

Rhapsody®
Systems Engineering Tutorial

Before using the information in this manual, be sure to read the “Notices” section of
the Help or the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Rhapsody Basics for Systems Engineers . 1
Installing and Launching Systems Engineering. 2

SysML Profile Features. 3

Handset Model Problem Statement . 5

Starting Rhapsody. 6
Creating a New SysML Project . 6
Saving a Project . 7

Creating Backups . 8

Project Files and Directories . 9

Rhapsody Guided Tour for Systems Engineers. 10
Main Menu . 10
Drawing Toolbar . 10
Output Window and Icons . 11

Naming Conventions and Guidelines . 12
Standard Prefixes . 12
Guidelines for Naming Model Elements . 12

Inserting a Diagram Title. 13

Using Packages to Organize a System Model . 14

Requirements Capture and Analysis . 15
Importing Requirements into Rhapsody . 15

Modeling the Handset Requirements . 16
Adding the Requirements as Textual Annotations . 17
Adding the Requirements to the Diagram . 18
Drawing and Defining the Dependencies . 19

Creating a Use Case Diagram . 22
Drawing the Boundary Box . 22
Drawing the Actors . 22

Adding Use Cases to the Functional Overview . 23
Defining Use Case Features . 24
Rhapsody iii

Table of Contents
Associating Actors with Use Cases. 26
Drawing Generalizations . 27
Drawing the Place Call Overview UCD . 28
Drawing the Use Cases . 28
Defining Use Case Features . 29
Drawing Generalizations . 29
Drawing Requirements . 30
Setting the Display Options for Model Elements . 30
Drawing Dependencies . 30
Defining the Stereotype of a Dependency . 31

Capturing the Design Structure . 33
Creating an Block Definition Diagram . 34

Drawing Blocks . 35
Adding Actors to the Diagram . 36
Drawing Service Ports, Flows, and Links . 37
Organizing the Blocks Package . 49
Drawing the Internal Block Diagram . 51
Drawing Service Ports. 53
Changing the Placement of Ports . 53

Creating the DataLink Internal Block Diagram . 55
Drawing the RegistrationMonitor Part . 55
Drawing the Registration Request Port . 56
Linking the Request and DataLink Ports . 56
Specifying the Port Contract and Attributes . 56

Creating the MobilityManagement Internal Block Diagram. 58
Drawing the Registration, Location, and MMCallControl Parts . 58
Drawing Service Ports and Links . 59
Specifying the Port Contract and Attributes . 59
Capturing Equations in Parametric Diagrams . 60
Creating a Parametric Diagram. 61
Linking the Diagram to the Model . 62
Creating Flow Ports and Flows . 63
Adding Equations . 64

System Behaviors . 67
Sequence Diagrams Describing Scenarios . 67

Creating a Sequence Diagram . 68
Adding the Actor Lines . 68
Drawing Classifier Roles . 69
Drawing Messages . 70
Drawing an Interaction Occurrence. 72
Rhapsody iv

Table of Contents
Diagramming the Network Connection Scenario . 73
Creating the NetworkConnect Sequence Diagram . 73
Drawing Messages . 73
Drawing Interaction Operators . 74

Creating the Connection Management Sequence Diagram . 76
Drawing the System Border . 76
Drawing Classifier Roles . 77
Drawing Messages . 78

Implementation Using an Action Language . 81
Basic Syntax Rules . 81
Frequently Used Statements. 81
Reserved Words . 82

Defining Flow of Control in Activity Diagrams . 83
Creating an Activity Diagram. 83
Defining the MMCallControl Functional Flow . 83
Drawing a Subactivity State . 88
Drawing Transitions . 88

Drawing the InCall Subactivity Diagram . 94
Drawing Action States. 94
Drawing a Default Connector to VoiceData. 94
Drawing Flow Lines. 95
Drawing a Timeout Activity Flow . 95

Creating the RegistrationReq Activity Diagram . 96
Drawing Action States. 96
Defining the InitiateRequest Action State . 97
Drawing a Default Connector . 97
Drawing Flows. 97
Drawing a Timeout Flow . 98

Modeling Behavior in Statecharts . 99
Creating a Statechart . 99
Drawing States . 99
Drawing Default Connectors . 101
Drawing Transitions . 101
Checking Action Language Entries . 104

System Validation . 105
Preparing for Simulation. 106

Creating a Component . 106
Setting the Component Features . 106
Creating a Configuration . 108
Setting the Configuration Features . 108
Rhapsody v

Table of Contents
Simulating the Model . 109
Creating Initial Instances. 110
Break Command . 111

Preparing to Web-enable the Model . 112
Creating a Web-Enabled Configuration. 112
Selecting Elements to Web-enable . 114
Building the Panel . 114
Navigating to the Model through a Web Browser . 115
Viewing and Controlling a Model. 116
Sending Events to Your Model . 116

Generating Reports . 119
ReporterPLUS . 119

Examining and Customizing ReporterPlus Templates . 120
Using the System Model Template . 122
Generating Reports . 123

Using the Internal Reporting Facility. 124
Producing an Internal Report . 124
Using the Internal Report Output . 125
Rhapsody vi

Rhapsody Basics for Systems Engineers
Welcome to the Systems Engineering Tutorial. Rhapsody allows systems engineers to capture and
analyze requirements quickly and then design and validate system behaviors.

A Rhapsody systems engineering project includes the UML and SysML diagrams, packages, and
simulation configurations that define the model. Systems engineers may use the SysML Profile
Features or the Harmony profile and process to guide software development through this iterative
development process:

� Perform system analysis to define and validate system requirements
� Design and specify the system architecture
� Systems analysis and design
� Software analysis and design
� Software implementation
� Validate and simulate the model to perform detailed system testing

Rhapsody’s system engineering features allow system designers to hand off their work to software
developers accurately and easily.

This tutorial provides step-by-step instructions demonstrating the tasks systems engineers can
accomplish using the SysML profile in Rhapsody.
Rhapsody 1

Rhapsody Basics for Systems Engineers
Installing and Launching Systems Engineering
Rhapsody’s Systems Engineering add-on requires these extra installation steps and start-up steps:

1. Follow the instructions in the Rhapsody Installation Guide to install the development
environments you need.

2. When the installation program displays the Setup Type window, select Typical. Click
Next.

3. The Add-on Installation window displays. Check the System Engineering Add-On
option, as shown.

4. Click Next and complete the installation as instructed.

5. When you want to start Rhapsody, select the Windows Start > Programs > Telelogic >
Telelogic Rhapsody (version) > (Rhapsody Edition) > Rhapsody.

The Custom installation makes the systems engineering features available to support the UML and
SysML standards in these specifications:

� UML specification

� SysML specification
2 Systems Engineering Tutorial

http://www.uml-forum.com/specs.htm
http://www.omgsysml.org/

SysML Profile Features
SysML Profile Features
In this tutorial, you select the SysML profile for your project. With this profile, Rhapsody provides
a starting point with a blank Block Definition Diagram (named Model1), packages, and predefined
types, as shown in SysML Profile Elements. This profile is Rhapsody’s implementation of the
OMG SysML Specification. The Rhapsody SysML profile provides this additional functionality for
your model:

� SysML enhancements to standard UML diagrams including the Use Case, Requirements,
Activity, Sequence diagrams and Statecharts

� SysML’s Block Definition, Internal Block, Package, and Parametric diagrams
� XMI 2.1 support

SysML Profile Elements

The SysML profile also contains read-only (RO) packages and a read-only ProfileStructure object
model diagram for you to use as reference of the available Rhapsody SysML features in the
profile.
Rhapsody 3

http://www.omgsysml.org/

Rhapsody Basics for Systems Engineers
Note
The items listed under Profiles in the browser are not intended to be used as part of a
working model. They are for information purposes only.

When you create a new project, Rhapsody creates a directory containing the project files in the
specified location. The name you choose for your new project is used to name project files and
directories, and appears at the top level of the project hierarchy in the Rhapsody browser.
Rhapsody provides several default elements in the new project, including a default package,
component, and configuration.
4 Systems Engineering Tutorial

Handset Model Problem Statement
Handset Model Problem Statement
This tutorial shows you how to use Rhapsody to analyze, design, and build a model of a wireless
telephone. Before you begin creating this model, you need to consider the functions of the wireless
telephone. Wireless telephony provides voice and data services to users placing and receiving
calls. To deliver services, the wireless network must receive, set up, and direct incoming and
outgoing call requests, track and maintain the location of users, and facilitate uninterrupted service
when users move within and outside the network.

When the wireless user initiates a call, the network receives the request, and validates and registers
the user; once registered, the network monitors the user’s location. In order for the network to
receive the call, the wireless telephone must send the minimum acceptable signal strength to the
network. When the network receives a call, it directs it to the appropriate registered user.

Note
To minimize the complexity of the tutorial, the operations have been simplified to focus on
the function of placing a call.
Rhapsody 5

Rhapsody Basics for Systems Engineers
Starting Rhapsody
This section presents the basic concepts to start a Rhapsody project and use the Rhapsody
interface.

To start Rhapsody, follow these steps:

1. Select Start > All Programs > Telelogic > Telelogic Rhapsody (version) > (Rhapsody
Edition) > Rhapsody.

2. If the system opens with the Tip of the Day dialog box, close it to start working in
Rhapsody.

Creating a New SysML Project

A Rhapsody project includes the UML and SysML diagrams, packages, and simulation
configurations that define the model. When you create a new project, Rhapsody creates a directory
containing the project files in the specified location. The name you choose for your new project is
used to name project files and directories, and appears at the top level of the project hierarchy in
the Rhapsody browser. Rhapsody provides several default elements in the new project, including a
default package, component, and configuration.

To create a new SysML project, follow these steps

1. Click the New icon on the main toolbar or select File > New. The New Project dialog
box opens.

2. In the Project name field, type Handset as the name of the project.

3. In the In folder field, enter the directory in which the new project will be located, or click
the Browse button to select the directory.
6 Systems Engineering Tutorial

Starting Rhapsody
4. In the Type field, select the SysML profile so that you will be able to use the SysML
modeling language and all of the systems engineering diagrams. Your dialog box should
resemble this example.

5. Click OK. Rhapsody verifies that the specified location exists. If it does not, Rhapsody
asks whether you want to create it.

6. Click Yes. Rhapsody creates a new project in the Handset subdirectory, opens the
project, and displays the browser in the left pane.

Note
If the browser does not display, select View > Browser.

Saving a Project

Use the Save command to save the project in its current location. The Save command saves only
the modified units, reducing the time required to save large projects. To save the project to a new
location, use the Save As command.

Rhapsody performs an autosave every ten minutes to back up changes made between saves.
Modified units are saved in the autosave folder, along with any units that have a time stamp older
than the project file.

To save the project in the current location, use one of the following methods:

1. Select File > Save.

2. Click the Save icon in the toolbar.
Rhapsody 7

Rhapsody Basics for Systems Engineers
Creating Backups
To set up automatic backups for your new project, follow these steps:

1. In the browser, right-click the Handset item in the browser list.

2. Select Features from the pop-up menu.

3. Click the Properties tab at the top of the dialog box that then displays.

4. Click the All radio button to display all of the properties for this project.

5. Expand the General and then the Model property lists. (Rhapsody descriptions use a
notation method with double colons to identify the location of a specific property, for
example, General::Model::BackUps.)

6. Locate the BackUps property and select Two from the pull-down menu, as shown below.
With this setting, Rhapsody creates up to two backups of every project in the project
directory.

7. Click OK to save this property change.

After this change, saving a project more than once creates <projectname>_bak2.rpy contains the
most recent backup and the previous version in <projectname>_bak1.rpy. To restore an earlier
version of a project, you can open either of these backup files.
8 Systems Engineering Tutorial

Project Files and Directories
Project Files and Directories
Rhapsody creates the following files and subdirectories in the project directory:

� A project file, called <project_name>.rpy
� A repository directory, called <project_name>_rpy, which contains the unit files for

the project, including diagrams, packages, and code generation configurations
� An event history file, called <project_name>.ehl, which contains a record of events

injected during animation, and active and nonactive breakpoints
� Log files, which record when projects were loaded and saved in Rhapsody
� A .vba file, called <project_name_>.vba, which contains macros or wizards
� Backup project files and directories

� An _RTC directory, which holds any tests created using the Rhapsody TestConductor™
add-on

Note
Rhapsody requires the project file (<project_name>.rpy) and the repository directory
(<project_name>_rpy) to simulate the model.
Rhapsody 9

Rhapsody Basics for Systems Engineers
Rhapsody Guided Tour for Systems Engineers
Before proceeding with this tutorial, you need to become familiar with the main features of the
Rhapsody user interface. The Rhapsody GUI has three primary work areas (browser, drawing area,
and output window), a Drawing toolbar in the center of the interface, and a main menu across the
top with project management and diagram icons under it.

The following example shows the Rhapsody interface with features for systems engineers.

Main Menu

The main menu across the top of the window provides file management capabilities and access to
special tools. Many of the menu options can also be performed using the icons below the menu.

Drawing Toolbar

Rhapsody displays different icons on the Drawing toolbar for each UML or SysML diagram type.
The uses of the individual icons are demonstrated within this tutorial as they are used.

Browser
The browser shows the contents of the project in an expandable tree structure. By default, it is the
upper, left-hand part of the Rhapsody GUI. The top-level folder, which contains the name of the
project, is the project folder or project node. Although this folder contains no elements, the folders

gDrawing Area

Main
Menu

Browser

Drawing Toolbar
10 Systems Engineering Tutorial

Rhapsody Guided Tour for Systems Engineers
that reside under it contain elements that have similar characteristics. These folders are referred to
as categories.

A project consists of at least one package in the Packages category. A package contain elements,
such as and diagrams. Rhapsody automatically creates a default package called Default, which it
uses to save model parts unless you specify a different package.

Output Window and Icons

The output window displays Rhapsody messages when animating a model or performing other
tasks, such as a search or check model operation. These tabbed output windows display at the
bottom of the window, but they can be moved.

Rhapsody 11

Rhapsody Basics for Systems Engineers
Naming Conventions and Guidelines
To assist all members of your team in understanding the purpose of individual items in the model,
it is a good idea to define naming conventions. These conventions help team members to read the
diagram quickly and remember the model element names easily.

Note
Remember that the names used in the Rhapsody models are going to be automatically
written into the generated code. Therefore, the names should be simple and clearly label all
of the elements.

Standard Prefixes

Lower and upper case prefixes are useful for model elements. The following is a list of common
prefixes with examples of each:

� Event names = “ev” (evStart)
� Trigger operations = “op” (opPress)
� Condition operations = “is” (isPressed)
� Interface classes = “I” (IHardware)

Guidelines for Naming Model Elements

The names of the model elements should follow these guidelines:

� Class names begin with an upper case letter, such as “System.”
� Operations and attributes begin with lower case letters, such as “restartSystem.”
� Upper case letters separate concatenated words, such as “checkStatus.”
� The same name should not be used for different elements in the model because it will

cause code generation problems. For example, no two elements, such as a class, an
interface, and a package, should not have exactly the same name.
12 Systems Engineering Tutorial

Inserting a Diagram Title
Inserting a Diagram Title
Each diagram has its name in the diagram table and in the title bar of the window that displays the
diagram. However, it is also useful to add a title to a diagram to help other members of your team
understand the content and purpose of a diagram. It may be any text you wish. To add this optional
title to your sequence diagram, follow these steps:

1. With the new diagram displayed in the drawing area, click the Text icon at the top of
the window.

2. Click above the items in the diagram and type the title of the diagram.

3. You may reposition the title by dragging it into a new location.

4. You may change the font style using the text icons at the top of the window.
Rhapsody 13

Rhapsody Basics for Systems Engineers
Using Packages to Organize a System Model
You may use packages to structure the model into functional domains or subsystems consisting of
blocks, block types, functions, variables, and other logical artifacts. Packages can also provide a
hierarchy for high-level partitioning that might include the following:

� Requirements contains the system’s functional requirements.
� Analysis contains the use case diagrams to identify the system requirements.
� Architecture contains the block definition diagram detailing the system model design

and information flow.
� Subsystems contains the lower-level of system decomposition.

Note
Any of the model elements within the above packages can be linked to other elements to
demonstrate requirements traceability.

To organize your model into the logical packages, follow these steps:

1. In the browser, expand the Packages category.

2. Double-click the Default package and rename it Requirements.

3. Right-click Packages in the browser and select Add New Package. Rhapsody creates a
package with the default name package_n, where n is greater or equal to 0.

4. Rename more packages named Architecture and Subsystems, as shown in this
browser example.
14 Systems Engineering Tutorial

Requirements Capture and Analysis
This section describes importing requirements using the Rhapsody Gateway and using use case
diagrams (UCDs) to show the main system functions and the entities that are outside the system
(actors). The use case diagrams specify the requirements for the system and demonstrate the
interactions between the system and external actors.

Importing Requirements into Rhapsody
You may use the Rhapsody Gateway product to define specific requirements to support your
analysis.

This add-on product allows Rhapsody to hook up seamlessly with third-party requirements and
authoring tools for complete requirements traceability. The Rhapsody Gateway includes the
following features:

� Traceability of requirements workflow on all levels, in real-time
� Automatic management of complex requirements scenarios for intuitive and

understandable views of upstream and downstream impacts
� Creates impact reports and requirements traceability matrices to meet industry safety

standards
� Connects to common requirements management/authoring tools including DOORS,

Requisite Pro®, Word®, Excel® Powerpoint PDF®, ASCII, Framemaker, Interleaf, Code
and Test files

� A bidirectional interface with the third-party requirements management and authoring
tools

� Monitoring of all levels of the workflow, for better project management and efficiency
Rhapsody 15

Requirements Capture and Analysis
Modeling the Handset Requirements
To create the handset’s Requirements and Functional Overview as a use case diagrams, you must
identify the system requirements including the actors, the major function points of the system, and
the relationships between them.

Note
Rhapsody supports both black-box (probing the external behavior of a program with inputs)
and the next white-box (understanding the program code) analysis approaches.

First, consider the actors that interact with the system:

� MMI—Handset user interface, including the keypad and display
� Network—System network or infrastructure of the signalling technology

Next, consider the system function points:

� The handset enables users to place and receive calls.
� The network receives incoming and outgoing call requests, and tracks users.

The actors interact with the system in the following ways:

� The MMI places and receives calls.
� The network tracks users, monitors signal strength, and provides network status and

location registration.
16 Systems Engineering Tutorial

Modeling the Handset Requirements
Drawing the Requirements Diagram
The Requirements diagram graphically shows the relationship among textual requirement
elements.

To create the Requirements diagram, follow these steps:

1. Right-click the _Requirements package in the browser and select Add New > Use Case
Diagram from the pop-up menu.

2. Type Requirements for the name.

3. Click OK.

Adding the Requirements as Textual Annotations

You can represent requirements in the browser and diagrams as requirement elements.
Requirement elements are textual annotations that describe the intent of the element.

The handset model contains the following requirements:

To add these requirements to Rhapsody, follow these steps:

1. In the browser, right-click the _Requirements package, and select Add New >
Requirement from the pop-up menu. Rhapsody creates the Requirements category and
a requirement with a default name of requirement_n, where n is greater than or equal
to 0.

2. Rename the requirement Req.1.1.

3. Double-click Req.1.1, and the dialog box opens.

Name Specification

Req.1.1 The mobile shall be fully registered before a place call sequence can begin.

Req.1.2 The mobile shall have a signal strength within +/- 1 of the minimum
acceptable signal.

Req.3.1 The mobile shall be able to place short messages while registered.

Req.3.2 The mobile shall be able to receive short messages while registered.

Req.4.0 The mobile shall be able to receive data calls at the rate of 128 kbps.

Req.4.1 The mobile shall be able to send data at the rate of 384 kbps.

Req.4.2 The mobile shall be able to receive streaming video at 384 kbps.

Req.5.6 The mobile shall be able to receive a maximum of 356 characters in a short
message.

Req.6.2 The optimal size of messages the mobile can send in a text message is 356
characters.
Rhapsody 17

Requirements Capture and Analysis
4. Type the following in the Specification field:

The mobile shall be fully registered before a place call sequence can begin.

The dialog box should be similar to this example.

5. Click OK to apply the changes and close the dialog box.

6. Add the remaining requirements and their specifications in the same manner.

Adding the Requirements to the Diagram

To add these requirements to the Requirements diagram, follow these steps:

1. In the browser, expand the Packages and the _Requirements category.

2. Select Req.4.2 and drag it to the top left of the Requirements drawing area.

3. Select Req.4.1 and drag it below Req.4.2.

4. Select Req.3.2 and drag it to the top center of the drawing area.

5. Select Req.4.0 and drag it to the lower left side of Req.3.2.

6. Select Req.5.6 and drag it to the lower right side of Req.3.2.

7. Select Req.6.2 and drag it below Req.5.6.
18 Systems Engineering Tutorial

Modeling the Handset Requirements
Note
For each requirement, right-click on the drawing of the requirement and select Display
Options. Click the Name only radio button and then OK to show the requirement name and
not the path on the diagram.

Drawing and Defining the Dependencies

A dependency is a direct relationship in which the function of an element requires the presence of
and may change another element. You can show the relationship between requirements, and
between requirements and model elements using dependencies.

In this example, you set the following types of dependency stereotypes:

� Derive—A requirement is a consequence of another requirement.
� Trace—A requirement traces to an element that realizes it.

Now you will define the relationships between requirements with dependencies:

1. Click the Dependency icon .

2. Draw a dependency line from Req.4.2 to Req.4.1. Right-click on the line and select
Features from the menu. Select derive as the Stereotype, as shown in this example.

3. Click OK to save the change and close the dialog box.

4. Draw a dependency line from Req.4.1 to Req.4.0. Right-click on the line and select
Features from the menu. Select derive as the Stereotype and click OK.

5. Draw a dependency line from Req.4.0 to Req.3.2. Right-click on the line and select
Features from the menu. Select trace as the Stereotype and click OK.

6. Draw a dependency line from Req.5.6 to Req.3.2. Right-click on the line and select
Features from the menu. Select trace as the Stereotype and click OK.
Rhapsody 19

Requirements Capture and Analysis
7. Draw a dependency line from Req.6.2 to Req.5.6. Right-click on the line and select
Features from the menu. Select derive as the Stereotype and click OK.

At this point the Requirements diagram should be similar to this example.
20 Systems Engineering Tutorial

Modeling the Handset Requirements
Rhapsody automatically adds the dependency relationships to the browser as shown in this
example.
Rhapsody 21

Requirements Capture and Analysis
Creating a Use Case Diagram
To create a new use case diagram (UCD) containing the actors and basic use cases, follow these
steps:

1. Start Rhapsody if it is not already running and open the handset model if it is not already
open.

2. In the browser right-click the Analysis package, and select Add New > Use Case
Diagram from the pop-up menu. The New Diagram dialog box opens.

3. In the Name field replace the generated name with Functional_Overview, then click
OK.

Rhapsody automatically adds the Use Case Diagrams category and the Functional_Overview in
the browser. Then it opens the new diagram in the drawing area.

Drawing the Boundary Box

The boundary box delineates the system under design from the external actors. Use cases are
inside the boundary box; actors are outside the boundary box.

To draw the boundary box, follow these steps:

1. Click the Create Boundary box icon on the Drawing toolbar.

2. Click in the upper, left corner of the drawing area and drag to the lower right. Rhapsody
creates a boundary box, named System Boundary Box.

3. Rename the boundary box Handset Protocol Stack.

Drawing the Actors

Create the following two actors that interact with the system: MMI and Network.

To draw the actors, follow these steps:

1. Click the Create Actor icon on the Drawing toolbar.

2. Click the left side of the drawing area. Rhapsody creates an actor with a default name of
actor_n, where n is greater than or equal to 0.

3. Rename the actor MMI, then press Enter.
22 Systems Engineering Tutorial

Adding Use Cases to the Functional Overview
Note
Because code can be generated using the specified names, do not include spaces in the
names of actors.

4. Draw an actor on the right side of the drawing area named Network, then press Enter.

At this point, the browser and diagram should be similar to this example.

Adding Use Cases to the Functional Overview
The Functional Overview needs the following use cases:

� Place Call—The user can place various types of calls.
� Supplementary Service—The system can provide services, such as messaging, call

forwarding, call holding, call barring, and conference calling.
� Receive Call—The system can receive various types of calls.
� Provide Status—The system can provide network status, user location, and signal

strength.
Rhapsody automatically adds the Use Case Diagrams category and the new UCD to the package
in the browser and opens the new diagram in the drawing area.

To draw these use cases in the Functional Overview, follow these steps:

1. Click the Create Use Case icon on the Drawing toolbar.
Rhapsody 23

Requirements Capture and Analysis
2. Click in the upper left of the boundary box. Rhapsody creates a use case with a default
name of usecase_n, where n is equal to or greater than 0.

3. Rename the use case Place Call.

4. Create three more use cases inside the boundary box named Supplementary Service,
Receive Call, and Provide Status. At this point the Functional Overview diagram
should be similar to this example.

Defining Use Case Features

You can define the features of a use case, associate the use case with a different main diagram, and
enter a description using the Features dialog box. You can access the Features dialog box from the
browser or the diagram.

To define use case features, follow these steps:

1. In the browser, expand the Analysis package and Use Cases category. Double-click the
Place Call use case, or right-click and select Features from the pop-up menu. The
Features dialog box opens.

2. In the Description text field, type the following text to describe the purpose of the Place
Call use case:

General function of the system is that it must be able to place
various types of calls.
24 Systems Engineering Tutorial

Adding Use Cases to the Functional Overview
To use the internal editor to enter the text, click the ellipse button. The completed
dialog box should resemble this example.

3. Click OK to apply the changes and close dialog box.

4. Open the Features dialog box for the Supplementary Service use case, and type the
following in the Description text field to describe its purpose:

A supplementary service is a short message, call forwarding, call
holding, call barring, or conference calling.

5. Click OK to apply the changes and close dialog box.

6. Open the Features dialog box for the Receive Call use case, and type the following in
the Description text field to describe its purpose:

General function of the system is that it must be able to
receive and terminate calls.

7. Click OK to apply the changes and close dialog box.

8. Open the Features dialog box for the Provide Status use case, and type the following in
the Description text field to describe its purpose:
Rhapsody 25

Requirements Capture and Analysis
The stack must be able to communicate with the network in order
to provide the user with visual status such as signal strength
and current registered network. It must also be able to handle
user requests for network status and location registration.

9. Click OK to apply the changes and close dialog box.

Associating Actors with Use Cases

The MMI actor places calls and receives calls. The Network actor notifies the system of incoming
calls and provides status. In this example, you create the associations showing the connections
between actors and the relevant use cases using association lines.

To draw association lines, follow these steps:

1. Click the Create Association icon on the Drawing toolbar.

2. Click the edge of the MMI actor, then click the edge of the Place Call use case.
Rhapsody creates an association line with the name label highlighted. You do not need to
name this association, so press Enter.

3. Create an association between the MMI actor and the Receive Call use case, then press
Enter.

4. Create an association between the Network actor and the Receive Call use case, then
press Enter.

5. Create an association between the Network actor and the Provide Status use case,
then press Enter.

6. In the browser, expand the Actors category to view these relations for the actors and use
cases.

The MMI actor has two new relations:

� itsPlace Call—The role played by the Place Call use case in relation to this
actor

� itsReceive Call—The role played by the Receive Call use case in relation
to this actor

The Network actor also has two new relations:
� itsProvide Status—The role played by the Provide Status use case in

relation to this actor
� itsReceive Call—The role played by the Receive Call use case in relation

to this actor
26 Systems Engineering Tutorial

Adding Use Cases to the Functional Overview
Drawing Generalizations

A generalization is a relationship between a general element and a more specific element. The
more specific element inherits the properties of the general element and is substitutable for the
general element. A generalization lets you derive one use case from another.

The Supplementary Service use case is a more specific case of placing a call, and it is a more
specific case of receiving a call. In this example, you will draw generalizations indicating that
Supplementary Service is derived from the Place Call use case and the Receive Call use
case.

To draw a generalization, follow these steps:

1. Click the Create Generalization icon on the Drawing toolbar.

2. Click the Supplementary Service use case and draw a line to the Place Call use
case.

3. Click the Supplementary Service use case and draw a line to the Receive Call use
case.

4. In the browser, expand the Supplementary Service use case and note that Place
Call and Receive Call are SuperUseCases for Supplementary Service.

You have completed drawing the Functional Overview UCD. Your diagram should be similar to
this example.
Rhapsody 27

Requirements Capture and Analysis
Drawing the Place Call Overview UCD

The Place Call Overview UCD breaks down the Place Call use case and identifies the different
types of calls that can be placed as use cases.

To create the Place Call Overview UCD, follow these steps:

1. In the browser, right-click the Use Case Diagrams category in the Analysis package,
and select Add New Use Case Diagram from the pop-up menu. The New Diagram
dialog box opens.

2. Type Place Call Overview, then click OK.

Rhapsody automatically adds the name of the new UCD to the browser, and opens the new
diagram in the drawing area.

Drawing the Use Cases

The Place Call Overview UCD contains the following uses cases:

� Place Call—The user can place various types of calls. You defined the Place Call use
case in the Functional Overview UCD.

� Data Call—The user can originate and receive data requests. It is a more specific case of
placing a call.

� Voice Call—The user can place and receive voice calls, either while transmitting or
receiving data, or standalone. It is a more specific case of placing a call.

To draw the use cases, follow these steps:

1. In the browser, expand the Analysis package and Use Cases category.

2. Select the Place Call use case and drag it to the top center of the UCD.

3. Click the Create Use Case icon on the Drawing toolbar.

4. Create a use case in the lower left of the drawing area, named Data Call.

5. Create a use case in the lower right of the drawing area, named Voice Call.
28 Systems Engineering Tutorial

Adding Use Cases to the Functional Overview
Defining Use Case Features

Now you add descriptions to the Data Call and Voice Call use cases as follows:

1. In the Place Call Overview UCD or browser, double-click the Data Call use case, or
right-click and select Features from the pop-up menu. The Features dialog box opens.

2. In the Description text field, type the following text to describe its purpose:

The stack must be able to originate and receive data requests of
up to 384 kbps. Data calls can be originated or terminated while
active voice calls are in progress.

3. Click OK to apply the changes and close the Features dialog box.

4. Double-click the Voice Call use case, or right-click and select Features from the pop-up
menu. The Features dialog box opens.

5. In the Description text field, type the following text to describe its purpose:

The user must be able to place or receive voice calls, either
while transmitting or receiving data, or standalone. The limit
of the voice calls a user can engage in at once is dictated by
the conference call supplementary service.

6. Click OK to apply the changes and close the Features dialog box.

Drawing Generalizations

In this example, draw generalizations to show that the Data Call use case and the Voice Call
use case derive from the Place Call use case as follows:

1. Click the Create Generalization icon on the Drawing toolbar.

2. Click the edge of the Data Call use case and draw the line to the edge of the Place
Call use case.

3. Click the edge of the Voice Call use case and draw the line to the edge of the Place
Call use case.

In the next section, you add the requirements elements to the model and then draw the
requirements on the Place Call Overview UCD.
Rhapsody 29

Requirements Capture and Analysis
Drawing Requirements

You can add requirement elements to UCDs to show how the requirements trace to the use cases.

To add the requirements to the use case diagram, follow these steps:

1. Select Req.1.1 and drag it to the right of the Place Call use case.

2. Select Req.4.1 and drag it to the lower left of the Data Call use case.

3. Select Req.4.2 and drag it to the lower right of the Data Call use case.

Setting the Display Options for Model Elements

You can set the type of information and the graphical format to display for model elements using
the Display Options dialog box.

In this example, you will set the display options to Name to show only the name of the
requirement on the diagram as follows:

1. Right-click Req.1.1 in the diagram and select Display Options from the pop-up menu.
The Requirement Display Options dialog box opens.

2. The Show group box specifies the information to display for the requirement. Select the
Name radio button to display the name of the requirement.

3. Click OK.

4. Set the display options for Req.4.1 and Req.4.2 to Name.

Drawing Dependencies

In this example, draw dependencies between the requirements and the use cases as follows:

1. Click the Dependency icon on the Drawing toolbar.

2. Click the Req.1.1 requirement and draw a line to the Place Call use case.

3. Click the Req.4.1 requirement and draw a line to the Data Call use case.

4. Click the Req.4.2 requirement and draw a line to the Data Call use case.

5. Click the Req.4.2 requirement and draw a line to Req.4.1.

6. In the browser, expand the Requirements category to check that the dependency
relationship is listed there.
30 Systems Engineering Tutorial

Adding Use Cases to the Functional Overview
Defining the Stereotype of a Dependency

You can specify the ways in which requirements relate to other requirements and model elements
using stereotypes. A stereotype is a modeling element that extends the semantics of the UML
metamodel by typing UML entities. Rhapsody includes predefined stereotypes, and you can also
define your own stereotypes. Stereotypes are enclosed in guillemets on diagrams, for example,
«derive».

To define the stereotype of a dependency, follow these steps:

1. Double-click the dependency between Req.1.1 and Place Call, or right-click and
select Features from the pop-up menu.

2. Select trace from the Stereotype pull-down list.

3. Click OK to apply the changes and close the Features dialog box.

4. Set the stereotype of the dependency between Req.4.1 and Data Call to trace.

5. Set the stereotype of the dependency between Req.4.2 and Data Call to trace.

6. Set the stereotype of the dependency between Req.4.1 and Req.4.2 to derive.
Rhapsody 31

Requirements Capture and Analysis
Your completed drawing the Place Call Overview UCD should be similar to this example.
32 Systems Engineering Tutorial

Capturing the Design Structure
Internal and Block Definition diagrams define the system structure and identify the large-scale
organizational pieces of the system. They can show the flow of information between system
components, and the interface definition through ports. In large systems, the components are often
decomposed into functions or subsystems.

This section demonstrates the creation of the following block diagrams:

� Protocol Stack Architecture (Block Definition Diagram) identifies the system-level
components and flow of information

� ConnectionManagement (Internal Block Diagram)
� DataLink Connections (Internal Block Diagram)
� MobilityManagement (Internal Block Diagram)

Depending on your workflow, you might identify the communication scenarios using sequence
diagrams before defining the flows, flow items, and port contracts. In addition, you might perform
black-box analysis using activity diagrams, sequence diagrams, and statecharts, and white-box
analysis using sequence diagrams before decomposing the system’s functions into subsystem
components.

Block diagrams define the components of a system and the flow of information between
components. Structure diagrams can have the following parts:

� Block contains parts and may also include links inside a block.
� Actors are the external interfaces to the system.
� Service Port is a distinct interaction point between a class, object, or block and its

environment.
� Dependency shows dependency relationships, such as when changes to the definition of

one element affect another element
� Flow specifies the exchange of information between system elements at a high level of

abstraction.
Rhapsody 33

Capturing the Design Structure
Creating an Block Definition Diagram
An Block Definition Diagram identifies the system components (blocks) and describes the flow of
data between the components from a black-box perspective. The following sections describe the
decomposition of these system components (blocks):

� Select
� Block
� Part
� Create Port
� Link
� Flow

To create an block definition diagram, follow these steps:

1. Start Rhapsody if it is not already running and open the handset model if it is not already
open.

2. In the browser, right-click the Architecture package, then select
Add New > Block Definition Diagram from the pop-up menu. The New Diagram dialog
box opens.

3. Type High Level Architecture for the diagram name.

4. Click OK to close the dialog box.

Rhapsody automatically creates the Block Definition Diagrams category in the browser and
adds the name of the new block definition diagram. In addition, Rhapsody opens the new diagram
in the drawing area.
34 Systems Engineering Tutorial

Creating an Block Definition Diagram
Drawing Blocks

Blocks specify the components of the system. The Handset model contains the following three
system components or functions:

� ConnectionManagementBlock handles the reception, setup, and transmission of
incoming and outgoing call requests.

� MobilityManagementBlock handles the registration and location of users.
� DataLinkBlock monitors registration.

To draw the blocks, follow these steps:

1. Click the Block icon in the Drawing toolbar.

2. In the top center of the drawing area, click-and-drag or just click. Rhapsody creates a
block with a default name of block_n, where n is equal to or greater than 0.

3. Rename the block ConnectionManagementBlock.

4. In the upper right of the drawing area, create a block named
MobilityManagementBlock.

5. In the bottom right of the drawing area, create a block named DataLinkBlock.
Rhapsody 35

Capturing the Design Structure
Adding Actors to the Diagram

To create the data flow from and to the actors and the blocks, follow these steps:

1. Open the Analysis and Actors sections of the browser.

2. Drag the MMI and Network actors from the browser into the block diagram. At this point
your diagram should be similar to this example.
36 Systems Engineering Tutorial

Creating an Block Definition Diagram
Drawing Service Ports, Flows, and Links

A service port is a distinct interaction point between a Block or Part and its environment. Service
Ports enable you to capture the architecture of the system by specifying the interfaces between the
system components and the relationships between the subsystems.

A port appears as a small square on the boundary of a Block or Part. To draw service ports, follow
these steps:

1. Click the Service Port icon in the Drawing toolbar.

2. Click on the left edge of ConnectionManagementBlock and create a service port
named call_req. This service port sends and relays messages to and from the user
interface.

3. Click on the right edge of ConnectionManagementBlock and create a service port
named network. This service port sends and relays messages from
MobilityManagementBlock.

4. Click on the right edge of MobilityManagementBlock and create a service port named
mm_network. This service port sends and relays messages from
ConnectionManagementBlock.

5. Click on the bottom edge of MobilityManagementBlock and create a service port
named mm_dl. This service port relays registration information to DataLinkBlock.

6. Click on the top edge of DatalinkBlock and create a service port named dl_in. This
service port relays information between DataLinkBlock and MobilityManagementBlock.

7. Click on the left edge of DatalinkBlock and create a service port named data_net.
This service port relays information between DataLinkBlock and the network.

Rhapsody automatically adds the service ports you created to the Blocks category in the browser.
Rhapsody 37

Capturing the Design Structure
Specifying Service Port Attributes
You can specify ports as behavioral ports to indicate that the messages sent are relayed to the
owner class. A behavioral port terminates an object or part that provides the service.

In this example, set the call_req port to be behavioral port using these steps:

1. Double-click the call_req port or right-click and select Features from the pop-up menu.

2. In the General tab, set Behavior for the Attributes value.

3. Click OK to apply the changes and close the dialog box. At this point your diagram should
resemble this example.
38 Systems Engineering Tutorial

Creating an Block Definition Diagram
Connecting the Architecture through Parts and Links
After specifying the blocks and actors, it is necessary to define the connections between them
before specifying what types of items that flow on those connections. To accomplish this, specify
parts from the blocks and create links between the service ports to define the path the information
flow.

Follow these steps first to change the actors and blocks into parts:

1. Right-click on the ConnectionManagementBlock block and select Make an Object.

2. Right-click on the MobilityManagementBlock block and select Make an Object.

3. Right-click on the DataLinkBlock block and select Make an Object.

4. Right-click on the MMI actor and select Make an Object.

5. Right-click on the Network actor and select Make an Object.

Note
The number 1 that appears in the upper left hand corner of the object boxes indicates the
number of parts in a particular block or actor that exists in this architecture. The user can set
the number manually, but for this example, the number of parts is limited to 1 for each
element.

Creating Ports on Actors
Now create Service Ports on the Actor objects to specify with which Block Parts they
communicate.

1. Select the Service Port icon on the Drawing bar and click on the top of the
itsMMI:MMI object and name the service port ui_req.

2. Place another service port on itsNetwork:Network by clicking on the right side of the
object and name the service port net_in.
Rhapsody 39

Capturing the Design Structure
Connecting the Architecture
To create the link connections between the parts of the architecture so that flow information can be
specified, follow these steps:

1. Select the Link icon on the Drawing bar.

2. Click once on the ui_req service port and once on the call_req service port to create a
link. Press Enter.

3. Connect the network and mm_network service ports in the same manner.

4. Connect the mm_dl and dl_in service ports.

5. Connect the data_net and net_in service ports.

Drawing Flows
Flows specify the exchange of information between system elements. They allow you to describe
the flow of data and commands within a system at an early stage, before committing to a specific
design. To draw flows between ports, objects, and blocks, follow these steps:

1. Click the Flow icon on the Drawing toolbar.

2. To create a flow, click in the middle of link line between ui_req and call_req service
ports. Press Enter.

3. Create a flow on the link between network and mm_network service ports. Press Enter.

4. Create a flow on the link between mm_dl and dl_in service ports. Press Enter.

5. Create a flow on the link between data_net and net_in service ports. Press Enter.
40 Systems Engineering Tutorial

Creating an Block Definition Diagram
Changing the Direction of the Flow
Information can flow from one element to another or between elements in either direction.
Changing the flows between the blocks to bidirectional indicates that information can flow in
either direction between system elements. To change the direction of the flow or make the flow
bidirectional, follow these steps:

1. Double-click the flow arrowhead between ConnectionManagementBlock and
MobilityManagementBlock, or right-click and select Features from the pop-up menu.

2. In the General tab, select Bidirectional from the Direction pull-down menu.Click
OK to apply the changes and close the dialog box.

3. Using the same method, set the flow between MobilityManagementBlock and
DataLinkBlock to also be bidirectional.

4. Set the flow between the DataLinkBlock and the Network objects. At this point your
diagram should resemble this example.
Rhapsody 41

Capturing the Design Structure
Specifying the Flow Items
Once you have determined how communication occurs through flows, you can specify the
information that passes over a flow using a flow item. A flow item can represent either pure data,
data instantiation, or commands (events).

As the system specification evolves, such as by defining the communication scenarios using
sequence diagrams, you can refine the flow items to relate to the concrete implementation and
elements.

To specify the flow items, follow these steps:

1. Double-click the point of the arrowhead in the link between the MMI and call_req port.
Select the Details tab of the Features dialog box that opens.

2. Click the <Add> row in the list of information elements and select FlowItem from the
pop-up list. The flow items Features dialog box opens.

3. Enter CallRequests as the Name. This flow item represents all user interface requests
into the system.

4. Click OK to apply your changes and close the dialog box for the new element.

5. Click OK to apply your changes and close the dialog box for the flow.

6. Using the same method, create three flow items to describe the flow between the network
port and the mm_network port. Name the three flows RegistrationStatus,
CallStatus, and CallRequestsToMM. These flow items represent the relay of
information between the main call control logic (ConnectionManagement) and user
location (MobilityManagement).

7. Create a flow item for the flow between the mm_dl port and the dl_in port named
Registration. This flow item represents network registration status information.
42 Systems Engineering Tutorial

Creating an Block Definition Diagram
8. Create a flow item for the flow between the data_net port and the Network actor
named NetworkRequests. This flow item represents all network information into and
out of the system. At this point the diagram should resemble this example.

9. In the browser, expand the Flows category and the Flow Items category to view the newly
created flows and flow items, as shown in this example.
Rhapsody 43

Capturing the Design Structure
Changing the Line Shape
Rhapsody has three line shapes that can be used when drawing line and arrow elements: straight,
spline, and rectilinear.

To change the line shape, right-click the line in the drawing area, select LineShape from the pop-
up menu, and then one of the following options:

� Straight changes the line to a straight line.
� Spline changes the line to a curved line.
� Rectilinear changes the line to a group of line segments connected at right angles. This is

the default line shape.
The last option, Reroute, is used to remove excess control points to make the line more fluid.
44 Systems Engineering Tutorial

Creating an Block Definition Diagram
Specifying the Port Contract
Rhapsody provides contract-based ports and noncontract-based ports.

� Contract-based ports allow you to define a contract that specifies the precise allowable
inputs and outputs of a component. A contract-based port can have the following
interfaces:

– Provided interfaces—Characterize the requests that can be made from the
environment. A provided interface is denoted by a lollipop notation.

– Required interfaces—Characterize the requests that can be made from the port
to its environment (external actors or parts). A required interface is denoted
by a socket notation.

Provided and required interfaces enable you to encapsulate model elements by defining the access
through the port.

� Noncontract-based ports enable you to relay messages to the appropriate part of the
structured class through a connector. They do not require a contract to be established
initially, but allow the routing of incoming data through a port to the appropriate part.

In this example, you specify the provided and required interfaces for the mm_dl and dl_in ports.

Note
Depending on your workflow, you might identify the communication scenarios using
sequence diagrams before defining the port contracts. Refer to the Creating a Sequence
Diagram section for more information.

To specify the port contract, follow these steps:

1. Double-click the mm_dl port, or right-click and select Features from the pop-up menu.

2. Select the Contract tab.

3. Select the Provided folder icon and click the Add button. The Add new interface dialog
box opens.

4. Select In from the pull-down list, then click Apply to save the changes and leave the
dialog box open.
Rhapsody 45

Capturing the Design Structure
5. Select the Required folder icon and click the Add button. Select Out from the pull-down
list. Click Apply adds the provided and required interfaces and leave the dialog box
open.The dialog box lists the interfaces you just specified.

6. In the Operations tab, click <New> and select Reception from the pop-up menu.

7. Type AlertCnf for the Event name and click OK. A message displays that an event with
the selected name could not be found. Click Yes to create the new event. Rhapsody adds
the reception to the Operations tab.

8. In the Operations tab, click <New> and select Reception from the pop-up menu. The
New Reception dialog box opens.

9. Add the receptions ChannelOpen, Alert, and RegistrationReq.

10. Click OK to close the dialog box and return to the original dialog box.

11. Click OK to close the dialog box. Rhapsody adds the provided and required interfaces to
the mm_dl port in the Block Definition Diagram. Rhapsody also adds the receptions to the
Events category in Architecture package in the browser.

12. To specify the port interfaces for dl_in, double-click the dl_in port, or right click and
select Features from the pop-up menu. The Features dialog box opens.

13. Select the General tab and select In from the Contract pull-down list.
46 Systems Engineering Tutorial

Creating an Block Definition Diagram
14. Select the Contract tab. Rhapsody automatically adds the provided interfaces defined as
In.

15. Select the Required folder icon, then click the Add button. The Add new interface dialog
box opens.

16. Select Out from the pull-down list, then click OK. Rhapsody automatically adds the
required interfaces defined as Out.

17. Click OK to apply the changes and close the dialog box.
Rhapsody 47

Capturing the Design Structure
Reversing a Port
To change the provided interfaces into the required interfaces and the required interfaces into the
provided interfaces, reverse the ports, as follows:

1. Open the Features dialog box for the dl_in service port.

2. In the General tab, set Reversed for the Attributes. The bottom of the Contract tab
displays a message in red that the contract is reversed.

3. Click OK to apply the changes and close the dialog box. You have completed the High
Level Architecture diagram.

Be certain that the Display Options for each object are set to show All Operations, and your High
Level Architecture diagram should resemble this example.
48 Systems Engineering Tutorial

Creating an Block Definition Diagram
Allocating the Functions Among Blocks
Now that you have captured the architectural design in the Block Definition Diagram, you need to
divide the operations of the system into its functional subsystems and allocate the activities among
the subsystems.

Note
For ease of presentation, this chapter includes both the system external and internal block
diagrams. Depending on your workflow, you might perform further black-box analysis with
activity diagrams, sequence diagrams, and statecharts, and white-box analysis using
sequence diagrams before decomposing the system’s functions into subsystem components.

Organizing the Blocks Package

Packages let you divide the system into functional domains, or subsystems, which consist of
blocks, parts, functions, variables, and other logical artifacts. They can be organized into
hierarchies to provide a high level of partitioning. In this example, you will create the following
subpackages, which represent the functional subsystems: ConnectionManagement, DataLink, and
MobilityManagement.

To create packages within the Subsystems package, follow these steps:

1. In the browser, right-click Subsystems and select Add New > Package. Rhapsody create
a new Packages category within Subsystems and a package with the default name
package_n, where n is greater or equal to 0.

2. Rename the package ConnectionManagement.

3. Right-click Packages, select Add New Packages from the pop-up menu, and create two
additional packages named DataLink and MobilityManagement.

Organizing Elements
To allocate the blocks from the Block Definition Diagram in the Architecture package, organize
them into the elements into their packages using these steps:

1. In the browser, expand the Architecture package and the Blocks category.

2. Click the ConnectionManagementBlock and drag it down into the new
ConnectionManagement.

3. Click the DataLinkBlock and drag it into the package.
Rhapsody 49

Capturing the Design Structure
4. Click the MobilityManagementBlock and drag it into the package. The blocks are
removed from the Architecture package and added to the Subsystem packages. Your
browser should resemble this example.

Note
It is good practice to test the model as it is developed using the simulation feature. This
allows you to determine whether the model meets the requirements and to find defects early
in the design process. For more information, refer to the Simulating the Model section.
50 Systems Engineering Tutorial

Creating an Block Definition Diagram
Creating the Connection Management Diagram
You can decompose the system-level blocks in the internal block diagram into sub-blocks and
corresponding internal block diagrams to show their decomposition. To accomplish this, you
create the following subsystem internal block diagrams:

� ConnectionManagement from the ConnectionManagementBlock
� DataLink from the DataLinkBlock
� MobilityManagement from the MobilityManagementBlock

Drawing the Internal Block Diagram

The Connection Management internal block diagram decomposes the
ConnectionManagementBlock into its subsystems. Connection Management identifies how calls
are set up, including the establishment and clearing of calls, short message services, and
supplementary services.

To draw the ConnectionManagement internal block diagram, follow these steps:

1. In the browser, expand the ConnectionManagement subsystem package and the Blocks
category. Right-click ConnectionManagement and select Add New > Internal Block
Diagram. The New Diagram dialog box opens.

2. Type ConnectionManagement, then click OK. Rhapsody automatically creates the
Internal Block Diagrams category in the ConnectionManagementBlock, and adds the
name of the new internal block diagram. In addition, Rhapsody opens the new diagram in
the drawing area, which contains the ConnectionManagementBlock and its service ports,
as defined in the Internal Block Diagram.

If the service ports are not visible, follow these steps:

1. Right-click the ConnectionManagementBlock.

2. From the context menu, select Ports > Show All Ports.
Rhapsody 51

Capturing the Design Structure
Drawing Parts
In this example, draw the following parts to represent these activities performed by Connection
Management:

� Connection—Tracks the number of valid connections
� CallList—Maintains the list of currently active calls
� CallControl—Manages incoming and outgoing calls
� SMS—Manages the short message services.
� SupplementaryServices—Manages the supplementary services, including call waiting,

holding, and barring
To draw parts, follow these steps:

1. Click the Part icon in the Drawing toolbar.

2. In the upper, left corner of ConnectionManagement, click or click-and-drag. Rhapsody
creates an object with a default name of part_n, where n is equal to or greater than 0.

3. Rename part to be Connection, then press Enter.

4. Draw additional parts named CallList, CallControl, SMS, and
SupplementaryServices. At this point your diagram should be similar to this
example.
52 Systems Engineering Tutorial

Creating an Block Definition Diagram
Drawing Service Ports

To draw service ports, follow these steps:

1. Click the Service Port icon in the Drawing toolbar.

2. Click the left edge of the CallControl part and create a service port named cc_mm. This
service port relays messages to and from MobilityManagement.

3. Click the right edge of the CallControl part and create a service port named cc_in.
This service port relays messages from the user interface.

Changing the Placement of Ports

When Rhapsody adds the ConnectionManagementBlock to the diagram, it places the ports defined
in the internal block diagram on the boundary. You can change the port placement by selecting the
port and dragging it to another location on the part or block.

Drawing Links
A link is an instantiation of an flow. You can specify links without having to specify the
association being instantiated by the link; you can specify features of links that are not mapped to
an association. There must be at least one association that connects one of the base classes of the
type of one of the objects to a base class of the type of the second object. In this example, draw
links between objects and ports, as follows:

1. Right-click on the ConnectionManagementBlock and select the Ports > Show All
Ports option. The previously created call_req and network ports appear on the
outside edges of the block.

2. Click the Link icon in the Drawing toolbar.

3. Click the cc_mm port, then click the network port.

4. Click the cc_in port, then click the call_req port.

5. Click the CallControl part, then click the Connection part.

6. Click the CallControl part, then click the CallList part.

7. Click the CallControl part, then click the SMS part. Click the CallControl part, then
click the SupplementaryServices part.

8. In the browser, expand the ConnectionManagement category to view the newly created
objects under the Parts category and the links under the Links category.
Rhapsody 53

Capturing the Design Structure
9. You have completed drawing the Connection Management diagram. Your block diagram
should be similar to this example.
54 Systems Engineering Tutorial

Creating the DataLink Internal Block Diagram
Creating the DataLink Internal Block Diagram
An internal block diagram of the data link decomposes the DataLinkBlock into its subsystems. It
identifies how the system monitors registration.

To create the DataLink diagram as an internal block diagram, follow these steps:

1. In the browser, expand the DataLink subsystem package and the Blocks category.

2. Right-click DataLinkBlock and select Add New > Internal Block Diagram. The New
Diagram dialog box opens.

3. Type Datalink for the name, then click OK.

Rhapsody automatically creates the Internal Block Diagrams category in the
DataLinkBlock, and adds the name of the new diagram. In addition, Rhapsody opens the new
diagram in the drawing area, which contains the DataLinkBlock and its ports with the required and
provided interfaces as defined in the Internal Block Diagram.

If the ports are not visible, follow these steps:

1. Right-click the internal block diagram in the drawing area.

2. From the context menu, select Ports > Show All Ports.

Drawing the RegistrationMonitor Part

In this example, draw the RegistrationMonitor part to represent the activity performed by the
DataLinkBlock as follows.

1. Click the Part icon in the Drawing toolbar.

2. Click or click-and-drag in the center of DataLinkBlock.

3. Type RegistrationMonitor and press Enter.
Rhapsody 55

Capturing the Design Structure
Drawing the Registration Request Port

To draw ports, follow these steps:

1. Click the Service Port icon in the Drawing toolbar.

2. Click the right edge of RegistrationMonitor and create a port named reg_request.
This port relays registration requests and results.

Linking the Request and DataLink Ports

To draw links, follow these steps:

1. Click the Link icon in the Drawing toolbar.

2. Click the reg_request port, then click the dl_in port. Press Enter.

Specifying the Port Contract and Attributes

Now you specify the port contract and features for reg_request as follows:

1. Double-click the reg_request port, or right-click and select Features from the pop-up
menu. The Features dialog box opens.

2. In the General tab, click the Behavior and Reversed radio buttons to set them as the
Attributes. Click Apply to save the changes and keep the dialog box open.

3. Select the Contract tab.

4. Select the Provided folder icon and click the Add button. The Add new interface dialog
box opens.

5. Select In from the pull-down list, then click Apply to save the changes and leave the
dialog box open.

6. Select the Required folder icon and click the Add button. Select Out from the pull-down
list.

7. Click OK to apply the changes and close the dialog box. Rhapsody automatically adds the
provided and required interfaces.

You have completed drawing the DataLink internal block diagram. Rhapsody automatically adds
the newly created parts, links, and ports to the DataLinkBlock in the browser.
56 Systems Engineering Tutorial

Creating the DataLink Internal Block Diagram
Your diagram should be similar to this example.
Rhapsody 57

Capturing the Design Structure
Creating the MobilityManagement Internal Block
Diagram

The MobilityManagement internal block diagram decomposes the MobilityManagementBlock
into its subsystems. MobilityManagement supports the mobility of users including registering
users on the network and providing their current location.

To create the MobilityManagement internal block diagram, follow these steps:

1. In the browser, expand the MobilityManagement package.

2. Right-click MobilityManagement and select Add New > Internal Block Diagram.

3. Type MobilityManagementBlock for the name and click OK.

Rhapsody automatically creates the new diagram and opens it in the drawing area.

If the ports are not visible, follow these steps:

1. Right-click the block.

2. From the context menu, select Ports > Show All Ports.

Drawing the Registration, Location, and MMCallControl Parts

In this example, draw the following parts to represent the activities performed by
MobilityManagement:

� Registration—Maintains the registration status
� Location—Tracks the location of users
� MMCallControl—Maintains the logic for MobilityManagement

To draw parts, follow these steps

1. Click the Part icon in the Drawing toolbar.

2. In the upper, left corner of MobilityManagement, click or click-and-drag.

3. Type Registration, and then press Enter.

4. Draw two more parts named, Location and MMCallControl.
58 Systems Engineering Tutorial

Creating the MobilityManagement Internal Block Diagram
Drawing Service Ports and Links

To draw service ports, follow these steps:

1. Click the Service Port icon in the Drawing toolbar.

2. Click the left edge of the MMCallControl part and name the service port mm_cc. This
service port relays information to ConnectionManagementBlock

3. Click the right edge of the MMCallControl part and name the port cc_in. This service
port sends and receives information from the DataLinkBlock

To draw a link between two parts, follow these steps:

1. Click the Link icon on the Drawing toolbar.

2. Click the cc_in service port, then click the mm_network service port.

3. Click the MMCallControl part, and click the Registration part.

4. Click the MMCallControl part, and click the Location part.

Specifying the Port Contract and Attributes

Now you specify the port contract and attributes for the mm_cc service port as follows:

1. Double-click the mm_cc port to display the Features dialog box.

2. In the Contract tab, select the Provided folder icon and click the Add button. The Add
new interface dialog box opens.

3. Select In from the pull-down list, then click Apply to save the changes and leave the
dialog box open.

4. Select the Required folder icon and click the Add button. Select Out from the pull-down
list.

5. Click OK to apply the changes and close the dialog box. Rhapsody automatically adds the
provided and required interfaces.
Rhapsody 59

Capturing the Design Structure
The completed MobilityManagementBlock internal diagram should resemble this example.

Capturing Equations in Parametric Diagrams

Parametric diagrams allow you to capture equations graphically. These diagrams are non-
executable diagrams that force Rhapsody to determine user locations and store the information in
the system.

This is accomplished by binding the input data to parametric constraints, performing the
calculation in the parametric constraint, and then flowing the output into other parametric
constraints. Each parametric constraint shows the piece of the equation that it calculates.
60 Systems Engineering Tutorial

Creating the MobilityManagement Internal Block Diagram
Creating a Parametric Diagram

In this example, you graphically describe the function of locating a user within the
MobilityManagementBlock. In order to accomplish this task, you need to describe the algorithm
used to locate the user in a parametric diagram.

To create the parametric diagram, follow these steps:

1. Click the Parametric diagram icon above the window.

2. The system displays a dialog box allowing you to select the Packages category and
Subsystems and MobilityManagement for the diagram. Click New.

3. Name the new parametric diagram Update location, as shown here.

4. Click OK.

5. To draw the three parametric constraints, click the Parametric constraints icon on
the Drawing toolbar. (It is the same symbol used to create the diagram, but it is on the
Drawing Toolbar in the center of the window.) Draw the required three constraints to
calculate the location on a grid:

– CoordinateX

– CoordinateY

– xylocation
Rhapsody 61

Capturing the Design Structure
Linking the Diagram to the Model

Now the parametric diagram needs to be linked to the model by following these steps:

1. In the browser, click Parts.

2. Right-click Location and select Add New > Attribute.

3. Type these three new attributes under the Location part in the browser:

– l1

– sinx

– siny

4. Drag these three data attributes from the browser onto the parametric diagram. At this
point your diagram should resemble this example.
62 Systems Engineering Tutorial

Creating the MobilityManagement Internal Block Diagram
Creating Flow Ports and Flows

To show how the data is bound to each constraint, you need to add flow ports and flows to the
parametric diagram.

Note
Flow ports are not supported in Rhapsody in J.

Follow these steps:

1. Click the Flow Port icon on the Drawing toolbar. Click on the outside edges of the
constraints to create these ports:

– CoordinateX - add sinx and l1 ports
– CoordinateY - add siny and l1 ports
– xylocation - add coordx and coordy ports

2. Click the Value Binding icon to create the data flow as follows:

– From sinx attribute to the sinx port on CoordinateX and name this
connection valueBinding.

– From l1 attribute to l1 port on CoordinateX and name this connection
valueBinding.

– From l1 attribute to l1 port on CoordinateY and name this connection
valueBinding.

– From siny attribute to siny port on CoordinateY and name this
connection valueBinding.

3. The output from the parametric constraints is used as the input for the calculations. Select
the Flow Port icon again to create the output flow ports from CoordinateX and
CoordinateY. Name them coordx and coordy respectively.

4. Click the Value Binding icon and draw valueBinding flows from the new flow ports on
the CoordinateX and CoordinateY constraints to the corresponding ports on
xylocation.
Rhapsody 63

Capturing the Design Structure
At this point your parametric diagram should be similar to this example.

Adding Equations

To add the required equations to all of the constraints, follow these steps:

1. Right-click on the CoordinateX constraint to display the Features dialog.

2. Type sinx * l1 in the Description area and click Apply to keep the dialog box open.

3. Right-click on the CoordinateY constraint and type siny * l1 in the Description area.
Click Apply to keep the dialog box open.

4. Right-click the xylocation constraint and type coordx + coordy and click OK.

5. To display the equation in the xylocation constraint, right-click xylocation and select
Display Options from the menu.Click the Compartments button.

6. Select Description form the Available list and click the Display button to move it to the
Displayed column. Click OK to save this change. You may wish to perform this action on
each of the boxes containing an equation.
64 Systems Engineering Tutorial

Creating the MobilityManagement Internal Block Diagram
7. Click OK to save the Display Options dialog. You have completed the parametric
diagram. It should resemble this example.
Rhapsody 65

Capturing the Design Structure
8. Expand the Parametric items in the browser. Your list in the browser should resemble this
example.
66 Systems Engineering Tutorial

System Behaviors
Sequence diagrams describe how structural elements communicate with one another over time and
identify the required relationships and messages. Sequence diagrams also show the interactions
between actors, use cases, and blocks.

Sequence diagrams have an executable aspect and are a key simulation tool. When you simulate a
model, Rhapsody dynamically builds sequence diagrams that record interaction between actors,
use cases, and blocks.

Sequence Diagrams Describing Scenarios
Sequence diagrams shows how subsystems interact during a scenario. For example, a sequence
diagram showing a successful request to place a call identifies the order and exchange of messages
between the parts and blocks as represented in the Internal Block Diagrams. By describing the
flows through scenarios, you create the logical interfaces of the blocks. For example, if a message
is shown going into the DataLinkBlock, you can see that the message belongs to the block as an
event or operation.

In this lesson, you create the following sequence diagrams:

� Place Call Request Successful identifies the message exchange when placing a call
� NetworkConnect identifies the scenario of connecting to the network
� Connection Management Place Call Request Success identifies the message exchange

between functions when placing a call
For ease of presentation, this chapter includes all sequence diagrams. Depending on your
workflow, you might first identify the high-level communication scenario of placing a call and
then refine the high-level block definition diagram, before defining the communication scenarios
of the functions.
Rhapsody 67

System Behaviors
Creating a Sequence Diagram
To create a new sequence diagram, follow these steps:

1. Start Rhapsody if it is not already running and open the handset model if it is not already
open.

2. In the browser, right-click the Subsystems package and select Add New >Sequence
Diagram from the pop-up menu.

3. Type Place Call Request Successful into the Name field of the dialog box.

4. Click the Analysis radio button for the Operation Mode.

Rhapsody enables you to create sequence diagrams in two modes:

a. In analysis mode, you draw message sequences without adding elements to the
model. This enables you to brainstorm your analysis and design without affecting the
simulated source code. Once the design is finalized, you can realize the instance lines
and messages so that they display in the browser, and can have code simulated for
them.

b. In design mode, every instance line and message you create or rename can be realized
as an element (class, part, operation, or event) that appears in the browser, and for
which code can be simulated. When you draw a message, Rhapsody will ask if you
want to realize it. Click Yes to realize the message.

5. Click OK to save your changes and close the dialog box.

Note
You can also create a sequence diagram using the Tools menu or the Sequence Diagram icon

 at the top of the Rhapsody window.

Adding the Actor Lines

Actor lines show how actors participate in the scenario. Actors are represented as instance lines
with hatching. In use case diagrams and sequence diagrams, actors describe the external elements
with which the system context interacts.

To draw the diagram and actor lines, follow these steps:

1. In the browser, expand the Analysis and then the Actors group.

2. Click the MMI actor and drag-and-drop it to the far left side of the sequence diagram.
Rhapsody creates the actor line as an environment boundary.
68 Systems Engineering Tutorial

Creating a Sequence Diagram
3. Click the Network actor and drag-and-drop it to the far right side of the sequence
diagram.

Drawing Classifier Roles

Classifier roles or instance lines are vertical timelines labeled with the name of an instance to
indicate the lifecycle of classifiers or blocks that participate in the scenario. They represent a
typical instance in the scenario being described. Classifier roles can receive messages from or send
messages to other instance lines. Time proceeds downward on the vertical axis.

In this example, you draw the classifier roles that represent the system components,
ConnectionManagement, MobilityManagement, and DataLink, by dragging them from the
browser to the diagram as follows:

1. In the browser, expand the Subsystems package and then the
ConnectionManagementBlock subsystem and Block group.

2. Click ConnectionManagementBlock and drag-and-drop it next to MMI. Rhapsody
creates the classifier role with the name of the function in the name pane.

3. In the browser, expand the MobilityManagement subsystem and the Block group.
Click MobilityManagementBlock and drag-and-drop it next to
ConnectionManagementBlock.

4. In the browser, expand the DataLink subsystem and the Block group.Click the
DataLinkBlock and drag-and-drop it next to the MobilityManagementBlock.

5. Right-click the actors and blocks at the top of each line and select Display Options from
the menu. Change all of them to show the Label and not the Name. The default is to show
the Name. At this point your sequence diagram should resemble this example.

6. To add white space to (or remove it from) a sequence diagram (such as between actor lines
and classifier roles), press the Shift key and drag the actor line or classifier role to its new
location.
Rhapsody 69

System Behaviors
Drawing Messages

A message represents an interaction between parts, or between a part and the environment. A
message can be an event, a triggered operation, or a primitive operation. In this example, you
draw events that represent the exchange of information when placing a call. The actor issues a
request to connect when placing a call. Call and connect confirmations occur between
MobilityManagementBlock and ConnectionManagementBlock. Alerts occur between
MobilityManagementBlock and DataLinkBlock. The user receives confirmation from
ConnectionManagement.

To draw messages, follow these steps:

1. Click the Message icon on the Drawing toolbar.

2. Click the MMI actor line to show that the first message comes from the MMI actor when the
user issues the command to place a call request.

3. Click the ConnectionManagementBlock line to create a straight line. Rhapsody creates
a message with the default name message_n(), where n is an incremental integer
starting with 0.

4. Double-click the message line and in the dialog box, enter the Name as PlaceCallReq.
The Message Type should be Event with <Unspecified> as the Realization. Your
changes should resemble this example.

5. Click OK to save the changes and close the dialog box.
70 Systems Engineering Tutorial

Creating a Sequence Diagram
6. Draw the following messages with Message Type of Event and <Unspecified> as the
Realization:

a. From ConnectionManagementBlock to MobilityManagementBlock, named
PlaceCallReq

b. From MobilityManagementBlock to ConnectionManagementBlock, named
CallConfirm

c. From MobilityManagementBlock to DataLinkBlock, named Alert

7. Leave a space on the lines for the interaction occurrence (reference sequence diagram) that
you create in the next section.

8. Then draw the remaining messages also with Message Type of Event and
<Unspecified> as the Realization:

a. From MobilityManagementBlock to ConnectionManagementBlock, named
ConnectConfirm

b. From ConnectionManagementBlock to the MMI actor, named
ConfirmIndication

At this point your diagram should resemble this example.
Rhapsody 71

System Behaviors
Drawing an Interaction Occurrence

An interaction occurrence (or reference sequence diagram) enables you to refer to another
sequence from within an sequence diagram. It lets you break down complex scenarios into smaller
scenarios that can be reused.

To draw an interaction occurrence, follow these steps:

1. Click the Interaction Occurrence icon on the Drawing toolbar.

2. Draw the interaction occurrence below the Alert message and across the
MobilityManagementBlock instance line to the Network actor line. The interaction
occurrence appears as a box with the ref label in the top corner.

3. Type NetworkConnect as the name of the Interaction Occurrence.

You have completed drawing the Place Call Request Successful sequence diagram.

Note
Be sure to check the arrow heads on the messages. They must all be open to be events.

At this point you diagram should resemble this example.
72 Systems Engineering Tutorial

Diagramming the Network Connection Scenario
Diagramming the Network Connection Scenario
The NetworkConnect sequence diagram shows the scenario of connecting to the network when
placing a call. It is a generic interaction that can be reused for voice, data, supplementary services,
and short message services.

Creating the NetworkConnect Sequence Diagram

To create the NetworkConnect sequence diagram, follow these steps:

1. In the Place Call Request Successful sequence diagram, right-click the interaction
occurrence (NetworkConnect) and select Create Reference Sequence Diagram from the
pop-up menu. Rhapsody opens the new diagram in the drawing area containing the three
functions that the interaction occurrence crosses and adds the sequence to the browser.

2. Select the items in the sequence diagram and right-click to select the Display Options
from the menu.

3. Change the display to show the Label and not the Name of each item.

Drawing Messages

In this example, draw these events:

1. Click the Message icon in the Drawing toolbar.

2. Draw the following messages (with the arrows horizontal) with Message Type of Event
and <Unspecified> as the Realization:

a. From MobilityManagementBlock to DataLinkBlock, named
ConnectionRequest

b. From DataLinkBlock to Network, named Alert

c. From Network to DataLinkBlock, named AlertCnf

d. From Network to DataLinkBlock, named ChannelOpen

e. From DataLinkBlock to MobilityManagementBlock, named ChannelOpen
Rhapsody 73

System Behaviors
At this point your diagram should resemble this example.

Drawing Interaction Operators

To draw the alt interactive operation in the sequence diagram, follow these steps:

1. Click the Interaction Operator icon and draw a large box across all three lines and
over the last three messages.

2. Right-click on the Interactive Operator box and select Features from the menu.

3. In the General tab, change the Type to be alt. Click OK. This change appears in the
upper left corner of the box.

4. Click the Interactive Operand Separator icon and click on the interaction operator
box to divide it into two sections.

5. Edit the two labels to read [alert=false] and [else].

6. Click the Interaction Operator icon again and draw another box within the first box, in
the [alert=false] section, and across all three lines.
74 Systems Engineering Tutorial

Diagramming the Network Connection Scenario
7. Right-click this box to open the Features dialog and change the Type to loop. Click OK.
This change appears in the upper left corner of the box.

8. Edit the label in the new box name to be [every 5 seconds].

9. Inside the loop box, draw these two messages (horizontal arrows) with Message Type of
Event and <Unspecified> as the Realization:

a. From MobilityManagementBlock to DataLinkBlock, named
ConnectionRequest

b. From DataLinkBlock to Network, named Alert.

At this point your diagram should resemble this example.
Rhapsody 75

System Behaviors
Creating the Connection Management Sequence
Diagram

The ConnectionManagement Place Call Request Success sequence diagram shows the interaction
of the functions. It identifies the part decomposition interaction when placing a successful call.

To create a new sequence diagram, follow these steps:

1. In the browser, right-click the Subsystems package and select Add New >Sequence
Diagram from the pop-up menu.

2. Type ConnectionManagement Place Call Request Success into the Name field
of the dialog box.

3. Select Analysis for the Operation Mode.

4. Click OK to close the dialog box.

Rhapsody creates the Sequence Diagrams category, adds the name of the new sequence
diagram, and opens the new diagram in the drawing area. You may wish to type a title on the
diagram at this point.

Drawing the System Border

The system border represents the environment and is shown as a column of diagonal lines. Events
or operations that do not come from instance lines are drawn from the system border. You can
place a system border anywhere an instance line can be placed; the most usual locations are the left
or right side of the sequence diagram.

To draw the system border, follow these steps:

1. Click the System border icon in the Drawing toolbar.

2. Click on the left side of the diagram to place the environment border.
76 Systems Engineering Tutorial

Creating the Connection Management Sequence Diagram
Drawing Classifier Roles

In this example, you draw the classifier roles that represent the system components,
ConnectionManagementBlock, MobilityManagementBlock, and DataLinkBlock by
dragging them from the browser to the diagram as follows:

1. In the browser, expand the ConnectionManagement subsystem and then the
ConnectionManagementBlock and Parts group.

2. Click CallControl and drag-and-drop it next to the system border. Rhapsody creates the
classifier role with the name of the function in the names pane.

3. Click CallList and drag-and-drop it next to CallControl.

4. Click Connection and drag-and-drop it next to CallList.

5. In the browser, expand the MobilityManagementBlock and the Parts category.

6. Click MMCallControl and drag-and-drop it next to Connection.

7. In the browser, expand the DataLinkBlock and the Parts category.

8. Click RegistrationMonitor and drag-and-drop it next to MMCallControl.

Note
Names that are too long to fit in the pane continue past the divider and behind the lower
pane. To view these names, enlarge the size of the pane or change the font or font size.
Rhapsody 77

System Behaviors
Drawing Messages

In this scenario when the system receives a request to place a call, it validates and registers the
user. Once it is registered, it monitors the user’s location. The call and connection are confirmed,
the connection is set up, and confirmation is provided.

To draw the event messages, follow these steps:

1. Click the Message icon in the Drawing toolbar.

2. Draw the following events using horizontal lines:

a. From the system border to the CallControl line, named PlaceCallReq

b. From CallControl to MMCallControl, named PlaceCallReq

c. From MMCallControl to RegistrationMonitor, named RegistrationReq

d. From RegistrationMonitor to MMCallControl, named ChannelOpen

3. For each of the four messages, double-click the message line and set the Message Type as
Event and select <New> from the Realization pull-down menu. Then the system
generates a realization name and inserts it in the Realization field, as shown in this
example.
78 Systems Engineering Tutorial

Creating the Connection Management Sequence Diagram
4. Draw a message-to-self on the MMCallControl instance line, named locationUpdate.
(Message names are case-sensitive.)

5. Double-click the locationUpdate message-to-self line and set the Message Type as
PrimitiveOperation and select <New> from the Realization pull-down menu. The
system adds locationUpdate() as the Realization name.

6. Draw the following events using horizontal lines and double-click the message lines and
set the Message Type as Event and select <New> from the Realization pull-down
menu.

a. From MMCallControl to CallControl, named CallConfirm

b. From MMCallControl to CallControl, named ConnectConfirm

7. Draw the following horizontal message lines and double-click each message line to set the
Message Type as PrimitiveOperation and select <New> from the Realization pull-
down menu.

a. From CallControl to CallList, named addToCallList

b. From CallControl to Connection, named addConnection

8. Draw an event from CallControl to the system border, named ConfirmIndication
and double-click the message line and check to be certain the Message Type is Event.
Rhapsody 79

System Behaviors
At this point, your diagram should resemble this example.
80 Systems Engineering Tutorial

Implementation Using an Action Language
Implementation Using an Action Language
In order to show actions in a model, the designer needs an implementation language. Rhapsody
includes an Action Language, a subset of C++ that uses a C++ compiler to allow you to simulate
the model. This language provides the following:

� Message passing
� Data checking
� Actions on transitions
� General model execution

Examples of this language appear in several of the following diagrams as the Action
implementations.

Basic Syntax Rules

This streamlined version of C++ has these basic syntax rules:

� It is case-sensitive, so “evGo” is different from “evgo.”
� Names must follow these rules:

– No Spaces (“Start motor” is not correct.)
– No Special Characters (“StartMotor@3” is not correct.)
– Must start with a Letter (“2ToBegin” is not correct.)

� All statements must end in a semicolon
� Do not to use reserved words such as id, for, next.

Frequently Used Statements

To add some simple operations to your model, you may use the following:

� These increment/decrement operators provide standard functions:
– X++; (Increment X)
– X--; (Decrement X)
– X=X+5; (Add 5 to X)

� To print out on the screen, use one of these:
– cout << “hello” << endl;
– cout << attribute_name << endl;
– cout << “hello : “ << attribute_name << endl;
Rhapsody 81

System Behaviors
Reserved Words

The Action Language reserved words are listed below. All reserved words for built-in functions
are lower case, for example, if.

asm continue float int params sizeof typedef

auto default for IS_IN private static union

break delete friend IS_PORT protected struct unsigned

case do GEN long public switch virtual

catch double goto new register template void

char else id operator return this volatile

class enum if OPORT short throw while.

const extern inline OUT_PORT signed try
82 Systems Engineering Tutorial

Defining Flow of Control in Activity Diagrams
Defining Flow of Control in Activity Diagrams
Activity diagrams show the dynamic aspects of a system and the flow of control from activity to
activity. They describe the essential interactions between the system and the environment and the
interconnections of behaviors for which the subsystems or components are responsible. They can
also be used to model an operation or the details of a computation. In addition, you can animate
activity diagrams to verify the functional flow.

In this lesson, you create the following activity diagrams:

� MMCallControl identifies the functional flow of users placing a call, which includes
registering users on the network, providing their current location, and obtaining an
acceptable signal strength.

� InCall identifies the flow of information once the system connects the call.
� RegistrationMonitor identifies the functional flow of registering users on the network,

which includes monitoring registration requests and sending received requests to the
network.

Creating an Activity Diagram

To create an activity diagram, follow these steps:

1. Start Rhapsody if it is not already running and open the handset model if it is not already
open.

2. In the browser, expand the Subsystems package, the MobilityManagement package,
the MobilityManagementBlock, and the Parts category. Right-click
MMCallControl and select Add New > Activity Diagram from the pop-up menu or
click the Activity Diagram icon at the top of the window.
The blank diagram opens in the drawing area. You may want to add a title to the diagram.

3. Right-click the new diagram and select Diagram Properties from the context menu.

4. On the General tab of the features dialog, clear the Analysis Only checkbox.

5. Click OK to close the features dialog.

Defining the MMCallControl Functional Flow

The MMCallControl activity diagram shows the functional flow that supports the mobility of users
when placing a call to include the following:

� Registering users on the network
� Providing their current location
Rhapsody 83

System Behaviors
� Obtaining an acceptable signal strength
When the user places a call, the system leaves the Idle state and checks for an acceptable signal
strength and to see if the wireless telephone is registered. It then waits for the call to connect and
enters a connection state.

Drawing Swimlanes
Swimlanes organize activity diagrams into sections of responsibility for actions and subactions.
Vertical, solid lines separate each swimlane from adjacent swimlanes. To draw swimlanes, you
first need to create a swimlane frame and then a swimlane divider.

To draw swimlanes, follow these steps:

1. Click the Swimlanes Frame icon on the Drawing toolbar.

2. Click to place one corner, then drag diagonally to draw the swimlane frame.

3. Click the Swimlanes Divider icon on the Drawing toolbar.

4. Click the middle of the swimlane frame. Rhapsody creates two swimlanes, named
swimlane_n and swimlane_n+1, where n is an incremental integer starting at 0.

5. Name the swimlane on the left Location. This swimlane tracks the location of users.

Note: If you drag the swimlane left or right, it also resizes the swimlane frame. Once
you have repositioned the swimlane divider, resize the columns to make them
wide enough for the drawings.

6. Name the swimlane on the right SignalStrength. This swimlane tracks the signal
strength of users.

 Setting Activity Diagram Properties
Action states represent function invocations with a single exit transition when the function
completes. In this example, you will draw the action states that represent the functional processes,
and then add names to the action states.

The default settings are used when you add an Action and type a name in the action state on the
diagram. That name becomes the action text, not the name of the action. Before adding actions, set
the properties for the diagram, following these steps:

1. Right-click outside the Swimlanes frame and select Diagram Properties.

2. Select the Properties tab and click the All radio button for the Filter.

3. Open the Action category and change the showName and ShowAction properties to use
these values:
84 Systems Engineering Tutorial

Defining Flow of Control in Activity Diagrams
Activity_diagram::Action::showName = Name

Activity_diagram :: Action :: ShowAction = Description

This second property allows informal text to be displayed on the diagram, while the
actual action is described formally using an executable language. Your dialog box
should be similar to this example.

4. Click OK to save the changes and close the dialog box.

Drawing Action States
To draw action states in the diagram, follow these steps:

1. Click the Action icon on the Drawing toolbar.

2. In the top section of the drawing area inside the upper SignalStrength swimlane frame,
click or click-and-drag to create an action state. Name the new action Idle.

3. Click the action state, or right-click and select Features from the pop-up menu.

4. In the description field, type Waiting for a Call to be Placed.

5. Click OK to apply the changes and close the Features dialog box.

6. In the lower section of the Location swimlane, draw an action state and name it
LocationUpdate.

7. In the SignalStrength swimlane draw an action state and name it CheckSignal.

8. Double-click the CheckSignal action state to display the Features dialog box.

9. Type Check for an acceptable signal strength in the Description field. Then
click OK.
Rhapsody 85

System Behaviors
10. Click the Action icon.

11. Click or click-and-drag above the LocationUpdate action in the Location swimlane.

12. Name the new action Registering. At this point, your diagram should resemble this
example.
86 Systems Engineering Tutorial

Defining Flow of Control in Activity Diagrams
Defining an Action using an Action Language
To define action states, Rhapsody provides an action language that is a subset of C++. For more
information, refer to the Implementation Using an Action Language section.

To define an action, follow these steps:

1. Double-click the Registering action state, or right-click and select Features from the
pop-up menu.

2. Type the following action language in the Action field:

 OUT_PORT(mm_cc)->GEN(RegistrationReq);

This command sends an asynchronous message out the mm_cc port for the
registration requests.

3. Click OK to apply the changes and close the dialog box.

Drawing a Default Connector
One of the Action States must be the default state. This is the initial state of the Activity. Idle is
the default state as it waits for call requests.

To identify the default state, follow these steps:

1. Click the Default Flow icon on the Drawing toolbar.

2. Click to the right of the Idle action state and then click its edge. Press Ctrl+Enter stop
drawing the connector and not label it.
Rhapsody 87

System Behaviors
Drawing a Subactivity State

A subactivity state represents the execution of a non-atomic sequence of steps nested within
another activity. In this example, draw the InCall subactivity state to indicate that the call has
been established using these steps:

1. Click the Subactivity icon on the Drawing toolbar.

2. In the bottom section of the SignalStrength swimlane, click or click-and-drag to draw
the subactivity state.

3. Name the subactivity state InCall.

4. To display the subactivity icon in the lower right corner of the state drawing, right-click
the InCall box and select Display Options from the menu.

5. Click the Icon radio button for the Show Stereotype selections and click OK.

Drawing Transitions

Transitions represent the response to a message in a given state. They show what the next state will
be. In this example, you will draw the following transitions:

� Transitions between states
� Fork and join transitions
� Timeout transition

Note
To change the line shape of a transition, right-click the line, select Line Shape from the
pop-up menu, and then Straight, Spline, Rectilinear, or Reroute.
88 Systems Engineering Tutorial

Defining Flow of Control in Activity Diagrams
Drawing Transitions Between States
To draw transitions between states, follow these steps:

1. Click the Activity Flow icon on the Drawing toolbar.

2. Click the InCall subactivity state, then click the Idle state.

3. Name the transition Disconnect.

4. Draw a transition from Registering to LocationUpdate, then press Ctrl+Enter.

Note: Rhapsody enables you to assign a descriptive label to an element. A labeled
element does not have any meaning in terms of an executable action, but the
label helps you to reference and locate elements in diagrams and dialog boxes.
A label can have any value and does not need to be unique.

In this example, label the transition between Registering and LocationUpdate
as follows:

5. Double-click the transition between Registering and LocationUpdate or right-click
and select Features from the pop-up menu. The Features dialog box opens.

6. Click the L button next to the Name field. The Name and Label dialog box opens.

7. Type Registering in the Label field.

8. Click OK to close the Name and Label dialog box.

9. Click OK to close the Features dialog box.

10. To display the label, right-click the transition and select Display Options > Display
Name > Label from the pop-up menu.

Note
When drawing activity flows, it is a good practice to not cross the flow lines. This makes the
diagram easier to read.
Rhapsody 89

System Behaviors
Drawing a Fork Synchronization
A fork synchronization represents the splitting of a single flow into two or more outgoing flows. It
is shown as a bar with one incoming transition and two or more outgoing transitions.

To draw a fork synchronization bar, follow these steps:

1. Click the Draw Fork Synch Bar icon on the Drawing toolbar.

2. Click or click-and-drag between the Idle action state and the CheckSignal action state.
Rhapsody adds the fork synchronization bar.

3. Click the Activity Flow icon, and draw a single incoming transition from Idle to the
synchronization bar. Type PlaceCallReq, then press Ctrl+Enter. This transition
indicates that a call request has been initiated.

4. Draw the following outgoing transitions from the fork bar:

a. To the Registering action, then press Ctrl+Enter

b. To the CheckSignal action state, then press Ctrl+Enter
90 Systems Engineering Tutorial

Defining Flow of Control in Activity Diagrams
Drawing a Join Synchronization
A join synchronization represents the merging of two or more concurrent flows into a single
outgoing flow. It is shown as a bar with two or more incoming transitions and one outgoing
transition.

To draw a join synchronization bar, follow these steps:

1. Click the Draw Join Synch Bar icon on the Drawing toolbar.

2. Click or click-and-drag between CheckSignal action state and the InCall subactivity.
This line remains within the SignalStrength swimlane. Rhapsody adds the join
synchronization bar.

3. Click the Activity Flow icon and draw the following incoming transitions to the
synchronization bar:

a. From LocationUpdate, then press Ctrl+Enter

b. From CheckSignal, then press Ctrl+Enter

4. Draw one outgoing transition from the synchronization bar to InCall. Type
ChannelOpen, and then press Ctrl+Enter. This transition indicates that the channel is
open and the call can be established.

Drawing a Timeout Transition for CheckSignal
A timeout transition causes a transition to be taken after a specified amount of time has passed. It
is an event with the form tm(n), where n is the number of milliseconds that should pass before the
transition is made.

In this example, you will draw a timeout transition that monitors the signal strength of
transmissions every three seconds as follows:

1. Click the Activity Flow icon on the toolbar.

2. Draw a transition originating and ending with CheckSignal.

3. Type tm(3000)and then press Ctrl+Enter.
Rhapsody 91

System Behaviors
Specifying an Action on the Disconnect Transition
To specify actions for Disconnect and ChannelOpen, follow these steps:

1. Double-click the Disconnect transition, or right-click and select Features from the pop-
up menu. The Features dialog box opens.

2. In the Action field, type the following action language code:

OUT_PORT(mm_CC)->GEN(Disconnect);

This command sends an asynchronous message out the mm_cc port when
disconnecting.

3. Click OK to apply the changes and close the Features dialog box. Rhapsody displays the
transition name with the action command.

4. Double-click the ChannelOpen transition, or right-click and select Features from the
pop-up menu. The Features dialog box opens.

5. In the Action field, type the following code:

locationUpdate();
92 Systems Engineering Tutorial

Defining Flow of Control in Activity Diagrams
6. Click OK to apply the changes and close the Features dialog box. Rhapsody displays the
transition name with the action command. At this point your diagram should resemble this
example.

Note
To display the transition name without the action, type the transition name as the Label
using the Features dialog box. Then right-click the transition and select Display Options >
Show Label from the pop-up menu.
Rhapsody 93

System Behaviors
Drawing the InCall Subactivity Diagram
Subactivity states represent nested activity diagrams. The InCall subactivity diagram shows the
flow of information once the system connects the call. The system monitors the signal strength for
voice data every 15 seconds.

To open the InCall subactivity diagram, right-click InCall in the MMCallControl activity
diagram, and select Open Sub Activity Diagram from the pop-up menu. Rhapsody displays the
subactivity diagram with the InCall activity in the drawing area. This diagram has the same
properties as the original diagram.

Drawing Action States

In this example, you will draw the following two actions states, and then add names to the action
states:

� VoiceData—Processes voice data
� CheckSignal—Checks the signal strength on the network

To draw the action states, follow these steps:

1. Click the Action icon on the Drawing toolbar.

2. In the top section of the InCall state, click-and-drag or click and name it VoiceData.
Press Ctrl+Enter.

3. In the bottom section of the InCall state, click-and-drag or click and name it
CheckSignal. Then press Ctrl+Enter.

Drawing a Default Connector to VoiceData

The subactivity diagram must have an initial state. Execution begins with the initial state when an
input transition to the subactivity state is triggered.

To draw the default connector, follow these steps:

1. Click the Default Flow icon on the Drawing toolbar.

2. Click above VoiceData, then click VoiceData. Press Ctrl+Enter.
94 Systems Engineering Tutorial

Drawing the InCall Subactivity Diagram
Drawing Flow Lines

Draw a flow line between Voice Data and Check Signal with these steps:

1. Click the Activity Flow icon on the toolbar.

2. Draw a flow line from VoiceData to CheckSignal. Press Ctrl+Enter.

Drawing a Timeout Activity Flow

Draw a timeout transition to check for voice data every 15 seconds as follows:

1. Click the Activity Flow icon on the toolbar.

2. Draw a flow line from CheckSignal to VoiceData.

3. Type tm(15000), then press Ctrl+Enter.

You have completed drawing the InCall subactivity diagram. Rhapsody automatically adds the
newly created action states and flows to the browser. Your subactivity diagram should resemble
this example.
Rhapsody 95

System Behaviors
Creating the RegistrationReq Activity Diagram
The RegistrationReq activity diagram shows the functional flow of network registration requests.
The system checks for registration requests and then sends received requests to the network.

To create the RegistrationReq activity diagram, follow these steps:

1. In the browser, expand the DataLink package, the DataLinkBlock and the Parts
category.

2. Right-click RegistrationMonitor and select Add New > Activity Diagram from the
pop-up menu. (This diagram uses the default properties.)
Rhapsody adds the Activity Diagram category and the new activity diagram to the
RegistrationReq part in the browser, and opens the new activity diagram in the
drawing area.

Note
You may wish to type a title on the activity diagram, such as RegistrationReq Activity
Diagram.

3. Right-click the new diagram and select Diagram Properties from the context menu.

4. On the General tab of the features dialog, clear the Analysis Only checkbox.

5. Click OK to close the features dialog.

Drawing Action States

In this example, you will draw three actions states and then add names to the action states as
follows:

1. Click the Action icon on the Drawing toolbar.

2. In the upper section of the drawing window, create an action state, then press Ctrl +
Enter.

3. Open the Features dialog box for this action state, and type Idle in the Name field. Click
OK.

4. Create another action state below Idle, then press Ctrl + Enter.

5. Open the Features dialog box and type InitiateRequest in the Name field. Click OK.

6. Create another action state below InitiateRequest, then press Ctrl + Enter.

7. Open the Features dialog box and type Success in the Name field. Click OK.
96 Systems Engineering Tutorial

Creating the RegistrationReq Activity Diagram
8. For each of the three action states, right-click and select the Display Options. Select these
three radio buttons in the three areas Name, Label, and Action (in that order).

Defining the InitiateRequest Action State

In this example, specify an action for the InitiateRequest action state as follows:

1. Double-click InitiateRequest in the browser or right-click and select Features from
the pop-up menu.

2. In the Features dialog box type the following action language in the Action field:

OUT_PORT(reg_request)->GEN(ChannelOpen);

This command sends an asynchronous message out the reg_request port when the
channel is open.

3. Click OK to apply the changes and close the Features dialog box.

Drawing a Default Connector

In the activity diagram, draw a default connector using these steps:

1. Click the Default Flow icon on the Drawing toolbar.

2. Click above Idle in the diagram to anchor the flow line

3. Click Idle to finish the line. Press Ctrl+Enter.

Drawing Flows

Draw flow lines between actions states as follows:

1. Click the Activity Flow icon in the Drawing toolbar.

2. Draw a flow line from Idle to InitiateRequest and type RegistrationReq to label
this flow. Press Ctrl+Enter.

3. Draw a flow from InitiateRequest to Success. Press Ctrl+Enter.

4. Draw a flow from Success to Idle. Press Ctrl+Enter.
Rhapsody 97

System Behaviors
Drawing a Timeout Flow

Draw a timeout flow to return to the Idle state after 45 seconds if no response is received from
the network as follows:

1. Click the Activity Flow icon in the Drawing toolbar.

2. Draw a flow from InitiateRequest to Idle.

3. Type the flow label tm(45000), then press Ctrl+Enter.

Your completed RegistrationReq activity diagram should resemble this example.
98 Systems Engineering Tutorial

Modeling Behavior in Statecharts
Modeling Behavior in Statecharts
Statecharts describe a system’s behavior over time, specifically the behavior of classifiers (actors,
use cases, or classes), parts, and blocks. This includes the states and modes of the system and the
triggers that cause them to transition from state to state.

Statecharts constitute an extensive generalization of state-transition diagrams. They allow for
multi-level states, decomposed in an and/or fashion, and thus support economical specification of
concurrency and encapsulation. They incorporate the timeout operator for specifying
synchronization and timing information, and a means for specifying transitions that depend on the
history of the system's behavior. Statecharts are a key animation tool used to show dynamic
behavior graphically.

Creating a Statechart

To create a statechart, follow these steps:

1. Start Rhapsody if it is not already running and open the handset model if it is not already
open.

2. In the browser, expand the Subsystems package, the ConnectionManagement
package, the ConnectionManagementBlock, and the Parts category.

3. Right-click CallControl and select Add New > Statechart from the pop-up menu.

Rhapsody adds the Statechart category and the new statechart to the CallControl part in the
browser, and opens the new statechart in the drawing area.

Drawing States

A state is a graphical representation of the status of a part. It typically reflects a certain set of its
internal data (attributes) and relations.

Drawing Idle and Active States
In this example, draw two states, Idle and Active, using these steps:

1. Click the State icon in the Drawing toolbar.

2. In the top section of the drawing area, click or click-and-drag. Rhapsody create a state
with a default name of state_n, where n is equal to or greater than 0.

3. Type Idle for the name and then press Enter. This state indicates that no call is in
progress.
Rhapsody 99

System Behaviors
4. In the center of the drawing area, draw a larger state named Active. This state indicates
that the call is being set up or is in progress.

Drawing Nested States
In this example, draw the following states nested inside the Active state:

� ConnectionConfirm—Waits for a connection and then confirms the connection
� Connected—Connects as a voice or data call

To draw these nested states, follow these steps:

1. Click the State icon in the Drawing toolbar.

2. In the top section of the Active state, draw a state named ConnectionConfirm.

3. In the bottom section of the Active state, draw a state named Connected.
100 Systems Engineering Tutorial

Modeling Behavior in Statecharts
Drawing Default Connectors

One of a part’s state must be the default state, that is, its initial state when it is first activated. Idle
is in the default state as it waits for call requests, and Active is in the default state before it
confirms the connection.

To draw these two default connectors, follow these steps:

1. Click the Default connector icon in the Drawing toolbar.

2. Click to the right of the Idle state, then click Idle. Press Ctrl+Enter.

3. Draw another default connector to ConnectionConfirm. Press Ctrl+Enter.

Drawing Transitions

Transitions represent the response to a message in a given state. They show what the next state will
be. A transition can have an optional trigger, guard, or action. This example uses transitions with
triggers.

Creating a Trigger
To draw transitions with triggers, follow these steps:

1. Click the Transition icon in the Drawing toolbar.

2. Click the Idle state and then click the Active state.

3. In the label box, type PlaceCallReq, then press Ctrl+Enter.

4. Create another transition from ConnectionConfirm to Connected and name this
transition ConnectConfirm, then press Ctrl+Enter.

5. Create another transition from the Active state to the Idle state and name it
Disconnect, the press Ctrl+Enter. This transition indicates that the user has
disconnected or the network has terminated the call.

Note
To change the line shape, right-click the line, select Line Shape from the pop-up menu, and
then Straight, Spline, Rectilinear, or Reroute.
Rhapsody 101

System Behaviors
Specifying an Action on a Transition
You can also specify that a part execute a specific action when it transitions from one state to
another.

In this example, specify an action for PlaceCallReq and Disconnect as follows:

1. Double-click the PlaceCallReq transition, or right-click and select Features from the
pop-up menu. The Features dialog box opens.

2. In the Action field, type the following action language:

OUT_PORT(cc_mm)->GEN(PlaceCallReq);

3. This command sends the PlaceCallReq event to the MMCallControl file element.

4. Click OK to apply the changes and close the dialog box. The transition now includes an
action.

5. Double-click the Disconnect transition, or right-click and select Features from the pop-
up menu. The Features dialog box opens.

6. In the Action field, type the following action language:

OUT_PORT(cc_mm)->GEN(Disconnect);

This command sends the Disconnect event to the MMCallControl file element.
102 Systems Engineering Tutorial

Modeling Behavior in Statecharts
Drawing a Timeout Transition
A timeout transition causes a part to transition to the next state after a specified amount of time has
passed. It is an event with the form tm(n), where n is the number of milliseconds that the part
should wait before making the transition.

In this example, draw a timeout transition in which ConnectionConfirm waits thirty seconds
before returning to the Idle state if a connect confirmation is not made as follows:

1. Click the Transition icon on the Drawing toolbar.

2. Draw a transition from ConnectionConfirm to Idle.

3. Type tm(30000)and press Ctrl+Enter.

The completed statechart should resemble this example.
Rhapsody 103

System Behaviors
Checking Action Language Entries

After entering action language into several diagrams, it is useful to check those entries using the
Rhapsody search facility. Follow these steps to check the OUT_PORT action language entries:

1. Select the Edit > Search in Model menu options.

2. Type a portion of the action that you want to use for the search in the Find What field. In
this case, that is OUT_PORT.

3. Click Find. Rhapsody lists all of the locations where it found those actions.

4. Click on the entries in the list of elements found, and the system displays the diagram
containing that entry and the dialog box with the full action description. Make any
corrections that are needed.
104 Systems Engineering Tutorial

System Validation
Rhapsody enables you to visualize the model through simulation. Simulation is the execution of
behaviors and associated definitions in the model. Rhapsody simulates the behavior of your model
by executing its behaviors captured in statecharts, activity diagrams and textual behavior
specifications. Structural definitions like blocks, ports, parts and links are used to create a
simulation hierarchy of subsystems.

Once you simulate the model, you can open simulated diagrams, which allow you to observe the
model as it is running, perform design-level debugging and perform the following tasks:

� Step through the model
� Set and clear breakpoints
� Inject events
� Simulate an output trace

It is good practice to test the model incrementally using model execution. You can simulate pieces
of the model as it is developed. This allows you to determine whether the model meets the
requirements and find defects early in the design process. Then you can test the entire model. In
this way, you iteratively build the model, and then with each iteration perform an entire model
validation.

Note
If you are using the System Architect version of Rhapsody, the simulation feature is not
available.
Rhapsody 105

System Validation
Preparing for Simulation
To run a simulation, follow these general steps:

1. Create a component.

2. Create a configuration for your component.

3. Generate component code.

4. Build the component application.

5. Simulate the component application.

The following sections describe these steps in detail.

Creating a Component

A component is a level of organization that names and defines a simulatable component. Each
component contains configuration and file specification categories, which are used to build and
simulate model.

Each project contains a default component, named DefaultComponent. You can use the default
component or create a new component. In this example, you can rename the default component
Simulation, and then use the Simulate component to simulate the model.

To use the default component, follow these steps:

1. In the browser, expand the Components category.

2. Select DefaultComponent and rename it Simulation.

Setting the Component Features

Once you have created the component, you must set its features.

To set the component features, follow these steps:

1. In the browser, double-click Simulation or right-click and select Features from the
pop-up menu. The Component dialog box opens.

2. The Executable radio button to set the Type.

3. Select Selected Elements as the Scope.

4. Select Analysis, Architecture, and Subsystems as the Selected Elements.
106 Systems Engineering Tutorial

Preparing for Simulation
These are the packages for which you create a simulatable component. Do not select the
_Requirements package because you do not simulate it.

The Component dialog box should resemble this example.

5. Click OK to apply the changes and close the dialog box.
Rhapsody 107

System Validation
Creating a Configuration

A component can contain many configurations. A configuration includes the description of the
classes to include in code generation, and settings for building and Simulating the model.

Each component contains a default configuration, named DefaultConfig. In this example,
rename the default configuration to Debug, and then use the Debug configuration to simulate the
model.

To use the default configuration, follow these steps:

1. In the browser, expand the Simulate component and the Configurations category.

2. Select DefaultConfig and rename it Debug.

Setting the Configuration Features

Once you have created the Debug configuration, you must set the values for Simulating the model
as follows:

1. In the browser, double-click Debug or right-click and select Features from the pop-up
menu. The Configuration Features dialog box opens.

2. Select the Initialization tab and set the following values:

a. For the Initial instances field, select Explicit to include the classes which have
relations to the selected elements.

b. Select Generate Code for Actors.

3. Select the Settings tab, and set the following values:

a. Select Animation from the Instrumentation Mode pull-down list. This adds
instrumentation code allowing you to simulate the model.

b. Select Real (for real time) as the Time Model.

c. Select Flat as the Statechart Implementation. Rhapsody implements states as simple,
enumerated-type variables.

Rhapsody fills in the Environment Settings, based on the compiler settings you
configured during installation. A compiler is used to build the simulation model.

4. Click OK to apply the changes and close the dialog box.

Before you a build a simulation component, you must first set the active configuration. The active
configuration is the configuration for which you simulate a simulation component. The active
configuration appears in the pull-down list in the Code toolbar.
108 Systems Engineering Tutorial

Simulating the Model
To simulate the Debug configuration, follow these steps:

1. In the browser, right-click the Debug configuration, then select Set as Active
Configuration from the pop-up menu.

2. Choose Simulation > Full Build from the menu or the Full Build icon . Rhapsody
displays a message that the Debug directory does not yet exist and asks you to confirm its
creation.

3. Click Yes.

Rhapsody displays output messages in the Build tab of the Output window (shown below). The
messages inform you of the simulatable component creation status including the following:

� Success or failure of internal checks for the correctness and completeness of your model.
These checks are performed before simulatable component creation begins.

� Errors or warnings in simulatable component build process.
� Completion of simulatable component build process.

Simulating the Model
To start simulation without including current changes, use the Smart Build feature, as described
below:

� Select Simulation > Smart Build from the menu or the Smart Build icon .
Rhapsody starts simulation and performs the following tasks:

� Displays the simulation toolbar, which enables you to control the simulation process.
� Displays a console window, which provides input to and output from the model. You can

position and resize the console and Rhapsody windows so both are visible.
� Displays four output window panes:

– Build
– Check Model
– Configuration
– Animation

Note
If the output panes are not displayed, select View > Output Window. The output panes are
dockable, so you can move them out of the Rhapsody interface to increase the viewable area
for simulations.
Rhapsody 109

System Validation
If your model builds without errors, your output window should resemble this example.

Creating Initial Instances

It is a good idea to click the Go Idle command icon immediately after starting an executable
model so all initial instances are created.

To create instances, click Go Idle after starting the model. The initial instances are created (as well
as any instances created by those instances) and are listed under the Instances category for the
class in the browser.
110 Systems Engineering Tutorial

Simulating the Model
Break Command

To interrupt a model that is executing, click the Break icon to issue the Break command.

The Break command enables you to regain control immediately (or as soon as possible). Issuing a
Break command also suspends the clock, which resumes with the next Go command.

Note
For simple applications, there might be a backlog of notifications. Although the model stops
executing immediately, the animator can accept further input only after it has cleared this
backlog and displayed any pending notifications.

The Break command cannot stop an infinite loop that resides within a single operation. For
example, issuing a Break cannot stop a while() loop:
Rhapsody 111

System Validation
Preparing to Web-enable the Model
The first step in Web-enabling a working Rhapsody model is to set its configuration and elements
as Web-manageable and then to simulate, build, and run the model.

Creating a Web-Enabled Configuration

In this example, create a new configuration and then set its features as follows:

1. Right-click the Configurations category and select Add New Configuration from the
pop-up menu.

2. Type Panel.

3. Double-click Panel or right-click and select Features from the pop-up menu. The
Features dialog box opens.

4. Select the Initialization tab and set the following values:

a. For the Initial instances field, select Explicit to include the classes which have
relations to the selected elements.

b. Select Generate Code for Actors.

5. Click Apply to save these selections and keep the dialog box open.

6. Select the Settings tab, and set the following values:

a. Select Web Enabling for Webify.

b. If desired, click the Advanced button to change the default values for the Webify
parameters. Rhapsody opens the Advanced Webify Toolkit Settings dialog box.

This dialog box contains the following fields, which you can modify:

– Home Page URL—The URL of the home page

– Signature Page URL—The URL of the signature page

– Web Page Refresh Period—The refresh rate in milliseconds

– Web Server Port—The port number of the Web server

c. Select Real (for real time) as the Time model.

d. Select Flat as the Statechart Implementation. Rhapsody implements states as
simple, enumerated-type variables.
112 Systems Engineering Tutorial

Preparing to Web-enable the Model
Rhapsody fills in the Environment Settings section, based on the compiler settings
you configured during installation. This example uses the Cygwin compiler. At this
point the dialog box should resemble this example.

7. Click OK to apply the changes and close the dialog box.
Rhapsody 113

System Validation
Selecting Elements to Web-enable

To Web-enable the model, set the elements that you want to control or manage remotely over the
Internet using either the Rhapsody Web Managed stereotype or the WebManaged property.

In this example, you examine how calls are established and disconnected by setting the stereotypes
of the following events to Web Managed:

� CallConfirm

� ConnectConfirm

� Disconnect

� PlaceCallReq

To select elements to Web-enable, follow these steps:

1. To locate the items you wish to change, select the Edit > Search in Model option. Type
CallConfirm into the Find What field and click Find. The search shows all instances
of that text and the browser path for each.

2. Double-click CallConfirm located under the Subsystems browser category.

3. In the Features dialog, select Web Managed from the Stereotype pull-down list.

4. Click OK to apply the changes and close the dialog box.

5. Make the same change to the remaining three events to make them Web Managed.

Note
If the element already has an assigned stereotype, set the element as Web-managed using a
property. In the Properties tab, select WebComponents as the subject, then set the value of
the WebManaged property within the appropriate metaclasses to True.

Building the Panel

In order to build the Panel, follow these steps:

1. Select Panel from the pull-down menu as show here.

2. Click the Full Build icon .

3. After completing the build, you may use any of the command icons to the left.
114 Systems Engineering Tutorial

Preparing to Web-enable the Model
Connecting to the Web-enabled Model
Rhapsody includes a collection of default pages that serve as a client-side user interface for the
remote model. When you run a Web-enabled model, the Rhapsody Web server automatically
simulates a Web site including the file structure and interactive capability. This site contains a
default collection of simulated on-the-fly pages that refreshes each element when it changes.

Note
You can also customize the Web interface by creating your own pages or by referencing the
collection of pages that come with Rhapsody.

Navigating to the Model through a Web Browser

You can access a Web-enabled model running on your local machine or on a remote machine. In
this example, you will connect to the model on your local machine.

To connect to the Web-enabled model on your local machine, follow these steps:

1. Open Internet Explorer.

2. In the address field, type the following URL:

http://localhost

Other users on the same network can connect to your local model using the IP address
or machine name in place of localhost.

If you changed the Web server port using the Advanced Webify Toolkit Settings dialog
box, type the following:

http://<localhost>:<port number>

In this URL, <localhost> is localhost (or the machine name or IP address of the
local machine running the handset model), <port number> is the port specified in the
Advanced Webify Toolkit Settings dialog box.

By default, the Parts Navigation page of the Rhapsody Web user interface opens.

Note
If you cannot view the right-hand frame in Internet Explorer, go to Tools > Internet
Options > Advanced and uncheck the option Use Java xx for <applet>.
Rhapsody 115

System Validation
Viewing and Controlling a Model

The Parts Navigation page provides easy navigation to the Web Managed elements in the model by
displaying a hierarchical view of model elements, starting from the top level aggregate. By
navigating to and selecting an aggregate in the left frame of this page, you can monitor and control
your model in the aggregate table displayed in the right frame.

Aggregate tables contain name-value pairs of Rhapsody Web-enabled elements that are visible and
controllable through Internet access to the machine hosting the Rhapsody model. They can contain
text boxes, combo-boxes, and Activate buttons. You can monitor the model by reading the values
in the dynamically populated text boxes and combo-boxes. You can control the model by pressing
the Activate button, which initializes an event, or by editing writable text fields.

Sending Events to Your Model

You can simulate events in the Rhapsody Web user interface and monitor the resulting behavior in
the simulated diagrams.

In this example, you simulate the PlaceCallReq, ConnectConfirm, and Disconnect events
and view the results in the simulated diagrams as follows:

1. If the simulated Connection Management Place Call Request Success SD is not already
open, simulate it and click the Go button in the simulation toolbar.

2. If the simulated CallControl statechart is not already open, simulate it.

3. If the simulated MobilityManagement activity diagram is not already open, simulate it.

4. Resize the Rhapsody Web user interface browser window so that you can view the
simulated diagrams while sending events to the model.

5. In the navigation frame on the left side of the browser, expand
ConnectionManagement_C[0], and click
ConnectionManagement_C::CallControl_C[0]

6. In the Rhapsody Web user interface, click Activate next to PlaceCallReq.

7. Open the simulated sequence diagram. Rhapsody displays how the instances pass
messages, as shown in the following figure.

8. In the simulated statechart, Idle and PlaceCallReq transition to the inactive state
(olive), and Active and ConnectionConfirm transition to the active state (magenta).
Then ConnectionConfirm and ConnectConfirm transition to the inactive state
(olive), Active remains in the active state (magenta), and Connected transitions to the
active state (magenta).
116 Systems Engineering Tutorial

Preparing to Web-enable the Model
9. In the simulated activity diagram, Idle transitions from the active state to the inactive
state. Registering, CheckSignal, and LocationUpdate transition from inactive to
active to inactive. Then InCall transitions from the inactive state to the active state in the
Rhapsody Web GUI, click Activate next to Disconnect.

In the simulated statechart, the Active and Connected states and Disconnect
change to the inactive state (olive), and Idle transitions to the active state (magenta).

In the simulated activity diagram, InCall transitions to the inactive state and Idle
becomes active.

You can continue generating events and viewing the resulting behavior in the simulated diagrams.
Rhapsody 117

System Validation
118 Systems Engineering Tutorial

Generating Reports
Rhapsody offers two ways to simulate reports from the models, charts, and other design items:

� A simple and quick internal RTF report generator
� A more powerful reporting tool, Rhapsody ReporterPlus

ReporterPLUS
ReporterPlus produces reports that are suitable for formal presentations and can be output in any
of these formats:

� HTML page
� Microsoft Word
� Microsoft PowerPoint
� rtf
� text

You can save the file and view it in any program that can read the report’s format. In addition, you
can create custom report specifications that define the structure, content, and format of reports.
The following stylistic definitions all control a report’s appearance:

� ReporterPLUS template and selected options
� Output type (Word, PowerPoint, HTML, RTF, text)
� Word or PowerPoint template
� HTML style sheet
� HTML tags in your model, ReporterPLUS template, or in an inserted file

ReporterPlus has extensive Help information available from the interface. Use the Help Topics to
answer your more detailed questions about the features of this specialized interface.
Rhapsody 119

Generating Reports
Examining and Customizing ReporterPlus Templates

Rhapsody includes numerous pre-fabricated report templates that you may want to use as they are
or customize to meet your needs.

Note

These files are stored in the Rhapsody\reporterplus\Templates directory.

Rhapsody models can be loaded into the ReporterPlus interface and used to create generic or
model-specific templates. This interface allows you to create and modify templates graphically
using a drag-and-drop method.

To access ReporterPlus and the templates, follow these steps:

1. Select Tools > ReporterPlus from the menu.

2. From the next menu, select Create/Edit template with ReporterPlus.

3. Your model displays in the upper left corner of the ReporterPlus interface. Click the items
in the tree to expand and examine the model. When you click part of the model a
description of that item appears to the right of the model tree.

4. Select File > Open Template.

5. Select any of the templates in the dialog box.The template structure appears in the lower
left area.
120 Systems Engineering Tutorial

ReporterPLUS
6. Click on individual items in the template and the Q Language definition of the item
appears to the right, as shown in the example below.

7. You may also want to add standard headings and text to an existing template. To add this
“boilerplate” material, highlight a section of the template in the lower left window and
click the Text tab in the lower right window. Type text in the Heading and Body sections
as desired.

Note
For more complex changes, study the Q Language that ReporterPlus uses to define report
expressions. This language is defined in a PDF file accessed from ReporterPlus Help
Topics.
Rhapsody 121

Generating Reports
Using the System Model Template

ReporterPlus includes a template designed specifically for systems engineers called
SysMLreport.tpl.

To use this template for your report, follow these steps:

1. With your model displayed in the Rhapsody interface, select Tools > ReporterPlus from
the menu.

2. From the next menu, select Create/Edit template with ReporterPlus.

3. Your model displays in the upper left corner of the ReporterPlus interface.

4. Select File > Open Template.

5. Select the SysMLreport.tpl and use it to produce a report for your model.

Note
You may wish to change the template to meet your specific needs.

Report Layout
The main elements of each section are shown along with their page locations and are hyperlinked.
The generated report contains the following sections covering the complete SysML profile:

� Requirements diagrams
� Use case diagrams
� Sequence diagrams
� Structure diagrams
� Object model diagrams
� Block Definition diagrams
� Internal Block diagrams
� Parametric diagrams
� Data dictionary
� Model configuration

The report template uses the standard SysML features built into your model when you select the
SysML project Type when you first created your project. Refer the Creating a New SysML Project
section for more information.
122 Systems Engineering Tutorial

ReporterPLUS
Requirements Diagrams
For any requirements diagrams, the SysMLreport.tpl supplies hyperlinks to the location of the
definition of any use cases, actors, packages, classes or blocks shown in the diagram.

Note
Each requirement must have a Stereotype setting so that the reporting feature can extract
the requirements data.

Generating Reports

If you are going to generate a report in Microsoft Word, be certain that Word is closed before you
start this procedure to avoid a conflict between ReporterPlus and Word.

When you have a template that you want to use for a report, follow these steps:

1. With your project open in Rhapsody, select Tools > ReporterPlus from the menu.

2. From the next menu, select one of these two options:

– Report on all model elements
– Report on selected elements

3. Rhapsody displays the ReporterPlus Wizard (shown below) that allows you to select the
desired output format and on subsequent dialog boxes, the template, and directory
location and name for the finished report.
Rhapsody 123

Generating Reports
Using the Internal Reporting Facility
The internal reporting facility is particularly useful for quick print-outs that the developer needs to
use for debugging the model. The reports are not formatted for formal presentations.

Producing an Internal Report

To create a report using the simple, internal reporter, select
Tools > Report on model. The Report Settings dialog box opens, as shown in the following
figure.

The dialog box contains the following fields:

� Report Options—Specifies which elements to include in the report. The possible values
are as follows:

– Include Relations—Include all relationships (associations, aggregations, and
compositions). By default, this option is checked.

– Include Subclasses—List the subclasses for each class in the report. By
default, this option is checked.

� Scope—Specifies the scope of the report. The possible values are as follows:
– Selection—Include information only for the selected elements.
– Configuration—Include information for all elements in the active component

scope. This is the default value.
124 Systems Engineering Tutorial

Using the Internal Reporting Facility
� Operations—Specifies which operations to include in the report. The possible values are
as follows:

– All—Include all operations. This is the default value.
– Public—Include only the public operations.

� Attributes—Specifies which attributes to include in the report. The possible values are as
follows:

– All—Include all attributes. This is the default value.
– Public—Include only the public attributes.

Select the portions of the model you want to be included in the report, then click OK to simulate it.
The report is displayed in the drawing area with the current file name in the title bar.

Using the Internal Report Output

When you simulate a report in Rhapsody using Tools > Report on model, the initial result uses
the internal RTF viewer. To facilitate the developer’s research, this output may be used in

� To locate specific items in the report online, select Edit > Find from the menu and type in
the search criteria.

� To print the initially simulated report, select the File > Print menu option.
� The initially simulated report is only a view of the RTF file that the facility created. This

file is located in the project directory (parallel to the.rpy file) and is named
RhapsodyRep<num>.rtf. If you wish, open the RTF file using a word processor that
handles RTF format, such as Microsoft Word.
Rhapsody 125

Generating Reports
126 Systems Engineering Tutorial

Index
A
Action language 81, 87

basic syntax 81
checking 104
example 87, 92, 97, 102
reserved words 81

Action states 85
default 87
defining 87

Activities 49
Activity diagrams 83, 96

action states 85
behavior interconnections 83
creating 83
defining an action 87
join synchronization 91
properties 84
setting default state 87
subactivity state 88
swimlanes 84
transitions 88

Activity flow 95
timeout 95

Actors 22, 33
in block definition diagram 36
sequence diagrams 68
with use cases 26

Algorithms 61
Analysis 15

black-box 16, 34, 49
package 14
white-box 16, 49

Architecture 14
connecting parts 39
flow information 40
high-level diagram 34
packages 46

Autosave 7

B
Backups 8
Behaviors 67, 83
Black-box analysis 34
Block 33

Block Definition diagrams 33
adding actors 36
architecture 34
creating 34
drawing blocks 35
flows 37
links 37
service ports 37

Block definition diagrams
starting point 3

Border 76
Break command 111
Browser 10
Build 109

C
C++ language 81
Classes

naming guidelines 12
Classifier roles 69, 77
Commands 42
Component 106

creating 106
features 106

Configuration 108
Connectors 87

default 94
flow lines 95

Cygwin compiler 113

D
Data checking 81
Data instantiation 42
Default configuration 108
Dependency 19, 33

adding stereotype 31
relationships 21

Design structure 33
Diagrams

activity 83
block definition 3, 33, 34
high-level architecture 34
internal block 33, 51, 55, 58
parametric 61
Rhapsody 127

Index
sequence 67, 68
statecharts 99
subactivity 94
systems engineering 1
titles 13
use case 15

Display options 30
equations 64
Label or Name 69
model elements 30

DOORS 15
Drawing toolbar 10

E
Environment border 76
Equations 60, 64
Events 42

in sequence diagrams 67
messages 70
naming conventions 12

Executable language 85

F
Flow of control 83
Flow ports 63
Flows 33, 37, 40

arrowhead 41
change direction 41
changing line shape 44
data instantiation 42
events 42
instantiation of 53
specifying flow items 42

Full build 109

G
Generalizations 27, 29
Generate 106

code with names 23
formal reports 119
report 124

Guidelines
for naming model elements 12

H
Handset 5

behavior sequence 68
requirements 16

HTML 119, 123

I
Idle state 84
Increment/decrement operators 81
Installation

Custom 2
systems engineering 2
systems engineering add-on 2

Interaction occurrence 72
Interactive operators 74
Interfaces 37

external 33
naming conventions 12
naming guidelines 12
provided 45
required 45
Rhapsody 10

Internal block diagrams 33, 51, 55, 58
drawing parts 55
drawing ports 56
links 56

L
Links 37, 39, 53, 56

M
Messages 70

code to pass 81
in sequence diagrams 78
primitive operations 70
realization 70, 78
sequence diagrams 70
type 70

Microsoft PowerPoint 119
Microsoft Word 119, 123
Model 5

build 109
creating actions 81
display options 30
execution 81
handset 5
in a Web browser 115
print to screen 81
simulating 109
testing 50
Web-enable 112

Models
naming guidelines 12
organizing with packages 14
systems engineering 14

N
Names

conventions for 12
128 Systems Engineering Tutorial

Index
model element guidelines 12
Naming conventions 12
Nested activity 94
Nested states 100

O
Operations 67

add new 46
naming conventions 12

Output window 11

P
Packages 11

analysis 14
Architecture 46
architecture 14
default 6, 11
naming guidelines 12
organizing the model 14
requirements 14
subsystems 14, 49
systems engineering 14

Parametric diagrams 60
adding equations 64
flow ports 63
linking to model 62

Parts 39, 55
connecting 39

Ports 56
attributes 38
changing placement 53
contract-based 45
noncontract-based 45
reversing 48
service 37, 53

PowerPoint 123
Print to screen 81
Profile 7
Profiles

SysML 3
Project

backups 8
create new 6
defining behaviors 67
folder 10
saving 7
validation 105

Projects
create new SysML 6
systems engineering 1

Properties 8
activity diagram settings 84
backup 8

R
ReporterPlus 119
Reports 119

for presentations 119
formal 119
HTML 119, 123
internal output 125
PowerPoint 119, 123
prepackaged templates 120
Q language 121
requirements 123
system model templates 122
Word format 119

Requirements 1, 16
capturing 15
dependencies 21
diagram 17, 20
package 14
reports 123
testing 50
traceability 14
tracing to use cases 30

Rhapsody
autosave 7
backups 8
drawing toolbar 10
formal reports 119
generating reports 124
installation 2
interface 10
main menu 10
naming conventions 12
output window 11
reports 119
restore projects 8
search facility 104
starting 6
systems engineering version 2

S
Scenarios 15

communication 33
create flow through 67
described in sequence diagrams 67
divide for reuse 72
network connection 73
typical instance of 69

Search facility 104
Sequence diagrams 67

actor line 68
analysis operation mode 68
classifier roles 69, 77
creating 68
describing scenarios 67
design operation mode 68
Rhapsody 129

Index
instance lines 69
interaction occurrence 72
interactive operators 74
message 78
messages 70
operation mode 68
system border 76

Service ports 33, 37
Simulation 50, 105, 109

Break command 111
creating initial instances 110
full build 109
preparing for 106
setting scope 106

Specifications
behavior 105
development 42

Starting Rhapsody 6
Statecharts 99

transitions 101
States 99

action 85, 94
active 99
default 87
idle 84, 99
nested 100
subactivity 88, 94
transitions between 89

Stereotypes 19
dependency 31

Structure diagrams 33
specifying flow items 42

Subactivity diagrams 94
initial state 94

Subactivity states 94
Subsystems 14, 49
Swimlanes 84
SysML 6

block definition diagrams 3
project type 7
report template 122

SysML profile
starting point 3

System border 76
Systems engineering 1

creating a project 2
diagrams 1
installation 2
organizing model 14
version 2

T
Templates 120

Q language 121
system model 122

Testing 50
Text icons 13
Timeout 95, 103
Titles

diagrams 13
Traceability 14
Transitions 88, 101

add actions on 81
disconnect 92
timeout 91, 103
trigger 101

Trigger transition 101
Triggered operations

messages 70

U
Use case diagrams 15, 22

boundary box 22
dependencies 30

Use cases 23, 28
actors with 26
features 24, 29
generalizations 27, 29
requirements tracing to 30

V
Validation 105

W
Web-enable 112

a model 112
configuration 112
interface 115
property 114
sending events to a model 116
setting stereotype 114

X
XMI

SysML support for version 2.1 3
130 Systems Engineering Tutorial

	Contents
	Rhapsody Basics for Systems Engineers
	Installing and Launching Systems Engineering
	SysML Profile Features
	Handset Model Problem Statement
	Starting Rhapsody
	Creating a New SysML Project
	Saving a Project

	Creating Backups
	Project Files and Directories
	Rhapsody Guided Tour for Systems Engineers
	Main Menu
	Drawing Toolbar
	Browser

	Output Window and Icons

	Naming Conventions and Guidelines
	Standard Prefixes
	Guidelines for Naming Model Elements

	Inserting a Diagram Title
	Using Packages to Organize a System Model

	Requirements Capture and Analysis
	Importing Requirements into Rhapsody
	Modeling the Handset Requirements
	Adding the Requirements as Textual Annotations
	Adding the Requirements to the Diagram
	Drawing and Defining the Dependencies

	Creating a Use Case Diagram
	Drawing the Boundary Box
	Drawing the Actors

	Adding Use Cases to the Functional Overview
	Defining Use Case Features
	Associating Actors with Use Cases
	Drawing Generalizations
	Drawing the Place Call Overview UCD
	Drawing the Use Cases
	Defining Use Case Features
	Drawing Generalizations
	Drawing Requirements
	Setting the Display Options for Model Elements
	Drawing Dependencies
	Defining the Stereotype of a Dependency

	Capturing the Design Structure
	Creating an Block Definition Diagram
	Drawing Blocks
	Adding Actors to the Diagram
	Drawing Service Ports, Flows, and Links
	Specifying Service Port Attributes
	Connecting the Architecture through Parts and Links
	Creating Ports on Actors
	Connecting the Architecture
	Drawing Flows
	Changing the Direction of the Flow
	Specifying the Flow Items
	Changing the Line Shape
	Specifying the Port Contract
	Reversing a Port

	Organizing the Blocks Package
	Organizing Elements

	Drawing the Internal Block Diagram
	Drawing Service Ports
	Changing the Placement of Ports
	Drawing Links

	Creating the DataLink Internal Block Diagram
	Drawing the RegistrationMonitor Part
	Drawing the Registration Request Port
	Linking the Request and DataLink Ports
	Specifying the Port Contract and Attributes

	Creating the MobilityManagement Internal Block Diagram
	Drawing the Registration, Location, and MMCallControl Parts
	Drawing Service Ports and Links
	Specifying the Port Contract and Attributes
	Capturing Equations in Parametric Diagrams
	Creating a Parametric Diagram
	Linking the Diagram to the Model
	Creating Flow Ports and Flows
	Adding Equations

	System Behaviors
	Sequence Diagrams Describing Scenarios
	Creating a Sequence Diagram
	Adding the Actor Lines
	Drawing Classifier Roles
	Drawing Messages
	Drawing an Interaction Occurrence

	Diagramming the Network Connection Scenario
	Creating the NetworkConnect Sequence Diagram
	Drawing Messages
	Drawing Interaction Operators

	Creating the Connection Management Sequence Diagram
	Drawing the System Border
	Drawing Classifier Roles
	Drawing Messages

	Implementation Using an Action Language
	Basic Syntax Rules
	Frequently Used Statements
	Reserved Words

	Defining Flow of Control in Activity Diagrams
	Creating an Activity Diagram
	Defining the MMCallControl Functional Flow
	Drawing Swimlanes
	Setting Activity Diagram Properties
	Drawing Action States
	Defining an Action using an Action Language
	Drawing a Default Connector

	Drawing a Subactivity State
	Drawing Transitions
	Drawing Transitions Between States
	Drawing a Fork Synchronization
	Drawing a Join Synchronization
	Drawing a Timeout Transition for CheckSignal
	Specifying an Action on the Disconnect Transition

	Drawing the InCall Subactivity Diagram
	Drawing Action States
	Drawing a Default Connector to VoiceData
	Drawing Flow Lines
	Drawing a Timeout Activity Flow

	Creating the RegistrationReq Activity Diagram
	Drawing Action States
	Defining the InitiateRequest Action State
	Drawing a Default Connector
	Drawing Flows
	Drawing a Timeout Flow

	Modeling Behavior in Statecharts
	Creating a Statechart
	Drawing States
	Drawing Idle and Active States
	Drawing Nested States

	Drawing Default Connectors
	Drawing Transitions
	Creating a Trigger
	Specifying an Action on a Transition
	Drawing a Timeout Transition

	Checking Action Language Entries

	System Validation
	Preparing for Simulation
	Creating a Component
	Setting the Component Features
	Creating a Configuration
	Setting the Configuration Features

	Simulating the Model
	Creating Initial Instances
	Break Command

	Preparing to Web-enable the Model
	Creating a Web-Enabled Configuration
	Selecting Elements to Web-enable
	Building the Panel
	Navigating to the Model through a Web Browser
	Viewing and Controlling a Model
	Sending Events to Your Model

	Generating Reports
	ReporterPLUS
	Examining and Customizing ReporterPlus Templates
	Using the System Model Template
	Report Layout
	Requirements Diagrams

	Generating Reports

	Using the Internal Reporting Facility
	Producing an Internal Report
	Using the Internal Report Output

	Index

