperty(name As String, value As String)

Arguments

name

The name of the graphical property whose value you want to set (note
that only the actual property name is required here; there is no need
to specify the hierarchy, as is the case with setPropertyValue)

value

The value of the specified graphical property

C/C++ Prototype

HRESULT setGraphicalProperty([in] BSTR name, [in] BSTR value)

Return Value

HRESULT (0 for success, or a signed integer error code)

VBA Sample

Dim proj As RPProject
Set d = proj.addNewAggr(“ObjectModelDiagram”, “MyDiagram”)
Dim m As RPModelElement
Dim n1 As RPGraphNode
Dim n2 As RPGraphNode
Dim e As RPGraphEdge
Dim c1 As RPClass
Dim c2 As RPClass
Dim gp As RPGraphicalProperty

On Error GoTo aa

Set proj = getProject
Set d = proj.addNewAggr(“ObjectModelDiagram”, “MyDiagram”)
Set m = proj.findNestedElementRecursive("C", "Class")
Set c1 = m

' Add node for existing element
284 API Reference Manual

Rhapsody Interfaces
Set n1 = d.AddNewNodeForElement(m, 10, 20, 50, 50)
Call n1.setGraphicalProperty("LineColor", "155.230.100")

' Add node with new element
Set n2 = d.AddNewNodeByType("Class", 110, 120, 50, 50)
Set c2 = n2.modelObject
c2.name = "D"

' Add edge for new dependency

Set e = d.AddNewEdgeByType("Dependency", n1, 60, 60, n2, 130, 140)
Set gp = e.getGraphicalProperty("LineStyle")
MsgBox gp.value

Exit Sub

aa:
MsgBox errorMessage
Rational Rhapsody 285

Rhapsody API Interfaces
IRPGraphicalProperty Interface

The IRPGraphicalProperty interface represents a graphical elements on a diagram. It
inherits from IRPDispatch.

VB Properties

IRPGraphNode Interface

The IRPGraphNode interface represents either a boxed element (for example, a class box) or
a point element (for example, a connector) in a diagram. It represents the UML GraphNode
class. IRPGraphNode inherits from IRPGraphElement.

IRPGuard Interface

The IRPGuard interface represents the guard of a transition in a statechart diagram. It inherits
from IRPModelElement.

VB Properties

Name Type Access Description

key String RO The name of the property

value String RO The property value

Name Type Access Description

body String RW The body of the guard
286 API Reference Manual

Rhapsody Interfaces
IRPHyperLink Interface

The IRPHyperLink interface enables you to read the attributes of hyperlink objects.

Note: You cannot create or modify hyperlinks using the COM API.

VB Properties

Method Summary

Name Type Access Description

target RPModelElement RW The target for the hyperlink

URL String RW The URL for the hyperlink

getDisplayOption Returns the display option (free text,
target name, target label, or tag value)
for the hyperlink

setDisplayOption Sets the display option (free text, target
name, target label, or tag value) for the
hyperlink
Rational Rhapsody 287

Rhapsody API Interfaces
getDisplayOption
Read method

Description

The getDisplayOption method returns the display option (free text, target name, target label, or
tag value) for the hyperlink.

Visual Basic

Syntax

getDisplayOption (pVal As HYPNameType, [pDisplayName As String])

Arguments

pVal

The hyperlink

Return Value

A string that represents the display option for the hyperlink

C/C++ Prototype

HRESULT getDisplayOption (HYPNameType* pVal, BSTR *pDisplayName)

Return Value

HRESULT (0 for success, or a signed integer error code)
288 API Reference Manual

Rhapsody Interfaces
setDisplayOption
Write method

Description

The setDisplayOption method sets the display option (free text, target name, target label, or tag
value) for the hyperlink.

Visual Basic

Syntax

setDisplayOption (pVal As HYPNameType, [pDisplayName AsString])

Arguments

pVal

The hyperlink

pDisplayName

The display type (free text, target name, target label, or tag value)

C/C++ Prototype

HRESULT setDisplayOption (HYPNameType* pVal, BSTR *pDisplayName)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 289

Rhapsody API Interfaces
IRPImageMap

Represents diagram element information that can be used to build an HTML image map for the
diagram. IRPDiagram's getPictureAs method returns a collection of objects of this type.

interfaceName
This property is for future use.

isGUID
Indicates whether the target property is the GUID of the element.

name
Name of the element.

pictureFileName
Name of the image file.

points
String that represents the bounding rectangle for the element in the Rhapsody diagram (for
example, "10,10,206,10,206,151,10,151").

shape
This property is for future use.

target
Target for the image map entry.
290 API Reference Manual

Rhapsody Interfaces
IRPInstance Interface

The IRPInstance interface represents an instance. It is derived from IRPRelation,
because the instance is a relation between an owner and some class.

VB Properties

Method Summary

Name Type Access Description

instantiatedBy RPOperation RW The constructor used to
create the instance, as
defined by the user within
the instance features
dialog box

getInLinks Retrieves the list of incoming links

getListOfInitializerArguments Retrieves the list of initializer arguments

getOutLinks Retrieves the list of outgoing links

setInitializerArgumentValue Sets the value of the initializer argument
Rational Rhapsody 291

Rhapsody API Interfaces
getInLinks
Read method

Description

The getInLinks method returns the list of links for which the instance is the target instance
(identified by the “to” property of the link).

Visual Basic

Syntax

getInLinks() As RPCollection

Return Value

An RPCollection that contains the read-only list of incoming links

C/C++ Prototype

HRESULT getInLinks (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
292 API Reference Manual

Rhapsody Interfaces
getListOfInitializerArguments
Read method

Description

The getListOfInitializerArguments method returns the list of arguments for the initializer, as
defined by the user in the instance features dialog box.

Visual Basic

Syntax

getListOfInitializerArguments() As RPCollection

Return Value

An RPCollection that contains the values of the arguments passed to the initializer. This list
is a read-only list of strings.

C/C++ Prototype

HRESULT getListOfInitializerArguments(
IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 293

Rhapsody API Interfaces
getOutLinks
Read method

Description

The getOutLinks method returns the list of links for which the instance is the source instance
(identified by the “from” property of the link).

Visual Basic

Syntax

getOutLinks() As RPCollection

Return Value

An RPCollection that contains the read-only list of outgoing links

C/C++ Prototype

HRESULT getOutLinks (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
294 API Reference Manual

Rhapsody Interfaces
setInitializerArgumentValue
Write method

Description

The setInitializerArgumentValue method sets the value of the initializer argument.

Visual Basic

Syntax

setInitializerArgumentValue(argName As String,
argValue as String)

Arguments

argName

The name of the initializer argument

argValue

The initial value of the initializer argument

C/C++ Prototype

HRESULT setInitializerArgumentValue (BSTR argName,
BSTR argValue)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 295

Rhapsody API Interfaces
IRPInteractionOccurrence Interface

The IRPInteractionOccurrence interface represents an interaction occurrence (reference
sequence diagram). It derives from IRPModelElement.

VB Properties

Name Type Access Description

messagePoints RPCollection RO The message points
of the referenced
sequence diagram

referenceSequenceDiagram RPSequenceDiagram RW The sequence
diagram being
referenced
296 API Reference Manual

Rhapsody Interfaces
IRPInterfaceItem Interface

The IRPInterfaceItem interface represents the commonality of class interface elements. It
derives from IRPModelElement.

VB Properties

Method Summary

Name Type Access Description

arguments Collection of
RPArguments

RO The arguments of this
operation or event

signature String RO The signature of this
operation. For example:

"f(int x,
char *y)"

addArgument Adds an argument for the operation to the end
of its argument list

addArgumentBeforePosition Adds an argument for the operation at the
specified position in its argument list

getSignatureNoArgNames Retrieves the signature of the current class
interface element without argument names

getSignatureNoArgTypes Retrieves the signature of the current class
interface element without argument types

matchOnSignature Determines whether the signature of the
current class interface element matches that
of another IRPInterfaceItem
Rational Rhapsody 297

Rhapsody API Interfaces
addArgument
Write method

Description

The addArgument method adds an argument for the operation to the end of its argument list.

Visual Basic

Syntax

addArgument (newVal As String) As RPArgument

Arguments

NewVal

The new argument to append to the argument list

Return Value

The new argument added to the argument list

C/C++ Prototype

HRESULT addArgument (BSTR newVal, IRPArgument** argument)

Return Value

HRESULT (0 for success, or a signed integer error code)
298 API Reference Manual

Rhapsody Interfaces
addArgumentBeforePosition
Write method

Description

The addArgumentBeforePosition method adds an argument for the operation at the specified
position in its argument list.

Visual Basic

Syntax

addArgumentBeforePosition (newVal As String, pos As Long)
As RPArgument

Arguments

newVal

The new argument to add to the argument list

pos

A long that represents the position of the argument in argument list
(1,2,3,…n; left to right)

Return Value

The new argument added to the argument list

C/C++ Prototype

HRESULT addArgumentBeforePosition (BSTR newVal, long pos,
IRPArgument** argument)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 299

Rhapsody API Interfaces
getSignatureNoArgNames
Read method

Description

The getSignatureNoArgNames method retrieves the signature of the current class interface
element without argument names.

Visual Basic

Syntax

getSignatureNoArgNames() As String

Return Value

The signature of the element without argument names. For example:

f(string,int)

C/C++ Prototype

HRESULT getSignatureNoArgNames (BSTR *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
300 API Reference Manual

Rhapsody Interfaces
getSignatureNoArgTypes
Read method

Description

The getSignatureNoArgTypes method retrieves the signature of the current class interface
element without argument types.

Visual Basic

Syntax

getSignatureNoArgTypes() As String

Return Value

The signature of the element without argument types. For example:

f(x,y)

C/C++ Prototype

HRESULT getSignatureNoArgTypes (BSTR *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 301

Rhapsody API Interfaces
matchOnSignature
Read method

Description

The matchOnSignature method determines whether the signature of the current class interface
element matches that of another IRPInterfaceItem.

Visual Basic

Syntax

matchOnSignature (item As RPInterfaceItem) As Long

Arguments

item

A pointer to the RPInterfaceItem whose signature is being compared to
that of the current interface item

Return Value

1 if the two signatures match; otherwise 0

C/C++ Prototype

HRESULT matchOnSignature (IRPInterfaceItem* item,
long *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
302 API Reference Manual

Rhapsody Interfaces
IRPLink Interface

The IRPLink interface represents a link-end that instantiates a relation. It inherits from
IRPModelElement.

VB Properties

Name Type Access Description

end1Multiplicity String RW The multiplicity of the first
end of the link

end1Name String RW The name of the first end
of the link

end2Multiplicity String RW The multiplicity of the
second end of the link

end2Name String RW The name of the second
end of the link

from RPInstance RO The source instance of the
link.

instantiates RPRelation RO The association the link
instantiates.

other RPLink RO The pair link. In most
cases, this property is
redundant.

to RPInstance RO The target instance of the
link.
Rational Rhapsody 303

Rhapsody API Interfaces
IRPMessage Interface

The IRPMessage interface represents a message sent between two classifier roles in a
collaboration. It inherits from IRPModelElement.

VB Properties

Method Summary

Name Type Access Description

actualParameterList String RO A collection of strings that
contain parameters.

communication
Connection

RPAssocationRole RO The communication
connection. This is always
NULL for sequence
diagrams.

condition Cstring RO This is meaningful only if
the message is of type
“condition”.

formalInterfaceItem RPInterfaceItem RO This can be NULL for
timeouts or “default” for
CTOR, DTOR, and non-
specified methods.

messageType Cstring RO The message type
(constructor, destructor,
event, operation,
triggered, timeout,
cancelled timeout,
condition, or unspecified).

returnValue Cstring RO The name of the element
that receives the return
value.

sequenceNumber Cstring RO The number or position in
an ordered list. For
sequence diagrams,
Rhapsody deduces the
number.

source RPClassifierRole RO Specifies who sent the
message.

target RPClassifierRole RO Specifies who received the
message.

timerValue String RO The timer value

getSignature Retrieves the prototype of the IRPMessage
304 API Reference Manual

Rhapsody Interfaces
getSignature
Read method

Description

The getSignature method retrieves the prototype of the IRPMessage.

Visual Basic

Syntax

getSignature () As String

Return Value

The signature

C/C++ Prototype

HRESULT getSignature (BSTR* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 305

Rhapsody API Interfaces
IRPMessagePoint Interface

The IRPMessagePoint interface represents an event in a sequence diagram. It inherits from
IRPModelElement.

Note that in a collaboration diagram, all events are send/receive pairs with nothing in between
them.

VB Properties

Method Summary

Name Type Access Description

message RPMessage RO The message that the
current event refers to

type String RO “Send' or “receive”

getClassifierRole Retrieves the classifier role for this message point
306 API Reference Manual

Rhapsody Interfaces
getClassifierRole
Read method

Description

The getClassifierRole method retrieves the classifier role for this message point. This is the
classifier role (object) that received this event and sent back a return message.

Visual Basic

Syntax

getClassifierRole() As RPClassifierRole

Return Value

The RPClassifierRole on which the message occurred

C/C++ Prototype

HRESULT getClassifierRole (
IRPClassifierRole** classifierRole)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 307

Rhapsody API Interfaces
IRPModelElement Interface

The IRPModelElement interface is the base abstract interface for all Rhapsody 6.1
metamodel elements. It consists of all the common functionality shared by all the elements in
the model (except for the Application class). It acts as an abstract interface.

VB Properties

Name Type Access Description

annotations Collection of
RPAnnotations

RO The annotations that
belong to this model
element.

associationClasses Collection of
IRPAssociationClass
es

RO The association classes
connected to this model
element.

constraints Collection of
RPConstraints

RO The constraints that
belong to this model
element.

constraintsByHim Collection of
IRPConstraints

RO The constraints that
affect this model
element.

dependencies Collection of
RPDependency

RO The model elements on
which this model
element depends.

description String RW The description of this
model element.

descriptionHTML String RW The description of the
model element in HTML
format.

descriptionRTF String RW The description of the
model element in RTF
format.

displayName String RW The display name.

GUID String RW The GUID value.

hyperLinks Collection of
IRPHyperLink-s

RO The hyperlinks added to
an element.

isOfMetaclass (metaclass) Long RO This is equal to 1 (as
opposed to 0) if the
current model element
is a member of this
metaclass. Requires the
string metaclass.

isShowDisplayName Long RW Specifies whether to
show the display name.
308 API Reference Manual

Rhapsody Interfaces
mainDiagram RPDiagram RW The main diagram of
this element. Currently,
this property is valid
only for classes,
packages, actors, and
use cases.

metaClass String RO The metaclass of this
model element.

name String RW The name of this model
element.

ofTemplate RPModelElement RW If the model element is
an instantiation, this
method will return the
template used to
instantiate it.

owner RPModelElement RW The object in which this
model element is
defined.
You can use this
property to establish
ownership. For
example, suppose c is
a class and p is a
package:

Dim c as RPClass
Dim p as RPPackage
set c = ...

set p = ...

c.owner = p

This will work for any
two objects where one
can contain the other.

project RPProject RO The project that owns
this element.

requirementTraceability
Handle

long RW The handle to this
model element used by
requirement traceability
tools.

stereotype RPStereotype RW The stereotype
attached to this model
element.

templateParameters Collection of
RPTemplate
Parameter

RO If this model element is
a template, the method
returns the template’s
parameters.

Name Type Access Description
Rational Rhapsody 309

Rhapsody API Interfaces
Method Summary

ti RPTemplate
Instantiation

RW If this model element is
a template, it
instantiates the
template into a class as
follows:
1. Create a class c.
2. Create a template
instantiation, theTi.
3. Connect the new
class with the template
instantiation:

 c.ti = theTi

addDependency Adds a dependency relationship to
the specified object

addDependencyTo Creates a new dependency
between two objects

addNewAggr Used to add a new model element
to the current element, for example,
adding a class to a package

addProperty Adds a new property/value pair for
the current element

addStereotype Adds a stereotype relationship to
the specified object

becomeTemplateInstantiationOf Creates a template instantiation of
another template (of another
template class)

clone Clones the element

deleteDependency Deletes a dependency

deleteFromProject Deletes the current model element
from the project open in Rhapsody
6.1

errorMessage Returns the most recent error
message

findElementsByFullName Searches for the specified element

findNestedElement Retrieves the specified element
nested in a model element

findNestedElementRecursive Retrieves the specified element
from a given model element at any
level of nesting within that element

getErrorMessage Returns the most recent error
message

Name Type Access Description
310 API Reference Manual

Rhapsody Interfaces
getFullPathName Retrieves the full path name of a
model element as a string

getFullPathNameIn Retrieves the full path name of a
model element as a string

getNestedElements Retrieves the elements defined in
the current object

getNestedElementsRecursive Recursively retrieves the elements
defined in the model element for the
object and for objects defined in it

getOverriddenProperties Retrieves the list of properties
whose default values have been
overridden

getPropertyValue Returns the value associated with
the specified key value

getPropertyValueExplicit Returns an explicit value if it has
been assigned to the metamodel

getTag Returns the tag for the specified
model element

HighLightElement Highlights the current model
element

openFeaturesDialog Displays the information for an
element in the Features dialog.
Depending on parameter provided,
opens new dialog or uses an
already-open dialog.

removeProperty Removes the property from the
model element

removeStereotype Removes the stereotype

setPropertyValue Modifies the value of the specified
property

setTagValue Assigns the specified tag to the
model element

synchronizeTemplateInstantiation Is used to synchronize between a
template and a template
instantiation parameter
Rational Rhapsody 311

Rhapsody API Interfaces
addDependency
Write method

Description

The addDependency method adds a dependency relationship to the specified object.

Visual Basic

Syntax

addDependency (dependsOnName As String, dependsOnType
As String) As RPDependency

Arguments

dependsOnName

The name of the object that this element depends on

dependsOnType

The type of object that this element depends on

Return Value

The newly created dependency

C/C++ Prototype

HRESULT addDependency (BSTR dependsOnName,
BSTR dependsOnType, IRPDependency** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
312 API Reference Manual

Rhapsody Interfaces
addDependencyTo
Write method

Description

The addDependencyTo method creates a new dependency relationship between two objects.

Visual Basic

Syntax

addDependencyTo (element As RPModelElement)
As RPDependency

Arguments

element

The name of the object that the current object depends on

Return Value

The newly created dependency

C/C++ Prototype

HRESULT addDependencyTo (IRPModelElement* element,
IRPDependency** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 313

Rhapsody API Interfaces
addNewAggr
Write method

Description

The addNewAggr method is used to add a new model element to the current element, for
example, adding a new class to a package or adding a new diagram to a project.

Visual Basic

Syntax

addNewAggr (metaType As String, name As String)
As RPModelElement

Arguments

metaType

The type of element to add (the string to use is the name of the appropriate metaclass).

Note
The list of metaclass names that can be used for this argument can be found in the file
metaclasses.txt in the Doc directory of your Rhapsody installation.

name

The name to use for the new element

Return Value

The newly created element

C/C++ Prototype

HRESULT addNewAggr (BSTR metaType, BSTR name,
IRPModelElement** newObject)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Set proj = getProject
Set d = proj.addNewAggr(“ObjectModelDiagram”, “MyDiagram”)
314 API Reference Manual

Rhapsody Interfaces
addProperty
Write method

Description

The addProperty method adds a new property/value pair for the current element.

This method is capable of flagging an error. For more information, see Error Handling

Visual Basic

Syntax

addProperty (propertyKey As String,
propertyType As String, propertyValue As String)

Arguments

propertyKey

The name of the new property.

propertyType

The property type. The possible values are as follows:

Int

String

Enum, <xxx>, <yyy>, <zzz> (i.e., Enum, followed by each of the
defined values, for example: Enum,No,Prefix,Suffix)

Bool

propertyValue

The default value of the new property.

C/C++ Prototype

HRESULT addProperty (BSTR propertyKey, BSTR propertyType,
BSTR propertyValue)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 315

Rhapsody API Interfaces
addStereotype
Write method

Description

The addStereotype method adds a stereotype relationship to the specified object.

Visual Basic

Syntax

addStereotype (name As String, metaType As String)
As RPStereotype

Arguments

name

The name of the object in the new stereotype relationship

metaType

The type of the object in the new stereotype relationship

Return Value

The newly created stereotype relationship

C/C++ Prototype

HRESULT addStereotype (BSTR name, BSTR metaType,
IRPStereotype** stereotype)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Sub addNetwork(c As RPClass)
Dim o As RPOperation
c.addOperation ("serialize")
c.addOperation ("unserialize")
c.addConstructor ("")
On Error Resume Next
c.addDestructor ("")
x = c.addStereotype("G3Network", "Class")
End Sub
316 API Reference Manual

Rhapsody Interfaces
becomeTemplateInstantiationOf
Write method

Description

The becomeTemplateInstantiationOf method creates a template instantiation of another
template (of another template class).

Visual Basic

Syntax

becomeTemplateInstantiationOf (newVal As RPModelElement)

Arguments

newVal

The template object that the template is an instantiation of

C/C++ Prototype

HRESULT becomeTemplateInstantiationOf (
IRPModelElement *newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 317

Rhapsody API Interfaces
clone
Write method

Description

The clone method clones the element, names it, and adds it to the new owner.

Visual Basic

Syntax

clone (name As String, newOwner As RPModelElement)
As RPModelElement

Arguments

name

The name to use for the cloned element

newOwner

The new owner of the cloned element

C/C++ Prototype

HRESULT clone (BSTR string, IRPModelElement *newOwner,
IRPModelElement** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
318 API Reference Manual

Rhapsody Interfaces
deleteDependency
Write method

Description

The deleteDependency method deletes a dependency.

Visual Basic

Syntax

deleteDependency (dependency As RPDependency)

Arguments

dependency

The dependency to delete

C/C++ Prototype

HRESULT deleteDependency (IRPDependency* dependency)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 319

Rhapsody API Interfaces
deleteFromProject
Write method

Description

The deleteFromProject method deletes the current model element from the project open in
Rhapsody 6.1.

Visual Basic

Syntax

deleteFromProject()

C/C++ Prototype

HRESULT deleteFromProject()

Return Value

HRESULT (0 for success, or a signed integer error code)
320 API Reference Manual

Rhapsody Interfaces
errorMessage
Read method

Description

The errorMessage method returns the most recent error message.

Visual Basic

Syntax

errorMessage() As String

Return Value

The most recent error message (a string)

C/C++ Prototype

HRESULT errorMessage (BSTR* __MIDL_0020)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 321

Rhapsody API Interfaces
findElementsByFullName
Read method

Description

The findElementsByFullName method searches for the specified element.

Visual Basic

Syntax

findElementsByFullName (name As String,
metaClass As String) As RPModelElement

Arguments

name

The name of the element to look for

metaClass

The element’s metaclass

Return Value

The specified element

C/C++ Prototype

HRESULT findElementsByFullName (BSTR name,
BSTR metaClass, IRPModelElement** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Suppose you have a class A, under package P. The following VBA code will find this class
using the findElementsByFullName API call:

Dim proj As RPProject
Dim m As RPModelElement

Set proj = getProject
Set m = proj.findElementsByFullName("A in P", "Class")
MsgBox m.name

Note
This method requires that you use the “full” notation, e.g., “A in P”. Otherwise, the method
will not return the specified element.
322 API Reference Manual

Rhapsody Interfaces
findNestedElement
Read method

Description

The findNestedElement method retrieves the specified element nested in a model element.

For example, if x is of type IRPModelElement (or a type inherited from it), the following call
returns an attribute of x named A (or null if there is no such element:

x.findNestedElement(‘A’,’Attribute’)

Visual Basic

Syntax

findNestedElement (name As String, metaClass As String)
As RPModelElement

Arguments

name

The name of the element

metaClass

The name of the metaclass

Return Value

If found, the retrieved RPModelElement; otherwise, NULL

C/C++ Prototype

HRESULT findNestedElement (BSTR name, BSTR metaClass,
IRPModelElement** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

Sub addUi(c As RPClass)
Dim x As Object
Dim p As RPPackage
Dim theClass As RPClass
'all gui objects are derived from GUI.UIBase
c.Description = "gui class"
On Error Resume Next
Set p = pr.findNestedElement("GUI", "Package")
Set theClass = p.findNestedElement("UIBase", "Class")
c.addGeneralization theClass

If Not Err.Number = 0 Then
Rational Rhapsody 323

Rhapsody API Interfaces
 MsgBox (errorMessage)
End If

c.addStereotype "G3UI", "Class"

End Sub

findNestedElementRecursive
Read method

Description

The findNestedElementRecursive method retrieves the specified element from a given model
element at any level of nesting within that element.

For example, if x is of type IRPModelElement (or a type inherited from it), the following call
returns an attribute named A (or null if there is no such element) of x, or of any element nested
within x at any level of ownership:

x.findNestedElementRecursive(‘A’,’Attribute’)

Visual Basic

Syntax

IRPModelElement findNestedElementRecursive(
name As String, metaClass As String) As RPModelElement

Arguments

name

The name of the element

metaClass

The name of the metaclass

Return Value

If found, the retrieved RPModelElement; otherwise, NULL

C/C++ Prototype

HRESULT findNestedElementRecursive (BSTR name,
BSTR metaClass, IRPModelElement** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
324 API Reference Manual

Rhapsody Interfaces
getErrorMessage
Read method

Description

The getErrorMessage method returns the most recent error message.

Visual Basic

Syntax

String getErrorMessage (__MIDL_0019 As String)

Return Value

The most recent error message

C/C++ Prototype

HRESULT getErrorMessage (BSTR* __MIDL_0019)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 325

Rhapsody API Interfaces
getFullPathName
Read method

Description

The getFullPathName method retrieves the full path name of a model element as a string with
the following format:

<package>::<class>

Visual Basic

Syntax

getFullPathName() As String

Return Value

The full path of the model element

C/C++ Prototype

HRESULT getFullPathName (BSTR* name)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

The following macro checks each transition to see if it has a trigger.

Sub checkNullTransitions()
Dim elem As RPModelElement
For Each elem In getProject.getNestedElementsRecursive

If elem.metaClass = "Transition" Then
Dim trans As RPTransition
Set trans = elem
If trans.getItsTrigger Is Nothing Then
Debug.Print "The trigger in transition '" +
trans.getFullPathName + "' is null!"
End If

End If
Next elem

End Sub
...
326 API Reference Manual

Rhapsody Interfaces
getFullPathNameIn
Read method

Description

The getFullPathNameIn method retrieves the full path name of a model element as a string in
the following format:

<class> in <package>

Visual Basic

Syntax

getFullPathNameIn() As String

Return Value

The full path of the model element

C/C++ Prototype

HRESULT getFullPathNameIn (BSTR* name)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 327

Rhapsody API Interfaces
getNestedElements
Read method

Description

The getNestedElements method retrieves the elements defined in the current object.

Visual Basic

Syntax

getNestedElements() As RPCollection

Return Value

A collection of model elements defined in the current object

C/C++ Prototype

HRESULT getNestedElements (IRPCollection** __MIDL_0017)

Return Value

HRESULT (0 for success, or a signed integer error code)
328 API Reference Manual

Rhapsody Interfaces
getNestedElementsRecursive
Write method

Description

The getNestedElementsRecursive method recursively retrieves the elements defined in the
model element for the object and for objects defined in it.

Visual Basic

Syntax

getNestedElementsRecursive() As RPCollection

Return Value

A collection of model elements defined in the current object and the objects nested within it

C/C++ Prototype

HRESULT getNestedElementsRecursive(
IRPCollection** __MISL__0018)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

The following macro checks each transition to see if it has a trigger.

Sub checkNullTransitions()
Dim elem As RPModelElement
For Each elem In getProject.getNestedElementsRecursive

If elem.metaClass = "Transition" Then
Dim trans As RPTransition
Set trans = elem
If trans.getItsTrigger Is Nothing Then
Debug.Print "The trigger in transition '" +
trans.getFullPathName + "' is null!"
End If

End If
Next elem

End Sub
...
Rational Rhapsody 329

Rhapsody API Interfaces
getOverriddenProperties
Read method

Description

The getOverriddenProperties method retrieves the list of properties whose default values have
been overridden.

Visual Basic

Syntax

getOverriddenProperties (recursive As Long)
As RPCollection

Arguments

recursive

Specifies whether to include the properties of ascendants of the unit

C/C++ Prototype

HRESULT getOverriddenProperties (long recursive,
IRPCollection **pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
330 API Reference Manual

Rhapsody Interfaces
getPropertyValue
Read method

Description

The getPropertyValue method returns the value associated with the specified key value.

This method is capable of flagging an error.

Visual Basic

Syntax

getPropertyValue (propertyKey As String) As String

Arguments

propertyKey

The name of the property whose value is to be retrieved

Return Value

The value of a property explicitly assigned to this instance or the default value (the value
propagated from the containers of the instance as a default).

Notes

Property-related API calls can cause the following error conditions:

 RP_BAD_PROPERTY_KEY_ERROR—Illegal property key syntax (that is, not in a
"<subject>.<metaclass>.<name>" format).

 RP_MISSING_PROPERTY_ERROR—The property requested does not exist.
 RP_PROPERTY_EXISTS_ERROR—You are attempting to add a property that

already exists.

C/C++ Prototype

HRESULT getPropertyValue (BSTR propertyKey,
BSTR* propertyValue)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 331

Rhapsody API Interfaces
Example

Set elt = getSelectedElement
theFileName = elt.getPropertyValue(

"UserProperties.ExternalFile.FileName")
theFilePath = elt.getPropertyValue(

"UserProperties.ExternalFile.FilePath")
theFileType = elt.getPropertyValue(

"UserProperties.ExternalFile.FileType")

getPropertyValueExplicit
Read method

Description

The getPropertyValueExplicit method is similar to the getPropertyValue method, but it
does not return a default value. Instead, it returns an explicit value if it has been assigned to the
metamodel.

This method is capable of flagging an error. For more information, see Error Handling

Visual Basic

Syntax

getPropertyValueExplicit (propertyKey As String)
As String

Arguments

propertyKey

The name of the property whose value is to be retrieved

Return Value

The explicit value of the property, if one has been assigned to the metamodel instance

C/C++ Prototype

HRESULT getPropertyValueExplicit (BSTR propertyKey,
BSTR* propertyValue)

Return Value

HRESULT (0 for success, or a signed integer error code)
332 API Reference Manual

Rhapsody Interfaces
getTag
Read method

Description

The getTag method returns the tag for the specified model element.

Visual Basic

Syntax

getTag (name As String) As RPTag

Arguments

name

The name of the element whose tag you want to retrieve

Return Value

The tag

C/C++ Prototype

HRESULT getTag (BSTR name, IRPTag **pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 333

Rhapsody API Interfaces
openFeaturesDialog

Description

The method openFeaturesDialog displays the information for an element in the Features
dialog. Depending on the parameter you provide, a new Features dialog will be opened or an
already-open Features dialog will be used to display the information:

 1 - opens a new dialog
 0 - displays information in already-open dialog; opens a new dialog is there is not

a Features dialog currently open.

Syntax

openFeaturesDialog(newDialog As Long)

Example

The code below displays the information for class C in a new Features dialog. P is the name of
the package that contains the class.

Dim proj As RPProject

Dim m As RPModelElement

Set proj = getProject

Set m = proj.findElementsByFullName("C in P", "Class")

m.openFeaturesDialog(1)
334 API Reference Manual

Rhapsody Interfaces
HighLightElement
Read method

Description

The HighLightElement method highlights the current element.

Visual Basic

Syntax

HighLightElement ()

C/C++ Prototype

HRESULT highLightElement ()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 335

Rhapsody API Interfaces
removeProperty
Write method

Description

The removeProperty method removes the property from the model element.

This method is capable of flagging an error.

Visual Basic

Syntax

removeProperty (propertyKey As String)

Arguments

propertyKey

The name of the property to be removed

C/C++ Prototype

HRESULT removeProperty (BSTR propertyKey)

Return Value

HRESULT (0 for success, or a signed integer error code)
336 API Reference Manual

Rhapsody Interfaces
removeStereotype
Write method

Description

The removeStereotype method removes the stereotype from the model element.

Visual Basic

Syntax

removeSterotype (stereotype As RPSterotype)

Arguments

stereotype

The name of the stereotype to be removed

C/C++ Prototype

HRESULT removeStereotype (IRPStereotype* stereotype)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 337

Rhapsody API Interfaces
setPropertyValue
Write method

Description

The setPropertyValue method modifies the value of the specified property.

This method is capable of flagging an error. For more information, see Error Handling

Visual Basic

Syntax

setPropertyValue (propertyKey As String,
propertyValue As String)

Arguments

propertyKey

The name of the property whose value is to be set

Note: When providing the name of the property, the delimiter used should be a period,
not a colon, for example, CPP_CG.Attribute.AccessorGenerate.

propertyValue

The value to be assigned to the property

C/C++ Prototype

HRESULT setPropertyValue (BSTR propertyKey,
BSTR propertyValue)

Return Value

HRESULT (0 for success, or a signed integer error code)

Sample Code

element.setPropertyValue "CPP_CG.Attribute.AccessorGenerate", "True"
338 API Reference Manual

Rhapsody Interfaces
setTagValue
Write method

Description

The setTagValue method assigns the specified tag to the current model element.

Visual Basic

Syntax

setTagValue (tag As RPTag, val As String) AS RPTag

Arguments

tag

The name of the tag to add to the element

val

The value of the new tag

Return Value

The new tag

C/C++ Prototype

HRESULT setTagValue (IRPTag *tag, BSTR val,
IRPTag **pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 339

Rhapsody API Interfaces
synchronizeTemplateInstantiation
Write method

Description

The synchronizeTemplateInstantiation method is used to synchronize between a template and a
template instantiation parameter. For example, if you add a parameter to a template, this
method updates the template instantiation. It is activated on template instantiation.

Visual Basic

Syntax

synchronizeTemplateInstantiation ()

C/C++ Prototype

HRESULT synchronizeTemplateInstantiation ()

Return Value

HRESULT (0 for success, or a signed integer error code)
340 API Reference Manual

Rhapsody Interfaces
IRPModule Interface

The IRPModule interface represents a Rhapsody module. It inherits from IRPInstance.

IRPNode Interface

The IRPNode interface represents a node. It derives from IRPClassifier.

VB Properties

Method Summary

addComponentInstance
Write method

Description

The addComponentInstance method adds a component instance.

Visual Basic

Syntax

addComponentInstance (name As String)
As RPComponentInstance

Arguments

name

The name of the new component instance

Return Value

The new component instance

Name Type Access Description

componentInstances RPCollection RO The list of component
instances

CPUType String RW The CPU type

addComponentInstance Adds a new component instance

deleteComponentInstance Deletes the specified component instance

findComponentInstance Retrieves the specified component instance
Rational Rhapsody 341

Rhapsody API Interfaces
C/C++ Prototype

HRESULT addComponentInstance (BSTR name,
IRPComponentInstance** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

deleteComponentInstance
Write method

Description

The deleteComponentInstance method deletes the specified component instance.

Visual Basic

Syntax

deleteComponentInstance (BSTR name)

Arguments

name

The name of the new component instance

C/C++ Prototype

HRESULT deleteComponentInstance (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)

findComponentInstance
Read method

Description

The findComponentInstance method retrieves the specified component instance.

Visual Basic

Syntax

findComponentInstance (name As String)
As RPComponentInstance
342 API Reference Manual

Rhapsody Interfaces
Arguments

name

The name of the component instance to look for

Return Value

The component instance

C/C++ Prototype

HRESULT findComponentInstance (BSTR name,
IRPComponentInstance** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 343

Rhapsody API Interfaces
IRPObjectModelDiagram Interface

The IRPObjectModelDiagram interface represents an object model diagram. It inherits
from IRPDiagram.

Currently, IRPObjectModelDiagram does not expose additional functionality to
IRPDiagram.

IRPOperation Interface

The IRPOperation interface is an abstract class that represents an operation. It derives from
IRPInterfaceItem.

VB Properties

Name Type Access Description

body String RW The body of the operation.

flowchart RPFlowchart RW The activity chart of the
operation.

initializer String RW If this operation is a
constructor, this is a string
containing the constructor
initialization list.

isAbstract Long RW This is equal to 1 (as
opposed to 0) if the
operation is abstract.

isCgDerived Long RO This is equal to 1 (as
opposed to 0) if this
operation is automatically
generated by Rhapsody
6.1.

isConst Long RO This is equal to 1 (as
opposed to 0) if the
operation is a const.

isCtor Long RO This is equal to 1 (as
opposed to 0) if the
operation is a constructor.

isDtor Long RO This is equal to 1 (as
opposed to 0) if the
operation is a destructor.

isFinal Long RW This is equal to 1 (as
opposed to 0) if the
operation is final (Java
only).
344 API Reference Manual

Rhapsody Interfaces
Method Summary

isStatic Long RO This is equal to 1 (as
opposed to 0) if the
operation is a static.

isTrigger Long RO This is equal to 1 (as
opposed to 0) if the
operation is triggered.

isVirtual Long RO This is equal to 1 (as
opposed to 0) if the
operation is virtual.

returns RPClassifier RW The return type of this
operation.
In previous versions, this
property was called
“returnType”.

returnType RPType RW The return type of this
operation.

visibility String RW The visibility of this
operation (public,
protected, or private).

deleteArgument Deletes an argument from the current
operation

deleteFlowchart Deletes an activity diagram from the current
operation

getImplementationSignature Returns a string representing the signature of
the operation as it will appear in the generated
code.

setReturnTypeDeclaration Specifies a new value for the return type
declaration

Name Type Access Description
Rational Rhapsody 345

Rhapsody API Interfaces
deleteArgument
Write method

Description

The deleteArgument method deletes an argument from the current operation.

Visual Basic

Syntax

deleteArgument (argument As RPArgument)

Arguments

argument

The argument to be deleted

C/C++ Prototype

HRESULT deleteArgument (IRPArgument* argument)

Return Value

HRESULT (0 for success, or a signed integer error code)
346 API Reference Manual

Rhapsody Interfaces
deleteFlowchart
Write method

Description

The deleteFlowchart method deletes an activity diagram from the current operation.

Visual Basic

Syntax

deleteFlowchart()

C/C++ Prototype

HRESULT deleteFlowchart()

Return Value

HRESULT (0 for success, or a signed integer error code)

getImplementationSignature
Returns a string representing the signature of the operation as it will appear in the generated
code.
Rational Rhapsody 347

Rhapsody API Interfaces
setReturnTypeDeclaration
Write method

Description

The setReturnTypeDeclaration method specifies a new value for the return type declaration.

Visual Basic

Syntax

setReturnTypeDeclaration (newVal As String)

Arguments

newVal

The new value for the return type declaration

C/C++ Prototype

HRESULT setReturnTypeDeclaration (BSTR newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
348 API Reference Manual

Rhapsody Interfaces
IRPPackage Interface

The IRPPackage interface represents Rhapsody packages, which are essentially definition
spaces for diagrams and other model elements. It inherits from IRPUnit.

VB Properties

Name Type Access Description

actors Collection of RPActors RO The collection of actors
defined in this package

classes Collection of RPClasses RO The collection of classes
defined in this package

collaboration
Diagrams

Collection of
RPCollaboration
Diagrams

RO The collection of
collaboration diagrams
defined in this package

componentDiagrams Collection of
RPComponent
Diagrams

RO The collection of
component diagrams
defined in this package

deploymentDiagrams Collection of
RPDeployment
Diagrams

RO The collection of
deployment diagrams
defined in the package

events Collection of RPEvents RO The collection of events
defined in this package

eventsBaseId Long RO The event base identifier

globalFunctions Collection of
RPOperations

RO The collection of global
functions defined in the
package

globalObjects Collection of
RPRelations

RO The collection of global
objects defined in the
package

globalVariables Collection of
RPAttributes

RO The collection of global
variables defined in the
package

flowItems Collection of
RPFlowItems

RO The collection of
information items defined
in this package

flows Collection of RPFlows RO The collection of flows
defined in this package

nestedClassifiers Collection of classifiers RO The collection of
classifiers defined in this
package

nodes RPCollection RO The list of package nodes

objectModelDiagrams Collection of
RPObjectDiagrams

RO The collection of object
model diagrams defined in
this package
Rational Rhapsody 349

Rhapsody API Interfaces
Method Summary

packages Collection of
RPPackages

RO The collection of packages
nested inside this package

SavedInSeperateDirectory Long RW Determines whether each
package is saved in a
separate directory

sequenceDiagrams Collection of
RPSequence
Diagrams

RO The collection of sequence
diagrams defined in this
package

types Collection of RPType RO The collection of data
types defined in this
package

useCaseDiagrams Collection of
RPUseCaseDiagrams

RO The collection of use case
diagrams defined in this
package

useCases Collection of
RPUseCases

RO The collection of use
cases defined in this
package

userDefinedStereotypes Collection of
RPStereotypes

RO The collection of user-
defined stereotypes
defined in this package

addActor Adds the specified actor to the current
package

addClass Adds the specified class to the current
package

addCollaborationDiagram Adds the specified collaboration diagram to
the current package

addComponentDiagram Adds the specified component diagram to
the current package

addDeploymentDiagram Adds the specified deployment diagram to
the current package

addEvent Adds the specified event to the current
package

addFlowItems Adds the specified flowItem to the
flowItems collection

addFlows Adds the specified flow to the flows
collection

addGlobalFunction Adds the specified global function to this
package

addGlobalObject Adds a global object (instance) to the
current package

Name Type Access Description
350 API Reference Manual

Rhapsody Interfaces
addGlobalVariable Adds the specified global variable to the
current package

addLink Adds a link between two objects to the
current package

addNestedPackage Adds a nested package to the current
package

addNode Adds the specified node to the current
package

addObjectModelDiagram Adds the specified OMD to the current
package

addSequenceDiagram Adds the specified sequence diagram to the
current package

addType Adds the specified type to the current
package

addUseCase Adds the specified use case to the current
package

addUseCaseDiagram Adds the specified UCD to the current
package

deleteActor Deletes the specified actor from the current
package

deleteClass Deletes the specified class from the current
package

deleteCollaborationDiagram Deletes the specified collaboration diagram
from the current package

deleteComponentDiagram Deletes the specified component diagram
from the current package

deleteDeploymentDiagram Deletes the specified deployment diagram
from the current package

deleteEvent Deletes the specified event from the current
package

deleteFlowItems Deletes the specified flowItem from the
flowItems collection

deleteFlows Deletes the specified flow from the flows
collection

deleteGlobalFunction Deletes the specified global function from
the current package

deleteGlobalObject Deletes the specified global object from the
current package

deleteGlobalVariable Deletes the specified global variable from
the current package

deleteNode Deletes the specified node from the current
package

deleteObjectModelDiagram Deletes the specified OMD from the current
package

deletePackage Deletes the current package
Rational Rhapsody 351

Rhapsody API Interfaces
deleteSequenceDiagram Deletes the specified sequence diagram
from the current package

deleteType Deletes the specified type from the current
package

deleteUseCase Deletes the specified use case from the
current package

deleteUseCaseDiagram Deletes the specified use case diagram
from the current package

findActor Retrieves the specified actor, if it belongs to
the current package

findAllByName Searches all the elements and finds the first
element of the specified name and
metaclass in the current package

findClass Retrieves the specified class, if it belongs to
the current package

findEvent Retrieves the specified event, if it belongs to
the current package

findGlobalFunction Retrieves the specified global function, if it
belongs to the current package

findGlobalObject Retrieves the specified global object, if it
belongs to the current package

findGlobalVariable Retrieves the specified global variable, if it
belongs to the current package

findNode Retrieves the specified node, if it belongs to
the current package

findType Retrieves the specified data type, if it
belongs to the current package

findUsage Retrieves the usage of the specified
element in the current package

findUseCase Retrieves the specified use case, if it
belongs to the current package

recalculateEventsBaseId Recalculates the events base ID of the
package
352 API Reference Manual

Rhapsody Interfaces
addActor
Write method

Description

The addActor method adds the specified actor to the current package.

Visual Basic

Syntax

addActor (name As String) As RPActor

Arguments

name

The name of actor to add to this package

Return Value

The new actor added to the package

C/C++ Prototype

HRESULT addActor (BSTR name, IRPActor** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 353

Rhapsody API Interfaces
addClass
Write method

Description

The addClass method adds the specified class to the current package.

Visual Basic

Syntax

addClass (name As String) As RPClass

Arguments

name

The name of the class to be added

Return Value

The class added to this package

C/C++ Prototype

HRESULT addClass (BSTR name, IRPClass** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
354 API Reference Manual

Rhapsody Interfaces
addCollaborationDiagram
Write method

Description

The addCollaborationDiagram method adds the specified collaboration diagram to the current
package.

Visual Basic

Syntax

addCollaborationDiagram (name As String)
As RPCollaborationDiagram

Arguments

name

The name of the collaboration diagram to be added

Return Value

The new collaboration diagram added to this package

C/C++ Prototype

HRESULT addCollaborationDiagram (BSTR name,
IRPCollaborationDiagram** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 355

Rhapsody API Interfaces
addComponentDiagram
Write method

Description

The addComponentDiagram method adds the specified component diagram to the current
package.

Visual Basic

Syntax

addComponentDiagram (name As String)
As RPComponentDiagram

Arguments

name

The name of the component diagram to be added

Return Value

The new component diagram added to this package

C/C++ Prototype

HRESULT addComponentDiagram (BSTR name,
IRPComponentDiagram** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
356 API Reference Manual

Rhapsody Interfaces
addDeploymentDiagram
Write method

Description

The addDeploymentDiagram method adds the specified deployment diagram to the current
package.

Visual Basic

Syntax

addDeploymentDiagram (name As String)
As RPDeploymentDiagram

Arguments

name

The name of the deployment diagram to be added

Return Value

The new deployment diagram added to this package

C/C++ Prototype

HRESULT addDeploymentDiagram (BSTR name,
IRPDeploymentDiagram** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 357

Rhapsody API Interfaces
addEvent
Write method

Description

The addEvent method adds the specified event to the current package.

Visual Basic

Syntax

addEvent (name As String) As RPEvent

Arguments

name

The name of the event to be added

Return Value

The new event added to this package

C/C++ Prototype

HRESULT addEvent (BSTR name, IRPEvent** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
358 API Reference Manual

Rhapsody Interfaces
addFlowItems
Write method

Description

The addFlowItems method adds the specified flowItem to the flowItems collection.

Visual Basic

Syntax

addFlowItems (name As String) As RPFlowItem

Arguments

name

The name of the flowItem to add to the collection

Return Value

The new flowItem added to this package

C/C++ Prototype

HRESULT addFlowItems (BSTR name,
IRPFlowItem** ppItem)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 359

Rhapsody API Interfaces
addFlows
Write method

Description

The addFlows method adds the specified flow to the flows collection.

Visual Basic

Syntax

addFlows (name As String) As RPFlow

Arguments

name

The name of the flow to add to the collection

Return Value

The new flow added to this package

C/C++ Prototype

HRESULT addFlows (BSTR name, IRPFlow** ppFlow)

Return Value

HRESULT (0 for success, or a signed integer error code)
360 API Reference Manual

Rhapsody Interfaces
addGlobalFunction
Write method

Description

The addGlobalFunction method adds the specified global function to this package.

Visual Basic

Syntax

addGlobalFunction (name As String) As RPOperation

Arguments

name

The global function to be added

Return Value

The new global function added to this package

C/C++ Prototype

HRESULT addGlobalFunction (BSTR name,
IRPOperation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 361

Rhapsody API Interfaces
addGlobalObject
Write method

Description

The addGlobalObject method adds a global object (instance) to the current package.

Visual Basic

Syntax

addGlobalObject (name As String,
otherClassName As String,
otherClassPackageName As String) As RPRelation

Arguments

name

The name of the global instance to add

otherClassName

The name of the class-defining instance

otherClassPackageName

The name of the package with the class-defining instance

Return Value

The new global instance in this package

C/C++ Prototype

HRESULT addGlobalObject (BSTR name, BSTR otherClassName,
BSTR otherClassPackageName, IRPRelation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
362 API Reference Manual

Rhapsody Interfaces
addGlobalVariable
Write method

Description

The addGlobalVariable method adds the specified global variable to the current package.

Visual Basic

Syntax

addGlobalVariable (name As String) As RPAttribute

Arguments

name

The name of the global variable to add

Return Value

The new global variable added to this package

C/C++ Prototype

HRESULT addGlobalVariable (BSTR name,
IRPAttribute** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 363

Rhapsody API Interfaces
addLink
The addLink method adds a link between two objects to the current package.

Syntax

addLink(fromPart As RPInstance, toPart As RPInstance, assoc As RPRelation,
fromPort As RPPort, toPort As RPPort) As RPLink

Arguments

fromPart, toPart

The objects that are being linked.

assoc

Association that is being instantiated (optional).

fromPort, toPort

Ports that are being linked (optional).
364 API Reference Manual

Rhapsody Interfaces
addNestedPackage
Write method

Description

The addNestedPackage method adds a nested package to the current package.

Visual Basic

Syntax

addNestedPackage (name As String) As RPPackage

Arguments

name

The name of the nested package to add

Return Value

The nested package added to this package

C/C++ Prototype

HRESULT addNestedPackage (BSTR name, IRPPackage** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 365

Rhapsody API Interfaces
addNode
Write method

Description

The addNode method adds a node to the current package.

Visual Basic

Syntax

addNode (name As String) As RPNode

Arguments

name

The name of the node to add

Return Value

The new node added to this package

C/C++ Prototype

HRESULT addNode (BSTR name, IRPNode** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
366 API Reference Manual

Rhapsody Interfaces
addObjectModelDiagram
Write method

Description

The addObjectModelDiagram method adds the specified OMD to the current package.

Visual Basic

Syntax

addObjectModelDiagram (name As String)
As RPObjectModelDiagram

Arguments

name

The name of the OMD to add

Return Value

The OMD added to this package

C/C++ Prototype

HRESULT addObjectModelDiagram (BSTR name,
IRPObjectModelDiagram** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 367

Rhapsody API Interfaces
addSequenceDiagram
Write method

Description

The addSequenceDiagram method adds the specified sequence diagram to the current package.

Visual Basic

Syntax

addSequenceDiagram (name As String) As RPSequenceDiagram

Arguments

name

The name of the sequence diagram to add

Return Value

The sequence diagram added to this package

C/C++ Prototype

HRESULT addSequenceDiagram (BSTR name,
IRPSequenceDiagram** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
368 API Reference Manual

Rhapsody Interfaces
addType
Write method

Description

The addType method adds the specified type to the current package.

Visual Basic

Syntax

addType (name As String) As RPType

Arguments

name

The name of the type to add

Return Value

The new type added to this package

C/C++ Prototype

HRESULT addType (BSTR name, IRPType** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 369

Rhapsody API Interfaces
addUseCase
Write method

Description

The addUseCase method adds the specified use case to the current package.

Visual Basic

Syntax

addUseCase (name As String) As RPUseCase

Arguments

name

The name of the use case to add

Return Value

The use case added to this package

C/C++ Prototype

HRESULT addUseCase (BSTR name, IRPUseCase** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
370 API Reference Manual

Rhapsody Interfaces
addUseCaseDiagram
Write method

Description

The addUseCaseDiagram method adds the specified UCD to the current package.

Visual Basic

Syntax

addUseCaseDiagram (name As String) As RPUseCaseDiagram

Arguments

name

The name of the UCD to add

Return Value

The UCD added to this package

C/C++ Prototype

HRESULT addUseCaseDiagram (BSTR name,
IRPUseCaseDiagram** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 371

Rhapsody API Interfaces
deleteActor
Write method

Description

The deleteActor method deletes the specified actor from the current package.

Visual Basic

Syntax

deleteActor (actor As RPActor)

Arguments

actor

The actor to delete

C/C++ Prototype

HRESULT deleteActor (IRPActor *actor)

Return Value

HRESULT (0 for success, or a signed integer error code)
372 API Reference Manual

Rhapsody Interfaces
deleteClass
Write method

Description

The deleteClass method deletes the specified class from the current package.

Visual Basic

Syntax

deleteClass (theClass As RPClass)

Arguments

theClass

The class to delete

C/C++ Prototype

HRESULT deleteClass (IRPClass *theClass)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 373

Rhapsody API Interfaces
deleteCollaborationDiagram
Write method

Description

The deleteCollaborationDiagram method deletes the specified collaboration diagram from the
current package.

Visual Basic

Syntax

deleteCollaborationDiagram (name As String)

Arguments

name

The name of the collaboration diagram to delete

C/C++ Prototype

HRESULT deleteCollaborationDiagram (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
374 API Reference Manual

Rhapsody Interfaces
deleteComponentDiagram
Write method

Description

The deleteComponentDiagram method deletes the specified component diagram from the
current package.

Visual Basic

Syntax

deleteComponentDiagram (name As String)

Arguments

name

The name of the component diagram to delete

C/C++ Prototype

HRESULT deleteComponentDiagram (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 375

Rhapsody API Interfaces
deleteDeploymentDiagram
Write method

Description

The deleteDeploymentDiagram method deletes the specified deployment diagram from the
current package.

Visual Basic

Syntax

deleteDeploymentDiagram (name As String)

Arguments

name

The name of the deployment diagram to delete

C/C++ Prototype

HRESULT deleteDeploymentDiagram (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
376 API Reference Manual

Rhapsody Interfaces
deleteEvent
Write method

Description

The deleteEvent method deletes the specified event from the current package.

Visual Basic

Syntax

deleteEvent (event As RPEvent)

Arguments

event

The event to delete

C/C++ Prototype

HRESULT deleteEvent (IRPEvent *event)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 377

Rhapsody API Interfaces
deleteFlowItems
Write method

Description

The deleteFlowItems method deletes the specified flowItem from the flowItems collection.

Visual Basic

Syntax

deleteFlowItems (pItem As RPFlowItem)

Arguments

pItem

The name of the flowItem to remove from the collection

C/C++ Prototype

HRESULT deleteFlowItems (IRPFlowItem* pItem)

Return Value

HRESULT (0 for success, or a signed integer error code)
378 API Reference Manual

Rhapsody Interfaces
deleteFlows
Write method

Description

The deleteFlows method deletes the specified flow from the flows collection.

Visual Basic

Syntax

deleteFlows (pFlow As RPFlow)

Arguments

pFlow

The name of the flow to delete from the collection

C/C++ Prototype

HRESULT deleteFlows (IRPFlow* pFlow)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 379

Rhapsody API Interfaces
deleteGlobalFunction
Write method

Description

The deleteGlobalFunction method deletes the specified global function from the current
package.

Visual Basic

Syntax

deleteGlobalFunction (operation As RPOperation)

Arguments

operation

The global function to delete

C/C++ Prototype

HRESULT deleteGlobalFunction (IRPOperation* operation)

Return Value

HRESULT (0 for success, or a signed integer error code)
380 API Reference Manual

Rhapsody Interfaces
deleteGlobalObject
Write method

Description

The deleteGlobalObject method deletes the specified global object from the current package.

Visual Basic

Syntax

deleteGlobalObject (relation As RPRelation)

Arguments

relation

The global object to delete

C/C++ Prototype

HRESULT deleteGlobalObject (IRPRelation* relation)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 381

Rhapsody API Interfaces
deleteGlobalVariable
Write method

Description

The deleteGlobalVariable method deletes the specified global variable from the current
package.

Visual Basic

Syntax

deleteGlobalVariable (attribute As RPAttribute)

Arguments

attribute

The global variable to delete

C/C++ Prototype

HRESULT deleteGlobalVariable (IRPAttribute* attribute)

Return Value

HRESULT (0 for success, or a signed integer error code)
382 API Reference Manual

Rhapsody Interfaces
deleteNode
Write method

Description

The deleteNode method deletes the specified node from the current package.

Visual Basic

Syntax

deleteNode (name As String)

Arguments

name

The name of the node to delete

C/C++ Prototype

HRESULT deleteNode (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 383

Rhapsody API Interfaces
deleteObjectModelDiagram
Write method

Description

The deleteObjectModelDiagram method deletes the specified OMD from the current package.

Visual Basic

Syntax

deleteObjectModelDiagram (name As String)

Arguments

name

The name of the OMD to delete

C/C++ Prototype

HRESULT deleteObjectModelDiagram (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
384 API Reference Manual

Rhapsody Interfaces
deletePackage
Write method

Description

The deletePackage method deletes the current package.

Visual Basic

Syntax

deletePackage()

C/C++ Prototype

HRESULT deletePackage()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 385

Rhapsody API Interfaces
deleteSequenceDiagram
Write method

Description

The deleteSequenceDiagram method deletes the specified sequence diagram from the current
package.

Visual Basic

Syntax

deleteSequenceDiagram (name As String)

Arguments

name

The name of the sequence diagram to delete

C/C++ Prototype

HRESULT deleteSequenceDiagram (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
386 API Reference Manual

Rhapsody Interfaces
deleteType
Write method

Description

The deleteType method deletes the specified type from the current package.

Visual Basic

Syntax

deleteType (type As RPType)

Arguments

type

The type to delete

C/C++ Prototype

HRESULT deleteType (IRPType *type)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 387

Rhapsody API Interfaces
deleteUseCase
Write method

Description

The deleteUseCase method deletes the specified use case from the current package.

Visual Basic

Syntax

deleteUseCase (useCase As RPUseCase)

Arguments

useCase

The use case to delete

C/C++ Prototype

HRESULT deleteUseCase (IRPUseCase *useCase)

Return Value

HRESULT (0 for success, or a signed integer error code)
388 API Reference Manual

Rhapsody Interfaces
deleteUseCaseDiagram
Write method

Description

The deleteUseCaseDiagram method deletes the specified use case diagram from the current
package.

Visual Basic

Syntax

deleteUseCaseDiagram (name As String)

Arguments

name

The name of the UCD to delete

C/C++ Prototype

HRESULT deleteUseCaseDiagram (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 389

Rhapsody API Interfaces
findActor
Read method

Description

The findActor method retrieves the specified actor, if it belongs to the current package.

Visual Basic

Syntax

findActor (name As String) As RPActor

Arguments

name

The name of the actor to find

Return Value

If found, the RPActor; otherwise, NULL.

C/C++ Prototype

HRESULT findActor (BSTR name, IRPActor** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
390 API Reference Manual

Rhapsody Interfaces
findAllByName
Read method

Description

The findAllByName method searches all the elements and finds the first element of the
specified name and metaclass in the current package.

Visual Basic

Syntax

findAllByName (name As String, metaClass As String)
As RPModelElement

Arguments

name

The name of the element to find

metaclass

The name of the metaclass to find

Return Value

The first RPModelElement that matches the specified name and metaclass, or NULL if not
found

C/C++ Prototype

HRESULT findAllByName (BSTR name, BSTR metaClass,
IRPModelElement** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 391

Rhapsody API Interfaces
findClass
Read method

Description

The findClass method retrieves the specified class, if it belongs to the current package.

Visual Basic

Syntax

findClass (name As String) As RPClass

Arguments

name

The name of the class to find

Return Value

The RPClass, or NULL if not found

C/C++ Prototype

HRESULT findClass (BSTR name, IRPClass** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

findEvent
Read method

Description

The findEvent method retrieves the specified event, if it belongs to the current package.

Visual Basic

Syntax

findEvent (name As String) As RPEvent

Arguments

name

The name of the event to find
392 API Reference Manual

Rhapsody Interfaces
Return Value

The RPEvent*, or NULL if not found

C/C++ Prototype

HRESULT findEvent (BSTR name, IRPEvent** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 393

Rhapsody API Interfaces
findGlobalFunction
Read method

Description

The findGlobalFunction method retrieves the specified global function, if it belongs to the
current package.

Visual Basic

Syntax

findGlobalFunction (name As String) As RPOperation

Arguments

name

The name of the global function to find

Return Value

The RPOperation, or NULL if not found

C/C++ Prototype

HRESULT findGlobalFunction (BSTR name,
IRPOperation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
394 API Reference Manual

Rhapsody Interfaces
findGlobalObject
Read method

Description

The findGlobalObject method retrieves the specified global object, if it belongs to the current
package.

Visual Basic

Syntax

findGlobalObject (name As String) As RPRelation

Arguments

name

The name of the global object to find

Return Value

The RPRelation, or NULL if not found

C/C++ Prototype

HRESULT findGlobalObject (BSTR name, IRPRelation** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 395

Rhapsody API Interfaces
findGlobalVariable
Read method

Description

The findGlobalVariable method retrieves the specified global variable, if it belongs to the
current package.

Visual Basic

Syntax

findGlobalVariable (name As String) As RPAttribute

Arguments

name

The name of the global variable to look for

Return Value

The RPAttribute, or NULL if not found

C/C++ Prototype

HRESULT findGlobalVariable (BSTR name,
IRPAttribute** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
396 API Reference Manual

Rhapsody Interfaces
findNode
Read method

Description

The findNode method retrieves the specified node, if it belongs to the current package.

Visual Basic

Syntax

findNode (name As String) As RPNode

Arguments

name

The name of the node to look for

Return Value

The RPNode, or NULL if not found

C/C++ Prototype

HRESULT findNode (BSTR name, IRPNode** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 397

Rhapsody API Interfaces
findType
Read method

Description

The findType method retrieves the specified data type, if it belongs to the current package.

Visual Basic

Syntax

findType (name As String) As RPType

Arguments

name

The name of the type to find

Return Value

The RPType, or NULL if not found

C/C++ Prototype

HRESULT findType (BSTR name, IRPType** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
398 API Reference Manual

Rhapsody Interfaces
findUsage
Read method

Description

The findUsage method retrieves the usage of the specified element in the current package.

Visual Basic

Syntax

findUsage (objToFind As IRPModelElement) As RPCollection

Arguments

objToFind

The model element to look for in the current package

Return Value

The collection of model elements that reference objToFind in this package

C/C++ Prototype

HRESULT findUsage (IRPModelElement* objToFind,
IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 399

Rhapsody API Interfaces
findUseCase
Read method

Description

The findUseCase method retrieves the specified use case, if it belongs to the current package.

Visual Basic

Syntax

findUseCase (name As String) As RPUseCase

Arguments

name

The name of the use case to find

Return Value

The RPUseCase, or NULL if not found

C/C++ Prototype

HRESULT findUseCase (BSTR name, IRPUseCase** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
400 API Reference Manual

Rhapsody Interfaces
recalculateEventsBaseId
Write method

Description

The recalculateEventsBaseId method recalculates the events base ID of the package.

Visual Basic

Syntax

recalculateEventsBaseId() As Long

Return Value

The events base ID

C/C++ Prototype

HRESULT recalculateEventsBaseId (long *success)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 401

Rhapsody API Interfaces
IRPPin Interface

The IRPPin interface represents action pins added to actions, or activity parameters added to
action blocks, in an activity diagram. It inherits from IRPConnector.

To add an action pin to an action, use addConnector, for example:

action1.addConnector("InPin")

or

action1.addConnector("OutPin")

VB Properties

Sample Code

Sub action_pin_sample_IRPPin()

Dim currentProject As RPProject

Dim newPackage As RPPackage

Dim newClass As RPClass

Dim newActivityDiagram As RPFlowchart

Dim washingAction As RPState

Dim pinOnWashing As RPPin

Dim intType As RPModelElement

On Error GoTo errorHandlingCode

Set currentProject = getProject

Name Type Access Description

isParameter long RW Indicates whether the
element is an action pin or
an activity parameter.
If this is equal to 1 (as
opposed to 0), the element
is an activity parameter.

pinDirection String RW The possible values for
this property are “In”,
“Out”, “InOut”

pinType RPClassifier RW Represents the pin’s
argument type.
402 API Reference Manual

Rhapsody Interfaces
Set newPackage = currentProject.addPackage("Package_One")

Set newClass = newPackage.addClass("Class_A")

Set newActivityDiagram = newClass.addActivityDiagram

' set to Analysis-only because action pins are only available on analysis-
only diagrams

newActivityDiagram.isAnalysisOnly = 1

Set washingAction = newActivityDiagram.rootState.addState("Washing")

' create a pin whose direction is out

Set pinOnWashing = washingAction.addConnector("OutPin")

' set pin type to int

Set intType = currentProject.findNestedElementRecursive("int", "Type")

pinOnWashing.pinType = intType

Exit Sub

errorHandlingCode:

MsgBox errorMessage

End Sub
Rational Rhapsody 403

Rhapsody API Interfaces
IRPPort Interface

The IRPPort interface represents a Rhapsody port. It inherits from IRPInstance.

VB Properties

Method Summary

Example

The following script converts a black-box analysis block to a white-box analysis block, and
vice versa. It simply toggles all the ports of a block to behavioral or non-behavioral.

Name Type Access Description

contract RPClass RW Specifies the port contract.

isBehavioral Long RW Determines whether
messages sent to the port
are relayed to the owner
class.

isReversed Long RW If this is equal to 1 (as
opposed to 0), the
provided interfaces
become the required
interfaces, and the
required interfaces
become the provided
interfaces.

providedInterfaces Collection of
RPClasses

RO The collection of provided
interfaces for the port.

requiredInterfaces Collection of
RPClasses

RO The collection of required
interfaces for the port.

addProvidedInterface Adds the specified interface to the
collection of provided interfaces

addRequiredInterface Adds the specified interface to the
collection of required interfaces

removeProvidedInterface Removes the specified interface from
the collection of provided interfaces

removeRequiredInterface Removes the specified interface from
the collection of required interfaces
404 API Reference Manual

Rhapsody Interfaces
Public Sub ConvertPortsBB()
Dim curBlock As RPBlock
Dim port As RPPort

Set curBlock = getSelectedElement
For Each port In curBlock.ObjectAsObjectType.ports
port.isBehavioral = 1
Next

End Sub

Public Sub ConvertPortsWB()
Dim curBlock As RPBlock
Dim port As RPPort

Set curBlock = getSelectedElement
For Each port In curBlock.ObjectAsObjectType.ports
port.isBehavioral = 0
Next
End Sub
Rational Rhapsody 405

Rhapsody API Interfaces
addProvidedInterface
Write method

Description

The addProvidedInterface method adds the specified interface to the collection of provided
interfaces.

Visual Basic

Syntax

addProvidedInterface (newVal As RPClass)

Arguments

newVal

The name of the class to add to the collection of provided interfaces
for the port

C/C++ Prototype

HRESULT addProvidedInterface (IRPClass* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
406 API Reference Manual

Rhapsody Interfaces
addRequiredInterface
Write method

Description

The addRequiredInterface method adds the specified interface to the collection of required
interfaces.

Visual Basic

Syntax

addRequiredInterface (newVal As RPClass)

Arguments

newVal

The name of the class to add to the collection of required interfaces
for the port

C/C++ Prototype

HRESULT addRequiredInterface (IRPClass* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 407

Rhapsody API Interfaces
removeProvidedInterface
Write method

Description

The removeProvidedInterface method removes the specified interface from the collection of
provided interfaces.

Visual Basic

Syntax

removeProvidedInterface (newVal As RPClass)

Arguments

newVal

The name of the class to remove from the collection of provided
interfaces for the port

C/C++ Prototype

HRESULT removeProvidedInterface (IRPClass* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
408 API Reference Manual

Rhapsody Interfaces
removeRequiredInterface
Write method

Description

The removeRequiredInterface method removes the specified interface from the collection of
required interfaces.

Visual Basic

Syntax

removeRequiredInterface (newVal As RPClass)

Arguments

newVal

The name of the class to remove from the collection of provided
interfaces for the port

C/C++ Prototype

HRESULT removeRequiredInterface (IRPClass* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 409

Rhapsody API Interfaces
IRPProfile Interface

The IRPProfile interface represents a profile. It inherits from IRPPackage.

IRPProject Interface

The IRPProject interface represents a Rhapsody project (model). Use the
Application.openProject() method to obtain a handle to the project. The IRPProject
object is a singleton instance that aggregates all other instances. This class inherits from
IRPPackage.

Project is a concrete interface that inherits from IRPPackage.

VB Properties

Method Summary

Name Type Access Description

activeComponent RPComponent RW The active component in
the package.

activeConfiguration RPConfiguration RW The active configuration in
the active component.
The setting must be to a
configuration from the
active component,
otherwise an error is
flagged.

allStereotypes Collection of
RPStereotypes

RO A collection of all the
stereotypes used in the
current project.

components Collection of
RPComponents

RO A collection of all the
components used in this
project.

defaultDirectoryScheme String RW The default directory
scheme.

profiles Collection of
RPProfiles

RO The collection of profiles
used in this project.

addComponent Adds the specified component to the
current project

addPackage Adds the specified package to the
current project
410 API Reference Manual

Rhapsody Interfaces
addProfile Adds the specified profile to the
current project

checkEventsBaseIdsSolveCollisions Checks the values of the events base
IDs for all packages in the model,
detects collisions between the IDs,
and resolves any incorrect values and
collisions

close Closes the current project

deleteComponent Deletes the specified component from
the current project

findComponent Retrieves the specified component
from the current project

GenerateReport Generates a ReporterPLUS report for
the model.

getNewCollaboration Retrieves the new collaboration for the
current project

highlightFromCode Takes a filename and line number as
arguments and then highlights in the
Rhapsody browser the element that is
associated with the line of code
specified.

importPackageFromRose Imports the specified package from
Rational Rose

importProjectFromRose Imports the specified project from
Rational Rose

recalculateEventsBaseIds Recalculates the events base IDs
used by Rhapsody 6.1

save Saves the current project

saveAs Saves the current project to the
specified file name and location

setActiveComponent Sets the active configuration for the
current project

setActiveConfiguration Sets the active configuration for the
current project
Rational Rhapsody 411

Rhapsody API Interfaces
addComponent
Write method

Description

The addComponent method adds the specified component to the current project.

Visual Basic

Syntax

addComponent (name As String) As RPComponent

Arguments

name

The name of the component to add

Return Value

The RPComponent added to the current project

C/C++ Prototype

HRESULT addComponent (BSTR name,
IRPComponent** component)

Return Value

HRESULT (0 for success, or a signed integer error code)
412 API Reference Manual

Rhapsody Interfaces
addPackage
Write method

Description

The addPackage method adds the specified package to the current project.

Visual Basic

Syntax

addPackage (name As String) As RPPackage

Arguments

name

The name of the package to add

Return Value

The RPPackage* added to this project

C/C++ Prototype

HRESULT addPackage (BSTR name, IRPPackage** package)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 413

Rhapsody API Interfaces
addProfile
Write method

Description

The addProfile method adds the specified profile to the current project.

Visual Basic

Syntax

addProfile (name As String) As RPProfile

Arguments

name

The name of the profile to add

Return Value

The RPProfile added to this project

C/C++ Prototype

HRESULT addProfile (BSTR name, IRPProfile** profile)

Return Value

HRESULT (0 for success, or a signed integer error code)
414 API Reference Manual

Rhapsody Interfaces
checkEventsBaseIdsSolveCollisions
Read method

Description

The checkEventsBaseIdsSolveCollisions method checks the values of the events base IDs for
all packages in the model, detects collisions between the IDs, and resolves any incorrect
values and collisions.

Visual Basic

Syntax

checkEventsBaseIdsSolveCollisions()

C/C++ Prototype

HRESULT checkEventsBaseIdsSolveCollisions()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 415

Rhapsody API Interfaces
close
Read method

Description

The close method closes the current project.

Note that helper applications might not close the current document. Therefore, you should not
use close in a VBA macro that you specify as a helper.

Visual Basic

Syntax

close()

C/C++ Prototype

HRESULT close()

Return Value

HRESULT (0 for success, or a signed integer error code)
416 API Reference Manual

Rhapsody Interfaces
deleteComponent
Write method

Description

The deleteComponent method deletes the specified component from the current project.

Visual Basic

Syntax

deleteComponent (component As RPComponent)

Arguments

component

The component to delete

C/C++ Prototype

HRESULT deleteComponent (IRPComponent* component)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 417

Rhapsody API Interfaces
findComponent
Read method

Description

The findComponent method retrieves the specified component from the current project.

Visual Basic

Syntax

findComponent (name As String) As RPComponent

Arguments

name

The name of the component to find

Return Value

The RPComponent, or NULL if not found

C/C++ Prototype

HRESULT findComponent (BSTR name, IRPComponent** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
418 API Reference Manual

Rhapsody Interfaces
GenerateReport
GenerateReport(modelscope As String, templatename As String, docType As
String, filename As String, showDocument As Long, silentMode As Long)

Allows you to generate a ReporterPLUS report for the model. (When this method is used to
generate a report, the Rhapsody model is saved before the report is generated.)

modelscope—the name of the package for which the report should be generated. If empty, a report
is generated for the entire model. (This is similar to the "scope" command-line option for
ReporterPLUS.)

templatename—the name of the template to use. If empty, then the ReporterPLUS report
generation wizard will be launched and it will display the name of the last template used.

docType—the type of output to generate (doc, html, ppt, txt). If empty, the ReporterPLUS report
generation wizard will be launched and it will display the last output type used.

filename—the filename to use for the generated report. If empty, the ReporterPLUS report
generation wizard will be displayed and it will display the filename of the last generated report.

showDocument—In general, the user will be asked if they want to view the report after generation
only if they have requested this by selecting View > Options > Ask to open after generating report
from the main menu in ReporterPLUS. However, if the user has specified silent generation mode
using the parameter silentMode, this parameter can be used to request that the generated document
be displayed. To display the report, set this parameter to 1, otherwise use 0.

silentMode—If the template name, document type, or output file name has not been specified
using the appropriate parameter, the ReporterPLUS report generation wizard is displayed so the
user can provide the missing information. This is the behavior if this parameter is set to 0. If you
want to prevent the wizard from being launched in such cases, you can specify silent generation
mode by setting this parameter to 1. If set to silent mode, no report will be generated if one or more
of the above parameters was not provided. (The report generation status dialog is displayed
regardless of the value of this parameter.)

Sample code:

Dim proj As RPProject

Set proj = getProject

proj.GenerateReport "", "C:\Rhapsody\reporterplus\Templates\Class.tpl",
"html", "C:\testreport.html", 0, 0
Rational Rhapsody 419

Rhapsody API Interfaces
getNewCollaboration
Read method

Description

The getNewCollaboration method returns the new collaboration for the current project.

Visual Basic

Syntax

getNewCollaboration() As RPCollaboration

Return Value

The RPCollaboration

C/C++ Prototype

HRESULT getNewCollaboration(
IRPCollaboration** collaboration)

Return Value

HRESULT (0 for success, or a signed integer error code)
420 API Reference Manual

Rhapsody Interfaces
highlightFromCode
The method highlightFromCode takes a filename and line number as arguments and then
highlights in the Rhapsody browser the element that is associated with the line of code
specified.

The filename argument should consist of the absolute path for the file.

Syntax

highlightFromCode(filename As String, lineNumber As Long) As RPModelElement

Example

Dim proj As RPProject

Dim m As RPModelElement

Set proj = getProject

Set m =
proj.highlightFromCode("C:\Temp\P\DefaultComponent\DefaultConfig\C.cpp", 30)
Rational Rhapsody 421

Rhapsody API Interfaces
importPackageFromRose
Write method

Description

The importPackageFromRose method imports the specified package from Rational Rose into
Rhapsody 6.1.

Visual Basic

Syntax

importPackageFromRose (projectName As String,
packageName As String, logFileName As String)

Arguments

projectName

The name of the project

packageName

The name of the package

logFileName

The name of the log file

C/C++ Prototype

importPackageFromRose (BSTR projectName,
BSTR packageName, BSTR logFileName)

Return Value

HRESULT (0 for success, or a signed integer error code)
422 API Reference Manual

Rhapsody Interfaces
importProjectFromRose
Write method

Description

The importProjectFromRose method imports the specified project from Rational Rose into
Rhapsody 6.1.

Visual Basic

Syntax

importProjectFromRose (projectName As String,
logFileName As String)

Arguments

projectName

The name of the project

logFileName

The name of the log file

C/C++ Prototype

HRESULT importProjectFromRose (BSTR projectName,
BSTR logFileName)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 423

Rhapsody API Interfaces
recalculateEventsBaseIds
Write method

Description

The recalculateEventsBaseIds method recalculates the events base IDs used by the project.

Visual Basic

Syntax

recalculateEventsBaseIds ()

C/C++ Prototype

HRESULT recalculateEventsBaseIds ()

Return Value

HRESULT (0 for success, or a signed integer error code)
424 API Reference Manual

Rhapsody Interfaces
save
Read method

Description

The save method saves the current project.

Note: This method flags an error if one occurs.

Visual Basic

Syntax

save()

C/C++ Prototype

HRESULT save()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 425

Rhapsody API Interfaces
saveAs
Read method

Description

The saveAs method saves the current project to the specified file name and location.

Note: This method flags an error if one occurs.

Visual Basic

Syntax

saveAs (filename As String)

Arguments

filename

The name of the file to which to save the project

C/C++ Prototype

HRESULT saveAs (BSTR filename)

Return Value

HRESULT (0 for success, or a signed integer error code)
426 API Reference Manual

Rhapsody Interfaces
setActiveComponent
Write method

Description

The setActiveComponent method sets the active component for the current project.

Note: This method flags an error if one occurs.

Visual Basic

Syntax

setActiveComponent (name As String)

Arguments

name

The name of the active component

C/C++ Prototype

HRESULT setActiveComponent (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 427

Rhapsody API Interfaces
setActiveConfiguration
Write method

Description

The setActiveConfiguration method sets the active configuration for the current project.

Visual Basic

Syntax

setActiveConfiguration (name As String)

Arguments

name

The name of the active configuration

C/C++ Prototype

HRESULT setActiveConfiguration (BSTR name)

Return Value

HRESULT (0 for success, or a signed integer error code)
428 API Reference Manual

Rhapsody Interfaces
IRPRelation Interface

The IRPRelation interface represents a relationship between two classes (ofClass and
otherClass). It inherits from IRPUnit.

VB Properties

Name Type Access Description

inverse RPRelation RO If the relation is symmetric,
this is a pointer to the peer
relation.

isNavigable Long RW A flag indicating whether
the relation is navigable.

isSymmetric Long RO A flag indicating whether
the relation is bidirectional.
If this is equal to 1, the
Navigability property is set
as navigable for both
ends.
If this is equal to 0, the
navigability of the inverse
RPRelation is set to None.

multiplicity String RW The multiplicity of the
relation.

ObjectAsObjectType RPClass RO If this relation is a
Rhapsody in C object, it is
returned as a class.
An object (in RiC) plays
two roles: as an instance
of some class and the
class itself. When you get
an object (say by querying
the package owning it), it
comes “wearing” the
IRPRelation “hat.” If
you want to use it as a
class (object_type)
invoke this method on it
and the return value is the
same object “wearing” the
IRPClass “hat.”

ofClass RPClassifier RW The source class of the
relation.

otherClass RPClassifier RW The target class of the
relation.

qualifier String RW The qualifier of the
relation, if one exists.
Rational Rhapsody 429

Rhapsody API Interfaces
Method Summary

isTypelessObject
Read method

relationLabel String RW The link name given to the
relation.

relationLinkName String RW The name of the relation
link

relationRoleName String RW The name of role of the
participating elements in
the relation.

A relation consists of two
designations: a role name
and a relation name. For
example, two people can
be in a relation called
“marriage” (relation name)
with each person
designated by their role
within the marriage as
“spouse” (role name). For
IRPRelation objects,
the relation name is
mapped to the
IRPModelElement
property name and the
property
relationRoleName is
provided for the relation’s
role name.

relationType String RW The relation type
(Association, Aggregation,
or Composition).

visibility String RW The visibility of the relation
(Public, Protected, or
Private).

isTypelessObject Tests an object to see if it is defined explicitly or
implicitly

makeUnidirect Changes the current relation from a unidirectional
(symmetric) one to one that is directional from the me
of this relation to me’s inverse

setInverse Adds or updates the inverse relation

Name Type Access Description
430 API Reference Manual

Rhapsody Interfaces
Description

The isTypelessObject method tests an object to see if it is defined explicitly (“object of type
X”) or implicitly (“typeless” or “unique”).

Visual Basic

Syntax

isTypelessObject() As Long

Return Value

1 if the relation is typeless; otherwise 0

C/C++ Prototype

HRESULT isTypelessObject (long *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 431

Rhapsody API Interfaces
makeUnidirect
Write method

Description

The makeUnidirect method changes the current relation from a unidirectional (symmetric) one
to one that is directional from the me of this relation to me’s inverse.

Visual Basic

Syntax

makeUnidirect()

C/C++ Prototype

HRESULT makeUnidirect()

Return Value

HRESULT (0 for success, or a signed integer error code)
432 API Reference Manual

Rhapsody Interfaces
setInverse
Write method

Description

The setInverse method adds or updates the inverse relation. It provides a means for turning a
unidirectional relation into a symmetric one.

Visual Basic

Syntax

setInverse (roleName As String, linkType As String)

Arguments

roleName

The role name for the relation

linkType

The type of link (unidirectional or symmetric)

C/C++ Prototype

HRESULT setInverse (BSTR roleName, BSTR linkType)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 433

Rhapsody API Interfaces
IRPRequirement Interface

The IRPRequirement interface represents a Rhapsody requirement. It inherits from
IRPAnnotation.

IRPSequenceDiagram Interface

The IRPSequenceDiagram interface represents a sequence diagram. It inherits from
IRPDiagram.

Method Summary

getLogicalCollaboration
Read method

Description

The getLogicalCollaboration method retrieves the logic behind the collaboration diagram.

Visual Basic

Syntax

getLogicalCollaboration() As RPCollaboration

Return Value

The collaboration diagram

C/C++ Prototype

HRESULT getLogicalCollaboration (
IRPCollaboration** collaboration)

Return Value

HRESULT (0 for success, or a signed integer error code)

getRelatedUseCases
Read method

getLogicalCollaboration Retrieves the logic behind the collaboration
diagram

getRelatedUseCases Retrieves use cases related to the current
sequence diagram
434 API Reference Manual

Rhapsody Interfaces
Description

The getRelatedUseCases method retrieves use cases related to the current sequence diagram.

Visual Basic

Syntax

getRelatedUseCases() As RPCollection

Return Value

A collection of use cases related to this sequence diagram

C/C++ Prototype

HRESULT getRelatedUseCases (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 435

Rhapsody API Interfaces
IRPState Interface

The IRPState interface represents a state in a statechart. It inherits from IRPStateVertex.

VB Properties

Name Type Access Description

defaultTransition RPTransition* RO The default transition of
this state, if there is one.

entryAction String RW The actions executed
when this state is entered.

exitAction String RW The actions executed
when this state is exited.

isOverridden Long RO If this is equal to 1 (as
opposed to 0), the state is
overridden.
Currently, this property has
not been implemented.

isReferenceActivity Long RO If this is equal to 1 (as
opposed to 0), the state is
an activity reference.

itsStateChart RPStateChart RO The statechart of this
state.

itsSwimlane RPSwimlane RW The swimlane of this state.
Currently, this property has
not been implemented.

nestedStateChart RPStateChart RO The statechart nested
inside of this state.

referenceToActivity RPModelElement RW The referenced activity or
activity diagram.
436 API Reference Manual

Rhapsody Interfaces
Method Summary

stateType String RW The type of this state. The
possible values are as
follows:

• Or—state that
contains no concurrent
states

• And—state that
contains two or more
concurrent states

• LocalTermination
—termination state
element

• Block—action block
element

• Action—action
element

• SubActivity—
subactivity element

• ObjectFlow—object
node element

• ReferenceActivit
y—call behavior
element

• CallOperation—
call operation element

• EventState—send
action element

subStateVertices RPCollection of
RPStateVertex

RO A collection of transitions
and states that connect to
this state.

addConnector Adds a connector to the statechart

addState Adds a state to the statechart

addStaticReaction Adds a static reaction to the statechart

addTerminationState Adds a termination state to the statechart

createDefaultTransition Creates a default transition in the
statechart

createNestedStatechart Creates a nested statechart

deleteConnector Deletes the specified connector from the
statechart

deleteStaticReaction Deletes the specified static reaction from
the statechart

Name Type Access Description
Rational Rhapsody 437

Rhapsody API Interfaces
addConnector
Write method

Description

The addConnector method adds a connector to the current state.

Visual Basic

Syntax

addConnector (type As String) As RPConnector

Arguments

type

The connector type. The possible values are as follows:

Condition

getFullNameInStatechart Returns the full text name of this state
within its statecharts

getInheritsFrom Returns the base state from which the
current state inherits

getLogicalStates Retrieves the list of logical states

getStaticReactions Returns a collection of static reaction
transitions originating from the current
state

getSubStates Returns a collection of substates
belonging to the current state

isAnd Determines whether this state is an And
state

isCompound Determines whether the current state is a
compound state

isLeaf Determines whether the current state is a
leaf state

isRoot Determines whether the current state is a
root state

overrideInheritance Overrides inheritance for the current state

resetEntryActionInheritance Resets the inheritance of the entry action
of the current state

resetExitActionInheritance Resets the inheritance of the exit action of
the current state

setStaticReaction Sets the static reaction for the current
state

unoverrideInheritance Removes the override on inheritance for
this state
438 API Reference Manual

Rhapsody Interfaces
Fork

History

Join

Termination

Return Value

The new connector

C/C++ Prototype

HRESULT addConnector (BSTR type,
IRPConnector** connector)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 439

Rhapsody API Interfaces
addState
Write method

Description

The addState method adds a new state to the statechart.

Visual Basic

Syntax

addState (name As String) As RPState

Arguments

name

The name of the new state

Return Value

The new state added to the statechart

C/C++ Prototype

HRESULT addState (BSTR name, IRPState** state)

Return Value

HRESULT (0 for success, or a signed integer error code)
440 API Reference Manual

Rhapsody Interfaces
addStaticReaction
Write method

Description

The addStaticReaction method adds a static reaction to the state.

Visual Basic

Syntax

addStaticReaction (trigger As RPInterfaceItem)
As RPTransition

Arguments

trigger

The trigger to add to the statechart

Return Value

The new static reaction

C/C++ Prototype

HRESULT addStaticReaction (IRPInterfaceItem* trigger,
IRPTransition** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 441

Rhapsody API Interfaces
addTerminationState
Write method

Description

The addTerminationState method adds a termination state to the statechart.

Visual Basic

Syntax

addTerminationState() As RPState

Return Value

The new termination state

C/C++ Prototype

HRESULT addTerminationState (IRPState** state)

Return Value

HRESULT (0 for success, or a signed integer error code)
442 API Reference Manual

Rhapsody Interfaces
createDefaultTransition
Write method

Description

The createDefaultTransition method creates a default transition.

Visual Basic

Syntax

createDefaultTransition (from As RPState) As RPTransition

Arguments

from

The default state to which the default transition points

Return Value

The default transition

C/C++ Prototype

HRESULT createDefaultTransition (IRPState* from,
 IRPTransition** transition)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 443

Rhapsody API Interfaces
createNestedStatechart
Write method

Description

The createNestedStatechart method creates a nested statechart (substatechart).

Visual Basic

Syntax

createNestedStatechart() As RPStatechart

Return Value

The nested statechart

C/C++ Prototype

HRESULT createNestedStatechart (IRPStatechart** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
444 API Reference Manual

Rhapsody Interfaces
deleteConnector
Write method

Description

The deleteConnector method deletes the specified connector from the statechart.

Visual Basic

Syntax

deleteConnector (connector As RPConnector)

Arguments

connector

The connector to delete

C/C++ Prototype

HRESULT deleteConnector (IRPConnector* connector)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 445

Rhapsody API Interfaces
deleteStaticReaction
Write method

Description

The deleteStaticReaction method deletes the specified static reaction.

Visual Basic

Syntax

deleteStaticReaction (pVal As RPTransition)

Argument

pVal

The static reaction to delete

C/C++ Prototype

HRESULT deleteStaticReaction (IRPTransition *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

entryAction
Write method

Description

The entryAction method specifies an entry action for the state.

Visual Basic

Syntax

entryAction(body As String)

Arguments

body

The entry action

C/C++ Prototype

HRESULT entryAction(BSTR body)
446 API Reference Manual

Rhapsody Interfaces
Return Value

HRESULT (0 for success, or a signed integer error code)

exitAction
Write method

Description

The exitAction method defines an exit action for the state.

Visual Basic

Syntax

exitAction(body As String)

Arguments

body

The exit action

C/C++ Prototype

HRESULT exitAction(BSTR body)

Return Value

HRESULT (0 for success, or a signed integer error code)

getFullNameInStatechart
Read method

Description

The getFullNameInStatechart method returns the full text name of this state within its
statecharts.

Dot notation is used to indicate statechart nesting. For example, if statechart C is in statechart
B, which is in statechart A, the full text name of the C statechart is A.B.C.

Visual Basic

Syntax

getFullNameInStatechart() As String
Rational Rhapsody 447

Rhapsody API Interfaces
Return Value

The full textual name of a state within its statecharts

C/C++ Prototype

HRESULT getFullNameInStatechart (BSTR* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

getInheritsFrom
Read method

Description

The getInheritsFrom method returns the base state from which the current state inherits.

Visual Basic

Syntax

getInheritsFrom() As RPState

Return Value

The base state that this state inherits from

C/C++ Prototype

HRESULT getInheritsFrom (IRPState** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

getLogicalStates
Read method

Description

The getLogicalStates method retrieves the list of logical states.

Visual Basic

Syntax

getLogicalStates() As RPCollection
448 API Reference Manual

Rhapsody Interfaces
Return Value

The list of logical states

C/C++ Prototype

HRESULT getLogicalStates (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

getStaticReactions
Read method

Description

The getStaticReactions method returns a collection of static reaction transitions originating
from the current state.

Given a transition with a trigger T, guard condition G, and static reactions A, if T occurs and G is
true, the static reactions (also known as reactions in state) are executed while the object is still
in its original state.

Visual Basic

Syntax

getStaticReactions() As RPCollection

Return Value

A collection of the static reaction transitions originating from the current state

C/C++ Prototype

HRESULT getStaticReactions (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

getSubStates
Read method

Description

The getSubStates method returns a collection of substates belonging to the current state.
Rational Rhapsody 449

Rhapsody API Interfaces
Typically, this method retrieves the state members of a state (“substates”), unless the state
contains a nested statechart. In this case, to see the substates, you must descend further into the
nested statechart.

Visual Basic

Syntax

getSubStates() As RPCollection

Return Value

A collection of nested substates belonging to this state

C/C++ Prototype

HRESULT getSubStates (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isAnd
Read method

Description

The isAnd method determines whether this state is an And state.

Visual Basic

Syntax

isAnd() As Long

Return Value

1 if this state is an And state; otherwise 0

C/C++ Prototype

HRESULT isAnd (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isCompound
Read method
450 API Reference Manual

Rhapsody Interfaces
Description

The isCompound method determines whether the current state is a compound state.

Visual Basic

Syntax

isCompound() As Long

Return Value

1 if this state is a compound state; otherwise 0

C/C++ Prototype

HRESULT isCompound (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isLeaf
Read method

Description

The isLeaf method determines whether the current state is a leaf state.

Visual Basic

Syntax

isLeaf() As Long

Return Value

1 if this state is a leaf state; otherwise 0

C/C++ Prototype

HRESULT isLeaf (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isRoot
Read method
Rational Rhapsody 451

Rhapsody API Interfaces
Description

The isRoot method determines whether the current state is a root state.

Visual Basic

Syntax

isRoot() As Long

Return Value

1 if this state is a root state; otherwise 0

C/C++ Prototype

HRESULT isRoot (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

overrideInheritance

Note
Currently, this method has not been implemented.

Write method

Description

The overrideInheritance method overrides inheritance for the current state.

Visual Basic

Syntax

overrideInheritance()

C/C++ Prototype

HRESULT overrideInheritance()

Return Value

HRESULT (0 for success, or a signed integer error code)
452 API Reference Manual

Rhapsody Interfaces
resetEntryActionInheritance
Write method

Description

The resetEntryActionInheritance method resets the inheritance of the entry action of the current
state.

Visual Basic

Syntax

resetEntryActionInheritance() As RPState

Return Value

The updated state

C/C++ Prototype

HRESULT resetEntryActionInheritance (IRPState** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

resetExitActionInheritance
Write method

Description

The resetExitActionInheritance method resets the inheritance of the exit action for the current
state.

Visual Basic

Syntax

resetExitActionInheritance() As RPState

Return Value

The updated state

C/C++ Prototype

HRESULT resetExitActionInheritance (IRPState** pVal)
Rational Rhapsody 453

Rhapsody API Interfaces
Return Value

HRESULT (0 for success, or a signed integer error code)

setStaticReaction
Write method

Description

The setStaticReaction method sets the static reaction for the current state.

Visual Basic

Syntax

setStaticReaction (trigVal As String, guardVal As
String, actionVal As String)

Arguments

trigVal

The new value for the trigger

guardVal

The new value for the guard

actionVal

The new value for the action

C/C++ Prototype

HRESULT setStaticReaction (BSTR trigVal, BSTR guardVal,
BSTR actionVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

unoverrideInheritance

Note
Currently, this method has not been implemented.

Write method

Description

The unoverrideInheritance method removes the override on inheritance for the current state.
454 API Reference Manual

Rhapsody Interfaces
Visual Basic

Syntax

unoverrideInheritance()

C/C++ Prototype

HRESULT unoverrideInheritance()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 455

Rhapsody API Interfaces
stateType
Read method

Description

The stateType method specifies the state type of the current state.

Visual Basic

Syntax

stateType(type As String)

Arguments

type

The state type. The possible values are as follows:

 Or—state that contains no concurrent states
 And—state that contains two or more concurrent states
 LocalTermination—termination state element
 Block—action block element
 Action—action element
 SubActivity—subactivity element
 ObjectFlow—object node element
 ReferenceActivity—call behavior element
 CallOperation—call operation element
 EventState—send action element

C/C++ Prototype

HRESULT stateType(BSTR pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
456 API Reference Manual

Rhapsody Interfaces
IRPStatechart Interface

The IRPStatechart interface represents a statechart diagram. It inherits from IRPDiagram.

Note: You cannot create a statechart using the APIs. The statechart must already exist
for you to use the APIs on it.

VB Properties

Method Summary

Name Type Access Description

isOverridden Long RO If this is equal to 1 (as
opposed to 0), the state is
overridden.
Currently, this property has
not been implemented.

itsClass RPClass RO The class of this
statechart.

rootState RPState RO The default (starting) state
of this statechart.

createGraphics Creates graphics in the Rhapsody statechart

deleteState Deletes the specified state from the Rhapsody
statechart

findTrigger Determines whether the current statechart has a
trigger for the specified class interface element

getAllTriggers Returns a collection of all the triggers for the
current statechart

getInheritsFrom Returns a pointer to the base statechart from which
the current statechart inherits

overrideInheritance Overrides inheritance for the current state

unoverrideInheritance Removes the override on inheritance for the current
state
Rational Rhapsody 457

Rhapsody API Interfaces
createGraphics
Write method

Description

The createGraphics method creates graphics in the Rhapsody 6.1 statechart using the
information in the COM API methods.

Visual Basic

Syntax

createGraphics()

C/C++ Prototype

HRESULT createGraphics()

Return Value

HRESULT (0 for success, or a signed integer error code)
458 API Reference Manual

Rhapsody Interfaces
deleteState
Write method

Description

The deleteState method deletes the specified state from the statechart.

Visual Basic

Syntax

deleteState (state As RPState)

Arguments

state

The state to delete

C/C++ Prototype

HRESULT deleteState (IRPState* state)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 459

Rhapsody API Interfaces
findTrigger
Read method

Description

The findTrigger method determines whether the current statechart has a trigger for the
specified class interface element.

Visual Basic

Syntax

findTrigger (item As RPInterfaceItem) As Long

Arguments

item

The state to check

Return Value

1 if this statechart has a trigger; otherwise 0

C/C++ Prototype

HRESULT findTrigger (IRPInterfaceItem* item, long *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
460 API Reference Manual

Rhapsody Interfaces
getAllTriggers
Read method

Description

The getAllTriggers method returns a collection of all the triggers for the current statechart.

Visual Basic

Syntax

getAllTriggers() As RPCollection

Return Value

A collection of all the triggers (RPInterfaceItems) for this statechart

C/C++ Prototype

HRESULT getAllTriggers (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 461

Rhapsody API Interfaces
getInheritsFrom
Read method

Description

The getInheritsFrom method returns a pointer to the base statechart from which the current
statechart inherits.

Visual Basic

Syntax

getInheritsFrom() As RPStatechart

Return Value

The base statechart from which this statechart inherits

C/C++ Prototype

HRESULT getInheritsFrom (IRPStatechart** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
462 API Reference Manual

Rhapsody Interfaces
overrideInheritance

Note
Currently, this method has not been implemented.

Write method

Description

The overrideInheritance method overrides inheritance for the current state.

Visual Basic

Syntax

overrideInheritance()

C/C++ Prototype

HRESULT overrideInheritance()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 463

Rhapsody API Interfaces
unoverrideInheritance

Note
Currently, this method has not been implemented.

Write method

Description

The unoverrideInheritance method removes the override on inheritance for the current state.

Visual Basic

Syntax

unoverrideInheritance()

C/C++ Prototype

HRESULT unoverrideInheritance()

Return Value

HRESULT (0 for success, or a signed integer error code)
464 API Reference Manual

Rhapsody Interfaces
IRPStateVertex Interface

The IRPStateVertex interface represents all model elements that can be connectors or
states. It is an abstract interface that inherits from IRPModelElement.

VB Properties

Method Summary

addTransition
Write method

Description

The addTransition method creates a transition.

Visual Basic

Syntax

addTransition (to As RPStateVertex) As RPTransition

Arguments

to

The “to” state for the transition

Return Value

The new transition

Name Type Access Description

parent RPState RW The parent state or
connector

addTransition Creates a transition

deleteTransition Deletes a transition

getInTransitions Returns a collection of transitions that are directed into
the current state or connector

getOutTransitions Returns a collection of transitions that are directed out
of the current state or connector
Rational Rhapsody 465

Rhapsody API Interfaces
C/C++ Prototype

HRESULT addTransition (IRPStateVertex *to,
IRPTransition** transition)

Return Value

HRESULT (0 for success, or a signed integer error code)

deleteTransition
Write method

Description

The deleteTransition method deletes the specified transition.

Visual Basic

Syntax

deleteTransition (transition As RPTransition)

Arguments

transition

The transition to delete

C/C++ Prototype

HRESULT deleteTransition (IRPTransition *transition)

Return Value

HRESULT (0 for success, or a signed integer error code)

getInTransitions
Read method

Description

The getInTransitions method returns a collection of transitions that are directed into the current
state or connector.

Visual Basic

Syntax

getInTransitions() As RPCollection
466 API Reference Manual

Rhapsody Interfaces
Return Value

A collection of transitions going into this state or connector

C/C++ Prototype

HRESULT getInTransitions (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 467

Rhapsody API Interfaces
getOutTransitions
Read method

Description

The getOutTransitions method returns a collection of transitions that are directed out of the
current state or connector.

Visual Basic

Syntax

getOutTransitions() As RPCollection

Return Value

A collection of transitions going out of this state or connector

C/C++ Prototype

HRESULT getOutTransitions (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
468 API Reference Manual

Rhapsody Interfaces
parent
Read method

Description

The parent method returns the parent state.

Visual Basic

Syntax

parent(newVal As RPState)

Arguments

newVal

The parent state

C/C++ Prototype

HRESULT parent(IRPState* newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 469

Rhapsody API Interfaces
IRPStereotype Interface

The IRPStereotype interface represents a stereotype in the model. It inherits from
IRPModelElement.

VB Properties

IRPStructureDiagram Interface

The IRPStructureDiagram interface represents a Rhapsody structure diagram. It inherits
from IRPDiagram.

IRPSwimlane Interface

The IRPSwimlane interface represents a swimlane in an activity diagram. It inherits from
IRPModelElement.

VB Properties

Name Type Access Description

icon String RO The icon string attached to
the stereotype

ofMetaClass String RO The metaclass to which
the stereotype applies

Name Type Access Description

contents RPCollection RO A collection of states in the
swimlane

represents RPModelElement RW The object that
implements the swimlane
470 API Reference Manual

Rhapsody Interfaces
IRPTag Interface

The IRPTag interface represents a tag. It inherits from IRPVariable.

VB Properties

IRPTemplateInstantiation Interface

The IRPTemplateInstantiation interface represents a global variable in a Rhapsody
model. It inherits from IRPModelElement.

VB Properties

Name Type Access Description

tagMetaClass String RW The metaclass for the tag

value String RW The default value for the
tag

Name Type Access Description

templateInstantiationParameters Collection of
RPTemplate
Instantiation
Parameters

RO A collection of parameters
used for instantiation
Rational Rhapsody 471

Rhapsody API Interfaces
IRPTemplateInstantiationParameter Interface

The IRPTemplateInstantiationParameter interface represents a parameter used in
template instantiation in a Rhapsody model. It inherits from the IRPModelElement.

VB Properties

IRPTemplateParameter Interface

The IRPTemplateParameter interface represents a parameter for a template in a Rhapsody
model. It inherits from IRPVariable.

VB Properties

Method Summary

Name Type Access Description

argValue String RW The argument value for this
parameter of a template
instantiation

Name Type Access Description

typeName RPType RW The type of this template
parameter

setClassType Sets or changes the current template parameter to a
class type parameter
472 API Reference Manual

Rhapsody Interfaces
setClassType
Write method

Description

The setClassType method sets or changes the current template parameter to a class type
parameter. For example, parameter <int X> becomes <class X>.

Visual Basic

Syntax

setClassType()

C/C++ Prototype

HRESULT setClassType()

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 473

Rhapsody API Interfaces
IRPTransition Interface

The IRPTransition interface represents a transition in a statechart. It inherits from
IRPModelElement.

VB Properties

Method Summary

Name Type Access Description

isOverridden Long RO If this is equal to 1 (as
opposed to 0), the
transition is overridden.
Currently, this property
has not been
implemented.

itsLabel String RO The transition label for
this transition.

itsSource RPStateVertex RW The source state of this
transition.

itsStateChart RPStatechart RW The statechart of this
transition.

itsTarget RPStateVertex RW The target state of this
transition.

getInheritsFrom Returns the base transition from which the current
transition inherits

getItsAction Returns the action code of the current transition

getItsGuard Returns the guard condition of the current transition

getItsTrigger Returns the trigger (event or triggered operation) of
the current transition

getOfState Returns the source state for which this transition is
the default transition

isDefaultTransition Determines whether the current transition is a
default transition

isStaticReaction Determines whether this is a static reaction

itsCompoundSource Returns a collection of states that act as multiple
sources for this single transition

overrideInheritance Overrides inheritance for the current transition

resetLabelInheritance Resets the label inheritance

setItsAction Updates the current transition with a new action
474 API Reference Manual

Rhapsody Interfaces
getInheritsFrom
Read method

Description

The getInheritsFrom method returns the base transition from which the current transition
inherits.

Visual Basic

Syntax

getInheritsFrom() As RPTransition

Return Value

The base transition from which this transition inherits

C/C++ Prototype

HRESULT getInheritsFrom (IRPTransition** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

setItsGuard Updates the current transition with a new guard

setItsLabel Updates this transition with a new label
(trigger[guard]/action)

setItsTrigger Updates the current transition with a new trigger

unoverrideInheritance Removes the override on inheritance for the current
transition
Rational Rhapsody 475

Rhapsody API Interfaces
getItsAction
Read method

Description

The getItsAction method returns the action code of the current transition.

Visual Basic

Syntax

getItsAction() As RPAction

Return Value

The action code of this transition

C/C++ Prototype

HRESULT getItsAction (IRPAction** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
476 API Reference Manual

Rhapsody Interfaces
getItsGuard
Read method

Description

The getItsGuard method returns the guard condition of the current transition.

Visual Basic

Syntax

getItsGuard() As RPGuard

Return Value

The guard condition of this transition

C/C++ Prototype

HRESULT getItsGuard (IRPGuard** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 477

Rhapsody API Interfaces
getItsTrigger
Read method

Description

The getItsTrigger method returns the trigger (event or triggered operation) of the current
transition.

Visual Basic

Syntax

getItsTrigger() As RPTrigger

Return Value

The trigger of this transition

C/C++ Prototype

HRESULT getItsTrigger (IRPTrigger** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

Example

The following macro checks each transition to see if it has a trigger.

Sub checkNullTransitions()
Dim elem As RPModelElement
For Each elem In getProject.getNestedElementsRecursive

If elem.metaClass = "Transition" Then
Dim trans As RPTransition
Set trans = elem
If trans.getItsTrigger Is Nothing Then
Debug.Print "The trigger in transition '" +
trans.getFullPathName + "' is null!"
End If

End If
Next elem

End Sub
...
478 API Reference Manual

Rhapsody Interfaces
getOfState
Read method

Description

The getOfState method returns the source state for which this transition is the default
transition.

Suppose you want to figure out what event sequences lead to a state A. One way to retrieve
those values is to travel backwards from A, looking for all the transitions going into it. If they
are normal transitions, you can continue to their source. If they are default transitions, you
must find the parent using the method getOfState.

Visual Basic

Syntax

getOfState() As RPState

Return Value

The parent state for which this transition is the default transition. If this transition is the default
transition of its statechart, this method returns the parent; otherwise, it returns a NULL value.

C/C++ Prototype

HRESULT getOfState (IRPState** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 479

Rhapsody API Interfaces
isDefaultTransition
Read method

Description

The isDefaultTransition method determines whether the current transition is a default
transition.

Visual Basic

Syntax

isDefaultTransition() As Long

Return Value

1 if this transition is a default transition; otherwise 0

C/C++ Prototype

HRESULT isDefaultTransition (long *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isStaticReaction
Read method

Description

The isStaticReaction method determines whether this is a static reaction.

Visual Basic

Syntax

isStaticReaction() As Long

Return Value

1 if this is a static reaction; otherwise 0

C/C++ Prototype

HRESULT isStaticReaction (long *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
480 API Reference Manual

Rhapsody Interfaces
itsCompoundSource
Read method

Description

The itsCompoundSource method returns a collection of states that act as multiple sources for
this single transition.

For example, consider a junction connector. There can be many transitions from different
states that are resolved into one transition leaving a junction connector. For the transition
leaving a junction connector, this method gives all the source states.

Visual Basic

Syntax

itsCompoundSource() As RPCollection

Return Value

A collection of source states (RPStateVertexes) for this transition

C/C++ Prototype

HRESULT itsCompoundSource (IRPCollection** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 481

Rhapsody API Interfaces
overrideInheritance

Note
Currently, this method has not been implemented.

Write method

Description

The overrideInheritance method overrides inheritance for the current transition.

Visual Basic

Syntax

overrideInheritance()

C/C++ Prototype

HRESULT overrideInheritance()

Return Value

HRESULT (0 for success, or a signed integer error code)
482 API Reference Manual

Rhapsody Interfaces
resetLabelInheritance
Write method

Description

The resetLabelInheritance method resets the label inheritance.

Visual Basic

Syntax

resetLabelInheritance() As RPTransition

Return Value

The updated RPTransition

C/C++ Prototype

HRESULT resetLabelInheritance (IRPTransition** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

setItsAction
Write method

Description

The setItsAction method updates the current transition with a new action.

Visual Basic

Syntax

setItsAction (action As String) As RPAction

Return Value

The new action for the transition

C/C++ Prototype

HRESULT setItsAction (BSTR action, IRPAction** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 483

Rhapsody API Interfaces
setItsGuard
Write method

Description

The setItsGuard method updates the current transition with a new guard.

Visual Basic

Syntax

setItsGuard() As RPGuard

Return Value

The new guard for this transition

C/C++ Prototype

HRESULT setItsGuard (BSTR guard, IRPGuard** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

setItsLabel
Write method

Description

The setItsLabel method updates this transition with a new label (trigger[guard]/action)

Visual Basic

Syntax

setItsLabel (trigger As String, guard As String,
action As String)

Arguments

trigger

The new trigger value for this transition

guard

The new guard value for this transition

action

The new action value for this transition
484 API Reference Manual

Rhapsody Interfaces
C/C++ Prototype

HRESULT setItsLabel (BSTR trigger, BSTR guard,
BSTR action)

Return Value

HRESULT (0 for success, or a signed integer error code)

setItsTrigger
Write method

Description

The setItsTrigger method updates the current transition with a new trigger.

Visual Basic

Syntax

setItsTrigger (trigger As String) As RPTrigger

Return Value

The new trigger for this transition

C/C++ Prototype

HRESULT setItsTrigger (BSTR trigger, IRPTrigger** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

unoverrideInheritance

Note
Currently, this method has not been implemented.

Write method

Description

The unoverrideInheritance method removes the override on inheritance for the current
transition.
Rational Rhapsody 485

Rhapsody API Interfaces
Visual Basic

Syntax

unoverrideInheritance()

C/C++ Prototype

HRESULT unoverrideInheritance()

Return Value

HRESULT (0 for success, or a signed integer error code)
486 API Reference Manual

Rhapsody Interfaces
IRPTrigger Interface

The IRPTrigger interface represents a trigger of a transition in a statechart. It inherits from
IRPModelElement.

VB Properties

Method Summary

getItsOperation
Read method

Description

The getItsOperation method returns the event or triggered operation of the current trigger.

If the current trigger’s transition is labeled E[C]/A (where E is the event (event or triggered
operation) the trigger refers to, C is the guard condition, and A is the action), this method
returns the event E to which this trigger refers.

Visual Basic

Syntax

getItsOperation() As RPInterfaceItem

Return Value

The operation of this trigger

C/C++ Prototype

HRESULT getItsOperation (IRPInterfaceItem** pVal)

Name Type Access Description

body String RW The body of this trigger

getItsOperation Returns the event or triggered operation of the current
trigger

isOperation Determines whether the current trigger is an operation
(event or triggered operation)

isTimeout Determines whether the current trigger is a timeout
Rational Rhapsody 487

Rhapsody API Interfaces
Return Value

HRESULT (0 for success, or a signed integer error code)

isOperation
Read method

Description

The isOperation method determines whether the current trigger is an operation (event or
triggered operation).

Visual Basic

Syntax

isOperation() As Long

Return Value

1 if this trigger is an operation; otherwise 0

C/C++ Prototype

HRESULT isOperation (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
488 API Reference Manual

Rhapsody Interfaces
isTimeout
Read method

Description

The isTimeout method determines whether the current trigger is a timeout.

Visual Basic

Syntax

isTimeout() As Long

Return Value

1 if this trigger is a timeout; otherwise 0

C/C++ Prototype

HRESULT isTimeout (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 489

Rhapsody API Interfaces
IRPType Interface

The IRPType interface represents Rhapsody 6.1 data types. It inherits from IRPClassifier.

VB Properties

Name Type Access Description

declaration String RW The type declaration.

enumerationLiterals Collection of
RPEnumeration
Literals

RO A container that can be
manipulated only if the
kind of the type is
Enumerated

isPredefined Long RO A flag that indicates
whether this type is a
Rhapsody predefined
types. Predefined types
are defined in the package
unit files:
Share\Properties\
Predefined<lang>.
sbs

isTypedef Long RO A flag that indicates
whether this type is
defined with a typedef

isTypedefConstant Long RW A flag that indicates
whether the typedef is
defined as a constant (is
read-only, such as the
const qualifier in C++)

isTypedefOrdered Long RW A flag that indicated
whether the order of the
reference type items is
significant

isTypedefReference Long RW A flag that indicates
whether the typedef is
referenced as a reference
(such as a pointer (*) or an
address (&) in C++)

kind String RW Stores the type kind.

typedefBaseType RPClassifier RW Specifies the basic type of
the typedef

typedefMultiplicity String RW Specifies the multiplicity of
the typedef
490 API Reference Manual

Rhapsody Interfaces
Method Summary

addEnumerationLiteral Creates an enumeration literal

isArray Determines whether the current type is an array

isEnum Determines whether the current type is an
enumerated type

isEqualTo Tests for equality between the type of the type and
the type itself

isImplicit Determines whether the current type is an implicit
type

isKindEnumeration Determines whether the current type is an
enumeration

isKindLanguage Determines whether the current type is a language
declaration type

isKindStructure Determines whether the current type is a structure

isKindTypedef Determines whether the current type is a
typedef

isKindUnion Determines whether the current type is a union

isPointer Determines whether the current type is a pointer

isPointerToPointer Determines whether the current type is a pointer to
another pointer

isReference Determines whether the current type is a reference

isReferenceToPointer Determines whether the current type is a reference
to a pointer

isStruct Determines whether the current type is a struct

isTemplate Determines whether the current type is a template

isUnion Determines whether the current type is a union
Rational Rhapsody 491

Rhapsody API Interfaces
addEnumerationLiteral
Write method

Description

The addEnumerationLiteral method creates an enumeration literal.

Visual Basic

Syntax

addEnumerationLiteral (name As String)
As RPEnumerationLiteral

Arguments

name

The name of the enumeration literal to create

Return Value

The new enumeration literal

C/C++ Prototype

HRESULT addEnumerationLiteral (BSTR name,
IRPEnumerationLiteral** pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
492 API Reference Manual

Rhapsody Interfaces
isArray
Read method

Description

The isArray method determines whether the current type is an array.

Visual Basic

Syntax

isArray() As Long

Return Value

1 if the type is an array; 0 otherwise

C/C++ Prototype

HRESULT isArray (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isEnum
Read method

Description

The isEnum method determines whether the current type is an enumerated type.

Visual Basic

Syntax

isEnum() As Long

Return Value

1 if the type is an array; 0 otherwise

C/C++ Prototype

HRESULT isEnum (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 493

Rhapsody API Interfaces
isEqualTo
Read method

Description

The isEqualTo method tests for equality between the type of the type and the type itself.

Visual Basic

Syntax

isEqualTo() As Long

Return Value

The method returns 1 if the “type of the type” is equal to the type depended on, otherwise 0.

For example, if the type definition is typedef x, the type is equal to the type it depends on.
However, if the type definition is typedef x*, the type of the type is a pointer, and is
therefore different from the type itself.

C/C++ Prototype

HRESULT isEqualTo (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
494 API Reference Manual

Rhapsody Interfaces
isImplicit
Read method

Description

The isImplicit method determines whether the current type is an implicit type.

Visual Basic

Syntax

isImplicit() As Long

Return Value

1 if the type is an implicit type; 0 otherwise

C/C++ Prototype

HRESULT isImplicit (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isKindEnumeration
Read method

Description

The isKindEnumeration method determines whether the current type is an enumeration.

Visual Basic

Syntax

isKindEnumeration() As Long

Return Value

1 if the type is an enumeration; 0 otherwise

C/C++ Prototype

HRESULT isKindEnumeration (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 495

Rhapsody API Interfaces
isKindLanguage
Read method

Description

The isKindLanguage method determines whether the current type is a language declaration
type.

Visual Basic

Syntax

isKindLanguage() As Long

Return Value

1 if the type is a language declaration type; 0 otherwise

C/C++ Prototype

HRESULT isKindLanguage (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
496 API Reference Manual

Rhapsody Interfaces
isKindStructure
Read method

Description

The isKindStructure method determines whether the current type is a structure.

Visual Basic

Syntax

isKindStructure() As Long

Return Value

1 if the type is a structure; 0 otherwise

C/C++ Prototype

HRESULT isKindStructure (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 497

Rhapsody API Interfaces
isKindTypedef
Read method

Description

The isKindTypedef method determines whether the current type is a typedef.

Visual Basic

Syntax

isKindTypedef() As Long

Return Value

1 if the type is a typedef; 0 otherwise

C/C++ Prototype

HRESULT isKindTypedef (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
498 API Reference Manual

Rhapsody Interfaces
isKindUnion
Read method

Description

The isKindUnion method determines whether the current type is a union.

Visual Basic

Syntax

isKindUnion() As Long

Return Value

1 if the type is a union; 0 otherwise

C/C++ Prototype

HRESULT isKindUnion (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

isPointer
Read method

Description

The isPointer method determines whether the current type is a pointer.

Visual Basic

Syntax

isPointer() As Long

Return Value

1 if the type is a pointer; 0 otherwise

C/C++ Prototype

HRESULT isPointer (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 499

Rhapsody API Interfaces
isPointerToPointer
Read method

Description

The isPointerToPointer method determines whether the current type is a pointer to another
pointer.

Visual Basic

Syntax

isPointerToPointer() As Long

Return Value

1 if the type is a pointer to a pointer; 0 otherwise

C/C++ Prototype

HRESULT isPointerToPointer (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
500 API Reference Manual

Rhapsody Interfaces
isReference
Read method

Description

The isReference method determines whether the current type is a reference.

Visual Basic

Syntax

isReference() As Long

Return Value

1 if the type is a reference; 0 otherwise

C/C++ Prototype

HRESULT isReference (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 501

Rhapsody API Interfaces
isReferenceToPointer
Read method

Description

The isReferenceToPointer method determines whether the current type is a reference to a
pointer.

Visual Basic

Syntax

isReferenceToPointer() As Long

Return Value

1 if this type is a reference to a pointer; otherwise 0

C/C++ Prototype

HRESULT isReferenceToPointer (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
502 API Reference Manual

Rhapsody Interfaces
isStruct
Read method

Description

The isStruct method determines whether the current type is a struct.

Visual Basic

Syntax

isStruct() As Long

Return Value

1 if this type is a struct; otherwise 0

C/C++ Prototype

HRESULT isStruct (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 503

Rhapsody API Interfaces
isTemplate
Write method

Description

The isTemplate method determines whether the current type is a template.

Visual Basic

Syntax

isTemplate() As Long

Return Value

1 if this type is a template; otherwise 0

C/C++ Prototype

HRESULT isTemplate (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
504 API Reference Manual

Rhapsody Interfaces
isUnion
Write method

Description

The isUnion method determines whether the current type is a union.

Visual Basic

Syntax

isUnion() As Long

Return Value

1 if this type is a union; otherwise 0

C/C++ Prototype

HRESULT isUnion (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 505

Rhapsody API Interfaces
IRPUnit Interface

The IRPUnit interface represents all model elements that can be stored as units for
configuration management (CM) purposes. It is an abstract interface that inherits from
IRPModelElement.

VB Properties

Method Summary

Name Type Access Description

CMHeader String RW The CM header of this unit

currentDirectory String RO The current directory

filename String RW The name of the file that
stores the unit

includeInNextLoad Long RW Indicates whether or not
the unit should be loaded
the next time the model is
loaded.

isStub Long RO Specifies whether this is a
stub

structureDiagrams Collection of
RPStructure
Diagrams

RO Collection of structure
diagrams that can be
stored as units

isReadOnly Determines whether the current unit is read-only

isReferenceUnit Determines whether the current unit was added to the
model as a reference

isSeparateSaveUnit Determines whether the current unit is saved in its own
(separate) file

load Loads the specified unit

save Saves the specified unit

setReadOnly Specifies whether the current unit is read-only

setSeparateSaveUnit Sets a unit to be stored to its own file
506 API Reference Manual

Rhapsody Interfaces
isReadOnly
Read method

Description

The isReadOnly method determines whether the current unit is read-only.

Visual Basic

Syntax

isReadOnly() As Long

Return Value

1 if this unit is read-only; otherwise 0

C/C++ Prototype

HRESULT isReadOnly (long* pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 507

Rhapsody API Interfaces
isReferenceUnit
Read method

Description

The isReferenceUnit method determines whether the current unit was added to the model as a
reference.

Visual Basic

Syntax

isReferenceUnit() As Long

Return Value

1 if this unit was added to the model as a reference; otherwise 0

C/C++ Prototype

HRESULT isReferenceUnit(long* val)

Return Value

HRESULT (0 for success, or a signed integer error code)

isSeparateSaveUnit
Read method

Description

The isSeparateSaveUnit method determines whether the current unit is saved in its own
(separate) file.

Visual Basic

Syntax

isSeparateUnit() As Long

Return Value

1 if this unit is saved to its own file; otherwise 0

C/C++ Prototype

HRESULT isSeparateSaveUnit (long* pVal)
508 API Reference Manual

Rhapsody Interfaces
Return Value

HRESULT (0 for success, or a signed integer error code)

load
Write method

Description

The load method loads the specified unit.

Visual Basic

Syntax

load (withSubs As Long) As RPUnit

Argument

withSubs

Set this to 1 to load the unit’s subunits. Otherwise, set this to 0.

Return Value

The loaded unit

C/C++ Prototype

HRESULT load (long withSubs, IRPUnit** ret)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 509

Rhapsody API Interfaces
save
Read method

Description

The save method saves the current unit.

Visual Basic

Syntax

save (withSubs As Long)

Argument

withSubs

Set this to 1 to load the unit’s subunits. Otherwise, set this to 0.

C/C++ Prototype

HRESULT save (long withSubs)

Return Value

HRESULT (0 for success, or a signed integer error code)

setReadOnly
Write method

Description

The setReadOnly method specifies whether the current unit is read-only.

Visual Basic

Syntax

setReadOnly (pVal As Long)

Arguments

pVal

Set this argument to 1 to make the unit read-only; set it to 0 to make
the unit read/write.

C/C++ Prototype

HRESULT setReadOnly (long pVal)
510 API Reference Manual

Rhapsody Interfaces
Return Value

HRESULT (0 for success, or a signed integer error code)

setSeparateSaveUnit
Write method

Description

The setSeparateSaveUnit method sets a unit to be stored to its own file.

Visual Basic

Syntax

setSeparateSaveUnit (pVal As Long)

Arguments

pVal

Set this argument to 1 to have the unit stored to its own file.
Otherwise, set it to 0.

C/C++ Prototype

HRESULT setSeparateSaveUnit (long pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
Rational Rhapsody 511

Rhapsody API Interfaces
IRPUseCase Interface

The IRPUseCase interface represents a Rhapsody use case. It inherits from IRPClassifier.

VB Properties

Method Summary

Name Type Access Description

describingDiagrams Collection of
RPSequenceDiagram

RO A collection of
sequence
diagrams that
describe this use
case

entryPoints Collection of strings RO A collection of
entry points into
this use case

extensionPoints RPCollection RO A collection of
extension points

addDescribingDiagram Adds a describing diagram for the current use
case

addExtensionPoint Adds an extension point to the current use case

deleteDescribingDiagram Deletes the describing use case or sequence
diagram for the current use case

deleteEntryPoint Deletes the entry point of the current use case

deleteExtensionPoint Deletes the specified extension point

findEntryPoint Deletes the specified entry point

findExtensionPoint Retrieves the extension point, given the
generalization

getDescribingDiagram Retrieves the use case diagram or sequence
diagram linked to the current use case
512 API Reference Manual

Rhapsody Interfaces
addDescribingDiagram
Write method

Description

The addDescribingDiagram method adds a describing diagram for the current use case.

Visual Basic

Syntax

addDescribingDiagram (diagram As RPDiagram)

Arguments

diagram

The name for the new, describing diagram

C/C++ Prototype

HRESULT addDescribingDiagram (IRPDiagram* diagram)

Return Value

HRESULT (0 for success, or a signed integer error code)

addExtensionPoint
Write method

Description

The addExtensionPoint method adds an extension point to the current use case.

Visual Basic

Syntax

addExtensionPoint (entryPoint As String)

Arguments

entryPoint

The name of the new entry point

C/C++ Prototype

HRESULT addExtensionPoint (BSTR entryPoint)
Rational Rhapsody 513

Rhapsody API Interfaces
Return Value

HRESULT (0 for success, or a signed integer error code)

deleteDescribingDiagram
Write method

Description

The deleteDescribingDiagram method deletes the describing use case or sequence diagram for
the current use case.

Visual Basic

Syntax

deleteDescribingDiagram (diagram As RPDiagram)

Arguments

diagram

The use case or sequence diagram that describes the current use case

C/C++ Prototype

HRESULT deleteDescribingDiagram (IRPDiagram* diagram)

Return Value

HRESULT (0 for success, or a signed integer error code)
514 API Reference Manual

Rhapsody Interfaces
deleteEntryPoint
Write method

Description

The deleteEntryPoint method deletes the entry point of the current use case.

Visual Basic

Syntax

deleteEntryPoint (entryPoint As String)

Arguments

entryPoint

The name of the entry point to delete

C/C++ Prototype

HRESULT deleteEntryPoint (BSTR entryPoint)

Return Value

HRESULT (0 for success, or a signed integer error code)

deleteExtensionPoint
Write method

Description

The deleteExtensionPoint method deletes the specified extension point.

Visual Basic

Syntax

deleteExtensionPoint (point As String)

Arguments

entryPoint

The extension point to delete

C/C++ Prototype

HRESULT deleteExtensionPoint (BSTR entrypoint)
Rational Rhapsody 515

Rhapsody API Interfaces
Return Value

HRESULT (0 for success, or a signed integer error code)

findEntryPoint
Read method

The findEntryPoint method returns the specified entry point of the current use case, given the
generalization.

Visual Basic

Syntax

findEntryPoint (gen As RPGeneralization) As String

Arguments

gen

The generalization

Return Value

The entry point

C/C++ Prototype

HRESULT findEntryPoint (IRPGeneralization* gen,
BSTR *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
516 API Reference Manual

Rhapsody Interfaces
findExtensionPoint
Read method

The findExtensionPoint method returns the specified extension point of the current use case,
given the generalization.

Visual Basic

Syntax

findExtensionPoint (gen As RPGeneralization) As String

Arguments

gen

The generalization

Return Value

The extension point

C/C++ Prototype

HRESULT findExtensionPoint (IRPGeneralization* gen,
BSTR *pVal)

Return Value

HRESULT (0 for success, or a signed integer error code)

getDescribingDiagram
Read method

Description

The getDescribingDiagram method retrieves the use case diagram or sequence diagram linked
to the current use case.

Visual Basic

Syntax

getDescribingDiagram (name As String) As RPDiagram

Arguments

name

The name of the use case diagram or sequence diagram that is linked
(for descriptive purposes) to the current use case
Rational Rhapsody 517

Rhapsody API Interfaces
Return Value

The diagram of the specified use case

C/C++ Prototype

HRESULT getDescribingDiagram (BSTR name,
IRPDiagram** diagram)

Return Value

HRESULT (0 for success, or a signed integer error code)
518 API Reference Manual

Rhapsody Interfaces
IRPUseCaseDiagram Interface

The IRPUseCaseDiagram interface represents a use case diagram. It inherits from
IRPDiagram.

Currently, it does not expose additional functionality to IRPDiagram.

IRPInternalOEMPlugin

This interface is used for internal purposes only.

IRPVariable Interface

The IRPVariable interface represents a variable in a Rhapsody 6.1 model. It represents the
UML TypedElement.

IRPVariable inherits from IRPModelElement.

VB Properties

Method Summary

Name Type Access Description

declaration String RW The declaration statement
for the variable

defaultValue String RW The default value for the
variable

type RPClassifier RW The data type of the
variable

typeOf RPType RW The variable’s type

setTypeDeclaration Updates the type declaration for the current attribute
Rational Rhapsody 519

Rhapsody API Interfaces
setTypeDeclaration
Write method

Description

The setTypeDeclaration method updates the type declaration for the current attribute.

Visual Basic

Syntax

setTypeDeclaration (newVal As String)

Arguments

newVal

The type declaration for this attribute

C/C++ Prototype

HRESULT setTypeDeclaration (BSTR newVal)

Return Value

HRESULT (0 for success, or a signed integer error code)
520 API Reference Manual

The Callback API
The Callback API consists of a number of methods that can be used to respond to events that occur
in Rhapsody. This response can consist of actions taken by an external application and/or
preventing Rhapsody from proceeding with a specific action.

Callback API Introduction
The Callback API is implemented as a number of COM connection point interfaces.These callback
methods can be used by:

 client applications using the Rhapsody COM or Java APIs, in the following languages:
– VB
– VBA
– C++
– Java

 client plug-ins to Rhapsody

For the methods that have boolean return values, the client application can return a value of True in
order to prevent Rhapsody from proceeding with the action connected to the event, for example,
preventing a diagram from being opened.

Clients can receive event notification by registering the corresponding COM connection point
interface using the standard COM mechanism.

Multiple clients can register for any given callback, however, there is no guarantee that the clients
will be notified in a specific order.

In cases where multiple clients have registered, if one client responds by cancelling the associated
Rhapsody action, the remaining clients will not be notified of the event.

Rhapsody can log all callbacks invoked. For Rhapsody actions that can be cancelled by clients, it
also logs the action taken. For details on enabling logging, see Callback Logging.
Rational Rhapsody 521

The Callback API
Callback notification can be disabled completely, or for specific interfaces by adding appropriate
entries to the rhapsody.ini file. For details on complete or partial disabling of callback notification,
see Disabling Callback Notification.

When callback notification is enabled, you have the option of disabling the ability of a client
application to prevent Rhapsody from proceeding with an action. This can be done for all
cancellable actions or just for specific cancellable actions. For details, see Disabling Cancellable
Actions.

Events with Callback Methods
The Rhapsody API includes callback methods for the following Rhapsody events:

 project about to be closed
 project closed
 feature dialog about to be opened
 diagram about to be opened
 Rhapsody about to perform roundtrip
 code generation completed

Note
These events can only be responded to by using the Rhapsody API. They are not available
as triggers in the Helpers dialog (Tools > Customize).
522 API Reference Manual

API Details
API Details
This section lists individual Rhapsody APIs with the API format and a description of its uses.

IRPApplicationListener

The IRPApplicationListener API is called before and after Rhapsody closes a project.

BeforeProjectClose
BOOL BeforeProjectClose(IRPProject Project)

This is called before a project is closed. The argument is the project that is to be closed.

If a client returns True, then the project will not be closed.

Points to take into consideration:

 If a client returns True to prevent the closing of the project, other clients that have
registered will not be notified of the event.

 When multiple projects are to be closed, the method is called separately for each project. If
a client prevents the closing of a specific project, this does not affect the calling of the
method for the remaining projects.

AfterProjectClose
void AfterProjectClose(BSTR ProjectName)

This is called after Rhapsody closes a project. The argument is the name of the project that was
closed.

Points to take into consideration:

 When multiple projects are closed, the method is called separately for each project.
 This method is not available for VBA clients. (This is because the VBA application is part

of the Rhapsody project so it cannot be run after the project is closed.)

OnDiagramOpen
BOOL OnDiagramOpen(IRPDiagram Diagram)

This is called before a diagram is opened. The argument is the diagram that Rhapsody is about to
open.

If a client returns True, then the diagram will not be opened.
Rational Rhapsody 523

The Callback API
Points to take into consideration:

 If a client returns True to prevent the opening of the diagram, other clients that have
registered will not be notified of the event.

 The method is only called when a diagram is explicitly opened using the Rhapsody GUI or
the Rhapsody API. It is not called when a diagram is opened as part of the restoration of
the previous Rhapsody workspace.

OnFeaturesOpen
BOOL OnFeaturesOpen(IRPModelElement ModelElement)

This is called before the Features dialog is opened for a given element. The argument is the model
element for which the Features dialog is going to be opened.

If a client returns True, then the Features dialog will not be opened for the element.

Points to take into consideration:

 If a client returns True to prevent the opening of the Features dialog, other clients that have
registered will not be notified of the event.

 The method is only called when the Features dialog is explicitly opened using the
Rhapsody GUI or the Rhapsody API. It is not called when the Features dialog is opened
as part of the restoration of the previous Rhapsody workspace.
524 API Reference Manual

API Details
IRPRoundTripListener

The IRPRoundTripListener is called before the source code files are roundtripped into the model.

BeforeRoundtrip
void BeforeRoundtrip(IRPCollection fileNames)

This is called before source code files are roundtripped into the model.

The argument consists of the files that are going to be roundtripped into the model.

IRPCodeGeneratorListener

The IRPCodeGeneratorListener is called after code generation.

CodeGenerationCompleted
void CodeGenerationCompleted()

This is called after code generation has been completed.

Points to take into consideration:

 Clients should not modify generated code files in the framework of the callback method.
This will result in timestamp inconsistency in the model-generated code, creating
potential problems.
Rational Rhapsody 525

The Callback API
Callback Logging
By default, Rhapsody does not maintain a log file of callback events. To enable logging of callback
events and cancellable actions, add the entry EnableCallbackLogging to a section called
[Callback] in the rhapsody.ini file and set it to TRUE.

If you enable logging, the events and actions will be logged to a file called callback_log.txt in the
system temporary directory.

Disabling Callback Notification
Callback functionality can be disabled completely, or for specific interfaces by adding one or more
of the following entries to a section called [Callback] in the rhapsody.ini file:

To disable the callback mechanism for project closing, opening diagrams, and opening the
Features dialog, add the entry EnableApplicationEventListening and set it to FALSE. Rhapsody
will not notify registered clients of these events.

To disable the callback mechanism for roundtripping, add the entry
EnableRoundTripEventListening and set it to FALSE. Rhapsody will not notify registered clients
of roundtripping events.

To disable the callback mechanism for code generation, add the entry
EnableCodeGenerationEventListening and set it to FALSE. Rhapsody will not notify registered
clients of code generation events.

To disable the callback mechanism completely, add the entry EnableEventListening and set it to
FALSE. Rhapsody will not notify registered clients of any of the callback events.

Disabling Cancellable Actions
When callback notification is enabled, you can disable the ability of a client application to prevent
Rhapsody from proceeding with an action by adding one or more of the following entries to a
section called [Callback] in the rhapsody.ini file:

To disable the ability to prevent Rhapsody from closing a project, add the entry
CanCancelProjectClose and set it to FALSE.

To disable the ability to prevent Rhapsody from opening a diagram, add the entry
CanCancelOpenDiagram and set it to FALSE.

To disable the ability to prevent Rhapsody from opening the Features dialog for an element, add
the entry CanCancelOpenFeaturesDialog and set it to FALSE.
526 API Reference Manual

Sample Client Applications
If you don’t want to allow clients to prevent any of the cancellable actions, add the entry
CanCancelAction and set it to FALSE.

Sample Client Applications
Sample client applications that use the callback API to respond to Rhapsody events can be found
in the Rhapsody samples directory ([installation directory]\Samples\ExtensibilitySamples\
CallbackAPISamples).

The samples provided are written in a number of different languages.
Rational Rhapsody 527

The Callback API
528 API Reference Manual

Quick Reference
This section lists the Rhapsody API methods and provides a brief description of each. For ease of
use, the methods are presented in alphabetical order.

Method Name Description

Abort Is invoked when the user selects the Abort option during
code generation

activeProject Returns a pointer to the active (open) project

addActivityDiagram Adds an activity diagram to the current class

addActor Adds the specified actor to the current package

addAnchor Adds an anchor from the annotation to the specified
model element

addArgument Adds an argument for the operation to the end of its
argument list

addArgumentBeforePosition Adds an argument for the operation at the specified
position in its argument list

addAttribute Adds an attribute to the current class

addBlock Adds a block to the current package

addClass Adds a class to the current class

addClassifierRole Adds a classifier role

addClassifierRoleByName Adds a classifier role, given its name

addCollaborationDiagram Adds a collaboration diagram to the current package

addComponent Adds the specified component to the current project

addComponentDiagram Adds a component diagram to the current package

addComponentInstance Adds a new component instance

addConfiguration Adds a configuration to this component

addConnector Adds a connector to the statechart

addConstructor Adds a constructor to the current class
Rational Rhapsody 529

Quick Reference
addConveyed Adds an information element to the conveyed
collection

addCtor Adds a constructor

addDependency Adds a dependency relationship to the specified object

addDependencyTo Creates a new dependency between two objects

addDeploymentDiagram Adds the specified deployment diagram to the current
package

addDescribingDiagram Adds a describing diagram for the current use case

addDestructor Adds a destructor to the current class

addDtor Adds a destructor

addElement Adds an element to the current file

addEnumerationLiteral Creates an enumeration literal

addEvent Adds the specified event to the current package

addEventReception Adds an event reception to the current class

addExtensionPoint Adds an extension point to the current use case

addFile Adds an empty file to the current component

addFlowItems Adds the specified flowItem to the collection of flowItems

addFlows Adds the specified flow to the collection of flows

addFolder Adds an empty folder to the current component

addGeneralization Adds a generalization to the current class

addGlobalFunction Adds the specified global function to this package

addGlobalObject Adds a global object (instance) to the current package

addGlobalVariable Adds the specified global variable to the current package

addInitialInstance Adds an instance to the list of initial instances for the
current configuration

addItem Adds an item to the collection

addMessage Adds a message

addNestedComponent Adds a component to the current component

addNestedPackage Adds a nested package to the current package

addNewAggr Used to add a new element to the current element, for
example, adding a new class to a package

addNode Adds the specified node to the current package

Method Name Description
530 API Reference Manual

addObjectModelDiagram Adds the specified OMD to the current package

addOperation Adds an operation to the current class

addPackage Adds the specified package to the current project

addPackageToInstrumentationScope Adds the specified package to the instrumentation scope,
including all its aggregated classes, actors, and nested
packages

addPackageToScope Adds the specified package to the scope of the file or
folder

addProperty Adds a new property/value pair for the current element

addProvidedInterface Adds the specified interface to the collection of provided
interfaces

addReferenceActivity Adds a reference activity to the activity diagram

addRelation Adds a symmetric relation between the current class and
another one

addRepresented Adds a flowItem to the represented collection

addRequiredInterface Adds the specified interface to the collection of required
interfaces

addScopeElement Places a model element within the scope of the current
component

addSequenceDiagram Adds the specified sequence diagram to the current
package

addState Adds a state to the statechart

addStatechart Adds a statechart to the current class

addStaticReaction Adds a static reaction to the statechart

addStereotype Adds a stereotype relationship to the specified object

addSuperclass Adds a superclass to the current class

addSwimlane Adds a swimlane to the activity diagram

addSystemBorder Adds a system border to the collaboration diagram

addTerminationState Adds a termination state to the statechart

addTextElement Adds text to the file

addTimeInterval Adds a time interval to the diagram

addTimeout Adds a timeout

addToInstrumentationScope Adds explicit initial instances to the instrumentation
scope

Method Name Description
Rational Rhapsody 531

Quick Reference
addToModel Adds a Rhapsody unit located in the specified file to the
current model with or without descendant elements

addToModelFromURL Adds a Rhapsody unit located at the specified URL to the
current model

addToScope Places the specified file, classes, and packages within
the scope of the current component

addTransition Creates a transition

addTriggeredOperation Adds a triggered operation to the current class

addType Adds a type to the current class

addUnidirectionalRelation Adds a directional relation from the current class to
another class

addUseCase Adds the specified use case to the current package

addUseCaseDiagram Adds the specified UCD to the current package

allElementsInScope Places all model elements within the scope of the current
component

arcCheckOut Checks out files from the CM archive into the model

becomeTemplateInstantiationOf Creates a template instantiation of another template (of
another template class)

build Builds the application

checkEventsBaseIdsSolveCollisions Checks the values of the events base IDs for all
packages in the model, detects collisions between the
IDs, and resolves any incorrect values and collisions

checkIn Checks in the specified unit within the model into the CM
archive you have already connected to (using
connectToArchive)

checkModel Checks the current model

checkOut Refreshes a unit in the model by checking it out from the
CM archive

clone Clones the element, names it, and adds it to the new
owner

close Closes a file or project

connectToArchive Connects the Rhapsody project to the specified CM
archive

createDefaultTransition Creates a default transition in the statechart

createGraphics Creates graphics in the Rhapsody statechart

createNestedStatechart Creates a nested statechart

Method Name Description
532 API Reference Manual

createNewProject Creates a new project named <projectName> in
<projectLocation>

deleteActivityDiagram Deletes the specified activity diagram from the current
class

deleteActor Deletes the specified actor from the current package

deleteArgument Deletes an argument from the current operation

deleteAttribute Deletes the specified attribute from the current class

deleteClass Deletes a class from the current class

deleteCollaborationDiagram Deletes the specified collaboration diagram from the
current package

deleteComponent Deletes the specified component from the current project

deleteComponentDiagram Deletes the specified component diagram from the
current package

deleteComponentInstance Deletes the specified component instance

deleteConfiguration Deletes the specified configuration from the current
component

deleteConnector Deletes the specified connector from the statechart

deleteConstructor Deletes a constructor from the current class

deleteDependency Deletes a dependency

deleteDeploymentDiagram Deletes the specified deployment diagram from the
current package

deleteDescribingDiagram Deletes the describing use case or sequence diagram for
the current use case

deleteDestructor Deletes a destructor from the current class

deleteEntryPoint Deletes the entry point of the current use case

deleteEvent Deletes the specified event from the current package

deleteEventReception Deletes the specified event reception from the current
class

deleteExtensionPoint Deletes the specified extension point

deleteFile Deletes the specified file from the current component

deleteFlowchart Deletes an activity diagram from the current operation

deleteFlowItems Deletes the specified flowItem from the collection of
flowItems

deleteFlows Deletes the specified flow from the collection of flows

Method Name Description
Rational Rhapsody 533

Quick Reference
deleteFromProject Deletes the current model element from the project open
in Rhapsody

deleteGeneralization Deletes the specified generalization from the current
class

deleteGlobalFunction Deletes the specified global function from the current
package

deleteGlobalObject Deletes the specified global object from the current
package

deleteGlobalVariable Deletes the specified global variable from the current
package

deleteInitialInstance Deletes an instance from the list of build instances for the
current configuration

deleteNode Deletes the specified node from the current package

deleteObjectModelDiagram Deletes the specified OMD from the current package

deleteOperation Deletes the specified operation from the current class

deletePackage Deletes the current package

deleteRelation Deletes the specified relation from the current class

deleteSequenceDiagram Deletes the specified sequence diagram from the current
package

deleteState Deletes the specified state from the Rhapsody statechart

deleteStatechart Deletes the specified statechart from the current class

deleteStaticReaction Deletes the specified static reaction from the statechart

deleteSuperclass Deletes a superclass from the current class

deleteTransition Deletes a transition

deleteType Deletes a type from the current class

deleteUseCase Deletes the specified use case from the current package

deleteUseCaseDiagram Deletes the specified use case diagram from the current
package

enterAnimationCommand Specifies the command to begin animation

errorMessage Returns the most recent error message

Exit Is invoked before Rhapsody exits

findActor Retrieves the specified actor, if it belongs to the current
package

findAllByName Searches all the elements and finds the first element of
the specified name and metaclass in the current package

Method Name Description
534 API Reference Manual

findAttribute Retrieves the specified attribute of the classifier

findBaseClassifier Retrieves a base (parent) classifier of a classifier

findClass Retrieves the specified class, if it belongs to the current
package

findComponent Retrieves the specified component from the current
project

findComponentInstance Retrieves the specified component instance

findConfiguration Retrieves the specified configuration in the current
component

findDerivedClassifier Retrieves the specified derived classifier of a classifier

findElementsByFullName Searches for the specified element

findEntryPoint Deletes the specified entry point

findEvent Retrieves the specified event, if it belongs to the current
package

findExtensionPoint Retrieves the extension point, given the generalization

findGeneralization Retrieves the specified generalization of a classifier

findGlobalFunction Retrieves the specified global function, if it belongs to the
current package

findGlobalObject Retrieves the specified global object, if it belongs to the
current package

findGlobalVariable Retrieves the specified global variable, if it belongs to the
current package

findInterfaceItem Retrieves an operation or event reception of the given
signature that belongs to a classifier

findNestedClassifier Retrieves the specified classifier defined within this
object

findNestedClassifierRecursive Retrieves the specified classifier defined in this object
and in objects defined within this object

findNestedElement Retrieves the specified element nested in a model
element

findNestedElementRecursive Retrieves the specified element from a given model
element at any level of nesting within that element

findNode Retrieves the specified node, if it belongs to the current
package

findRelation Retrieves the specified relation that belongs to the
current classifier

findTrigger Retrieves the specified trigger in the statechart of the
current class

Method Name Description
Rational Rhapsody 535

Quick Reference
findType Retrieves the specified data type, if it belongs to the
current package

findUsage Retrieves the usage of the specified element in the
current package

findUseCase Retrieves the specified use case, if it belongs to the
current package

forceRoundtrip Forces a roundtrip of the code back into the Rhapsody
model, and vice versa

generate Generates code for the active configuration of the active
component

generateSequence Generates the specified sequence diagram

getConcurrentGroup Retrieves the activation messages

getAllGraphicalProperties Returns the list of graphical properties for the current
diagram

getAllTriggers Returns a collection of all the triggers for the current
statechart

getAttributesIncludingBases Retrieves the attributes defined for this class and the
ones inherited from its superclasses

getClassifierRole Retrieves the classifier role for this message point

getClassifierRoles Returns a collection of IRPClassifierRoles linked
by the current association role

getConcurrentGroup Retrieves all the messages concurrent with the input
message, including the input message itself

getDerivedInEdges Retrieves the incoming transitions for the connector

getDerivedOutEdge Retrieves the incoming transitions for the connector

getDescribingDiagram Retrieves the use case diagram or sequence diagram
linked to the current use case

getDiagramOfSelectedElement Retrieves the diagram of the current element

getDirectory Retrieves the build directory specified for the current
configuration

getElementsInDiagram Returns a collection of all the model elements in the
current diagram

getErrorMessage Returns the most recent error message

getEvent Returns the event for the current event reception that
serves as part of the interface for a class

getFile Returns the file in which the specified classifier will be
generated

Method Name Description
536 API Reference Manual

getFileName Retrieves the name of the file to which the specified
classifier will be generated in this component

getFormalRelations Returns a collection of IRPRelations for the current
association role

getFullNameInStatechart Returns the full text name of this state within its
statecharts

getFullPathName Retrieves the full path name of a model element as a
string

getFullPathNameIn Retrieves the full path name of a model element as a
string

getGraphicalProperty Returns the specified graphical property for the current
diagram

getImpName Retrieves the name of the current file’s implementation
file, including its extension and, if specified, its relative
path

getInheritsFrom Returns the base state from which the current state
inherits

getInLinks Returns the list of links for which the instance is the
target instance (identified by the “to” property of the link)

getInterfaceItemsIncludingBases Retrieves the operations and event receptions defined
for this class and the ones it inherited from its
superclasses

getInTransitions Returns a collection of transitions that are directed into
the current state or connector

getItsAction Returns the action code of the current transition

getItsComponent Retrieves the component to which the current
configuration belongs

getItsGuard Returns the guard condition of the current transition

getItsOperation Returns the event or triggered operation of the current
trigger

getItsTrigger Returns the trigger (event or triggered operation) of the
current transition

getListOfFactoryProperties Returns the list of properties in the
<lang>_factory.prp file

getListOfInitializerArguments Returns the list of arguments for the initializer, as defined
by the user in the instance features dialog box

getListOfSelectedElements Returns the collection of model elements

getListOfSiteProperties Returns the list of properties in the
<lang>_site.prp file

getLogicalCollaboration Retrieves the logic behind the collaboration diagram

Method Name Description
Rational Rhapsody 537

Quick Reference
getLogicalStates Retrieves the list of logical states

GetMainFileName Is invoked when Rhapsody needs the main file name and
path for a configuration

getMainName Retrieves the name of the file where the main() routine
for the current configuration resides

getMakefileName Retrieves the name of the makefile generated for the
current configuration

getMessagePoints Returns an ordered collection of all messagepoints
occurring on this classifier

getModelElementFileName Gets the file name of the specified model element

getNestedElements Retrieves the elements defined in the current object

getNestedElementsRecursive Recursively retrieves the elements defined in the model
element for the object and for objects defined in it

getNewCollaboration Retrieves the new collaboration for the current project

getOfState Returns the state connected to the current connector if it
is a history connector

getOutLinks Returns the list of links for which the instance is the
source instance (identified by the “from” property of the
link)

getOutTransitions Returns a collection of transitions that are directed out of
the current state or connector

getOverriddenProperties Retrieves the list of properties whose default values have
been overridden

getPackageFile Returns the package file

getPicture Renders this diagram into the specified extended
metafile

getPictureAsDividedMetafiles Enables you to split a large diagram into several
metafiles when you export it

getPredecessor Retrieves the message that precedes the specified
message

getPropertyValue Returns the value associated with the specified key value

getPropertyValueExplicit Returns an explicit value if it has been assigned to the
metamodel

getRelationsIncludingBases Retrieves the relations defined for this class and the
ones it inherited from its superclasses

getRelatedUseCases Retrieves use cases related to the current sequence
diagram

getSelectedElement Retrieves the current model element

Method Name Description
538 API Reference Manual

getSignature Retrieves the prototype of the IRPMessage

getSignatureNoArgNames Retrieves the signature of the current class interface
element without argument names

getSignatureNoArgTypes Retrieves the signature of the current class interface
element without argument types

getSpecName Retrieves the name of the current file’s specification file,
including its extension and, if specified, its relative path

getStaticReactions Returns a collection of static reaction transitions
originating from the current state

getSubStates Returns a collection of substates belonging to the current
state

getSuccessor Retrieves the message that follows the specified
message

GetTargetfileName Is invoked when Rhapsody needs the target name and
path for a configuration

getTargetName Retrieves the build name of the file to be generated for
the current configuration

getTheExternalCodeGeneratorInvoker Returns the invoker for the external code generator

highlightByHandle Highlights an element, given its handle

highLightElement Highlights the specified element

importClasses Imports classes according to the reverse engineering
setting stored in the current configuration

importPackageFromRose Imports the specified package from Rational Rose

importProjectFromRose Imports the specified project from Rational Rose

isAnd Determines whether this state is an And state

isArray Determines whether the current type is an array

isCompound Determines whether the current state is a compound
state

isConditionConnector Determines whether the current connector is a condition
connector

isDefaultTransition Determines whether the current transition is a default
transition

isDiagramConnector Determines whether the current connector is a diagram
connector

isEmpty Determines whether the current file is empty

isEnum Determines whether the current type is an enumerated
type

Method Name Description
Rational Rhapsody 539

Quick Reference
isEqualTo Tests for equality between the type of the type and the
type itself

isForkConnector Determines whether the current connector is a fork synch
bar connector

isHistoryConnector Determines whether the current connector is a history
connector

isImplicit Determines whether the type is an implicit type

isJoinConnector Determines whether the current connector is a join synch
bar connector

isJunctionConnector Determines whether the current connector is a junction
connector

isKindEnumeration Determines whether the type is an enumeration

isKindLanguage Determines whether the type is a language declaration
type

isKindStructure Determines whether the type is a structure

isKindTypedef Determines whether the type is a typedef

isKindUnion Determines whether the type is a union

isLeaf Determines whether the current state is a leaf state

isOperation Determines whether the current trigger is an operation
(event or triggered operation)

isPointer Determines whether the current type is a pointer

isPointerToPointer Determines whether the current type is a pointer to
another pointer

isReadOnly Determines whether the current unit is read-only

isReference Determines whether the current type is a reference

isReferenceToPointer Determines whether the current type is a reference to a
pointer

isRoot Determines whether the current state is a root state

isSeparateSaveUnit Determines whether the current unit is saved in its own
(separate) file

isStaticReaction Determines whether this is a static reaction

isStruct Determines whether the current type is a struct

isStubConnector Determines whether the current connector is a stub
connector

isTemplate Determines whether the current type is a template

Method Name Description
540 API Reference Manual

isTerminationConnector Determines whether the current connector is a
termination connector

isTimeout Determines whether the current trigger is a timeout

isTypelessObject Tests an object to see if it is defined explicitly or implicitly

isUnion Determines whether the current type is a union

itsCompoundSource Returns a collection of states that act as multiple sources
for this single transition

load Loads the specified unit

make Builds the current component following the current
configuration

makeUnidirect Changes the current relation from a unidirectional
(symmetric) one to one that is directional from the me of
this relation to me’s inverse

matchOnSignature Determines whether the signature of the current class
interface element matches that of another
IRPInterfaceItem

notifyGenerationDone Is called by the external code generator after a
generation session invoked by the generate event is
done

open Opens a file

openProject Opens a Rhapsody project

openProjectFromURL Opens the Rhapsody product at the specified URL

openProjectWithLastSession Opens the project using the settings from the previous
Rhapsody session

openProjectWithoutSubUnits Opens the Rhapsody project without subunits

overrideInheritance Overrides inheritance for the current state

quit Closes the active Rhapsody project

rebuild Rebuilds the application

recalculateEventsBaseId Recalculates the events base ID of the package or
project

refreshAllViews Refreshes all the views

regenerate Regenerates the active configuration of the active
component

removeConveyed Removes an information element from the conveyed
collection

removeFromInstrumentationScope Removes the classifier from the instrumentation scope

Method Name Description
Rational Rhapsody 541

Quick Reference
removePackageFromInstrumentationSc
ope

Removes the specified package from the instrumentation
scope. including all its aggregated classes, actors, and
nested packages

removeProperty Removes the property from the model element

removeProvidedInterface Removes the specified interface from the collection of
required interfaces

removeRepresented Removes a flowItem from the represented collection

removeRequiredInterface Removes the specified interface from the collection of
required interfaces

removeScopeElement Deletes a scope element

removeStereotype Removes the stereotype from the model element

report Generates a report in ASCII or RTF into the specified file

resetEntryActionInheritance Resets the inheritance of the entry action of the current
state

resetExitActionInheritance Resets the inheritance of the exit action of the current
state

resetLabelInheritance Resets the label inheritance

roundtrip Roundtrips code changes back into the open model

save Saves the current project

saveAs Saves the current project to the specified file name and
location

setActiveComponent Sets the active configuration for the current project

setActiveConfiguration Sets the active configuration for the current project

setClassType Sets or changes the current template parameter to a
class type parameter

setComponent Sets the current component for the open project

setConfiguration Sets the current configuration for the open project

setDirectory Sets the directory for the current configuration

setEnd1ViaPort Connects end1 of the flow to the specified instance via
the given port (defined by the instance class)

setEnd2ViaPort Connects end2 of the flow to the specified instance via
the given port (defined by the instance class)

setGraphicalProperty Allows the setting of graphical properties for a diagram
element.

setInverse Adds or updates the inverse relation

setItsAction Updates the current transition with a new action

Method Name Description
542 API Reference Manual

setItsComponent Sets the owning component for the current configuration

setItsGuard Updates the current transition with a new guard

setItsLabel Updates this transition with a new label (trigger[guard]/
action)

setItsTrigger Updates the current transition with a new trigger

setLog Creates a log file that records all the information that is
normally displayed in the Rhapsody output window

setOfState Updates the source state of the current connector with a
new state

setPath Sets the path of the application built for this component

setPropertyValue Modifies the value of the specified property

setReadOnly Specifies whether the current unit is read-only

setReturnTypeDeclaration Specifies a new value for the return type declaration

setSeparateSaveUnit Sets a unit to be stored to its own file

setStaticReaction Sets the static reaction for the current state

setTypeDeclaration Sets the C++ type declaration for this argument

synchronizeTemplateInstantiation Is used to synchronize between a template and a
template instantiation parameter

unoverrideInheritance Removes the override inheritance for the current state

version Returns the version of Rhapsody that corresponds to the
current COM API version

WhoAmI Is invoked to identify the external code generator

write Writes to the specified file

Method Name Description
Rational Rhapsody 543

Quick Reference
544 API Reference Manual

Index
A
Abort event 247
Action

entry 446
exit 447

Activities, reference 275
Activity diagram 138
Actors 350

add 353
delete 372
find 390
interface 54

Ada language external code generator 241
addSwimlane 276
Animation

enter command 57, 71
API 7

activeProject Method 38
available information 1
basic concepts 7
COM 35
conventions 50
creating applications 41
getNestedElementsRecursive method 40
hierarchy of classes 36
hierarchy of interfaces 2
interfaces 49
loading a project 38, 45
looping over packages 45
methods 529
openProject method 38
reference to application 38
reporting a project 39, 40
reporting on a project 39
Rhapsody reference 35
RHAPSODY.tlb file 35, 43
RPYExplorer example 27
RPYReporter example 26
viewing Rhapsody objects 36

Application, creating VB applications 41
Attributes

delete 139
find 146

B
Base classifier 147
body property, IRPConstraint 232

C
C language 429

prototype 50
C++ language 49, 490

COM bindings 25
interfaces 49
isReference 106
prototype 50
setTypeDeclarations 98
visual 12, 13

Callback API 521
Class

accessing using VBA 322
find 392

Classifier
base 147
derived 148

Close 416
Code 31
Code generation, sample program 245
COM 35

API 7
API interfaces 49
API tools 7
Visual Basic API 7

COM bindings 25
Component

delete 417
find 418

Condition connector 224
Configuration

delete 194
find 196

Connectors
condition 224
diagram 225
fork 226
history 227
join 228
Junction 229
Rational Rhapsody 545

Index
stub 230
termination 230

constraintsByMe property 232
CountPackages macro

used in code example 43
Create

macro 42
project element 18

Create EMetaFile from the RPDiagram option 28
CreateObject 38
Custom helpers 24

D
declaration property

IRPArgument 98
IRPAttribute 106

defaultValue property
IRPArgument 98
IRPAttribute 106

deferredAddToModel 70
Delete project element 19
Derived classifier 148
Diagrams 28

connector 225
storing 28
viewing 28

E
Element

deleting 19
form 31
manipulating project 18

entryAction, method 446
Error codes 23
Error handling 22, 242
Events

abort 247
exit 247

Examples
findElementsByFullName 322
Radio 42
RPYReporter 26
VB program 8

Exit event 247
exitAction 447

F
F8 key 32
File

delete 195
RHAPSODY.tlb 35

findElementsByFullName function
example 322

Flow items 140

Flows, delete 141, 379
Fork connector 226
Function, CreateObject 38

G
Generalization

delete 142
find 149

getNestedElementsRecursive
used in sample 40

GraphElement 286

H
Helpers 24
History connector 227

I
Interfaces 49, 50

hierarchy of 2
Rhapsody 7

IRPCollection interface
using 45
VB sample 39

IRPModelElement interface
VB sample 39

J
Java language 344

API 5
COM bindings 25
samples 5

Join connectors 228
Junction connector 229

K
Keyboard icon 42

L
Language property 54
Languages

COM API 7
Library, rhapsody.tlb 7

M
Macros

CountPackages, used in a code example 43
creating sample 42
editing sample 43
running 44
546 API Reference Manual

Index
running sample 47
Methods 529

deferredAddToModel 70
entryAction 446
exitAction 447
parent 469
setTypeDeclaration for IRPArgument 99
stateType 456

Model, deferring 70
MS Word 42, 43

O
Object model diagram, delete 384
Object, type 32
Operation, delete 143

P
Package

add 413
delete 385

parent method 469
Press new shortcut key option 42
Private keyword 33
Profile, add 414
Project

deleting element 19
element, creating 18
elements, manipulating 18
modifying an element 19
open in VB 29

Properties 20, 31
handling using the API 20
manipulating 21
propagation of default values 20
VB 50

R
Radio example 42
Read from the Rhapsody API 13
Reference activity 275
Reference, definition 35
Relation, delete 144
Report, on API project 39
returnType property 345
Rhapsody 25

.tlb file 35
annotations 54
API 35
helpers 24
project 13
properties 20
Radio example 42
references 35
Tools menu 28

Rhapsody API 7
available information 1
callback 521
error handling 22
error handling codes 23
handling properties 20
hierarchy of interfaces 2
interfaces 7
manipulating project elements 18
using with VB 7
VBScript 9
with Visual C++ 12

RHAPSODY.tlb file 35
rhapsody.tlb file 7
RPYReporter

code summary, project loading 38
code summary, project reporting 40
example 26

Run Sub/UserForm option 44

S
Sample programs 26

API 5
code generator 245
using VB 8
using Visual C++ 13, 15
VBScript 10
Visual C++ reading project 13

Save 425
Save changes in field 42
Sequence diagram, delete 386
setTypeDeclaration

IRPArgument 99
Solaris systems, VBScript 9
Start With Full Compile option 41
State, type 456
Statechart 136

delete 145
stateType, method 456
Store macro in field 42
Stub connector 230
Swimlane, add 276

T
Termination connector 230
Trigger, find 155
Type

delete 387
find 398
setTypeDeclaration for IRPArgument 99
state 456

typeOf property
IRPArgument 98
IRPAttribute 106
Rational Rhapsody 547

Index
U
Usage, find 399
Use case diagram, delete 389

V
VB

catching an error condition 22
VB properties

body for IRPConstraint 232
constraintsByMe 232
declaration for IRPArgument 98
declaration for IRPAttribute 106
defaultValue for IRPAttribute 106
Language 54
returnType 345
typeOf for IRPArgument 98
typeOf for IRPAttribute 106

VBScript
running 9
sample 10
using 9
writing files from 9

Visual Basic
attributes 49
code window 31
compiling 41
CreateObject function 38
creating new projects 41

forms 30, 31
IDE 29
loading a project 45
making 41
Menu File Editor option 32
Object Browser option 36
Open Project option 29
Project Explorer window 29
properties 50
Properties window 30
Reference dialog box 35
sample program 8
saving projects 41
stepping through the code 32
stopping execution 35
using with the Rhapsody API 7
Word VB IDE 42

Visual Basic Editor option 29
Visual C++

and the Rhapsody API 12
read sample 13
write sample 15

W
Write

files from VBScript 9
to the Rhapsody API 15
548 API Reference Manual

	Contents
	The Rational Rhapsody API
	Information Available to the API
	Hierarchy of API Interfaces

	Rational Rhapsody Java API Basic Concepts
	Java API Features
	Java API Differences from COM API
	Rational Rhapsody Environment Initialization before Using Rational Rhapsody API on Linux

	COM API Basic Concepts and Examples
	COM API Tools and Languages
	COM API with Visual Basic
	Example

	COM API with VBScript
	Running VBScript
	Writing Files from VBScript
	Example VBScript

	Setting Up the COM Interface for Visual C++
	Sample: Reading from the API
	Sample: Writing to the API

	Manipulating Project Elements
	Creating a Project Element
	Modifying an Element
	Deleting an Element

	Handling Properties Using the API
	Propagation of Default Property Values
	Methods for Manipulating Properties

	Error Handling
	Catching an Error Condition in VB
	Error Codes

	Installing Custom Helpers
	Adding Helpers to Rational Rhapsody

	Rational Rhapsody API Interface
	Rational Rhapsody API Examples
	Running the RPYReporter Example
	Running the RPYExplorer Example
	Tools Menu Options
	Storing and Viewing Diagram Files

	Running RPYReporter in Visual Basic
	VB Forms
	Placing Elements on Forms
	Viewing the Element Properties and Code

	Running RPYReporter Step-by-Step
	The Rational Rhapsody API: A Closer Look
	Continuing the Step-by-Step Execution of RPYReporter
	Reporting on a Project

	Starting and Saving Your Own VB IDE Work
	Saving the Examples as New Projects
	Making Your Own New Projects
	Compiling and Making Your Executables

	Creating Applications with Microsoft Word VB IDE
	Specifying the Macro Content
	Comments on the Code
	Modifying the Example to Print Classes

	Rhapsody API Interfaces
	Access to VB Properties
	API Conventions
	Rhapsody Interfaces
	IRPAction Interface
	IRPActor Interface
	IRPAnnotation Interface
	addAnchor

	IRPApplication Interface
	activeProject
	addToModel
	addToModelByReference
	addToModelFromURL
	arcCheckOut
	build
	checkIn
	checkModel
	checkOut
	connectToArchive
	createNewProject
	deferredAddToModel
	enterAnimationCommand
	errorMessage
	forceRoundtrip
	generate
	getDiagramOfSelectedElement
	getErrorMessage
	getListOfFactoryProperties
	getListOfSelectedElements
	getListOfSiteProperties
	getSelectedElement
	getTheExternalCodeGeneratorInvoker
	highlightByHandle
	highLightElement
	importClasses
	make
	openProject
	openProjectFromURL
	openProjectWithLastSession
	openProjectWithoutSubUnits
	quit
	rebuild
	refreshAllViews
	regenerate
	report
	roundtrip
	setComponent
	setConfiguration
	setLog
	version

	IRPArgument Interface
	setTypeDeclaration

	IRPASCIIFile Interface
	close
	open
	write

	IRPAssociationClass Interface
	IRPAssociationRole Interface
	getClassifierRoles
	getFormalRelations

	IRPAttribute Interface
	IRPBlock Interface
	IRPClass Interface
	addClass
	addConstructor
	addDestructor
	addEventReception
	addLink
	addReception
	addSuperclass
	addTriggeredOperation
	addType
	deleteClass
	deleteConstructor
	deleteDestructor
	deleteEventReception
	deleteReception
	deleteSuperclass
	deleteType

	IRPClassifier Interface
	addActivityDiagram
	addAttribute
	addFlowItems
	addFlows
	addGeneralization
	addOperation
	addRelation
	addStatechart
	addUnidirectionalRelation
	deleteActivityDiagram
	deleteAttribute
	deleteFlowItems
	deleteFlows
	deleteGeneralization
	deleteOperation
	deleteRelation
	deleteStatechart
	findAttribute
	findBaseClassifier
	findDerivedClassifier
	findGeneralization
	findInterfaceItem
	findNestedClassifier
	findNestedClassifierRecursive
	findNestedGeneralization
	findRelation
	findTrigger
	getAttributesIncludingBases
	getInterfaceItemsIncludingBases
	getRelationsIncludingBases

	IRPClassifierRole Interface
	IRPCollaboration Interface
	addCancelledTimeout
	addClassifierRole
	addClassifierRoleByName
	addCtor
	addDestructionEvent
	addDtor
	addFoundMessage
	addInteractionOccurrence
	addInteractionOperator
	addLostMessage
	addMessage
	addSystemBorder
	addTimeInterval
	addTimeout
	generateSequence
	getActivator
	getConcurrentGroup
	getMessagePoints
	getPredecessor
	getSuccessor

	IRPCollaborationDiagram Interface
	getLogicalCollaboration

	IRPCollection Interface
	addItem

	IRPComment Interface
	IRPComponent Interface
	addConfiguration
	addFile
	addFolder
	addNestedComponent
	addScopeElement
	addToScope
	allElementsInScope
	deleteConfiguration
	deleteFile
	findConfiguration
	getConfigByDependency
	getFile
	getFileName
	getModelElementFileName
	getPackageFile
	removeScopeElement
	setPath

	IRPComponentDiagram Interface
	IRPComponentInstance Interface
	IRPConfiguration Interface
	addInitialInstance
	addPackageToInstrumentationScope
	addToInstrumentationScope
	deleteInitialInstance
	getDirectory
	getItsComponent
	getMainName
	getMakefileName
	getTargetName
	removeFromInstrumentationScope
	removePackageFromInstrumentationScope
	setDirectory
	setItsComponent

	IRPConnector Interface
	getDerivedInEdges
	getDerivedOutEdge
	getOfState
	isConditionConnector
	isDiagramConnector
	isForkConnector
	isHistoryConnector
	isJoinConnector
	isJunctionConnector
	isStubConnector
	isTerminationConnector
	setOfState

	IRPConstraint Interface
	IRPControlledFile
	fullPathFileName
	open

	IRPDependency Interface
	IRPDeploymentDiagram Interface
	IRPDiagram Interface
	getElementsInDiagram
	getPicture
	getPictureAs
	getPictureAsDividedMetafiles

	IRPEnumerationLiteral Interface
	IRPEvent Interface
	IRPEventReception Interface
	getEvent

	IRPExecutionOccurrence Interface
	IRPExternalCodeGenerator Interface
	Using an External Code Generator
	Restrictions
	Event Handling
	Implementing the External Code Generator
	Rhapsody Settings
	Sample
	Abort
	Exit
	generate
	getFileName
	GetMainFileName
	getMakefileName
	GetTargetfileName
	WhoAmI

	IRPExternalCodeGeneratorInvoker Interface
	notifyGenerationDone

	IRPFile Interface
	addElement
	addPackageToScope
	addTextElement
	addToScope
	getImpName
	getSpecName
	isEmpty
	setPath

	IRPFlow Interface
	addConveyed
	removeConveyed
	setEnd1ViaPort
	setEnd2ViaPort

	IRPFlowchart Interface
	addReferenceActivity
	addSwimlane

	IRPFlowItem Interface
	addRepresented
	removeRepresented

	IRPGeneralization Interface
	IRPGraphEdge Interface
	IRPGraphElement Interface
	getAllGraphicalProperties
	getGraphicalProperty
	setGraphicalProperty

	IRPGraphicalProperty Interface
	IRPGraphNode Interface
	IRPGuard Interface
	IRPHyperLink Interface
	getDisplayOption
	setDisplayOption

	IRPImageMap
	interfaceName
	isGUID
	name
	pictureFileName
	points
	shape
	target

	IRPInstance Interface
	getInLinks
	getListOfInitializerArguments
	getOutLinks
	setInitializerArgumentValue

	IRPInteractionOccurrence Interface
	IRPInterfaceItem Interface
	addArgument
	addArgumentBeforePosition
	getSignatureNoArgNames
	getSignatureNoArgTypes
	matchOnSignature

	IRPLink Interface
	IRPMessage Interface
	getSignature

	IRPMessagePoint Interface
	getClassifierRole

	IRPModelElement Interface
	addDependency
	addDependencyTo
	addNewAggr
	addProperty
	addStereotype
	becomeTemplateInstantiationOf
	clone
	deleteDependency
	deleteFromProject
	errorMessage
	findElementsByFullName
	findNestedElement
	findNestedElementRecursive
	getErrorMessage
	getFullPathName
	getFullPathNameIn
	getNestedElements
	getNestedElementsRecursive
	getOverriddenProperties
	getPropertyValue
	getPropertyValueExplicit
	getTag
	openFeaturesDialog
	HighLightElement
	removeProperty
	removeStereotype
	setPropertyValue
	setTagValue
	synchronizeTemplateInstantiation

	IRPModule Interface
	IRPNode Interface
	addComponentInstance
	deleteComponentInstance
	findComponentInstance

	IRPObjectModelDiagram Interface
	IRPOperation Interface
	deleteArgument
	deleteFlowchart
	getImplementationSignature
	setReturnTypeDeclaration

	IRPPackage Interface
	addActor
	addClass
	addCollaborationDiagram
	addComponentDiagram
	addDeploymentDiagram
	addEvent
	addFlowItems
	addFlows
	addGlobalFunction
	addGlobalObject
	addGlobalVariable
	addLink
	addNestedPackage
	addNode
	addObjectModelDiagram
	addSequenceDiagram
	addType
	addUseCase
	addUseCaseDiagram
	deleteActor
	deleteClass
	deleteCollaborationDiagram
	deleteComponentDiagram
	deleteDeploymentDiagram
	deleteEvent
	deleteFlowItems
	deleteFlows
	deleteGlobalFunction
	deleteGlobalObject
	deleteGlobalVariable
	deleteNode
	deleteObjectModelDiagram
	deletePackage
	deleteSequenceDiagram
	deleteType
	deleteUseCase
	deleteUseCaseDiagram
	findActor
	findAllByName
	findClass
	findEvent
	findGlobalFunction
	findGlobalObject
	findGlobalVariable
	findNode
	findType
	findUsage
	findUseCase
	recalculateEventsBaseId

	IRPPin Interface
	IRPPort Interface
	addProvidedInterface
	addRequiredInterface
	removeProvidedInterface
	removeRequiredInterface

	IRPProfile Interface
	IRPProject Interface
	addComponent
	addPackage
	addProfile
	checkEventsBaseIdsSolveCollisions
	close
	deleteComponent
	findComponent
	GenerateReport
	getNewCollaboration
	highlightFromCode
	importPackageFromRose
	importProjectFromRose
	recalculateEventsBaseIds
	save
	saveAs
	setActiveComponent
	setActiveConfiguration

	IRPRelation Interface
	isTypelessObject
	makeUnidirect
	setInverse

	IRPRequirement Interface
	IRPSequenceDiagram Interface
	getLogicalCollaboration
	getRelatedUseCases

	IRPState Interface
	addConnector
	addState
	addStaticReaction
	addTerminationState
	createDefaultTransition
	createNestedStatechart
	deleteConnector
	deleteStaticReaction
	entryAction
	exitAction
	getFullNameInStatechart
	getInheritsFrom
	getLogicalStates
	getStaticReactions
	getSubStates
	isAnd
	isCompound
	isLeaf
	isRoot
	overrideInheritance
	resetEntryActionInheritance
	resetExitActionInheritance
	setStaticReaction
	unoverrideInheritance
	stateType

	IRPStatechart Interface
	createGraphics
	deleteState
	findTrigger
	getAllTriggers
	getInheritsFrom
	overrideInheritance
	unoverrideInheritance

	IRPStateVertex Interface
	addTransition
	deleteTransition
	getInTransitions
	getOutTransitions
	parent

	IRPStereotype Interface
	IRPStructureDiagram Interface
	IRPSwimlane Interface
	IRPTag Interface
	IRPTemplateInstantiation Interface
	IRPTemplateInstantiationParameter Interface
	IRPTemplateParameter Interface
	setClassType

	IRPTransition Interface
	getInheritsFrom
	getItsAction
	getItsGuard
	getItsTrigger
	getOfState
	isDefaultTransition
	isStaticReaction
	itsCompoundSource
	overrideInheritance
	resetLabelInheritance
	setItsAction
	setItsGuard
	setItsLabel
	setItsTrigger
	unoverrideInheritance

	IRPTrigger Interface
	getItsOperation
	isOperation
	isTimeout

	IRPType Interface
	addEnumerationLiteral
	isArray
	isEnum
	isEqualTo
	isImplicit
	isKindEnumeration
	isKindLanguage
	isKindStructure
	isKindTypedef
	isKindUnion
	isPointer
	isPointerToPointer
	isReference
	isReferenceToPointer
	isStruct
	isTemplate
	isUnion

	IRPUnit Interface
	isReadOnly
	isReferenceUnit
	isSeparateSaveUnit
	load
	save
	setReadOnly
	setSeparateSaveUnit

	IRPUseCase Interface
	addDescribingDiagram
	addExtensionPoint
	deleteDescribingDiagram
	deleteEntryPoint
	deleteExtensionPoint
	findEntryPoint
	findExtensionPoint
	getDescribingDiagram

	IRPUseCaseDiagram Interface
	IRPInternalOEMPlugin
	IRPVariable Interface
	setTypeDeclaration

	The Callback API
	Callback API Introduction
	Events with Callback Methods
	API Details
	IRPApplicationListener
	BeforeProjectClose
	AfterProjectClose
	OnDiagramOpen
	OnFeaturesOpen

	IRPRoundTripListener
	BeforeRoundtrip

	IRPCodeGeneratorListener
	CodeGenerationCompleted

	Callback Logging
	Disabling Callback Notification
	Disabling Cancellable Actions
	Sample Client Applications

	Quick Reference
	Index

