Rhapsody

Code Generation Guide

Rational Rhapsody in C
Code Generation Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition appliesto IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

C Code Generation OVeIVIEWttt e 1
Rational Rhapsody in C 2
ADOUL ProPertiES . o o 3
Dynamic Model-Code ASSOCIatiVity.ot 4
Special Features of Rational Rhapsody Code e 4
Code Generation Fundamentals e 5
Constructive Versus Non-Constructive VIeWS e 6
Structural Model 7
About Constructing Systems from Objects 7
L0] =T o £ 8
About Specifying the Type of an Object 9
Multiplicity of ObjJeCtsS 11
DESCIIPIONS . o o et e 12
Object INnterfaces e 13
O EraALIONS .« . oottt e e e 14
About Implementing OperationS N C 14
Visibility Of Operations. 16
Constructors and DeSIIUCIONSottt e 18
Primitive Operationst e 24
INlINE OPEratioNS o ottt e e e 25
CoNStaNt OPeratiONSottt 26
EVENt RECEPLIONSo 26
Triggered OPerationsttt e 27
INVOKING OPEIatioNS vttt et et e e e e e e e 27
A UL . . 28
About Accessing AttribuUtes 29
PUDIIC ACCESS . . . 29
PV alE ACCESS . . .ottt e 30
Collaborations Between ObjeCtSttt e e e 30
INNEIANCE . . . 31

Rational Rhapsody in C

Table of Contents

DEPENAENCIESot 32
COMPOSItIONS . . 32
LiNKS .« oot 34
It aCES . . o o 42
P OIS 42
Components-based Development in RIC 44
SiNgleton OB eCES e e 45
About Initializing SINgletons e 45
EXternal ObjeCts e e 46
ReEaCtiVe ObJeCS . . . e a7
ConcurrenCy ObJECESot e 49
Stereotyped Application ODJeCtS. 49
Primitive Concurrency and Synchronization Objects i 52
PaCKAgES . . o 53
Global Variables 53
Instrumenting a Package 53
Package Constructors and DeSIIUCLONS.ttt e e e e 54
Files in the Structural Model 55
About Generating Code for Files. e 56
FunctionalC Profile and the File Diagram 56
Data Ty PES . oottt e e 57
Structure of Generated Files 59
ANNOTALIONS . . o o 59
Specification FileS e e e e 60
File Header . . .o 61
Preprocessor Directives for Specification Files. 62
Structure DeClarations. oottt 63
Method DecClarations 64
File Footer for Specification Files 65
Implementation Files. 67
File Header . . .o 67
Preprocessor Directives for Implementation Files. 67
Global Variables 67
Method Implementations. 67
File Footer for Implementation Files i e e 67
Component Model 69
COM PO NS, L st e e e e e e e 69

Vi Code Generation Guide

Table of Contents

CoNfIQUIALIONS . . . 73
FOlders . oo 73
Files in the Component Model e 74
Adding an Elementto a File 74
Behavioral Model e 77
SEUENCE Diagram S . .ottt ettt ittt 77
T 80
EVeNt ArQUMENES. . . . e 80
Event Constructors and DEeSIIUCIONSottt e e e e 80
Static Allocation Of EVENES.ot 82
StateChaItS . . . 83
Accessing and Modifying Attributes 84
SeNding EVENtSo 85
Accessing the Parameters of the Consumed Event i 85
Initialize and Start Statecharts e 86
S AL . . 87
ROOt Stale e e 87
OPeratioNs ON StAlESottt e 88
TraANSIIONS e 92
Inlining Transition Code 92
Predefined ACtIONS 95
RICIS IN() Or IS _IN() -« oo oo e e e 95
RICGEN() OFr CGEN() . .« oot e e e 96
RICGEN_BY_GUI() or CGEN_BY_GUI() . . . oo e e e 97
RICGEN_BY_X() 0r CGEN_BY _X() .+« « v it i e e e e e e e e 97
RICGEN_ISR() 0r CGEN _ISR() .« v vt vttt e e 99
RICREPLY() OF CREPLY() . . . ettt e e e e e e e 100
RICSETPARAMS() or CSETPARAMS() . . . vttt et e e e e e e e 100
DYNAMICALLY _ALLOCATED() .« vt ittt e e e e e e e e e e e 101
X . .o 103

Rational Rhapsody in C Vi

Table of Contents

viii Code Generation Guide

C Code Generation Overview

Welcome to Rhapsody! Rhapsody® is an award-winning, UML-compliant, systems design,
application development, and collaboration platform. Rhapsody is used by systems engineers and
software developers to deliver embedded or real-time systems. Rhapsody uniquely combines a
graphical UML programming paradigm with advanced systems design and analysis capabilities
and seamlessly links with the target implementation language, resulting in a complete
model-driven development environment, from requirements capture through analysis, design,
implementation, and test.

This subject covers code generation for the C language for the Rhapsody product. While it goes
over in genera the code generation process, its intent is to highlight the ways you can control the
generated code. To do that, various properties are discussed in detail. Note that not every property
available for C is mentioned.

Rational Rhapsody in C 1

C Code Generation Overview

Rational Rhapsody in C

Rational Rhapsody in C isavisual development system that facilitates efficient construction of
real-time embedded applicationsin the C language. Unlike other C development systems, Rational
Rhapsody uses the most advanced software devel opment techniques currently available.
Commonly described as object-based, these techniques are standardized as the Unified Modeling

Language (UML™). Although C is not an object-oriented language, Rational Rhapsody
emphasi zes those aspects of object-based development that can be natively supported by the C
programming language, yet offers the major benefits of object-based development: encapsulation,
conciseness, and reusability.

Rationa Rhapsody is based on the major views defined by the UML for describing software
systems: use case, static structure, collaborations (scenarios), and object behavior views. Rational
Rhapsody generates production-quality C code directly from several of these views.

You can generate code either for an entire configuration or for selected UML classes. Inputs to the
code generator are the model and the code generation (C_CGand CG) properties. Outputs from the
code generator are source filesin the C language: specification files, implementation files, and
makefiles.

Rational Rhapsody in C generatesfull production C code for avariety of target platforms based on
UML 2.0 behavioral and structural diagrams. The Rational Rhapsody in C product also allowsyou
to reverse engineer existing C code so that you re-use your intellectual property within a
Model-Driven environment.

Asof version 7.1, C code generation in Rational Rhapsody is compliant with MISRA-C:1998.
Note that there might be justified violations.

Rational Rhapsody in C comes with anumber of specialized C language profiles, such as
Functional C and CGCompatibilityPre70C. The Functional C profile tailors Rational Rhapsody in
C for the C coder, allowing the user to functionally model an application using familiar constructs
such asfiles, functions, call graphs, and flow charts. Use the CGCompatibilityPre70C profile to
make the code generation backwards compatible with pre-7.0 Rational Rhapsody models.

2 Code Generation Guide

About Properties

About Properties

All Rational Rhapsody products (in C, C++, Ada, and Java) provide you with a graphical user
interface (GUI) so you can view and edit the features of an element easily. You access the
properties through the Properties tab of the Features dialog box.

To open the Features dialog box, do one of the following in the Rational Rhapsody browser or a
diagram:

¢ Double-click an element (for example, mins[avariabl€e])

+ Right-click an element (for example, Execution [a diagram]), then select Features

¢ Select an element and press Alt + Enter

¢ Select an element and select View > Features
You can resize the Features dialog box and hide the tabs on this dialog box if you want.

Note: Once you open the Features dialog box, you can leave it open and select other
elements to view their features.

The Properties tab lists the properties associated with the selected Rational Rhapsody element:

+ Thetop left column on this tab shows the metaclass and property (for example,
Dependency and UsageType).

+ Thetop right column shows the default for the selected property, if there is one (for
example, Specification).

+ Thebox at the bottom portion of the Properties tab shows the definition for the property
selected in the upper left column of the tab. The definition display shows the names of the
subject, metaclass, property, and the definition for the property.

Note: Rational Rhapsody documentation use a notation method with double colonsto
identify the location of a specific property. For example, for the location of
CG: :Dependency: : UsageType . CG isthe subject, Dependency isthe
metaclass, and UsageType is the property.

Rational Rhapsody in C 3

C Code Generation Overview

Dynamic Model-Code Associativity

Dynamic model-code associativity (DMCA) means that changes made to the model arereflected in
the code and changes made to the code can be easily roundtripped back into the model. In thisway,
Rational Rhapsody maintains tight relationships and traceability between the model and the code.
Thereis no overhead from virtual machines or complex architectures. The code is simply another
straightforward view of the model.

Dynamic model-code associativity is applicable to all versions of Rational Rhapsody (meaning,
Rational Rhapsody in C, C++, Java, and Ada).

Special Features of Rational Rhapsody Code

Rational Rhapsody-generated code provides implementations of ANSI-compliant C code from
design diagrams. It is possible to include and link Rational Rhapsody-generated C code in any
C++ system, with the appropriate wrapper. For example:

#i fdef _cplusplus
extern “C {

#endi f

/* wrapped C code */
#ifdef cplusplus

#endif

Rational Rhapsody-generated code supports static memory allocation where dynamic memory
management is not required, and for dynamic memory allocation based on the user configuration.

In addition, Rational Rhapsody has features for managing source files, such as viewing, error
handling, and roundtripping, which provide full associativity between the code and your model.

4 Code Generation Guide

Code Generation Fundamentals

Code Generation Fundamentals

Inputs to the code generator are:

+ Component, structural, and behavioral models built in Rational Rhapsody
+ Code generation properties set in Rational Rhapsody

Outputs from the code generator are source filesin the C language: specification files,
implementation files, and makefiles. In turn, these files are used as inputs to the compiler and
linker in later phases of the build process.

Madel 1 CGProperties
N -
b -
<<lncluded== % - Tezineluded==
Makefile
CodeGenerator cGenerateds >

| CompileSwitches |

-

z<Generateds> - * ==Generated==
- o LinkSwitches

Specification:File Implementation: File T
|
|

T . <<Called== 1

- P, |
“zlncludeds> = o <<lncluded== I
-y - 1

CormpilerLinker J StandardHeaders

zz|ncluded ==

W

Tr . T __c:jlnn:luded:=

" it

”
zzincluded=> .

T

AdditionalZources

B Libraries

S -
~ ::ﬂ:lncluded:»:-
b

OsF

<<Generated==

OhjectCode

<<z|ncludeds>=

Library: Component

Rational Rhapsody in C 5

C Code Generation Overview

This object model diagram shows the elements involved in generating code, making, and finally
building a component in Rational Rhapsody. The dependency arrows indicate which files are
generated and which files are included by the code generator and compiler, respectively. The thick
borders around the code generator and compiler indicate that these are active objects. The
executable component generated by the compiler is also an active object.

Constructive Versus Non-Constructive Views

Rational Rhapsody generates code from the component, structural, and behavioral model elements
you create using various design views:

+ The component model consists of the components, configurations, files, and foldersto
which you map various modeling constructs via the browser.

¢ Thestructural model consists of a static view of the system created using object model
diagrams (OMDs).

¢ Thebehavioral model consists of the life-cycle behavior of the system as defined in
statecharts (SCs).

Object model diagrams and statecharts are considered constructive because Rational Rhapsody
generates code from them. Structural Model describes the code generated from OMDs;
Behavioral Model describes the code generated from SCs.

Sequence diagrams (SDs) are only partially constructive. Rational Rhapsody creates objects and
operations from the instances and messages that you draw in them. However, the bodies of
operations must be defined in the browser or a statechart.

Use case diagrams (UCDs) an activity diagrams are considered non-constructive because Rational
Rhapsody does not generate code from them. They help you analyze the system based on
requirements and are useful for documentation purposes.

6 Code Generation Guide

Structural Model

One of the major issues with object-based techniques is how to capture the logical structure of the
system. Real-time systems have a static nature such that their underlying instance structure exists
once the system starts because we do not want to dynamically allocate and free memory during run
time. Therefore, the static structure is an instance structure rather than a class structure, the
primary view in most non-real-time object-oriented (OO) systems. In Rational Rhapsody,
therefore, the instance (or object) is the prime concept.

The structural model consists of the objectsin the system and the static relationships that exist
between them. Groups of objects can be partitioned into packages or subsystems. Object model
diagrams (OMDs) define the structural model. This section describes the code generated from
OMDs.

About Constructing Systems from Objects

Object-based modeling is applying the most fundamental engineering discipline of system
construction used by system, mechanical, and hardware engineers. In other engineering
disciplines, physical systems are represented as collections of parts (think of a mechanical or
electrical drawing). Each part (which itself might be a collection of parts) has its own purpose and
data. Early software design techniques did not follow this approach. Rather, they used functional
decomposition because early programming languages were built around how the computers work,
not how systems work.

At its core, each model is a decomposition of the system into modular, cohesive units with
well-defined interfaces. Many object have an internal state that controls its behavior. Objects can
be linked together (collaborate) to perform a certain task. Composite objects are constructed from
simpler objects via hierarchical composition, where the composite object (or aggregate) owns its
subobjects (or components). This theme follows the intuitive structure of any type of system
assembly, from mechanical to electrical to software.

Re-use of servicesis achieved through instantiation of objects, aggregation, and del egation.
Instantiation is the language mechanism that replicates an object type into a new object instance.
By aggregating an instance of a certain component, a composite object re-uses the services
provided by the component object.

Rational Rhapsody in C 7

Structural Model

Objects

Objects are the structural building blocks of a system. They form a cohesive unit of state (data) and
services (behavior). Every object has a specification part (public) and an implementation part
(private).

In terms of C programming, an object isimplemented as a set of data members packed in a
st ruct, and aset of related operations. With multiple instances, an object’s datais replicated for
each occurrence of the object.

For example, the following structure definition is generated in the specification file for an object A:

struct A t {
/* data members of A */

/* operations of A */

Some details of the implementation might differ for specia types of objects (for example, see
Singleton Objects).

Note: Because C structures cannot be empty, if the object has neither data nor a
statechart, an Rl C_EMPTY_STRUCT member is added as a placeholder to
satisfy the C compiler. Rl C_EMPTY_STRUCT isamacro defined in the Rational
Rhapsody in C framework.

8 Code Generation Guide

Objects

About Specifying the Type of an Object
Objects can be of either implicit or explicit type:

+ Objects of implicit type are associated with their own structure.
+ Objects of explicit type are defined in terms of another object type and its structure.

Inthefollowing figure, Aisan object of implicit type, B isan object type, and Cis an object that is
explicitly of typeB.

Objects of Implicit Type

Objects of implicit type are simple objects that cannot be re-used for defining other objects.
Implicit types facilitate instance-based modeling. Thisisdifferent from pure OO modeling, which
requires every structural entity to be an instance of an existing type. Thisis known as the type/
instance dichotomy in OO systems.

For objects of implicit type, a C structure is generated with the name of the object and the suffix
“_t.” A typeisnot defined for the object. For example, a C structure named A t isgenerated in
the specification file for an object A that is of implicit type. This object has one attribute named
at t 1, which is generated as a data member of the structure, as follows:

struct A t {
VAL User-explicit entries *xk [
int attl;/*## attribute attl */

bi

Rational Rhapsody in C 9

Structural Model

The object isinstantiated and memory is actually allocated in the specification file for the package
to which the object belongs. For example, the following statements are generated in the
specification file for the Def aul t package, to which the object A belongs:

struct A_t;
extern struct A t A;

Thefirst statement is a declaration of the structure A t ; the second is the actual definition and
memory allocation for aninstance Aof struct A t.

Note: Theext er n keyword indicates that A is declared here but defined (once)
elsewhere. Any code following such a declaration can refer to A. If the same
ext er n statement appears in different files, all of these statements refer to the
same A.

Rational Rhapsody automatically generates operations to handle object creation, initialization,
cleanup, and destruction. These operations are analogous to what are known as constructors and
destructorsin C++. For example, the following operations are automatically generated for A:

¢ A Create() (seeObject Creator)

¢ Alnit()

¢ A deanup()

¢ A Destroy() (seeQObject Destructor)

Note that Cr eat e() and Dest r oy() operations are not generated for singletons. See Singleton
Objects for more information.

Object Types

Object types support re-use, multiple instantiation, and dynamic instantiation. In essence, object
types are abstract data types (ADTS). They specify atemplate of an object that can be instantiated
in different contexts.

Object types are generated into C structures with their own type definitions in the specification file
for the object. The type definition introduces atype aliasto the st r uct representing the object.
The type name consists of the name of the object type, without any suffix. For example, the
following structure and type definition are generated for an object type B:

typedef struct B Bj;
struct B {
/* data members of B */

/* operations of B */

Because B is an explicit type, other objects can be defined in terms of B. Both specification files
and implementation files are generated for object types. Creation, initialization, cleanup, and
destruction operations are all automatically generated for object types.

10

Code Generation Guide

Objects

Thetype B is declared in the specification file for the package that owns B, but memory is not
alocated for B until an object of type B is actually instantiated.

Object types can be instantiated either statically upon initialization of the system, or dynamically
during execution (the default is dynamically). Therefore, instances of object types might have a
different life span than the system. See Dynamic Memory Allocation for more information.

Objects of Explicit Type

Objects of explicit type are instances of an object type. Instances of object types obtain their
structure and behavior from the object type.

Neither specification files nor implementation files are generated for abjects of explicit type.
Rather, an external declaration is generated in the specification file for the package to which the
object belongs. For example, the following declaration is generated for an object C of type B in the
specification file for the package that owns C:

struct B;
extern struct B C;

Multiplicity of Objects

Objects have amultiplicity that determines whether they should be implemented as a single object,
an array, alist, acollection, or amap. You can modify the default implementation using the
CG::Relation::Implementation property for the object.

Note that the Tmplementation property isunder the metaclass rRe1ation rather than ciass
because even objects without any visible relations have at least one relation to an object typethat is
hidden in the browser.

Bounded Multiplicity

Objects with bounded multiplicity (for example, 2) are allocated to an array with the same number
of elements as the multiplicity. For example, for an object B of implicit type with amultiplicity of
2, thefollowing array is allocated:

extern struct B_t BI[2];

Unbounded Multiplicity

Objects with amultiplicity of * (unbounded) are allocated to an Ri CLi st structure. For example,
for an object A with amultiplicity of *, the following structure is allocated:

extern RiCList A;

Ri CLi st isapredefined list container type provided by the Rational Rhapsody in C framework.

Rational Rhapsody in C 11

Structural Model

Unspecified or Single Multiplicity

Objects for which no multiplicity is specified have a default multiplicity of one. Single objects are
alocated to a simple structure. For example:

struct A t {

/* User explicit entries */
} A;

In this case, asingle object Aisallocated at the close of the A t st ruct definitionin the
specification file for A.

Descriptions

Text entered in the Description field of the Features dialog box for an object is generated into a
comment that appears in the specification file for the package that owns the object, not in the
specification file for the object itself. The comment is generated immediately before the structure
alocation for the abject. For example, if you enter the description “A isan object of implicit type”
in the Features dialog box for an object A that belongs to the Def aul t package, the following
comment line appears before the structure allocation line in the Def aul t . h file:

/* A is an object of implicit type */
extern struct A t A;

12 Code Generation Guide

Objects

Object Interfaces

Objects provide interfaces and require interfaces. The provided interfaces are the object’s signals
(events and triggered operations) and services (functions). The required interfaces are realized
through a set of associations and dependencies to other objects through which the object
collaborates with the other objects.

The following figure shows the OMD from the home heating system (hhs) sample. It shows the
provided interfaces of two objects:

¢ theFurnace—reset (), notor Ready(),faul t (), andst opHeat ()

¢ theRoom—vacat ed(), check(), occupi ed(), Fst opped(), and Fst art ed()

In addition, it shows the required interfaces of the two objects through the symmetric association
drawn between them.

ﬁ Object Model Diagran: HomeHeatingSystem * _ Inlﬂ
[
HomeHeatingSystem =
: theRooms:Roam &
1 theFurnace:Furnace i H ctemprint
i dtempint
heatRegs:int = dtemp
S hectResein B wtemp:int —
= |D:int
1 3
& vacated)):void
& reset()void HChECk!:IZ'\"Did .
& motorReady():void ﬁnccupledﬂ:vm_d
B fault): void HFSiDppedﬂ:v_md
& stopHeat():void ﬁFSIarte!jQ:vmd .
B heatReq()void & occAnticipated()void
- & updateDtempitemp:int):vaid

Rational Rhapsody in C 13

Structural Model

Operations

Operations are services that can be performed by an object upon regquest. Operations can be
synchronous (such as procedure calls) or asynchronous (such as event receptions). Event
receptions are specia operations that process events once received from an event queue. The
sending object does not wait for the processing to be completed, but “sends and forgets’ the
message. Typically, statecharts handle events and behavioral code scripts (written in C) define
operations. However, statecharts can also handle synchronous operations, called triggered
operations, and conversely, code scripts can be specified to handle events.

About Implementing Operations in C

Because the C language does not directly support the concept of object operations, there are two
issues that must be addressed when generating C code from object models:

+ Associating an operation with a particular object

+ Naming operations such that the C flat global namespace is not overloaded and
contentions are avoided

Associating an Operation with an Object

Because each operation associated with an object isimplemented as a global function in C, it must
be provided with a context in the form of a pointer to the object on which it should operate. In
C++, this context is provided in the form of animplied t hi s pointer as the first argument. In C,
however, thet hi s pointer is not available. Therefore, in Rational Rhapsody in C, the first
argument to operationsis generally a pointer to the object associated with the operation. This
context pointer is conventionally called me. For example:

/*## operation close() */
void Valve_close (Valve* const me) ;

Because there is only one instance of a singleton object, the context pointer is not needed for
singleton operations. See Singleton Objects for more information.

You can change the name generated for the first argument using the ¢_cac: :operation: :Me and
C_CG::Operation: :MeDeclType properties. The ve property specifies the string used for the first
argument (for example, “me”). TheMepec1Type property specifiesthefull type declaration for the
first argument. Its default valueis as follows:

SobjectName* const

14 Code Generation Guide

Operations

Theobj ect Name variable isreplaced with the name of the object type. Adding a :i switchtothe
obj ect Nanme variable truncates the name to leave only the uppercase letters. For example, using
$objectName: i for an object named HomeHeat i ngSyst emresults in the name HHS.

Rational Rhapsody automatically inserts the me argument into code generated for operations, but it
isimportant for you to remember to provide it when calling an operation of an object.

Naming of Operations

Because C has a flat namespace for functions, Rational Rhapsody uses a naming convention to
resolve namespace contentions. The convention used isto prefix each (public) operation with the
name of the object on which it should operate. (See Visibility of Operations for information on
different naming conventions for private operations.)

For example, the Val ve object has two public operations: open() and cl ose() . These
operations are implemented as follows:

void Valve_open(struct Valve_t * const me);
void Valve close(struct Valve t * const me);

Rational Rhapsody in C 15

Structural Model

Visibility of Operations

Operations can be public or private. Private operations are those used by an object for its own
internal affairs and are not part of the interface of the object. Public operations are services that the
object exposes for consumption by other objects. These comprise the contract of the object and
should remain stable throughout the lifecycle of the system to avoid ripple effects throughout the
system. Changes to private operations (and attributes) should not impact the rest of the system.

Declarations and definitions for public and private operations can be generated in either the
specification or implementation file for an object, depending on the visibility of the operation.

Note: Eventsand triggered operations are always public.

Operation names have different default formats, depending on whether the operation is public or
private:
¢ Public operation names have the format <object> <opnames ().
¢ Private operation names have the format <opnames () .
You can change the default format of operation names using the following properties:
¢ Thec cG::0peration: :PublicName property specifiesthe pattern used to generate
names of public operationsin C.

¢ Thec ca::0peration: :ProtectedName property specifiesthe pattern used to generate
names of private operationsin C.

16

Code Generation Guide

Operations

Public Operations

Public operations are part of the object’s interface. Declarations of public operations are generated
in the specification file for the object, after the object’'sst r uct declaration. Definitions of public
operations are generated in the implementation file for the object.

For example, the following declaration is generated in the specification file for the Val ve object
for the public operation open() :

/*## operation open() */

void Valve open(Valve* const me) ;
Thefollowing definition is generated in the implementation file for the vVal ve object for the
public operation open() :

void Valve open(Valve* const me) {
NOTIFY OPERATION (me, &me, NULL, Valve, Valve open, Valve open(),
0, Default_Valve_open SERIALIZE) ;
/*#[operation open() */

/*#1*/
}
Note that the NOTIFY_OPERATION macro is used for animation. It notifies the animator that a

new operation has been called. The NOTIFY_OPERATION macro is only inserted into the code
when animation is enabled.

To control the way names are generated for public operations, use the

C_CG::Operation: :PublicName property. The default value of this property,

$objectName $opName, prefixes the name of the operation with the name of the object. For
example, the public operation to open the valve in the heating system is named Val ve_open() .

Usethe : 1 switch after sobjectName (for example, sobjectName: I OF $objectName: i) to expand
$objectName t0 be only uppercase letters (and digits) of the object name.

Rational Rhapsody in C 17

Structural Model

Private Operations

Private operations are not exported. Both their declaration and definition are generated in the
implementation file for the object. The declarations of al of an object’s private operations are
grouped at the beginning of the implementation file, followed by the definitions of al the private
operations.

Private operations are tagged as st at i ¢, which allows them to be accessed by other operationsin
the samefile.

For example, the following declaration is generated in the forward declarations section of the
implementation file for the Val ve object if thecl ose() operation is made private:

/* Forward declaration of protected methods */

/*## operation close() *\

static void close(Valve* const me) ;
The definition of the private operation is generated later in the same file, in the methods
implementation section:

/* Methods implementation */
static void close (Valve* const me)
NOTIFY OPERATION (me, &me, NULL, Valve, close, close(),
0, Default Valve close SERIALIZE) ;
/*#[operation close() */

/*#1*/
}

You can control the way names for private operations are generated using the
C_CG::Operation::ProtectedName property. The default value of this property, sopName, USES
the user-assigned name for the private operation, such as myNane() .

Constructors and Destructors

Rational Rhapsody automatically generates operationsto create, initialize, clean up, and destroy
objects. Object constructors include creators and initializers; object destructors include cleanup
and destroy operations.

Object Creator

The object creation operation creates an object and callsitsinitializer. Its name has the format
<obj ect> Create().

The creator alocates memory for an object, callsthe object’sinitializer, and returns a pointer to the
object created.

18

Code Generation Guide

Operations

For example, the following is the creator generated for the object A:

A * A Create()
A* me = (A *) malloc(sizeof (d));
if (me!=NULL)

A Init(me);

}

return me;

For reactive objects, a pointer to atask is added to the (end of the) creator’s argument list. This
pointer tells the reactive object which thread (task) it is running on. For example:

A * A Create(RiCTask * p task) {
A* me = (A *) malloc(sizeof (d));
if (me!=NULL)
A Init(me, p_task);
DYNAMICALLY ALLOCATED (me) ;
return me;

Because in C it is hot possible to give an argument a default value, you can pass avalue of NULL
for the task to cause the instance to run in the main task.

Thec ce::class: :AllocateMemory property andthec ca: :Event: :AllocateMemory property
specify the string generated to allocate memory dynamically for objects or events. This string is
used in the Create() operation. The default value of this property is:

(Scname*) malloc (sizeof (Scname)) ;

In generated code, the $cname keyword is replaced with the name of the object or event for which
memory is being allocated.

Dynamic Memory Allocation

You can create an object dynamically by calling its creator function. For example:

B *new B;

new B = B create();

You can delete an object dynamically by calling its delete function. For example:

B _Destroy (new_B) ;

Rational Rhapsody in C 19

Structural Model

Object Initializer

Theinitialization function initializes the attributes and links of an instance. Theinitializer assumes
that memory has previously been allocated for the object (either statically or dynamically). The
object initializer name has the format <obj ect > I nit().

For example, the following is the prototype of the initializer generated for the object A:

void A Init(struct A _t* const me);

Thefirst argument is aconstant pointer to the object being initialized. Theconst keyword defines
aconstant pointer in ANSI C. Passing a constant pointer as an argument allows the operation to
change the value of the object that the pointer addresses, but not the address that the argument nme
contains.

The object initializer has the following responsibilities, which it performs in the following order:
1. Callssubobjectinitializer functions, if the object has subobjects.
2. Setslinksfor association relations.

3. Executes user code entered for the body of a constructor. This code should include
initializations of the object’s data.

4. Initializes aggregated framework objects (for example, Ri CTask, Ri CReact i ve, and
Ri CMoni t or objects).

Subobject initialization includes calling theinitializers for each subobject of acomposite object. In
the case of arrays, theinitialization of each subabject can include the $i ndex keyword.

By default, the initializer has no arguments (other than the me argument). If you create an
initializer with arguments, you can enter initial values for the arguments in the Object dialog box.
Rationa Rhapsody generates initialization code for initializers with arguments from the values
entered in the Object dialog box.

20 Code Generation Guide

Operations

Initializing Subobjects

Compositions are initialized with acall toi ni t Rel ati ons() intheinitializer of the parent.
For example, the following initializer is generated for an object D that has a subobject E:

void D_Init (D* const me) {
initRelations (me) ;

Thei nit Rel ati ons() cal inD’sinitializer callstheinitializer for E:

static void initRelations (D* const me) {
E Init (&me->E);

If subobjects are implemented as an array (for example, because the subobject has a numeric
multiplicity greater than one), the subobjects are initialized using awhi | e() loop in the

i ni t Rel ati ons() operation. For example, if E's multiplicity istwo, E isimplemented as a
two-element array inside D. The following whi | e() loop isgeneratedinD's

i ni t Rel ati ons() operation to initialize both instances of E:

static void initRelations (D* const me) {
E Init (&(me->E)) ;

RhpInteger iter = 0;

while (iter < 5){
E Init (&((me->1itsE) [iter]));
iter++;

}

Rational Rhapsody in C 21

Structural Model

Setting Links

If related objects are not components of a composite object, you can have the main program
instantiate one of the objects by selecting it as an initial instance (in the Initialization tab for
the configuration). In that object’sinitializer, you can create the related object explicitly and
then set the link to it. For example, if an object A and an object B are related and the mai n()
function instantiates A as an initial instance, then in the body of Asinitializer you can write the
following code to set itslink to B:

B *itsB = B_Create();

A setItsB(me, 1itsB);
Setting alink to ato-many relation involves calling the initializer for the container. In the
following code, the call to Ri CCol | ecti on_I nit () setsthe Fur nace’slink to three
i t sRoons. Passing avalue of Ri CTRUE to Ri CCol | ect i on_set Fi xedSi ze() saysthat
the collection is of fixed size:

void Furnace Init (Furnace* const me, RiCTask * p_ task) ({
RiCReactive_init (&me->ric_reactive, (void*)me,
p_task, &Furnace reactiveVtbl) ;
RiCCollection Init (&me->itsRoom, 3);
NOTIFY REACTIVE CONSTRUCTOR (me, NULL, Furnace,
Furnace, Furnace(), 0, Furnace SERIALIZE) ;

RiCCollection_setFixedSize (&me->itsRoom,
RiCTRUE) ;

initStatechart (me) ;
NOTIFY_END_CONSTRUCTOR(me);

}
The NOTI FY_CONSTRUCTOR() and NOTI FY_END_CONSTRUCTOR() callsare
instrumentation macros generated when animation is enabled. The first macro notifies the
animator when the initializer has been called and creates an animation instance. The second
macro notifies the animator when the initializer is about to exit.

Executing User Initialization Code

User code entered for the constructor should include initializations of the attributes of the
object. You can specify the actual value for every parameter in the object constructor. The
actual value will be inserted verbatim as uninterpreted text.

User code is generated betweenthe/ *#[and / *#] symbolsin the code. For example, you
could enter the following code in the Implementation field for the initializer:

RiCString temp;
RiCString Init (&temp, "Hello World");
A print (me, temp);

22 Code Generation Guide

Operations

This code is implemented as follows:

void A Init (struct A t* const me)

NOTIFY CONSTRUCTOR(me, NULL, A, A, A(), O,
A SERIALIZE) ;

me->itsB = NULL;
/*#[operation A() */
RiCString temp;
RiCString Init (&temp, "Hello World");
A print (me, temp);
/*#1*/

NOTIFY END CONSTRUCTOR (me) ;

Object Cleanup

The object cleanup operation performs complementary operations to the initializer, releasing the
object’s links to other abjectsin reverse order.

Object Destructor
The destruction operation destroys an object. Its name has the format <obj ect >_Dest roy() .

TheDest r oy() operation callsthe object’'sCl eanup() operation to clean up itslinks, then frees
any memory allocated for the object.

For example, the following isthe Dest r oy() operation generated for the object A:

void A Destroy (A* const me) {
if (me!=NULL)

A Cleanup (me) ;

free (me) ;

Thec cG::Class: :FreeMemory property and the c_cG: :Event : : FreeMemory property specify
the string generated to free memory previously allocated for objects or events. This string is used
in the Destroy() operation. The default value of this property is:

free ($meName) ;

In generated code, the smeName keyword is replaced with the name of the object or event for which
memory is being freed.

Rational Rhapsody in C 23

Structural Model

Primitive Operations

In addition to the operations that Rational Rhapsody automatically generates, you can define your
own operations for objects. Each operation has a name and return type, and might include
arguments. User-defined operations are called primitive operationsin Rational Rhapsody.

Object operations (as opposed to functions or global operations) are mapped to C functions with
the same return type. The first argument generated for an operation is a pointer to the specific
object on which the operation isto operate. Following the e pointer isthe operation’s original list
of arguments, as specified in the model.

For example, the following is the prototype generated for an operation named pri nt () of object
type B:

void B print (B* const me) ;

The function prototype is generated in the specification file for B. The only argument is apointer to
an object of type B called ne.

Enter the following lines in the implementation for B'spri nt () operation in the model:

char *str;
str = “This is B”;
printf (“$s\n”, str);

Thefollowing lines are added to the body of pri nt () intheimplementation file:

void B print (B* const me)
NOTIFY_OPERATION(me, NULL, B, print, print(), O,
print_SERIALIZE) ;

/*#[operation print() */
char *str;
str = "This is B";
printf ("%$s\n", str);
} /*#1*/
}
You can manually edit the operation between the/ *#[and / *#] symbols. Roundtrip your

changes back into the model by selecting Code > Roundtrip > <configuration name>.

A SERI ALI ZE macro is generated for operations (for example, pri nt _SERI ALI ZE) if animation
is enabled and the operation has no arguments that need to be animated. The SERI ALI ZE macrois
used to display the operation during instrumentation. A SERI ALI ZE macro is not generated for
inline operations.

24 Code Generation Guide

Operations

Inline Operations

Thec_cc: :operation: : Inline property enablesyou to generate primitive operations and global
functions as macros. The macro is defined in the specification file of the owner object. The
operation call is replaced inline with the uninterpreted text specified for the macro during
preprocessing.

Only primitive operations and global functions for which the 1n1ine property iSset to in_header
can be generated as macros. The 1n1ine property does not work for constructors or destructors.
Thereis no instrumentation for inline operations.

The macro is defined in the specification file of the owner object as follows:

#define OperationName (ArgumentList) \

The operation’s return type and argument types areignored. Each generated line of the macro ends
with“ \”. Curly braces (“{" and “}") are not generated around user code. This enables you to
write short macros that return avalue. The following is an example of such a macro definition:

(#define isEqual (argl, arg2) (argl)==(arg2))

If amacro isroundtripped, abackslash (“ \ ") is added at the end of the line. The next code
generation adds a second backslash“ \ \ ", which will cause compilation errors. The extra
backslash must be removed manually.

Error highlighting shows the line of the calling operation (macro call).

The following is an example of the code generated for a primitive operation op() of an object A.
The operation’s 1n1ine property iSset to in_header. The macro definition is generated in A's
specification file (A. h). This operation calls the global function c1obal F (), which can also be
generated inline, before exiting:

#define A op (me) \
/*#[operation op() */ \
int 1i; \
for(i = 0; i < 3; i++) { \

printf (“LOOP\n") ; \

\

Global F(); \
/*#H] */

Rational Rhapsody in C 25

Structural Model

Constant Operations

Constant operations cannot change the data on which they operate.

The me parameter of a constant operation pointsto a structure that istagged asconst . In this case,
the const keyword comes before the data type specifier in the argument list. For example, the
following is the generated code of a constant operation called check() that can access, but not
change, the contents of B:

void B_check (const B* const me) {
/*#[operation check() */
[*#1*/

Event Receptions

Events provide an asynchronous means of communication between objects. Both reactive objects
and tasks can receive events. Events can trigger transitions in statecharts.

Adding an event reception to an object defines the abject’s ability to receive that kind of event. A
comment is added to the specification file of an object to indicate that it can consume a particular
kind of event. For example, if an object type G can receive an event ev 1, the following comment is
added to G's specification file.

/*** Events consumed ***/

/* evl();*/
All events are handled through a common interface found in Ri CReact i ve.

The event is actually defined in the package file.

26

Code Generation Guide

Operations

Triggered Operations

A triggered operation is a synchronous event that can return avalue. It is a synchronous
communication between objects that can be called by one object to trigger a state transition in
another object. The body of the triggered operation is executed as a result of the transition.
Because atriggered operation is synchronous, the sending object must wait for it to return before
the sender can continue on its own thread.

The body of atriggered operation is set in the statechart of the receiving object by the action
language associated with atransition. Thus, the body of the same triggered operation can be
different based on the state of the object when the operation is called. To return avalue from a
triggered operation, use the Ri CREPLY(VALUE) macro as one of the action statements associated
with the triggered operation. See Predefined Actions for more information on the REPLY macro.

Invoking Operations

To call operations on objects, use standard C function calls in the following format:

<opname> (<object*>, pl,..,pn);

Thefirst argument to the function must be a pointer to the object that is the target of the operation.
For example, if i t sSer ver isapointer to an object that has an operation st art (), call this
operation with:

Server start (itsServer, pl, p2);
If the object that isthe target of the operation isasingleton, you can omit the context pointer asthe
first argument of the function, asfollows:

Singleton start (pl, p2);

Rational Rhapsody in C 27

Structural Model

Attributes

Attributes are variables that an object encapsulates to maintain its state. Objects encapsulate
attributes as a set of dataitems. A dataitem designates a variable with a name and a type, where
thetypeisadatatype. A dataitem for an object is mapped to a member of the object’s structure.
The member’s hame and type are the same as those of the object data.

For example, thei sCl osed attribute of the Val ve object type is embedded by value as a data
member inside the Val ve structure:

struct Valve {
/*** User explicit entries **%*/
RiCBoolean isClosed; /*## attribute isClosed ##*/

The Ri CBool ean typeisthe C equivalent of oMBoolean, a Boolean datatype defined in the
Rational Rhapsody in C++ framework.

An accessor operation enables you to access the data, whereas a mutator operation enables you to
modify the data. The accessor isgenerated if thec _cG: :Attribute: :AccessorGenerate Property
isset to checked. Similarly, the mutator is generated if thec_ca: :Attribute: :MutatorGenerate
property is set to always. The default Accessor Gener at e iScleared. The default for

MutatorGenerate iSNever.

Accessor and mutator operations are generated in the user implicit entries area of the specification
file for the object type. For example, prototypesfor the getIsclosed() accessor operation and
the setIsclosed() mutator operation are generated for thei sCl osed attributein the Val ve. h
file

/*** User implicit entries **x/

RiCBoolean Valve getIsClosed(const Valve* const me) ;

void Valve _setIsClosed(Valve* const me, RiCBoolean
p_isClosed) ;

The bodies of the accessor and mutator operations are generated in the implementation file for the

object type. For example, the following implementations are generated for the _get | sCl osed()
and _set | sCl osed() operationsintheVval ve. c file:

/*** Methods implementation ***/
RiCBoolean Valve getIsClosed(const Valve* const me) {
return me->isClosed;

void Valve setIsClosed(Valve* const me, RiCBoolean
p_isClosed)
me->isClosed = p isClosed;

}

28

Code Generation Guide

Attributes

Rationa Rhapsody generates attributes in the following order:

1. Attributes are grouped into user-defined and implicit attributes (such asrelation
containers).

2. Theattributesin each subgroup are generated in alphabetical order.

About Accessing Attributes

Attributes can be tagged as public or private. Ideally, attributes should be private to the abject as
part of itsinternal affairs. They should not be exposed as part of the object’sinterface. Thisis
because attributes are an implementation issue and should not be part of the external contract of
the object. In this way, the implementation can be modified to follow changing requirements
without having any external impact. However, sometimesto satisfy efficiency constraints,
attributes can be made public so that peer objects can access them directly.

There is no difference in the way public or private attributes are generated in C. Attributes are
simply data members inside an object structure, and as such are always public.

However, when you assign public or private access to an attribute, the visibility appliesto the
accessor and mutator operations for the attribute, not to the attribute itself:

+ Assigning public access to an attribute causes the code generator to generate public
accessor and mutator operations for it.

+ Assigning private access causes the code generator to generate static accessor and mutator
operationsfor it.

Public Access

For example, the following is the accessor generated for an attribute with public access:

int Furnace getHeatRegs (const Furnace* const me) ;

The heat Reqs attribute belongs to the Fur nace object in the home heating system sample. The
prototype for the public accessor is generated in the specification file for the Fur nace. The name
of the public operation includes the name of the object that isits target, in this case Fur nace.

The body of the public accessor is generated in the implementation file for the Fur nace:

int Furnace getHeatRegs (const Furnace* const me) {
return me->heatRegs;

Rational Rhapsody in C 29

Structural Model

Private Access

On the other hand, the following is the accessor generated for the same attribute with private

access!

static int getHeatRegs (const Furnace* const me) ;

The name of the static operation does not include the name of the object that isitstarget. Both the
prototype and body for the static operation are generated in the implementation file for the
Fur nace:

static int getHeatRegs (const Furnace* const me) {

}

return me->heatRegs;

Collaborations Between Objects

System objects collaborate by exchanging events and invoking operations. Objects can access
other objectsin four ways:

*

*

I nheritance—Objects can inherit from one another.

Dependencies—An object can directly access aglobal object by referencing its package
namespace. A dependency from an object to a package familiarizes the object with the
package namespace. See Dependencies for more information.

Composition—Objects can access their subobjects and subaobjects can access their owner
objects. See Compositions for more information.

Par ameter s—Objects can receive references to other objects as arguments of operations
or events. This requires the definition of object types. See About Specifying the Type of an

Object for more information.

Links—Objectsthat reside inside other objects must be accessed via alink, because they
do not have a global identity. Links bind roles, which are the structural slots through
which an object refersto alink. See Links for more information.

I nterfaces—An object can have an interface, which isakind of classifier that specifiesa
contract consisting of aset of public services. An interface is a non-instantiable entity that
isrealized by a class, abject, block, file, and so on, and might be realized by any number
of these entities.

Ports—Objects can have ports. A port is adistinct interaction point between a class and
its environment or between (the behavior of) aclass and itsinterna parts.

30

Code Generation Guide

Collaborations Between Objects

Inheritance

Inheritanceisthe derivation of one classfrom one or more other classes. The derived classinherits
the same data members and behaviors present in the parent class. It is the mechanism by which
more specific elements incorporate structure and behavior of more general elements related by
behavior. Inheritance is also known as generalization.

You can create inheritance by using the I nheritance tool for an object model diagram to draw an
inheritance arrow between two classes.

Inheriting from an External Class
To inherit from aclassthat is not part of the model, set the ca: :class: :UseAsExternal property
for the class to checked. This prevents code from being generated for the superclass.
To generate an #i ncl ude of the class header file in the subclass, do one of the following actions:

+ Add the external element to the scope of some component.
¢ Map the external element to afilein the component.

¢ Setthece::class::FileName property for the class to the name of its specification file
(for example, super.h). That fileisincluded in the source files for classes that have
relationstoit. If the Fi1leName property isnot set, Nno #include IS generated.

If you need a class to import an entire package instead of a specific class, add a dependency (see
Dependencies) With a stereotype of «Usage» to the external package.

Rational Rhapsody in C 31

Structural Model

Dependencies

Dependencies signify abstract links between objects. There are several types of predefined
dependencies that can be tagged with stereotypes. The Usage stereotype is the only one that
affects code generation in C. It implies a dependence on services provided by another object.

Note: The Send stereotype is atag that indicates the sending of an event to another
object. It has no code generation side effects.

You can also define other stereotypes for dependencies.

A dependency is different from alink. A dependency does not have any structural implications,
but ssimply impliesinformation that can be interpreted in several different ways. Whilealink hasa
semantic connection among multiple objects and it is an instance of an association.

The usage stereotype for dependencies is constructive, in that it changes the generated code
depending on the value assigned to the cc: : Dependency : : UsageType property for the
dependency. The possible values for this property are as follows:

¢ specification—AnN#i ncl ude statement is generated in the specification file of the
dependent.

¢ Implementation—AN#i ncl ude statement is generated in the implementation file of the
dependent.

¢ Existence—A forward declaration is generated in the specification file of the dependent.

Compositions

The primary means for handling complexity in object-based systems is through object
decomposition. An object can be comprised of other objects or subobjects (nested objects). A
subobject is an object defined within a parent object. The parent object (or owner) can delegate
reguests to be handled by its subobjects, and the subobjects can communicate back to their parent
object.

Each of the subobjects knows the HonmeHeat i ngSyst emasits parent, and the

HomeHeat i ngSyst emcan access each of its subobjects by name. Thisview of the

HomeHeat i ngSyst emiscalled an object structure view, because it shows theinternal structure of
the object. The subobjects can be linked to each other or not, depending on the nature of the
system.

With compositions, the parent object holds the subobjects by value rather than by pointer. The
parent object is responsible for initializing and cleaning up after the subobjects. See Initializing
Subobjects for more information.

By default, a subobject designates a single instance and isimplemented as a member of the parent
object’s structure. The member’s name and type are the same as the name and type of the

32

Code Generation Guide

Collaborations Between Objects

subobject. In other words, subobjects are embedded by value in the parent object, rather than as
pointers to objects.

When a subobject’s multiplicity is specified as a number greater than one, the subobjects are
implemented as an array by default. For example, t heFur nace and t heRoons are implemented
as members of the HomeHeat i ngSyst emstructure. The object t heFur nace isimplemented asa
single instance of type Fur nace, and t heRoons are implemented as an array of three Roons:

typedef struct HomeHeatingSystem HomeHeatingSystem;
struct HomeHeatingSystem {

RiCReactive ric_reactive;

[*x* User implicit entries *kk [

struct Furnace theFurnace;

struct Room theRooms [3];

If a subobject’s multiplicity is not known in advance, it isimplemented as alinked list. For
example, if you specified multiplicity of t heRoons as* rather than 3, it would be implemented as
anRi CLi st asfollows:

struct HomeHeatingSystem {
RiCReactive ric_reactive;
VA User implicit entries *xk [
struct Furnace theFurnace;
RiCList theRooms;

You can also implement subobjects using other types of dynamic containers (such as collections).
You specify how to implement concrete relations using the cG: :Relation: : Implementation
property. For example, setting the tmplementation property for t heRoons to
UnboundedUnordered Would implement theRooms @S an RicCollection rather than asan
RiCList OF array.

The properties under the subject Ri CCont ai ner s determine how functions are generated for
various kinds of containers used to implement relations. See the definitions provided for the
properties on the applicable Properties tab of the Features dialog box.

Rational Rhapsody in C 33

Structural Model

Links

An association between objectsis called alink. An object can have links to other objects as part of
its required interface. Through such links, the object can request services of or send events to
another object.

Links bind roles, which are the structural slots through which an object can refer to itslinks.
By default, aroleisnamed i t s<obj ect >, where <obj ect > is the name of the peer on the
other end of the link.

Links can be symmetric or directional. With a symmetric link, both objects know each other,
implying two roles. With directional links, only one object has accessto its peer viaasinglerole.
See Symmetric Associations and Agaregations for more information.

Roles have multiplicity. A multiplicity of one meansthat the link connects an abject to only one
other object. The default multiplicity is set by the General: :Relations: :DefaultMultiplicity

property.

If alink connects an object to more than one other object (multiplicity greater than 1), that link is
implemented by default as an array. In addition, arole can contain referencesin the form of
pointers, facilitating access to several members within the group.

34

Code Generation Guide

Collaborations Between Objects

Symmetric Associations

With symmetric links, the objects on both ends of the link know each other. Thus, two roles are
defined.

The sample OMD, as shown in the following figure, shows a symmetric association between
t heFur nace andt heRoons. Thisisato-many link in which one furnace services three rooms.

ﬁ Object Model Diagram: HomeHeatingSystem * - |EI|5|
]
HomeHeatingSystem B
3 theRooms:Room =]
1 theFurnaceFurhace i) = ctemp:int
. dtemp:int
heatRegs:int = P
B heatRege:in B wtemp:int b
= ID:int
1 3
& vacated)):void
& reset()-void ﬂcheck!j:vuld .
g rotorReady () void E EZ:;E&%%_‘:;’%
fault():void)
ﬁstnpaeatﬂ:unid ﬁFstanedU:vuid
& heatReq(} void & occAnticipated]):void
’ & updateDtempitemp: int):void

Roles are implemented as:

¢ A struct datamember
* An accessor function
+ A mutator function

Rational Rhapsody in C 35

Structural Model

Link Data Member

By default, alink iswith asingleinstance. A link to asingle instance is called scalar. A scalar
relation is generated into a data member in the object’s structure whose name is the same as the
role and whose type is a pointer to the other object. For example, ani t sFur nace member of type
pointer to Fur nace is generated as a member of the Roomstructure to represent the Roonislink to
the Fur nace:

struct Room {
VAR User implicit entries *xkk)
struct Furnace * itsFurnace;

Link Accessor

The link accessor returns a pointer to the associated object. Its name has the format
<obj ect >_get _<rol enane>().

For example, the following accessor is generated for thei t sFur nace role:

struct Furnace * Room get itsFurnace (const Room*
const me) ;

Thisis the implementation of the link accessor:

struct Furnace * Room get itsFurnace (
const Room* const me)

return (struct Furnace *)me->itsFurnace;

Link Mutator

The link mutator sets a pointer to the associated object. If the link is symmetric, the mutator
also sets the reciprocal link.

Up to three methods can be generated for the link mutator:
+ Thefirst ispart of the object’s provided interface.

Thislink mutator name has the format <obj ect >_set <r ol enanme>().

+ The other two are helper functions generated only for symmetric relations that help to
establish the symmetric relation without creating an infinite loop.

For example, the following mutator is generated for thei t sFur nace role:

void Room_setItsFurnace (Room* const me, struct Furnace
*p Furnace) ;

Thisisthe implementation of the link mutator. The link between Fur nace and the Roomis
symmetric, so the mutator also sets the reciprocal link:

36

Code Generation Guide

Collaborations Between Objects

void Room_setItsFurnace(Room* const me, struct Furnace
*p Furnace)
if (p_Furnace != NULL)
Furnace addItsRoom(p_ Furnace, me);
Room setItsFurnace(me, p_ Furnace) ;

}

If thelink isasymmetric relation, the first mutator calls a second that has a double underscore
before the word “set” in its name:

void Room _setItsFurnace (Room* const me, struct Furnace
*p Furnace) {
if (me->itsFurnace != NULL)
Furnace removeltsRoom(me->itsFurnace, me) ;
Room _ setItsFurnace (me, p_Furnace) ;

}

If thelink is a symmetric relation, the second mutator calls athird that has a triple underscore
before the word “ set” in its name:

void Room __ setItsFurnace (Room* const me,
struct Furnace * p Furnace)
me->itsFurnace = p_ Furnace;
if (p_Furnace != NULL)
NOTIFY RELATION ITEM ADDED (me, Room, Furnace,
"itsFurnace", p Furnace, FALSE, TRUE);

}

else
NOTIFY RELATION CLEARED (me, Room, "itsFurnace") ;

}
Together, these three operations set the symmetric link between the Fur nace and the Room

Rational Rhapsody in C 37

Structural Model

Aggregations

Aggregation is a strong form of association that represents a part/whole relationship, as with a car
(whole) that has wheels (parts). The parts can have alife of their own, and do not necessarily come
into being and die with the creation and destruction of the whole (for example, the wheels can be
removed and re-used on another car before the original car is junked).

Aggregations are implemented as “ shared” aggregationsin Rational Rhapsody, in that a part can
be simultaneously aggregated by severa wholes because it is not physically embedded inside any
of them. Composition, on the other hand, is an even stronger form of “non-shared” aggregation, in
which the part is actually embedded inside the whole and comes into begin and dies with its
creation and destruction.

The rules for implementing aggregations (that are not compositions) as either pointers or
containers depending on the multiplicity and ordering of the relation are the same for aggregations
asfor associations.

To-Many Links
Rationa Rhapsody implements links to more than one object, or to-many links, using various
kinds of containers, depending on the multiplicity and ordering of the link. Types of to-many links
are asfollows:
¢ Bounded ordered
¢ Bounded unordered
¢ Embedded fixed

¢ Fixed
¢ Qualified
¢ Satic Array

¢+ Unbounded ordered
¢ Unbounded unordered
¢ User-specified

Appropriate accessor and mutator operations are generated for each kind of link, depending on the
container used to implement it. The defaults for implementing relations are modifiable through the
properties of the role.

38 Code Generation Guide

Collaborations Between Objects

Ordered Links

By default, ordered links to more than one object areimplemented asan Ri CLi st . A to-many
link is made ordered by setting itsca: :Relation: :Ordered property to Checked. This
includes relations where the multiplicity is known (bounded ordered relations) and those
where the multiplicity is not known (unbounded ordered relations).

Unordered Links

By default, unordered links to more than one object are implemented asan Ri CCol | ect i on.
A to-many link is made unordered by setting its Or der ed property to C ear ed. Thisincludes
relations where the multiplicity is known (bounded unordered relations) and those where the
multiplicity isnot known (unbounded unordered relations).

Embedded Links

Links to subobjects are implemented as an embedded data member if the subobject’s
multiplicity is one (embedded scalar relation), or as an array if the subobject’s multiplicity has
anumeric value greater than one (embedded fixed relation).

For example, the HomeHeat i ngSyst emobject has one subobject called i t sFur nace and
three subobjects calledi t sRoom all embedded as components. In thiscase, t heFur nace has
an embedded scalar relation and t heRoons has an embedded fixed relation to

HomeHeat i ngSyst em These relations are implemented as follows:

struct HomeHeatingSystem {
VA User implicit entries * k% [
struct Furnace theFurnace;
struct Room theRooms [3];

You can achieve the same effect by setting the cc: :Relation: : Implementation property to
Scal ar for ascalar relation or Fi xed for afixed relation. These types of relation
implementations should be used only under two conditions:

+ Therelated object is inside a composite object (component relation).
¢ Therelated object isembeddable (c_cc: :class: : Embeddable IS Checked).

Fixed Links

By default, to-many links with a fixed multiplicity are implemented as an
Ri CCol | ecti on.

Qualified Links

By default, to-many links where a qualifier is specified on the link are implemented
asan Ri Cvap.

Rational Rhapsody in C 39

Structural Model

Random Access Links

A random access link is arelation that has been enhanced to provide random access
to the items in the container. You can give ato-many link random access by setting
thec cG::Relation: :Getat property for the roleto checked. The
C_CG::Relation::GetAtGenerate pProperty must also be set to Checked. This
generates an accessor for the role that uses an appropriate getat () method for the
container. The $i ndex keyword is passed as a parameter to the getat () method to

access aparticular element inside the container. The default value for $i ndex isi nt
i

For example, the cetat property for a bounded ordered relation has the following
value:

RiCList getAt (&mecname, S$index)

Setting the cetat property for t heRoons to Checked causes the following accessor
to be generated in the HomeHeat i ngSyst emto alow it to access a particular Roomn

struct Room * HomeHeatingSystem getTheRooms (
const HomeHeatingSystem* const me, int i) {
return RiCList getAt (&me->theRooms, 1i);

}

40

Code Generation Guide

Collaborations Between Objects

Initializing Links within Packages

AninitRel ati ons() operationisgenerated for packages to initialize the links between the
objects in a package. The name of the link initialization operation has the format
<package>_initRel ati ons().

For example, if the Def aul t package has an object A of implicit type and an object C of type B,
and A hasadirectional link totype B, aDef aul t _i ni t Rel ati ons() operation isgeneratedin
the implementation file for the Def aul t package to initialize the link between A and C, the only
object of type B:

static void Default initRelations() {
A Init (&) ;
B Init (&C);

}

This operation callstheinitialization operations for Aand C, which in turn initialize the linksto the
respective objects.

Rational Rhapsody in C 41

Structural Model

Interfaces

Ports

Interfaces are akind of classifier that specify a contract consisting of a set of public services. An
interface is a non-instantiable entity that is realized by a class, abject, block, file, and so on, and
might be realized by any number of these entities.

In terms of C programming, an interfaceis represented by a set of global function declarations and
astructure consisting of void pointers to the global virtual functions.

For example, given some class B with the global functions read () and parse (), there exists an
interface |_B with the following global declarations:

void I B parse(void * const void me);
void I_B read(void * const void _me) ;

and a structure as follows:

typedef struct I B Vtbl{
size t I_B offset;
RiCBoolean (*I B gen) (void * const void me, RiCEvent* event,
RiCBoolean fromISR) ;

void (*I_B parse) (void * const void me) ;
void (*I_B read) (void * const void me) ;

} I_B vtbl;

A port isadistinct interaction point between a class and its environment or between (the behavior
of) aclassand itsinternal parts. A port allows you to specify classes that are independent of the
environment in which they are embedded. The internal parts of the class can be completely
isolated from the environment and vice versa.

A port can have the following interfaces:

* Required interfaces—Characterize the requests that can be made from the port’s class
(viathe port) to its environment (external objects). A required interface is denoted by a
socket notation.

¢ Provided interfaces—Characterize the requests that could be made from the environment
to the class viathe port. A provided interface is denoted by alollipop notation.

These interfaces are specified using a contract, which by itself is a provided interface.
If aport isbehavioral, the messages of the provided interface are forwarded to the owner class; if

it is non-behavioral, the messages are sent to one of the internal parts of the class. Classes can
distinguish between events of the same type if they are received from different ports.

42

Code Generation Guide

Collaborations Between Objects

Partial Specification of Ports

If you specify ports without any contract (for example, an implicit contract with no provided and
required interfaces), Rational Rhapsody assumes that the port relays events using the code
generator. You could link two such ports and the objects would be able to exchange events via
these ports.

However, Rational Rhapsody will notify you during code generation (with warnings or
informational messages) because the specification is still incomplete.

Considerations for Ports

Ports are interaction points through which objects can send or receive messages (primitive
operations, triggered operations, and events).

Portsin UML have atype, which in Rational Rhapsody is called a contract. A contract of aport is
like a class for an object.

If aport has acontract (for example, interfacel), the port provides| by definition. If you want the
port to provide an additional interface (for example, interface J), then, according to UML, I must
inherit J (because a port can have only onetype). In the case of Rational Rhapsody, this
inheritance is created automatically onceyou add J to thelist of provided interfaces (again, thisis
aport with an explicit contract I). According to the UML standard, if | and J are unrelated, you
must specify a new interface to be the contract and have thisinterface inherit both I and J.

Implicit Port Contracts

Some found that enforcing a specification of a special interface as the port’s contract to be
artificial, so Rational Rhapsody provides the notion for an implicit contract. This means that if the
contract isimplicit, you can specify alist of provided and required interfaces that are not related to
each other, whereas the contract interface remains implicit (no need to explicitly define a special
interface to be the port’s contract in the model).

Working with implicit contracts has pros and cons. If the port is connected to other ports that
provide and require only subsets of its provided and required interfaces, it is more natural to work
with implicit contracts. However, if the port is connected to another port that is exactly “reversed”
(see the check box in the port’s Features dialog box) or if other ports provide and require the same
set of interfaces, it makes sense to work with explicit contracts. Thisis similar to specifying
objects separately from the classes, or objects with implicit classes in the case when only asingle
object of thistype or class existsin the system.

Rapid Ports

Rapid ports are ports that have no provided and required interfaces (which means that the contract
isimplicit, because a port with an explicit contract, by definition, provides a contract interface).
These ports relay any events that come through them. The notion of rapid ports is Rational
Rhapsody-specific, and enables users to do rapid prototyping using ports. This functionality is

Rational Rhapsody in C 43

Structural Model

especially beneficial to users who specify behavior using statecharts—without the need to
elaborate the contract at the early stages of the analysis or design.

Components-based Development in RiC

You can do component-based developed in Rational Rhapsody in C (RiC) because there is code
generation support for interfaces and ports.

A class might realize an interface, that is, provide an implementation for the set of servicesit
specifies (that is, operations and event receptions). You use a realization relationship to indicate
that aclassisrealizing an interface. In addition, an interface might inherit another interface,
meaning that it augments the set of interfaces the superinterface specifies. You can specify
interfaces, realize them, and connect to objects viathe interfaces.

RiC users can take advantage of service ports that allows the passing of operations and functions
viaports, in addition to passing events. You can specify ports with provided and required
interfaces. In addition, Rational Rhapsody 7.1 provides code generation support for standard UML
portsin RiC and code generation of ports supports the initialization of links via ports.

In this type of development in RiC, interfaces are treated as a specification of services (that is,
operations) and not as inheritance of data (attributes). Also, in this type of development in RiC,
realization (as opposed to inheritance) is used to distinguish between realizing an interface and
inheriting an interface/class.

As of Rational Rhapsody 7.1, code generation supports realizing interfacesin C. This means
interfaces and ports specified in a C model will be implemented by the code generator. This means
code generation generates:

¢ Codefor aC interface (a class with “pure virtual operations”)
— Virtua tables with function pointers

— Relay code from the interface to the realizing class according to the virtua
table

¢ The“redlization code” for the realizing class
— Aggregating the interface
— Initializing the virtual table
+ Links between objects that instantiate associations to the interface

44 Code Generation Guide

Singleton Objects

Singleton Objects

Objects with amultiplicity of onethat are tagged with the Si ngl et on stereotype are instantiated
only once throughout the life of the system. Singleton objects areimplemented in C asast r uct
and functions. The singleton property is not enforced on the data, however.

A singleton object isdeclared asast r uct in the specification file. For example:

struct object 0 t {
/* attributes of object 0 */

7

The singleton object is instantiated as a package object in the implementation file, as follows:

struct object 0_t object 0;

Because there can be only one instance of asingleton, its operations do not include a context
pointer astheir first argument. For example, for asingleton object A with an operation op1() with
one argument al, the following function prototype is generated:

/*## operation opl (int) */
void A opl(int al);

If the same object were not a singleton, the following function prototype would be generated:

/*## operation opl (int) */
void A opl(struct A t* const me, int al);

About Initializing Singletons

Init() andcl eanup() operations are generated for singletons, but cr eat e() and dest r oy()
operations are not.

If a Rational Rhapsody model has global instances, asin the case of singletons, something must
call theiri ni t () function. In C++, the problem is solved using default construction. In C,
however, another mechanism must be found. In the case of executable components, the mai n()
function can call theinitializers of global objects. But with library components, the user of the
library must call the initializer before using a global object.

In Rational Rhapsody in C, the component initializer callsthei ni t () operationsfor all packages
in the component scope. In turn, the package initializer callsthei ni t () operations generated for
any global objects, events, and so on, within the package scope.

Rational Rhapsody in C 45

Structural Model

External Objects

External objects are objects that are generated outside of the current Rational Rhapsody project.
They could have been created in Rational Rhapsody or some other environment. The referencing
of external objects allows you, for example, to relate to external frameworks or legacy code from
within a Rational Rhapsody model. All objects, or object types, that are read-only are assumed to
be external.

You can mark an object as external by setting itsca: : class: :UseAsExternal property to
Checked. No assumption is made regarding implicit interfaces of external objects, such as
accessors or mutators. Because they might not have been generated in Rational Rhapsody, they are
assumed to be non-instrumented.

If you override the file name of an external object viathe ca: :class: : FileName property, an

#i ncl ude statement is added to the implementation file whenever the element is added to a
regular object (package, dependency, relation, and so on). It is not necessary to add afile extension
because Rational Rhapsody automatically adds the extension . n to the file name. For example, if
you set the Fi | eNane property of an external object B to ny B, the following #i ncl ude directive
isgenerated in the . ¢ file for the package:

#include "myB.h"

You can also override the file name of an external object by adding the file to the component
model by adding the element to afilein the model.

If any other objectsin the model have Usage dependencies to the external object, the same
#i ncl ude directive isadded to the specification files of those objects. See Dependencies for more
information.

For the model to compile, the location of the external file must be specified as either an include
path or under the compiler switches at the component or configuration level (using the Settings tab
of the Features dialog box for the configuration). If you added the external object to afile with the
correct path, no modification of the search path is needed.

46

Code Generation Guide

Reactive Objects

Reactive Objects

Reactive objects are objects that can receive and process events. They typically have state-based
behavior that is defined in a statechart. However, an object is considered reactive if it satisfies any
one of the following conditions:

¢ Hasastatechart
¢ Hasan event reception

If an object is reactive, an instance of an Ri CReact i ve object is embedded by valuein the
object’s structure as a data member. For example:

typedef struct Furnace Furnace;
struct Furnace {
RiCReactive ric_reactive;
/* attributes of Furnace */

Notethat Ri CReact i ve isan abstract data type provided by the Rational Rhapsody in C
framework to define the event-handling behavior of reactive objects.

For every reactive object, an additional st r uct isdefined in the implementation file to hold
pointers to functions that are defined as part of the statechart implementation. These pointers are
passed to the reactive member of an object type:

static const RiCReactive Vtbl Furnace reactiveVtbl = {

rootState_ dispatchEvent,

rootState entDef,

ROOT_STATE_SERIALIZE STATES (rootState_serializeStates),

/* Violation of MISRA Rule 45 (Required): */
/* 'Type casting to or from pointers shall not be used.' */
/* The following cast is justified and is */
/* for Rhapsody auto-generated code use only. */
(RiCObjectDestroyMethod) Furnace Destroy,

NULL,

NULL,

NULL,

(RiCObjectCleanupMethod) Furnace Cleanup,
(RiCObjectFreeMethod) Freelnstance

Rational Rhapsody in C a7

Structural Model

Note the following information:

¢ TheRi CReactive_Vt bl virtual function table is defined in the Rational Rhapsody in C
framework (in Ri CReact i ve. h).

+ Theframework usesther oot St at e functionsto connect to the generated statechart code.
These functions are as follows:

— Thedi spat chEvent () function consumes an event.

— Theent Def () function starts running a statechart. It is called by the
st art Behavi or () function (see Starting Reactive Behavior).

— TheserializeSt at es() function passes the instrumentation information
to enable visual updating of statesin animated statecharts.

— The<obj ect >_Dest roy() function isresponsible for destroying the object
and is called when a termination connector is reached.

Thedi spat chEvent (), ent Def (),andseri al i zeSt at e() functions are implemented in the
handle closer files defined in the framework (Ri CHdl Cl s. ¢). You can define functionsto perform
similar tasks and link them to your project through the virtual function table. However, thistopicis
beyond the scope of this subject.

Initialization of areactive object and the statechart that it drives are accomplished as part of the
object’sinitialization function. For example, thefollowing initializer for the Fur nace object inthe
HomeHeatingSystem callsRi CReact i ve_i ni t () toinitialize the reactive object, then calls

i nitStatechart () toinitialize the object’s statechart:

void Furnace Init (Furnace* const me, RiCTask * p_ task) ({
RiCReactive_init (&me->ric_reactive, (void*)me,
p_task, &Furnace reactiveVtbl) ;
/* relation initialization loop */
initStatechart (me) ;

TheRi CReactive_init() andinitStatechart () functionsare defined in the Rational
Rhapsody framework.

The second parameter to the initializer, p_t ask, isa pointer to the task, with the associated event
gueue, from which the reactive object processes events. If the reactive object is sequential, this
task is the system thread; if the reactive object is active, thistask is the object’s own thread. See
Active Objects for more information.

48 Code Generation Guide

Concurrency Objects

Concurrency Objects

Rational Rhapsody provides several types of objects for modeling timing constraints, priorities,
resource management, and performance. Rational Rhapsody also provides facilities for allocating
objects to tasks, assigning priorities, and protecting shared resources.

Logically, the Rational Rhapsody execution modéd is event-driven. Therefore, thereis no need to
use multitasking to provide the wanted system services because the underlying framework handles
the dispatching of events. Task allocation results from the consideration of time constraints and
handling of external outputs via polling or interrupt handlers.

To handle concurrency, Rational Rhapsody provides two categories of objects:

+ Stereotyped application objects
+ Primitive concurrency and synchronization objects

Stereotyped Application Objects

The stereotyped application objects include active objects and guarded objects (also known as
protected objects, synchronized objects, or monitors).

Active Objects

Active objects are application objects that own a thread of control. Active objects have controller
capabilities. Each active object owns an event queue through which it processes its incoming
events. By default, subobjects share the thread (and consequently the event queue) of their parent
object, unless they are also active, in which case they each own their own thread.

The counterpart to active concurrency is sequential concurrency. Sequential objects run on the
system thread, allowing the system event queue to process the object’s events along with those of
other sequential objectsin first in, first out (FIFO) order.

Rational Rhapsody in C 49

Structural Model

Active objects are depicted similar to their sequential cousinsin OMDs, but with thicker borders.
In the following figure, the CodeGener at or isdepicted as an active object with athick border,
whereas the Model and CGPr operti es objects are sequential and therefore have thin borders.

MWodel | CGProperties

-

b -
<zincluded= =% » ~ezincluded>»

‘ CodeGenerator |: z<Generated=>

Rational Rhapsody implements active objects by adding an object of a predefined type called
Ri CTask as adata member. This enables the active object to re-use the capabilities of its
embedded Ri CTask member. For example:

typedef struct A A;
struct A {
RiCTask ric_task;
/* other members of A */

}i

Guarded Objects

Guarded objects encapsul ate data shared by several active objects or tasks. They do not own their
own threads, but can synchronize calls from various threads.

Operations that are protected are called guarded operations. A guarded operation is considered
critical enough to need to enforce mutual exclusion. A guarded object is an object that owns at
least one guarded operation.

One way to implement a guarded object isto give it amutex so every operation that is explicitly
set to be guarded locks the mutex at the beginning of the operation and releases it at the end.

AnRi Cvoni t or member is added to the structures of guarded objects. For example:

typedef struct A A;

struct A {
RiCMonitor ric monitor;
/* other members of A */

}i
Note that Ri Cvbni t or isamonitor type defined in the Rational Rhapsody framework.

Theri c_noni t or subobject isused only for operations of this object that are specifically tagged
as guarded. You can tag an operation as guarded using the cG: : operation: : Concurrency

property.

50 Code Generation Guide

Concurrency Objects

The guarded operation is protected inside a wrapper operation, which is responsible for the
protection. The guarded operation is generated as a private operation as follows:

¢ Thewrapper operation name is the user-assigned name for the operation <opnarme>() .
¢ The guarded operation name has the format <obj ect >_<opnanme>_guar ded() .
For example, two functions are generated for a guarded operationi ncr ease() of an object B:

¢ B_increase()—Thewrapper operation
¢ B increase_guarded()—Theactua guarded operation
The declaration for the wrapper operation is generated in the specification file for the object:

int B _increase(B* const me, int 1i);

The wrapper operation, i ncr ease() , obtainsalock ontheri c_noni t or object, callsthe
guarded operation, and finally releases the lock:

int B _increase (B* const me, int i) ({
int wrapper_return value;
RIC_OPERATION_LOCK (&me->ric_monitor) ;
wrapper return value = B _increase guarded(me, 1i);
RIC_OPERATION_FREE (&me->ric_monitor) ;
return wrapper_ return_value;

}

Once the wrapper function obtains alock, the guarded operation is protected and can perform its
critical operations without being accessed by another object until the lock is freed:

static int B_increase guarded (B* const me, int i) {

/*#[operation increase (int) */
return i++;

/*#]1*/
}

Similarly, the cl eanup operation for guarded objectsis generated into a wrapper operation and a
guarded operation that performs the cleanup. For example, the cleanup for a guarded object B first
locks B, then callscl eanup_guar ded() , which does the actual cleanup:

void B _Cleanup (B* const me) {
RIC_OPERATION_LOCK (&me->ric_monitor) ;
B Cleanup guarded (me) ;

void B _Cleanup guarded (B* const me) {
RiCMonitor_cleanup (&me->ric_monitor) ;

You can also use thel ock and f r ee macros directly to avoid the overhead of wrapper operations.

Rational Rhapsody in C 51

Structural Model

Primitive Concurrency and Synchronization Objects

Primitive concurrency and synchronization object types are defined outside of the system and
cannot be modified. They are essentially external objects that are defined in a C framework
package called OXF. For this reason, code is not generated for them.

Among these external objectsis a set of primitive object types that support concurrency and
synchronization. Such services are normally provided by common real -time operating systems.
The concurrency and synchronization object types includes:

¢ Task objects—Are distinguished from active objects. With active objects, the framework
isresponsible for determining how the object behaves (in terms of owning its own thread,
event handler, and so on). With task objects, however, you can define how you want the

task to behave.
Typical operations on task objects include:
— start()
— stop()
— suspend()
— resune()

You can provide your own implementations for these operations.

¢ Message queues—Support intertask communication between active objects.

¢ Semaphores—Protect a shared resource by allowing only alimited number of objects to
hold atoken (lock) on aresource at atime. Both semaphores and mutexes are RTOS
entities.

¢ Mutexes—Provide binary mutual exclusion for a shared resource by allowing only one
object to hold the token at atime.

¢ Timer objects—Provide atiming feature that permits, for example, the output of asignal
at repeatable intervals.

You create any of these object types in your model by selecting the appropriate stereotype. The

primitive object types typically have an iconized representation to support easier readability of
diagrames.

52 Code Generation Guide

Packages

Packages

Packages allow partitioning of the system into functional domains. You can think of asystem asa
single, high-level package, with everything elsein the system contained init. A packageisa
collection of packages, objects and object types (in C), events, diagrams, globals, types, use cases,
and actors. Because packages can be nested with other packages, they enable you to partition a
system into smaller subsystems. Thus, package nesting provides away to organize large projects
into package hierarchies.

Subsystems can contain objects, object types, events, diagrams, and other logical artifacts. They
can aso contain basic programming constructs, such as functions and data items or variables. The
elements (objects, object types, and events) that belong to a package are al declared and allocated
within the context of the package file.

Packages themselves do not carry direct responsibilities or behavior—they are simply containers.
Packages are not instantiable and they cannot have multiple copies.

Rational Rhapsody generates both a specification file and an implementation file for each package.
The package specification file includes forward declarations of public objects.

Global Variables

Glaobal variable definitions are included in package implementation files after instrumentation
method definitions. For example, the global variable d T in the home heating system sampleis
defined in the implementation file for the Def aul t package asfollows:

int 4T; /*## attribute 4T */

Note: When animation is enabled, theseri al i al i zed obal Var s() method
serializes the global variables in the model by converting them to strings so
they can be displayed during instrumentation.

Instrumenting a Package

The OM_| NSTRUMENT _PACKAGE() macro instruments the package. The third argument,
<package>_i nst runent Vt bl , references a virtual function table associated with animation
objects. The virtual function table allows you to create your own framework and connect it to
Rationa Rhapsody.

Rational Rhapsody in C 53

Structural Model

Package Constructors and Destructors

The<package>_OM ni tializer_Init() operation initiaizesthe eventsin a package. For
example, if the Def aul t package contains an event evCheck, the package initialization operation
is defined in the implementation file for the package as follows:

void Default OMInitializer Init () ({
ARC_INIT EVENT (evCheck) ;

The<package>_OM ni ti al i zer _O eanup() operation cleansup links between global objects
when the package is destroyed if the cc: : Class: :DeleteGlobalInstance property is set for the
objects.

54

Code Generation Guide

Files in the Structural Model

Files in the Structural Model

Rational Rhapsody in C enables you to create model elements that represent files. A fileisa
graphical representation of a specification (. h) or implementation (. ¢) sourcefile. This new
model element enables you to use functional modeling and take advantage of the capabilities of
Rational Rhapsody (modeling, execution, code generation, and reverse engineering), without
radically changing the existing files.

Note: Files are not the same as the file functionality in components that existed in
previous versions of Rational Rhapsody. To differentiate between the two, the
new fileiscalled rile in pPackage andtheold fileelementiscaled File in
Component. A File in Component includesonly referencesto primary model
elements (package, class, object, and block) and shows their mapping to
physical files during code generation.

A file element can include variables, functions, dependencies, types, parts, aggregate classes, and
other model e ements. However, nested files are not allowed.

Rational Rhapsody supports the following modeling behavior for files:

*

*

You can drag files onto object model diagrams and structure diagrams.

If you use the Functional C profile, then the File tool is available on the Drawing toolbars
for object model diagrams and structure diagrams.

You can drag files onto a sequence diagram, or realize instance lines asfiles.
A file can have a statechart or activity diagram.
Files areimplicit and always have amultiplicity of 1.

Files are listed in the component scope and the initialization tree of a configuration. They
have influence in the initialization tree only in the case of a Derived scope.

Files can be defined as separate units, and can have configuration management performed
on them.

Files can be owned by packages only.

Rational Rhapsody in C 55

Structural Model

About Generating Code for Files

During code generation, files produce full production code, including behaviora code. In terms of
their modeling properties, modeled files are similar to implicit singleton objects.

Note the following information:

+ For an active or areactive file, Rational Rhapsody generates a public, implicit object
(singleton) that uses the active or reactive functionality. The name of the singleton isthe
name of thefile.

Note: The singleton instance is defined in the implementation source file, not in the
package source file.

¢ For avariable with a Constant modifier, Rational Rhapsody generates a #def i ne
statement. For example:

#define MAX 66

FunctionalC Profile and the File Diagram

With Rational Rhapsody in C you can use the Functional C profile. This profile tailors Rational
Rhapsody in C for the C coder to allow you to functionally model an application using familiar
constructs such asfiles, functions, call graphs, and flow charts.

When you use the Functional C profile, you can draw file diagrams, which show how files interact
with one ancther. Typically, file diagrams show how the #include structureiscreated. File
diagrams provide a graphical representation of the system structure. The Rational Rhapsody code
generator directly translates the elements and relationships modeled in file diagrams into C source
code.

For a hands-on tutorial that shows you how to create amodel that uses a file diagram, generate
code, and run animation to simulate the model, see the C Tutorial for Rational Rhapsody.

56 Code Generation Guide

Data Types

Data Types

Rational Rhapsody provides a set of predefined data types, which you can use for defining
variables, attributes of objects, and arguments to functions. You can also define your own types.

Primitive Data Types

The predefined types are defined in the predefinedTypesc package (the predefinedTypescC. sbs

filein the share\Properties directory).

Predefined types include:

*

*

char

char*

double

float

int

long

long double
short
unsigned char
unsigned long
unsigned short
void

void *
RiCBoolean
RiCString
OMString

Rational Rhapsody in C

57

Structural Model

Ri CBool ean isaBoolean datatype defined in the framework (in Ri CTypes. h) asfollows:

typedef unsigned char RiCBoolean;

Ri CSt ri ng isastring datatype that is defined in the framework (in Ri CSt ri ng. h) asfollows:

typedef struct RiCString {
unsigned int size; /* The current allocated size */
unsigned int count; /* The number of characters in
the string (without \0) */
char * string; /* the string */
} RiCString;
TheRi CSt ri ng type has a number of operations for creating, destroying, and manipulating
strings.

OVBt ri ng isastring datatype that is defined in the Rational Rhapsody in C++ framework (in
onstring. h). The OMSt ri ng type provides compatibility with models created in Rational
Rhapsody in C++.

User-Defined Data Types

User-defined data types include data types that can be either enumerations or compositions of
primitive data types, such as arrays, structures, or unions.

Types are generated in the specification file for the package. For example, atype ny Type could
have the following declaration:

typedef char * myType
This type definition is generated verbatim in the package specification file, after the forward
declarations of objects and object types:

typedef char * myType;
A semicolon is automatically appended to the line, so you do not have to include it in the
declaration.

You can control the order in which types are generated in code using the Edit Type Order feature of
the package.

58 Code Generation Guide

Structure of Generated Files

This section describes the structure of Rational Rhapsody-generated specification (. h) and
implementation (. c¢) files, including the main sections within each of the files. Subsequent

sections provide details on how individual modeling constructs within the constructive design
diagrams map to code.

Annotations

The generated source code is generously commented with annotations and, if instrumented, with

instrumentation macros. Annotations are comment lines starting with a comment symbol and two
pound signs (/ * ##). For example,

/*## package Default */

Annotations demarcate new sections in the code and therefore play an important role in tracing
between design constructs and the corresponding code.

Note: Annotations are used for roundtrip and error highlighting. Do not edit or
remove annotations. Doing so will hinder tracing between the model and the

code and might interfere with the Rational Rhapsody ability to animate your
model.

Rational Rhapsody in C 59

Structure of Generated Files

Specification Files

When Rational Rhapsody generates code for your project, it groups the code into predefined
sections so you can easily follow it. The prolog section of the specification file can begin with a
multiline header that includes the name of the generated file. The following figure shows the
DataObject in the Elevator sample expanded in the Browser:

(@ Rhapsody in C by Telelogic - elevator.rpy - [Dbject Model Diagram: overview]
ﬂ File Edit View Code Layout Tools ‘Window Help

LI B

Bh ¥ [0 4 ML 2 & S| = F B 2

-

61“

Entire Model Yiew

E--g elevatar

E|D Camponents
@] «Executable» EXE
«Executabler gui
&1 elibrarys LIB
=21 Object Madel Diagrarns
lﬂj hast configur ation
lﬂj Overview
=] Packages
= E Drefault
v Classes
ElewatorPkg
- 7% Ackors
-8 Classes
EI\ Ewents
i \ evitFloor)
- \ evCall{int aFloor, khirection aDirection)
\ evChanged()
- \ evChangeDirection()
\ evClosed)
\ evEotaling aFloor)
- \ evMoveltDirection aDirection)
- \ evOpeniint anld,int aFloor)
\ evRandom)
-] objects
=1{7] Datahject

- Attributes
L cBYTE

|»

B TPRe oo pFEDA|

EI() Types
-~ & BOTTOM_FLOOR
< MUMBER_OF_ELEYATORS

of”

4

General I Descriptionl Attributesl Dperationsl Portz I Helationsl Tags I Propertiesl
[
=l | %]
=

Mare: |DataD biect

Stereotype:; |

M.ain Diagram: I

Concurrency: Isequential j
Tupe: |<Implicit> j ﬁl
Multiplicity: |1 |
Iritialization: | _I

Fielation to whale

™| Knowss its whole as:

Locate | 0K | Apply | |

=1ol x|

=18] x|

Hiervge oo (ahn(x||[aaEonaf: =2 |0 o e 6]
| [Buiid & run GLI application =] ”|{a} ENRN] ER| « = ‘

”\I_B_I:I%OOA“'JIAnal Ao s B |= =

[Object : DataDbjectin FlevatorPka i

pg

= L I= 1

| 1 itstotormotor B
[]

| |

il

W Welcome to...lﬂ host configu...l ﬂ averview |

For Help, press F1

GEMODE | [NUM [Thu, 18, Jan 2007 [2:22

FM 2

60

Code Generation Guide

Specification Files

File Header

Thec_cc::File::SpecificationHeader property specifiesthe multiline header to be generated
at the beginning of specification files. The default content for the specificationHeader property
inCisasfollows:

/***

/7!

Rhapsody in C: $RhapsodyVersion

Login : S$Login

Component : $ComponentName
Configuration : $ConfigurationName

Model Element : SFullModelElementName
Generated Date : $CodeGeneratedDate

File Path : $FullCodeGeneratedFileName

***/

Header format strings can contain any of the following keywords:

*

*

*

$sProjectName for the project name.
$ComponentName for the component name (for example, Hel | oVr | d).
$ConfigurationName for the configuration name (for example, Hel | oWor | d).

$ModelElementName fOr the name of the element mapped to thefile. If there is more than
one, thisisthe name of the first element.

$FullModelElementName fOr the name of the element mapped to thefile (for example,
Def aul t), including the full path. If there is more than one, thisis the name of the first
element.

$CodeGeneratedDate for the generation date.
$CodeGeneratedTime fOr the generation time.

$RhapsodyVersion for the version of Rational Rhapsody that generated the file (for
example, 7.1).

sLogin for the user who generated thefile.
$CodeGeneratedFileName fOr the name of the generated file.

$FullCodeGeneratedFileName for the full file name (for example,
Hel | oWor | d\ Def aul t. h).

sTag for the value of the specified element’s tag.
sproperty for the value of the element property with the specified name.

Rational Rhapsody in C 61

Structure of Generated Files

To avoid redundant compilation, Rational Rhapsody avoids unnecessary changes to specific lines
prefixed with aspecia string, defined by thec _cc: :File: :DiffDelimiter property. The default
DiffDelimiter Valueis //!. The keywords are resolved in the following order:

+ Predefined keywords (such as $xame)

¢ Property keywords

+ Tag keywords
Note the following information:

¢ Keyword names can be written in parentheses. For example:
$ (Name)
¢ If thevalue of akeyword isaMultiLine, each new line (except the first one) startswith the

value of thec_ca: :configuration: :DescriptionBeginLine property; each line ends
with thevalue of thec _cc: :configuration: :DescriptionEndLine property.

Preprocessor Directives for Specification Files

The preprocessor directives section of the specification file includes the element symbol check,
include files, and event symbols.

Element Symbol Check

The #ifndef and #endif preprocessor directives check whether a symbol is defined for the
element being specified. If the symbol is not already defined for the element, Rational Rhapsody
defines one. For example, apisplay # symbol isdefined for the pisplay package.

A matching #endif is generated at the end of the specification file.

Include Files

Thefilelists the necessary include files for the project, including the appropriate framework (oxf)
header file for the language. For example, for the Adalanguage, the following header fileis
included:

#include <oxf/Ric.h>

Thisfileislocated in the share\c\oxf directory for Adaframework files. Theric.h file defines
certain tracer and animation symbols and includes the remaining C framework files, which provide
predefined behaviors for real-time constructs such as events, event and message queues, tasks, and
timers.

To specify additional include directives for header files, usethe c_cg: :class: :SpecIncludes
property.

62

Code Generation Guide

Specification Files

For example, if the element has dependencies to reference packages or other modules that are not
part of the Rational Rhapsody design, add the necessary include files to this property.

Event Symbols
If the element being specified is a package, it defines symbols for the events in the package.

The event symbol name has the following format:

<event> <package> id <ID number>

Each event has an 1D number, starting with one. Event I|D numbersincrement based on the order in
which events were added to the model during design time. They have nothing to do with the order
in which events are displayed in the browser, which is generally alphabetical.

For example, if the Foobar package contained an evstart event, the following event symbol
would be defined:

#define evStart_ Foobar_id 1

Structure Declarations

The structure declaration section of the specification file allocates memory for object types and
events that belong to the package. Rational Rhapsody names aobjects according to their type:

¢ Implicit—The name of an implicit object has the format <object >. For objects of
implicit type, Rational Rhapsody generates a C structure with the name of the object and a
suffix of _t, which impliesthat the object isitself atype. For example, pisplay t.

+ Explicit—The name of an explicit object has the format
<object>:<object type>

For example, thefile pefault.n includes the following structure declarations:

struct Display t;
extern struct Display t Display;

Note that event structures are defined in the specification file for the package that owns the event.

If theDefault package contains an object type A and an event evStart, the following
structures are allocated in this section:

struct A;

struct evStart;

The A gtructure is defined in the specification file for A (2. h); the event structure isdefined in the
specification file for the package that owns the event.

For more information on implicit and explicit types, see Structural Model.

Rational Rhapsody in C 63

Structure of Generated Files

Method Declarations

The method declarations section of the specification file includes declarations of methods
(constructors and destructors) for packages, objects, relations, and events.

Package Methods
Two methods (operations) are generated to initialize memory when an element is created and clean
up memory when the element is destroyed.

For example, the following initializer and cleanup methods are generated for the pefault
package:

void Default_OMInitializer_Init();
void Default OMInitializer Cleanup();

Relation Methods
Rational Rhapsody generates a constructor to initialize relations between elements within a
package. Therelation initializer name has the format <package> initRelations ().

For example, the following method initializes rel ations between the objectsin the Def aul t
package:
static void Default initRelations() ;

Applying the keyword st at i ¢ to the method allowsiit to be accessed by other operationsin the
samefile.

Event Methods

Rational Rhapsody generates the following constructors and destructors to deal with events:

¢ RiC Create <events ()—Creates an event. This constructor returns a pointer to the
newly created event.

¢ RiC Destroy <events()—Destroysan event. This destructor receives a pointer to the
event that will be destroyed.

¢ cevents Init()—Initializes memory when an event is created. The constructor pointsto
the memory address to be allocated.

¢ <event> Cleanup ()—Cleans up memory when an event is destroyed. The destructor
points to the memory address to be deallocated.

For example, Rational Rhapsody generates the following methods for evSt art events:

evStart * RiC Create_ evStart();

void RiC Destroy evStart (evStart* const me) ;
void evStart Init (evStart* const me) ;

void evStart Cleanup (evStart* const me) ;

64

Code Generation Guide

Specification Files

File Footer for Specification Files

The specification file ends with a footer whose content is determined by the
C_CG::File::SpecificationFooter property. The following isthe default content for the
SpecificationFooter property for C:

/***

File Path: $FullCodeGeneratedFileName

**/

Thevariable Ful | CodeGener at edFi | eNane is replaced with the name of the specification file.
You can change the generated footer by modifying the Speci fi cat i onFoot er property. Footer
format strings can contain any of the following keywords:

*

*

*

*

*

$ProjectName fOr the project name.
$CcomponentName for the component name.
$ConfigurationName for the configuration name.

$ModelElementName for the name of the element mapped to thefile. If there is more than
one, thisis the name of the first element.

$FullModelElementName for the name of the element mapped to thefile, including the
full path. If there is more than one, this is the name of the first element.

$CodeGeneratedDate for the generation date.

$CodeGeneratedTime for the generation time.

$RhapsodyVersion for the version of Rational Rhapsody that generated the file.
$Login for the user who generated thefile.

$CodeGeneratedFileName fOr the name of the generated file.
$FullCodeGeneratedFileName for the full file name.

sTag for the value of the specified element’s tag.

sproperty for the value of the element property with the specified name.

To avoid redundant compilation, Rational Rhapsody avoids unnecessary changes to specific lines
prefixed with aspecial string, defined by thec ce::File::DiffDelimiter property. The default
DiffDelimiter Valueis //!. The keywords are resolved in the following order:

*

*

*

Predefined keywords (such as sname)
Property keywords
Tag keywords

Rational Rhapsody in C 65

Structure of Generated Files

Note the following information:

¢ Keyword names can be written in parentheses. For example:
$ (Name)
+ |f thevalue of akeyword isaMultiLine, each new line (except thefirst one) starts with the

value of thec_ca: :configuration: :DescriptionBeginLine property; each line ends
with thevaue of thec _cc: :configuration: :DescriptionEndLine property.

66 Code Generation Guide

Implementation Files

Implementation Files

Theimplementation (. c¢) file containsimplementations of operations (methods) whose prototypes
are defined in the specification file. For example, when you run the HelloWorld sample, one of the
generated filesispefault.c.

File Header

As with specification files, implementation files begin with amultiline header. The
C_CG::File::ImplementationHeader pProperty determinesthe content of the header. By defauilt,
the value of this property isthe same asthe specificationHeader property.

Preprocessor Directives for Implementation Files

The next section of the file lists the specification files of related packages, objects, and object
types. For example, the Def aul t . h fileincludes the following files:

#include <oxf/RiCTask.h>
#include "Display.h"

To include additional files, usethec_cc: :class: : ImpIncludes property.

Global Variables

The next section of the implementation file defines global variables and methods for serializing
global variables for instrumentation. If the implementation fileis for a package, this section also
defines methods to initialize the events in the package, and to clean up memory when the package
is destroyed.

Method Implementations

The next section of the implementation file implements the bodies of both user-defined (explicit)
and automatically generated (implicit) methods.

File Footer for Implementation Files

As with specification files, the implementation file ends with a multiline footer whose content is
determined by thec_cG::File::ImplementationFooter property. By default, the value of this
property isthe same asthe specificationFooter property.

Rational Rhapsody in C 67

Structure of Generated Files

68

Code Generation Guide

Component Model

The component model consists of the components, configurations, folders, and files to which you
can map various design constructs of the software model.

Components

Components are binary-level entities that are the end result of compilation. Libraries (. | i b files)
and executables (. exe files) are the final output of the build process with the source files
generated by Rational Rational Rhapsody.

In the browser, you can specify the name and location of the final component. You can al so specify
which elements to map to a component, the locations of any include files, and which libraries,
additional sources, and standard headers to link in during compilation.

If the component is an executable, Rational Rhapsody generates a specification file and an
implementation file for it called Mai n<conponent >. h and Mai n<conponent >. ¢, respectively.
These files are named for the active component. For example, if the active component is called
Def aul t Conponent and it isan executable, the names for its source files are

Mai nDef aul t Conponent . h and Mai nDef aul t Conponent . c. If the component isalibrary, the
files are named ssimply <conponent >. h and <conponent >. ¢ (without the “Main” prefix).

Rational Rhapsody in C 69

Component Model

/**

#ifndef MainDefaultComponent H
#define MainDefaultComponent_ H

K o o e e e e o = */
/* MainDefaultComponent.h */
/* ___ */

/* Constructors and destructors:*/

void DefaultComponent Init () ;
void DefaultComponent Cleanup () ;

#endif

/**

File Path: DefaultComponent\DefaultConfig\

MainDefaultComponent.h
**/

The component specification (. h) file declares the component and itsinitializer and cleanup
methods. For example:

70

Code Generation Guide

Components

The component implementation (. c) file contains the main program loop. For example:

#include "MainDefaultComponent.h"
#include <oxf/Ric.h>
#include "Default.h"

/* ___ */
/* MainDefaultComponent.c */
/* ___ */

void DefaultComponent Init () {
Default OMInitializer Init();
}

void DefaultComponent Cleanup () {
Default OMInitializer Cleanup();
}

int main(int argc, char* argvl]) {
if (RiICOXFInit (argc, argv, 6423, "", 0, 0)) {
DefaultComponent Init () ;

/*#[configuration
DefaultComponent\DefaultConfig */
/* your code goes here */;

/*#1*/

RiCOXFStart (FALSE) ;
DefaultComponent Cleanup() ;
return 0;

else

}

/**

File Path: DefaultComponent\DefaultConfig\
MainDefaultComponent.c
**/

return 1;

The component specification file includesthe Ri c. h file, in which the real-time framework for
Rational Rhapsody in C is defined.

Rational Rhapsody in C 71

Component Model

The main program loop calls Ri COXFI ni t (), one of the functions provided by the framework.
This framework initialization function performs the following operations:

¢ Initializes the event dispatcher

¢ Setsthe port number and host name for instrumentation

¢ Initializesthetick timer

¢ Createsthe main task

¢ Creates a breakpoint manager

¢ Takesthefirst step in the main task

* Takes any operating-specific actions that need to be taken after the environment is set

If Ri COXFInit () returnssuccessfully, themai n() function then executes any initialization code
entered in the Initialization tab for the configuration. The mai n() function then calls the function
to initialize the component (for example, Def aul t Conponent _I ni t ()). Thisfunctioninturn
callsthe functions to initialize any packages contained in the component.

Once the component isinitialized, the mai n() function callsthe Ri COXFSt art () function,
which starts the main task. By default, the generated code passes a parameter value of FALSE to
the OXFSt ar t () function. This means that the system should not fork a new task and the model
should run on the main system thread.

If you are creating a GUI application and the compiled component is alibrary that should not
interfere with the main program thread, you should pass avalue of TRUEto Ri COXFSt art (), thus
preventing the library from taking control of the system.

Together, the Ri COXFI nit () and Ri COXFSt art () functions start the Rational Rhapsody model
running. They must be called before your model can start receiving events. If the component is a
library that will be linked into another application (for example, a GUI application), Rational
Rhapsody does not generate amai n() function for it. You must write the code to call these two
functions, first Ri COXFI ni t () and then Ri COXFSt art (), somewherein the main program loop
for the application to start the event processing.

Note that if your animation port number is set to any number other than the default of 6423 in your
r hapsody. i ni file, you must pass the correct port number as the third parameter to
Ri COXFlnit().

For example, in the home heating system sample, the program entry point for the GUI application
(hhspr ot o component) is defined inthe hhsprdl g. cpp file with the following call:

RiCOXFInit (NULL, NULL, 6423, ”“”, 0, 0);

72

Code Generation Guide

Configurations

Thethird argument to Ri COXFI ni t (), 6423, isthe default animation port number. If your
animation port is set to a different number, you can edit this argument to match the one in use (for
example, 6424). Otherwise, animation will not work.

Note: All global instances must be created before oxrFinit () and oxrFstart () are
called. Otherwise, the application will crash.

When the last event has been processed and the model has reached a termination point, the
mai n() function callsthe function to clean up the component (for example,
Def aul t Conponent _Cl eanup()).

Component source files are generated to the configuration directory, which is under the component
directory by default. For example:

<proj ect _di r >\ <conponent _di r>\ <config_dir>

Configurations

Configurations define various flavors of a component. For example, by defining several
configurations you can generate different versions of the same component for various target
environments, with instrumentation enabled or disabled, and in debug or release versions.

Rational Rhapsody generates a specification (. h) file, an implementation (. c) file, and a make
(. mak) file for each configuration of a component. These source files are all generated to the
configuration directory by default.

Folders

Rationa Rhapsody creates a folder with the name of the component, and under thisfolder is
another one with the name of the active configuration. By default, generated files are mapped to
the configuration folder. To map filesto different folders, you can add folders to a component in
the browser, and then map elements to those folders.

Rational Rhapsody in C 73

Component Model

Files in the Component Model

By default, Rational Rhapsody in C generates a specification (. h) file and an implementation (. c)
file for each design element. These files have the same name as the element they represent, with
different extensions. However, you can override the default file mappings and map packages and
classesto files with user-specified names. In addition, you can map package files to the component
file. See Adding an Element to a File.

Adding an Element to a File

To add an element to afile:

1. Inthebrowser, right-click afile and select Features from the pop-up menu to open the
Features dialog box.

2. Onthe General tab, specify the type of file that should be generated for the elements you
plan to add:

+ Logical generates a specification file and an implementation file containing both
declaration and definition for the mapped elements. Thisis the defauilt.

+ Specification generates only a specification file containing declaration or
definition according to the mapping. Typically, a specification file includes
declarations.

+ Implementation generates only an implementation file containing declaration or
definition according to the mapping. Typically, an implementation file includes
declarations.

¢ Other generates a specification file and an implementation file, or just a
specification file, or just an implementation from an included external filein a
build.

3. Onthe Elementstab, click the New Element button = o open the Select File Element
dialog box.

74 Code Generation Guide

Files in the Component Model

4. Inthe Select File Element dialog box, select the elements you want to add to the file and
then click OK.

5. If you selected Other asyour type of file or just want to see which element typeis
associated with afile, double-click the element on the Elementstab.

+ |f you selected L ogical asyour file of type (on the General tab), all your elements
are set with Specification+lmplementation as the element type by default and
the Element Type box is disabled.

+ If you selected Specification, all your elements are set with that element type.
You can change this setting for an element if you want.

+ If you selected | mplementation, al your elements are set with that element type.
You can change this for an element if you want.

+ If you selected Other, you can set whichever setting is available from the
Element Type drop-down list.

6. To add atext element to afile, click the New Text Element button & , to open the File
Text Element dialog box.

7. Enter your text in the File Text Element dialog bo and then click OK.
8. Click OK on the Features dialog box to apply your changes.

Thece: :File: :AddToMakefile property (which supersedes the previous
GenerateInMakefileOnly property) enablesyou to include an externa file (when the
CG::File: :Generate property isset to cleared) inabuild. Thecc: :File: :AddToMakefile
property worksin conjunction withthe cg: :File: :Generate property. Thistechniqueisusedin
many of the Rational Rhapsody samples with GUIs to include resources (such as dialog boxes)
built with MFC in a component. The external fileisincluded in the makefile, and therefore
compiled if needed (although not generated by Rational Rhapsody). Using this property is
equivalent to adding afile as an additional source under either a component or a configuration in

the browser. See the definitions provided for the properties on the applicable Propertiestab of the
Features dialog box.

Rational Rhapsody in C 75

Component Model

76

Code Generation Guide

Behavioral Model

To specify a system’s behavior, use the use cases to determine the interactions between the
system’s (static structure) objects. These interactions show how the system components
collaborate. Each interaction realizes one scenario within the system, typically starting with an
external event generated by a system actor and terminating at a point where the function you want,
or use case, is accomplished.

Sequence Diagrams

Sequence diagrams (SDs) describe message exchanges within your project. You can place
messages in a sequence diagram as part of developing the software system. You can also run an
animated sequence diagram to watch messages as they occur in an executing program.

Sequence diagram show scenarios of messages exchanges between roles played by objects. This
functionality can be used in numerous ways, including analysis and design scenarios, execution
traces, expected behavior in test cases, and so on.

Sequence diagrams help you understand the interactions and rel ationships between objects by
displaying the messages that they send to each other over time. In addition, they are the key tool
for viewing animated execution. When you run an animated program, its system dynamics are
shown as interactions between objects and the relative timing of events.

Sequence diagrams are the most common type of interaction diagrams.

Each scenario is depicted as a sequence diagram, where the system objects are depicted as
columns, with each column representing the lifeline of an object throughout the scenario. Lifelines
can also depict object states and timer events.

Thevertical axisisthetime dimension showing the exchange of messages between system objects.
M essages represent the interactions between objects in the form of events or operation calls. They
are depicted as arrows connecting the object lifelines.

Rational Rhapsody in C 77

Behavioral Model

The following sequence diagram shows the collaborations that take place within the
HomeHeatingSystem once an inhabitant enters aroom. The system objects are specified in the
first row. Nested objects can be identified using their object path, starting from the top level object
and following the hierarchy. With arrays of objects, an index indicates the instance.

E] Sequence Diagram: SomeoneEntersTheRoom = |EI|£|
EMY | :Occsensor | ‘HeatSensar | Foom | Malhee | Furnace |
Er+ :Dcc3ensor ‘HeatZensor ‘Room Malve :Furnace =

| I
Snmen?e enters the rncnrri

updateDcc{nccupancyj |

| | anccupiedﬂ

[
|
|
|
Set defsired temperature | |
|
|
1
|

updateDteTpﬂemp)

|
Fumake starts heatReql)

mntnrReady&)

|

|

i

|
| ! | N
| |]
| | Fstarted()

|

|

|

|

|

apen() |
|

_ stopHeat() | |
Foom |r5 wearm enough

T
closel) |

L~

Fstoppedi)
: | | | E
| | 3

The compl ete behavior requirement of an object is a projection of all object lifelines from each
scenario. The set of lifelines in a sequence diagram forms the complete lifecycle of an object asa
statechart.

N T U R)

Note: While executing the program with animation active in Rational Rhapsody in C,
global objects, which belong to the package, have their original names as
animation instance names without the instance index. For example, the global
object HomeHeatingSystem has an animation instance name of
HomeHeat i ngSyst emrather than HomeHeat ingSystem[0].

78 Code Generation Guide

Sequence

Diagrams

In this scenario, the following messages are passed between objects as events:

Message Sender Receiver Description

updat eCcc() <i nhabi t ant > CccSensor Someone has entered
the room.

occupi ed() <systenp Room Roomreceives a timer.

updat eDt enp() <i nhabi t ant > Room Inhabitant sets a
temperature.

heat Req() Room Fur nace Roomrequests heat from
Fur nace.

not or Ready() <systenr Fur nace System checks whether
the Fur nace’s motor is
ready to operate.

Fstarted() Fur nace Room Fur nace tells Roomthat
it has started.

open() Room Val ve Roomtells the heating
Val ve to open.

st opHeat () Room Fur nace When the temperature is
warm enough, Roomtells
Fur nace to stop
generating heat.

cl ose() Room Val ve Roomtells the heating
Val ve to close.

Fst opped() Fur nace Room Fur nace tells Roomthat
it has stopped.

Each of the eventsin the above scenario is generated into an event structure in the package
specification file. Because the HomeHeatingSystem example has only one package named
Default, the event definitions are generated in the pefault .n file.

Rational Rhapsody in C 79

Behavioral Model

Events

Events provide asynchronous communication between reactive objects or tasks. Events can trigger
transitions in statecharts.

In Rational Rhapsody in C, events are implemented as objects (structures). The abstract data type
and event structure are defined in the package specification file as follows:

typedef struct evStart evStart;

struct evStart {
RiCEvent ric_event;

7

Aninstance of an Ri CEvent object is embedded in the event’s structure as a data member.

Note: Ri CEvent isapredefined event type provided by the Rational Rhapsody in C
framework.

Although events are implemented as objects, they are modeled as operations. Therefore, an event
does not have attributes and only has initialization and cleanup operations.

Each event is assigned adynamic ID by default:

/*## package Default */

#define evStart_Default_id 1
The event ID can change if the same event is re-used in multiple components, for example, if the
same event isused in client and server components. To avoid this situation, which can cause
problemsin distributed systems, you can assign a permanent 1D to an event by setting its
CG: :Event: :Id property

Event Arguments

Events can have data. Although modeled as arguments, the data are implemented as members of
the struct. For example, the following code is generated for an evSt art event with an argument
called go:

typedef struct evStart evStart;
struct evStart
RiCEvent ric_ event;
/*** User explicit entries ***/
int go;

Event Constructors and Destructors

Constructors and destructors are defined for the event in the package specification file. For
example:

80 Code Generation Guide

Events

/* Constructors and destructors: */
evl * RiC Create evl();
void evl Init (evl* const me) ;
void evl Cleanup (evl* const me) ;
void RiC Destroy evl(evl* const me) ;
The names of event create and destroy operations have a dightly different pattern than names of

event initialize and cleanup operations:

¢ Create and destroy operation namesfor events havetheformat Ri C_Cr eat e_<event >()
and Ri C_Dest roy_<event >(), respectively.

¢ Initialization and cleanup operation names for events have the format <event >_I ni t ()
and <event >_Cl eanup() , respectively.

The implementation of the event constructors and destructors is generated in the implementation
file for the package. For example:

evl * RiC Create evl() {
evl* me = (evl*) malloc(sizeof (evl)) ;
evl Init (me);
return me;

With dynamically allocated events, the creator function allocates memory for the event and
initializesit viathe event initializer:

void evl_Init (evl* const me) {
RiCEvent init (&me->ric event, evl Default id, NULL) ;
me->ric_event.lId = evl Default id;

void evl_ Cleanup (evl* const me) {
RiCEvent cleanup (&me->ric_event) ;

void RiCDestroy evl(evl* const me)
evl Cleanup (me) ;
free (me) ;

Note: Itispossibleto statically allocate a block of memory for events at the start of
run time, rather than using dynamic memory allocation during run time. See
Static Allocation of Events for more information.

See Sending Events for information on generating and sending events.

Rational Rhapsody in C 81

Behavioral Model

Static Allocation of Events

It is possible to alocate events from a static memory pool, rather than dynamically allocating
memory for events during run time, by setting the following properties under ca: :Event:

¢ AdditionalNumberOfInstances—Specifiesthe number of array elements that should be
added if the number of events exceeds the size of the original array
¢ BaseNumberOfInstances—Setstheinitial size of the static array to be allocated for events

¢ EmptyMemoryPoolCallback—Specifiesthe name of the callback function that allocates
more memory if the static pool is exhausted

EmptyMemoryPoolMessage—Specifies whether a message is displayed when the static
memory pool is empty

¢ DprotectStaticMemoryPool—Specifies whether to protect the static memory pool using
an operating system mutex

See the definitions provided for the properties on the applicable Properties tab of the Features
dialog box.

Note: InC, itispossibleto allocate only events, but not user-defined objects, from
static memory pools.

82 Code Generation Guide

Statecharts

Statecharts

Satecharts specify the lifecycle of an object in terms of itslogical states or modes, which
primarily determine the object’s response to external stimuli. Object states can be elicited from
both the problem statement and the object lifeline in sequence diagrams.

The following figure shows the statechart of the Roomin the HomeHeatingSystem example.

&) Statechart of : Room * =10 x|

‘ roomCtrl |
fme-=ctemp=0,
me-=dtemp=0;
‘Yalve_close(&me->theWalve);

hesthode

A
[I5_IM{me Room vacatedS) |||(me-=ctemp==me-xwternp+/RICGEN(me->itsFurnace, stopHeat());

Walve_close(fmp-=thevalve);
¥
needsHeat @

[me-mcternp<me-=wternp/RICGEN{me- =itsFurmace, heatReqi));
ifflS_IM{me Room_Fworking)) Yalve_open{&me-=the'alve),

made

vacateds (G:)

occAnticipated

occAnticipatew@

T sampling furnacehiode ThermostatCir
*1000 a’me->ctemp=HeatSensor_get_the[l'emp
(&me-=theHeatSensar); Fuwarkin Fstopped
fidccSensor_get_occStat] tStat (2
ag=thallbcSensor)

1

else

|
| |
| Friotyc | | |
i _ | Fstarted |
RICGEM(me occupiedi)); |
|
! |

RICGEM({me vacated());

} =
o | of

From the lifeline of the Roomin the SomeoneEntersTheRoom sequence diagram, you can see that
the Roompollsitsoccupancy attribute to see whether it is occupied. If it is, it sends the required
heat to the Fur nace once the inhabitant has set a temperature on the thermostat. Once the Room
receives a message from the Fur nace saying that it has started, the Roomsends a message to the
valve telling it to open. When the room is warm enough, the Roomtells the Furnace to stop
generating heat, and then closes the vaive. Finally, the Roomreceives an acknowledgement from
the Furnace letting it know that the Fur nace has stopped.

Rational Rhapsody in C 83

Behavioral Model

From this sequence of events, you can see that the Roomhas four regions of responsibility, or
concurrent states:

Region Responsibility
mode Determine the working temperature based on the
occupancy.
heatMode Determine the need for heat.
FurnaceMode Monitor the state of the Furnace.
sampling Periodically sample the heat and occupancy
Sensors.

Accessing and Modifying Attributes

Attributes are accessed viathe ne pointer, which provides a context for the current object.
Therefore, specifying conditions, assigning values, and performing calcul ations requires accessing
attributes through this context variable.

Note: You can specify the actual name of the context variable generated as an
argument to an operation using the properties for the operation.

For example, in the Room statechart, testing the condition for heat demand is expressed asfollows:

me->ctemp < me->wtemp

When entered as a guard on the transition from the heatOK state to the needsHeat statein the
heatM ode region of the statechart, this comparison determines whether the Roonis current
temperature is lower than the working temperature.

84 Code Generation Guide

Statecharts

Sending Events

Events are generated viathe Ri CGEN() or CGEN() macro (see Predefined Actions). For example,
the following statement sends ast opHeat () event to the Furnace:

RiCGEN (me->itsFurnace, stopHeat ()) ;

The RiC or C prefix on the CGEN() macro distinguishes this service from a similar event
generation service provided by the Rational Rhapsody framework for other languages. Ri CGEN() ,
CGEN() , and GEN() areall convenience macrosthat hide the details of event generation.

Thefirst argument of the Ri CGEN() statement is the target, or the object that isto receive the
event. The target can be:

+ A global object that isvisible to the sender.
+ A subobject.

+ A rolename that designates alink to a peer object. For example, the Roomsends events to
the Fur nace by accessing the link through thei t sFur nace role.

+ A parameter of the current event (the one being sent).
+ The current object, as when a message-to-self is sent with Ri CGEN(e, event ()).

The second argument of the Ri CGEN() statement is the event being sent, including event
arguments (if it has any). The arguments must agree with the event parameters. For example, the
following statement generates an updatedtemp event and sendsiit to the room, passing the
temperature as an event parameter:

RiCGEN (me->itsRoom, updateDtemp (val)) ;

Accessing the Parameters of the Consumed Event

The par ans keyword provides access to the parameters of the consumed event. For example, in
the following transition, the value of the occupancy parameter passed with the updat eCcc()
event received by the occsensor object is passed as the second parameter of theset _occSt at ()
operation:

updateOcc () /

OccSensor_set occStat (me, params->occupancy) ;

In this example, the updateocc () event isthetrigger of the transition and the
OccSensor_set_occstat () call ispart of the action that is executed as a result.

In other words, when the OccSensor object receivesan updat eCcc() event with aparameter of
1, updateocc (1), the sensor’'s occstat attribute is updated with the value 1 as aresullt.

Rational Rhapsody in C 85

Behavioral Model

Initialize and Start Statecharts

Rational Rhapsody generates two operations to initialize statecharts and start reactive behavior:

¢ initStatechart()

® SstartBehavior()

Initializing Statecharts

The initstatechart () operation initializes areactive object’s statechart. For example, the
following initstatechart () operation, generated in the implementation file for the
HomeHeatingSysten, initializes the HomeHeatingSystem'’s statechart:

static void initStatechart (HomeHeatingSystem* const me)
me->rootState subState = HomeHeatingSystem RiCNonState;
me->rootState_active = HomeHeatingSystem RiCNonState;

}

Thisroutineinitializesthe rootstate subState and rootState active pointersfor the
HomeHeatingSystem object to <object> RicNonstate (the default stateis o) when the object is
created.

Starting Reactive Behavior
The startBehavior () operation starts the behavior of reactive objects:
¢ The<package> startBehavior () Operation starts the behavior of the reactive objectsin
a package.
¢ The<object> startBehavior () operation starts the behavior of an individual object.
Notethat startBehavior () should not be called from within the constructor.

86 Code Generation Guide

States

States

Rational Rhapsody in C supports only the Flat implementation of statecharts. In the Flat
implementation, states are implemented as enumerated types. Every state that has a substate is
represented asast r uct member of the enum. For example, the statechart of the
HomeHeatingSystem has only one (apparent) state, the systemControl state. Thisisimplemented
in the HomeHeatingSystem structure as follows:

struct HomeHeatingSystem {

RiCReactive ric_reactive;

/*states enumeration: */

enum HomeHeatingSystem_Enum{
HomeHeatingSystem RiCNonState=0,
HomeHeatingSystem_systemControl:1}

rootState_ subState,

rootState active;

Switch statements are used to select between the outward bound transitions from a state. The
switch statements are found in the operations that implement the event processing of a statechart.
These include, among others, thet akeEvent (), di spat chEvent (), seri al i zeSt at es(),
and exi t () operations generated for each state. See the following sections for more informations:

¢ Reactive Objects

¢ Taking Events

¢ Dispatching Events

¢ Exiting From a State

Root State

Every statechart has aroot state, which isthe initia state of the statechart. The default transition
leads from the (invisible) root state directly into the state that is the target of the default transition
when the object startsits behavior.

A <state>_active pointer isgenerated for every component state of an And state. This member
isthe low-level active state (leaf state) used for taking events. The received event first tries to be
consumed by the <st at e>_act i ve state. If it cannot, it then triesto be consumed by the parent.

A <state> subState pointer is generated for each Or state (parent state). This member isthe
active child state in the parent. It is used for exiting from the parent state. When the parent state
exits, its active child state should also exit.

By default, the root state is both a component state and an Or state. Therefore, both
rootState_subState and rootState active membersare generated for it in the object.

Rational Rhapsody in C 87

Behavioral Model

Operations on States

Rational Rhapsody automatically generates functions to handle state-based operations, including:

* Enter astate

+ Taking events

¢ Dispatching events

+ Checking the state of an object
+ Exiting from a state

Note: Thecc::class::ImplementStatechart property must be set to checkea for
these operations to be generated.

These operations are generated in the Framework Entries section of the specification file for an
object.

Entering a State

Theenter () Operation allows an object to enter a state after the object has successfully received a
trigger and any possible guard condition has been passed. The enter () Operation also executes
any user-defined action on entry for the state. The enter () operation name has the following
format:

<obj ect >_<st ate>_ent er (<obj ect *> const <ne>)

For example, the following ent er () operation is generated for the systemControl state of the
HomeHeatingSystem:

void HomeHeatingSystem systemControl enter(
HomeHeatingSystem* const me) ;

Theenter () operation setsthe <state> substate and <state>_ active members of the state
being exited (based on the statechart) to the one being entered. For example, the enter ()
operation for the systemControl state of the HomeHeatingSystem sets these two members of the
rootState (the previous state) to the systemControl state (the one being entered), as follows:

void HomeHeatingSystem systemControl enter(

HomeHeatingSystem* const me) {

NOTIFY STATE ENTERED (me, HomeHeatingSystem,
"ROOT.systemControl") ;

me->rootState subState = HomeHeatingSystem systemControl;

me->rootState_active = HomeHeatingSystem systemControl;

RiCTask_schedTm(me->ric_reactive.myTask, 3000,
HomeHeatingSystem Timeout_ systemControl id,

&me->ric reactive, "ROOT.systemControl") ;

Note: Anenter () operation isnot generated for the root state.

88 Code Generation Guide

States

Taking Events

The takeEvent () operation takes an event off the event queue and evaluates whether that event is
valid to trigger atransition of the object out of its current state. The takeEvent () Operation name
has the following format:

<obj ect >_<st at e>_t akeEvent (<obj ect >* const <ne>,
<event |D>)

The event ID isthe identification number generated for an event at the top of the package
specification file.

For example, for the systemControl state of the HomeHeatingSystem, the following takeEvent ()
operation is generated:

int HomeHeatingSystem systemControl takeEvent (
HomeHeatingSystem* const me, short id);

This operation has the following implementation:

int HomeHeatingSystem systemControl takeEvent (
HomeHeatingSystem* const me, short id) {
int res = eventNotConsumed;
if (id == Timeout id)

if (RiCTimeout getTimeoutId((RiCTimeout*)
me->ric_reactive.current_event) ==
HomeHeatingSystem Timeout systemControl id)

NOTIFY TRANSITION STARTED (me,
HomeHeatingSystem, "1");
HomeHeatingSystem systemControl exit (me) ;

/*#[transition 1 */

if (IS_IN(&me->theFurnace, Furnace_starting))
Ri1CGEN (&me->theFurnace, motorReady ()) ;
{*#]*/

systemControl entDef (me) ;
NOTIFY TRANSITION TERMINATED (me,
HomeHeatingSystem, "1");

res = eventConsumed;

}
}

return res;

Note: A takeEvent () operation isnot generated for the root state.

Rational Rhapsody in C 89

Behavioral Model

Dispatching Events

The dispatchEvent () operation usesaswi t ch statement to process the outbound transitions
from the states of an object. For example, the dispatchEvent () operation generated for the
operating state of the Furnace in the HomeHeatingSystem sample, uses roughly the following
swi t ch statement to process the out transitions from the idle, shutting, working, and starting
substates of the operating orthogonal state:

static int operating dispatchEvent (Furnace*

short id)

int res = eventNotConsumed;
switch (me->operating active) ({

}i

case Furnace idle:

/* process out transitions
res = eventConsumed;
break;

}i
case Furnace_ shutting:

/* process out transitions
state */
res = eventConsumed;
} break;
I

case Furnace starting:

/* process out transitions
state */
res = eventConsumed;
} break;

case Furnace_ working:

/* process out transitions
state */

res = eventConsumed;
break;

default:
break;

return res;

const me,

from idle state */

from shutting

from starting

from working

90

Code Generation Guide

States

Checking an Object’s State

The 1n () operation checks whether or not an object isin aparticular state. The v () operation
name has the following format:

<obj ect >_<state>_| N(<obj ect >* const <me>)

It returns Tr ue if the object isin the state, and Fal se otherwise.

For example, for the systemControl state in the HomeHeatingSystem, the following 1w ()
operation is generated:

/*systemControl:*/
int HomeHeatingSystem systemControl IN(
HomeHeatingSystem* const me) ;

This operation has the following implementation:

int HomeHeatingSystem systemControl IN(
HomeHeatingSystem* const me)
return me->rootState subState ==
HomeHeatingSystem systemControl;

}
Note the following information:

¢ An1n() operation isalso generated for the root state.

* You can use either the 1n () operation generated for the state or theRi C_I S_I N() macro
for the object to determine whether an object isin aparticular state. See RiCIS_IN() or
IS_IN() for more information on this macro.

Exiting From a State

Theexit () operation allows an object to exit from a state. It also executes any user-defined action
on exit for the state. The exit () operation name has the following format:

<obj ect >_<state>_exi t (<object*> const <ne>)

For example, the following exit () operation is generated for the systemControl statein the
HomeHeatingSystem:

void HomeHeatingSystem systemControl exit (
HomeHeatingSystem* const me) ;

This operation has the following implementation:

void HomeHeatingSystem systemControl exit (
HomeHeatingSystem* const me)
RiCTask unschedTm(me->ric_ reactive.myTask,
HomeHeatingSystem Timeout systemControl id,
&me->ric reactive) ;
NOTIFY STATE EXITED (me, HomeHeatingSystem,
"ROOT.systemControl") ;

Note: Anexit () operation isgenerated for the root state.

Rational Rhapsody in C 91

Behavioral Model

Transitions

Every transition is mapped to the object’s private operations for implementing statecharts, with
optimizations for “short” functions (see Inlining Transition Code). These operations set the
necessary values for the current active states, execute the actions, and so on. Several outbound
transitions from the same state are mapped to the same operation, and are distinguished using a
switch() statement.

Inlining Transition Code

Theca: :class: :ComplexityForInlining property specifiesthe upper bound for the number of
linesin user code that are allowed to be inlined. The default is 3.

“User code” isthe action part of transitions in statecharts. For example, using the value of 3, all
transitions with actions consisting of three lines or fewer of code are automatically inlined in the
calling function.

Inlining isreplacing afunction call in the generated code with the actual code statements that make
up the body of the function. This optimizes code execution at the expense of aslight increasein
code size. For example, increasing the number of lines that can be inlined from 3 to 5 has
shortened the code execution time up to 10%.

For example, in the statechart of the HomeHeat ingsystem object, the systemControl state has an
out transition on a timeout with the following action part:

if (IS _IN(&me->theFurnace, Furnace starting))
Ri1CGEN (&me->theFurnace, motorReady ()) ;

=] Statechart of : HomeHeatingSystem -0l x|

.

‘ systemControl | J

1

trn(3000/
1S _IM{&me-=theFurnace,Fumace_starting))
RICGENM{&me->theFurnace motorReady();

4 | b

92

Code Generation Guide

Transitions

This action sends amotorready () event from the HomeHeat ingSystem t0 the Furnace, if the
Furnace iSin the starting state.

If the complexityForInlining property isset to o (the default value), the transition codeis
generated in the takeEvent () operation of the systemControl state of the HomeHeat ingsystem
object asfollows:

int HomeHeatingSystem systemControl takeEvent (
HomeHeatingSystem* const me, short id) {

int res = eventNotConsumed;

if (id == Timeout id)

if (RiCTimeout getTimeoutId((RiCTimeout*)
me->ric_reactive.current_event) ==
HomeHeatingSystem Timeout systemControl id)

NOTIFY TRANSITION STARTED (me,HomeHeatingSystem,
lllll)’.
HomeHeatingSystem systemControl exit (me) ;

/*#[transition 1 */

if (IS_IN(&me->theFurnace, Furnace_starting))
RiCGEN (&me->theFurnace, motorReady()) ;
{*#]*/

systemControl entDef (me) ;
NOTIFY TRANSITION TERMINATED (me,
HomeHeatingSystem, "1") ;
} res = eventConsumed;
}

return res;

The dispatchEvent () operation of the rootstate oOf the HomeHeatingSystem object callsthe
takeEvent () operation asfollows:

static int rootState dispatchEvent (
void * const void me, short id) {
HomeHeatingSystem * const me =
(HomeHeatingSystem *)void me;
int res = eventNotConsumed;
switch (me->rootState active) ({
case HomeHeatingSystem systemControl:

res =

HomeHeatingSystem systemControl takeEvent (
me, id);

break;

default;
break;

bi

return res;

However, if complexityForInlining iSSet to 3, for example, because the action codeisless than
threelines, it is generated directly in the dispatchEvent () operation of the rootstate, replacing
the takeEvent () call asfollows:

Rational Rhapsody in C 93

Behavioral Model

static int rootState dispatchEvent (void * const void _me,
short id)
HomeHeatingSystem * const me = (HomeHeatingSystem *)
void me;
int res = eventNotConsumed;
switch (me->rootState active) ({
case HomeHeatingSystem systemControl:
{
if (id == Timeout id)
{
if (RiCTimeout getTimeoutId (
(RiCTimeout*) me
->ric_reactive.current_ event) ==
HomeHeatingSystem Timeout systemControl id)
{
NOTIFY_TRANSITION_STARTED(me,HomeHeatingSystem,
") ;
RiCTask_unschedTm(me->ric_reactive.myTask,
HomeHeatingSystem Timeout systemControl id,
&me->ric reactive) ;
NOTIFY STATE EXITED (me, HomeHeatingSystem,
"ROOT.systemControl") ;
{
/*#[transition 1 */
if (IS _IN(&me->theFurnace, Furnace_ starting))
RiCGEN (&me->theFurnace, motorReady ()) ;
/*#1*/
}
}

/* rest of dispatchEvent () */

94 Code Generation Guide

Predefined Actions

Rational Rhapsody provides several predefined action statements that you can use in addition to
native statements in the programming language anywhere you write code in Rational Rhapsody.

For example, you can use predefined action statements in actions on transitions or in bodies of
triggered operations in statecharts. The action statements are defined in the real-time framework
(in Ri CReact i ve. h) asmacrosto minimize their impact on the generated source code.

When generating events, note the following information:

+ |f you are generating an event in the action part of atransition, the event name must
include parentheses. For example, if you are generating an event evl, useevl1() instead
of ev1 asthe name of the event to be generated.

+ |f the name of the instance that is the target of the event is not a pointer, use the address
operator & with the instance name as an argument to the event generation statement. For
example, when sending an event toi t sRoom wherei t sRoomisdefined as an instance of
Room use the address operator & t sRoomrather thani t sRoom (poi nter) asan
argument.

RiCIS_IN() or IS_IN()

Thel S_I N() statement determineswhether an object isin aparticular state. RI CI S_I N() hasthe
sameeffect asl S_| N() . This statement takes a pointer to an abject and the name of the state being
checked as arguments. The name of the state has the format <obj ect >_<st at e>.

For example, to make sure that a Fur nace object isnot in the faultS state before it transitions from
one state to another, you can use the following.l S_I N() statement asaguard on atransition in the
statechart for the Fur nace:

[!IS IN(me,Furnace faultS)]
Thedefinitionof I S_| N() isasfollows:

#define IS IN(me, state) state## IN((me))

This macro callsthel N() operation generated for the state. See Checking an Object’s State.

When referencing states, you must use the generated state name. This can be tricky when
referencing sibling states that have the same name. For example, if an object A has an And state B

Rational Rhapsody in C 95

Predefined Actions

with concurrent states B1 and B2, and each of these has a substate C, the following enumerated
values are generated for these states:
/*states enumeration: */

enum A Enum{ A RiCNonState=0, A B=1, A B2=2,
A B2 C=3, A Bl=4, A C=5 }

The generated name of substate C of B1 isA_C. Therefore, the proper macro call to see whether A
isinCof BL wouldbel S IN(me, A CO,notlIS IN(nme, A Bl C.

RICGEN() or CGEN()

The Ri CGEN() statement generates an event and sends it to a particular instance. Ri CGEN() has
the same effect as CGEN() .

For example, to send an Fst art ed() eventto aninstancei t sRoon{ 1], add the following code
to the action part of atransition:

RiCGEN (me->itsRoom[1], Fstarted()) ;

The definition of Ri CGEN() isasfollows:

#define RiCGEN (INSTANCE, EVENT) \

\

if ((INSTANCE) != NULL) { \
RiCReactive * reactive = &((INSTANCE)->ric_reactive) ;\
RiCEvent * event = &(RiC_Create ##EVENT->ric_event); \
RiCReactive gen(reactive, event, RiCFALSE) ; \

} \

96 Code Generation Guide

RICGEN_BY_GUI() or CGEN_BY_GUI()

RICGEN_BY_GUI() or CGEN_BY_GUI()

TheRi CGEN_BY_GUI () statement generates an event from a GUI application and sends the event
toaninstance. R CGEN_BY_GUI () hasthe same effect as CGEN_BY_GUI () .

For example, to send af aul t () event to an instance G heFur nace from a GUI application, use:

RiCGEN_BY GUI (GtheFurnace, fault());

The definition of R CGEN_BY_GUI () isasfollows:

#define RiCGEN_BY_GUI(INSTANCE,EVENT) \
{\
if ((INSTANCE) != NULL) { \
RiCReactive * reactive = &((INSTANCE)->ric_reactive) ;\
RiCEvent * event = &(RiC _Create ##EVENT->ric_event); \
RiCReactive genBySender (reactive, event, RiCGui) ; \
! \

}

Ri CGEN_BY_QGUI () usestheframework routine Ri CReact i ve_genBySender () rather than
Ri CReact i ve_gen() to actually send the event. With GUI applications, the GUI items are not
part of the Rational Rhapsody model and the sender of the event can therefore not be known.

Ri CReact i ve_genBySender () canidentify aGUI item as the sender of the event.

RiICGEN_BY_X() or CGEN_BY_X()

The Ri CGEN_BY_X() statement generates an event and sends it to an instance while identifying
the sender of the event. Rl CGEN_BY_X() hasthe same effect as CGEN_BY_X() . Either statement
can be useful for sending events from within global functions.

Ri CGEN _BY_X() usestheRi CReacti ve_genBySender () framework routine to send the event
because it identifies a particular object as the sender of the event.

For example, to send af aul t () eventtoaFur nace[1] instance while identifying the sender of
the event as Roon{ 2], use:

RiCGEN_BY X (Furnace[l], fault(), Room[2], Room) ;

The last argument, in this case Room identifies the type of the sender.

Use GEN_BY_Xonly in very specia cases when you know which AOMAni mat i onl t emis sending
the message, but Rational Rhapsody cannat figure this out for itself. For example, you can create
an application with some GUI classes, GUI 1 and GUI 2, and some classes that do things, Huey and
Louey. You create al the classes in Rational Rhapsody, so the animation shows instances of all
four.

Rational Rhapsody in C 97

Predefined Actions

Associate some GUI with classes GUI 1 and GUI 2. Because GUIs are more easily created with
MFC wizards than with Rational Rhapsody, use the wizards. The constructor of GUI 1 constructs a
model ess dialog with some buttons.

Configure each of the buttons to generate an event. For example:

void myDialog: :OnButtonXPushed () ({
myHuey->GEN (E) ;

Thisisfine, except the animation does not know where the event came from. Instead, use
GEN_BY_GUI, asfollows:

void myDialog: :OnButtonXPushed () {
myHuey->GEN_BY GUI

The animation output window displays the following message:

event E generated by GUI

If the classnyDi al og had amethod GUI 1 * myOwmner that pointed to the instance of GUI 1 to
which it belongs, you could write:

void myDialog: :OnButtonXPushed () {
myHuey->GEN BY X(E,myOwner) ;

In this case, the animation (output window, event queue, and sequence diagrams) would display E
as coming from the correct GUI 1 object. Thisis especially useful if the GUI and its dialogs are
test harnesses that create some real classes that are not yet written.

The definition of Ri CGEN_BY_X() isasfollows:

#define RiCGEN_BY_X(INSTANCE,EVENT,SENDER,theClass) \

\

if ((INSTANCE) != NULL) { \
RiCReactive * reactive = &((INSTANCE)->ric_reactive) ;\

RiCEvent * event = &(RiC_Create ##EVENT->ric_event); \
RiCReactive genBySender (reactive, event,
aomX2Item (SENDER, aomc##theClass)) ; \

98 Code Generation Guide

RICGEN_ISR() or CGEN_ISR()

RiICGEN_ISR() or CGEN_ISR()

TheRi CGEN_| SR() statement generates an event from an interrupt service routine.
Ri CGEN_| SR() hasthe same effect as CGEN | SR() .

The problem with generating events from interrupt service routinesis that in some operating
systems (such as VxWorks), you are not allowed to allocate memory, delete memory, or block on a
resource (for example, | ock() on asemaphore). Therefore, Ri CGEN_| SR() does not allocate
new events, but uses a pointer to an event that you must supply.

There aretwo waysto use Ri CGEN_I SR() :

¢ Initialize your own event pool and use it to manage the supply of eventsto Ri CGEN | SR.
For example:

RiCGEN_ ISR (myEventPool [theNextFreeEvent]) ;

To do this, you must set the cc: : Event : :DeleteAfterConsumption Property to ralse.

+ Use static memory management on events supplied by Rational Rhapsody.

To do this, you must set the following static memory management properties under
CG: :Event.

BaseNunber Of | nst ances—Set to the number of eventsin the pool.
Addi ti onal Nunber O | nst ances—Set to 0.

Pr ot ect St at i cMenor yPool —Set to O ear ed. This means that the event
memory pool is not multi-thread safe.

Del et eAf t er Consunpt i on—Set to either Fal se or Def aul t .
Thecall to Ri CGEN | SR() isasfollows:

RiICGEN_ISR(RiC Create ev());

The definition of Ri CGEN_| SR() isasfollows:

#define RiCGEN_ISR (INSTANCE, EVENT)
RiCReactive gen (& ((INSTANCE) ->ric_reactive),
(RiCEvent*) EVENT, RiCTRUE)

Rational Rhapsody in C 99

Predefined Actions

RiCREPLY/() or CREPLY()

TheRi CREPLY() statement returnsavaluefrom atriggered operation. Ri CREPLY() hasthe same
effect as CREPLY() .

For example, both of the following calls returns a value from atriggered operation:

count = 2;
RiCREPLY (count) ;

or

RiCREPLY (2) ;
The definition of Ri CREPLY() isasfollows:

#define RiCREPLY (retVal) params->ric reply = (retVal)

RICSETPARAMS() or CSETPARAMS()

The Ri CSETPARAMS() statement sets the parameters of an event. Ri CPARAMS() has the same
effect as CSETPARANMS() . You do not need to manually write Ri CSETPARAMS() in code—it is
automatically generated in the dispatchEvent() routine of any event that has arguments.

When the event queue is ready to take an event, it calls Ri CSETPARAMS() to allocate avariable
par ans as a pointer to the event. This macro enables you to write the following statement in the
guard or action part of atransition to access an argument of the event without repeating the name
of the event:

params-><argument>
For example, for atransition on an event ev1 with an argument ar g1, you can check whether
ar g1 isequal to 4 before taking the transition using the following call:

evl [params->argl == 4]

The definition of Ri CSETPARAMS() isasfollows:

#define RiCSETPARAMS (me, type)type * params = \
(type *) ((me)->ric_reactive.current event)

100 Code Generation Guide

DYNAMICALLY_ALLOCATED()

DYNAMICALLY_ALLOCATED()

The DYNAM CALLY_ALLOCATED macroisusedintheCr eat e() operation to distinguish between
dynamically allocated and statically allocated instances. This difference allows the use of
termination connectors in the statecharts of statically allocated instances.

The definition of DYNAM CALLY_ALLOCATED() isasfollows:

#define DYNAMICALLY ALLOCATED (object) {RiCReactive setshouldDelete (&object-
>ric_reactive,
RiCTRUE) ;

Rational Rhapsody in C 101

Predefined Actions

102 Code Generation Guide

Index

Symbols

#endif directive 62

#ifndef directive 62

$ 65

$cname keyword 19

$index keyword 20, 40
$meName keyword 23
$Name keyword 62
<state>_active member 87
<state> subState member 87

A

About Accessing Attributes 29

About Constructing Systems from Objects 7
About Generating Code for Files 56
About Implementing Operationsin C 14
About Initializing Singletons 45

About Properties 3

About Specifying the Type of an Object 9
Accessing and Modifying Attributes 84
Accessing the Parameters of the Consumed Event 85
AccessorGenerate property 28

Action statements 95

Actions 95

Active Objects 49

Active objects 49

Activity diagrams 6

Adding an Element to aFile 74

Additional NumberOflnstances property 82
AddToMakefile property 75

Aqggregate 7

Aggregations 38

AllocateMemory property 19

Animation port number 72

Annotations 59

Arguments 80

Arguments for events 80

Assigning IDs 80

Associativity, dynamic model-code 4
Attributes 28, 29

B
BaseNumberOfInstances property 82

Behaviora Model 77
Behaviora model 6
Boolean datatype 58
Bounded multiplicity 11

C

C Code Generation Overview 1
call operations 27
CGCompatibilityPre70C profile 2
CGEN macro 96
CGEN_BY_GUI macro 97
CGEN_BY_X macro 97
CGEN_ISR macro 99

Checking an Object’s State 91
Classes 31

Cleanup 23

Cleanup() method for events 64
Code generation 5

Code Generation Fundamentals 5
Code, optimizing 92
CodeGeneratedDate variable 61, 65

CodeGeneratedFileName variable 61, 65

CodeGeneratedTime variable 61, 65
Collaboration between objects 30
Collaboration, overview 30
Collaborations Between Objects 30
ComplexityForInlining property 92
Component 69

Component Model 69

Component model 6
ComponentName variable 61, 65
Components 69

Components-based development 44

Components-based Development in RiC 44

Compositions 32, 38
Concurrency 52
Concurrency Objects 49
Concurrency objects 49
Concurrency property 50
Concurrent states 84
ConfigurationName variable 61, 65
Configurations 73
Considerations for Ports 43
const keyword 20, 26
Constant Operations 26

Rational Rhapsody in C

103

Index

Constant operations 26

Constructive Versus Non-Constructive Views 6
Constructive view 6

Constructor event 80

Constructors and Destructors 18

Contract 43

COXF library 52

CREPLY macro 100

CSETPARAMS macro 100

D

Data Types 57
Datatypes 57

primitive 57

user-defined 58
Default.h file 67, 79
Default_OMInitializer_Cleanup() method 64
Default_OMInitializerInit() method 64
DefaultMultiplicity property 34
DeleteGlobal Instance property 54
Dependencies 32, 46
Descriptions 12
Destroy() operation 23
Destructor 23
Destructor event 80
Diagrams 77
DiffDelimiter property 62, 65
dispatchEvent() operation 87, 90, 93
Dispatching Events 90
DMCA 4
Dynamic memory alocation 4
Dynamic Model-Code Associativity 4
Dynamic model-code associativity 4
DYNAMICALLY_ALLOCATED macro 101
DYNAMICALLY_ALLOCATED() 101

E

Element, adding to afile 74
Elements
files 55
Embedded links 39
EmptyM emoryPool Callback property 82
EmptyM emoryPool M essage property 82
enter() operation 88
Entering a State 88
Entering a state 88
Event Arguments 80
Event Constructors and Destructors 80
Event Receptions 26
Event receptions 26
Events 26, 80
arguments 80
constructors and destructors 80
dispatching 90
methods for 64

parameter 85

sending 85

static allocation 82

structure allocations 63

symbol 63

taking 89
exit() operation 87,91
Exiting From a State 91
Explicit type 63
extern keyword 10
External class, inheriting from 31
External file 75
External object 46
External Objects 46
External objects 46

F

File diagrams 56
File Footer for Implementation Files 67
File Footer for Specification Files 65
File Header 61, 67
File header 61, 67
FileName property 31, 46
Files 55, 74
adding element 74
footer 65
including external in build 75
Filesin the Component Model 74
Filesin the Structura Model 55
Fixed links 39
Fixed relation 39
Folders 73
Footer
for generated files 65
for implementation files 67
Framework library 52
FreeMemory property 23
Full CodeGeneratedFileName variable 61, 65
FullModel ElementName variable 61, 65
Functional decomposition 7
Functional C profile 2, 56
Functional C Profile and the File Diagram 56

G

General property 75
Generallization 31
Generated files

file header 61

global variable 67

implementation file 67

include file 62

specification file 60
GeneratelnM akefileOnly property 75
GetAt property 40
GetAtGenerate property 40

104

Code Generation Guide

Index

Global variable 67
Global Variables 53, 67
Global variables 53
Guarded Objects 50
Guarded objects 50
Guarded operations 51

H

Header
for implementation files 67
of specification files 61

Id property 80
Implncludes property 67
Implementation file

footer 67

header 67

include files 67

preprocessor directives 67

structure of 67
Implementation Files 67
Implementation files 67
Implementation of private operations 18
Implementation option 74
Implementation property 33, 39
ImplementationFooter property 67
ImplementationHeader property 67
ImplementStatechart property 88
Implicit contract 43
Implicit contracts 43
Implicit type 63
IN() operation 91
Includefile 62
Inheritance 31
Inheriting from an External Class 31
Init() method for events 64
Initidlize and Start Statecharts 86
Initializing Links within Packages 41
Initializing Statecharts 86
initRelations() method 64
initRelations() operation 21, 41
initStatechart() operation 86
Inline Operations 25
Inline property 25
Inlining code 92
Inlining Transition Code 92
Instantiation 7
Instrumenting a Package 53
instrumentVthl argument 53
Interfaces 42, 44

object 13

realizing 44

virtual tables 44
Invoking Operations 27

IS_IN macro 95
IS IN() macro 95

K

Keywords
$cname 19
$index 20, 40
$meName 23
$Name 62
const 20, 26
extern 10
params 85
static 64

L

Link accessor 36
Link data member 36
Link mutator 36
Link scalar 36
Links 34
embedded 39
fixed 39
ordered 39
qualified 39
randome access 40
symmetric 35
To-Many 38
unordered 39
Logical option 74
Login variable 61, 65

M

Macros 95
CGEN 96
CGEN_BY_GUI 97
CGEN_BY_X 97
CGEN_ISR 99
CREPLY 100
CSETPARAMS 100
DYNAMICALLY_ALLOCATED 101
IS IN 95
IS IN() 95
NOTIFY_CONSTRUCTOR() 22
NOTIFY_END_CONSTRUCTOR() 22
NOTIFY_OPERATION 17
OM_INSTRUMENT_PACKAGE() 53
RiCCollection_Init() 22
RiICGEN 96
RiICGEN_BY_GUI 97
RiICGEN_BY_X 97
RICGEN_ISR 99
RIiCIS IN 95
RICIS IN() 95
RICREPLY 100

Rational Rhapsody in C

105

Index

RICSETPARAMS 100 objectName variable 15
SERIALIZE 24 Objects 7,8
me pointer 14 active 49
Me property 14 collabroations 30
MeDecl Type property 14 concurrency 49
Memory explicit type 63
dlocating statically 82 externa 46
freeing 23 guarded 50
Memory management implicit type 63
dynamic 4 multiplicity 11
static 4 multiplicity unspecified 12
Method Declarations 64 name, specifying argument lists 15
Method Implementations 67 reactive 47
Method implementations 67 synchronization 52
Methods 64 Objects of Explicit Type 11
for events 64 Objects of Implicit Type 9
for packages 64 OM_INSTRUMENT_PACKAGE() macro 53
for relations 64 Operation 14
MISRA-C 1998 2 invoking 27
Model views 6 state-based 88
Model ElementName variable 61, 65 Operations 14
Multiplicity calling 27
bounded 11 constant 26
objects 11 context 14
unbounded 11 Destroy() 23
unspecified 12 dispatchEvent() 90
Multiplicity of Objects 11 enter() 88
MutatorGenerate property 28 exit() 91
Mutex 50 guarded 51
IN(91
initRelations() 21
N initStatechart() 86
Naming operations 15 naming 15
Non-constructive view 6 primitive 24
NOTIFY_CONSTRUCTOR() macro 22 private 16, 18
NOTIFY_END_CONSTRUCTOR() 22 public 16, 17
NOTIFY_OPERATION macro 17 startBehavior() 86
takeEvent() 89
triggered 27
@) visibility 16
Object Operations on States 88
collaboration 30 Optimizing code 92
external 46 Ordered links 39
reactive 47 Ordered property 39

singleton, invoking operations 27 Other option 74

Object Cleanup 23
Object Creator 18 P
Object Destructor 23
Object Initializer 20 Package Constructors and Destructors 54
Object Interfaces 13 Package methods 64
Object interfaces 13 Packages 53
Object model diagrams 6 constructors 54
Object Types 10 destructors 54
Obyject types 10 params keyword 85
explicit 11 Partial Specification of Ports 43
implementation file 18 Port number 72
structure allocation 63 Ports 42

106 Code Generation Guide

Index

contract 43
implicit contracts 43
provided interfaces 42
rapid 43
required interfaces 42
service 44
Predefined Actions 95
Predefined actions 95
Preprocessor directive
in implementation files 67
Preprocessor Directives for Implementation Files 67
Preprocessor Directives for Specification Files 62
Primitive concurrency 52
Primitive Concurrency and Synchronization Objects 52
Primitive data types 57
Primitive Operations 24
Primitive operations 24
Private Access 30
Private access 30
Private Operations 18
Private operations 18
Profiles for Rational Rhapsody in C
CGCompatibilityPre70C 2
FunctionalC 2
ProjectName variable 61, 65
Properties 3
AccessorGenerate 28
Additional NumberOflnstances 82
AddToMakefile 75
AllocateMemory 19
BaseNumberOfinstances 82
ComplexityForlnlining 92
Concurrency 50
DefaultMultiplicity 34
DeleteGloballnstance 54
DiffDelimiter 62, 65
EmptyMemoryPool Callback 82
EmptyMemoryPoolMessage 82
FileName 31, 46
FreeMemory 23
Generd 75
GeneratelnM akefileOnly 75
GetAt 40
GetAtGenerate 40
Id 80
Implncludes 67
Implementation 33, 39
ImplementationFooter 67
ImplementationHeader 67
ImplementStatechart 88
Inline 25
Me 14
MeDecl Type 14
MutatorGenerate 28
Ordered 39
ProtectedName 16
ProtectStaticM emoryPool 82

PublicName 16
SpecificationFooter 65
SpecificationHeader 61
Speclncludes 62
UsageType 32
UseAsExternal 31, 46

Property variable 61, 65

ProtectedName property 16

ProtectStaticM emoryPool property 82

Public Access 29

Public access 29

Public operation 17

Public Operations 17

PublicName property 16

Q

Qualified links 39

R

Random access links 40
Rapid ports 43
Rational Rhapsody 2
action statements 95
behavioral model 6
code generation 5
component model 6
components-based development 44
framework library 52
generated files 74
implementation files 67
including external filein build 75
macros 95
naming conventions for objects 63
sequence diagrams 77
specification files 60
structural model 6
wrapper 4
Rational Rhapsody code, special features 4
Rational Rhapsody in C 2
Reactive object 47
Reactive Objects 47
Reactive objects 47
Redlization relationship 44
Relation
methods 64
ordered to-many 39
qualified to-many 39
random access to-many 40
scalar 36
RhapsodyVersion variable 61, 65
Ric.hfile 62
RiC_Create() method for events 64
RiC_Destroy() method for events 64
RiCBoolean type 58
RiCCoallection_Init() macro 22

Rational Rhapsody in C

107

Index

RiCGEN macro 96

RiCGEN() or CGEN() 96
RICGEN_BY_GUI macro 97
RiICGEN_BY_GUI() or CGEN_BY_GUI() 97
RiICGEN_BY_X macro 97
RiICGEN_BY_X() or CGEN_BY_X() 97
RICGEN_ISR macro 99

RiICGEN_ISR() or CGEN_ISR() 99
RiCIS _IN macro 95

RICIS_IN() macro 95

RIiCIS_IN() or IS IN() 95

RiCList 33

RiCMonitor object 50

RiCOXFInit() function 72
RiCOXFStart() function 72
RiCReactive.h 95

RiCREPLY macro 100

RiCREPLY () or CREPLY() 100
RiCSETPARAMS macro 100
RiICSETPARAMS() or CSETPARAMS() 100
RiCString type 58

Root State 87

Root state 87

S

Scalar link 36
Scalar relation 36, 39
Sending Events 85
Sending events 85
Sequence Diagrams 77
Sequence diagrams 6, 77
SERIALIZE macro 24
seridlizeStates() operation 87
Service ports 44
Singleton 27, 45
Singleton Objects 45
Specification file
footer 65
header 61
method declarations 64
preprocessor directives 62
structure declarations 63
structure of 60
Specification Files 60
Specification option 74
SpecificationFooter property 65
SpecificationHeader property 61
Speclncludes property 62
startBehavior() operation 86
Starting Reactive Behavior 86
Statecharts 6, 83
States 84, 87
entering 88
exiting 91
operationson 88
Static Allocation of Events 82

Static alocation of events 82
static keyword 18, 64

Static memory allocation 4
Static memory pools 82
Stereotype 45

Stereotyped Application Objects 49
Structural Model 7

Structural model 6

Structure Declarations 63
Structure of Generated Files 59
Symbol for events 63
Symmetric Associations 35
Symmetric associations 35
Symmetric links 35

T

Tag variable 61, 65
takeEvent() operation 87, 89, 93
Taking Events 89
this pointer 14
To-Many Links 38
To-Many links 38
Transition 85
Transitions 92
Triggered Operations 27
Triggered operations 27
Tutorial 56
Type
RiCBoolean 58
RiCString 58

U

UML (Unified Modeling Language) 2
Unbounded multiplicity 11

Unordered links 39

Unspecified multiplicity 12
UsageType property 32

Use case diagrams 6

UseAsExternal property 31, 46
User-defined data types 58

Vv

Variables
CodeGeneratedDate 61, 65
CodeGeneratedFileName 61, 65
CodeGeneratedTime 61, 65
ComponentName 61, 65
ConfigurationName 61, 65
Full CodeGeneratedFileName 61, 65
FullM odel ElementName 61, 65
Login 61, 65
Model ElementName 61, 65
ProjectName 61, 65
Property 61, 65

108

Code Generation Guide

Index

RhapsodyVersion 61, 65 W

Tag 61, 65 .
Virtual function table 53 while() loop 21
Visibility of Operations 16 Wrapper 4

Rational Rhapsody in C 109

Index

110 Code Generation Guide

	Contents
	C Code Generation Overview
	Rational Rhapsody in C
	About Properties
	Dynamic Model-Code Associativity
	Special Features of Rational Rhapsody Code
	Code Generation Fundamentals
	Constructive Versus Non-Constructive Views

	Structural Model
	About Constructing Systems from Objects
	Objects
	About Specifying the Type of an Object
	Objects of Implicit Type
	Object Types
	Objects of Explicit Type

	Multiplicity of Objects
	Descriptions
	Object Interfaces

	Operations
	About Implementing Operations in C
	Visibility of Operations
	Public Operations
	Private Operations

	Constructors and Destructors
	Object Creator
	Object Initializer
	Object Cleanup
	Object Destructor

	Primitive Operations
	Inline Operations
	Constant Operations
	Event Receptions
	Triggered Operations
	Invoking Operations

	Attributes
	About Accessing Attributes
	Public Access
	Private Access

	Collaborations Between Objects
	Inheritance
	Inheriting from an External Class

	Dependencies
	Compositions
	Links
	Symmetric Associations
	Aggregations
	To-Many Links
	Initializing Links within Packages

	Interfaces
	Ports
	Partial Specification of Ports
	Considerations for Ports

	Components-based Development in RiC

	Singleton Objects
	About Initializing Singletons

	External Objects
	Reactive Objects
	Concurrency Objects
	Stereotyped Application Objects
	Active Objects
	Guarded Objects

	Primitive Concurrency and Synchronization Objects

	Packages
	Global Variables
	Instrumenting a Package
	Package Constructors and Destructors

	Files in the Structural Model
	About Generating Code for Files
	FunctionalC Profile and the File Diagram

	Data Types

	Structure of Generated Files
	Annotations
	Specification Files
	File Header
	Preprocessor Directives for Specification Files
	Structure Declarations
	Method Declarations
	File Footer for Specification Files

	Implementation Files
	File Header
	Preprocessor Directives for Implementation Files
	Global Variables
	Method Implementations
	File Footer for Implementation Files

	Component Model
	Components
	Configurations
	Folders
	Files in the Component Model
	Adding an Element to a File

	Behavioral Model
	Sequence Diagrams
	Events
	Event Arguments
	Event Constructors and Destructors
	Static Allocation of Events

	Statecharts
	Accessing and Modifying Attributes
	Sending Events
	Accessing the Parameters of the Consumed Event
	Initialize and Start Statecharts
	Initializing Statecharts
	Starting Reactive Behavior

	States
	Root State
	Operations on States
	Entering a State
	Taking Events
	Dispatching Events
	Checking an Object’s State
	Exiting From a State

	Transitions
	Inlining Transition Code

	Predefined Actions
	RiCIS_IN() or IS_IN()
	RiCGEN() or CGEN()
	RiCGEN_BY_GUI() or CGEN_BY_GUI()
	RiCGEN_BY_X() or CGEN_BY_X()
	RiCGEN_ISR() or CGEN_ISR()
	RiCREPLY() or CREPLY()
	RiCSETPARAMS() or CSETPARAMS()
	DYNAMICALLY_ALLOCATED()

	Index

