

Rhapsody®
RTOS Adapter Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
The Deployment Environment . 1
Basic Concepts . 1

Rhapsody Applications and the RTOS . 3

Using the OSAL . 3
Tasking Services. 4
Setting the Stack Size . 5
Synchronization Services . 5
Message Queues . 6
Communication Port . 7
Timer Service . 8

Adapting Rhapsody to a New RTOS . 9
Step 1: Installing the Run-Time Sources. 9
Step 2: Modifying the Framework . 9
Step 3: Creating Makefiles . 15
Step 4: Building the Framework Libraries . 20
Step 5: Creating Properties for a New RTOS . 24
Step 6: Validating the New Adapter . 27

Summary . 28

Makefiles . 29
Step 1: Creating a Make Batch File . 29

Step 2: Running the Batch File . 29

Step 3: Redefining Makefile-Related Properties. 30

Step 4: Redefining the MakeFileContent Property . 31
Target Type. 32
Compilation Flags . 32
Commands Definitions . 33
Generated Macros . 34
Predefined Macros . 35
Generated Dependencies . 35
Makefile Linking Instructions . 36
Java Users . 37
Rhapsody iii

Table of Contents
The IDE Interface . 39
Defines . 39

Structures. 39

Functions . 40

The OSAL Classes . 43
Rhapsody in C . 44

RiCOSConnectionPort Class . 45
RiCOSEventFlag Interface . 51
RiCOSMessageQueue Class . 56
RiCOSMutex Class . 65
RiCOSOXF Class . 70
RiCOSSemaphore Class. 73
RiCOSSocket Class . 79
RiCOSTask Class . 86
RiCOSTimer . 100
RiCHandleCloser Class. 104

Rhapsody in C++ . 105
OMEventQueue Class . 105
OMMessageQueue Class . 107
OMOS Class . 107
OMOSConnectionPort Class. 109
OMOSEventFlag Class . 112
OMOSFactory Class . 115
OMOSMessageQueue Class . 124
OMOSMutex Class . 130
OMOSSemaphore Class. 133
OMOSSocket Class . 136
OMOSThread Class . 140
OMOSTimer Class . 146
OMTMMessageQueue Class . 147

Adapter-Specific Info . 153
Borland . 154

INTEGRITY . 155
Compiling and Building a Rhapsody Sample . 156
Downloading the Image and Running the Application. 157

Linux . 163
Building the Linux Libraries . 163
Creating and Running Linux Applications . 164
iv RTOS Adapter Guide

Table of Contents
MultiWin32 . 164
Stepping Through the Generated Application Using MultiWin32 . 165
Stepping Through the OXF Using MULTI . 166

OSE. 167
Rebuilding the Framework . 167
Using Command-Line Attributes and Flags. 167
Editing the Batch Files . 168

QNX. 169
Using Code Warrior. 170
Using ftp . 170
Message Queue Implementation . 171

VxWorks . 172

Quick Reference . 173

Index . 177
Rhapsody v

Table of Contents
vi RTOS Adapter Guide

The Deployment Environment
This section provides an overview of the Rhapsody deployment environment. The topics are as
follows:

� Basic Concepts

� Rhapsody Applications and the RTOS

� Using the OSAL

� Adapting Rhapsody to a New RTOS

� Summary

Basic Concepts
The deployment environment is the set of tools and third-party software required to develop and
deploy a Rhapsody-generated application in a particular hardware environment. The major
components of the deployment environment are as follows:

� Real-time operating system (RTOS)
� Compiler
� Make facility
Rhapsody 1

The Deployment Environment
The following diagram shows the dependencies between the Rhapsody components and the
deployment environment.

Legend:
 Depends On (points to input)

 Creates (points to output)

Rhapsody

site[<lang>].prp
Properties Files

Compiler

Compilation

Generated Code Files

2

Generated
Makefile

<env>oxf.lib
Framework Libraries (4X)

<env>aom.lib
Instrumentation Libraries (2X)

<env>tom.lib
Trace Libraries (1X)

<env>omCom.lib
Communication Library (1X)

Application
Load

Module

3

Errors

1

Rhapsody OXF
Source Code

OS Abstraction Layer

os.h

<env>os.h

<env>os.cpp

<env>build.mak

factory[<lang>].prp
Properties Files

Solid-fill boxes represent
files that you need to
modify or provide to
deploy a Rhapsody
2 RTOS Adapter Guide

Rhapsody Applications and the RTOS
Rhapsody Applications and the RTOS
Rhapsody generates implementation source code, in several high-level languages, that is RTOS-
independent. This is achieved using a set of adapter classes known as the OS abstraction layer
(OSAL), which is part of the Rhapsody object execution framework (OXF). The OXF itself is
operating system-independent, except for the OSAL, which serves as the only interface to the
operating system and is the only operating system-dependent package within the OXF.

Each target environment requires a special OXF version. Preparing the OXF is primarily the
process of providing an implementation for the OSAL. Each implementation of the OSAL for a
particular target is known as an adapter.

Using the OSAL
The OSAL consists of a set of interfaces (abstract classes) that provide all the required operating
system services for the application, including:

� Tasking services
� Synchronization services
� Message queues
� Communication port
� Timer service

The OSAL separates the OXF from the underlying RTOS using the layered approach shown in the
following figure.

The OSAL supports each of these services by implementing thin wrappers around real operating
system entities, adding minimal overhead.
Rhapsody 3

The Deployment Environment
These abstract interfaces need an implementation, which is a set of concrete classes that inherit
from the abstract interfaces and provide an implementation for the pure, virtual operations defined
in the interface. The OSAL enables you to encapsulate any RTOS by changing the implementation
of the relevant framework classes (but not their interface) to meet the requirements of the given
RTOS.

Mediation between the concrete classes, which are RTOS-dependent, and the neutral interfaces is
accomplished using an abstract factory class, which returns to the application the concrete class
that implements a particular interface. This singleton class acts as a broker that constructs the
proper adapter class once requested by the application. The OSAL Classes describes the abstract
factory in greater detail.

Most of the adapter classes have direct counterparts in the targeted RTOS and their
implementation is straightforward. However, sometimes a certain operating system does not
provide a certain object, such as a message queue. In this case, you must implement the object
from primitive constructs.

Tasking Services

Rhapsody supports multitasking via threads. Also known as lightweight processes, threads are
basic units of CPU utilization. Each thread consists of a program counter, register set, and stack
space. It shares its code section, data section, and operating system resources, such as open files
and signals, with peer threads. If an RTOS does not support multitasking via threads, the operating
system adapter written for that environment must provide it.

The factory has two create thread operations that create two different kinds of threads:

� createOMOSThread—Creates a simple thread. This is the most common case. Simple
threads are constructed in suspended mode by default. This means that the thread does not
start execution until you call start. Otherwise, it might start execution immediately and
try to access variables or data that are not yet valid.

� createOMOSWrapperThread—Creates a wrapper thread. A wrapper thread is used to
wrap an external thread so it can be treated as one of the application threads on the call
stack. A wrapper thread can be suspended, resumed, have its priority set, and participate
in animation. Wrapper threads are used only for instrumentation. They represent user-
defined threads (threads defined outside the Rhapsody framework).
4 RTOS Adapter Guide

Using the OSAL
Setting the Stack Size

The stack size is determined by the implementation of the wrapper thread object <env>Thread,
derived from the OMOSThread interface. Specifically, the stack size is defined in the constructor
body, which is executed upon the thread creation call. For example, in the constructor for a
VxThread object in VxWorks, the stack size is set to the default value of
OMOSThread::DefaultStackSize in VxOS.h, as follows:

VxThread(void tfunc(void *), void *param,
const char* const name = NULL,
const long stackSize =
OMOSThread::DefaultStackSize);

DefaultStackSize in OMOSThread is set to DEFAULT_STACK (defined as 20000 for VxWorks)
in the VxOS.cpp file, as follows:

const long OMOSThread::DefaultStackSize = DEFAULT_STACK;

To change the size of the stack for all new threads, change the definition of DEFAULT_STACK in
the <env>OS.h file. Alternatively, you can change the size of the stack for a particular thread by
passing a different value as the fourth parameter to the thread constructor.

Synchronization Services

The OSAL provides synchronization services by using event flags for signaling between threads
and by protecting access to shared resources through the use of mutexes and semaphores. A mutex
provides binary mutual exclusion, whereas a semaphore provides access by a limited number of
threads. For more information, see the sections OMOSMutex Class and OMOSSemaphore Class.
Rhapsody 5

The Deployment Environment
Message Queues

A message queue is an interprocess communication (IPC) mechanism that allows independent but
cooperating tasks (that is, active classes) within a single CPU to communicate with one another.
An active class is considered a task in Rhapsody.

The message queue is a buffer that is used in non-shared memory environments, where tasks
communicate by passing messages to each other rather than by accessing shared variables. Tasks
share a common buffer pool, with OMOSMessageQueue implementing the buffer. The message
queue is an unbounded FIFO queue that is protected from concurrent access by different threads.

Events are asynchronous. When a class sends an event to another class, rather than sending it
directly to the target reactive class, it passes the event to the operating system message queue and
the target class retrieves the event from the head of the message queue when it is ready to process
it. Synchronous events can be passed using triggered operations instead.

Many tasks can write messages into the queue, but only one can read messages from the queue at a
time. The reader waits on the message queue until there is a message to process. Messages can be
of any size.

Processes that want to communicate with each other must be linked somehow. A communication
link consists of a relation, as in the form of an association line drawn between classes in an object
model diagram. The link can be either unidirectional or bidirectional (symmetric). In the case of a
unidirectional link from class A to class B, class A can send messages to class B, but class B cannot
send messages to class A. With bidirectional links, both classes can send messages to each other.
The message queue is attached to the link, and allows the sender and receiver of the message to
continue on with their own processing activities independently of each other.

In operating systems with memory protection, one active class can call an operation of another
active class, given an association relation between them, if the operating system itself supports
such direct calls. For operating systems with shared memory, Rhapsody knows how to pass events
using the operating system messaging. Whether direct function calls are supported with memory
protection depends on the operating system itself, not the Rhapsody framework.

In Rhapsody applications, the BaseNumberOfInstances property (under CG::Event) specifies
the initial size of the memory pool that is allocated for events. This pool is dynamically allocated
at program initialization. The AdditionalNumberOfInstances property (under CG::Event)
specifies the size of any additional memory that should be allocated during run time if the initial
pool becomes full. Additional memory allocation is done on the heap and includes rearranging of
the initial memory pool.
6 RTOS Adapter Guide

Using the OSAL
Communication Port

A communication port provides interprocess communication between Rhapsody and instrumented
applications. Unlike a regular message queue, which is used for communication between tasks on
the same processor, a connection port has some unique identification, generally a socket address
and number, that allows Rhapsody to communicate with processes running on either the same
machine or different machines. This allows Rhapsody to communicate, for example, with an
animated application running on a remote target board.

Rhapsody requires the TCP/IP protocol to be installed on the host machine. Processes connect to
the animation server via the connection port using the TCP/IP protocol. The port number is
included at the start of message packets that are addressed to the animation server.

The following figure illustrates the interprocess communication.

Note the following:

� Rhapsody listens to the port number defined in the rhapsody.ini file.
� The framework inserts the same port number into the connection port.

The instrumented application can be running on either the same machine as Rhapsody (the host
machine) or on a remote target.

For more information, see OMOSConnectionPort Class and OMOSSocket Class.
Rhapsody 7

The Deployment Environment
Timer Service

The operating system factory provides two different kinds of timers:

� Tick timer—Used for real-time modeling. The tick timer is compiled into the <env>oxf
and <env>oxfinst libraries.

The factory’s createOMOSTickTimer method creates a constant-interval application timer.
The timer calls a callback function at a set interval.

� Idle timer—Used for simulated-time modeling.
Both timers are implementations of OMOSTimer. For more information, see OMOSTimer Class.
8 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
Adapting Rhapsody to a New RTOS
To adapt Rhapsody to a new RTOS, follow these steps:

1. Install Rhapsody with the Custom option. In the Select Components screen of the
installation program, select the Runtime Sources option to obtain the framework source
files.

2. Implement the operating system adapter classes for the new environment, using the closest
existing environment as a starting point.

3. Create new makefiles for building the framework libraries for the new environment.

4. Build the framework libraries for the new environment.

5. Create a set of code generation properties for the new environment and a batch file that
sets its compiler environment. You can use the properties and batch file for the closest
existing compiler and linker combination as a starting point.

6. Validate the new adapter.

After performing these steps, you can create a new configuration and select the new RTOS as its
target environment, then generate and make code in the new environment.

The following sections describe each of these steps in detail.

Step 1: Installing the Run-Time Sources

When you install the run-time source files for your language (C or C++), Rhapsody copies both the
implementation and specification files to the Rhapsody directory
\Share\Lang<Language>\oxf. For example, if you installed the runtime source files for C++,
the directory \Share\LangCPP\oxf contains both .h and .cpp files.

Step 2: Modifying the Framework

The adapter interfaces and the abstract factory interface are declared in the following header files:

� oxf.h—Object execution framework (OXF) classes
� os.h—Abstract operating system classes
� rawtypes.h—Data types used by the OXF

These header files are located in the $OMROOT\Lang<lang>\oxf subdirectory of the Rhapsody
installation. In this path, $OMROOT is an environment variable that points to the Rhapsody\Share
directory.
Rhapsody 9

The Deployment Environment
Implementing the Abstract Factory
Each RTOS adapter consists of a concrete operating system factory, which implements the abstract
operating system factory. To create the concrete factory for a new target, follow these steps:

1. Create a specification file and an implementation file, each prefixed by the operating
system (environment) name using the convention <env>OS, where <env> is an
abbreviation for the environment name. For example, the adapter source files for
VxWorks are named VxOS.h and VxOS.cpp. The concrete factory for the VxWorks
environment is implemented in these files.

Note: You should use an existing implementation as a starting point for the adapter.
For example, if VxWorks is the closest existing environment to the new target,
copy and rename the VxOS.h and VxOS.cpp files to use as a template. Make
sure that all the adapter implementation classes in these files are prefixed in a
consistent manner. For example, the concrete factory for VxWorks is named
VxOSFactory.

2. Rename all environment-specific prefixes in the copied files from the old to the new
environment name. Note that using the operating system as a prefix for operating system
wrapper classes is a Rhapsody convention; you can create your own naming scheme.

Plugging in the Factory
The factory mediates between the application and the concrete, operating system-dependent
adapter classes.

To plug in the concrete factory, you must create a specific <env>OSFactory that inherits from the
OMOSFactory in the OXF. This class is declared in the <env>OS.h file.

For example, in the VxOS.h file, the VxOSFactory class inherits from the OMOSFactory in the
OXF, as follows:

///

class VxOSFactory : public OMOSFactory {

// OSFactory hides the RTOS mechanisms for tasking and
// synchronization
10 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
Defining the Virtual Operations

Within the <env>OSFactory class declaration, you must define a set of virtual operations that
will create the operating system services needed by the application. These services include tasking,
synchronization, connection ports, message queues, and timing services.

In the VxOS.h file, the declaration of virtual operations is as follows:

public:
virtual OMOSMessageQueue *createOMOSMessageQueue(

OMBoolean /* shouldGrow */ = TRUE,
const long messageQueueSize =
OMOSThread::DefaultMessageQueueSize)

{ return (OMOSMessageQueue*)new
VxOSMessageQueue(messageQueueSize);}

virtual OMOSConnectionPort *createOMOSConnectionPort()
{
#ifdef _OMINSTRUMENT

return (OMOSConnectionPort*)new VxConnectionPort();
#else

return NULL;
#endif
}
virtual OMOSEventFlag* createOMOSEventFlag() {

return (OMOSEventFlag *)new VxOSEventFlag(); }
virtual OMOSThread *createOMOSThread(void tfunc(

void*), void *param,
const char* const threadName = NULL,
const long stackSize=OMOSThread::DefaultStackSize)
{return (OMOSThread*)new VxThread(tfunc, param,

threadName, stackSize);};
virtual OMOSThread* createOMOSWrapperThread(

void* osHandle) {
if (NULL == osHandle)
osHandle = getCurrentThreadHandle();
return (OMOSThread*)new VxThread(osHandle);

}
virtual OMOSMutex *createOMOSMutex() {return

(OMOSMutex*)new VxMutex();}
virtual OMOSTimer *createOMOSTickTimer(timeUnit tim,

void cbkfunc(void*), void *param) {
return (OMOSTimer*)new VxTimer(tim, cbkfunc,
param); // TickTimer for real time

}
virtual OMOSTimer *createOMOSIdleTimer(

void cbkfunc(void*), void *param) {
return (OMOSTimer*)new VxTimer(cbkfunc, param);

/ Idle timer for simulated time
}
virtual OMOSSemaphore* createOMOSSemaphore(

unsigned long semFlags = 0,
unsigned long initialCount = 1,
unsigned long /* maxCount */ = 1,
const char * const /* name */ = NULL)

{
return (OMOSSemaphore*) new VxSemaphore(

semFlags, initialCount);
}

virtual void* getCurrentThreadHandle();
virtual void delayCurrentThread(timeUnit ms);
Rhapsody 11

The Deployment Environment
virtual OMBoolean waitOnThread(void* osHandle,
timeUnit ms) {return FALSE;

}
};

The instance Function

To finish plugging in the concrete factory, you must create the instance function, defined in
<env>OS.cpp, which returns a pointer to the concrete operating system factory. The instance
method creates a single instance of the OMOSFactory. It is defined as follows:

static OMOSFactory* instance();

For example, in VxWorks, the declaration is as follows:

OMOSFactory* OMOSFactory::instance()
{

static VxOSFactory theFactory;
return &theFactory;

}

12 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
Implementing the Adapter Classes
To implement the adapter classes, you inherit from the OXF classes defined in the os.h file and
provide an implementation for each of these classes. You must implement the following classes:

� OMOSConnectionPort

� OMOSEventFlag

� OMOSMessageQueue

� OMOSMutex

� OMOSSemaphore

� OMOSSocket

� OMOSThread

� OMOSTimer

It is common practice to add the <env> prefix to each implemented class.

For example, you would implement the OMOSMutex class for VxWorks as follows:

1. The OXF class for a mutex is OMOSMutex, so the VxWorks adapter class that inherits
from OMOSMutex is named VxMutex.

2. Implement each of the interface operations defined for the class. The OMOSMutex class is
defined in os.h as follows:

class RP_FRAMEWORK_DLL OMOSMutex {
 OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS
 public:
 virtual ~OMOSMutex(){};
 virtual void lock() = 0;
 virtual void unlock() = 0;
 virtual void* getOsHandle() const = 0;
 #ifndef OSE_DELTA
 // backward compatibility support for non-OSE
 // applications
 void free() {unlock();}
 #endif
 };

3. Place the specification of the new adapter class in the VxOS.h:

class VxMutex: public OMOSMutex {
private:
 SEM_ID hMutex;
public:
 void lock() {semTake(hMutex, WAIT_FOREVER);}
 void unlock() {semGive(hMutex);}
 VxMutex() {
Rhapsody 13

The Deployment Environment
 // hMutex = semBCreate(SEM_Q_FIFO, SEM_FULL);
 hMutex = semMCreate(SEM_Q_FIFO);
 }

 ~VxMutex() {semDelete(hMutex);}

 void* getHandle() {return (void *)hMutex;}
 virtual void* getOsHandle() const {return (void*)
 hMutex;}
};

Modifying rawtypes.h
The rawtypes.h file contains the basic types supplied by the RTOS to be used by the OXF. If you
are creating a new RTOS, you must add the include file for that environment.

For example, the VxWorks section of the rawtypes.h file is as follows:

// Basic os definitions

#ifdef VxWorks
#include <vxWorks.h>
#endif

Other Operating System-Related Modifications
You might need to modify the setInput method of the TOMUI class to support tracing in a new
operating system. When creating input streams for the stepper, there might be compilation errors if
the call to create a new ifstream in the setInput method uses ios::nocreate. Because
ios::nocreate is not part of the C++ standard, some compilers (such as Green Hills) do not
support it. Currently, the implementation of setInput in the tom\tomstep.cpp file has options
to create ifstreams for UNIX and the STL without using ios::nocreate. The implementation
is as follows:

ifdef unix
// unix : Actually Solaris 2 cannot open for READ if
// the ios::nocreate is placed here
ifstream* file = new ifstream(filename);

#else
#ifdef OM_USE_STL

ifstream* file = new ifstream(filename);
#else

ifstream* file = new ifstream(filename,ios::nocreate);
#endif

In addition, you might need to add another #ifdef clause if the new environment does not
support ios::nocreate. For example, add the following lines of code before the last #else for
the Green Hills compiler:

#else
#ifdef green

ifstream* file = new ifstream(filename);
14 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
Step 3: Creating Makefiles

Each adapter must provide a set of makefiles and a batch file for building the new OXF libraries
(including the OSAL), using its provided cross-compiler. The following table lists the makefile for
each library.

The compiled framework libraries are linked to the application generated from the Rhapsody
model, which has its own makefile. The application makefile is specified via the
MakeFileContent property, which you modify in the site<lang>.prp file. See Makefiles for
details.

Makefile Description Built With

oxf Run-time libraries <env>oxf.mak

aom Instrumentation libraries that support
both tracing and animation

<env>aom.mak

tom Instrumentation library that supports
tracing

<env>tom.mak

omcom Communication libraries that support
communication between Rhapsody
and an instrumented application

<env>omcom.mak
Rhapsody 15

The Deployment Environment
Creating the Batch File and Makefiles
1. Create a batch file to set the environment named <env>make.bat, call the makefile, and

save it to $OMROOT\etc. This file can be used to build the framework as well as a
Rhapsody model (see also Building the C or C++ Framework in One Step).

2. Create the following makefiles and save them to the specified locations.

You might also need to copy any RTOS-specific configuration files required to build the libraries
to $OMROOT\MakeTempl. For example, pSOSystem™ requires drv_conf.c and sys_conf.h.
In addition, you might need to copy the root.cpp file. Replace these files with any board-specific
versions, if necessary.

File Location Description

<env>build.mak $OMROOT\Lang<lang> Calls the other makefiles to build
the Rhapsody framework libraries
(see Sample <env>build.mak
File).

<env>aom.mak $OMROOT\Lang<lang>\aom Builds the instrumentation libraries:
• <env>aomtrace
• <env>aomanim

<env>omcom.mak $OMROOT\Lang<lang>\omcom Builds the communication library
for instrumentation
(<env>omcomappl)

<env>oxf.mak $OMROOT\Lang<lang>\oxf Builds the OXF libraries:
• <env>oxf
• <env>oxfinst

See OXF Versions for descriptions
of the different OXF libraries.

<env>tom.mak $OMROOT\tom Builds the tracing libraries:
• <env>tomtrace
• <env>tomtraceRiC

(for Rhapsody in C)
16 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
Sample <env>build.mak File
The following is an example of the vxbuild.mak file, which is used to build the framework for
the VxWorks environment.

MAKE=make

CPU=I80486

ifeq ($(PATH_SEP),)
all :

@echo PATH_SEP is not defined. Please define it as \\
or /
else
all :

$(MAKE) all -C oxf -f vxoxf.mak CFG=vxoxf CPU=$(CPU)
PATH_SEP=$(PATH_SEP)

$(MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfsim
CPU=$(CPU)

PATH_SEP=$(PATH_SEP)
$(MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfinst

CPU=$(CPU) PATH_SEP=$(PATH_SEP)
$(MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfsiminst

CPU=$(CPU) PATH_SEP=$(PATH_SEP)
$(MAKE) all -C omcom -f vxomcom.mak CFG=vxomcomapplCPU=$(CPU)

PATH_SEP=$(PATH_SEP

$(MAKE) all -C tom -f vxtom.mak CFG=vxtomtrace
CPU=$(CPU) PATH_SEP=$(PATH_SEP)

$(MAKE) all -C tom -f vxtom.mak CFG=vxtomtraceRiC
CPU=$(CPU) PATH_SEP=$(PATH_SEP)

$(MAKE) all -C aom -f vxaom.mak CFG=vxaomtrace
CPU=$(CPU) PATH_SEP=$(PATH_SEP)

$(MAKE) all -C aom -f vxaom.mak CFG=vxaomanim
CPU=$(CPU) PATH_SEP=$(PATH_SEP)

endif

This makefile:

� Sets the make command for the VxWorks environment (make).
� Sets the CPU being targeted (I80486 = Intel 80486).
� Checks whether the path separator (PATH_SEP) character was properly set. If not, it

generates an error and cancels the build.
� Sets the all: command to build the framework libraries for the various configurations

(with and without animation, real-time or simulated time, and so on).
Rhapsody 17

The Deployment Environment
Creating New Makefiles
You should use the existing makefile for the environment that most closely resembles the new
RTOS as a template. The GNU version of the Solaris™ makefile (sol2buildGNU.mak) is the
most neutral makefile, because it is based on general GNU make capabilities, as opposed to the
more target-specific makefiles (such as msoxf.mak), which are specific to a particular
environment.

OXF Versions
In the current implementation, the Rhapsody OXF is compiled in the following versions:

� OXF—Production, real-time OXF
� OXFINST—Instrumented OXF (for animation)

Animation Libraries
To support instrumentation (animation or tracing), Rhapsody requires other libraries besides the
OXF libraries to be linked to the generated application. These libraries are specific to the target
operating system. The aom and omcom libraries have corresponding makefiles that are similar to
the OXF.

C++ Libraries

The compiled C++ libraries are located in the $OMROOT\LangCPP\lib directory:

� For C++ animation, you need <env>aomanim.lib (for example, vxaomanim.lib) and
<env>omComAppl.lib.

� For C++ trace, you need <env>aomtrace.lib, <env>omComAppl.lib, and
<env>tomtrace.lib.

The C++ libraries require support for C++ I/O streams. For operating systems without I/O streams
(such as Windows CE®), set the _OM_NO_IOSTREAM flag in the makefile used to compile the
libraries to the RHAP_FLAGS command, as follows:

RHAP_FLAGS=-D _OM_NO_IOSTREAM

Note
Windows CE does not support tracing because it does not have I/O streams. There is no
tracer library that does not require I/O streams.
18 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
C Libraries

The compiled C libraries are located in the $OMROOT\LangC\lib directory:

� For C animation, you need <env>aomanim.lib and <OS>omComAppl.lib.
� For C trace, you need <env>aomtrace.lib, <env>omComAppl.lib,

<env>tomtraceRiC.lib, and <env>oxfinst.lib.
Of the instrumentation libraries for C, five were written natively in C. However,
<env>tomtraceRic is a C++ library that is located in $OMROOT\LangCpp\lib. It provides C
tracing services, although the library itself was written in C++. Because the library is precompiled,
you need only link to it. Therefore, the language in which it was written should be of no concern.

Java Libraries

The compiled Java libraries are supplied as jar files in the $OMROOT\LangJava\lib directory.
For Java animation, you need the files anim.jar and animcom.jar.
Rhapsody 19

The Deployment Environment
Step 4: Building the Framework Libraries

The following sections describe how to rebuild the framework libraries, according to language and
platform. The topics are as follows:

� Building the C or C++ Framework for Windows Systems

� Building the Ada Framework

� Building the Java Framework

� Building the Framework for Solaris Systems

Note
Some environments require you to set additional macros in the invocation command.
Typically, there are also optional switches to control compilation. See the Properties
Reference Manual for the makefile contents for the supported environments, which includes
these macros and switches.

Building the C or C++ Framework for Windows Systems
You can build the framework libraries for C or C++ on Windows systems in either one or two
steps.

Note
See Adapter-Specific Info for environment-specific build information for Rhapsody in C and
C++.

Building the C or C++ Framework in Two Steps

To build the framework, follow these steps:

1. If necessary, set any environment variables required by the target
cross-compiler. For example, running $OMROOT\etc\vcvars32.bat sets the
environment for the Microsoft® compiler.

Note: The <env>build.mak makefile builds all run-time libraries and saves them to
the $OMROOT\lib directory.

2. Change directory to the $OMROOT\Lang<lang> directory and issue the appropriate make
command for the target environment with the <env>build.mak file as an argument. For
example:

> make -f vxbuild.mak PATH_SEP=<path separator>

Note that the path separator for VxWorks can defined as either \\ or /.
20 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
Building the C or C++ Framework in One Step

You can combine the two steps into one by using the <env>make.bat file with
<env>build.mak as its argument. The batch file sets the environment before invoking the
makefile. For example, the following is the msmake.bat file used to set the environment and then
build files for the Microsoft environment:

@echo off
if "%2"=="" set target=all
if "%2"=="build" set target=all
if "%2"=="rebuild" set target=clean all
if "%2"=="clean" set target=clean
call "D:\Rhapsody\Share\etc\Vcvars32.bat" x86
echo ``nmake.exe
nmake /nologo /I /S /F %1 %target%

The <lang>_CG::<Environment>InvokeMake property uses the <env>make.bat batch file
to build a Rhapsody model for a specific target environment. You can use the same batch file to
build the framework libraries for that environment. Thus, the command to build the C or C++
framework libraries (from the $OMROOT\Lang<lang> directory) for most environments becomes:

> ..\etc\<env>make.bat <env>build.mak

This is the preferred method for building the framework libraries for all environments and
operating systems except Solaris (see Building the Framework for Solaris Systems) and the JDK.

Building the Ada Framework
To use animation with Rhapsody in Ada, you must have version 3.13p of the GNAT compiler.
Otherwise, you must recompile the framework.

To recompile the framework, follow these steps:

1. Install the Rhapsody in C framework source code. The Rhapsody in C framework is used
to enable Rhapsody in Ada animation.

2. Build the Ada behavioral libraries as follows:

a. Open the model <Rhapsody>\Share\LangAda83\model\RiAServices.rpy.

b. Generate and build the code.

c. Build the animation C libraries using the makefile included in the directory
<Rhapsody>\Share\LangC. For example:

 make -f AdaWinbuild.mak GNAT_HOME=e:/gnat/*

Note
In GNAT 3.15p, the directory layout was modified. If you are using 3.15p and higher,
update the C makefiles by replacing the string "mingw32" with the string
"GNAT_WIN32_LIBS=pentium-mingw32msv" to the makefile invocation command.
Rhapsody 21

The Deployment Environment
If you have several compilers installed on your machine, make sure that you invoke the make
utility supplied by GNAT (verify that the GNAT\bin directory is added to your path before any
other compiler).

Note
To compile the C framework with GNAT, you must install the Windows API support
package as well as the Ada common package.

Building the Java Framework
Rhapsody in J® provides a real-time framework for Java™ in the form of a Rhapsody model
(oxf.rpy) under the $OMROOT\LangJava\model\oxf directory. The best way to build the Java
framework is to open this model and build it in Rhapsody (by selecting Code > Generate/Make).

You can also build the Java framework outside of Rhapsody. However, you must first generate
code for the oxf.rpy model inside of Rhapsody to create the OXFLib.bat file (using Code >
Generate > NonInstrumented). Build the Java framework using the following steps:

1. Open a command prompt window.

2. Change directory to the OMROOT\LangJava\src directory.

3. Run OXFLib.bat.

Building the Framework for Solaris Systems
Because there is no cross-compiler that can build Solaris code on the PC, the framework libraries
that are linked into Solaris applications must be built on Solaris. In addition to the framework
source files, you need a script that removes carriage returns from framework source files to be
built on Solaris. These are provided in the Solaris library’s tar file, which is installed when you
select the Solaris 2.x Libraries option during the Rhapsody installation.

To build the framework, follow these steps:

1. When installing Rhapsody on the PC, select the Solaris 2.x Libraries option. This installs
the sol2shr.tar file, which contains the files needed to build the framework for
Solaris.

2. On the Solaris machine, create a rhapsody directory. For example:

$ mkdir /usr/rhapsody

3. Copy the sol2shr.tar file from the PC to the rhapsody directory on the Solaris
machine.

4. On the Solaris machine, unzip the sol2shr.tar file in the rhapsody directory using the
following command:
22 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
$ tar xvf sol2shr.tar

This creates a Share directory under rhapsody and extracts the framework source
files to the appropriate subdirectories. It also extracts the GNU make executable and
the removeCR.sh script to the Share/etc directory. The script removes carriage
returns from UNIX files.

5. On the Solaris machine, set the OMROOT environment variable to point to the new Share
directory. For example, if you created the Share directory as
/usr/rhapsody/Share, use the following command to set OMROOT:

$ setenv OMROOT /usr/rhapsody/Share

6. Ensure that the path to the compiler is set in the PATH variable.

7. Change directory to $OMROOT/Lang<lang>.

8. Run the removeCR.sh script to remove carriage returns from the sol2build.mak and
sol2buildGNU.mak files using the following command:

$../etc/removeCR.sh sol2build*.mak

9. Change directory to $OMROOT/Lang<lang>/aom and run the removeCR.sh script to
remove carriage returns from all the makefiles and source files in the directory using the
following command:

$../../etc/removeCR.sh *.mak *.h *.cpp

10. Repeat go to step 9 for each of the omcom, oxf, and tom subdirectories of $OMROOT/
Lang<lang>.

11. Change directory to $OMROOT/Lang<lang>.

12. If you are using the Forte compiler, build the framework libraries using the following
command:

$../etc/make -f sol2build.mak

If you are using the GNU compiler, use the following command:

$../etc/make -f sol2buildGNU.mak
Rhapsody 23

The Deployment Environment
Step 5: Creating Properties for a New RTOS

To complete the process of adding a new environment, you must give Rhapsody information about
the development tools it uses, such as the compiler, linker, make utility, and libraries. To do this,
you must customize all of the language-specific code generation properties for the new
environment by creating site<lang>.prp files in the $OMROOT\Properties directory for
each language you intend to support in the new environment. The language-independent
site.prp file is required for any build; any language-specific site<lang>.prp files are used
only if they are present.

The search path in Rhapsody for site and factory properties is as follows:

site<lang>.prp -> site.prp -> factory<lang>.prp -> factory.prp

As you move from left to right in this search path, properties defined in the files on the left
override the same properties defined in files on the right.

Note
Do not modify any of the original factory.prp or language-specific
factory<lang>.prp files. Otherwise, you will not be able to return to the factory
defaults.

Modifying the site<lang>.prp Files
To add the new environment as a possible selection for a configuration, follow these steps:

1. Open the factory<lang>.prp properties file for each language that the new
environment supports. For example, if the environment supports C++, open the
factoryC++.prp file.

2. From the existing site.prp file, create language-specific site<lang>.prp files for
each language that the new environment supports. For example, if the environment
supports Java, save the file as siteJava.prp.

3. In the new site<lang>.prp file, insert the following line above the line that contains
the end keyword:

 Subject <lang>_CG

Replace <lang> with CPP for C++, C for C, or JAVA for Java (case sensitive).
Repeat for each language.

4. In the new site<lang>.prp file, add the following lines between the Subject
<lang>_CG and end lines, with this indentation:

Metaclass Configuration
end
24 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
5. From the factory<lang>.prp file, copy the Property Environment line from the
Metaclass Configuration and paste it into the corresponding location in the new
site<lang>.prp file.

6. Add the new environment to the end of the enumerated values in the Environment
property. For example, change the line Property Environment Enum
"Microsoft,Vxworks,..." to the following:

Property Environment Enum "Microsoft,Vxworks,...,<env>OS"

7. If the new operating system will be the default environment for the respective language,
replace the last string in the Environment line with the name of the new environment.
For example, change the line Property Environment Enum
"Microsoft,VxWorks,...,envOS" "Microsoft" to the following:

Property Environment Enum "Microsoft,VxWorks,...,
 <env>OS" "<env>OS"

For example, if you are creating C++ code generation properties, your
siteC++.prp file would now look like this:

Subject CPP_CG
 Metaclass Configuration
 Property Environment Enum "Microsoft,VxWorks,
 Solaris2, Borland, MSStandardLibrary, PsosPPC,
 MicrosoftWinCE,OseSfk,<env>OS" "<env>OS"
 end
end

8. In the factory<lang>.prp file, find the metaclass for the environment that most
closely resembles the new target environment.

9. Copy the entire metaclass, including its closing end line, into the new site<lang>.prp
file, between the closing end statement for the Configuration metaclass and that for
the <lang>_CG subject.

10. Save the new site<lang>.prp file.

11. Repeat the process for each language.

12. In the new site<lang>.prp file, rename the copied metaclass to the name of the new
operating system:

Metaclass <env>OS
 Property InvokeExecutable String ...
end

13. Modify the InvokeMake property (under <lang>_CG::<Environment>) to use the
correct <env>make.bat batch file for the new environment.
Rhapsody 25

The Deployment Environment
14. Modify each of the code generation properties, especially MakeFileContent and its
related properties (described in Makefiles) as appropriate for the new environment,
replacing any occurrences of the operating system-specific prefix with the corresponding
prefix for the new operating system.

Note: The most important properties for a new environment are those that interact
with the makefile.

15. Save the site<lang>.prp file. Repeat for each language.

16. Restart Rhapsody to load the new site<lang>.prp files.

Setting the Environment
You can set the new environment as the default or you can select it from the list of available
environments for a configuration in the Rhapsody browser.

In the browser, you can set the Environment property as follows:

� For a project—All new components (and their configurations) will use the environment
by default.

� For a component—All new configurations within the component will use the
environment by default.

� For a particular configuration—Only that configuration will use the environment by
default.

To set the Environment property, follow these steps:

1. Decide the scope of the setting:

a. To set the environment for the entire project, select
File > Project Properties.

b. To set the environment for a component or a configuration, right-click the component
or configuration, then select Properties from the popup-menu.

2. In the Features dialog box, under the <lang>_CG subject, select the Configuration
metaclass.

3. Select the Environment property and change it to the name of the new environment. For
example, <env>OS.
26 RTOS Adapter Guide

Adapting Rhapsody to a New RTOS
Step 6: Validating the New Adapter

To test the new adapter, follow these steps:

1. Try building a simple “Hello World” using Rhapsody and your new adapter. In Rhapsody,
create a class that prints the string “Hello World” when the class is instantiated. When you
generate code, be sure to select your new environment in the configuration settings.

2. Try building the application. This will immediately find problems in your adapter, because
building the application requires the use of the generated makefile. To see the generated
makefile, right-click on the configuration in Rhapsody and select Edit Makefile. At this
point, you might need to adjust the properties to get the correct generated makefile for
your application.

3. When you have successfully built the Hello World application, make your application
more complex by adding more classes, putting in include paths, and specifying some
libraries to link in. This will continue to test the properties you defined in Step 5: Creating
Properties for a New RTOS.

4. You must test the framework part of the adapter (see Step 2: Modifying the Framework) by
running the Hello World example. If it does not run correctly, you might not have
implemented the framework classes correctly.

For example, Rhapsody creates a main thread for all applications. Check to make sure that
this thread was created correctly for your particular environment.

Note: Note that for this step, it is best to use your native compiler.

5. When the Hello World application runs successfully, make your application more
complex. For example:

a. Create some active objects.

b. Create statecharts for some objects.

c. Use timeouts in the statecharts.

d. Send messages and events between objects and active objects.

e. Use protection by guarding operations and attributes.

f. Change the instrumentation to tracing.

g. Change the instrumentation to animation.

By implementing an application that tests for this functionality, you have validated a major portion
of the adapter. To complete the validation, request a copy of the RTOS Adapter Test Suite from
IBM Rhapsody Support. This test suite consists of several models that cover most of the scenarios
needed to test an RTOS adapter.
Rhapsody 27

The Deployment Environment
Summary
The OSAL gives you the unique ability to develop and test application and algorithmic code of
embedded, real-time systems in the environment that best suits your needs. You can implement
and test the actual concurrent behavior and interactions, including interleave and stress testing, in
an implementation environment. Then, when ready, you can painlessly adapt the code to an
embedded target where debug facilities are often extremely limited. The interface provided by the
operating system adapter remains the same.

See the Properties Reference Manual for the complete list of RTOSes for which the OSAL has
been adapted.
28 RTOS Adapter Guide

Makefiles
The process of building an adapter for a new RTOS is not complete until you define the makefiles
that are used to build applications in the new environment. To do this, follow these steps:

1. Define a make batch file.

2. Run the batch file used to build and run applications.

3. Redefine the properties that include such information as compile and link switches needed
to interact with the application makefile. These properties provide some of the content for
the makefile.

4. Specify a template for the generated makefile by redefining the MakeFileContent
property (under <lang>_CG:: <Environment>) for the new environment.

This section describes these steps in detail.

Step 1: Creating a Make Batch File
Create a batch file that sets the environment and then calls the generated makefile for the
application. Name the batch file <env>make.bat and save it to the $OMROOT\etc directory. This
batch file can be used to build both Rhapsody applications and the framework itself (except for
Solaris).

Step 2: Running the Batch File
In some cases, you will need an <env>Run.bat in addition to the make batch file (for example,
there is a jdkrun.bat for Java). This file is used only to run the application, and is saved to the
$OMROOT\etc directory. The InvokeExecutable property, one of the code generation
properties to be redefined for the new environment, might execute the run batch file. For example,
the InvokeExecutable property for the OSE SFK environment calls the osesfkRun.bat file,
which sets the LM_LICENSE_FILE variable for the OSE environment and then calls an executable
file. In this case, you can use the osesfkRun.bat file to invoke the osesfkmake.bat file to
build applications for OSE.
Rhapsody 29

Makefiles
Step 3: Redefining Makefile-Related Properties
The most crucial code generation properties to modify are the ones that interact with the makefile
to build and link the framework libraries for the new environment. These properties are found in
the specific environment metaclass under the <lang>_CG subject for a given language. For
example, the code generation properties for VxWorks in C++ are listed under CPP_CG::VxWorks.

The following table lists the properties help build and link code in the new RTOS.

Property Description

CompileSwitches Specifies the compiler the switches to be used for
any type of build.

CPPCompileCommand Specifies the environment-specific compilation
command used in the makefile. This command is
referenced in the makefile via the
OMCPPCompileCommandSet variable.
If you modified the generated dependencies
section of the MakeFileContent property to
generate a new .obj file every time you compile,
you need to change the CPPCompileCommand
property as follows:
" if exist $OMFileObjPath del
$OMFileObjPath
$(CPP) $OMFileCPPCompileSwitches /
Fo\"$OMFileObjPath\"
\"$OMFileImpPath\" "

CPPCompileDebug Modifies the makefile compile command with
switches for building a Debug version of a
component.

CPPCompileRelease Modifies the makefile compile command with
switches for building a Release version of a
component.

DependencyRule Specifies how file dependencies for a configuration
are generated in the makefile.

FileDependencies Specifies which framework source files to include
when building model elements. The file inclusions
are generated in the makefile.

LinkDebug Specifies the special link switches used to link in
Debug mode.

LinkRelease Specifies the special link switches used to link in
Release mode.

LinkSwitches Specifies the standard link switches used to link in
any mode.

ObjCleanCommand Specifies the environment-specific command used
to clean the object files generated by a previous
build.
30 RTOS Adapter Guide

Step 4: Redefining the MakeFileContent Property
Note
Refer to the Rhapsody Properties Reference Manual for the overall structure of properties
within Rhapsody and the properties’ uses to customize the Rhapsody environment. The
individual definitions of properties and their defaults are displayed in the Features dialog
box. You may also examine the complete list of Rhapsody property definitions in the
Rhapsody Property Definitions PDF file available from the List of Books. That list can be
searched along with the other PDF versions of the Rhapsody documentation to locate
specific property definitions and the procedures that use them.

Step 4: Redefining the MakeFileContent Property
Finally, you must specify a template for the generated makefile by redefining the
MakeFileContent property (under <lang>_CG::<Environment>) for the new environment.
The code generator uses the template defined in this property to generate the makefile used to
build a specific model.

A makefile has the following sections:

� Target type
� Compilation flags
� Commands definitions
� Generated macros
� Predefined macros
� Generated dependencies
� Linking instructions

The following sections describe the contents of the makefile in detail.
Rhapsody 31

Makefiles
Target Type

The target type section of the makefile contains the macros needed to build either a Debug or
Release version of a configuration.

For example, the default content of the target type section of a C++ makefile for the Microsoft
environment is as follows:

############# Target type (Debug/Release) ###############

###

CPPCompileDebug=$OMCPPCompileDebug
CPPCompileRelease=$OMCPPCompileRelease
LinkDebug=$OMLinkDebug
LinkRelease=$OMLinkRelease
BuildSet=$OMBuildSet
SUBSYSTEM=$OMSubSystem
COM=$OMCOM
RPFrameWorkDll=$OMRPFrameWorkDll

ConfigurationCPPCompileSwitches=
$OMReusableStatechartSwitches

 $OMConfigurationCPPCompile Switches

!IF "$(RPFrameWorkDll)" == "True"
ConfigurationCPPCompileSwitches=

$(ConfigurationCPPCompileSwitches) /D "FRAMEWORK_DLL"
!ENDIF

!IF "$(COM)" == "True"
SUBSYSTEM=/SUBSYSTEM:windows
!ENDIF

Compilation Flags

The compilation flags section of the makefile contains the default compilation flags stored in the
CompileSwitches property.

For example, the default content of the compilation flags section of a C++ makefile for the
Microsoft environment is as follows:

################### Compilation flags ##################
###
INCLUDE_QUALIFIER=/I
LIB_PREFIX=MS
32 RTOS Adapter Guide

Step 4: Redefining the MakeFileContent Property
Commands Definitions

The commands definition section of the makefile specifies programs to execute from the makefile.

For example, the default commands definition section of a C++ makefile for the Microsoft
environment is as follows:

############ Commands definition ################
###
RMDIR = rmdir
LINK_CMD=link.exe
LIB_FLAGS=$OMConfigurationLinkSwitches
LINK_FLAGS=$OMConfigurationLinkSwitches $(SUBSYSTEM) /

MACHINE:I386
Rhapsody 33

Makefiles
Generated Macros

The generated macros section of the makefile contains a variable that expands to the Rhapsody-
generated macros in the makefile. For example:

############### Generated macros #################
##
$OMContextMacros
OBJ_DIR=$OMObjectsDir

!IF "$(OBJ_DIR)"!=""
CREATE_OBJ_DIR=if not exist $(OBJ_DIR) mkdir $(OBJ_DIR)
CLEAN_OBJ_DIR= if exist $(OBJ_DIR) $(RMDIR) $(OBJ_DIR)
!ELSE
CREATE_OBJ_DIR=
CLEAN_OBJ_DIR=
!ENDIF

The $OMContextMacros keyword expands several macros in the makefile. Each makefile macro
has its own keyword. You can use these keywords separately to customize the makefile.

The $OMContextMacros variable enables you to modify target-specific variables. Replace the
$OMContextMacros line in the MakeFileContent property with the following:

FLAGSFILE=$OMFlagsFile
RULESFILE=$OMRulesFile
OMROOT=$OMROOT
CPP_EXT=$OMImplExt
H_EXT=$OMSpecExt
OBJ_EXT=$OMObjExt
EXE_EXT=$OMExeExt
LIB_EXT=$OMLibExt
INSTRUMENTATION=$OMInstrumentation
TIME_MODEL=$OMTimeModel
TARGET_TYPE=$OMTargetType
TARGET_NAME=$OMTargetName
$OMAllDependencyRule
TARGET_MAIN=$OMTargetMain
LIBS=$OMLibs
INCLUDE_PATH=$OMIncludePath
ADDITIONAL_OBJS=$OMAdditionalObjs
OBJS= $OMObjs
34 RTOS Adapter Guide

Step 4: Redefining the MakeFileContent Property
Predefined Macros

The predefined macros section of the makefile contains other macros than the Rhapsody-generated
macros specified in the generated macros section.

For example, part of the default predefined macros section of a C++ makefile for the Microsoft
environment is as follows:

########### Predefined macros ###########
###

$(OBJS) : $(INST_LIBS) $(OXF_LIBS)
LIB_POSTFIX=
!IF "$(BuildSet)"=="Release"
LIB_POSTFIX=R
!ENDIF

!IF "$(TARGET_TYPE)" == "Executable"
LinkDebug=$(LinkDebug) /DEBUG
LinkRelease=$(LinkRelease) /OPT:NOREF
!ELSEIF "$(TARGET_TYPE)" == "Library"
LinkDebug=$(LinkDebug) /DEBUGTYPE:CV
!ENDIF
.
.
.

Generated Dependencies

The generated dependencies section of the makefile contains a variable that expands to Rhapsody-
generated dependencies and compilation instructions.

For example, the generated dependencies section of a C++ makefile for the Microsoft environment
is as follows:

############# Generated dependencies ################
###
$OMContextDependencies

$OMFileObjPath : $OMMainImplementationFile $(OBJS)
$(CPP) $(ConfigurationCPPCompileSwitches) /
Fo"$OMFileObjPath" $OMMainImplementationFile
Rhapsody 35

Makefiles
Makefile Linking Instructions

The linking instructions section of the makefile contains the predefined linking instructions.

For example, the default linking instructions section of a C++ makefile for the Microsoft
environment is as follows:

############## Linking instructions #################
###
$(TARGET_NAME)$(EXE_EXT): $(OBJS) $(ADDITIONAL_OBJS) $OMFileObjPath
$OMMakefileName $OMModelLibs

@echo Linking $(TARGET_NAME)$(EXE_EXT)

$(LINK_CMD) $OMFileObjPath $(OBJS) $(ADDITIONAL_OBJS) \

$(LIBS) \

$(INST_LIBS) \

$(OXF_LIBS) \

$(SOCK_LIB) \

$(LINK_FLAGS) /out:$(TARGET_NAME)$(EXE_EXT)

$(TARGET_NAME)$(LIB_EXT) : $(OBJS) $(ADDITIONAL_OBJS) $OMMakefileName

@echo Building library $@

$(LIB_CMD) $(LIB_FLAGS) /out:$(TARGET_NAME)$(LIB_EXT) $(OBJS)
$(ADDITIONAL_OBJS)

clean:

@echo Cleanup

$OMCleanOBJS

if exist $OMFileObjPath erase $OMFileObjPath

if exist *$(OBJ_EXT) erase *$(OBJ_EXT)

if exist $(TARGET_NAME).pdb erase $(TARGET_NAME).pdb

if exist $(TARGET_NAME)$(LIB_EXT) erase $(TARGET_NAME)$(LIB_EXT)

if exist $(TARGET_NAME).ilk erase $(TARGET_NAME).ilk

if exist $(TARGET_NAME)$(EXE_EXT) erase $(TARGET_NAME)$(EXE_EXT)

$(CLEAN_OBJ_DIR)
36 RTOS Adapter Guide

Step 4: Redefining the MakeFileContent Property
Java Users

To generate Java JAR files, invoke the jar command from the makefile, using the
MakeFileContent property. You can specify the manifest file as an external file with a text
element in it. You can add additional files to the model for completeness.

There is no specialized support for RMI in Rhapsody. Call the JDK and invoke the relevant tools
manually, or via the generated makefile (change the MakeFileContent property).
Rhapsody 37

Makefiles
38 RTOS Adapter Guide

The IDE Interface
The integrated development environment (IDE) interface is a DLL that exports a set of C
definitions, structures, and functions. The DLL header is supplied as part of Rhapsody installation
(in <root>/Share/DLLs/ideabs.h). Because this file defines an abstract IDE for Rhapsody,
you can use it to create your own DLL to interface to other IDEs.

Defines
Defines represent the IDE interface state. The defines are as follows:

� OM_IDE_CONNECTED—The DLL is connected to the IDE.
� OM_IDE_EXEC_DOWNLOADED—The image was downloaded to the target.
� OM_IDE_EXEC_RUNNING—The image is running on the target.
� OM_IDE_EXEC_BREAK—The image is in a breakpoint.

Note
If the IDE is not connected, the state is 0.

Structures
The OMIDECallbacks structure stores a set of callback functions to enable the IDE to call
Rhapsody. The following callbacks are called by the IDE interface:

� ConnectionClosedNotify—Notifies Rhapsody when the connection to the IDE is
broken

� DoAnimationCommand—Makes Rhapsody perform user animation commands (for
example, Go Step)

� DbgBreakpointNotify—Notifies Rhapsody of a breakpoint in either animation or the
IDE debugger

� DbgContinueNotify—Notifies Rhapsody that the user continued execution on the IDE
debugger

� EnableVCRButtons—Forces control to pass to the user (in animation)
Rhapsody 39

The IDE Interface
Functions
The IDE functions called by Rhapsody are as follows:

void OMIDESetCallbacks(/*in*/struct OMIDECallbacks*);
Sets the callbacks for the IDE interface.

int OMIDEConnect(/*inout*/char* InOutConnectParam);
Connects to the debugger IDE.

The InOutConnectParam parameter is a string that contains the information needed to
establish the connection.

int OMIDEDisconnect();
Closes the connection with the IDE.

int OMIDEDownload(/*in*/char* fileName);
Instructs the IDE to download the specified file to the target.

int OMIDEUnload();
Instructs the IDE to unload the image.

int OMIDERun(/*in*/char* entryPoint,/*in*/char* language);
Instructs the IDE to run the image.

The parameters are as follows:

a. entryPoint—The entry point. This parameter is set by Rhapsody based on the
value of the <lang>_CG::<Environment>::EntryPoint property/

b. language—Specifies the application language, such as C or C++.

int OMIDEStop();
Instructs the IDE to stop execution of the image on the target.

int OMIDEEnd();
Is equivalent to sequence of call of OMIDEStop(), OMIDEUnload(), and
OMIDEDisconnect().

int OMIDEGetStatus();
Returns the IDE interface state. See Defines for the list of possible states.

int OMIDEContinue();
40 RTOS Adapter Guide

Functions
Instructs the IDE to continue execution, after the image reaches a breakpoint.
Rhapsody 41

The IDE Interface
42 RTOS Adapter Guide

The OSAL Classes
The operating system adapter is an implementation of the abstract factory pattern1. For example, in
Rhapsody in C++, the abstract operating system interface consists of the OMOSFactory class,
whose abstract products are classes that represent operating services such as OMOSThread,
OMOSMutex, and so on. Each target operating system has its own concrete factory and concrete
products that are similarly named, but with the OMOS prefix replaced with an operating system-
dependent prefix. For example, the prefix for VxWorks is VxOS, the prefix for pSOSystem is
PsosOS, and so on.

The abstract operating system interfaces are defined in RiCOSWrap.h (under
$OMROOT\LangC\oxf) and *os.h (under $OMROOT\LangCpp\oxf). Code that uses an
operating system adapter directly should include the appropriate file for the class definitions and
link with the compiled <env>oxf library or a variant of it.

The operating system interface provides abstract methods to create each type of operating system
entity. Because the created classes are abstract, the interface hides the concrete class and returns its
abstract representation.

This section contains reference pages for the classes and methods that comprise the abstract
interface. For ease-of-use, the classes are presented in alphabetical order under each programming
language:

� Rhapsody in C

� Rhapsody in C++

1.Design Patterns, Gamma et al., Addison Wesley 1995
Rhapsody 43

The OSAL Classes
Rhapsody in C
The single file RiCOSWrap.h defines the abstract classes and methods used for multiple
environment definitions (RiCOSNT.c, RiCVxWorks.c, and so on). Each adapter defines the
specific data (for example, struct) in its own .h file (RiCOSNT.h, RiCVxWorks.h, and so on).

The C methods described in this section include the corresponding VxWorks implementations
(defined in the file RiCOSVxWorks.c). Note that the VxWorks-specific methods are not included
in this section; see the appropriate files for details.

The C classes for the abstract interface are as follows:

� RiCOSConnectionPort Class

� RiCOSEventFlag Interface

� RiCOSMessageQueue Class

� RiCOSMutex Class

� RiCOSOXF Class

� RiCOSSemaphore Class

� RiCOSSocket Class

� RiCOSTask Class

� RiCOSTimer

� RiCHandleCloser Class
44 RTOS Adapter Guide

Rhapsody in C
RiCOSConnectionPort Class

The RiCOSConnectionPort class is used for interprocess communication between instrumented
applications and Rhapsody.

Creation Summary

Method Summary

create

Description

The create method creates an RiCOSConnectionPort object.

Signature

RiCOSConnectionPort *RiCOSConnectionPort_create();

Returns

The newly created connection port

Example

RiCOSConnectionPort * RiCOSConnectionPort_create()
{

RiCOSConnectionPort * me =
malloc(sizeof(RiCOSConnectionPort));

RiCOSConnectionPort_init(me);
return me;

}

create Creates an RiCOSConnectionPort
object

destroy Destroys the RiCOSConnectionPort
object

cleanup Cleans up after an
RiCOSConnectionPort object

init Initializes an RiCOSConnectionPort
object

Connect Connects a process to the instrumentation
server at the specified socket address and
port

Send Sends data out from the connection port

SetDispatcher Sets the connection dispatcher function,
which is called whenever there is an input
on the connection port (input from the
socket)
Rhapsody 45

The OSAL Classes
destroy

Description

The destroy method destroys the connection port.

Signature

void RiCOSConnectionPort_destroy(
RiCOSConnectionPort * const me);

Parameters

me

The RiCOSConnectionPort object to delete

Example

void RiCOSConnectionPort_destroy(
RiCOSConnectionPort * const me)

{
if (me == NULL) return;
RiCOSConnectionPort_cleanup(me);
free(me);

}

cleanup

Description

The cleanup method cleans up after an RiCOSConnectionPort object is destroyed.

Signature

void RiCOSConnectionPort_cleanup(
RiCOSConnectionPort * const me);

Parameters

me

The object to clean up after

Example

void RiCOSConnectionPort_cleanup(
RiCOSConnectionPort * const me)

{
if (me==NULL) return;
RiCOSSocket_cleanup(&me->m_Socket);

 /* Assumes you will have only one connection port
 so the data for m_Buf can be freed; if it is not

 the case, the readFromSockLoop will allocate it. */
46 RTOS Adapter Guide

Rhapsody in C
if (me->m_Buf) {
free(me->m_Buf);

}
me->m_BufSize = 0;

}

init

Description

The init method initializes the connection port.

Signature

RiCBoolean RiCOSConnectionPort_init(
RiCOSConnectionPort * const me);

Parameters

me

The RiCOSConnectionPort object

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSConnectionPort_init(
RiCOSConnectionPort * const me)

{
RiCBoolean b;

if (me==NULL) return RiCFALSE;
me->m_Buf = NULL;
b = RiCOSMutex_init(&me->m_SendMutex);
b &= RiCOSEventFlag_init(&me->m_AckEventFlag);
me->m_BufSize = 0;
me->m_Connected = 0;
me->m_dispatchfunc = NULL;
me->m_ConnectionThread = NULL;
me->m_ShouldWaitForAck = 1;
me->m_NumberOfMessagesBetweenAck = 0;
RiCOSEventFlag_reset(&me->m_AckEventFlag);
return b;

}

Rhapsody 47

The OSAL Classes
Connect

Description

The Connect method connects a process to the instrumentation server at the specified socket
address and port.

Signature

int RiCOSConnectionPort_Connect(
RiCOSConnectionPort *const me,
const char* const SocketAddress,
unsigned int nSocketPort);

Parameters

me

The RiCOSConnectionPort object.

SocketAddress

The socket address. The default value is NULL.

nSocketPort

The port number of the socket. The default value is 0.

Returns

The connection status. The possible values are as follows:

� 1—Success
� 0—Failure

Example

RiCOSResult RiCOSConnectionPort_Connect(
RiCOSConnectionPort * const me,
const char* const SocketAddress,
unsigned int nSocketPort)

{
if (me==NULL) return 0;

if (NULL == me->m_dispatchfunc) {
fprintf(stderr, "RiCOSConnectionPort_SetDispatcher
should be called before
RiCOSConnectionPort_Connect()\n");
return 0;

}

if (0 == me->m_Connected) {
(void)RiCOSSocket_init(&me->m_Socket);
me->m_Connected = RiCOSSocket_createSocket(

&me->m_Socket,SocketAddress,nSocketPort);
}

48 RTOS Adapter Guide

Rhapsody in C
if (0 == me->m_Connected)
return 0;

/* Connection established invoking thread to
receive messages from the socket */

me->m_ConnectionThread = RiCOSTask_create((
void (*)(void *))readFromSockLoop,
(void *)me,"tRhpSock",RiCOSDefaultStackSize);

RiCOSTask_start(me->m_ConnectionThread);
return me->m_Connected;

}

Send

Description

The Send method sends data out from the connection port. This operation should be thread-
protected.

Signature

int RiCOSConnectionPort_Send(
RiCOSConnectionPort *const me, struct RiCSData *m);

Parameters

me

The RiCOSConnectionPort object from which to send the data

m

The data to be sent from the port

Returns

An integer that represents the number of bytes sent through the socket

Example

RiCOSResult RiCOSConnectionPort_Send(
RiCOSConnectionPort * const me, struct RiCSData *m)

{
int rv = 0, m_NumberOfMessagesBetweenAck = 0;
RiCOSMutex_lock(&me->m_SendMutex);

if (me->m_Connected) {
char lenStr[MAX_LEN_STR+1];
(void)sprintf(lenStr,"%d",RiCSData_getLength(m));
rv = RiCOSSocket_send(&me->m_Socket,

lenStr, MAX_LEN_STR);
if (rv > 0) {

rv = RiCOSSocket_send(&me->m_Socket,
RiCSData_getRawData(m), RiCSData_getLength(m));

}
if (me->m_ShouldWaitForAck) {
Rhapsody 49

The OSAL Classes
const int maxNumOfMessagesBetweenAck = 127;
/* This MUST match the number in Rhapsody. */
if (maxNumOfMessagesBetweenAck > 0) {
m_NumberOfMessagesBetweenAck++;
if (m_NumberOfMessagesBetweenAck >=
maxNumOfMessagesBetweenAck) {
m_NumberOfMessagesBetweenAck = 0;
RiCOSEventFlag_wait(
&me->m_AckEventFlag, -1);
RiCOSEventFlag_reset(
&me->m_AckEventFlag);
}
}

}
}
RiCOSMutex_free(&me->m_SendMutex);
/* cleanup */
RiCSData_cleanup(m);
return rv;

}

SetDispatcher

Description

The SetDispatcher method sets the connection dispatcher function, which is called whenever
there is an input on the connection port (input from the socket).

Signature

RiCBoolean RiCOSConnectionPort_SetDispatcher(
RiCOSConnectionPort *const me,
RiCOS_dispatchfunc dispfunc);

Parameters

me

The RiCOSConnectionPort object

dispfunc

The dispatcher function

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSConnectionPort_SetDispatcher(
RiCOSConnectionPort * const me,
RiCOS_dispatchfunc dispfunc)

{
if (me==NULL) return RiCFALSE;
me->m_dispatchfunc = dispfunc;
return RiCTRUE;

}

50 RTOS Adapter Guide

Rhapsody in C
RiCOSEventFlag Interface

An event flag is a synchronization object used for signaling between threads. Threads can wait
on an event flag by calling wait. When some other thread signals the flag, the waiting threads
proceed with their execution. The event flag is initially in the unsignaled (reset) state.

With the Rhapsody implementation of event flags, at least one of the waiting threads is
released when an event flag is signaled. This is in contrast to the regular semantics in some
operating systems, in which all waiting threads are released when an event flag is signaled.

Creation Summary

Method Summary

create

Description

The create method creates an RiCOSEventFlag object.

Signature

RiCOSEventFlag *RiCOSEventFlag_create();

Returns

The newly created RiCOSEventFlag

Example

RiCOSEventFlag * RiCOSEventFlag_create()
{

RiCOSEventFlag * me = malloc(sizeof(RiCOSEventFlag));
if (me != NULL) RiCOSEventFlag_init(me);
return me;

}

create Creates an RiCOSEventFlag object

destroy Destroys the RiCOSEventFlag object

cleanup Cleans up after an RiCOSEventFlag
object

init Initializes an RiCOSEventFlag object

reset Forces the event flag into a known state

signal Releases a blocked task

wait Blocks the task making the call until some
other task releases it by calling signal on
the same event flag instance
Rhapsody 51

The OSAL Classes
destroy

Description

The destroy method destroys the RiCOSEventFlag object.

Signature

void RiCOSEventFlag_destroy (RiCOSEventFlag *const me);

Parameters

me

The RiCOSEventFlag object to delete

Example

void RiCOSEventFlag_destroy(RiCOSEventFlag * const me)
{

if (me != NULL) {
RiCOSEventFlag_cleanup(me);
free(me);

}
}

cleanup

Description

The cleanup method cleans up the memory after an RiCEventFlag object is destroyed.

Signature

void RiCOSEventFlag_cleanup (RiCOSEventFlag *const me);

Parameters

me

The object to clean up after

Example

void RiCOSEventFlag_cleanup(RiCOSEventFlag * const me)
{

if (me != NULL && me->hEventFlag != NULL) {
semDelete(me->hEventFlag);
me->hEventFlag = NULL;

}
}
52 RTOS Adapter Guide

Rhapsody in C
init

Description

The init method initializes the RiCEventFlag object.

Signature

RiCBoolean RiCOSEventFlag_init (
RiCOSEventFlag *const me);

Parameters

me

The RiCOSEventFlag object to initialize

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSEventFlag_init(RiCOSEventFlag * const me)
{

if (me == NULL) return RiCFALSE;
me->hEventFlag = semBCreate(SEM_Q_FIFO, SEM_EMPTY);
return (me->hEventFlag != NULL);

}

reset

Description

The reset method forces the event flag into a known state. This method is called almost
immediately prior to a wait.

Signature

RiCOSResult RiCOSEventFlag_reset(
RiCOSEventFlag *const me);

Parameters

me

The RiCOSEventFlag object

Returns

The RiCOSResult object, as defined in the RiCOS*.h files
Rhapsody 53

The OSAL Classes
Example

RiCOSResult RiCOSEventFlag_reset(
RiCOSEventFlag * const me)

{
if (me == NULL) {return 0;}
semTake(me->hEventFlag, NO_WAIT);
return (RiCOSResult)1;

}

signal

Description

The signal method releases a blocked task. If more than one task is waiting for an event flag, a
call to this method release sat least one of them.

Signature

RiCOSResult RiCOSEventFlag_signal(
RiCOSEventFlag *const me);

Parameters

me

The RiCOSEventFlag object

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSEventFlag_signal(
RiCOSEventFlag * const me)

{
if (me == NULL) {return 0;}
semGive(me->hEventFlag);
return (RiCOSResult)1;

}

See Also

wait
54 RTOS Adapter Guide

Rhapsody in C
wait

Description

The wait method blocks the task making the call until some other task releases it by calling
signal on the same event flag instance.

Signature

RiCOSResult RiCOSEventFlag_wait(
RiCOSEventFlag *const me, int tminms);

Parameters

me

The RiCOSEventFlag object.

tmins

Specifies the length of time, in milliseconds, that the thread should remain blocked. A value of
–1 means to wait indefinitely.

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSEventFlag_wait(
RiCOSEventFlag * const me, int tminms)

{
if (me == NULL) {return 0 /*WAIT_FAILED*/;}

if (-1 == tminms) {
semTake(me->hEventFlag, WAIT_FOREVER);

}
else {

int ticks = cvrtTmInMStoTicks(tminms);
semTake(me->hEventFlag, ticks);

}
return (RiCOSResult)1;

}

See Also

signal
Rhapsody 55

The OSAL Classes
RiCOSMessageQueue Class

The RiCOSMessageQueue class represents a list of messages (events).

Creation Summary

Method Summary

create

Description

The create method creates an RiCOSMessageQueue object.

Signature

RiCOSMessageQueue * RiCOSMessageQueue_create(
RiCBoolean shouldGrow, int initSize);

Parameters

shouldGrow

Determines whether the queue should be of fixed size (RiCFALSE) or able to expand as
needed (RiCTRUE).

initSize

create Creates an RiCOSMessageQueue
object

destroy Destroys RiCOSMessageQueue object

cleanup Cleans up after an
RiCOSMessageQueue object

init Initializes an RiCOSMessageQueue
object

get Retrieves the message at the beginning of
the message queue

getMessageList Retrieves a list of messages

isEmpty Determines whether the message queue
is empty

isFull Determines whether the message queue
is full

pend Locks the thread making the call until
there is a message in the queue

put Adds a message to the end of the
message queue
56 RTOS Adapter Guide

Rhapsody in C
Specifies the initial size of the queue. The default message queue size is set by the variable
RiCOSDefaultMessageQueueSize.

The maximum length of the message queue is operating system- and implementation-
dependent. It is usually set in the adapter for a particular operating system.

Returns

The newly created RiCOSMessageQueue

Example

RiCOSMessageQueue * RiCOSMessageQueue_create(
RiCBoolean shouldGrow, int initSize)

{
RiCOSMessageQueue * me = malloc(

sizeof(RiCOSMessageQueue));
RiCOSMessageQueue_init(me, shouldGrow, initSize);
return me;

}

destroy

Description

The destroy method destroys the RiCOSMessageQueue object.

Signature

void RiCOSMessageQueue_destroy(
RiCOSMessageQueue *const me);

Parameters

me

The RiCOSMessageQueue object to destroy

Example

void RiCOSMessageQueue_destroy(
RiCOSMessageQueue * const me)

{
if (me == NULL) return;
RiCOSMessageQueue_cleanup(me);
free(me);

}

Rhapsody 57

The OSAL Classes
cleanup

Description

The cleanup method cleans up after the RiCOSMessageQueue object.

Signature

void RiCOSMessageQueue_cleanup(
RiCOSMessageQueue * const me);

Parameters

me

The object to clean up after

Example

void RiCOSMessageQueue_cleanup(
RiCOSMessageQueue * const me)

{
if (me == NULL) return;

if (me->hVxMQ) {
(void)msgQDelete(me->hVxMQ);
me->hVxMQ = 0;

}
}

init

Description

The init method initializes the RiCOSMessageQueue object.

Signature

RiCBoolean RiCOSMessageQueue_init(
RiCOSMessageQueue *const me, RiCBoolean shouldGrow,
int initSize);

Parameters

me

Specifies the RiCOSMessageQueue object to initialize.

shouldGrow

Determines whether the queue should be of fixed size (RiCFALSE) or able to expand as
needed (RiCTRUE).

initSize
58 RTOS Adapter Guide

Rhapsody in C
Specifies the initial size of the queue. The default message queue size is set by the variable
RiCOSDefaultMessageQueueSize. You can override the default value by passing a
different value when you create the message queue.

The maximum length of the message queue is operating system- and implementation-
dependent. It is usually set in the adapter for a particular operating system.

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSMessageQueue_init(
RiCOSMessageQueue * const me, RiCBoolean shouldGrow,
int initSize)

{
if (me == NULL) return RiCFALSE;

if (initSize < 0) initSize =
RiCOSDefaultMessageQueueSize;
me->m_State = noData;
me->hVxMQ = msgQCreate(initSize, sizeof(void*),

MSG_Q_FIFO);
return RiCTRUE;

}

get

Description

The get method retrieves the message at the beginning of the message queue.

Signature

gen_ptr RiCOSMessageQueue_get(
RiCOSMessageQueue * const me);

Parameters

me

The RiCOSMessageQueue from which to retrieve the message

Returns

The message

Example

gen_ptr RiCOSMessageQueue_get(
RiCOSMessageQueue * const me)

{
gen_ptr m = NULL;
Rhapsody 59

The OSAL Classes
if (me == NULL) return NULL;

if (me->m_State == dataReady) {
m = me->pmessage;
me->m_State = noData;

}

else { /* function returns NULL if there are
 no messages in me->hVxMQ queue */

if (msgQReceive(me->hVxMQ, (char*)&m, sizeof(m),
NO_WAIT) <= 0)/* nonblocking semantics */
return NULL;

}
return m;

}

See Also

getMessageListput

getMessageList

Description

The getMessageList method retrieves a list of messages. It is used for two reasons:

� To cancel events
When a reactive class is destroyed, its notifies its thread to cancel all events in the
queue that are triggered for that reactive class. The thread iterates over the queue,
using getMessageList to retrieve the data, and marks as canceled all events whose
target is the reactive class.

� To show the data in the event queue during animation

Signature

RiCOSResult RiCOSMessageQueue_getMessageList(
RiCOSMessageQueue *const me, RiCList *l);

Parameters

me

The RiCOSMessageQueue

l

The list of messages in the queue

Returns

The RiCOSResult object, as defined in the RiCOS*.h files
60 RTOS Adapter Guide

Rhapsody in C
Example

RiCOSResult RiCOSMessageQueue_getMessageList(
RiCOSMessageQueue * const me, RiCList * l)

{
RiCList_removeAll(l);

if (me == NULL) return 0;

if (!RiCOSMessageQueue_isEmpty(me)) {
MSG_Q_INFO msgQInfo;

if (noData != me->m_State) {
RiCList_addTail(l,me->pmessage);

}

msgQInfo.taskIdListMax = 0;
msgQInfo.taskIdList = NULL;

 /* do not care which tasks are waiting */

msgQInfo.msgListMax = 0;
msgQInfo.msgPtrList = NULL;
msgQInfo.msgLenList = NULL;

/* Do not care about message length. The

 first call will retrieve the numMsgs data
 member. */

if (OK == msgQInfoGet(me->hVxMQ, &msgQInfo)) {
if (msgQInfo.numMsgs > 0) {
int numMsgs = msgQInfo.numMsgs;
msgQInfo.msgListMax = numMsgs;
msgQInfo.msgPtrList = malloc(
(numMsgs+1)*sizeof(void*));
if (OK == msgQInfoGet(me->hVxMQ,&msgQInfo)) {
void *m;
int i;
for (i = 0; i < numMsgs; i++) {
m = *(void **)msgQInfo.msgPtrList[i];
RiCList_addTail(l,m);
}
}
free(msgQInfo.msgPtrList);
}

}
}
return 1;

}

See Also

getput
Rhapsody 61

The OSAL Classes
isEmpty

Description

The isEmpty method determines whether the message queue is empty.

Signature

RiCBoolean RiCOSMessageQueue_isEmpty(
RiCOSMessageQueue *const me);

Parameters

me

The RiCOSMessageQueue to check

Returns

The method returns one of the following values:

� RiCTRUE—The queue is empty.
� RiCFALSE—The queue is not empty.

See Also

isFull

isFull

Description

The isFull method determines whether the message queue is full.

Signature

RiCBoolean RiCOSMessageQueue_isFull(
RiCOSMessageQueue * const me);

Parameters

me

The RiCOSMessageQueue to check

Returns

The method returns one of the following values:

� RiCTRUE—The queue is full.
� RiCFALSE—The queue is not full.
62 RTOS Adapter Guide

Rhapsody in C
Example

RiCBoolean RiCOSMessageQueue_isFull(
RiCOSMessageQueue * const me)

{
MSG_Q_INFO msgQInfo;

if (RiCOSMessageQueue_isEmpty(me)) return FALSE;

if (OK != msgQInfoGet(me->hVxMQ, &msgQInfo))
return TRUE;/* Assume the worst case. */

if (msgQInfo.numMsgs < msgQInfo.maxMsgs) return FALSE;

return TRUE;
}

pend

Description

The pend method blocks the task making the call until there is a message in the queue. A
reader generally waits until the queue contains a message that it can read.

Signature

RiCOSResult RiCOSMessageQueue_pend(
RiCOSMessageQueue *const me);

Parameters

me

The RiCOSMessageQueue

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSMessageQueue_pend(
RiCOSMessageQueue * const me)

{
if (me == NULL) return 0;

if (me->m_State == noData) {
gen_ptr m = NULL;
if (msgQReceive(me->hVxMQ, (char*)&m, sizeof(m),

NO_WAIT) <= 0)/* if the queue is empty *
(void)msgQReceive(me->hVxMQ, (char*)&m,
sizeof(m), WAIT_FOREVER);/* wait for message */

me->m_State = dataReady;
me->pmessage = m;

}
return 1;

}

Rhapsody 63

The OSAL Classes
put

Description

The put method adds a message to the end of the message queue.

Signature

RiCOSResult RiCOSMessageQueue_put(
RiCOSMessageQueue *const me, gen_ptr message,
RiCBoolean fromISR);

Parameters

me

The RiCOSMessageQueue to which to add the message

message

The message to be added to the queue

fromISR

A Boolean value that determines whether the message being added was generated from an
interrupt service routine (ISR)

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSMessageQueue_put(
RiCOSMessageQueue * const me, gen_ptr message,
RiCBoolean fromISR)

{
static gen_ptr NULL_VAL = NULL;
int timeout = WAIT_FOREVER;
int priority = MSG_PRI_NORMAL;

if (message == NULL) message = NULL_VAL;

if (fromISR) {
timeout = NO_WAIT;
priority = MSG_PRI_URGENT;

}
return (msgQSend(me->hVxMQ, (char*)&message,

sizeof(message), timeout, priority) == OK);
}

See Also
get

getMessageList
64 RTOS Adapter Guide

Rhapsody in C
RiCOSMutex Class

A mutex is the basic synchronization mechanism used to protect critical sections within a thread.
Mutexes are used to implement protected objects. The mutex allows one thread mutually exclusive
access to a resource. Mutexes are useful when only one thread at a time can be allowed to modify
data or some other controlled resource. For example, adding nodes to a linked list is a process that
should only be allowed by one thread at a time. By using a mutex to control the linked list, only
one thread at a time can gain access to the list.

The Rhapsody implementation of a mutex is as a recursive lock mutex. This means that the same
thread can lock the mutex several times without blocking itself. In other words, the mutex is
actually a counted semaphore. When implementing OMOSMutex for the target environment, you
should implement it as a recursive lock mutex.

Mutexes can be either free or locked (they are initially free). When a task executes a lock
operation and finds a mutex locked, it must wait. The task is placed on the waiting queue
associated with the mutex, along with other blocked tasks, and the CPU scheduler selects another
task to execute. If the lock operation finds the mutex free, the task places a lock on the mutex and
enters its critical section. When any task releases the mutex by calling free, the first blocked task
in the waiting queue is moved to the ready queue, where it can be selected to run according to the
CPU scheduling algorithm.

The same thread can nest lock and free calls of the same mutex without indefinitely blocking
itself. Nested locking by the same thread does not block the locking thread. However, the nested
locks are counted so the proper free actually releases the mutex.

Creation Summary

Method Summary

create Creates an RiCOSMutex object

destroy Destroys the RiCOSMutex object

cleanup Cleans up after an RiCOSMutex object

init Initializes an RiCOSMutex object

free Frees the lock, possibly causing the
underlying operating system to reschedule
tasks

lock Determines whether the mutex is locked
Rhapsody 65

The OSAL Classes
create

Description

The create method creates an RiCOSMutex object.

Signature

RiCOSMutex * RiCOSMutex_create();

Returns

The newly created RiCOSMutex

Example

RiCOSMutex * RiCOSMutex_create()
{

RiCOSMutex * me = malloc(sizeof(RiCOSMutex));
RiCOSMutex_init(me);
return me;

}

destroy

Description

The destroy method destroys the RiCOSMutex object.

Signature

void RiCOSMutex_destroy (RiCOSMutex * const me);

Parameters

me

The RiCOSMutex object to destroy

Example

void RiCOSMutex_destroy(RiCOSMutex * const me)
{

if (me != NULL) {
RiCOSMutex_cleanup(me);
free(me);

}
}

66 RTOS Adapter Guide

Rhapsody in C
cleanup

Description

The cleanup method cleans up the memory after an RiCOSMutex object is destroyed.

Signature

void RiCOSMutex_cleanup (RiCOSMutex * const me);

Parameters

me

The deleted RiCOSMutex object to clean up after

Example

void RiCOSMutex_cleanup(RiCOSMutex * const me)
{

if (me != NULL && me->hMutex !=NULL) {
semDelete(me->hMutex);
me->hMutex = NULL;

}
}

init

Description

The init method initializes the RiCOSMutex object.

Signature

RiCBoolean RiCOSMutex_init (RiCOSMutex * const me);

Parameters

me

The RiCOSMutex object to initialize

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSMutex_init(RiCOSMutex * const me)
{

if (me == NULL) return 0;

me->hMutex = semMCreate(SEM_Q_FIFO);
return (me->hMutex != NULL);

}

Rhapsody 67

The OSAL Classes
free

Description

The free method frees the lock, possibly causing the underlying operating system to reschedule
tasks.

In environments other than pSOSystem, this is a macro that implements the same interface.

Signature

RiCOSResult RiCOSMutex_free (RiCOSMutex *const me);

Parameters

me

The RiCOSMutex object to free

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSMutex_free(RiCOSMutex * const me)
{

if (me == NULL) { return 0; }

if (semGive(me->hMutex)==OK)
return 1;

else
return 0;

}

See Also

lock
68 RTOS Adapter Guide

Rhapsody in C
lock

Description

The lock method determines whether the mutex is free and reacts accordingly:

� If the mutex if free, this operation locks it and allows the calling task to enter its
critical section.

� If the mutex is already locked, this operation places the calling task on a waiting
queue with other blocked tasks.

In environments other than pSOSystem, this is a macro that implements the same interface.

Signature

RiCOSResult RiCOSMutex_lock (RiCOSMutex *const me);

Parameters

me

The RiCOSMutex object to lock

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSMutex_lock(RiCOSMutex * const me)
{

if (me == NULL) {return 0;}

if (semTake(me->hMutex, WAIT_FOREVER)==OK) {
return 1;

}
else

return 0;
}

See Also

free
Rhapsody 69

The OSAL Classes
RiCOSOXF Class

The RiCOSOXF class defines the operating system-specific actions to take at the end of
RiCOXFInit after the environment is set (such as the main thread, timer, and so on) and before
the return from the function.

Method Summary

Constants

The type definitions depend on the deployment environment. For example, if the type is
“long,” the type definitions would be as follows:

extern const long RiCOSDefaultStackSize;

extern const long RiCOSDefaultMessageQueueSize;

extern const long RiCOSDefaultThreadPriority;

However, if the OXF source file is RiCOSWrap.h and you replace PUBLIC with extern, then
the type definitions would be as follows:

extern const RiC_StackSizeType RiCOSDefaultStackSize;

extern const RiC_MessageQueueSizeType RiCOSDefaultMessageQueueSize;

extern const RiC_ThreadPriorityType RiCOSDefaultThreadPriority;

RiCOSEndApplication

Description

This method ends a running application. The operation should be implemented in the concrete
adapter for the target operating system.

Signature

extern void RiCOSEndApplication (int errorCode);

Parameters

errorCode

Specifies the error code to be passed to the operating system, if required

Example

void RiCOSEndApplication(int errorCode)
{

RiCTask* currentThread, *maint;

RiCOSEndApplication Ends a running application

RiCOSOXFInitEpilog Initializes the epilog
70 RTOS Adapter Guide

Rhapsody in C
RiCOSTask_endOfProcess = 1;

#ifdef _OMINSTRUMENT
ARCSD_instance();
ARCSD_closeConnection();

#endif

currentThread = RiCTask_cleanupAllTasks();

#ifdef _OMINSTRUMENT
ARCSD_Destroy();

#endif

RiCTimerManager_cleanup(&RiCSystemTimer);
maint = RiCMainTask();

if (maint) {

RiCOSHandle maintHandle = RiCOSTask_getOSHandle(
RiCTask_getOSTask(maint));

char * maintName = taskName(maintHandle);
int killmainthread = 1;

if (maintName && *maintName) {
if (!strcmp(maintName,"tShell"))
taskRestart(maintHandle);
else
taskDeleteForce(maintHandle);
killmainthread = 0;
}

if (killmainthread) {
RiCTask_destroy(maint);

}
}

if (currentThread) {
RiCOSTaskEndCallBack theOSThreadEnderClb;
void * arg1;

/* Get a callback to end the thread. */
(void)RiCTask_getTaskEndClbk(

currentThread, &theOSThreadEnderClb,
&arg1,RiCTRUE);

RiCOSTask_setEndOSTaskInCleanup(
RiCTask_getOSTask(currentThread), FALSE);

/* Do not really end the os thread because you
are executing on this thread and if you do,
there will be a resource leak. */

RiCTask_destroy(currentThread);
/* Delete the whole object through a virtual

 destructor. */
if (theOSThreadEnderClb != NULL) {

(*theOSThreadEnderClb)(arg1);
/* Now end the os thread. */

}
}
/* Make sure that the execution thread is being

ended. */
RiCOSTask_endMyTask((void *) taskIdSelf());

}

Rhapsody 71

The OSAL Classes
RiCOSOXFInitEpilog

Description

This method initializes the epilog.

Signature

extern void RiCOSOXFInitEpilog();

Example

void RiCOSOXFInitEpilog()
{

taskDelay(2);
}

72 RTOS Adapter Guide

Rhapsody in C
RiCOSSemaphore Class

A semaphore is a synchronization device that allows a limited number of threads in one or more
processes to access a resource. The semaphore maintains a count of the number of threads
currently accessing the resource.

Semaphores are useful in controlling access to a shared resource that can support only a limited
number of users. The current count of the semaphore is the number of additional users allowed.
When the count reaches zero, all attempts to use the resource controlled by the semaphore are
inserted into a system queue and wait until they either time out or the count again rises above zero.
The maximum number of users who can access the controlled resource at one time is specified at
construction time.

The Rhapsody framework itself does not use semaphores. However, the RiCOSSemaphore
primitive is provided as a service for environments that need it (such as Windows NT and
pSOSystem).

Creation Summary

Method Summary

create Creates an RiCOSSemaphore object

destroy Destroys the RiCOSSemaphore object

cleanup Cleans up after an RiCOSSemaphore
object

init Initializes an RiCOSSemaphore object

signal Releases the semaphore token

wait Waits for a semaphore token
Rhapsody 73

The OSAL Classes
create

Description

The create method creates an RiCOSSemaphore object.

Signature

RiCOSSemaphore *RiCOSSemaphore_create(
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char *const name);

Parameters

semFlags

The adapter-specific creation flags

initialCount

The initial number of tokens available in the semaphore

maxCount

The maximum number of tokens available in the semaphore

name

The unique name of the semaphore

Returns

The newly created RiCOSSemaphore object

Example

RiCOSSemaphore * RiCOSSemaphore_create(
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char * const name)

{
RiCOSSemaphore * me = malloc(sizeof(RiCOSSemaphore));
RiCOSSemaphore_init(me, semFlags, initialCount,

maxCount, name);
return me;

}

74 RTOS Adapter Guide

Rhapsody in C
destroy

Description

The destroy method destroys the RiCOSSemaphore object.

Signature

void RiCOSSemaphore_destroy (RiCOSSemaphore *const me);

Parameters

me

The RiCOSSemaphore object to destroy

Example

void RiCOSSemaphore_destroy(RiCOSSemaphore * const me)
{

if (me == NULL) return;

RiCOSSemaphore_cleanup(me);
free(me);

}

cleanup

Description

The cleanup method cleans up after the RiCOSSemaphore object.

Signature

void RiCOSSemaphore_cleanup (RiCOSSemaphore *const me);

Parameters

me

The object to clean up after

Example

void RiCOSSemaphore_cleanup(RiCOSSemaphore * const me)
{

if (me == NULL) return;

if (me->m_semId) {
semFlush(me->m_semId);
semDelete(me->m_semId);
me->m_semId = NULL;

}
}

Rhapsody 75

The OSAL Classes
init

Description

The init method initializes the RiCOSSemaphore.

Signature

RiCBoolean RiCOSSemaphore_init (
RiCOSSemaphore *const me, unsigned long semFlags,
unsigned long initialCount, unsigned long maxCount,
const char *const name);

Parameters

me

The RiCOSSemaphore object to initialize

semFlags

The adapter-specific creation flags

initialCount

The initial number of tokens available in the semaphore

maxCount

The maximum number of tokens available in the semaphore

name

The unique name of the semaphore

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSSemaphore_init(RiCOSSemaphore * const me,
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char * const name)

{
if (me == NULL) return RiCFALSE;

me->m_semId = NULL;
me->m_semId = semCCreate((int)semFlags,

(int)initialCount);
return (me->m_semId != NULL);

}

76 RTOS Adapter Guide

Rhapsody in C
signal

Description

The signal method releases the semaphore token.

Signature

RiCOSResult RiCOSSemaphore_signal(
RiCOSSemaphore *const me);

Parameters

me

The RiCOSSemaphore object

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSSemaphore_signal(
RiCOSSemaphore * const me)

{
if (!(me && me->m_semId)) return 0;

return (semGive(me->m_semId) == OK);
}

See Also

wait

wait

Description

The wait method waits for a semaphore token.

Signature

RiCOSResult RiCOSSemaphore_wait(
RiCOSSemaphore *const me, long timeout);

Parameters

me

The RiCOSSemaphore object.

timeout
Rhapsody 77

The OSAL Classes
The number of ticks to lock on a semaphore before timing out. The possible values are < 0
(wait indefinitely); 0 (do not wait); and > 0 (the number of ticks to wait). For Solaris systems,
a value of > 0 means to wait indefinitely.

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSSemaphore_wait(
RiCOSSemaphore * const me, long timeout)

{
if (!(me && me->m_semId)) return FALSE;

if (timeout < 0) timeout = WAIT_FOREVER;

return (semTake(me->m_semId, timeout) == OK);
}

See Also

signal
78 RTOS Adapter Guide

Rhapsody in C
RiCOSSocket Class

The RiCOSSocket class represents the socket through which data is passed between Rhapsody
and an instrumented application. RiCOSSocket is generally used for animation, but it can also be
used for other connections, as long as you provide a host name and port number. RiCOSSocket
represents the client side of the connection, and assumes that somewhere over the network there is
a server listening to the connection.

Creation Summary

Method Summary

create

Description

The create method creates an RiCOSSocket object.

Signature

RiCOSSocket *RiCOSSocket_create();

Returns

The newly created RiCOSSocket

Example

RiCOSSocket *RiCOSSocket_create()
{

RiCOSSocket * me = (RiCOSSocket*)malloc(sizeof(
RiCOSSocket));

if (me != NULL) RiCOSSocket_init(me);
return me;

}

create Creates an RiCOSSocket object

destroy Destroys the RiCOSSocket object

cleanup Cleans up after an RiCOSSocket object

init Initializes an RiCOSSocket object

createSocket Creates a new socket

receive Waits on the socket to receive the data

send Sends data through the socket
Rhapsody 79

The OSAL Classes
destroy

Description

The destroy method destroys the RiCOSSocket object.

Signature

void RiCOSSocket_destroy (RiCOSSocket *const me);

Parameters

me

The RiCOSSocket object to destroy

Example

void RiCOSSocket_destroy(RiCOSSocket * const me)
{

if (me != NULL) {
RiCOSSocket_cleanup(me);
free(me);

}
}

cleanup

Description

The cleanup method cleans up after the RiCOSSemaphore object

Signature

void RiCOSSocket_cleanup (RiCOSSocket *const me);

Parameters

me

The RiCOSSocket object to clean up after

Example

void RiCOSSocket_cleanup(RiCOSSocket * const me)
{

if (me == NULL) return;

if (me->theSock != 0) {
(void)shutdown(me->theSock,2);
(void)close(me->theSock);
me->theSock = 0;

}
}

80 RTOS Adapter Guide

Rhapsody in C
init

Description

The init method initializes the RiCOSSocket object.

Signature

RiCBoolean RiCOSSocket_init (RiCOSSocket *const me);

Parameters

me

The RiCOSSocket object to initialize

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSSocket_init(RiCOSSocket * const me)
{

if (me == NULL) return 0;

me->theSock = 0;
return 1;

}

createSocket

Description

The createSocket method creates a new socket.

Signature

int RiCOSSocket_createSocket (RiCOSSocket * const me,
const char *SocketAddress, unsigned int nSocketPort);

Parameters

me

The RiCOSSocket object.

SocketAddress

The socket address. This can be set to a host name that is a character string. The default value
is NULL.

nSocketPort

The socket port number. The default value is 0.
Rhapsody 81

The OSAL Classes
Returns

The socket creation status. The possible values are as follows:

� 1—Success
� 0—Failure

Example

int RiCOSSocket_createSocket(RiCOSSocket * const me,
const char * SocketAddress, unsigned int nSocketPort)

{
static struct sockaddr_inaddr;
int proto;
char hostName[128];
int rvStat;

if (me == NULL) {return 0;}

if (nSocketPort == 0) {
nSocketPort = 6423;

}

addr.sin_family = AF_INET;
proto = IPPROTO_TCP;
(void)gethostname(hostName, sizeof(hostName)-1);

if (NULL != SocketAddress && strlen(SocketAddress)
!= 0) {
if (!strcmp(hostName, SocketAddress)) {

SocketAddress = NULL;}
else {

(void)strcpy(hostName, SocketAddress);
addr.sin_addr.s_addr = inet_addr(hostName);
if (((unsigned long)ERROR) ==
addr.sin_addr.s_addr) {
addr.sin_addr.s_addr =
hostGetByName(hostName);
}
if (((unsigned long)ERROR) ==
addr.sin_addr.s_addr) {
fprintf(stderr, "Could not get the address
of host '%s'\n", hostName);
return 0;
}

}
}

if (NULL == SocketAddress || strlen(SocketAddress)
== 0) {
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);

}

#ifdef unix
endprotoent();

#endif /* unix */

addr.sin_port = htons((u_short)nSocketPort);
if ((me->theSock = socket(AF_INET, SOCK_STREAM,

proto)) == -1) {
fprintf(stderr,"Could not create socket\n");
82 RTOS Adapter Guide

Rhapsody in C
me->theSock = 0;
return 0;

}
while ((rvStat = connect(me->theSock,

(struct sockaddr *)&addr, sizeof(addr))) ==
SOCKET_ERROR && (errno == EINTR));
if (SOCKET_ERROR == rvStat) {

fprintf(stderr, "Could not connect to server
at %s port %d\n Error No. : %d\n", hostName,
(int)nSocketPort, errno);

return 0;
}
return 1;

}

receive

Description

The receive method waits on the socket to receive the data.

Signature

int RiCOSSocket_receive (RiCOSSocket *const me,
char *buf, int bufLen);

Parameters

me

The RiCOSSocket object

buf

The string buffer in which data will be stored

bufLen

The length of the buffer

Returns

The method returns one of the following values:

� 0—There was an error.
� n—The number of bytes read.

Example

int RiCOSSocket_receive(RiCOSSocket * const me,
char * buf, int bufLen)

{
int bytes_read = 0;
int n;

if (me==NULL) return -1;
Rhapsody 83

The OSAL Classes
while (bytes_read < bufLen) {
n = recv(me->theSock, buf + bytes_read,

bufLen - bytes_read,0);
if (SOCKET_ERROR == n) {

if (errno == EINTR) {
continue;
}
else {
return -1;
}

}
else {

if (0 == n) { /* Connection closed. */
return -1;
}

}
bytes_read += n;

}
return bytes_read;

}

See Also

send

send

Description

The send method sends data through the socket.

Signature

int RiCOSSocket_send (RiCOSSocket *const me,
const char *buf, int bufLen);

Parameters

me

The RiCOSSocket object

buf

The constant string buffer that contains the data to be sent

bufLen

The length of the buffer

Returns

The method returns one of the following values:

� 0—There was an error.
84 RTOS Adapter Guide

Rhapsody in C
� n—The number of bytes sent.

Example

int RiCOSSocket_send(RiCOSSocket * const me,
const char * buf, int bufLen)

{
int bytes_writ = 0;
int n;

if (me==NULL) return -1;

while (bytes_writ < bufLen) {
n = send(me->theSock, (char *)(buf + bytes_writ),

bufLen - bytes_writ, 0);
if (SOCKET_ERROR == n) {

if (errno == EINTR) {
continue;
}
else {
return -1;
}

}
bytes_writ += n;

}
return bytes_writ;

}

See Also

receive
Rhapsody 85

The OSAL Classes
RiCOSTask Class

The RiCOSTask class provides the basic tasking features.

Creation Summary

Method Summary

create Creates an RiCOSTask object

destroy Destroys an RiCOSTask object

cleanup Cleans up after an RiCOSTask
object

init Initializes an RiCOSTask object

endMyTask Terminates the current task

endOtherTask Terminates a task other than the
current one

exeOnMyTask Determines whether the method was
invoked from the same operating
system task as the one on which the
object is running

getCurrentTaskHandle Gets the handle to the active task

getOSHandle Returns a handle to the underlying
operating system task

getTaskEndClbk Is a callback function that ends the
current operating system thread

resume Resumes a suspended task

setEndOSTaskInCleanup Determines whether destruction of the
RiCOSTask class should kill the
operating system task associated with
the class

setPriority Sets the priority for the task

start Starts executing the task

suspend Suspends a task
86 RTOS Adapter Guide

Rhapsody in C
create

Description

The create method creates a new RiCOSTask object.

Signature

RiCOSTask *RiCOSTask_create (RiCOSTaskEndCallBack tfunc,
void *param, const char *name,
const long stackSize);

Parameters

tfunc

The callback function that ends the current operating system task

param

The parameters of the callback function

name

The name of the task

stackSize

The size of the stack

Returns

The newly created RiCOSTask

Example

RiCOSTask * RiCOSTask_create(RiCOSTaskEndCallBack tfunc,
void * param, const char * name, const long stackSize)

{
RiCOSTask * me = malloc(sizeof(RiCOSTask));
RiCOSTask_init(me, tfunc, param, name, stackSize);
return me;

}

destroy

Description

The destroy method destroys the RiCOSTask object.

Signature

void RiCOSTask_destroy (RiCOSTask *const me);
Rhapsody 87

The OSAL Classes
Parameters

me

The RiCOSTask object to destroy

Example

void RiCOSTask_destroy(RiCOSTask * const me)
{

if (me == NULL) return;
RiCOSTask_cleanup(me);
free(me);

}

cleanup

Description

The cleanup method cleans up the memory after a RiCOSTask object is deleted.

Signature

void RiCOSTask_cleanup (RiCOSTask *const me);

Parameters

me

The RiCOSTask object to clean up after

Example

void RiCOSTask_cleanup(RiCOSTask * const me)
{

if (me == NULL) return;

if (!me->isWrapperThread) {
RiCOSEventFlag_cleanup(&me->m_SuspEventFlag);
/* Remove the thread. */
if (me->endOSTaskInCleanup) {

RiCBoolean onMyTask = RiCOSTask_exeOnMyTask(me);
if (!((RiCOSTask_endOfProcess) &&
RiCOSTask_exeOnMyTask(me))) {
/* Do not kill the OS thread if this is the
end of process and the running thread
is 'this' - you need the OS thread to do
some cleanup, and then you kill it
explicitly. */
RiCOSTaskEndCallBack theOSTaskEndClb = NULL;
void * arg1 = NULL;
/* Get a callback function to end the OS
thread. */
(void)RiCOSTask_getTaskEndClbk(me,
&theOSTaskEndClb, &arg1, onMyTask);
if (theOSTaskEndClb != NULL) {
/* End the OS thread */
(*theOSTaskEndClb)(arg1);
88 RTOS Adapter Guide

Rhapsody in C
}
}

}
}

}

init

Description

The init method initializes the RiCOSTask object.

Signature

RiCBoolean RiCOSTask_init (RiCOSTask *const me,
RiCOSTaskEndCallBack tfunc, void *param,
const char *name, const long stackSize);

Parameters

me

The RiCOSTask object to initialize

tfunc

The callback function that ends the current operating system task

param

The parameters to the callback function

name

The name of the task

stackSize

The size of the stack

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSTask_init(RiCOSTask * const me,
RiCOSTaskEndCallBack tfunc, void * param,
const char * name, const long stackSize)

{
size_t i, len = 0;
char* myName = NULL;

if (me == NULL) {return 0;}

me->endOSTaskInCleanup = TRUE;
me->isWrapperThread = 0;
Rhapsody 89

The OSAL Classes
/* Copy the thread name. */
if (name != NULL) len = strlen(name);
/* check for legal name */
for (i = 0; i < len; i++) {

if ((isalnum((int)name[i]) == 0) &&
(name[i] != '_')) {
len = 0;
break;

}
}
if (len > 0) {

myName = malloc(len + 1);
strcpy(myName, name);

}
RiCOSEventFlag_init(&me->m_SuspEventFlag);
RiCOSEventFlag_reset(&me->m_SuspEventFlag);
/* Create SUSPENDED thread !!!!!! */
me->m_ExecFunc = tfunc;
me->m_ExecParam = param;
me->hThread = 0;
me->hThread = taskSpawn(myName,

/* name of new task (stored at pStackBase) */
(int) PRIORITY_NORMAL, /* priority of new task */
0, /* task option word */
(int)stackSize, /*size (bytes) of stack needed */
(int (*)())preExecFunc, /* thread function */
(int)(void *)me, /* argument to thread function */
0,0,0,0,0,0,0,0,0);

return 1;
}

endMyTask

Description

The endMyTask method terminates the current task.

Signature

void RiCOSTask_endMyTask (void * t);

Parameters

t

The current task

Example

void RiCOSTask_endMyTask(void *hThread)
{

taskDeleteForce((int)hThread);
/* Force because this is probably waiting on

something */
}

90 RTOS Adapter Guide

Rhapsody in C
See Also

endOtherTask

exeOnMyTask

getCurrentTaskHandle

endOtherTask

Description

The endOtherTask method terminates a task other than the current task.

Signature

RiCBoolean RiCOSTask_endOtherTask (void * t);

Parameters

t

The task to end

Returns

The method returns RiCTRUE if it successfully terminated the task.

Example

RiCBoolean RiCOSTask_endOtherTask(void *hThread)
{

taskDeleteForce((int)hThread);
/* Force because this is probably waiting on

something */
return RiCTRUE;

}

See Also

endMyTask

exeOnMyTask

getCurrentTaskHandle
Rhapsody 91

The OSAL Classes
exeOnMyTask

Description

The exeOnMyTask method determines whether the method was invoked from the same
operating system task as the one on which the object is running.

Signature

RiCBoolean RiCOSTask_exeOnMyTask (RiCOSTask *const me);

Parameters

me

The RiCOSTask object to compare

Return

The method returns one of the following values:

� RiCTRUE—The method was invoked from the same operating system task as the
one on which the object is running.

� RiCFALSE—The tasks are not the same.

Example

RiCBoolean RiCOSTask_exeOnMyTask(RiCOSTask * const me)
{

RiCOSHandle executedOsHandle;
RiCOSHandle myOsHandle;
RiCBoolean res;

if (me == NULL) return RiCFALSE;

/* A handle to the thread that executes the delete */
executedOsHandle = RiCOSTask_getCurrentTaskHandle();
/* A handle to ‘this’ thread */
myOsHandle = RiCOSTask_getOSHandle(me);
res = ((executedOsHandle == myOsHandle) ?

RiCTRUE : RiCFALSE);
return res;

}

See Also

endMyTask

endOtherTask

getCurrentTaskHandle
92 RTOS Adapter Guide

Rhapsody in C
getCurrentTaskHandle

Description

The getCurrentTaskHandle method gets the handle to the active task.

Signature

RiCOSHandle RiCOSTask_getCurrentTaskHandle();

Returns

The handle to the active task

Example

RiCOSHandle RiCOSTask_getCurrentTaskHandle()
{

return (RiCOSHandle)taskIdSelf();
}

See Also

getOSHandle

getOSHandle

Description

The getOSHandle method returns a handle to the underlying operating system task.

Signature

RiCOSHandle RiCOSTask_getOSHandle (RiCOSTask *const me);

Parameters

me

The RiCOSTask object whose handle you want to retrieve

Returns

The operating system handle

Example

RiCOSHandle RiCOSTask_getOSHandle(RiCOSTask * const me)
{

if (me == NULL) {return 0;}
return (RiCOSHandle)me->hThread;

}

Rhapsody 93

The OSAL Classes
See Also

getCurrentTaskHandle

getTaskEndClbk

Description

The getTaskEndClbk method is a callback function that ends the current operating system
thread.

Signature

int RiCOSTask_getTaskEndClbk (RiCOSTask * const me,
RiCOSTaskEndCallBack * clb_p, void ** arg1_p,
RiCBoolean onExecuteTask);

Parameters

me

The RiCOSTask object.

clb_p

A pointer to the callback function that ends the thread. This can be either endMyTask() or
endOtherTask().

arg1_p

The argument for the callback function.

onExecuteTask

Set this to one of the following Boolean values:

RiCTRUE—The object should kill its own task.

RiCFALSE—Another object should kill the task.

Returns

The status. The possible values are as follows:

� 1—Success
� 0—Failure

Example

int RiCOSTask_getTaskEndClbk(RiCOSTask * const me,
RiCOSTaskEndCallBack * clb_p,
void ** arg1_p, RiCBoolean onExecuteTask)

{
if (me == NULL) return 0;
94 RTOS Adapter Guide

Rhapsody in C
if (onExecuteTask) {
/* Ask for a callback to end my own thread. */
*clb_p = (RiCOSTaskEndCallBack)&

RiCOSTask_endMyTask;
arg1_p = (void)me->hThread;

}
else {

/* Ask for a callback to end my thread by
someone else. */

*clb_p = (RiCOSTaskEndCallBack)&
RiCOSTask_endOtherTask;

/* My thread handle. */
arg1_p = (void)me->hThread;

}
return 1;

}

resume

Description

The resume method resumes a suspended task. This method is not used in generated code—it
is used only for advanced scheduling.

The suspend and resume methods provide a way of stopping and restarting a task. Tasks
usually block when waiting for a resource, such as a mutex or an event flag, so both are rarely
used.

Signature

RiCOSResult RiCOSTask_resume (RiCOSTask *const me);

Parameters

me

The RiCOSTask object to resume

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSTask_resume(RiCOSTask * const me)
{

if (me == NULL) {return 0;}
(void)taskResume(me->hThread);
return 1;

}

See Also

start
Rhapsody 95

The OSAL Classes
suspend

setEndOSTaskInCleanup

Description

The setEndOSTaskInCleanup method determines whether destruction of the RiCOSTask class
should kill the operating system task associated with the class. If the method returns RiCTRUE,
the task will be ended at the RiCOSTask cleanup.

Signature

int RiCOSTask_setEndOSTaskInCleanup (
RiCOSTask *const me, RiCBoolean val);

Parameters

me

The RiCOSTask object.

val

The possible values are as follows:

RiCTRUE—The task is ended as part of the object’s destruction process.

RiCFALSE—The task is not ended when the object is destroyed.

Returns

The status. The possible values are as follows:

� 1—Success
� 0—Failure

Example

int RiCOSTask_setEndOSTaskInCleanup(
RiCOSTask * const me, RiCBoolean val)

{
if (me == NULL) {return 0;}

me->endOSTaskInCleanup = val;
return 1;

}

96 RTOS Adapter Guide

Rhapsody in C
setPriority

Description

The setPriority method sets the priority for the task.

Signature

RiCOSResult RiCOSTask_setPriority (RiCOSTask *const me,
int pr);

Parameters

me

The RiCOSTask object.

pr

The integer value of the priority. This parameter varies by operating system.

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSTask_setPriority(
RiCOSTask * const me, int pr)

{
if (me == NULL) {return 0;}

taskPrioritySet(me->hThread, pr);
return 1;

}

See Also

start

start

Description

The start method starts executing the task. Initially, tasks are suspended until start is called.

Signature

RiCOSResult RiCOSTask_start (RiCOSTask *const me);

Parameters

me
Rhapsody 97

The OSAL Classes
The RiCOSTask object to start

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSTask_start(RiCOSTask * const me)
{

if (me == NULL) {return 0;}

if (RiCOSEventFlag_exists(&me->m_SuspEventFlag)) {
RiCOSEventFlag_signal(&me->m_SuspEventFlag);
RiCOSEventFlag_cleanup(&me->m_SuspEventFlag);

}
else {

RiCOSTask_resume(me);
}
return 1;

}

See Also

resume

suspend

suspend

Description

The suspend method suspends a task. This method is not used in generated code—it is used
only for advanced scheduling.

Signature

RiCOSResult RiCOSTask_suspend (RiCOSTask *const me);

Parameters

me

The RiCOSTask object to suspend

Returns

The RiCOSResult object, as defined in the RiCOS*.h files

Example

RiCOSResult RiCOSTask_suspend(RiCOSTask * const me)
{

if (me == NULL) {return 0;}
98 RTOS Adapter Guide

Rhapsody in C
(void)taskSuspend(me->hThread);
return 1;

}

See Also

resume

start
Rhapsody 99

The OSAL Classes
RiCOSTimer

The RiCOSTimer class is a building block for RiCTimerManager, which provides basic timing
services for the execution framework. In the Rhapsody implementation, the timer runs on its own
task. Therefore, the target operating system must support multitasking.

Creation Summary

create

Description

The create method creates an RiCOSTimer object.

Signature

RiCOSTimer * RiCOSTimer_create (timeUnit ptime,
void (*cbkfunc)(void *), void * params);

Parameters

pTime

The time between each tick of the timer. In most adapters, the time unit is milliseconds;
however, this depends on the specific adapter implementation.

cbkfunc

The tick-timer call-back function used to notify the timer client that a tick occurred.

params

The parameters to the callback function.

Returns

The newly created RiCOSTimer

Example

RiCOSTimer * RiCOSTimer_create(timeUnit ptime,
void (*cbkfunc)(void *), void * params)

{
RiCOSTimer * me = malloc(sizeof(RiCOSTimer));
RiCOSTimer_init(me, ptime, cbkfunc, params);

create Creates an RiCOSTimer object

destroy Destroys an RiCOSTimer object

cleanup Cleans up after an RiCOSTimer object

init Initializes an RiCOSTimer object
100 RTOS Adapter Guide

Rhapsody in C
return me;
}

destroy

Description

The destroy method destroys the RiCOSTimer object.

Signature

void RiCOSTimer_destroy (RiCOSTimer *const me);

Parameters

me

The RiCOSTimer object to destroy

Example

void RiCOSTimer_destroy(RiCOSTimer * const me)
{

if (me == NULL) return;

RiCOSTimer_cleanup(me);
free(me);

}

cleanup

Description

The cleanup method cleans up the memory after an RiCOSTimer object is deleted.

Signature

void RiCOSTimer_cleanup (RiCOSTimer * const me);

Parameters

me

The RiCOSTimer object to clean up after

Example

void RiCOSTimer_cleanup(RiCOSTimer * const me)
{

if (me == NULL) return;
Rhapsody 101

The OSAL Classes
if (me->hThread) {
RiCOSHandle executedOsHandle =

RiCOSTask_getCurrentTaskHandle();
/* A handle to this 'thread' */
RiCOSHandle myOsHandle = me->hThread;
RiCBoolean onMyThread = ((executedOsHandle ==

myOsHandle) ? TRUE : FALSE);
if (onMyThread) {

RiCOSTask_endMyTask((void*)myOsHandle);
}
else {

RiCOSTask_endOtherTask((void*)myOsHandle);
}
me->hThread = 0;

}
}

init

Description

The init method initializes the RiCOSTimer object.

Signature

RiCBoolean RiCOSTimer_init (RiCOSTimer *const me,
timeUnit ptime, void (*cbkfunc)(void *),

void *params);

Parameters

me

The RiCOSTimer object to initialize.

pTime

The time between each tick of the timer. In most adapters, the time unit is milliseconds;
however, this depends on the specific adapter implementation.

cbkfunc

The tick-timer call-back function used to notify the timer client that a tick occurred.

params

The parameters to the callback function.

Returns

The method returns RiCTRUE if successful.

Example

RiCBoolean RiCOSTimer_init(RiCOSTimer * const me,
timeUnit ptime, void (*cbkfunc)(void *), void *params)

{

102 RTOS Adapter Guide

Rhapsody in C
if (me == NULL) return RiCFALSE;
me->cbkfunc = cbkfunc;
me->param = params;

if (((RiCTimerManager*)params)->realTimeModel) {
/**** VxWorks TickTimer(Real Time)****/
me->m_Time = ptime;
/* Create a thread that runs the bridge, passing

this as an argument. */
me->ticks = cvrtTmInMStoTicks(me->m_Time);
me->hThread = taskSpawn("timer", PRIORITY_HIGH, 0,

SMALL_STACK, (int (*)())bridge,
(int)(void *)me /*p1*/, 0,0,0,0,0,0,0,0,0);

return me->hThread != ERROR;
}
else {

/**** IdleTimer (Simulated Time)****/
me->m_Time = 0; /* Just create context-switch

until the system enters idle mode. */
me->hThread = taskSpawn("timer", PRIORITY_LOW, 0,

SMALL_STACK, (int (*)())bridge, (int)(void*)me,
0,0,0,0,0,0,0,0,0);

return RiCTRUE;
}

}

Rhapsody 103

The OSAL Classes
RiCHandleCloser Class

OSAL interface contains RiCOSTask_endMyTask method which should be used if a thread should
be deleted by itself (for example, if active reactive class entered into terminate connector).

But in some RTOSes it is forbidden for thread perform such operation directly. The
RiCHandleCloser class solves this problem. It is an active reactive singleton class with a statechart
containing one state. This state receives only one event (CloseEVent) and performs only one
action (doCloseHandle() call) when it is received.

OMHandleClose thread is initialized in the OMOS::initEpilog():

void RiCOSOXFInitEpilog(void)

{

(void)RiCHandleCloser_startBehavior(RiCHandleCloser_Instance(RiCInt_doCloseH
andle));

}

If some thread is going to exit it calls (from framework) endMyTask() function which sends
CloseEvent message(event) to the HandleCloser thread.

void RiCOSTask_endMyTask(RiC_CONST_TYPE void *const hThread)

{

 if(hThread != NULL)

 {

RiCHandleCloser_genCloseEvent(hThread);

 Exit(0UL);

 }

}

This message contains the handle of the thread, which should be deleted.

The doCloseHandle is static function, which is called by HandleCloser thread when CloseEvent
event is processed.

You can see HandleCloser usage in Integrity adapter (Share/LangC/oxf/RiCOSIntegrity.c
file).

Note
A similar mechanism is implemented in C++ framework.
104 RTOS Adapter Guide

Rhapsody in C++
Rhapsody in C++
The C++ classes for the abstract interface are as follows:

� OMEventQueue Class

� OMMessageQueue Class

� OMOS Class

� OMOSConnectionPort Class

� OMOSEventFlag Class

� OMOSFactory Class

� OMOSMessageQueue Class

� OMOSMutex Class

� OMOSSemaphore Class

� OMOSSocket Class

� OMOSThread Class

� OMOSTimer Class

� OMTMMessageQueue Class

OMEventQueue Class

OMEventQueue inherits from OMTMMessageQueue<> with OMEvent as a parameter. In other
words, OMEventQueue is a list (vector/queue) of events.

Construction Summary

Method Summary

OMEventQueue Creates an OMOSEventQueue object

getOsQueue Retrieves the event queue
Rhapsody 105

The OSAL Classes
OMEventQueue

Visibility

Public

Description

The OMEventQueue method constructs an OMEventQueue object and initializes the
OMTMMessageQueue<OMEvent> superclass of the event queue, with the given size and
ability to grow dynamically.

Signature

OMEventQueue(const long messageQueueSize =
OMOSThread::DefaultMessageQueueSize,
OMBoolean dynamicMessageQueue = TRUE) :

OMTMMessageQueue<OMEvent>(messageQueueSize,
dynamicMessageQueue)

Parameters

messageQueueSize

The size of the message queue. If not overridden, the message queue size is initialized to the
value of the static constant DefaultMessageQueueSize in OMOSThread.

dynamicMessageQueue

A Boolean value that specifies whether the message queue size is dynamic (TRUE) or fixed
(FALSE). By default, the message queue size is dynamic.

getOsQueue

Visibility

Public

Description

The getOsQueue method retrieves the event queue.

Signature

OMOSMessageQueue * getOsQueue()
106 RTOS Adapter Guide

Rhapsody in C++
OMMessageQueue Class

OMMessageQueue inherits from OMTMMessageQueue<> with OMSData as a parameter. In
other words, OMMessageQueue is a list (vector/queue) of serialized data. The
OMMessageQueue<OMSData> parameterized class is declared only if instrumentation is
defined.

OMSData is the base class for all messages passed between the aom and tom libraries during
instrumentation.

OMOS Class

The OMOS class defines the operating system-specific actions to take at the end of OXF::init
after the environment is set (such as the main thread, timer, and so on) and before the return from
the function.

Method Summary

endApplication

Visibility

Public

Description

The endApplication method ends a running application. This operation should be implemented
in the concrete adapter for the target operating system.

Signature

static void endApplication(int errorCode);

Parameters

errorCode

The error code to be passed to the operating system, if required

endApplication Ends a running application

endProlog Ends the prolog

initEpilog Executes operating system-specific
actions to be taken at the end of
OXF::init after the environment has
been set (that is, the main thread and the
timer have been started) and before it
returns
Rhapsody 107

The OSAL Classes
endProlog

Visibility

Public

Description

The endProlog method ends the prolog.

Signature

static void endProlog();

initEpilog

Visibility

Public

Description

The initEpilog method executes operating system-specific actions to be taken at the end of
OXF::init after the environment has been set (that is, the main thread and the timer have
been started) and before it returns. This operation should be implemented in the concrete
adapter for the target operating system.

Signature

static void initEpilog();
108 RTOS Adapter Guide

Rhapsody in C++
OMOSConnectionPort Class

The connection port is used for interprocess communication between instrumented applications
and Rhapsody. The factory’s createOMOSConnectionPort() method creates a connection
port.

Construction Summary

Method Summary

~OMOSConnectionPort

Visibility

Public

Description

The ~OMOSConnectionPort method destroys the OMOSConnectionPort object. You must
declare the destructor explicitly, rather than letting the compiler add it, because it must be
made virtual.

Signature

virtual ~OMOSConnectionPort()

Connect

Visibility

Public

Description

The Connect method connects a process to the instrumentation server at a given socket address
and port.

Signature

virtual int Connect (const char* SocketAddress = NULL,
unsigned int nSocketPort = 0) = 0;

~OMOSConnectionPort Destroys the OMOSConnectionPort
object.

Connect Connects to the specified port

Send Sends data from the connection port

SetDispatcher Sets the dispatcher function
Rhapsody 109

The OSAL Classes
Parameters

SocketAddress

The socket address. If you do not specify a socket address, its default value is a NULL string.

nSocketPort

The port number of the socket. If you do not specify a port number, the value 0 is used.

Returns

The connection status. The possible values are as follows:

� 1—Success
� 0—Failure

Send

Visibility

Public

Description

The Send method sends data out from the connection port. This operation should be thread
protected.

Signature

virtual int Send (OMSData *m) = 0;

Parameters

m

The data to be sent from the port. The data is of type OMSData, which is defined in
omCom\omsdata.h. It encapsulates the methods by which serialized data is passed between
an instrumented application and the animation/tracing server.

 Return

An integer that represents the number of bytes that were sent through the socket
110 RTOS Adapter Guide

Rhapsody in C++
SetDispatcher

Visibility

Public

Description

The SetDispatcher method sets the dispatcher function, which is called whenever there is an
input on the connection port (input from the socket).

This method was created for two reasons:

� To provide flexibility by allowing for different dispatch routines. For example, the
Rhapsody framework uses SetDispatcher(portToMessageQueue) in
aomdisp.cpp.

� To allow the dispatch routine to be located in a different place and to be set only
after creation of the connection port.

Signature

virtual void SetDispatcher (void dispfunc(OMSData*)) = 0;

Parameters

dispfunc

The dispatcher function
Rhapsody 111

The OSAL Classes
OMOSEventFlag Class

An event flag is a synchronization object used for signaling between threads. Threads can wait on
an event flag by calling wait. When some other thread signals the flag, the waiting threads
proceed with their execution. The event flag is initially in the unsignaled (reset) state.

With the Rhapsody implementation of event flags, at least one of the waiting threads is released
when an event flag is reset. This is in contrast to the regular semantics in some operating systems,
in which all waiting threads are released when an event flag is reset.

The operating system factory’s createOMOSEventFlag method creates a new event flag.

Construction Summary

Method Summary

~OMOSEventFlag

Visibility

Public

Description

The ~OMOSEventFlag method destroys the OMOSEventFlag object. You must declare the
destructor explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSEventFlag()

~OMOSEventFlag Destroys the OMOSEventFlag object

getOsHandle Retrieves the thread’s operating system
ID

reset Forces the event flag into a known state

signal Releases a blocked thread

wait Blocks the thread making the call until
some other thread releases it by calling
signal on the same event flag instance
112 RTOS Adapter Guide

Rhapsody in C++
getOsHandle

Visibility

Public

Description

The getOsHandle method retrieves the thread’s operating system ID. This value varies by
operating system.

Signature

virtual void* getOsHandle() const = 0;

Return

The operating system ID

reset

Visibility

Public

Description

The reset method forces the event flag into a known state. This method is often called
immediately prior to a wait.

Signature

virtual void reset() = 0;

signal

Visibility

Public

Description

The signal method releases a blocked thread. If more than one task is waiting for an event flag,
a call to this method releases at least one of them.

Signature

virtual void signal() = 0;
Rhapsody 113

The OSAL Classes
wait

Visibility

Public

Description

The wait method blocks the thread making the call until some other thread releases it by
calling signal on the same event flag instance.

Signature

virtual void wait (int tminms = -1) = 0;

Parameters

tminms

The length of time, in milliseconds, that the thread should remain blocked. The default value is
–1, which means to wait indefinitely.

Notes

If an operating system does not support the ability to wait on an event flag with a timeout (for
example, Solaris), the Rhapsody framework implements wait with timeouts by slicing the time
to 50 ms intervals, then checks every 50 ms to see if the event flag was signaled.
114 RTOS Adapter Guide

Rhapsody in C++
OMOSFactory Class

Each concrete OSFactory inherits publicly from the abstract class OMOSFactory.
OMOSFactory hides the RTOS mechanisms for tasking and synchronization. In addition, the
OSFactory provides other operating system-dependent services that the Rhapsody framework
requires, such as obtaining a handle to the current thread.

The following sequence diagram shows the OSFactory creating various operating system
entities, such as OMOSMessageQueue and OMOSConnectionPort.
Rhapsody 115

The OSAL Classes
Construction Summary

Method Summary

instance

Visibility

Public

Description

The instance method creates a single instance of OMOSFactory. This function must be
implemented for a given RTOS to return a pointer to the operating system adapter factory
designed specifically for that RTOS.

Signature

static OMOSFactory* instance();

Notes

To create an operating system entity, you call one of the methods through the pointer returned
by instance. For example, to create an event flag, use the following call:

instance()->createOMOSEventFlag()

instance Creates a single instance of the
OMOSFactory

createOMOSConnectionPort Creates a connection port

createOMOSEventFlag Creates an event flag

createOMOSIdleTimer Creates an idle timer

createOMOSMessageQueue Creates a message queue

createOMOSMutex Creates a mutex

createOMOSSemaphore Creates a semaphore

createOMOSThread Creates a thread

createOMOSTickTimer Creates a tick timer

createOMOSWrapperThread Creates a wrapper thread

delayCurrentThread Delays the current thread for the specified
length of time

getCurrentThreadHandle Gets the handle to the current thread

waitOnThread Waits on the thread for the specified
length of time
116 RTOS Adapter Guide

Rhapsody in C++
createOMOSConnectionPort

Visibility

Public

Description

The createOMOSConnectionPort method creates a connection port.

Signature

virtual OMOSConnectionPort* createOMOSConnectionPort()
= 0;

Return

The new connection port

createOMOSEventFlag

Visibility

Public

Description

The createOMOSEventFlag method creates an event flag.

Signature

virtual OMOSEventFlag* createOMOSEventFlag() = 0;

Return

The new event flag

createOMOSIdleTimer

Visibility

Public

Description

The createOMOSIdleTimer method creates an idle timer.

Signature

virtual OMOSTimer* createOMOSIdleTimer(
void cbkfunc (void *), void *param) = 0;
Rhapsody 117

The OSAL Classes
Parameters

cbkfunc

The callback function

param

The parameters for the callback function

Return

The new idle timer

createOMOSMessageQueue

Visibility

Public

Description

The createOMOSMessageQueue method creates a message queue.

Signature

virtual OMOSMessageQueue* createOMOSMessageQueue(
OMBoolean shouldGrow = TRUE,
const long messageQueueSize =
OMOSThread::DefaultMessageQueueSize) = 0;

Parameters

shouldGrow

A Boolean value that determines whether the size of the message queue can be increased to
yield more room

messageQueueSize

The default size of the message queue

Return

The new message queue

createOMOSMutex

Visibility

Public
118 RTOS Adapter Guide

Rhapsody in C++
Description

The createOMOSIdleTimer method creates a mutex.

Signature

virtual OMOSMutex* createOMOSMutex() = 0;

Return

The new mutex

createOMOSSemaphore

Visibility

Public

Description

This method creates a semaphore.

Signature

virtual OMOSSemaphore* createOMOSSemaphore(
unsigned long semFlags = 0, unsigned long
initialCount = 1, unsigned long maxCount = 1,
const char * const name = NULL) = 0;

Parameters

semFlags

The semaphore flags

initialCount

The initial count of tokens available on the semaphore

maxCount

The maximum number of tokens

name

The name of the semaphore

Return

The new semaphore
Rhapsody 119

The OSAL Classes
createOMOSThread

Visibility

Public

Description

This method creates a thread.

Signature

virtual OMOSThread* createOMOSThread (void tfunc(void *),
void *param, const char* const threadName = NULL,
const long stackSize = OMOSThread::DefaultStackSize)
= 0;

Parameters

tfunc

The thread function

param

The parameters for tfunc

threadName

The name of the thread

stackSize

The stack size

Return

The new thread

createOMOSTickTimer

Visibility

Public

Description

This method creates a new tick timer.

Signature

virtual OMOSTimer* createOMOSTickTimer (timeUnit time,
void cbkfunc(void *), void *param) = 0;
120 RTOS Adapter Guide

Rhapsody in C++
Parameters

time

The time between ticks

cbkfunc

The callback function

param

The parameters for cbkfunc

Return

The new tick timer

createOMOSWrapperThread

Visibility

Public

Description

The createOMOSWrapperThread method creates a wrapper thread.

Signature

virtual OMOSThread* createOMOSWrapperThread(
void* osHandle) = 0;

Parameters

osHandle

The handle to the operating system

Return

The new wrapper thread
Rhapsody 121

The OSAL Classes
delayCurrentThread

Visibility

Public

Description

The delayCurrentThread method delays the current thread for the specified length of time.

The OXFTDelay(timInMs) macro provides a convenient shortcut for calling
delayCurrentThread.

Signature

virtual void delayCurrentThread (timeUnit ms) = 0;

Parameters

ms

The length of time, in milliseconds, to delay processing on the current thread

getCurrentThreadHandle

Visibility

Public

Description

The getCurrentThreadHandle method returns the native operating system handle to the thread.
This handle is used to identify a thread or to apply operating system-specific operations to a
thread.

Signature

virtual void* getCurrentThreadHandle() = 0;

Return

The OSThreadHandle
122 RTOS Adapter Guide

Rhapsody in C++
waitOnThread

Visibility

Public

Description

The waitOnThread method waits for a thread to terminate.

Signature

virtual OMBoolean waitOnThread (void* osHandle,
timeUnit ms) = 0;

Parameters

osHandle

The operating system handle

ms

The length of time to wait, in milliseconds

Return

The method returns one of the following Boolean values:

� TRUE—The method was successful.
� FALSE—The method failed.
Rhapsody 123

The OSAL Classes
OMOSMessageQueue Class

An important building block for the execution framework class OMThread, the message queue is
initially empty. The factory’s createOMOSMessageQueue method creates an operating system
message queue.

The default message queue size is set by the static constant variable
OMOSThread::DefaultMessageQueueSize. You can override the default value by passing a
different value as the second argument to the factory’s createOMOSMessageQueue method
when you create the message queue.

The maximum length of the message queue is operating system- and implementation-dependent. It
is usually set in the adapter for a particular operating system.

Construction Summary

Method Summary

~OMOSMessageQueue Destroys the OMOSMessageQueue
object

get Retrieves the message at the beginning of
the queue

getMessageList Retrieves the list of messages

getOsHandle Returns the native operating system
handle to the thread

isEmpty Determines whether the queue is empty

isFull Determines whether the queue is full

pend Blocks the thread making the call until
there is a message in the queue

put Adds a message to the queue

setOwnerProcess Sets the thread that owns the message
queue
124 RTOS Adapter Guide

Rhapsody in C++
~OMOSMessageQueue

Visibility

Public

Description

The ~OMOSMessageQueue method destroys the OMOSMessageQueue object. You must
declare the destructor explicitly, rather than letting the compiler add it, because it must be
made virtual.

Signature

virtual ~OMOSMessageQueue()

get

Visibility

Public

Description

The get method retrieves the message at the beginning of the queue.

Signature

virtual void *get() = 0;

Return

The first message in the queue

getMessageList

Visibility

Public

Description

The getMessageList method retrieves the list of messages. It is used for two reasons:

� To cancel events.
When a reactive class is destroyed, it notifies its thread to cancel all events in the
queue that are targeted for that reactive class. The thread iterates over the queue,
using getMessageList to retrieve the data, and marks all events whose target is
the reactive class as canceled.
Rhapsody 125

The OSAL Classes
� To show the data in the event queue during animation.

Signature

virtual void getMessageList (OMList<void*>& c) = 0

Parameters

c

The list of messages in the event (message) queue.

The list is of type OMList<void*>, a parameterized type defined in oxf\omlist.h that
encapsulates all the operations typically performed on lists, such as adding items to the list and
removing items from the list.

getOsHandle

Visibility

Public

Description

The getOsHandle method returns the native operating system handle to the thread. This handle
is used to identify a thread or to apply operating system-specific operations to a thread.

Signature

virtual void* getOsHandle() const = 0;

Return

The handle

isEmpty

Visibility

Public

Description

The isEmpty method determines whether the message queue is empty.

Signature

virtual int isEmpty() = 0;
126 RTOS Adapter Guide

Rhapsody in C++
Return

The method returns one of the following values:

� 0—The queue is not empty.
� 1—The queue is empty.

isFull

Visibility

Public

Description

The isFull method determines whether the queue is full.

Signature

virtual OMBoolean isFull() = 0;

Return

The method returns one of the following values:

� FALSE—The queue is not full.
� TRUE—The queue is full.

pend

Visibility

Public

Description

The pend method blocks the thread making the call until there is a message in the queue. A
reader generally waits until the queue contains a message that it can read.

Signature

virtual void pend() = 0;
Rhapsody 127

The OSAL Classes
put

Visibility

Public

Description

The put method adds a message to the end of the message queue.

Signature

virtual OMBoolean put (void* m, OMBoolean fromISR = FALSE)
 = 0;

Parameters

m

The message to be added to the queue.

fromISR

A Boolean value that specifies whether the message being added was generated from an
interrupt service routine (ISR). The default value is FALSE.

Return

The method returns one of the following Boolean values:

� TRUE—The method successfully added the message to the queue.
� FALSE—The method was unsuccessful.
128 RTOS Adapter Guide

Rhapsody in C++
setOwnerProcess

Visibility

Public

Description

The setOwnerProcess method sets the thread that owns the message queue. This operation was
added to support the OSE environment.

Signature

virtual void setOwnerProcess (void* handle)

Parameters

handle

The handle to the owner process
Rhapsody 129

The OSAL Classes
OMOSMutex Class

The factory’s createOMOSMutex method creates a mutex, which stands for mutual exclusion. A
mutex is the basic synchronization mechanism used to protect critical sections within a thread.
Mutexes are used to implement protected objects.

The mutex allows one thread mutually exclusive access to a resource. Mutexes are useful when
only one thread at a time can be allowed to modify data or some other controlled resource. For
example, adding nodes to a linked list is a process that should only be allowed by one thread at a
time. By using a mutex to control the linked list, only one thread at a time can gain access to the
list.

The Rhapsody implementation of a mutex is as a recursive lock mutex. This means that the same
thread can lock the mutex several times without blocking itself. In other words, the mutex is
actually a counted semaphore. When implementing OMOSMutex for the target environment, you
should implement it as a recursive lock mutex.

Mutexes can be either free or locked (they are initially free). When a task executes a lock
operation and finds a mutex locked, it must wait. The task is placed on the waiting queue
associated with the mutex, along with other blocked tasks, and the CPU scheduler selects another
task to execute. If the lock operation finds the mutex free, the task places a lock on the mutex and
enters its critical section. When any task releases the mutex by calling free, the first blocked task
in the waiting queue is moved to the ready queue, where it can be selected to run according to the
CPU scheduling algorithm.

The same thread can nest lock and free calls of the same mutex without indefinitely blocking
itself. Nested locking by the same thread does not block the locking thread. However, the nested
locks are counted so the proper free actually releases the mutex.

Construction Summary

Method Summary

~OMOSMutex Destroys the OMOSMutex object

free Releases the lock on the mutex

getOsHandle Returns the native operating system
handle to the thread

lock Locks the mutex

unlock Releases the lock on the mutex
130 RTOS Adapter Guide

Rhapsody in C++
~OMOSMutex

Visibility

Public

Description

The ~OMOSMutex method destroys the OMOSMutex object. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSMutex()

free

Visibility

Public

Description

The free method releases the lock, possibly causing the underlying operating system to
reschedule threads.

This method provides backward-compatibility support for non-OSE applications.

Signature

void free() = 0;

getOsHandle

Visibility

Public

Description

The getOsHandle method returns the native operating system handle to the thread. This handle
is used to identify a thread or to apply operating system-specific operations to a thread.

Signature

virtual void* getOsHandle() const = 0;

Return

The handle
Rhapsody 131

The OSAL Classes
lock

Visibility

Public

Description

The lock method determines whether the mutex is free and reacts accordingly:

� If the mutex if free, this operation locks it and allows the calling task to enter its
critical section.

� If the mutex is already locked, this operation places the calling task on a waiting
queue with other blocked tasks.

Signature

virtual void lock() = 0;

unlock

Visibility

Public

Description

The unlock method releases the lock, possibly causing the underlying operating system to
reschedule threads.

Signature

virtual void unlock() = 0;
132 RTOS Adapter Guide

Rhapsody in C++
OMOSSemaphore Class

A semaphore is a synchronization device that allows a limited number of threads in one or more
processes to access a resource. The semaphore maintains a count of the number of threads
currently accessing the resource.

Semaphores are useful in controlling access to a shared resource that can support only a limited
number of users. The current count of the semaphore is the number of additional users allowed.
When the count reaches zero, all attempts to use the resource controlled by the semaphore are
inserted into a system queue and wait until they either time out or the count again rises above zero.
The maximum number of users who can access the controlled resource at one time is specified at
construction time.

The Rhapsody framework itself does not use semaphores. However, the OMOSSemaphore
primitive is provided as a service for environments that need it (such as Windows NT and
pSOSystem).

Construction Summary

Method Summary

~OMOSSemaphore

Visibility

Public

Description

The ~OMOSSemaphore method destroys the OMOSSemaphore object. You must declare the
destructor explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSSemaphore()

~OMOSSemaphore Destroys the OMOSSemaphore
object

getOsHandle Returns the native operating system
handle to the thread

signal Releases a semaphore token

wait Obtains a semaphore token
Rhapsody 133

The OSAL Classes
getOsHandle

Visibility

Public

Description

The getOsHandle method returns the native operating system handle to the thread. This handle
is used to identify a thread or to apply operating system-specific operations to a thread.

Signature

virtual void* getOsHandle() const = 0;

Return

The handle

signal

Visibility

Public

Description

The signal method releases a semaphore token.

Signature

virtual void signal() = 0;

wait

Visibility

Public

Description

The wait method obtains a semaphore token.

Signature

virtual OMBoolean wait (long timeout = -1) = 0;

Parameters

timeout
134 RTOS Adapter Guide

Rhapsody in C++
The number of ticks to lock on a semaphore before timing out. The possible values are < 0
(wait indefinitely); 0 (do not wait), and > 0 (the number of ticks to wait). For Solaris systems,
a value of > 0 means to wait indefinitely.
Rhapsody 135

The OSAL Classes
OMOSSocket Class

The OMOSSocket class represents the socket through which data is passed between Rhapsody
and an instrumented application.

OMOSSocket is generally used for animation, but it can also be used for other connections, as
long as you provide a host name and port number. OMOSSocket represents the client side of
the connection, and assumes that somewhere over the network there is a server listening to the
connection. You can modify the definition of the OMOSSocket class to remove the
_OMINSTRUMENT macro definition from the relevant places to provide a socket
implementation for non-instrumented configurations. In addition, you might need to modify
the definition of the SOCK_LIB macro inside the MakeFileContent property to be similar to
that for tracing and animation.

If an animation session appears to hang, it might be because the high volume of messages
passed between Rhapsody and the application causes the socket’s internal buffer to fill up,
which might cause a major delay in communication between Rhapsody and the application.
The solution to this problem is to increase the size of the socket internal buffer, which is 8K by
default. For example, in the Windows NT implementation, you can add the following code to
the Create() function for NTSocket:

int NTSocket::Create(
const char* SocketAddress /*= NULL*/,
unsigned int nSocketPort /*= 0*/)
{

...

if ((theSock = socket(AF_INET, SOCK_STREAM, proto))
 == INVALID_SOCKET)
{

NOTIFY_TO_ERROR("Could not create socket\n");
theSock = 0;
return 0;

}
int internalBufferSizes = 64 * 1024; // 64k
setsockopt(theSock, SOL_SOCKET, SO_RCVBUF,

(char*) &internalBufferSizes, sizeof(int));
setsockopt(theSock, SOL_SOCKET, SO_SNDBUF,

(char*) &internalBufferSizes, sizeof(int));
...

}

Note: This solution has been checked for Windows NT systems only.
136 RTOS Adapter Guide

Rhapsody in C++
Construction Summary

Method Summary

~OMOSSocket

Visibility

Public

Description

The ~OMOSSocket method destroys the OMOSSocket object. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSSocket()

Close

Visibility

Public

Description

The Close method closes the socket.

Signature

virtual void Close()

~OMOSSocket Destroys the OMOSSocket object

Close Closes the socket

Create Creates a new socket

Receive Receives data through the socket

Send Sends data through the socket
Rhapsody 137

The OSAL Classes
Create

Visibility

Public

Description

The Create method creates a new socket.

Signature

virtual int Create (const char* SocketAddress = NULL,
unsigned int nSocketPort = 0) = 0;

Parameters

SocketAddress

The socket address. This can be set to a host name that is a character string. The default value
is NULL.

nSocketPort

The socket port number. The default value is 0.

Return

The method returns one of the following values:

� 0—The operation failed.
� 1—The operation was successful.

Receive

Visibility

Public

Description

The Receive method receives data through the socket.

Signature

virtual int Receive (char* lpBuf, int nBufLen) = 0;

Parameters

lpBuf

The string buffer in which data will be stored
138 RTOS Adapter Guide

Rhapsody in C++
nBufLen

The length of the buffer

Return

The method returns one of the following values:

� 0—There was an error.
� n—The number of bytes read.

Send

Visibility

Public

Description

The Send method sends data through the socket.

Signature

virtual int Send (const char *lpBuf, int nBufLen) = 0;

Parameters

lpBuf

A constant string buffer that contains the data to be sent

nBufLen

The length of the buffer

Return

The method returns one of the following values:

� 0—There was an error.
� n—The number of bytes written.
Rhapsody 139

The OSAL Classes
OMOSThread Class

The OMThread class in the execution framework aggregates OMOSThread to provide the basic
threading features. The operating system factory’s createOMOSThread method creates a raw
thread. No constructor is declared for OMOSThread because any C++ compiler knows how to add
a constructor if it not defined explicitly.

OMOSThread has the following static constant variables, which provide default values for user-
controllable parameters: stack size, message queue size, and thread priority. Each static variable
can be initialized with constants whose values can vary depending on the operating system being
targeted, as shown in the following table.

Construction Summary

Method Summary

Static Constant Variables Initialization Constants

DefaultStackSize SMALL_STACK or DEFAULT_STACK

DefaultMessageQueueSize MQ_DEFAULT_SIZE

DefaultThreadPriority PRIORITY_HIGH, PRIORITY_NORMAL, or
PRIORITY_LOW

~OMOSThread Destroys the OMOSThread object

exeOnMyThread Determines whether the method was invoked
from the same operating system thread as the
one on which the object is running

getOsHandle Retrieves the thread’s operating system ID

getThreadEndClbk Is a callback function that ends the current
operating system thread

resume Resumes a suspended thread

setEndOSThreadInDtor Determines whether destruction of the
OMOSThread class should kill the operating
system thread associated with the class

setPriority Sets the thread’s operating system priority

start Starts thread processing

suspend Suspends the thread
140 RTOS Adapter Guide

Rhapsody in C++
~OMOSThread

Visibility

Public

Description

The ~OMOSThread method destroys the OMOSThread object. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Signature

virtual ~OMOSThread()

exeOnMyThread

Visibility

Public

Description

The exeOnMyThread method determines whether the method was invoked from the same
operating system thread as the one on which the object is running.

Signature

virtual OMBoolean exeOnMyThread();

Return

The method returns one of the following Boolean values:

� TRUE—The method was invoked from the same operating system thread as the
one on which the object is running.

� FALSE—The threads are not the same.

getOsHandle

Visibility

Public

Description

The getOsHandle method retrieves the thread’s operating system ID. This value varies by
operating system.
Rhapsody 141

The OSAL Classes
Signature

virtual void* getOsHandle() const = 0;

virtual void* getOsHandle (void*& osHandle) const = 0;

Parameters

oshandle

The operating system handle

Return

The operating system ID

getThreadEndClbk

Visibility

Public

Description

The getThreadEndClbk method is a callback function that ends the current operating system
thread.

Signature

virtual void getThreadEndClbk(
OMOSThreadEndCallBack * clb_p, void ** arg1_p,
OMBoolean onExecuteThread) = 0;

Parameters

clb_p

A pointer to the callback function that ends the thread. This can be either endMyThread() or
endOtherThread(). The function pointer is of type OMOSThreadEndCallBack, which is
defined in OMOSThread as follows:

typedef void (*OMOSThreadEndCallBack)(void *);

arg1_p

The argument for the callback function.

onExecuteThread

Set this to one of the following Boolean values:

TRUE—The object should kill its own thread.

FALSE—Another object should kill the thread.
142 RTOS Adapter Guide

Rhapsody in C++
Notes

On some operating systems, there are different calls to kill the current thread versus
killing other threads. For example, on Windows NT, you kill the current thread by
generating a new OMNTCloseHandleEvent; to kill another thread, you call
TerminateThread.

The concrete operating system adapter makes sure that other threads are killed first
by providing two static thread functions:

� static void endMyThread(void *);

� Implement this method to handle the case in which the object kills its own thread.
� static void endOtherThread(void *);

� Implement this method to handle the case in which another object kills the thread.
The getThreadEndClbk operation returns the address of either of the static functions
endMyThread or endOtherThread. The implementation of these two functions
could be different (as on Windows NT), or the same, as on pSOSystem, where both
functions call t_restart.

resume

Visibility

Public

Description

The resume method resumes a suspended thread. This method is not used in generated code—
it is used only for advanced scheduling.

The suspend and resume methods provide a way of stopping and restarting a thread.
Threads usually block when waiting for a resource, such as a mutex or an event flag, so both
are rarely used.

Signature

virtual void resume() = 0;
Rhapsody 143

The OSAL Classes
setEndOSThreadInDtor

Visibility

Public

Description

The setEndOSThreadInDtor method determines whether destruction of the OMOSThread class
should kill the operating system thread associated with the class.

Signature

virtual void setEndOSThreadInDtor (OMBoolean val) = 0;

Parameters

val

This value is determined by the value of the Boolean data member endOSThreadInDtor,
which must be defined in the <env>Thread class that inherits from OMOSThread. The
possible values are as follows:

TRUE—The thread is ended as part of the object’s destruction process.

FALSE—The thread is not ended when the object is destroyed.

setPriority

Visibility

Public

Description

The setPriority method sets the thread’s operating system priority.

Signature

virtual void setPriority (int pr) = 0;

Parameters

pr

The integer value of the priority. This parameter varies by operating system.
144 RTOS Adapter Guide

Rhapsody in C++
start

Visibility

Public

Description

The start method starts thread processing. Initially, threads are suspended until start is
called.

Signature

virtual void start() = 0;

suspend

Visibility

Public

Description

The suspend method suspends the thread. This method is not used in generated code—it is
used only for advanced scheduling.

Signature

virtual void suspend() = 0;
Rhapsody 145

The OSAL Classes
OMOSTimer Class

The abstract class OMOSTimer is a building block for OMTimerManager, which provides basic
timing services for the execution framework. In the Rhapsody implementation, the timer runs on
its own thread. Therefore, the target operating system must support multithreading.

Construction Summary

Method Summary

~OMOSTimer

Visibility

Public

Description

The ~OMOSTimer method destroys the operating system entity that the instance wraps and
stops the timer. You must declare the destructor explicitly, rather than letting the compiler add
it, because it must be made virtual.

Signature

virtual ~OMOSTimer()

getOsHandle

Visibility

Public

Description

The getOsHandle method retrieves the thread’s operating system ID. This value varies by
operating system.

Signature

virtual void* getOsHandle() const = 0;

Return

The operating system ID

~OMOSTimer Destroys the OMOSTimer object

getOsHandle Retrieves the thread’s operating system
ID
146 RTOS Adapter Guide

Rhapsody in C++
OMTMMessageQueue Class

The OMTMMessageQueue class implements a message queue. It is the base class for
OMEventQueue and OMMessageQueue. The base class OMTMMessageQueue has an
OMOSMessageQueue, called theQueue, as a protected data member.

Construction Summary

Method Summary

OMTMMessageQueue Creates an OMTMMessageQueue
object.

~OMTMMessageQueue Destroys the OMTMMessageQueue
object

get Retrieves the message at the beginning of
the queue

getMessageList Retrieves the list of messages

getOsHandle Returns the native operating system
handle to the thread

isEmpty Determines whether the queue is empty

pend Blocks the thread making the call until
there is a message in the queue

put Adds a message to the queue
Rhapsody 147

The OSAL Classes
OMTMMessageQueue

Visibility

Public

Description

The OMTMMessageQueue method is the constructor for the OMTMMessageQueue class. It
allocates theQueue, the OMOSMessageQueue member of OMTMMessageQueue, with a given
size and the ability to grow dynamically. In addition, it initializes the following:

� messageQueueSize—If not overridden, the message queue size is initialized to
the value of the static constant DefaultMessageQueueSize in OMOSThread.

� dynamicMessageQueue—If the default value of TRUE is not overridden, the
message queue size is dynamic rather than fixed.

Signature

OMTMMessageQueue (const long messageQueueSize =
OMOSThread::DefaultMessageQueueSize,
OMBoolean dynamicMessageQueue = TRUE)

Parameters

messageQueueSize

The initial size of the queue

dynamicMessageQueue

A Boolean value that specifies whether the queue is dynamic or fixed

~OMTMMessageQueue

Visibility

Public

Description

The ~OMTMMessageQueue method deletes memory allocated for the message queue. You
must declare the destructor explicitly, rather than letting the compiler add it, because it must be
made virtual.

Signature

virtual ~OMTMMessageQueue()
148 RTOS Adapter Guide

Rhapsody in C++
get

Visibility

Public

Description

The get method calls the message queue’s get operation to retrieve the first message in the
queue.

Signature

virtual Msg *get()

Return

The first message in the queue

getMessageList

Visibility

Public

Description

The getMessageList method calls the message queue’s getMessageList operation to
retrieve the list of messages.

Signature

virtual void getMessageList (OMList<Msg*>& l)

Parameters

l

The list of messages in the event (message) queue.

The list is of type OMList<void*>, a parameterized type defined in oxf\omlist.h that
encapsulates all the operations typically performed on lists, such as adding items to the list and
removing items from the list.
Rhapsody 149

The OSAL Classes
getOsHandle

Visibility

Public

Description

The getOsHandle method calls the message queue’s getOsHandle operation to retrieve the
native operating system handle to the thread. This handle is used to identify a thread or to
apply operating system-specific operations to a thread.

Signature

virtual void* getOsHandle() const

Return

The handle

isEmpty

Visibility

Public

Description

The isEmpty method calls the message queue’s isEmpty operation to determine whether the
queue is empty.

Signature

virtual int isEmpty()

Return

The method returns one of the following values:

� 0—The queue is not empty.
� 1—The queue is empty.
150 RTOS Adapter Guide

Rhapsody in C++
pend

Visibility

Public

Description

The pend method calls the message queue’s pend operation to block the caller until there is a
message in the queue.

Signature

virtual void pend()

put

Visibility

Public

Description

The put method calls the message queue’s put operation to add a message to the end of the
queue.

Signature

virtual OMBoolean out (Msg *m, OMBoolean fromISR = FALSE)

Parameters

m

The message to be added to the queue.

fromISR

A Boolean value that specifies whether the message being added was generated from an
interrupt service routine (ISR). The default value is FALSE.

Return

The method returns one of the following Boolean values:

� TRUE—The method successfully added the message to the queue.
� FALSE—The method was unsuccessful.
Rhapsody 151

The OSAL Classes
152 RTOS Adapter Guide

Adapter-Specific Info
When you want to modify your Rhapsody-built application to operate in a different target
environment, you must rebuild the Rhapsody framework for that target environment. Because
language objects are compiler-specific, you must rebuild these libraries—even if you move from
one Windows-based environment to another, such as Borland.

You might need to reinstall Rhapsody before you rebuild the Rhapsody framework. You should
reinstall Rhapsody in the following situations:

� The source files for the framework were not included in your original installation.
� You installed Rhapsody for a different environment other than the new compiler or

environment you now want to target.
� You installed Rhapsody before installing the new compiler or environment.

During the reinstallation, be sure to select the correct target environment. This enables Rhapsody
to prepare the appropriate make (.mak) file for your target environment. Note that reinstalling
Rhapsody will not erase your license file or any projects you have under the Rhapsody root
directory.

This section describes how to rebuild the Rhapsody framework for the different supported adapters
for Windows systems for Rhapsody in C and C++.

Note
Refer to the Release Notes (readme.htm) for detailed information about the supported
environments.

The topics are as follows:

� Borland

� INTEGRITY

� Linux

� MultiWin32

� OSE

� QNX

� VxWorks
Rhapsody 153

Adapter-Specific Info
For information on rebuilding Rhapsody for other environments, see these sections:

� Building the Framework for Solaris Systems

� Building the Ada Framework
� Building the Java Framework

Borland
To rebuild the Rhapsody framework for the Borland environment, follow these steps:

1. Make sure the file <Borland_dir>\bin\Bcc32.cfg contains the following lines:

 -I<Borland_Dir>\include

 -L<Borland_Dir>\lib

2. Make sure the file <Borland_dir>\bin\ilink32.cfg contains the following line:

 -L"<Borland_Dir>\lib"

3. Set following environment variables:

 set BCROOT=<Borland_install>

 set PATH=%BCROOT%\Bin;%PATH%

4. Navigate to the <Rhapsody_install>\Share\Lang<lang> directory and execute the
following command:

 make -f bc5build.mak

5. If you are going to webify your model, add %BCROOT%\Bin to your system variables.
Refer to the Rhapsody User Guide for more information on the Webify Toolkit.
154 RTOS Adapter Guide

INTEGRITY
INTEGRITY
To rebuild the Rhapsody framework for the INTEGRITY environment (C++ only), follow these
steps:

1. Edit the <Rhapsody_install>\Share\LangCpp\IntegrityBuild.bat file to set
the option :target to the target BSP name. For example:

 :target=mbx800

2. Pass the INTEGRITY environment path and target BSP name as command-line parameters
to the IntegrityBuild.bat file and run this batch file to build all the libraries for the
specified target BSP.

For example, to build libraries for mbx800, use the following command:

 <Rhapsody_install>\Share\LangCpp\IntegrityBuild.bat
 C:\GHS\int404 mbx800

This command builds the following debug libraries for INTEGRITY under the
directory <Rhapsody_install>\Share\LangCpp\lib:

a. IntegrityOxfMbx800.a

b. IntegrityOxfInstMbx800.a

c. IntegrityAomAnimMbx800.a

d. IntegrityOmComApplMbx800.a

e. IntegrityAomTraceMbx800.a

f. IntegrityTomTraceMbx800.a

g. IntegrityOxfInstTraceMbx800.a

h. IntegrityWebComponentsMbx800.a

In addition, the build generates the following debug information files for each debug
library:

i. IntegrityOxfMbx800.dba

j. IntegrityOxfInstMbx800.dba

k. IntegrityAomAnimMbx800.dba

l. IntegrityOmComApplMbx800.dba

m. IntegrityAomTraceMbx800.dba
Rhapsody 155

Adapter-Specific Info
n. IntegrityTomTraceMbx800.dba

o. IntegrityOxfInstTraceMbx800.dba

p. IntegrityWebComponentsMbx800.dba

Once the libraries are built, you can compile, build, and run the Rhapsody samples.

Compiling and Building a Rhapsody Sample

To compile and build a Rhapsody sample in the INTEGRITY environment, follow these steps:

1. Start Rhapsody and open the project. For example:

 <Rhapsody_install>\Samples\CppSamples\Dishwasher.rpy

2. Select File > Project Properties.

3. Set the CPP_CG::INTEGRITY::RemoteHost property to the IP address of the machine
on which Rhapsody is running. (To get the IP address under the Windows environment,
enter the following command at the command prompt:

 ipconfig

4. Set the active configuration for the sample. For example, for the Dishwasher sample, set
EXE::Host as the active configuration.

5. Open the Features dialog box for the active configuration and set the following values:

a. Set the Instrumentation Mode field to Animation.

b. Set the Environment field to INTEGRITY.

6. Select the Properties tab, then click the All filter.

7. Set the CPP_CG::INTEGRITY::BLDTarget property to set the target BSP. By default,
this value is set to mbx800. If desired, set this to a different value.

You can set additional options and defines by changing the
BLDAdditionalOptions and BLDAdditionalDefines properties.

8. Click OK to apply your changes and dismiss the dialog box.

9. Select Code > Generate <configuration> to generate the code and the build file for the
active configuration.

10. Select Code > Build <ActiveComponent>.mod to compile and link the application
source code. This will generate the following INTEGRITY executable files:
156 RTOS Adapter Guide

INTEGRITY
a. <ActiveComponent>.mod—This is a dynamically download type of image. This
image can be downloaded on a running kernel on the target board using the TFTP
server utility.

b. <ActiveComponent>—This is an Integrity Application type of image. This image
must be integrated with the kernel to form a composite image that can be downloaded
on the target using the ocdserv utility.

In these names, ActiveComponent is the name of the component currently selected as
the active component within Rhapsody.

Downloading the Image and Running the Application

To run the sample, perform all the steps described in the following sections.

Modifying the Files
Perform the following steps:

1. Edit the Default.ld file in the <GreenDir>\mbx800 dsp directory as follows:

a. Increase the .heap section to 1Mb (0x100000).

b. Increase the .download section to 1.5Mb (0x180000).

2. Edit the Integrity.ld file in <GreenDir> directory to increase the .heap section to
256K (0x40000). This is used for application build. You can check it in the .map file of
the application.

Building the Kernel
To build the kernel, follow these steps:

1. From the Windows Start menu, invoke the ADAMULTI IDE.

2. Select File > Open Project in Builder, navigate to the mbx800 BSP directory under your
Green Hills installation (for example, <GreenDir>\mbx800), select the project
default.bld, and open it.

3. Navigate to the project Kernel.bld and double-click on it. You will see a
global_table.c file. You must modify this file according to your board specifications.
Make the following changes:

a. Uncomment the following statement:

 #define HARD_CODE_NETWORK_CONFIGURATION
Rhapsody 157

Adapter-Specific Info
b. Define the ethernet address for your board. For example:

 #define ETHERADDR 0x00, 0x01, 0xAF, 0x01, 0x10, 0xCC

c. Define the IP address of the board. For example:

 #define IP1 194
 #define IP2 90
 #define IP3 28
 #define IP4 151

d. Define the gateway for the board. For example:

 #define GW1 194
 #define GW2 90
 #define GW3 28
 #define GW4 1

e. Set the netmask. For example:

 #define NM1 255
 #define NM2 255
 #define NM3 252
 #define NM4 0

f. Make sure the target board using TCP/IP is on the same subnet as any system with
which it communicates.

4. Select Project > FileOptions for Kernel.bld. Set the libraries option as follows:

a. Remove the log library.

b. Add the tcpip library.

5. Select Build > Rebuild all. This command rebuilds your kernel.
158 RTOS Adapter Guide

INTEGRITY
Downloading the Images
Because two different executable files are created during code generation, there are two ways to
download the kernel on the target board. The following sections describe both methods.

Dynamically Load Files

To download the kernel on the target board, follow these steps:

1. Make sure the variable on_board_ram_size in the file
<GreenDir>\mbx800\mbx800.ocd is 16 (for the MBX860 board).

2. Select Target > Connect to Target. The Connection Chooser command window opens.

3. Enter the following command, then click OK:

 ocdserv lpt1 ppc800 -s <GreenDir>\mbx800\mbx800.ocd

4. Select Debug > Debug kernel to open the Debug window.

5. Click the GO toolbar button to download the kernel on to the board and run it.

6. Invoke another instance of ADAMULTI IDE.

7. Select Target > Connect to Target to open the Connection Chooser command window.

8. Enter the following command, then click OK:

 rtserv -port udp@<hostname>

In this command, hostname is the IP address of the target board. For example:

 rtserv -port udp@194.90.28.151

This command opens the Task window. You can see some kernel tasks running in the
kernel space on the Task window. Select Target > Show Target windows to see IO
and target windows.

9. From the Windows Start menu, invoke the TFTP server.

10. Set the base directory in the TFTP server window to the directory where the images are
generated (for example, <Rhapsody_install>\Samples\CppSamples).

11. In the rtserv Task window, select Target > Load Module.

12. Navigate to the path where the dynamically download image (*.mod) was generated and
select load.

Ensure that the TFTP server is running or the download process will be very slow.
You can see the download status on the rtserv target window. Once the image has
Rhapsody 159

Adapter-Specific Info
been successfully downloaded, the Initial Task will be visible in the rtserv Task
window in the virtual address space.

INTEGRITY Application Images

To integrate the INTEGRITY application image with the kernel, follow these steps:

1. Open an application command window and change directory to the directory where the
INTEGRITY application image was created.

2. Enter the following command:

 C:>\...<path> <GreenDir>\intex -dbo
 - lang_7=<executable name>
 -kernel=<Target BSP path>\kernel
 -target=<Target BSP Path>\default.bsp OutputFileName

In this command:

a. <path> = The path to the application image

b. <executable name> = Host

c. <Target BSP Path> = <GreenDir>\mbx800

d. OutputFileName = Dishwasher

For example:

C:\..\Dishwasher\EXE <GreenDir>\intex -dbo
-lang_7=Dishwasher -
kernel=<GreenDir>\mbx800\kernel
-target=<GreenDir>\mbx800\default.bsp Dishwasher

3. Invoke the ADAMULTI IDE.

4. Select Remote > Connect to Target to open the Remote command window.

Enter the following command:

 ocdserv lpt1 ppc800 -s <GreenDir>\mbx800\mbx800.ocd

The execution of this command opens two windows—the Target window and the
IN/OUT window.

5. Select Debug > Debug Other and navigate to the path where your Integrity Application
image was created, then click Debug. This opens the debug window.

6. Click on the toolbar button GO to start downloading your composite image of
"Kernel+Application" on the board.
160 RTOS Adapter Guide

INTEGRITY
7. Invoke another instance of the ADAMULTI IDE.

8. Select Remote > Connect to Target to open the Remote command window.

9. Enter the following command:

 rtserv -port udp@<hostname>

In this command, hostname is the IP address of the target board. For example:

 rtserv -port udp@194.90.28.151

The execution of this command invokes three windows—the rtserv Target window,
IN/OUT window, and Task window. In the Task window, you can view the kernel
space tasks and the virtual address space task (Initial).

10. Double-click on the Initial Task to bring up its debug window. You can see the debug
arrow pointing at the application’s main function. Ensure that the same application is
opened in Rhapsody.
Rhapsody 161

Adapter-Specific Info
Animating the Image
To run the application, follow these steps:

1. Double-click on the Initial Task to bring up its debug window. You can see the debug
arrow pointing to the application’s main function. Ensure that the same application is
open in Rhapsody.

2. To execute this application, click the toolbar button GO. You should be able to see the
animation toolbar come up in Rhapsody. You can generate events in Rhapsody using the
animation toolbar. If there is console output, it is displayed on the rtserv IN/OUT window;
animation is displayed in the Rhapsody window.

3. After the execution is complete, quit from animation.

4. The task window shows that the Initial Task and its tcpip client are still alive; these tasks
must be killed manually. Close the Initial Task debug window; in the message window,
select QuitandKillProcess to kill your initial task.

5. In the Task window, in the kernel space, double-click the Client00X (X=1..) task to
display the debug window of this task. Close the debug window and select
QuitandKillProcess to kill the client task.

6. In the rtserv Task window, select Target > Disconnect from Target to close your rtserv
session.

7. To unload the composite image from the target board, go to the first instance of the
ADAMULTI IDE that was opened. Select Remote > Disconnect from Target to close your
ocdserv session.

8. Close the Debug window of the ocdserv.
162 RTOS Adapter Guide

Linux
Linux
Rhapsody in C++ provides support for the Linux operating system. The following sections
describe how to build the Linux libraries, and how to generate Linux code using Rhapsody.

Building the Linux Libraries

You build the Linux libraries on the target machine. Copy the linuxshare.tar file installed in
the Share\LangCpp directory on the host to the Linux machine.

To build the libraries, follow these steps:

1. Change directory to Share/LangCpp.

2. Build the libraries using the following command:

 gmake –f linuxbuild.mak

3. Verify that the following library files were created in the directory
Share/LangCpp/lib:

a. linuxaomanim.a

b. linuxaomtrace.a

c. linuxomcoappl.a

d. linuxoxf.a

e. linuxoxfinst.a

f. linuxtomtrace.a
Rhapsody 163

Adapter-Specific Info
Creating and Running Linux Applications

You compile, link, and run your Linux application on the Linux machine.

Perform the following steps:

1. Create the Rhapsody project on the host, and select the Linux environment on the
configuration’s Settings tab.

2. Transfer the generated directory with the sources, headers, and makefiles from the host to
the Linux machine (for example, by using ftp).

3. On the Linux machine, edit the makefile (*.mak) to change the following setting:

 OMROOT=[LangCPP_Dir]

In this syntax, [LangCPP_Dir] is the path to the Share/LangCpp directory.

4. To compile and link the application, enter the following command:

 gmake -f xxx.mak

In this command, xxx.mak is the name of the generated makefile.

5. An executable will be created in the current directory. When you run the executable on the
target, the Rhapsody animation toolbar will open on the host (for applications using
instrumentation).

MultiWin32
To rebuild the Rhapsody OXF for the MultiWin32 environment (C++ only), follow these steps:

1. Open an application command prompt window.

2. Change directory to $OMROOT\LangCpp.

3. Assuming that the Green Hills home directory is C:\GHS, enter the following commands:

 > MultiWin32Build.bat C:\GHS\nat35 clean
 > MultiWin32Build.bat C:\GHS\nat35

You must perform a clean before the build to delete previously generated libraries
and debug information. Otherwise, the MULTI linker generates errors when you
build the Rhapsody generated application.
164 RTOS Adapter Guide

MultiWin32
Stepping Through the Generated Application Using MultiWin32

To step through the generated application, follow these steps:

1. On the Settings tab of the features dialog box for the configuration, set the Build Set field
to one of the following values:

a. Debug—Turns on the debug information. This option adds the following line to the
_program.bld file:

 :defines=_DEBUG line

b. DebugNoExp—Turns on the debug and exceptions information. This option adds the
following lines to the _program.bld file:

 :defines=_DEBUG
 :defines=HAS_NO_EXP

This is the default value.

c. Release—No debug information.

d. ReleaseNoExp—No debug or exceptions information. This option adds the
following line to the _program.bld file:

 :defines=HAS_NO_EXP

2. In Rhapsody, select Code > Generate/Make/Run.

3. In MULTI, start debugging by selecting Debug > Debug Other Executable and select the
Rhapsody generated application’s .exe file.
Rhapsody 165

Adapter-Specific Info
Stepping Through the OXF Using MULTI

The OXF libraries provided with the MultiWin32 environment do not include debug information.
To step through the OXF source code using MULTI, you must rebuild the OXF with debug
information enabled.

Perform the following steps:

1. Add the following line to the $OMROOT\LangCpp\MultiWin32Build.bld file just
below the ":defines=OM_STL" line:

 :defines=_DEBUG

2. Follow the steps described in Stepping Through the Generated Application Using
MultiWin32to rebuild the framework libraries and step through the source code.
166 RTOS Adapter Guide

OSE
OSE
This section describes how to rebuild the Rhapsody OXF for the OSE Soft Kernel (OseSFK) for
C++ environments only.

Rebuilding the Framework

To rebuild the OXF framework for the OseSFK environment, follow these steps:

1. Open the command prompt.

2. Navigate to the <Rhapsody install>\Share\LangCpp directory.

3. Call vcvars32.

4. Enter the following make command:

 nmake osesfkbuild.mak

To rebuild specific framework libraries only, see Using Command-Line Attributes and Flags.

Using Command-Line Attributes and Flags

For both OSE environments, you can rebuild only part of the framework using the attribute
TARGETS, where the target is one of the following values:

� oxflibs—Builds the oxf and oxfinst libraries only
� aomlibs—Builds the aomtrace and aomanim libraries only
� omcomlib—Builds the omcom library only
� tomlib—Builds the tom library only

For example:

 dmake –f oseppcbuild.mak TARGETS=oxflibs

To build the framework with debug information, use the flag USE_PDB=TRUE. For
example:

 nmake osesfkbuild.mak USE_PDB=TRUE
Rhapsody 167

Adapter-Specific Info
Editing the Batch Files

Before you can execute the model, you must edit the batch files.

Perform the following steps:

1. Add the following lines to the file<Rhapsody
install>\Share\etc\oseppcdiabmake.bat:

 set DIAB_ROOT=<Your Diab Root>
 set LM_LICENSE_FILE=<Your Diab license file>

2. Add the following line to the file<Rhapsody
install>\Share\etc\osesfkRun.bat:

 set LM_LICENSE_FILE=<OSE license file>;

For example:

 set LM_LICENSE_FILE=744@banana;
168 RTOS Adapter Guide

QNX
QNX
To rebuild the Rhapsody framework for the QNX environment, follow these steps:

1. Open an application command prompt window.

2. Set the following environment variables:

 set QNXROOT= <your_QNX_install_dir>
 set QCC_CONF_PATH=%QNXROOT%/host/win32/etc/qcc
 set QNX_TARGET=%QNXROOT%/target/qnx6
 set QNX_HOST=%QNXROOT%/host/win32
 set LD_LIBRARY_PATH=%QNXROOT%/target/qnx6/lib
 set PATH=%QNX_HOST%/binwin;%PATH%

3. Navigate to the directory <Rhapsody_install>\Share\LangCpp and execute one of
the following commands:

make -f qnxcwbuild.mak CPU=ppc CPU_SUFFIX=be PATH_SEP=\\
or
make -f qnxcwbuild.mak CPU=x86 PATH_SEP=\\

In the first command (for ppc), CPU_SUFFIX can be one of the following values:

a. be—Big-endian

b. le—Little-endian

In the second command (for x86), do not include the CPU_SUFFIX in the command.

If desired, you can specify the TARGETS attribute, which enables you to build only
part of the framework. The possible targets are as follows:

c. oxflibs

d. aomlibs

e. omcomlib

f. tomlib

g. webcomponentslib

For example:

make -f qnxcwbuild.mak CPU=ppc CPU_SUFFIX=be PATH_SEP=\\
 TARGETS=oxflibs
Rhapsody 169

Adapter-Specific Info
4. To execute the model, Generate and Make the model in Rhapsody, then upload or
transfer your executable to the QNX machine using the Code Warrior IDE or by using
ftp, and executing the application on the target machine (suitable for x86). The
following sections describe this step in detail.

Using Code Warrior

To upload your executable using Code Warrior, follow these steps:

1. Open Code Warrior and select File > Open.

2. Choose the new Bourne executable. This will create the Code Warrior project for your
model.

3. For the target settings:

a. Set the QNX Linker panel to carry the tag -static.

b. Set Connection settings > Host Name to your target machine name.

4. On the target machine, run the following process:

 pdebug 10000

5. Execute the model in Code Warrior.

Using ftp

To transfer your executable using ftp, follow these steps:

1. Upload the executable to the target machine using your favorite ftp client.

2. Change permissions for the executable using the following command:

 chmod +x EXE

3. Execute your model using the following command:

 ./EXE
170 RTOS Adapter Guide

QNX
Message Queue Implementation

The default style is a proprietary-style queue. To use POSIX-style queues, follow these steps:

1. In the makefile, add the flag OM_POSIX_QUEUES to ADDED_CPP_FLAGS.

2. Rebuild the OXF libraries in the framework.
Rhapsody 171

Adapter-Specific Info
VxWorks
To rebuild the Rhapsody framework for the VxWorks environment, follow these steps:

1. Call the file <Tornado_dir>\host\x86-win32\bin\torVars.bat. For example:

 D:\Tornado\host\x86-win32\bin\torVars.bat

2. Navigate to the <Rhapsody_install>\Share\Lang<lang> directory and execute the
following command:

 make -f vxbuild.mak CPU=PPC860 PATH_SEP=\\ all

3. Change the CPU environment variable to the desired CPU.
172 RTOS Adapter Guide

Quick Reference
This section provides a quick reference to the OSAL methods. The following table briefly
describes each method. For ease of use, the methods are listed in alphabetical order.

OSAL Method Description

~OMOSConnectionPort Destroys the OMOSConnectionPort object.

~OMOSEventFlag Destroys the OMOSEventFlag object.

~OMOSMessageQueue Destroys the OMOSMessageQueue object.

~OMOSMutex Destroys the OMOSMutex object.

~OMOSSemaphore Destroys the OMOSSemaphore object.

~OMOSSocket Destroys the OMOSSocket object.

~OMOSThread Destroys the OMOSThread object.

~OMOSTimer Destroys the OMOSTimer object.

~OMTMMessageQueue Destroys the OMTMMessageQueue object.

cleanup Cleans up the memory after an object is deleted.

Close Closes the socket.

Connect Connects a process to the instrumentation server at a
given socket address and port.

create Creates a new object.

Create Creates a new socket.

createOMOSConnectionPort Creates a connection port.

createOMOSEventFlag Creates an event flag.

createOMOSIdleTimer Creates an idle timer.

createOMOSMessageQueue Creates a message queue.

createOMOSMutex Creates a mutex.

createOMOSSemaphore Creates a semaphore.

createOMOSThread Creates a thread.

createOMOSTickTimer Creates a tick timer.

createOMOSWrapperThread Creates a wrapper thread.

createSocket Creates a new socket.
Rhapsody 173

Quick Reference
delayCurrentThread Delays the current thread for the specified length of
time.

destroy Destroys the object.

endApplication Ends a running application.

endMyTask Terminates the current task.

endOtherTask Terminates a task other than the current task.

endProlog Ends the prolog.

exeOnMyTask Determines whether the method was invoked from the
same operating system task as the one on which the
object is running.

exeOnMyThread Determines whether the method was invoked from the
same operating system thread as the one on which the
object is running.

free Releases the lock, possibly causing the underlying
operating system to reschedule threads.

get Retrieves the message at the beginning of the queue.

getCurrentTaskHandle Returns the native operating system handle to the task.

getCurrentThreadHandle Returns the native operating system handle to the
thread.

getMessageList Retrieves the list of messages.

getOSHandle Retrieves the task’s operating system ID.

getOsHandle Retrieves the thread’s operating system ID.

getOsQueue Retrieves the event queue.

getTaskEndClbk Is a callback function that ends the current operating
system task.

getThreadEndClbk Is a callback function that ends the current operating
system thread.

init Initializes the new object.

initEpilog Executes operating system-specific actions to be taken
at the end of OXF::init after the environment has
been set (that is, the main thread and the timer have
been started) and before it returns.

instance Creates a single instance of OMOSFactory.

isEmpty Determines whether the message queue is empty.

isFull Determines whether the queue is full.

lock Determines whether the mutex is free and reacts
accordingly.

OMEventQueue Constructs an OMEventQueue object.

OMTMMessageQueue Constructs an OMTMMessageQueue object.

pend Blocks the thread making the call until there is a
message in the queue.

OSAL Method Description
174 RTOS Adapter Guide

put Adds a message to the end of the message queue.

receive Waits on the socket to receive the data.

Receive Receives data through the socket.

reset Forces the event flag into a known state.

resume Resumes a suspended thread.

RiCOSEndApplication Ends a running application.

RiCOSOXFInitEpilog Initializes the epilog.

send Sends data from the socket.

Send Sends data out from the connection port.
or
Sends data out from the socket.

SetDispatcher Sets the dispatcher function, which is called whenever
there is an input on the connection port (input from the
socket).

setEndOSTaskInCleanup Determines whether destruction of the RiCOSTask
class should kill the operating system task associated
with the class.

setEndOSThreadInDtor Determines whether destruction of the OMOSThread
class should kill the operating system thread associated
with the class.

setOwnerProcess Sets the thread that owns the message queue.

setPriority Sets the operating system priority of the task or thread.

signal Releases a blocked thread.

start Starts the task or thread processing.

suspend Suspends the task or thread.

unlock Releases the lock, possibly causing the underlying
operating system to reschedule threads.

wait Blocks the thread making the call until some other
thread releases it by calling signal on the same event
flag instance.

waitOnThread Waits for a thread to terminate.

OSAL Method Description
Rhapsody 175

Quick Reference
176 RTOS Adapter Guide

Index
A
Abstraction layer 3
Ada language

animation 21
framework 21

Adapter 3
classes 13

AdditionalNumberOfInstances property 6

B
BaseNumberOfInstances property 6
Batch files 29

editing 168

C
C language

classes 44
libraries 19
methods 44
RiCOSConnectionPort class 45
RiCOSemaphore class 73
RiCOSEventFlag Interface class 51
RiCOSMessageQueue class 56
RiCOSMutex class 65
RiCOSOXF class 70
RiCOSSocket class 79
RiCOSTask class 86
RiCOSTimer class 100
tracing services 19

C++ language
classes 105
libraries 18
OMEEventQueue class 105
OMMessageQueue class 107
OMOSclass 107
OMOSConnectionPort class 109
OMOSFactory class 115
OMOSMessageQueue class 124
OMOSMutex class 130
OMOSSemaphore class 133
OMOSSocket class 136
rebuild OXF for OSE 167

Callback functions 39

Classes
adapter 3, 13
C++ 105
OMEEventQueue 105
OMMessageQueue 107
OMOS 107
OMOSConnectionPort 109
OMOSEventFlag 112
OMOSFactory 115
OMOSMessageQueue 124
OMOSMutex 130
OMOSSemaphore 133
OMOSSocket 136
RiCOSConnectionPort 45
RiCOSemaphore 73
RiCOSEventFlag Interface 51
RiCOSMessageQueue 56
RiCOSMutex 65
RiCOSOXF 70
RiCOSSocket 79
RiCOSTask 86
RiCOSTimer 100

CM tools
Integrity 155

Command-line
attributes 167
flags 167

Commands
all 17
build framework libraries for C or C++ 21
definitions 33
make 17
RHAP_FLAGS 18

Communication port 3
Compilation

flags 32
CompileSwitches property 32
Configurations

active 156
Create

new makefile 18

D
Defines 39
Dependencies 35
Rhapsody 177

Index
Deployment environment 1
Documentation

List of Books 31
properties 31
User Guide 154

E
EntryPoint property 40
Environment property 25, 26
Environments

deployment 1
setting 26

Event flag 51
Events

flag 112
synchronous 6

F
Features dialog box

configuration 26
Environment 156
Instrumentation Mode 156
property definitions displayed 31

Files
batch 16, 29, 168

Flags
command for Rhapsody 18
compilation 32
event 112

Framework 73
Ada 21
Java 22
libraries 20
modifying 9
port number into connection point 7

Functions 40
callback 39

G
Generated macros 34

I
IDE interface 39
Integrity 155
Interfaces

implementing 4
RiCOSEventFlag 51

InvokeExecutable property 29
InvokeMake property 21

J
Java language

framework 22
jar command 37
libraries 19

L
Libraries 167

build framework 21
C 19
C++ 18
framework 20
Java 19

M
Macros

generated 34
predefined 35

MakeFileContent property 15, 31, 37
Makefiles 16, 29

creating 15
creating new 18
linking 36
modifying 9
properties 30
sample file 17
target type 32

Memory
pool 6

Messages
queues 3, 6

Mutex 5, 65
Mutual exclusion (mutex) 130

O
Object execution framework (OXF) 3
Operating systems

real-time 1
services 3, 11

Operations
virtual 11

OS abstraction layer (OSAL) 3
OSAL 3
OXF 3

P
Ports

animation 7
communication 7
number 7

Predefined macros 35
Processes
178 RTOS Adapter Guide

Index
communication 6
lightweight 4

Properties 24
CompileSwitches 32
definitions of all 31
InvokeExecutable 29
makefile 30
MakeFileContent 31, 37

R
Real-time operating system (RTOS) 1
Rhapsody

adapt to a new RTOS 9
deployment environment 1
framework 73
host machine 7
User Guide 154

RiCOSTimerManager 100
RTOS 1

adapting Rhapsody to 9
layered approach 3
makefile creating new 18
relation to Rhapsody applications 3
with Rhapsody applications 3

S
Semaphores 5, 73, 133
Services

operating system 3, 11

synchronization 3, 5
tasking 4
timing 100
tracing in C 19

Sockets 136
Stack size 5
Synchronization 65

services 3, 5

T
Target

type 32
Targets 167
Tasking services 3, 4
TCP/IP protocol 7
Threads 4

wrapper 4
Timer service 3
Timers 8
Timing services 100

V
Virtual operations 11

W
Wrapper

threads 4
Rhapsody 179

Index
180 RTOS Adapter Guide

	Contents
	The Deployment Environment
	Basic Concepts
	Rhapsody Applications and the RTOS
	Using the OSAL
	Tasking Services
	Setting the Stack Size
	Synchronization Services
	Message Queues
	Communication Port
	Timer Service

	Adapting Rhapsody to a New RTOS
	Step 1: Installing the Run-Time Sources
	Step 2: Modifying the Framework
	Implementing the Abstract Factory
	Plugging in the Factory
	Implementing the Adapter Classes
	Modifying rawtypes.h
	Other Operating System-Related Modifications

	Step 3: Creating Makefiles
	Creating the Batch File and Makefiles
	Sample <env>build.mak File
	Creating New Makefiles
	OXF Versions
	Animation Libraries

	Step 4: Building the Framework Libraries
	Building the C or C++ Framework for Windows Systems
	Building the Ada Framework
	Building the Java Framework
	Building the Framework for Solaris Systems

	Step 5: Creating Properties for a New RTOS
	Modifying the site<lang>.prp Files
	Setting the Environment

	Step 6: Validating the New Adapter

	Summary

	Makefiles
	Step 1: Creating a Make Batch File
	Step 2: Running the Batch File
	Step 3: Redefining Makefile-Related Properties
	Step 4: Redefining the MakeFileContent Property
	Target Type
	Compilation Flags
	Commands Definitions
	Generated Macros
	Predefined Macros
	Generated Dependencies
	Makefile Linking Instructions
	Java Users

	The IDE Interface
	Defines
	Structures
	Functions

	The OSAL Classes
	Rhapsody in C
	RiCOSConnectionPort Class
	create
	destroy
	cleanup
	init
	Connect
	Send
	SetDispatcher

	RiCOSEventFlag Interface
	create
	destroy
	cleanup
	init
	reset
	signal
	wait

	RiCOSMessageQueue Class
	create
	destroy
	cleanup
	init
	get
	getMessageList
	isEmpty
	isFull
	pend
	put

	RiCOSMutex Class
	create
	destroy
	cleanup
	init
	free
	lock

	RiCOSOXF Class
	RiCOSEndApplication
	RiCOSOXFInitEpilog

	RiCOSSemaphore Class
	create
	destroy
	cleanup
	init
	signal
	wait

	RiCOSSocket Class
	create
	destroy
	cleanup
	init
	createSocket
	receive
	send

	RiCOSTask Class
	create
	destroy
	cleanup
	init
	endMyTask
	endOtherTask
	exeOnMyTask
	getCurrentTaskHandle
	getOSHandle
	getTaskEndClbk
	resume
	setEndOSTaskInCleanup
	setPriority
	start
	suspend

	RiCOSTimer
	create
	destroy
	cleanup
	init

	RiCHandleCloser Class

	Rhapsody in C++
	OMEventQueue Class
	OMEventQueue
	getOsQueue

	OMMessageQueue Class
	OMOS Class
	endApplication
	endProlog
	initEpilog

	OMOSConnectionPort Class
	~OMOSConnectionPort
	Connect
	Send
	SetDispatcher

	OMOSEventFlag Class
	~OMOSEventFlag
	getOsHandle
	reset
	signal
	wait

	OMOSFactory Class
	instance
	createOMOSConnectionPort
	createOMOSEventFlag
	createOMOSIdleTimer
	createOMOSMessageQueue
	createOMOSMutex
	createOMOSSemaphore
	createOMOSThread
	createOMOSTickTimer
	createOMOSWrapperThread
	delayCurrentThread
	getCurrentThreadHandle
	waitOnThread

	OMOSMessageQueue Class
	~OMOSMessageQueue
	get
	getMessageList
	getOsHandle
	isEmpty
	isFull
	pend
	put
	setOwnerProcess

	OMOSMutex Class
	~OMOSMutex
	free
	getOsHandle
	lock
	unlock

	OMOSSemaphore Class
	~OMOSSemaphore
	getOsHandle
	signal
	wait

	OMOSSocket Class
	~OMOSSocket
	Close
	Create
	Receive
	Send

	OMOSThread Class
	~OMOSThread
	exeOnMyThread
	getOsHandle
	getThreadEndClbk
	resume
	setEndOSThreadInDtor
	setPriority
	start
	suspend

	OMOSTimer Class
	~OMOSTimer
	getOsHandle

	OMTMMessageQueue Class
	OMTMMessageQueue
	~OMTMMessageQueue
	get
	getMessageList
	getOsHandle
	isEmpty
	pend
	put

	Adapter-Specific Info
	Borland
	INTEGRITY
	Compiling and Building a Rhapsody Sample
	Downloading the Image and Running the Application
	Modifying the Files
	Building the Kernel
	Downloading the Images
	Animating the Image

	Linux
	Building the Linux Libraries
	Creating and Running Linux Applications

	MultiWin32
	Stepping Through the Generated Application Using MultiWin32
	Stepping Through the OXF Using MULTI

	OSE
	Rebuilding the Framework
	Using Command-Line Attributes and Flags
	Editing the Batch Files

	QNX
	Using Code Warrior
	Using ftp
	Message Queue Implementation

	VxWorks

	Quick Reference
	Index

