

Rational Rhapsody Getting Started Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Rational Rhapsody basics . 1
Rational Rhapsody scope. 1

Software development in Rational Rhapsody . 2

Rational Rhapsody diagrams . 3

Starting Rational Rhapsody . 4

Creating a new project . 4
Project profiles . 6
Project import and export . 6

Rational Rhapsody guided tour . 7
Location of Rational Rhapsody icons . 8
Output window . 9
Managing windows . 10

Rational Rhapsody samples. 11

Search and replace in models . 21
Searching models . 21
Working with search results . 23
Replacing . 24

The Rational Rhapsody browser . 25
Repositioning the browser. 25
Filtering the browser display . 26
Re-ordering the browser elements . 26
Adding browser items . 26
Moving and copying browser items. 27
Creating a list of favorites . 27
Deleting browser items . 28

Saving the project . 29

Closing the project and exiting Rational Rhapsody . 29

Reverse engineering legacy source code. 30

Parallel development. 31
Rational Rhapsody iii

Table of Contents
Rational Rhapsody and Eclipse basics . 33
Standard Rational Rhapsody and the platform integration. 33

Creating a Rational Rhapsody project in Eclipse. 33

Guided tour of the Eclipse platform integration. 35

Creating Java plug-ins . 37

Rational Rhapsody for systems engineers . 39
Rational Rhapsody for systems engineers. 39

Diagrams for systems engineering . 39

Special options and wizards . 40

DoDAF and MODAF development . 41
MODAF add on and viewpoints . 41

DoDAF add on and viewpoints. 42

Index . 47
iv Getting Started Guide

Rational Rhapsody basics
Welcome to IBM® Rational® Rhapsody®!

In addition to this Getting Started information, you may use the following to learn Rational
Rhapsody:

� Attend training at an IBM training facilities or in your office.
� Participate in a virtual training opportunity
� Read tutorials for different jobs and types of development environments

Rational Rhapsody scope
Software developers, systems engineers and systems architects use Rational Rhapsody to create
either embedded or real-time systems. Rational Rhapsody provides a visual design environment to
create requirements and model systems using the Unified Modeling Language™ (UML™)
diagrams and SysML™ diagrams. Rational Rhapsody allows you to accomplish the following
tasks:

� Analysis - analyze and derive system requirements, specify architecture, and define
structure and behavior.

� Design - trace requirements to the design, taking into account architectural, mechanistic,
and detailed design considerations.

� Implemention - automatically generate code from the analysis model, then build and run
it from within Rhapsody.

� Testing - simulate the application on the local host or a remote target to perform design-
level debugging within simulated views.
Rational Rhapsody 1

Rational Rhapsody basics
Software development in Rational Rhapsody
Software developers may use any of the four supported languages in Rational Rhapsody: C, C++,
Ada, and Java. The official sample models demonstrate the software uses in the development
process from requirements to creating code quickly and accurately and testing the code. These
models can be accessed by any of these methods so that you can examine them in more detail:

� Navigate to the Rational Rhapsody <version>\Samples directory in your installation to
examine the official Rational Rhapsody sample models.

� Click Proceed in the Project Samples area of the Welcome screen.
� Click the Samples icon on the Welcome screen.

Note
The official sample models in the Samples directory (see the Rational Rhapsody samples
list) are different from the models created when following the instructions in the language-
specific tutorials in the Rational Rhapsody documentation set. Some of the models created
in the tutorials have the same names as the official product samples, but the tutorials
demonstrate different techniques and features for instructional purposes.

All of the models for the four languages show different features of the Rational Rhapsody product
to demonstrate the overall scope of the product.
2 Getting Started Guide

Rational Rhapsody diagrams
Rational Rhapsody diagrams
Rational Rhapsody diagram types are based on standard UML and SysML, as listed below, with
the ability to create domain specific types using the Project profiles.

Standard UML diagrams

The following Rational Rhapsody diagrams are the UML standard diagrams available in most
development environments and Rational Rhapsody profiles:

� Object model diagram
� Use case diagram
� Sequence diagram
� Statechart
� Activity diagram
� Flow chart
� Structure diagram
� Collaboration diagram
� Component diagram
� Deployment diagram

Systems engineering diagrams

The SysML and Harmony profiles support some of the standard UML diagrams:

� Use case diagram
� Statechart
� Activity diagram
� Sequence diagram

These two profiles also provide additional specialized diagrams:

� Requirements diagram
� Block definition diagram
� Internal block diagram
� Parametric diagram
Rational Rhapsody 3

Rational Rhapsody basics
Starting Rational Rhapsody
To start Rational Rhapsody for developers, click the Rhapsody icon or from the Windows Start
menu select IBM Rational > IBM Rational Rhapsody (version #) > Rational Rhapsody
Developer edition > Rational Rhapsody Developer for Ada, C, C++, or Java. The Welcome
screen provides quick access to the features listed below. To redisplay this window at any time,
select the Help > Welcome Screen option.

� Create a New Project or Open a Project created previously
� Visit our corporate Web site
� Access product Documentation, view the list of available technical Training courses, or

contact technical Support
� View the official Rational Rhapsody Project Samples delivered with the system (see

Rational Rhapsody samples for a list of the available samples)
� Launch ReporterPLUS

Creating a new project
To create a new project:

1. With Rational Rhapsody running, create the new project by either selecting File > New, or

clicking the New project icon in the main toolbar.

2. Replace the default project name (Project) with MyProject in the Project name field.
Enter a new directory name in the In folder field or Browse to find an existing directory.
4 Getting Started Guide

Creating a new project
Your dialog box should be similar to this example.

3. The Default Project Type provides all of the basic UML structures and is useful for most
Rational Rhapsody projects. To create a specialized project, you may select one of the
Project profiles or create a profile of your own.

4. If you accept the Default Project Settings, you intend to use the model centric
methodology. If you select a code centric setting, your project will focus on software
development through the code instead of using models to generate code.

5. Click OK. If the directory does not currently exist, Rational Rhapsody asks whether you
want to create it. Click Yes to create a new directory for the project.

Rational Rhapsody creates a new project in the MyProject subdirectory and opens the new project.
The project name in the directory is MyProject.rpy.

See the Rational Rhapsody guided tour for descriptions of the areas in the Rational Rhapsody
interface.
Rational Rhapsody 5

Rational Rhapsody basics
Project profiles

The project profiles available to you depend on the development language and add-on products
licensed for Rational Rhapsody. The software may assign a starting point profile for your project
depending on your development language. Generally, profiles provide predefined, domain-specific
tags and stereotypes to streamline your development effort. Profiles may serve any of these
purposes:

� Support add-on products
� Provide industry-specific details as starting points for the projects
� Manage backward compatibility with previous Rational Rhapsody versions
� Outline a project to meet a standard such as DoDAF or MODAF

Project import and export

Another Rational Rhapsody technique to streamline work is the facility to import information or
other project model components and export Rational Rhapsody projects and components. For
example, Rational Rhapsody can import and export the following:

� Projects, models, and diagrams from other modeling tools
� Requirements
� XMI files
� Generated code

For more detailed information, see the Rational Rhapsody user procedures.
6 Getting Started Guide

Rational Rhapsody guided tour
Rational Rhapsody guided tour
The Rational Rhapsody stand-alone interface has several areas used to create items in the model
and show the relationships of those items. When you create a new project, Rational Rhapsody
creates starting point items listed in the browser and creates one drawing area. These starting point
items vary depending on the type of project you created. The Diagram Tools, shown in the center
of the window in the example, displays the icons appropriate for the type of diagram displayed in
the drawing area. Therefore, the icons change when you display a different diagram.

If the browser panel does not appear automatically on the left side of the window, select View >
Browser. This shows the Entire Model View (browser) of your new project and operates in the
same manner as standard Microsoft Windows trees. Click the “+” before a folder to expand the
items and view the contents.

For information about Rational Rhapsody displayed in the Eclipse interface, see the Guided tour of
the Eclipse platform integration.
Rational Rhapsody 7

Rational Rhapsody basics
Location of Rational Rhapsody icons

The icons are grouped in two areas:

� Under the menu bar across the top of the Rational Rhapsody window
� In the center of the window between the browser and the drawing area in an accordion

display with the icons and their names listed.

Note
In the upper left corner of the window before the menu bar items is an icon indicating the
type of diagram that is currently displayed in the drawing area.

The Drawing icons in the center of the window change depending on the type of diagram being
displayed in the drawing area. As in any Windows program, you can rearrange the groups of icons
at the top of the Rational Rhapsody window by dragging and dropping the double-bar, left edge of
a group of icons.

The icons on the interface perform functions that are also available from menus. For example, you
may select the Tools > Sequence Diagram menu option or click the diagram creation icon for the

Sequence Diagram to create a new sequence diagram.
8 Getting Started Guide

Rational Rhapsody guided tour
Output window

When testing your model with the Generate, Make, and Run icons or those Code menu options,
Rational Rhapsody displays Log output and other messages in the Output window. The Output
window tabs group different types of information, such as the Search results as shown in the
example.

When your model requires that messages or an interface be displayed, Rational Rhapsody displays
the generated material in a separate window off the Rational Rhapsody interface.
Rational Rhapsody 9

Rational Rhapsody basics
Managing windows

The Window menu provides the usual Microsoft Windows Cascade and Tiling options. This menu
also provides the Back and Forward options to scroll backwards and forward through the
previously displayed diagrams from the current position.

Note
The Back/Forward navigation is not available in Linux.
10 Getting Started Guide

Rational Rhapsody samples
Rational Rhapsody samples
All Rational Rhapsody installations include a large number of sample projects demonstrating
different models. To examine the samples for development environment:

1. Select File > Open.

2. Navigate to your Rational Rhapsody installation and select the Samples directory to
display the samples installation with your software.

If there are no sample directories, install Rational Rhapsody again and select the “Repair”
installation type to select the samples for your development environment.

If the C++ sample you want to use contains code for a GUI created in a different development
environment than yours, see the instructions in the Samples\CPP\Readme.txt file to recompile
that code in your environment.

Note
When examining these sample projects, do not save any changes you make to the original
sample. Instead, save your version with a different project name and in a different directory.
This preserves the original sample with its intended demonstration features and avoids
confusion of the standard Rational Rhapsody samples with any altered versions.

The following chart lists all of the available samples with their descriptions.

Rational Rhapsody samples by development environment
Sample Name Environment Description

API C++ This project contains files with executables for
RPYReporter, RPYExplorer, and C++ Client. The
C++ Client also contains a Write API and a Read
API with Debug executables.

Atg C++ The Vending Machine model in this sample is based
on the Automatic Test Generation (ATG) User Guide
example. In order to generate the test cases with
ATG, you must first manually extend and complete
the model.

Cars C++ The cars.rpy project describes an automated railcar
system including the railcar terminal and a GUI for
the system. The model contains standard operations
for idle cars, passengers boarding cars, selecting
destinations, and requesting railcars among other
scenarios.

CD_Player C++ Launch the CDPlayer.rpy project file and open
the ReadMe.txt in the Files for a full explanation of
this sample project. The project includes graphics
and these folders: CD_player, Web, HardwarePkg,
and CDTools.
Rational Rhapsody 11

Rational Rhapsody basics
Command Line Interface C++ This directory contains a sample script to run
Rational Rhapsody using the command-line
interface.

CORBA C++ This model contains three projects:
Sdm_Observers_factory, Sdm_observers, and
client_Sdm_observers to demonstrate using
Rational Rhapsody to create CORBA features
including a CORBA interface.

DesignPatterns C++ The project contains samples of common model
patterns that can be copied into your projects and
modified as needed:

• WatchDogPattern
• TimeSlicingPattern
• StaticPriorityPattern
• StaticAllocationPattern
• SanityCheckPattern
• SafetyExecutivePattern
• ProxyPattern
• PriorityCeilingPattern
• PreemptiveMultitaskingPattern
• PollingPattern
• MonitorActuatorPattern
• MicroKernelPattern
• MasterSlavePattern
• HomogeneousRedundancyPattern
• HeterogeneousRedundancyPattern
• HandshakePattern
• FixedSizeBlockAllocationPattern
• ExecutionControlPattern
• DynamicPriorityPattern
• CyclicExecutivePattern
• BrokerPattern

DiffMerge C++ This model contains four versions of the Elevator
project (original, main trunk, branch, and base) to
demonstrate the types of comparisons and results
produced from the DiffMerge tool.

Dishwasher C++ This project defines dishwasher parts and a GUI and
contains a sequence diagram, collaboration
diagram, and abstract and implementation versions
of the dishwasher design.

Elevator C++ This project contains executables for the GUI, host,
and target. It also includes one main use case and
several sequence and collaboration diagrams.

Sample Name Environment Description
12 Getting Started Guide

Rational Rhapsody samples
Handset C++ This mobile telephone project contains Word
documents for the overview and requirements. The
system requirements are shown with their
dependencies and in an analysis package.

hhs C++ The Home Heating System (hhs) project contains a
GUI, object model diagrams, sequence diagrams,
and collaboration diagrams.

HomeAlarm C++ Home alarm security system demonstrating an MFC
user interface with separate component builds. This
project is also a good example of using multiple
sequence diagrams.

HomeAlarmWithPorts C++ Home alarm security system illustrates the usage of
UML 2 ports to specify part interaction points.

Pacemaker C++ This project contains a GUI, a simulation executable,
and detailed packages and diagrams to create this
medical device.

Pbx C++ This Private Branch Exchanges (Pbx) project for
telecommunications includes a Statechart, GUI and
call router and connection classes with Web-
enabled attributes.

PingPong C++ This simple model demonstrates the events in a ping
pong game. The project contains an object model
diagram, a sequence diagram, and an animation
executable.

PowerWindowWithSimulink C++ This sample demonstrates how a continuous
Matlab\Simulink Block can be used inside a Rational
Rhapsody model. This model requires a Simulink
license.

Radio C++ This project contains detailed use cases, sequence
diagrams, and GUI, Hardware, and Test executables
to perform standard functions of a radio, such as
select stations and adjust volume.

ReporterPLUS C++ This project should be opened in ReporterPLUS to
demonstrate producing reports with illustrations for
the C++ Dishwasher project.

RequirementsWithTags C++ This model demonstrates generation of documents
using ReporterPLUS in conjunction with tags. Use
this model with the template RequirementsTable.tpl.

Sample Name Environment Description
Rational Rhapsody 13

Rational Rhapsody basics
TestConductor C++ These TestConductor samples contain prebuilt GUI
components:

• CppCashRegister
• CppListUsage
• CppPbx
• CppTestConductorAPI
• CppTestingExternalFiles

In order to test non-GUI components, apply GMR
(generate, make, and run) to the desired executable
configuration.

Tetris C++ The tetris.rpy creates an imitation of the Tetris game
including a GUI and hardware package.

UML 2.0 C++ This is a mock-up solution of a generic protocol
stack to handle voice and data calls only. The use
case diagram shows the functional requirements for
the system.

vba C++ This model demonstrates the uses of VBA with
Rational Rhapsody to perform tasks such as
generating code, building a model, generating a
report, and adding classes to a model. The model
contains two demonstration projects:
VC_6vbaDemo (vbaSample.rpy) and
G3WizardDemo.rpy.

CycleComputer C This model uses files with dependencies and
statecharts instead of classes and objects as in C++
projects. The design allows the cycle computer to be
easily ported to different hardware platforms and to
run the following:

• With a Visual C++ GUI
• With a console using keys R, L and P
• With the IDF (automatically simulates key

presses)

DiffMerge C This model contains four versions of the Elevator
project (original, main trunk, branch, and base) to
demonstrate the types of comparisons and results
produced from the DiffMerge tool.

Dishwasher C This project contains a GUI with files, an abstract
dishwasher in an object model diagram, and
sequence diagrams.

Elevator C This project contains an executable GUI, an object
model for the host configuration, and one main use
case with several sequence diagrams.

Sample Name Environment Description
14 Getting Started Guide

Rational Rhapsody samples
FlowChart C The project contains the following basic flowchart
patterns that can be used and modified for your
projects:

• DoWhileLoop(int n)
• DoWhileSelfLoop(int n)
• IfThenElse()
• OrderedIfThenElse()
• Sequence()
• SimpleIf(char * buffer)
• SimpleNegatedIf(char * buffer)
• Unstructured()
• WhileLoop()
• WhileNotLoop()

FunctionalC C This is a model of a handset protocol stack using the
FunctionalC profile and use case diagrams. The
project includes Analysis with comments and
Architecture packages.

hhs C The Home Heating System (hhs) project contains a
prototype executable with a GUI, object model
diagrams, and sequence diagrams.

Pacemaker C This project contains a GUI, a simulation executable,
object model diagrams, and sequence diagrams to
create this medical device.

Pbx C This Private Branch Exchanges (Pbx) project for
telecommunications includes a GUI executable and
test scenarios.

Radio C This project contains an executable MFCGUI, files, a
detailed radio package, an object model diagram,
and many use cases. The model performs standard
functions of a radio, such as select stations and
adjust volume.

ReporterPLUS C This project should be opened in ReporterPLUS to
demonstrate producing reports with illustrations for
the C Elevator project.

S-Function C This model uses the SimulinkinC (automatically
added profile) and requires a Simulink license.

TestConductor C These TestConductor samples contain prebuilt GUI
components:

• CStopWatch
• CPbx

In order to test non-GUI components, apply GMR
(generate, make, and run) to the desired executable
configuration.

Sample Name Environment Description
Rational Rhapsody 15

Rational Rhapsody basics
DiffMerge Java This model contains four versions of the Elevator
project (original, main trunk, branch, and base) to
demonstrate the types of comparisons and results
produced from the DiffMerge tool.

Dishwasher Java This project contains a GUI with files, an abstract
dishwasher in an object model diagram, and
sequence diagrams.

HomeAlarm Java Home alarm security system demonstrating an
executable test with detailed packages and shows
the use of multiple sequence diagrams.

ReporterPLUS Java This project should be opened in ReporterPLUS to
demonstrate producing reports with illustrations for
the Java HomeAlarm project.

TestConductor Java The JavaDishwasher sample contains prebuilt GUI
components.
In order to test non-GUI components, apply GMR
(generate, make, and run) to the desired executable
configuration.

CPP Extensibility
Samples for
Callback API

This simple application implements the
EventListenerPlugin interface and registers with
Rational Rhapsody in order to receive callbacks.
For more information, see the readme.txt file in
the Samples/ExtensibilitySamples/CallbackAPI
Samples/CPP/EventListernerPlugin directory and
the API Reference Manual.

RS232 Ada This project demonstrates design and testing of a
simple computer system with a keyboard. The
project includes animated sequence diagrams.

RS232_95 Ada This project demonstrates design and testing of a
simple computer system with a keyboard in the “95”
version. The project includes animated sequence
diagrams.

SPARK Ada This model contains two projects to illustrate the
SPARK standard support in Rational Rhapsody Ada.
The model includes the following special features:

• Stack state machine
• Stack class as an abstract data type
• Monitoring class showing how a data type can

be extended.

TestConductor Ada The AdaCashRegister sample contains prebuilt GUI
components.
In order to test non-GUI components, apply GMR
(generate, make, and run) to the desired executable
configuration.

Sample Name Environment Description
16 Getting Started Guide

Rational Rhapsody samples
Java Extensibility
Samples for
Callback API

In the Samples/ExtensibilityChecks/CallbackAPI
Samples/Java directory are two subdirectories with
three applications in each:

• Plug-in contains the
ApplicationListenerPlugin,
CodeGenerationListenerPlugin, and the
RoundtripListenerPlugin.

• Stand-alone contains applications that
implement Listener interfaces in order to receive
callbacks.

For more information, see the readme.txt files in
the subdirectories containing the application files
and the API Reference Manual

VB Extensibility
Samples for
Callback API

This simple application implements the
EventListenerTest interface and registers with
Rational Rhapsody in order to receive callbacks.
The EventListenerTest API uses Rational Rhapsody
to listen for specified events (for example,
beforeProjectClose, afterProjectClose,
onDiagramOpen, onFeaturesDialogOpen,
onCodeGenerationCompleted, and
beforeRoundtrip). Use Rational Rhapsody to
perform the appropriate actions to cause these
events. When one of these events occurs, the API
displays a message box indicating the name of the
event.
For more information, see the readme.txt file in
the Samples/ExtensibilityChecks/CallbackAPI
Samples/VB/EventListeners directory and the API
Reference Manual.

VBA Extensibility
Samples for
Callback API

This simple application implements the
EventListenerTest interface and registers with
Rational Rhapsody in order to receive callbacks.As
in VB Callback API, the VBA Application Listener
Client listens to Rational Rhapsody for specified
events (for example, beforeProjectClose,
onDiagramOpen, onFeaturesDialogOpen,
onCodeGenerationCompleted, and
beforeRoundtrip). However, in the VBA sample, the
afterProjectClose event is not used since a VBA
project is part of a Rational Rhapsody project. If
Rational Rhapsody is closed, the VBA project would
also be closed.
For more information, see the readme.txt file in
the Samples/ExtensibilityChecks/CallbackAPI
Samples/VBA/
VBA_EventListeners_SampleRhpProject directory
and the API Reference Manual.

Sample Name Environment Description
Rational Rhapsody 17

Rational Rhapsody basics
VB Extensibility
Samples for
ExternalChecks
Samples

This project runs rpyexternalchecks.exe to
check the model default configuration via the tools
model. You can examine the VB source in the
project to see how this is accomplished.

Java Extensibility
Samples for
ExternalChecks
Samples

This Java project provides a use case to check a
user defined check. It also contains a .hep file with a
path to the check in the Rational Rhapsody project
directory, as well as a property pointing to the .hep
file.

.settings Extensibility
Samples for
Simple Plug-in

This directory contains an Eclipse JDT preferences
file.
For more information about creating plug-ins for
Rational Rhapsody, see the How to create a
plug-in.rtf document in the Simple Plug-ins
directory.

com Extensibility
Samples for
Simple Plug-in

This directory contains two sample plug-ins for
Rational Rhapsody:

• SimplePlugin.class
• SimplePlugin.java

APIExtension Java API This project demonstrates how to extend the
Rational Rhapsody Java-API in a stand-alone
application.
For more information, see the readme.txt file in
the Samples/JavaAPI Samples/APIExtension
directory and the API Reference Manual.
To extend the API in a plug-in application, see
samples in the Samples/JavaAPI Samples/Plug-in
directory.

ClassDumper Java API This sample contains a batch file to dump a Rational
Rhapsody class.
For more information, see the readme.txt file in
the Samples/JavaAPI Samples/ClassDumper
directory and the API Reference Manual.

com.telelogic.rhapsody.wfi.
rhapsodyListenersExample

Java API This plug-in demonstrates how to use the Rational
Rhapsody Listener extension point to receive
notifications on messages and commands from
Rational Rhapsody.
This plug-in implements “rhapsodyListeners”
extension points.
For more information, see the readme.txt file in
the Samples/JavaAPI Samples/
com.telelogic.rhapsody.wfi.
rhapsodyListenersExample directory.

Sample Name Environment Description
18 Getting Started Guide

Rational Rhapsody samples
JavaPlug-in Java API This diagram formatter sample demonstrates how to
create a Java plug-in and how to extend the Rational
Rhapsody Java API.
Note: You can create a Java plug-in without
extending the API, as well as using the API
extension in a stand-alone application.
For detailed instructions to use this sample, see the
readme.rtf file in the Samples/JavaAPI Samples/
Plug-in directory.

Adms Systems This sample describes the ADMS (Aircraft Defense
Management Model) in a Rational Rhapsody
project. See the model overview and requirements
documents within the project for a complete
description of this sample.

Distiller Systems The Distiller model uses the SysML profile to
reconstruct the case study example, as described in
Sandy Friedenthal's SysML Tutorial.

The Distiller model is used with the permission of the
Object Management Group and is based on the
OMG SysML 1.0 Available Specification 07-09-01.
See http://www.omgsysml.org/SysML-Tutorial-
Baseline-to-INCOSE-060524-low_res.pdf

NetCentric Systems This directory contains a model that simulates a
network of meteorological weather stations and that
provide weather reports of current and forecasted
weather conditions for the different locations of the
stations.

To create this model as a tutorial and then compare
your version to the finished version in the directory,
see the instructions in the Net Centric Mini
Tutorialv1.1.doc in this directory.

SysMLHandset Systems This is a SysML version of the Rational Rhapsody
Handset model.

VB_Post_Simplifier CustomizeCG The TestModel subdirectory contains a Rational
Rhapsody project for post simplification.

Sample Name Environment Description
Rational Rhapsody 19

Rational Rhapsody basics
Statechart_Simplifier_Writer CustomizeCG This directory contains four sample directories:
• Statechart_ALT_Simplifier - This Rational

Rhapsody plug-in demonstrates a user-defined
simplifier. The simplifier adds a <full state
name> member to the type of the class for each
state in its statechart. The attribute type is “int”
and a description associates it with the state
from which it originated. The simplification is
enabled when the user sets the
C_CG::Statechart::Simplify property to
the “ByUser” value.

• Statechart_Java_Simplifier - This Rational
Rhapsody plug-in demonstrates a user-defined
simplifier using Java. The simplifier adds a <full
state name> member to the type of the class for
each state in its statechart. The attribute type is
“int” and a description associates it with the state
from which it originated. The simplification is
enabled when the user sets the
C_CG::Statechart::Simplify property to
the “ByUser” value.

• Statechart_VB_Simplifier - This Rational
Rhapsody plug-in demonstrates a user-defined
simplifier using VB. The simplifier adds a <full
state name> member to the type of the class for
each state in its statechart. The attribute type is
“int” and a description associates it with the state
from which it originated. The simplification is
enabled when the user sets the
C_CG::Statechart::Simplify property to
the “ByUser” value.

• Statechart_Writer_Rules - This package
Statechart_Generation provides all of the rules
related to the statechart generation. You must
make some modifications to enable this
process.

For more information, see the individual
readme.txt files in the four directories.

Sample Name Environment Description
20 Getting Started Guide

Search and replace in models
Search and replace in models
Engineers and developers can use the Search and Replace facility for simple search operations and
to manage large projects and expedite collaboration work. The search results display in the Output
window with the other tabbed information.

This facility provides the following capabilities:

� Perform quick searches
� Locate unresolved elements in a model
� Locate unloaded elements in a model
� Identify only the units in the model
� Search for both unresolved elements and unresolved units
� Perform simple operations on the search results
� Create a new tab in the Output window to display another set of search results
� For more detailed instructions for the Search and Replace facility.

Searching models

To search models:

1. With the model displayed in Rational Rhapsody, there are three methods to launch the
Search facility: select the Edit menu and then select the Search option, click the

binoculars icon , or press Ctrl + F.

2. This displays the Search dialog box to perform a quick search. Type the search criteria into
the Find what field and click Find. The results display in the Output window. The search
criteria displays on the Output window Search tab.
Rational Rhapsody 21

Rational Rhapsody basics
3. To display the more detailed search dialog box, select Edit > Advanced Search and
Replace or click the Advanced button in the Search dialog box. Both methods display the
Advanced Search dialog box. This dialog box provides the Unresolved and Units only
search features.

4. You may customize the search criteria using the following:

� Exact string permits a non-regular expression search. When selected the search
looks for the string entered into the search field (such as char*)

� Wildcard permits wildcard characters in the search field such as “*” and produces
results during the search operation that include additional characters. For
example, the search *dishwasher matches class dishwasher and attribute
itsdishwasher.

� Regular Expression allows the use of Unix style regular expressions. For
example, itsdishwasher can be located using the search term [s]dishwasher.

5. Advanced Search and Replace results do not display in the Output Window by default. To
display results in the Output Window, check the Show box in the Results in Output
Window area.

6. If after performing one search you want another Search tab with additional search results
displayed in the Output window, check the New Tab box in the Results in Output
Window area. Perform the next search.
22 Getting Started Guide

Search and replace in models
Working with search results

After locating elements using the Search facility, you may perform these operations in the Search
dialog box or in the Output window:

� Sort items
� Check the references for each item
� Delete
� Load

To sort items in the list, click the heading above the column to sort according to information in that
column.

To examine the references for an item in the search results:

1. Highlight an item in the search results list.

2. Right-click to display the pop-up menu.

3. Select References... and examine the information displayed in the dialog box, as shown in
this example.

To delete an item located in search process:

1. Highlight an item in the search results list.

2. Right-click to display the pop-up menu.

3. Select Delete from Model. The system displays a message for you to confirm the
deletion.

4. Click Yes to complete the deletion process.

If you have located an unloaded item in the search results and want to load it into the model, right-
click the item. Load the item in the same manner as it is loaded from within the browser.
Rational Rhapsody 23

Rational Rhapsody basics
Replacing

If you want to replace item names or other terminology throughout the model:

1. Display the Advanced Search.

2. Enter the current terminology in the Find what field.

3. Enter the new terminology into the Replace with field.

4. Make any additional selections to limit the search and replace process.

5. Click Find.

6. Highlight the results to be replaced and click Auto Replace.

7. Click Yes to complete the replacement process.
24 Getting Started Guide

The Rational Rhapsody browser
The Rational Rhapsody browser
The Rational Rhapsody browser shows the contents of the project in an expandable tree structure.
By default, it is the upper, left section of the Rational Rhapsody interface. The top-level folder,
which contains the name of the project, is the project folder or project node. Although this folder
contains no elements, the folders that reside under it contain elements that have similar
characteristics. These folders are referred to as categories.

The browser displays the automatically generated elements for the project type, as well as the
elements that users defined. A project consists of at least one package in the Packages category. A
package contains UML elements, such as classes, files, and diagrams. Rational Rhapsody
automatically creates a default package called Default, which it uses to save model parts unless
you specify a different package.

Repositioning the browser

To make more room to work on diagrams, you can move the browser outside of the Rational
Rhapsody GUI to reposition it as a separate window on the desktop. To reposition the Rational
Rhapsody browser, click the bar at the top of the browser and drag it to another desktop location.

Click the plus (+)
to expand a branch.
Click the minus (–)
to collapse a
branch.

Project Folder

Browser Filter
Click the Up or
Down button to
re-order the
elements.
Rational Rhapsody 25

Rational Rhapsody basics
Filtering the browser display

The browser filter allows you to display only the elements relevant to your current task. To display
the filter menu, click the down arrow button at the top of the browser. Select one of these menu
options:

� Entire Model View displays all model elements in the browser and is the default view.
� Use Case View displays use cases, actors, sequence diagrams, use case diagrams, and

relations among use cases and actors.
� Component View displays components, nodes, and packages that contain components or

nodes.
� Diagram View filters out all elements except diagrams.
� Unit View displays all the elements that are also units.
� Loaded Units View displays only the units that have been loaded into your workspace.
� Requirement View displays only those elements with requirements.
� Overridden Properties View displays only those elements with overridden properties.

Note
If the browser is filtered, you can add only elements that appear in the current view.

Re-ordering the browser elements

You can re-order the elements in the Rational Rhapsody browser. Choose View > Browser
Display Options > Enable Ordering to activate the Up and Down buttons for the browser. Once
activated, select an element in the browser and then click the appropriate Up or Down button

.

Adding browser items

To add new items to a category in the browser:

1. Highlight the item in the browser.

2. Select the Edit > Add New <item type> from the main menu or right-click the browser
item and select the Add New <item type> from the menu.

3. Depending on the type of item being added, the system may require additional information
or it may immediately add a new item to the browser category, as shown with the addition
of a new component.
26 Getting Started Guide

The Rational Rhapsody browser
Note: The system allows you type in the name of the new item in the browser list.

Moving and copying browser items

You can move all elements within the browser by dragging-and-dropping them from one location
to another, even across packages. You may move a group of highlighted items to a new location in
the project by dragging and dropping them into that location in the browser.

You can copy all elements within the browser. To copy an element onto a new owner:

1. Highlight the item in the browser.

2. Press the Ctrl key while dragging the element.

3. Drop it onto the new owner.

Creating a list of favorites

If you want to select a few items from a project for some concentrated work, you may select these
items as your Favorites and display them in a separate browser window. To select Favorites:

1. Display the project in Rational Rhapsody.

2. Click the Favorites star icon to display the Favorites browser.

3. Highlight the item of interest in the project browser list, and click the star icon with a plus
symbol to add the highlighted item to the Favorites.
Rational Rhapsody 27

Rational Rhapsody basics
Deleting browser items

To delete an item from your project:

1. Highlight the item in the browser.

2. Right-click and select the Delete from Model from the menu or select Edit > Delete from
the main menu

3. The system asks for confirmation of the deletion operation. Click OK to approve it.
28 Getting Started Guide

Saving the project
Saving the project
Save the project using one of the following methods:

1. Select Save or Save As from the File main menu.

2. Click the Save icon in the main toolbar.

Note
Rhapsody performs an autosave every ten minutes, but does not actually create any files in
the project directory until you manually save the project.

Closing the project and exiting Rational Rhapsody
To close the project:

1. Select File > Close. Rhapsody asks whether you want to save changes to the project.

2. Click Yes. Rhapsody saves the project, creates a backup of the previous version (if you set
the General::Model::BackUps property), and closes the project without exiting.

3. To exit from Rhapsody, select File > Exit.
Rational Rhapsody 29

Rational Rhapsody basics
Reverse engineering legacy source code
Companies are always seeking ways to reuse their software assets. A software developer may use
Rational Rhapsody to reverse engineer legacy C or C++ source code to provide these capabilities:

� Use the legacy code as a starting point to develop a model-driven design
� Mix model-driven design with external source code
� Redesign the system architecture
� Integrate code generated by another tool
� Integrate with third-party libraries

To import legacy code into Rational Rhapsody, follow these basic steps:

1. Launch Rational Rhapsody and open an existing project or create a new project.

2. Select Tools > Reverse Engineering and navigate to the source code directory and select
the desired files.

3. Check the Visualization Only (Import as External) checkbox in the lower left corner
and click Start. The dialog boxes used to complete this operation contain multiple options
for saving and reusing the selected code.
30 Getting Started Guide

Parallel development
Parallel development
When many developers are working in distributed teams, they often need to work in parallel.
These teams use a source control tool or configuration management (CM) software, such as
Clearcase, to archive project units. However, not all files may be checked into CM during
development.

Engineers in the team need to see the differences between an archived version of a unit and another
version of the same unit or a similar unit that may need to be merged. To accomplish these tasks,
they need to see the graphical differences between the two versions, as well as the differences in
the code.

Rational Rhapsody units

A Rational Rhapsody unit is any project or portion of a project that can be saved as a separate file.
The following are some examples of Rational Rhapsody units with the file extensions for the unit
types:

� Class (.cls)
� Package (.sbs)
� Component (.cmp)
� Project (.rpy)
� Any Rational Rhapsody diagram

DiffMerge tool features

The Rational Rhapsody DiffMerge tool supports team collaboration by showing how a design has
changed between revisions and then merging units as needed. It performs a full comparison
including graphical elements, text, and code differences.

The DiffMerge tool can be operated inside and/or outside your CM software to access the units in
an archive. It can be launched from inside or outside Rational Rhapsody. It can compare two units
or two units with a base (original) unit. The units being compared only need to be stored as
separate files in directories and accessible from the PC running the DiffMerge tool.

In addition to the comparison and merge functions, this tool provides these capabilities:

� Graphical comparison of any type of Rational Rhapsody diagram
� Consecutive walk-through of all of the differences in the units
� Generate a Difference Report for a selected element including graphical elements
� Print diagrams, a Difference Report, Merge Activity Log, and a Merge Report
Rational Rhapsody 31

Rational Rhapsody basics
32 Getting Started Guide

Rational Rhapsody and Eclipse basics
If you are developing software and want to use Eclipse, you may use either of these plug-in
integrations:

� Workflow Integration: allows you to import a Rhapsody C or C++ project into Eclipse
using the Rhapsody plug-in for Windows, but not for Linux

� Platform Integration: integrates Rhapsody within the Eclipse environment for a single
modelling and coding environment for C, C++ or Java. The license required for this
feature should be a Rhapsody Developer Multi Language license.

Standard Rational Rhapsody and the platform
integration

The standard Rhapsody and the Eclipse Platform Integration both use the same repository so that
you may switch between the two interfaces if desired.

The standard Rhapsody interface elements displayed in Eclipse have the same features as in the
stand-alone version except that the icons associated with a specific window are displayed at the top
of the window.

Creating a Rational Rhapsody project in Eclipse
To create a new Rational Rhapsody project in Eclipse:

1. Open Eclipse.

2. Check the Eclipse Help > About Eclipse SDK option to be certain that the Rhapsody icon
is displayed, as in the Java example below. If it is not, see the Eclipse setup instructions
for Rhapsody.

3. To create a new Rhapsody project within Eclipse, select File > New > Project.

4. In the New Project dialog box, select the Rhapsody Project wizard from the options and
click Next.
Rational Rhapsody 33

Rational Rhapsody and Eclipse basics
5. Define the Rhapsody project name, name of the first object model diagram, the
development language to be used (C, C++, or Java), and the Rhapsody project type and
Rhapsody project settings.

6. Click Finish.

Rhapsody creates a new project in the Eclipse workarea and opens the new project.

See the Guided tour of the Eclipse platform integration for descriptions of the areas in the Rhapsody
interface.
34 Getting Started Guide

Guided tour of the Eclipse platform integration
Guided tour of the Eclipse platform integration
The Rhapsody Platform Integration with Eclipse adds two Rational Rhapsody perspectives on tabs
in the upper right corner of the Eclipse IDE:

� Rhapsody Modeling (shown in the example below)
� Rhapsody Debug

The Eclipse interface displays the following main Rhapsody interface components:

� Browser (Model Browser tab in Eclipse)
� Diagram Tools
� Drawing area
� Output window (Rhapsody Log tab in the example)
Rational Rhapsody 35

Rational Rhapsody and Eclipse basics
The Rational Rhapsody menu options and drawing capabilities have been added to the Eclipse
code editing, interface customization, and other capabilities. The Rhapsody Debug perspective
displays the windows shown in this example

.

Developers can then use the Eclipse code or design level debugger and animation with breakpoints
for a thorough and efficient debugging strategy.
36 Getting Started Guide

Creating Java plug-ins
Creating Java plug-ins
You may create your own Rational Rhapsody plug-in for a Java application. Basically, there are
three stages required to create a Java plug-in:

1. Code the plug-in.

2. Write a .hep file containing the plug-in definitions.

3. Attach it to the profile.

To speed your plug-in development process, you may use the SimplePluginProfile.sbs and its
SimplePluginProfile.hep files located in the Samples/ExtensibilitySamples/Simple Plug-in
directory along with instructions for using these samples. See the list of Rational Rhapsody
samples for more information.
Rational Rhapsody 37

Rational Rhapsody and Eclipse basics
38 Getting Started Guide

Rational Rhapsody for systems
engineers
Rational Rhapsody allows systems engineers to capture and analyze requirements quickly and then
design and validate system behaviors. In addition, the software produces high-quality systems
engineering specification documents using report templates.

The Rational Rhapsody Systems Engineering Add-on installation provides the features to support
the UML and SysML standards.

� Examine the UML Forum UML specification

� Examine the OMG SysML specification

Rational Rhapsody for systems engineers
Systems engineers use the Rational Rhapsody Harmony/SE process to manage:

� Requirements Analysis
� System Functional Analysis
� Design Synthesis
� Design validation through simulation
� Architectural Design

Note
For more information about the Harmony/SE process, see the Harmony Deskbook by Hans-
Peter Hoffmann, Ph.D., 2009 (available on the corporate Web site).

Diagrams for systems engineering
A systems engineering Rational Rhapsody project includes both UML and SysML diagrams to
define the model. You may use any of these diagrams for systems engineering:

� Use case diagrams
� Requirements diagrams
� Sequence diagrams
Rational Rhapsody 39

http://www.uml-forum.com/specs.htm
http://www.omgsysml.org/

Rational Rhapsody for systems engineers
� Activity diagrams
� Statecharts
� Internal Block diagrams
� Block Definition diagrams
� Parametric diagrams

Special options and wizards
The Rational Rhapsody systems engineering features includes the following automated tools:

� Right-click menu options to perform common tasks quickly
� Wizards that perform repetitive tasks automatically or reduce the number of steps required

to perform a systems engineering operation
40 Getting Started Guide

DoDAF and MODAF development
Rational Rhapsody supplies the DoDAF, MODAF and UPDM Add On allowing engineers to
create a compliant architecture model for their national standard. The Add On products, a template
driven solution, can be customized and extended to meet specific customer requirements. To use
the combined MODAF and DoDAF specification standard for your project, select the UPDM
(Unified Profile for DoDAF and MODAF).

MODAF add on and viewpoints
To provide an effective Model Driven Development Solution for creating MODAF-compliant
architectural models, use the Rhapsody MODAF Add On product together with Rhapsody in
conjunction with a sound Systems Engineering Process and Methodology.

In addition to the MODAF variations of the standard DoDAF views, the Rational Rhapsody
MODAF supports these viewpoints:

� Strategic viewpoint represents, in an abstract manner, what you want to do over time. It
documents the strategic picture of how a capability (for example, a military capability) is
evolving in order to support capability deployment and equipment planning. The
Strategic, Operational, and Systems viewpoints have a layered relationship.

� Acquisition viewpoint is partly derived from elements of the Strategic viewpoint and
provides information for the Operational and Systems viewpoints. The Acquisition
viewpoint represents acquisition program dependencies, timelines, and the status of MOD
Defence Lines of Development (DLOD, equivalent to U.S. Department of Defense
DOTMLFPs) status so that the various MOD programs are managed and synchronized
correctly. Note that the AcV-1 and AcV-2 views are not supported in the Rhapsody
MODAF profile.
Rational Rhapsody 41

DoDAF and MODAF development
DoDAF add on and viewpoints
The Rhapsody DoDAF Add On includes the DoDAF profile, a number of DoDAF helper utilities,
a DoDAF Reporter Template, a Microsoft Word Document Template file, a Rhapsody
ReporterPLUS License, and an image library with a set of public domain graphics for military
applications.

Use the DoDAF profile to define the architecture model in these viewpoints:

� Operational viewpoint. In both DoDAF and MODAF, this view documents the
operational processes, relationships, and context to support operational analyses and
requirements development (meaning it identifies what needs to be accomplished and who
does it).

� Systems viewpoint. In both DoDAF and MODAF, this view documents system
functionality and interconnectivity to support system analysis and through-life
management. (In other words, it relates systems and characteristics to operational needs).

� Technical viewpoint. In both DoDAF and MODAF, this view documents policy,
standards, guidance, and constraints to specify and assure quality expectations.

� All Views viewpoint. In both DoDAF and MODAF, this view provides summary
information for the architecture that enables it to be indexed, searched, and queried. All
Views encompasses all of the other views as there are overarching aspects of architecture
that relate to the Strategic, Acquisition, Operation, Systems, and Technical views.

The DoDAF architecture model includes the following architecture products:
42 Getting Started Guide

DoDAF add on and viewpoints
Architecture
Product

Viewpoint
or View Product Name Product Description

All Views Package AllViews This optional stereotyped package allows you to
add in AV products and other views and
packages, if desired.

AV-1 All Overview and
Summary
Information

This product is typically a text (Word,
FrameMaker, HTML) document. You can add
AV-1documents and launch them by clicking on
them.

AV-2 All Integrated
Dictionary

This is also a text product.

Operational
View

Package This optional stereotyped package is similar to
the All View product. It supports all the
operational products.

OV-1 Operational High-Level
Operational
Concept Graphic

This High-level graphical/ textual description of
the operational concept allows you to import
pictures and other operational elements, such
as Operational Nodes, Human Operational
Nodes, Operational Activities and the relations
among them.

OV-2 Operational Operational Node
Connectivity
Description

This product shows the connections and flows
among operational nodes. This is not an activity
diagram. If desired, activity diagrams (OV-5s) or
state machines (OV-6b) can be used to detail
how the operational nodes and activities
behave. These diagrams are the primary source
of info for the OV-3.

OV-3 Operational Operational
Information
Exchange Matrix

This product shows information exchanged
between nodes and the relevant attributes of
that exchange. OV-3 is generated from the
information shown in OV-2 and other
operational diagrams. This information is stored
as a CSV file and can be added to any product.

OV-5 Operational Operational
Activity Model

This product details the behavior of operational
nodes or more commonly, operational activities.

OV-6a Operational Operational Rules
Model

This product is a textual description of
“business rules” for the operation. It is a
controlled file. One of three products used to
describe the mission objective.

OV-6b Operational Operational State
Transition
Description

This product is a statechart that can be used to
depict the behavior of an operational element
(node or activity). One of three products used to
describe the mission objective.
Rational Rhapsody 43

DoDAF and MODAF development
OV-6c Operational Operational Event
Trace Description

This product is a sequence diagram that
captures the behavioral interactions among and
between operational elements and (in the
Harmony process) captures the operational
contracts among them. One of the three
products used to describe the mission
objective.

OV-7 Operational Logical Data Model This product is a class diagram that shows the
relations among Informational Elements (data
classes). This is similar to entity relationship
diagrams, but is more powerful. This is not an
activity diagram

System View Package This optional stereotyped package is similar to
other views, but contains system elements.

SV-1 Systems Systems
Interface
Description

This product is a structure diagram that contains
System nodes, systems, and system parts and
the connections between them (links). These
can be used with or without ports.

SV-2 Systems Systems
Communications
Description

This product is a structure diagram that shows
the connections among systems via the
communications systems and networks.

SV-3 Systems Systems-Systems
Matrix

This product is generated from the information
in the other system views. SV-3 assumes that
there are links between items stereotyped
SystemNode, System, or System Part and
represents these in an N2 diagram

SV-4 Systems Systems
Functionality
Description

This product represents the connection
between System Functions and Operational
Activities. This is done by drawing a Realize
dependency from the System Function to the
Operational activity on the diagram. System
Functions are mapped onto the system
elements that support them by making the
System Function parts (drawn within), the
system elements. Note that System elements
can also realize system functions. Note that
here, as in almost all the other views, you can
use Performance Parameters (bound to their
constrained elements via anchors) to add
performance data. This is summarized in SV-7.
This is not an activity diagram.

SV-5 Systems Operational
Activity to Systems
Function
Traceability Matrix

This product is a spreadsheet-like generated
view summarizing the relations among system
elements (system nodes, systems and system
parts), system functions that they support, and
the mapping to operational activities.

Architecture
Product

Viewpoint
or View Product Name Product Description
44 Getting Started Guide

DoDAF add on and viewpoints
SV-6 Systems Systems Data
Exchange Matrix

This product shows the information in the flows
(information exchanges) between
system elements. They may be embedded
flows (bound to the links) or they may be flows
independent of links. This is a spreadsheet-like
generated product.

SV-7 Systems Systems
Performance
Parameters Matrix

This is a generated spreadsheet-like product,
showing all the performance parameters and
the elements that they constrain.

SV-8 Systems Systems
Evolution
Description

This product is the system evolution description.
This is an activity diagram (there is a
SystemProject element stereotype to serve as
the "base" for this activity diagram). SV-8
depicts the workflow for system development,
object nodes for products released, and
performance parameters for things like start and
end dates, slack time, etc.

SV-9 Systems Systems
Technology
Forecast

This product is a text document - a
stereotype of a Controlled File.

SV-10a,
SV-10b,
SV-10c

Systems Systems Rules
Model,
Systems State
Transition
Description,
Systems Event
Trace Description

These products are similar to the OV-6a,
OV-6b, and OV-6c products, but they are
separately identified, even though they are
structurally identical.

SV-11 Systems Physical Schema This product is similar to the OV-7 class
diagram. This product uses a class diagram to
show physical schema (data
representation).

Architecture
Product

Viewpoint
or View Product Name Product Description
Rational Rhapsody 45

DoDAF and MODAF development
46 Getting Started Guide

Index
A
Acquisition viewpoint 41
Activity diagrams 40
Actors

in use case diagrams 26
Ada language

sample projects 16
TestConductor sample 16

Aircraft Defense Management Model (ADMS) 19
Analysis 1

system functional 39
Animation

with Eclipse 36
API

callback 16
Java 18
sample applications 17

Applications
API listener 17
Java plug-in 19
plug-ins 17
testing 1

Architecture 1
create new from legacy code 30
DoDAF 42
systems design 39

Archive 31
Automatic Test Generation (ATG) 11
Autosave 29

B
Block Definition diagrams 40
Blocks

Simulink 13
Broker pattern 12
Browsers 7, 25

add items 26
adding elements in 26
copying items 27
deleting items 28
displayed in Eclipse 35
displaying 7
favorites 27
filtering display in 26

moving items 27
re-ordering elements 26
repositioning 25

C
C language

DiffMerge sample 14
Eclipse 33
FunctionalC sample 15
reverse engineering legacy 30
sample projects 14
Simulink profile sample 15
test scenarios 15
TestConductor samples 15

C++ language
DiffMerge sample 12
Eclipse 33
reverse engineering legacy 30
sample projects 11
sample with ports 13
TestConductor samples 14

Categories 25
Checks

samples for external 18
sanitycheckpattern 12

Class 31
ClearCase 31
Close project 29
Code 2

comparison 31
export 6
generated 6
reverse engineering legacy 30

Command-line interface
sample 12

Component 31
Configuration management (CM) 31
CORBA

sample project 12

D
Delete

after search 23
from model 28
Rational Rhapsody 47

Index
Design 1
Development

parallel 31
Diagrams 3, 7

drawing area 7
drawing tools 7
systems engineering 3, 39
UML 3

DiffMerge sample for C 14
DiffMerge sample for C++ 12
DiffMerge tool 31

uses 31
Distributed team 31
Documentation

access from Welcome screen 4
Rational Rhapsody samples 11

DoDAF 41
supported viewpoints 42

Drawing
area 7
icons 8
toolbar 7

Drawing area
displayed in Eclipse 35

E
Eclipse 33

creating new project 33
integrations 33
rational Rhapsody Debug perspective 36
Rational Rhapsody integrations 33
Rational Rhapsody Modeling perspective 35
samples for plugins 18
workarea 34
workflow integration 33

Elements
adding in browser 26
copying in browser 27
moving in browser 27

Embedded systems 1
Export 6
Extension points 18

F
Favorites 27
Files 29

.hep 18
backup 29
project 4
readersettings.ini 20
Word 13

Fixed size block allocation pattern 12
Flowchart

patterns 15
sample 15

Functional analysis 39

G
Generate/Make/Run option 9
Graphical comparisons 31
GUI

recompile sample code 11
Visual C++ 14

H
Handshake pattern 12
Harmony

process 39

I
Icons 7, 8
IDF

in a sample 14
Implementation 1
Import 6, 30
Installation

add-ons 39
repair 11

Interfaces
MFC 13
Rational Rhapsody 7
system for DoDAF 44

Internal Block diagrams 40

J
Java language

API 18
create Eclipse project 34
creating customized plug-ins 37
Eclipse 33
Eclipse plug-in samples 18
sample API plug-ins 19
sample projects 16
statechart simplifier sample 20
TestConductor samples 16

K
Keys

console 14

L
Languages

Ada 16
C 14
C++ 11
48 Getting Started Guide

Index
Java 16
Launching Rhapsody 4
Libraries 30
Limitations

Eclipse 33
forward and backward on Linux 10

Linux
Eclipse limitation 33
forward & backward limitation 10

Listener applications 17
Log 9

M
MasterSlave pattern 12
MFC user interface 13, 15
MicroKernel pattern 12
Microsoft

Windows 4, 7, 10
MKS Source Integrity 31
MODAF 41

supported viewpoints 41
Models

add items 26
delete items 28
samples 2, 11
search & replace 21

N
Names

project 4
replacing 24

NetCentric 19
Nodes 26

O
Operations

search 23
Output 21
Output window 9

displayed in Eclipse 35

P
Packages 25, 31

in Component view 26
Parallel development 31
Parametric diagrams 40
Parts

interaction points 13
Patterns

broker 12
C++ design 12
flowchart 15

master slave 12
MicroKernel 12
static allocation 12

Plug-ins 17, 37
samples for 18, 19

Polling pattern 12
Ports

UML 2 13
Profiles 5, 6

FunctionalC 15
simple plug-in 37
SimulinkInC 15

Project 31
Projects 4

C++ design patterns 12
closing 29
creating new 4
folder 25
in Eclipse 33
node 25
samples 2, 4, 11
saving 29
settings 5
types 5
Word files in 13

Properties
Simplify 20

Proxy pattern 12

R
Rational Rhapsody 1

add-ons 39
animation 36
autosave 29
backup files 29
browser 7, 25
close project 29
diagram drawing tools 7
diagrams 3
drawing icons 8
Eclipse Debug perspective 36
Eclipse Modeling perspective 35
Eclipse platform integration 33
exiting 29
guided tour 7
information 1
launching 4
official samples 2, 4
output window 9
project saving 29
project types 5
recompile samples 11
repair installation 11
reverse engineering 30
sample models 2
samples 11
Rational Rhapsody 49

Index
starting 4
training 1
tutorials 1
units 31
Welcome screen 4
window 8

Real-time systems 1
Redundancy

heterogeneous pattern 12
homogeneous pattern 12

References 23
Replace 21, 24
ReporterPLUS

C sample 15
C++ sample 13
generating sample reports 13
Java sample 16
launch 4

Reports
samples 13

Requirements 1, 39
diagrams 39
in a sample 13
systems engineering 39
view 26
with tags report 13

Reverse engineering 30

S
Samples 2, 11

accessing from Welcome screen 2
Ada 16
Ada TestConductor 16
API for C++ 11
automated railcars system 11
Automatic Test Generation (ATG) 11
C TestConductor 15
C++ design patterns 12
C++ Radio 13
C++ TestConductor 14
CD_Player 11
command-line interface 12
CORBA 12
CPP for callback API 16
DiffMerge 12, 14
directory 2
Dishwasher 12, 14, 16
Elevator 12, 14
flowchart 15
FunctionalC 15
Handset 13
hhs (home heating system) 13, 15
HomeAlarm 13, 16
HomeAlarm with Ports for C++ 13
icon on Welcome screen 2
Java API 18

Java for callback API 17
Java plug-in 19
Java TestConductor 16
NetCentric 19
official Rational Rhapsody 2
Pacemaker 13, 15
PingPong 13
plug-in 37
radio 15
recompile GUI code 11
ReporterPLUS 13
requirements 13
Simulink 13
Simulink in C 15
statecharts 20
SysML profile 19
systems 19
systems engineering 19
telecommunications for C 15
telecommunications for C++ 13
Tetris 14
UML 2.0 14
VB 20
VB for callback API 17
VB post simplification 19
VBA for callback API 17

Sanity check pattern 12
Saving

autosave 29
project 29

Scenarios
testing in C 15

Search 21
and replace 24
delete item 23
launch methods 21
references 23
results 9
results changes 23

Sequence diagrams 39
multiple 13

Simplify property 20
Simulation 1
Simulink

C sample 15
C++ sample 13

Software developers 1, 30
Statecharts 40

samples 20
Simplifier property 20
VB simplifier 20
writer rules 20

Static priority pattern 12
Strategic viewpoint 41
SysML 1, 39

handset sample 19
sample model 19
50 Getting Started Guide

Index
Systems
embedded 1
engineers 1
real-time 1
samples 19

Systems engineering 39
automated tools 40
diagrams 3, 39
samples 19

T
TestConductor 14, 15, 16
Testing 1

sample project 15
Time slicing pattern 12
Tutorials 1

samples created in 2

U
UML 1, 39

ports 13
sample 2.0 project 14

Units 31
UPDM 41
Use case diagrams 39

V
VB

post simplification sample 19
user-defined simplifier sample 20

VBA 14
sample for callback API 17

Viewpoints
acquisition for MODAF 41
all views for DoDAF and MODAF 42
DoDAF 42
operational for DoDAF and MODAF 42
strategic for MODAF 41
systems for DoDAF and MODAF 42
technical for DoDAF and MODAF 42

W
Watchdog

pattern 12
Welcome screen 4

accessing model samples 2
Windows 8

Eclipse integrations 33
managing 10
open 10
output 9

Word
files in project 13
Rational Rhapsody 51

Index
52 Getting Started Guide

	Contents
	Rational Rhapsody basics
	Rational Rhapsody scope
	Software development in Rational Rhapsody
	Rational Rhapsody diagrams
	Starting Rational Rhapsody
	Creating a new project
	Project profiles
	Project import and export

	Rational Rhapsody guided tour
	Location of Rational Rhapsody icons
	Output window
	Managing windows

	Rational Rhapsody samples
	Search and replace in models
	Searching models
	Working with search results
	Replacing

	The Rational Rhapsody browser
	Repositioning the browser
	Filtering the browser display
	Re-ordering the browser elements
	Adding browser items
	Moving and copying browser items
	Creating a list of favorites
	Deleting browser items

	Saving the project
	Closing the project and exiting Rational Rhapsody
	Reverse engineering legacy source code
	Parallel development

	Rational Rhapsody and Eclipse basics
	Standard Rational Rhapsody and the platform integration
	Creating a Rational Rhapsody project in Eclipse
	Guided tour of the Eclipse platform integration
	Creating Java plug-ins

	Rational Rhapsody for systems engineers
	Rational Rhapsody for systems engineers
	Diagrams for systems engineering
	Special options and wizards

	DoDAF and MODAF development
	MODAF add on and viewpoints
	DoDAF add on and viewpoints

	Index

