Telelogic
Rhapsody

RTOS Adapter Guide

Rhapsody®

RTOS Adapter Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

The Deployment Environment 1
BasSiC CONCEPES . . it 1
Rhapsody Applications and the RTOS e e 3
UsSiNg the OS ALo 3
TaSKINg SeIVICES. . . . 4
Setting the Stack Size. e 5
SYNChronization SEIVICESot e e e 5
MeSSage QUEBUESttt ettt et e e e e 6
CommUNICALION POIt . . . o e e 7
TIMEr SEIVICE . . .ot e 8
Adapting Rhapsody to a New RTOS e 9
Step 1: Installing the RUN-TiMe SOUICES. e e 9
Step 2: Modifying the Framework e 9
Step 3: Creating Makefiles 15
Step 4: Building the Framework Libraries 20
Step 5: Creating Properties for a New RTOS e e e 24
Step 6: Validating the New Adapter 27
SUMIMAIY .ottt e 28
MaKefiles . . . 29
Step 1: Creating aMake Batch File 29
Step 2: Running the Batch File e 29
Step 3: Redefining Makefile-Related Properties. i 30
Step 4: Redefining the MakeFileContent Property. i 31
Target Ty P . o oot e e e 32
Compilation FIags oo 32
Commands DefiNitioNs 33
Generated MaACIOSottt e e e e 34
Predefined MaCroSo 35
Generated DEPENUENCIES oottt e 35
Makefile Linking INStrUCtioNS e e 36
JaVa USBIS . . e 37

Rhapsody

Table of Contents

The IDE Interface 39
D iNES . o oo 39
SHTUCTUIES. .« . . e e e e e 39
FUNCHIONS o o 40
The OSAL ClasSesot e 43
RNapSOAY IN C .o 44
RICOSCoNNECtionPort Class i e e e e e 45
RICOSEvVeNntFlag INterface e e e e e e e e e 51
RICOSMessageQuEUE Classttt e e e 56
RICOSMULEX Class ottt et e e e e e e e e e e e e e 65
RICOSOXF Class . . . o vttt ettt e e e e e e e e e e e e 70
RICOSSEMAPhOre Class. ot e e 73
RICOSSOCKEt Classot e e e e 79
RICOSTASK Class vttt e e e e e e e 86
RIC O S TIMET oottt e e e e 100
RICHANAIECIOSEr ClaSs. . . . ottt e e e e 104
Rhapsody iN CHt . . e e 105
OMEVENQUEUE Class . . .o e e e e e e e e e 105
OMMESSAgEQUEUE ClaSS ot ittt e e e e e 107
OMOS ClaSS .« o v vttt et e e e e e e e e 107
OMOSCONNECHONPOIt Class.o ot e e 109
OMOSEVeNtFlag Class. oo e e e 112
OMOSFACIOrY Class oot e e e 115
OMOSMessageQUEUE Classottt e e 124
OMOSMULEX Class - . o vttt et e e e e e e e e e 130
OMOSSEMAPhOre Class.ot e 133
OMOSSOCKEE ClasS . . . ottt e 136
OMOSThread Classottt e e e e e e 140
OMOSTIMEN Class . . . o oottt e e e e e e e 146
OMTMMessageQuUEUE Classo e e e e e 147
Adapter-Specific Info 153
BoOrland 154
INTEGRITY . e e 155
Compiling and Building a Rhapsody Sample e 156
Downloading the Image and Running the Application. 157
L UX . ot 163
Building the Linux Libraries 163
Creating and Running Linux Applications i e 164

iv RTOS Adapter Guide

Table of Contents

MUIIWIN G . 164
Stepping Through the Generated Application Using Multiwin32 165
Stepping Through the OXF Using MULTL e e e e e 166

O S . 167
Rebuilding the Framework e 167
Using Command-Line Attributes and Flags.o e 167
Editing the Batch Files e 168

QN X e 169
USING Code WarTIOr. . . .o e e e e 170
USING I . oot 170
Message Queue Implementationt e 171

VXV OTKS .« L 172

QUICK ReferencCe 173

N EX . o 177

Rhapsody v

Table of Contents

Vi

RTOS Adapter Guide

The Deployment Environment

This section provides an overview of the Rhapsody deployment environment. The topics are as
follows:

¢ Basic Concepts

¢ Rhapsody Applications and the RTOS
¢ Using the OSAL

¢ Adapting Rhapsody to a New RTOS

¢ Summary

Basic Concepts

The deployment environment is the set of tools and third-party software required to develop and
deploy a Rhapsody-generated application in a particular hardware environment. The major
components of the deployment environment are as follows:

+ Red-time operating system (RTOS)

¢ Compiler

¢ Makefacility

Rhapsody

The Deployment Environment

The following diagram shows the dependencies between the Rhapsody components and the

deployment environment.

Legend:

-— — > Depends On (points to input)

— P Creates (points to output)

Solid-fill boxes represent

factory[<lang>].prp

files that you need to P4 Properties Files
modify or provideto -
deploy aRhapsody <
_ - site[<lang>].prp
P s _ Properties Files
Ve _ -7
s
<z - -
- Compilation
Errors]
Rhapsody Compller
2
Generated Code Files
1

<env>build.mak
1
[
[
[

\

Rhapsody OXF
Source Code

OS Abstraction Layer

0s.h

<env>0s.h

<env>0s.cpp

<env>oxf.lib

Framework Libraries (4X) ‘

<env>omCom.lib
Communication Library (1X)

<env>tom.lib
Trace Libraries (1X)

<env>aom.lib

Instrumentation Libraries (2X

\

\
\

\\

W\
\\\

WM
N\

) -

A

\
\
\

Generated
Makefile

' 3

Application
Load
Module

RTOS Adapter Guide

Rhapsody Applications and the RTOS

Rhapsody Applications and the RTOS

Rhapsody generates implementation source code, in several high-level languages, that is RTOS-
independent. Thisis achieved using a set of adapter classes known as the OS abstraction layer
(OSAL), which is part of the Rhapsody object execution framework (OXF). The OXF itself is
operating system-independent, except for the OSAL, which serves as the only interface to the
operating system and is the only operating system-dependent package within the OXF.

Each target environment requires a special OXF version. Preparing the OXF is primarily the
process of providing an implementation for the OSAL. Each implementation of the OSAL for a
particular target is known as an adapter.

Using the OSAL

The OSAL consists of aset of interfaces (abstract classes) that provide all the required operating
system services for the application, including:

¢ Tasking services

¢ Synchronization services

+ Message queues

¢ Communication port

¢ Timer service

The OSAL separates the OXF from the underlying RTOS using the layered approach shown in the
following figure.

Generated Application

OXF (Object eXecution Framework)

’7

OS5 Abstraction Layer

RTOS

The OSAL supports each of these services by implementing thin wrappers around real operating
system entities, adding minimal overhead.

Rhapsody 3

The Deployment Environment

These abstract interfaces need an implementation, which is a set of concrete classes that inherit
from the abstract interfaces and provide an implementation for the pure, virtual operations defined
in the interface. The OSAL enables you to encapsulate any RTOS by changing the implementation
of the relevant framework classes (but not their interface) to meet the requirements of the given
RTOS.

Mediation between the concrete classes, which are RTOS-dependent, and the neutral interfacesis
accomplished using an abstract factory class, which returns to the application the concrete class
that implements a particular interface. This singleton class acts as a broker that constructs the
proper adapter class once requested by the application. The OSAL Classes describes the abstract
factory in greater detail.

Most of the adapter classes have direct counterparts in the targeted RTOS and their
implementation is straightforward. However, sometimes a certain operating system does not

provide a certain object, such as a message queue. In this case, you must implement the object
from primitive constructs.

Tasking Services

Rhapsody supports multitasking via threads. Also known as lightweight processes, threads are
basic units of CPU utilization. Each thread consists of a program counter, register set, and stack
space. It sharesits code section, data section, and operating system resources, such as open files
and signals, with peer threads. If an RTOS does not support multitasking viathreads, the operating
system adapter written for that environment must provideit.

The factory has two create thread operations that create two different kinds of threads:

¢ creat eOMOSThr ead—Creates a simple thread. Thisisthe most common case. Simple
threads are constructed in suspended mode by default. This means that the thread does not
start execution until you call st ar t . Otherwise, it might start execution immediately and
try to access variables or datathat are not yet valid.

¢ creat eOMOSW apper Thr ead—Creates a wrapper thread. A wrapper thread is used to
wrap an external thread so it can be treated as one of the application threads on the call
stack. A wrapper thread can be suspended, resumed, have its priority set, and participate
in animation. Wrapper threads are used only for instrumentation. They represent user-
defined threads (threads defined outside the Rhapsody framework).

4 RTOS Adapter Guide

Using the OSAL

Setting the Stack Size

The stack size is determined by the implementation of the wrapper thread object <env>Thr ead,
derived from the OMOSThr ead interface. Specifically, the stack size is defined in the constructor
body, which is executed upon the thread creation call. For example, in the constructor for a
VxThread object in VXWorks, the stack sizeis set to the default value of

OMOSThr ead: : Def aul t St ackSi ze in VxCS. h, asfollows:

VxThread (void tfunc(void *), void *param,
const char* const name = NULL,
const long stackSize =
OMOSThread: :DefaultStackSize) ;
Def aul t St ackSi ze in OMOSThr ead isset to DEFAULT_STACK (defined as 20000 for VxWorks)
inthe vxGs. cpp file, asfollows:

const long OMOSThread::DefaultStackSize = DEFAULT STACK;

To change the size of the stack for al new threads, change the definition of DEFAULT_STACK in
the <env>GCS. h file. Alternatively, you can change the size of the stack for a particular thread by
passing adifferent value as the fourth parameter to the thread constructor.

Synchronization Services

The OSAL provides synchronization services by using event flags for signaling between threads
and by protecting access to shared resources through the use of mutexes and semaphores. A mutex
provides binary mutual exclusion, whereas a semaphore provides access by alimited number of
threads. For more information, see the sections OMOSMutex Class and OMOSSemaphore Class.

Rhapsody 5

The Deployment Environment

Message Queues

A message queue is an interprocess communication (IPC) mechanism that allows independent but
cooperating tasks (that is, active classes) within asingle CPU to communicate with one another.
An active classis considered atask in Rhapsody.

The message queue is a buffer that is used in non-shared memory environments, where tasks
communicate by passing messages to each other rather than by accessing shared variables. Tasks
share acommon buffer pool, with OMOSMes sageQueue implementing the buffer. The message
gueue is an unbounded FIFO queue that is protected from concurrent access by different threads.

Events are asynchronous. When a class sends an event to another class, rather than sending it
directly to the target reactive class, it passes the event to the operating system message queue and
the target class retrieves the event from the head of the message queue when it is ready to process
it. Synchronous events can be passed using triggered operations instead.

Many tasks can write messages into the queue, but only one can read messages from the queue a a
time. The reader waits on the message queue until there is a message to process. Messages can be
of any size.

Processes that want to communi cate with each other must be linked somehow. A communication
link consists of arelation, asin the form of an association line drawn between classesin an object
model diagram. The link can be either unidirectional or bidirectional (symmetric). In the case of a
unidirectional link from class A to class B, class A can send messages to class B, but class B cannot
send messages to class A. With bidirectional links, both classes can send messages to each other.
The message queue is attached to the link, and allows the sender and receiver of the message to
continue on with their own processing activities independently of each other.

In operating systems with memory protection, one active class can call an operation of another
active class, given an association relation between them, if the operating system itself supports
such direct calls. For operating systems with shared memory, Rhapsody knows how to pass events
using the operating system messaging. Whether direct function calls are supported with memory
protection depends on the operating system itself, not the Rhapsody framework.

In Rhapsody applications, the BaseNunber Of | nst ances property (under CG : Event) specifies
theinitial size of the memory pool that is allocated for events. This pool is dynamicaly allocated
at program initialization. The Addi t i onal Nunber O | nst ances property (under CG : Event)
specifies the size of any additional memory that should be allocated during run time if the initial
pool becomes full. Additional memory allocation is done on the heap and includes rearranging of
theinitial memory pool.

6 RTOS Adapter Guide

Using the OSAL

Communication Port

A communication port providesinterprocess communication between Rhapsody and instrumented
applications. Unlike aregular message queue, which is used for communication between tasks on
the same processor, a connection port has some unique identification, generally a socket address
and number, that allows Rhapsody to communicate with processes running on either the same
machine or different machines. This allows Rhapsody to communicate, for example, with an
animated application running on aremote target board.

Rhapsody requires the TCP/IP protocol to be installed on the host machine. Processes connect to
the animation server via the connection port using the TCP/IP protocol. The port number is
included at the start of message packets that are addressed to the animation server.

Thefollowing figure illustrates the interprocess communication.

Instrumented
R hapsody Generates - Application
Anirmation Connection
Port Port
A F
TCRIP

Note the following:

¢ Rhapsody listens to the port number defined in ther hapsody. i ni file.

¢ Theframework inserts the same port number into the connection port.
The instrumented application can be running on either the same machine as Rhapsody (the host
machine) or on aremote target.

For more information, see OMOSConnectionPort Class and OMOSSocket Class.

Rhapsody 7

The Deployment Environment

Timer Service

The operating system factory provides two different kinds of timers:
+ Tick timer—Used for real-time modeling. Thetick timer is compiled into the <env>oxf
and <env>oxf i nst libraries.

Thefactory’scr eat eOMOSTi ckTi mer method creates a constant-interval application timer.
Thetimer calls acallback function at a set interval.

¢ |dletimer—Used for simulated-time modeling.
Both timers are implementations of OMOSTi mer . For more information, see OMOSTimer Class.

8 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

Adapting Rhapsody to a New RTOS

To adapt Rhapsody to a new RTOS, follow these steps:

1. Install Rhapsody with the Custom option. In the Select Components screen of the
installation program, select the Runtime Sour ces option to obtain the framework source
files.

2. Implement the operating system adapter classesfor the new environment, using the closest
existing environment as a starting point.

3. Create new makefiles for building the framework libraries for the new environment.
4. Build the framework libraries for the new environment.

5. Create a set of code generation properties for the new environment and a batch file that
setsits compiler environment. You can use the properties and batch file for the closest
existing compiler and linker combination as a starting point.

6. Validate the new adapter.

After performing these steps, you can create a new configuration and select the new RTOS asits
target environment, then generate and make code in the new environment.

The following sections describe each of these stepsin detail.

Step 1. Installing the Run-Time Sources

When you install the run-time sourcefilesfor your language (C or C++), Rhapsody copies both the
implementation and specification files to the Rhapsody directory

\ Shar e\ Lang<Language>\ oxf . For example, if you installed the runtime source files for C++,
the directory \ Shar e\ LangCPP\ oxf containsboth. h and . cpp files.

Step 2: Modifying the Framework
The adapter interfaces and the abstract factory interface are declared in the following header files:

+ oxf. h—Object execution framework (OXF) classes
¢ 0s. h—Abstract operating system classes
¢ raw ypes. h—Datatypes used by the OXF

These header files are located in the $OVROOT\ Lang<I| ang>\ oxf subdirectory of the Rhapsody
installation. In this path, $OVROOT is an environment variable that pointsto the Rhapsody\ Shar e
directory.

Rhapsody 9

The Deployment Environment

Implementing the Abstract Factory

Each RTOS adapter consists of a concrete operating system factory, which implements the abstract
operating system factory. To create the concrete factory for a new target, follow these steps.

1. Create aspecification file and an implementation file, each prefixed by the operating
system (environment) name using the convention <env>0S, where <env> isan
abbreviation for the environment name. For example, the adapter source files for
VxWorks are named VxCS. h and VxCS. cpp. The concrete factory for the VxWorks
environment is implemented in these files.

Note: You should use an existing implementation as a starting point for the adapter.
For example, if VxWorksisthe closest existing environment to the new target,
copy and rename the VxOS. h and VxCS. cpp filesto use as atemplate. Make
sure that al the adapter implementation classesin thesefiles are prefixed in a

consistent manner. For example, the concrete factory for VxWorks is named
VxCOSFact ory.

2. Rename all environment-specific prefixesin the copied files from the old to the new
environment name. Note that using the operating system as a prefix for operating system
wrapper classes is a Rhapsody convention; you can create your own naming scheme.

Plugging in the Factory
The factory mediates between the application and the concrete, operating system-dependent
adapter classes.

To plug in the concrete factory, you must create aspecific <env>0SFact or y that inheritsfrom the
OMOSFact or y inthe OXF. Thisclassisdeclared inthe<env>0S. h file.

For example, in the VxCS. h file, the Vx OSFact or y classinherits from the OMOSFact ory in the
OXF, asfollows:

[1177777777777777777777777777777777777777
class VxOSFactory : public OMOSFactory {

// OSFactory hides the RTOS mechanisms for tasking and
// synchronization

10 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

Defining the Virtual Operations

Within the <env>0SFact or y class declaration, you must define a set of virtual operations that
will create the operating system services needed by the application. These servicesinclude tasking,
synchronization, connection ports, message queues, and timing services.

Inthe VxCS. h file, the declaration of virtual operationsis as follows:

public:

virtual OMOSMessageQueue *createOMOSMessageQueue (
OMBoolean /* shouldGrow */ = TRUE,
const long messageQueueSize =
OMOSThread: :DefaultMessageQueueSize)
{ return (OMOSMessageQueue*)new
VxOSMessageQueue(messageQueueSize);}
virtual OMOSConnectionPort *createOMOSConnectionPort ()

#ifdef _OMINSTRUMENT

return (OMOSConnectionPort*)new VxConnectionPort () ;
#else

return NULL;
#endif

virtual OMOSEventFlag* createOMOSEventFlag() {
return (OMOSEventFlag *)new VxOSEventFlag(); }
virtual OMOSThread *createOMOSThread (void tfunc (
void*), void *param,
const char* const threadName = NULL,
const long stackSize=0OMOSThread::DefaultStackSize)
{return (OMOSThread*) new VxThread (tfunc, param,
threadName, stackSize);};
virtual OMOSThread* createOMOSWrapperThread (
void* osHandle) {
if (NULL == osHandle)
osHandle = getCurrentThreadHandle () ;
return (OMOSThread*)new VxThread (osHandle) ;

virtual OMOSMutex *createOMOSMutex () {return
(OMOSMutex*)new VxMutex () ;}
virtual OMOSTimer *createOMOSTickTimer (timeUnit tim,
void cbkfunc(void*), void *param) {
return (OMOSTimer*)new VxTimer (tim, cbkfunc,
param) ; // TickTimer for real time

virtual OMOSTimer *createOMOSIdleTimer (
void cbkfunc(void*), void *param) {
return (OMOSTimer*)new VxTimer (cbkfunc, param);
/ Idle timer for simulated time

virtual OMOSSemaphore* createOMOSSemaphore (
unsigned long semFlags = 0,
unsigned long initialCount = 1,
unsigned long /* maxCount */ =
const char * const /* name */ = NULL)

return (OMOSSemaphore*) new VxSemaphore (
semFlags, initialCount) ;

}

virtual void* getCurrentThreadHandle () ;
virtual void delayCurrentThread (timeUnit ms) ;

Rhapsody

11

The Deployment Environment

virtual OMBoolean waitOnThread (void* osHandle,
timeUnit ms) {return FALSE;

¥
The instance Function

To finish plugging in the concrete factory, you must create thei nst ance function, defined in
<env>QCS. cpp, which returns a pointer to the concrete operating system factory. The instance
method creates a single instance of the OMOSFact or y. It is defined as follows:

static OMOSFactory* instance() ;

For example, in VxWorks, the declaration is as follows:

OMOSFactory* OMOSFactory::instance ()

static VxOSFactory theFactory;
return &theFactory;

}

12 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

Implementing the Adapter Classes

To implement the adapter classes, you inherit from the OXF classes defined in the os. h fileand
provide an implementation for each of these classes. You must implement the following classes:

¢ OMOSConnecti onPort
¢ OMOSEvent Fl ag
¢ OVOSMessageQueue
¢ OMOSMut ex
¢ OMOSSenaphor e
¢ OMOSSocket
¢ OMOSThread
¢ OMOSTi mer
It is common practice to add the <env> prefix to each implemented class.

For example, you would implement the OMOSMut ex class for VxWorks as follows:

1. The OXF classfor amutex is OMOSMut ex, so the VxWorks adapter class that inherits
from OMOSMUt ex is named VxMut ex.

2. Implement each of the interface operations defined for the class. The OMOSMut ex classis
defined in os. h asfollows:

cl ass RP_FRAMEWORK DLL OMOSMut ex {
OM DECLARE_FRANMEWORK MEMORY_ALLOCATI ON_OPERATORS
publi c:
virtual ~OvosMutex(){};
virtual void lock() = 0;
virtual void unlock() = 0;
virtual void* getGsHandl e() const = 0;
#i f ndef OSE_DELTA
/1 backward conpatibility support for non-CSE
/1 applications
void free() {unlock();}
#endi f

b
3. Placethe specification of the new adapter classin the VxCs. h:

class WxMutex: public OMOSMut ex {
private:
SEM I D hMut ex;
public:
void | ock() {senTake(hMitex, WAI T_FOREVER);}
voi d unl ock() {senG ve(hMitex);}
VxMut ex() {

Rhapsody 13

The Deployment Environment

/'l hMutex = senmBCreate(SEM Q FI FO SEM FULL);
hMut ex = senMCreat e(SEM Q FI FO) ;

}
~VxMut ex() {senDel ete(hMitex);}

voi d* getHandl e() {return (void *)hMitex;}
virtual void* getGsHandl e() const {return (void*)
hMut ex; }

b

Modifying rawtypes.h

Ther awt ypes. h file contains the basic types supplied by the RTOS to be used by the OXF. If you
are creating a new RTOS, you must add the include file for that environment.

For example, the VxWorks section of ther awt ypes. h fileisasfollows:

// Basic os definitions

#ifdef VxWorks
#include <vxWorks.h>
#endif

Other Operating System-Related Modifications

You might need to modify the set | nput method of the TOMUJI class to support tracing in a new
operating system. When creating input streams for the stepper, there might be compilation errorsif
thecall to createanew i f st r eamintheset | nput method usesi os: : nocr eat e. Because

i 0s:: nocr eat e isnot part of the C++ standard, some compilers (such as Green Hills) do not
support it. Currently, theimplementation of set | nput inthet om t onst ep. cpp file has options
to createi f st r eans for UNIX and the STL without usingi os: : nocr eat e. Theimplementation
isasfollows:

ifdef unix
// unix : Actually Solaris 2 cannot open for READ if
// the ios::nocreate is placed here
ifstream* file = new ifstream(filename) ;
#else
#ifdef OM_USE_STL
ifstream* file = new ifstream(filename) ;
#else
ifstream* file = new ifstream(filename,ios::nocreate) ;
#endif

In addition, you might need to add another #i f def clauseif the new environment does not

support i os: : nocr eat e. For example, add the following lines of code before the last #el se for
the Green Hills compiler:

#else
#ifdef green
ifstream* file = new ifstream(filename) ;

14 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

Step 3: Creating Makefiles

Each adapter must provide a set of makefiles and a batch file for building the new OXF libraries
(including the OSAL), using its provided cross-compiler. The following table lists the makefile for

each library.
Makefile Description Built With
oxf Run-time libraries <env>oxf. mak
aom Instrumentation libraries that support | <env>aom mak
both tracing and animation

tom Instrumentation library that supports | <env>t om mak
tracing

ontcom Communication libraries that support | <env>ontom mak
communication between Rhapsody
and an instrumented application

The compiled framework libraries are linked to the application generated from the Rhapsody
model, which has its own makefile. The application makefile is specified viathe

MakeFi | eCont ent property, which you modify in the si t e<l ang>. pr p file. See Makefiles for
details.

Rhapsody 15

The Deployment Environment

Creating the Batch File and Makefiles

1. Create abatch file to set the environment named <env>make. bat , call the makefile, and
save it to $OVROOT\ et c¢. Thisfile can be used to build the framework aswell as a
Rhapsody mode! (see also Building the C or C++ Framework in One Step).

2. Create the following makefiles and save them to the specified locations.

File

Location

Description

<env>bui | d. mak

$OVROOT\ Lang<l ang>

Calls the other makefiles to build
the Rhapsody framework libraries
(see Sample <env>build.mak
Eile).

<env>aom mak

$OVROOT\ Lang<!| ang>\ aom

Builds the instrumentation libraries:
. <env>aontrace
« <env>aomani m

<env>onctom mak

$OVROOT\ Lang<I| ang>\ oncom

Builds the communication library
for instrumentation
(<env>ontomappl)

<env>oxf. mak

$OVROOT\ Lang<I ang>\ oxf

Builds the OXF libraries:
« <env>oxf
« <env>oxfinst

See OXFE Versions for descriptions
of the different OXF libraries.

<env>t om nmak

$OVROOT\ t om

Builds the tracing libraries:
e <env>tontrace

« <env>tontraceR C
(for Rhapsody in C)

You might also need to copy any RTOS-specific configuration files required to build the libraries

to $OVROOT\ MakeTenpl . For example, pSOSystem™ requiresdr v_conf . ¢ and sys_conf . h.
In addition, you might need to copy ther oot . cpp file. Replace these fileswith any board-specific

versions, if necessary.

16

RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

Sample <env>build.mak File

The following is an example of thevxbui | d. mak file, which is used to build the framework for
the VxWorks environment.

MAKE=make

CPU=180486

ifeq ($(PATH_SEP),)

all :

@echo PATH SEP is not defined. Please define it as \\

or /

else

all :

$(MAKE) all -C oxf -f vxoxf.mak CFG=vxoxf CPU=$ (CPU)
PATH_SEP=$(PATH_SEP)
$(MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfsim
CPU=$ (CPU)
PATH_SEP=$(PATH_SEP)
S (MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfinst
CPU=3 (CPU) PATH_SEP=$(PATH_SEP)
S (MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfsiminst
CPU=3 (CPU) PATH_SEP=$(PATH_SEP)
$(MAKE) all -C omcom -f vxomcom.mak CFG=vxomcomapplCPU=$ (CPU)
PATH_SEP=$(PATH_SEP

$(MAKE) all -C tom -f vxtom.mak CFG=vxtomtrace
CPU=S (CPU) PATH_SEP:$(PATH_SEP)

$(MAKE) all -C tom -f vxtom.mak CFG=vxtomtraceRiC
CPU=S (CPU) PATH_SEP:$(PATH_SEP)

$(MAKE) all -C aom -f vxaom.mak CFG=vxaomtrace
CPU=$ (CPU) PATH_SEP=$(PATH_SEP)

S (MAKE) all -C aom -f vxaom.mak CFG=vxaomanim
CPU=S$ (CPU) PATH_SEP=$(PATH_SEP)

endif

This makefile:

¢ Setsthe make command for the VxWorks environment (nake).
¢ Setsthe CPU being targeted (1 80486 = Intel 80486).

¢ Checkswhether the path separator (PATH_SEP) character was properly set. If not, it
generates an error and cancels the build.

¢ Setstheal | : command to build the framework libraries for the various configurations
(with and without animation, real-time or simulated time, and so on).

Rhapsody 17

The Deployment Environment

Creating New Makefiles

You should use the existing makefile for the environment that most closely resembles the new

RTOS as atemplate. The GNU version of the Solaris’ makefile (sol 2bui | dGNU. mak) isthe
most neutral makefile, because it is based on general GNU make capabilities, as opposed to the
more target-specific makefiles (such as msoxf . mak), which are specific to a particular
environment.

OXF Versions
In the current implementation, the Rhapsody OXF is compiled in the following versions:

¢ OXF—Production, real-time OXF
¢ OXFI NST—Instrumented OXF (for animation)

Animation Libraries

To support instrumentation (animation or tracing), Rhapsody requires other libraries besides the
OXF libraries to be linked to the generated application. These libraries are specific to the target
operating system. The aomand onc omlibraries have corresponding makefiles that are similar to
the OXF.

C++ Libraries

The compiled C++ libraries are located in the $OVROOT\ LangCPP\ | i b directory:
¢ For C++ animation, you need <env>aomani m | i b (for example, vxaomani m | i b) and
<env>omComAppl . I i b.

¢ For C++trace, you need <env>aont r ace. | i b, <env>onComAppl! . | i b, and
<env>tontrace.lib.

The C++ libraries require support for C++ /O streams. For operating systems without 1/0 streams

(such as Windows CE®), set the _OM_NO_| OSTREAMflag in the makefile used to compile the
libraries to the RHAP_FLAGS command, as follows:

RHAP FLAGS=-D _OM NO_TIOSTREAM

Note

Windows CE does not support tracing because it does not have 1/O streams. Thereis no
tracer library that does not require 1/0 streams.

18 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

C Libraries

The compiled C libraries are located in the $OVROOT\ LangCQ\ | i b directory:

¢ For C animation, you need <env>aomani m | i b and <OS>onComAppl . |i b.

+ For Ctrace, you need <env>aontrace. | i b, <env>onComAppl . | i b,
<env>tontraceRi C. |ib,and<env>oxfinst.!lib.

Of theinstrumentation libraries for C, five were written natively in C. However,

<env>t ontraceRi ¢ isaC++ library that islocated in $OVROOT\ LangCpp\ | i b. It provides C
tracing services, although thelibrary itself waswritten in C++. Because the library is precompiled,
you need only link to it. Therefore, the language in which it was written should be of no concern.

Java Libraries

The compiled Javalibraries are supplied asj ar filesin the SOVROOT\ LangJaval\ | i b directory.
For Java animation, you need thefilesani m j ar and ani ncom j ar.

Rhapsody 19

The Deployment Environment

Step 4: Building the Framework Libraries

Thefollowing sections describe how to rebuild the framework libraries, according to language and
platform. The topics are as follows:

¢ Building the C or C++ Framework for Windows Systems

¢ Building the Ada Framework

¢ Building the Java Framework

¢ Building the Framework for Solaris Systems

Note

Some environments require you to set additional macros in the invocation command.
Typically, there are also optional switches to control compilation. See the Properties
Reference Manual for the makefile contents for the supported environments, which includes
these macros and switches.

Building the C or C++ Framework for Windows Systems
You can build the framework librariesfor C or C++ on Windows systems in either one or two

steps.
Note

See Adapter-Specific Info for environment-specific build information for Rhapsody in C and
C++.

Building the C or C++ Framework in Two Steps

To build the framework, follow these steps:

1. If necessary, set any environment variables required by the target
cross-compiler. For example, running $OVROOT\ et c\ vcvar s32. bat setsthe

environment for the Microsoft® compiler.

Note: The<env>bui | d. mak makefile buildsall run-time libraries and savesthem to
the SOVROOT\ | i b directory.

2. Changedirectory to the $OMROOT\ Lang<I ang> directory and issue the appropriate make
command for the target environment with the <env>bui | d. mak file as an argument. For
example:

> make -f vxbuild.mak PATH SEP=<path separators

Note that the path separator for VxWorks can defined as either \\ or/ .

20 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

Building the C or C++ Framework in One Step

You can combine the two steps into one by using the <env>neke. bat filewith

<env>bui | d. mak asits argument. The batch file sets the environment before invoking the
makefile. For example, the following isthe msmake. bat file used to set the environment and then
build files for the Microsoft environment:

@echo off

if "%2"=="" set target=all

if "$2"=="build" set target=all

if "%$2"=="rebuild" set target=clean all

if "$2"=="clean" set target=clean

call "D:\Rhapsody\Share\etc\Vcvars32.bat" x86

echo " “nmake.exe

nmake /nologo /I /S /F %1 %target%
The<l ang>_CG : <Envi r onnment > nvokeMake property usesthe <env>nake. bat batch file
to build a Rhapsody model for a specific target environment. You can use the same batch file to
build the framework libraries for that environment. Thus, the command to build the C or C++
framework libraries (from the $OMROOT\ Lang<I ang> directory) for most environments becomes:

> ..\etc\<env>make.bat <envsbuild.mak

Thisisthe preferred method for building the framework libraries for all environments and
operating systems except Solaris (see Building the Framework for Solaris Systems) and the JDK.

Building the Ada Framework

To use animation with Rhapsody in Ada, you must have version 3.13p of the GNAT compiler.
Otherwise, you must recompile the framework.

To recompile the framework, follow these steps:

1. Install the Rhapsody in C framework source code. The Rhapsody in C framework is used
to enable Rhapsody in Ada animation.

2. Build the Adabehaviora libraries asfollows:
a. Openthe model <Rhapsody>\ Shar e\ LangAda83\ nodel \ Ri ASer vi ces. rpy.
b. Generate and build the code.

c. Build the animation C libraries using the makefile included in the directory
<Rhapsody>\ Shar e\ LangC. For example:

make -f AdaWinbuild.mak GNAT HOME=e:/gnat/*

Note

In GNAT 3.15p, the directory layout was modified. If you are using 3.15p and higher,
update the C makefiles by replacing the string "m ngw32" with the string
" GNAT_W N32_LI BS=pent i um m ngw32nsv" to the makefile invocation command.

Rhapsody 21

The Deployment Environment

If you have several compilersinstalled on your machine, make sure that you invoke the make
utility supplied by GNAT (verify that the GNAT\ bi n directory is added to your path before any
other compiler).

Note

To compile the C framework with GNAT, you must install the Windows APl support
package as well as the Ada common package.

Building the Java Framework

Rhapsody in J® provides a real-time framework for Java™" in the form of a Rhapsody model
(oxf . r py) under the $OVROOT\ LangJava\ nodel \ oxf directory. The best way to build the Java
framework is to open this model and build it in Rhapsody (by selecting Code > Gener ate/M ake).

You can also build the Java framework outside of Rhapsody. However, you must first generate
code for the oxf . r py model inside of Rhapsody to create the OXFLi b. bat file (using Code >
Generate > Nonl nstrumented). Build the Java framework using the following steps:

1. Openacommand prompt window.
2. Change directory to the OVROOT\ LangJaval\ sr c directory.

3. Run OXFLi b. bat .

Building the Framework for Solaris Systems

Because there is no cross-compiler that can build Solaris code on the PC, the framework libraries
that are linked into Solaris applications must be built on Solaris. In addition to the framework
source files, you need a script that removes carriage returns from framework source files to be
built on Solaris. These are provided in the Solarislibrary’st ar file, which isinstalled when you
select the Solaris 2.x Libraries option during the Rhapsody installation.

To build the framework, follow these steps:

1. Wheninstalling Rhapsody on the PC, select the Solaris2.x Librariesoption. Thisinstalls
thesol 2shr. t ar file, which contains the files needed to build the framework for
Solaris.

2. Onthe Solaris machine, create ar hapsody directory. For example:

$ mkdir /usr/rhapsody
3. Copy thesol 2shr. t ar filefromthe PC to ther hapsody directory on the Solaris
machine.

4. Onthe Solarismachine, unzipthesol 2shr. t ar fileinther hapsody directory using the
following command:

22 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

$ tar xvf sol2shr.tar

This creates a Shar e directory under r hapsody and extracts the framework source
filesto the appropriate subdirectories. It also extracts the GNU nmake executable and
ther enoveCR. sh script to the Shar e/ et ¢ directory. The script removes carriage
returns from UNIX files.

5. Onthe Solaris machine, set the QVROOT environment variable to point to the new Shar e
directory. For example, if you created the Shar e directory as
/ usr/ r hapsody/ Shar e, use the following command to set OVROOT:

$ setenv OMROOT /usr/rhapsody/Share

6. Ensurethat the path to the compiler is set in the PATH variable.
7. Change directory to $OVROOT/ Lang<| ang>.

8. RuntherenoveCR sh script to remove carriage returns from the sol 2bui | d. mak and
sol 2bui | dGNU. nmek files using the following command:

$../etc/removeCR.sh sol2build*.mak

9. Change directory to $OVROOT/ Lang<| ang>/ aomand run ther enoveCR. sh script to
remove carriage returns from all the makefiles and source filesin the directory using the
following command:

$../../etc/removeCR.sh *.mak *.h *.cpp

10. Repeat go to step 9 for each of the ontom oxf , and t omsubdirectories of $OVROOT/
Lang<I| ang>.

11. Change directory to $OMROOT/ Lang<| ang>.

12. If you are using the Forte compiler, build the framework libraries using the following
command:

$../etc/make -f sol2build.mak

If you are using the GNU compiler, use the following command:

$../etc/make -f so0l2buildGNU.mak

Rhapsody 23

The Deployment Environment

Step 5: Creating Properties for a New RTOS

To complete the process of adding anew environment, you must give Rhapsody information about
the development tools it uses, such as the compiler, linker, make utility, and libraries. To do this,
you must customize all of the language-specific code generation properties for the new
environment by creating si t e<l ang>. pr p filesin the SOVROOT\ Pr oper ti es directory for
each language you intend to support in the new environment. The language-independent

si te. prp fileisrequired for any build; any language-specific si t e<l ang>. pr p filesare used
only if they are present.

The search path in Rhapsody for site and factory propertiesis asfollows:

site<lang>.prp -> site.prp -> factory<lang>.prp -> factory.prp

Asyou move from left to right in this search path, properties defined in the files on the left
override the same properties defined in files on the right.

Note

Do not modify any of the original f act ory. pr p or language-specific
f act ory<l ang>. pr p files. Otherwise, you will not be able to return to the factory
defaults.

Modifying the site<lang>.prp Files
To add the new environment as a possible selection for a configuration, follow these steps:

1

Open thef act or y<I ang>. pr p propertiesfile for each language that the new
environment supports. For example, if the environment supports C++, open the
fact oryC++. prp file.

From the existing si t e. pr p file, create language-specific si t e<l ang>. pr p filesfor
each language that the new environment supports. For example, if the environment
supports Java, savethefileassi t eJava. prp.

Inthe new si t e<l ang>. pr p file, insert the following line above the line that contains
the end keyword:

Subj ect <l ang>_CG

Replace <I ang> with CPP for C++, Cfor C, or JAVA for Java (case sensitive).
Repeat for each language.

Inthe new si t e<l ang>. pr p file, add the following lines between the Subj ect
<l ang>_CGand end lines, with thisindentation:

Met acl ass Confi guration
end

24

RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

5. Fromthef act ory<l ang>. pr p file, copy the Pr operty Envi r onnment linefrom the

10.
11.
12.

13.

Met acl ass Confi gur ati on and pasteit into the corresponding location in the new
si t e<l ang>. prp file.

Add the new environment to the end of the enumerated values in the Envi r onnment
property. For example, changetheline Property Envi ronnment Enum
"M crosoft, Vxworks, ..." tothefollowing:

Property Environnment Enum "M crosoft, Vxworks, ..., <env>CS"

If the new operating system will be the default environment for the respective language,
replace the last string in the Envi r onrent line with the name of the new environment.
For example, changetheline Pr operty Environnment Enum

"M crosoft, VxWorks, ...,env0s" "M crosoft" tothefollowing:

Property Environnment Enum "M crosoft, VxWorks, ...,
<env>0S" "<env>(Cs"

For example, if you are creating C++ code generation properties, your
si t eC++. pr p filewould now look like this:

Subj ect CPP_CG
Met acl ass Confi guration
Property Environment Enum "M crosoft, VxWor ks,
Sol ari s2, Borland, MSStandardLi brary, PsosPPC,
M cr osof t W nCE, GseSf k, <env>0S" " <env>(0s"
end
end

Inthef act or y<l ang>. pr p file, find the metaclass for the environment that most
closely resembles the new target environment.

Copy the entire metaclass, including its closing end line, into the new si t e<l ang>. prp
file, between the closing end statement for the Conf i gur at i on metaclass and that for
the <I ang>_CG subject.

Savethe new si t e<l ang>. pr p file.

Repest the process for each language.

Inthe new si t e<l ang>. pr p file, rename the copied metaclass to the name of the new
operating system:

Met acl ass <env>0S
Property | nvokeExecutable String ...
end

Modify the | nvokeMake property (under <l ang>_CG : <Envi r onnent >) to use the
correct <env>make. bat batch file for the new environment.

Rhapsody

25

The Deployment Environment

14.

15.
16.

Modify each of the code generation properties, especially MakeFi | eCont ent and its
related properties (described in Makefiles) as appropriate for the new environment,
replacing any occurrences of the operating system-specific prefix with the corresponding
prefix for the new operating system.

Note: The most important properties for a new environment are those that interact
with the makefile.

Savethesi t e<l ang>. pr p file. Repeat for each language.
Restart Rhapsody to load the new si t e<l ang>. pr p files.

Setting the Environment

You can set the new environment as the default or you can select it from the list of available
environments for a configuration in the Rhapsody browser.

In the browser, you can set the Envi r onnent property as follows:

*

For a project—All new components (and their configurations) will use the environment
by defauilt.

For a component—All new configurations within the component will use the
environment by default.

For a particular configuration—Only that configuration will use the environment by
default.

To set the Envi r onment property, follow these steps:

1

Decide the scope of the setting:

a. To set the environment for the entire project, select
File> Project Properties.

b. To set the environment for acomponent or a configuration, right-click the component
or configuration, then select Properties from the popup-menu.

In the Features dialog box, under the <I ang>_CG subj ect , select the Conf i gur ati on
metaclass.

Select the Envi r onrent property and change it to the name of the new environment. For
example, <env>CS.

26

RTOS Adapter Guide

Adapting Rhapsody to a New RTOS

Step 6: Validating the New Adapter

To test the new adapter, follow these steps:

1

Try building asimple “Hello World” using Rhapsody and your new adapter. In Rhapsody,
create aclassthat printsthe string “Hello World” when the classisinstantiated. When you
generate code, be sure to select your new environment in the configuration settings.

Try building the application. Thiswill immediately find problemsin your adapter, because
building the application requires the use of the generated makefile. To see the generated
makefile, right-click on the configuration in Rhapsody and select Edit M akefile. At this
point, you might need to adjust the properties to get the correct generated makefile for
your application.

When you have successfully built the Hello World application, make your application
more complex by adding more classes, putting in include paths, and specifying some
librariesto link in. Thiswill continue to test the properties you defined in Step 5: Creating
Properties for a New RTOS.

You must test the framework part of the adapter (see Step 2: Modifying the Framework) by
running the Hello World example. If it does not run correctly, you might not have
implemented the framework classes correctly.

For example, Rhapsody creates amain thread for all applications. Check to make sure that
this thread was created correctly for your particular environment.

Note: Note that for this step, it isbest to use your native compiler.

When the Hello World application runs successfully, make your application more
complex. For example:

a. Create some active objects.

b. Create statecharts for some objects.

c. Usetimeoutsin the statecharts.

d. Send messages and events between objects and active objects.
e. Use protection by guarding operations and attributes.

f. Change the instrumentation to tracing.

g. Change the instrumentation to animation.

By implementing an application that tests for this functionality, you have validated a major portion
of the adapter. To complete the validation, request a copy of the RTOS Adapter Test Suite from
IBM Rhapsody Support. Thistest suite consists of several models that cover most of the scenarios
needed to test an RTOS adapter.

Rhapsody

27

The Deployment Environment

Summary

The OSAL gives you the unique ahility to develop and test application and algorithmic code of
embedded, real-time systems in the environment that best suits your needs. You can implement
and test the actual concurrent behavior and interactions, including interleave and stress testing, in
an implementation environment. Then, when ready, you can painlessly adapt the code to an
embedded target where debug facilities are often extremely limited. The interface provided by the
operating system adapter remains the same.

See the Properties Reference Manual for the complete list of RTOSes for which the OSAL has
been adapted.

28

RTOS Adapter Guide

Makefiles

The process of building an adapter for anew RTOS is not complete until you define the makefiles
that are used to build applications in the new environment. To do this, follow these steps:

1. Defineanmake batchfile.
2. Runthe batch file used to build and run applications.

3. Redefine the properties that include such information as compile and link switches needed
to interact with the application makefile. These properties provide some of the content for
the makefile.

4, Specify atemplate for the generated makefile by redefining the MakeFi | eCont ent
property (under <l ang>_CG : <Envi r onnent >) for the new environment.

This section describes these steps in detail.

Step 1: Creating a Make Batch File

Create abatch file that sets the environment and then calls the generated makefile for the
application. Namethe batch file <env>nmake. bat and save it to the $OVROOT\ et ¢ directory. This
batch file can be used to build both Rhapsody applications and the framework itself (except for
Solaris).

Step 2: Running the Batch File

In some cases, you will need an <env>Run. bat in addition to the make batch file (for example,
thereisaj dkr un. bat for Java). Thisfileisused only to run the application, and is saved to the
$OVROOT\ et c directory. The | nvokeExecut abl e property, one of the code generation
properties to be redefined for the new environment, might execute the run batch file. For example,
thel nvokeExecut abl e property for the OSE SFK environment callsthe osesf kRun. bat file,
which setsthe LM LI CENSE_FI LE variable for the OSE environment and then calls an executable
file. In this case, you can use the osesf kRun. bat fileto invoke the osesf knmake. bat fileto
build applications for OSE.

Rhapsody 29

Makefiles

Step 3: Redefining Makefile-Related Properties

The most crucial code generation properties to modify are the ones that interact with the makefile
to build and link the framework libraries for the new environment. These properties are found in
the specific environment metaclass under the <I ang>_CG subject for a given language. For
example, the code generation propertiesfor VxWorksin C++ arelisted under CPP_CG: : VxWor ks.

Thefollowing table lists the properties help build and link code in the new RTOS.

Property Description

Conpi | eSwi t ches Specifies the compiler the switches to be used for
any type of build.

CPPConpi | eComrmand Specifies the environment-specific compilation
command used in the makefile. This command is
referenced in the makefile via the

OMCPPConpi | eConmmandSet variable.

If you modified the generated dependencies
section of the MakeFi | eCont ent property to
generate a new . obj file every time you compile,
you need to change the CPPConpi | eCommand
property as follows:

if exist $OVFi | eCbj Pat h del
$OVFi | eQnj Pat h
$(CPP) $OVFi | eCPPConpi | eSwi t ches /
Fo\ " $OVFi | eObj Pat h\ "
\"$OVFi | el npPat h\ " "

CPPConpi | eDebug Modifies the makefile compile command with
switches for building a Debug version of a
component.

CPPConpi | eRel ease Modifies the makefile compile command with
switches for building a Release version of a
component.

DependencyRul e Specifies how file dependencies for a configuration
are generated in the makefile.

Fi | eDependenci es Specifies which framework source files to include
when building model elements. The file inclusions
are generated in the makefile.

Li nkDebug Specifies the special link switches used to link in
Debug mode.

Li nkRel ease Specifies the special link switches used to link in
Release mode.

Li nkSwi t ches Specifies the standard link switches used to link in
any mode.

hj A eanComrand Specifies the environment-specific command used
to clean the object files generated by a previous
build.

30 RTOS Adapter Guide

Step 4: Redefining the MakeFileContent Property

Note

Step 4:

Refer to the Rhapsody Properties Reference Manual for the overall structure of properties
within Rhapsody and the properties’ uses to customize the Rhapsody environment. The
individual definitions of properties and their defaults are displayed in the Features dialog
box. You may also examine the complete list of Rhapsody property definitionsin the
Rhapsody Property Definitions PDF file available from the List of Books. That list can be
searched aong with the other PDF versions of the Rhapsody documentation to locate
specific property definitions and the procedures that use them.

Redefining the MakeFileContent Property

Finally, you must specify atemplate for the generated makefile by redefining the

MakeFi | eCont ent property (under <I ang>_CG : <Envi r onnment >) for the new environment.
The code generator uses the template defined in this property to generate the makefile used to
build a specific model.

A makefile has the following sections:

*

*

*

*

*

*

Target type
Compilation flags
Commands definitions
Generated macros
Predefined macros
Generated dependencies
Linking instructions

The following sections describe the contents of the makefile in detail.

Rhapsody

31

Makefiles

Target Type

The target type section of the makefile contains the macros needed to build either a Debug or
Release version of a configuration.

For example, the default content of the target type section of a C++ makefile for the Microsoft
environment is as follows:

HEHHHHHHHARAR Target type (Debug/Release) ######H#####H##H
HHHHH R

CPPCompileDebug=$OMCPPCompileDebug
CPPCompileRelease=$OMCPPCompileRelease
LinkDebug=$0OMLinkDebug
LinkRelease=$0MLinkRelease
BuildSet=$OMBuildSet
SUBSYSTEM=S$0MSubSystem

COM=$0OMCOM
RPFrameWorkD11=$OMRPFrameWorkD11

ConfigurationCPPCompileSwitches=
SOMReusableStatechartSwitches
$OMConfigurationCPPCompile Switches

ITF "S$ (RPFrameWorkDll)" == "True"
ConfigurationCPPCompileSwitches=
$ (ConfigurationCPPCompileSwitches) /D "FRAMEWORK DLL"

!ENDIF

ITF "$(COM)" == "True"
SUBSYSTEM=/SUBSYSTEM: windows
!ENDIF

Compilation Flags

The compilation flags section of the makefile contains the default compilation flags stored in the
Conpi | eSwi t ches property.

For example, the default content of the compilation flags section of a C++ makefile for the
Microsoft environment is as follows:

HEHHFHEHHHHAHEHHEHE Compilation flags ###HH#FHEHHHHFHEHHHH
HHHHHEFHHEFHH RS H SRS S R H
INCLUDE QUALIFIER=/T

LIB_PREFIX=MS

32

RTOS Adapter Guide

Step 4: Redefining the MakeFileContent Property

Commands Definitions

The commands definition section of the makefile specifies programs to execute from the makefile.

For example, the default commands definition section of a C++ makefile for the Microsoft
environment is as follows:

HHHH#HHHFRAHH Commands definition H#HH#HHHHHHHFHHHHHHE

HAEHHHHAHAH S HEHA SRS RS S

RMDIR = rmdir

LINK CMD=link.exe

LIB_FLAGS=$OMConfigurationLinkSwitches

LINK FLAGS=$OMConfigurationLinkSwitches $(SUBSYSTEM) /
MACHINE:I386

Rhapsody

33

Makefiles

Generated Macros

The generated macros section of the makefile contains avariable that expands to the Rhapsody-
generated macros in the makefile. For example:

HHHHHHHHH B H#HE Generated macros #HHHHHHHHHBFHHERH
HEHHHHEHSHH RS HH S R
SOMContextMacros

OBJ_DIR=$OMObjectsDir

ITF "$(OBJ_DIR)"!="n

CREATE_OBJ DIR=if not exist $(OBJ DIR) mkdir $(OBJ DIR)
CLEAN OBJ DIR= if exist $(OBJ_DIR) $(RMDIR) $(OBJ DIR)
|ELSE

CREATE_OBJ DIR=

CLEAN OBJ DIR=

|ENDIF

The $OMCont ext Macr os keyword expands several macrosin the makefile. Each makefile macro
has its own keyword. You can use these keywords separately to customize the makefile.

The $OMCont ext Macr os variable enables you to modify target-specific variables. Replace the
$OMCont ext Macr os lineinthe MakeFi | eCont ent property with the following:

FLAGSFILE=$OMFlagsFile
RULESFILE=SOMRulesFile
OMROOT=$OMROOT

CPP_EXT=$OMImplExt

H_ EXT=$OMSpecExt
OBJ_EXT=$OMObjExt

EXE EXT=$OMExeExt

LIB EXT=$OMLibExt
INSTRUMENTATION=$OMInstrumentation
TIME MODEL=$OMTimeModel

TARGET TYPE=$OMTargetType

TARGET NAME=$OMTargetName
$SOMAllDependencyRule

TARGET MAIN=$OMTargetMain
LIBS=$OMLibs

INCLUDE PATH=$OMIncludePath
ADDITIONAL OBJS=$OMAdditionalObjs
OBJS= $OMObjs

34

RTOS Adapter Guide

Step 4: Redefining the MakeFileContent Property

Predefined Macros

The predefined macros section of the makefile contains other macros than the Rhapsody-generated
macros specified in the generated macros section.

For example, part of the default predefined macros section of a C++ makefile for the Microsoft
environment is as follows:

HAH#HH#HH#HHAH#HHE Predefined macros #H##H#HHFHHFHHHH
HAHHSHEH S HEH S S S

$ (OBJS) : $(INST_LIBS) $(OXF_LIBS)
LIB_POSTFIX=

ITF "$(BuildSet) "=="Release"
LIB_POSTFIX=R

ENDIF

ITF ”$(TARGET_TYPE)" == "Executable"

LinkDebug=$ (LinkDebug) /DEBUG
LinkRelease=$ (LinkRelease) /OPT:NOREF

|ELSEIF "$(TARGET TYPE)" == "Library"
LinkDebug=$ (LinkDebug) /DEBUGTYPE:CV

!ENDIF

Generated Dependencies

The generated dependencies section of the makefile contains a variable that expands to Rhapsody-
generated dependencies and compilation instructions.

For example, the generated dependencies section of a C++ makefile for the Microsoft environment
isasfollows:

HHHHFHEHHHHAR Cenerated dependencies ##H##HAHHHFHFHHHHH

HHHHHHHHH A HH A A R R R R
$SOMContextDependencies

SOMFileObjPath : $OMMainImplementationFile $(OBJS)
$(CPP) $(ConfigurationCPPCompileSwitches) /
Fo"$SOMFileObjPath" $OMMainImplementationFile

Rhapsody 35

Makefiles

Makefile Linking Instructions

The linking instructions section of the makefile contains the predefined linking instructions.

For example, the default linking instructions section of a C++ makefile for the Microsoft
environment is as follows:

HEHH##HHEA#4E Linking instructions #######$H4##HEHY
HH
$ (TARGET_NAME) $ (EXE_EXT) : $(OBJS) $(ADDITIONAL OBJS) $OMFileObjPath
SOMMakefileName $OMModelLibs
@echo Linking $(TARGET NAME)$ (EXE_EXT)
$(LINK_CMD) $OMFileObjPath $(OBJS) $(ADDITIONAL OBJS) \
$ (LIBS) \
$ (INST LIBS) \
$ (OXF_LIBS) \
$(SOCK_LIB) \

$ (LINK_FLAGS) /out:$(TARGET NAME) $ (EXE_EXT)

$ (TARGET NAME) $ (LIB_EXT) : $(OBJS) $(ADDITIONAL OBJS) $OMMakefileName
@echo Building library S$@

$(LIB_CMD) $(LIB FLAGS) /out:$(TARGET NAME)$(LIB_EXT) $(OBJS)
$ (ADDITIONAL OBJS)

clean:
@echo Cleanup
SOMCleanOBJS
if exist $OMFileObjPath erase $OMFileObjPath
if exist *$(OBJ_EXT) erase *$(OBJ_EXT)
if exist $(TARGET NAME) .pdb erase $(TARGET NAME) .pdb
if exist $(TARGET NAME) $ (LIB_EXT) erase $(TARGET NAME) $ (LIB_EXT)
if exist $(TARGET NAME) .ilk erase $(TARGET NAME) .ilk
if exist $(TARGET NAME) $ (EXE EXT) erase $(TARGET NAME) $ (EXE_EXT)
$ (CLEAN_OBJ DIR)

36

RTOS Adapter Guide

Step 4: Redefining the MakeFileContent Property

Java Users

To generate Java JAR files, invoke thej ar command from the makefile, using the
MakeFi | eCont ent property. You can specify the manifest file as an external file with a text
element in it. You can add additional files to the model for completeness.

Thereis no specialized support for RMI in Rhapsody. Call the JDK and invoke the relevant tools
manually, or via the generated makefile (change the MakeFi | eCont ent property).

Rhapsody 37

Makefiles

38

RTOS Adapter Guide

The IDE Interface

The integrated development environment (IDE) interfaceisa DLL that exports a set of C
definitions, structures, and functions. The DLL header is supplied as part of Rhapsody installation
(in<r oot >/ Shar e/ DLLs/ i deabs. h). Because thisfile defines an abstract IDE for Rhapsody,
you can use it to create your own DLL to interface to other IDES.

Defines

Defines represent the IDE interface state. The defines are asfollows:

¢ OM | DE_CONNECTED—The DLL is connected to the IDE.

¢ OM. | DE_EXEC DOWNLOADED—The image was downloaded to the target.
¢ OM | DE_EXEC_RUNNI NG—Theimage isrunning on the target.

¢ OM | DE_EXEC BREAK—Theimageisin abreakpoint.

Note
If the IDE is not connected, the state is 0.

Structures

The OM DECal | backs structure stores a set of callback functions to enable the IDE to call
Rhapsody. The following callbacks are called by the IDE interface:

¢ Connectiond osedNot i f y—Notifies Rhapsody when the connection to the IDE is
broken

¢ DoAni mat i onConmand—M akes Rhapsody perform user animation commands (for
example, Go Step)

¢ DbgBreakpoi nt Not i f y—Notifies Rhapsody of abreakpoint in either animation or the
IDE debugger

¢ DbgConti nueNot i f y—Notifies Rhapsody that the user continued execution on the IDE
debugger

¢ Enabl eVCRBut t ons—Forces control to pass to the user (in animation)

Rhapsody 39

The IDE Interface

Functions

The IDE functions called by Rhapsody are as follows:

void OM I DESetCallbacks(/*in*/struct OM | DECallbacks*);
Sets the callbacks for the IDE interface.

int OMIDEConnect(/*inout*/char* 1nOutConnectParam);
Connectsto the debugger IDE.

Thel nQut Connect Par amparameter is a string that contains the information needed to
establish the connection.

int OM | DEDisconnect();
Closes the connection with the IDE.

int OMIDEDownload(/*in*/char* fileName);
Instructs the IDE to download the specified file to the target.

int OMIDEUnload();

Instructs the IDE to unload the image.

int OMIDERun(/*in*/char* entryPoint,/*in*/char* language);
Instructs the IDE to run the image.

The parameters are as follows:

a. entryPoi nt —Theentry point. This parameter is set by Rhapsody based on the
value of the<l ang>_CG : <Envi ronnment >: : Ent r yPoi nt property/

b. | anguage—Specifies the application language, such as C or C++.
int OMIDESop();

Instructs the I DE to stop execution of the image on the target.

int OMIDEENd();

Is equivalent to sequence of call of OM DESt op() , OM DEUnI oad() , and
OM DEDi sconnect ().

int OMIDEGetSatus();
Returnsthe IDE interface state. See Defines for the list of possible states.

int OMIDEContinue();

40

RTOS Adapter Guide

Functions

Instructs the IDE to continue execution, after the image reaches a breakpoint.

Rhapsody 41

The IDE Interface

42

RTOS Adapter Guide

The OSAL Classes

The operating system adapter is an implementation of the abstract factory patternl. For example, in
Rhapsody in C++, the abstract operating system interface consists of the OMOSFact or y class,
whose abstract products are classes that represent operating services such as OMOSThr ead,
OMOSMut ex, and so on. Each target operating system has its own concrete factory and concrete
products that are similarly named, but with the OMOs prefix replaced with an operating system-
dependent prefix. For example, the prefix for VxWorksis VxGCS, the prefix for pSOSystem is
Psos0sS, and so on.

The abstract operating system interfaces are defined in Ri COSW ap. h (under

$OVROOT\ LangQ\ oxf) and * os. h (under $OVROOT\ LangCpp\ oxf). Code that uses an
operating system adapter directly should include the appropriate file for the class definitions and
link with the compiled <env>oxf library or avariant of it.

The operating system interface provides abstract methods to create each type of operating system
entity. Because the created classes are abstract, the interface hides the concrete class and returnsiits
abstract representation.

This section contains reference pages for the classes and methods that comprise the abstract
interface. For ease-of-use, the classes are presented in al phabetical order under each programming
language:

¢ Rhapsodyin C

¢ Rhapsody in C++

1.Design Patterns, Gammaet a., Addison Wesley 1995

Rhapsody 43

The OSAL Classes

Rhapsody in C

Thesinglefile R COSW ap. h defines the abstract classes and methods used for multiple
environment definitions (Ri COSNT. ¢, Ri CvxWor ks. ¢, and so on). Each adapter defines the
specific data (for example, st ruct) initsown .h file (Ri COSNT. h, Ri CvxWor ks. h, and so on).

The C methods described in this section include the corresponding VxWorks implementations
(defined in thefile Ri COSVxWor ks. ¢) . Note that the VxWorks-specific methods are not included
in this section; see the appropriate files for details.

The C classes for the abstract interface are as follows:

¢ RiCOSConnectionPort Class

¢ RiCOSEventFlag Interface

¢ RiCOSMessageQueue Class
¢ RiCOSMutex Class

¢ RiCOSOXF Class

¢ RiCOSSemaphore Class
¢ RIiICOSSocket Class

¢ RICOSTask Class
¢ RiCOSTimer

¢ RiCHandleCloser Class

44

RTOS Adapter Guide

RiCOSConnectionPort Class

TheRi COSConnect i onPort classisused for interprocess communication between instrumented

applications and Rhapsody.

Creation Summary

create Creates an Ri COSConnect i onPort
object

destroy Destroys the Ri COSConnect i onPort
object

cleanup Cleans up after an
Ri COSConnect i onPort object

init Initializes an Ri COSConnect i onPort
object

Method Summary

Connect Connects a process to the instrumentation
server at the specified socket address and
port

Send Sends data out from the connection port

SetDispatcher

Sets the connection dispatcher function,
which is called whenever there is an input
on the connection port (input from the
socket)

create

Description

The create method creates an Ri COSConnect i onPort object.

Signature

RiCOSConnectionPort *RiCOSConnectionPort create() ;

Returns
The newly created connection port

Example

RiCOSConnectionPort * RiCOSConnectionPort create()

RiCOSConnectionPort * me =

malloc (sizeof (RiCOSConnectionPort)) ;
RiCOSConnectionPort init (me) ;

return me;

Rhapsody

Rhapsody in C

The OSAL Classes

destroy
Description
The destroy method destroys the connection port.
Signature

void RiCOSConnectionPort destroy (
RiCOSConnectionPort * const me) ;

Parameters

me

The Ri COsConnecti onPort object to delete
Example

void RiCOSConnectionPort destroy (
RiCOSConnectionPort * const me)

if (me == NULL) return;
RiCOSConnectionPort cleanup (me) ;
free (me) ;
cleanup
Description

The cleanup method cleans up after an Ri COSConnect i onPort object is destroyed.
Signature

void RiCOSConnectionPort cleanup (
RiCOSConnectionPort * const me) ;

Parameters

me

The object to clean up after

Example

void RiCOSConnectionPort cleanup (
RiCOSConnectionPort * const me)

if (me==NULL) return;
RiCOSSocket cleanup (&me->m_Socket) ;

/* Assumes you will have only one connection port
so the data for m Buf can be freed; if it is not
the case, the readFromSockLoop will allocate it. */

46 RTOS Adapter Guide

Rhapsody in C

init

if (me->m Buf) {
free (me->m Buf) ;

me->m_BufSize = 0;
Description
The init method initializes the connection port.
Signature
RiCBoolean RiCOSConnectionPort init (
RiCOSConnectionPort * const me) ;
Parameters
The Ri COSConnect i onPort object
Returns
The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSConnectionPort init(

RiCOSConnectionPort * const me)
RiCBoolean b;

if (me==NULL) return RiCFALSE;

me->m_Buf = NULL;

b = RiCOSMutex init (&me->m_SendMutex) ;

b &= RiCOSEventFlag init (&me->m_ AckEventFlag) ;
me->m BufSize = 0;

me->m_Connected = 0;

me->m_dispatchfunc = NULL;
me->m_ConnectionThread = NULL;
me->m_ShouldWaitForAck = 1;
me->m_NumberOfMessagesBetweenAck = 0;
RiCOSEventFlag reset (&me->m_AckEventFlag) ;
return b;

Rhapsody

47

The OSAL Classes

Connect

Description

The Connect method connects a process to the instrumentation server at the specified socket
address and port.

Signature

int RiCOSConnectionPort_ Connect (
RiCOSConnectionPort *const me,
const char* const SocketAddress,
unsigned int nSocketPort) ;

Parameters

me

The Ri COSConnect i onPort object.

SocketAddress

The socket address. The default valueis NULL.

nSocketPort

The port number of the socket. The default valueisO.

Returns
The connection status. The possible values are as follows:

¢ 1—Success
¢ (0—Failure

Example

RiCOSResult RiCOSConnectionPort_ Connect (
RiCOSConnectionPort * const me,
const char* const SocketAddress,
unsigned int nSocketPort)

if (me==NULL) return O0;

if (NULL == me->m dispatchfunc) {
fprintf (stderr, "RiCOSConnectionPort SetDispatcher
should be called before
RiCOSConnectionPort Connect () \n") ;
return 0;

if (0 == me->m Connected) {
(void) RiCOSSocket init (&me->m_ Socket) ;
me->m_Connected = RiCOSSocket_ createSocket (
&me->m_Socket, SocketAddress,nSocketPort) ;

48 RTOS Adapter Guide

Rhapsody in C

if (0 == me->m_Connected)
return O;

/* Connection established invoking thread to
receive messages from the socket */

me->m_ConnectionThread = RiCOSTask create ((

void (*) (void *))readFromSockLoop,

(void *)me, "tRhpSock",RiCOSDefaultStackSize) ;
RiCOSTask start (me->m ConnectionThread) ;
return me—>m_Connected;

Send

Description

The Send method sends data out from the connection port. This operation should be thread-

protected.
Signature

int RiCOSConnectionPort_Send (
RiCOSConnectionPort *const me, struct RiCSData *m) ;

Parameters

me

The Ri COSConnect i onPort object from which to send the data

The data to be sent from the port
Returns

An integer that represents the number of bytes sent through the socket
Example

RiCOSResult RiCOSConnectionPort Send (
RiCOSConnectionPort * const me, struct RiCSData *m)

int rv = 0, m NumberOfMessagesBetweenAck = 0;
RiCOSMutex lock (&me->m_SendMutex) ;

if (me->m Connected) ({
char lenStr [MAX LEN STR+1];
(void) sprintf (lenStr, "%d",RiCSData getLength (m)) ;
rv = RiCOSSocket send (&me->m_Socket,
lenStr, MAX LEN STR);
if (rv > 0) {
rv = RiCOSSocket_ send (&me->m_Socket,
RiCSData_ getRawData (m), RiCSData_ getLength(m)) ;

if (me->m_ShouldWaitForAck) {

Rhapsody

49

The OSAL Classes

const int maxNumOfMessagesBetweenAck = 127;
/* This MUST match the number in Rhapsody. */
if (maxNumOfMessagesBetweenAck > 0)
m_NumberOfMessagesBetweenAck++;

if (m_ NumberOfMessagesBetweenAck >=
maxNumOfMessagesBetweenAck) {
m_NumberOfMessagesBetweenAck = 0;
RiCOSEventFlag wait (

&me->m_AckEventFlag, -1);
RiCOSEventFlag reset (

&me->m_AckEventFlag) ;

}

RiCOSMutex free (&me->m SendMutex) ;
/* cleanup */

RiCSData_cleanup (m) ;

return rv;

SetDispatcher
Description

The setbDispatcher method sets the connection dispatcher function, which is called whenever
there is an input on the connection port (input from the socket).

Signature

RiCBoolean RiCOSConnectionPort SetDispatcher (
RiCOSConnectionPort *const me,
RiCOS_dispatchfunc dispfunc) ;

Parameters

me

The Ri COSConnect i onPort object

dispfunc

The dispatcher function
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSConnectionPort SetDispatcher (
RiCOSConnectionPort * const me,
RiCOS_dispatchfunc dispfunc)

if (me==NULL) return RiCFALSE;
me->m_dispatchfunc = dispfunc;
return RiCTRUE;

50 RTOS Adapter Guide

Rhapsody in C

RiCOSEventFlag Interface

An event flag is a synchronization object used for signaling between threads. Threads can wait
on an event flag by calling wait. When some other thread signals the flag, the waiting threads
proceed with their execution. The event flag isinitially in the unsignaled (reset) state.

With the Rhapsody implementation of event flags, at least one of the waiting threadsis
released when an event flag is signaled. Thisisin contrast to the regular semantics in some
operating systems, in which all waiting threads are rel eased when an event flag is signaled.

Creation Summary

create Creates an Ri COSEvent Fl ag object

destroy Destroys the Ri COSEvent Fl ag object

cleanup Cleans up after an Ri COSEvent Fl ag
object

init Initializes an Ri COSEvent Fl ag object

Method Summary

reset Forces the event flag into a known state
signal Releases a blocked task
wait Blocks the task making the call until some

other task releases it by calling signal on
the same event flag instance

create
Description

The create method creates an Ri COSEvent Fl ag object.

Signature

RiCOSEventFlag *RiCOSEventFlag create() ;

Returns
The newly created Ri COSEvent Fl ag
Example

RiCOSEventFlag * RiCOSEventFlag create()

RiCOSEventFlag * me = malloc(sizeof (RiCOSEventFlag)) ;
if (me != NULL) RiCOSEventFlag init (me) ;
return me;

}

Rhapsody 51

The OSAL Classes

destroy
Description
The destroy method destroysthe Ri COSEvent Fl ag object.
Signature

void RiCOSEventFlag destroy (RiCOSEventFlag *const me) ;

Parameters

me

The Ri COSEvent Fl ag object to delete
Example

void RiCOSEventFlag destroy (RiCOSEventFlag * const me)

if (me != NULL) {
RiCOSEventFlag cleanup (me) ;
free(me) ;
}
}
cleanup
Description

The cleanup method cleans up the memory after an Ri CEvent Fl ag object is destroyed.
Signature

void RiCOSEventFlag cleanup (RiCOSEventFlag *const me) ;
Parameters

me

The object to clean up after

Example

void RiCOSEventFlag cleanup (RiCOSEventFlag * const me)

if (me != NULL && me->hEventFlag != NULL) {
semDelete (me->hEventFlag) ;
me->hEventFlag = NULL;

52 RTOS Adapter Guide

Rhapsody in C

init
Description
Theinit method initializes the Ri CEvent Fl ag object.
Signature

RiCBoolean RiCOSEventFlag init (
RiCOSEventFlag *const me) ;

Parameters

me

The Ri COSEvent Fl ag object to initialize
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSEventFlag init (RiCOSEventFlag * const me)

if (me == NULL) return RiCFALSE;
me->hEventFlag = semBCreate (SEM_Q FIFO, SEM EMPTY) ;
return (me->hEventFlag != NULL) ;

}

reset
Description

Thereset method forces the event flag into a known state. This method is called almost
immediately prior to await.

Signature

RiCOSResult RiCOSEventFlag reset (
RiCOSEventFlag *const me) ;

Parameters

me

The Ri COSEvent Fl ag object
Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files

Rhapsody 53

The OSAL Classes

Example

RiCOSResult RiCOSEventFlag reset (
RiCOSEventFlag * const me)

if (me == NULL) {return 0;}
semTake (me->hEventFlag, NO_WAIT) ;
return (RiCOSResult)l;

}

signal
Description

The signal method releases a blocked task. If more than one task iswaiting for an event flag, a
call to this method release sat |east one of them.

Signature

RiCOSResult RiCOSEventFlag signal (
RiCOSEventFlag *const me) ;

Parameters

me

The Ri COSEvent Fl ag object
Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSEventFlag signal (
RiCOSEventFlag * const me)
{

if (me == NULL) {return 0;}
semGive (me->hEventFlag) ;
return (RiCOSResult)1;

}
See Also

al

—+

54 RTOS Adapter Guide

Rhapsody in C

wait
Description

The wait method blocks the task making the call until some other task releases it by calling
signal on the same event flag instance.

Signature

RiCOSResult RiCOSEventFlag wait (
RiCOSEventFlag *const me, int tminms) ;

Parameters

me

The Ri COSEvent Fl ag object.

tmins

Specifies the length of time, in milliseconds, that the thread should remain blocked. A value of
—1 means to wait indefinitely.

Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files

Example

RiCOSResult RiCOSEventFlag wait (
RiCOSEventFlag * const me, int tminms)

if (me == NULL) {return 0 /*WAIT FAILED*/;}

if (-1 == tminms) {
semTake (me->hEventFlag, WAIT_FOREVER) ;

int ticks = cvrtTmInMStoTicks (tminms) ;
semTake (me->hEventFlag, ticks);

return (RiCOSResult)1;

}
See Also

signal

Rhapsody 55

The OSAL Classes

RiCOSMessageQueue Class

The Ri COSMessageQueue class represents alist of messages (events).

Creation Summary

Create Creates an Ri COSMessageQueue
object

destroy Destroys Ri COSMessageQueue object

cleanup Cleans up after an

Ri COSMessageQueue object
Initializes an R COSMessageQueue

init

object
Method Summary

get Retrieves the message at the beginning of
the message queue

getMessageList Retrieves a list of messages

isEmpty Determines whether the message queue
is empty

isFull Determines whether the message queue
is full

pend Locks the thread making the call until

there is a message in the queue

put Adds a message to the end of the
message queue

create
Description

The create method creates an Ri COSMessageQueue object.

Signature

RiCOSMessageQueue * RiCOSMessageQueue create (
RiCBoolean shouldGrow, int initSize) ;

Parameters

shouldGrow

Determines whether the queue should be of fixed size (Ri CFALSE) or able to expand as
needed (Ri CTRUE).

initSize

56 RTOS Adapter Guide

Rhapsody in C

Specifiestheinitial size of the queue. The default message queue size is set by the variable
Ri COSDef aul t MessageQueueSi ze.

The maximum length of the message queue is operating system- and implementation-
dependent. It isusually set in the adapter for a particular operating system.

Returns
The newly created Ri COSMessageQueue
Example

RiCOSMessageQueue * RiCOSMessageQueue_ create(
RiCBoolean shouldGrow, int initSize)

RiCOSMessageQueue * me = malloc(
sizeof (R1COSMessageQueue)) ;
RiCOSMessageQueue init (me, shouldGrow, initSize);
return me;
destroy
Description
The destroy method destroys the Ri COSMessageQueue object.

Signature

void RiCOSMessageQueue destroy (
RiCOSMessageQueue *const me) ;

Parameters

me

The Ri COsMessageQueue object to destroy
Example

void RiCOSMessageQueue destroy (
RiCOSMessageQueue * const me)
{

if (me == NULL) return;
RiCOSMessageQueue cleanup (me) ;
free (me) ;

Rhapsody 57

The OSAL Classes

cleanup

Description

The cleanup method cleans up after the Ri COSMessageQueue object.

Signature

void RiCOSMessageQueue cleanup (
RiCOSMessageQueue * const me) ;

Parameters

me

The object to clean up after
Example

void RiCOSMessageQueue cleanup (
RiCOSMessageQueue * const me)

if (me == NULL) return;

if (me->hvxMQ)

(void)msgQDelete (me->hVxMQ) ;
me->hVxMQ = 0;

init
Description

Theinit method initializes the Ri COSMessageQueue abject.

Signature

RiCBoolean RiCOSMessageQueue init (

RiCOSMessageQueue *const me, RiCBoolean shouldGrow,
int initSize) ;

Parameters
me
Specifiesthe Ri COSMessageQueue abject to initialize.
shouldGrow

Determines whether the queue should be of fixed size (Ri CFALSE) or able to expand as
needed (Ri CTRUE).

initSize

58 RTOS Adapter Guide

Rhapsody in C

Specifiestheinitial size of the queue. The default message queue size is set by the variable
Ri COSDef aul t MessageQueueSi ze. You can override the default value by passing a
different value when you create the message queue.

The maximum length of the message queue is operating system- and implementation-
dependent. It is usually set in the adapter for a particular operating system.

Returns
The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSMessageQueue init (

RiCOSMessageQueue * const me, RiCBoolean shouldGrow,

int initSize)

if (me == NULL) return RiCFALSE;

if (initSize < 0) initSize =
RiCOSDefaultMessageQueueSize;
me->m_State = noData;
me->hVxMQ = msgQCreate (initSize, sizeof (voidx*),

MSG_Q FIFO) ;
return RiCTRUE;

get
Description
The get method retrieves the message at the beginning of the message queue.

Signature

gen ptr RiCOSMessageQueue get (
RiCOSMessageQueue * const me) ;

Parameters

me

The Ri COsMessageQueue from which to retrieve the message
Returns

The message
Example

gen ptr RiCOSMessageQueue get (
RiCOSMessageQueue * const me)

gen ptr m = NULL;

Rhapsody 59

The OSAL Classes

if (me == NULL) return NULL;

if (me->m _State == dataReady) {
m = me->pmessage;
me->m_State = noData;

}

else { /* function returns NULL if there are
no messages in me->hvVxMQ queue */
if (msgQReceive (me->hVxMQ, (char*)&m, sizeof (m),
NO_WAIT) <= 0)/* nonblocking semantics */
return NULL;

}

return m;

}
See Also

getMessagelistput

getMessageL.ist

Description

The getMessageList method retrieves alist of messages. It is used for two reasons:

¢ To cancel events

When areactive classis destroyed, its notifies its thread to cancel all eventsin the
gueue that are triggered for that reactive class. The thread iterates over the queue,
using getMessagelist to retrieve the data, and marks as canceled al events whose

target isthe reactive class.
¢ To show the datain the event queue during animation

Signature

RiCOSResult RiCOSMessageQueue getMessageList (
RiCOSMessageQueue *const me, RiCList *1);

Parameters

me

The Ri COSMessageQueue

1
Thelist of messagesin the queue

Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files

60 RTOS Adapter Guide

Rhapsody in C

Example

RiCOSResult RiCOSMessageQueue getMessageList (
RiCOSMessageQueue * const me, RiCList * 1)

RiCList_removeAll (1) ;
if (me == NULL) return O;

if (!RiCOSMessageQueue isEmpty (me)) {
MSG Q INFO msgQInfo;

if (noData != me->m State) ({
RiCList_addTail (1, me->pmessage) ;

}

msgQInfo.taskIdListMax = 0;

msgQInfo.taskIdList = NULL;

/* do not care which tasks are waiting */

msgQInfo.msglListMax = 0;
msgQInfo.msgPtrList = NULL;
= NULL;

msgQInfo.msglLenList

/* Do not care about message length. The
first call will retrieve the numMsgs data

member. */

if (OK == msgQInfoGet (me->hvxMQ, &msgQInfo)) {
if (msgQInfo.numMsgs > 0)
int numMsgs = msgQInfo.numMsgs;
msgQInfo.msgListMax = numMsgs;
msgQInfo.msgPtrList = malloc(
(numMsgs+1) *sizeof (void¥*)) ;
if (OK == msgQInfoGet (me->hvxMQ, &msgQInfo)) {
void *m;
int i;
for (i = 0; i < numMsgs; i++) {
m = *(void **)msgQInfo.msgPtrList[i];
RiCList addTail(1l,m);

free (msgQInfo.msgPtrList) ;

return 1;

See Also

getput

Rhapsody

61

The OSAL Classes

iISEmpty

Description

The isEmpty method determines whether the message queue is empty.

Signature

RiCBoolean RiCOSMessageQueue isEmpty (
RiCOSMessageQueue *const me) ;

Parameters

me

The Ri COSMessageQueue to check

Returns
The method returns one of the following values:

¢ R CTRUE—The queueis empty.
¢ R CFALSE—The queue is not empty.

isFull

Description

TheisFull method determines whether the message queue is full.

Signature

RiCBoolean RiCOSMessageQueue isFull (
RiCOSMessageQueue * const me) ;

Parameters

me

The Ri COSMessageQueue to check
Returns
The method returns one of the following values:

¢ Ri CTRUE—The queueisfull.
¢ Ri CFALSE—The queueisnot full.

62

RTOS Adapter Guide

Rhapsody in C

Example

RiCBoolean RiCOSMessageQueue isFull (
RiCOSMessageQueue * const me)

MSG_Q_INFO msgQInfo;
if (RiCOSMessageQueue isEmpty(me)) return FALSE;

if (OK != msgQInfoGet (me->hvxMQ, &msgQInfo))
return TRUE;/* Assume the worst case. */

if (msgQInfo.numMsgs < msgQInfo.maxMsgs) return FALSE;

return TRUE;

pend
Description

The pend method blocks the task making the call until there is amessage in the queue. A
reader generally waits until the queue contains a message that it can read.

Signature

RiCOSResult RiCOSMessageQueue pend (
RiCOSMessageQueue *const me) ;

Parameters

me

The Ri COSMessageQueue
Returns

The Ri COSResul t object, asdefined inthe Ri COs*. h files

Example

RiCOSResult RiCOSMessageQueue pend (
RiCOSMessageQueue * const me)

if (me == NULL) return O;

if (me->m_State == noData) {
gen ptr m = NULL;
if (msgQReceive (me->hVxMQ, (char*)&m, sizeof (m),
NO WAIT) <= 0)/* if the queue is empty *
(void) msgQReceive (me->hvxMQ, (char*)&m,
sizeof (m), WAIT FOREVER);/* wait for message */
me->m_State = dataReady;
} me->pmessage = m;

return 1;

Rhapsody 63

The OSAL Classes

put

Description

The put method adds a message to the end of the message queue.
Signature

RiCOSResult RiCOSMessageQueue put (

RiCOSMessageQueue *const me, gen ptr message,
RiCBoolean fromISR) ;

Parameters

me

The Ri COSMessageQueue to which to add the message

message

The message to be added to the queue
fromISR

A Boolean value that determines whether the message being added was generated from an
interrupt service routine (ISR)

Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSMessageQueue put (

RiCOSMessageQueue * const me, gen ptr message,
RiCBoolean fromISR)

static gen ptr NULL VAL = NULL;
int timeout = WAIT FOREVER;
int priority = MSG PRI _NORMAL;

if (message == NULL) message = NULL VAL;

if (fromISR)
timeout = NO WAIT;
priority = MSG PRI URGENT;

!

return (msgQSend (me->hVxMQ, (char*)&message,
sizeof (message), timeout, priority) == OK);

See Also
get

getMessagelist

64 RTOS Adapter Guide

Rhapsody in C

RiCOSMutex Class

A mutex is the basic synchronization mechanism used to protect critical sections within athread.
Mutexes are used to implement protected objects. The mutex allows one thread mutually exclusive
access to aresource. Mutexes are useful when only one thread at atime can be alowed to modify
data or some other controlled resource. For example, adding nodes to alinked list is a process that
should only be allowed by one thread at atime. By using a mutex to control the linked list, only
one thread at atime can gain accessto thelist.

The Rhapsody implementation of amutex is as arecursive lock mutex. This means that the same
thread can lock the mutex several times without blocking itself. In other words, the mutex is
actually a counted semaphore. When implementing OMOSMut ex for the target environment, you
should implement it as arecursive lock mutex.

Mutexes can be either free or locked (they areinitialy free). When atask executesal ock
operation and finds a mutex locked, it must wait. The task is placed on the waiting queue
associated with the mutex, along with other blocked tasks, and the CPU scheduler selects another
task to execute. If thel ock operation finds the mutex free, the task places alock on the mutex and
entersitscritical section. When any task releases the mutex by calling f r ee, the first blocked task
in the waiting queue is moved to the ready queue, where it can be selected to run according to the
CPU scheduling algorithm.

The same thread can nest | ock and f r ee calls of the same mutex without indefinitely blocking
itself. Nested locking by the same thread does not block the locking thread. However, the nested
locks are counted so the proper f r ee actually releases the mutex.

Creation Summary

create Creates an Ri COSMut ex object
destroy Destroys the Ri COSMut ex object
cleanup Cleans up after an Ri COSMut ex object
init Initializes an Ri COSMut ex object

Method Summary

free Frees the lock, possibly causing the
underlying operating system to reschedule
tasks

lock Determines whether the mutex is locked

Rhapsody 65

The OSAL Classes

create

Description

The create method creates an Ri COSMut ex object.
Signature

RiCOSMutex * RiCOSMutex create() ;
Returns

The newly created Ri COSMut ex
Example

RiCOSMutex * RiCOSMutex create ()

RiCOSMutex * me = malloc (sizeof (RiCOSMutex)) ;
RiCOSMutex_init (me) ;
return me;

}
destroy
Description
The destroy method destroys the Ri COSMut ex object.
Signature

void RiCOSMutex destroy (RiCOSMutex * const me) ;

Parameters

me

The Ri COsMut ex object to destroy
Example

void RiCOSMutex destroy (RiCOSMutex * const me)

if (me != NULL) {
RiCOSMutex cleanup (me) ;
free(me) ;

66 RTOS Adapter Guide

Rhapsody in C

cleanup

Description

The cleanup method cleans up the memory after an Ri COSMut ex object is destroyed.

Signature

void RiCOSMutex cleanup (RiCOSMutex * const me) ;

Parameters

me

The deleted Ri COSMut ex object to clean up after
Example

void RiCOSMutex cleanup (RiCOSMutex * const me)

if (me != NULL && me->hMutex !=NULL) {
semDelete (me->hMutex) ;
me->hMutex = NULL;

init
Description
Theinit method initializes the Ri COSMut ex object.

Signature

RiCBoolean RiCOSMutex_init (RiCOSMutex * const me) ;

Parameters

me

The Ri COsMut ex object toinitialize
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSMutex init (RiCOSMutex * const me)
if (me == NULL) return O;

me->hMutex = semMCreate (SEM Q FIFO) ;
return (me->hMutex != NULL) ;

Rhapsody

67

The OSAL Classes

free
Description

Thefree method freesthe lock, possibly causing the underlying operating system to reschedule
tasks.

In environments other than pSOSystem, thisis a macro that implements the same interface.
Signature

RiCOSResult RiCOSMutex free (RiCOSMutex *const me) ;

Parameters

me

The Ri COSMut ex object to free
Returns

The Ri COSResul t object, asdefined in the Ri COs*. h files
Example

RiCOSResult RiCOSMutex free (RiCOSMutex * const me)

if (me == NULL) { return 0; }
if (semGive (me->hMutex)==0K)
return 1;
else
return 0;
}
See Also
lock

68 RTOS Adapter Guide

Rhapsody in C

lock
Description
Thelock method determines whether the mutex is free and reacts accordingly:

+ |f the mutex if free, this operation locksit and allows the calling task to enter its
critical section.

+ |f the mutex is aready locked, this operation places the calling task on awaiting
gueue with other blocked tasks.

In environments other than pSOSystem, this is a macro that implements the same interface.
Signature

RiCOSResult RiCOSMutex lock (RiCOSMutex *const me) ;
Parameters

me

The Ri COsMut ex object to lock
Returns

The Ri COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSMutex lock (RiCOSMutex * const me)
if (me == NULL) {return 0;}

if (semTake (me->hMutex, WAIT FOREVER)==0K) {
return 1;
!

else
return O0;

}
See Also

free

Rhapsody 69

The OSAL Classes

RiICOSOXF Class

The Ri COSOXF class defines the operating system-specific actions to take at the end of
Ri COXFI ni t after the environment is set (such as the main thread, timer, and so on) and before
the return from the function.

Method Summary

RiCOSEndApplication Ends a running application
RiCOSOXFInitEpilog Initializes the epilog
Constants

The type definitions depend on the deployment environment. For example, if the typeis
“long,” the type definitions would be as follows:

extern const long RiCOSDefaultStackSize;
extern const long RiCOSDefaultMessageQueueSize;

extern const long RiCOSDefaultThreadPriority;

However, if the OXF sourcefileisricoswrap.h and you replace pusL1c With extern, then
the type definitions would be as follows:

extern const RiC StackSizeType RiCOSDefaultStackSize;
extern const RiC MessageQueueSizeType RiCOSDefaultMessageQueueSize;

extern const RiC_ThreadPriorityType RiCOSDefaultThreadPriority;

RiCOSEndApplication
Description

This method ends a running application. The operation should be implemented in the concrete
adapter for the target operating system.

Signature

extern void RiCOSEndApplication (int errorCode) ;

Parameters

errorCode

Specifies the error code to be passed to the operating system, if required
Example

void RiCOSEndApplication (int errorCode)

RiCTask* currentThread, *maint;

70 RTOS Adapter Guide

Rhapsody in C

RiCOSTask_endOfProcess = 1;

#ifdef _OMINSTRUMENT

ARCSD instance() ;

ARCSD closeConnection() ;
#endif

currentThread = RiCTask_ cleanupAllTasks() ;

#ifdef OMINSTRUMENT
ARCSD Destroy () ;
#endif

RiCTimerManager cleanup (&RiCSystemTimer) ;
maint = RiCMainTask () ;

if (maint) {

RiCOSHandle maintHandle = RiCOSTask getOSHandle (
RiCTask getOSTask (maint)) ;

char * maintName = taskName (maintHandle) ;

int killmainthread = 1;

if (maintName && *maintName) {
if (!strcmp(maintName, "tShell"))
taskRestart (maintHandle) ;
else
taskDeleteForce (maintHandle) ;
killmainthread = 0;

if (killmainthread) {
RiCTask_destroy (maint) ;
}

}

if (currentThread) ({
Ri1iCOSTaskEndCallBack theOSThreadEnderClb;
void * argl;

/* Get a callback to end the thread. */

(void) RiCTask getTaskEndClbk (
currentThread, &theOSThreadEnderClb,
&argl,RiCTRUE) ;

RiCOSTask setEndOSTaskInCleanup (
RiCTask getOSTask (currentThread), FALSE);

/* Do not really end the os thread because you
are executing on this thread and if you do,
there will be a resource leak. */

RiCTask destroy (currentThread) ;

/* Delete the whole object through a virtual
destructor. */

if (theOSThreadEnderClb != NULL) {
(*theOSThreadEnderClb) (argl) ;
/* Now end the os thread. */

}

/* Make sure that the execution thread is being
ended. */
RiCOSTask_ endMyTask ((void *) taskIdSelf());

Rhapsody 71

The OSAL Classes

RiCOSOXFInitEpilog
Description
This method initializes the epilog.

Signature

extern void RiCOSOXFInitEpilog() ;

Example

void RiCOSOXFInitEpilog ()

taskDelay (2) ;

72

RTOS Adapter Guide

Rhapsody in C

RiCOSSemaphore Class

A semaphore is a synchronization device that allows alimited number of threadsin one or more
processes to access a resource. The semaphore maintains a count of the number of threads
currently accessing the resource.

Semaphores are useful in controlling access to a shared resource that can support only alimited
number of users. The current count of the semaphore is the number of additional users allowed.
When the count reaches zero, all attempts to use the resource controlled by the semaphore are
inserted into a system gqueue and wait until they either time out or the count again rises above zero.
The maximum number of users who can access the controlled resource at one time is specified at
construction time.

The Rhapsody framework itself does not use semaphores. However, the Ri COSSenmaphor e
primitive is provided as a service for environments that need it (such as Windows NT and
pSOSystem).

Creation Summary

create Creates an Ri COSSenaphor e object

destroy Destroys the Ri COSSenmaphor e object

cleanup Cleans up after an Ri COSSermaphor e

object

init Initializes an Ri COSSenaphor e object
Method Summary

signal Releases the semaphore token

wait Waits for a semaphore token

Rhapsody 73

The OSAL Classes

create
Description

The create method creates an Ri COSSemaphor e object.

Signature

RiCOSSemaphore *RiCOSSemaphore create (
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char *const name) ;

Parameters

semFlags

The adapter-specific creation flags

initialCount

The initial number of tokens available in the semaphore

maxCount

The maximum number of tokens available in the semaphore

name

The unique name of the semaphore
Returns

The newly created Ri COSSenaphor e object
Example

RiCOSSemaphore * RiCOSSemaphore create (
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char * const name)

RiCOSSemaphore * me = malloc (sizeof (RiCOSSemaphore)) ;

RiCOSSemaphore init (me, semFlags, initialCount,
maxCount, name) ;
return me;

74

RTOS Adapter Guide

Rhapsody in C

destroy
Description
The destroy method destroys the Ri COSSenaphor e object.

Signature

void RiCOSSemaphore destroy (RiCOSSemaphore *const me) ;

Parameters

me

The Ri COSSemaphor e object to destroy

Example

void RiCOSSemaphore destroy (RiCOSSemaphore * const me)
if (me == NULL) return;

RiCOSSemaphore cleanup (me) ;
free (me) ;

cleanup
Description
The cleanup method cleans up after the Ri COSSenaphor e object.

Signature

void RiCOSSemaphore cleanup (RiCOSSemaphore *const me) ;

Parameters

me

The object to clean up after

Example

void RiCOSSemaphore cleanup (RiCOSSemaphore * const me)
if (me == NULL) return;

if (me->m_semId)
semFlush (me->m_semId) ;
semDelete (me->m_semId) ;
me->m_semId = NULL;

75

Rhapsody

The OSAL Classes

init
Description
Theinit method initializes the Ri COSSemaphor e.
Signature

RiCBoolean RiCOSSemaphore init (
RiCOSSemaphore *const me, unsigned long semFlags,
unsigned long initialCount, unsigned long maxCount,
const char *const name) ;

Parameters

me

The Ri COsSenmaphor e object to initialize

semFlags

The adapter-specific creation flags

initialCount

The initial number of tokens available in the semaphore

maxCount

The maximum number of tokens available in the semaphore

name

The unique name of the semaphore
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSSemaphore init (RiCOSSemaphore * const me,
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char * const name)

if (me == NULL) return RiCFALSE;

me->m_semId NULL;

me->m_semId = semCCreate((int)semFlags,
(int)initialCount) ;

return (me->m _semId != NULL) ;

76

RTOS Adapter Guide

Rhapsody in C

signal
Description
The signal method rel eases the semaphore token.
Signature

RiCOSResult RiCOSSemaphore signal (
RiCOSSemaphore *const me) ;

Parameters

me

The Ri COSSenaphor e object
Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSSemaphore signal (
RiCOSSemaphore * const me)

if (! (me && me->m_semId)) return 0;
return (semGive (me->m_ semId) == OK) ;
}
See Also
ait
wait
Description

The wait method waits for a semaphore token.
Signature

RiCOSResult RiCOSSemaphore wait (
RiCOSSemaphore *const me, long timeout) ;

Parameters

me

The Ri COSSenmaphor e object.

timeout

Rhapsody

77

The OSAL Classes

The number of ticks to lock on a semaphore before timing out. The possible values are < 0
(wait indefinitely); O (do not wait); and > O (the number of ticks to wait). For Solaris systems,
avalue of > 0 meansto wait indefinitely.

Returns
The Ri COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSSemaphore wait (
RiCOSSemaphore * const me, long timeout)

if (!(me && me->m semId)) return FALSE;
if (timeout < 0) timeout = WAIT FOREVER;

return (semTake (me->m semId, timeout) == OK);

See Also

signal

78 RTOS Adapter Guide

Rhapsody in C

RiCOSSocket Class

The Ri COSSocket class represents the socket through which datais passed between Rhapsody
and an instrumented application. Ri COSSocket isgenerally used for animation, but it can also be
used for other connections, aslong as you provide a host name and port number. Ri COSSocket
represents the client side of the connection, and assumes that somewhere over the network thereis
aserver listening to the connection.

Creation Summary

create Creates an Ri COSSocket object
destroy Destroys the Ri COSSocket object
cleanup Cleans up after an Ri COSSocket object

nit

Initializes an Ri COSSocket object

Method Summary

createSocket
receive
send
Create
Description

Creates a new socket

Waits on the socket to receive the data

Sends data through the socket

The create method creates an Ri COSSocket object.

Signature

RiCOSSocket *RiCOSSocket create() ;

Returns

The newly created Ri COSSocket

Example

RiCOSSocket *RiCOSSocket create()

}

RiCOSSocket * me

= (RiCOSSocket*)malloc (sizeof (

RiCOSSocket)) ;

(me != NULL)
return me;

RiCOSSocket init (me) ;

Rhapsody

79

The OSAL Classes

destroy
Description
The destroy method destroysthe Ri COSSocket object.
Signature

void RiCOSSocket destroy (RiCOSSocket *const me) ;

Parameters

me

The Ri COSSocket object to destroy
Example

void RiCOSSocket destroy (RiCOSSocket * const me)

if (me != NULL) {
RiCOSSocket cleanup (me) ;
free(me) ;
}
}
cleanup
Description

The cleanup method cleans up after the Ri COSSenaphor e object
Signature

void RiCOSSocket cleanup (RiCOSSocket *const me) ;

Parameters

me

The Ri COSSocket object to clean up after
Example

void RiCOSSocket cleanup (RiCOSSocket * const me)
if (me == NULL) return;

if (me->theSock != 0) {
(void) shutdown (me->theSock, 2) ;
(void) close (me->theSock) ;
me->theSock = 0;

80 RTOS Adapter Guide

Rhapsody in C

init
Description
Theinit method initializes the Ri COSSocket object.
Signature

RiCBoolean RiCOSSocket init (RiCOSSocket *const me) ;

Parameters

me

The Ri COSSocket object toinitialize
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSSocket init (RiCOSSocket * const me)
if (me == NULL) return O;

me->theSock = 0;
return 1;

}

createSocket
Description
The createSocket method creates a new socket.
Signature

int RiCOSSocket createSocket (RiCOSSocket * const me,
const char *SocketAddress, unsigned int nSocketPort) ;

Parameters

me

The Ri COSSocket object.

SocketAddress

The socket address. This can be set to a host name that is a character string. The default value
iSNULL.

nSocketPort

The socket port number. The default valueis 0.

Rhapsody 81

The OSAL Classes

Returns

The socket creation status. The possible values are as follows:

* 1—Success
¢ 0—Failure

Example

int RiCOSSocket createSocket (RiCOSSocket * const me,
const char * SocketAddress, unsigned int nSocketPort)

static struct sockaddr inaddr;
int proto;

char hostName[128] ;

int rvStat;

if (me == NULL) {return 0;}

if (nSocketPort == 0) {
nSocketPort = 6423;
}

addr.sin_family = AF_INET;
proto = IPPROTO TCP;
(void)gethostname (hostName, sizeof (hostName)-1) ;

if (NULL != SocketAddress && strlen(SocketAddress)

1= 0)

if (!strcmp(hostName, SocketAddress)) {
SocketAddress = NULL; }

else {
(void) strcpy (hostName, SocketAddress) ;
addr.sin_addr.s_addr = inet_addr (hostName) ;
if (((unsigned long)ERROR) ==
addr.sin addr.s_addr) {
addr.sin addr.s_addr =
hostGetByName (hostName) ;

if (((unsigned long)ERROR) ==
addr.sin_addr.s_addr)

fprintf (stderr, "Could not get the address
of host '%$s'\n", hostName) ;

return O;

}

if (NULL == SocketAddress || strlen(SocketAddress)
== 0)
addr.sin_addr.s_addr = htonl (INADDR LOOPBACK) ;

#ifdef unix
endprotoent () ;
#tendif /* unix */

addr.sin port = htons((u_short)nSocketPort) ;

if ((me->theSock = socket (AF _INET, SOCK STREAM,
proto)) == -1)
fprintf (stderr, "Could not create socket\n") ;

82 RTOS Adapter Guide

Rhapsody in C

me->theSock = 0;
return O0;

while ((rvStat = connect (me->theSock,

(struct sockaddr *)&addr, sizeof (addr)))

SOCKET ERROR && (errno == EINTR)) ;
if (SOCKET ERROR == rvStat) {

fprintf (stderr, "Could not connect to server
at %s port %d\n Error No. : %d\n",

(int)nSocketPort, errno) ;
return O;

}
return 1;
receive
Description
The receive method waits on the socket to receive the data.
Signature

int RiCOSSocket receive (RiCOSSocket *const me,
char *buf, int buflen) ;

Parameters

me

The Ri COSSocket object

buf

The string buffer in which datawill be stored
buflen

The length of the buffer

Returns
The method returns one of the following values:

¢ 0—Therewasan error.
¢ n—The number of bytes read.

Example

int RiCOSSocket receive (RiCOSSocket * const me,
char * buf, int bufLen)

int bytes read = 0;
int n;

if (me==NULL) return -1;

hostName,

Rhapsody

83

The OSAL Classes

while (bytes read < bufLen)
n = recv(me->theSock, buf + bytes read,
buflLen - bytes read,0);
if (SOCKET ERROR == n)
if (errno == EINTR) {
continue;

else {
return -1;

else {

if (0 == n) { /* Connection closed.

return -1;

}

bytes read += n;

return bytes read;

send
Description

The send method sends data through the socket.

Signature

int RiCOSSocket send (RiCOSSocket *const me,
const char *buf, int bufLen) ;

Parameters

me

The Ri COSSocket object

buf
The constant string buffer that contains the data to be sent

buflen
The length of the buffer

Returns
The method returns one of the following values:

¢ 0—Therewasan error.

*/

84

RTOS Adapter Guide

Rhapsody in C

¢ n—The number of bytes sent.

Example

int RiCOSSocket send(RiCOSSocket * const me,
const char * buf, int bufLen)

int bytes writ = 0;
int n;

if (me==NULL) return -1;

while (bytes writ < bufLen) {
n = send(me->theSock, (char *) (buf + bytes writ),
buflLen - bytes writ, 0);

if (SOCKET ERROR == n) {
if (errno == EINTR) ({

continue;

else {
return -1;

}

bytes writ += n;

}

return bytes writ;

See Also

receive

Rhapsody

The OSAL Classes

RiCOSTask Class

The Ri COSTask class provides the basic tasking features.

Creation Summary

create Creates an Ri COSTask object
destroy Destroys an Ri COSTask object
cleanup Cleans up after an Ri COSTask

object

init

Initializes an Ri COSTask object

Method Summary

endMyTask Terminates the current task
endOtherTask Terminates a task other than the

current one

exeOnMyTask

Determines whether the method was
invoked from the same operating
system task as the one on which the
object is running

getCurrentTaskHandle

Gets the handle to the active task

getOSHandle

Returns a handle to the underlying
operating system task

getTaskEndClbk

Is a callback function that ends the
current operating system thread

resume

Resumes a suspended task

setEndOSTaskInCleanup

Determines whether destruction of the
Ri COSTask class should kill the
operating system task associated with
the class

setPriority Sets the priority for the task
start Starts executing the task
suspend Suspends a task

RTOS Adapter Guide

Rhapsody in C

create
Description

The create method creates anew Ri COSTask object.

Signature

RiCOSTask *RiCOSTask create (RiCOSTaskEndCallBack tfunc,
void *param, const char *name,
const long stackSize) ;

Parameters

tfunc

The callback function that ends the current operating system task

param

The parameters of the callback function

name

The name of the task

stackSize

The size of the stack
Returns
The newly created Ri COSTask

Example

RiCOSTask * RiCOSTask create (RiCOSTaskEndCallBack tfunc,
void * param, const char * name, const long stackSize)
{

RiCOSTask * me = malloc(sizeof (RiCOSTask)) ;
RiCOSTask_init (me, tfunc, param, name, stackSize);
return me;

}
destroy
Description
The destroy method destroys the Ri COSTask object.

Signature

void RiCOSTask_destroy (RiCOSTask *const me) ;

Rhapsody

87

The OSAL Classes

Parameters

me

The Ri COSTask object to destroy
Example

void RiCOSTask destroy (RiCOSTask * const me)

if (me == NULL) return;
RiCOSTask cleanup (me) ;
free (me) ;
cleanup
Description

The cleanup method cleans up the memory after aRi COSTask object is deleted.
Signature

void RiCOSTask cleanup (RiCOSTask *const me) ;

Parameters

me

The Ri COSTask abject to clean up after
Example

void RiCOSTask cleanup (RiCOSTask * const me)
if (me == NULL) return;

if (!me->isWrapperThread) {

RiCOSEventFlag cleanup (&me->m_SuspEventFlag) ;

/* Remove the thread. */

if (me->endOSTaskInCleanup)
RiCBoolean onMyTask = RiCOSTask exeOnMyTask (me) ;
if (! ((RiCOSTask endOfProcess) &&
RiCOSTask exeOnMyTask (me))) {
/* Do not kill the 0OS thread if this is the
end of process and the running thread
is 'this' - you need the 0S thread to do
some cleanup, and then you kill it
explicitly. */
RiCOSTaskEndCallBack theOSTaskEndClb = NULL;
void * argl = NULL;
/* Get a callback function to end the 0S
thread. */
(void) RiCOSTask getTaskEndClbk (me,
&theOSTaskEndClb, &argl, onMyTask) ;
if (theOSTaskEndClb != NULL) {
/* End the 0S thread */
(*theOSTaskEndClb) (argl) ;

88 RTOS Adapter Guide

Rhapsody in C

init

Description

Theinit method initializes the Ri COSTask object.
Signature

RiCBoolean RiCOSTask init (RiCOSTask *const me,

RiCOSTaskEndCallBack tfunc, void *param,
const char *name, const long stackSize);

Parameters

me

TheRi COSTask object toinitialize

tfunc

The callback function that ends the current operating system task

param

The parameters to the callback function

name

The name of the task

stackSize

The size of the stack
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSTask init (RiCOSTask * const me,
RiCOSTaskEndCallBack tfunc, void * param,
const char * name, const long stackSize)

size t i, len = 0;
char* myName = NULL;

if (me == NULL) {return 0;}

me->endOSTaskInCleanup = TRUE;
me->isWrapperThread = 0;

Rhapsody

89

The OSAL Classes

/* Copy the thread name. */

if (name != NULL) len = strlen (name) ;

/* check for legal name */

for (i = 0; i < len; i++) {

if ((isalnum((int)namel[i]) == 0) &&

(name [1] !'= ' _'))
len = 0;
break;

}

if (len > 0) {
myName = malloc(len + 1);
strcpy (myName, name) ;

RiCOSEventFlag init (&me->m SuspEventFlag) ;
RiCOSEventFlag reset (&me->m_SuspEventFlag) ;
/* Create SUSPENDED thread !!!!!! */
me->m_ExecFunc = tfunc;

me->m_ExecParam = param;

me->hThread = 0;

me->hThread = taskSpawn (myName,

/* name of new task (stored at pStackBase)
(int) PRIORITY NORMAL, /* priority of new task

/* task option word */

int (*) ())preExecFunc, /* thread function */

*/

OI
(int) stackSize, /*size (bytes) of stack needed */
(
(

int) (void *)me, /* argument to thread function */

0,0,0,0,0,0,0,0,0);
return 1;
endMyTask

Description

The endMyTask method terminates the current task.
Signature

void RiCOSTask endMyTask (void * t);
Parameters

t
The current task

Example

void RiCOSTask_endMyTask (void *hThread)

taskDeleteForce ((int) hThread) ;
/* Force because this is probably waiting on
something */

90

RTOS Adapter Guide

Rhapsody in C

See Also
endOtherTask

exeOnMyTask

getCurrentTaskHandle

endOtherTask

Description
The endOtherTask method terminates atask other than the current task.
Signature

RiCBoolean RiCOSTask endOtherTask (void * t);

Parameters

t
The task to end

Returns
The method returns Ri CTRUE if it successfully terminated the task.
Example

RiCBoolean RiCOSTask_endOtherTask (void *hThread)

taskDeleteForce ((int) hThread) ;

/* Force because this is probably waiting on
something */

return RiCTRUE;

See Also
endMyTask
exeOnMyTask

getCurrentTaskHandle

Rhapsody

91

The OSAL Classes

exeOnMyTask
Description

The exeOnMyTask method determines whether the method was invoked from the same
operating system task as the one on which the object is running.

Signature

RiCBoolean RiCOSTask_exeOnMyTask (RiCOSTask *const me) ;

Parameters

me

The Ri COSTask object to compare
Return
The method returns one of the following values:
¢ Ri CTRUE—The method was invoked from the same operating system task as the

one on which the object is running.
¢ Ri CFALSE—The tasks are not the same.

Example

RiCBoolean RiCOSTask exeOnMyTask (RiCOSTask * const me)

RiCOSHandle executedOsHandle;
RiCOSHandle myOsHandle;
RiCBoolean res;

if (me == NULL) return RiCFALSE;

/* A handle to the thread that executes the delete */
executedOsHandle = RiCOSTask getCurrentTaskHandle() ;
/* A handle to ‘this’ thread */
myOsHandle = RiCOSTask getOSHandle (me) ;
res = ((executedOsHandle == myOsHandle) °?

RiCTRUE : RiCFALSE) ;
return res;

}
See Also

endMyTask

endOtherTask

getCurrentTaskHandle

92 RTOS Adapter Guide

Rhapsody in C

getCurrentTaskHandle

Description

The getCurrentTaskHandle method gets the handle to the active task.

Signature

RiCOSHandle RiCOSTask getCurrentTaskHandle () ;

Returns
The handle to the active task
Example

RiCOSHandle RiCOSTask getCurrentTaskHandle ()

return (RiCOSHandle)taskIdSelf () ;

See Also

getOSHandle

getOSHandle
Description
The getOSHandle method returns a handle to the underlying operating system task.
Signature

RiCOSHandle RiCOSTask getOSHandle (RiCOSTask *const me) ;

Parameters

me

The Ri COsTask object whose handle you want to retrieve
Returns

The operating system handle
Example

RiCOSHandle RiCOSTask getOSHandle (RiCOSTask * const me)

if (me == NULL) {return 0;}
return (RiCOSHandle)me->hThread;

Rhapsody 93

The OSAL Classes

See Also

getCurrentTaskHandle

getTaskEndClbk

Description

The getTaskEndClbk method is a callback function that ends the current operating system
thread.

Signature

int RiCOSTask getTaskEndClbk (RiCOSTask * const me,
RiCOSTaskEndCallBack * clb p, void ** argl p,
RiCBoolean onExecuteTask) ;

Parameters

me

The Ri COSTask object.

clb p

A pointer to the callback function that ends the thread. This can be either endMyTask() or
endQt her Task() .

argl p
The argument for the callback function.

onExecut eTask

Set this to one of the following Boolean values:

Ri CTRUE-The object should kill its own task.
Ri CFALSE-aAnother object should kill the task.

Returns
The status. The possible values are as follows:

¢ 1—Success
¢ 0—Failure

Example

int RiCOSTask getTaskEndClbk (RiCOSTask * const me,
RiCOSTaskEndCallBack * clb p,
void ** argl p, RiCBoolean onExecuteTask)

if (me == NULL) return O;

94 RTOS Adapter Guide

Rhapsody in C

if (onExecuteTask) {
/* Ask for a callback to end my own thread. */

*clb p = (RiCOSTaskEndCallBack) &
RiCOSTask_endMyTask;
argl p = (void)me->hThread;
}
else {

/* Ask for a callback to end my thread by
someone else. */

*clb p = (RiCOSTaskEndCallBack) &
RiCOSTask_ endOtherTask;

/* My thread handle. */

argl p = (void)me->hThread;

return 1;

resume
Description

The resume method resumes a suspended task. This method is not used in generated code—it
is used only for advanced scheduling.

The suspend and r esune methods provide away of stopping and restarting a task. Tasks
usually block when waiting for aresource, such asamutex or an event flag, so both are rarely
used.

Signature

RiCOSResult RiCOSTask resume (RiCOSTask *const me) ;

Parameters

me

The Ri COsTask object to resume
Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSTask resume (RiCOSTask * const me)

if (me == NULL) {return 0;}
(void) taskResume (me->hThread) ;
return 1;
See Also
start

Rhapsody 95

The OSAL Classes

suspend

setEndOSTaskInCleanup

Description

The setEndOSTaskInCleanup method determines whether destruction of the Ri COSTask class
should kill the operating system task associated with the class. If the method returns Ri CTRUE,
the task will be ended at the Ri COSTask cleanup.

Signature

int RiCOSTask setEndOSTaskInCleanup (
RiCOSTask *const me, RiCBoolean val) ;

Parameters

me

The Ri COSTask object.

val

The possible values are as follows:

Ri CTRUE-The task is ended as part of the object’s destruction process.

Ri CFALSE-The task is not ended when the object is destroyed.

Returns
The status. The possible values are as follows:

¢ 1—Success
¢ O—Failure

Example

int RiCOSTask setEndOSTaskInCleanup (
RiCOSTask * const me, RiCBoolean val)

if (me == NULL) {return 0;}

me->endOSTaskInCleanup = val;
return 1;

}

96 RTOS Adapter Guide

Rhapsody in C

setPriority
Description
The setPriority method sets the priority for the task.
Signature

RiCOSResult RiCOSTask setPriority (RiCOSTask *const me,
int pr);

Parameters

me

The Ri COSTask object.

pr
The integer value of the priority. This parameter varies by operating system.

Returns
The Ri COSResul t object, asdefined in the Ri COs*. h files
Example

RiCOSResult RiCOSTask setPriority(
RiCOSTask * const me, int pr)

if (me == NULL) {return 0;}
taskPrioritySet (me->hThread, pr);
return 1;
}
See Also
start
start
Description

The start method starts executing the task. Initially, tasks are suspended until st art iscalled.
Signature

RiCOSResult RiCOSTask start (RiCOSTask *const me) ;

Parameters

me

Rhapsody 97

The OSAL Classes

The Ri COsTask object to start
Returns

The Ri COSResul t object, asdefined in the Ri COS*. h files
Example

RiCOSResult RiCOSTask start (RiCOSTask * const me)
if (me == NULL) {return 0;}

if (RiCOSEventFlag exists (&me->m_SuspEventFlag)) {
RiCOSEventFlag signal (&me->m_ SuspEventFlag) ;
RiCOSEventFlag cleanup (&me->m_SuspEventFlag) ;

}

else {
RiCOSTask resume (me) ;
}

return 1;

}
See Also

resume

suspend

suspend
Description

The suspend method suspends atask. This method is not used in generated code—it is used
only for advanced scheduling.

Signature

RiCOSResult RiCOSTask suspend (RiCOSTask *const me) ;

Parameters

me

TheRi COsTask object to suspend
Returns

The Ri COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSTask suspend(RiCOSTask * const me)

if (me == NULL) {return 0;}

98 RTOS Adapter Guide

Rhapsody in C

(void) taskSuspend (me->hThread) ;
return 1;

See Also
resume

start

Rhapsody 99

The OSAL Classes

RiCOSTimer

The Ri COSTi ner classisabuilding block for Ri CTi mer Manager , which provides basic timing
services for the execution framework. In the Rhapsody implementation, the timer runs on its own
task. Therefore, the target operating system must support multitasking.

Creation Summary

create Creates an Ri COSTi ner object
destroy Destroys an Ri COSTi mer object
cleanup Cleans up after an Ri COSTi mer object
init Initializes an Ri COSTi ner object
Create
Description

The create method creates an Ri COSTi mer object.

Signature

RiCOSTimer * RiCOSTimer create (timeUnit ptime,
void (*cbkfunc) (void *), void * params) ;

Parameters

pTime

The time between each tick of the timer. In most adapters, the time unit is milliseconds;
however, this depends on the specific adapter implementation.

cbkfunc
The tick-timer call-back function used to notify the timer client that atick occurred.

params

The parameters to the callback function.
Returns

The newly created Ri COSTi er
Example

RiCOSTimer * RiCOSTimer create(timeUnit ptime,
void (*cbkfunc) (void *), void * params)

RiCOSTimer * me = malloc(sizeof (RiCOSTimer)) ;
RiCOSTimer init (me, ptime, cbkfunc, params) ;

100 RTOS Adapter Guide

Rhapsody in C

return me;

}

destroy
Description
The destroy method destroys the Ri COSTi mer object.
Signature

void RiCOSTimer_destroy (RiCOSTimer *const me) ;

Parameters

me

The Ri COSTi ner object to destroy
Example

void RiCOSTimer_destroy (RiCOSTimer * const me)

if (me == NULL) return;

RiCOSTimer cleanup (me) ;
free (me) ;

cleanup
Description
The cleanup method cleans up the memory after an Ri COSTi mer object is deleted.
Signature

void RiCOSTimer_cleanup (RiCOSTimer * const me) ;

Parameters

me

TheRi COSTi mer object to clean up after
Example

void RiCOSTimer cleanup (RiCOSTimer * const me)

if (me == NULL) return;

Rhapsody 101

The OSAL Classes

if (me->hThread) {

RiCOSHandle executedOsHandle =
RiCOSTask getCurrentTaskHandle () ;

/* A handle to this 'thread' */

RiCOSHandle myOsHandle = me->hThread;

RiCBoolean onMyThread = ((executedOsHandle ==
myOsHandle) ? TRUE : FALSE) ;

if (onMyThread) {

} RiCOSTask endMyTask ((void*)myOsHandle) ;

else {
RiCOSTask endOtherTask ((void*)myOsHandle) ;

me->hThread = 0;

init
Description
Theinit method initializes the Ri COSTi ner object.
Signature
RiCBoolean RiCOSTimer init (RiCOSTimer *const me,
timeUnit ptime, void (*cbkfunc) (void ¥*),
void *params) ;
Parameters
me
The Ri COSTi ner object to initiaize.
pTime
The time between each tick of the timer. In most adapters, the time unit is milliseconds;
however, this depends on the specific adapter implementation.
cbkfunc
Thetick-timer call-back function used to notify the timer client that atick occurred.
params
The parametersto the callback function.
Returns
The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSTimer init (RiCOSTimer * const me,
timeUnit ptime, void (*cbkfunc) (void *), void *params)

102 RTOS Adapter Guide

Rhapsody in C

if (me

== NULL) return RiCFALSE;

me->cbkfunc = cbkfunc;
me->param = params;

if (((RiCTimerManager*)params)->realTimeModel) {

else {

/***%* VxWorks TickTimer (Real Time) *x***/

me->m _Time = ptime;

/* Create a thread that runs the bridge, passing
this as an argument. */

me->ticks = cvrtTmInMStoTicks (me->m Time) ;

me->hThread = taskSpawn("timer", PRIORITY HIGH, O,
SMALL_STACK, (int (*) ())bridge,
(int) (void *)me /*p1*/, 0,0,0,0,0,0,0,0,0);

return me->hThread != ERROR;

/***xx TdleTimer (Simulated Time) ***%x/

me->m Time = 0; /* Just create context-switch
until the system enters idle mode. */

me->hThread = taskSpawn("timer", PRIORITY LOW, O,
SMALL_ STACK, (int (*) ())bridge, (int) (void*)me,
0,0,0,0,0,0,0,0,0);

return RiCTRUE;

Rhapsody

103

The OSAL Classes

RiCHandleCloser Class

OSAL interface contains ricosTask_endMyTask method which should be used if athread should
be deleted by itself (for example, if active reactive class entered into terminate connector).

But in some RTOSes it is forbidden for thread perform such operation directly. The
RiCHandleCloser class solvesthis problem. It is an active reactive singleton class with a statechart
containing one state. This state receives only one event (closeEvent) and performs only one
action (docloseHandle () call) whenitisreceived.

OMHandleClose thread isinitialized in the OMOS::initEpilog():

void RiCOSOXFInitEpilog (void)

{

(void)RiCHandleCloser startBehavior (RiCHandleCloser Instance (RiCInt doCloseH
andle)) ;

}

If some thread is going to exit it calls (from framework) endmyTask () function which sends
CloseEvent message (event) t0the HandleCloser thread.

void RiCOSTask endMyTask (RiC_CONST TYPE void *const hThread)

{

if (hThread != NULL)

{

RiCHandleCloser genCloseEvent (hThread) ;

Exit (OUL);

}
This message contains the handle of the thread, which should be deleted.

The doc1osenandle is static function, which is called by HandleCloser thread when c1oseEvent
event is processed.

You can see HandleCloser usage in Integrity adapter (share/LangC/oxf/RiCOSIntegrity.c
file).

Note
A similar mechanism isimplemented in C++ framework.

104

RTOS Adapter Guide

Rhapsody in C++

Rhapsody in C++

The C++ classes for the abstract interface are as follows:

*

OMEventQueue Class

OMMessageQueue Class

OMOS Class

OMOSConnectionPort Class

OMOSEventFlag Class

OMOSFactory Class

OMOSMessageQueue Class

OMOSMutex Class

OMOSSemaphore Class

OMOSSocket Class

OMOSThread Class

OMOSTimer Class

OMTMMessageQueue Class

OMEventQueue Class

OMEventQueue inherits from oMTMMe ssageQueue<> With OMEvent as a parameter. In other
words, OMEventQueueis alist (vector/queue) of events.

Construction Summary

‘ OMEventQueue

‘ Creates an OMOSEvent Queue object

Method Summary

‘ getOsQueue

‘ Retrieves the event queue

Rhapsody

105

The OSAL Classes

OMEventQueue
Visibility
Public

Description

The oMEventQueue method constructs an OVEvent Queue object and initializes the
OMITMVessageQueue<OVEvent > superclass of the event queue, with the given size and
ability to grow dynamically.

Signature

OMEventQueue (const long messageQueueSize =
OMOSThread: :DefaultMessageQueueSize,
OMBoolean dynamicMessageQueue = TRUE)
OMTMMessageQueue<OMEvent > (messageQueueSize,
dynamicMessageQueue)

Parameters

messageQueueSize

The size of the message queue. If not overridden, the message queue sizeis initialized to the
value of the static constant Def aul t MessageQueueSi ze in OMOSThr ead.

dynamicMessageQueue

A Boolean value that specifies whether the message queue size is dynamic (TRUE) or fixed
(FALSE). By default, the message queue size is dynamic.

getOsQueue
Visibility
Public
Description
The getOsQueue method retrieves the event queue.
Signature

OMOSMessageQueue * getOsQueue ()

106 RTOS Adapter Guide

Rhapsody in C++

OMMessageQueue Class

OMM essageQueue inherits from OMIMves sageQueue<> with OvVBDat a as a parameter. In
other words, OMMessageQueue isalist (vector/queue) of serialized data. The
OM\VessageQueue<OVBDat a> parameterized classis declared only if instrumentation is
defined.

OvBDat a isthe base class for all messages passed between the aomand t omlibraries during
instrumentation.

OMOS Class

The OMOS class defines the operating system-specific actions to take at the end of OXF: @i ni t
after the environment is set (such as the main thread, timer, and so on) and before the return from
the function.

Method Summary

endApplication Ends a running application
endProlog Ends the prolog
initEpilog Executes operating system-specific

actions to be taken at the end of

OXF: : i ni t after the environment has
been set (that is, the main thread and the
timer have been started) and before it
returns

endApplication
Visibility
Public
Description

The endApplication method ends arunning application. This operation should be implemented
in the concrete adapter for the target operating system.

Signature
static void endApplication(int errorCode) ;
Parameters

errorCode

The error code to be passed to the operating system, if required

Rhapsody 107

The OSAL Classes

endProlog
Visibility
Public
Description
The endProlog method ends the prolog.
Signature
static void endProlog () ;
initEpilog
Visibility
Public
Description

TheinitEpilog method executes operating system-specific actions to be taken at the end of
OXF: : i ni t after the environment has been set (that is, the main thread and the timer have
been started) and before it returns. This operation should be implemented in the concrete
adapter for the target operating system.

Signature

static void initEpilog() ;

108 RTOS Adapter Guide

Rhapsody in C++

OMOSConnectionPort Class

The connection port is used for interprocess communication between instrumented applications

and Rhapsody. The factory’scr eat eOMOSConnect i onPort () method creates a connection
port.

Construction Summary

~OMOSConnectionPort Destroys the OMOSConnect i onPor t
object.

Method Summary

Connect Connects to the specified port
Send Sends data from the connection port
SetDispatcher Sets the dispatcher function

~OMOSConnectionPort
Visibility
Public

Description

The ~OMOSConnectionPort method destroys the OMOSConnect i onPort object. You must

declare the destructor explicitly, rather than letting the compiler add it, because it must be
made virtual.

Signature
virtual ~OMOSConnectionPort ()
Connect
Visibility
Public

Description

The Connect method connects a process to the instrumentation server at a given socket address
and port.

Signature

virtual int Connect (const char* SocketAddress = NULL,
unsigned int nSocketPort = 0) = 0;

Rhapsody 109

The OSAL Classes

Parameters

SocketAddress

The socket address. If you do not specify a socket address, its default valueisa NULL string.

nSocketPort

The port number of the socket. If you do not specify a port number, the value O is used.
Returns
The connection status. The possible values are as follows:
¢ 1—Success

¢ O0—Failure

Send
Visibility
Public
Description

The send method sends data out from the connection port. This operation should be thread
protected.

Signature

virtual int Send (OMSData *m) = O;

Parameters

m

The data to be sent from the port. The datais of type OvsDat a, which is defined in
onCom onsdat a. h. It encapsulates the methods by which serialized datais passed between
an instrumented application and the animation/tracing server.

Return

An integer that represents the number of bytes that were sent through the socket

110 RTOS Adapter Guide

Rhapsody in C++

SetDispatcher
Visibility
Public

Description

The setDispatcher method sets the dispatcher function, which is called whenever thereis an
input on the connection port (input from the socket).

This method was created for two reasons;

+ Toprovideflexibility by allowing for different dispatch routines. For example, the
Rhapsody framework uses Set Di spat cher (port ToMessageQueue) in
aondi sp. cpp.

+ Toalow the dispatch routine to be located in adifferent place and to be set only
after creation of the connection port.

Signature
virtual void SetDispatcher (void dispfunc (OMSData*)) = 0;
Parameters

dispfunc

The dispatcher function

Rhapsody 111

The OSAL Classes

OMOSEventFlag Class

An event flag is a synchronization object used for signaling between threads. Threads can wait on
an event flag by calling wai t . When some other thread signals the flag, the waiting threads
proceed with their execution. The event flag isinitially in the unsignaled (reset) state.

With the Rhapsody implementation of event flags, at least one of the waiting threads is rel eased
when an event flag isreset. Thisisin contrast to the regular semanticsin some operating systems,
in which all waiting threads are released when an event flag is reset.

The operating system factory’s cr eat eOMOSEvent FI ag method creates a new event flag.

Construction Summary

~OMOSEventFlag Destroys the OMOSEvent FI ag object

Method Summary

getOsHandle Retrieves the thread’s operating system
ID

reset Forces the event flag into a known state

signal Releases a blocked thread

wait Blocks the thread making the call until
some other thread releases it by calling
si gnal on the same event flag instance

~OMOSEventFlag
Visibility
Public
Description

The ~OMOSEventFlag method destroys the OMOSEvent Fl ag object. You must declare the
destructor explicitly, rather than letting the compiler add it, because it must be made virtual .

Signature

virtual ~OMOSEventFlag()

112 RTOS Adapter Guide

Rhapsody in C++

getOsHandle
Visibility
Public
Description

The getOsHandle method retrieves the thread’s operating system ID. This value varies by
operating system.

Signature

virtual void* getOsHandle () const = 0;

Return

The operating system ID

reset
Visibility
Public
Description

The reset method forces the event flag into a known state. This method is often called
immediately prior toawai t .

Signature
virtual void reset () = 0;
signal
Visibility
Public
Description

The signal method releases a blocked thread. If more than one task iswaiting for an event flag,
acall to this method releases at |east one of them.

Signature

virtual void signal() = 0;

Rhapsody 113

The OSAL Classes

wait

Visibility
Public
Description

The wait method blocks the thread making the call until some other thread releasesit by
caling si gnal on the same event flag instance.

Signature
virtual void wait (int tminms = -1) = 0;
Parameters

tminms

Thelength of time, in milliseconds, that the thread should remain blocked. The default valueis
-1, which means to wait indefinitely.

Notes

If an operating system does not support the ability to wait on an event flag with atimeout (for
example, Solaris), the Rhapsody framework implements wait with timeouts by slicing thetime
to 50 msintervals, then checks every 50 msto see if the event flag was signaled.

114

RTOS Adapter Guide

Rhapsody in C++

OMOSFactory Class

Each concrete GSFact or y inherits publicly from the abstract class OMOSFact ory.

OMOSFact or y hides the RTOS mechanisms for tasking and synchronization. In addition, the
OSFact or y provides other operating system-dependent services that the Rhapsody framework
reguires, such as obtaining a handle to the current thread.

The following sequence diagram shows the OSFact or y creating various operating system
entities, such as OMOSMessageQueue and OMOSConnect i onPor't .

1

createOMOSMes

ssageQueue()
nectionPort() |

ntFlag) |

sad(void tfunc(voi

Timer(long time, |

Timer(void chkfur

17), void *param

“osHandle)

c(void ™), void “pare

Rhapsody

115

The OSAL Classes

Construction Summary

instance

Creates a single instance of the
OMOSFact ory

Method Summary

createOMOSConnectionPort

Creates a connection port

createOMOSEventFlag

Creates an event flag

createOMOSIdleTimer

Creates an idle timer

createOMOSMessageQueue

Creates a message queue

createOMOSMutex Creates a mutex
createOMOSSemaphore Creates a semaphore
createOMOSThread Creates a thread

createOMOSTickTimer

Creates a tick timer

createOMOSWrapperThread

Creates a wrapper thread

delayCurrentThread

Delays the current thread for the specified
length of time

getCurrentThreadHandle

Gets the handle to the current thread

waitOnThread Waits on the thread for the specified
length of time
instance
Visibility
Public
Description

The instance method creates a single instance of OMOSFact or y. This function must be
implemented for a given RTOS to return a pointer to the operating system adapter factory
designed specifically for that RTOS.

Signature

static OMOSFactory* instance();

Notes

To create an operating system entity, you call one of the methods through the pointer returned
by i nst ance. For example, to create an event flag, use the following call:

i nstance() - >cr eat eOMOSEvent Fl ag()

116 RTOS Adapter Guide

Rhapsody in C++

createOMOSConnectionPort
Visibility
Public
Description

The createOMOSConnectionPort method creates a connection port.

Signature

virtual OMOSConnectionPort* createOMOSConnectionPort ()
= 0;

Return

The new connection port

createOMOSEventFlag
Visibility
Public
Description
The createOMOSEventFlag method creates an event flag.
Signature

virtual OMOSEventFlag* createOMOSEventFlag() = 0;

Return

The new event flag

createOMOSIdleTimer
Visibility
Public
Description
The createOMOSIdleTimer method creates an idle timer.
Signature

virtual OMOSTimer* createOMOSIdleTimer (
void cbkfunc (void *), void *param) = 0;

Rhapsody 117

The OSAL Classes

Parameters

cbkfunc
The callback function

param
The parameters for the callback function

Return

The new idle timer

createOMOSMessageQueue
Visibility
Public
Description
The createOMOSMessageQueue method creates a message queue.

Signature

virtual OMOSMessageQueue* creat eOMOSMessageQueue(
OvBool ean shoul dG ow = TRUE,
const | ong nessageQueueSi ze =
OMOSThr ead: : Def aul t MessageQueueSi ze) = 0;
Parameters

shouldGrow
A Boolean value that determines whether the size of the message queue can be increased to
yield more room

messageQueueSize

The default size of the message queue
Return

The new message queue
createOMOSMutex
Visibility

Public

118 RTOS Adapter Guide

Rhapsody in C++

Description

The createOMOSIdleTimer method creates a mutex.

Signature
virtual OMOSMutex* createOMOSMutex() = 0;

Return

The new mutex

createOMOSSemaphore
Visibility
Public
Description

This method creates a semaphore.

Signature
virtual OMOSSemaphore* createOMOSSemaphore (
unsigned long semFlags = 0, unsigned long
initialCount = 1, unsigned long maxCount = 1,
const char * const name = NULL) = 0;
Parameters
semFlags

The semaphore flags

initialCount

Theinitial count of tokens available on the semaphore

maxCount

The maximum number of tokens

name

The name of the semaphore
Return

The new semaphore

Rhapsody 119

The OSAL Classes

createOMOSThread
Visibility
Public
Description
This method creates a thread.
Signature

virtual OMOSThread* createOMOSThread (void tfunc(void *),
void *param, const char* const threadName = NULL,
const long stackSize = OMOSThread::DefaultStackSize)
= 0;

Parameters

tfunc

The thread function

param

The parametersfor t f unc

threadName

The name of the thread

stackSize

The stack size
Return

The new thread

createOMOSTickTimer
Visibility
Public
Description
This method creates a new tick timer.
Signature

virtual OMOSTimer* createOMOSTickTimer (timeUnit time,
void cbkfunc(void *), void *param) = 0;

120 RTOS Adapter Guide

Rhapsody in C++

Parameters

time

The time between ticks

cbkfunc

The callback function

param

The parametersfor cbkf unc
Return

The new tick timer

createOMOSWrapperThread
Visibility
Public

Description

The createOMOSWrapperThread method creates awrapper thread.

Signature
virtual OMOSThread* createOMOSWrapperThread (
void* osHandle) = 0;
Parameters
osHandle

The handle to the operating system
Return

The new wrapper thread

Rhapsody

121

The OSAL Classes

delayCurrentThread
Visibility
Public
Description

The delayCurrentThread method delays the current thread for the specified length of time.

The OXFTDel ay(ti m n\Ms) macro provides a convenient shortcut for calling
delayCurrentThread.

Signature
virtual void delayCurrentThread (timeUnit ms) = 0;

Parameters

ms

The length of time, in milliseconds, to delay processing on the current thread

getCurrentThreadHandle
Visibility
Public
Description

The getCurrentThreadHandle method returns the native operating system handle to the thread.
Thishandleis used to identify athread or to apply operating system-specific operationsto a
thread.

Signature

virtual void* getCurrentThreadHandle() = 0;

Return

The OSThr eadHandl e

122 RTOS Adapter Guide

Rhapsody in C++

waitOnThread

Visibility
Public

Description

The waitOnThread method waits for athread to terminate.

Signature
virtual OMBoolean waitOnThread (void* osHandle,
timeUnit ms) = 0;
Parameters
osHandle

The operating system handle

ms

The length of time to wait, in milliseconds
Return
The method returns one of the following Boolean values:

¢ TRUE—The method was successful.
¢ FALSE—The method failed.

Rhapsody

123

The OSAL Classes

OMOSMessageQueue Class

An important building block for the execution framework class OMThr ead, the message queue is
initially empty. The factory’scr eat eOMOSMessageQueue method creates an operating system

message queue.

The default message queue sizeis set by the static constant variable

OMOSThr ead: : Def aul t MessageQueueSi ze. You can override the default value by passing a
different value as the second argument to the factory’s cr eat eOMOSMessageQueue method
when you create the message queue.

The maximum length of the message queue is operating system- and implementation-dependent. It
isusually set in the adapter for a particular operating system.

Construction Summary

~OMOSMessageQueue Destroys the OMOSMessageQueue
object

Method Summary

get Retrieves the message at the beginning of
the queue

getMessagelList Retrieves the list of messages

getOsHandle Returns the native operating system
handle to the thread

ISEmpty Determines whether the queue is empty

isFull Determines whether the queue is full

pend Blocks the thread making the call until
there is a message in the queue

put Adds a message to the queue

setOwnerProcess Sets the thread that owns the message
queue

124 RTOS Adapter Guide

Rhapsody in C++

~OMOSMessageQueue
Visibility
Public

Description

The ~OMOSMessageQueue method destroys the OMOSMessageQueue object. You must
declare the destructor explicitly, rather than letting the compiler add it, because it must be
made virtual .
Signature
virtual ~OMOSMessageQueue ()
get
Visibility
Public
Description
The get method retrieves the message at the beginning of the queue.

Signature

virtual void *get() = 0;

Return

The first message in the queue

getMessageL.ist
Visibility
Public

Description

The getMessageList method retrieves the list of messages. It is used for two reasons:
¢ Tocancel events.

When areactive classis destroyed, it notifies its thread to cancel al eventsin the
gueue that are targeted for that reactive class. The thread iterates over the queue,

using get Messageli st to retrieve the data, and marks all events whosetarget is
the reactive class as cancel ed.

Rhapsody 125

The OSAL Classes

¢ To show the datain the event queue during animation.

Signature
virtual void getMessageList (OMList<void*>& c) = 0

Parameters

(¢}

Thelist of messages in the event (message) queue.

Thelist is of type OMLi st <voi d* >, a parameterized type defined in oxf\ onl i st. h that
encapsulates all the operationstypically performed on lists, such asadding itemsto thelist and
removing items from thelist.

getOsHandle
Visibility
Public
Description

The getOsHandle method returns the native operating system handle to the thread. This handle
is used to identify athread or to apply operating system-specific operations to a thread.

Signature

virtual void* getOsHandle () const = 0;

Return

The handle

iISEmpty
Visibility
Public
Description
TheisEmpty method determines whether the message queue is empty.
Signature

virtual int isEmpty() = 0;

126 RTOS Adapter Guide

Rhapsody in C++

Return
The method returns one of the following values:
¢ 0—Thequeueis not empty.
¢ 1—Thequeueisempty.
isFull
Visibility
Public
Description
TheisFull method determines whether the queue isfull.
Signature

virtual OMBoolean isFull() = 0;

Return
The method returns one of the following values:
¢ FALSE—Thequeueisnot full.

¢ TRUE—The queueisfull.

pend
Visibility
Public
Description

The pend method blocks the thread making the call until there is a message in the queue. A
reader generally waits until the queue contains a message that it can read.

Signature

virtual void pend() = 0;

Rhapsody 127

The OSAL Classes

put
Visibility
Public
Description
The put method adds a message to the end of the message queue.
Signature

virtual OMBoolean put (void* m, OMBoolean fromISR = FALSE)
= 0;

Parameters

m

The message to be added to the queue.

fromISR

A Boolean value that specifies whether the message being added was generated from an
interrupt service routine (ISR). The default value is FALSE.

Return
The method returns one of the following Boolean values:

¢ TRUE—The method successfully added the message to the queue.
¢ FALSE—The method was unsuccessful.

128 RTOS Adapter Guide

Rhapsody in C++

setOwnerProcess
Visibility
Public
Description

The setOwnerProcess method sets the thread that owns the message queue. This operation was
added to support the OSE environment.

Signature

virtual void setOwnerProcess (void* handle)

Parameters

handle

The handle to the owner process

Rhapsody 129

The OSAL Classes

OMOSMutex Class

The factory’s cr eat eOMOSMut ex method creates a mutex, which stands for mutual exclusion. A
mutex is the basic synchronization mechanism used to protect critical sections within athread.
Mutexes are used to implement protected objects.

The mutex allows one thread mutually exclusive access to a resource. Mutexes are useful when
only one thread at a time can be allowed to modify data or some other controlled resource. For
example, adding nodesto alinked list is a process that should only be allowed by one thread at a
time. By using a mutex to control the linked list, only one thread at a time can gain accessto the
list.

The Rhapsody implementation of amutex is as arecursive lock mutex. This means that the same
thread can lock the mutex several times without blocking itself. In other words, the mutex is
actually a counted semaphore. When implementing OMOSMut ex for the target environment, you
should implement it as arecursive lock mutex.

Mutexes can be either free or locked (they areinitialy free). When atask executesal ock
operation and finds a mutex locked, it must wait. The task is placed on the waiting queue
associated with the mutex, along with other blocked tasks, and the CPU scheduler selects another
task to execute. If thel ock operation finds the mutex free, the task places alock on the mutex and
entersitscritical section. When any task releases the mutex by calling f r ee, the first blocked task
in the waiting queue is moved to the ready queue, where it can be selected to run according to the
CPU scheduling algorithm.

The same thread can nest | ock and f r ee calls of the same mutex without indefinitely blocking
itself. Nested locking by the same thread does not block the locking thread. However, the nested
locks are counted so the proper f r ee actually releases the mutex.

Construction Summary

~OMOSMutex Destroys the OMOSMuUt ex object

Method Summary

free Releases the lock on the mutex

getOsHandle Returns the native operating system
handle to the thread

lock Locks the mutex

unl ock Releases the lock on the mutex

130 RTOS Adapter Guide

Rhapsody in C++

~OMOSMutex
Visibility
Public
Description

The ~oMOsMutex method destroys the OMOSMut ex object. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSMutex ()

free
Visibility
Public
Description

The free method releases the lock, possibly causing the underlying operating system to
reschedule threads.

This method provides backward-compatibility support for non-OSE applications.
Signature
void free() = 0;
getOsHandle
Visibility
Public
Description

The getOsHandle method returns the native operating system handle to the thread. This handle
isused to identify athread or to apply operating system-specific operations to a thread.

Signature

virtual void* getOsHandle() const = 0;

Return

The handle

Rhapsody 131

The OSAL Classes

lock
Visibility
Public
Description
The lock method determines whether the mutex is free and reacts accordingly:

+ |f the mutex if free, this operation locks it and allows the calling task to enter its
critical section.

+ |f the mutex is aready locked, this operation places the calling task on awaiting
gueue with other blocked tasks.

Signature

virtual void lock() = 0;

unlock
Visibility
Public
Description

The unlock method releases the lock, possibly causing the underlying operating system to
reschedul e threads.

Signature

virtual void unlock () = 0;

132 RTOS Adapter Guide

Rhapsody in C++

OMOSSemaphore Class

A semaphore is a synchronization device that allows alimited number of threadsin one or more
processes to access a resource. The semaphore maintains a count of the number of threads
currently accessing the resource.

Semaphores are useful in controlling access to a shared resource that can support only alimited
number of users. The current count of the semaphore is the number of additional users allowed.
When the count reaches zero, all attempts to use the resource controlled by the semaphore are
inserted into a system gqueue and wait until they either time out or the count again rises above zero.
The maximum number of users who can access the controlled resource at one time is specified at
construction time.

The Rhapsody framework itself does not use semaphores. However, the OMOSSenmaphor e
primitive is provided as a service for environments that need it (such as Windows NT and
pSOSystem).

Construction Summary

~OMOSSemaphore Destroys the OMOSSeraphor e
obj ect

Method Summary

getOsHandle Returns the native operating system
handle to the thread
signal Releases a semaphore token
wait Obtains a semaphore token
~OMOSSemaphore
Visibility
Public
Description

The ~oMOSSemaphore method destroys the OMOSSenaphor e object. You must declare the
destructor explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSSemaphore ()

Rhapsody 133

The OSAL Classes

getOsHandle
Visibility
Public
Description

The getOsHandle method returns the native operating system handle to the thread. This handle
is used to identify athread or to apply operating system-specific operations to a thread.

Signature

virtual void* getOsHandle () const = 0;

Return

The handle

signal
Visibility
Public
Description
The signal method releases a semaphore token.
Signature
virtual void signal() = 0;
wait
Visibility
Public
Description
The wait method obtains a semaphore token.
Signature

virtual OMBoolean wait (long timeout = -1) = 0;

Parameters

timeout

134 RTOS Adapter Guide

Rhapsody in C++

The number of ticks to lock on a semaphore before timing out. The possible valuesare < 0
(wait indefinitely); O (do not wait), and > 0 (the number of ticks to wait). For Solaris systems,
avalue of > 0 meansto wait indefinitely.

Rhapsody 135

The OSAL Classes

OMOSSocket Class

The OMOSSocket class represents the socket through which datais passed between Rhapsody
and an instrumented application.

OMOSSocket isgenerally used for animation, but it can also be used for other connections, as
long as you provide a host name and port number. OMOSSocket represents the client side of
the connection, and assumes that somewhere over the network thereis a server listening to the
connection. You can modify the definition of the OMOSSocket classto remove the

_OM NSTRUMENT macro definition from the relevant places to provide a socket
implementation for non-instrumented configurations. In addition, you might need to modify
the definition of the SOCK_LI B macro inside the MakeFi | eCont ent property to be similar to
that for tracing and animation.

If an animation session appears to hang, it might be because the high volume of messages
passed between Rhapsody and the application causes the socket’s internal buffer to fill up,
which might cause amajor delay in communication between Rhapsody and the application.
The solution to this problem isto increase the size of the socket internal buffer, which is 8K by
default. For example, in the Windows NT implementation, you can add the following code to
the Cr eat e() function for NTSocket :

int NTSocket::Create (
const char* SocketAddress /*= NULL*/,
unsigned int nSocketPort /*= 0%/)

if ((theSock = socket (AF_INET, SOCK STREAM, proto))
== INVALID SOCKET)

NOTIFY TO ERROR("Could not create socket\n");
theSock = 0;
} return 0;
int internalBufferSizes = 64 * 1024; // 64k
setsockopt (theSock, SOL_SOCKET, SO RCVBUF,
(char*) &internalBufferSizes, sizeof (int)) ;
setsockopt (theSock, SOL_SOCKET, SO _SNDBUF,
(char*) &internalBufferSizes, sizeof (int)) ;

Note: This solution has been checked for Windows NT systems only.

136

RTOS Adapter Guide

Rhapsody in C++

Construction Summary

~OMOSSocket

Destroys the OMOSSocket object

Method Summary

Closes the socket

Creates a new socket

Receive

Receives data through the socket

Send

Sends data through the socket

~OMOSSocket
Visibility
Public

Description

The ~OMOSSocket method destroys the OMOSSocket object. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSSocket ()

Close
Visibility
Public

Description

The Close method closes the socket.

Signature

virtual void Close ()

Rhapsody

137

The OSAL Classes

Create
Visibility
Public
Description
The create method creates a new socket.

Signature

virtual int Create (const char* SocketAddress = NULL,
unsigned int nSocketPort = 0) = 0;

Parameters

SocketAddress

The socket address. This can be set to a host name that is a character string. The default value
iSNULL.

nSocketPort

The socket port number. The default valueis 0.
Return
The method returns one of the following values:

¢ 0—The operation failed.
¢ 1—The operation was successful.

Receive
Visibility
Public
Description

The Receive method receives data through the socket.

Signature
virtual int Receive (char* 1lpBuf, int nBuflLen) = 0;
Parameters

lpBuf
The string buffer in which data will be stored

138 RTOS Adapter Guide

Rhapsody in C++

nBufLen

The length of the buffer
Return
The method returns one of the following values:

¢ 0—Therewasan error.
¢ n—The number of bytes read.

Send
Visibility
Public
Description
The send method sends data through the socket.
Signature
virtual int Send (const char *1pBuf, int nBufLen) = 0;
Parameters

1pBuf
A constant string buffer that contains the data to be sent

nBufLen

The length of the buffer
Return
The method returns one of the following values:

¢ (0—Therewasan error.
¢ n—The number of bytes written.

Rhapsody 139

The OSAL Classes

OMOSThread Class

The OMThr ead class in the execution framework aggregates OMOSThr ead to provide the basic
threading features. The operating system factory’s cr eat eOMOSThr ead method creates araw
thread. No constructor is declared for OMOSThr ead because any C++ compiler knows how to add
aconstructor if it not defined explicitly.

OMOSThr ead has the following static constant variables, which provide default values for user-
controllable parameters: stack size, message queue size, and thread priority. Each static variable
can be initialized with constants whose values can vary depending on the operating system being
targeted, as shown in the following table.

Static Constant Variables Initialization Constants

Def aul t St ackSi ze SMALL_STACK or DEFAULT_STACK
Def aul t MessageQueueSi ze | MQ DEFAULT_SI ZE

Def aul t ThreadPriority PRI ORI TY_HI CGH, PRI ORI TY_NORMAL, or
PRI ORI TY_LOW

Construction Summary

~OMOSThread Destroys the OMOSThr ead object

Method Summary

exeOnMyThread Determines whether the method was invoked
from the same operating system thread as the
one on which the object is running

getOsHandle Retrieves the thread’s operating system ID

getThreadEndClbk Is a callback function that ends the current
operating system thread

resume Resumes a suspended thread

setEndOSThreadInDtor Determines whether destruction of the

OMOSThr ead class should kill the operating
system thread associated with the class

setPriority Sets the thread’s operating system priority
start Starts thread processing
suspend Suspends the thread

140 RTOS Adapter Guide

Rhapsody in C++

~OMOSThread
Visibility
Public
Description

The ~oMOSThread method destroys the OMOSThr ead object. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSThread ()

exeOnMyThread
Visibility
Public
Description

The exeOnMyThread method determines whether the method was invoked from the same
operating system thread as the one on which the object is running.

Signature
virtual OMBoolean exeOnMyThread() ;
Return

The method returns one of the following Boolean values:

¢ TRUE—The method was invoked from the same operating system thread as the
one on which the object is running.

¢ FALSE—Thethreads are not the same.

getOsHandle
Visibility
Public
Description

The getOsHandle method retrieves the thread’s operating system ID. This value varies by
operating system.

Rhapsody 141

The OSAL Classes

Signature

virtual void* getOsHandle () const = 0;

virtual void* getOsHandle (void*& osHandle) const = 0;
Parameters

oshandle

The operating system handle
Return

The operating system ID

getThreadEndClbk
Visibility
Public
Description

The getThreadEndClbk method is a callback function that ends the current operating system
thread.

Signature

virtual void getThreadEndClbk (
OMOSThreadEndCallBack * clb_p, void ** argl_p,
OMBoolean onExecuteThread) = 0;

Parameters

clb p

A pointer to the callback function that ends the thread. This can be either endMyThr ead() or
endQ her Thr ead() . The function pointer is of type OMOSThr eadEndCal | Back, whichis
defined in OMOSThr ead as follows:

typedef void (*OMOSThr eadEndCal | Back) (void *);

argl p
The argument for the callback function.

onExecuteThread

Set thisto one of the following Boolean values:

TRUE-The object should kill its own thread.
FALSE-Another object should kill the thread.

142 RTOS Adapter Guide

Rhapsody in C++

Notes

On some operating systems, there are different calls to kill the current thread versus
killing other threads. For example, on Windows NT, you kill the current thread by
generating anew OVNTC oseHand! eEvent ; to kill another thread, you call

Ter m nat eThr ead.

The concrete operating system adapter makes sure that other threads are killed first
by providing two static thread functions:

¢ static void endMThread(void *);
¢ Implement this method to handle the case in which the object killsits own thread.

¢ static void endQ herThread(void *);

+ |Implement this method to handle the case in which another object kills the thread.
The getThreadEndClbk operation returns the address of either of the static functions
endMyThr ead or endQ her Thr ead. The implementation of these two functions

could be different (as on Windows NT), or the same, as on pSOSystem, where both
functionscallt _restart.

resume
Visibility
Public
Description

The resume method resumes a suspended thread. This method is not used in generated code—
itisused only for advanced scheduling.

Thesuspend and r esune methods provide away of stopping and restarting a thread.
Threads usually block when waiting for aresource, such asamutex or an event flag, so both
arerarely used.

Signature

virtual void resume() = 0;

Rhapsody 143

The OSAL Classes

setEndOSThreadInDtor
Visibility
Public

Description

The setEndOSThreadInDtor method determines whether destruction of the OMOSThr ead class
should kill the operating system thread associated with the class.

Signature

virtual void setEndOSThreadInDtor (OMBoolean val) = 0;

Parameters

val

Thisvalue is determined by the value of the Boolean data member endOSThr ead! nDt or,
which must be defined in the <env>Thr ead class that inherits from OMOSThr ead. The
possible values are as follows:

TRUE-The thread is ended as part of the object’s destruction process.

FALSE-The thread is not ended when the object is destroyed.

setPriority
Visibility
Public
Description
The setPriority method sets the thread’s operating system priority.
Signature
virtual void setPriority (int pr) = 0;
Parameters

pr
The integer value of the priority. This parameter varies by operating system.

144 RTOS Adapter Guide

Rhapsody in C++

start
Visibility
Public
Description

The start method starts thread processing. Initialy, threads are suspended until st art is
called.

Signature
virtual void start() = 0;
suspend
Visibility
Public
Description

The suspend method suspends the thread. This method is not used in generated code—it is
used only for advanced scheduling.

Signature

virtual void suspend() = 0;

Rhapsody 145

The OSAL Classes

OMOSTimer Class

The abstract class OMOSTi mer isabuilding block for OMTi mer Manager , which provides basic
timing services for the execution framework. In the Rhapsody implementation, the timer runs on
its own thread. Therefore, the target operating system must support multithreading.

Construction Summary

~OMOSTimer Destroys the OMOSTi mer object

Method Summary

getOsHandle Retrieves the thread’s operating system
ID
~OMOSTimer
Visibility
Public
Description

The ~oMOSTimer method destroys the operating system entity that the instance wraps and
stops the timer. You must declare the destructor explicitly, rather than letting the compiler add
it, because it must be made virtual.

Signature

virtual ~OMOSTimer ()

getOsHandle
Visibility
Public
Description

The getOsHandle method retrieves the thread’s operating system ID. This value varies by
operating system.

Signature

virtual void* getOsHandle() const = 0;

Return

The operating system ID

146 RTOS Adapter Guide

Rhapsody in C++

OMTMMessageQueue Class

The OMTMVessageQueue class implements a message queue. It is the base class for
OVEvent Queue and OMVessageQueue. The base class OMTMvessageQueue has an

OMOSMessageQueue, caled t heQueue, as a protected data member.

Construction Summary

OMTMMessageQueue Creates an OMTMVessageQueue
object.

~OMTMMessageQueue Destroys the OMTMVessageQueue
object

Method Summary

get

Retrieves the message at the beginning of
the queue

getMessagelist

Retrieves the list of messages

getOsHandle

Returns the native operating system
handle to the thread

ISEmpty Determines whether the queue is empty

pend Blocks the thread making the call until
there is a message in the queue

put Adds a message to the queue

Rhapsody

147

The OSAL Classes

OMTMMessageQueue
Visibility
Public

Description

The oMTMMessageQueue method is the constructor for the OMTMvessageQueue class. It
alocatest heQueue, the OMOSMessageQueue member of OMTMvessageQueue, with agiven
size and the ability to grow dynamically. In addition, it initializes the following:

¢+ nmessageQueueSi ze—If not overridden, the message queue sizeisinitialized to
the value of the static constant Def aul t MessageQueueSi ze in OMOSThr ead.

¢ dynani cMessageQueue—If the default value of TRUE is not overridden, the
message queue size is dynamic rather than fixed.

Signature

OMTMMessageQueue (const long messageQueueSize =
OMOSThread: :DefaultMessageQueueSize,
OMBoolean dynamicMessageQueue = TRUE)

Parameters

messageQueueSize

Theinitial size of the queue

dynamicMessageQueue

A Boolean value that specifies whether the queue is dynamic or fixed

~OMTMMessageQueue
Visibility
Public

Description

The ~-OMTMMessageQueue method del etes memory allocated for the message queue. You
must declare the destructor explicitly, rather than |etting the compiler add it, because it must be
made virtual.

Signature

virtual ~OMTMMessageQueue ()

148 RTOS Adapter Guide

Rhapsody in C++

get
Visibility
Public
Description

The get method calls the message queue’'sget operation to retrieve the first message in the
queue.

Signature

virtual Msg *get ()

Return

Thefirst message in the queue

getMessageL.ist
Visibility
Public
Description

The getMessagelList method calls the message queue’'s get Messageli st operation to
retrieve the list of messages.

Signature
virtual void getMessageList (OMList<Msg*>& 1)
Parameters

1
Thelist of messagesin the event (message) queue.

Thelistis of type OMLi st <voi d* >, a parameterized type defined in oxf\ onl i st. h that
encapsulates all the operationstypically performed on lists, such as adding itemsto thelist and
removing items from the list.

Rhapsody 149

The OSAL Classes

getOsHandle
Visibility
Public
Description

The getOsHandle method calls the message queue’'s get GsHandl e operation to retrieve the
native operating system handle to the thread. This handle is used to identify athread or to
apply operating system-specific operations to a thread.

Signature

virtual void* getOsHandle() const

Return

The handle

iISEmpty
Visibility
Public
Description

TheisEmpty method calls the message queue’'si sEnpt y operation to determine whether the
gueueis empty.

Signature

virtual int isEmpty ()

Return
The method returns one of the following values:

¢ 0—Thequeueis not empty.
¢ 1—Thequeueisempty.

150 RTOS Adapter Guide

Rhapsody in C++

pend
Visibility
Public

Description

The pend method calls the message queue’'s pend operation to block the caller until thereisa
message in the queue.

Signature

virtual void pend()

pUt
Visibility
Public

Description

The put method calls the message queue’s put operation to add a message to the end of the
queue.

Signature
virtual OMBoolean out (Msg *m, OMBoolean fromISR = FALSE)
Parameters

m

The message to be added to the queue.

fromISR

A Boolean value that specifies whether the message being added was generated from an
interrupt service routine (1SR). The default value is FALSE.

Return
The method returns one of the following Boolean values:

¢ TRUE—The method successfully added the message to the queue.
¢ FALSE—The method was unsuccessful.

Rhapsody 151

The OSAL Classes

152 RTOS Adapter Guide

Adapter-Specific Info

When you want to modify your Rhapsody-built application to operate in a different target
environment, you must rebuild the Rhapsody framework for that target environment. Because
language objects are compiler-specific, you must rebuild these libraries—even if you move from
one Windows-based environment to another, such as Borland.

You might need to reinstall Rhapsody before you rebuild the Rhapsody framework. You should
reinstall Rhapsody in the following situations:

* The sourcefilesfor the framework were not included in your original installation.

+ Youinstalled Rhapsody for adifferent environment other than the new compiler or
environment you now want to target.

+ Youinstalled Rhapsody before installing the new compiler or environment.

During the reinstallation, be sure to select the correct target environment. This enables Rhapsody
to prepare the appropriate make (. mak) file for your target environment. Note that reinstalling
Rhapsody will not erase your license file or any projects you have under the Rhapsody root
directory.

This section describes how to rebuild the Rhapsody framework for the different supported adapters
for Windows systems for Rhapsody in C and C++.

Note

Refer to the Release Notes (readme . htm) for detailed information about the supported
environments.

Thetopics are asfollows:

¢ Borland

¢ INTEGRITY

¢ Linux

¢ MultiWin32

¢ OSE
* ONX
¢ VxWorks

Rhapsody 153

Adapter-Specific Info

For information on rebuilding Rhapsody for other environments, see these sections:

¢ Building the Framework for Solaris Systems

¢ Building the Ada Framework

¢ Building the Java Framework

Borland

To rebuild the Rhapsody framework for the Borland environment, follow these steps:
1. Makesurethefile<Bor | and_di r >\ bi n\ Bcc32. cf g contains the following lines:

-I<Borland Dir>\include
-L<Borland Dir>\1lib
2. Makesurethefile<Bor | and_di r>\bi n\ilink32. cf g containsthe following line:

-L"<Borland Dir>\1ib"

3. Set following environment variables:

set BCROOT=<Borland installs>
set PATH=%BCROOT%\Bin; $PATHS
4. Navigatetothe<Rhapsody_i nst al | >\ Shar e\ Lang<I ang> directory and execute the
following command:
make -f bcSbuild.mak

5. If you are going to webify your model, add ¥BCROOT% Bi n to your system variables.
Refer to the Rhapsody User Guide for more information on the Webify Toolkit.

154 RTOS Adapter Guide

INTEGRITY

INTEGRITY

To rebuild the Rhapsody framework for the | NTEGRI TY environment (C++ only), follow these
steps:

1. Editthe<Rhapsody_i nst al | >\ Shar e\ LangCpp\ | nt egri t yBui | d. bat fileto set
theoption : t ar get to the target BSP name. For example:

:target =nbx800

2. Passthel NTEGRI TY environment path and target BSP name as command-line parameters
tothel ntegrityBuil d. bat fileand runthisbatch file to build all the libraries for the
specified target BSP.

For example, to build libraries for mhx800, use the following command:

<Rhapsody _i nstal | >\ Shar e\ LangCpp\ I ntegrityBuil d. bat
C.\GHS\i nt 404 nbx800

This command builds the following debug libraries for | NTEGRI TY under the
directory <Rhapsody_i nst al | >\ Shar e\ LangCpp\ | i b:

a. IntegrityOxf Mox800. a

b. IntegrityOxflnst Mox800. a

C. IntegrityAomAni nivbx800. a

d. IntegrityOmComippl Mox800. a

e IntegrityAonilraceMix800. a

f. IntegrityTomlraceMx800. a

g. IntegrityOxflnstTraceMix800. a
h. IntegrityWbConponent sMx800. a

In addition, the build generates the following debug information files for each debug
library:

i. IntegrityOxf Mox800. dba

j.- IntegrityOxflnst Mox800. dba
k. IntegrityAomAni mvbx800. dba
[. IntegrityOrComAppl Mox800. dba

m. IntegrityAomliraceMix800. dba

Rhapsody 155

Adapter-Specific Info

Nn. IntegrityTonmlraceMx800. dba
0. IntegrityOxflnstTraceMx800. dba

p. IntegrityWbConponent sMx800. dba

Oncethe libraries are built, you can compile, build, and run the Rhapsody samples.

Compiling and Building a Rhapsody Sample

To compile and build a Rhapsody sample in the | NTEGRI TY environment, follow these steps:

1

10.

Start Rhapsody and open the project. For example:
<Rhapsody_i nst al | >\ Sanpl es\ CppSanpl es\ Di shwasher . r py
Select File > Project Properties.

Set the CPP_CG: : | NTEGRI TY: : Renot eHost property to the |P address of the machine
on which Rhapsody is running. (To get the | P address under the Windows environment,
enter the following command at the command prompt:

i pconfig

Set the active configuration for the sample. For example, for the Dishwasher sample, set
EXE: : Host asthe active configuration.

Open the Features dialog box for the active configuration and set the following values:
a. Setthelnstrumentation Mode field to Animation.

b. Setthe Environment fieldto INTEGRITY.

Select the Properties tab, then click the All filter.

Set the CPP_CG : | NTEGRI TY: : BLDTar get property to set the target BSP. By default,
thisvalueis set to nhx800. If desired, set thisto adifferent value.

You can set additional options and defines by changing the
BLDAddi t i onal Opti ons and BLDAddi t i onal Def i nes properties.

Click OK to apply your changes and dismiss the dialog box.

Select Code > Gener ate <configuration> to generate the code and the build file for the
active configuration.

Select Code > Build <ActiveComponent>.mod to compile and link the application
source code. Thiswill generate the following | NTEGRI TY executable files:

156

RTOS Adapter Guide

INTEGRITY

a. <ActiveConponent>. mod—Thisisadynamically download type of image. This
image can be downloaded on a running kernel on the target board using the TFTP
server utility.

b. <ActiveConponent >—Thisisan Integrity Application type of image. Thisimage
must beintegrated with the kernel to form a composite image that can be downloaded
on the target using the ocdser v utility.

In these names, ActiveComponent is the name of the component currently selected as
the active component within Rhapsody.

Downloading the Image and Running the Application

To run the sample, perform all the steps described in the following sections.

Modifying the Files
Perform the following steps:
1. EdittheDefaul t.|d fileinthe<G eenDi r >\ thx800 dsp directory asfollows:
a. Increasethe. heap sectionto 1Mb (0x100000).
b. Increasethe. downl oad sectionto 1.5Mb (0x180000).
2. Editthelntegrity.|dfilein<G eenDi r > directory to increase the . heap section to

256K (0x40000). Thisis used for application build. You can check it in the . map file of
the application.

Building the Kernel
To build the kernel, follow these steps:

1. From the Windows Start menu, invoke the ADAMULTI IDE.

2. Select File> Open Project in Builder, navigate to the mbx800 BSP directory under your
Green Hillsinstallation (for example, <G eenDi r >\ nhx800), select the project
def aul t . bl d, and open it.

3. Navigateto the project Ker nel . bl d and double-click on it. You will seea
gl obal _t abl e. c file. You must modify thisfile according to your board specifications.
Make the following changes:
a. Uncomment the following statement:

#def i ne HARD_CODE_NETWORK_CONFI GURATI ON

Rhapsody 157

Adapter-Specific Info

b. Define the ethernet address for your board. For example:

#defi ne ETHERADDR 0x00, 0x01, OxAF, 0x01, 0x10, OxCC

c. Definethe IP address of the board. For example:

#define | P1 194
#define | P2 90
#define | P3 28
#define | P4 151

d. Definethe gateway for the board. For example:

#define GM 194
#define GA2 90
#defi ne GAB 28
#define GM 1

e. Set the netmask. For example:
#define NML 255
#defi ne NV 255
#defi ne NVMB 252
#define NV 0O

f. Make surethe target board using TCP/IP is on the same subnet as any system with
which it communicates.

4. Select Project > FileOptionsfor Ker nel . bl d. Set the libraries option as follows:
a. Removethel og library.
b. Addthet cpi p library.

5. Select Build > Rebuild all. This command rebuilds your kernel.

158 RTOS Adapter Guide

INTEGRITY

Downloading the Images

Because two different executable files are created during code generation, there are two waysto
download the kernel on the target board. The following sections describe both methods.

Dynamically Load Files

To download the kernel on the target board, follow these steps:

1. Makesurethevariableon_board_ram si ze inthefile
<G eenDi r >\ nbx800\ mbx800. ocd is 16 (for the MBX860 board).

2. Select Target > Connect to Target. The Connection Chooser command window opens.
3. Enter the following command, then click OK:
ocdserv | ptl ppc800 -s <G eenDir >\ nmbx800\ nbx800. ocd
Select Debug > Debug kernel to open the Debug window.
Click the GO toolbar button to download the kernel on to the board and run it.
Invoke another instance of ADAMULTI IDE.

Select Target > Connect to Target to open the Connection Chooser command window.

o N o g A

Enter the following command, then click OK:

rtserv -port udp@host name>

In this command, hostname is the | P address of the target board. For example:

rtserv -port udp@94. 90. 28. 151

This command opens the Task window. You can see some kernel tasks running in the
kernel space on the Task window. Select Target > Show Tar get windowsto see |O
and target windows.

9. From the Windows Start menu, invoke the TFTP server.

10. Set the base directory in the TFTP server window to the directory where the images are
generated (for example, <Rhapsody_i nst al | >\ Sanpl es\ CppSanpl es).

11. Inthe rtserv Task window, select Target > L oad Module.

12. Navigate to the path where the dynamically download image (* . nod) was generated and
select load.

Ensure that the TFTP server isrunning or the download process will be very slow.
You can see the download status on the rtserv target window. Once the image has

Rhapsody 159

Adapter-Specific Info

been successfully downloaded, the Initial Task will be visible in the rtserv Task
window in the virtual address space.

INTEGRITY Application Images

To integrate the | NTEGRI TY application image with the kernel, follow these steps:

1

Open an application command window and change directory to the directory where the
| NTEGRI TY application image was created.

Enter the following command:

C.>\...<path> <GreenDir>\intex -dbo
- lang_7=<execut abl e nane>
- ker nel =<Target BSP pat h>\ ker nel
-target=<Target BSP Pat h>\defaul t.bsp Qut putFi | eNane
In this command:
a. <pat h> = The path to the application image
b. <executabl e name> = Host
C. <Target BSP Path> = <GreenDir>\ nbx800
d. CQutputFileNane = Di shwasher

For example:

C:\..\Di shwasher\EXE <G eenDir>\intex -dbo

-l ang_7=Di shwasher -
ker nel =<Gr eenDi r >\ nbhx800\ ker nel

-target =<G eenDi r >\ mtbx800\ def aul t . bsp Di shwasher

Invoke the ADAMULTI IDE.
Select Remote > Connect to Tar get to open the Remote command window.

Enter the following command:

ocdserv | ptl ppc800 -s <G eenDir>\ nbx800\ nbx800. ocd

The execution of this command opens two windows—the Target window and the
IN/OUT window.

Select Debug > Debug Other and navigate to the path where your Integrity Application
image was created, then click Debug. This opens the debug window.

Click on the toolbar button GO to start downloading your composite image of
"Kernel+Application" on the board.

160

RTOS Adapter Guide

INTEGRITY

7. Invoke another instance of the ADAMULTI IDE.
8. Select Remote > Connect to Target to open the Remote command window.
9. Enter the following command:

rtserv -port udp@host name>

In this command, hostname is the | P address of the target board. For example:

rtserv -port udp@94. 90. 28. 151

The execution of this command invokes three windows—the rtserv Target window,
IN/OUT window, and Task window. In the Task window, you can view the kernel
space tasks and the virtual address space task (Initial).

10. Double-click on the Initial Task to bring up its debug window. You can see the debug
arrow pointing at the application’s main function. Ensure that the same applicationis
opened in Rhapsody.

Rhapsody 161

Adapter-Specific Info

Animating the Image
To run the application, follow these steps:

1

Double-click on the Initial Task to bring up its debug window. You can see the debug
arrow pointing to the application’s main function. Ensure that the same application is
open in Rhapsody.

To execute this application, click the toolbar button GO. You should be able to see the
animation toolbar come up in Rhapsody. You can generate eventsin Rhapsody using the
animation toolbar. If thereis console output, it is displayed on the rtserv IN/OUT window;
animation is displayed in the Rhapsody window.

After the execution is complete, quit from animation.

The task window shows that the Initial Task and its tcpip client are still alive; these tasks
must be killed manually. Close the Initial Task debug window; in the message window,
select QuitandKillProcessto kill your initial task.

In the Task window, in the kernel space, double-click the ClientO0OX (X=1..) task to
display the debug window of this task. Close the debug window and select
QuitandKillProcessto kill the client task.

In the rtserv Task window, select Target > Disconnect from Tar get to close your rtserv
Session.

To unload the composite image from the target board, go to the first instance of the
ADAMULTI IDE that was opened. Select Remote > Disconnect from Target to close your
ocdserv session.

Close the Debug window of the ocdserv.

162

RTOS Adapter Guide

Linux

Linux

Rhapsody in C++ provides support for the Linux operating system. The following sections
describe how to build the Linux libraries, and how to generate Linux code using Rhapsody.

Building the Linux Libraries

You build the Linux libraries on the target machine. Copy thel i nuxshare. t ar fileinstalledin
the Shar e\ LangCpp directory on the host to the Linux machine.

To build the libraries, follow these steps:
1. Changedirectory to Shar e/ LangCpp.
2. Build thelibraries using the following command:
gnmake —f | inuxbuil d. mak

3. Verify that the following library files were created in the directory
Shar e/ LangCpp/ | i b:

a. |linuxaonmanima
b. linuxaontrace.a
C. linuxontoappl.a
d. linuxoxf.a

e. linuxoxfinst.a
f. linuxtontrace.a

Rhapsody 163

Adapter-Specific Info

Creating and Running Linux Applications

You compile, link, and run your Linux application on the Linux machine.
Perform the following steps:

1. Create the Rhapsody project on the host, and select the Linux environment on the
configuration’s Settings tab.

2. Transfer the generated directory with the sources, headers, and makefiles from the host to
the Linux machine (for example, by using f t p).

3. OntheLinux machine, edit the makefile (*. mak) to change the following setting:
OVROOT=[LangCPP_Di r]
In this syntax, [LangCPP_Dir] isthe path to the Shar e/ LangCpp directory.
4. To compile and link the application, enter the following command:
gmake -f xxx.mak
In this command, xxx.mak is the name of the generated makefile.
5. Anexecutablewill be created in the current directory. When you run the executable on the

target, the Rhapsody animation toolbar will open on the host (for applications using
instrumentation).

MultiWin32

To rebuild the Rhapsody OXF for the Mul t i W n32 environment (C++ only), follow these steps:
1. Open an application command prompt window.
2. Change directory to $OVROOT\ LangCpp.
3. Assuming that the Green Hills home directory is C: \ GHS, enter the following commands:

> Mul ti Wn32Bui |l d. bat C.\ GHS\ nat 35 cl ean
> Mul ti Wn32Bui | d. bat C:\ GHS\ nat 35

You must perform a clean before the build to delete previously generated libraries
and debug information. Otherwise, the MULTI linker generates errors when you
build the Rhapsody generated application.

164 RTOS Adapter Guide

Multiwin32

Stepping Through the Generated Application Using Multiwin32

To step through the generated application, follow these steps:

1. Onthe Settings tab of the features dialog box for the configuration, set the Build Set field
to one of the following values:

a. Debug—Turns on the debug information. This option adds the following line to the
_program bl d file

. defines=_DEBUG | i ne

DebugNoExp—Turns on the debug and exceptionsinformation. This option adds the
following linesto the _pr ogr am bl d file:

: def i nes=_DEBUG
. defi nes=HAS_NO EXP

Thisisthe default value.

c. Release—No debug information.

ReleaseNoExp—No debug or exceptions information. This option adds the
following lineto the _pr ogr am bl d file:

. defi nes=HAS_NO EXP
In Rhapsody, select Code > Gener ate/M ake/Run.

In MULTI, start debugging by selecting Debug > Debug Other Executable and select the
Rhapsody generated application’s .exe file.

Rhapsody 165

Adapter-Specific Info

Stepping Through the OXF Using MULTI

The OXF libraries provided with the Mul t i W n32 environment do not include debug information.
To step through the OXF source code using MULTI, you must rebuild the OXF with debug
information enabled.

Perform the following steps:

1. Addthefollowing line to the $OMROOT\ LangCpp\ Mul ti W n32Bui | d. bl d filejust
below the" : defi nes=OM STL" line:

: def i nes=_DEBUG

2. Follow the steps described in Stepping Through the Generated Application Using
Multiwin32to rebuild the framework libraries and step through the source code.

166 RTOS Adapter Guide

OSE

OSE

This section describes how to rebuild the Rhapsody OXF for the OSE Soft Kernel (OseSFK) for
C++ environments only.

Rebuilding the Framework

To rebuild the OXF framework for the Gse SFK environment, follow these steps:
1. Open the command prompt.
2. Navigatetothe <Rhapsody i nstal | >\ Shar e\ LangCpp directory.
3. Cdlvcvars32.
4, Enter the following make command:
nmeke osesf kbuil d. mak

To rebuild specific framework libraries only, see Using Command-Line Attributes and Flags.

Using Command-Line Attributes and Flags

For both OSE environments, you can rebuild only part of the framework using the attribute
TARGETS, where the target is one of the following values:
+ oxflibs—Buildsthe oxf and oxfi nst librariesonly
¢ aonl i bs—Buildsthe aont r ace and aomani mlibraries only
¢ onctonl i b—Buildsthe ontomlibrary only
¢ tonli b—Buildsthet omlibrary only
For example:

dmake —f oseppcbuil d. mak TARGETS=oxfl i bs

To build the framework with debug information, use the flag USE_PDB=TRUE. For
example:

nmake osesfkbuil d. mak USE_PDB=TRUE

Rhapsody 167

Adapter-Specific Info

Editing the Batch Files

Before you can execute the model, you must edit the batch files.
Perform the following steps:

1. Addthefollowing linesto the file<Rhapsody
i nstal | >\ Shar e\ et c\ oseppcdi abnake. bat :

set DI AB_ROOT=<Your Di ab Root >
set LM LI CENSE_FI LE=<Your Diab license file>

2. Addthefollowing lineto the file<Rhapsody
i nst al | >\ Shar e\ et c\ osesf kRun. bat :

set LM LI CENSE FI LE=<CSE |icense file>;

For example:

set LM LI CENSE _FI LE=744@anana,;

168 RTOS Adapter Guide

QNX

QNX

To rebuild the Rhapsody framework for the QNX environment, follow these steps:
1. Open an application command prompt window.
2. Set the following environment variables:
set QNXROOT= <your ONX_install _dir>
set QCC_CONF_PATH=%INNXROOT% host /wi n32/ et c/ qcc
set OQNX_TARCGET=%INXROOT% t ar get / gnx6
set QNX_HOST=%NXROOT% host / wi n32
set LD LI BRARY_PATH=%NXROOT% t ar get/ qnx6/1i b
set PATH=%NX HOST% bi nwi n; 9PATHY%

3. Navigateto the directory <Rhapsody_i nst al | >\ Shar e\ LangCpp and execute one of
the following commands:

make -f gnxcwbuil d. mak CPU=ppc CPU_SUFFI X=be PATH_ SEP=\\
(r?:ake -f gnxcwbui | d. mak CPU=x86 PATH SEP=\\
In the first command (for ppc), CPU_SUFFI X can be one of the following values:
a. be—Big-endian
b. | e—Little-endian

In the second command (for x86), do not include the CPU_SUFFI X in the command.

If desired, you can specify the TARGETS attribute, which enables you to build only
part of the framework. The possible targets are as follows:

c. oxflibs

d. aomibs

e onconmib
f. tomib

webconponentslib

Q@

For example:

make -f gnxcwbuil d. mak CPU=ppc CPU_SUFFI X=be PATH_ SEP=\\
TARGETS=o0xf | i bs

Rhapsody 169

Adapter-Specific Info

4. To execute the model, Gener ate and M ake the model in Rhapsody, then upload or
transfer your executable to the QNX machine using the Code Warrior IDE or by using
f t p, and executing the application on the target machine (suitable for x86). The
following sections describe this step in detail.

Using Code Warrior

To upload your executable using Code Warrior, follow these steps:
1. Open Code Warrior and select File> Open.

2. Choose the new Bourne executable. Thiswill create the Code Warrior project for your
model.

3. For the target settings:
a. Setthe QNX Linker panel to carry thetag - st atii c.
b. Set Connection settings > Host Name to your target machine name.
4. On thetarget machine, run the following process:
pdebug 10000

5. Execute the model in Code Warrior.

Using ftp
To transfer your executable using f t p, follow these steps:
1. Upload the executable to the target machine using your favoritef t p client.
2. Change permissions for the executable using the following command:
chnmod +x EXE
3. Execute your model using the following command:

.| EXE

170 RTOS Adapter Guide

QNX

Message Queue Implementation

The default style is a proprietary-style queue. To use POS| X-style queues, follow these steps:
1. Inthe makefile, add the flag OM_PCSI X_QUEUES to ADDED CPP_FLAGS.

2. Rebuild the OXF libraries in the framework.

Rhapsody 171

Adapter-Specific Info

VxXWorks

To rebuild the Rhapsody framework for the Vx\Wor ks environment, follow these steps:
1. Call thefile<Tor nado_di r >\ host\ x86-wi n32\ bi n\t or Var s. bat . For example:
D: \ Tor nado\ host \ x86-wi n32\ bi n\t or Var s. bat

2. Navigatetothe<Rhapsody_i nst al | >\ Shar e\ Lang<| ang> directory and execute the
following command:

make -f vxbuil d. mak CPU=PPC860 PATH SEP=\\ all

3. Change the CPU environment variable to the desired CPU.

172 RTOS Adapter Guide

Quick Reference

This section provides a quick reference to the OSAL methods. The following table briefly
describes each method. For ease of use, the methods are listed in alphabetical order.

OSAL Method

Description

~OMOSConnectionPort

Destroys the OMOSConnect i onPor t object.

~OMOSEventFlag

Destroys the OMOSEvent Fl ag object.

~OMOSMessageQueue Destroys the OMOSMessageQueue object.

~OMOSMutex Destroys the OMOSMuUt ex object.

~OMOSSemaphore Destroys the OMOSSenaphor e object.

~OMOSSocket Destroys the OMOSSocket object.

~OMOSThread Destroys the OMOSThr ead object.

~OMOSTimer Destroys the OMOSTi ner object.

~OMTMMessageQueue Destroys the OMTMVessageQueue object.

cleanup Cleans up the memory after an object is deleted.

Close Closes the socket.

Connect Connects a process to the instrumentation server at a
given socket address and port.

create Creates a new object.

Create Creates a new socket.

createOMOSConnectionPort

Creates a connection port.

createOMOSEventFlag

Creates an event flag.

createOMOSIdleTimer

Creates an idle timer.

createOMOSMessageQueue

Creates a message queue.

createOMOSMutex Creates a mutex.
createOMOSSemaphore Creates a semaphore.
createOMOSThread Creates a thread.

createOMOSTickTimer

Creates a tick timer.

createOMOSWrapperThread

Creates a wrapper thread.

createSocket

Creates a new socket.

Rhapsody

173

Quick Reference

OSAL Method

Description

delayCurrentThread

Delays the current thread for the specified length of
time.

destroy Destroys the object.

endApplication Ends a running application.

endMyTask Terminates the current task.

endOtherTask Terminates a task other than the current task.
endProlog Ends the prolog.

exeOnMyTask

Determines whether the method was invoked from the
same operating system task as the one on which the
object is running.

exeOnMyThread

Determines whether the method was invoked from the
same operating system thread as the one on which the
object is running.

free Releases the lock, possibly causing the underlying
operating system to reschedule threads.
get Retrieves the message at the beginning of the queue.

getCurrentTaskHandle

Returns the native operating system handle to the task.

getCurrentThreadHandle

Returns the native operating system handle to the
thread.

getMessagelList

Retrieves the list of messages.

getOSHandle

Retrieves the task’s operating system ID.

getOsHandle

Retrieves the thread'’s operating system ID.

getOsQueue

Retrieves the event queue.

getTaskEndClbk

Is a callback function that ends the current operating
system task.

etThreadEndClbk

Is a callback function that ends the current operating
system thread.

init Initializes the new object.

initEpilog Executes operating system-specific actions to be taken
at the end of OXF: : i ni t after the environment has
been set (that is, the main thread and the timer have
been started) and before it returns.

instance Creates a single instance of OMOSFact ory.

isEmpty Determines whether the message queue is empty.

iskull Determines whether the queue is full.

lock Determines whether the mutex is free and reacts

accordingly.

OMEventQueue

Constructs an OVEvent Queue object.

OMTMMessageQueue Constructs an OMTMMessageQueue object.
pend Blocks the thread making the call until there is a

message in the queue.

174

RTOS Adapter Guide

OSAL Method

Description

put Adds a message to the end of the message queue.
receive Waits on the socket to receive the data.

Receive Receives data through the socket.

reset Forces the event flag into a known state.

resume Resumes a suspended thread.

RiCOSEndApplication

Ends a running application.

RiCOSOXFInitEpilog

Initializes the epilog.

send

Sends data from the socket.

Send

Sends data out from the connection port.
or
Sends data out from the socket.

SetDispatcher

Sets the dispatcher function, which is called whenever
there is an input on the connection port (input from the
socket).

setEndOSTaskInCleanup

Determines whether destruction of the Ri COSTask
class should kill the operating system task associated
with the class.

setEndOSThreadInDtor

Determines whether destruction of the OMOSThr ead
class should kill the operating system thread associated
with the class.

setOwnerProcess Sets the thread that owns the message queue.

setPriority Sets the operating system priority of the task or thread.

signal Releases a blocked thread.

start Starts the task or thread processing.

suspend Suspends the task or thread.

unlock Releases the lock, possibly causing the underlying
operating system to reschedule threads.

wait Blocks the thread making the call until some other
thread releases it by calling signal on the same event
flag instance.

waitOnThread Waits for a thread to terminate.

Rhapsody

175

Quick Reference

176 RTOS Adapter Guide

A

Abstraction layer 3
Adalanguage
animation 21
framework 21
Adapter 3
classes 13
Additional NumberOflInstances property 6

B

BaseNumberOfInstances property 6
Batch files 29
editing 168

C

C language
classes 44
libraries 19
methods 44
RiCOSConnectionPort class 45
RiCOSemaphore class 73
RiCOSEventFlag Interface class 51
RiCOSM essageQueue class 56
RiCOSMutex class 65
RiCOSOXF class 70
RiCOSSocket class 79
RiCOSTask class 86
RiCOSTimer class 100
tracing services 19

C++ language
classes 105
libraries 18
OMEEventQueue class 105
OMM essageQueue class 107
OMOSclass 107
OMOSConnectionPort class 109
OMOSFactory class 115
OMOSMessageQueue class 124
OMOSMutex class 130
OMOSSemaphore class 133
OMOSSocket class 136
rebuild OXF for OSE 167

Callback functions 39

Index

Classes
adapter 3,13
C++ 105
OMEEventQueue 105
OMMessageQueue 107
OMOS 107
OMOSConnectionPort 109
OMOSEventFlag 112
OMOSFactory 115
OMOSMessageQueue 124
OMOSMutex 130
OMOSSemaphore 133
OMOSSocket 136
RiCOSConnectionPort 45
RiCOSemaphore 73
RiCOSEventFlag Interface 51
RiCOSM essageQueue 56
RiCOSMutex 65
RiCOSOXF 70
RiCOSSocket 79
RiCOSTask 86
RiCOSTimer 100
CM tools
Integrity 155
Command-line
attributes 167
flags 167
Commands
al 17
build framework libraries for C or C++ 21
definitions 33
make 17
RHAP_FLAGS 18
Communication port 3
Compilation
flags 32
CompileSwitches property 32
Configurations
active 156
Create
new makefile 18

D

Defines 39
Dependencies 35

Rhapsody

177

Index

Deployment environment 1 J
Documentation
List of Books 31 Javalanguage
properties 31 framework 22
User Guide 154 jar command 37
libraries 19
= L
EntryPoint property 40 o
Environment property 25, 26 Libraries 167
Environments build framework 21
deployment 1 C 19
setting 26 C++ 18
Event flag 51 framework 20
Events Java 19
flag 112
synchronous 6 M
Macros
F generated 34
Features dialog box predefined 35
configuratiogn 26 MakeFileContent property 15, 31, 37
Environment 156 Makefiles 16, 29
Instrumentation Mode 156 gg:ﬂg nlesw 5
roperty definitions displayed 31 -red
Filpeﬁp y P linking 36
batch 16, 29, 168 modifying 9
Flags properties 30
command for Rhapsody 18 samplefile 17
compilation 32 target type 32
event 112 Memory
Framework 73 pool 6
Ada 21 Messages
Java 22 queues 3,6
libraries 20 Mutex 5,65
modifying 9 Mutual exclusion (mutex) 130
port number into connection point 7
Functions 40 @)
callback 39

Object execution framework (OXF) 3
Operating systems

G real-time 1
Generated macros 34 services 3, 11
Operations
virtual 11
| OS abstraction layer (OSAL) 3
IDE interface 39 8)5('?\!—33
Integrity 155
Interfaces
implementing 4 P
RiCOSEventFlag 51
InvokeExecutable property 29 Ports
InvokeM ake property 21 animation 7.
communication 7
number 7
Predefined macros 35
Processes

178 RTOS Adapter Guide

Index

communication 6
lightweight 4
Properties 24
CompileSwitches 32
definitions of all 31
InvokeExecutable 29
makefile 30
MakeFileContent 31, 37

R

Real-time operating system (RTOS) 1
Rhapsody
adapt to anew RTOS 9
deployment environment 1
framework 73
host machine 7
User Guide 154
RiCOSTimerManager 100
RTOS 1
adapting Rhapsody to 9
layered approach 3
makefile creating new 18
relation to Rhapsody applications 3
with Rhapsody applications 3

S

Semaphores 5, 73, 133
Services
operating system 3, 11

synchronization 3,5
tasking 4
timing 100
tracingin C 19
Sockets 136
Stack size 5
Synchronization 65
services 3,5

T

Target

type 32
Targets 167
Tasking services 3, 4
TCP/IP protocol 7
Threads 4

wrapper 4
Timer service 3
Timers 8
Timing services 100

Vv

Virtual operations 11

W

Wrapper
threads 4

Rhapsody

179

Index

180 RTOS Adapter Guide

	Contents
	The Deployment Environment
	Basic Concepts
	Rhapsody Applications and the RTOS
	Using the OSAL
	Tasking Services
	Setting the Stack Size
	Synchronization Services
	Message Queues
	Communication Port
	Timer Service

	Adapting Rhapsody to a New RTOS
	Step 1: Installing the Run-Time Sources
	Step 2: Modifying the Framework
	Implementing the Abstract Factory
	Plugging in the Factory
	Implementing the Adapter Classes
	Modifying rawtypes.h
	Other Operating System-Related Modifications

	Step 3: Creating Makefiles
	Creating the Batch File and Makefiles
	Sample <env>build.mak File
	Creating New Makefiles
	OXF Versions
	Animation Libraries

	Step 4: Building the Framework Libraries
	Building the C or C++ Framework for Windows Systems
	Building the Ada Framework
	Building the Java Framework
	Building the Framework for Solaris Systems

	Step 5: Creating Properties for a New RTOS
	Modifying the site<lang>.prp Files
	Setting the Environment

	Step 6: Validating the New Adapter

	Summary

	Makefiles
	Step 1: Creating a Make Batch File
	Step 2: Running the Batch File
	Step 3: Redefining Makefile-Related Properties
	Step 4: Redefining the MakeFileContent Property
	Target Type
	Compilation Flags
	Commands Definitions
	Generated Macros
	Predefined Macros
	Generated Dependencies
	Makefile Linking Instructions
	Java Users

	The IDE Interface
	Defines
	Structures
	Functions

	The OSAL Classes
	Rhapsody in C
	RiCOSConnectionPort Class
	create
	destroy
	cleanup
	init
	Connect
	Send
	SetDispatcher

	RiCOSEventFlag Interface
	create
	destroy
	cleanup
	init
	reset
	signal
	wait

	RiCOSMessageQueue Class
	create
	destroy
	cleanup
	init
	get
	getMessageList
	isEmpty
	isFull
	pend
	put

	RiCOSMutex Class
	create
	destroy
	cleanup
	init
	free
	lock

	RiCOSOXF Class
	RiCOSEndApplication
	RiCOSOXFInitEpilog

	RiCOSSemaphore Class
	create
	destroy
	cleanup
	init
	signal
	wait

	RiCOSSocket Class
	create
	destroy
	cleanup
	init
	createSocket
	receive
	send

	RiCOSTask Class
	create
	destroy
	cleanup
	init
	endMyTask
	endOtherTask
	exeOnMyTask
	getCurrentTaskHandle
	getOSHandle
	getTaskEndClbk
	resume
	setEndOSTaskInCleanup
	setPriority
	start
	suspend

	RiCOSTimer
	create
	destroy
	cleanup
	init

	RiCHandleCloser Class

	Rhapsody in C++
	OMEventQueue Class
	OMEventQueue
	getOsQueue

	OMMessageQueue Class
	OMOS Class
	endApplication
	endProlog
	initEpilog

	OMOSConnectionPort Class
	~OMOSConnectionPort
	Connect
	Send
	SetDispatcher

	OMOSEventFlag Class
	~OMOSEventFlag
	getOsHandle
	reset
	signal
	wait

	OMOSFactory Class
	instance
	createOMOSConnectionPort
	createOMOSEventFlag
	createOMOSIdleTimer
	createOMOSMessageQueue
	createOMOSMutex
	createOMOSSemaphore
	createOMOSThread
	createOMOSTickTimer
	createOMOSWrapperThread
	delayCurrentThread
	getCurrentThreadHandle
	waitOnThread

	OMOSMessageQueue Class
	~OMOSMessageQueue
	get
	getMessageList
	getOsHandle
	isEmpty
	isFull
	pend
	put
	setOwnerProcess

	OMOSMutex Class
	~OMOSMutex
	free
	getOsHandle
	lock
	unlock

	OMOSSemaphore Class
	~OMOSSemaphore
	getOsHandle
	signal
	wait

	OMOSSocket Class
	~OMOSSocket
	Close
	Create
	Receive
	Send

	OMOSThread Class
	~OMOSThread
	exeOnMyThread
	getOsHandle
	getThreadEndClbk
	resume
	setEndOSThreadInDtor
	setPriority
	start
	suspend

	OMOSTimer Class
	~OMOSTimer
	getOsHandle

	OMTMMessageQueue Class
	OMTMMessageQueue
	~OMTMMessageQueue
	get
	getMessageList
	getOsHandle
	isEmpty
	pend
	put

	Adapter-Specific Info
	Borland
	INTEGRITY
	Compiling and Building a Rhapsody Sample
	Downloading the Image and Running the Application
	Modifying the Files
	Building the Kernel
	Downloading the Images
	Animating the Image

	Linux
	Building the Linux Libraries
	Creating and Running Linux Applications

	MultiWin32
	Stepping Through the Generated Application Using MultiWin32
	Stepping Through the OXF Using MULTI

	OSE
	Rebuilding the Framework
	Using Command-Line Attributes and Flags
	Editing the Batch Files

	QNX
	Using Code Warrior
	Using ftp
	Message Queue Implementation

	VxWorks

	Quick Reference
	Index

