

Rational Rhapsody
COM Development Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
COM Development Introduction . 1
Using Rational Rhapsody to Develop COM Applications . 1

Design of Clients and Servers. 2
Import of Type Libraries . 2
Interface Design . 3

Generation of COM Artifacts from UML Models . 3

Rational Rhapsody Threads and the COM Apartment Model . 3

Hello World Example. 5
Step 1: Setting Up Rational Rhapsody to Use COM. 5
Step 2: Creating a COM Executable Server . 5
Step 3: Creating a COM Client . 8
Step 4: Running the Client to Invoke the Server . 9

Code Generation . 11
IDL Code Generation Phase . 11

«COM DLL» Stereotype . 12
«COM EXE» Stereotype . 12
«COM TLB» Stereotype . 12
«COM Library» Stereotype . 13
«COM Interface» Stereotype . 14
«COM Coclass» Stereotype . 19
COM Description Clause. 21

C++ Code Generation Phase . 22
«COM ATL Class» Stereotype . 23
«COM ATL Class» Operations and Macros . 24
«COM ATL Class» Aggregations . 25

COM Components . 27
COM Servers . 27

Implementation of a COM Server . 31
Inproc and Executable COM Servers . 32

COM Clients . 35
Rational Rhapsody iii

Table of Contents
Importing TLB Files . 35
Initializing a Client . 35
Instantiating Coclasses . 36

COM Interfaces . 37

Example of a Complete COM System . 37
The PhoneCall Interface . 38
The SwitchLogic Server . 39
The CellBillingLogic Server/Client . 39
Import of a TLB . 40

TLB Importer . 41
Starting the TypeLibrary Importer . 41

Assignment of COM Stereotypes . 42
Imported Properties. 43
Implicit Import . 43
Importer Error Handling. 43

Refreshing an Imported Type Library . 44

Synthesizing Diagrams from Imported Type Libraries . 45

COM Connection Points . 49
COM View Versus UML View of Connection Points. 51

Code Generation for Connection Points . 52
Server with Outgoing Interfaces . 52
Client of a Connection Point Server . 57

Index . 59
iv COM Development Guide

COM Development Introduction
Distributed applications are client/server applications in which clients and servers typically run on
different processors, which can be located on either the same machine or on different machines.
The client and server applications can be written in the same language (for example, C++) or a
mixture of several different languages (such as C++, C, and Java) and can run on the same
operating system or different operating systems.

There are several mechanisms in use for allowing mixed, distributed applications to find and
interact with each other over a network. Rational Rhapsody supports two such mechanisms:

� COM—The Component Object Model.

� CORBA®—The Common Object Request Broker Architecture, endorsed by the OMG®.

Using Rational Rhapsody to Develop COM
Applications

If you are a COM domain user, you are developing COM distributed systems using COM
interfaces as part of your process. This book describes how you can use Rational Rhapsody to
achieve your goal of making COM an integral part of your software model. Using Rational
Rhapsody, you can define, use, and manipulate COM interfaces and libraries. You can also use
Rational Rhapsody to link the COM domain constructs to a high-level language domain (the C++
domain).

You can use Rational Rhapsody to do any of the following with COM:

� Design a server.
� Design a client.
� Import a TLB file.
� Design an interface (forward engineering).

The following sections describe these tasks in detail.
Rational Rhapsody 1

COM Development Introduction
Design of Clients and Servers

If an interface is already developed (either with Rational Rhapsody or imported using the TLB
import utility), you can use it as-is and concentrate on implementing the client or server. Rational
Rhapsody enables ATL-based server implementation development.

The artifacts of client/server development with Rational Rhapsody are the following:

� For servers, COM components (objects) and servers (DLLs and EXEs); for clients, COM
C++ clients

� Ability to debug COM servers using the Rational Rhapsody built-in animation and
debugging facilities

� Visual representation of the relations between the various COM interfaces in the system
and their implementing classes

See COM Servers and COM Clients for more information on designing COM clients and servers
with Rational Rhapsody.

Import of Type Libraries

You can import existing type libraries into Rational Rhapsody so Rational Rhapsody elements can
reference them. The resulting structure is a Rational Rhapsody package that reflects the type
library, its interfaces, and coclasses. A package that is the result of a type library import is read-
write, but code generation is disabled for it.

If you implement COM servers, you can use an imported type library package as the basis for
deriving new interfaces. If you implement COM clients, you can use the type library to interact
with external TLB interfaces. See TLB Importer for information on how to use the Rational
Rhapsody TLB importer.
2 COM Development Guide

Generation of COM Artifacts from UML Models
Interface Design

Rational Rhapsody enables you to develop interfaces by generating the following artifacts:

� A ProxyStub.dll file
� COM IDL structures and files consisting of interface coclasses (both incoming and

outgoing)
� TLB files

The benefit to using Rational Rhapsody to generate these files is that it gives you a visual
description of the different COM interfaces that comprise the system, the relationships between
them, and their packaging. Therefore, the results of designing an interface with Rational Rhapsody
are a visual model of the interface, as well as binary components. Implementers of COM servers
and clients can use these artifacts in designing their respective systems.

See COM Interfaces for more information on designing COM interfaces.

Generation of COM Artifacts from UML Models

The Unified Modeling Language™ (UML™) profile defined in Rational Rhapsody supports
generation of the following COM artifacts:

� COM IDL files
� C++/ATL classes
� In-process and executable COM servers

These artifacts are described in subsequent chapters.

Rational Rhapsody Threads and the COM Apartment
Model

There is no direct mapping between Rational Rhapsody threads and any other UML modeling
construct and the COM apartment/threading model for a class under design. Therefore, you can
freely define the apartment model for every generated ATL class using the ThreadingModel
property (under ATL::Class).

Note the following threading behavior:

� Reactive classes and COM threads—Reactive classes are generated with guarded
destructors. Object destruction that is caused by a zero reference count is done only after
all event processing is finished.
Rational Rhapsody 3

COM Development Introduction
� Concurrency and COM threads—Rational Rhapsody supports only sequential ATL
classes, not active ones. This restriction is enforced with a check.

� Process termination—Upon termination of a Rational Rhapsody animation session, the
generated code calls CoUninitialize() before terminating the thread.
4 COM Development Guide

Hello World Example
Hello World Example
This section describes how to use Rational Rhapsody to design a client/server application to
display “Hello World” using COM.

The general steps are as follows:

1. Set up Rational Rhapsody to use COM.

2. Create a COM executable server.

3. Create a COM client.

4. Run the client to invoke the server.

The following sections describe these steps in detail.

Step 1: Setting Up Rational Rhapsody to Use COM

To use COM with Rational Rhapsody, you must do the following:

1. Perform a custom install of Rational Rhapsody, selecting the run-time and framework
sources for C++.

2. Open a DOS window and change directory to the <Rhapsody>\Share\LangCpp
directory. Rebuild the framework using the command appropriate for your platform. For
example, for Windows NT® systems, enter the following command:

..\etc\msmake.bat msbuild.mak

3. Add the <Rhapsody>\Share\LangCpp\lib directory to your PATH environment
variable.

Step 2: Creating a COM Executable Server

Create an executable server with Rational Rhapsody as follows:

1. Start Rational Rhapsody and create a new project named COM_Example.

2. Add a component named COMServer to the project.

3. Set the component stereotype to «COM EXE».

Dividing the Component into Packages
The server component will consist of two packages: one for the interface specification and another
for the implementation.
Rational Rhapsody 5

COM Development Introduction
Do the following:

1. Add two packages named HelloSpec and HelloImpl to the COMServer component.

2. Give the HelloSpec package a stereotype of «COM Library». Do not give the
HelloImpl package any stereotype.

3. Make the following changes to the HelloSpec library:

a. Add a class named IHello and give this class a stereotype of
«COM Interface».

b. Add a class named CoHello and give this class a stereotype of
«COM Coclass».

c. From the CoHello class, add a superclass relation to the IHello interface.

4. To the HelloImpl package, add a class named CHello and give this class a stereotype of
«COM ATL Class».

5. From the CHello ATL class, add a superclass relation to the CoHello coclass in the
HelloSpec library.

The following figure shows the resultant browser view.

6. Create an object model diagram from the new model elements as follows:

a. Select Tools > Diagrams > Object Model Diagram; click New in the resultant
dialog box.

b. In the New Diagram dialog box, type a name for the diagram, check the Populate
Diagram option, then click OK.

c. In the Populate Diagram dialog box, select Relations Among Selected, leave all the
types of relations selected, select the HelloImpl library and the HelloSpec
package, and use Orthogonal layout style.

7. Click OK.
6 COM Development Guide

Hello World Example
Rational Rhapsody creates the OMD. Rearrange the OMD so it looks like the
following figure.

Adding an Operation to the COM Object
To add an operation to display the “Hello World” message, follow these steps:

1. To the CHello interface, add an operation called SayHello.

2. Specify the return type of the SayHello operation as HRESULT (uncheck the Use existing
type option and type HRESULT in the C++ Declaration field).

3. Copy the SayHello operation from the interface to her COM ATL class by pressing Ctrl
and dragging the operation from IHello to CHello in the browser.

4. Make sure the CHello operation’s ATL::Operation::STDMETHOD property is set to
True.

5. Set the implementation of the SayHello operation in the CHello class to the following:

MessageBox(NULL, “Hello World”, “Hello World!”,
MB_OK);

return S_OK;
Rational Rhapsody 7

COM Development Introduction
Building the COM Server
To build the server component, follow these steps:

1. In the browser, highlight the COMServer component, right-click, and select Features
from the pop-up menu. In the Selected Elements field, check the HelloSpec library and
the HelloImpl package

2. For the DefaultConfig configuration of the COMServer component, verify that the
CG::Configuration::StartFrameworkInMainThread property is set to False.

3. Set the COMServer component as the active component.

4. Generate code for the DefaultConfig configuration of the COMServer component
(Code > Generate).

5. Build the COMServer.exe executable (Code > Build COMServer.exe).

6. When the build is done, open a DOS command prompt window, change directory to the
location of the ComServer.exe application, and register the server by executing the
following command at the command prompt:

> COMServer.exe /RegServer

The COM server is now built and registered.

The following table lists the commands to register and unregister the different types of COM
servers.

Step 3: Creating a COM Client

To create the COM client that calls the server to print “Hello World”, follow these steps:

1. Create a new component named Client and set its type to Executable.

2. Set Client as the active component.

3. Set the COM::Configuration::COMEnable property for this component to Client.

4. Add a package named Client to the model.

5. Add a class named HelloClient to the Client package.

6. Add an attribute named caller of type IHelloPtr to the HelloClient class.

COM Server
Type Register Command Unregister Command

«COM EXE» > <server>.exe /RegServer > <server>.exe /UnregServer

«COM DLL» > regsvr32 <server>.dll > regsvr32 /U <server>.dll
8 COM Development Guide

Hello World Example
7. Add an operation named Call to the HelloClient class, give it a return type of void,
and set its implementation to the following:

caller->SayHello();

8. Add explicit initial instances of the following classes to the DefaultConfig
configuration of the Client component (under the Initialization tab for the
configuration):

� HelloClient in the Client package
� CoHello in the HelloSpec package

9. Add the following initialization code to the DefaultConfig configuration of the
Client component:

p_HelloClient->setCaller(m_pUnkCoHello);

p_HelloClient->Call();

10. Add an include for the Client component header to the HelloClient class by setting
the CPP_CG::Class::SpecIncludes property for the HelloClient class to
MainClient.h.

11. Add the Client package to the scope of the Client component (under Selected
Elements).

12. Generate and make the Client component.

Step 4: Running the Client to Invoke the Server

Run the Client executable. The client invokes the server to display a message box that says
“Hello World.” Click OK to close the message box.
Rational Rhapsody 9

COM Development Introduction
10 COM Development Guide

Code Generation
Rational Rhapsody provides several stereotypes for model elements (components, packages, and
classes) that adhere to COM. These stereotypes provide input for COM IDL code generation. This
section describes the relations between them and any restrictions that might apply to model
elements that use them.

Another stereotype is applied to ATL classes that implement COM interfaces, which provides
input for C++ code generation of ATL classes. See the section C++ Code Generation Phase for
detailed information.

IDL Code Generation Phase
To create a COM component, you must explicitly declare it to be either a library, an in-process
server, or an executable server by applying one of the following stereotypes to the component:

� «COM DLL»—Creates an in-process (inproc) server
� «COM EXE»—Creates an executable server
� «COM TLB»—Creates an interface library

COM IDL code is generated for components with any one of these stereotypes. IDL code
generation is blocked for any model containing COM constructs when the component to be built
does not have one of these stereotypes. This prevents erroneous COM element definitions in the
generated IDL.

The following sections describe each of these stereotypes in detail.
Rational Rhapsody 11

Code Generation
«COM DLL» Stereotype

The «COM DLL» stereotype is applied to components that are to be built into COM inproc servers
that take the form of dynamic link libraries (DLLs). When building a DLL server, there are two
ways to compile and link:

� By merging the ProxyStub.dll and TLB into the server (DLL)
� By generating the ProxyStub.dll and TLB separately from the server (DLL)

«COM EXE» Stereotype

The «COM EXE» stereotype is applied to components that are to be built into out-of-process servers
that take the form of executable programs. To compile and link an executable server, you generate
the ProxyStub.dll and TLB separately from the server (EXE).

«COM TLB» Stereotype

The «COM TLB» stereotype is applied to components that are to be built into a TLB (a library of
COM interfaces) and a ProxyStub.dll file. Running a make on such components invokes first
the Microsoft MIDL compiler and then the C++ compiler.

The first (MIDL) phase of the make yields a TLB file. It also yields the sources for the
ProxyStub.dll file, if the COM::Configuration::GenerateProxyStubDll property is set
to True. In this case, the second (C++ compiler) phase compiles the sources yielded by the first
phase into the ProxyStub.dll file. If the property is left as False (the default value), the
ProxyStub.dll file is not built.

A component with a «COM TLB» stereotype can have only the following elements within its scope:

� Packages stereotyped as «COM Library»
� Classes stereotyped as «COM Interface»
� Classes stereotyped as «COM Coclass»
12 COM Development Guide

IDL Code Generation Phase
«COM Library» Stereotype

To create a package of COM constructs, you must explicitly declare the package to be a COM
library. This is done by applying the «COM Library» stereotype to the package. A package with a
«COM Library» stereotype is mapped to a COM IDL library.

The «COM Library» stereotype is applied to packages that contain COM-stereotyped classes. A
«COM Library» package can contain only classes that have one of the following stereotypes:

� «COM Interface»
� «COM Coclass»

The COM IDL code generator generates a COM TLB file containing the «COM Library»
(package) and «COM Coclasses» that expose the «COM Interfaces». For example, the
following object model diagram would be generated into a COM TLB file containing the
PhoneCall library, which contains the StandardCall coclass, which exposes the ICall
interface.
Rational Rhapsody 13

Code Generation
The following figure shows the IDL code generated for the TLB (in the Microsoft Visual Studio
OLE View interface type library viewer).

«COM Interface» Stereotype

To adhere to COM, you must explicitly declare a class as either a COM interface, a coclass, or an
ATL class. To do this, apply one of the following stereotypes to the class:

� «COM Interface»
� «COM Coclass»
� «COM ATL Class»

The «COM Interface» stereotype is applied to classes. It indicates that the COM IDL code
generator should map the class during code generation to an interface in IDL. Rhapsody does not
generate C++ code for «COM Interface» classes.
14 COM Development Guide

IDL Code Generation Phase
«COM Interface» Attributes
By default, attributes of a «COM Interface» class are mapped in the generated IDL to a pair of
accessor/mutator interface operations. For example, the following IDL code is generated for a
«COM Interface» IA with an attribute a1:

interface IA : IDispatch {
// Interface Operations

[propput, id(2)] HRESULT a1([in]int val);
[propget, id(2)] HRESULT a1([out, retval]int *pval);

};

The implementation property (under COM::Attribute) specifies how these operations are
generated. The possible values of the implementation property for «COM Interface»
attributes are as follows:

� propget—Generate an accessor only.
� propput—Generate a mutator only.
� propputref—Generate a by-reference mutator only.
� propget&propput—Generate both an accessor and a mutator (the default value).
� propget&propputRef—Generate both an accessor and a by-reference mutator.

«COM Interface» Operations
Operations of a «COM Interface» class are mapped in the generated IDL to interface operations
with a return type of HRESULT. For example, the following IDL code is generated for a «COM
Interface» IA with an operation op1():

interface IA : IDispatch {
// Interface Operations

[id(1)] HRESULT op1();
};

The return type HRESULT for interface operations is a 32-bit value that indicates success or failure.
Bit 31 is the most significant bit and the one that is checked to determine the success or failure of
the operation. The following figure shows the purpose of the bits in HRESULT.

31 30—27 26—16 15—0

Severity Bit
(0 = success, 1 = failure)

Reserved Facility
(Area of Responsibility for the Error)

Error Code
(Specifics of Failure or Success)
Rational Rhapsody 15

Code Generation
You can use the COM macros SUCCEEDED or FAILED in your code to check for the success or
failure of an interface operation. For example:

HRESULT hr = IA->op1();
if (FAILED(hr))
{

// do something
}

To specify a return type of HRESULT for an operation in Rhapsody, clear the Use existing type
option and type HRESULT in the C++ Declaration field when you define the operation. Rhapsody
checks for deviations from supported return types for «COM Interface» operations.

All operation attributes have a property to specify their description clause, which is enclosed in
square brackets ([]). See the COM Description Clause section for more information.
16 COM Development Guide

IDL Code Generation Phase
«COM Interface» Inheritance
A «COM Interface» class can inherit from another «COM Interface» class.

Note the following:

� A standard (non-COM) class can inherit directly from a «COM Interface» class.
� A «COM Interface» class cannot inherit from a non-«COM Interface» class.
� COM does not allow multiple inheritance for «COM Interface» classes.
Rational Rhapsody 17

Code Generation
«COM Interface» Relations
Relations between «COM Interface» classes are mapped to elements in the generated IDL
depending on the type and multiplicity of the relation.

The following rules apply to incoming/outgoing relations for «COM Interface» classes:

� An outgoing or symmetric relation arrow leaving a «COM Interface» class can target
only another «COM Interface».

� An incoming relation arrow entering a «COM Interface» class can originate in either a
regular class or another «COM Interface».

� An outgoing or symmetric relation arrow from a «COM Interface» class is mapped to
accessor/mutator methods (such as get, set, add, and clear) in the generated IDL. The
accessor’s return type and the mutator parameter’s type are the same as that of the target
«COM Interface». In addition, the mutator’s parameter has a direction of in.

Predefined and External Interfaces
All «COM Interface» classes must inherit from IUnknown, either directly or indirectly. Any
«COM Interface» class that does not inherit from another interface inherits from IUnknown by
default. The Type property (under COM::Interface) specifies the base class for interfaces. The
possible values are as follows:

� Dual—IDispatch base class (default). IDispatch inherits from IUnknown.
� Custom—IUnknown base class
� dispinterface—Pure automation interface
18 COM Development Guide

IDL Code Generation Phase
«COM Coclass» Stereotype

The «COM Coclass» stereotype is applied to classes that are to be generated into IDL coclasses. A
«COM Coclass» class that inherits from a COM interface exposes the COM interface. For
example, in the OMD the StandardCall coclass exposes the ICall interface.

Note the following:

� The «COM Coclass» stereotype indicates that the COM IDL code generator should map
the class during code generation to a coclass in COM IDL. Rhapsody does not generate
C++ code for «COM Coclass» classes.

� A «COM Coclass» class can inherit from one or more «COM Interface» classes, but not
from any other type of class.

� A «COM Coclass» class can only have incoming relations/associations, but not outgoing
ones.

«COM Coclass» Inheritance
The DefaultInterface property (under COM::coclass) specifies the default interface that a
«COM Coclass» class should expose. This property is empty by default. To override the property,
assign it the name of the «COM Interface» class that you want a coclass to expose. If you set the
DefaultInterface property while a package or component is selected, the property is
automatically applied to all new «COM Coclass» classes that you create in that package or
component.

«COM Coclass» Associations
A «COM Coclass» can use a «COM Interface» class. In UML, this is expressed in terms of an
outgoing dependency relation from the «COM Coclass» to the «COM Interface» class with a
Rational Rhapsody 19

Code Generation
«ConnectionPoint» stereotype on the dependency relation. The DefaultInterface property
(under COM::Dependency) specifies the default interface that a «COM Coclass» requires.

See COM Connection Points for more information on connection points.
20 COM Development Guide

IDL Code Generation Phase
COM Description Clause

In COM IDL syntax, interfaces, coclasses, libraries, operations of an interface, arguments of those
operations, and interfaces exposed by a coclass all have a description clause, enclosed in square
brackets, in the generated IDL.

For example, the description clause generated for a «COM Interface» class IA is as follows:

//## class IA
[

dual,
uuid(6559BEA2-8D6D-11d4-80A5-005056C54916),
pointer_default(unique),
object

]

Rhapsody has a dedicated set of properties (for packages, classes, operations, and arguments) that
specify how the description clause is generated. One of the most important COM properties stored
in these properties is the UUID (universal unique identifier) or GUID (global unique identifier).

The description clause properties fall into one of three categories:

� Automatically generated—Rhapsody automatically generates a unique ID into the uuid
property (under COM::Interface/Library/Operation) for a COM dispinterface,
library, or operation, respectively. The ID is generated on the first code generation for the
element if the default property value (empty string) is not overridden.

� Manually set—If you override the value of the uuid property, Rhapsody uses this value
for the uuid in the description clause.

� Optional, verbatim property—The AppendToClause property (under
COM::Interface/Attribute/Argument/Library/coclass/Operation) enables
you to add free text that is generated into the end of the description clause, before the
closing bracket.
Rational Rhapsody 21

Code Generation
C++ Code Generation Phase
The «COM ATL Class» stereotype is applied to classes that implement COM interfaces. A «COM
ATL Class» class that inherits from a «COM Coclass» stereotyped class implements the interface
that the coclass exposes. C++ code, not IDL code, is generated for ATL classes.

A «COM ATL Class» cannot have initial instances; instantiation of ATL classes must be done
using the COM system methods.

Rational Rhapsody code generation properties provide support for the following ATL concepts:

� Threading model
� Dual/custom interface
� Aggregation
� Support error information
� Connection points
� Free-threaded marshaller
22 COM Development Guide

C++ Code Generation Phase
«COM ATL Class» Stereotype

In the following figure, the CStandardCall ATL class implements the ICall interface, which
the StandardCall coclass exposes.

The «COM ATL Class» stereotype indicates that the C++ code generator should map the class to a
C++ class with additional ATL instrumentation. COM IDL code is not generated for this kind of
class.
Rational Rhapsody 23

Code Generation
«COM ATL Class» Operations and Macros

Rhapsody adds a set of standard operations, macros, and keywords to each «COM ATL Class»
stereotyped class. Properties control the generation of these elements. For example, the
DeclareClassFactory property specifies a template for the generation of code for ATL classes.
The following is an example of the kind of template that could be entered in this property:

class $DeclarationModifier $class :
public CComObjectRootEx<$ThreadModel>,
public CCOMCoClass<$class, &CLSID_def>,
public IDispatchImpl<Idef, &IID_Idef,

&LIBID_ALL_KIND_OF_ATLLib>
{

...
}

This template references information stored in the following ATL::Macro properties:

� ATLRootClass—Specifies the ATL root class
� ATLClassObject—Specifies the ATL class that implements a COM coclass
� IDispatchImpl—Provides support for animation

ATL Operations
Rhapsody adds several operations to «COM ATL Class» stereotyped classes. These operations are
exposed in the browser, so you can view, edit, or delete them as needed. Once generated, these
operations are not automatically deleted if you remove the «COM ATL Class» stereotype from the
class.

The following operations are automatically added to ATL classes:

� FinalConstruct and FinalRelease—ATL class initialization and cleanup methods.
You must provide the implementation.

� InterfaceSupportsErrorInfo—Provides support for IsupportErrorInfo. This
operation is generated if the SupportErrorInfo property (under ATL::Class) is set to
Yes. Rhapsody provides a default implementation, which you can override.

� CreateFreeThreadedMarshaller and ReleaseFreeThreadedMarshaller—
Creates and releases the free-threaded marshaller, respectively. The IMarshal
implementation object is generated, along with these two operations, if the
FreeThreadedMarshaller property (under ATL::Class) is set to Yes. You must
explicitly call the create and release operations in your code (for example, in
FinalConstruct and FinalRelease).
24 COM Development Guide

C++ Code Generation Phase
ATL Macros
The following macros are generated for «COM ATL Class» stereotyped classes:

DECLARE_RHAPSODY_REGISTER(CLSID_$coclass, "$TypeName",
"$VersionIndepProgID", "$ProgID", "$ThreadingModel",
COMPAPPID)

DECLARE_PROTECT_FINAL_CONSTRUCT()
BEGIN_COM_MAP($class)

COM_INTERFACE_ENTRY(Idef)
COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP()

The ATL::Macro properties that control how these macro templates are generated include the
following:

� ClassRegistration—Specifies the ATL class registration macro
� DeclareProtect—Specifies the macro that protects the ATL object from being deleted

if, during FinalConstruct, the nested object increments the reference count and then
decrements the count to 0

� BeginInterfaceMap—Specifies the start macro for a COM map of an interface class
� InterfaceEntry—Specifies the ATL macro that defines the COM map interface entry

point
� EndInterfaceMap—Specifies the end macro for a COM map of an ATL class

«COM ATL Class» Aggregations

Rhapsody does not support COM aggregation of ATL classes in terms of generating the
AGGREGATABLE keyword for «COM ATL Class» stereotyped classes. However, it does support
both aggregation and composition for these classes in the UML sense of generating accessors/
mutators for them. You can turn off this support using the Aggregation property (under
ATL::Class). To enable or disable aggregation for a «COM ATL Class», the Aggregation
property must be set for the aggregated (part) class, not the aggregate (whole) class.

The possible values of the Aggregation property are as follows:

� Yes—The ATL class can be aggregated by another class. This is the default value.
� No—The ATL class cannot be aggregated by another class.
� Only—The ATL class can exist only as an aggregated class.
Rational Rhapsody 25

Code Generation
The following figure shows an OMD with aggregation and composition of COM ATL classes.
26 COM Development Guide

COM Components
Three type components contribute to the building of systems with COM:

� Servers—COM-enabled components that are able to respond to remote invocations
� Clients—Components that use the server IDL code, as represented by either Rhapsody

model elements or an external IDL file
� COM interfaces—Components that play a significant role in the design of both clients

and servers

COM Servers
COM servers contain classes that implement COM interfaces. You can build COM servers in two
ways:

� As a single component including both the interface and implementation in the same
component.

A component that contains both interfaces and implementing classes requires both
IDL and C++ compilation.

� As separate components providing an interface/implementation separation in the
deliverable.

A component that contains only the implementing classes requires only C++
compilation. In this case, the compilation requires both a ProxyStub.dll and a
TLB, which must be defined elsewhere (within a separate «COM TLB» component).

For example, the following figure shows two packages:

� Package P1 is a «COM Library» that contains «COM Interface» IA and «COM
Coclass» B.

� Package P2 contains «COM ATL Class» C, which implements the «COM Interface» in
package P1.
Rational Rhapsody 27

COM Components
Packages P1 and P2 can be placed in either the same component or in different components.
28 COM Development Guide

COM Servers
The following figure shows a specification for a component that contains both package P1 (a «COM
Library» containing the «COM Interface» to be implemented) and package P2 (which
contains the implementing «COM ATL Class» C). This component requires both IDL and C++
compilation.

Only DLLs can contain both COM interfaces and implementing classes in the same component. In
this case, the ProxyStub.dll and TLB are merged into the same server (DLL).
Rational Rhapsody 29

COM Components
The following case shows a specification for a component that contains only an implementing
«COM ATL Class» named C. This component requires only C++ compilation. It expects the
ProxyStub.dll and TLB files to be provided in a separate component. This is the preferred
design for COM server components.

Both DLLs and EXEs can be built from components in which the interfaces and implementing
classes are allocated to separate components. In this case, the ProxyStub.dll and TLB are
generated separately from the server (DLL or EXE).
30 COM Development Guide

COM Servers
Implementation of a COM Server

A «COM ATL Class» stereotyped class that inherits from a «COM Coclass» stereotyped class
functions as a COM server object, which implements the interfaces that the COM coclass exposes.
The following is an example of the C++ code that Rhapsody would generate for the ATL class C,
which represents this type of construct:

class ATL_NO_VTABLE C :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<C, &CLSID_B>,
public IDispatchImpl<IA, &IID_IA, &LIBID_P1>

{...}

Conversely, a «COM ATL Class» stereotyped class that inherits directly from a «COM
Interface» class implements the interface directly. This type of construct is useful for
implementing connection points (see COM Connection Points).

For example, the ATL class C shown in the following figure directly implements the interface IA.
Although C is also an ATL class, its code is slightly different from that of the class C. The class C
shown here lacks the CComCoClass<> parent and it inherits from CComObjectRoot rather than
the CComObjectRootEx<> parameterized class.

Both of these ATL classes would have a COM_MAP section.

The code for this class C would be as follows:

class C :
public IDispatchImpl<IA, &IID_IA, &LIBID_P6>,
public CComObjectRoot {...}
Rational Rhapsody 31

COM Components
Inproc and Executable COM Servers

COM supports two different types of servers:

� An in-process (or COM DLL) server, as a dynamic link library (DLL) containing COM
objects

� An out-of-process (or COM EXE) server, as an executable containing COM objects
The in-process (inproc) approach is the most common.

COM InProc Server Generation
A component that has a stereotype of «COM DLL» is built into a DLL or inproc server (see «COM
DLL» Stereotype). Any COM inproc server must implement a predefined set of COM exported
methods to handle issues such as module locking, unlocking, and registration. Rhapsody has
several code generation properties to provide templates that specify how these methods should be
generated. You can modify all of these properties to customize the generated code as desired.

These properties (under ATL::Configuration) are as follows:

� InProcServerExports—Provides a template for the DEF file used during DLL
creation.

� InProcServerMainModule—Provides a template for the declaration and definition of
each of the COM methods exported in the DLL. The default exported methods are
DllCanUnloadNow, DllGetClassObject, DllRegisterServer, and
DllUnregisterServer.

� InProcServerMainLineTemplate—Provides a template for the Dllmain function.
� InProcServerRegistration—Provides a template for generating the ATL server

registration code.
In addition, a <component name>.def file is generated for an inproc server from the
ATL::Configuration::InProcServerExports property, if the file does not already exist.
32 COM Development Guide

COM Servers
COM Executable Server Generation
A component that has a stereotype of «COM EXE» is built into an out-of-process, or executable,
server. A DEF file is not generated for an executable server.

The main code section for a COM executable server is called Winmain. This main code section:

� Is encapsulated within CoInitializeEx and CoUninitialize function calls. Any
other thread opened within the client scope (by an active class) is wrapped with the same
initialization/uninitialization code (as specified by both the
OutProcServerRegistration and OutProcServerMainLineTemplate
properties).

� Registers and unregisters the server in the Windows registry using standard COM
command line switches (for example, /register), as specified by the
OutProcServerRegistration property.

� Registers the COM coclasses (as specified by the OutProcServerRegistration
property).

� Performs the main COM loop and lifetime control (as specified by the
OutProcServerMainModule property).

� Assigns a UUID to the server (as specified by the AppId property).
� Can contain any user-generated code (as specified by the

OutProcServerMainLineTemplate property) in place of the main code generated by
the ATL wizard.

Additional Generated Files
The following additional files are generated for both inproc and executable servers:

� A resource file is always generated for the server if the component contains a «COM
Library» stereotyped package. The resource file has the same name as the server. It
contains an element named TypeLibrary of type Other, which specifies the inclusion
of the type library into the resource file. You can modify this file by adding your own file
elements.

� The RhapRegistery.h (and .cpp) files, which contain basic routines for registering
ATL classes, are copied from the $OMROOT\MakeTempl directory only if they do not
already exist. You can modify these files as desired.

� The stdafx.h file is generated from the ATL::Configuration::OutProcStdAfx
property for executable servers and from the InProcStdAfx property for inproc servers,
if it does not already exist. You can modify this file as desired.
Rational Rhapsody 33

COM Components
ProxyStub.dll Generation
The following properties control generation of the ProxyStub.dll file:

� COM::Configuration::GenerateProxyStubDll—Specifies whether Rhapsody
should generate the ProxyStub.dll. Note that even if the property is True, Rhapsody
generates the file only if it does not already exist.

� COM::Configuration::ProxyStubDefFileName—Specifies the name of the .def
file used to generate the ProxyStub.

The default value is $componentps.def, where $component is replaced with the
name of the server.

� ATL::Configuration::ProxyStubExports—Specifies the content of the
ProxyStub.dll file. You can modify this content as desired.
34 COM Development Guide

COM Clients
COM Clients
Code generation for COM clients is fully automated. Rhapsody generates COM client code when
the COM::Configuration::COMEnable property for the component is set to Client.

Importing TLB Files

Rhapsody supports the use of existing TLB files by adding import statements for the appropriate
TLB file to the code generated for any client class or package that has an association or «Usage»
stereotyped dependency relation to a «COM Interface» or «COM Library».

The import statements can be added to a client by either of the following methods:

� You can add them manually by setting the
ATL::Configuration::TypeLibImportFormat property.

� They can be automatically generated from a «Usage» dependency on a
«COM Coclass» or «COM Library».

Initializing a Client

The client’s main code section is encapsulated within CoInitialize and CoUninitialize
function calls. Any other thread that is opened (by active classes) within the client’s scope is
wrapped with the same initialization code.

You can customize how code is generated for the client’s main code section by modifying the
following properties:

� COMInitialize—Adds COM initialization code to the client’s main section. The
default code is as follows:

CoInitialize(NULL);

� COMUninitialize—Adds COM uninitialization code to the client’s main section. The
default code is as follows:

CoUninitialize(NULL);
Rational Rhapsody 35

COM Components
Instantiating Coclasses

In the common workflow, a client calls a COM-specific instantiation method (for example,
CoCreateInstance or one of its variants) to instantiate a coclass. The method takes as
arguments the coclass to be instantiated and the interface through which access is required. The
output of the instantiation method is a pointer to the created instance.

Rhapsody supports this basic workflow by enabling you to instantiate «COM Coclass»
stereotyped classes using the Initial Instances setting for a configuration. Selecting a «COM
Coclass» as an initial instance has the following effect:

� An appropriate import statement is generated.
� A generic COM smart pointer is defined. The memory to which this pointer points is

automatically released when the pointer is destroyed.
� The COM object is instantiated and its pointer is assigned to the smart pointer.
36 COM Development Guide

COM Interfaces
COM Interfaces
A component defined as a «COM TLB» is allocated a single «COM Library», the «COM
Interface» classes in this package, and the «COM Coclass» classes that expose the interfaces.
This component can have only one «COM Library» defined within its scope.

Such a component generates IDL files only. The Build command invokes the MIDL (Microsoft
IDL) compiler, which creates the TLB file and the associated ProxyStub.dll.

Example of a Complete COM System
The following example of an imaginary telecom switch describes a complete COM-enabled
system consisting of the following components:

� An interface consisting of a «COM TLB»
� A server consisting of a «COM DLL» that uses the interface
� Another server consisting of an executable that acts as a client in relation to the DLL

server
� A class that is built into a simple executable, which is the ultimate client in this system
Rational Rhapsody 37

COM Components
The PhoneCall Interface

In this example, the PhoneCallLib package with its aggregated classes is allocated to a
Rhapsody component named PhoneCall, which is stereotyped «COM TLB».

For the PhoneCall interface:

� Rhapsody generates a COM IDL file to describe each «COM Interface» that it contains.
� The interfaces reflect the visual structure (the interface inheritance tree).
� The PhoneCall package is a «COM Library» containing all the

«COM Coclasses». The _IroamRecorder interface is a source interface for the
CellCall coclass.

� The Rhapsody Build command invokes the MIDL compiler to create the
PhoneCall.tlb and ProxyStub.dll.
38 COM Development Guide

Example of a Complete COM System
The SwitchLogic Server

The SwitchLogic package, with its aggregate classes, is allocated to a Rhapsody component that
is stereotyped as «COM DLL».

For the SwitchLogic DLL server component:

� Rhapsody generates ATL classes (see C++ Code Generation Phase).
� Connection point machinery is added to the CellCall ATL class (see COM Connection

Points).
� The Rhapsody Build command yields a COM DLL.

The CellBillingLogic Server/Client

The CellBillingLogic package, with its aggregated classes, is allocated to a Rhapsody
component that is stereotyped as «Executable». This component acts as both a server and a
client.
Rational Rhapsody 39

COM Components
For this component:

� Rhapsody creates COM support, as described in COM Clients.

� With this COM support, the SwitchCellCall Manager class is able to cocreate
instances of CellCall COM objects.

� Rhapsody generates an ATL class for BillingRecord. This class is not a coclass, and
therefore cannot be instantiated with cocreateinstance.

Import of a TLB

From the modeling point of view, any package using the PhoneCall interfaces, such as the client,
simply needs to import the appropriate TLB. Rhapsody generates the import statements
automatically. In this example, the client can access the PhoneCall information, as well as a
ClientDatabase to print client bills. The ClientDatabase can reflect a COM TLB file to be
imported into the Rhapsody system.
40 COM Development Guide

TLB Importer
The TypeLibrary Importer imports a COM type library into a Rhapsody model. Once a type library
is imported, you can view its contents—including its interfaces, coclasses, attributes, and
operations—in the Rhapsody browser. Thus, you can use the TypeLibrary Importer to analyze any
kind of COM component and then create relations to coclasses, instantiate coclasses, inherit from
interfaces, and implement the interfaces in your own model.

Starting the TypeLibrary Importer
To import a type library into a Rhapsody model, do the following:

1. Select Tools > TypeLibrary Importer.

2. In the resulting Open dialog box, select the type library you want to import (for
example, Atl.dll).

Type libraries can be encapsulated in .tlb (COM type library) files, .olb (Visual
Basic object library) files, or they can be built into COM servers and contained in
.dll, .exe, or .ocx files. Rhapsody can import type libraries from any of these
types of files.
Rational Rhapsody 41

TLB Importer
3. Click Open.

If the import is successful, Rational Rhapsody displays a message indicating that the
import operation was completed successfully.

The result of the import of a type library are new packages added to the model, which contain the
COM interfaces, types, coclasses, inheritance relationships, attributes, and operations from the
imported type library.

Note
Type libraries are imported as read-write, but code generation is disabled for them.

Assignment of COM Stereotypes

Imported elements are assigned the appropriate COM stereotypes for their respective metatypes in
the Rhapsody model, as follows:

� Packages imported from a type library are given the stereotype «COM Library».
� Interfaces are given the stereotype «COM Interface».
� Coclasses, which expose interfaces, are given the stereotype «COM Coclass».
42 COM Development Guide

Starting the TypeLibrary Importer
Imported Properties

The TypeLibrary Importer automatically sets some COM properties for imported elements. This
guarantees that you can use the imported elements properly in a Rhapsody model (for example, to
create COM interfaces that inherit from imported interfaces). One property that is always set for
imported interfaces, libraries, and coclasses is the uuid property (under COM::<metatype>).

The import also sets the properties listed in the following table.

Implicit Import

If an interface or type in an imported type library is found to have been derived from a «COM
Interface» defined in another type library, the necessary parent interfaces and types from that
type library are also imported.

Importer Error Handling

The TypeLibrary Importer handles import errors as follows:

� If the importer encounters a fatal error (for example, if it is unable to add a package to the
model), it displays an error message and terminates the import.

� If the importer encounters a non-fatal error, it displays a warning message and continues,
after which it compiles a report of all the warning messages that occurred during the
import.

For... Property

«COM Interfaces» COM::Interface::Type

Attributes of a
«COM interface»

COM::Attribute::id and
implementation

Operations of a
«COM interface»

COM::Operation::id

Arguments of operations defined
in a «COM interface»

COM::Argument::readonly
and retval
Rational Rhapsody 43

TLB Importer
Refreshing an Imported Type Library
When the TypeLibrary Importer imports a type library, it creates a clone of it in the current
Rhapsody project. There is no connection between this clone and the original type library. The
imported library will not reflect any changes made to the original type library, which must be
reimported if the Rhapsody model is to be kept current when the type library is updated.

To refresh a previously imported type library, do the following:

1. Select Tools > Type Library Importer.

2. In the resulting Open dialog box, select the previously imported type library and click
Open.
Rational Rhapsody detects that the library already exists in the model.

3. Select one of the following options:

� Import As to import the library with a different name.
Rational Rhapsody imports the type library, resulting in two packages:

– The out-of-date type library is contained in the package with the existing
name (for example, ATLLib).

– The updated type library is contained in the package with the new name (for
example, TakeTwo).

� Overwrite to overwrite the existing library.
In this case, Rational Rhapsody automatically creates a backup of the existing
library for you. The result is again two packages, but this time:

– The out-of-date type library is contained in the package named
<library>_bkupn, where n is a number beginning with 1.

– The updated type library is contained in the package with the existing name
(for example, ATLLib).
44 COM Development Guide

Synthesizing Diagrams from Imported Type Libraries
Synthesizing Diagrams from Imported Type Libraries
Once you have imported a type library, you can create an OMD from it to show its internal
structure.

Note
The following example shows the OMD that can be synthesized from the import of the
Rhapsody type library (rhapsody.tlb), which is shipped with Rhapsody and encapsulates
the Rhapsody COM API.

Do the following:

1. Import the rhapsody.tlb type library from the root directory of your Rational Rhapsody
installation.

2. In the main toolbar, click the Object Model Diagram tool.

3. In the resulting Open object model diagram dialog box, click New.

4. In the resulting New Diagram dialog box, enter a name for the new diagram and check the
Populate Diagram option. Click OK.
Rational Rhapsody 45

TLB Importer
5. In the resulting Populate Diagram dialog box, select the package containing the imported
type library (in this case, rhapsody) so all the interfaces contained in the library will be
included in the diagram.

6. Click OK to dismiss the dialog box.

The following figure shows the result—an OMD showing the structure of the
rhapsody type library and its interfaces, which are used in the Rhapsody COM
API.

7. Zoom in on the diagram. You can see that:
46 COM Development Guide

Synthesizing Diagrams from Imported Type Libraries
� The Rhapsody type library is represented as a package named rhapsody with a
stereotype of «COM Library».

� Each interface is represented as a class with a stereotype of
«COM Interface».

Examine the features of some of the imported «COM Interfaces» to see that their attributes and
operations have been imported. Note their types.

Examine the properties of some of the imported «COM Interfaces» to see how the COM
properties have been set for imported elements.
Rational Rhapsody 47

TLB Importer
48 COM Development Guide

COM Connection Points
COM connection points provide one way to implement the publish/subscribe design pattern. In
this design pattern, the client subscribes to a service provided by the server, then goes to sleep.
When the server is ready to publish the service, it sends a callback message to the client, which
wakes up and responds to the message.

A design implementing a COM connection point has the following characteristics:

� The «COM Interface» class is defined as a connection point in the COM IDL using the
source keyword.

� The implementing «COM ATL Class» class must implement the
IConnectionPointContainer interface and a CONNECTION_POINT_MAP.

� The client of that server must implement the connection point.
In the UML view of a client/server design, the server consists of an interface, a coclass, and an
implementing (ATL) object, and the client class uses the implementing object. In the UML view of
a connection point structure, the connection point is represented as a dependency, rather than an
inheritance, relation between a coclass and an interface. The coclass uses the connection point
interface, rather than exposing it. The dependency is stereotyped «ConnectionPoint», and the
SOURCE keyword is generated in the IDL for the interface on which the coclass depends.
Rational Rhapsody 49

COM Connection Points
For example, consider the following model of a cellular phone call. The dependency between the
_IRoamRecorder interface and the CellCall coclass is stereotyped «ConnectionPoint».
The CellCall coclass uses the _IRoamRecorder interface, while exposing the ICellCall
interface. The client, the SwitchCellCallManager, implements the _IRoamRecorder
connection point.

The connection point machinery is hidden (for example, the IConnectionPointContainer and
IConnectionPoint interfaces do not appear in the OMD). Rhapsody automatically generates
this machinery if one or more connection points are defined for a coclass.
50 COM Development Guide

COM View Versus UML View of Connection Points
COM View Versus UML View of Connection Points
COM literature typically shows connection points as having the following structure:

The server implements the connection point facilities using IConnectionPointContainer and
IConnectionPoint. The client implements the outgoing interface using INotifyEvent. From
the client’s perspective, the outgoing interface is simply any COM interface that it must
implement. In practice, the client implementation using the ATL mechanism is much more
complex.

Rhapsody supports the design of COM connection points by enabling you to build any of the
following with a UML model:

� A server with a connection point interface.
� A client that implements a specific connection point defined in a Rhapsody model.
� A client that implements a specific connection point defined outside of a Rhapsody model

(that is, in an external TLB).
� A complete client/server design that reflects the connection point structure.
� Automatic implementation of connection points.
Rational Rhapsody 51

COM Connection Points
Code Generation for Connection Points
The templates for Rhapsody code generation are held in properties. This allows you to customize
the code generation of connection points for a particular class, for all classes in the model, or any
intermediate level, such as all classes in a configuration or package. The following sections
describe the properties for generating connection point code for a server with outgoing interfaces
and a client that implements the connection point server.

Server with Outgoing Interfaces

The generated IDL code for a server with outgoing interfaces looks similar to the following

coclass CellCall
{

[default] interface ICellCall;
[default, source] interface _IRoamRecorder;

};

This sample code is for the CellCall coclass from the PhoneCall package in the phone call
example.

The Implementing ATL Object
If an implementing ATL object depends on one or more connection point interfaces, it must do all
of the following:

� Implement IConnectionPointContainer.
� Implement the connection point proxy.
� Have a map of connection points.

These items are implemented as shown in the following sample code for the CCellCall object
from the phone call example:

class ATL_NO_VTABLE CCellCall:
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CCellCall, &CLSID_ CellCall>,
public IConnectionPointContainerImpl<CCellCall>,
public IDispatchImpl<ICellCall, &IID_ ICellCall,

&LIBID_ PhoneCallLib>,
{
...
BEGIN _CONNECTION_POINT_MAP(CX)
CONNECTION_POINT_ENTRY(DIID_INotifyEvent)
END_CONNECTION_POINT_MAP()
...

}

The following table lists the code generation properties that specify how this code is generated.
52 COM Development Guide

Code Generation for Connection Points
Property Subject and
Metaclass Purpose

DeclarationModifier ATL::Class Specifies the ATL class declaration
modifier

ATLRootClass ATL::Macro Specifies the root class of an
implementing ATL class

ATLClassObject ATL::Macro Specifies the ATL class that
implements a class object

ATLConnectionPointImpl ATL::Macro Specifies the ATL class that
implements the
IConnectionPointContainer
interface

IDispatchImpl ATL::Macro Specifies the ATL class that
implements the IDispatch interface

ConnectionPointProxy
Class

ATL::Macro Specifies the proxy class for the
connection point

BeginConnectionPoint
Map

ATL::Macro Specifies the macro to start a
connection point map for an ATL class

ConnectionPointMap
Entry

ATL::Macro Specifies the macro for the connection
point map entry

EndConnectionPointMap ATL::Macro Specifies the macro to end a
connection point map for an ATL class
Rational Rhapsody 53

COM Connection Points
Proxy Class
The proxy class is defined in a new file. For example, the following code would be generated for
the proxy class in the phone call model in a specification file called CcellCall_CP.h:

template <class T>
class CProxy_RoamRecorder: public

IConnectionPointImpl<T, &DIID_RoamRecorder,
CComDynamicUnkArray>

{
public:

};

The ATL::Configuration::ATLProxyClass property specifies how this code is generated.
This property provides the following template for generating the ATL proxy class for a connection
point:

"\
#ifndef CP$interface_H \
#define CP$interface_H \
\
\
$import \
\
template <class T>\
class CProxy$interface : public

IConnectionPointImpl<T, &$IDinterface,
CComDynamicUnkArray>\

{\
public:\
\

$operations\
\

};\
#endif"

The ATLProxyClass property uses the following keywords:

� $interface—Replaced with the name of the connection point interface.
� $IDinterface—Replaced with the ID of the connection point interface.
� $operations—Replaced with declarations of any operations that are members of the

interface.
54 COM Development Guide

Code Generation for Connection Points
Methods of the Outgoing Interface
For each method of the outgoing interface, a firing method is added to the <interface>_CP.h
file. For example:

HRESULT Fire_RecordCallStartTime()
{

CComVariant varResult;
T* pT = static_cast<T*>(this);
int nConnectionIndex;
int nConnections = m_vec.GetSize();

for (nConnectionIndex = 0;
nConnectionIndex < nConnections;
nConnectionIndex++)

{
pT->Lock();
CComPtr<IUnknown> sp =

m_vec.GetAt(nConnectionIndex);
pT->Unlock();

IDispatch* pDispatch =
reinterpret_cast<IDispatch*>(sp.p);

if (pDispatch != NULL)
{

VariantClear(&varResult);
DISPARAMS disp = {NULL, NULL, 0, 0};
pDispatch->Invoke(0x1, IID_NULL,
LOCALE_USER_DEFAULT, DISPATCH_METHOD, &disp,
&varResult, NULL, NULL);

}
}
return varResult.scode;

}

The ATL::Configuration::ATLDispInterfaceCPFireOperation property specifies how
this code is generated. It provides the following template for generating the connection point firing
operation for outgoing interfaces:

"\
$opRetType Fire_$opname($arguments)\
{\

CComVariant varResult;\
T* pT = static_cast<T*>(this);\
int nConnectionIndex;\
CComVariant* pvars = NULL ;\
if($noOfArgs > 0)\

pvars = new CComVariant[$noOfArgs];\
\
int nConnections = m_vec.GetSize();\
\
for (nConnectionIndex = 0; nConnectionIndex <

nConnections; nConnectionIndex++)\
{\

pT->Lock();\
CComPtr<IUnknown> sp =

m_vec.GetAt(nConnectionIndex);\
pT->Unlock();\
IDispatch* pDispatch =

reinterpret_cast<IDispatch*>(sp.p);\
if (pDispatch != NULL)\
Rational Rhapsody 55

COM Connection Points
{\
VariantClear(&varResult);\
\
/*initialize pvars[..]*/\
\
DISPPARAMS disp = {pvars, NULL, $noOfArgs, 0};\
pDispatch->Invoke($id, IID_NULL,
LOCALE_USER_DEFAULT, DISPATCH_METHOD, &disp,
$&varResult, NULL, NULL);\

}\
}\
delete[] pvars;\
return varResult.scode;\

}"

The ATLDispInterfaceCPFireOperation property uses the following keywords:

� $opRetType—Replaced with the operation return type.
� $opname—Replaced with the name of the operation to which a Fire operation is being

added.
56 COM Development Guide

Code Generation for Connection Points
Client of a Connection Point Server

A client of a connection point server is modeled as an ATL class that directly inherits from a «COM
Interface» class. For example, the BillingRecord ATL class in the phone call example is the
client of the _IRoamRecorder connection point server. Code for the BillingRecord would be
generated as follows:

class BillingRecord :
public IDispatchImpl<_RoamRecorder,

&IID_RoamRecorder, &LIBID_PhneCallLib>,
public CComObjectRoot

{
public:
BillingRecord() {}

BEGIN_COM_MAP(BillingRecord)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY(_RoamRecorder)

END_COM_MAP()
};

The code generation properties (under ATL::Macro) that specify how this code is generated
include the following:

� IDispatchImpl—Specifies the ATL class that implements the IDispatch interface
� BeginInterfaceMap—Specifies the start macro for a COM map of an ATL class
� InterfaceEntry—Specifies the ATL macro that defines the COM map interface entry
� EndInterfaceMap—Specifies the end macro for a COM map of an ATL class
Rational Rhapsody 57

COM Connection Points
58 COM Development Guide

Index
Symbols
$&varResult keyword 56
$arguments keyword 55
$id keyword 56
$IDinterface keyword 54
$import keyword 54
$noOfArgs keyword 55
$operations keyword 54
$opname keyword 56
$opRetType keyword 56
«COM ATL Class» stereotype

aggregation 25
connection points 31
Hello World example 6
implementing COM interfaces 22
macros 24
macros, generated 25
operations 24

«COM Coclass» stereotype 19
associations 19
example 38
Hello World example 6
inheritance 19

«COM DLL» stereotype 12
example 39
IDL code generation phase 11

«COM EXE» stereotype
compiling and linking 12
Hello World example 5
IDL code generation phase 11

«COM Interface» stereotype 14
attributes 15
example 38
Hello World example 6
inheritance 17
IUnknown 18
operations 15
relations 18

«COM Library» stereotype 13
example 38
Hello World example 6

«COM TLB» stereotype 12
building COM servers 27
compiling and linking 12
example 38
IDL code generation phase 11

«Executable» stereotype
example 39

«Usage» stereotype 35

A
AGGREGATABLE keyword 25
Aggregation property 25
Apartment model 3
AppendToClause property 21
AppId property 33
Applications

distributed 1
Associations

«COM Coclass» 19
COM 18

ATL class 22
operations and macros 24
server registration code 32

ATL methods
CreateFreeThreadedMarshaller 24
FinalConstruct, ATL operations 24
FinalRelease, ATL operations 24
InterfaceSupportsErrorInfo 24
ReleaseFreeThreadedMarshaller 24

ATLClassObject property 24, 53
ATLConnectionPointImpl property 53
ATLDispInterfaceCPFireOperation property 55
ATLProxyClass property 54
ATLRootClass property

ATL class template 24
code generation 53

Attributes
«COM Interface» 15

B
BEGIN_COM_MAP 25
BeginConnectionPointMap property 53
BeginInterfaceMap property

code generation 57
macro template 25

Bits 16
Build

COM server 27
COM server, Hello World example 8
Rational Rhapsody 59

Index
Rational Rhapsody framework 5

C
C++ language

code generation 22
compilers 12

Class
proxy 54

Classes
ATL 3, 22
C++ 3
reactive 3

ClassRegistration property 25
Client of connection point server 57
Coclass, instantiating 36
Code generation 11

C++ 22
connection points 52
IDL 11

CoInitialize method 35
COM

and Rational Rhapsody 1
and Rational Rhapsody, setting up 5
association 18
components 27
connection points 49
description clause 21
designing clients and servers 2
DLL 12
FAILED macro 16
generating artifacts from UML models 3
Hello World example 5
IDL code generation 11
inproc server 32
library 13
properties 21
relations 18
sample system 37
SUCCEEDED macro 16

COM client
creating 8
designing 2
importing TLB files 35
initializing 35
main code section 35
running 9

COM description clause 21
COM server

building 27
building Hello World example 8
creating 5
designing 2
generated files 33
implementing 31
main code section 33
registering 8

types 32
COM_INTERFACE_ENTRY macro 25
COM_MAP section 31
COMEnable property 8

client code 35
COMInitialize property 35
Compile

«COM DLL» 12
«COM EXE» 12
«COM TLB» 12

Compilers
C++ 12

Components 27
COMUninitialize property 35
Concurrency 3
Connection point

«COM ATL Class» 31
client of 57
code generation 52
proxy class 54
UML representation 49

CONNECTION_POINT_MAP 49
ConnectionPointMapEntry property 53
ConnectionPointProxyClass property 53
CoUninitialize method 3, 35
Create

COM client 8
COM server 5

CreateFreeThreadedMarshaller method 24

D
DeclarationModifier property 53
DECLARE_PROTECT_FINAL_CONSTRUCT

macro 25
DECLARE_RHAPSODY_REGISTER macro 25
DeclareClassFactory property 24
DeclareProtect property 25
DEF file 33

name 34
Description clause 21
Design clients 2
dispinterfaces 21
Distributed application 1
DLL 12
DllCanUnloadNow method 32
DllGetClassObject method 32
Dllmain function 32
DllRegisterServer method 32
DllUnregisterServer method 32

E
END_COM_MAP macro 25
EndConnectionPointMap property 53
EndInterfaceMap property

code generation 57
60 COM Development Guide

Index
macro template 25
Error handling, TLB import 43
Example, Hello World 5
EXE 12
Executable server 32
External interface 18

F
File

DEF 33
DEF name 34
generated for COM servers 33
IDL 3
IDL, generating 37
ProxyStub.dll, sources for 12
stdafx.h 33
TLB, importing 35

FinalConstruct method
ATL macros 24
ATL operations 24

FinalRelease method
ATL macros 24
ATL operations 24

Firing method 55
Frameworks

rebuilding 5
FreeThreadedMarshaller property 24

G
Generate IDL files 37
GenerateProxyStubDll

TLB 12
GenerateProxyStubDll property

ProxyStub.dll file 34
GUID 21

H
Hello World example 5
HRESULT 15

bits 16

I
IConnectionPointContainer interface 49
IDispatchImpl property

ATL template 24
code generation 53
connection point server 57

IDL code generation 11
IDL files 37
IMarshal implementation object 24
Implement COM server 31

implementation property 15
Import

TLB files, COM clients 35
type libraries properties set by 43
type library 2
type library error handling 43
type library synthesizing OMDs 45

Incoming relation arrow 18
Inheritance

«COM Coclass» 19
«COM Interface» 17

Initialize COM client 35
Inproc server 32

generating 32
InProcServerExports property 32
InProcServerMainLineTemplate property 32
InProcServerMainModule property 32
InProcServerRegistration property 32
InProcStdAfx property 33
Instantiate coclasses 36
Interface

methods of outgoing 55
predefined 18

InterfaceEntry property
code generation 57
macro templates 25

InterfaceSupportsErrorInfo method 24
IsupportErrorInfo 24
IUnknown base class 18

K
Keywords

$&varResult 56
$arguments 55
$id 56
$IDinterface 54
$import 54
$noOfArgs 55
$operations 54
$opname 56
$opRetType 56
AGGREGATABLE 25

L
Libraries

COM IDL 13
combined interface 29
importing 2
separate interface 27

Link
«COM DLL» 12
«COM EXE» 12
«COM TLB» 12
Rational Rhapsody 61

Index
M
Macros

«COM ATL Class» 24
«COM ATL Class», generated 25
BEGIN_COM_MAP 25
COM_INTERFACE_ENTRY 25
DECLARE_PROTECT_FINAL_CONSTRUCT 25
DECLARE_RHAPSODY_REGISTER 25
END_COM_MAP 25
FAILED 16
SUCCEEDED 16

Methods
CoInitialize 35
CoUninitialize 3, 35
DllCanUnloadNow 32
DllGetClassObject 32
DllRegisterServer 32
DllUnregisterServer 32
FinalConstruct, ATL macros 24
FinalRelease, ATL macros 24
firing 55
of outgoing interface 55

MIDL compiler 12

O
OMD of imported type library 45
Operations

«COM ATL Class» 24
«COM Interface» 15

Outgoing relation arrow 18
OutProcServerMainLineTemplate property 33
OutProcServerMainModule property 33
OutProcServerRegistration property 33
OutProcStdAfx property 33

P
Package containing ATL classes 30
PATH environment variable 5
Predefined interface 18
Process termination 3
Properties 21

Aggregation 25
AppendToClause 21
AppId 33
ATLClassObject 24, 53
ATLConnectionPointImpl 53
ATLDispInterfaceCPFireOperation 55
ATLProxyClass 54
ATLRootClass, ATL class template 24
ATLRootClass, code generation 53
BeginConnectionPointMap 53
BeginInterfaceMap, code generation 57
BeginInterfaceMap, macro template 25
ClassRegistration 25

code generation 22
COM 21
COMEnable 8
COMEnable, client code 35
COMInitialize 35
COMUninitialize 35
ConnectionPointMapEntry 53
ConnectionPointProxyClass 53
DeclarationModifier 53
DeclareClassFactory 24
DeclareProtect 25
DefaultInterface 19
EndConnectionPointMap 53
EndInterfaceMap, code generation 57
EndInterfaceMap, macro template 25
FreeThreadedMarshaller 24
GenerateProxyStubDll, ProxyStub.dll file 34
GenerateProxyStubDll, TLB 12
IDispatchImpl, ATL template 24
IDispatchImpl, code generation 53
IDispatchImpl, connection point server 57
implementation 15
imported from a TLB 43
InProcServerExports 32
InProcServerMainLineTemplate 32
InProcServerMainModule 32
InProcStdAfx 33
interface 15
InterfaceEntry, code generation 57
InterfaceEntry, macro templates 25
OutProcServerMainLineTemplate 33
OutProcServerMainModule 33
OutProcServerRegistration 33
OutProcStdAfx 33
ProxyStubDefFileName 34
ProxyStubExports 34
set by importing a type library 43
SpecIncludes 9
StartFrameworkInMainThread 8
SupportErrorInfo 24
TypeLibImportFormat 35
uuid 21

Proxy class 54
ProxyStub.dll file 12
ProxyStubDefFileName property 34
ProxyStubExports property 34
Publish/subscribe pattern 49

R
Rational Rhapsody

and COM 1
and COM, Hello World example 5
and COM, IDL code generation 11
and COM, setting up 5

Reactive class 3
Refresh type library 44
62 COM Development Guide

Index
Register COM server 8
Relation 18
ReleaseFreeThreadedMarshaller method 24
Run COM client 9

S
SpecIncludes property 9
StartFrameworkInMainThread property 8
stdafx.h file 33
Stereotypes 11

«COM ATL Class» 22
«COM Coclass» 19
«COM DLL» 12
«COM EXE» 12
«COM Interface» 14
«COM Library» 13
«COM TLB» 12

SupportErrorInfo property 24

T
Threading model 3
ThreadingModel property 3
TLB 12

error handling 43
importing 2
importing, example 40
updating an imported 44

TLB Importer 41
Type library

importing 2
importing error handling 43
importing set properties 43
refreshing 44
synthesizing an OMD 45

TypeLibImportFormat property 35
TypeLibrary Importer 41

U
UML model

connection points 51
generating COM artifacts 3

UUID 21
uuid property 21

W
Winmain section 33
Rational Rhapsody 63

Index
64 COM Development Guide

	Contents
	COM Development Introduction
	Using Rational Rhapsody to Develop COM Applications
	Design of Clients and Servers
	Import of Type Libraries
	Interface Design

	Generation of COM Artifacts from UML Models
	Rational Rhapsody Threads and the COM Apartment Model
	Hello World Example
	Step 1: Setting Up Rational Rhapsody to Use COM
	Step 2: Creating a COM Executable Server
	Dividing the Component into Packages
	Adding an Operation to the COM Object
	Building the COM Server

	Step 3: Creating a COM Client
	Step 4: Running the Client to Invoke the Server

	Code Generation
	IDL Code Generation Phase
	«COM DLL» Stereotype
	«COM EXE» Stereotype
	«COM TLB» Stereotype
	«COM Library» Stereotype
	«COM Interface» Stereotype
	«COM Interface» Attributes
	«COM Interface» Operations
	«COM Interface» Inheritance
	«COM Interface» Relations
	Predefined and External Interfaces

	«COM Coclass» Stereotype
	«COM Coclass» Inheritance
	«COM Coclass» Associations

	COM Description Clause

	C++ Code Generation Phase
	«COM ATL Class» Stereotype
	«COM ATL Class» Operations and Macros
	ATL Operations
	ATL Macros

	«COM ATL Class» Aggregations

	COM Components
	COM Servers
	Implementation of a COM Server
	Inproc and Executable COM Servers
	COM InProc Server Generation
	COM Executable Server Generation
	Additional Generated Files
	ProxyStub.dll Generation

	COM Clients
	Importing TLB Files
	Initializing a Client
	Instantiating Coclasses

	COM Interfaces
	Example of a Complete COM System
	The PhoneCall Interface
	The SwitchLogic Server
	The CellBillingLogic Server/Client
	Import of a TLB

	TLB Importer
	Starting the TypeLibrary Importer
	Assignment of COM Stereotypes
	Imported Properties
	Implicit Import
	Importer Error Handling

	Refreshing an Imported Type Library
	Synthesizing Diagrams from Imported Type Libraries

	COM Connection Points
	COM View Versus UML View of Connection Points
	Code Generation for Connection Points
	Server with Outgoing Interfaces
	The Implementing ATL Object
	Proxy Class
	Methods of the Outgoing Interface

	Client of a Connection Point Server

	Index

