

Rhapsody®
ReporterPLUS Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
ReporterPLUS Basics . 1
Methods for Starting ReporterPLUS . 1

The ReporterPLUS Interface. 2
ReporterPLUS Online Help . 4
Model View . 5
Attribute View . 6
Template View . 7

Node (Section) Types . 7
Template View Options . 8

Template Node View. 10
Text Tab . 10
Iteration Tab . 15
Condition Tab . 17
Sort Tab. 18
No Data Tab . 19
Properties Tab. 20

ReporterPLUS Template Basics. 21
Creating Documents from Templates . 21
Basic Steps in Building a New Template. 22

Adding Template Nodes (Sections). 22
Adding Model Text and Diagrams . 23
Adding Boilerplate Text . 23
Specifying Formatting for the Document . 23

Generic and Model Elements . 26

Creating a Simple Document . 27
Differences among the Types of Templates . 27

Opening a Model . 28

Opening an Existing Template . 29
Examining a Selected Template with Your Model. 29
Standard ReporterPLUS Templates . 30
Setting Standard Template Properties . 34
Rhapsody iii

Table of Contents
Exploring the GetStarted Template . 35

Exploring the Model View . 37

Generating Documents . 38
Generating a PowerPoint Presentation. 38
Generating a Word Document . 39

Using a Word Template to Add Formatting . 39
Change the Default Template . 40

Generating an HTML Document . 41
Associating an Image File with a Model Element . 41
Specifying HTML Options . 41
Generating an HTML Document . 42
Displaying Your Icons for Stereotypes . 43

Rhapsody HTML Exporter Template . 44
HTML Exporter Template Structure . 45
Generating an HTML Exporter Report . 46
Creating Diagram Hot Spots . 47
Viewing Reports Online. 47
Generating a List of Specific Items . 47
Creating HTML Reports for Large Models . 49

Managing Long Paths in a Generated HTML Report . 49
Generating Large Model Reports in Multiple Directories. 49
Optimizing Memory for Large Reports . 50

Creating Your Own ReporterPLUS Template . 51
Before You Begin . 52

Extracting All Diagrams from a Model. 52

Extracting All Classes in the Package. 55

Adding Boilerplate Text and Attributes. 56

Adding Formatting . 57

Saving a ReporterPLUS Template . 58

Generating and Viewing Your Document . 59

Building a ReporterPLUS Template for a Specific Model . 59

Q Language . 61
Q Language Characteristics. 61

Model Representation . 62
Basic Q Types. 62

Tuples . 62
Collections. 63
iv ReporterPLUS Guide

Table of Contents
Functions. 63
Limitations . 63
Complicated Type Examples. 63

Basic Expressions. 64
Constant Literals . 64
Tuples . 65
Arithmetic Operations . 65
Relational Operations . 65
Logical Operations . 65
String Operations . 65

Object Comparisons . 67
Variables . 67

Predefined Variable: model . 67
Predefined Variable: this . 67
Predefined Variable: current . 67

Composite Expressions . 68

Catalog of Composite Expressions . 68

Functions . 71

Catalog of Built-In Functions . 72

Conversion Operators. 77

Paths. 78
Basic Paths . 78
Paths with Cycles . 80
Path Nodes with Multiple Outgoing Edges . 81
Paths Nodes with Conditions . 82
Execution Model of Paths . 82

Precedence and Associativity of Operators . 84

Lexical Elements . 85
Punctuation . 85
Identifiers (ID) . 85
Keywords . 85
Integer Literals (INTEGER_LITERAL). 85
Real Literals (REAL_LITERAL) . 86
Boolean Literals (BOOLEAN_LITERAL) . 86
Association Literals (ASSOC_LITERAL). 86
String Literals (STRING_LITERAL). 86
Regular Expression Literals (REGEXP_LITERAL) . 87

Q Expression Tester . 89

Q Language Grammar. 90
Rhapsody v

Table of Contents
Footers and Other Formatting . 95
Adding a Text Node. 95

Adding a Footer and Page Number . 96

Adding a Title Page . 97

Changing the Node Label . 98

Using Multiple Headers and Footers . 99

Associating a Word Template with a ReporterPLUS Template. 100

Generating and Viewing Your Document . 101

Sorting, Conditions, and Missing Data . 103
Sorting Model Elements . 103

Adding a Condition . 104

Coping with a Lack of Model Data . 105
Coping with Missing Attributes . 106
Coping with Missing Elements in an Iteration . 107

Next Steps . 108

Command-line Operation . 109
Launching ReporterPLUS from an MSDOS Shell . 109

Command-line Options . 110
Parameter Values . 110
Option Guidelines . 111
Command-line Example . 112

Execute Command . 113

Glossary . 115

Index . 119
vi ReporterPLUS Guide

ReporterPLUS Basics
ReporterPLUS is a documentation tool that allows you to create Microsoft Word, Microsoft
PowerPoint, HTML, RTF, and text documents from any Rhapsody model. ReporterPLUS’ pre-
defined templates extract text and diagrams from a model, arrange the text and diagrams in a
document, and format the document. For a list of these templates, see Standard ReporterPLUS
Templates. To customize any of these templates, you can use drag-and-drop techniques.

Note
If you are using ReporterPLUS on Linux, you must install the current version of OpenOffice
and Firefox.

Methods for Starting ReporterPLUS
To start ReporterPLUS from inside of Rhapsody, select Tools > ReporterPLUS. This menu
displays options for printing the model currently displayed in Rhapsody.

The Report on selected package option is not available from this menu unless a package in the
model is highlighted in the Rhapsody browser. If one of the first two items is selected, a report can
be generated using a predefined template without displaying the main ReporterPLUS GUI. If the
last option is selected, ReporterPLUS starts with no model elements imported.

To start ReporterPLUS from outside of Rhapsody, select Start > All Programs > Telelogic >
Telelogic Rhapsody version # >Rhapsody ReporterPLUS version # > Rhapsody
ReporterPLUS version #.

Note
The advantage of running ReporterPLUS from within Rhapsody is convenience and the
ability to generate a report on a selected element. If you run the ReporterPLUS interface
from outside Rhapsody, it can generate a report only for the full model.
Rhapsody 1

ReporterPLUS Basics
By default, ReporterPLUS runs as a DLL when it is invoked from inside Rhapsody. The
disadvantage of running ReporterPLUS as a DLL is that ReporterPLUS always saves the model
before generating the report and an unnecessary save on a large model is usually unnecessary and
time consuming.

ReporterPLUS does not save the model when generating a report when it runs as an executable.
Use one of these methods to run it as an executable:

� Set the InvokeReporterDLL variable in the rhapsody.ini file to FALSE
� Launch ReporterPLUS outside of Rhapsody

This approach is preferred for reports generated from large models, as described in the Creating
HTML Reports for Large Models section.

After starting ReporterPLUS, either from the Tools menu or outside Rhapsody, select one of these
report generation options.

The ReporterPLUS Interface
After selecting the report type, you then select a template for the report. If you cancel that
selection, the interface appears so that you can examine or define one or more templates.

Across the top of the interface is a menu bar and icons providing the following options:

� File allows you to create templates, open and save templates, open and close models, and
set template properties. It also shows you the recent template files used.

� Edit provides the standard Cut, Copy, Paste, Undo and Redo options with special new,
move, and delete template node options and the important Generate Document option.
2 ReporterPLUS Guide

The ReporterPLUS Interface
� View displays toolbars, interface display options, default document properties for the
HTML, Word, PowerPoint, and RTF output. This menu also accesses the Model View
Guide to view information on a selected element or attribute.

� Help provides a specific ReporterPLUS Help system.
The ReporterPLUS interface work area is divided into four panes (referred to as views):

� The model view
� The attribute view
� The template view
� The template node view

If you have just started ReporterPLUS, the model view displays data and the other three views are
empty.

You can customize the colors in the model view. For more instructions, search the ReporterPLUS
online Help for the topic “Setting user interface options.” The following figure shows the
ReporterPLUS interface with the ReporterPLUS online Help menu option circled.
Rhapsody 3

ReporterPLUS Basics
ReporterPLUS Online Help

The ReporterPLUS interface provides general descriptions of the interface features. The following
illustration shows a topic from the ReporterPLUS online Help.

In addition to the Help system, Rhapsody provides this manual with special instructions to use
ReporterPLUS with Rhapsody models. This additional documentation is designed to supplement
the online Help (described above). There are two methods to access the Rhapsody ReporterPLUS
Guide:

� In the Rhapsody interface, select Help > List of Books and click the manual’s title in that
list.

� For the Windows Start menu outside the Rhapsody interface, select Start > All Programs
> Telelogic > Telelogic Rhapsody version # > Rhapsody ReporterPLUS version # >
Rhapsody ReporterPLUS Guide.
4 ReporterPLUS Guide

The ReporterPLUS Interface
Model View

The model view is the upper, left pane of the ReporterPLUS window. When you first start
ReporterPLUS, the model view displays generic elements. Generic elements are types of model
elements that can be found in any model. For more information on the difference between generic
and model elements, see Generic and Model Elements.

When you open a model, you can see elements from the actual model in addition to generic
elements. By default, the generic elements are in black text and the model elements are in blue.
These model elements are the same model elements you see when you open the model in
Rhapsody. The various icons you see identify different types of elements.

When you select an element in the model view, the path to that element is displayed in the Model
Path field, as shown in the following figure.
Rhapsody 5

ReporterPLUS Basics
Attribute View

The attribute view is the upper, right pane in the ReporterPLUS window. It displays the attributes
for the element selected in the model view. Attributes represent the pieces of data that you can
extract for each element in the model. For example, for Property, you can extract the following
attributes: isOverridden, metaClass, name, propertyName, subject, type and value.
The following figure shows the Property attributes.

To extract text and diagrams from a model, you can simply drag and drop an attribute into the Text
Tab area and then enter any addition information to add it to your ReporterPLUS template.

When you select a generic element in the model view, you see generic attributes in the attribute
view. The value column on the far right of the attribute view is blank because generic elements
represent types of model elements, not actual model elements. If you have a model open and select
a specific model element, you see the actual values of the attributes. See Generic and Model
Elements for more information on generic and model elements.
6 ReporterPLUS Guide

The ReporterPLUS Interface
Template View

The template view is the lower, left pane of the ReporterPLUS window. The template view is blank
when you first start ReporterPLUS. Once you open a ReporterPLUS template, it displays template
nodes (or report sections), which present a graphical representation of the template’s structure. The
order and structure of a generated document is determined by the order and structure of the nodes
in the template used to generate the document. Content (text and diagrams) is added to the
template by Adding Boilerplate Text and attributes to template nodes.

The nodes in the template view form a hierarchical structure. A node under an iteration is
controlled by its parent iteration. This is true of both subnodes and nested iterations. In addition,
the hierarchy of template nodes determines the heading level of the nodes in the generated
document (see Formatting You Can Specify in ReporterPLUS for more information).

When you add a node to the template view, ReporterPLUS creates a label for the node. The label
identifies what the node does and where in the model it came from. You can change this label on
the Properties tab (see the Properties Tab and Changing the Node Label sections for more
information).

Node (Section) Types
There are four kinds of nodes in the template view (shown below):

� Iteration nodes—Specify what class the iteration pertains to. ReporterPLUS loops (or
iterates) through this class looking for elements to extract. Iteration nodes also specify any
conditions that limit the iteration, how elements are sorted, and what happens when the
iteration does not yield elements from the model. In addition, iteration nodes can contain
boilerplate text and attributes.

� Iteration subnodes—Contains the information included in your document for each
element extracted by the iteration. Subnodes contain attributes (such as name or image)
that represent the text and diagrams you want to include in your document and usually
contain boilerplate text as well. Whereas the iteration node tells ReporterPLUS which
class to look at (iterate over) and what element to extract from that class, the subnode tells
ReporterPLUS what attributes (what information about that element) to extract.

� Table nodes—Are iteration nodes that produce tables rather than paragraphs of text. The
information on the table node becomes column headings and the information on the
iteration subnodes beneath the table node becomes the body of the table. To add a table
node, see the Text Tab section.

� Text nodes—Hold attributes and boilerplate text. They can also be used to hold headers
and footers for your generated document. Text nodes can stand on their own, serve as
subnodes under iteration subnodes, or serve as parent nodes to iteration nodes or table
nodes, but they cannot hold iterations.
Rhapsody 7

ReporterPLUS Basics

Template View Options
To perform operations on the items in the template, follow these steps:

1. Highlight an item in the template view.

2. Right-click to display this menu.

3. The options available on this menu depend on the type of template element you selected.

Use the menu options to perform this template operations:

� Move Item Up repositions the highlighted template element one position higher in the
template structure. Select this option again to move the element again.

� Move Item Down repositions the highlighted template element one position lower in the
template structure. Select this option again to move the element again.

� Delete Item removes a template element from the template.
� Add New Item allows you to insert a new element into the template.
8 ReporterPLUS Guide

The ReporterPLUS Interface
� Save Node allows you to save a portion of the template as a subtemplate to be inserted in
this or any other template. This option creates an “sbt” file and allows you to store it in a
selected directory.

� Insert Node from File allows you to put a previously save subtemplate (“sbt” file) into
the selected location in the currently displayed template.
Rhapsody 9

ReporterPLUS Basics
Template Node View

The template node view is the lower, right pane of the ReporterPLUS window. It consists of six
tabs, which allow you to view and modify the contents of template nodes (or sections). All six tabs
are active when you select an iteration node or table node in the template view. When you select an
iteration subnode, only the Text and Properties tabs are active. When you select a text node, the
Text, Iteration, and Properties tabs are active. The following figure shows the template node view
with the Text tab selected.

Text Tab
The Text tab shows the contents of the template node selected in the template view. The contents
consist of boilerplate text, attributes (for example, «$name», «$path»), and formatting
commands (for example, [CR], [INSERT PICTURE]).

The Text tab has two sections where you can define the Heading and the Body of the text.
Attributes and boilerplate text in the heading of the Text tab become a heading in the generated
document. Attributes and boilerplate text in the body of the Text tab become part of the body of the
generated document.

When you create a new template node, ReporterPLUS automatically adds some boilerplate text
and attributes to the Text tab. You can leave this information unchanged if you want it to appear in
generated documents, or you can delete it or modify it using right-click menu options.

Note
Remember that you can use the Edit > Undo option to remove a text change that is not what
you intended.
10 ReporterPLUS Guide

The ReporterPLUS Interface
To modify the text, right-click in either of Text tab sections to display this menu.

Add Attribute

Selecting the Add Attribute command, displays a dialog box containing standard attributes
and others specific to the project. For more information about attributes, see the Attribute View
section. Use this option when you want to work with a single attribute from the attributes listed
above.

To add an attribute to the text generation instructions, follow these steps:

1. Position the cursor where you want the attribute to be inserted.

2. Right-click to display the text modification menu (shown previously).

3. Select the Add Attribute option, and this dialog displays.

4. Highlight the desired attribute in the list.

5. Click OK.
Rhapsody 11

ReporterPLUS Basics
Add Expression

Use the Add Expression option when you want to work with two or more attributes from the
attributes listed above in an operation such as a comparison. This type of operation requires
the use of the Q language to define.

To add an expression, follow these steps:

1. Position the cursor where you want the expression inserted in the Heading or Body areas.

2. Right-click to display the text modification menu (shown previously).

3. Select the Add Expression option, and this dialog displays.

4. Type the expression using the Q Language syntax.

5. If the Expression needs more information to complete the operation described, select any
additional options using the radio buttons in the three areas below. For example, every
time a phrase (described in the Expression area) appears in the model you want to
substitute a different phrase (in the report), select the Use alternate text radio button to
replace the <<No Model Data>> that appears when ReporterPLUS cannot find an
element/attribute (such as a description).

6. Click OK. ReporterPLUS checks the syntax of the Q language expression and inserts it if
is correct. If it is not, it displays an error message.
12 ReporterPLUS Guide

The ReporterPLUS Interface
Commands

The Text tab menu supplies commands that define text. These commands simplify common
types of modifications, such as adding page breaks and numbers. Select the Commands
option from the Text tab’s right-click menu to display this list of commands:

� Add Carriage Return breaks text at the specified location.
� Add Page Break inserts a manual page break at the specified location.
� Add Date inserts a field that automatically inserts the date that the report is

generated into the results.
� Add Time inserts a field that automatically inserts the current time of day that the

report is generated.
� Add Filename allows you to reference a file that is external to the model from a

hyperlink that you add using the Insert Link command.
� Add Page Number inserts a field that automatically numbers the pages in a report

each time it is generated.
� Begin <Header> marks the beginning of the report header text. See Using Multiple

Headers and Footers for more information. This command changes depending on
the highlighted item.

� End <Header> marks the end of the report header text. This command changes
depending on the highlighted item.

� Begin <Footer> marks the beginning of the report footer text. This command
changes depending on the highlighted item.

� End <Footer> marks the end of the report footer text.This command changes
depending on the highlighted item.

� Insert Picture marks the location and provides the file name of a picture in an
external file or model diagram is inserted when the report is generated.

� Insert Bookmark allows you to specify a particular location in the generated
report to which a hyperlink can be joined.

� Insert Link defines a hyperlink to a position in the generated report identified
with a bookmark or a file defined using the Add Filename command.

� Start new file allows you to start a new report file within the existing file, give it
a separate name, and define it as well.
Rhapsody 13

ReporterPLUS Basics
� Convert allows you to insert text that should be substituted for text as it appears
in the model. For example, you want the report to refer to a component in the
project by its commercial name in the report instead of the working name used in
the project.

� Locate is only used for the HTML reports created, as described in the Generating
an HTML Exporter Report section. For this template only, the command inserts a
navigation button into the generated HTML display. This Locate In Browser
button allows the user to highlight an item in the HTML report (right side), click
the button, and jump to the display of the corresponding node in the HTML
browser on the left side.

Formatting

The remaining options in the text modification menu support these common formatting
processes:

� Font selections
� Style definition
� Alignment with margins
� Table addition and definition
14 ReporterPLUS Guide

The ReporterPLUS Interface
Iteration Tab
The Iteration tab (below) displays details about an iteration or table node, such as iteration type
Class (…) or Association (…) and whether recursion and subclasses are applied. It can also be
used to switch the node type to text, iteration or table.

The Iteration tab displays details of an iteration node or a table node. To view these details, select
the iteration or table node in the template view, and then select the Iteration tab. You can also
modify the iteration on the Iteration tab, and (for some iterations) you can add recursion or
attributes for subclasses. The following are the uses for each of the iteration tab options.

Iterates indicates whether the template node is a text node or an iteration or table node. If this
option is selected, the node is either an iteration node or a table node. If you have selected a text
node in the template view, you can select this option to convert the text node into an iteration node.
(You must also specify which class or association you want to node to apply to; for information,
see the Modifying iterations button below.) If you have selected an iteration node in the template
view, this option is already selected. You can convert the iteration node to a text node by clearing
this option. Note that clearing this option deletes all the iteration subnodes of the selected node,
and invalidates nested iterations. (Invalid iterations are displayed in red text in the template view.)

Table converts an iteration node to a table node. If this option is selected, the node is a table node.
To convert a table node to an iteration node, clear this option. For information on creating tables,
see the How do I add tables? button below.
Rhapsody 15

ReporterPLUS Basics
Use Separator indicates that you want a separator between subsections created by the iteration.
Then select the type of separator (page break or new line) from the drop-down list, or enter text
that you want to use as a separator.

Class selects a generic element in the adjacent drop-down list to modify the iteration node to
extract all of the elements of the selected type in the entire model (rather than a branch). These are
the same generic elements that you'll find under All Metaclasses in the model view. For example,
if you select this option, and then select Class from the drop-down list, you're selecting all of the
classes in the model. If this option is already selected, you can select a different element in the
drop-down list.

Association selects a generic element in the adjacent drop-down list to modify the iteration node
to extract all of the elements of the selected type in a branch of the model view (rather than the
entire model). If this option is already selected, you can select a different element in the drop-down
list.

Recursive instructs ReporterPLUS to carry out the current iteration node's instructions for all
nested elements of the same type. This option is available for iteration nodes that use one of the
following generic elements: nestedPackages, nestedActors, nestedUsecases, or Substates. (There
are other reflexive associations, but these are the most useful.) To see what generic element an
iteration node uses, select the iteration node, and then select the Iteration tab. The Class or
Association field displays this generic element.

Use Subclass selects a subclass from the drop-down list. (Note that not every class on this list is
applicable for all associations.) Once you have selected a subclass, you can add attributes for the
subclass by right-clicking in the Text tab for the same node, selecting Add Attribute from the
context menu, and then selecting the attribute you want to add.
16 ReporterPLUS Guide

The ReporterPLUS Interface
Condition Tab
The Condition tab, shown in the following figure, shows the conditions that apply to an iteration or
table node. Conditions limit the model elements ReporterPLUS includes from an iteration. When
you add a condition to an iteration, ReporterPLUS extracts only those model elements that meet
the condition. If you do not specify a condition, ReporterPLUS extracts all the model elements in
the iteration.

There are two types of conditions:

� Simple condition—Compares a single attribute with a single value.
� Advanced condition—provides an open field to enter Q language. to define the condition.

See the Q Language section for detailed information. See Adding a Condition for
instructions on adding conditions to iterations.

The example below illustrates a simple condition that excludes (<>) the names ($name) of the
predefined types when the report is generated.

Rhapsody 17

ReporterPLUS Basics
Sort Tab
The Sort tab, shown in the following figure, shows how model elements extracted by an iteration
are sorted in the generated document.

You can specify an unlimited number of keys for the sort. For each key, you can specify whether:

� The attributes are sorted in ascending or descending order
� The sort is alphanumeric or numeric
� The sort is case-sensitive

You can quickly re-order sort keys by selecting a key and clicking the up and down arrows on the
right side of the Sort tab. See Sorting Model Elements for instructions on specifying a sort order for
model elements.
18 ReporterPLUS Guide

The ReporterPLUS Interface
No Data Tab
The information on the No Data tab tells ReporterPLUS what to do when there is no model data
for an iteration. The default behavior is to skip that section of the template and not print anything
in the generated document for that iteration. The No Data tab enables you to specify that
ReporterPLUS print something instead.

See Coping with Missing Elements in an Iteration for instructions on using the No Data tab.

Note
You can also specify how ReporterPLUS should handle a lack of model data for a particular
attribute. See Coping with a Lack of Model Data.
Rhapsody 19

ReporterPLUS Basics
Properties Tab
The Properties tab, shown in the following figure, shows what class the template node pertains to;
this is the class that ReporterPLUS iterates over to extract data for the selected template node. The
User-defined label field enables you to change the default label for this node. (The label is the text
displayed next to the node icon in the template view.) The Properties tab also has a field for
entering comments about the node. Neither the comments nor the label print in the generated
document.
20 ReporterPLUS Guide

ReporterPLUS Template Basics
ReporterPLUS Template Basics
There are two basic ingredients required to create a document with ReporterPLUS:

� Rhapsody model
� ReporterPLUS template

The template tells ReporterPLUS what information to extract from the model, how to arrange and
format the document, and what boilerplate text to include. Once you create a ReporterPLUS
template, you can use it to generate documents from any model created in Rhapsody.

Creating Documents from Templates

ReporterPLUS creates documents using these techniques:

� Extracting text and diagrams from a model created in Rhapsody.
� Creating a Microsoft Word, PowerPoint, HTML, RTF, or text document.
� Adding text and diagrams from the model and images to the document. (Note that text

files do not include diagrams.)
� Adding boilerplate text specified in the ReporterPLUS template to the document.
� Formatting the document according to the formatting commands in the ReporterPLUS

template, as well as the specifications in a Word template (.dot file), a PowerPoint
template (.pot file), or an HTML style sheet (.css file). Using a .dot, .pot, or .css
file is optional. You can also use HTML tags to format HTML documents. See Setting
Standard Template Properties for more information about this feature.

This section summarizes ReporterPLUS templates and provides general information about the
steps you need to take to build them. Subsequent sections provide instructions on building your
own template.

Note
If you do not want to create a ReporterPLUS template from scratch, you can use the
templates included with the tool. You can use these templates as-is or modify them as
needed. You can use them as starting points for creating your own templates and as nodes/
iterations to import into a customized template.
Rhapsody 21

ReporterPLUS Basics
Basic Steps in Building a New Template

Building a ReporterPLUS template involves four basic steps:

1. Create the template structure by adding nodes to a template.

2. Add attributes (model text and diagrams).

3. Add boilerplate text.

4. Add formatting.

The following sections describe each of these steps in more detail.

Adding Template Nodes (Sections)
You create the basic structure of a ReporterPLUS template by adding template nodes to the
template view. The template’s structure determines the structure of documents generated from it.

There are three ways to add report sections (also called “nodes”) to the template view:

� Drag an element from the model view to the template view. This method creates an
iteration node and an iteration subnode. You can add boilerplate text and attributes to
either node. To create a table node, you first create an iteration node, then change it to a
table node.

� Use the New Template Node command or toolbar button. This method creates a single
text node (rather than an iteration and subnode), to which you can add boilerplate text and
attributes.

� Right-click in the template view, then select Add New Item. This method also creates a
single text node to which you can add text and attributes.

You can also save and then re-use template nodes or whole branches of nodes by using the Save
Node and Insert Node From File options on the context menu in the template view. See the
ReporterPLUS online help topic “Saving template nodes and sub-templates” for more information.
22 ReporterPLUS Guide

ReporterPLUS Template Basics
Adding Model Text and Diagrams
After you add nodes to the template, you need to add attributes to the nodes. Attributes represent
the data—text and diagrams—that you want to extract from the model and include in your
document.

ReporterPLUS adds some attributes automatically when you drag an element to the template view.
For example, ReporterPLUS always adds the «$name» attribute. If you not want this attribute, you
can delete it from the Text tab. To add attributes, drag them from the attribute view to the heading
or body of the Text tab in the template node view.

Adding Boilerplate Text
Boilerplate text is text that you add to the template by typing in the heading or body of the Text
tab—it does not come from the model. ReporterPLUS inserts some boilerplate text automatically
when you add template nodes; you can keep, modify, or delete this text.

Specifying Formatting for the Document
The following factors affect the format of your generated document:

� The ReporterPLUS template and ReporterPLUS options
� The output type (Word, PowerPoint, HTML, RTF, or text)
� A Word or PowerPoint template or the HTML style sheet you may attach to the output

from ReporterPLUS
� HTML tags (see to the Note below)

These factors can interact with one another. For example, when there are conflicting formatting
commands, the formatting specified in the ReporterPLUS template overrides formatting in the
Word template.

Note
You can type HTML tags into the heading or body of the Text tab. In addition, there can be
HTML tags in your model, in an external document, or in an inserted file. If you want your
generated document to use any of these tags, you must specify Pass through HTML in the
Default Document Properties or the Template Properties dialog box. Refer to the
ReporterPLUS online help topic “Using HTML tags to format your document” for more
information.
Rhapsody 23

ReporterPLUS Basics
Formatting You Can Specify in ReporterPLUS

As you add text and attributes to the heading or body of the Text tab, you begin to define the
format of the generated document. The information in the heading of the Text tab becomes a
heading in the generated document, and the information in the body of the Text tab becomes part
of the body of the document.

As mentioned previously, the nodes in the template view form a hierarchical structure. By default,
the level of the node in the template view determines the level of the heading applied to that
information in the generated document (except for text documents, which do not support most
formatting). That is, a first-level template node is formatted with a Heading 1 style in Word; a
second-level template node is formatted with a Heading 2 style, and so on.

In addition, you can add the following formatting to a ReporterPLUS template:

� Headers and footers
� Page numbers
� Line and page breaks
� Tables
� Table of contents
� Font characteristics (for example, bold, italic, point size)
� Paragraph characteristics (such as styles and justification)

By using ReporterPLUS options, you can also specify HTML navigation features.

Output Type’s Effect on Formatting

The same ReporterPLUS template can produce different results depending on the output type you
specify when you generate a document.

For example, if your ReporterPLUS template includes a page break command:

� In Word, it creates a new page and sometimes a new section. See Using Multiple Headers
and Footers.

� In PowerPoint, it creates a new slide.
� In HTML, it creates a new page (a separate .html file).
� In text, it has no effect at all.
24 ReporterPLUS Guide

ReporterPLUS Template Basics
Formatting in a Template or Style Sheet

If you are generating a Word, PowerPoint, or HTML document, your ReporterPLUS template
produces different results depending on the template (.dot or .pot file) or HTML style sheet
(.css file) you specify. You can specify default templates and style sheets for ReporterPLUS to
use, as well as associate a particular ReporterPLUS template with a particular template and style
sheet. For example, you can use a Word template that includes numbered headings and specifies a
particular font for heading and body text. For PowerPoint, you could choose a template with a
colored background and contrasting text.

For more information, see Using a Word Template to Add Formatting and Associating a Word
Template with a ReporterPLUS Template.

Note
Specifying a Word or PowerPoint template or HTML style sheet is optional. For more
information, see Differences among the Types of Templates.
Rhapsody 25

ReporterPLUS Basics
Generic and Model Elements
When you open a model in ReporterPLUS, you see actual elements from your model as well as
generic elements. Generic elements represent types of model elements—such as classes and
diagrams—that might exist in any Rhapsody model. Model elements are actual elements from a
specific model. By displaying both generic and model elements, ReporterPLUS provides you
flexibility in designing templates.

Generic elements enable you to create a template that refers to elements that might appear in any
model, rather than to elements that are specific to a single model. It is usually faster to build a
template with generic elements. For example, if you want to extract all the classes from a model,
you can add a single generic class element to your template, rather than searching through your
model to find every class and adding it to the template. This enables you to use the template with
any model: when you use the generic class element to build your template, no matter what model
you have open, ReporterPLUS extracts the classes.

Model elements enable you to add text or diagrams quickly from a specific model to your
template. You can use model elements when designing a template to be used only with one specific
model. If you use this template with a different model, ReporterPLUS might not extract any model
data because the names of the model elements are not the same.
26 ReporterPLUS Guide

Creating a Simple Document
This section describes these basic ReporterPLUS facilities and operations:

� Using different template types
� Opening an existing template
� Definitions of sample templates
� Using a sample Word template
� Using a sample HTML template
� Using your corporate standards for reports
� Opening a model for report generation
� Making simple template modifications
� Navigating HTML report options

Differences among the Types of Templates
It is important to understand the difference among using a ReporterPLUS template and a Word or
PowerPoint template or an HTML style sheet. The ReporterPLUS template is fundamental to
ReporterPLUS: it contains the information that ReporterPLUS uses to extract elements from a
model. The structure of the ReporterPLUS template controls the structure of the generated
document. In addition, a ReporterPLUS template might contain formatting commands such as
page breaks and text alignment.

Any ReporterPLUS template can be used to generate any kind of document (Word, PowerPoint,
HTML, or text). However, some of the templates are structured for a specific type of output as
noted in the Standard ReporterPLUS Templates section.

Using a Word or PowerPoint template or an HTML style sheet is not required. Yet you may use
one of these to simplify your formatting work or comply with your company’s report standards.
See Formatting You Can Specify in ReporterPLUS for more information.
Rhapsody 27

Creating a Simple Document
Opening a Model
Before you begin to work with the template, you must first open your model and display it in the
model view (upper, left pane of the ReporterPLUS window).

To open a model, follow these steps:

1. Select File > Open Model.

2. In the Open Model dialog box, navigate to a model you have created or to the Samples
for your development code (C++, C, or Java) under the main Rhapsody directory.

3. Select a model.

4. Click Open.

Alternatively, you can open a model by clicking the Open Model icon or by selecting Recent
Model Files from the File menu or toolbar.
28 ReporterPLUS Guide

Opening an Existing Template
Opening an Existing Template
To select an existing template, follow these steps:

1. If it is not already open, following the instructions in Methods for Starting ReporterPLUS.

2. Select File > Open Template.

3. In the Open Template dialog box, navigate to the Templates directory (under the main
ReporterPLUS directory). For descriptions of all of the templates, see Standard
ReporterPLUS Templates.

4. Select a template from the list and note the template description displayed in the text box
to the right of the list of files.

5. Click Open. The template is displayed in the template view (below the model browser)
and the name of the open template is displayed in the title bar of the ReporterPLUS
window.

Alternatively, you can open a template by clicking the Open Template icon or by selecting
Recent Template Files from the File menu or toolbar.

Note
If your template included a “block,” this element is automatically changed to an “object” in
the Rhapsody 7.2 or greater version of ReporterPLUS.

Examining a Selected Template with Your Model

If you want to see how the selected template works with your model, follow these steps for a quick
test:

1. Be certain that your model is displayed in the upper left browser.

2. With selected template shown in the panel below the model, click the Generate
Document icon or select Edit > Generate Document.

3. Select the type of output desired from the pull-down menu in the Save as type field in the
Generate Document dialog.

4. Select and directory for the output and enter a name for this test file in the File name field.

5. Click Generate.

6. View the generated results so see what the generic template produces.

7. At this point, you may decide to select a different template, use this template, or save a
section of this template that you intend to use in a customized template.
Rhapsody 29

Creating a Simple Document
Standard ReporterPLUS Templates

ReporterPLUS provides a large number of standard templates. These templates can be used as they
are or modified to meet your needs. The following table lists all of these pre-defined templates
with a description of each and the preferred output formats. The rich text format (.rtf) and plain
text (.txt) formats are not listed in the following table because the design capabilities of those
output formats is simplified and can be used for any of these templates. However, HTML, Word
and PowerPoint provide more formatting capabilities, so some of the generic templates look better
in one or more of the other three formats.

Template Name Preferred Output
Formats Description

class.tpl HTML or Word This template defines the information about the
classes in the project. It prints the
documentation of the following elements of the
class:

• Attributes
• Operations
• Relations
• Events
• Statechart and Activity Diagrams (including

the diagrams)

ClassHierarchyBrowser.tpl HTML This template generates a list of the model’s
class hierarchies with descriptions and a
hyperlinked index.

ClassHierarchyBrowser2.tpl HTML This template generates the model’s root
classes with a title page and hyperlinked index.

ClassHierarchyBrowser3.tpl HTML This template generates the model’s class
hierarchies including Java script, a title page,
and a hyperlinked index.

ClassOverviewPresentation.tpl PowerPoint This template shows an overview of the classes
in Package(s) as a presentation.

ClassReport.tpl Word This template extracts the attribute and
operation information for all classes in the
model.

DetailedClassReport.tpl Word This template produces a Table of Contents and
lists all classes along with their attributes and
operations.

DiagramOrientedReport.tpl Word This template shows all packages that have
object model diagrams. For each package, it
displays all of the object model diagrams, with
each diagram followed by the contained
elements appearing on that diagram.
30 ReporterPLUS Guide

Opening an Existing Template
DiagramReport_Hierarchy.tpl Word This template defines the information related to
the diagrams of the project. It includes both
project level and package level diagrams for the
following:
1. Collaboration Diagrams
2. Component Diagrams
3. Deployment Diagrams
4. Object Model Diagrams
5. Sequence Diagrams
6. Use Case Diagrams
7. Statecharts and Activity Diagrams

Diagrams.tpl Word & PowerPoint Displays titles and all diagrams in the model.

EgalitarianPackageReport.tpl Word This template generates a diagram-oriented
report. The diagrams represented in the report
are object model, use case, sequence,
deployment, collaboration and component
diagrams.

EgalitarianPackageReport2.tpl Word This template generates a diagram-oriented
report of the classes in the project. The
diagrams represented in the report are object
model, use case, sequence, deployment,
collaboration and component diagrams.

FullDetailedProjectReport.tpl Word, PowerPoint,
or HTML

This generic template defines the information
about the complete project. It includes all the
model elements of the project and all the
diagrams of the project.

GetStarted.tpl Word & PowerPoint Shows all diagrams and classes in a model.

HierarchicalPackageReport.tpl Word Recursively descend through packages
showing their diagrams, classes, and nested
packages.

IndexedClassReport.tpl Word Print object model diagrams and classes in a
package.

MetamodelReport.tpl Word Show all packages that have object model
diagrams. For each package, it displays all of
the object model diagrams and classes within
the package. For each class, the template
extracts the its attributes, operations, and
associations.

ModelMetrics.tpl Word or HTML This prints out metrics for the entire model and
each package in the model

Template Name Preferred Output
Formats Description
Rhapsody 31

Creating a Simple Document
OverriddenProperties.tpl Word This template defines the information about the
overridden properties. It includes overridden
properties of all the metaclasses of the model. It
prints the metaclass names followed by a table
of overridden properties for each metaclass. It
has Q expressions to exclude the metaclasses,
which do not have any overridden properties.

PackageReport.tpl Word This template defines the information related to
the packages and all the elements of in these
packages:

• All packages (nested structure)
• All the diagrams in each package
• Elements contained in the packages
• Sub Packages and their elements

It does not include project level information.

PackageReportFiles.tpl Word This template defines the information related to
the packages and all the elements of in these
packages:

• All packages (nested structure)
• All the diagrams in each package
• Elements contained in the packages
• Sub Packages and their elements

It does not include project level information.

ProjectReport.tpl Word This generic template defines the information
about the complete project. It includes all the
model elements and all the diagrams in the
project. It includes and title page and table of
contents.

RequirementsTable.tpl Word This template lists the requirements, use cases,
actors, and all diagrams.

Rhapsody HTML Exporter.tpl HTML only The template generates a comprehensive
HTML report of the project. The template
defines the information about the complete
project including model elements by label.

SequenceDiagramWithClasses.tpl Word & PowerPoint This template provides information about the
sequence diagrams and the classes
participating in the sequence diagrams. It
includes and title page and table of contents.

Statechart.tpl Word This template provides information about the
statecharts of the project. It includes the
statecharts, states, and the list of elements
contained in each of these statecharts.

Template Name Preferred Output
Formats Description
32 ReporterPLUS Guide

Opening an Existing Template
SysMLDataFlowInPackage.tpl HTML or Word This specialized template lists the data imported
from System Architect (SA) into a Rhapsody
package.

SysMLreport.tpl Word or HTML This template uses the SysML profile to provide
the underlying stereotypes to generate a
document. If SysML was not selected as the
Project Type when it was created, you cannot
take full advantage of the features of this
template.
The main sections the document produces are
in the following order (if they exist):

• Requirements Diagrams
• Use case diagrams
• Sequence Diagrams
• Structure Diagrams
• Object Model Diagrams
• External Block Diagrams
• Internal Block Diagrams
• Parametric Diagrams
• Element Dictionary
• Model Configuration

The document produced is hyperlinked where
appropriate.

TabularViews.tpl any selected format This template displays all of the diagrams in the
model.

UseCaseDiagramsDetailedReport.tpl Word This template supplies the information about
use case diagrams, use cases and actors of the
project. It lists all the use case diagrams
followed by actors and use cases related to the
use case diagram.

UseCaseReport.tpl Word This template prints all of the use cases and use
case diagrams in a model.

Template Name Preferred Output
Formats Description
Rhapsody 33

Creating a Simple Document
Setting Standard Template Properties

After selecting one of the ReporterPLUS templates, you may set standard template properties with
these steps:

1. Select the File >Template Properties option. The dialog box displays information about
the selected template, as shown in this example of a HTML template.

2. Depending on the type of template selected, you can navigate to an existing Word.dot file,
PowerPoint template (.pot file), or an HTML style sheet (.css file) to format the text style
and other design features available in the selected template.

3. When you have located the template you want to use, click OK.
34 ReporterPLUS Guide

Exploring the GetStarted Template
Exploring the GetStarted Template
The GetStarted template creates a document that includes all the diagrams and all the classes in a
model, arranged in alphabetical order by name. The template extracts the diagram names and
images, and the class name and description. The template view displays the GetStarted template
you just opened, as shown in the following example.

Follow these steps:

1. Expand the template nodes by clicking on the plus signs (+).

2. Click on the first node in the template view to select it. Note the text displayed on the Text
tab. This is a text node, which contains only the Table of Contents for the document.

3. Click on the next node (From class "Model"…), expand the tree by clicking on the (+)
sign and take a look at the information on the Text tab. You see boilerplate text (in black),
attributes (in blue), and formatting commands (in green). This node is an iteration node;
in conjunction with its subnode, it extracts every collaboration diagram from a model.

4. Click through the other tabs in the template node view to see what is there. The
information on the Sort tab tells ReporterPLUS to sort the collaboration diagrams
alphabetically by name. The information on the No Data tab tells ReporterPLUS to print
“No collaboration diagrams” when you generate a document from a model that does not
contain any collaboration diagrams.

5. Click on the subnode (…iterate over instances of class "Collaboration
Diagram") The «$name» attribute tells ReporterPLUS to print the diagram name in the
generated document; the «image» attribute represented by the [INSERT PICTURE]
command prints the diagram itself.

6. Click on the next node. It is a text node that holds a section heading for the table.
Rhapsody 35

Creating a Simple Document
7. Click on the table node (also labeled From class "Model"…). A table node is simply an
iteration node that displays information in a table. In conjunction with its subnode, the
table node extracts every class from the model and prints the class name, description, and
displayName in a three-column table. The headings for the table columns are in the body
section of the Text tab.

If you click on the Iteration tab, you can see that the Table box is checked. To turn a
regular iteration node into a table node, you check this box and set up the columns. See
the online help for detailed information on using tables.

8. Click on the subnode (…iterate over instances of class "Class") to see the
definition for the rest of the table. The attributes on the Text tab tell ReporterPLUS to
include the class name, description, and displayName in the table.
36 ReporterPLUS Guide

Exploring the Model View
Exploring the Model View
Note how the model view changes when you open a model. The black text represents generic
elements just as it did before opening the model. But much of the text is now blue. This blue text
represents model elements.

Follow these steps:

1. Expand the Project node and the containedPackages within the Project node.

2. Expand the classes node under the Default package node. As shown in the following
figure, you can see actual classes from the Dishwasher model (such as
AbstractFactory, AcmeFactory, and AcmeHeater).
Rhapsody 37

Creating a Simple Document
Generating Documents
Now that you have opened a ReporterPLUS template and a model, you can generate documents in
any of the four output types that ReporterPLUS supports: PowerPoint, Word, HTML, RTF, and
text.

Note
If you are generating reports in Linux and receive an error, you can correct this problem by
starting up Rhapsody and exiting it. Then return to ReporterPLUS to generate the reports.

You can use the same ReporterPLUS template for all document types. However, there are
differences among the output formats that affect the way the document looks and, in some cases,
even the document content. As you generate different types of documents, note these differences.

This section describes using the GetStarted.tpl and Dishwasher.rpy to generate
PowerPoint, Word, and HTML documents.

Note
You can also generate a text document from the GetStarted template by selecting Text File
in the Generate Document dialog box. However, because the text format does not support
graphics, you see only the diagram names and class information.

Generating a PowerPoint Presentation

To generate a PowerPoint presentation, follow these steps:

1. Select Edit > Generate Document to display the Generate Document dialog box.

2. Select a drive and folder, and type a name for the document.

3. In the Save as type drop-down list, select Microsoft PowerPoint Presentation.

4. Click Generate. Alternatively, you can generate a document by clicking the Generate

Document icon . ReporterPLUS generates the document, opens PowerPoint, and
displays the resultant presentation.

5. When you are finished viewing the presentation, close PowerPoint.
38 ReporterPLUS Guide

Generating Documents
Generating a Word Document

To use the same template and model to generate a Word document, follow these steps:

1. Select Edit > Generate Document.

2. Select a drive and folder, and type a name for the document.

3. In the Save as type drop-down list, select Microsoft Word Document.

4. Click the Generate button. ReporterPLUS generates the document, opens Word, and
displays the document.

5. When you are finished viewing the document, close Word.

Using a Word Template to Add Formatting
When generating a Word document, ReporterPLUS looks in two places for formatting
information:

� The ReporterPLUS template
� The Word template (.dot file)

When you install ReporterPLUS, RhapRepDot.dot is specified as the default Word template.
You can change this default template, or you can associate a Word template with a particular
ReporterPLUS template.

If there is no default Word template specified and no Word template associated with the
ReporterPLUS template, Word uses its own default template—normal.dot. In addition to using
the Word templates included with ReporterPLUS, you can develop your own templates.

Note
This section describes Word templates only, but the same principles apply to PowerPoint
templates and HTML style sheets.
Rhapsody 39

Creating a Simple Document
Change the Default Template
The Word document you just generated used Reporter1.dot, which employs a numbered
heading style. The next template uses a heading style with colored text and no numbers. To change
the default template, follow these steps:

1. Select View > Default Document Properties.

2. Select the Word tab.

3. Click the browse button to the right of the Word template file field.

4. In the Select Word Template File dialog box, navigate to the Templates folder (under the
main ReporterPLUS directory).

5. Select ReporterSimpleClassReport.dot.

6. Click Open.

7. Click OK.

8. Select Edit > Generate Document and regenerate the Word document. You might want to
give this document a different name to compare the results.

9. When you have finished viewing the document, close Word.

10. In ReporterPLUS, select View > Default Document Properties and change the default
Word template back to RhapRepDot.dot.

Note
This last step applies to this example only. Normally, you can use any Word template as the
default.
40 ReporterPLUS Guide

Generating Documents
Generating an HTML Document

In this step, use the same ReporterPLUS template and model to create an HTML document. You
should keep the following behavior in mind when generating HTML documents:

If your ReporterPLUS template has page breaks (as the GetStarted template does), ReporterPLUS

creates a separate .html file for each page and adds one or both of the following for navigation:

� Next and back arrows at the top of each page
� A table of contents frame

By default, ReporterPLUS creates a subdirectory named pix in the directory you specify for the
HTML files and puts the graphics in it. However, you can specify a different location for graphics
using an absolute or relative path.

Associating an Image File with a Model Element
Rhapsody allows you to associate an image file with a model element. This image can then be used
to represent the element in diagrams in place of the standard graphic representation.

To associate an image file with a model element, follow these steps:

1. Right-click the model element in the browser.

2. Select the Add Associated Image menu option.

3. Select the appropriate image file for the model element.

Specifying HTML Options
To define the HTML characteristics for the generated report, follow these steps:

1. Select View > Default Document Properties. The HTML tab displays the options you
can set for your HTML documents.

2. In the Navigation section of the HTML tab, make sure Table of contents is selected (it is
the default setting), and select Back/next arrows (which lets you see both types of
navigation).

3. Click OK.
Rhapsody 41

Creating a Simple Document
Generating an HTML Document
To generate the HTML file, follow these steps:

1. Select Edit > Generate Document. The Generate Document dialog box opens.

2. Select a drive and folder, and type a name for the document.

3. In the Save as type drop-down list, select HTML Page.

4. Click Generate.

ReporterPLUS generates the document, opens your default browser, and displays the first page.
Click on the headings in the contents frame or click the next and back buttons to view other pages
in the document.

Note
If you have an older browser and selected the Support older browsers option in the Default
Document Properties dialog box, you see a message stating that a newer version of the
browser yields better results, and suggesting several options. Selecting the non-resizable
table of contents creates a dynamic table of contents with icons, but of a fixed size.
Selecting the static table of contents creates a contents frame, but it is not dynamic and does
not include icons.
42 ReporterPLUS Guide

Generating Documents
Displaying Your Icons for Stereotypes
When generating an HTML report, the generic icon for the object type in the report browser is
usually displayed in the report. For example, every class in the report includes the standard
Rhapsody graphic for a class.

However, if you want to create and display customized icons for the stereotypes in your model,
follow these steps:

1. Create your own icon in a .gif file format in 16x16 pixels.

2. Name the icon using the same name as the stereotype it represents. For example, if the
stereotype is “Car,” the icon name should be “Car.gif.”

3. Add your new graphic to the icons.zip file located in your Rhapsody installation of
ReporterPLUS (e.g., C:\Program Files\Telelogic\Rhapsody 7.4\reporterplus).

4. Generate the HTML report with your icons.
Rhapsody 43

Creating a Simple Document
Rhapsody HTML Exporter Template
The Rhapsody HTML Exporter.tpl file is an easy-to-use template to generate an HTML report.
Follow these steps to set up Rhapsody and ReporterPLUS to use this template:

1. In Rhapsody set the project property General::Graphics::ExportedDiagramScale to be
“NoPagination.” This defines the diagrams to be exported to ReporterPLUS as one
picture as they look in Rhapsody with 100% zoom. Since the HTML browser can show
bigger diagrams using scroll bars, there is no size limitation, as with a Microsoft Word
document page size.

2. To enable HTML navigation for diagrams, add the following flags in the rhapsody.ini
file:

[ReporterPLUS]
EnableLoadOptions=TRUE
LoadImageMaps=TRUE

The HTML report generated with this template uses a JAVA applet in the tree browser. This applet
supports a Locate In Browser button for navigation from the right-side pane to the left-side
browser tree.This applet requires the JAVA 2 Runtime Environment to be installed on your PC.

With the settings made and the correct version of Java available, follow these steps to locate and
open the Rhapsody HTML Exporter.tpl file:

1. If it is not already open, following the instructions in Methods for Starting ReporterPLUS.

2. Select File > Open Template.

3. In the Open Template dialog box, navigate to the Templates directory (under the main
ReporterPLUS directory).

4. Select Rhapsody HTML Exporter.tpl. A description of the selected template displays in
the text box to the right of the list of files.

5. Make any changes to the HTML Exporter Template Structure that are desired.

6. To insert the Locate in Browser button in the finished report, use the Locate command
available from the Text Tab.
44 ReporterPLUS Guide

Rhapsody HTML Exporter Template
HTML Exporter Template Structure

The HTML Exporter template’s basic structure is shown in the example below. You need to
customize the Welcome page (highlighted on the left with the Q language displayed in the Text tab
on the right). The Welcome page should contain any company and project information you need to
identify and introduce your project’s HTML report.

Examine the subheadings under the Print information about project to move, add, or delete
any items from the report.
Rhapsody 45

Creating a Simple Document
Generating an HTML Exporter Report

After you have set up the report to meet your needs, follow these steps to generate the report:

1. Select Edit > Generate Document. The Generate Document dialog box opens.

2. Select a drive and folder, and type a name for the document. In the Save as type drop-
down list, select HTML Page.

3. Click Generate.

ReporterPLUS generates the HTML report, opens your default browser, and displays the report in
two columns with a browser on the left and the report on the right, as shown in this example.

The report contains all of the usual hyperlinked information. In addition, for each description
displayed in the report on the right, clicking the Locate In Browser button positions and
highlights the node in the project (displayed in the browser on the left). This is particularly helpful
for large reports.
46 ReporterPLUS Guide

Rhapsody HTML Exporter Template
Creating Diagram Hot Spots

Boxes, representing classes, comments, use cases and other elements in a diagram output as
HTML, can be changed to hot spots to open that element’s page. To switch on “hot spot”
navigation make the following rhapsody.ini file changes:

[ReporterPLUS]

EnableLoadOptions=TRUE

LoadImageMaps=TRUE

The EnableLoadOptions flag enables reading of load optimization flags, such as
LoadImageMaps.

Viewing Reports Online

After creating reports using ReporterPLUS templates and facilities, follow these guidelines for
viewing the reports online:

� For reports generated in Linux, view the HTML reports in Mozilla Firefox and the RTF
reports in Open Office 2.0 or higher.

� For reports generated in Windows, view HTML reports in any standard browser available
on the PC and for the other report formats, the appropriate programs for viewing these
reports launch when the report files are clicked to launch.

Generating a List of Specific Items

If during development you want to generate a list of items, such as all of the ports using an
interface, you can focus the generated report on that section of the model. To generate a list of
specific items in a model, follow these steps:

1. Display the model in Rhapsody.

2. In the browser, select the section of the model containing the specific items that you need
in a list.

3. Select Tools > ReporterPLUS > Report on selected package.

4. Select the template you want to use for the report and generate and save the report. The
following sample, produced using the HTML Exporter Report template, lists both the
Rhapsody 47

Creating a Simple Document
provided and required ports for the AbstractHW package in the Home Alarm with Ports
project.
48 ReporterPLUS Guide

Rhapsody HTML Exporter Template
Creating HTML Reports for Large Models

If you are using the HTML Exporter template to generate reports for a large model, you have some
special settings and adjustments to make for ReporterPLUS to handle these reports efficiently.

First, if you are using Windows XP, you should apply this Microsoft graphics patch so that
ReporterPLUS can manage a large number of diagrams:

Update for Windows XP (KB319740)

Managing Long Paths in a Generated HTML Report
Microsoft Windows’ system file name length limit is 256 characters. The hierarchy of a generated
HTML report reflects the hierarchy of the model and, therefore, could exceed Microsoft’s file
name length limit.

ReporterPLUS guards against this problem. When the regular hierarchical path is likely to exceed
the Windows’ file name length limit, the sub-directory is generated to the parent’s parent directory
until the generated file name length does not exceed the system file name length limit.

Generating Large Model Reports in Multiple Directories
ReporterPLUS normally generates the files of an HTML report into a single directory. However,
for very large models, this could exceed Microsoft Windows’ limit for the number of files in one
directory.

To avoid this problem, ReporterPLUS generates the HTML report files into multiple directories
when the GenerateMultifolderReport flag is set to TRUE. To set up your ReporterPLUS, make
the following setting changes to the rhapsody.ini file in the installation directory:

[General]

InvokeReporterDll = FALSE

[ReporterPLUS]

EnableLoadOptions=TRUE

LoadImageMaps=TRUE

ModelSize=10

GenerateMultifolderReport=TRUE

SupportedMultifolderReportMetaClasses=package

The EnableLoadOptions flag enables reading of load optimization flags, such as
GenerateMultifolderReport.
Rhapsody 49

http://www.microsoft.com/downloads/details.aspx?FamilyId=9B5EDFC8-A4BB-4080-9063-6518166E2DAB&amp;displaylang=en&displaylang=en

Creating a Simple Document
Additionally, you can set the SupportedMultifolderReportMetaClasses variable to indicate the
types of model elements to receive separate directories. Use these flag values to define those
subdirectories:

� package

� profile

� component

� class

� actor

� usecase

� object

� module

For example, to generate separate subdirectories for packages and classes, set the flag as follows:

SupportedMultifolderReportMetaClasses=package,class

Generally, setting this flag to package is sufficient to generate the necessary subdirectories.

Optimizing Memory for Large Reports
The ModelSize flag controls the ReporterPLUS memory buffer size. The model size, an integer
value from 1 to 10, defaults to “1” (minimum memory). For a large model, the model size value
should be changed in the rhapsody.ini file to “10” (maximum memory).

[ReporterPLUS]

EnableLoadOptions=TRUE

ModelSize=10

The EnableLoadOptions flag enables reading of load optimization flags, such as
ModelSize. In addition, very large reports should be generated on machines with at least 2
GBytes of memory.
50 ReporterPLUS Guide

Creating Your Own ReporterPLUS
Template
In this section, you create your own ReporterPLUS template (which is similar to the GetStarted
template, as described in Creating a Simple Document). This section describes how to add nodes to
a template by dragging elements from the model view to the template view. In addition, you learn
how to add attributes and boilerplate text to the nodes and specify some basic formatting.

This section describes the following tasks:

� Using All Metaclasses to add generic elements to a template.
� Adding a generic class from the model.
� Adding boilerplate text and attributes.
� Adding simple formatting commands.
� Saving a template.

� Generating and viewing a document with your template.
Rhapsody 51

Creating Your Own ReporterPLUS Template
Before You Begin
Before you begin, do one of the following depending on your situation:

� If you are continuing from the previous section’s tasks and ReporterPLUS is still open, do
the following:

– Close the model you have open. Select File > Close Model.
– Open a new, blank template. Select File > New Template.

If the GetStarted template was previously open, it closes, leaving the template
view blank so you can start building a new template.

– Continue with Extracting All Diagrams from a Model.
� If ReporterPLUS is not running, do the following:

– Start ReporterPLUS. Select Start > All Programs > Telelogic > Telelogic
Rhapsody version # >Rhapsody ReporterPLUS version # > Rhapsody
ReporterPLUS version #).

– Click Cancel on the Select Task dialog box.
– Continue with Extracting All Diagrams from a Model.

Extracting All Diagrams from a Model
The first step is to create a ReporterPLUS template that generates a document that includes all the
diagrams from a model. There are two ways to do this:

� Open the model in ReporterPLUS, search the model view for all the diagrams, and add
them one-by-one to the template view. This is referred to as using model elements to build
a template.

� Add generic elements that represent all the diagrams in a model to the template view.
If you use the first method, your template selects only diagrams that have the same names as those
in the model used to build the template. This works fine if you use the template with only a single
model, but it is unlikely that you are able to use it effectively with other models.

The second method uses a generic element, which represents a type of model element that might
exist in any Rhapsody model. By using generic elements, you create a template that can be used
with any model. There is another advantage to using generic elements—it is usually faster to build
a template with them than with model elements.
52 ReporterPLUS Guide

Extracting All Diagrams from a Model
To extract diagrams from a model, follow these steps:

1. In the model view, expand All Metaclasses.

The generic elements under All Metaclasses represent all the model elements of their
type in a model. For example, CollaborationDiagram represents all the collaboration
diagrams in a model, ComponentDiagram represents all the component diagrams in a
model, and Class represents all the classes in a model.

2. Click the CollaborationDiagram node and drag it to the template view.

3. Repeat for each of the diagram nodes (ComponentDiagram, DeploymentDiagram,
ObjectModelDiagram, and so forth).

This action creates an iteration node and an iteration subnode. Your template view should
resemble the following figure:
Rhapsody 53

Creating Your Own ReporterPLUS Template
4. Click an iteration node and notice the information displayed on the Text tab, as shown in
the following figure. In the generated document, this information is displayed once, at the
beginning of the section of the document that contains the diagrams.

5. Click an iteration subnode and notice again the Text tab. You see boilerplate text (in black)
and attributes (in blue), as shown in the following figure. In the generated document, the
information on this node displays for each diagram extracted from the model. In this case,
for each diagram, the document has a heading that includes the diagram name.

As you can see, ReporterPLUS automatically adds some default text and attributes to the Text tab.
You can edit or remove the text. Attributes tell ReporterPLUS what information to extract from the
model. For example, the «$name» attribute tells ReporterPLUS to include the name of the diagram
in the generated document. You add additional text and attributes in a later task. Next, see
Extracting All Classes in the Package
54 ReporterPLUS Guide

Extracting All Classes in the Package
Extracting All Classes in the Package
In this task, you add a node to the template for a generic element that is not from All Metaclasses.
There might be times when you want only elements from a specific part of the model, such as the
Package, rather than all elements in the model. There are several ways to do this (all of which are
covered in the ReporterPLUS online help). In this task, you build a series of iterations that creates
a path to the generic element.

To extract all classes in the package, follow these steps:

1. In the model view, collapse All Metaclasses and expand Project.

2. Locate and expand the containedPackages node so that you can see the generic elements
for it.

3. Drag project and then containedPackages to the template view, under the nodes you
added for diagrams. This creates an iteration node and subnode under which you put an
additional iteration.

4. Find classes under the containedPackages node. Drag classes onto the iteration subnode
created in Step 3. This creates a third iteration and subnode, which are subnodes of the
iteration created in Step 3. Your template view should resemble the following figure:

The nodes you just added tell ReporterPLUS to iterate through the model to find the project, then
iterate through the containedPackages and extract all the classes. The labels that ReporterPLUS
adds to the template view identify what the nodes do and what part of the model they are from.

As mentioned previously, there are several methods for adding nodes and attributes to templates.
For details, refer to the ReporterPLUS online help topic “How do I add model text?”

Note
In this section, you added only generic elements to your template. You can also add model
elements to a template. See Building a ReporterPLUS Template for a Specific Model for
instructions. For more information on generic versus model elements, see Generic and Model
Elements.
Rhapsody 55

Creating Your Own ReporterPLUS Template
Adding Boilerplate Text and Attributes
ReporterPLUS adds some boilerplate text and attributes to the template automatically. In this
section, you add additional text and attributes.

To add additional text and attributes, follow these steps:

1. Click the class iteration subnode in the template view. This should be the last node in the
template (…iterate over association "classes").

2. Click to place the cursor in the body section of the Text tab, before the [CR] (carriage
return) code.

Note: If you have difficulty placing the cursor exactly where you want it, just click
anywhere in the body of the Text tab, then use the arrow keys to move the
cursor into position.

3. Type Description: followed by a space.

4. In the model view, click classes under the containedPackages node.

The attribute view (upper, right pane in the ReporterPLUS window) now displays the
attributes for the selected generic element. These are the items that you can extract from
the model and include in your document for that particular element. The attributes
available depend on the element selected in the model view.

5. In the attribute view, click-and-drag descriptionHTML to the body of the Text tab to the
right of the “Description:” item.

6. Press Enter to add a [CR] code and move to the next line.

7. Type Display Name: followed by a space.

8. In the attribute view, click-and-drag displayName to the body of the Text tab to the right
of the “Display Name:” item. Your Text tab should resemble the following figure:
56 ReporterPLUS Guide

Adding Formatting
When you generate a document from this template, ReporterPLUS includes the name, description,
and display name for each class in the Package. The class name is a heading in the generated
document; the description and display name is body text under that heading.

Note
You can also add attributes from the context menu on the Text tab. Right-click in the Text
tab, then select Add Attribute. See the ReporterPLUS online help for instructions on all the
methods for adding attributes to templates.

Adding Formatting
There are numerous types of formatting you can add to your ReporterPLUS template: headings
and footers, page numbers, page breaks, and font and paragraph characteristics.

To add formatting, follow these steps:

1. In the template view, click on a subnode; for example, the collaboration diagram iteration
(…iterate over instances of class "CollaborationDiagram").

2. Right-click in the body of the Text tab and select Commands and select an appropriate
formatting commend from the context menu, as shown in the following figure:

3. Click Apply on the Text tab.
Rhapsody 57

Creating Your Own ReporterPLUS Template
Note
For object model diagrams that are produced in PowerPoint, it is essential that you include a
page break after each diagram. If you do not, some of the diagrams may not display
properly.

Saving a ReporterPLUS Template
Until you save and name a template, ReporterPLUS displays the temporary name Untitled in the
title bar. All ReporterPLUS templates are saved with the extension .tpl.

To save a ReporterPLUS template, follow these steps:

1. Select File > Template Properties to open the Template Properties dialog box.

2. In the Description box, type a brief description of what the template does, such as
extracts all diagrams; extracts classes from Package.

3. Click OK to close the Template Properties dialog box.

4. In ReporterPLUS, select File > Save Template As.

5. In the Save Template As dialog box, type a name for the modified template. Although you
can store templates anywhere, it is easier to find templates if they are all stored in your
own ReporterPLUS Templates directory.

6. Click Save.
58 ReporterPLUS Guide

Generating and Viewing Your Document
Generating and Viewing Your Document
To generate a report using the template you just created template, follow these steps:

1. Open the model Dishwasher.rpy (see Opening a Model).

2. Generate a Word document (see Generating a Word Document).

3. View the generated document. You should see all the diagrams from the Dishwasher
model, each on a separate page. On the last page, there should be a list of classes for the
package, with the description and display name for each class. For some of the classes,
you see «No Model Data» where the documentation should be; you can learn more about
this in Sorting, Conditions, and Missing Data.

You can try generating a PowerPoint or HTML document from this template.

Building a ReporterPLUS Template for a Specific
Model

Although it is recommended that you use generic elements when you build a ReporterPLUS
template so you can use it with any Rhapsody model, it is possible to use model elements to build
a template for use with a specific model.

To build a template for use with a specific mode, follow these steps:

1. Open the model for which you want to create the template.

2. Locate the model elements (in blue text) in the model view.

3. Drag the specific model elements to the template view.

The rest of the procedures—adding attributes, text, and formatting—are the same as for generic
elements.

Note
Even when you are designing a template for a specific model, it may be more efficient to
use generic elements rather than model elements.
Rhapsody 59

Creating Your Own ReporterPLUS Template
60 ReporterPLUS Guide

Q Language
This section describes the Q Language embedded in ReporterPLUS. This language is used to
accomplish advanced documentation tasks such as the following:

� Placing conditions on iterations
� Verifying structural properties of a model

For example, a user could specify a condition that limits an iteration to only those classes that
implement some interface.

Q Language Characteristics
Q is an expression-oriented language. Everything in Q is an expression. In fact, a “program” is
nothing other than a complete expression. Expressions in Q very much resemble arithmetic
expressions. Just like arithmetic expressions, expressions in Q are conceptually trees of
subexpressions. Hence, the elements of the Q language naturally fall into two categories, the basic
expressions at the leaves and the composite expressions at the internal nodes. Basic expressions
are the fundamental building blocks of all expressions. They are like numbers in arithmetic
expressions. Composite expressions are the means by which larger expressions are constructed
from smaller expressions. Hence, they are like arithmetic operators.

Another parallel between arithmetic expressions and expressions in Q is in evaluation. Just as in
arithmetic expressions, the evaluation of an expression proceeds recursively, with each composite
expression evaluating its subexpressions.

Q is a side-effect free language. Evaluation involves the combination of values rather than a
change of state. In particular, there are no variables whose value changes as a program runs.
Another important consequence of this is that no program can alter the model currently loaded into
ReporterPLUS.

Q is a typed language. Every well-formed expression in Q has a precise type. The Q language
compiler infers this type and verifies that all expressions are compatible in type.
Rhapsody 61

Q Language
Model Representation
In general, expressions examine and gather information about a user’s model. Therefore, all parts
of a user’s model must be easily accessible. Not only does this entail easy access to elements such
as classes, but also to the relationships among them. In Q, we provide such a uniform view of user
model data with a metamodel. All user data then appears as instances of the classes in the
metamodel.

As an illustration, consider a model with a package named “Plant Structure” that contains classes
named “Branch” and “Leaf.” For an expression in Q, the package “Plant Structure” appears as an
instance of the metaclass Package with the value of the attribute name of that instance equal to
“Plant Structure.” Similarly, the classes “Branch” and “Leaf” appears as instances of the metaclass
Class with the name attributes equal to “Branch” and “Leaf,” Finally, the containment relationship
between the package and the classes appears as a link.

A user’s model as a whole appears as an instance of the metaclass Model. All data in a user’s
model is ultimately reachable from this Model instance.

Basic Q Types

Every well-formed expression has a precise type. The two basic types in Q are the following:

� Primitive values
� User model data

The types string, integer, real, and boolean range over the corresponding primitive values; regexp
ranges over regular expressions; and object ranges over instances of metaclasses.

Note
Object encompasses instances of all metaclasses. So instances of Package, Class and so on,
all have the type object.

In addition to the basic types, the Q language supports the following three forms of constructed
types: truples, collections, and functions.

Tuples
The first form is for tuples. For any types α, β, … , ω, the expression α x β x … x ω denotes the
type of a tuple with component types α, β, … , ω. For example, string x integer is the type of a pair
with a string as the first component and an integer as the second component.
62 ReporterPLUS Guide

Model Representation
Collections
The second form is for collections (which are lists with possible duplicates). For any type α, α
collection denotes the type of a collection of α. Some examples are object collection and string
collection.

Functions
The third form is for functions. For any types α and β, α → β denotes a function that takes a
parameter of type α and returns a value of type β. For example, string → integer is the type of a
function that takes a string and returns an integer.

Limitations
Although this scheme of type representation accommodates arbitrarily complex types, in practice
there are limitations in the current implementation that restrict the complexity. Specifically, the
current implementation supports the basic types, tuples of basic types, object collection, string
collection, and functions that take and return any of these supported types, with the exception of
tuples for return types. There is also special support for the types (object → string) x object
collection → string collection (which is the type of the built-in function map), (object → boolean)
x object collection → object collection (which is the type of the built-in function filter), and
other such types for traverse and sort.

Complicated Type Examples
The following are some examples of more complicated types:

� string x real → boolean : A function that takes a tuple of two components—the first of
type string and the second of type real—and returns a boolean.

� (object → string) x object collection → string collection : A function that takes a function
(of type object → string) and an object collection and returns a string collection.
Rhapsody 63

Q Language
Basic Expressions

The basic expressions are the fundamental building blocks of all programs. There are several kinds
of basic expressions. These are the expressions for constant literals and tuples; the expressions for
the usual arithmetic, relational, and logical operations; the expressions for string concatenation,
comparison, and pattern matching; the expressions for set operations; the expressions for object
comparisons; and the expressions for variables.

Constant Literals
Constant literals represent values of the basic types string, integer, real, and boolean and values of
the type regexp.

These expressions simply evaluate to their corresponding values.

Strings

Strings are enclosed in double quotes ("). Strings may contain character escapes, see the
Precedence and associativity of operators table. Examples:

"abc"

"a\"bc\tdef\n"

Integer Examples

2

100

Real Examples

-2.0

3.4

Boolean

This constant may take one of these two values: true or false.

Regexp

For the syntax of regular expressions, see Lexical Elements. Regular expressions are enclosed
in back quotes (`), as in this example:

`[a-zA-Z]+`
64 ReporterPLUS Guide

Model Representation
Tuples
Tuples represent ordered collections of values. These expressions take the form of a parenthesized
list of components separated by commas, as in these examples:

(1, true)

("abc", true, -2.0)

Arithmetic Operations
Arithmetic operations on primitive values are basic expressions. The arithmetic operators +, -, *,
and / have the usual meanings over integers and reals. The arguments to an arithmetic operator
must be of the same type, either integer or real.

Relational Operations
Relational operations on primitive values are basic expressions. The relational operators =, <>, <,
<=, >, and >= have the usual meanings over integers and reals, with <> representing the inequality
operator. The arguments to a relational operator must agree in type.

Logical Operations
Logical operations on primitive values are basic expressions over Booleans. The logical operators
are as follows:

not

and

οr

implies (p implies q ≡ not p or q)

String Operations
String concatenation, comparison, and pattern matching are basic expressions. These expressions
take the form of an infixed operator.

String concatenation

The operator + concatenates two strings, as in this example:

"abc" + "def" ⇒ abcdef

String comparison

The relational operators (=,<>,<, <=, >, >=) implement lexicographical comparisons of
strings, as in these examples:

"abc" = "abd" ⇒ false

"abc" <> "abd" ⇒ true
Rhapsody 65

Q Language
"abc" < "abd" ⇒ true

String pattern matching

The operators ~= and ~<> compare a string on the left-hand side against a regular expression
on the right-hand side for a match or a mismatch, respectively. The right-hand side argument
to ~= and ~<> should be a string literal rather than a regular expression literal, as in these
examples:

"abc" ~= "a*" ⇒ true

"abc" ~<> "a*" ⇒ false

"10111010110101" ~= "[01]+" ⇒ true

"abcdefghijkl" ~= "[^01]+" ⇒ true
66 ReporterPLUS Guide

Model Representation
Object Comparisons

Object comparisons are basic expressions. These expressions take the form of an infixed operator
over values of object. The operators = and <> compare two metaclass instances for identity. That
is, x = y if, and only if, x and y refer to the same metaclass instance. Note that two metaclass
instances can have the same values for corresponding attributes and yet still be distinct.

Variables

Variables are basic expressions. A variable name is an expression that evaluates to the value bound
to that variable. For example, if x is bound to the expression 5 + 6, then x ⇒ 11 and x + 2
⇒ 13. Although variables are called “variables,” they actually never vary. A variable simply
stands for an expression. Hence, we say that a variable is “bound” to a value rather than that a
variable “has” a value.

There are three predefined variables that pervade every program. These are model, this, and
current, all of type object.

Predefined Variable: model
The variable model is bound to the unique instance of the metaclass Model that represents a
user’s model in ReporterPLUS. All data in the user’s model is ultimately reachable from the Model
instance bound to model.

Predefined Variable: this
The variable this is bound to the actual parameter of a Q program. Every program in
ReporterPLUS is applied to some instance of a metaclass. For example, an advanced condition in
the condition tab is applied successively to the metaclass instances in the association being iterated
over. For each application, this is bound to the current instance in the iteration.

Predefined Variable: current
Unlike the other predefined variables, the variable current may become bound to different
values at different textual locations in a program. Specifically, current is bound to whatever
metaclass instance is “current” at any given textual location. At the outermost expression, for
example, the “current” metaclass instance is the parameter to the whole program. Therefore,
current is bound to the same object as this at the outermost expression. There are several
expressions that temporarily rebind current. We make note of this fact in the descriptions of
such expressions in the remainder of this document.
Rhapsody 67

Q Language
Composite Expressions
Composite expressions are the means by which larger expressions are constructed from smaller
expressions. This section describes the composite expressions with the exception of functions,
which we discuss in the following section.

Some composite expressions impose restrictions on the possible types of their subexpressions.
Specifically, the composite expressions let, if, and sort require subexpressions of a small
number of types. Therefore, to simplify the following discussions, use the symbols Π and Σ to
stand for the permissible types: Π represents one of string, integer, real, boolean, object, object
collection, or string collection, and Σ represents one of string, integer, real, or boolean. The
symbol Π is used in the discussion of let and if. The symbol Σ is used in the discussion of
sort.

Catalog of Composite Expressions
let : Π1 → Π2

let x = expr1 in expr2

This expression evaluates to expr2, with all (free) references to the variable x in expr2
evaluating to expr1. Each of expr1 and expr2 must have some type Π, but the types of these
expressions need not be the same. That is, if expr1 has type Π1 and expr2 has type Π2, then it
is not necessary for Π1 = Π2.

let x = 5 in x + 7 ⇒ 12

(let x = 5 in x + 7) + 3 ⇒ 15

let x = 5 in let y = 7 in x + y ⇒ 12

let x = 5 + 7 in x + 3 ⇒ 15

let x = 5 in let x = x * x in x ⇒ 25

let x = model in class x ⇒ Model

let x = all "Class" in size x <> 0 ⇒ true

let x = all "Class" in size x <> 0 implies
(there_exists y in x => $name of y = "Dishwasher") ⇒ true

let x = all "Class" in size x <> 0 implies
(there_exists y in x => $name of y = "FooBar") ⇒ false

if : boolean x Π x Π → Π

if test then expr1 else expr2

The value of this expression depends on the value of test. If test evaluates to true, then the
whole expression evaluates to expr1. Otherwise, the whole expression evaluates to expr2. The
68 ReporterPLUS Guide

Catalog of Composite Expressions
type of test must be boolean, and the type of both expr1 and expr2 must be some Π. Note that
the types of expr1 and expr2 must be the same. That is, if expr1 has type Π1 and expr2 has
type Π2, then it must be the case that Π1 = Π2.

if true then 1 else 0 => 1

if class x = "Operation"

then "Found Operation"

else "Found " + class x => Found Model

(if false then "abc" else "123") + "def" => 123def

for_all : object collection x (object → boolean) → boolean

for_all x in ocoll => predicate ≡ not (there_exists x in ocoll => not
predicate)

there_exists : object collection x (object → boolean) → boolean

there_exists x in ocoll => predicate ≡ not (for_all x in ocoll => not
predicate)

These expressions evaluate to the assertions ∀x∈ocoll (predicate(x)) and ∃x∈ocoll
(predicate(x)). That is, for_all returns true if, and only if, either ocoll is empty or every
object in ocoll satisfies the predicate predicate. And there_exists returns true if, and only if,
there is at least one object in ocoll which satisfies the predicate predicate.

The actual evaluation of these expressions occurs in the following way. For both for_all and
there_exists, the variable x is bound in turn to each object in ocoll, and predicate is
evaluated in the context of such a binding of x. If predicate evaluates to false, then for_all
evaluates to false. If predicate evaluates to true, then there_exists evaluates to true. If
neither condition occurs before all objects in ocoll have been tested, then for_all evaluates to
true, while there_exists evaluates to false. These expressions also bind the pervasive
variable current to x at each binding of x.

The type of the expression ocoll must be object collection, and the type of predicate must be
boolean (which we interpret as object → boolean, with x being the implicit parameter to
predicate).
Rhapsody 69

Q Language
In the following examples, suppose that there are three classes, named Tree, Branch, and Leaf.

for_all x in all "Class" => class x = "Class" ≡

for_all x in all "Class" => class current = "Class" ⇒ true

there_exists x in all "Class" => $name = "Leaf" ⇒ true

for_all x in all "Class" => $name = "Leaf" ⇒ false

not (for_all x in all "Class" => $name <> "Leaf") ⇒ true

for_all x in anEmptyCollection => false ⇒ true

for_all x in anyCollection => current = x ≡ true ⇒ true

for_all class in all "Class" =>

there_exists op in class->[operation] =>

$name of op = "grow" ⇒ false
70 ReporterPLUS Guide

Functions
Functions
Functions encapsulate expressions that may be useful in many different situations. A function
executes when it is applied to an actual parameter. The general syntax of a function application is a
function name followed by an expression. Some examples are all("Class") and class
current. Functions part of the Q language, and there is no way to define new functions.

All functions take a single parameter. Functions that appear to take more than one parameter really
take a single tuple containing the parameters. Because all functions take a single parameter, it is
not necessary to enclose the parameter in parentheses. Instead, the smallest complete expression
following the name is taken to be the parameter. This rule of taking the “smallest complete”
expression means that parentheses are sometimes necessary to indicate a larger expression for the
parameter.

Two other aspects of functions are worth mentioning. First, function application is at the highest
precedence level. Hence, function applications are usually evaluated earlier than operators, such as
+ and in composite expressions. Second, function application associates to the right.

To illustrate these points, consider two functions named inc and dec (these functions are not part
of the Q language - they are used merely as examples). The function inc takes an integer and
returns one plus that integer. The function neg takes an integer and returns the negation of that
integer. Use the symbol ≡ in the following examples to show an equivalent but fully-parenthesized
counterpart to some expression.

inc 5 ≡ inc (5) ⇒ 6

neg 5 + 3 ≡ (neg (5)) + 3 ⇒ -2

neg (5 + 3) ⇒ -8

neg 5 + inc 3 ≡ (neg (5)) + (inc (3)) ⇒ -1

neg (5 + inc 3) ⇒ -9

neg inc 3 ≡ neg (inc (3)) ⇒ -4

neg inc 3 + 1 ≡ (neg (inc 3)) + 1 ⇒ -3

neg neg neg neg 3 ≡ neg (neg (neg (neg (3)))) ⇒ 3
Rhapsody 71

Q Language
Catalog of Built-In Functions
all : string → object collection

all name

This returns all instances of the metaclass named name. For example, all "Class" returns
all instances of the metaclass Class.

alternation : string x string → string

|=> : string x string → string

alternation (str, alt) ≡ str |=> alt ≡ if str <> "" then str else alt

If str is not the empty string, then this returns str; otherwise, this returns alt.

alternation ("abc", "def") ⇒ abc

alternation ("", "def") ⇒ def

attribute : string x object → string

$: string x object → string

attribute (name, obj)

This returns the value of the attribute named name of obj. If the metaclass of obj does not have
an attribute named name, then this signals an execution error. Note that the first parameter to $
is not enclosed in double quotes whereas this is the case for the first parameter to attribute.

This always returns the value of an attribute as a string. Attributes in the metamodel, however,
can be of other types—integer, real, boolean, and various enumerations. But attribute
always returns a string because this is the safest assumption to make, given that the type object
encompasses instances of all metaclasses. In essence, the type object is untyped with respect to
the metamodel. Although this always returns the value as a string, no information is lost. The
returned string can always be converted to the appropriate type, using one of the conversion
operators. The only exception to this occurs with attributes that are enumerations.
Enumerations are treated like strings, with the values being the textual names of the
enumerators that make up an enumeration.

attribute ("name", aClass) ≡ $name of aClass ⇒ Tree

attribute ("type", anOperation) ⇒ std::string

$name ≡ $name of current ⇒ Leaf

boolean $isAbstract of aClass ⇒ true
72 ReporterPLUS Guide

Catalog of Built-In Functions
attribute : string x object collection → string

$: string x object collection → string

attribute (name, ocoll) ≡ $name′ of ocoll ≡ comma map {$name} over ocoll

This returns a string formed from the values of the attribute named name of each object in
ocoll, with the values separated by commas. If ocoll contains no objects, then this returns the
empty string. If ocoll contains just one object, say obj, then attribute(name, ocoll) is
equivalent to attribute (name, obj). If the metaclass of an object in ocoll does not have
an attribute named name, then this signals an execution error.

attribute ("name", all "Class") ⇒ Tree, Branch, Leaf

attribute ("type", all "Operation") ⇒ grow

$name of all "Class" ⇒ Tree, Branch, Leaf

class : object → string

class obj

This returns the name of the metaclass of obj.

class aClass ⇒ Class

class model ⇒ Model

comma : string collection → string

comma scoll

This returns the concatenation of all the strings in scoll, with the strings separated by commas.

concat : string collection → string

concat scoll

This returns the concatenation of all the strings in scoll.

find : regexp x string → string

find (re, s)

This returns the first substring of s that matches the regular expression re. If there is no
substring of s that matches re, then this returns the empty string (λ). When matching
substrings, this always matches as many characters as possible.

find (`[01]+`, "---010111--111") ⇒ 010111

find (`[a-z]+`, "--010111") ⇒ λ
Rhapsody 73

Q Language
first : object collection → object

first ocoll

This returns the first object in ocoll. If ocoll is empty, then this signals an execution error.

$name of first all "Class" ⇒ Node

match : regexp x string → boolean

match (re, s) ≡ s ~= re′

This returns true if, and only if, there is a substring of s that matches the regular expression re.

match (`[01]+`, "abc010111def") ⇒ true

match (`^[01]+$`, "abc010111def") ⇒ false

match (`[01]*`, "abc") ⇒ true

Note how this last example is true even though it would seem otherwise. The match succeeds
because the closure * admits the empty string and because the empty string is a valid substring
of "abc."

object : object collection → object

object ocoll ≡ only ocoll

See the entry for function only : object collection → object (below).

only : object collection → object

only ocoll

This returns the first and only object in ocoll. If ocoll is empty or has more than one object,
then this signals an execution error.

$name of only all "Class" ⇒ Node

replace : regexp x string x string → string

replace (re, s, r)

This returns a string equal to s with the first substring matching re replaced with r. If there is
no substring of s that matches re, then this simply returns s. When matching substrings, this
always matches as many characters as possible.

replace (`[01]+`, "---010111--111", "A") ⇒ ---A--111

replace (`[a-z]+`, "010111", "A") ⇒ 010111
74 ReporterPLUS Guide

Catalog of Built-In Functions
replace_all : regexp x string x string → string

replace_all (re, s, r)

This returns a string equal to s with all substrings matching re replaced with r. If there is no
substring of s that matches re, then this simply returns s. When matching substrings, this
always matches as many characters as possible.

replace_all (`[01]+`, "---010111--111", "A") ⇒ ---A--A

replace_all (`[a-z]+`, "010111", "A") ⇒ 010111

The following example illustrates the use of “%s” with the replace_all keyword.

reverse : object collection → object collection

reverse ocoll

This returns the collection ocoll with the elements in reverse order.

$name of (all "Class") ⇒ “Class_0, Class_1, Class_2”

$name of (reverse all "Class") ⇒ “Class_2, Class_1, Class_0”

size : object collection → string

size ocoll

This returns the number of objects in ocoll.

size all "Class" ⇒ 27

tolower : string → string

tolower s

This returns the string s with all upper case letters changed to lower case.

tolower "aBcDeF" ⇒ abcdef
Rhapsody 75

Q Language
toupper : string → string

toupper s

This returns the string s with all lower case letters changed to upper case.

toupper "aBcDeF" ⇒ ABCDEF

trim : string → string

trim s ≡ replace (`^[\t\f\r\n]+`, replace (`[\t\f\r\n]+$`, s, ""),
"")

This returns the string s with all leading and trailing spaces, tabs, form feeds, carriage returns,
and new lines removed.

trim " \tabc\n" ⇒ abc

uid : object → string

uid obj

This returns a unique ID for obj. No two objects in a given model has the same ID. Two
objects in two different models, however, may have the same ID, and a given object may have
different IDs during different sessions. There is no structure to the ID strings, and the actual
format could change in the future.

uid anObject ⇒ 04240120

Note: This uid is NOT the Rhapsody object uid and is valid within the context of
ReporterPLUS session.
76 ReporterPLUS Guide

Conversion Operators
Conversion Operators
In addition to the above built-in functions, Q includes several conversion operators. The syntax of
these operators is the same as that of function application. There are four conversion operators—
named string, integer, real, and boolean—that support the conversion of values from any basic
type to any other basic type, where the basic types are string, integer, real, and boolean. Most of
these conversions are obvious. The following is a list of the non-obvious conversions (b, s, i, and r
are boolean, string, integer, and real expressions, respectively):

integer b ≡ if b then 1 else 0

real b ≡ if b then 1.0 else 0.0

boolean s ≡ if s = "true" then true else false

boolean i ≡ if i = 0 then false else true

boolean r ≡ if r = 0.0 then false else true

Here are some examples of applying the conversion operators:

integer "77" ⇒ 77

string true ⇒ true

integer true ⇒ 1

boolean "true" ⇒ true

boolean "foo" ⇒ false

boolean 25 ⇒ true

integer string 5 ≡ integer (string (5)) ⇒ 5

integer string 5 + 7 ≡ (integer (string (5))) + 7 ⇒ 12

integer boolean 5 + 7 ⇒ 8
Rhapsody 77

Q Language
Paths
Paths are expressions that describe a traversal through a user’s model. Conceptually, a path is a
function, from object to object collection, that returns some of the objects reachable along a
specified set of associations. The term “anchor” denotes the initial object (the parameter of a path).
In general, a path in Q can be any arbitrary directed graph. This is a linear representation of a
directed graph for the syntax of paths.

Basic Paths

The following is an example of a simple path:

model->[project]->[containedPackages]->[classes]->[operation]

This path describes a simple linear traversal of three associations. This says that, starting from the
object model, we should follow the association “project” and then “containedPackages” and then
“classes” and then “operation.” The end result of applying this path to the anchor model is a
collection of all instances of the metaclass Operation that belong to some class in the package at
the end of the association “project.” This illustration below shows the portion of the metamodel
that this path traverses.

Note
The path corresponds directly to the metamodel.

For example, Project has the role “project” in an association with Model, and Class has the role
“classes” in an association with Package.

Model Project Package Class Operation

project containedPackages classes operations

0..1 1 0..1 0..* 0..1 0..* 0..1 0..*
78 ReporterPLUS Guide

Paths
The following illustration shows an object structure to which you can apply this path. In this case,
the path would evaluate to a collection of the objects opA1, opA2, opA3, and opC1

So, in the syntax of paths, a node (such as [project]) represents an association to traverse, and an
edge (->) between two nodes specifies the order of traversal. In the syntax, the symbol -> also
separates the anchor from the actual path, and the anchor is optional. When an anchor is omitted,
the implied anchor is the object currently bound to the variable current. So the path [project] is
a shorthand for current->[project].

:Mode l

projec t:Proje c t

c onta ine dPa ck a ges :Pa c ka ge

A :C la ss B :C la s s C :C las s

opA 1 :O pe ra tion opA 2 :O pera tion opA 3:O pe ra tion opC 1 :O pe ra tion
Rhapsody 79

Q Language
Paths with Cycles

The following example shows a path with a cycle:

model->[project]->[containedPackages]->top:^[nestedPackages]->@top

This example introduces three new syntactical elements. These are node labels (top:), add-to-
result annotations (^), and reference nodes (@top). Labels and reference nodes provide a way of
encoding the two-dimensional structure of cycles, and other nonlinear structures, of complex
paths.

A graphical representation of the above path is shown in Sample Path with a Cycle. In this example,
there is a cycle from the node labelled “top” to itself. This cycle corresponds to the reflexive
association nestedPackages of Package, which is an association to all of the immediate nested
packages of a Package.

The purpose of this cycle is to traverse all nested packages of a package, including those packages
in the nestedPackages of a package. The end result of applying this path to model is a collection
of all instances of Package that are nested packages, directly and indirectly, of the package at the
end of the association containedPackages of project in model. But in order for this path to
work in this way, we have to use the add-to-result annotation ^. This annotation on the node
[nestedPackages] means that all objects found at the end of the association nestedPackages
should be added to the result set. All nodes that do not have any outgoing edges have the add-to-
result annotation implicitly. So in our first example, the node [operation] has the add-to-result
annotation implicitly. In the case of the second example, however, all nodes have outgoing edges
because of the cycle. Therefore, no node has the add-to-result annotation implicitly.

Sample Path with a Cycle
80 ReporterPLUS Guide

Paths
Path Nodes with Multiple Outgoing Edges

This next example shows a node with more than one outgoing edge:

model->[project]->[containedPackages]->top:[]->([classes]; [nestedPackages]-
>@top)

In this example, the node labelled “top” has two successors, the nodes [classes] and
[nestedPackages]. In this case, the node “top” is also an empty association ([]). So “top” only
serves to structure the nodes in the path. The node [classes] doesn’t have any outgoing edges (the
arrow to Result in Node with More than One Outgoing Edge is not related to the structure of the
path), so it has the add-to-result annotation implicitly.

Node with More than One Outgoing Edge

Hence, the result of applying this path to model is a collection of all instances of Class that belong
either to the package at the end of the association containedPackage of project in model or to a
nested package of that package.
Rhapsody 81

Q Language
Paths Nodes with Conditions

This final example shows two nodes with conditions:

aPackage->[nestedPackages]{$name="PkgA"}->[classes]{$name~="*Impl"}

Any node in a path may be accompanied by a condition. The condition, which appears in curly
braces after the association name, specifies a predicate that objects in an association must satisfy
before such objects are allowed to pass through a node. In this example, the condition
{$name="PkgA"} allows only the objects named “PkgA” to reach the node [classes], and the
condition {$name~="*Impl"} allows only the objects that have a name matching the regular
expression “*Impl” to appear in the result set. The effect of
[nestedPackages]{$name="PkgA"} is exactly that of filter {$name="PkgA"} over
[nestedPackages]. See the documentation of filter for the details of how the condition
expression is evaluated.

Execution Model of Paths

Paths are functions from object to object collection. They yield the objects reachable along a set of
associations. Paths encode this computation in their graph structure—in essence, the structure is
the computation. To be more precise, paths are dataflow graphs, and they resemble dataflow in
their execution. So in the dataflow view, paths now consist of data links and operations. Data links
correspond to edges, and operations correspond to nodes. Data links are conduits along which
objects flow, and operations are basic computations that accept objects from incoming data links
and produce objects on outgoing data links.

Consider, for instance, the following path:

model->[project]->[containedPackages]->[classes]->[operation]

We can analyze this in terms of dataflow in the following way. This path consists of the operations
[project], [containedPackages], [classes], and [operation] linked together linearly.
When the object model flows into [project], all the objects in the association “project” of
model flow out. Then all these objects flow into [containedPackages], which causes the objects
in the association containedPackages to flow out. Then all these objects flow into [classes],
and the objects in the association “classes” flow out. Then all these objects flow into
[operation], and the objects in the association “operation” flow out. Finally, these objects flow
into the (implicit) result node for the complete path. All objects produced by leaf nodes implicitly
flow into the result node, which collects the objects produced by the complete path.

The evaluation of a path ends when the flow of objects ceases. Hence, some care is needed to
ensure that a path terminates. Stated precisely, a path will not terminate if, and only if, an object
revisits an operation, either because the object itself completes a cycle or because a cascade of
objects completes a cycle.
82 ReporterPLUS Guide

Paths
There are some boundary cases in the behavior of operations. First, the operation [] is the identity
operation. All objects simply flow through. Second, an operation [α] doesn’t produce any output
if the input object does not have any objects in the association α. Third, an operation [α] also
does not produce any output if the metaclass of the input object doesn't have the association α. So,
for example, the operation [nestedPackages] would not produce any output if the input object is
an instance of Class rather than Package.

Note
The path should not include cycles.
Rhapsody 83

Q Language
Precedence and Associativity of Operators
The table below summarizes the precedence and associativity of all operators and special
functions. The first entry has the highest precedence, and precedence decreases from top to
bottom. In this table, “ID expr” represents function application, and “type expr” represents the
application of a conversion operator. Note that the alternation operator (|=>) and the relational
operators (=, <>, and so on) do not associate.

Precedence and associativity of operators table

Operator Associativity

$, map, filter, traverse, sort, ID expr, type expr R

(unary) -, not R

*, / L

+, - L

=, <>, ~=, ~<>, <, <=, >, >= –

And L

Or L

Implies R

let, if, for_all, there_exists R

|=> –
84 ReporterPLUS Guide

Lexical Elements
Lexical Elements
This section describes the lexical elements (regular expressions) in Q. Comments, spaces, tabs,
carriage returns, and new lines are ignored between tokens. A comment is a sequence of characters
delimited by (* and *). A comment may span more than one line.

Note
Comments may not be nested.

Punctuation

The following are the punctuation symbols:

= <> ~= ~<> < <= > >= + - * / -> () { } [] " => |=> , $

Identifiers (ID)

An identifier is a letter or an underscore followed by any number of letters, digits, or underscores.
The case of an identifier is significant.

Keywords

The following are the keywords. Keywords may not be used as names of variables or functions.

Integer Literals (INTEGER_LITERAL)

An integer literal is an optional minus sign followed by one or more decimal digits.

and in real

boolean integer sort

current let string

else map then

false model there_exists

filter not this

for_all of traverse

if or true

implies over
Rhapsody 85

Q Language
Real Literals (REAL_LITERAL)

A real literal is an optional minus sign followed by one or more decimal digits, a decimal point,
and one or more decimal digits.

Boolean Literals (BOOLEAN_LITERAL)

The boolean literals are true and false.

Association Literals (ASSOC_LITERAL)

Association literals are essentially string literals with square brackets ([]) in place of double
quotes. The sequence \] escapes the closing delimiter.

String Literals (STRING_LITERAL)

A string literal is a sequence of characters enclosed in double quotes. A string may not extend
across lines (that is, a string may not contain an unescaped new line). The supported escape
sequences are listed in the following table.

Escape Sequence Replacement Text

\" "

\\ \

\t tab

\r carriage return

\n new line
86 ReporterPLUS Guide

Lexical Elements
Regular Expression Literals (REGEXP_LITERAL)

A regular expression literal is a sequence of characters enclosed in back quotes. Several characters
have special meanings within regular expression literals. These characters have their special
meaning unless preceded by a back slash. The special characters are ., \, [,], ?, *, +, ^,
and $. A regular expression literal may contain character escape sequences. The allowed escape
sequences are \t, \r, \n, and \xdd, which stand for a tab, a carriage return, a new line, and the
character with the ASCII code equal to the hexadecimal number dd, respectively.

Regular expressions have a recursive structure. They are formed from smaller subexpressions. The
building blocks of all regular expressions are the expressions to match a single character. These
fundamental expressions have the following three forms:

� Period (.) is a regular expression that matches any single character. For example, `.`
matches a, 5, #, \n, ", and so on.

� Any character other than a special character, or a special character preceded by a back
slash, is a regular expression that matches that character. For example, `a`, `5`, and
`*` match a, 5, and *, respectively.

� A set of characters enclosed in square brackets is a regular expression that matches any
one character in the set. For example, `[abc]` matches any one of a, b, or c. If the first
character in the set is a caret (^), then the regular expression matches the complement of
the given set of characters. So `[^abc]` matches any character other than a, b, and c.
As a matter of convenience, a range of characters can be specified with a dash. The range
includes all characters between the lower and upper bounds, inclusively. For example,
`[a-zA-Z0-9]` matches any letter or digit.

From these building blocks, larger regular expressions may be formed in the following way:

� If re1 and re2 are regular expressions, then re1 re2 (concatenation) is a regular expression
that matches all strings of the form s1s2, where s1 is matchable by re1 and s2 is matchable
by re2. For example, `[ab][01]` matches a0, a1, b0, and b1.

� If re is a regular expression, then re? is a regular expression that matches zero or one
occurrence of re. For example, `ab?` matches a or ab, and `a[01]?` matches a, a0,
or a1.

� If re is a regular expression, then re* is a regular expression that matches zero or more
occurrences of re. For example, `ab*` matches a, ab, abb, abbb, …, and `a[01]*`
matches a, a0, a1, a00, a01, a11, ….

� If re is a regular expression, then re+ is a regular expression that matches one or more
occurrences of re. For example, `ab+` matches ab, abb, abbb, …, and `a[01]+`
matches a0, a1, a00, a01, a11, ….

Note
The postfix operators ?, *, and + bind more tightly than concatenation. Therefore, ab*
means a(b*) and not (ab)*.
Rhapsody 87

Q Language
Finally, a complete regular expression may be anchored to the beginning or end of a string with ^
and $, respectively. If re is a regular expression, then ^re is a regular expression that matches all
strings matchable by re but only if they occur at the beginning of a string. Similarly, re$ is a
regular expression that matches all strings matchable by re but only if they occur at the end of a
string. For example, `^[01]+` matches 0 and 0110 but not a0 or a0110; and `[01]+$`
matches 0 and 0110 but not 0a or 0110a.
88 ReporterPLUS Guide

Q Expression Tester
Q Expression Tester
The Q Expression Tester allows you to perform the following operations:

� Pre-test Q Language expressions for validity before incorporating them into a report
template

� Gather metrics on a project or a portion of a project
� Check the values associated with selected elements

To launch the Q Expression Tester, follow these steps:

1. In the Model View, highlight an element in the browser.

2. Right-click to display the View Q Tester option and select it.

3. Type the Q language expression to perform the type of test you need.

4. Click Test to run the test. The results display below the Expression area or an error
message displays indicating that the Q language was no correct in either syntax or for the
selected element.

The following example shows a test to determine how many classes are in the selected project. For
this project (Model element), the total number of classes is 21.
Rhapsody 89

Q Language
Q Language Grammar
This section lists the complete Q language grammar. See Lexical Elements for the structure of the
tokens.

Examine the following table for a summary of the typographical conventions used in the
presentation of the grammar.

program

: expr

expr

: expr′

| expr′ |=> expr′
expr′

: implies-expr

| let-expr

| if-expr

| universal-expr

| existential-expr

let-expr

: let ID = expr in expr′
if-expr

: if expr then expr else expr′
universal-expr

: for_all ID in expr => expr′

Style Meaning

[] Optional element

()+ One or more occurrences

()* Zero or more occurrences

ID, STRING_LITERAL Tokens

let, for_all, =>, ~<> Reserved words or punctuation
90 ReporterPLUS Guide

Q Language Grammar
existential-expr

: there_exists ID in expr => expr′
implies-expr

: or-expr

| or-expr implies implies-expr
or-expr

: and-expr

| or-expr or and-expr
and-expr

: relational-expr

| and-expr and relational-expr
 relational-expr

: additive-expr

| additive-expr = additive-expr
| additive-expr <> additive-expr
| additive-expr ~= additive-expr
| additive-expr ~<> additive-expr
| additive-expr < additive-expr
| additive-expr <= additive-expr
| additive-expr > additive-expr
| additive-expr >= additive-expr

additive-expr

: multiplicative-expr

| additive-expr + multiplicative-expr
| additive-expr - multiplicative-expr

multiplicative-expr

: unary-expr

| multiplicative-expr * unary-expr
| multiplicative-expr / unary-expr

unary-expr

: primary-expr
Rhapsody 91

Q Language
| - unary-expr
| not unary-expr

primary-expr

: constant

| $ ID
| $ ID of primary-expr
| map { expr } over primary-expr
| filter { expr } over primary-expr
| traverse { expr } over primary-expr
| sort-expr

| ID primary-expr

| conversion-expr

| parenthesized-expr

| path

constant

: REGEXP_LITERAL

| STRING_LITERAL

| INTEGER_LITERAL

| REAL_LITERAL

| BOOLEAN_LITERAL

sort-expr

: sort-component (& sort-component)* over primary-expr
sort-component

: sort-direction { expr }
sort-direction

: sort
| sortd

conversion-expr

: conversion-operator primary-expr
conversion-operator

: string
| integer
92 ReporterPLUS Guide

Q Language Grammar
| real
| boolean

 parenthesized-expr

: ()
| (expr)
| (expr (, expr)+)

path

: anchor

| anchor -> association-chain
| association-chain

anchor

: this
| current
| model
| ID

association-chain

: simple-association (-> simple-association)* [association-chain-tail]
simple-association

: [ID :] [^] ASSOC_LITERAL [{ expr }]
association-chain-tail

: -> reference-association
| -> composite-association

reference-association

: @ ID
composite-association

: (component-association (; component-association)+)
component-association

: reference-association

| association-chain
Rhapsody 93

Q Language
94 ReporterPLUS Guide

Footers and Other Formatting
This section describes the process to continue building the template started in Creating Your Own
ReporterPLUS Template. It demonstrates adding a title page and a footer with a page number,
changing a node label, and associating a Word template with the template.

After completing this section’s tasks, you should be able to:

� Add a text node.
� Add headers, footers, and page numbers.
� Create a title page.
� Change a node label.

� Associate a Word template with a ReporterPLUS template.

Adding a Text Node
In Creating Your Own ReporterPLUS Template, you added iteration nodes and iteration subnodes to
your template by dragging elements from the model view. In this section, you add a text node,
which is used to hold a document title and a footer with a page number.

If your ReporterPLUS template is not open, open it now (as described in Opening an Existing
Template).

Do the following:

1. In the template view, click in the blank area below the existing template nodes.

2. Select Edit > New Template Node.

Alternatively, you can add a text node by clicking the New Template Node icon or by right-
clicking in the template view and selecting Add New Item from the context menu.
Rhapsody 95

Footers and Other Formatting
A node labeled “Text” is displayed in the template view below the other nodes. The template view
looks like the following figure.

Adding a Footer and Page Number
Place the commands for headers and footers for a node at the very top of your template if you want
them to apply to the whole document. If desired, you can change the header and footer for different
parts of the document (see Using Multiple Headers and Footers). First, you move the text node you
just added, add a footer with a page number, and follow these steps.

1. In the template view, click on the text node you just added.

2. Click the Move Node Up toolbar button (the green up-arrow) until the text node is at the
top of the template view.

3. With the text node still selected, right-click in the body of the Text tab, before the [CR]
command, to display the context menu.

4. Select Commands > Begin Footer. You see the [BEGIN FOOTER] formatting command
on the Text tab.

5. Without moving the cursor, right-click again.

6. Select Commands > Add Page Number.

7. Right-click again, then select Commands > End Footer.

8. Click Apply.

The procedure for adding a header is similar to that for adding a footer: just choose the Begin
Header and End Header commands from the context menu. It is best to place the header and
footer commands in the body of the Text tab, rather than the heading section.
96 ReporterPLUS Guide

Adding a Title Page
In Word, the header and footer text is assigned the header or footer style. The actual appearance of
the header or footer depends on how the header and footer styles are defined in the Word template
used to create the document.

Note
You can add additional formatting commands or text to your footer. For example, you can
center the page number, bold it, or add the date and time. All of these formatting commands
are accessed from the context menu. See the online help topic “What formatting can I
specify?” for more information. In addition, you can add attributes, such as the model file
name, to the header or footer by selecting Add Attribute from the context menu.

Adding a Title Page
In this section, use the same text node to add a title page to the generated document by following
these steps:

1. Click on the text node.

2. In the heading of the Text tab, select the text that reads “New Text Node” and the [CR]
command, and delete them (by pressing the Delete key).

3. With your cursor still in the heading of the Text tab, type “Diagrams and Classes in
the Model.” Leave two spaces between “the” and “Model.”

4. Right-click on the Heading window, click on the (+) next to project, select name, and
insert it between “the” and “Model.” Use the
«$name of project» attribute instead of typing in the actual name of the project so you
can use this template with other models.

5. Right-click at the end of the title to display the context menu.

6. Select Commands > Add Page Break. By placing a page break after the title, you ensure
that the title appears on a page by itself.
Rhapsody 97

Footers and Other Formatting
7. Click Apply. The Text tab should now look like the following figure.

Changing the Node Label
The label displayed next to the template node icon in the template view is created by
ReporterPLUS when you create the node. If desired, you can change the default label to a user-
defined label. The node label does not affect the generated document. Instead, it simply makes the
template easier to use by identifying the template nodes.

Do the following:

1. Click on the text node.

2. In the heading of the Text tab, select the text and attribute you added in the previous
section. Do not select the page break command.

3. Select Edit > Copy (or click the Copy button on the toolbar).

4. Select the Properties tab.

5. Click to place the cursor in the User-defined label field.

6. Select Edit > Paste. Alternatively, click the Paste button on the toolbar, or right-click and
select Paste from the context menu.

7. Click Apply. You should see the new label text display next to the text node icon in the
template view.
98 ReporterPLUS Guide

Using Multiple Headers and Footers
Using Multiple Headers and Footers
You can use multiple headers and footers when you generate Word, PowerPoint, or HTML
documents. For example, you might want to change the footer for each section of a document—
one footer for a section that covers the Component, another footer for a section that covers the
Package, and so on.

You can define headers and footers anywhere in a ReporterPLUS template. When ReporterPLUS
encounters a new header or footer code in the template, it changes the header or footer in the
generated document. Page numbering remains consecutive throughout the document.

Note
If you are planning on generating a Word document, you must place a page break before the
second (or any additional) header or footer. (Page breaks are optional when the template has
only one header or footer.) Word creates a new section—and start using the new header or
footer—at the page break immediately preceding the new header or footer command. For
this reason, you should place the page break as close as is practical to the header or footer
command. You might want to place the page break at the very beginning of the heading
section of the Text tab for the node where the header or footer changes.
Rhapsody 99

Footers and Other Formatting
Associating a Word Template with a ReporterPLUS
Template

Previously, you learned how to change the default Word template used by ReporterPLUS when
generating documents. In this section, you learn how to associate a particular Word template with a
ReporterPLUS template.

Do the following:

1. Select File > Template Properties.

In addition to the Description field, the Template Properties dialog box has fields for
entering the name of a Word or PowerPoint template or an HTML style sheet, and for
indicating how you want to handle HTML tags.

2. Click the browse button next to the Word .dot File field, navigate to the Templates
directory, and select ReporterSimpleClassReport.dot.

3. Click OK.

Every time you generate a Word document from this template, ReporterPLUS uses the
ReporterSimpleClassReport.dot template. If there is no template specified in the Template
Properties dialog box, ReporterPLUS uses the Word template specified in the Default Document
Properties dialog box.
100 ReporterPLUS Guide

Generating and Viewing Your Document
Generating and Viewing Your Document
To generate and view the resultant document, follow these steps:

1. Select File > Save Template to save your ReporterPLUS template. Although you do not
have to save before generating, it is a good habit to develop.

Alternatively, you can save a template by clicking the Save Template icon .

2. If the Dishwasher.rpy model is not open, open it now (see Opening a Model).

3. Generate a Word document (see Generating a Word Document).

4. View the generated document. Note that the document has a title page and footer, and that
it no longer uses the Word template with numbered headings.
Rhapsody 101

Footers and Other Formatting
102 ReporterPLUS Guide

Sorting, Conditions, and Missing Data
This section describes how to continue building the ReporterPLUS template that was described in
the Creating Your Own ReporterPLUS Template. You specify a sort order for the diagrams and
classes, add a condition to an iteration, and add some instructions that tell ReporterPLUS what to
do when there is no model data for an attribute or iteration.

After completing this section’s tasks, you should be able to accomplish the following:

� Specify sort orders for classes and diagrams.
� Add a condition to an iteration.

� Specify what you want ReporterPLUS to do when a model is missing data.

Sorting Model Elements

If you just completed the previous section, your ReporterPLUS template should still be open. If it
is not already open, following the instructions in Methods for Starting ReporterPLUS.

To specify that ReporterPLUS should sort diagrams and classes by name, follow these steps:

1. In the template view, click on the Package iteration node (the first iteration node, labeled
‘From class "Model"…’). Be sure to select the iteration node, not the iteration
subnode.

2. Click the Sort tab.

3. Click Add key.

4. Click the browse button next to the Attribute field to display a list of attributes. These are
the keys by which you can sort.

5. Select name from the list, then click OK. Because you want the sort to be alphanumeric,
ascending, and case sensitive, do not need to select any of the check boxes.

6. Click OK, and then click Apply.

7. Click on the classes iteration node in the template view and repeat Steps 2 through 6.
Rhapsody 103

Sorting, Conditions, and Missing Data
You can generate a Word document now to check the sort order, or you can wait until after you add
a condition and then generate.

Adding a Condition
Conditions limit the model elements that ReporterPLUS includes from an iteration. When you add
a condition, ReporterPLUS extracts only those model elements that meet the condition. If you do
not specify a condition, ReporterPLUS extracts all the model elements in the iteration.

For example, the classes iteration in your template extracts all classes from the model. But what
if you do not want all of the classes? If you want only classes named “Dishwasher,” for example,
you can add a condition to the iteration that limits the classes to those whose names are equal to
“Dishwasher.”

To specify a condition, you first choose the attribute you want to base the condition on, such as
name or metaClass. Next, you choose the operator, such as = (equal to) or <> (not equal to).
Finally, you specify the value you want to compare to the attribute. In this section, you add a
condition so that only the overridden properties in the class are extracted.

Note
ReporterPLUS supports two types of conditions: simple and advanced. This section
describes simple conditions, which suffice for many purposes. Advanced conditions are
written using the Q Language. For more information about Q, see the Q Language section.

Continue as follows:

1. In the template view, click on the property iteration node (From class "Class"…).

2. Click the Condition tab.

3. Make sure the Simple option is selected.

4. In the Attribute field, click the down arrow to display the drop-down list. These are the
attributes on which you can base conditions for this iteration.

5. Select isOverridden, then click OK.

6. In the Operation field, click the down arrow and select the equal sign (=).
104 ReporterPLUS Guide

Coping with a Lack of Model Data
7. In the Value field, click the down arrow and enter true. Click Apply. The Condition tab
should look like the following figure.

8. Save your ReporterPLUS template.

9. If the Dishwasher.rpy is not already open, open it now.

10. Generate a Word document, and go to the last page to check the results.For class AcmeJet
in the model, you see only one property, CG::Class::Concurrency, because it is the
only overridden property.

Coping with a Lack of Model Data
The «No Model Data» message is printed when the template attempts to extract information
about an attribute that is not present in the model. For example, in the Dishwasher model, not all of
the classes have descriptions.

Missing data can occur on two levels: attribute and iteration. The missing description in the
Dishwasher classes shows what happens at the attribute level: ReporterPLUS is able to extract
classes from the model, but not all of the classes have data for all of the attributes specified in the
template. There might also be missing data on the iteration level. For example, if you open a model
that has no object model diagrams, then generate a document with a template iterating over object
model diagrams, the template tries to extract object model diagrams, but there are none.

In this section, you learn how to control what ReporterPLUS does when data is missing from a
model at either the attribute or the iteration level.
Rhapsody 105

Sorting, Conditions, and Missing Data
Coping with Missing Attributes

The «No Model Data» message is the default behavior of ReporterPLUS when attributes are
missing from a model. To change that behavior to something more specific, follow these steps:

1. Click on the class subnode (the last node in the template view, labeled ‘…iterate over
association "classes"’).

2. On the Text tab, right-click on the «$descriptionHTML» attribute to display the context
menu. Be sure to click directly on top of the attribute.

3. Select Edit Attribute from the context menu to display the Edit Attribute dialog box. This
dialog box enables you to specify alternate text and to control what happens to text
preceding and following the missing attribute.

4. Select Use alternate text and type Model contains no description for this class in the
text field. ReporterPLUS prints this text instead of
«No Model Data».

5. From the Preceding text section of the dialog box, select Skip preceding text. This
means that ReporterPLUS does not print the word “Description:” for the missing
attributes. The Edit Attribute dialog box should look like the following figure.

6. Click OK to dismiss the dialog box, then click Apply in the template node view.

7. Save your template.

8. Generate a Word document and go to the last page to look at the Classes section of the
document. For the AbstractFactory and AcmeFactory classes, you should see the
message “Model contains no documentation for this class.”
106 ReporterPLUS Guide

Coping with a Lack of Model Data
Note
In the Edit Attribute dialog box, you can also specify whether you want ReporterPLUS to
include any boilerplate text following the attribute. Refer to the online ReporterPLUS help
topic “Coping with missing attributes” for details on exactly what text is included in
“preceding” and “following” selections. In addition, you can create advanced statements
about the attribute using the Q Language. For example, you can create a statement that
specifies that ReporterPLUS should print a Boolean attribute only if its value equals “true.”
For more information about Q, see the Q Language section.

Coping with Missing Elements in an Iteration

When the model is missing an element that an iteration is attempting to extract, the default
behavior for ReporterPLUS is to skip the iteration and print nothing for that iteration in the
generated document. However, there might be instances when you want to know that the model
does not contain an element. You can tell ReporterPLUS to print heading or body text when an
iteration cannot find the specified model data.

Because your template is fairly simple—it extracts only diagrams and classes—in order to see how
this option works, you need to add a generic element to the template that you know does not exist
in the Dishwasher model.

Do the following:

1. In the model view, expand the project node and the containedPackages node.

2. Select the nestedPackages node, and drag it to the template view on top of the
containedPackages iteration subnode (…iterate over association
"containedPackages"). ReporterPLUS puts the new iteration node at the end of the
template, under the containedPackages classes subnode.

Note: As you drag nestedPackages over the nodes in the template view, the mouse
pointer changes to the symbol . This means you cannot drop the item at that
location.
Rhapsody 107

Sorting, Conditions, and Missing Data
3. Click on the new nestedPackages iteration node.

4. Click the No Data tab.

5. Select Use alternate text.

6. Click to place your cursor in the text box, then type “No nested packages in the Package(s)
of this model.” The No Data tab should be similar to the following example.

7. Click OK to dismiss the dialog box.

8. Save your template.

9. Generate a Word document, and go to the last page to check the results. You should see the
heading “Package information for Package «$name»” followed by “No nested packages
in the Package(s) of this model.”

Next Steps
To learn more about ReporterPLUS and templates, you may wish to use the GetStarted template or
the template you built in previous sections with some of your own models. Read the descriptions
displayed in the Open Template dialog box to produce the desired reports.

For detailed instructions on other ReporterPLUS procedures, examine the ReporterPLUS Online
Help.
108 ReporterPLUS Guide

Command-line Operation
The ReporterPLUS tool can be invoked using the following command-line interface (CLI).
Developers prefer to use commands, entered onto a DOS prompt line, to run ReporterPLUS under
these circumstances:

� Running Rhapsody in batch mode
� Creating a nightly build process that does not require any developer interaction

Launching ReporterPLUS from an MSDOS Shell
To control ReporterPLUS from the command line, follow these steps:

1. Open an MSDOS shell window.

2. Change to the directory containing the current version of Rhapsody and the ReporterPLUS
program with this command:

cd \<Rhapsody directory name>\reporterplus

3. Type the launch command (below) with any of the Command-line Options that are
required.

reporter.exe <options>

4. Press Enter.
Rhapsody 109

Command-line Operation
Command-line Options
The options for the reporter.exe commands are listed below. These options may also include
Command-line Example. The following table lists the ReporterPLUS CLI options.

For some examples of how the “/scope” command is used, see the Command-line Example section.

Parameter Values

Any of these three parameters may be used with any of the options, listed previously.

Note
These command-line parameters are not case sensitive.

/$param-name $param-value (for example, /ft HTML)

/$param-name=$param-value (for example, /ft=html)

/$param-name:$param-value (for example, /ft:HTML)

Option Description

/q or /quiet Silent mode=Yes or GUI mode = No

/m or /model Rhapsody model file name

/t or /template Rhapsody template file name

/fn or /filename Output file name

/ft or /filetype Output file type (doc/html/ppt/txt)

/d or /display Display the generated document

/s or /scope Defines the portion of the model (shown by a path
as a colon separated string) on which a command
will be performed

/l or /license License to be used (ReporterPLUS)
110 ReporterPLUS Guide

Command-line Options
Option Guidelines

The following guidelines describe the preferred uses for the command-line options for
ReporterPLUS CLI:

1. With the /q=Yes (quiet=Yes) option, the developer should also use /m, /l, /t, /fn, and
/ft. If any one of these are not included in the command, ReporterPLUS terminates and
displays an error message. The use of /s is optional in either case. If /s is not provided,
the default is the full scope.

2. The use of /d is optional when the developer runs ReporterPLUS CLI with a /q=no.

3. If the developer runs ReporterPLUS CLI with /q=Y, that option overrides /d and does not
display the generated document.

4. If the developer does not use /q, then the ReporterPLUS CLI prompts the developer with
a wizard asking for the following:

a. Missing values (for example: output file type is not provided in the command-line
interface)

b. Undefined or Invalid values (for example: model file name passed in the interface is
not existing)

c. If all the required values were found, then the ReporterPLUS CLI generates the
document (does not display the wizard), and based on the /d value, it may or may not
show the generated document.

5. If the developer passes the scope indicator with /s along with a string to indicate the full
path name to a package, then only that package, the model elements contained within, and
sub-packages are loaded, as shown in this example:

/s TopPkg:TargetPkg:Package

TopPkg is the start of the path defining the scope.
TargetPkg is the package within TopPkg.
Package is the metatype.

Note: The scope is limited to the package level only, and the metatype is limited to
packages only.

6. If the scope is not passed, the full model is loaded.

7. If the developer does not use an /l command, then by default, the ReporterPLUS license
is checked, and if it is not available, the ReporterPLUS CLI terminates and displays an
error message.
Rhapsody 111

Command-line Operation
Command-line Example

The following example shows a full example of the reporter.exe command with the options and
parameters:

reporter.exe/m
C:\Rhapsody\Benchmark\Sample1\Benchmark1\benchmark1.rpy\
/s Package:ATMTransactionCtrl:Subsystems:benchmark1\
/t C:\Rhapsody\Templates\Drawing.tpl\
/ft html\
/fn C:\Test.html\
/q yes

1. In this example, the model to be used is identified with the “/m” command.

/m C:\Rhapsody\Benchmark\Sample1\Benchmark1\benchmark1.rpy.

2. The scope of the model to be loaded is defined with “/s” command.

/s Package:ATMTransactionCtrl:Subsystems:benchmark1.

3. The template file name to be used is identified with the “/t” command.

/t C:\Rhapsody\Templates\Drawing.tpl.

4. The type of the document to be generated is defined with the “/ft” command.

/ft html

5. The output file to be generated is defined with the “/fn” command.

/fn C:\Test.html.

6. The ReporterPLUS CLI runs in silent mode and does not show the document generated
because of this command: /q yes.
112 ReporterPLUS Guide

Execute Command
Execute Command
With the Execute command, you can specify the name of the DLL with a predefined function that
it calls. Therefore, it is also possible to specify the arguments to be passed by referencing model
meta attributes such as $name and $GUID.

The syntax for this command is as follows:

char* Execute(char* arguments)

This command provides the following capabilities:

� Load user-specified DLLs specifying a predefined entry point
� Generate a complex matrix and insert it into the generated report
Rhapsody 113

Command-line Operation
114 ReporterPLUS Guide

Glossary
attribute view

The upper, right pane in the ReporterPLUS window. See also attributes.

attributes

The items listed in the attribute view. Attributes represent the pieces of data that can
be extracted from a model. To add model text or diagrams to your document, you
add attributes to the Text tab. ReporterPLUS adds some attributes automatically
when you drag elements to the template view.

boilerplate text

Text that has been added to a template by typing in the Text tab. ReporterPLUS adds
some boilerplate text automatically when you drag elements to the template view.
Boilerplate text does not come from the model.

condition

A statement that limits the elements ReporterPLUS extracts from a model for an
iteration.

expressions

In the Q Language, expressions examine and gather information about the model.
Basic expressions are the fundamental building blocks of all Q language
expressions. They are similar to numbers in arithmetic expressions. Composite
expressions are the means by which larger expressions are constructed from smaller
expressions. Hence, they are similar to arithmetic operators.

Another parallel between arithmetic expressions and expressions in Q is in
evaluation. Just as in arithmetic expressions, the evaluation of an expression
proceeds recursively, with each composite expression evaluating its subexpressions.

generic element

An element that represents a type of element that might be found in any Rhapsody
model. See also model element.
Rhapsody 115

Glossary
iteration node

A template node formed by dragging a generic or model element to the template
view. (An iteration subnode is created at the same time.) The iteration node specifies
what class the iteration pertains to and what element to extract from that class.
Iteration nodes can also specify conditions applied to the iteration, how elements are
sorted, what happens when the iteration does not yield elements from the model, and
can contain attributes and boilerplate text.

iteration subnode

A template node formed by dragging a generic or model element to the template
view. The iteration subnode specifies the information included in the generated
document for each element extracted by the iteration. Subnodes can contain
attributes and boilerplate text, and might be the parent node to further iterations.

node label

The text next to the template node icon in the template view. The node label
describes what the node does and what part of the model it is from. ReporterPLUS

adds a default label automatically; you can change it in the User-defined label field
on the Properties tab.

model element

An element from a specific model. See also generic element.

model view

The upper, left pane in the ReporterPLUS window. When a model is open, the model
view displays generic and model elements. When no model is open, it displays only
generic elements.

node

This is basically a section in a report that is specified at a heading level in the report.

output type

The format of the generated document. ReporterPLUS can produce documents in
five output types: Microsoft Word, Microsoft PowerPoint, HTML, Rich Text Format
(RTF), and text. You select the output type in the Generate Document dialog box.

Q Language

The language used to write advanced conditions and create advanced statements
about attributes. For more information, see the Q Language section in this manual.
116 ReporterPLUS Guide

Glossary
ReporterPLUS template

A set of instructions that tells ReporterPLUS what data to extract from a model and
how that data should be formatted. You can build your own ReporterPLUS templates
or use the ones provided with ReporterPLUS.

table node

An iteration node that produces a table rather than paragraphs of text. The
information on the table node is formatted into column headings in the generated
document, whereas the information on the iteration subnodes beneath the table node
is formatted into table rows.

template

See ReporterPLUS template.

template node (or section)

Refers to any node in the template view. Template nodes form the structure of the
generated document, and hold the attributes, boilerplate text, format commands, and
other information that ReporterPLUS needs to generate a document from a model.

template node view

The lower, right pane in the ReporterPLUS window. The template node view has six
tabs, which show information about the nodes in the template view.

template view

The lower, left pane in the ReporterPLUS window. The template view displays the
currently open ReporterPLUS template. This view is empty when ReporterPLUS
first starts.

text node

A template node that holds attributes and boilerplate text. Text nodes can stand on
their own, serve as subnodes under iteration subnodes, or serve as parent nodes for
iteration nodes. They cannot hold iterations.
Rhapsody 117

Glossary
118 ReporterPLUS Guide

Index
A
Adding

Attribute 11
Carriage Return command 13
Expression 12
Filename command 13
footers 96
headers 96
Page Break command 13
page numbers 96
sections 22
text nodes 95
title page 97

Alignment 14
Arithmetic operations 65
Associate

image file with element with ReporterPLUS 41
Associations 16
Atrributes

sorting order 18
Attributes 6, 10, 56, 72

added by ReporterPLUS 23, 54
adding 11
adding from context menu 57, 97
adding to template 56
Boolean 107
drag & drop 6
missing from generated document 106
operation using two or more 12
view 6
view information 3

B
Batch mode 109
Blank ReporterPLUS template 52
Blocks 29
Boilerplate text 21, 23

adding to template 56
Bookmarks 13
Boolean 64
Browser 42

HTML Locate in 44
version 42

C
Classes 16, 26

report template 30
sorting 103

Closing models in ReporterPLUS 52
Collections 63
Command-line operation 109

example 112
for ReporterPLUS 109
launching 109
option guidelines 111
options 110
parameter values 110

Commands
Add Attribute 11
Add Carriage Return 13
Add Date 13
Add Filename 13
Add Page Break 13, 24
Add Page Number 13
Add Time 13
Begin Footer 13
Begin Header 13
Convert 14
End Footer 13
End Header 13
Execute 113
formatting 10
Insert Bookmark 13
Insert Link 13
Insert Picture 13
Locate 14
New Template Mode 22
Start new file 13
text descriptions 13

Comments 20
Components

association 93
diagram 53
lists of 65
types 62

Condition tab 17, 104
Conditions 61, 104

adding to ReporterPLUS template 104
Constant literals 64
Conversion operators 77
Rhapsody 119

Index
Convert command 14
Customizing

icon graphics in HTML reports 43
Cycles

paths with 80

D
Data 6

extraction 20
missing from generated document 105

Date 13
Default Document Properties dialog 39, 41
Diagrams 6, 7, 26

adding to reports 13
adding to template 23
collaboration 35
component 53
excluding from generated document 104
extracting all from model 52
object model 30
sorting 103

Documentation
accessed from ReporterPLUS interface 4
glossary 115

Documents 21
create simple 27
create structure 22
create templates for 21
formatted for Word 24
formatting 23, 24
generate 2
generating in HTML 41
types 21

E
Edges, multiple outgoing 81
Elements 26

associating with image file 41
executing from a document 104
generic versus model 52
generic vs. model 26
missing 107
sorting 103
versus model elements 52
view information 3

EnableLoadOptions 44, 47, 49
Expressions 12

basic 64
basic object 67
composite 68
evaluating 69
for_all 69
if 68
let 68
regular 64, 85

regular literal 87
there_exists 69
types 69
variables 67

F
Files

customized icon graphics 43
InvokeReporter.DLL 2, 49
link to external 13
link to picture 13
output 110
rhapsody.ini 2, 44, 47, 49, 50
start new report 13

Fonts 14
Footers 13, 95, 96, 99
Formatting 14, 23, 24, 25, 57, 95

changed by output type 24
commands 13, 57
headers/footers 57, 96
page breaks 57
page numbers 96
reports 57
specifying in Word template 39

Functions 71
all 72
alteration 72
attribute 73
class 73
comma 73
command-line example 112
concat 73
find 73
first 74
match 74
object 74
only 74
Q language 63
replace 74
replace_all 75
reverse 75
size 75
tolower 75
toupper 76
trim 76
uid 76

G
Generate Document dialog 42
GenerateMultifolderReport 49
Generating documents 2

HTML 46
Linux 38
PowerPoint 38
text 38
120 ReporterPLUS Guide

Index
using a Word template 39, 100
Word 39

GetStarted template 35
Glossary 115
Graphics

customized in HTML reports 43
Windows XP patch 49

H
Headers 13, 96, 99
Help in ReporterPLUS 4
HTML 1, 3, 21, 25, 41

exporter template 44
report generation 46
report template 32
tags 23
templates 34
viewing reports in 47

HTML documents 30
displaying new icons 43
for large models 49
generating 42
generating with exporter template 46
hot spots, adding 47
Locate In Browser button 14
specifying navigation for 41
specifying options for 41

Hyperlinks 13
from index 30

I
Icons

add customized to HTML (ReporterPLUS) 43
Images

associate with element (ReporterPLUS) 41
Insert Bookmark command 13
Insert Link command 13
Interface 2
Iteration

convert to table 15
missing data in 107
subnodes 7
tab 15

J
Java

applet 44
script 30

K
Keywords

Q language 85

L
Labels

changing node 98
in template view 55
template node 7
user-defined 20

Launching
ReporterPLUS 1

License command 110
Limitations

path should not include cycles 83
Q language types 63

Limiting elements 104
Linux 1

error during report generation 38
viewing reports 47

Literals
constant 64
regular expression 87

LoadImage Maps 47
LoadImageMaps 44, 49
Locate command 14
Locate In Browser button 44

M
Matrix

insert into report 113
Memory

optimizing for printing 50
Microsoft Word 1, 3, 21, 25, 106

formatting for 24
specifying Word template for output 39
templates 95

Model Path 5
Models

adding elements to ReporterPLUS template 23
adding text to template 23, 56
closing in ReporterPLUS 52
elements using to create ReporterPLUS template 59
elements versus generic elements 26, 52
excluding elements from generated document 104
extracting diagrams from 52
HTML reports for large 49
missing elements 107
no data for iteration 19
opening 28
represented in Q language 62
size for large reports 50
sorting elements 103
specific 59
View Guide 3
view in ReporterPLUS 5, 28, 37

ModelSize 49
Moving

template nodes 96
Rhapsody 121

Index
Multiple headers and footers 99
Multiple outgoing edges 81

N
Navigation, specifying for HTML documents 41
No Data tab 19, 108
Nodes 81

O
Object model diagrams

report template in ReporterPLUS 30
Objects 29, 62, 67

function 74
structure 79

Opening
blank ReporterPLUS template 52
model 28

Operations
arithmetic 65
logical 65
relational 65
string 65

Operators
conversion 77

Output 110
Output type

format change 24

P
Page breaks

adding 57, 97
in HTML documents 41

Page numbers 13, 96
Pagination 44
Paths 78

basic 78
execution model 82
nodes 81
with Cycles 80

Pattern matching strings 66
Picture 13
PowerPoint 1, 3

presentation 21, 25, 30, 38
templates 34

Primitive values
types in Q language 62

Project
information gathering 89

Projects
full detailed report 31

Properties
default document 41
Graphics diagram scale 44
tab 20

template 100
template for overridden 32
verifying structural 61

Q
Q language 17, 61, 104, 107

basic expressions 64
Boolean examples 64
characteristics 61
collections 63
composite expressions 68
constant literal types 64
constant literals 64
conversion operators 77
execution model of paths 82
expression operations, adding 12
expression tester 89
functions 71
in HTML template 45
in overridden properties template 32
integer examples 64
keywords 85
logical operations 65
model representation 62
object comparisons 67
operators 84
paths 78
real examples 64
relational operations 65
special functions 84
string operations 65
strings 64
syntax 12
tuples 62, 65
type limitations 63
types 62
variables 67

R
Regular expressions 62, 64
Report templates 21, 51

adding formatting 57
adding new 22
associating with Word template 100
boilerplate text 23
boilerplate text, adding 56
change default 40
class overview presentation 30
classes 30
comments, adding 20
commonly used 30
conditions, adding 104
creating documents from 21
creating your own in ReporterPLUS 51
delivered with ReporterPLUS 21
122 ReporterPLUS Guide

Index
formatting 25
full project detail 31
GetStarted 35
HTML 32
HTML Exporter 44, 46
HTML Exporter structure 45
labels for nodes 20
model text, adding 23
node labels 98
nodes 7
open existing 29
opening blank 52
page numbers 96
requirements 32
saving 101
setup for HTML Exporter 44
SysML 33
types 27
using generic elements in 26, 52
using model elements in 59
Word (.dot) 39

ReporterPLUS 2
command line 109
command-line option parameters 110
controlling file name length 49
creating your own templates 51
Execute command 113
generating lists 47
glossary 115
HTML hot spots 47
HTML pagination 44
interface 2
menu bar 2
methods to launch 1
model view 5, 28
objects 29
online Help 4
opening templates 29
output types 21
predesigned templates for immediate use 21
Q language keywords 85
running as an executable 2
running inside Rhapsody 1
running outside Rhapsody 1, 2
standard templates 30
starting 1
templates 21, 51
viewing reports online 47

Reports
classes 30
date, inserting 13
diagrams, adding 13
external files, linking 13
external picture file, linking 13
footer text, adding 13
formatting 24
header text, adding 13

HTML for large models 49
matrix, inserting 113
memory required for large models 50
object model diagrams 30
page number, inserting 13
types 1, 2
viewing online 47

Requirements
report template 32

Rhapsody
batch mode 109
Model View Guide 3
running ReporterPLUS inside 1
running ReporterPLUS outside 1, 2
starting ReporterPLUS 1

RTF 1, 3
viewing reports in 47

S
Scope command 110, 111
Sections

adding to template 22
Separators 16
Sort tab 18
Start new file command 13
Starting 1
Stereotypes 33

displaying new icons in HTML reports 43
Strings 64

comparison 65
concatenation 65
operations 65
pattern matching 66

Structural properties 61
Styles 14
Stylesheet 25
Subclasses 16
SupportMultifolderReportMetaClasses 49
Syntax

conversion operators 77
functions 71
paths 78
regular expressions 85

SysML
report template 33

System Architect
data import report template 33

T
Tables 14

convert iteration to table 15
nodes 7, 36

Template node view 10
Template nodes

adding comments to 20
Rhapsody 123

Index
adding to template 22
moving 96

Template Properties dialog 100
Template view 7
Templates 21, 27, 30, 51

creating new in ReporterPLUS 21, 22
creating your own 51
customizing in ReporterPLUS 21
node view 35
Word (.dot) 34, 100

Testing
Q language expressions 89

Text
add attribute 11
add expression 12
adding hyperlinks 13
alignment 14
boilerplate 10
commands 13
formatting 14
substituting in the report 14

Text documents
generating 38

Text nodes 7, 96
adding to template 95

Text tab 10, 35
adding attributes to 56
adding boilerplate text to 56
body section 10
heading section 10
modifying text 11

Time 13
Title page

adding to document 97
Troubleshooting

missing data in generated document 105
missing elements 107

Tuples 62, 65

Types 62
complicated examples 63
constant literals 64

U
User-defined label field 98

V
Variables 67

current 67
model 67
predefined 67
this 67

View 2
attribute 6
model in ReporterPLUS 5, 37
Q Tester 89
template 7, 35
template node 10

W
Windows

browsers 47
file name length 49
number of files in directory limit 49
viewing reports 47
XP graphics patch 49

Word documents 30
generating 39
specifying default template 39
specifying Word template for 100

Word templates
associating with ReporterPLUS template 100
select existing 34
124 ReporterPLUS Guide

	Contents
	ReporterPLUS Basics
	Methods for Starting ReporterPLUS
	The ReporterPLUS Interface
	ReporterPLUS Online Help
	Model View
	Attribute View
	Template View
	Node (Section) Types
	Template View Options

	Template Node View
	Text Tab
	Iteration Tab
	Condition Tab
	Sort Tab
	No Data Tab
	Properties Tab

	ReporterPLUS Template Basics
	Creating Documents from Templates
	Basic Steps in Building a New Template
	Adding Template Nodes (Sections)
	Adding Model Text and Diagrams
	Adding Boilerplate Text
	Specifying Formatting for the Document

	Generic and Model Elements

	Creating a Simple Document
	Differences among the Types of Templates
	Opening a Model
	Opening an Existing Template
	Examining a Selected Template with Your Model
	Standard ReporterPLUS Templates
	Setting Standard Template Properties

	Exploring the GetStarted Template
	Exploring the Model View
	Generating Documents
	Generating a PowerPoint Presentation
	Generating a Word Document
	Using a Word Template to Add Formatting
	Change the Default Template

	Generating an HTML Document
	Associating an Image File with a Model Element
	Specifying HTML Options
	Generating an HTML Document
	Displaying Your Icons for Stereotypes

	Rhapsody HTML Exporter Template
	HTML Exporter Template Structure
	Generating an HTML Exporter Report
	Creating Diagram Hot Spots
	Viewing Reports Online
	Generating a List of Specific Items
	Creating HTML Reports for Large Models
	Managing Long Paths in a Generated HTML Report
	Generating Large Model Reports in Multiple Directories
	Optimizing Memory for Large Reports

	Creating Your Own ReporterPLUS Template
	Before You Begin
	Extracting All Diagrams from a Model
	Extracting All Classes in the Package
	Adding Boilerplate Text and Attributes
	Adding Formatting
	Saving a ReporterPLUS Template
	Generating and Viewing Your Document
	Building a ReporterPLUS Template for a Specific Model

	Q Language
	Q Language Characteristics
	Model Representation
	Basic Q Types
	Tuples
	Collections
	Functions
	Limitations
	Complicated Type Examples

	Basic Expressions
	Constant Literals
	Tuples
	Arithmetic Operations
	Relational Operations
	Logical Operations
	String Operations

	Object Comparisons
	Variables
	Predefined Variable: model
	Predefined Variable: this
	Predefined Variable: current

	Composite Expressions
	Catalog of Composite Expressions
	Functions
	Catalog of Built-In Functions
	Conversion Operators
	Paths
	Basic Paths
	Paths with Cycles
	Path Nodes with Multiple Outgoing Edges
	Paths Nodes with Conditions
	Execution Model of Paths

	Precedence and Associativity of Operators
	Lexical Elements
	Punctuation
	Identifiers (ID)
	Keywords
	Integer Literals (INTEGER_LITERAL)
	Real Literals (REAL_LITERAL)
	Boolean Literals (BOOLEAN_LITERAL)
	Association Literals (ASSOC_LITERAL)
	String Literals (STRING_LITERAL)
	Regular Expression Literals (REGEXP_LITERAL)

	Q Expression Tester
	Q Language Grammar

	Footers and Other Formatting
	Adding a Text Node
	Adding a Footer and Page Number
	Adding a Title Page
	Changing the Node Label
	Using Multiple Headers and Footers
	Associating a Word Template with a ReporterPLUS Template
	Generating and Viewing Your Document

	Sorting, Conditions, and Missing Data
	Sorting Model Elements
	Adding a Condition
	Coping with a Lack of Model Data
	Coping with Missing Attributes
	Coping with Missing Elements in an Iteration

	Next Steps

	Command-line Operation
	Launching ReporterPLUS from an MSDOS Shell
	Command-line Options
	Parameter Values
	Option Guidelines
	Command-line Example

	Execute Command

	Glossary
	Index

