Rhapsody

COM Development Guide

Rational Rhapsody
COM Development Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

COM Development Introduction 1
Using Rational Rhapsody to Develop COM Applications 1
Design of Clients and SerVers. e e e 2
Import of Type Libraries e 2
INterface DeSIgN o e 3
Generation of COM Artifacts from UML Models. e 3
Rational Rhapsody Threads and the COM Apartment Model 3
Hello World EXample. e e 5
Step 1: Setting Up Rational Rhapsody to Use COM. i e e 5
Step 2: Creating a COM Executable Server e e e 5
Step 3: Creating @a COM Client e e e e e e e e 8
Step 4: Running the Client to Invoke the Server. e 9
Code Generation 11
IDL Code Generation Phase 11
«COM DLL» StereOtype e e e e e 12
CCOM EXE» SEEIOtYPE ottt ittt e e e 12
CCOM TLB» StereOtYPe . . . e e e e e e e 12
«COM Library» Stereotype oottt 13
«COM INterface» SterEOtYPE ottt 14
«COM COClass» StEIEO Y PO . . . o v ottt e e e e e e 19
COM DescCription ClaUSE. oottt e e e e 21
C++ Code Generation Phase 22
«COM ATL Class» SterEOYPEttt et et e e e e e e e e e 23
«COM ATL Class» Operations and MacCroSttt e e e 24
«COM ATL Class» AQQregationso vttt i e e e e e e e e e 25
COM COomMPONENTS . .o e e e e 27
COM SBIVEIS . .t ittt e e e 27
Implementation of a COM SerVero e 31
Inproc and Executable COM SEIVEISt e e 32
COM CliBNES . . et e 35

Rational Rhapsody

Table of Contents

IMporting TLB Files e 35
Initializing @ Client 35
Instantiating CoOCIaSSES ottt 36
COM INterfaCeS . . 37
Example of a Complete COM SyStem 37
The PhoneCall Interface e 38
The SWItChLOGIC SEIVEIo e e e e 39
The CellBillingLogic Server/Client. e e e 39
IMPOrt Of @ TLBo e e 40
TLB IMPOIter . . 41
Starting the TypeLibrary Importer 41
Assignment of COM StereotyPesS oottt e e e e 42
IMported Properties.o e 43
IMPICIt IMPOIT . o 43
Importer Error Handling. o 43
Refreshing an Imported Type Library 44
Synthesizing Diagrams from Imported Type Libraries 45
COM Connection POINES e 49
COM View Versus UML View of Connection Points. i 51
Code Generation for Connection POINtS e 52
Server with Outgoing INtErfaces o 52
Client of a CoNNECtion POINt SEIVET\ e e e 57
N EX . 59

iv COM Development Guide

COM Development Introduction

Distributed applications are client/server applications in which clients and servers typically run on
different processors, which can be located on either the same machine or on different machines.
The client and server applications can be written in the same language (for example, C++) or a
mixture of several different languages (such as C++, C, and Java) and can run on the same
operating system or different operating systems.

There are several mechanismsin use for allowing mixed, distributed applications to find and
interact with each other over a network. Rational Rhapsody supports two such mechanisms:

¢ COM—The Component Object Model.
¢ CORBA®—The Common Object Request Broker Architecture, endorsed by the OMG®.

Using Rational Rhapsody to Develop COM
Applications

If you are a COM domain user, you are developing COM distributed systems using COM
interfaces as part of your process. This book describes how you can use Rational Rhapsody to
achieve your goal of making COM an integral part of your software model. Using Rational
Rhapsody, you can define, use, and manipulate COM interfaces and libraries. You can aso use
Rational Rhapsody to link the COM domain constructs to a high-level language domain (the C++
domain).

You can use Rational Rhapsody to do any of the following with COM:

¢ Design aserver.

¢ Designaclient.

¢ ImportaTLB file.

¢ Design an interface (forward engineering).
The following sections describe these tasks in detail.

Rational Rhapsody 1

COM Development Introduction

Design of Clients and Servers

If aninterfaceis already developed (either with Rational Rhapsody or imported using the TLB
import utility), you can use it as-is and concentrate on implementing the client or server. Rational
Rhapsody enables ATL-based server implementation development.

The artifacts of client/server development with Rational Rhapsody are the following:
* For servers, COM components (objects) and servers (DLLs and EXES); for clients, COM
C++ clients

+ Ability to debug COM servers using the Rational Rhapsody built-in animation and
debugging facilities

+ Visua representation of the relations between the various COM interfaces in the system
and their implementing classes

See COM Servers and COM Clients for more information on designing COM clients and servers
with Rational Rhapsody.

Import of Type Libraries

You can import existing type libraries into Rational Rhapsody so Rational Rhapsody elements can
reference them. The resulting structure is a Rational Rhapsody package that reflects the type
library, its interfaces, and coclasses. A package that is the result of atype library import is read-
write, but code generation is disabled for it.

If you implement COM servers, you can use an imported type library package as the basis for
deriving new interfaces. If you implement COM clients, you can use the type library to interact
with external TLB interfaces. See ILB Importer for information on how to use the Rational
Rhapsody TLB importer.

2 COM Development Guide

Generation of COM Artifacts from UML Models

Interface Design

Rational Rhapsody enables you to develop interfaces by generating the following artifacts:

¢ A ProxyStub.dll file

¢ COM IDL structures and files consisting of interface coclasses (both incoming and
outgoing)

¢ TLBfiles

The benefit to using Rational Rhapsody to generate these filesis that it gives you avisual
description of the different COM interfaces that comprise the system, the relationships between
them, and their packaging. Therefore, the results of designing an interface with Rational Rhapsody
are avisual model of the interface, aswell as binary components. Implementers of COM servers
and clients can use these artifacts in designing their respective systems.

See COM Interfaces for more information on designing COM interfaces.

Generation of COM Artifacts from UML Models

The Unified Modeling Language™ (UML ™) profile defined in Rational Rhapsody supports
generation of the following COM artifacts:

¢ COM IDL files

¢ C++/ATL classes

+ In-process and executable COM servers
These artifacts are described in subsequent chapters.

Ratciio?al Rhapsody Threads and the COM Apartment
Mode

Thereis no direct mapping between Rational Rhapsody threads and any other UML modeling
construct and the COM apartment/threading model for a class under design. Therefore, you can
freely define the apartment model for every generated ATL class using the Thr eadi nghbdel
property (under ATL: : Cl ass).

Note the following threading behavior:
+ Reactive classes and COM threads—Reactive classes are generated with guarded

destructors. Object destruction that is caused by a zero reference count is done only after
all event processing is finished.

Rational Rhapsody 3

COM Development Introduction

Concurrency and COM threads—Rational Rhapsody supports only sequential ATL
classes, not active ones. This restriction is enforced with a check.

Process ter mination—Upon termination of a Rational Rhapsody animation session, the
generated code callsCoUni ni ti al i ze() before terminating the thread.

COM Development Guide

Hello World Example

Hello World Example
This section describes how to use Rational Rhapsody to design a client/server application to
display “Hello World” using COM.
The genera steps are as follows:
1. Set up Rational Rhapsody to use COM.
2. Create aCOM executable server.
3. CreateaCOM client.
4. Runthe client to invoke the server.

The following sections describe these steps in detail.

Step 1: Setting Up Rational Rhapsody to Use COM

To use COM with Rational Rhapsody, you must do the following:

1. Performacustom install of Rational Rhapsody, selecting the run-time and framework
sources for C++.

2. Open aDOS window and change directory to the <Rhapsody>\ Shar e\ LangCpp
directory. Rebuild the framework using the command appropriate for your platform. For

example, for Windows NT® systems, enter the following command:

.. \etc\ nsnake. bat nsbuil d. nak

3. Addthe <Rhapsody>\ Shar e\ LangCpp\ | i b directory to your PATH environment
variable.

Step 2: Creating a COM Executable Server
Create an executable server with Rational Rhapsody as follows:
1. Start Rational Rhapsody and create a new project named COM _Exanpl e.
2. Add acomponent named COVBer ver to the project.
3. Set the component stereotype to « COMEXE».

Dividing the Component into Packages

The server component will consist of two packages: one for the interface specification and another
for the implementation.

Rational Rhapsody 5

COM Development Introduction

Do the following:

1
2.

Add two packages named Hel | oSpec and Hel | ol npl to the COVBer ver component.

Givethe Hel | oSpec package a stereotype of «COMLi br ar y». Do not give the
Hel | ol npl package any stereotype.

Make the following changes to the Hel | oSpec library:

a. Addaclassnamed | Hel | o and give this class a stereotype of
«COMI nt erface».

b. Addaclassnamed CoHel | o and give this class a stereotype of
«COMCocl ass».

c. FromtheCoHel | o class, add asuperclassrelationto the | Hel | o interface.

TotheHel | ol mpl package, add a class named CHel | o and give this class a stereotype of
«COMATL d ass».

From the CHel | o ATL class, add a superclassrelation to the CoHel | o coclassin the
Hel | oSpec library.

The following figure shows the resultant browser view.

=@ Hellolmpl
EE Classes
: = CHello
E|'qT:' SuperClasses
L. CoHelln
E@ HelloSpec:
EE Classes
== CoHello
E|'qT:' SuperClasses
: -5 IHello
- Hella

Create an abject model diagram from the new model elements as follows:

a. Select Tools> Diagrams > Object Model Diagram; click New in the resultant
dialog box.

b. Inthe New Diagram dialog box, type a name for the diagram, check the Populate
Diagram option, then click OK.

c. Inthe Populate Diagram dialog box, select Relations Among Selected, leave al the
types of relations selected, select the Hel | ol npl library and the Hel | oSpec
package, and use Orthogonal layout style.

Click OK.

COM Development Guide

Hello World Example

Rational Rhapsody creates the OMD. Rearrange the OMD so it looks like the
following figure.

HelloSpec |
o CHello
oRello <} Hellolmpl
<<COM j;class» <<COM ATL Class>>
IHello
<<COM Interface>>
<<COM Library>>

Adding an Operation to the COM Object
To add an operation to display the “Hello World” message, follow these steps:

1. TotheCHel I o interface, add an operation called SayHel | o.

2. Specify thereturn type of the SayHel | o operation as HRESULT (uncheck the Use existing
type option and type HRESULT in the C++ Declaration field).

3. Copy the SayHel | o operation from the interface to her COM ATL class by pressing Ctrl
and dragging the operation from | Hel | o to CHel | o in the browser.

4. Makesurethe CHel | o operation’'sATL: : Oper at i on: : STDVETHOD property is set to
True.

5. Set the implementation of the SayHel | o operation in the CHel | o class to the following:

MessageBox(NULL, “Hello World”, “Hello Wrld!”,
MB_(CXK) ;
return S_OK

Rational Rhapsody 7

COM Development Introduction

Building the COM Server
To build the server component, follow these steps:

1. Inthe browser, highlight the COMSer ver component, right-click, and select Features
from the pop-up menu. In the Selected Elementsfield, check the Hel | oSpec library and
theHel | ol npl package

2. For the Def aul t Confi g configuration of the COVBer ver component, verify that the
CG : Configuration:: StartFramewor kl nMai nThr ead property is set to Fal se.

3. Set the COVBer ver component as the active component.

4. Generate code for the Def aul t Conf i g configuration of the COVBer ver component
(Code > Generate).

5. Build the COVSer ver . exe executable (Code > Build COM Server.exe).

6. When the build is done, open a DOS command prompt window, change directory to the
location of the ConBSer ver . exe application, and register the server by executing the
following command at the command prompt:

> COVBerver. exe /[RegServer
The COM server isnow built and registered.

The following table lists the commands to register and unregister the different types of COM

Servers.
COM Server . .
Register Command Unregister Command
Type
«COM EXE» > <server>.exe / RegServer | > <server>.exe /UnregServer
«COM DLL» > regsvr32 <server>.dl| > regsvr32 /U <server>.dl|

Step 3: Creating a COM Client

To create the COM client that calls the server to print “Hello World”, follow these steps:

Create anew component named Cl i ent and set itstype to Executable.

Set d i ent asthe active component.

Set the COM : Conf i gur at i on: : COVEnabl e property for thiscomponentto d i ent .
Add a package named d i ent to the model.

Add aclassnamed Hel | od i ent tothed i ent package.

o o ~ wWw D P

Add an attribute named cal | er of typel Hel | oPtr totheHel | oCl i ent class.

8 COM Development Guide

Hello World Example

7. Add an operation named Cal | totheHel | oCl i ent class, giveit areturn type of voi d,
and set its implementation to the following:

cal l er->SayHel | o();

8. Addexplicitinitial instances of the following classesto the Def aul t Confi g
configuration of the Cl i ent component (under the Initialization tab for the
configuration):

¢ Hellodient inthed ient package
¢ CoHel | ointheHel | oSpec package

9. Add thefollowinginitialization code to the Def aul t Conf i g configuration of the
d i ent component:

p_Hell oC i ent->set Cal | er (m pUnkCoHel | 0) ;
p_Hel loCient->Call();

10. Addani ncl ude forthed i ent component header totheHel | od i ent class by setting
the CPP_CG : d ass: : Specl ncl udes property for theHel | oCl i ent classto
Mai nCl i ent. h.

11. Addthed i ent package to the scope of the C i ent component (under Selected
Elements).

12. Generate and makethed i ent component.
Step 4: Running the Client to Invoke the Server

Runthed i ent executable. The client invokes the server to display a message box that says
“Hello World.” Click OK to close the message box.

Rational Rhapsody 9

COM Development Introduction

10

COM Development Guide

Code Generation

Rational Rhapsody provides several stereotypes for model elements (components, packages, and
classes) that adhere to COM. These stereotypes provide input for COM IDL code generation. This
section describes the relations between them and any restrictions that might apply to model
elements that use them.

Another stereotypeis applied to ATL classes that implement COM interfaces, which provides
input for C++ code generation of ATL classes. See the section C++ Code Generation Phase for
detailed information.

IDL Code Generation Phase

To create a COM component, you must explicitly declare it to be either alibrary, an in-process
server, or an executable server by applying one of the following stereotypes to the component:
¢ «COMDLL»—Creates an in-process (inproc) server
¢ «COMEXE»—Creates an executable server
¢ «COMTLB»—Creates an interface library

COM IDL codeis generated for components with any one of these stereotypes. IDL code
generation is blocked for any model containing COM constructs when the component to be built
does not have one of these stereotypes. This prevents erroneous COM element definitions in the
generated IDL.

The following sections describe each of these stereotypes in detail.

Rational Rhapsody 11

Code Generation

«COM DLL» Stereotype

The «COMDLL>» stereotype is applied to components that are to be built into COM inproc servers
that take the form of dynamic link libraries (DLLs). When building aDLL server, there are two
ways to compile and link:

¢ By merging the Pr oxySt ub. dI | and TLB into the server (DLL)

¢ By generating the Pr oxy St ub. dI | and TLB separately from the server (DLL)

«COM EXE» Stereotype

The « COMEXE» stereotypeis applied to componentsthat are to be built into out-of-process servers
that take the form of executable programs. To compile and link an executable server, you generate
the ProxySt ub. dl | and TLB separately from the server (EXE).

«COM TLB» Stereotype

The «COMTLB» stereotype is applied to components that are to be built into aTLB (alibrary of
COM interfaces) and aPr oxy St ub. dl | file. Running a make on such components invokes first
the Microsoft MIDL compiler and then the C++ compiler.

Thefirst (MIDL) phase of the make yieldsa TLB file. It also yields the sources for the

ProxySt ub. dl | file, if theCOM : Confi gur ati on: : Gener at ePr oxySt ubDl | property is set
to Tr ue. In this case, the second (C++ compiler) phase compiles the sources yielded by the first
phase into the Pr oxy St ub. dlI | file. If the property isleft as Fal se (the default value), the
ProxySt ub. dl | fileisnot built.

A component with a «COMTLB» stereotype can have only the following elements within its scope:

* Packages stereotyped as «COM Li br ary»
¢ C(Classes stereotyped as«COM | nt er f ace»
¢ (Classes stereotyped as «COM Cocl ass»

12 COM Development Guide

IDL Code Generation Phase

«COM Library» Stereotype

To create a package of COM constructs, you must explicitly declare the package to be a COM
library. Thisis done by applying the «COMLI br ar y» stereotype to the package. A package with a
«COM Li br ar y» stereotype is mapped to a COM IDL library.

The «COMLI br ar y» stereotypeis applied to packages that contain COM-stereotyped classes. A
«COM Li br ar y» package can contain only classes that have one of the following stereotypes:

¢ «COMI nterface»
¢ «COMCocl ass»

The COM IDL code generator generates a COM TLB file containing the «COMLi br ar y»
(package) and «COMCocl asses» that expose the «COMI nt er f aces». For example, the
following object model diagram would be generated into a COM TLB file containing the
PhoneCal | library, which containsthe St andar dCal | coclass, which exposesthe | Cal |
interface.

FhoneCall |

ICall

==C0MInterfacas=

T

StandardCall

==2C0MCoclass==

==COMLibrary==

Rational Rhapsody 13

Code Generation

OLE View interface type library viewer).

% ITypeLib Yiewer
Eile

Wisw

CIE

« digpinterface [Call

The following figure shows the IDL code generated for the TLB (in the Microsoft Visual Studio

= B3

(] Methods

i

2 ¢ Inheited Interfaces

@ ICal

=P Inherited Interfaces

G Irherited Interfaces

P Dizpatch

GetTypelnfoCount

GetTppelnfo
GetlDs0fM ames
Invoke

Inherited Interfaces
- Urknown

2333

m Quemnlnterlface
m AddRef

m Release

E-@& coclass StandardCal

M ethods

-9 Inherited Interfaces
19 ICal

Ready

«COM Interface» Stereotype

¢ Generated _IDL file (ky the CQLE/COM Obqject Viewer)

¢ typelilk filename: <could not determine filensome:=
[

uuid [32FSBEIS0-4BT7F-451D0-A10D- 438 06FBARD2A)
wersion(l.0)
]
likrary PhoneCall
i

£ TLik - /f TLik -
OO00-CO000-00000000004a}

OLE Automation
imgortlils("STDOLEZ. TLE") ;

{00020430-0000-

ff Forward declare all types defined in this typelik
interface ICall;
[

odl,

unid [2046450D-55TE-4A4B-B2AE-EDACEDICDRZZ) .
dual,
aleautomnation

1
interface ICall
T

IDizpateh f
[

uuid [245BDTEE-21464-4E0E-BOBS-ESCOAZZEDEL2)
1
coclass StandardCall |

[default] interface Idall;
i

«COMI nt erface»
¢ «COMCocl ass»
¢ «COMATL Cl ass»

To adhere to COM, you must explicitly declare a class as either a COM interface, a coclass, or an
ATL class. To do this, apply one of the following stereotypesto the class:
L 2

The «COMI nt er f ace» stereotypeis applied to classes. It indicates that the COM IDL code
generator should map the class during code generation to an interface in IDL. Rhapsody does not
generate C++ code for «COMI nt er f ace» classes.

14

COM Development Guide

IDL Code Generation Phase

«COM Interface» Attributes

By default, attributes of a «COMI nt er f ace» class are mapped in the generated IDL to apair of
accessor/mutator interface operations. For example, the following IDL code is generated for a
«COMI nt er f ace» | Awith an attribute al:

nterface A : IDispatch {
[/ Interface Operations
[propput, id(2)] HRESULT al([in]int val);
[propget, id(2)] HRESULT al([out, retval]int *pval);

i
/

Thei npl enent at i on property (under COM : At t ri but e) specifies how these operations are
generated. The possible values of thei npl enment at i on property for «COMI nt er f ace»
attributes are as follows:

¢ propget —Generate an accessor only.

¢ propput —Generate a mutator only.

¢ propput r ef —Generate a by-reference mutator only.

¢ propget &r opput —Generate both an accessor and a mutator (the default value).

¢ propget &r opput Ref —Generate both an accessor and a by-reference mutator.

«COM Interface» Operations

Operations of a «COMI nt er f ace» class are mapped in the generated IDL to interface operations
with areturn type of HRESULT. For example, the following IDL codeis generated for a «COM
I nt er face» | Awith an operation op1():

nterface A : IDispatch {
/ Interface Qperations
[id(1)] HRESULT opl();

i
/

Thereturn type HRESULT for interface operationsis a 32-bit value that indicates success or failure.
Bit 31 isthe most significant bit and the one that is checked to determine the success or failure of
the operation. The following figure shows the purpose of the bitsin HRESULT.

31 | 30—27 26—16 15—0
Reservad Facility Error Code
(Areapf Responsibility for the Error) (Specifics of Failure or Success)
Severity Bit
(0 = sucgess, 1= failure)

Rational Rhapsody 15

Code Generation

You can use the COM macros SUCCEEDED or FAI LED in your code to check for the success or
failure of an interface operation. For example:

HRESULT hr = | A->opl();
if (FAILED(hr))

/1 do sonething

To specify areturn type of HRESULT for an operation in Rhapsody, clear the Use existing type
option and type HRESULT in the C++ Declar ation field when you define the operation. Rhapsody
checks for deviations from supported return types for «COMI nt er f ace» operations.

All operation attributes have a property to specify their description clause, which is enclosed in
square brackets ([]). See the COM Description Clause section for more information.

16 COM Development Guide

IDL Code Generation Phase

«COM Interface» Inheritance
A «COMI nt er f ace» class can inherit from another «COMI nt er f ace» class.

==COMInterface==

1

1B

==COMInterface==

Note the following:

¢ A gstandard (non-COM) class can inherit directly from a «COMI nt er f ace» class.
* A «COMI nt er f ace» class cannot inherit from a non-«COMI nt er f ace» class.

¢ COM does not alow multiple inheritance for «COMI nt er f ace» classes.

Rational Rhapsody 17

Code Generation

«COM Interface» Relations

Relations between «COM | nt er f ace» classes are mapped to elements in the generated I DL
depending on the type and multiplicity of the relation.

The following rules apply to incoming/outgoing relations for «COMI nt er f ace» classes:

¢ Anoutgoing or symmetric relation arrow leaving a«COMI nt er f ace» class can target

only another «COMI nt er f ace».

An incoming relation arrow entering a «COMI nt er f ace» class can originate in either a
regular class or another «COMI nt er f ace».

An outgoing or symmetric relation arrow from a «COMI nt er f ace» classis mapped to
accessor/mutator methods (such asget , set , add, and cl ear) inthe generated IDL. The
accessor’ s return type and the mutator parameter’s type are the same as that of the target
«COMI nt er f ace». In addition, the mutator’s parameter has a direction of i n.

Predefined and External Interfaces

All «<COM | nt er f ace» classes must inherit from | Unknown, either directly or indirectly. Any
«COMI nt er f ace» class that does not inherit from another interface inherits from I Unknown by

default. The Type property (under COM : | nt er f ace) specifies the base class for interfaces. The
possible values are as follows:

¢ Dual —I Di spat ch base class (default). | Di spat ch inheritsfrom | Unknown.

¢ Cust om—I Unknown base class

¢ di spi nt er f ace—Pure automation interface

18

COM Development Guide

IDL Code Generation Phase

«COM Coclass» Stereotype

The «COMCocl ass» stereotypeisapplied to classesthat are to be generated into IDL coclasses. A
«COMCocl ass» classthat inherits from a COM interface exposes the COM interface. For
example, in the OMD the St andar dCal | coclass exposesthel Cal | interface.

Note the following:

¢ The «COMCocl ass» stereotype indicates that the COM IDL code generator should map
the class during code generation to a coclass in COM IDL. Rhapsody does not generate
C++ code for «COMCocl ass» classes.

¢ A «COMCocl ass» classcaninherit from one or more «COMI nt er f ace» classes, but not
from any other type of class.

+ A «COMCocl ass» class can only have incoming relations/associations, but not outgoing
Oones.

P&

Allowed

z=COMInterface== ==COMInterface==

“\/‘“

I0 M

==COMCoclagg==

«COM Coclass» Inheritance

The Def aul t | nt er f ace property (under COM : cocl ass) specifies the default interface that a
«COMCocl ass» class should expose. This property is empty by default. To override the property,
assign it the name of the «COMI nt er f ace» classthat you want a coclass to expose. If you set the
Def aul t | nt er f ace property while a package or component is selected, the property is
automatically applied to all new «COMCocl ass» classesthat you create in that package or
component.

«COM Coclass» Associations

A «COMCocl ass» canuse a«COM | nt er f ace» class. In UML, thisis expressed in terms of an
outgoing dependency relation from the «COMCocl ass» to the «COMI nt er f ace» classwith a

Rational Rhapsody 19

Code Generation

«Connect i onPoi nt » stereotype on the dependency relation. The Def aul t | nt er f ace property
(under COM : Dependency) specifies the default interface that a «COM Cocl ass» requires.

See COM Connection Points for more information on connection points.

20 COM Development Guide

IDL Code Generation Phase

COM Description Clause

In COM IDL syntax, interfaces, coclasses, libraries, operations of an interface, arguments of those
operations, and interfaces exposed by a coclass all have a description clause, enclosed in square
brackets, in the generated IDL.

For example, the description clause generated for a «COMI nt er f ace» class| Aisasfollows:

/1 ## class | A

dual ,
uui d(6559BEA2- 8D6D- 11d4- 80A5- 005056C54916) ,
poi nter _defaul t (uni que),
obj ect
]
Rhapsody has a dedicated set of properties (for packages, classes, operations, and arguments) that
specify how the description clause is generated. One of the most important COM properties stored

in these propertiesis the UUID (universal unique identifier) or GUID (global unique identifier).
The description clause properties fall into one of three categories:

+ Automatically generated—Rhapsody automatically generates aunique ID into the uui d
property (under COM : | nt er f ace/ Li brary/ Oper ati on) for aCOM dispinterface,
library, or operation, respectively. The ID is generated on the first code generation for the
element if the default property value (empty string) is not overridden.

+ Manually set—If you override the value of the uui d property, Rhapsody uses this value
for the uuid in the description clause.

¢ Optional, verbatim property—The AppendToCd ause property (under
COM : Interface/ Attribute/ Argunment/Li brary/cocl ass/ Oper ati on)enables
you to add free text that is generated into the end of the description clause, before the
closing bracket.

Rational Rhapsody 21

Code Generation

C++ Code Generation Phase

The « COMATL O ass» stereotype is applied to classes that implement COM interfaces. A «COM
ATL d ass» classthat inheritsfrom a«COMCocl ass» stereotyped classimplementstheinterface
that the coclass exposes. C++ code, not IDL code, is generated for ATL classes.

A «COMATL Cl ass» cannot have initial instances; instantiation of ATL classes must be done
using the COM system methods.

Rationa Rhapsody code generation properties provide support for the following ATL concepts:

¢ Threading model

¢ Dua/custom interface

¢ Aggregation

¢ Support error information
¢ Connection points

¢ Free-threaded marshaller

22

COM Development Guide

C++ Code Generation Phase

«COM ATL Class» Stereotype

In the following figure, the CSt andar dCal | ATL classimplementsthel Cal | interface, which

the St andar dCal | coclass exposes.

PhoneCall

ICall

==C0OMInterfaces=

|

StandardCall

==2C0OMCoclass==

==C0MLibrary==

N

CstandardCall

==COMATLClass==

The «COMATL Cl ass» stereotype indicates that the C++ code generator should map the classto a
C++ classwith additional ATL instrumentation. COM IDL codeis not generated for thiskind of

class.

Rational Rhapsody

23

Code Generation

«COM ATL Class» Operations and Macros

Rhapsody adds a set of standard operations, macros, and keywords to each « COMATL Cl ass»
stereotyped class. Properties control the generation of these elements. For example, the

Decl ar ed assFact ory property specifies atemplate for the generation of codefor ATL classes.
The following is an example of the kind of template that could be entered in this property:

cl ass $Decl arati onModifier $class :
publ i ¢ CContbj ect Root Ex<$Thr eadMbdel >,
publ i c CCOMCod ass<$cl ass, &CLSI D def >,
public |Dispatchlnpl<ldef, & ID_|def,
&LI BI D ALL_KI ND_OF ATLLi b>

{

}
This template references information stored in the following ATL: : Macr o properties:

¢ ATLRoot O ass—Specifiesthe ATL root class
¢ ATLC assObj ect —Specifiesthe ATL class that implements a COM coclass
¢ | Di spat chl npl —Provides support for animation

ATL Operations

Rhapsody adds several operations to « COMATL O ass» stereotyped classes. These operations are
exposed in the browser, so you can view, edit, or delete them as needed. Once generated, these
operations are not automatically deleted if you remove the «COMATL Cl ass» stereotype from the
class.

The following operations are automatically added to ATL classes:

¢ Final Construct and Fi nal Rel ease—ATL classinitialization and cleanup methods.
You must provide the implementation.

¢ InterfaceSupportsErrorlnfo—Providessupport for | support Errorl nfo. This
operation isgenerated if the Suppor t Er r or | nf o property (under ATL: : Cl ass)issetto
Yes. Rhapsody provides a default implementation, which you can override.

¢ CreateFreeThreadedMarshal | er and Rel easeFr eeThr eadedMar shal | er —
Creates and releases the free-threaded marshaller, respectively. The | Mar shall
implementation object is generated, along with these two operations, if the
FreeThr eadedMar shal | er property (under ATL: : C ass) isset to Yes. You must
explicitly call the create and release operationsin your code (for example, in
Fi nal Construct and Fi nal Rel ease) .

24

COM Development Guide

C++ Code Generation Phase

ATL Macros
The following macros are generated for «<COMATL O ass» stereotyped classes:

DECLARE_RHAPSCDY_REQ STER(CLSI D_$cocl ass, "$TypeNane",
"$Ver si onl ndepProgl D', "$Progl D', "$Threadi nghbdel ",
COVPAPPI D)
DECLARE_PROTECT_FI NAL_CONSTRUCT()
BEG N_COM MAP($cl ass)
COM | NTERFACE_ENTRY(| def)
COM_| NTERFACE_ENTRY(| Di spat ch)
END_COM_MAP()
The ATL: : Macr o properties that control how these macro templates are generated include the
following:

¢ O assRegi strati on—Specifiesthe ATL class registration macro

¢ Decl ar ePr ot ect —Specifiesthe macro that protects the ATL object from being deleted
if, during Fi nal Const r uct , the nested object increments the reference count and then
decrements the count to O

¢ Begi nl nt er f aceMap—Specifiesthe start macro for a COM map of an interface class

¢ I nterfaceEnt ry—Specifiesthe ATL macro that defines the COM map interface entry
point

¢ Endl nt er f aceMap—Specifies the end macro for a COM map of an ATL class

«COM ATL Class» Aggregations

Rhapsody does not support COM aggregation of ATL classesin terms of generating the
AGGREGATABLE keyword for « COMATL Cl ass» stereotyped classes. However, it does support
both aggregation and composition for these classes in the UML sense of generating accessors/
mutators for them. You can turn off this support using the Aggr egat i on property (under

ATL: : d ass). To enable or disable aggregation for a«COMATL C ass», the Aggr egat i on
property must be set for the aggregated (part) class, not the aggregate (whole) class.

The possible values of the Aggr egat i on property are as follows:

* Yes—TheATL class can be aggregated by another class. Thisisthe default value.
¢ No—TheATL class cannot be aggregated by ancther class.
¢ Onl y—The ATL class can exist only as an aggregated class.

Rational Rhapsody 25

Code Generation

The following figure shows an OM D with aggregation and composition of COM ATL classes.

Bath aggregation (top)
and compasition (battarm)
are allowed far COM ATL
classes.

A C
e}
== COMATLC a5g== 22 0OMATLC ags==
0
E

==COMATLCIags==

=<COMATLC ags==

26

COM Development Guide

COM Components

Three type components contribute to the building of systems with COM:

Server s—COM-enabled components that are able to respond to remote invocations

Clients—Components that use the server IDL code, as represented by either Rhapsody
model elements or an external IDL file

COM interfaces—Components that play a significant role in the design of both clients
and servers

COM Servers

COM servers contain classes that implement COM interfaces. You can build COM serversin two
ways:

+ Asasingle component including both the interface and implementation in the same

component.

A component that contains both interfaces and implementing classes requires both
IDL and C++ compilation.

+ Asseparate components providing an interface/implementation separation in the

deliverable.

A component that contains only the implementing classes requires only C++
compilation. In this case, the compilation requires both aPr oxySt ub. dl | anda
TLB, which must be defined el sewhere (within a separate «COMTLB» component).

For example, the following figure shows two packages:

+ Package P1 isa«COMLi br ar y» that contains «COMI nt er f ace» | A and «COM

Cocl ass» B.

Package P2 contains « COMATL Cl ass» C, which implements the «COMI nt er f ace» in
package P1.

Rational Rhapsody 27

COM Components

Packages P1 and P2 can be placed in either the same component or in different components.

L Object Model Diagram: COM classes M= E3
P1 |
14, E
]
==C0MInterfacas= ==COMCoclasg==
iy
==C0OMLibran==
P2
C
==2C0OMATLClass==
] | o

28

COM Development Guide

COM Servers

Thefollowing figure shows a specification for a component that contains both package P1 (a «COM
Li br ar y» containing the «COM | nt er f ace» to be implemented) and package P2 (which
contains the implementing « COMATL Cl ass» C). This component requires both IDL and C++

compilation.

Component : C1 in COMS erver

General | Froperties |

M arne: Im
Stereotype: ICDM ExE
Directony: |C1
Libraries: |

Additional S ources:

|
Standard Headers: I
Inchude Path: I

Type
[" Library ' Ewecutable ¢ Other

—Scope
&l Elemnents

¢ Selected Elements

- C1{nfEte
= b P1
: TN
= W P2

[

Description:

Lucatel 0K | Apply. ||

]

Only DLLs can contain both COM interfaces and implementing classes in the same component. In

this case, the Pr oxy St ub. dl | and TLB are merged into the same server (DLL).

Rational Rhapsody

29

COM Components

The following case shows a specification for a component that contains only an implementing
«COMATL d ass» hamed C. This component requires only C++ compilation. It expects the
ProxySt ub. dl | and TLB filesto be provided in a separate component. Thisis the preferred
design for COM server components.

Component : C2 in COMS erver

General | Froperties |

M arne: Icg

Stereotype: |CDM EXE =]
Directony: |C2

Libraries: |

Additional S ources:

|
Standard Headers: I
Inchude Path: I

Type
[" Library ' Ewecutable ¢ Other

—Scope
&l Elemnents

¢ Selected Elements

I Ot

@=- [P

= ¥ P2
[

Dezcription:

]

Lucatel 0K | Apply. | |

Both DLLs and EXEs can be built from componentsin which the interfaces and implementing
classes are allocated to separate components. In this case, the Proxy St ub. di | and TLB are
generated separately from the server (DLL or EXE).

30 COM Development Guide

COM Servers

Implementation of a COM Server

A «COMATL Cl ass» stereotyped class that inherits from a «COMCocl ass» stereotyped class
functions asa COM server object, which implements the interfaces that the COM coclass exposes.
The following is an example of the C++ code that Rhapsody would generate for the ATL class C,
which represents this type of construct:

cl ass ATL_NO VTABLE C :
publ i ¢ CConthj ect Root Ex<CConsi ngl eThr eadMbdel >,
publ i ¢ CConCod ass<C, &CLSID B>,
public IDispatchinpl<lA & IDIA &LIBIDP1>
{...}

Conversely, a«COMATL O ass» stereotyped class that inherits directly from a «COMm
I nt er f ace» classimplements the interface directly. Thistype of construct is useful for
implementing connection points (See COM Connection Points).

For example, the ATL class C shown in the following figure directly implements the interface | A.
Although Cisalso an ATL class, its code is dightly different from that of the classC. The class C
shown here lacks the CConCoCl ass<> parent and it inherits from CConbj ect Root rather than
the CContbj ect Root Ex<> parameterized class.

==COMInterfaces=

o2

==COMATLClass==

Both of these ATL classes would have a COM_MAP section.

The code for this class C would be as follows:

class C:
public I D spatchlnpl<lA & IDIA &LIBID P6>,
publi ¢ CConthj ectRoot {...}

Rational Rhapsody 31

COM Components

Inproc and Executable COM Servers

COM supports two different types of servers:
¢ Anin-process (or COM DLL) server, asadynamic link library (DLL) containing COM
objects
+ Anout-of-process (or COM EXE) server, as an executable containing COM objects
The in-process (inproc) approach is the most common.

COM InProc Server Generation

A component that has a stereotype of «COMDLL» isbuilt into aDLL or inproc server (see «COM
DLL» Stereotype). Any COM inproc server must implement a predefined set of COM exported
methods to handle issues such as modul e locking, unlocking, and registration. Rhapsody has
several code generation properties to provide templates that specify how these methods should be
generated. You can modify all of these properties to customize the generated code as desired.

These properties (under ATL: : Confi gur ati on) are asfollows:

¢ I nProcServer Export s—Provides atemplate for the DEF file used during DLL
creation.

¢ I nProcServer Mai nModul e—Provides atemplate for the declaration and definition of
each of the COM methods exported in the DLL. The default exported methods are
Dl | CanUnl oadNow, DI | Get Cl assOnj ect, DI | Regi st er Ser ver, and
D | Unregi st er Server.

¢ I nProcServer Mai nLi neTenpl at e—Provides atemplate for the DI | mai n function.

¢ I nProcServerRegi strati on—Provides atemplate for generating the ATL server
registration code.

In addition, a<conponent nane>. def fileisgenerated for an inproc server from the
ATL: : Confi guration:: 1 nProcServer Exports property, if the file does not already exist.

32 COM Development Guide

COM Servers

COM Executable Server Generation

A component that has a stereotype of «COMEXE» is built into an out-of-process, or executable,
server. A DEF fileis not generated for an executable server.

The main code section for a COM executable server is called W nmai n. This main code section:

¢ Isencapsulated within Col ni ti al i zeEx and CoUni ni ti al i ze function calls. Any
other thread opened within the client scope (by an active class) is wrapped with the same
initialization/uninitialization code (as specified by both the
Qut ProcSer ver Regi strati on and Qut ProcSer ver Mai nLi neTenpl at e
properties).

¢ Registers and unregisters the server in the Windows registry using standard COM
command line switches (for example, / r egi st er), as specified by the
Qut ProcSer ver Regi strati on property.

+ Registersthe COM coclasses (as specified by the Qut Pr ocSer ver Regi strati on
property).

¢ Performsthe main COM loop and lifetime control (as specified by the
Qut Pr ocSer ver Mai nMbdul e property).

¢ AssignsaUUID to the server (as specified by the Appl d property).

¢ Can contain any user-generated code (as specified by the

Qut Pr ocSer ver Mai nLi neTenpl at e property) in place of the mai n code generated by
the ATL wizard.

Additional Generated Files
The following additional files are generated for both inproc and executable servers:

+ A resourcefileis aways generated for the server if the component contains a «COM
Li br ar y» stereotyped package. The resource file has the same name as the server. It
contains an element named TypelLi br ary of type & her, which specifiesthe inclusion
of the type library into the resource file. You can modify thisfile by adding your own file
elements.

¢ TheRhapRegi stery. h (and. cpp) files, which contain basic routines for registering
ATL classes, are copied from the $OVROOT\ MakeTenpl directory only if they do not
already exist. You can modify these files as desired.

¢ Thestdaf x. h fileis generated from the ATL: : Confi gur ati on: : Qut Pr ocSt dAf x
property for executable serversand from the | nPr oc St dAf x property for inproc servers,
if it does not aready exist. You can modify thisfile as desired.

Rational Rhapsody 33

COM Components

ProxyStub.dll Generation
The following properties control generation of the Pr oxy St ub. dl | file:
¢ COM : Configuration:: GenerateProxyStubDl | —Specifies whether Rhapsody

should generate the Pr oxy St ub. dl | . Note that even if the property is Tr ue, Rhapsody
generatesthefile only if it does not already exist.

COM : Confi guration: : ProxySt ubDef Fi | eName—Specifies the name of the . def
file used to generate the Pr oxy St ub.

The default value is$conponent ps. def , where $conmponent isreplaced with the
name of the server.

¢ ATL:: Configuration:: ProxySt ubExport s—Specifies the content of the

ProxySt ub. dl | file. You can modify this content as desired.

34 COM Development Guide

COM Clients

COM Clients

Code generation for COM clientsis fully automated. Rhapsody generates COM client code when
the COM : Confi gur ati on: : COVEnabl e property for the componentissettod i ent .

Importing TLB Files

Rhapsody supports the use of existing TLB filesby addingi nport statements for the appropriate
TLB file to the code generated for any client class or package that has an association or «Usage»
stereotyped dependency relation to a «COMI nt er f ace» or «COMLI brar y».

Thei nport statements can be added to a client by either of the following methods:

¢ You can add them manually by setting the
ATL: : Confi guration:: TypeLi bl nport For mat property.

+ They can be automatically generated from a «Usage» dependency on a
«COMCocl ass» or «COMLI brary».

Initializing a Client

Theclient’s mai n code section is encapsulated within Col ni ti al i ze and CoUni ni ti al i ze
function calls. Any other thread that is opened (by active classes) within the client’s scopeis
wrapped with the same initialization code.

You can customize how code is generated for the client’s mai n code section by modifying the
following properties:

¢ COMnitialize—AddsCOM initialization code to the client’'s mai n section. The
default codeis as follows;

Colnitialize(NULL);

¢ COWUNi nitiali ze—Adds COM uninitialization code to the client’s mai n section. The
default codeis as follows:

CoUninitialize(NULL);

Rational Rhapsody 35

COM Components

Instantiating Coclasses

In the common workflow, a client calls a COM-specific instantiation method (for example,
CoCr eat el nst ance or one of its variants) to instantiate a coclass. The method takes as
arguments the coclass to be instantiated and the interface through which accessis required. The
output of the instantiation method is a pointer to the created instance.

Rhapsody supports this basic workflow by enabling you to instantiate «COMCocl ass»
stereotyped classes using the I nitial 1 nstances setting for a configuration. Selecting a «COM
Cocl ass» asaninitia instance has the following effect:

¢ Anappropriatei nport statement is generated.

¢ A generic COM smart pointer is defined. The memory to which this pointer pointsis
automatically released when the pointer is destroyed.

¢ The COM object isinstantiated and its pointer is assigned to the smart pointer.

36 COM Development Guide

COM Interfaces

COM Interfaces

A component defined as a «COMTLB» is allocated asingle «COMLi br ar y», the «COM
I nt er f ace» classesin this package, and the «COMCocl ass» classes that expose the interfaces.
This component can have only one «COMLi br ar y» defined within its scope.

Such acomponent generates IDL files only. The Build command invokes the MIDL (Microsoft
IDL) compiler, which creates the TLB file and the associated Pr oxy St ub. dl | .

Example of a Complete COM System

The following example of an imaginary telecom switch describes a complete COM-enabled
system consisting of the following components:

+ Aninterface consisting of a «<COMTLB»
+ A server consisting of a «COMDLL» that uses the interface

+ Another server consisting of an executable that actsasaclient in relation to the DLL
server

+ A classthat isbuilt into a simple executable, which is the ultimate client in this system

CellBillingLogic | PhoneCallLib |
BillingRecard _|IRoamRecorder ICall lInternationalinfo
|y
S=COMATL Class== ==COM Interface>» ==COM Interface>» ==COM Interface>»
1

itsBillingRecord

[\ £ 5
==COM Interface==

/

SwitchCellCalltanager ICellCall

<<ConnectionPaoint=>

—

CaCellCall CoStandardCall ColnternationalCall
==C0OM Coclags== ==C0OM Coclags== ==C0OM Coclags==
T :)
Client SwitchLogic |
intBill CellCall StandardCall International Call
printBi
==COMATL Class== ==COMATL Class== ==COMATL Class==

Rational Rhapsody 37

COM Components

The PhoneCall Interface

In this example, the PhoneCal | Li b package with its aggregated classesis allocated to a
Rhapsody component named PhonecCal | , which is stereotyped « COMTLB».

PhoneCallLib |
_|RoamRecorder ICall lInternationallnfo
==COM Intetface=» ==COM Intetface== ==COM Intetface=»

[\ £ 5
==COM Interface==

/

CaCellCall CoStandardCall ColnternationalCall

ICellCall

<<ConnectionPaoint=>

—_——

==COM Coclags== ==C0OM Coclags== ==C0OM Coclags==

‘l ‘l 1

For the PhoneCal | interface:

¢ Rhapsody generatesa COM IDL file to describe each «COMI nt er f ace» that it contains.
¢ Theinterfaces reflect the visual structure (the interface inheritance tree).

¢ ThePhoneCal | packageisa«COMLi br ary» containing all the
«COMCocl asses». The | roanRecor der interfaceis a source interface for the
Cel | Cal | coclass.

¢ The Rhapsody Build command invokes the MIDL compiler to create the
PhoneCal | . t1 b and ProxySt ub. dl | .

38 COM Development Guide

Example of a Complete COM System

The SwitchLogic Server

The Swi t chLogi ¢ package, with its aggregate classes, is allocated to a Rhapsody component that

is stereotyped as «COMDLL».
SuitchLogic |
CellCall StandardCall InternationalCall
==C0MATL Class== ==2C0MATL Class== ==C0OM ATL Class==

For the Swi t chLogi ¢ DLL server component:

+ Rhapsody generates ATL classes (see C++ Code Generation Phase).

¢ Connection point machinery is added tothe Cel | Cal | ATL class (see COM Connection
Points).

¢ The Rhapsody Build command yieldsa COM DLL.

The CellBillingLogic Server/Client

TheCel | Bi | I i ngLogi ¢ package, with its aggregated classes, is allocated to a Rhapsody
component that is stereotyped as «Execut abl e». This component acts as both a server and a

client.

CellBillingLogic

BillingRecard

==COMATL Clagsg==

1
itsBillingRecord

SwitchCellCallManager

Rational Rhapsody 39

COM Components

For this component:

¢ Rhapsody creates COM support, as described in COM Clients.

¢ With thisCOM support, the Swi t chCel | Cal | Manager classis ableto cocreate
instances of Cel | Cal | COM objects.

¢ Rhapsody generatesan ATL classfor Bi | | i ngRecor d. Thisclassis not a coclass, and
therefore cannot be instantiated with cocr eat ei nst ance.

Import of a TLB

From the modeling point of view, any package using the PhoneCal | interfaces, such astheclient,
simply needs to import the appropriate TLB. Rhapsody generatesthei nport statements
automatically. In this example, the client can access the PhoneCal | information, aswell asa

d i ent Dat abase to print client bills. The C i ent Dat abase can reflect aCOM TLB file to be
imported into the Rhapsody system.

40 COM Development Guide

TLB Importer

The TypeLibrary Importer importsa COM type library into a Rhapsody model. Once atypelibrary
isimported, you can view its contents—including its interfaces, coclasses, attributes, and
operations—in the Rhapsody browser. Thus, you can use the TypeLibrary Importer to analyze any
kind of COM component and then create relations to coclasses, instantiate coclasses, inherit from
interfaces, and implement the interfaces in your own model.

Starting the TypeLibrary Importer

To import atype library into a Rhapsody model, do the following:
1. Select Tools> TypelLibrary Importer.

2. Intheresulting Open dialog box, select the type library you want to import (for
example, At . dl I).

Type libraries can be encapsulated in . t | b (COM type library) files, . ol b (Visua
Basic abject library) files, or they can be built into COM servers and contained in

.dl'l,.exe,or.ocx files. Rhapsody can import type libraries from any of these
types of files.

Rational Rhapsody 41

TLB Importer

3. Click Open.

If the import is successful, Rational Rhapsody displays a message indicating that the
import operation was completed successfully.

The result of the import of atype library are new packages added to the model, which contain the
COM interfaces, types, coclasses, inheritance relationships, attributes, and operations from the
imported type library.
Note
Type libraries are imported as read-write, but code generation is disabled for them.

Assignment of COM Stereotypes

Imported elements are assigned the appropriate COM stereotypes for their respective metatypesin
the Rhapsody model, as follows:

+ Packagesimported from atype library are given the stereotype « COMLi br ar y».

* Interfaces are given the stereotype «COMI nt er f ace».

+ Caoclasses, which expose interfaces, are given the stereotype «COMCocl ass».

42 COM Development Guide

Starting the TypeLibrary Importer

Imported Properties

The TypeLibrary Importer automatically sets some COM properties for imported elements. This
guarantees that you can use the imported elements properly in a Rhapsody model (for example, to
create COM interfaces that inherit from imported interfaces). One property that is aways set for
imported interfaces, libraries, and coclassesis the uui d property (under COM : <net at ype>).

The import also sets the properties listed in the following table.

For... Property
«COM | nterfaces» COM :Interface:: Type
Attributes of a COM : Attribute::idand
«COMi nt er f ace» i mpl enent ati on
Operations of a COM : Operation::id

«COMi nt er f ace»

Arguments of operations defined | COM : Ar gunent : : r eadonl y
in a «COMi nt er f ace» andr et val

Implicit Import

If an interface or type in an imported type library is found to have been derived from a «COM
I nt er f ace» defined in another type library, the necessary parent interfaces and types from that
type library are also imported.

Importer Error Handling

The TypeLibrary Importer handles import errors as follows:

¢ If theimporter encounters afatal error (for example, if it is unable to add a package to the
model), it displays an error message and terminates the import.

+ If theimporter encounters a non-fatal error, it displays a warning message and continues,
after which it compiles areport of all the warning messages that occurred during the
import.

Rational Rhapsody 43

TLB Importer

Refreshing an Imported Type Library

When the TypeLibrary Importer imports atype library, it creates a clone of it in the current
Rhapsody project. There is no connection between this clone and the original type library. The
imported library will not reflect any changes made to the original type library, which must be
reimported if the Rhapsody model is to be kept current when the type library is updated.

To refresh a previously imported type library, do the following:

1. Select Tools> TypeLibrary Importer.

2.

In the resulting Open dialog box, select the previously imported type library and click
Open.

Rational Rhapsody detects that the library aready exists in the model.

3. Select one of the following options:

*

*

Import Asto import the library with a different name.
Rational Rhapsody imports the type library, resulting in two packages:

— The out-of-date type library is contained in the package with the existing
name (for example, ATLLi b).

— The updated type library is contained in the package with the new name (for
example, TakeTwo).

Overwrite to overwrite the existing library.
In this case, Rational Rhapsody automatically creates a backup of the existing
library for you. The result is again two packages, but thistime:

— The out-of-date type library is contained in the package named
<l'i brary>_bkupn, where nisanumber beginning with 1.

— The updated type library is contained in the package with the existing name
(for example, ATLLi b).

44

COM Development Guide

Synthesizing Diagrams from Imported Type Libraries

Synthesizing Diagrams from Imported Type Libraries

Once you have imported atype library, you can create an OMD from it to show itsinternal
structure.

Note

The following example shows the OMD that can be synthesized from the import of the
Rhapsody typelibrary (r hapsody. t | b), which is shipped with Rhapsody and encapsulates
the Rhapsody COM API.

Do the following:

1. Importther hapsody. t | b typelibrary from theroot directory of your Rational Rhapsody
installation.

2. Inthe maintoolbar, click the Object M odel Diagram tool.
3. Intheresulting Open object model diagram dialog box, click New.

4. Intheresulting New Diagram dialog box, enter a name for the new diagram and check the
Populate Diagram option. Click OK.

Rational Rhapsody 45

TLB Importer

5. Intheresulting Populate Diagram dialog box, select the package containing the imported
type library (in this case, r hapsody) so al the interfaces contained in the library will be
included in the diagram.

Populate Diagram

Create Contents OF Diagram Using Types Of Relations To Be Used
* Relations Among Selected M Instance

v Aszociationdbggregation

" Relations Fram/Ta Selected ml lefiemes

" Relations From Selected v Dependency
WV Lirk
" Relations To Selected +
e v Anchorfdnnotations

Selection
[Default

+- [stdole

Preferred Layout Style
% Mone " Orthogonal ™ Hierarchical

0k | Cancel | Help

6. Click OK to dismissthe dialog box.

The following figure shows the result—an OMD showing the structure of the
r hapsody type library and its interfaces, which are used in the Rhapsody COM
API.

5 Object Model Diagram: COM60/* :

i=1[E3

7. Zoom in on the diagram. You can see that:

46 COM Development Guide

Synthesizing Diagrams from Imported Type Libraries

¢ The Rhapsody type library is represented as a package named r hapsody with a
stereotype of «COMLI br ar y».

¢ Eachinterfaceis represented as a class with a stereotype of
«COM I nterface».

Examine the features of some of the imported «COMI nt er f aces» to see that their attributes and
operations have been imported. Note their types.

Examine the properties of some of the imported «COMI nt er f aces» to see how the COM
properties have been set for imported elements.

Rational Rhapsody 47

TLB Importer

48

COM Development Guide

COM Connection Points

COM connection points provide one way to implement the publish/subscribe design pattern. In
this design pattern, the client subscribes to a service provided by the server, then goesto sleep.
When the server is ready to publish the service, it sends a callback message to the client, which
wakes up and responds to the message.

A design implementing a COM connection point has the following characteristics:

¢ The«COMI nt er f ace» classisdefined as a connection point in the COM IDL using the
sour ce keyword.

¢ Theimplementing «COMATL Cl ass» class must implement the
| Connect i onPoi nt Cont ai ner interface and a CONNECTI ON_POl NT_MAP.

¢ Theclient of that server must implement the connection point.

Inthe UML view of aclient/server design, the server consists of an interface, a coclass, and an
implementing (ATL) object, and the client class uses the implementing object. In the UML view of
a connection point structure, the connection point is represented as a dependency, rather than an
inheritance, relation between a coclass and an interface. The coclass uses the connection point
interface, rather than exposing it. The dependency is stereotyped «Connect i onPoi nt », and the
SOURCE keyword is generated in the IDL for the interface on which the coclass depends.

Rational Rhapsody 49

COM Connection Points

For example, consider the following model of a cellular phone call. The dependency between the
_I RoanRecor der interface and the Cel | Cal | coclassis stereotyped «Connect i onPoi nt ».
TheCel | Cal | coclass usesthe | RoanRecor der interface, while exposing thel Cel | Cal |
interface. The client, the Swi t chCel | Cal | Manager , implementsthe _I| RoanRecor der

connection point.

PhoneCall
ICellCall
==COMInterface==
CellBillingLogic ’5
BillingRecard <<ConnectionPaoint=>
_IRoamRecorder [877orTioommeommemeees CellCall
I~
| B
==COMATLClass== itsCellCall
1 ==COMInterface== 1| ==COMCoclasg==
£
==COMLibrary==
SwitchLogic
SwitchCellCallManager]

CCellCall

==COMATLClass=»

The connection point machinery ishidden (for example, thel Connect i onPoi nt Cont ai ner and
| Connect i onPoi nt interfaces do not appear in the OMD). Rhapsody automatically generates
this machinery if one or more connection points are defined for a coclass.

50 COM Development Guide

COM View Versus UML View of Connection Points

COM View Versus UML View of Connection Points

COM literature typically shows connection points as having the following structure:

Client Server
T IComech onPointC onfiner T
ST = —
Sink IC ortiect onP oirt Source
-+ —— =
- -
NotifyEvent

¥ Incoming Interface
Outgoing Interface

The server implements the connection point facilitiesusing | Connect i onPoi nt Cont ai ner and
| Connect i onPoi nt . The client implements the outgoing interface using | Not i f yEvent . From

the client’s perspective, the outgoing interface is simply any COM interface that it must
implement. In practice, the client implementation using the ATL mechanism is much more

complex.

Rhapsody supports the design of COM connection points by enabling you to build any of the

following with a UML mode!:

+ A server with aconnection point interface.

+ A client that implements a specific connection point defined in a Rhapsody model.

+ A client that implements a specific connection point defined outside of a Rhapsody model

(that is, in an externa TLB).

+ A complete client/server design that reflects the connection point structure.

¢ Automatic implementation of connection points.

Rational Rhapsody

51

COM Connection Points

Code Generation for Connection Points

The templates for Rhapsody code generation are held in properties. This allows you to customize
the code generation of connection points for a particular class, for al classesin the model, or any
intermediate level, such as al classes in a configuration or package. The following sections

describe the properties for generating connection point code for a server with outgoing interfaces
and a client that implements the connection point server.

Server with Outgoing Interfaces

The generated IDL code for a server with outgoing interfaces looks similar to the following
coclass Cell Call
[default] interface |ICellCall;

[default, source] interface _IRoanRecorder;

This sample codeisfor the Cel | Cal | coclass from the PhoneCal | package in the phone call
example.

The Implementing ATL Object

If an implementing ATL object depends on one or more connection point interfaces, it must do all
of the following:

¢ Implement | Connect i onPoi nt Cont ai ner.
* Implement the connection point proxy.
+ Have amap of connection points.

These items are implemented as shown in the following sample code for the CCel | Cal | object
from the phone call example:

cl ass ATL_NO VTABLE CCel | Cal | :
publ i ¢ CConmbj ect Root Ex<CConSi ngl eThr eadMbdel >,
publi ¢ CConCoCd ass<CCel | Call, &CLSID_ Cell Call >
publ i ¢ | Connecti onPoi nt Cont ai ner | mpl <CCel | Cal | >,
public I D spatchlnpl<iCellCall, & ID_ICellcCall,
&LI BI D_ PhoneCal | Li b>,
{

BEG N _CONNECTI ON_POl NT_MA (c)
CONNECTI ON_POI NT_ENTRY(DI | D_I Not i f yEvent)
END_CONNECTI ON_POI NT_NMAP()

}

The following table lists the code generation properties that specify how this code is generated.

52 COM Development Guide

Code Generation for Connection Points

Subject and

Property Metaclass Purpose
Decl arati onModi fi er ATL: : d ass Specifies the ATL class declaration
modifier
ATLRoot C ass ATL: : Macro Specifies the root class of an
implementing ATL class
ATLC assObj ect ATL: : Macro | Specifies the ATL class that

implements a class object

ATLConnect i onPoi nt | npl | ATL:: Macro | Specifies the ATL class that
implements the
| Connect i onPoi nt Cont ai ner

interface
| Di spat chl npl ATL: : Macro | Specifies the ATL class that
implements the | Di spat ch interface
Connect i onPoi nt Pr oxy ATL: : Macro Specifies the proxy class for the
d ass connection point
Begi nConnect i onPoi nt ATL: : Macro Specifies the macro to start a
Map connection point map for an ATL class
Connect i onPoi nt Map ATL: : Macro | Specifies the macro for the connection
Entry point map entry

EndConnect i onPoi nt Map | ATL:: Macro | Specifies the macro to end a
connection point map for an ATL class

Rational Rhapsody 53

COM Connection Points

Proxy Class

The proxy classis defined in anew file. For example, the following code would be generated for
the proxy classin the phone call model in a specification file called Ccel | Cal | _CP. h:

tenpl ate <class T>

cl ass CProxy_RoanmRecorder: public
I Connect i onPoi nt | mpl <T, &DI | D_RoanRecor der,
CConDynani cUnkAr r ay>

public:

The ATL: : Confi gurati on: : ATLProxyCl ass property specifies how this code is generated.
This property provides the following template for generating the ATL proxy class for aconnection
point:

"\
#i f ndef CP$interface H\
#define CP$interface H\
\
\
$i nport \
\
tenpl ate <cl ass T>\
cl ass CProxy$interface : public
| Connecti onPoi nt I mpl <T, &$I Di nterface,
CConDynanmi cUnkAr r ay>\
{\
public:\
\
$oper at i ons\

3\
#endi f"

The ATLPr oxyd ass property uses the following keywords:

¢ 3$i nt er f ace—Replaced with the name of the connection point interface.
¢ 31 Di nt er f ace—Replaced with the ID of the connection point interface.

¢ S$oper at i ons—Replaced with declarations of any operations that are members of the
interface.

54 COM Development Guide

Code Generation for Connection Points

Methods of the Outgoing Interface

For each method of the outgoing interface, afiring method is added to the <i nt erf ace>_CP. h
file. For example:

HRESULT Fire_RecordCal |l StartTi me()

CConVari ant var Resul t;

T* pT = static_cast<T*>(this);

int nConnecti onl ndex;

int nConnections = myvec. GetSi ze();

for (nConnectionlndex = 0;
nConnecti onl ndex < nConnecti ons;
nConnecti onl ndex++)

pT->Lock();
CConPt r <l Unknown> sp =

m vec. Get At (nConnecti onl ndex) ;
pT->Unl ock();

| Di spat ch* pDi spatch =

reinterpret_cast<l D spatch*>(sp.p);
if (pDispatch != NULL)
{

Vari ant Cl ear (&var Resul t);

DI SPARAMS di sp = {NULL, NULL, O, O0};

pDi spat ch- >l nvoke(0x1, |1 D _NULL,

LOCALE_USER _DEFAULT, DI SPATCH METHOD, &di sp,
&arResul t, NULL, NULL);

}

return varResul t. scode;

The ATL: : Confi gurati on: : ATLDI spl nt er f aceCPFi r eQper at i on property specifies how
this code is generated. It providesthe following template for generating the connection point firing
operation for outgoing interfaces:

"\
$opRet Type Fire_$opname($ar gunent s)\
{\

CConVari ant varResul t;\
T* pT = static_cast<T*>(this);\
i nt nConnecti onl ndex;\
CConVari ant* pvars = NULL ;\
i f($noOF Args > 0)\
pvars = new CConVari ant [$noCf Args];\
\

int nConnections = mvec. GetSize();\

\

for (nConnectionlndex = 0; nConnectionlndex <
nConnecti ons; nConnecti onl ndex++)\

{\

pT->Lock();\
CConPt r <l Unknown> sp =
m vec. Cet At (nConnecti onl ndex) ; \
pT->Unl ock();\
| Di spat ch* pDispatch =
reinterpret_cast<IDispatch*>(sp.p);\
if (pDispatch !'= NULL)\

Rational Rhapsody 55

COM Connection Points

{\
Vari ant C ear (&var Resul t);\
\

/*initialize pvars[..]*/\
\

DI SPPARAMS di sp = {pvars, NULL, $noCf Args, 0};\
pDi spat ch->I nvoke($id, 11D _NULL,

LOCALE_USER DEFAULT, DI SPATCH METHOD, &di sp,
$&var Resul t, NULL, NULL);\

ja
ja
del ete[] pvars;\
return var Resul t. scode; \

The ATLDi spl nt er f aceCPFi r eOper at i on property uses the following keywords:

¢ S$opRet Type—Replaced with the operation return type.

¢ $opnane—Replaced with the name of the operation to which aFi r e operation is being

added.

56 COM Development Guide

Code Generation for Connection Points

Client of a Connection Point Server

A client of aconnection point server ismodeled asan ATL classthat directly inheritsfroma «COM
I nt er f ace» class. For example, theBi | | i ngRecor d ATL classin the phone call exampleisthe
client of the _| RoanmrRecor der connection point server. Code for theBi | | i ngRecor d would be
generated as follows:

class BillingRecord :
publ i c | Di spatchl npl <_RoanRecor der,
&l | D_RoanRecorder, &LIBID PhneCallLib>,
publ i ¢ CConthj ect Root

public:
Bi I l'i ngRecord() {}

BEG N_COM MAP(Bi | | i ngRecor d)
COM_| NTERFACE_ENTRY(| Di spat ch)
COM _| NTERFACE_ENTRY(_RoanRecor der)
END_COM MAP()
b
The code generation properties (under ATL: : Macr o) that specify how this code is generated
include the following:
¢ | Di spat chl npl —Specifiesthe ATL classthat implementsthe | Di spat ch interface
¢ Begi nl nt er f aceMap—Specifiesthe start macro for a COM map of an ATL class
¢ InterfaceEntry—Specifiesthe ATL macro that defines the COM map interface entry

¢ Endl nt er f aceMap—Specifies the end macro for a COM map of an ATL class

Rational Rhapsody 57

COM Connection Points

58

COM Development Guide

Symbols

$& varResult keyword 56
$arguments keyword 55
$id keyword 56
$IDinterface keyword 54
$import keyword 54
$noOfArgs keyword 55
$operations keyword 54
$opname keyword 56
$opRetType keyword 56
«COM ATL Class» stereotype
aggregation 25
connection points 31
Hello World example 6

implementing COM interfaces 22

macros 24
macros, generated 25
operations 24
«COM Coclass» stereotype 19
associations 19
example 38
Hello World example 6
inheritance 19
«COM DLL» stereotype 12
example 39
IDL code generation phase 11
«COM EXE» stereotype
compiling and linking 12
Hello World example 5
IDL code generation phase 11
«COM Interface» stereotype 14
attributes 15
example 38
Hello World example 6
inheritance 17
IUnknown 18
operations 15
relations 18
«COM Library» stereotype 13
example 38
Hello World example 6
«COM TLB» stereotype 12
building COM servers 27
compiling and linking 12
example 38
IDL code generation phase 11

Index

«Executable» stereotype
example 39
«Usage» stereotype 35

A

AGGREGATABLE keyword 25
Aggregation property 25
Apartment model 3
AppendToClause property 21
Appld property 33
Applications
distributed 1
Associations
«COM Coclass» 19
COM 18
ATL class 22
operations and macros 24
server registration code 32
ATL methods
CreateFreeThreadedMarshaller 24
FinalConstruct, ATL operations 24
FinalRelease, ATL operations 24
InterfaceSupportsErrorinfo 24
ReleaseFreeThreadedMarshaller 24
ATL ClassObject property 24, 53
ATL ConnectionPointimpl property 53
ATL DisplnterfaceCPFireOperation property 55
ATLProxyClass property 54
ATLRootClass property
ATL classtemplate 24
code generation 53
Attributes
«COM Interface» 15

B

BEGIN_COM_MAP 25
BeginConnectionPointMap property 53
BeginlnterfaceMap property

code generation 57

macro template 25
Bits 16
Build

COM server 27

COM server, Hello World example 8

Rational Rhapsody

59

Index

Rational Rhapsody framework 5

C

C++ language
code generation 22
compilers 12
Class
proxy 54
Classes
ATL 3,22
C++ 3
reactive 3
ClassRegistration property 25
Client of connection point server 57
Coclass, instantiating 36
Code generation 11
C++ 22
connection points 52
IDL 11
Colnitialize method 35
COM
and Rational Rhapsody 1
and Rational Rhapsody, setting up 5
association 18
components 27
connection points 49
description clause 21
designing clients and servers 2
DLL 12
FAILED macro 16
generating artifacts from UML models 3
Hello World example 5
IDL code generation 11
inproc server 32
library 13
properties 21
relations 18
sample system 37
SUCCEEDED macro 16
COM client
creating 8
designing 2
importing TLB files 35
initializing 35
main code section 35
running 9
COM description clause 21
COM server
building 27
building Hello World example 8
creating 5
designing 2
generated files 33
implementing 31
main code section 33
registering 8

types 32
COM_INTERFACE_ENTRY macro 25
COM_MAP section 31
COMEnable property 8

client code 35
COM Initialize property 35
Compile

«COM DLL» 12

«COM EXE» 12

«COM TLB» 12
Compilers

C++ 12
Components 27
COMUninitiaize property 35
Concurrency 3
Connection point

«COM ATL Class» 31

client of 57

code generation 52

proxy class 54

UML representation 49
CONNECTION_POINT_MAP 49
ConnectionPointMapEntry property 53
ConnectionPointProxyClass property 53
CoUninitialize method 3, 35
Create

COM client 8

COM server 5
CreateFreeThreadedMarshaller method 24

D

DeclarationModifier property 53
DECLARE_PROTECT_FINAL_CONSTRUCT
macro 25
DECLARE_RHAPSODY_REGISTER macro 25
DeclareClassFactory property 24
DeclareProtect property 25
DEF file 33
name 34
Description clause 21
Design clients 2
dispinterfaces 21
Distributed application 1
DLL 12
DllCanUnloadNow method 32
DIl GetClassObject method 32
Dllmain function 32
DlIRegisterServer method 32
DllUnregisterServer method 32

E

END_COM_MAP macro 25
EndConnectionPointMap property 53
EndinterfaceMap property

code generation 57

60

COM Development Guide

Index

macro template 25
Error handling, TLB import 43
Example, Hello World 5
EXE 12
Executable server 32
External interface 18

F
File
DEF 33
DEF name 34
generated for COM servers 33
IDL 3
IDL, generating 37
ProxyStub.dil, sourcesfor 12
stdafx.h 33
TLB, importing 35
Final Construct method
ATL macros 24
ATL operations 24
Final Rel ease method
ATL macros 24
ATL operations 24
Firing method 55
Frameworks
rebuilding 5
FreeThreadedMarshaller property 24

G

Generate IDL files 37
GenerateProxy StubDl|
TLB 12
GenerateProxyStubDI| property
ProxyStub.dll file 34
GUID 21

H

Hello World example 5
HRESULT 15
bits 16

| ConnectionPointContainer interface 49

I Dispatchimpl property
ATL template 24
code generation 53
connection point server 57
IDL code generation 11
IDL files 37
IMarshal implementation object 24
Implement COM server 31

implementation property 15
Import

TLB files, COM clients 35

type libraries properties set by 43

typelibrary 2

type library error handling 43

type library synthesizing OMDs 45
Incoming relation arrow 18
Inheritance

«COM Coclass» 19

«COM Interface» 17
Initialize COM client 35
Inproc server 32

generating 32
InProcServerExports property 32
InProcServerMainLineTemplate property 32
InProcServerMainModul e property 32
InProcServerRegistration property 32
InProcStdAfx property 33
Instantiate coclasses 36
Interface

methods of outgoing 55

predefined 18
InterfaceEntry property

code generation 57

macro templates 25
InterfaceSupportsErrorinfo method 24
IsupportErrorinfo 24
IUnknown base class 18

K

Keywords
$& varResult 56
$arguments 55
$id 56
$IDinterface 54
Simport 54
$noOfArgs 55
$operations 54
$opname 56
$opRetType 56
AGGREGATABLE 25

L

Libraries
COM IDL 13
combined interface 29
importing 2
separate interface 27
Link
«COM DLL» 12
«COM EXE» 12
«COM TLB» 12

Rational Rhapsody

61

Index

M

Macros
«COM ATL Clas>» 24
«COM ATL Class», generated 25
BEGIN_COM_MAP 25
COM_INTERFACE_ENTRY 25
DECLARE_PROTECT _FINAL_CONSTRUCT 25
DECLARE_RHAPSODY_REGISTER 25
END_COM_MAP 25
FAILED 16
SUCCEEDED 16

Methods
Colnitialize 35
CoUninitidlize 3, 35
DIICanUnloadNow 32
DlIGetClassObject 32
DlIRegisterServer 32
DllUnregisterServer 32
Final Construct, ATL macros 24
Fina Release, ATL macros 24
firing 55
of outgoing interface 55

MIDL compiler 12

O

OMD of imported type library 45
Operations

«COM ATL Class» 24

«COM Interface» 15
Outgoing relation arrow 18
OutProcServerMainLineTemplate property 33
OutProcServerMainModul e property 33
OutProcServerRegistration property 33
OutProcStdAfx property 33

P

Package containing ATL classes 30
PATH environment variable 5
Predefined interface 18
Processtermination 3
Properties 21
Aggregation 25
AppendToClause 21
Appld 33
ATL ClassObject 24, 53
ATL ConnectionPointimpl 53
ATLDisplnterfaceCPFireOperation 55
ATLProxyClass 54
ATLRootClass, ATL classtemplate 24
ATLRootClass, code generation 53
BeginConnectionPointMap 53
BeginlnterfaceMap, code generation 57
BeginlnterfaceMap, macro template 25
ClassRegistration 25

code generation 22
COM 21
COMEnable 8
COMEnable, client code 35
COMInitialize 35
COMUninitialize 35
ConnectionPointMapEntry 53
ConnectionPointProxyClass 53
DeclarationModifier 53
DeclareClassFactory 24
DeclareProtect 25
Defaultinterface 19
EndConnectionPointMap 53
EndinterfaceMap, code generation 57
EndinterfaceMap, macro template 25
FreeThreadedMarshaller 24
GenerateProxyStubDII, ProxyStub.dll file 34
GenerateProxyStubDIl, TLB 12
IDispatchimpl, ATL template 24
I Dispatchimpl, code generation 53
I Dispatchlmpl, connection point server 57
implementation 15
imported fromaTLB 43
InProcServerExports 32
InProcServerMainLineTemplate 32
InProcServerMainModule 32
InProcStdAfx 33
interface 15
InterfaceEntry, code generation 57
InterfaceEntry, macro templates 25
OutProcServerMainLineTemplate 33
OutProcServerMainModule 33
OutProcServerRegistration 33
OutProcStdAfx 33
ProxyStubDefFileName 34
ProxyStubExports 34
set by importing atype library 43
Specincludes 9
StartFrameworklnMainThread 8
SupportErrorinfo 24
TypeLiblmportFormat 35
uuid 21
Proxy class 54
ProxyStub.dll file 12
ProxyStubDefFileName property 34
ProxyStubExports property 34
Publish/subscribe pattern 49

R

Rational Rhapsody
and COM 1
and COM, Hello World example 5
and COM, IDL code generation 11
and COM, setting up 5

Reactive class 3

Refresh typelibrary 44

62

COM Development Guide

Index

Register COM server 8

Relation 18

ReleaseFreeThreadedM arshaller method 24
Run COM client 9

S

Speclncludes property 9
StartFrameworklnMainThread property 8
stdafx.h file 33
Stereotypes 11
«COM ATL Class» 22
«COM Coclass» 19
«COM DLL» 12
«COM EXE» 12
«COM Interface» 14
«COM Library» 13
«COM TLB» 12
SupportErrorinfo property 24

T
Threading model 3
ThreadingModel property 3
TLB 12

error handling 43
importing 2
importing, example 40
updating an imported 44
TLB Importer 41
Type library
importing 2
importing error handling 43
importing set properties 43
refreshing 44
synthesizing an OMD 45
TypeLiblmportFormat property 35
TypeLibrary Importer 41

U

UML model
connection points 51
generating COM artifacts 3
UuUID 21
uuid property 21

W

Winmain section 33

Rational Rhapsody

63

Index

64

COM Development Guide

	Contents
	COM Development Introduction
	Using Rational Rhapsody to Develop COM Applications
	Design of Clients and Servers
	Import of Type Libraries
	Interface Design

	Generation of COM Artifacts from UML Models
	Rational Rhapsody Threads and the COM Apartment Model
	Hello World Example
	Step 1: Setting Up Rational Rhapsody to Use COM
	Step 2: Creating a COM Executable Server
	Dividing the Component into Packages
	Adding an Operation to the COM Object
	Building the COM Server

	Step 3: Creating a COM Client
	Step 4: Running the Client to Invoke the Server

	Code Generation
	IDL Code Generation Phase
	«COM DLL» Stereotype
	«COM EXE» Stereotype
	«COM TLB» Stereotype
	«COM Library» Stereotype
	«COM Interface» Stereotype
	«COM Interface» Attributes
	«COM Interface» Operations
	«COM Interface» Inheritance
	«COM Interface» Relations
	Predefined and External Interfaces

	«COM Coclass» Stereotype
	«COM Coclass» Inheritance
	«COM Coclass» Associations

	COM Description Clause

	C++ Code Generation Phase
	«COM ATL Class» Stereotype
	«COM ATL Class» Operations and Macros
	ATL Operations
	ATL Macros

	«COM ATL Class» Aggregations

	COM Components
	COM Servers
	Implementation of a COM Server
	Inproc and Executable COM Servers
	COM InProc Server Generation
	COM Executable Server Generation
	Additional Generated Files
	ProxyStub.dll Generation

	COM Clients
	Importing TLB Files
	Initializing a Client
	Instantiating Coclasses

	COM Interfaces
	Example of a Complete COM System
	The PhoneCall Interface
	The SwitchLogic Server
	The CellBillingLogic Server/Client
	Import of a TLB

	TLB Importer
	Starting the TypeLibrary Importer
	Assignment of COM Stereotypes
	Imported Properties
	Implicit Import
	Importer Error Handling

	Refreshing an Imported Type Library
	Synthesizing Diagrams from Imported Type Libraries

	COM Connection Points
	COM View Versus UML View of Connection Points
	Code Generation for Connection Points
	Server with Outgoing Interfaces
	The Implementing ATL Object
	Proxy Class
	Methods of the Outgoing Interface

	Client of a Connection Point Server

	Index

