Telelogic
Rhapsody®

C++ Framework Execution
Reference Manual

Rhapsody®

C++ Framework Execution Reference
Manual

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Frameworks and OXF OVEIVIEW it 1
Real-Time FrameworKs e e 1
The Object Execution Framework (OXF).o e 2

Working with the Object Execution Framework e 2

The OXF Library. e e e e e 4
Behavioral Package e 5
OMREACHIVE ClaSS . . .ttt ettt e e e 6
OMThread Classot e e e e e e e e e 8

OMMaINThread Classt e e e e e e 8

OMDElaY Classt e e e e 8
OMProtected Class . . .ottt 9
OMGUAId Classttt e e 9
OMEVENE ClaSS . ..ttt e e 9
OMTIMEOUL ClaSS . ..ottt e e e e e e e 10
OMTImMeErManager Classo v e e e e e e e e 10

Customizing Timeout Manager Behavior. i 11

OMThreadTimer Class. oot e e e e e e e e e e 11

OMTimerManagerDefaults Class. e 11
OSLayer Package i 13
AbstractLayer Package. 13
ClaS S S . o ottt 14
OSWrappers Package 14
Services PacKage 15
MemoryManagement Package i e 15
Containers PaCKage o e e 15
Event Handling 19

Rhapsody

Table of Contents

EVENTS . . o e e 19
Generating and Queuing an EVENt. 20
Dispatching an BEvent e 21
Canceling a Single EVent. 22
Canceling AllEventsto a Destination i e 22
Dispatching a Triggered Operationttt e e e e 23

TN BOULS. . o ettt e e e e 24
Scheduling a TImeOUL. e e e e e 25
Dispatching a TIMEOULo e e e e 26
Unscheduling a TImeOoUL. e e e 27
Delaying a TImeEOULttt e e e e 27

Miscellaneous TOPICSt e 29

Active and Reactive ClasSesottt e e e 29

State MaChineso 31

Model Debugging, Testing, and Analysis 32

Configuring Framework Properties e 34

The Framework Files. e 34

Customizing the Framework e 37

OXF Reference Pages e e 39

OMADbstractMemoryAllocator Class i e e e 41
~OMADbstractMemoryAllocator 41
AlloCPOOL. . . . e 42
callMemoryPOOIISEMPLY 42
OBtMBIMOTY . . o o 42
INLALEPOON e 43
OMSelfLinkedMemoryAllocator 44
FEIUNNM IO Y . . ot e e 44
SELAIIOCALON. e 45
SEtINCrEMENINUM . .« . e e e e e e e 45

OMADSstractTickTimerFactory Class e 46
createRealTImMETIMET.o e e 46
createSimulatedTimeETIMErt e e e e e 47
TimerManagerCallBack 48

OMANASTAte Classttt e e 48
OMANAS AL . . . oottt e 48
OCK . o ot 49
UNIOCK . .« ot 49

OMCOIIECHION Class. . . .ot ot e e e e 50

i C++ Framework Execution Reference Manual

Table of Contents

OM COIECHION . . oo e 51
~OMCOllECHION . . . 51
A . . 52
AAAAL . 52
1T 101 53
FEMOVEAIl . . o 54
FEMOVEBYINAEX 55
FEOIGANIZE . . o o ittt e e e e 55
OMComponentState Classo e 56
OMCOMPONENESTALE. 57
BN S A, e 57
] P 57
TAKEEVEN . . . 58
OMDElAY ClaSS. . ottt e e e 59
OMDElAY . ..o 60
~OMDAEIAY 60
WaAKEUD .« .ttt 61
OMEVENT ClasS . ottt e e e e 62
A OULES . . . e 65
CONS NS . . ot e e e 66
OMEV BNt . . e e e 67
~OMEVENT . .. e e 68
DIt . . oo 69
getDESHNAtIONo 69
getlld. .o 70
iISCancelledTimeOUL 71
ISDElEte A C ONSUME . . . ottt 71
ISFramewWorkKEVENt e e 72
ISREAIBVENL e 73
ISTIMEOUL 73
STy PO . L o 74
SetDelete A CONSUME oo 75
SEtDESHNALION. . . . oo e 76
SetFrameworkEVENt e 76
S, . . e e 77
OMFINalState Classottt e e 78
OMEINAlS At 79
o =] (@] o o'=T o 80
OMFriendStartBehaviorEvent Class it e e e 81
OMFriendStartBehaviorEVeNt o e 81
CSENAliZE . . o 82
OEtEVENICIASS 82

Rhapsody iii

Table of Contents

SEMAlIZE . .o e e e 83
OMFriendTimeout Classot e e e e e e e 84
OMFEENdTIMEOUL . . . o e e e e e e e 84
CSEHAliZE . . 85
OEtEVENICIASSo 85
SEHAlIZE . .o 86
OMGUAId Class . . oottt e e e e 87
OMGUAI . . .o e 90
~OMGUAId . . .o e 90
QLG UAIT 91
JOCK . .« et 91
UNIOCK .« ot 91
OMHEAP ClaSS . . ottt 92
OMHEAD . . . o ot 93
~OMHEAP. . . .o 93
= 1o o 94
N . e 94
S E MDY . . . 95
(21010 Y 95
(0 96
1141 0 96
UPAae . .. e 96
OMINfINItELOOP Classot e 97
OMIErator Class . .o oot e e e e e 97
OMIEIatOr . . . o e e 98
OB A Or ¥ o L 98
OB AOr . o o oot 99
o (=1 /0= o | P 99
FES L . . o 100
ValUB. . . e 100
OMLeafState Class i e e e e e 101
OMLEaAl S AtEt e e 102
BNEDE . L L e 102
BN S A, . . . o e 103
XIS Al 103
] 103
SENAlIZE S AIES . . . 104
OMLISE Class . .ttt e e 105
OM LISt . o e e 107
~OMLISE . .. 107
(o] o 1= =1 (o] 1 [108

iv C++ Framework Execution Reference Manual

Table of Contents

Add . . 108
AOAL . . 110
AdAFIrSt . . 111
N . o 112
OO AL, . o oo e 112
DG OUNT. . . ot e 113
[0 (@ 1 = | 113
OBIRIESt . L o 115
QEtFIrStCONCEPL . . . o oo e 115
OetLaST . . . 116
e LaStCONCEPL . . .ot e 116
OIN XL, . o e e 117
SEMPLY. . . 117
TEMOVEFIISt L L L 118
15T 1101 118
FeMOVEAIl . . 119
FEMOVERI St L o 119
FEMOV I M . . o 120
FEMOVELAST.o 121
OMLIStItEM Classttt e e e e 122
OMLIStEM . . . o 122
o 0] 1 =T o 1 1o 123
OetN XL, . oo 123
OMMainThread Class e e e e 124
~OMMaAINTRrEad 125
deStroyThread 125
INSEANCE e 125
LS - 1 126
OMMaAP ClaSS . . o oo e 127
O . . 130
SOMM D, . 131
o] o =1 =1 o] 1 [131
Add . . 132
BN L 133
OO AL, . o o 133
GBI OUNT. . e 134
OB K Y . oo 134
S E MDY . e e e 135
0OKUD .. 135
TEIMOVE .« . o ottt ettt e et e e e e e e e e 136
FEMOVEAIl . . . 137
OMMaPIteM Classottt e e e 138
OMM AP M .« . . 138

Rhapsody v

Table of Contents

~OMM AP M . . e 139
OELC ONCEPE . . . ottt 139
OMMemoryManager Classttt e e e e e 140
OMMEMOIYMAaNAGET . . . o o o et ettt e e e e e e e e e e e e 143
~OMMEMOIYMANAGET ettt et e e e e e 143
getDefaultMemoOryManagero vttt 144
OO MBI . .. et e e 145
OetMEMOIYMaANAG R . . o vt ettt e 145
FEIUIMNM IO . . o o e e e e e 146
OMMemoryManagerSwitchHelper Class. e 147
OMMemoryManagerSwitChHelper 148
~OMMemoryManagerSwitChHelper 148
ClEaANUD. . o e 149
INAMEMOIY. . . . e e e 149
11 = o = 150
IS L O E MDY, . o oot e 150
recordMemoryAlloCation. 151
recordMemoryDeallocation 152
setUpdateState. e 153
shouldUpdateo e e e 153
OMNOLIfIEr ClaSS . . .ottt e e e e 154
MOty T O Or.o e e 154
NOLIfY TOOULPUL oo e 155
OMOIState ClasS . . . vttt ettt e e e e e e e 156
OM OIS AL . . . o ot 157
BNED . L L 157
L= (=] 5] = 1= 157
L2 5] = L= 158
getSUDS AL 158
] 159
SENHAliZE S ateS e 159
SEESUD S At . . . o e e 160
OMProtected Class . . .ottt e 161
OMPIOECIEA . . . ot 163
~OMPIOtECIEA oo 163
deleteMULEX . . .o 164
frEE . 164
QEIGUAIA . . .o 164
INItAlZEMULEX. . . .o e 165
JOCK . . o 165
UNIOCK . 166
OMOUEUE ClaSS . . . vt ittt et e et e e e e 167

Vi

C++ Framework Execution Reference Manual

Table of Contents

OMOQUEUE. .« . ottt e e e 171
~OMOUEBUE. . . ot e e e 172
O . oo 172
GBI OUNT. . e 172
getINVErSEQUEBUE ittt 173
OEIQUEBUIE . . . oot 173
OBLSIZE . . oo 174
INnCreaseHead 174
INCreaseTail 174
5] =117 0] 7 175
ISFUIL. L e e 175
UL ettt 175
OMREACHIVE Class . . o o it e e 177
OMREACTIVE ettt e 188
~OMREACHVE 188
CaANCEIEVENIS . . . 189
CONSUMEEVENT e e et e e e e e e 189
discarnateTimEOULo o 191
JOBUSY . . oo e e 192
0 = 192
& 1= 0 195
getCUITENTEVENT 196
getThread 197
handleEventNotCONSUMEdot 198
handleTONOICONSUME. e e e 199
INCarNAteTIMEOUL e e e e 200
INNUICONSIg . . .o 201
SACHIVEo 202
ISBUSY . . . 202
ISCUMENIEVENE . . . oo e 203
ISFrameworkinsStanCe 204
ISINDIOr e e 205
ISValid. . .. 205
POPNUICONTIG. . . . 206
PUShNUIICONTIG . . . oo e 207
registerWithOMREACHVE e e e e e e 207
rootState_dispatChEVeNt 208
rootState_entDef e 209
rootState_serializeStates 210
rUNTOCOMPIELION o 211
SEHAliZE S atES . . . e e 211
setCompleteStartBehavior e 212
SEtEVENIGUANdo 212
SetFrameworkINStanCe 213

Rhapsody vii

Table of Contents

SEUNDIOr. . . . e 214
SEIMaXNUISIEPS . . .ot 214
setShouldDelete. 216
setShouldTerminate e 217
SEETNrEAd 218
SEtTOGUAIrdREACHIVE . . . oottt 219
shouldCompleteRUN. 220
shouldCompleteStartBehavior e 221
shouldDelete 222
ShouldTerminate.o e e e 223
StarBENAVIOr . . . 224
TAKEEVENt . . o e 225
162 1S o o =] 226
LEIMINALE . . .o e 227
UNAOBUSY . . . ottt e e e e 228
OMSEACK ClasS. . ottt i e e e 229
OM S ACK. . . ot e 229
~OMSACK. . . . 230
DG OUNT. . . oo 230
SEMPLY. . .o 231
610 o 231
PUSH o 232
L0 232
OMStartBehaviorEvent Class. oo e e e e e 233
Animating Start Behavior 233
OMStartBehaviorEVENt. o 233
OM St Ate ClaSS . . o v i ittt 234
(@ 117/ 5] 7= 236
ENEDE . L L e 236
ENtHIST L L 237
BN S A, e 237
XIS Al 237
[0 (@0 01T o A 238
getHaNdle 238
et astS Ato 239
elSUDSIALE . . . 239
] 240
ISCOMPletedo e e 240
SENAlIZE S AIES . . . i 241
SetHaNAlE 241
SetlastState e 242
SEISUD S At 242
TAKEEVENL . . .o 243

Viii C++ Framework Execution Reference Manual

Table of Contents

OMStatiCATITAY ClasSS . . . oot e e 244
OMSHALICAITAY . . .t ottt et e e e e e 246
~OMSHALICAITAY . . o oottt e e e e e e 246
(o] o 1= =1 (o) 1 [247
T o 248
N . 248
0= 249
OELCOUNT. . . oo 249
OBLSIZE . o o 250
5] =117 0] 7 250
FEMOVEAIL . L 251
SO A . . L 251

OMSHING ClasS . . ottt e e e e e e e e e e 252
O SHING . . ottt 253
~OM SN . 254
o] o<1 =11 o 1 [254
OB AOr o o oo 255
[0 1= = (0] 256
[0 1= > (0] 257
(0] 01T (= 1 258
0T 0= (0] 259
0T 0= = (0] 260
O A0 1= L o e 261
[0 1= = (0] 262
[0 1= > (0] 263
(0] 01T (= 10 (S 264
ORI A0 > . L L L e e 264
O A0 o 265
ComMPAarENOCASEo 265
Bty . . o 266
GetBUI Y . . . 266
Getlength. . .. 267
S E MDY . . 267
OMDESHIUCHVESIIING2X . . o o e e e e 268
FESE SIZE . .t e e 268
SO AL, oo 269
SetDefaultBlocK 269

OMThread Class e e e 270
OMTRIEAd . . . oo e e 274
~OMTRread 277
allowDeletelnThreadsCleanup ot 277
CaANCEIEVENT . . . 278
CANCEIEVENES . . oo 279

Rhapsody iX

Table of Contents

cleanuUpAIIThreads 280
cleanupThread 280
destroyThread 281
JOEXECULE . . .o 281
BXBCULE . o ot i 282
OEtAOMTrEad. e 284
OetEVENIQUEUE . . . e e 284
LG UAIT 284
getOsHaNdIe 285
getOSThreadENdCID 286
[0 =15 (=T o 1= 287
LOCK . oot 287
OMGEtEVENIQUEUE. e 287
QUEUEBEVENL . . . o 288
FESUIMIE & . v vttt et et e e e e e e e 289
SChEAT M. .« o e e 289
SetENdOSThreadInDIor o 291
S P NI Y . . o oo e e 292
setToGuardThread. e 292
shouldGuardThread e e 293
LS - 1 293
SEOPAIITRrEAdS o 294
SUSPENA . o oottt e e 295
UNIOCK . . o 295
UNSChEOT M. . . o e 296
OMThreadTimer Class e e e e 298
~OMThread Timer. e e 299
ACHON . . L e 299
INEINSIANCE 300
OMTIMEOUL Class . ..ttt e e e e e e e e e 302
OMTIMEOUL. . . ot e e e e e e e e 304
~OMTIMEOUL. . . . oottt e e e e e e e e e e 305
(0] 01T (= 1] 305
(0T 0= 1 (0] (b 306
[0 0= =1 (0] L 307
DElete . . . 308
GEIDEIAY . . . e e 309
OEtDUETIME . . . 309
getTimeoUtld 310
ISNOTDEIAY oo 311
DB . o ottt e e e e e e 311
S DAY . . o 312
SE DUETIME .« o oo 313

X C++ Framework Execution Reference Manual

Table of Contents

SetRElatiVEDUBTIME e e 313
L= 5] r= L 314
SEtTIMEOULIA. e 315
OMTImerManager Classo e e e e e 316
OMTIMEIMANAGET ottt e e e e e e e e e 319
~OMTIMEIMANAGET . . o ottt ettt e e e e e 321
ACHION . . o 321
ChKBIIOQEot 322
ClearINSIANCE i e e 322
CONSUME TIME. . ottt e e e e e e e e e e e e e e 323
decNonldleThreadCoUNter.ot e e e e e e e e 323
eSOV TIMET . .ttt e e 324
getElapPSedTimeo e e e 324
OONEXtANAPOSE 325
incNonldleThreadCoUNter e e e e e e e 325
1 326
INIEINSIANCEo e e 326
INSTANCE . . . o 327
FESUIMIE .« . o vttt ettt e e et e e e e e e 328
SOl L e 329
SetElapSedTimeo e 330
SOftUNSChEd T M .. o 331
SUSPENA . . o 331
UNSChEdT M. . ..o 332
OMTimerManagerDefaults Classttt e e e e e 334
OMUADSstractContainer Class e e e e 335
~OMUADSIraCtCONtAINEr . .\ oottt e 335
[0 1= (@ 1 = | 336
OETFIESt . L o 336
OetN XL, . oo 337
OMUCOIIECtION Classot e e e e e e e e 338
OMUCOIIBCHION e e e e e e 340
~OMUCOIIECHION 340
(o 1= =1 (o] 1 [341
A . . o 342
A . o 343
N . 344
OO AL . L o 345
DTG OUNT. . . oot 345
[0 (@ 1 = | 346
OELFIISt . . o 346
OetN XL, . oo 347
OEESIZE . o o 347

Rhapsody Xi

Table of Contents

SEMPLY. . . 348
15T 1101 349
FEMOVEAIl . . 350
FEMOVEBYINGEX . . . 351
1= T0 T T= 1 - 352
S AL . . o 353
OMUREIAtOr Class . . o v vttt e e e e e 354
OMUREIALOro e e 355
OB AOr o o 355
OPEIAOr . o o ot 356
15157 356
VAU . 357
OMULISE ClaSS . o v ittt e e e 358
OMULISE . et 360
~OMULISE . . e e 360
(o] o =T =1 o 1 [361
A0 . .o 362
AOAL . . e 363
AAAFITSE . o 364
L1110 365
0= 366
OELCOUNT. . . oot 367
OELCUITENT . o o ot 367
(0TS T = 368
DN XL, . .o 368
S E MDY . . e e e 369
TEMOVEFIISt L . 369
15T 101 370
FeMOVEAIl . . 371
FEMOVEFIISt . . o 371
FEMOV I M . . .o 372
FEMOVELAST.o 373
OMULISHItEM Class . . .ottt e e e e e e 374
OMULISTEM . . . 374
o 0] 1 =T o 1 10 375
getElEmMeNt . . o 375
OetN XL, . oo 375
SE R MmNt . . . o 376
OMUMEAD Class . .ttt e e e e e e e e e e e e e 377
OMUMAD . . e 378
~OMUMEAD . .. 378
(o] o<1 =1 o 1 [379
A0 . . e 380

Xii C++ Framework Execution Reference Manual

Table of Contents

L1110 381
OO AL, . o o 381
OELCOUNT. . . oo 382
OB K Y . oo 382
S E MDY . . e e e 383
0OKUD . e e e 383
TEIMOVE . . o ottt ettt e et e e e e e e e 384
FEMOVEAIl . . . 385
FEMOVEK Y . . . oo 385
OMUMEAPIEEM ClaSS . . . ot ittt e e e e e e e e e e 386
OMUM DI M . . . e 386
~OMUMaEPI M. . .. 387
Qe EIEmMENt e 387
OXF ClaSS. o oot 388
animDeregisterForeignThread 389
animRegisterForeignThread. 390
elay. . . oo 391
BN . . e 391
OEtMEMOIYMaNAQET . . o o et ettt e e 392
getTheDefaultACtiVECIasSt e e e 392
getTheTickTIMerFactory o e e e e e e et 393
Nt o 394
SEtMEMOIYMaANAgET 396
setTheDefaultACtiveCIass oo e e 397
SEtTheTICKTIMEIFaCtOrY. e e e e e e e e e e e 398
L] 2 | 399
QUICK Reference 401
IO EX . .ot 413

Rhapsody Xiii

Table of Contents

Xiv C++ Framework Execution Reference Manual

Frameworks and OXF Overview

Welcome to the Rhapsody in C++ Framework Execution Reference Manual. Thisguideis
intended to be used by application developers as areference manual for the framework layer
classes, methods, and attributes.

Rhapsody® is an award-winning, UML-compliant, systems design, application development, and
collaboration platform. Rhapsody is used by systems engineers and software devel opers to deliver
embedded or real-time systems. Rhapsody uniquely combines a graphical UML programming
paradigm with advanced systems design and analysis capabilities and seamlessly links with the
target implementation language, resulting in a compl ete model -driven devel opment environment,
from requirements capture through analysis, design, implementation, and test.

Real-Time Frameworks

The emergence of the unified modeling language (UML) as an industry standard for modeling
complex systems has encouraged the use of automated tools that facilitate the devel opment process
from analysis through coding. Thisis particularly true of real-time embedded systems whose
behavioral aspects facilitate full life-cycle software devel opment by way of modeling. Statecharts
are natural candidates for automatic code generation, testing, and verification.

One major benefit of the object-oriented paradigm is the inherent support for abstraction-centric,
reusable, and adaptable design. In particular, it is common to construct complex systems using
predefined frameworks. A framework is a collection of collaborating classes that provides a set of
services for agiven domain. You cust oni ze the framework to a particular application by
subclassing and composing instances of the framework classes. Therefore, frameworks represent
object-oriented reuse.

There are several advantages to using frameworks:
¢ You do not need to write the application from scratch because it reuses elements of the

framework.

¢ Frameworks structure the design of the application by providing a set of predefined
abstractions, given by the classesin the framework. These classes provide architectural
guidance for the system design.

¢ Frameworks are open and flexible designs because their classes can be customized via
subclassing.

Rhapsody 1

Frameworks and OXF Overview

The Object Execution Framework (OXF)

Rhapsody is a visual programming environment that enables you to create an embedded software
application by creating a graphical, object-oriented model and generating production-level code
from that model.

Code generation in Rhapsody is framework-based: it includes afixed, predefined framework
called the OXF (Object eXecution Framework), and the generated code reuses that framework.
For example, the code generated for areactive class reuses the event processing functionality by
subclassing aframework class that embodies event processing capabilities. This has the following
implications:

*

The framework contains a set of useful real-time abstractions that structure the generated
code and give concrete meaning to UML concepts (such as “active class’).

Significant portions of functionality are factored out into the framework classes, so thereis
less need to generate specific code. This also eases the task of understanding the code.

You can customize framework elements using inheritance to fit your specific needs.

The framework has an existence of its own, which isindependent of the code generator. Its
classes can be used outside the code generation process, in user-class implementations, or
in any other way you desire.

Working with the Object Execution Framework

You can work with the OXF at several levels. For example, you can use the OXF to:

*

*

Create multithreaded, reactive applications. Thisis the most common way to use the OXF.

Write actions (generate events, synchronize threads, manipulate relations, and so on). This
does not require deep understanding of the internals; rather, you simply need to call afew
methods.

Implement reactive behaviors without a statechart. If you want to further customize the
automated behavioral code, you need to understand the collaborations within the
framework.

Customize the framework. The framework classes enable you to tailor the framework for
your specific needs.

C++ Framework Execution Reference Manual

The Object Execution Framework (OXF)

The following figure shows the architecture of the framework, which is described in detail in The_
OXE Library.

: Object Model Diagram: OXF in OXF

[_1O]]
OXF |

| v

Senices |
Behavioral

I

Ot Thread OhReactive Memoryhanagrment

I

Containers

—

; MutualExclusion

Events

0sL ;
q\ ayer w

I

AbstractlLayer

Timing

I3

] H

OSWrappers

1

Rhapsody

Frameworks and OXF Overview

The OXF Library

Rhapsody has one central runtime library, OXF, that provides run-time services required by the
generated code. The other libraries under the Shar e directory of the installation enable the
animation and tracing capabilities of Rhapsody.

Note

For alist of the most relevant filesin the directory
<i nstal | _di r>/ Shar e/ LangCpp/ oxf , see the The Framework Files section.

The compiled OXF consists of three logical packages:

¢ Behavioral package (Behavi or al)—Consists of a set of collaborative classes that form
the fundamental architecture of an object-oriented, reactive, multithreaded system. For
more information, see Behavioral Package.

¢ Operating system package (OSLayer)—Provides athin abstraction layer through which
the framework and generated code access operating system services. For more
information, see OSLayer Package.

* Services package (Ser vi ces)—Consists of two subpackages: Menor yManagenment and
Cont ai ner s. For more information, see Services Package.

4 C++ Framework Execution Reference Manual

Behavioral Package

The Behavioral package (also known as the active behavioral framework) consists of a set of
collaborative classes that form the fundamental architecture of an object-oriented, reactive,
multithreaded system.

The OMReactive, OMThread, OMProtected, OMEvent, OMTimeout, and OMTimerManager
classes are the base classes from which concrete model classes are derived. The code generator
automatically derives model classes from framework classes based on their application classes.

The following figure shows the class diagram of the OXF.

OdTirmerbdanager

: 1 osTimer

reacreatessx

OtdProtected OO Shutesx

OMOSThread i m_eventuard OMOSTimer
OMEwentCueue ke @1 Ot Thread 1 myThread OMReactive [o___.___ .
1 E

1 .
“~. Mmanage BYent Westination
OMOEMessageGueue '
. 1
OMMainThread e E
O Timeout I I
o

Rhapsody

Behavioral Package

OMReactive Class

Essentiadly, areactive classis one that reactsto events; that is, it is an event consumer. A reactive
classis represented in the execution framework by the oMreactive class (defined in
omreactive.h), from which every generated reactive classinherits by default. Every reactive class
is associated with an active class, from which its events are dispatched.

The Active and Reactive Class illustration shows the relationships between active and reactive
class-related elementsin the execution framework. In the diagram, framework classes are shown at
the top, whereas representative user classes are shown at the bottom.

Each class can have events and operations defined on it. Events are significant occurrences |ocated
in time and space. In the context of statecharts and activity diagrams, events can trigger transitions
between states. For detailed information on signal events, triggered operations, and timeout events,
see Event Handling.

An instance of areactive class accepts agiven event viathe gen operation, which queues the event
in its associated manager using the gueueEvent method. The manager will later inject it to the
instance for consumption by calling the takeEvent method. In the general case, the reactive class
and its manager are distinct objects. However, in many cases, they are one and the same.

The processing of eventsis normally defined by a statechart or activity diagram, but you can
define an arbitrary event-consumption behavior for areactive class by overriding the
consumeEvent method.

6 C++ Framework Execution Reference Manual

OMReactive Class

Active and Reactive Class

myThread

OMThread
2N

UserApp

OMReactive
I i

Felation myThread

N/

serActiveClass

UserActiveReactiveClass a UserReactiveClass EI

<<actives >

<<active_reactives:

<<reactives=

{Responsible for
event dispatching}

{responsible for event
consumption}

For more information on the OVReact i ve class, see OMReactive Class.

Rhapsody

Behavioral Package

OMThread Class

An active object is defined in the UML as “an object that owns athread and can initiate control
activity.” The oMmThread class (defined in omthread. h) isthe base classin the framework for every
active class. User active classes inherit from omthread, which has the following responsibilities:
¢ Runsan event loop on its own thread
¢ Digpatches events to client reactive classes
For more information, see Active and Reactive Class and Event Handling.

A thread is represented by omosThread, which wraps an operating system thread.

oMThread contains code that manages an event queue. It executes an infinite event dispatching
loop, taking events from the queue and injecting them to the target instances. Every user class that
inherits from oMmThread acquires this default behavior.

Active classes encapsul ate the notion of event-driven tasks; that is, an active classis atask that
performs event management. It is not necessarily reactive, but every reactive object needs an
active object to manage (queue and dispatch) itsincoming events.

You can customize oMmThread SO it uses a different event dispatching mechanism viainheritance.
For example, you could define a class myThread that uses two event queues instead of one.

my Thr ead would inherit from oMmThread, overriding the execute, gueueEvent, cancelEvent, and
cancelEvents methods. You can then tune the code generator to use myThread instead of

OMThr ead during code generation, meaning that classes marked “active” will automatically
inherit from myactive instead of oMThread.

OMMainThread Class

The oMMainThread class (defined in omthread.n) isaspecia case of oMThread—it defines the
default active class for an application. oMMainThread inherits from oMmThread and is a singleton—
only oneinstanceis created.

OMDelay Class

The ovmpelay class (defined in omthread.h) isused to delay acalling thread. A timeout is
asynchronous, which meansthat the thread is not waiting for a timeout—the timeout is dispatched
to areactive class that can handle it. By using ompe1ay, atask can block athread.

ompelay ishormally used by the application. If areactive instance creates an ompe1ay, it will get a
timeout after the specified delay time.

You call oxr: :delay to create an instance of oMpelay.

8 C++ Framework Execution Reference Manual

OMProtected Class

OMProtected Class

Resourcesin a class can be monitored by declaring them guarded, which allows only one
operation to access the resource at any given time. A protected class can be used to model an
exclusive resource; at any given moment, only asingle copy of a single guarded operation (of the
class) can be executing.

The omprotected class (defined in omprotected.h) isthe base classfor all protected objects. It
supports the operations 1ock and unlock USING OMOSMutex.

One central characteristic of real-time system design is the existence of resources that, in the
presence of concurrency, must be managed. The OXF includes abstractions for concurrency
control mechanisms.

oMosMutex iSawrapper classfor an operating system mutex. It supports the operations 10ck and
unlock. A mutex is used for managing exclusive resources.

OMGuard Class

The oMcuard class (defined in omprotected.h) is an enter-exit object (itswork is performed in
cTor and pTor) used to guard a section of code. Several macros (defined in omprotected.h) are
used to start and stop the guard.

OMEvent Class

The omevent class (defined in event .n) isthe base class for all events defined in Rhapsody. The
code generator implicitly derives all events from OVEvent . Events are significant occurrences
located in time and space. In the context of statecharts and activity diagrams, events can trigger
transitions between states.

The Rhapsody execution framework supports three types of events:

¢ Signa events (or “events’)
+ Triggered operations (or “synchronized events’)
+ Timeout events (or “timeouts’)

For detailed information on events, see Event Handling.

Rhapsody 9

Behavioral Package

OMTimeout Class

Timeouts are a specialization of class oMEvent. The oMTimeout class (defined in event .n)
implements timeouts issued by statecharts or activity diagramswithin reactive classes. The system
timer manages the timeouts and sends them to the requesting object—the object that issued the
timer request.

Timeouts are either created by instances entering states with timeout transitions or delay requests
from user code.

For more information on timeouts, see OMTimeout Class, and Event Handling.

OMTimerManager Class

The omTimerManager IS responsible for managing the timeout. How it is called to do itsjob
depends on the tick timer (omosTimer) implementation in the operating system adapter. In most
implementations, thereis an additional thread that providestimer support for the application. If the
timer uses a separate thread, then for a single-threaded application, the Rhapsody-generated
application will have two threads—one thread for the application and one thread for the timer
manager.

The oMTimerManager class (defined in timer . h) manages timeout requests and issues timeout
events to the application objects. oMTimerManager iSasingleton object in the execution
framework.

Thetimer manager has atimer, class omThreadTimer, that notifiesit periodically whenever afixed
timeinterval has passed. At any given moment, the timeout manager holds a collection of timeouts
that should be posted when their time comes. Each time the timer manager is notified by itstimer,
it examines the collection and sends the due timeout to the originating object. The timeout objects
themselves are passive in the sense that they do not contain timers.

Thetimer manager has atimer, classoMThreadTimer, that notifiesit periodically whenever afixed
time interval has passed. oMThreadTimer iSasubclass of oMTimerManager that does the actual
work of dispatching the timeouts to the reactive classes (that is, generating the timeouts to the
reactive classes).

For more information on the oMTimerManager Class, see OMTimerManager Class.

10 C++ Framework Execution Reference Manual

OMTimerManager Class

Customizing Timeout Manager Behavior

By customizing the framework, you can create a class that inherits from the framework base class,
overrides the behavior of the base class, and modifies code generation. All other classes from the
same type will then inherit from the user classinstead of inheriting directly from the framework
base class. For example, you can customize the behavior of the timeout framework by overriding
the schedTm and unschedTm methods so each active class has its own timeout manager. See OXF_
Reference Pages, for detailed information about these methods.

OMThreadTimer Class

The oMThreadTimer class (definedin timer.nh) inherits from oMTimerManager and performsthe
actual work of dispatching timeouts to the reactive classes (that is, generating the timeouts to the

reactive classes).

OMTimerManagerDefaults Class

The oMTimerManagerDefaults class (defined in timer.h) isused to define values for the
following timer attributes:
¢ defaultTicktime Specifiesthe default value for the basic system tick, in milliseconds.

¢ defaultMaxTM Specifiesthe limitation on the maximum number of timeouts that can exist
in the system. Timeouts are preallocated at system initialization.

Rhapsody 11

Behavioral Package

12

C++ Framework Execution Reference Manual

OSLayer Package

The typical embedded software application created in Rhapsody is designed to work with areal-
time operating system (RTOS). Rhapsody includes a number of adapters that cover the more
common RTOSes. In addition, you can customize the Rhapsody installation to accommodate a
specific OYRTOS targeted for use with the embedded software application. Thisinvolves
interfacing with the ost.ayer package, defined specifically for this purpose.

The operating system package (osr.ayer) consists of two packages:

¢ AbstractlL ayer Package

¢ OSWrappers Package

AbstractLayer Package

The operating system abstractLayer package (OSAL) provides athin abstraction layer through
which the framework and generated code access operating system services. Each one represents an
operating system object.

The behavioral framework and generated code are RTOS-independent (as are all other parts of the
framework). RTOS independence is achieved via the set of adapter classes that comprise the
OSAL. The OSAL isthe only RTOS-dependent package within the OXF, and serves as the only
interfaceto the RTOS. By “plugging-in” different OSAL implementations, the user application can
run on different operating systems.

In general, each target environment requires a custom implementation of the OSAL. For detailed
information about customizing the OSAL for a specific RTOS, see the RTOS Interface Guide. The
os.h specification file includes the interfaces for the OSAL.

Note

Some environments can use the same adapter. For example, although VxWorks™ PPC860
and VVxWorks Pentium® 111 are different environments, they use the same adapter. The same
is true for Windows NT® and Windows CE®.

Rhapsody 13

OSLayer Package

Classes

TheabstractLayer package defines classes that describe basic operations and entities used by the
operating system, including the following:

*

oMosThread provides basic threading features. It provides two create thread methods so
you can create either asimple thread or awrapper thread.

oMosMessageQueue alows independent but cooperating tasks (active classes) within a
single CPU to communicate with each other.

oMosTimer acts abuilding block for OMTimerManager, which provides basic timing
services for the execution framework.

oMosMutex protects critical sections within athread using binary mutual exclusion.
Mutexes are used to implement protected objects.

OMOSEventFlag Synchronizesthreads. Threads can wait on an event flag by calling wai t .
When some other thread signals the flag, the waiting threads proceed with their execution.

oMossemaphore alows alimited number of threads in one or more processes to access a
resource. The semaphore maintains a count of the number of threads currently accessing
the resource.

oMosSocket represents the socket through which datais passed between Rhapsody and an
instrumented application.

oMoscConnectionPort Used for interprocess communication between instrumented
applications and Rhapsody.

oMosFactory provides abstract methods to create each type of operating system entity.
Because the created classes are abstract, the factory hidesthe concrete class and returnsits
abstract representation. The factory isimplemented as a static global variable to ensure
that only one instance of a given osrFactory Can exist.

The operating-specific header filesimplement the abstract classes defined by abstractLayer
package for the target system.

OSWrappers Package

The oswrappers package holds the concrete implementation of the OSAL for each supported

RTOS.

14

C++ Framework Execution Reference Manual

Services Package

This section describes the Ser vi ces package, which consists of the following subpackages:

¢ MemoryManagement Package

¢ Containers Package

MemoryManagement Package

The framework supports two memory management packages.

¢ A plug-in memory manager (OMMenor yManager). Thisclass is defined in the
omenor ymanager . cpp/ h. For custom adapters, you must add these files to the OXF
makefile.

+ A static memory manager that enables you to define static memory pools for user classes
and events (defined in MemAl | oc. h).

See OMMemoryManager Class for detailed information about this class's methods.

Containers Package

The containers packageisaset of template and non-template classes used by Rhapsody to
implement rel ationships (associ ations and aggregations) in the application’s object model. Each
container classis suitable for different relation attributes. Note that some of the containers (such as
oMStack, OMQueue and oMHeap) are not used for relation implementation. They are used internally
in the framework, and can aso be used directly by the client application.

The OXF container classes provide the default implementation for the relations in the object
model. Note that the Rhapsody code generator can be parameterized to use an “ off-the-shel f”
container library, e.g., RogueWave™, MFC, or the Standard Template Library (STL), instead of its
“native” container library. The relation implementation with STL containersis supported “ out-of -
the-box” by Rhapsody.

Rhapsody uses containers to implement to-many relations between objects. These include
relationships of one object to many, or many objects to many. Rhapsody automatically selects the
appropriate container to implement the behaviors of various relations based on the multiplicities,

Rhapsody 15

Services Package

access, and ordering of classes and objects involved. Typical containers are lists, stacks, heaps,
static arrays, collections, and maps, each of which has its own set of behaviors. For example,
arrays allow random access, whereas lists do not.

The OXF supports the following container types:

*

*

OMAbstractContainer—AnN abstract, type-safe container.

oMcollection—A type-safe, dynamically sized array. See OMCollection Class for more
information.

oMHeap—A type-safe, fixed size heap implementation. See OMHeap Class for more
information.

oMIterator—A type-safeiterator over an OMAbst r act Cont ai ner (and derived
containers). See OMiterator Class for more information.

oMList—A type-safe, linked list. See OMList Class for more information.

oMMap—A type-safe map, based on a balanced binary tree (I og(n) search time). See
OMMap Class for more information.

oMoueue—A type-safe, dynamically sized queue. It isimplemented on acyclic array, and
implements a FIFO (first in, first out) algorithm. See OMQueue Class for more
information.

oMstring—A string class. See OMString Class for more information.

oMstack—A type-safe stack that implementsaLIFO (last in, first out) algorithm. See
OMStack Class for more information.

oMstaticarray—A type-safe, fixed-size array. See OMsStaticArray Class for more
information.

In addition to these containers, the OXF supports omu* containers, which are containers that are
not implemented with templates. The use of template-free containers reduces the size of the
generated code considerably.

16

C++ Framework Execution Reference Manual

Containers Package

The OMJ* containers are as follows:

*

OMUAbstractContainer—AN unsafe (typeless) abstract container. All derived containers
hold voida*. See OMUAbstractContainer Class for more information.

OMUIterator—AnN iterator over oMuabstractContainer and derived containers. See
OMUIlterator Class for more information.

omMuList—A typelesslist. See OMUList Class for more information.

oMuCollection—A typeless, dynamically sized array. See OMUCollection Class for more
information.

oMuMap—A typeless map. See OMUMap Class for more information.

Rhapsody

17

Services Package

18

C++ Framework Execution Reference Manual

Event Handling

This section describes event handling within the OXF. It describes the following topics:

¢ FEvents

¢ Timeouts

Events

Each class can have events and operations defined on it. In the context of statecharts and activity
diagrams, events can trigger transitions between states.

The Rhapsody execution framework supports three types of events:

+ Signal events (or “events’)—Asynchronous stimuli communicated between instances

that can have parameters. Signal events are implemented by class oMEvent.

+ Triggered operations (or “synchronous events’)—Stimuli that can trigger transitions
synchronously (without queueing them first).

+ Timeout events (or “timeouts’)—Signal the expiration of atimeinterval after acertain
state was entered. Timeout events are implemented by class oMTimeout.

Rhapsody 19

Event Handling

Generating and Queuing an Event

The following sequence diagram shows the generation and queuing of an event.

consumeEvent(ev)E

sh C
runToCompletion()

<_tisBi
doBusy() |:

undoBusy() |:

{oet) return OMEvent™ ev}BI

takeEvent(ev)

get()

etDestination])

ioy) >

getlld()

event reactive destenetion}

{netDestenation() return thelll

ootState_dispatchEvent(id)

{aetlld() return the TO evenltll
id}

L

Dispatching an event.

The sequence here is done
inside

OMThread:: executel),
which is OMThread event
loop.

The seguence show the
essence of the event
dispatching,

omitting many detail that
can be found in the methoc
itself

[
{rootState_dispatchEvent()
is avirtual function of

epletelun()

ransitions

rootState_dispatchEvent(id)

OMReactive}

{The id send in the

av-> isﬂ@

@umeﬂ

Deletel)

The sequence to generate and queue an event is as follows:

1
2.

A client class creates the event.

predifined Mull_id}

R R S I S T N N

The client class calls the gen method of the reactive class that should consume the event.

The setDestination method sets the destination attribute to the specified oMreactive

instance.

The gueueEvent method asks the thread to queue the event by calling the put method
(defined iN omthread. cpp).

The put method inserts the event into the thread's event queue.

20

C++ Framework Execution Reference Manual

Events

Dispatching an Event

The following sequence diagram shows a dispatched event.

consumeEvent(ev)E

fisBl
doBusy() |:

{oet) return OMEvent™ ev}BI

takeEvent(ev)

get()

etDestination])

ioy) >

getlld()

{netDestenation() return thelll

event reactive destenetion}

ootState_dispatchEvent(id)

{aetlld() return the TO evenltll
id}

L

Dispatching an event.

The sequence here is done
inside

OMThread:: executel),
which is OMThread event
loop.

The seguence show the
essence of the event
dispatching,

omitting many detail that
can be found in the method
itself

sh C
runToCompletion()

epletelun()

ransitions

rootState_dispatchEvent(id)

undoBusy() |:

av-> isﬂ@

@umeﬂ

Deletel)

R R S I S T N N

L
{rootState_dispatchEvent()
is avirtual function of
OMReactive}

{The id send in the
predifined Mull_id}

The method oMThread: :execute iSresponsible for the event loop. This sequence diagram shows
the main sequence of eventsthat are done inside this method.

The event loop is asfollows:

1
2.

execute Callsthe get method to get the first event from the event queue.

If the event isnot aNULL event, execute callsthe getDestination method to determine
the oMreactive destination for the event.

execute CalsthetakeEvent method to request that the reactive object process the event.

takeEvent Callsthe consumeEvent method, which does the following:

a. ItcalsisBusy to determine whether the object is already consuming an event. If the

object is not busy, consumeEvent does the following:

Setsthe sm_busy flag to TrRUE

Calls getlid to get theevent ID

Rhapsody

21

Event Handling

Passes the value of 114 to rootState_dispatchEvent to dispatch that event

b. consumeEvent calls shouldcompleterun to Seeif there are any null transitionsto
take after the event has been consumed. If there are null transitions to be taken, the
method calls runTocompletion to take them.

C. consumeEvent callSundoBusy tO reset the sm_busy flag to FaLsE.

4. execut e callstheisDeleteAfterConsume method to determine whether the event should
be deleted. If the deleteAfterConsume attribute is TRUE, execute callsthe Delete method

to delete the event.

Canceling a Single Event

Events are canceled when the event destination is del eted.

Canceling All Events to a Destination

The cancelEvents method cancels all the events targeted for a specific oMreactive instance. It
callsgetMessageList t0 get alist of al eventsin the thread's event queue.

For each event in the message list:
1. cancelEvents calls getDestination to determine the destination oMreactive instance.

2. If the event’s destination matches the destination parameter passed to cancelEvents, the
method calls cancelEvent to cancel the event.

3. cancelEvent callssetlld to set the event ID to OMCancelledEventid.

22 C++ Framework Execution Reference Manual

Events

Dispatching a Triggered Operation

The following sequence diagram shows a dispatched triggered operation (synchronous event).

=l Sequence Diagram: Dispatching a triggered operation in OXF

TOCaller ReactivellserPart OMReactive OMEvent
I
rigOp()
Construetor _ _ | __
ﬁkeTriqqer(ev}
jonsumeEvent(ev)
lisBlsyl>
doBusyOE
_ —+ getlld()
{rootState_ rootState_dispatchBvent(id {etlld]) returns the TO avent
dispatchEvent() is a id}
wirtual function of sho@@?unﬂ
OMReactive} .
runToCompletion() [
I
(The id sent in the hasuil angiflons
predefined Null_id} rootState_dispatchEvent(|d)
undoBusy() E
R e il S T
| | I

The sequence for dispatching atriggered operation is as follows:
1
2.

The takeTrigger method is called for the triggered operation.

takeTrigger Callsthe consumeEvent method to consume the event.

consumeEvent does the following:

a.

b.

It callsi sBusy to determine whether the object is already consuming an event. If the
object is not busy, consumeEvent does the following:

Setsthe sm_busy flag to TRUE
Calls getlid to get the event ID

Passes the value of 114 to rootState_dispatchEvent to dispatch that event

consumeEvent calls shouldcompleterun t0 seeif there are any null transitionsto
take after the event has been consumed. If there are null transitions to be taken, the
method calls runTocompletion to take them.

Rhapsody

23

Event Handling

C. consumeEvent callSundoBusy to reset the sm busy flag to FarLsE.

4. takeTrigger callsthe shouldTerminate and setShouldDelete methods. If

(shouldTerminate () && shouldDelete()) iS1(Or TRUE), takeTrigger deletesthe

Timeouts

A timeout isaspecia kind of event that signals that a specified amount of time has elapsed since a
state was entered. The entry point for timeout scheduling is an active object, which creates the
timeout and passes it to the timeout manager, an instance of class oMTimerManager. Each time
oMTimerManager IS notified by itstimer, it examines the collection of timeouts and queues the due
timeouts in the appropriate manager (the active object), where they are treated for dispatching like

any other event. The timeout objects themselves are passive in the sense that they do not contain
timers.

The ID of atimeout event is always Timeout_Event_id. Thisenables event consumersto

distinguish timeouts from other events. Timeouts can be distinguished from one another by a
special ID called timeout1d.

24

C++ Framework Execution Reference Manual

Timeouts

Scheduling a Timeout

The following sequence diagram shows a scheduled timeout.

:ii:Sequence Diagram: schedulind a timeout in OXF

ReactivelJserPart

oM OMReactive OMTimertanager Timeout
Thraad

chedTmideltaTime tirmeout |id, reactivelnstance, timeoutMarme)

{incarnateTimeout()
returns a new

incarnateTimeoutitimeout_id, timedutMarme, deltaTime)

Canstructar o e e e e e e e .

timeout}

setitimeout)

~]4]

To schedule atimeout, follow these steps:

1
2.

A user class callsthe schedTm method to create a timeout request.

The schedTm method callsthe incarnateTimeout method to create a timeout request for the
reactive object.

The constructor for the oMTimeout class, OMTimeout, creates a new timeout event.
The schedTm method del egates the timeout request to oMTimerManager.

The schedTm method calls the set method to delegate the timeout request to

OMTimerManager.

Rhapsody

25

Event Handling

Dispatching a Timeout

The following sequence diagram shows a dispatched timeout.

E:Sequence Diagram: dispatching a timeout in OXF

a1}
Thread

OMReactive

Timeout

OMTimertdanager

OMOSTimer

{theEventis the
timeout}

ostd

{The timer manager found
atimeoutwhose due time

actiondimeaouty |:

{actiond is called far eath
matured timeout}

getDestination(

{getDestination(return
reactive destination

thelll

getThreadd

gueneEventitheEvent, fromlSR)

{getThread(returns the reactiv
class thread (active)}

l

Timeouts are consumed as n

1

gular events

~|4]

To queue the timeout event, follow these steps:

1. ThetimeTickcbk method (private) is called to increment m_Time, the accumulated or
current time.

2. ThetimeTickcbk method callspost (private) to get the next scheduled timeout request
from the heap, trim the heap, and move the timeout to the matured list.

3. ThegetDestination method returns the reactive destination.

4. ThegetThread method returns the reactive class thread.

5. Thepost method callsthe gueueEvent method to queue the timeout request to the relevant

thread as an event.

After the timeout event reaches the head of the event queue, the takeEvent method is used by the
event loop (within the thread) to request that the reactive object process the event.

C++ Framework Execution Reference Manual

Timeouts

Unscheduling a Timeout
You unschedule atimeout in the following cases:

* When a state that caused the timeout is exited before the timeout expires
+ During the cancellation of events upon the destruction of an oMreactive instance

A user class callsthe unschedTm method to cancel atimeout request. If the timeout request was
posted but not consumed, it is marked as a canceled event (an event that is not delegated to its
destination). If the timeout request was not posted, it is removed from the timeout manager.

Delaying a Timeout

The following sequence diagram shows a delayed timeout.

= :Sequence Diagram: delay
Delaylrvoker OMDelay OMTimeout OMTimertanager OMOSEventFlag OMOSTimer

Schedule age‘lay Z =]

72

V¢ OXFdelayitimey

onstruetor ___ 4 __ >

Z : Constructor_ _ -

/ Settirmeout) N

7

Z ait() 3

yd

wirakELID fm%delay) T

7

/ post

7 R

% —

7, action(timeout

Z R

/ {this is a delay

% timeout}

7

7, ¢_GetDestination(

% P wakeupl

/ signall) "

% J

7 =

Rhapsody 27

Event Handling

To schedule the delay, follow these steps:

1
2.

The oMpelay constructor creates a delay.
The set method delegates a timeout request to oMTimerManager.

The delay waits until the timeout is over, at which point the t imeTickcbk method
(private) is called. The timeTickcbk method incrementsm Time, the accumulated or
current time.

The timeTickcbk method callspost (private) to get the next scheduled timeout regquest
from the heap, trim the heap, and move the timeout to the matured list.

The action method sends a matured timeout request to the relevant thread, whereitis
then inserted into the thread’s event queue. Because thetimeout isadelay (isNotDelay =
False), thethread isthe receiver.

The action method calls getbestination, which returns the current value of the
destination attribute (an oMreactive instance).

The action method callswakeup, which resumes processing after the delay time has
expired.

signal() actually wakes up the thread blocking on the event flag.

28

C++ Framework Execution Reference Manual

Miscellaneous Topics

This section provides information on miscellaneous topics, including active classes; state

machines; model debugging, testing, and analysis; configuring execution framework properties;
and the list of OXF files.

Active and Reactive Classes

An active abject is one that runs on its own task (thread), with a message queue available on the
task object. A reactive object is one that has a mechanism for consuming events and triggered
operations. In Rhapsody, an object isreactiveif it fulfills any of the following conditions:

¢ Hasastatechart
+ Receives events and triggered operations
¢ |sacomposite

Using Rhapsody, you can:

¢ Create active classes and objects that are not reactive.

¢ Create and control the behavior of reactive classes or objects with or without a statechart.

Active Classes that are Not Reactive
To create an active class that is not reactive, do the following:

1. Create aclassand set its concurrency to active. If the classis active but not reactive, you
must call start () to activate the event loop.

2. Overridethe oMThread: : execute method, which implements the event loop. If you
override aframework method, do not animate the overridden method.

Rhapsody 29

Miscellaneous Topics

Reactive Classes that Consume Events Without Statecharts
To create areactive class that consumes events without a statechart, do the following:

1. Createaclass.
2. Add an event reception or atriggered operation to the class.

3. Overridethe oMreactive: :consumeEvent method, which implements the event
consumption algorithm.

For more information on the consumeEvent method, see consumeEvent.
Classes with Statecharts Only as Documentation of Behavior
You can create statecharts as behavioral documentation only—uwithout generating code for them.
To create a statechart for documentation only, do the following:
1. Createaclassand giveit astatechart.
2. Setthe Implementstatechart property for the class (under cc: : c1ass) to cleared.
Modifying Class Event Consumption
To add functionality to a class's event consumption, do the following:
1. Createaclassand giveit astatechart.

2. Overridethe oMreactive: :consumeEvent operation to implement the additional
functionality.

30 C++ Framework Execution Reference Manual

State Machines

State Machines

Rhapsody supports UML state machines (which are mapped to Rhapsody statecharts), which are
inspired by, and are very similar to, Harel statecharts. Thisincludes hierarchical state
decomposition (orthogonal or states), parameter-carrying events, time events, pseudo states
(initial, history, join, fork, junction, and choice), completion transitions, entry and exit actions, and
other features. It aso includes an asynchronous event-handling model as defined in the UML—
each class that has a statechart is reactive, so it has an associated event manager (an active class).
The event manager queues events as they arrive, and later dispatches them into the reactive class
for processing according to its statechart.

The kinds of events supported in Rhapsody were described in previous sections. As explained,
time events are realized in timeouts (oMTimeout), which are specialized events (oMEvent).
Timeouts can be used as transition triggers, written ast n{ n) . Thissignals to the event that n
milliseconds have passed since the transition’s source state was entered.

The UML defines run-to-compl etion semantics for statecharts. It asserts that events are consumed
one by one, where the processing of the next event does not start until the previous one has been
fully consumed. Thus, each event can be viewed as transforming the statechart from one stable
configuration to another. In Rhapsody, the consumption of a given event includes the (“internal”)
injection of all (enabled) completion transitions—the latter do not enter the event queue. This
complies with the UML requirement that completion transitions be dispatched before any other
queued event.

Rhapsody 31

Miscellaneous Topics

Model Debugging, Testing, and Analysis

The correctness of real-time systems has an extradimension to it vis-a-vis other systems—in
addition to functional or logical correctness, real-time systemstypically carry timing regquirements
that must be met. The process of testing a system in that respect is called schedul ability analysis.

There are two primary ways of accomplishing this:
1. Empiricaly, by injecting test data into the system and measuring its reactions.

2. Theoretically, by applying a mathematical analysis method, which can calculate the
overall performance given enough timing information about the system components. Rate
monotonic analysis is an example of such amethod. Thiskind of analysisis usualy done
using special tools.

Rhapsody facilitates model-level debugging through animated statecharts and sequence diagrams.
You can step through the application at an “ object-oriented granularity” (operation call, one event
processing, the whole event queue) and visually observe the effect on the statechart (for example,
change of active state), and on the sequence diagram (for example, message/event arrows are
drawn as they are sent). These capabilities are supported by various framework elementsthat are
beyond the scope of this manual.

Stepping through an application is a good way to test the functional aspects of a system. But most
importantly for real-time applications, you can use Rhapsody for empirical schedulability analysis,
asfollows:

1. First, assign estimated durations for the execution of operations.

2. Next, write adriver that simulates the injection of external eventsinto the system. The
driver can be a script or a statechart that generates events.

3. Next, activate the driver and the system reacts as programmed, simulating the time
required to perform the operations. While running, Rhapsody generates an animated
sequence diagram and a time-stamped trace. You can inspect these outputs to seeif the
deadlines have been met. The Time-Stamped Execution Trace and Sequence Diagram
shows sample trace information.

This performance simulation can be run either on the devel opment host or on the target machine. If
you run it on atarget machine, you have the advantage of measuring response times of the real
target operating system.

32

C++ Framework Execution Reference Manual

Model Debugging, Testing, and Analysis

Time-Stamped Execution Trace and Sequence Diagram

OMTracer (0:00:00.000) <user via Tracer= Sent to ¢2[0] Event e2()

OMTracer (0:00:00.000) ¢ 2[0] Receired from <user via Tracer= Event e2()
OMTracer (0:00:00.000) maing Involed ¢2[0]-=Take Event e2()

OMTracer (0:00:00.000)
OMTracer (0:00:00.000)
OMTracer (0:00:00.020)
OMTracer (0:00:00.020)
OMTracer (0:00:00.020)
OMTracer (0:00:00.110)
OMTracer (0:00:00.110)
OMTracer (0:00:00,110)
OMTracer (0:00:00.135)
OMTracer (0:00:00.135)

OMTracer (0:00:00.135) ¢2[0]-=Take Event e2() Returned
OMTracer (0:00:00.135) c1[0] Receired from <user via Tracer= Even
OMTracer (0:00:00.135) maing) Involced c1[0]-=Take Event el()

OMTracer (0:00:00.135)
OMTracer (0:00:00.135)
OMTracer (0:00:00.150)
OMTracer (0:00:00.150)
OMTracer (0:00:00.150)

OMTracer (0:00:00.175)
OMTracer (0:00:00.175)

c2[0] Imwr okeed md21(x
¢2[0] Invoked XB21()
¢2[0]-=XB21() Returned

c2[0] Invoked c4[0]-=mf10)

c4[0] Invoked XB220
¢4[0]->XB220 Returned
c4[0]->mfA10) Returned
¢2[0] Invoked XB23()
¢2[0]-=XB230 Returned
¢2[0]->mf21() Returned

c1[0] Imwr okeed mf11¢x
¢1[0] Invoked XB11()
¢1[0]-=XB11() Returned

¢ 1[0] Invoked c5[0]-=miS1()

e5[0] Invoked XB12()

¢5[0]-=mE51) Returned
¢ 1[0]-=mf11¢) Returned

ush

R RS

110

B0

S0

i)

HBZ10)

i)

=]

s

OMTracer (0:00:00.175)c1[0]-=Take Event el() Returned

The duration of operationsis an example of a Quality of Service (QoS) parameter. There are many
QoS parameters that are relevant to schedul ability analysis. For example, in the level of classes,
QoS parameters include jitter, minimum arrival time, average arrival time, execution time,
blocking time, and so on. Values for these parameters are needed to perform schedul ability
analysisin both the empirical and theoretical ways.

One important goal of future real-time extensions to the UML isto identify an appropriate set of
QoS timeliness properties. The natural mechanism to do that would be UML-tagged values.

Rhapsody has an extensible property mechanism that closely corresponds to the notion of UML-
tagged values. In fact, the QoS parameters mentioned previously, as well as some others, are
currently supported as properties, but they are only informative.

Rhapsody 33

Miscellaneous Topics

Configuring Framework Properties

You can configure some of the OXF properties directly from within Rhapsody.

The Framework Files

The Rhapsody in C++ framework files are located in the directory <install dirs/LangCpp/oxf.

The following table lists some of the more important OXF files.

Key Framework Files

File Description

AVermAl oc. h Contains declarations for the abstract interface for static memory
allocation

event. h Contains declarations for the OVEvent ,
QVBt art Behavi or Event , and OMTi nmeout classes

event. cpp Contains the implementation of the OVEvent ,
QVBt ar t Behavi or Event , and OMTi meout classes

MemAl | oc. h Contains declarations for static memory allocation

omabscon. h

Contains declarations of the abstract container classes
(OMAbst r act Cont ai ner and OM t er at or)

ontol l ec. h

Contains the declaration of the OMCol | ect i on class, which is
an unordered, unbounded container based on a dynamic version
of OVBt ati cArray

onton. h Contains common declarations for the basic OMCont ai ner
library
omheap. h Contains the declaration of the OVHeap class

om otypes. h

Contains the generic stream types mapped to either the vendor
streams or standard library streams, based on the OM_STL
compilation flag

omMist.h

Contains the declaration of the OWLi st class

ommap. h

Contains the declaration of the OMVap class

omrenor ymanager . h

Contains declarations for the classes that support the new
memory management functionality introduced in Version 3.0.1

omrenor ymanager . cpp

Contains the implementation of the memory management
functionality

34

C++ Framework Execution Reference Manual

The Framework Files

Key Framework Files (Continued)

File

Description

onout put . h

Contains reporting messages for OVNot i f yToEr r or and
OWNot i f yToQut put

onout put . cpp

Contains reporting messages for OWNot i f yToEr r or and
OWNot i f yToQut put

onprotected. h

Contains declarations for the OVPr ot ect ed and OMGuar d
classes, and the guard macros

ongueue. h

Contains the declaration of the OMQueue class, which is an
unordered, bounded, or unbounded queue

onreactive. h

Contains declarations for the OVReact i ve class and the GEN
macros

onr eactive. cpp

Contains the implementation of the OVReact i ve class

onst ack. h Defines a stack template
onstatic.h Contains the declaration of the OVSt at i cArr ay class
onstring.h Contains definitions of the string types

onstring. cpp

Contains the implementation of the string types

ont hread. h

Contains declarations for the OMThr ead, OWVRI nThr ead,
and OVDel ay classes

ont hr ead. cpp

Contains the implementation of the OMThr ead,
OWARi nThr ead, and OVDel ay classes

ontypes. h Contains declarations for the basic types

0s.h Contains declarations for the operating system package

oxf.h Contains declarations for the Behavi or al package,
OXF::init,andi sReal Ti neModel

oxf. cpp Contains the implementation of the execution framework layer,
OXF::init,and OXF: :start

rawt ypes. h Contains declarations of the basic types

state. h Contains declarations for abstract state behaviors

state.cpp Contains the implementation of state behaviors

timer.h Contains declarations for the OMTi mer Manager ,
OMThr eadTi mer, and OMTi mer Manager Def aul t s classes

timer.cpp Contains the implementation of the OMTi mer Manager ,

OMThr eadTi mer, and OMTi mer Manager Def aul t s classes

Rhapsody

35

Miscellaneous Topics

Key Framework Files (Continued)

File Description

<x>0S. h Contains declarations for the concrete operating system (for
example, ntos. h, PsosCS. h, VxGCS. h, and!linuxos. h)

<X>0S. cpp Contains the implementation of the concrete operating system
(for example, nt os. cpp, PsosCS. cpp, VxOS.cpp, and
| i nuxos. cpp)

<x>oxf . mak Contains the make files for the concrete operating system (for
example, bc5oxf . mak, |inuxoxf. mak, nsceoxf. nak,
and msoxf . mak)

36 C++ Framework Execution Reference Manual

Customizing the Framework

Customizing the Framework

The Rhapsody framework was designed so it could be easily customized by creating classes that
inherit from the framework classes. You could do this within Rhapsody by creating a class that
inherits from an external class that represents the framework.

For example, to modify the active thread that Rhapsody uses, create a class in the model called
OMThread and Set itScG: :Class: :UseAsExternal property to checked. You could then create a
new classinthemodel, My Thr ead, that definesthe OMThr ead class as a superclass. By modifying
My Thr ead, you can modify the framework virtual operations or add more attributes to the
framework classes.

To have the code generator use the customized behavior, set the appropriate properties (such as
CPP_CG::Framework: :ActiveBase). [t iSimportant to note that following this process facilitates
upgrading to new releases of Rhapsody because no changes are done in the framework code itself.
Note that all changesin the framework for a given release are documented in the Upgrade Guide.
Before upgrading to a new version, review the changes to determine whether they impact your
framework customization.

Note

The Rhapsody code generator gives special treatment to the classes specified in the
framework base class properties. You should always use the framework base class
propertiesif abase classis derived from aframework class.

Rhapsody 37

Miscellaneous Topics

38

C++ Framework Execution Reference Manual

OXF Reference Pages

This section contains reference pages for the classes and methods that comprise the OXF. Note that
only the public and protected methods are documented.

For ease-of-use, the classes are presented in alphabetical order. Within each class, the methods are
listed in the following order:

1. Constructor

2. Destructor

3. Operators

4. Methods, listed in aphabetical order.

The classes are as follows:

¢ OMAbstractMemoryAllocator Class

¢ OMAbstractTickTimerFactory Class

¢ OMAnNdState Class

¢ OMCollection Class

¢ OMComponentState Class

¢ OMDelay Class
¢ OMEvent Class

¢ OMFinalState Class

¢ OMFriendStartBehaviorEvent Class

¢ OMFriendTimeout Class

¢ OMGuard Class

¢ OMHeap Class

¢ OMiInfiniteLoop Class

¢ OMlterator Class

¢ OMleafState Class

¢ OMList Class

Rhapsody 39

OXF Reference Pages

OMListltem Class
OMMainThread Class

OMMap Class
OMMapltem Class

OMMemoryManager Class

OMMemoryManagerSwitchHelper Class

OMNotifier Class

OMOrState Class
OMProtected Class
OMOQueue Class

OMReactive Class

OMStack Class
OMStartBehaviorEvent Class
OMsState Class
OMStaticArray Class

OMString Class
OMThread Class

OMThreadTimer Class

OMTimeout Class

OMTimerManager Class

OMTimerManagerDefaults Class
OMUAbstractContainer Class

OMUCollection Class
OMUlterator Class
OMUList Class
OMUListltem Class
OMUMap Class

OMUMapltem Class
OXFE Class

40

C++ Framework Execution Reference Manual

OMADbstractMemoryAllocator Class

OMADbstractMemoryAllocator Class

OMAbst ract Menor yAl | ocat or isthe abstract interface for static memory allocation. The
abstract classis defined in the header file AVemAl oc. h; the header file MemAl | oc. h contains
methods for static memory allocation.

Construction Summary

~OMAbstractMemoryAllocator Destroys the
OVAbst r act Menor yAl | ocat or object

Method Summary

allocPool Allocates a memory pool big enough to
hold the specified number of instances
callMemoryPoollsEmpty Controls the overprint of the message
displayed when the pool is out of memory
getMemory Gets the memory for an instance
initiatePool Initiates the “bookkeeping” for the
allocated pool
OMSelfLinkedMemoryAllocator Constructs the memory allocator
returnMemory Returns memory from the specified
instance
setAllocator Sets the allocation method
setincrementNum Overwrites the increment value

~OMAbstractMemoryAllocator
Visibility
Public
Description

The ~OMAbstractMemoryAllocator method is the destructor for the
OMAbstractMemoryAllocator Class.

This method was added to support user-defined memory managers.

Signature

virtual ~OMAbstractMemoryAllocator ()

Rhapsody 41

OXF Reference Pages

allocPool
Visibility
Public
Description

The allocPool method alocates a memory pool big enough to hold the specified number of
instances.

Signature

T * allocPool (int numOfInstances) ;

Parameters

numOfInstances

The maximum number of instances the pool should be able to contain

callMemoryPoollsEmpty
Visibility
Public

Description

The callMemoryPoollsEmpty method controls the overprint of the message displayed when the
pool is out of memory.

Signature

void callMemoryPoolIsEmpty (OMBoolean b)

Parameters

b
A Boolean value that specifies whether to overprint a message when the pool is out of memory

getMemory
Visibility
Public
Description

The getMemory method gets the memory for an instance.

42 C++ Framework Execution Reference Manual

OMADbstractMemoryAllocator Class

Signature

void* getMemory (size t size)

Parameter

size

Specifies the size of the memory to be allocated
Return
The memory for an instance

See Also

returnMemory

initiatePool
Visibility
Public
Description
TheinitiatePool method initiates the “bookkeeping” for the alocated pool.
Signature

int initiatePool (T * const newBlock, int numOfInstances) ;

Parameters

newBlock

The default amount of memory to alocate

numOfInstances

The maximum number of instances that the pool should be able to hold

Rhapsody 43

OXF Reference Pages

OMSelfLinkedMemoryAllocator
Visibility
Public

Description

The oMselfLinkedMemoryAllocator method constructs the memory allocator, specifies whether
it is protected, and how much additional memory should be alocated if theinitial pool is
exhausted.

Signature

OMSelfLinkedMemoryAllocator (int incrementNum,
OMBoolean isProtected) ;

Parameters

incrementNum

Specifies how much additional memory to allocate if the initial pool is exhausted.

igProtected

Specifies a Boolean value that determines whether the memory allocator is protected. Set this
to TRUE to protect the allocator.

returnMemo ry
Visibility
Public
Description
The returnMemory method returns the memory from the specified instance.
Signature

void returnMemory (void *deadObject, size t size)

Parameters

deadObject
A pointer to the memory
size

The size of the alocated memory

44 C++ Framework Execution Reference Manual

OMADbstractMemoryAllocator Class

Return
The memory from the specified instance
See Also

getMemory

setAllocator
Visibility
Public
Description
The setAllocator method sets the allocation method.
Signature

void setAllocator (T * (*newAllocator) (int))

Parameters

newAllocator

The callback called when the pool runs out of memory

setincrementNum
Visibility
Public
Description

The setincrementNum method overwrites the increment value.

Signature
void setIncrementNum(int value)

Parameters

value

The new increment value

Rhapsody 45

OXF Reference Pages

OMADbstractTickTimerFactory Class

The oMabstractTickTimerFactory classisthe abstract base class for a user-defined, low-level
timer factory.

The class is defined in the header fileti mer . h.

Method Summary

createRealTimeTimer Creates a real-time timer
createSimulatedTimeTimer Creates a simulated-time timer
TimerManagerCallBack Is a callback of the timer manager

createRealTimeTimer
Visibility
Public
Description

The createRealTimeTimer method creates a real-time timer. Every tick time, the timer should
call Ti mer Manager Cal | Back(cal | BackPar ans) .

This method returns a handle to the timer, so it can be deleted when the timer manager is
destroyed.

Signature

virtual OMOSTimer* createRealTimeTimer (timeUnit tickTime,
TimerManagerCallBack, void* callBackParams) const =0;

Parameters

tickTime

Specifies thetick time.

TimerManagerCallBack

The call to the callback function. The callback should be called every tick time.

callBackParams

Specifies the parameters for the callback function.
Return

The OMOSTi ner

46 C++ Framework Execution Reference Manual

OMADbstractTickTimerFactory Class

See Also

TimerManagerCallBack

createSimulatedTimeTimer

Visibility
Public
Description

The createSimulatedTimeTimer method creates a simulated-time timer. Every tick time, the
timer should call Ti mer Manager Cal | Back(cal | BackPar ans) .

This method returns a handle to the timer, so it can be deleted when the timer manager is
destroyed.

Signature

virtual OMOSTimer* createSimulatedTimeTimer (
TimerManagerCallBack, void* callBackParams) const = 0;

Parameters

TimerManagerCallBack

The call to the callback function. The callback should be called every tick time.

callBackParams

Specifies the parameters for the callback function.
Return

The OMOSTi ner
See Also

TimerManagerCallBack

Rhapsody 47

OXF Reference Pages

TimerManagerCallBack
Visibility
Public

Description
The TimerManagerCallBack method is a callback of the timer manager. which notifies the

manager of thetick.

Signature

typedef void (*TimerManagerCallBack) (void*) ;

OMAnNdState Class

The OMANdSt at e class contains functions that affect And states in statecharts.
This classis defined in the header file st at e. h.

Construction Summary

OMAnNdState Constructs an OVANndSt at e object

Method Summary

ock Locks the mutex of the OVBt at e object

unlock Unlocks the mutex of the OVSt at e object

OMAnNdState
Visibility
Public

Description
The oMAndState method is the constructor for the OMANdSt at e class.

Signature

OMAndState (OMState* par, OMState* cmp) ;

48 C++ Framework Execution Reference Manual

OMAnNdState Class

Parameters

par

Specifies the parent

cmp

Specifies the component
lock
Visibility
Public
Description
Thelock method locks the mutex of the OVst at e object.

Signature

void lock() ;
unlock
Visibility
Public

Description

The unlock method unlocks the mutex of the OMst at e object.

Signature

void unlock() ;

Rhapsody

49

OXF Reference Pages

OMCollection Class

The OMCol | ect i on class contains basic library functions that enable you to create and
manipulate OMCol | ecti ons. An OMCol | ect i on isan unordered, unbounded container.

This classis defined in the header fileontol | ec. h.
Base Template Class

OVBt ati cArray

Construction Summary

OMCaollection Constructs an OMCol | ect i on object
~OMCollection Destroys the OMCol | ect i on object

Method Summary

add Adds the specified element to the
collection

addAt Adds the specified element to the
collection at the given index

remove Deletes the specified element from the
collection

removeAll Deletes all the elements from the
collection

removeBylndex Deletes the element found at the specified

index in the collection

reorganize Reorganizes the contents of the collection

50 C++ Framework Execution Reference Manual

OMCollection Class

OMCollection
Visibility
Public
Description
The oMCollection method is the constructor for the OMCol | ect i on class.
Signature

OMCollection(int theSize=DEFAULT START_ SIZE)

Parameters

theSize

Theinitial size of the collection. Theinitial collection sizeis20 € ements.
See Also

~OMCaollection

~OMCollection
Visibility
Public
Description
The ~OMCaollection method is the destructor for the OMCol | ect i on class.
Signature

~OMCollection ()

See Also

OMCaollection

Rhapsody 51

OXF Reference Pages

add
Visibility
Public
Description
The add method adds the specified element to the collection.
Signature

void add (Concept p)

Parameters

p
The element to add

See Also

addAt

remove

removeAll

removeBylndex

addAt
Visibility
Public
Description

The addAt method adds the specified element to the collection at the given index.

Signature

void addAt (int index, Concept p)

Parameters

index

The index at which to add the new element

jof

52 C++ Framework Execution Reference Manual

OMCollection Class

The element to add
See Also
add
remove
removeAll

removeBylIndex

remove
Visibility
Public
Description

The remove method del etes the specified element from the collection.

Signature

void remove (Concept p);

Parameters

p
The element to delete

See Also

removeAll

removeBylndex

Rhapsody 53

OXF Reference Pages

removeAll
Visibility
Public
Description
The removeAll method deletes all the elements from the collection.
Signature

void removeAll () ;

See Also

remove

removeBylndex

54 C++ Framework Execution Reference Manual

OMCollection Class

removeBylndex
Visibility
Public
Description
TheremoveByindex method del etes the element found at the specified index in the collection.
Signature

void removeByIndex(int 1)
Parameters
i
Theindex of the element to delete

See Also

remove

removeAll

reorganize

Visibility

Public
Description

Thereorganize method enables you to reorganize the contents of the collection.
Signature

void reorganize (int factor = DEFAULT FACTOR) ;

Parameters

factor

Specifies the array size increment factor. For example, if the array sizeis 20 elements and the
factor is 3, the new array size will be 60 elements. The default factor is 2.

Rhapsody 55

OXF Reference Pages

OMComponentState Class

The OMConponent St at e class defines methods that affect component states in statecharts.
This classis defined in the header file st at e. h.

Flag Summary

active Marks the component state as active

Construction Summary

OMComponentState Constructs an OMConponent St at e
object

Method Summary

enterState Specifies the method called on the entry to
the state (the entry action)
in Checks whether the owner class is in this
state
takeEvent Takes the specified event off the queue
Flags
active

Marks the component state as active. It is defined as follows:

OMState* active;

56 C++ Framework Execution Reference Manual

OMComponentState Class

OMComponentState
Visibility
Public
Description

The OMComponentState method is the constructor for the OMConponent St at e class.

Signature
OMComponentState (OMState* par = NULL)

Parameters

par

The parent

enterState
Visibility
Public
Description
The entersState method specifies the method called on the entry to the state (the entry action).
Signature

virtual void enterState() ;

Visibility
Public
Description

Thein method checks whether the owner classisin this state. This method is used by the
I'S_I N() macro.

Signature

int in() ;

Rhapsody 57

OXF Reference Pages

takeEvent
Visibility
Public
Description
The takeEvent method takes the specified event off the event queue.
Signature

virtual int takeEvent (short 1Id);

Parameters

11d
Specifiesthe event ID

58 C++ Framework Execution Reference Manual

OMDelay Class

OMDelay Class

OVDel ay isused to delay acalling thread. OVDel ay is essentially another way of issuing a
timeout—QOVDel ay callsit on its own.

OvDel ay isnormally used by the application. If areactive instance creates an OvDel ay, it will
get atimeout after the specified delay time.

This classis defined in the header fileont hr ead. h.

Flag Summary

stopDelay

Initiates the delay

Construction Summary

OMDelay

Constructs an OvDel ay object

~OMDelay

Destroys the OVDel ay object

Method Summary

Resumes processing after the delay time
has expired

wakeup
Flag
stopDelay

Initiates the delay. The syntax is as follows:

OMOSEventFlag* stopSignal;
The OMOSEvent Fl ag classisdefined in os. h.

Rhapsody

59

OXF Reference Pages

OMDelay

Visibility

Public
Description

The oMDelay method is the constructor for the OvDel ay class.
Signature

OvDel ay (timeUnit t);

Parameters

t

Specifies the delay, in milliseconds
See Also

~OMDelay

~OMDelay
Visibility
Public
Description

The ~OMDelay method is the destructor for the OvDel ay class.

Signature
~OMVDel ay()
See Also
OMDelay

60 C++ Framework Execution Reference Manual

OMDelay Class

wakeup
Visibility
Public
Description
The wakeup method resumes processing after the delay time has expired.
Signature

voi d wakeup();

Rhapsody 61

OXF Reference Pages

OMEvent Class

OMVEvent isthe base classfor all events defined in Rhapsody and from which the code generator
implicitly derives all events. OvVEvent isan abstract class and is declared in thefileevent . h.

OMVEvent hastwo important data attributes:

¢ destination—Every event “knows” which OVReact i ve started it. When the thread wants
to send the event to its destination, it looksto the dest i nat i on attribute to find the
target OVReact i ve instance.

¢ || d—Every event hasan ID. Rhapsody code generation automatically generates
sequential IDs, but you can also specify the ID associated with an event. You might want
to dothis, for example, to maintain the | D across compilation, add more events, do special
things with an event, or use a specific ID because you are sending it out of the application.

You can specify the event ID in the Rhapsody properties at two levels: anindividual event ID or a
base ID number for every package. Using the base number, Rhapsody assigns every event a
sequentia 1D number.

Every object and event that inherits from OVEvent can add additional datato store event-specific
information. For example, if you want to send an event with the current time, you can add an
attribute with the relevant type name and the event will have access to the additional data.

Event parameters are mapped by code generation to data members of event classes that inherit
from OVEvent .

OMEvent isalso the base class for two special kinds of events:

+ timeout event—In addition to thel | d attribute for an event, atimeout hasaTi meout
attribute. The code generator automatically generates different timeouts. The Ti neout
attribute specifies how long to wait until the timeout is expired and activated. The
Ti meout attribute specifiesthe absol ute time when the timeout will be executed (m_Ti nme
+ Ti meout).

+ delay event—The delay event is used infrequently. Its purposeisto delay athread. When
the thread gets a delay event, it pauses for the delay time.

Events are normally generated in two steps, which are encapsul ated within the GEN macro in the
framework:

1. Anevent classisinstantiated, resulting in a pointer to the event.
2. Theeventisqueued by adding the new event pointer to the receiver's event queue.

Once the event has been instantiated and added to the event queue of the receiver, the event is
ready to be “sent.” The success of the send operation relies on the assumption that the memory
address space of the sender and receiver are the same. However, thisis not aways the case.

62

C++ Framework Execution Reference Manual

OMEvent Class

For example, the following are some examples of scenarios in which the sender and receiver
memory address spaces are most likely different:

¢+ Theevent issent between different processes in the same host.
¢ Theevent is sent between distributed applications.
¢ The sender and receiver are mapped to different memory partitions.

One common way to solve this problem isto marshall the information. Marshalling means to
convert the event into raw data, send it using frameworks such as publish/subscribe, and then
convert the raw data back to its original form at the receiving end. High-level solutions, such as

CORBA®, automatically generate the necessary code, but with low-level solutions, you should
take explicit care. Rhapsody allows you to specify how to marshall, and not marshall, events and
instances by creating “ standard operations’ to handle this task.

For low-level solutions, you may use one of these partial animation methods:
¢ In the same selected component, using properties to enable/disable the animation of
specific packages, classes, and so on.
¢ Mix animated and non-animated componentsin the same executable.
To support partial animation, C++ code generation has the following characteristics:

+ |nheritance of user classes and events from AOVielements was cancel ed.

¢ For each animated user class (event), afriend classis created in the code. The friend class
isresponsible for the animation of the user class.

¢ All the animation-specific methods are now part of the animation f ri end class.
To support partial animation, OXF has the following characteristics:

¢ Inheritance from AOMclasses was canceled (OvVEvent and OVReact i ve).

+ Attributes that were protected by #i f def _OM NSTRUMENT are now regular attributes,
with default values that can be handled by the non-animated version of the framework.

¢ Animation friend classes were added for the framework-visible events.

Attribute Summary

deleteAfterConsume Determines whether an event should be
deleted after it is consumed

destination Specifies an OVReact i ve instance

frameworkEvent Specifies whether an event is a framework
event

lid Specifies a value for an event ID

Rhapsody 63

OXF Reference Pages

Constant Summary

OMEventAnyEventld

Is a reserved event ID that specifies any
event

OMCancelledEventld

Is a reserved event ID that specifies a
canceled event (an event that should not
be sent to its destination)

OMEventNullld

Is a reserved event ID used to consume
null transitions

OMEventStartBehaviorld

Is a reserved event ID used for
QOWVBt ar t Behavi or events

OMEventOXFEndEventld

Is a reserved event ID used to cleanly
close the framework when a COM server
that uses the framework DLL is deleted

OMEventTimeoutld

Is a reserved event ID used for timeouts

Construction Summary

OMEvent

Constructs an OVEvent object

~OMEvent

Destroys the OVEvent object

Method Summary

Delete

Deletes an event instance (releases the
memory used by an event)

getDestination

Returns the reactive destination of the
event

getlid

Returns the event ID

isCancelledTimeout

Determines whether the event is canceled

isDeleteAfterConsume

Returns TRUE if the event should be
deleted by the event dispatcher
(OMThr ead) after its consumption

isFrameworkEvent Returns TRUE if the event is an internal
framework event

isRealEvent Returns TRUE if the event is a null-
transition event, timeout, or user event

isTimeout Returns TRUE if the event is a timeout

isTypeOf Returns TRUE if the event is from a given

type (has the specified ID)

setDeleteAfterConsume

Determines whether the event should be
deleted by the event dispatcher
(OMThr ead) after it is consumed

64

C++ Framework Execution Reference Manual

OMEvent Class

setDestination Sets the event reactive destination
setFrameworkEvent Sets the event to be considered as a
internal framework event
setlld Sets the event ID
Attributes
deleteAfter Consume

This protected attribute determines whether an event should be deleted after it is consumed.
The possible values for thisflag are as follows:
¢ TRUE—AnN event should be deleted after it is consumed. Thisisthe default value.
¢ FALSE—AnN event should not be deleted after it is consumed.

By default, every event is deleted after it is consumed by the statechart. The thread sends the
event, the reactive does what has to be done to consume the event, and when there is nothing
left to do, the thread (which maintains the event queue) deletes the event.

del et eAf t er Consune controls whether to delete the event. You might choose not to delete
an event, especially when events are statically allocated. In such cases, you should set
del et eAf t er Consune to FALSE.

It isdefined as follows:
OMBool ean del et eAft er Consune;

destination
This protected attribute specifies an OvReact i ve instance.

It is defined as follows:
OVReacti ve* destination;

The OVReact i ve classisdefined in onr eact i ve. h.
framewor kEvent

This protected attribute specifies whether an event is aframework event. The possible values
areasfollows:

¢ TRUE—Theevent isaframework event.
¢ FALSE—The event isauser event. Thisisthe default value.

Some events are used internally within the Rhapsody framework; these events require special
attention. For example, some interna events should not be instrumented in order to minimize
system overhead. If f r amewor kEvent isset to TRUE, lessinformation is gathered for the
event.

Rhapsody 65

OXF Reference Pages

Typicaly, you will not need to change the default value of f r amewor kEvent .

It isdefined as follows:
OVvBool ean framewor kEvent ;

ld
This protected attribute specifies avaue for an event ID.

Every event has an ID. Code generation automatically generates sequential 1Ds, but you can
also specify the ID associated with an event. You might want to do this, for example, to
maintain the ID across compilation, add more events, do special thingswith an event, or use a
specific ID because you are sending it out of the application.

You can specify the event ID in the Rhapsody properties at two levels:

* Specify anindividua event ID.

+ Specify abase ID number for every package. Using the base number, Rhapsody
assigns every event a sequential 1D number.

It is defined as follows:
short 11d;

See the Constants section for the list of constant valuesfor | | d.

Constants

OMEventAnyEventld
Thisisareserved event ID that specifies any event.

It isdefined isas follows:
const short OVEvent AnyEventld = -4;

OMCancelledEvent|d

Thisisareserved event ID that specifies a canceled event (an event that should not be sent to
its destination).

It is defined as follows:
const short OMEvent Cancel | edEventld = -3;

OMEventNullld

Thisisareserved event |D used to consume null transitions. It is defined as follows;
const short OVEventNullld = -1;

66 C++ Framework Execution Reference Manual

OMEvent Class

OMEventSartBehaviorld
Thisisareserved event ID used for OvBt ar t Behavi or events.

It is defined as follows:
const short OVEvent StartBehaviorld = -5;

OMEventOXFEndEventld

Thisisareserved event ID used to cleanly close the framework when a COM server that uses
the framework DLL is deleted.

It isdefined as follows:
const short OMVEvent OXFEndEvent!|ld = - 6;

OMEventTimeout!d
Thisisareserved event ID used for timeouts.

It isdefined as follows:
const short OVEventTineoutld = -2;

OMEvent
Visibility
Public
Description
The oMEvent method is the constructor for the OvEvent class.
Signature

OvEvent (short plld = 0, OVReactive* pdest = NULL);

Parameters

plId
Specifiesthe event ID. The default valueis 0.

pdest
Specifies the destination OVReact i ve instance. The default valueis NULL.

Rhapsody 67

OXF Reference Pages

Notes

Events are generated by applying the gen method. The gen method calls gueueEvent to queue
events to be processed by the thread event loop. The gen method is expanded by the GEN
macro, which also creates the event. See Macrosfor the description of the GEN macro.

See Also
gen
~OMEvent
queueEvent
~OMEvent
Description

The ~OMEvent method is the destructor for the OVEvent class.
Signature

vi rtual ~OvEvent ()

See Also

OMEvent

68 C++ Framework Execution Reference Manual

OMEvent Class

Delete

Visibility
Public

Description
The Delete method deletes an event instance (rel eases the memory used by an event). The
Del et e method is used instead of the standard del et e operation to support the static
memory allocation of events by Rhapsody.
Use only this method to delete events.

Signature

virtual void Delete()

Notes
If the deleteAfterConsume attribute is TRUE, the execute method calls Del et e to delete the
event.

See Also

execute

getDestination
Visibility
Public
Description
The getDestination method returns the reactive destination of the event.
Signature

OVReact i ve *get Destination() const

Return
The destination, which is an OVReact i ve instance
Notes

Theget Dest i nati on method is called by the OMTi mer Manager : : act i on method. It is
also called by the OMThr ead: : execute method to determine the OVReact i ve destination for
an event.

Rhapsody 69

OXF Reference Pages

See Also
action
destination
execute

setDestination

getlld
Visibility
Public
Description
The getlld method returns the event ID.
Signature

short getlld() const

Return
I 1d, thevaluefor the event ID

See Also

S

70 C++ Framework Execution Reference Manual

OMEvent Class

isCancelledTimeout
Visibility
Public
Description

TheisCancelledTimeout method determines whether the event is canceled.

Signature
OVBool ean i sCancel | edTi meout () const

Returns
The method returns one of the following Boolean values:

¢ TRUE—Thevaueof | | d isOMCancelledEventid.

¢ FALSE—Thevaueof | | d isnot OMCancelledEventid.

See Also

isDeleteAfterConsume
Visibility
Public
Description

The jsDeleteAfterConsume method returns TRUE if the event should be deleted by the event
dispatcher (OMThr ead) after its consumption.

Thismethod is called by the OMThr ead: : execute method.

Signature
OVBool ean i sDel et eAft er Consune() const

Returns

The method returns one of the following values:

Rhapsody 71

OXF Reference Pages

¢ TRUE—The event should be deleted after it is consumed.
¢ FALSE—The event should not be deleted after it is consumed.

See Also
deleteAfterConsume

execute

setDeleteAfterConsume

iIsFrameworkEvent
Visibility
Public
Description
The isFrameworkEvent method returns TRUE if the event is an internal framework event.
Signature

OVBool ean i sFranmewor kEvent () const

Return
The method returns one of the following Boolean values:

¢ TRUE—Theevent isaframework event.
¢ FALSE—The event is not aframework event.

See Also
frameworkEvent

setFrameworkEvent

72 C++ Framework Execution Reference Manual

OMEvent Class

isRealEvent
Visibility
Public
Description

The isRealEvent method returns TRUE if the event is a null-transition event, timeout, or user
event.

Signature

OVBool ean i sReal Event () const

Returns
The method returns one of the following Boolean values:

¢ TRUE—Thevaueof| | d isether OMEventNullld or OMEventTimeoutld.

¢ FALSE—Thevaueof | | d isneither OMEventNullld nor OMEventTimeoutld, Or iS
auser event.

See Also

iIsTimeout
Visibility
Public
Description
TheisTimeout method returns TRUE if the event is atimeout.
Signature

OMBool ean i sTi neout () const

Returns
The method returns one of the following Boolean values:

¢ TRUE—Thevalueof | | d isOMEventTimeoutld.

Rhapsody 73

OXF Reference Pages

¢ FALSE—Thevalueof | | d isnot OMEventTimeoutld.

See Also

iIsTypeOf
Visibility
Public
Description
TheisTypeOf method checks whether the event is from a given type (has the specified ID).

Client events should override this method, as follows:
OvBool ean i sTypeO (short id) const {
if (id == <event>ld) return TRUE;
return <super event>::isTypeO(id);

Signature
vi rtual OMBool ean i sTypeO (short id) const
Parameters
id
Specifies the event 1D to check for
Returns

The method returns one of the following Boolean values:

¢ TRUE—The event has the specified ID.
¢ FALSE—The event does not have the specified ID.

Note

To handle the consumption of derived events in a generic manner, use the isTypeOf method.
With this method, the generated code checks the event type. The isTypeOf method returns
TRUE for derived events, as well as for the actual event.

74 C++ Framework Execution Reference Manual

OMEvent Class

setDeleteAfterConsume
Visibility
Public

Description

The setDeleteAfterConsume method determines whether the event should be deleted by the
event dispatcher (OMThr ead) after it is consumed.

Signature

voi d set Del et eAft er Consunme (OvBool ean doDel et e)

Parameters

doDelete

Specifies the value of the del et eAf t er Consune attribute. The possible values are as
follows:

¢ TRUE—De€ ete the event after it is consumed.
¢ FALSE—Do not delete the event after it is consumed.

See Also

deleteAfterConsume

isDeleteAfterConsume

Rhapsody 75

OXF Reference Pages

setDestination
Visibility
Public
Description
The setDestination method sets the event reactive destination.

This method is called by the OvReact i ve: : _gen method when an object is sending an event
to an OVReact i ve object.

Signature
voi d setDestination (OVReactive* cb)
Parameters

cb
Specifiesthe OVReact i ve instance

See Also
gen

etDestination

setFrameworkEvent
Visibility
Public
Description

The setFrameworkEvent method sets the event to be considered as ainternal framework event.

Signature
voi d set Framewor kEvent (OvBool ean i sFramewor kEvent)

Parameters

igFrameworkEvent

Specifies the value of the f r amewor kEvent attribute. The possible values are as follows:

¢ TRUE—Theevent is aframework event.
¢ FALSE—Theevent is not aframework event.

76 C++ Framework Execution Reference Manual

OMEvent Class

See Also
frameworkEvent

isFrameworkEvent

setlld
Visibility
Public
Description
The setlld method sets the event ID.
Signature

void setlld (short pld)

Parameters

pId
Specifies the new event ID

See Also

getlid

Id

unschedTm

Rhapsody 77

OXF Reference Pages

OMFinalState Class

The OWFi nal St at e class represents afinal state—a state that has no exiting transitions and that
make its parent state completed (i sConpl et ed() returnstrue).

This classis defined in the header file st at e. h.

Construction Summary

OMFinalState Constructs an OVFi nal St at e object

Method Summary

getConcept Returns the current element

78 C++ Framework Execution Reference Manual

OMFinalState Class

OMFinalState
Visibility
Public
Description
The OMFinalState method is the constructor for the OMFi nal St at e class.
Signature

OMFinalState (OMReactive * cpt, OMState * par,
OMState * cmp, const char * hdl = NULL)

OMFinalState (OMReactive * cpt, OMState * par,
OMState * cmp, const char * /* hdl */ = NULL)

Parameters
cpt
The statechart owner

par

The parent

cmp

The component

hdl
The handle

Rhapsody 79

OXF Reference Pages

getConcept
Visibility
Public
Description
The getConcept method returns the current element.
Signature

virtual AOMInstance * getConcept () const

Return

The current e ement

80 C++ Framework Execution Reference Manual

OMFriendStartBehaviorEvent Cla

SS

OMFriendStartBehaviorEvent Class

The OVFri endSt ar t Behavi or Event class was added to animate the start behavior event

classin instrumented mode. The friend class declaration is empty for non-instrumented code.

This classis defined in the header fileevent . h.

Construction Summary

OMFriendStartBehaviorEvent Is the constructor for the
OMSt ar t Behavi or Event class

Method Summary

cserialize Is part of the Rhapsody animation
serialization mechanism

getEventClass Returns the event class

serialize Is called during animation to send event
information

OMFriendStartBehaviorEvent
Visibility
Public
Description

The OMFriendStartBehaviorEvent method is the constructor for the
OVFri endSt ar t Behavi or Event class.

Signature

OMFriendStartBehaviorEvent (OMStartBehaviorEvent*
userEventPtr) ;

Parameter

userEventPtr

A pointer to the event

Rhapsody

81

OXF Reference Pages

cserialize
Visibility
Public
Description

The cserialize method is part of the animation serialization mechanism. It passes the values of
the instance to a string, which is then sent to Rhapsody.

Signature

OMSData* cserialize (OMBoolean withParameters) const;

Parameter

withParameters

A Boolean value that specifies whether to include the parameter values

getEventClass
Visibility
Public
Description

The getEventClass method returns the event class. This method is used for animation
purposes.

Signature

AOMEventClass * getEventClass() const

82 C++ Framework Execution Reference Manual

OMFriendStartBehaviorEvent Class

serialize
Visibility
Public

Description

The serialize method is called during animation to send event information.
Signature

void serialize (AOMSEvent* e) const;

Parameters

e

Specifies the event

Rhapsody 83

OXF Reference Pages

OMFriendTimeout Class

The OVFri endTi meout class animates the timeout class in instrumented mode. The friend
class declaration is empty for non-instrumented code.

This classis defined in the header fileevent . h.

Construction Summary

OMFriendTimeout Is the constructor for the
OVFri endTi neout class

Method Summary

cserialize Is part of the Rhapsody animation
serialization mechanism

getEventClass Returns the event class

serialize Is called during animation to send event
information

OMFriendTimeout
Visibility
Public
Description

The OMEriendTimeout method is the constructor for the OMFri endTi meout class.

Signature
OMFriendTimeout (OMTimeout* userEventPtr)
Parameters

userEventPtr

A pointer to the timeout event

84 C++ Framework Execution Reference Manual

OMFriendTimeout Class

cserialize
Visibility
Public

Description

The serialize method is part of the animation serialization mechanism. It passes the values of
the instance to a string, which is then sent to Rhapsody.

Signature

OMSData* cserialize (OMBoolean withParameters) const;

Parameters

withParameters

A Boolean value that specifies whether to include the parameter values

getEventClass
Visibility
Public
Description

The getEventClass method returns the event class. This method is used for animation
purposes.

Signature

AOMEventClass * getEventClass() const

Rhapsody 85

OXF Reference Pages

serialize
Visibility
Public

Description

The serialize method is called during animation to send event information.
Signature

void serialize (AOMSEvent * e) const

Parameters

e

Specifies the event

86 C++ Framework Execution Reference Manual

OMGuard Class

OMGuard Class

OMGuar d isused to make user operations guarded or locked between entry and exit. It is used

in the generated code (in the GUARD_OPERATION macro) to ensure appropriate locking and
freeing of the mutex in a guarded operation.

The copy constructor and assignment operator of OMGuar d ar e explicitly disabled to avoid

erroneous unlock of the guarded object mutex.

Thisclassis defined in the header file onpr ot ect ed. h.

Macro Summary

END_REACTIVE_GUARDED_SECTION

Ends protection of a section of code used
for a reactive object

END_THREAD_GUARDED_SECTION

Stops protection for an operation of an
active user object

GUARD_OPERATION

Guards an operation by an OMcuar d
class object

START _DTOR_REACTIVE_GUARDED_SECTION

Starts protection of a section of code used
for destruction of a reactive instance

START _DTOR_THREAD_GUARDED_SECTION

Starts protection for an active user object
destructor

START_REACTIVE_GUARDED_SECTION

Starts protection of a section of code used
for a reactive object

START_THREAD_GUARDED_SECTION

Starts protection for an operation of an
active user object

Construction Summary

OMGuard Constructs an OMGuar d object

~OMGuard Destroys the OM@uar d object

Method Summary

getGuard Gets the guard
lock Locks the mutex of the OMGuar d object
unlock Unlocks the mutex of the OMGuar d object

Rhapsody

87

OXF Reference Pages

M acros
END REACTIVE_GUARDED_SECTION

Ends protection of a section of code used for areactive object. Thismacrois called
in the reactive class event dispatching to prevent a“race” between the event
dispatching and a deletion of the reactive classinstance. The mechanismis activated
when the reactive class DTOR is set to be guarded.

END_THREAD_GUARDED_SECTION

Stops protection for an operation of an active user object. The macroisused in
OMThr ead event dispatching to guard the event dispatching from deletion of the
active object. The mechanism is activated in the code generated for active classes,
when the active class DTOR is set to be guarded.

The START _THREAD GUARDED SECTI ON macro and the

END_THREAD GUARDED_SECTI ON macros are called by the execute method if
toGuardThread iS TRUE.

GUARD_OPERATION

Guards an operation by an OMGuar d class abject. It is used in the generated code.

This macro supports the aggregation of OvPr ot ect ed in guarded classes as well as
inheritance from OVPr ot ect ed by guarded classes.

OMDECLARE_GUARDED

Aggregates OVPr ot ect ed objects inside guarded classes instead of inheritance
from OVPr ot ect ed. It isdefined asfollows:

#define OMDECLARE GUARDED
public:
inline void lock() const {m_omGuard.lock() ;}
inline void unlock() const
{m_omGuard.unlock() ;}
inline const OMProtected& getGuard()
const {return m_omGuard;}

START_DTOR_REACTIVE_GUARDED_SECTION

Starts protection of a section of code used for destruction of areactiveinstance. This
macro is called in the DTOR of areactive (not active) classwhen it is set to guarded.
Thisisdoneto prevent a“race” (between the deletion and the event dispatching)
when deleting a reactive instance.

88 C++ Framework Execution Reference Manual

OMGuard Class

START_DTOR_THREAD_GUARDED_SECTION

Starts protection for an active user object destructor. This macro iscalled in the
DTOR of an active classwhen it is set to guarded. Thisis done to prevent a“race”
(between the deletion and the event dispatching) when deleting an active instance.

START_REACTIVE_GUARDED_SECTION

Starts protection of a section of code used for areactive object. This macro is called
in the reactive class event dispatching to prevent a“race” between the event
dispatching and adeletion of the reactive classinstance. The mechanism is activated
when the reactive class DTOR is set to be guarded.

START_THREAD_GUARDED_SECTION

Starts protection for an operation of an active user object. The macroisusedin
OMThr ead event dispatching to guard the event dispatching from deletion of the
active object. The mechanism is activated in the code generated for active classes
when the active class DTOR is set to be guarded.

The START _THREAD GUARDED SECTI ON macro and the
END_THREAD_GUARDED_SECTI ON macros are called by the execute method if
toGuardThread iS TRUE.

Rhapsody

89

OXF Reference Pages

OMGuard
Visibility
Public
Description

The OMauar d method is the constructor for the OMGuar d class. It locks the mutex of the user

object.
Signature
OMauard (const OWProtected& pObj,
bool needlnstrunentation = true);
Parameters

PObjJ
Specifies aguarded user abject

needInstrumentation

Added for animation support
See Also

~OMGuard

~OMGuard
Visibility
Public
Description

The ~OMcauar d method is the destructor for the OMGuar d class. It frees the mutex of the
guarded object.

Signature

~OMauar d()

See Also

OMGuard

a0 C++ Framework Execution Reference Manual

OMGuard Class

getGuard
Visibility
Public
Description
The getGuard method gets the guard object.

Signature

inline const OMProtected& getGuard() const

Return

The guard object

lock
Visibility
Public
Description
Thelock method locks the mutex of the OMGuar d object.

Signature

inline void lock() const

unlock
Visibility
Public
Description

The unlock method unlocks the mutex of the OMGuar d object.

Signature

inline void unlock() const

Rhapsody 91

OXF Reference Pages

OMHeap Class

The OvHeap class contains basic library functions that enable you to create and manipulate
OVHeap objects. An OvHeap is atype-safe, fixed size heap implementation. An OvHeap has
elements of type Node*.

Thisclassis defined in the header file omheap. h.

Construction Summary

OMHeap Constructs an OvHeap object
~OMHeap Destroys the OvHeap object

Method Summary

add Adds the specified element to the heap.

find Looks for the specified element in the
heap.

iIsEmpty Determines whether the heap is empty.

remove Deletes the specified element from the
heap.

top Moves the iterator to the top of the heap.

trim Deletes the top of the heap.

update This method is currently unused.

92 C++ Framework Execution Reference Manual

OMHeap Class

OMHeap
Visibility
Public
Description
The oMHeap method is the constructor for the OvHeap class.
Signature

OMHeap (int size=100)

Parameters

size

The amount of memory to allocate for the heap. The default size is 100 bytes.
See Also

~OMHeap

~OMHeap
Visibility
Public
Description

The ~OMHeap method destroys the OvHeap object.

Signature
~OMHeap ()
See Also
OMHeap

Rhapsody

93

OXF Reference Pages

add
Visibility
Public
Description
The add method adds the specified element to the heap.
Signature

void add (Node* e) ;

Parameters

e

The element to add to the heap

find
Visibility
Public
Description
The find method looks for the specified element in the heap.
Signature

int find (Node* clone) const;

Parameters

clone

The element to look for
Return
The method returns one of the following values:

¢ 0—The element was not found.
¢ 1—The element was found.

94 C++ Framework Execution Reference Manual

OMHeap Class

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the heap is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:
¢ 0—Theheap isnot empty.
¢ 1—Theheap isempty.

remove
Visibility
Public
Description
The remove method removes the first occurrence of the specified element from the heap.

Signature
Node* remove (Node* clone) ;

Parameters

clone

The element to delete
Return

If successful, the method returns the deleted element. Otherwise, it returns NULL.

Rhapsody 95

OXF Reference Pages

top
Visibility
Public

Description

Thetop method moves the iterator to the top of the heap.

Signature

Node* top() const

Return

The top-most element
trim
Visibility
Public

Description

The trim method del etes the top of the heap.

Signature

void trim() ;
update
Visibility
Public

Description

Currently, this method is unused.

Signature

void update (Node* e) ;

96

C++ Framework Execution Reference Manual

OMlInfiniteLoop Class

OMiInfiniteLoop Class

OM nfi ni t eLoop isan exception class that should be raised on an infinite loop of null
transitions. It is currently not used by the execution framework.

It is declared in the header fileonr eacti ve. h.

OMlterator Class

TheOM t er at or class contains methods that enable you to use a standard iterator for all the
classes derived from OMAbst r act Cont ai ner.

This classis defined in the header file omabscon. h.

Construction Summary

OMIlterator Constructs an OM t er at or object

Method Summary

operator * Returns the current value of the iterator

operator ++ Increments the iterator

increment Increments the iterator by 1

reset Resets the iterator to the beginning or the
specified location

value Returns the value found at the current
position

Rhapsody 97

OXF Reference Pages

OMlterator
Visibility
Public
Description
The oMmiterator method is the constructor for the OM t er at or class.
Signature

OMIterator () ;
OMIterator (const OMAbstractContainer<Concept>& 1)

OMIterator (const OMAbstractContainer<Concept>* 1)

Parameters

1
The container the iterator will visit

operator *
Visibility
Public
Description
The* operator returns the current value of the iterator.
Signature

Concept& operator* ()

Return

The current value of the iterator

98 C++ Framework Execution Reference Manual

OMIterator Class

operator ++
Visibility
Public
Description
The ++ operator increments the iterator.
Signature

OMIterator<Concept>& operator++ ()

OMIterator<Concept> operator++ (int i)
Parameters
i
Increments the iterator to the next element in the container

Return

The incremented value of the iterator

increment
Visibility
Public
Description
The increment method increments the iterator by 1.
Signature

OMIterator<Concept>& increment ()

Return

The new value of the iterator

Rhapsody

99

OXF Reference Pages

reset
Visibility
Public
Description
Thereset method resets the iterator to the beginning or the specified location.
Signatures

void reset ()

void reset (OMAbstractContainer<Concept>& newLink)

Parametersfor Signature 2

newLink
The new position for the iterator
value
Visibility
Public

Description

The value method returns the element found at the current position.
Signature

Concepté& value ()

Return

The element found at the current position

100 C++ Framework Execution Reference Manual

OMLeafState Class

OMLeafState Class

The OMLeaf St at e class sets the active state of the component.
Thisclassis defined in the header filest at e. h.

Construction Summary

OML eafState Creates an OMLeaf St at e object
Flag Summary
component Specifies a component

Method Summary

entDef Specifies the operation called when the
state is entered from a default transition

enterState Specifies the state entry action

exitState Specifies the state exit action

in Returns TRUE when the owner class is in
this state

serializeStates Is called during animation to send state
information

Flags
component

Specifies a component. It is defined as follows:
OMConponent St at e* conponent ;

Rhapsody 101

OXF Reference Pages

OMLeafState
Visibility
Public
Description
The oML eafState method is the constructor for the OMLeaf St at e class.
Signature

OMLeafState (OMState* par, OMState* cmp)

Parameters

par

Specifies the parent

cmp

Specifies the component

entDef
Visibility
Public
Description

The entDef method specifies the operation called when the state is entered from a default
transition.

Signature

virtual void entDef () ;

102 C++ Framework Execution Reference Manual

OMLeafState Class

enterState
Visibility
Public
Description
The enterState method specifies the state entry action
Signature

virtual void enterState() ;

exitState
Visibility
Public
Description
The exitState method specifies the state exit action.
Signature

virtual void exitState() ;

Visibility
Public
Description
The in method returns TRUE when the owner classisin this state.
Signature
int in();
Return

The method returns one of the following values:

¢ 0—Notin
¢ 1—In

Rhapsody 103

OXF Reference Pages

serializeStates
Visibility
Public
Description
The serializeStates method is called during animation to send state information.
Signature

virtual void serializeStates (AOMSState* s) const;

Parameters

S

Specifies the state

104 C++ Framework Execution Reference Manual

OMList Class

OMList Class

The OWLi st class contains basic library functions that enable you to create and manipul ate
OMLi st s. AnOWLi st isatype-safe, linked list.

This classis defined in the header fileom i st . h.

Base Template Class
OvBt ati cArray

Construction Summary

OMList Constructs an OMLi st object
~OMList Destroys the OWLi st object

Flag Summary
first Specifies the first element in the list
last Specifies the last element in the list

Method Summary

operator [] Returns the element at the specified
position

add Adds the specified element to the end of
the list

addAt Adds the specified element to the list at
the given index

addFirst Adds an element at the beginning of the
list

find Looks for the specified element in the list

etAt Returns the element found at the specified

index

getCount Returns the number of elements in the list

getCurrent Is used by the iterator to get the element
at the current position in the list

getFirst Is used by the iterator to get the first
position in the list

getFirstConcept Returns the first Concept element in the
list

Rhapsody

105

OXF Reference Pages

getlLast Is used by the iterator to get the last
position in the list
getLastConcept Returns the last Concept element in the
list
getNext Is used by the iterator to get the next
position in the list
isEmpty Determines whether the list is empty
removekFirst Removes the first item from the list.=
remove Deletes the first occurrence of the
specified element from the list
removeAll Deletes all the elements from the list
removerFirst Deletes the first element from the list
removeltem Deletes the specified element from the list
removel ast Deletes the last element from the list
Flags
first

Specifiesthefirst element in thelist. It is defined as follows:

OMListItem<Concept>* first;

Specifiesthe last element in the list. It is defined as follows:

OMListItem<Concept>* last;

Example
Consider the following example:

OM t erat or<Cbserver*> iter(itsCbhserver);
while (*iter)

(*iter)->notify();
iter++;

106 C++ Framework Execution Reference Manual

OMList Class

OMList
Visibility
Public
Description
The oMList method is the constructor for the OMLi st class. The method creates an empty list.
Signature

OMList ()

See Also

~OMList

~OMList
Visibility
Public
Description

The ~oMList method empties the list.

Signature

virtual ~OMList ()

See Also

Rhapsody 107

OXF Reference Pages

operator []
Visibility
Public
Description
The[] operator returns the element at the specified location.
Signature

Concepté& operator [] (int i) const
Parameters
i

The index of the e ement to return

add
Visibility
Public
Description
The add method adds the specified element to the end of thelist.
Signature

void add (Concept c);

Parameter

(e}

The element to add to the end of thelist
See Also

addAt

addFirst

remove

removeAll

removeFirst

108 C++ Framework Execution Reference Manual

OMList Class

removel ast

Rhapsody 109

OXF Reference Pages

addAt
Visibility
Public
Description
The addAt method adds the specified element to the list at the given index.
Signature

void addAt (int i, Concept c);
Parameters
i
Thelist index at which to add the element

c

The element to add
See Also
add
addFirst
remove
removeAll

removeFirst

removelast

110 C++ Framework Execution Reference Manual

OMList Class

addFirst
Visibility

Public

Description

The addFirst method adds an element at the beginning of the list.

Signature

void addFirst (Concept c);

Parameters

(¢}

The element to add at the beginning of the list

See Also

remove

removeAll

removeFirst

removel ast

Rhapsody

111

OXF Reference Pages

find
Visibility
Public
Description
Thefind method looks for he specified element in the list.
Signature
int find(Concept c) const;
Parameters
c
The element to look for
Return
The method returns one of the following values:
¢ 0—Theelement was not found.
¢ 1—Theelement was found.
getAt
Visibility
Public
Description

The getAt method returns the element found at the specified index.
Signature

Concepté& getAt (int i) const;
Parameters
i
The index of the e ement to retrieve

Return

The element found at the specified index

112 C++ Framework Execution Reference Manual

OMList Class

See Also
getCount
getCurrent
getFirst
getlast
getNext

getCount
Visibility
Public
Description

The getCount method returns the number of elementsin thelist.
Signature

int getCount () const;

Return

The number of e ementsin thelist

getCurrent
Visibility
Public
Description

The getCurrent method is used by the iterator to get the element at the current position in the
list.

Signature

virtual Concept& getCurrent (void* pos) const

Parameters

pos

The position

Rhapsody 113

OXF Reference Pages

Return

The element (Concept) at the current positionin the list

114 C++ Framework Execution Reference Manual

OMList Class

getFirst
Visibility
Public
Description
The getFirst method is used by the iterator to get the first position in the list.
Signature

virtual void getFirst (void*& pos) const

Parameters

pos

Thefirst position in the list
See Also

getlLast

getNext

getFirstConcept
Visibility
Public
Description
The getFirstConcept method returns the first Concept element in thelist.
Signature

Concepté& getFirstConcept () const

Return
Thefirst Concept element inthelist
See Also

getlLastConcept

Rhapsody 115

OXF Reference Pages

getLast
Visibility
Public
Description
The getLast method is used by the iterator to get the last position in the list.
Signature

virtual void getLast (void*& pos) const

Parameters

pos

Thelast position in thelist
See Also

getFirst

getNext

getLastConcept
Visibility
Public
Description
The getLastConcept method returns the last Concept element in the list.
Signature

Concepté& getLastConcept () const

Return
Thelast Concept element inthelist
See Also

getFirstConcept

116 C++ Framework Execution Reference Manual

OMList Class

getNext
Visibility
Public
Description
The getNext method is used by the iterator to get the next position in the list.
Signature

virtual void getNext (void*& pos) const

Parameters

pos

The next position in the list
See Also

getFirst

getlL ast

ISEmpty
Visibility
Public
Description
TheisEmpty method determines whether the list is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—Thelist isnot empty.
¢ 1—Thelistisempty.

Rhapsody 117

OXF Reference Pages

_removeFirst
Visibility
Public
Description
The _removeFirst method removes the first item from the list.

Note

It is safer to use the method removeFirst because that method has more checks than
removeFirst.

Signature

inline void _removeFirst ()

See Also

removeFirst

remove
Visibility
Public
Description

Theremove method deletes the first occurrence of the specified element from the list.

Signature
void remove (Concept c);

Parameters

(¢}

The element to delete

See Also

removeAll

118 C++ Framework Execution Reference Manual

OMList Class

removeFirst

removelast

removeAll
Visibility
Public

Description

The removeAll method deletes all the elements from the list.

Signature

void removeAll ()

See Also

remove

removeFirst

removel ast

removeFirst
Visibility
Public

Description

The removeFirst method deletes the first element from the list.

Signature

void removeFirst ()

See Also

Rhapsody

119

OXF Reference Pages

remove
removeAll

removel ast

removeltem

Visibility

Public
Description

Theremoveltem method deletes the specified element from the list.
Signature

void removeItem (OMListItem<Concepts *item);

Parameters

item

Theitem to delete

See Also

remove
removeAll
removekFirst

removel ast

120 C++ Framework Execution Reference Manual

OMList Class

removelast
Visibility
Public
Description

The removel ast method deletes the last element from thelist.

Note

This method is not efficient because the Rhapsody framework does not keep backward
pointers. It is recommended that you use one of the other r enove functionsto delete
elementsfrom the list.

Signature

void removelast ()

See Also

remove
removeAll
removekFirst

removeltem

Rhapsody 121

OXF Reference Pages

OMListltem Class

The OW.i st | t emclassisahelper classfor OWLi st that contains functions that enable you to
manipulate list elements.

This classis defined in the header fileom i st . h.

Construction Summary

OMListltem Constructs an OMLi st | t emobject

Method Summary

connectTo Connects the list item to the list
getNext Gets the next item in the list
OMListltem
Visibility
Public
Description

The oMListltem method is the constructor for the OMLi st | t emclass.
Signature

OMListItem(const Concepté& theConcept)

Parameters

theConcept
The new list element

122 C++ Framework Execution Reference Manual

OMListltem Class

connectTo
Visibility
Public

Description

The connectTo method connects the specified list item to the list.

Signature

void connectTo (OMListItem *item)

Parameters

item

Thelist item

getNext
Visibility
Public
Description
The getNext method gets the next item in the list.
Signature

OMListItem<Concept>* getNext () const

Return

The next item in thelist

Rhapsody

123

OXF Reference Pages

OMMainThread Class

OWAi nThr ead isaspecial case of OMThr ead that defines the default, active class of the
application. By default, this class takes control over the application’s main thread (see the start
method for detailed information). The OWVAi nThr ead classis a singleton—only oneinstance
is created.

Thisclassis declared in ont hr ead. h.
Base Class
OMThr ead

Construction Summary

~OMMainThread Destroys the OVMai nThr ead object

Method Summary

destroyThread Cleans up the singleton instance of
OWMai nThr ead

instance Creates and retrieves the singleton
instance of OMVai nThr ead

start Starts the singleton event loop
(OMThr ead: : execut e) of the main
thread singleton

124 C++ Framework Execution Reference Manual

OMMainThread Class

~OMMainThread
Visibility
Public
Description
The ~OMvai nThr ead method is the destructor for the OWRi nThr ead class.
Signature

virtual ~OwMai nThread()

destroyThread
Visibility
Public
Description

The destroyThread method cleans up the singleton instance of OMvai nThr ead. This method
overrides the method OMThr ead: : dest r oy Thr ead.

Signature

virtual void destroyThread/()

instance

Visibility

Public
Description

Thei nst ance method creates and retrieves the singleton instance of OMMaiI nThr ead.
Signature

static OMrhread* instance (int create = 1);

Parameters

create

Specifies whether an instance should be created. If thisis set to 1, an OMvai nThr ead instance
is created.

Rhapsody 125

OXF Reference Pages

start

If creat e issetto 0, thei nst ance method returns one of the following values:
¢ Thesingleton instance, if it already exists
¢ NULL, if the instance does not exist
Return
OMThr ead*
Notes

If amain thread does not exist, OMvai nThr ead creates one and returns OVMVai nThr ead. If a
main thread already exists, OvMai nThr ead returns the OWai nThr ead.

Visibility
Public
Description
Thest art method starts the singleton event loop (OMThr ead: : execut e).

Signature
virtual void start (int doFork = 0);
Parameters

doFork

Specifies whether the OMvai nThr ead singleton event loop should run on the application main
thread (doFor k == 0) or in aseparate thread (doFor k == 1).

Sample Use

For example, many applications require a GUI with its own library. The Rhapsody library has
an event queue and a main thread, and the GUI usually hasits own event queue. In order for
both event queues to work together, you can start the main thread with doFor k = 1. This
starts the main thread of the GUI and forks a new thread for the Rhapsody library.

126

C++ Framework Execution Reference Manual

OMMap Class

OMMap Class

The OMvap class contains basic library functions that enable you to create and manipulate
Ovivaps. An OWap is atype-safe map, based on a balanced binary tree (I og(n) search time).

This classis defined in the header file onmap. h.

Construction Summary

OMMap Constructs an OVVap object
~OMMap Destroys the OMVap object

Method Summary

operator [] Returns the element found for the specified key
add Adds an element to the map
find Looks for the specified element is in the map
etAt Returns the element for the specified key
getCount Returns the number of elements in the map
getKey Gets the element for the specified key
isEmpty Determines whether the map is empty
lookUp Looks up the specified element in the map
remove Deletes the specified element from the map
removeAll Deletes all the elements from the map
Example

Consider aclass, G aph, that hasabf s() operation that performs BFS search on the graph nodes
to find a node with the specified data. The following figure shows the OMD of the G aph class.

Rhapsody

127

OXF Reference Pages

Graph

L Obiject Model Diagram: Context in DMQueueUsageSample =

Graph::Mode

nodes

+bfs(const void® data):const Graph::Mode™

<

+data ; woid *

+addAggregates | *

The following figure shows the browser view of the Gr aph class.

Entire: Model View =

=3 Sample
E-£1 Components
67 Packages
E% DM Queuellzages ample
EIE Classes
EE Graph
B Classes
: EE MHode
- Attibutes
Pl data
2 Operations

-4 Felations

LY nodes
EIE Operations
- L bfsoonst void* data)
E1-14 Relations

‘g nodes
=~ Object Model Diagrams
Lo Contest

E addaggregates(OMOueue<Mode™>& queus const OMMap<Mode® intx & visited)

Thebf s() implementation uses OMQueue as the search container and OMVap as arecord of the

visited elements.

128

C++ Framework Execution Reference Manual

OMMap Class

The following figure shows the implementation of Gr aph: : bf s() .

General Implementation | Properties

Ibfs[c:onst woid”]

V/ the gueue is used as the search main container
OMoueus<Node*> searchCueues;
A/ map of the elements we already visited
OMMap<MNode®,int> visited;
AEEELESL TSI
A7 do tke BFS
AEEELESL TSI
A4 set the First mode of the searchk
searchQueue. put (nodes[0]);
/4 start the search
Node® theNode = NULL:
while [i(theNode == NULL) &£& |['searchQueue.isEmpty(l)] {
Node* node = searchQueue.get(]:
if | 'node) continue;
A4 check & add tke node to the visited list
int durny;

if (wisited.lookUp(node, dwmny) '= 0) continue;
vizited[node] = 1:
AF compare the data
if (node->getDatal) == data) {
/4 Found

thelNode = node:;
}
else |
A4 add the node aggregates to the search gqueue
node-raddAggregates (SearchQueus, wvisited):
}
}
return thelNode:

1 |

Locatel 0K | Apply: ||

| v

Rhapsody

129

OXF Reference Pages

The following figure shows the implementation of G- aph: : Node: : addAggr egat es() .

Frimnitive Operation : add4gareg

| v

General Implementation | Properties

Iadd&ggregates[ﬂMQueue<Node"> . const OMMap<Mode® ints&]

hnt duramy ;

ONIterator<Node*> iter (nodes);

for (:; *iter; ++iter]
Node® node = *iter;
if (visited.lookUp(node, duwmny) '= 0) continue; // already visited
gueue. put (node) ;

| v

Locatel 0K | Apply: ||

OMMap
Visibility
Public
Description
The oMMap method is the constructor for the Ovvap class.
Signature

OMMap ()

See Also

~OMMayp

130 C++ Framework Execution Reference Manual

OMMap Class

~OMMap
Visibility
Public
Description

The ~OMMap method destroys the OMvap object.

Signature

~OMMap ()
See Also

OMMap

operator []
Visibility
Public

Description

The[] operator returns the element for the specified key.

Signature

Concepté& operator [] (const Key& k)

Parameters

k
The key of the element to get

Return

The element at the specified key

Rhapsody

131

OXF Reference Pages

add
Visibility
Public
Description
The add method adds the specified element to the given key.
Signature

void add(Key k, Concept p);
Parameters

13
The map key to which to add the element

P
The element to add

See Also

remove

removeAll

132 C++ Framework Execution Reference Manual

OMMap Class

find
Visibility
Public
Description
Thefind method looks for the specified element in the map.
Signature
int find(Concept p) const
Return
The method returns one of the following values:
¢ 0—The element was not found in the map.
¢ 1—The element was found.
getAt
Visibility
Public
Description

The getAt method returns the element found at the specified location.
Signature

Concept& getAt (int i) const;
Parameters
i
The location of the element to get

Return

The element found at the specified location

Rhapsody 133

OXF Reference Pages

getCount
Visibility
Public
Description
The getCount method returns the number of elementsin the map.
Signature

int getCount () const

Return

The number of elementsin the map

getKey
Visibility
Public
Description
The getkey method gets the element for the specified key.
Signature

Concept& getKey (const Key& k) const

Parameters

k
The map key

Return

The element for the specified key

134 C++ Framework Execution Reference Manual

OMMap Class

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the map is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—The map isnot empty.
¢ 1—Themapisempty.

lookUp
Visibility
Public
Description

The lookUp method determines whether the specified element isin the map. If it is, it places
the contents of the concept referenced by the key in the ¢ parameter, and returns the value 1.

Signature

int lookUp (const Key k, Concept& c) const

Parameters

k
The map key

(¢}

The element to look up
Return
The method returns one of the following values:

¢ 0—The element was not found in the map.

Rhapsody 135

OXF Reference Pages

¢ 1—Theedement was found.

remove
Visibility
Public
Description
Theremove method del etes the specified element.
Signature

void remove (Key k)

void remove (Concept p)
Parametersfor Signature 1

k
The map key of the element to delete

Parametersfor Signature 2

p
The element to delete. The method del etes the first occurrence of the object.
See Also
add

removeAll

136 C++ Framework Execution Reference Manual

OMMap Class

removeAll
Visibility
Public
Description

TheremoveAll method deletes all the elements from the map.

Signature
void removeAll ()

See Also

QD
(o

remove

Rhapsody 137

OXF Reference Pages

OMMapltem Class

The OMvapl t emclassisahelper class for OMMap that contains functions that enable you to
manipulate map el ements.

This classis defined in the header file onmap. h.

Construction Summary

OMMapltem Constructs an OM\Vapl t emobject
~OMMapltem Destroys the OMVapl t emobject

Method Summary

‘ getConcept Returns the current map item

OMMapltem

Visibility

Public
Description

The oMMapitem method is the constructor for the Ovvap! t emclass.
Signature

OMMapItem (Key theKey, Concept theConcept) ;

Parameters

theKey

The map key

theConcept

The new map element
See Also

~OMMapltem

138 C++ Framework Execution Reference Manual

OMMapltem Class

~OMMapltem
Visibility
Public
Description
The ~OMMapltem method destroys the OMvapl t emobject.
Signature

virtual ~OMMapItem()

See Also

OMMapltem

getConcept
Visibility
Public
Description
The getConcept method returns the current element.
Signature

Concepté& getConcept ()

Return

The current element

Rhapsody 139

OXF Reference Pages

OMMemoryManager Class

OwvMenor yManager isthe default memory manager for the framework. It is part of the
mechanism that enables you to use custom memory managers.

The OXF had built-in memory control support for the following elements:

+ All generic types except for states. Thereis no full support for reusable state machines.

¢ OS adapter support for VxWorks. To add support to other OS adapters, add
OM_DECLARE_FRAMEWORK _MEMORY_ALLOCATI ON_OPERATORS in the adapter classes
declaration, and use the OVWNEWand OVDEL ETE macros for buffer allocation and deletion.

The OMMenor yManager class supports user control over memory alocation.

In addition, protection against early destruction on application exit is provided. This protection
ensures that the internal memory manager singleton is valid throughout the termination of the
application. To accomplish this, the following members are supplied in the class:

¢ OMMemoryManager—A constructor

¢ -~OMMemoryManager—A destructor

¢ satic bool _singletonDestroyed—A destruction indicator flag

Base Class
OvAbst ract Menor yAl | ocat or

Construction Summary

OMMemoryManager Constructs an OVMenor yVanager object
~OMMemoryManager Destroys the OM\Vernor yManager object

140 C++ Framework Execution Reference Manual

OMMemoryManager Class

Macro and Operator Summary

OM DECLARE FRAMEWORK Defines the memory allocation operators
MEMORY_ALLQOCATI ON_

OPERATORS

OVDELETE Deletes the specified memory using either the

memory manager or the global delete operator
(when the framework and application are
compiled with

OM_NO_FRAMVEWORK _MEMORY_MVANAGER)

OMGET_VEMORY Allocates memory using either the memory
manager or the global new operator (when the
framework and application are compiled with
OM_NO_FRAVEWDRK_MVEMORY_VANAGER)

OWNEW Allocates memory using either the memory
manager or the global new operator (when the
framework and application are compiled with

OM NO_FRAVEWORK_MEMORY MANAGER)

Method Summary

getDefaultMemoryManager Returns the default memory manager

getMemory Records the memory allocated by the default
manager

getMemoryManager Returns the current memory manager

returnMemory Returns the memory from an instance

Operatorsand Macros

OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS

The macros and operators support user control over memory allocation. The new
parameter NEW DUMWY_PARAM s set to “si ze_t =0" for every compiler except for
Diablo, where it is set to nothing.

The updated definition is as follows:

defi ne OM DECLARE_FRAVEWORK_MEMORY_ALLOCATI ON_OPERATORS

public:

static voi d* operator new (size_t size
NEW DUMWY_PARAN)

static void* operator new] (size_t size
NEW DUMVY _PARAM

static void operator delete (void * object,
size_t size)

static void operator delete[] (void * object,
size_t size)

Rhapsody

141

OXF Reference Pages

OMGET_MEMORY

Allocates memory using either the memory manager or the global new operator
(when the framework and application are compiled with
OM NO_FRAMVEWORK_MEMORY _MANAGER).

It isdefined as follows:

#define OMGET_MEMORY (size)
OMNEW

Allocates memory using either the memory manager or the global new operator
(when the framework and application are compiled with
OM_NO_FRAMEVORK _MVEMORY_MANAGER).

It is defined as follows:

#define OMNEW (type, size)
OMDELETE

Deletes the specified memory using either the memory manager or the global delete
operator (when the framework and application are compiled with the
OM NO_FRAVEWORK _MEMORY _MANAGER switch).

It isdefined as follows:

#define OMDELETE (object, size)

142 C++ Framework Execution Reference Manual

OMMemoryManager Class

OMMemoryManager
Visibility
Public
Description

The oMMemoryManager method is the constructor for the OvMvenor yManager class.

Signature

OMMemoryManager (bool theFrameworkSingleton = false);

Parameter

theFrameworkSingleton

A Boolean value that specifies that thisis not the memory manager singleton

~OMMemoryManager
Visibility
Public
Description

The ~OMMemoryManager method is the destructor for the OMMenor yManager class.

Signature

virtual ~OMMemoryManager () ;

See Also

OMMemoryManager

Rhapsody 143

OXF Reference Pages

getDefauItMemoryManager
Visibility
Public
Description

The getDefaultMemoryManager method returns the default memory manager for the
framework, regardless of the manager currently being used.

Signature

static OMAbstractMemoryAllocator*
getDefaultMemoryManager () ;

Return
The default memory manager for the framework
See Also

getMemory

getMemoryManager

144 C++ Framework Execution Reference Manual

OMMemoryManager Class

getMemory
Visibility
Public
Description

The getMemory method provides the memory requested. This method is optional, and is
availableif you compiled the framework with the OM ENABLE_MEMORY_MANAGER _SW TCH
compiler switch.

This method is called from the framework object’s new operator.

Signature

virtual void * getMemory (size t size);

Parameter

size

Specifies the size of the memory to be allocated by the default manager

See Also

returnMemory

getMemoryManager
Visibility
Public
Description

The getMemoryManager method returns the current memory manage.

Signature

static OMAbstractMemoryAllocator* getMemoryManager () ;

Return
The current memory manager
See Also

getDefaultMemoryManager

Rhapsody 145

OXF Reference Pages

return Memory
Visibility
Public
Description
ThereturnMemory method returns the allocated memory.
This method is called from framework object’s del et e operator.

Signature
virtual void returnMemory (void * object, size t size);

Parameters

object
A pointer to the reclaimed memory

size

The size of the alocated memory
See Also

getMemory

146 C++ Framework Execution Reference Manual

OMMemoryManagerSwitchHelper Class

OMMemoryManagerSwitchHelper Class

OwvMenor yManager Swi t chHel per isasingleton of the OMMenor yManager Swi t chHel per
class. It isresponsible for logging memory allocations, and enables client objects to check
whether a specific memory allocation is registered.

By default, the switch helper logic is disabled. To enable it, compile the framework using the
OM_ENABLE_MEMORY_MANAGER SW TCH compiler switch.

Construction Summary

OMMemoryManagerSwitchHelper Creates an
OwWEenor yManager Swi t chHel per
object

~OMMemoryManagerSwitchHelper Destroys an
OwWenor yManager Swi t chHel per
object

Method Summary

cleanup Cleans up the allocated memory list

findMemory Searches for a recorded memory
allocation

instance Returns the singleton instance of the
OwWenor yManager Swi t chHel per

isLogEmpty Determines whether the memory log is
empty

recordMemoryAllocation Records a single memory allocation

recordMemoryDeallocation Records a single memory deallocation

setUpdateState Specifies whether the singleton should be
updated

shouldUpdate Determines whether the singleton should
be updated (and have new memory
allocations recorded)

Rhapsody 147

OXF Reference Pages

OMMemoryManagerSwitchHelper
Visibility
Public
Description

The oMMemoryManagerSwitchHelper method is the constructor for the
OWenor yManager Swi t chHel per class.

Signature

OMMemoryManagerSwitchHelper ()

See Also

~OMMemoryManagerSwitchHelper

~OMMemoryManagerSwitchHelper
Visibility
Public
Description

The ~OMMemoryManagerSwitchHelper method is the destructor for the
OvMenor yManager Swi t chHel per class.

Signature

~OMMemoryManagerSwitchHelper ()

See Also

OMMemoryManagerSwitchHelper

148 C++ Framework Execution Reference Manual

OMMemoryManagerSwitchHelper Class

cleanup
Visibility
Public
Description
The cleanup method cleans up the alocated memory log.
Signature

void cleanup () ;

findMemory
Visibility
Public
Description
The findMemory method searches for a recorded memory allocation.
Signature

bool findMemory (const void*) const;

Return
The method returns one of the following Boolean values:

¢ true—The memory was found in the recorded memory.
¢ fal se—Thememory was not found.

Rhapsody 149

OXF Reference Pages

instance
Visibility
Public

Description

The instance method returns the singleton instance of the
Owvenor yManager Swi t chHel per.

Signature

static OMMemoryManagerSwitchHelper* instance() ;

Return

The singleton instance of OMVenDr yManager Swi t chHel per

iIsLogEmpty
Visibility
Public
Description
TheisLogEmpty method determines whether the memory log is empty.
Signature

inline bool isLogEmpty () const

Return
The method returns one of the following Boolean values:

¢ true—Thememory logis empty.
+ fal se—The memory log is not empty.

150 C++ Framework Execution Reference Manual

OMMemoryManagerSwitchHelper Class

recordMemoryAllocation
Visibility
Public
Description

The recordMemoryAllocation method records asingle memory allocation. It is called by the
default memory manager when the framework is compiled using the
OM_ENABLE_MEMORY_MANAGER_SW TCH compiler switch.

Signature
bool recordMemoryAllocation (const void* memory) ;
Parameters

memory

Specifies the memory alocation to record
Return

The method returnst r ue if successful; f al se otherwise.
See Also

recordMemoryDeallocation

Rhapsody 151

OXF Reference Pages

recordMemoryDeallocation
Visibility
Public
Description

The recordMemoryDeallocation method records a single memory deallocation. It is called by
the default memory manager when the framework is compiled using the
OM_ENABLE_MEMORY_MANAGER_SW TCH compiler switch.

Signature
bool recordMemoryDeallocation (const void* memory) ;
Parameters

memory

Specifies the memory alocation to record
Return

The method returnst r ue if the memory record was found and removed successfully.
Otherwise, it returnsf al se.

See Also

recordMemoryAllocation

152 C++ Framework Execution Reference Manual

OMMemoryManagerSwitchHelper Class

setUpdateState

Visibility
Public
Description

The setUpdateState method specifies whether the memory log should be updated. It is called
by the OXF: : init method.

Signature
void setUpdateState (bool) ;
Parameters

bool

Set thistot r ue to have the memory log updated (and have new memory allocations
recorded). Otherwise, set thistof al se.

See Also

shouldUpdate

shouldUpdate

Visibility
Public
Description

The shouldUpdate method determines whether the memory log should be updated (and have
new memory allocations recorded).

Signature

bool shouldUpdate() const;

Return
The method returnst r ue if the singleton should be updated. Otherwise, it returnsf al se.
See Also

setUpdateState

Rhapsody 153

OXF Reference Pages

OMNotifier Class

TheOWNot i fi er class defines methods that write messagesto either the error log or to
standard output.

This classis defined in the header file oxf . h.

Method Summary

notifyToError Writes messages to the error log
notifyToOutput Writes messages to standard output

notifyToError
Visibility
Public
Description
The notifyToError method writes messages to the error log.
Signature

static void notifyToError (const char *msg) ;

Parameters

msg

The message to display on the screen

154 C++ Framework Execution Reference Manual

OMNotifier Class

notifyToOutput
Visibility
Public
Description
The notifyToOutput method writes messages to standard output.
Signature

static void notifyToOutput (const char *msg) ;

Parameters

msg

The message to display on the screen

Rhapsody 155

OXF Reference Pages

OMOrState Class

The OMOr St at e class defines methods that affect Or states in statecharts.
This classis defined in the header file st at e. h.

Construction Summary

OMOrState Constructs an OMOx St at e object
Flag Summary
subState Specifies a substate

Method Summary

entDef Specifies the operation called when the
state is entered from a default transition

enterState Specifies the state entry action

exitState Specifies the state exit action

getSubState Gets the substate

in Returns TRUE when the owner class is in
this state

serializeStates Is called during animation to send state
information

setSubState Sets the substate

Flags
subSate

Specifies asubstate. It is defined as follows:
OVBt at e* subSt at e;

156 C++ Framework Execution Reference Manual

OMOrState Class

OMOr State
Visibility
Public
Description
The oMorstate method is the constructor for the OMOr St at e class.
Signature

OMOrState (OMState* par = NULL)

Parameters

par

Specifies the parent

entDef
Visibility
Public
Description

The entDef method specifies the operation called when the state is entered from a default
transition.

Signature

virtual void entDef () ;

enterState
Visibility
Public
Description
The enterState method specifies the state entry action.
Signature

virtual void enterState() ;

Rhapsody 157

OXF Reference Pages

exitState
Visibility
Public

Description

The exitState method specifies the state exit action.

Signature

virtual void exitState() ;

getSubState
Visibility
Public
Description
The getSubstate method returns the substate.
Signature

virtual OMState* getSubState() ;

Return

The substate

158 C++ Framework Execution Reference Manual

OMOrState Class

Visibility
Public
Description
The in method returns TRUE when the owner classisin this state.
Signature
int in()
Return

The method returns one of the following values:

¢ 0—Theowner classis not in this state.
¢ 1—Theowner classisin this state.

serializeStates
Visibility
Public
Description
The serializeStates method is called during animation to send state information.
Signature

virtual void serializeStates (AOMSState* g) const;

Parameters

]

Specifies the state

Rhapsody 159

OXF Reference Pages

setSubState
Visibility
Public
Description
The setSubState method sets the specified substate.
Signature

virtual void setSubState (OMState* s);

Parameters

S

Specifies the substate

160 C++ Framework Execution Reference Manual

OMProtected Class

OMProtected Class

OVPr ot ect ed isthe base class for protected objects. It embodies a mutex and | ock and

unl ock methods that are automatically embedded within a concrete public method defined

for the object.

Thisclassisdeclared in thefile onpr ot ect ed. h.

Construction Summary

OMProtected Constructs an OVPr ot ect ed object
~OMProtected Destroys the OVPr ot ect ed object
Macro Summary

OMDECLARE_GUARDED

Aggregates OVPr ot ect ed objects inside
guarded classes instead of inheriting from
OWPr ot ect ed.

Method Summary

deleteMutex

Deletes t he mutex and sets its value to
NULL.

—h

ree

Is provided for backward compatibility. It
calls the unl ock method.

getGuard

Gets the guard object.

initializeMutex

Creates an RTOS mutex, if it has not been
created already.

lock Locks the mutex of the OMPr ot ect ed
object.
unlock Unlocks the mutex of the OVPr ot ect ed

object.

Rhapsody

161

OXF Reference Pages

M acros
OMDECLARE_GUARDED

Aggregates OVPr ot ect ed objects inside guarded classes instead of inheriting from
OWPr ot ect ed. It isdefined as follows:

#defi ne OVDECLARE_GUARDED

publi c:
inline void |l ock() const {momGuard. | ock();}
inline void unlock() const {m onGuard. unl ock();}
i nline const OWProtected& getGuard() const
{return montuard;}
private:
OnPr ot ect ed m onuar d;

162 C++ Framework Execution Reference Manual

OMProtected Class

OMProtected
Visibility
Public
Description
The oMProtected method is the constructor for the OVPr ot ect ed object.
Signatures

OVPr ot ect ed()

OMProtected (OMBoolean createMutex)

Parameters

createMutex

A Boolean value that specifies whether to create the RTOS mutex later in the lifetime of the
protected object. If you specify TRUE, the framework creates the mutex by calling the
initializeMutex operation.

Notes
¢ OWProt ect ed usesthe cr eat eOMOSMUt ex method to create an OMOSMt ex
object. Initialy, the mutex is free.
¢ creat eOMOSMIt ex isdefined in xxos. cpp.
See Also
~OMProtected
initializeMutex
~OMProtected
Visibility
Public
Description

The~~0MProtected method isthe destructor for the OMPr ot ect ed object. The method del etes
(destroys) the operating system entity that the instance wraps.

Rhapsody 163

OXF Reference Pages

Signature

~QOWPr ot ect ed()

See Also

OMProtected

deleteMutex
Visibility
Public
Description
The deleteMutex method deletes the mutex and setsits value to NULL.
Signature

inline void del eteMut ex()

free
Visibility
Public
Description
The free method is provided for backward compatibility. It calls the unl ock method.

Note
This method is not defined for OSE RTOSes.

Signature
void free()
getGuard
Visibility

Public

164 C++ Framework Execution Reference Manual

OMProtected Class

Description

The getGuard method gets the guard object. This allows uniform handling of guarded classes
and classes the inherit from OVPr ot ect ed.

Signature

inline const OMProtected& getGuard() const

Return

The guard object

initializeMutex
Visibility
Public
Description
TheinitializeMutex method creates an RTOS mutex, if it has not been created already.
Signature

void initializeMutex ()

lock
Visibility
Public
Description
Thelock method locks the mutex of the OvPr ot ect ed object.
Signature

inline void lock () const

Notes

The same thread can nest | ock and f r ee calls of the same mutex without blocking itself
indefinitely. This means that OMOSMut ex can implement a recursive mutex (that is, the same
thread can | ock twiceand f r ee twice, but only the outer | ock and f r ee count).

See Also

unlock

Rhapsody 165

OXF Reference Pages

unlock
Visibility
Public
Description
The unlock method unlocks the mutex of the OVPr ot ect ed object.
Signature

inline void unlock() const

Notes

The same thread can nest | ock and f r ee calls of the same mutex without blocking itself
indefinitely. This means that OMOSMut ex can implement a recursive mutex (that is, the same
thread can | ock twiceand f r ee twice, but only the outer | ock and f r ee count).

See Also

=3
o
=

166 C++ Framework Execution Reference Manual

OMQueue Class

OMQueue Class

The OMQueue class contains basic library functions that enable you to create and manipul ate
OMQueues. An OMQueue isatype-safe, dynamically sized queue. It isimplemented on a
cyclic array, and implements a FIFO (first in, first out) algorithm. An OMQueue is
implemented with OMCol | ect i on.

This classis defined in the header file ongueue. h.

Attributes and Collections

m_grow Specifies whether the queue size can be enlarged
m_head Specifies the head of the queue

m_myQueue Specifies the queue implementation

m_tail Specifies the tail of the queue

Construction Summary

OMQueue Constructs an OMQueue object
~OMQueue Destroys the OMQueue object

Method Summary

get Gets the current element in the queue

getCount Gets the number of elements in the queue

getinverseQueue Returns the element that will be returned by
get () in the tail of the queue

getQueue Returns the element that will be returned by
get () inthe head of the queue

getSize Returns the size of the memory allocated for the
queue

increaseHead Increases the size of the queue head

increaseTail Increases the size of the queue tail

iIsEmpty Determines whether the queue is empty

isFull Determines whether the queue is full

put Adds an element to the queue

Rhapsody 167

OXF Reference Pages

Attributesand Collections
m_grow

This Boolean attribute specifies whether the queue size can be enlarged. It is defined as
follows:
OvBool ean m gr ow;

m_head

This attribute specifies the head of the queue. It is defined as follows:
i nt m head;

m_myQueue
This collection specifies the queue implementation. OMQueue isimplemented asacyclic array.

It is defined as follows:
OMCol | ecti on<Concept > m_nmyQueue;

m_tail

This attribute specifies the tail of the queue. It is defined as follows:
int mtail;

Example

Consider aclass, G aph, that hasabf s() operation that performs BFS search on the graph nodes
to find a node with the specified data. The following figure shows the OMD of the G- aph class.

: Object Model Diagram: Context in OMQueuellsageSample

Graph Graph::MNode
+idata : void ¥

4

nodes

+bfs(const void™ data) const Graph::Mode™

+addAggregates | *

| |’|_J!

168 C++ Framework Execution Reference Manual

OMQueue Class

The following figure shows the browser view of the G- aph class.

Entire: M

odel View ~

E‘EI Sample

I':I Carmponents

EEI Packages
BN

O Queuels
= Classes
EIE Graph
EE Classes
! EE Mode
- Attributes
E data
EE Operations
Lol adddggregates(OMOueuecNade®s & queus,canst OMMap<Mode® int>& visited)
E|~M Relations

£ Operations
el bisfconst void data)
[E}-M¥ Relations

‘e nodes
=23 Object Model Diagrams
L Context

Thebf s() implementation uses OMQueue as the search container and OMVap as arecord of the

visited elements.

Rhapsody

169

OXF Reference Pages

The following figure shows the implementation of Gr aph: : bf s() .

General Implementation | Properties

Ibfs[c:onst woid”]

V/ the gueue is used as the search main container
OMoueus<Node*> searchCueues;
A/ map of the elements we already visited
OMMap<MNode®,int> visited;
AEEELESL TSI
A7 do tke BFS
AEEELESL TSI
A4 set the First mode of the searchk
searchQueue. put (nodes[0]);
/4 start the search
Node® theNode = NULL:
while [i(theNode == NULL) &£& |['searchQueue.isEmpty(l)] {
Node* node = searchQueue.get(]:
if | 'node) continue;
A4 check & add tke node to the visited list
int durny;

if (wisited.lookUp(node, dwmny) '= 0) continue;
vizited[node] = 1:
AF compare the data
if (node->getDatal) == data) {
/4 Found

thelNode = node:;
}
else |
A4 add the node aggregates to the search gqueue
node-raddAggregates (SearchQueus, wvisited):
}
}
return thelNode:

1 |

Locatel 0K | Apply: ||

| v

170

C++ Framework Execution Reference Manual

OMQueue Class

The following figure shows the implementation of G- aph: : Node: : addAggr egat es() .

Frimnitive Operation : add4gareg

| v

General Implementation | Properties

Iadd&ggregates[ﬂMQueue<Node"> . const OMMap<Mode® ints&]

hnt duramy ;

ONIterator<Node*> iter (nodes);

for (:; *iter; ++iter]
Node® node = *iter;
if (visited.lookUp(node, duwmny) '= 0) continue; // already visited
gueue. put (node) ;

| v

Locatel 0K | Apply: ||

OMQueue
Visibility
Public
Description
The oMOQueue method is the constructor for the OMQueue class.
Signature

OMQueue(OVBool ean shoul dGow = TRUE, int initSize = 100);

Parameters

shouldGrow

The value TRUE specifies that you should be able to enlarge the queue as necessary.
initSize
Specifiestheinitia size of the queue.

See Also

~OMQueue

Rhapsody 171

OXF Reference Pages

~OMQueue
Visibility
Public
Description
The ~OMQueue method destroys the OMQueue object.
Signature

virtual ~OMQueue() {};
See Also

OMQueue

get
Visibility
Public
Description
The get method gets the current element in the queue.

Signature

virtual Concept get () ;

Return

The current element in the queue

getCount
Visibility
Public
Description
The getCount method gets the number of elements in the queue.
Signature

int getCount () const

172 C++ Framework Execution Reference Manual

OMQueue Class

Return

The number of elementsin the queue

getinverseQueue
Visibility
Public
Description

The getinverseQueue method returns the element that will be returned by get () inthetail of
the queue.

Signature

virtual void getInverseQueue (OMList<Concept>& list)
const;

Parameters

list

The element that will be returned by get () in thetail of the queue

getQueue
Visibility
Public
Description

The getQueue method returns the element that will be returned by get () in the head of the
gueue.

Signature

virtual void getQueue (OMList<Concept>& list) const;
Parameters

list

The element returned by aget () in the head of the queue

Rhapsody 173

OXF Reference Pages

getSize
Visibility
Public
Description
The getSize method returns the size of the memory allocated for the queue.
Signature

virtual int getSize() const

Return

The size of the alocated memory

increaseHead_
Visibility
Public
Description
TheincreaseHead_ method increases the size of the queue head.
Signature

void increaseHead () ;

increaseTail_
Visibility
Public
Description
TheincreaseTail_ method increases the size of the queuetail.
Signature

void increaseTail () ;

174 C++ Framework Execution Reference Manual

OMQueue Class

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the queue is empty.
Signature

OMBoolean isEmpty () const

Return
The method returns one of the following Boolean values:

¢ TRUE—The queueis empty.
¢ FALSE—The queue is not empty.

isFull
Visibility
Public
Description
The jskull method determines whether the queueisfull.
Signature
OMBoolean isFull() const;
Return
The method returns one of the following Boolean values:
¢ TRUE—The queueisfull.
¢ FALSE—The queueisnot full.
put
Visibility
Public

Rhapsody 175

OXF Reference Pages

Description
The put method adds an element to the queue.

Signature
virtual OMBoolean put (Concept c);

Parameters

c

The element to add to the queue
Return
The method returns one of the following Boolean values:

¢ TRUE—The method was successful.
¢ FALSE—The method failed.

176 C++ Framework Execution Reference Manual

OMReactive Class

OMReactive Class

The OVReact i ve classisthe framework base class for al reactive objects and implements
basic event handling functionality. It isdeclared in the fileonr eact i ve. h.

Reactive objects process events, typically via statecharts or activity diagrams. The primary
interfaces for reactive objects are the gen and takeTrigger methods.

Triggered operations are synchronous events that affect the reactive class state. The generated
code creates an event, then passesiit to the reactive class by calling the takeTrigger method. For
additional information on triggered operations, see Dispatching a Triggered Operation.

Sender objects apply the gen method to send an event to a receiver, which inherits from
OWVReact i ve. The event isthen queued inside athread. See Generating and Queuing an Event.

The execut e method waits on the thread's event queue. When an event is present on the
gueue, it dispatches it to the appropriate OVReact i ve object using the takeTrigger method.
For more information, see Generating and Queuing an Event.

Attribute Summary

active Specifies whether the reactive object (the
concrete object derived from
OVReact i ve) is also an active object

frameworkinstance Specifies whether the reactive object is
used by the framework itself (it is not a
user-defined object)

myStartBehaviorEvent Activates an object that has null
transitions as part of the default transition

omrStatus Defines the internal state (as opposed to
the user-class state in the statechart) of
the reactive object

toGuardReactive Specifies that the consumption of an event
should be guarded with a mutex (a binary
semaphore)

Rhapsody

177

OXF Reference Pages

Constant Summary

eventConsumed Specifies that the event has been
consumed.
eventNotConsumed Specifies that the event was completed,

but was not consumed.

OMRDefaultStatus

Specifies the default value for the
onr St at us attribute

OMDefaultThread

Defines the default thread for an
OVReact i ve object

OMRInDtor

Stops event dispatching

OMRNullConfig

Determines whether null transitions
(transitions with no trigger) need to be
taken in the generated code

OMRNullConfigMask

Determines whether an OVReact i ve
instance should take null transitions in the
state machine

OMRShouldCompleteStartBeh
avior

Determines whether the entry to the state
machine on the call to startBehavior was
completed, and, if not, whether there are
additional null transitions to take

OMRShouldDelete

Determines whether a reactive object
should be deleted by its active object
when it reaches a termination connector in
its state machine

OMRShouldTerminate

Allows the safe destruction of a reactive
instance by its active instance

Macro Summary

GEN Generates a new event

GEN_BY_GUI Generates an event from a GUI

GEN_BY_X Generates a new event from a sender
object to a receiver object

GEN_ISR Generates an event from an interrupt
service request (ISR)

Relation Summary

Specifies the active or current event (the
one that is now being processed) for the
OVReact i ve instance

178

C++ Framework Execution Reference Manual

OMReactive Class

m_eventGuard

Used, in collaboration with the generated
code, to protect the event consumption
from mutual exclusion between events
and triggered operations

myThread Specifies the active class that queues
events and dispatches events (so they are
consumed on the active class’s thread) for
a reactive object

rootState Defines the root state of the OVReact i ve

statechart (when the system is using a
reusable statechart implementation)

Construction Summary

OMReactive

Constructs an OVReact i ve object

~OMReactive

Destroys the OVReact i ve object

Method Summary

cancelEvents

object.

Cancels all the queued events for the reactive

consumeEvent

Is the main event consumption method.

discarnateTimeout

Destroys a timeout object for the reactive
object.

doBusy Sets the value of omrStatus to 1 or TRUE.

gen Is used by a sender object to send an event to
a receiver object.

_gen Queues events sent to the reactive object.

getCurrentEvent Gets the currently processed event.

getThread Retrieves the thread associated with a

reactive object.

handleEventNotConsumed

Is called when an event is not consumed by
the reactive class.

handleTONotConsumed

Is called when a triggered operation is not
consumed by the reactive class.

incarnateTimeout

reactive object.

Creates a timeout object to be invoked on the

inNullConfig Determines whether an OVReact i ve
instance should take null transitions
(transitions without triggers) in the state
machine.

isActive Determines whether a reactive object is also

an active object.

Rhapsody

179

OXF Reference Pages

isBusy Returns the current value of the omrStatus
attribute.

isCurrentEvent Determines whether the specified ID is the
currently processed event.

isFrameworklInstance Determines the current value of the
frameworklInstance attribute.

isinDtor Determines whether event dispatching should
be stopped.

isVvalid Makes sure the reactive class is not deleted.

popNullConfig Decrements the omrStatus attribute after a
null transition is taken.

pushNullConfig Counts null transitions and increments the
ont St at us attribute after a state is exited.

registerWithOMReactive Registers a user instance as a reactive class
in the animation framework

rootState_dispatchEvent Consumes an event inside a real statechart.

rootState_entDef Initializes the statechart by taking the default
transitions.

rootState serializeStates Is a virtual method that performs the actual
event consumption.

runToCompletion Takes all the null transitions (if any) that can
be taken after an event has been consumed.

serializeStates Is called during animation to send state
information.

setCompleteStartBehavior Sets the value of the
OMRShouldCompleteStartBehaviorattribut
e.

setEventGuard Is used to set the event guard flag
(m_eventGuard).

setFrameworkinstance Changes the value of the
frameworklInstance attribute.

setinDtor Specifies that event dispatching should be
stopped.

setMaxNullSteps Sets the maximum number of null transitions

(those without a trigger) that can be taken
sequentially in the statechart.

setShouldDelete Specifies whether a reactive object should be
deleted by its active object when it reaches a
termination connector in its state machine.

setShouldTerminate Specifies that a reactive instance can be
safely destroyed by its active instance.

setThread Sets the thread of a reactive object.

setToGuardReactive Specifies the value of the toGuardReactive
attribute.

shouldCompleteRun Checks the value of omrStatus to determine

whether there are null transitions to take.

180 C++ Framework Execution Reference Manual

OMReactive Class

shouldCompleteStartBehavior Checks the start behavior state.

shouldDelete Determines whether a reactive object should

be deleted by its active object when it reaches
a termination connector in its state machine.

shouldTerminate Determines whether a reactive instance can

be safely destroyed by its active instance.

startBehavior Initializes the behavioral mechanism and

takes the initial (default) transitions in the
statechart before any events are processed.

takeEvent Is used by the event loop (within the thread) to

make the reactive object process an event.

takeTrigger Consumes a triggered operation event

(synchronous event).

terminate Sets the OVReact i ve instance to the

terminate state (the statechart is entering a
termination connector).

undoBusy Sets the value of the sm_busy attribute to 0

or FALSE.

Attributes and Defines

active

This protected attribute specifies whether the reactive object (the concrete object
derived from OVReact i ve) isalso an active object. An active object createsits own
thread and a so inherits from an OMThr ead object.

The default valueis 0 or FALSE.

If the reactive object is an active object, the user application will call the thread
st art ; otherwise, it will not.

It isdefined as follows:

OMBoolean active;

framewor kl nstance

This protected attribute specifies whether the reactive object is used by the
framework itself (it is not a user-defined object).

The default value is0 or FALSE, and is specified by OMReactive, the constructor for
areactive object.

Thef r amewor ki nst ance attribute can be used to model the Rhapsody framework
in terms of itself. The default value is FALSE; you would not normally want to
change the default.

Rhapsody

181

OXF Reference Pages

It isdefined as follows:

OMBoolean frameworkInstance;

myStartBehavior Event

This protected attribute activates an object that has null transitions as part of the
default transition.

It is defined as follows:

OMStartBehaviorEvent myStartBehaviorEvent;

omr Satus

This protected attribute defines the internal state (as opposed to the user-class state
in the statechart) of the reactive object.

The default value is OMRDefaultStatus, and is specified by OMReactive, the
constructor for areactive object.

It is defined as follows:

long omrStatus;

toGuar dReactive

This protected attribute specifies that the consumption of an event should be guarded
with amutex (a binary semaphore).

The default value is0 or FALSE, and is specified by OMReactive, the constructor for
areactive object. t oGuar dReact i ve isset to TRUE automatically by code
generation, based on user modeling.

It is defined as follows:
OMBool ean t oGuar dReacti ve;

Constants
eventConsumed

Specifies that the event was consumed. It is defined as follows:

#define eventConsumed
OMReactive: :OMTakeEventCompleted

eventNotConsumed

Specifies that the event was completed, but was not consumed. It is defined as
follows:

182 C++ Framework Execution Reference Manual

OMReactive Class

#define eventNotConsumed
OMReactive: :OMTakeEventCompletedEventNotConsumed

OMRDefaultSatus

Specifies the default value for the onr St at us attribute. Thisis used by
OVReact i ve.

It isdefined as follows:

const long OMRDefaultStatus = 0x00000000L;
OM DefaultThread

Defines the default thread for an OVReact i ve object. The default valueis 0 or
NULL, which tellsthe OMReact i ve object to process its events on the system
default active class.

It is defined as follows:

#define OMDefaultThread 0
OMRInDtor

Used to set and get the OVReact i ve internal state stored in omrStatus. Itisusedin
conjunction with omrStatus to stop event dispatching.

OVRI nDt or does not provide protection from mutual exclusion (an attempt to
dispatch an event to a class del eted on another thread). If you want to provide mutual
exclusion protection, refer to the Rhapsody code generation documentation.

It isdefined as follows:

const long OMRInDtor = 0x00020000L;

Rhapsody

183

OXF Reference Pages

OMRNullConfig

Used to get and set the OVReact i ve internal state stored in onr St at us. It isused
in conjunction with omrStatus to determine whether null transitions (transitions with
no trigger) need to be taken in the generated code.

It isdefined as follows:

const long OMRNullConfig = 0x00000001L;
OMRNullConfigM ask

Used to get and set the OVReact i ve internal state stored in onr St at us. It isused
in conjunction with omrsStatus to determine whether an OVReact i ve instance
should take null transitionsin the state machine.

It is defined as follows:

const long OMRNullConfigMask = O0x0000FFFFL;
OMRShouldCompleteSartBehavior

Used to get and set the OVReact i ve internal state stored inonr St at us. Itisused
in conjunction with onr St at us to determine whether the entry to the state machine
on the call to startBehavior was completed, and, if not, whether there are additional
null transitions to take.

Thisbit is set by the startBehavior method if the shouldCompleteRun method returns
an omrStatus of TRUE.

Thisbit is reset by the consumeEvent method on the first event.

It isdefined as follows:

const long OMRShouldCompleteStartBehavior =
0x00080000L;

OMRShouldDelete
Used to get and set the OVReact i ve state stored in onr St at us. Itisusedin
conjunction with omrStatus to determine whether a reactive object should be deleted
by its active object when it reaches atermination connector in its state machine. This

permits statically allocated objects to have a termination connector in their state
machine.

It is defined as follows:

const long OMRShouldDelete = 0x00040000L;

184 C++ Framework Execution Reference Manual

OMReactive Class

OMRShouldTer minate

Used to get and set the OVReact i ve internal state stored in onr St at us. It isused
in conjunction with onr St at us to allow the safe destruction of areactive instance
by its active instance.

It isdefined as follows:

const long OMRShouldTerminate = 0x00010000L;

M acros
GEN

Generates anew event. The GEN macro uses the gen method, then calls the new
operator to create a new event.

The macro is defined as follows:

#define GEN (event) gen (new event)

GEN_BY_GUI

Generates an event from a GUI. The GEN_BY_GUI macro uses the gen method, then
callsthe new operator to create a new event. OMaui specifies the GUI thread.

The macro is defined as follows:

#define GEN BY GUI (event) gen ((OMEvent*)
(new event), OMGui)

Oovcui isdefined in aoxf . h.
GEN_BY_X

Generates anew event from a sender object to areceiver object. It specifies a sender
and istypically used to generate events from external elements, such asaGUI. The
GEN_BY_X macro uses the gen method, then calls the new operator (with the sender
as a parameter) to create a new event.

The macro is defined as follows

#define GEN BY X (event, sender) gen (new event,
sender)

Rhapsody 185

OXF Reference Pages

GEN_ISR

Relations

event

Generates an event from an interrupt service request (ISR). The GEN_| SR macro
uses the gen method with the genFr om SR parameter specified as TRUE to create a
new event from an ISR.

It isthe user’s responsibility to allocate the event; GEN_I SRitself does not allocate
the event.

The macros is defined as follows:

#define GEN_ISR (event) gen (event, TRUE)

For VxWorks, GEN | SR generates an event with urgent priority that is placed at the
head of the event queue. If another event from GEN_I SR occurs before the first one
has been processed, it will be placed in front of the previous event. The
implementation of GEN_| SR for VxWorks was aimed to address a use case where a
reactive object has aflow of “plain” events, and from timeto time it getsa single,
high-priority event that is placed at the front of the queue for immediate
consumption.

If aburst of GEN_| SR events are being injected into the system, you can comment
out the setting of the priority in the framework to treat events from interrupts with
equal priority. InOVBool ean VxOSMessageQueue: : put (voi d* m OVBool ean
from SR), comment out thelinepriority = MSG_PRI _URGENT.

This public relation specifies the active or current event (the one that is now being
processed) for the OVReact i ve instance. Therelation is assigned only when an
event is taken from the event queue.

The default valueis NULL, and is specified by OMReactive, the constructor for a
reactive object.

Therelation is defined as follows:

OMEvent *event;

m_eventGuard

Used, in collaboration with the generated code, to protect the event consumption
from mutual exclusion between events and triggered operations.

If auser reactive class has a guarded triggered operation, this relation will be set to
the OVPr ot ect ed part of the reactive class, and thet akeEvent method will lock
the guard before calling consuneEvent .

186

C++ Framework Execution Reference Manual

OMReactive Class

It isdefined as follows:

const OMProtected * m _eventGuard;

myThread

This protected relation specifies the active class that queues events and dispatches
events (so they are consumed on the active class's thread) for a reactive object.

Thereis aone-way relationship between athread and a reactive class. The thread
does not know its reactive class—it might have many. However, the reactive class
has arelation to its thread, specified by nmyThr ead.

Therelation is defined as follows:

OMThread *myThread;

rootSate

This relation defines the root state of the OVReact i ve statechart (when the system
is using a reusabl e statechart implementation).

The default valueis NULL, and is specified by OVReact i ve, the constructor for a
reactive object.

It isdefined as follows:

OMComponentState* rootState;

The OMConponent St at e classisdefined in st at e. h.

Rhapsody 187

OXF Reference Pages

OMReactive
Visibility
Public
Description
The OVReact i ve method is the constructor for the OVReact i ve class.
Signature

OVReact i ve(OMrhr ead *pt hread = OMDefaultThread) ;

Parameters

pthread

Defines the thread on which events for the OVReact i ve instance are processed. The default
value is OMDefaultThread, which is set to the system default active class.

Composite classes use this parameter to inherit threads to components.
See Also

OMDefaultThread

~OMReactive

~OMReactive
Visibility
Public
Description
The ~OVReact i ve method is the destructor for the OVReact i ve class.
Signature

virtual ~OVReactive();

See Also

OMReactive

188 C++ Framework Execution Reference Manual

OMReactive Class

cancelEvents

Visibility

Public
Description

Thecancel Event s method cancels all the queued eventsfor the reactive object. This method
is called upon destruction of the reactive object to prevent the thread from sending additional
events to a destroyed object.

Signature

voi d cancel Events();

Notes
+ If there are severa eventsin the event queue targeted for an OVReact i ve
instance, but the instance has already been destroyed because it reached a
termination connector in the statechart, the framework usesthe cancel Event s
method to cancel the events.
¢ cancel Event s callsthe OMThr ead: :cancelEvents method.
See Also
cancelEvents
consumeEvent
Visibility
Public
Description

The consuneEvent method isthe main event consumption method. It handles the passing of
events and triggered operations from the framework to the user-defined statechart, which then
consumes them. This method is called by thet akeEvent andt akeTri gger methods.

You can override consumeEvent to specialize different event consumption behaviors:

+ Create areactive class that consumes events without a statechart.
¢ Add functionality to a class's event consumption.

Signature

virtual TakeEvent Status consunmeEvent (OVEvent* ev);

Rhapsody 189

OXF Reference Pages

Parameters

ev

Specifies the event to be consumed
Return

The method returns one of the values defined in the TakeEvent St at us enumerated type.
You can use these val ues to determine whether and how to continue with event processing on
the reactive object.

The possible values are as follows:
¢ OMrakeEvent Conpl et edEvent Not Consuned (0) —The event was

completed, but not consumed.

¢ OMrakeEvent Conpl et ed (1) —The event was completed. Thisis the normal
status.

¢ OMrakeEvent I nDt or (2) —The event was not completed because the
OVReact i ve instanceisin destruction.

¢ OMrakeEvent ReachTer mi nat e (3) —The event was not completed because
the statechart has reached a termination connector and the reactive object should
be destroyed.

Note

The consumeEvent method includes the ability to handle events and triggered operations
that were not consumed. Thisis conceptually a callback method that you must override to
define the actual handling of unconsumed events. To support this modification, the method

signature was changed.
See Also
takeEvent
takeTrigger

190 C++ Framework Execution Reference Manual

OMReactive Class

discarnateTimeout
Visibility
Public
Description

Thedi scar nat eTi neout method is used by the framework to destroy atimeout object for
the reactive object.

Signature
virtual void di scarnateTi meout (OMIi meout * tm;

Parameters

tm

Specifies the timeout to be destroyed
See Also

undoBusy

Rhapsody 191

OXF Reference Pages

doBusy
Visibility
Public
Description

The doBusy method sets the value of omrStatus to 1 or TRUE. It is caled by the
root St at e_di spat chEvent method.

Signature

voi d doBusy()

Notes

TheundoBusy method returnsthe current value of omrStatus and setsthe value of sm busy to

0 or FALSE.
See Also
isBus
omrsStatus

rootState_dispatchEvent

undoBusy

gen
Visibility
Public
Description

The gen method is an overloaded public method used by a sender object to send an event to a
receiver object. gen first checks to see whether the receiver object is under destruction.

In uninstrumented code, the call gen(OMEvent) isaways sufficient. The call isalso
sufficient in instrumented code when you include the not i f yCont ext Swi t ch method.

Multithread instrumented applications should use the call
gen(OVEvent * event, voi d* sender). If thesender isa GUI element, use the syntax
gen(theEvent, OMGAUl).OMGui isdefinedinthefileaoxf. h.

192 C++ Framework Execution Reference Manual

OMReactive Class

Signatures

vi rtual OMBool ean gen (OVEvent *event,
OvBool ean genFrom SR = FALSE);

virtual OMBoolean gen (OMEvent *event, void * sender) ;

void gen (AOMEvent *theEvent, void * sender)

Parametersfor Signature 1

event

Specifies a pointer to the event to be sent to the reactive object.

genFromISR

Indicates whether the event is from an operating system interrupt service request (ISR). If it is,
it requires special treatment.

Parametersfor Signature 2

event

Specifies the event to send

sender

Specifies the object sending the event
Parametersfor Signature 3

theEvent

Specifies the event to send

sender

Specifies the object sending the event
Return
The method returns one of the following Boolean values:

¢ TRUE—The event was successfully queued.
¢ FALSE—The event was not queued.

Notes

¢ Thegen method istypically used within actions and methods that you write.
+ Note the following distinctions between the different method calls:

Rhapsody 193

OXF Reference Pages

— Thefirst method syntax does not specify a sender. gen first checks to see whether the receiver
object is under destruction.

This version of the method is expanded by the following macros:
GUARD_OPERATION—Creates the event

GEN_BY_GUI—Generates an event requested by a GUI
GEN_ISR—Generates an event from an ISR
— The second version of the method is used to send events from external elements, such as a
GUI. It registersthe “top” of the call stack asits sender.

Thisversion of the method is expanded by the
START_THREAD_GUARDED_SECTION macro, which also creates the event.
¢ ThegenFr om SR flag supports RTOSes (for example, VxWorks) that have
restrictions on resource usage (for example, no memory allocation or waiting on
semaphores) during an ISR.

+ To extend framework customization, the gen method was set to virtual in Version
3.0.

See Also
_gen
GEN_BY_GUI
GEN_ISR

GUARD_OPERATION

START_THREAD_GUARDED_SECTION

194 C++ Framework Execution Reference Manual

OMReactive Class

_gen
Visibility
Public

Description
The _gen method queues events sent to the reactive object.

_gen works in the following way:

¢ Fird, it setsthe destination for the event by calling the setDestination method.

+ Next, it calsthe gueueEvent method to queue the event in the OMThr ead event
gueue assigned to this OVReact i ve instance.

Signature

vi rtual OVBool ean _gen (OVEvent *event,
OvBool ean genFrom SR = FALSE);

Parameters

event

Specifies a pointer to the event to be sent to the reactive object.

genFromISR

Indicates whether the event is from an operating system interrupt service request (ISR). If it is,
it requires special treatment.

Return
The method returns one of the following Boolean values:

¢ TRUE—The event was successfully queued.
¢ FALSE—The event was not queued.

Notes

+ Theevent consumption isasynchronous. _gen causes the event to beinserted into
an OMThr ead event queue—the reactive object does not have to respond to the
event immediately.

+ ThegenFronl SR flag supports RTOSes (for example, VxWorks) that have
restrictions on resource usage (for example no memory allocation or waiting on
semaphores) during an ISR.

+ To extend framework customization, the _gen method was set to virtual .

Rhapsody 195

OXF Reference Pages

getCurrentEvent
Visibility
Public
Description
The getCurrentEvent method gets the currently processed event.

Signature

inline const OMEvent* getCurrentEvent () const

Return
The ID of the current event
See Also

isCurrentEvent

196 C++ Framework Execution Reference Manual

OMReactive Class

getThread
Visibility
Public
Description

The getThread method is an accessor function used to retrieve the thread associated with a
reactive object. Thismethod is called by theact i on method.

Signature
OMThr ead *get Thread()

Return
The thread associated with the reactive object
See Also
action

setThread

Rhapsody 197

OXF Reference Pages

handleEventNotConsumed
Visibility
Public
Description

The handleEventNotConsumed method isavirtual method called when an event is not
consumed by the reactive class. To handle an unconsumed event, you must override this
method.

This method is part of the framework for handling unconsumed events.
Signature

virtual void handleEventNotConsumed (OMEvent* event) ;

Parameters

event

Specifies the event
See Also

handleTONotConsumed

198 C++ Framework Execution Reference Manual

OMReactive Class

handleTONotConsumed
Visibility
Public
Description

The handleTONotConsumed method is a virtual method called when atriggered operation is
not consumed by the reactive class. To handle an unconsumed triggered operation, you must
override this method.

This method is part of the framework for handling unconsumed triggered operations.
Signature

virtual void handleTONotConsumed (OMEvent* event) ;

Parameters

event

Specifies the triggered operation
See Also

handleEventNotConsumed

Rhapsody 199

OXF Reference Pages

incarnateTimeout
Visibility
Public
Description

TheincarnateTimeout method is used by the framework to create a timeout object to be
invoked on the reactive object. It is called by the schedTm method.

Signature

vi rtual OMi nmeout *incarnateTi neout (short id,
ti meUnit delay, const OvHandl e* theState);

Parameters
id
Identifies the timeout, either at delivery or for canceling. Every timeout has a specifici d so it
can be distinguished from other timeouts.

delay
Specifies the delay time, in milliseconds, before the timeout is triggered.

theState

Is used by the Rhapsody animation to designate the state name upon which the timeout is
scheduled. Thereis no default value.

See Also

discarnateTimeout

schedTm

200 C++ Framework Execution Reference Manual

OMReactive Class

inNullConfig
Visibility
Public
Description

The inNullConfig method determines whether an OVReact i ve instance should take null
transitions (transitions without triggers) in the state machine.

Signature

I ong inNull Config() const
Return

The method returns omrStatus & OMCancelledEventid. If thisvalueis0, there are no null
transitions. If this value is greater than 0, the value specifies the number of null transitions to
take.

Notes

The omrStatus attribute specifies the maximum number of null transitions that are allowed.
The default value is 100.

See Also
opNullConfi

pushNullConfig

Rhapsody 201

OXF Reference Pages

iISActive
Visibility
Public

Description

The isActive method determines whether a reactive object is also an active object.
Signature

OVBool ean i sActive()

Return
The method returns one of the following Boolean values:

¢ TRUE—The reactive object is also an active object.
¢ FALSE—The reactive object is not an active object.

iIsBusy
Visibility
Public
Description

TheisBusy method returns the current value of the omrStatus attribute. It is called by the
root St at e_di spat chEvent method.

Signature

int isBusy() const

Return
The method returns one of the following integers:

¢ 1—Theobject iscurrently consuming an event.
¢ 0—Theobjectisidle.

Notes

The doBusy method sets the value of sm busy to 1 or TRUE; the undoBusy method sets the
value of sm busy to 0 or FALSE.

202 C++ Framework Execution Reference Manual

OMReactive Class

Rhapsody applies a safety mechanism to the flat statechart implementation that prevents self-
directed trigger operations. If Rhapsody finds this condition, it simply ignores the invocation.

To omit the safety, you can override OVReact i ve: : consumeEvent() inthe user class code
(this omits the check of i sBusy() but does not modify the framework code. However, this
can make the behavior unpredictable. The handleEventNotConsumed Or
handleTONotConsumed Operations provide more predictable results.

See Also

doBusy

handleEventNotConsumed

handleTONotConsumed

omrStatus

rootState_dispatchEvent

undoBusy

iIsCurrentEvent
Visibility
Public
Description

The jsCurrentEvent method determines whether the specified event ID matches the currently
processed event.

Signature

OMBoolean IsCurrentEvent (short eventId) const;

Parameters

eventId

The event ID to check
Return
The method returns one of the following Boolean values:

¢ TRUE—The specified event is the current event.
¢ FALSE—The specified event is not the current event.

Rhapsody 203

OXF Reference Pages

See Also

getCurrentEvent

iIsFrameworklnstance

Visibility
Public
Description

The isErameworkinstance method determines the current value of the frameworkinstance
attribute.

Signature

OVBool ean i sFranmewor kl nst ance() const

Return
The method returns one of the following Boolean values:

¢ TRUE—The reactive object is used by the framework itself.

¢ FALSE—Therreactive object is not used by the framework; it is a user-defined
object. Thisisthe default value.

Notes

Thef r amewor kI nst ance attribute can be used to model the Rhapsody framework in terms
of itself. The default value is FALSE; you would not normally want to change the default.

See Also

setFrameworkinstance

204

C++ Framework Execution Reference Manual

OMReactive Class

isinDtor
Visibility
Public
Description

TheisinDtor method determines whether event dispatching should be stopped. It is called by
theconsuneEvent andr oot St at e_di spat chEvent methods.

Signature

unsi gned char islnDtor() const

Return

If the return value is 0, the abject is not under destruction. If the value is greater than 0, the
object is under destruction.

See Also
consumeEvent

rootState_dispatchEvent

setinDtor

isValid
Visibility
Public
Description

Theisvalid method makes sure the reactive classis not deleted. This method is used by
animation.

Signature

static OMBoolean isValid (const OMReactivex
const p_reactive);

Parameters

p_reactive

Specifies the reactive class

Rhapsody 205

OXF Reference Pages

Return

The method returns TRUE if the reactive classis valid; FALSE if the class has been deleted.

Note
The method jsvalid supersedes the method i sVal i dOVReact i ve.

popNullConfig
Visibility
Public
Description
The popNuliConfig method decrements the omrStatus attribute after anull transition is taken.
Signature

voi d popNul | Config();

Notes

The omrStatus attribute specifies the maximum number of null transitions that are allowed.
The default valueis 100.

See Also

inNullConfig

omrStatus

pushNullConfig

206 C++ Framework Execution Reference Manual

OMReactive Class

pushNullConfig
Visibility
Public
Description

The pushNullConfig method counts null transitions. After a state is exited on a null transition,
pushNul | Confi g increments the omrStatus attribute.

Signature
voi d pushNul | Config();

Notes

The omrStatus attribute specifies the maximum number of null transitions that are allowed.
The default value is 100.

See Also
inNullConfig

omrStatus

popNullConfig

registerWithOMReactive
Visibility
Public
Description

TheregisterwithOMReactive method registers a user instance as areactive classin the
animation framework. This method is used for animation support.

Signature

void registerWithOMReactive (void* myReal,
AOMInstance *theAOMInstance)

Parameters

myReal
The user instance

theAOMInstance

Rhapsody 207

OXF Reference Pages

The animation instance that reflects the user instance

rootState_dispatchEvent

Visibility
Public

Description

TherootState_dispatchEvent method is responsible for consuming an event inside areal
statechart. It is called by the consumeEvent method.

Signature

virtual int rootState_dispatchEvent (short id);

Parameters
id
Specifiesthe ID of the event being consumed
Return

The method returns one of the following values:

¢ 0—The method did not consume the event.
¢ 1—The method consumed the event.

Notes

OVReact i ve has an implementation for ther oot St at e_di spat chEvent and undoBusy
methods. For flat statechart implementation, every class that inherits from OVReact i ve
overwrites these methods according to its specific statechart implementation. For reusable
statechart implementation, these methods are used as-is.

The Rhapsody framework “knows’ nothing about the real statechart; it knows about the

root St at e_ent Def andr oot St at e_di spat chEvent methods only. Every concrete class
knows how to react to every event because it has generated code for itself. Therefore, for flat
statechart implementation, the concrete class overwrites these two virtual methods with its
own customized implementation.

Flat statecharts are constructed using swi t ch and i f statements.They are more efficient in
both time and space, and offer a customized implementation. Reusable statecharts are
constructed using objects, and provide typical object-oriented features (for example,
inheritance, encapsulation, and polymorphism). They offer a generic implementation. The
Rhapsody default isflat statecharts.

208

C++ Framework Execution Reference Manual

OMReactive Class

In areusable statechart implementation, r oot st at e_di spat chEvent invokesthe root state
takeTrigger operation.

See Also
consumeEvent

rootState_dispatchEvent

rootState_entDef

rootState entDef
Visibility
Public

Description
TherootState_entDef method initializes the statechart by taking the default transitions.
Signature

virtual void rootState_entDef();

Notes

OVReact i ve hasan implementation for ther oot St at e_ent Def and undoBusy methods.
For flat statechart implementation, every class that inherits from OVReact i ve overwrites
these methods according to its specific statechart implementation. For reusabl e statechart
implementation, these methods are used as-is.

The Rhapsody framework “knows’ nothing about the real statechart; it knows only about the
root St at e_di spat chEvent andr oot St at e_ent Def methods. Every concrete class
knows how to react to every event because it has generated code for itself. Therefore, for flat
statechart implementation, the concrete class overwrites these two virtual methods with its
own customized implementation.

Flat statecharts are constructed using swi t ch and i f statements.They are more efficient in
both time and space, and offer a customized implementation. Reusable statecharts are
constructed using objects, and provide typical object-oriented features (for example,
inheritance, encapsulation, and polymorphism). They offer a generic implementation. The
Rhapsody default is flat statecharts.

See Also

rootState_dispatchEvent

rootState_entDef

Rhapsody 209

OXF Reference Pages

rootState_serializeStates
Visibility
Public

Description

TherootState_serializeStates method is avirtual method that performs the actual event
consumption.

In aflat statechart implementation, this method is not called, and the user class overrideis
called instead.

In areusable statechart implementation, this method calls the root state’'st akeEvent method
to consume the event. The root state is a user class derived from St at e.

Signature

void rootState serializeStates (AOMSState* aomsState)
const;

Parameters

aomsState

Specifies the root state

210 C++ Framework Execution Reference Manual

OMReactive Class

runToCompletion
Visibility
Public

Description

The runToCompletion method takes all the null transitions (if any) that can be taken after an
event has been consumed. In normal designs, this should not take more than severa steps, so
thereisasafety limit that protects against infinite loops (considered to be design errors).

TheconsuneEvent method callsr unToConpl et i on.
For more information, see onr eact i ve. cpp.
Signature

voi d runToConpl etion();
See Also

consumeEvent

shouldCompleteRun

serializeStates
Visibility
Public
Description
The serializeStates method is called during animation to send state information.
Signature

void serializeStates (AOMSState* s) const;

Parameters

S

Specifies the state

Rhapsody 211

OXF Reference Pages

setCompleteStartBehavior
Visibility
Public
Description

The setCompleteStartBehavior method sets the value of the OMRShouldCompleteStartBehavior
attribute.

Signature
void setCompleteStartBehavior (OMBoolean b)
Parameters

b

Specifies whether the entry to the state machine on the call to startBehavior was completed,
and, if not, if there are additional null transitions to take

See Also

OMRShouldCompleteStartBehavior

omrStatus

setEventGuard
Visibility
Public
Description
The setEventGuard method is used to set the event guard flag (m_eventGuard).
Signatures

inline void setEventGQuard (const OWProtected* event Guard)

inline void setEventGuard (const OWProtected& event Guard)

Parameters

eventGuard

Specifies the protected part of the reactive instance used to guard the event loop from mutual
exclusion between events and triggered operation consumption

212 C++ Framework Execution Reference Manual

OMReactive Class

setFrameworklInstance
Visibility
Public

Description

The set Fr amewor ki nst ance method changes the value of the frameworkinstance attribute.
Signature

voi d set Franewor kl nst ance(OMBool ean i s)
Parameters
is
Specifiesthe value for the f r amewor kil nst ance attribute. The possible values are as
follows:
¢ TRUE—The framework uses the instance.
¢ FALSE—The framework does not use the instance.

Note

Thef r amewor ki nst ance attribute can be used to model the Rhapsody framework in
terms of itself. The default value is FALSE; you would not normally want to change the
default.

See Also

frameworklInstance

isFrameworklInstance

Rhapsody 213

OXF Reference Pages

setinDtor
Visibility
Public
Description

The setinDtor method is called by the OVReact i ve instance to specify that event dispatching
should be stopped.

Signature

voi d setlnDtor()

See Also
isinDtor
OMRInDtor

omrStatus

setMaxNullSteps
Visibility
Public
Description

The setMaxNullSteps method sets the maximum number of null transitions (those without a
trigger) that can be taken sequentially in the statechart. If omrStatus is exceeded, event
consumption is aborted.

The default value is defined in onr eact i ve. cpp asfollows:
#def i ne OVDEFAULT_MAX NULL_STEPS 100

Signature

static void set MaxNul | Steps (int newvax)

Parameters

newMax

Specifies the new value for maxNul | St eps

214 C++ Framework Execution Reference Manual

OMReactive Class

Notes

¢ The pushNullConfig method increments the omrStatus attribute after a state that
has anull transition state is exited.

¢+ ThepopNullConfig method decrements the omrStatus attribute after a null
transition is taken.

See Also
omrStatus

popNullConfig

pushNullConfig

Rhapsody 215

OXF Reference Pages

setShouldDelete
Visibility
Public
Description

ThesetShouldDelete method specifies whether a reactive object should be deleted by
its active object when it reaches atermination connector in its state machine. This
permits statically allocated objects to have atermination connector in their state
machine.

This method is called by OVReact i ve, the constructor for areactive object.
Signature

voi d set Shoul dDel et e (OvBool ean b)

Parameters

b
If thisis TRUE, the OVReact i ve instanceis deleted. Otherwise, it is not deleted.

By default, this value is TRUE. To statically allocate a reactive object with a termination
connector, you must explicitly call set Shoul dDel et e(FALSE) .

See Also

OMRShouldDelete

omrStatus

shouldDelete

216 C++ Framework Execution Reference Manual

OMReactive Class

setShouldTerminate
Visibility
Public
Description

The setShouldTerminate method specifies that a reactive instance can be safely destroyed by
its active instance.

Signature
voi d set Shoul dTer m nate (OvBool ean b)
Parameters

b
Set this to TRUE to terminate the OVReact i ve instance. Otherwise, set thisto FALSE.

See Also

OMRShouldTerminate

omrStatus
shouldTerminate

terminate

Rhapsody 217

OXF Reference Pages

setThread
Visibility
Public
Description

The setThread method is a mutator function that sets the thread of areactive object. It isan
aternate way to set the thread instead of providing it in the reactive object’s constructor.

This method is called by OMReact i ve, the constructor for a reactive object.

Note

Calling set Thr ead out of the object CTOR is dangerous on systems where reactive objects
can be deleted, because the events in the queue of the old thread will not be canceled upon
the destruction of the reactive object.

Signature

virtual void setThread (OMrhread *t,
OVBool ean active = FALSE);

Parameters

t
Specifies the thread to be set

active

Signalsthe reactiveinstance that it is also active (the user object also inherits from OMThr ead)

See Also

getThread

OMReactive

218 C++ Framework Execution Reference Manual

OMReactive Class

setToGuardReactive
Visibility
Public

Description

The setToGuardReactive method specifies the value of the toGuardReactive attribute. If
toGuardReactive iS Set to TRUE, event consumption is guarded.

Note

You need to guard event consumption in order to protect the reactive object from being
deleted by another thread whileit is consuming an event.

Signature

voi d set ToGuar dReact i ve(OvBool ean fl ag);

Parameters

flag
Specifies the value of the reactive event consumption flag. The possible values are as follows:

¢ TRUE—The reactive event consumption should be guarded.
¢ FALSE—The reactive event consumption should not be guarded.

See Also

toGuardReactive

Rhapsody 219

OXF Reference Pages

shouldCompleteRun
Visibility
Public
Description

The shouldCompleteRun method checks the value of omrStatus to determine whether there are
null transitions to take. It is called by the consumeEvent method.

Signature
| ong shoul dConpl et eRun() const
Return
A | ong that represents the value of omrStatus
Notes

The runToCompletion method is used to take all the null transitions (if any) that can be taken
after an event has been consumed.

See Also
consumeEvent
omrStatus

runToCompletion

setEventGuard

220 C++ Framework Execution Reference Manual

OMReactive Class

shouldCompleteStartBehavior
Visibility
Public
Description

The shouldCompleteStartBehavior method checks the start behavior state.

When the user code callsthe st ar t Behavi or method of areactive class, the class takes the
default transition of the statechart. If there are null transitions immediately after the default
transition, the reactive class sends a special event (OMStartBehaviorEvent) to itself, and
changesiits state accordingly. The shouldCompleteStartBehavior method checks the value of
this state.

Signature

long shouldCompleteStartBehavior () const

Return

A | ong that represents the state

Rhapsody 221

OXF Reference Pages

shouldDelete

Visibility
Public
Description

The shouldDelete method determines whether a reactive object should be deleted by its active
object when it reaches a termination connector in its state machine. This method is called by
theconsuneEvent andt akeTri gger methods.

Signature
OvBool ean shoul dDel et e() const

Return
The method returns one of the following Boolean values:

¢ TRUE—The framework should delete the object after it reaches atermination
connector.

¢ FALSE—The framework should not attempt to delete the object.
See Also
consumeEvent

setShouldDelete

takeTrigger

222

C++ Framework Execution Reference Manual

OMReactive Class

shouldTerminate
Visibility
Public
Description

The shouldTerminate method determines whether a reactive instance can be safely destroyed
by its active instance. This method is called by the consunmeEvent andt akeTri gger
methods.

Signature
I ong shoul dTerni nate() const
Return

The method returns onr St at us & OVRShoul dTer mi nat e. If thisvaueis0, the object
should not terminate. If the value is greater than 0, the object should terminate.

See Also
consumeEvent

setShouldTerminate

takeTrigger

terminate

Rhapsody 223

OXF Reference Pages

startBehavior
Visibility
Public
Description

The startBehavior method initializes the behavioral mechanism and takes the initial (default)
transitions in the statechart before any events are processed. After this call is completed, the
statechart is set to the initial configuration.

Notethat st ar t Behavi or iscalled on the thread that creates the reactive object; default
transitions are taken on the creator thread.

Note
Do not call st art Behavi or within the class CTOR.

Signature

vi rtual OMBool ean startBehavior();

Return
The method returns one of the following values:

¢ TRUE—The behavior initialization succeeded.
¢ FALSE—The behavior initialization failed.

Notes

+ |f you manually declare an instance (in user code), it is your responsibility to
explicitly invoke st ar t Behavi or ; otherwise, the object will not respond to
events.

¢ Thest art Behavi or method executes on the thread that invoked it (if the class
isan active class, thisis not the class's thread).

¢ Thest art Behavi or method involves execution of actions, and in esoteric cases
might result in the destruction of an instance.

224 C++ Framework Execution Reference Manual

OMReactive Class

takeEvent
Visibility
Public
Description
ThetakeEvent method is used by the event loop (within the thread) to make the reactive object

process an event. After some preliminary processing, thet akeEvent method calls
consumeEvent to consume the event. Thisis avirtual function and can be overridden.

Signature
vi rtual TakeEvent Status takeEvent (OVEvent* ev);

Parameters

ev

Specifies the event to be processed
Return

The method returns one of the values defined in the TakeEvent St at us enumerated type.
You can use these values to determine whether and how to continue with event processing on
the reactive object. The possible values are as follows:

¢ OMrakeEvent Conpl et edEvent Not Consuned (0) —The event was
completed, but not consumed.

¢ OMrakeEvent Conpl et ed (1) —The event was completed. Thisis the normal
status.

¢ OMrakeEvent | nDt or (2) —The event was not completed because the
OVReact i ve instanceisin destruction.

¢ OMrakeEvent ReachTer ni nat e (3) —The event was not completed because
the statechart has reached a termination connector and the reactive object should

be destroyed.
Notes
¢ Thismethod is used by the framework. Typically, you do not use it unless you
want to rewrite the event consumption.
+ takeEvent iscaled by the execute method to request that the reactive object
process an event.
See Also

consumeEvent

Rhapsody 225

OXF Reference Pages

execute

takeTrigger
Visibility
Public
Description

The takeTrigger method consumes a triggered operation event (synchronous event). Thisisa
virtual function and can be overridden. Thet akeTr i gger method works in the following

way:
1. Firgt, it calsthe consumeEvent method to consume the event.

2. Next, it callstheshouldTerminate and setShouldDelete methods. If
(shoul dTermi nate() && shoul dDel ete()) isl (or TRUE), t akeTri gger deletes
the event.

Signature

virtual void takeTrigger (OVEvent* ev);

Parameters

ev

Specifies the triggered event
Notes

A triggered operation is a synchronous event—the event is sent to the OVReact i ve instance
and consumed immediately. Most statechart events are asynchronous—the event is sent to the
OVReact i ve instance, but is not necessarily consumed immediately.

See Also
consumeEvent
setShouldDelete
shouldDelete

shouldTerminate

226 C++ Framework Execution Reference Manual

OMReactive Class

terminate
Visibility
Public
Description

Theterminate method sets the OvReact i ve instance to the terminate state (the statechart is
entering a termination connector).

Signature
void term nate (const char* ¢ = "");

Parameters

(¢}

Set to an empty string (""). This parameter is used for animation purposes.
See Also

setShouldTerminate

shouldTerminate

Rhapsody 227

OXF Reference Pages

undoBusy
Visibility
Public
Description

The undoBusy method sets the value of the sm busy attributeto 0 or FALSE. It is called by
ther oot St at e_di spat chEvent method.

Signature
voi d undoBusy()

Notes

¢ TheundoBusy method returns the current value of omrStatus.
¢ TheundoBusy method sets the value of sm busy to 1 or TRUE.

See Also
doBusy
isBus

omrStatus

rootState_dispatchEvent

228 C++ Framework Execution Reference Manual

OMStack Class

OMStack Class

The OBt ack class contains basic library functions that enable you to create and manipulate
OvBt acks. An OVBt ack isatype-safe stack that implementsa LIFO (last in, first out)
agorithm.

This classis defined in the header file onst ack. h.

Construction Summary

OMStack Constructs an OVBt ack object
~OMStack Destroys the OMSt ack object

Method Summary

getCount Gets the number of items on the stack
isEmpty Determines whether the stack is empty
pop Pops an item off the stack

push Pushes an item onto the stack

top Moves the iterator to the first item in the

stack

OMStack
Visibility
Public
Description
The omMstack method is the constructor for the Ovst ack class.
Signature

OMStack ()

See Also

~OMStack

Rhapsody 229

OXF Reference Pages

~OMStack
Visibility
Public
Description

The ~OMstack method destroys the OVt ack object.

Signature
~OMStack ()
See Also
OMStack
getCount

Visibility

Public
Description

The getCount method gets the number of items in the stack.

Signature

int getCount () const

Return

The number of itemsin the stack

230 C++ Framework Execution Reference Manual

OMStack Class

ISEmpty
Visibility
Public

Description

The isEmpty method determines whether the stack is empty.

Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—The stack is not empty.
¢ 1—Thestack isempty.

pop
Visibility
Public
Description
The pop method pops the next item off the stack.
Signature

Concept pop ()

Return

The item popped off the stack

Rhapsody

231

OXF Reference Pages

push
Visibility
Public
Description
The push method pushes an item onto the stack.
Signature

void push (Concept p)

Parameters

p
Theitem to add to the stack

top
Visibility
Public
Description
Thetop method moves the iterator to the first item in the stack.
Signature

Concepté& top ()

Return

Thefirst item on the stack

232 C++ Framework Execution Reference Manual

OMStartBehaviorEvent Class

OMStartBehaviorEvent Class

The Ovst ar t Behavi or Event classis used to handle the special case when areactive class

injects eventsto itself, and the startBehavior method has null transitions that should be taken
after the default transition.

Using this class, you can execute the null transitions in the context of the reactive thread,
instead of in the context of the thread that called startBehavior.

Animating Start Behavior

The friend class, OVFr i endSt ar t Behavi or Event , animates the start behavior event class

in instrumented mode. The friend class declaration is empty except for non-instrumented
mode.

These classes are defined in the header fileevent . h.

Construction Summary

OMStartBehaviorEvent Is the constructor for the
QOWVBt ar t Behavi or Event class

OMStartBehaviorEvent
Visibility
Public

Description

The omStartBehaviorEvent method is the constructor for the Ovst ar t Behavi or Event class.

Signature

OMStartBehaviorEvent () ;

Rhapsody 233

OXF Reference Pages

OMState Class

The OVst at e class defines methods that affect statecharts.

This classis defined in the header file st at e. h.

Attribute Summary

par ent

Specifies the parent

Construction Summary

OMState

Constructs an QVBt at e object

Macro Summary

IS_EVENT_TYPE_OF(id)

Supports generic derived event handling

OM_DECLARE_FRAMEWORK_MEMOR

Y_ALLOCATION_OPERATORS

Supports enhanced user control over
framework memory allocation

Method Summary

entDef Specifies the operation called when the
state is entered from a default transition

entHist Enters a history connector

enterState Specifies the state entry action

exitState Specifies the state exit action

getConcept Gets the statechart owner

getHandle Gets the handle

getlLastState Gets the last state

isCompleted Gets the substate

in Returns TRUE when the owner class is in
this state

isCompleted Determines whether the OR state reached
a final state, and therefore can be exited
on a null transition

serializeStates Is called during animation to send state
information

setHandle Sets the handle

234

C++ Framework Execution Reference Manual

OMState Class

setl astState Sets the last state
setSubsState Sets the substate
takeEvent Takes the specified event off the event
queue
Attributes
parent

This attribute specifies the parent state of this state (the state this state is contained
in). It is defined as follows:

OMState* parent;

Macros
IS EVENT_TYPE_OF(id)
This macro helps support generic derived event handling.

Rhapsody provides a generic way to handle the consumption of derived events. The
support in generic handling of derived events was done by adding a new method,

i sTypeOF (), for every event, and modifying the generated code to check the event
using this method. Thei sTypeO () method returns Tr ue for derived events, as
well asfor the actual event.

OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS
This macro helps support user control over framework memory allocation.

Rhapsody supports application control over memory allocated in the framework in
two ways:

+ Complete the memory management coverage, so every memory alocation in the
generic framework as well as all the RTOS adaptors is using the memory
management mechanism.

¢ Complete the usage of ther et ur nMenor y() interface, so the memory size
returned is passed.

Rhapsody 235

OXF Reference Pages

OMState
Visibility
Public
Description

The omMState method is the constructor for the OVet at e class.

Signature

OMState (OMState* par = NULL) ;

Parameters

par

Specifies the parent

entDef
Visibility
Public
Description

The entDef method specifies the operation called when the state is entered from a default
transition.

Signature

virtual void entDef ()=0;

236 C++ Framework Execution Reference Manual

OMState Class

entHist
Visibility
Public
Description
The entHist method enters a history connector.
Signature

virtual void entHist () ;
enterState
Visibility
Public

Description

The enterState method specifies the state entry action.

Signature

virtual void enterState() ;

exitState
Visibility
Public
Description

The exitState method specifies the state exit action.

Signature

virtual void exitState()=0;

Rhapsody

237

OXF Reference Pages

getConcept
Visibility
Public
Description

The getConcept method gets the current concept. This method should be overridden by the
concrete classes.

Signature

virtual AOMInstance * getConcept () const // animation

virtual void * getConcept () const //no animation

Return

The concept

getHandle
Visibility
Public
Description
The getHandle method gets the handle. This method is used for animation purposes.
Signature

const char * getHandle() const

Return

The handle

238 C++ Framework Execution Reference Manual

OMState Class

getLastState
Visibility
Public
Description
The getLastState method returns the last state.
Signature

virtual OMState* getLastState() ;

Return

The last state

getSubState
Visibility
Public
Description
The isCompleted method returns the substate.
Signature

virtual OMState* getSubState() ;

Return

The substate

Rhapsody

239

OXF Reference Pages

in
Visibility
Public
Description
The in method returns TRUE when the owner classisin this state.
Signature

virtual int in()=0;

iIsCompleted
Visibility
Public
Description

TheisCompleted method determines whether the OR state reached afinal state, and therefore
can be exited on anull transition.

Signature

virtual OMBoolean isCompleted ()

Return
The method returns one of the following Boolean values:

¢ TRUE—The operation is complete.
¢ FALSE—The operation is not complete.

240 C++ Framework Execution Reference Manual

OMState Class

serializeStates
Visibility
Public
Description
The serializeStates method is called during animation to send state information.
Signature

virtual void serializeStates (AOMSState* s) const = 0;

virtual void serializeStates(void*) //no animation

Parameters

S

Specifies the state

setHandle
Visibility
Public
Description
The setHandle method sets the handle. This method is used for animation purposes.
Signature

void setHandle (const char * hdl)

Parameters

hdl
Specifies the handle

Rhapsody 241

OXF Reference Pages

setLastState
Visibility
Public
Description
The setLastState method sets the last state.
Signature

virtual void setLastState (OMState* s);

Parameters

S

Specifiesthe last state

setSubState
Visibility
Public
Description
The setSubState method sets the specified substate.
Signature

virtual void setSubState (OMState* g);

Parameters

S

Specifies the substate

242 C++ Framework Execution Reference Manual

OMState Class

takeEvent
Visibility
Public
Description
The takeEvent method takes the specified event off the event queue.
Signature

virtual int takeEvent (short 1Id);

Parameters

11d
Specifiesthe event ID

Rhapsody 243

OXF Reference Pages

OMStaticArray Class

The OVBt at i cArr ay class contains basic library functions that enable you to create and
manipulate OVt at i cAr r ay objects. An OVBt at i cArray isatype-safe, fixed-size array.

This classis defined in the header fileonst ati c. h.

Attribute Summary

count Specifies the number of elements in the static
array

thelLink Specifies the link to an element in the static array

size Specifies the amount of memory allocated for the
static array

Construction Summary

OMStaticArray

Constructs an OVBSt at i cArr ay object

~OMStaticArray

Destroys the OMSt at i CAr r ay object

Method Summary

operator [] Returns the element at the specified position

add Adds the specified element to the array

find Looks for the specified element in the array

etAt Returns the element found at the specified index

getCount Determines how many elements are in the array

getSize Returns the amount of memory allocated for the
array

isEmpty Determines whether the array is empty

removeAll Deletes all the elements from the array

setAt Inserts the specified element at the given index in
the array

244

C++ Framework Execution Reference Manual

OMStaticArray Class

Attributes
count

This attribute specifies the number of elementsin the static array. It is defined as
follows:

int count;

theLink

This attribute specifies the link to an element in the static array. It is defined as
follows:

void** theLink;

size
This attribute specifies the amount of memory allocated for the static array. Itis
defined asfollows:
int size;
Example

To use a static array, the multiplicity must be bounded (for example, MAX_OBSERVERS).

Consider the following example:

observer* itsCbserver[MAX_OBSERVERS] ;
for (int iter=0; iter<MAX OBSERVERS; iter++)

if (itsObserver[iter] != NULL)
itsCoserver[iter]->notify();

Rhapsody 245

OXF Reference Pages

OMStaticArray
Visibility
Public
Description
The oMstaticArray method is the constructor for the OVBt at i cAr r ay class.
Signature

OMStaticArray (int theSize)

Parameters

theSize

Specifies the amount of memory to alocate for the static array
See Also

~OMStaticArray

~OMStaticArray
Visibility
Public
Description

The ~OMstaticArray method destroys the OVBt at i cAr r ay object.

Signature
~OMStaticArray ()
See Also
OMStaticArray

246 C++ Framework Execution Reference Manual

OMStaticArray Class

operator []
Visibility
Public
Description
The[] operator returns the element at the specified position.

Note
Thisis not the preferred method because it does not include a check of the index range.

Signature

Concept& operator [] (int 1)
Parameters
i
The index of the element to return

Return

The element at the specified position

Rhapsody 247

OXF Reference Pages

add
Visibility
Public
Description
The add method adds the specified element to the array.
Signature

void add (Concept c)

Parameters

(¢}

The element to add
See Also

removeAll

find
Visibility
Public
Description
The find method looks for the specified element in the array.
Signature

int find(Concept c) const;

Parameters

(¢}

The element you want to find
Return

An integer that represents the index of the element in the array

248 C++ Framework Execution Reference Manual

OMStaticArray Class

getAt
Visibility
Public
Description
The getAt method returns the element found at the specified index.
Signature

Concept& getAt (int i) const
Parameters
i
The index of the element to retrieve

Return

The element found at the specified index

getCount
Visibility
Public

Description

The getCount method returns the number of elementsin the static array.

Signature

int getCount () const

Return

The number of elementsin the array

Rhapsody

249

OXF Reference Pages

getSize
Visibility
Public
Description
The getSize method gets the size of the memory allocated for the static array.
Signature

int getSize () const

Return

Thesize

ISEmpty
Visibility
Public
Description
TheisEmpty method determines whether the static array is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—Thestatic array is not empty.
¢ 1—Thedtatic array is empty.

250 C++ Framework Execution Reference Manual

OMStaticArray Class

removeAll
Visibility
Public
Description
TheremoveAll method deletes all the elements from the array.
Signature

void removeAll ()

See Also

add

setAt
Visibility
Public
Description

The setAt method inserts the specified element at the given index in the array.

Signature
void setAt (int index, const Concepté& c)
Parameters

index

The index at which to add the new element

(¢}

The element to add

Rhapsody 251

OXF Reference Pages

OMString Class

The OVt ri ng class contains basic library functions that enable you to create and manipulate
OMVBt ri ngs. An OMBt ri ng isabasic string class.

This classis defined in the header fileonst ri ng. h.

Construction Summary

OMString Constructs an OMCol | ect i on object
~OMString Destroys the OMCol | ect i on object

Method and Operator Summary

operator [] Returns the character at the specified position

operator + Adds a string

operator += Adds to the existing string

operator = Sets a string

operator == Determines whether two objects are equal

operator >= Determines whether the first object is greater
than or equal to the second

operator <= Determines whether the first object is less than or
equal to the second

operator != Determines whether the first object is not equal to
the second object

operator > Determines whether the first object is greater
than the second

operator < Determines whether the first object is less than
the second

operator << Compares an output stream and a string

operator >> Compares an input stream and a string

operator * Is a customizable operator

CompareNoCase Performs a case-insensitive comparison of two
strings.

Empty Empties the string

GetBuffer Returns the string buffer

GetlLength Returns the length of the string

ISEmpty Determines whether the string is empty

OMDestructiveString2X Is used to support animation

resetSize Makes the string larger

252 C++ Framework Execution Reference Manual

OMString Class

SetAt Sets a character at the specified position in the
string
SetDefaultBlock Sets the default string size
OMString
Visibility
Public
Description

The oMstring method is the constructor for the OVSt ri ng class.

Signatures

OMString() ;

OMString (const char c);

OMString (const char* c);

OMString (const OMStringé& s) ;

Parametersfor Signatures2 and 3

c

The character to add to the newly created string
Parametersfor Signature 4

S

The string of charactersto add to the newly created string

See Also

~OMString

Rhapsody 253

OXF Reference Pages

~OMString
Visibility
Public
Description

The ~OMstring method destroys the OVBt ri ng object.

Signature
~OMString ()
See Also
OMString
operator []

Visibility

Public
Description

The[] operator returns the character at the specified position.

Signature
char operator [] (int i) const
Parameters
i
Theindex of the character to return

Return

The character at the specified position

254 C++ Framework Execution Reference Manual

OMString Class

operator +
Visibility
Public
Description
The + operator adds a string.
Signatures

OMString operator+ (const OMString& s) ;
OMString operator+ (const char s);
OMString operator+ (const char * s)

inline OMString operator+ (const OMString& sl,
const OMString& s2)

inline OMString operator+ (const OMStringé& sl,
const char * s2)

inline OMString operator+ (const char* sil,
const OMStringé& s2)
Parametersfor Signatures1, 2, and 3

S

The string to add

Parametersfor Signature4, 5, and 6

sl
The string to which to add string 2

s2
The string to add to string 1

Return

The new string

Rhapsody 255

OXF Reference Pages

operator +=
Visibility
Public
Description
The += operator adds to the existing string.
Signatures

const OMString& operator+=(const OMString& s);
const OMString& operator+=(const char s);

const OMString& operator+=(const char * s);

Parameters

5]

The characters to add to the string
Return

The updated string

256 C++ Framework Execution Reference Manual

OMString Class

operator =
Visibility
Public
Description
The = operator sets the string.
Signatures

const OMStringé& operator=(const OMStringé& s);
const OMStringé& operator=(const char s);

const OMStringé& operator=(const char * s);

Parameters

5]

The string to set
Return

The string

Rhapsody 257

OXF Reference Pages

operator ==
Visibility
Public
Description

The == operator is a comparison function used by OVBt r i ng to determine whether two
objects are equal.

Signatures

int operator==(const OMString& s2) const
int operator==(const char * c2) const

inline int operator==(const char * c1,
const OMStringé& s2)

Parametersfor Signature 1

s2

The string to compare to the current string

Parametersfor Signature 2

c2

The character to compare to the current character
Parametersfor Signature 3

cl

The character to compare to the specified string

s2

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Theobjectsare equal.
¢ 0—The objectsare not equal.

258 C++ Framework Execution Reference Manual

OMString Class

operator >=
Visibility
Public
Description
The >= operator determines whether the first object is greater than or equal to the second.
Signatures

int operators>=(const OMString& s2) const
int operators>=(const char * c2) const

inline int operators>=(const char * c1,
const OMString& s2)

Parametersfor Signature 1

s2

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character

Parametersfor Signature 3

cl

The character to compare to the specified string

s2

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thefirst object is greater than or equal to the second object.
¢ 0—Thefirst object isless than the second object.

Rhapsody 259

OXF Reference Pages

operator <=
Visibility
Public
Description
The <= operator determines whether the first object is less than or equal to the second.
Signatures

int operator<=(const OMString& s2) const
int operator<=(const char * c2) const

inline int operator<=(const char * c,
const OMStringé& s)

Parametersfor Signature 1

s2

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character

Parametersfor Signature 3

c

The character to compare to the specified string

S

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thefirst object islessthan or equal to the second.
¢ 0—Thefirst object is greater than the second.

260 C++ Framework Execution Reference Manual

OMString Class

operator I=
Visibility
Public
Description
The! = operator determines whether the first object is not equal to the second.
Signatures

int operator!=(const OMString& s2) const
int operator!=(const char * c2) const

inline int operator!=(const char * c, const OMString& s)

Parametersfor Signature 1

s2

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character
Parametersfor Signature 3

(¢}

The character to compare to the specified string

]

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thetwo objects are not equal.
¢ 0—Thetwo objectsare equal.

Rhapsody 261

OXF Reference Pages

operator >
Visibility
Public
Description
The > operator determines whether the first object is greater than the second.
Signatures

int operators(const OMString& s2) const
int operators(const char * c2) const

inline int operators(const char * ¢, const OMString& s)

Parametersfor Signature 1

s2

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character
Parametersfor Signature 3

(¢}

The character to compare to the specified string

]

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thefirst object is greater than the second.
¢ 0—Thefirst object is not greater than the second.

262 C++ Framework Execution Reference Manual

OMString Class

operator <
Visibility
Public
Description
The < operator determines whether the first object is less than the second.
Signatures

int operator< (const OMString& s) const
int operator<(const char * c2) const

inline int operator<(const char * c, const OMStringé& s)

Parametersfor Signature 1

5]

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character
Parametersfor Signature 3

(¢}

The character to compare to the specified string

]

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thefirst object isless than the specified second.
¢ 0—Thefirst object is not less than the second.

Rhapsody 263

OXF Reference Pages

operator <<
Visibility
Public
Description
The << operator is used to compare an iostream and a string.
Signature

inline omostream& operator<< (omosteam& os,
const OMString& s)

Parameters

os

The output stream to compare to the string

S

The string to compare to the output stream

operator >>
Visibility
Public
Description
The >> operator isused to compare an iostream and a string.
Signature

omistream& operator>>(omisteam& is, OMStringé& s)

Parameters

os

The input stream to compare to the string

S

The string to compare to the input stream

264 C++ Framework Execution Reference Manual

OMString Class

operator *
Visibility
Public
Description
The* operator is a customizable operator.
Signature

operator const char * ()

CompareNoCase
Visibility
Public
Description

The CompareNoCase method performs a case-insensitive comparison of two strings.

Signatures

int CompareNoCase (const OMString& s) const

int CompareNoCase (char * s) const

Parameters

S

The string to compare to the current string
Return
The method returns one of the following values:

¢ 0—Thetwo strings are not the same.
¢ 1—Thetwo strings are the same (regardless of case).

Rhapsody 265

OXF Reference Pages

Empty
Visibility
Public
Description
The Empty method empties the string.
Signature

void Empty ()

GetBuffer
Visibility
Public
Description
The GetBuffer method gets the string buffer.
Signature

char * GetBuffer (int buffer) const

Parameters

buffer
A pointer to the resized string buffer

Return

The buffer contents

266 C++ Framework Execution Reference Manual

OMString Class

GetLength
Visibility
Public
Description
The GetlLength method returns the length of the string.
Signature

int GetLength() const;

Returns

The string length

ISEmpty
Visibility
Public

Description

The IsEmpty method determines whether the string is empty.

Signature

int IsEmpty () const

Return
The method returns one of the following values:

¢ 0—Thestring is not empty.
¢ 1—Thestring is empty.

Rhapsody

267

OXF Reference Pages

OMDestructiveString2X
Visibility
Public

Description

The OMDestructiveString2X method is provided to support animation. It convertsachar *
string to OVt r i ng as part of the Rhapsody deserialization mechanism.

Signature

inline OMString OMDestructiveString2X (char * c,
OMStringé& s)

Parameters

c

Theinput string

S

A dummy parameter (used for overloading)
Return

AnQVBtring

resetSize
Visibility
Public
Description
TheresetSize method enlarges the string and copies the contents into the larger string.
Signature

void resetSize (int newSize) ;

Parameters

newSize

The new size for the string

268 C++ Framework Execution Reference Manual

OMString Class

SetAt
Visibility
Public
Description
The setAt method sets a character at the specified position in the string.
Signature

void SetAt (int i, char c)
Parameters
i
The position at which to add the character

c

The character to add

SetDefaultBlock
Visibility
Public
Description
The SetDefaultBlock method sets the default string size.
Signature

static void setDefaultBlock (int blkSize)

Parameters

blkSize
The new, default string size

Rhapsody 269

OXF Reference Pages

OMThread Class

OMrhr ead is aframework base active class. Its responsibilities are as follows:

¢+ Manage an event queue of events sent to reactive classes.

+ Digpatch the eventsin the queue to their reactive destinations on a separate RTOS
thread.

¢ Allow the client application to control the RTOS thread.
Thisclassis defined in the header file ont hr ead. h.

OMThr ead isabase classfor every classthat is active. An object of an active class:

+ Hasits own operating system thread for execution
¢+ Hasan event queue and manages it
Therefore, every active object has an OMThr ead instance, which is composed of two things:

+ An operating system thread
+ Anevent (message) queue

By default, there are at least two threads in an application: the timer thread and the main
thread. In this simple case, all events are queued in the main thread event queue.

Every operating system has a different implementation of a native thread.

Thethread is responsible for providing event services to all instances running on it. Every
event that is assigned to an object is sent to itsrelevant thread. The thread stores the eventsin
an event queue. OMThr ead usesawhi | e loop to consume events as they appear at the front of
the queue.

An active object can al so serve anonactive object. For example, your application might have a
class a that has a statechart but is also active, so it inherits from OMIhr ead and OVReact i ve.
Your application might also have aclass p that has a statechart, but is not active. Class p
inherits from OVReact i ve.

Suppose that p isrunning under a’sthread. Every event that is targeted for p must be stored
somewhere, and p does not have an event queue. Therefore, p delegates events destined for it
to a’s event queue, because p isrunning on a’s operating system thread and a has an event
queue.

If you have the following line of code, generating an event e to class p, e isstored inside a’s
OMThr ead event queue:

p -> CEN(e)

270

C++ Framework Execution Reference Manual

OMThread Class

In OMThr ead, the execute method cycles through the event queue looking for more events.
When it finds one or more events, it popsthe first event (for example, e) from the event queue.
The event has afield specifying the destination (p, in this example). p is then notified that it
should react to event e. The event is not necessarily consumed immediately—it waitsin the
event gueue. When the time arrives for the event to be consumed, it is popped from the event
gueue and injected into p’s OVReact i ve using the takeEvent method.

In Version 4.0, the inheritance from OMPr ot ect ed was replaced with aggregation. Asaresult,
the following were added to the OMThr ead interface:

¢ void lock() const—Putsalock on the thread mutex

¢ void unlock() const—Unlocks the thread mutex

¢ const OWVProtected& get Guard() const—Getsthe referenceto the

OWPr ot ect ed part
¢ OWProtected m onGuar d—Isaprivate OVPr ot ect ed part

Attribute Summary

aomthread Specifies the “instrumented” part of the
thread
endOfProcess Specifies whether the application is at the

end of a process

eventQueue

Specifies the thread’s event queue

thread

Specifies the “os” part of the thread

toGuardThread

Determines whether a section of thread
code will be protected

Construction Summary

OMThread

Constructs an OMThr ead object

~OMThread

Destroys the OMThr ead object

Method Summary

allowDeletelnThreadsCleanup

Postpones the destruction of a framework
thread until the application terminates and
all user threads are deleted

cancelEvent

Marks a single event as canceled (that is,
it changes the event’s ID to
OMCancelledEventld)

Rhapsody

271

OXF Reference Pages

cancelEvents

Marks all events targeted for the specified
OVReact i ve instance as canceled (that
is, it changes the events’ IDs to
OMCancelledEventld)

cleanupAllThreads

“Kills” all threads in an application except
for the main thread and the thread running
the cl eanupAl | Thr eads method

cleanupThread

Provides a “hook” to allow a thread to be
cleaned up without a call to the DTOR

destroyThread

Destroys the default active class or object
for the framework

doExecute Is the entry point to the thread main loop
function

execute Is the thread main loop function

getAOMThread Is used by the framework for animation

purposes

getEventQueue

Is used by the framework for animation
purposes

getGuard

Gets the reference to the OVPr ot ect ed
part

getOsHandle

Returns the thread’s operating system ID

getOSThreadEndClb

Requests a callback to end the current
operating system thread

getStepper Is used by the framework for animation
purposes

lock Puts a lock on the thread mutex

omGetEventQueue Returns the event queue

queueEvent Queues events to be processed by the
thread event loop (execute)

resume Resumes a thread suspended by the
suspend method

schedTm Creates a timeout request and delegates

the request to OMTi mer Manager

setEndOSThreadInDtor

Specifies whether an operating system
thread in destruction should be deleted

setPriority Sets the priority of the thread being
executed
setToGuardThread Sets the toGuardThread flag

shouldGuardThread

Determines whether the thread should be
guarded

start

Activates the thread to start its event-
processing loop

stopAllThreads

Is used to support the DLL version of the
Rhapsody in C++ execution framework
(Com)

272

C++ Framework Execution Reference Manual

OMThread Class

suspend Suspends the thread
unlock Unlocks the thread mutex
unschedTm Cancels a timeout request

Attributes and Flags
aomthread
This protected attribute specifies the “instrumented” part of the thread.
It is defined asfollows:

AOMThread *aomthread;

The AOMThr ead classis defined in the animation framework in the instrumented
application, and set to an empty class in non-instrumented mode.

endOfProcess

This public attribute specifies whether the application is at the end of a process. If it
is, the last thread in the process must “ clean up.”

The possible values for this flag are as follows:

¢ 0—Not at the end of a process
¢ 1—Attheend of aprocess
It is defined asfollows:

static int endOfProcess;

eventQueue
This protected attribute specifies the thread’s event queue.
It is defined as follows:

OMEventQueue *eventQueue;

The class OVEvent Queue isdefined in os. h.

Rhapsody 273

OXF Reference Pages

thread

This protected attribute specifiesthe “os’ part of the thread.
It is defined as follows:

OMOSThread *thread;

The OMOSThr ead classis defined in os. h.

toGuardThread

This protected attribute determines whether a section of thread code will be

protected. If it is set to TRUE, the code is protected. Otherwise, the code is not
protected.

It isdefined as follows:

OMBoolean toGuardThread;
OVBool ean is defined in rawtypes.h.

t oGuar dThr ead is checked by the execute method before it starts its event loop
iteration. If t oGuar dThr ead iSTRUE, execut e calsthe

START THREAD_GUARDED_SECTION and the END_THREAD_GUARDED_SECTION
macros.

OMThread
Visibility
Public

Description

The oMThread method is the constructor for the OMrhr ead class. See the section Notes for
detailed information.

Signatures

OMThread (int wapThread);

OMThread (const char* const name = NULL, const long
priority = OMOSThread: :DefaultThreadPriority,
const long stackSize = OMOSThread::DefaultStackSize,
const long messageQueueSize =
OMOSThread: :DefaultMessageQueueSize,
OMBoolean dynamicMessageQueue = TRUE) ;

274 C++ Framework Execution Reference Manual

OMThread Class

Parametersfor Signature 1

wrapThread

Specifies whether a new operating system thread is constructed (the default, wr apThr ead =
0), or isawrapper on the current thread.

A wrapper thread might be used, for example, in GUI applications where Rhapsody createsits
own thread to attach to an existing GUI thread.

Parametersfor Signature 2

name

Specifies a name for the thread. The default valueis NULL.

priority

Specifies the thread priority.

Def aul t ThreadPri ority isdefinedin os. h asfollows:
static const |ong DefaultThreadPriority;

The default value is specified in xxos. cpp. For example, nt os. cpp specifies the following
value:
const | ong OMOSThread: : Def aul t ThreadPriority =

THREAD_ PRI ORI TY_NORMAL;

stackSize

Specifies the size of the stack.

Def aul t St ackSi ze isdefined in os. h asfollows:
static const |ong DefaultStackSi ze;

The default value is specified in xxos. cpp. For example, nt os. cpp specifies the following
value:
const | ong OMOSThread: : Def aul t St ackSi ze = 0;

messageQueueSize

Specifies the size of the message queue.

Def aul t MessageQueueSi ze isdefinedin os. h asfollows:
static const |ong Default MessageQueueSi ze;

The default value is specified in xxos. cpp. For example, nt os. cpp specifies the following
value:
const | ong OMOSThr ead: : Def aul t MessageQueueSi ze =
100;

dynamicMessageQueue

Rhapsody 275

OXF Reference Pages

Specifies whether the message queue is dynamic. The default value is TRUE.

Notes

¢ OMrhread inherits from the OMPr ot ect ed class, a neutral implementation of a
mutex. Every OMThr ead instance has a mutex because, in a multithreaded
environment, your application must protect critical sections of code.

¢ OMrhr ead aggregates OMOSThr ead to get the basic threading features.

+ Initially, the message queue is empty. The maximum length of the message queue
is operating system- and implementation-dependent, and is usually set in the file
implementing the adapter for a specific operating system.

The message queue is an important building block for OMTrhr ead. It isused for intertask
communication between Rhapsody tasks (active classes). OMOSThr ead provides a thread-
safe, unbounded message queue (FIFO) for multiple writers and one reader. The reader pends
the message queue until there is a message to process.

¢ Message queues are protected against concurrent operations from different threads.

¢ [Initialy, thethread is suspended until the start method is called. The resume and suspend
methods provide away of stopping and starting the thread. Because threads usually block
when waiting for aresource like a mutex or event flag, these methods are rarely used.

Note the following distinctions between the different method calls:

¢ Thefirst version of the method is the constructor for the OMIhr ead class when a new
thread is constructed as a wrapper on the current thread.

¢ OMrhr ead creates athread that is awrapper on either the current thread or the thread
whose ID it is passed. Wrapper threads are used only for instrumentation to represent
user-defined threads (those defined outside the Rhapsody framework).

+ The second version of the method is the constructor for the OMrhr ead class when anew
thread is constructed (as opposed to awrapper on the current thread).

¢ The constructor worksin the following way:

— First, it callsthei ni t method and passesto it the nane, st ackSi ze,
messageQueueSi ze, and dynami cMessageQueue parametersthat it was
given. In addition, it passes 0 for thewr apThr ead parameter. Refer to the
alternate constructor OMThread (defined in ont hr ead. h).

— Next, it callsthe setPriority method and passestoit thepri ori t y parameter
that it was given.

See Also

nit

~OMThread

resume

276

C++ Framework Execution Reference Manual

OMThread Class

~OMThread
Visibility
Public
Description

The ~oMThread method is the destructor for the OMThr ead class. It is called by the doExecute
method.

~OMThr ead deletes (destroys) the thread if it is not the current thread. If the thread to be
deleted isthe current thread, it cannot be destroyed (because the system will halt). In this case,
the thread is marked for destruction after it is no longer the current thread.

Signature

virtual ~OMThr ead()
See Also

doExecute

allowDeletelInThreadsCleanup
Visibility
Public
Description

The allowDeletelnThreadsCleanup method postpones the destruction of aframework thread
until the application terminates and all user threads are del eted.

Do not override this method in user active classes.
Signature

virtual OMBoolean allowDeleteInThreadsCleanup ()

Rhapsody 277

OXF Reference Pages

cancelEvent
Visibility
Public
Description

The cancelEvent method marks a single event as canceled (that is, it changesthe event’s ID to
OMCancelledEventid).

Signature
virtual void cancel Event (OVEvent* ev);

Parameters

ev

Specifies the event to be canceled
Notes

In the framework, cancel Event isvirtual to support enhanced framework customization. It
can also support several event queues per task.

See Also

cancelEvents

278 C++ Framework Execution Reference Manual

OMThread Class

cancelEvents

Visibility

Public
Description

The cancelEvents method marks all events targeted for the specified OVReact i ve instance as
canceled (that is, it changes the events' IDsto OMCancelledEventid).

You might want to usethe cancel Event s method if, for example, there are several eventsin
the event queue targeted for a specific OVReact i ve instance, but the instance has aready
been destroyed because it reached a termination connector in the statechart.

Thecancel Event s method works in the following way:

¢ |tcallsunschedTm and asks OMThr eadTi ner: : i nst ance() to cancel all
timeouts (events) targeted to the specified dest i nat i on.

+ |t getsalist of eventsin the event queue and iterates through the event queue. If
the method finds an event targeted for destination, it setsitsID to
OMcCancelledEventld. The event still remains in the event queue; after it is
eventually removed from the event queue, it is discarded.

Signature

virtual void cancel Event s(OVReacti ve* destination);

Parameters

destination

Specifies an OVReact i ve instance
Notes

In the framework, cancel Event s isvirtual to support enhanced framework customization. It
can also support several event queues per task.

See Also
cancelEvent
destination

unschedTm

Rhapsody 279

OXF Reference Pages

cleanupAllThreads
Visibility
Public

Description

The cleanupAllThreads method “kills’ all threads in an application except for the main thread
and the thread running the cl eanupAl | Thr eads method.

The method supports static instances of active classes (particularly the static instance of
OWMai nThr ead).

Signature

static OMThread* cl eanupAll Threads();

Notes

Thecl eanupAl | Thr eads method is only called in RTOSes where the process cannot be
“exited” in asimple manner.

cleanupThread
Visibility
Public
Description

ThecleanupThread method provides a*hook” to allow athread to be cleaned up without a call
to the DTOR. This method enables you to clean up athread without destroying the virtual
function table.

Signature

virtual void cl eanupThread()

280 C++ Framework Execution Reference Manual

OMThread Class

destroyThread
Visibility
Public
Description

The destroyThread method destroys the default active class or object for the framework. 1t
supports static instances of active classes (particularly the static instance of OWai nThr ead).

If you have a custom RTOS adaptor that deletes threads in GSEndAppl i cat i on, modify the
adapter to call dest r oyThr ead instead of the del et e operator.

If you create by-value instances of an active class, you should override the dest r oy Thr ead
method to prevent the system from attempting to delete the static instances.

Signature

virtual void destroyThread ()

doExecute
Visibility
Public
Description

ThedoExecute method isthe entry point to the thread main loop function. doExecut e handles
“bookkeeping” issues and calls the execute method to do the actual event loop processing.

doExecut e handles situations where the event loop is stopped for some reason. For example,
if thereisasingle active object running on its own thread, and the object reaches atermination
connector, it must “kill” itself and its thread. However, it cannot kill the thread until after it
exits the event loop.

Signature

static void doExecute (voi d* ne);

Parameters

me

Specifies a pointer to the OMThr ead instance to activate

Rhapsody 281

OXF Reference Pages

Notes

The doExecut e method calls ~OMThread, the destructor for the OMrhr ead class, to delete a

execute

thread.
See Also
execute
~OMThread
Visibility
Public
Description

The execute method is the thread main loop function. By default, this protected function
processes the eventsin the thread’s queue.

You can overwrite execut e in order to implement customized thread behaviors.

The execut e method worksin the following way:

1

First, it setsthe destination to NULL and the det er i nat e attribute (defined in
ont eact i ve. cpp) to FALSE. The method continuesiterating through the event queuein
an almost infinite loop until t oTer mi nat e = TRUE.

execut e entersawhi | e loop to process events. Firgt, it checksthe toGuardThread
attribute. If t oGuar dThr ead iS TRUE, execut e callsthe
START_THREAD_GUARDED_SECTION macro. t oGuar dThr ead should be set to TRUE by
your application, if necessary.

execut e getsthefirst event from the event queue. If the eventisnot aNULL event,
execut e callsthe getDestination method to determine the OVReact i ve destination for
the event.

If the event is not a canceled event, execut e calls the takeEvent method to request that
the reactive object process the event.

Finally, execut e callsthe isDeleteAfterConsume method to determine whether the
deleteAfterConsume attribute isTRUE. If itis, execut e callsthe Delete method to delete
the event.

282

C++ Framework Execution Reference Manual

OMThread Class

Signature

vi rtual OVReactive* execute();

Return

This method returns OVReact i ve, which specifies the reactive class that “owns’ the thread
(active).

Note

The Rhapsody framework does not provide any default exception handler. One reason for
thisisthat you can configure BSPs to exclude exception handling, which impacts footprint
and performance. However, this does not prevent you from using your own C++ exception
handler.

You may prefer to put ageneral fallback handler in the main loop of OMThr ead in the
execut e method. You can also add exception handling as a conditional code segment that
should be disabled by default.

You can override execute to specialize different thread behaviors. For example, you can
create an active class that is not reactive (see Active and Reactive Classes).

See Also
Delete
doExecute
getDestination
isDeleteAfterConsume
start

START _THREAD_ _GUARDED_SECTION

takeEvent

toGuardThread

Rhapsody 283

OXF Reference Pages

getAOMThread
Visibility
Public
Description
The getAOMThread method is used by the framework for animation purposes.
Signature

AOMThread* getAOMThread () const

getEventQueue
Visibility
Public
Description
The getEventQueue method is used by the framework for animation purposes.
Signature

AOMEventQueue* getEventQueue () const;

getGuard
Visibility
Public
Description
The getGuard method gets the reference to the OVPr ot ect ed part.
Signature

inline const OMProtected& getGuard() const

Return

The reference to the OvPr ot ect ed part

284 C++ Framework Execution Reference Manual

OMThread Class

getOsHandle

Visibility

Public
Description

The getOsHandle method returns the thread’s operating system ID. This method is operating
system-dependent.

Signatures

voi d* get CsHandl e() ;

voi d* get CsHandl e(voi d*& osHandl e) ;

Parametersfor Signature 2

osHandle

Specifies the operating system handle
Return
The thread’s operating system ID

Notes

+ The second version of the method supportsthe DLL version of the framework
(COM).

+ A real-time operating system (RTOS) usually provides a pointer to an ID or
handle for the active thread. Thisis useful if you need to know the ID of thereal
thread that is running, because the object itself only “knows’ that it is running on
OMThr ead.

See Also

getOsHandle

Rhapsody 285

OXF Reference Pages

getOSThreadEndClb
Visibility
Public

Description

The getOSThreadEndClb method requests a callback to end the current operating system
thread. There are two callbacks, depending on whether you are “sitting” on your own thread,
or you are an object belonging to another thread.

Signature

voi d get OSThreadEndd b (
OMOSThr ead: : OMOSThr eadEndCal | Back *cl b_p,
void **argl_p, OWVBool ean onExecut eThread = TRUE)
const;

Parameters

clb p
Is apointer to the callback function.

argl p
Specifies the argument for the callback function.

onExecuteThread

Specifies how the current thread will be “killed.” If thisis TRUE, the current thread killsitself.
If it is FALSE, another thread will kill the current thread

Note

The get OSThr eadEndd b method istypically used in conjunction with the
setEndOSThreadInDtor method.

See Also

setEndOSThreadInDtor

286 C++ Framework Execution Reference Manual

OMThread Class

getStepper
Visibility
Public
Description
The getStepper method is used by the framework for animation purposes.
Signature

AOMStepper* getStepper () const;

lock
Visibility
Public
Description
The lock method puts alock on the thread mutex.
Signature

inline void lock() const

omGetEventQueue
Visibility
Public
Description

The omGetEventQueue method returns the event queue. This method is not used by the
framework.

Signature

virtual const OMEventQueue* omGetEventQueue () const

Return

The event queue

Rhapsody 287

OXF Reference Pages

queueEvent
Visibility
Public

Description

The gueueEvent method queues events to be processed by the thread event loop (execute).
Signature

vi rtual OMBool ean queueEvent (OVEvent* ev,
OvBool ean from SR = FALSE) ;

Parameters

ev

Specifies the event to be queued

fromISR

Specifies whether the event has been generated by an interrupt service request (ISR)
Return
The method returns one of the following Boolean values:

¢ TRUE—The method successfully queued the event.
¢ FALSE—The method was unable to queue the event.

Notes

In the framework, queueEvent isvirtual to support enhanced framework customization. It
can also support several event queues per task.

See Also
action

execute

288 C++ Framework Execution Reference Manual

OMThread Class

resume
Visibility
Public
Description
The resume method resumes a thread suspended by the suspend method.

Threads usually block when waiting for aresource like amutex or event flag, sor esune is
rarely used by the generated code. You can user esune for advanced scheduling.

Signature
voi d resume();

See Also

suspend

schedTm
Visibility
Public
Description

The schedTm method creates a timeout request and del egates the request to
OMTi mer Manager .

Signature

virtual void schedTm (tineUnit delteTime, short id,
OVReactive *instance, const OvHandl e * state = NULL);

Parameters

delteTime
Specifies the delay time, in milliseconds, before the timeout request is triggered.

id
Identifies the timeout, either at delivery or for canceling. Every timeout has a specific ID to
distinguish it from other timeouts.

instance

Specifies a pointer to the OVReact i ve instance requestor. After atimeout has matured, this
parameter points to the instance that should be notified.

Rhapsody 289

OXF Reference Pages

state
Specifies an optional parameter used by the Rhapsody instrumentation to designate a pointer
to the state name upon which the timeout is scheduled. The default valueis NULL, for the
noninstrumented case.

Notes
¢ Intheframework, schedTmisvirtual to support enhanced framework
customization. It can also support several timer managersin the system (for
example, one per active class).
¢ schedTmcreates the timeout using the incarnateTimeout method defined in
onr eactive. h.
¢ schedTmdelegates the timeout to OMTi mer Manager using the set method
definedinti mer. h.
¢ The code generator generates a call to schedTmwhen it encounters timeout
transitions.
¢ You can use schedTm if the statechart implementation is overridden.
See Also

incarnateTimeout

set

290 C++ Framework Execution Reference Manual

OMThread Class

setEndOSThreadInDtor
Visibility
Public
Description

The setEndOSThreadinDtor method specifies whether an operating system thread in
destruction should be del eted.

Signature
voi d set EndOSThr eadl nDt or (OVBool ean val)
Parameters

val
Specifies one of the following Boolean values:
¢ TRUE—Delete the abject representing the operating system thread (and rel ease the
resources).

¢ FALSE—Do not delete the object representing the operating system thread. For
example, the application is executing on thisthread and, if it is deleted, the system
will “leak” resources.

Notes

¢ -OMThread callsset EndOSThr eadl nDt or with avalue of TRUE prior to
destroying the thread.

¢ deregisterThread (private) callsset EndOSThr eadl nDt or with avalue of
TRUE prior to destroying the thread.

¢ set EndOSThr eadl nDt or istypicaly used in conjunction with the isNotDelay
method.

See Also

~OMThread

isNotDelay

Rhapsody 291

OXF Reference Pages

setPriority

Visibility
Public

Description
The setPriority method sets the priority of the thread being executed.
This method is operating system-dependent.

Signature

void setPriority (int pr);

Parameters

pr
Specifies the thread’s priority

See Also

OMThread

setToGuardThread
Visibility
Public
Description
The setToGuardThread method sets the toGuardThread flag.
Signature

inline void set ToGuardThread (OvBool ean fl ag)

Parameters

flag
Specifies the value for the toGuardThread attribute

See Also

toGuardThread

292 C++ Framework Execution Reference Manual

OMThread Class

shouldGuardThread
Visibility
Public
Description

The shouldGuardThread method determines whether the thread should be guarded.

Signature

inline OMBoolean shouldGuardthread() const

Return
The method returns one of the following Boolean values:

¢ TRUE—Guard the thread.
¢ FALSE—Do not guard the thread.

start
Visibility
Public

Description
The start method activates the thread to start its event-processing loop.

If an object hasits own thread, when the object is created, the thread is suspended. Thest ar t
method is used to start event processing. This enables an active classto initialize itself by
calling the startBehavior method, then to call the st art method to start event processing.

The st art method worksin the following way:

* |f thevalueof thedoFor k attributeisFALSE, st art callstheexecute method and
the main thread simply grabs control from the system.

+ |f thevalue of the doFor k attributeis TRUE, st ar t issuesthe following calls.

OMOSThread * oldWrapperThread = thread;
thread = theOSFactory () ->createOMOSThread (
doExecute, this);
In this situation, the thread is registered, but does not take control. Another thread (for
example, a GUI thread) will be responsible for event loop processing.

Rhapsody 293

OXF Reference Pages

Signature

virtual void start(int = 0);
Notes

¢ The constructor of the composite object starts preexisting instances.

¢ The creator should start any dynamically created instances of oMThread.
See Also

execute

resume

suspend

stopAllThreads
Visibility
Public
Description
The stopAllThreads method is used to support the DLL version of the Rhapsody in C++

execution framework (COM).

Note

The method is used in the COM environment only, as part of the implementation of
OXF: : end.

Signature
stati c OMThread* stopAll Threads(OMrhr ead* ski pne);
Parameters

skipme
The framework uses this parameter to avoid killing the NTHandl eCl oser in the Microsoft
environment.

294 C++ Framework Execution Reference Manual

OMThread Class

suspend
Visibility
Public
Description
The suspend method suspends the thread.

Threads usually block when waiting for aresource like a mutex or event flag, so suspend is
rarely used by the generated code. You can use suspend for advanced scheduling.

Signature

voi d suspend();

See Also

resume

unlock
Visibility
Public
Description

The unlock method unlocks the thread mutex.

Signature

inline void unlock() const

Rhapsody 295

OXF Reference Pages

unschedTm
Visibility
Public
Description
The unschedTm method cancels atimeout request.
This method is used when:

¢ Exiting a state—The timeout is no longer relevant.

+ An object hasbeen destroyed—In this case, all timers associated with the object
are destroyed.

Signature
virtual void unschedTm (short id, OVReactive *c);
Parameters
id
Specifiesthe ID tag of the timeout request. If thisis OMEventAnyEventid, unschedTmcancels

al events whose destination is this specific instance of OVReact i ve. If thisis set to a specific
event ID, unschedTmcancels only that event.

c

Specifies a pointer to the OVReact i ve instance requestor. After atimeout has been canceled,
this parameter points to the instance that should be notified.

Notes
¢ Intheframework, unschedTmisvirtual to support enhanced framework customization. It

can also support several timer managersin the system (for example, one per active class).

¢ Thecode generator generates acall to unschedTm when the state upon which the timeout
was scheduled has been exited.

¢ unschedTmcallsthe unschedTm method defined int i mer . h.
¢ Canceling atimeout requires one of two actions:
— Deleting the timeout from the heap
— Canceling it inside the event queue (if it was already dispatched) by iterating
the event queue

¢ You can use unschedTmin cases where the statechart implementation is
overridden.

296 C++ Framework Execution Reference Manual

OMThread Class

See Also

OMEventAnyEventld,

cancelEvents

Rhapsody 297

OXF Reference Pages

OMThreadTimer Class

OMThr eadTi ner inheritsfrom OMTi mer Manager and performsthe actual timing servicesfor
the framework and your application. Thisclassis declared in thefileti ner . h.

Thread timing is delegated to OMThr eadTi ner by OMTi mer Manager so OMTi mer Manager
can be ageneral purpose timer, and other timers can be created to perform specific timing
tasks. For example, OMThr eadTi ner isaperiodic timer—every tick time it starts working,
then suspendsitself for thetick time period (so as not to consume CPU time). Another possible
type of timer would be an asynchronous timer—one activated by an interrupt from the
operating system.

Currently, OMThr eadTi mer isthe only specific timer in the Rhapsody framework.

Note
The OMThr eadTi mer method is part of the base class, OMTIi nmer Manager .

Construction Summary

~OMThreadTimer Destroys the OMThr eadTi mer object

Method Summary

action Sends a matured timeout request to the
relevant thread, where it is then inserted
into the thread’s event queue

initinstance Creates an instance of OMThr eadTi ner

298 C++ Framework Execution Reference Manual

OMThreadTimer Class

~OMThreadTimer
Visibility
Public
Description

The ~OMThreadTimer method is the destructor for the OMIhr eadTi mer class.

Signature

RP_FRAMEWORK DLL virtual ~OMTrhreadTi mer

action
Visibility
Public
Description

The action method sends a matured timeout request to the relevant thread, where it is then
inserted into the thread’s event queue.

Theact i on method checksthe value of i sNot Del ay to see whether the timeout isadelay. If
the timeout isnot adelay (i sNot Del ay = TRUE), act i on determines the thread of the
receiver. First, act i on calls getDestination to determine the OVReact i ve instance to which
the timeout is delegated.

If the OVReact i ve instance exists, act i on calls getThread to determine the OMThr ead to
which the timeout is delegated. If the OMThr ead instance exists, act i on callsgueueEvent to
insert the timeout in the thread’s event queue.

If thetimeout isadelay (i sNot Del ay = Fal se), thethread isthe receiver. act i on cals
get Dest i nat i on, then callswakeup.

Signature

RP_FRAMVEWORK DLL virtual void action (Tineout *tineout);

Parameters

timeout

Specifies the timeout request to be sent to the thread

Rhapsody 299

OXF Reference Pages

Note

Theact i on method overrides the private act i on method defined in the
OMTTi nmer Manager class.

See Also

getDestination
getThread
isNotDelay

OMDelay

OMTimerManager

gueueEvent

wakeup

initinstance
Visibility
Public

Description

Theinitinstance method creates an instance of OMThr eadTi mer . OMThr eadTi mer isa
singleton.

Signature

RP_FRAMEWORK DLL static OMThreadTimer* initInstance (
int ticktime =
OMTimerManagerDefaults::defaultTicktime,
unsigned maxTM = OMTimerManagerDefaults::defaultMaxTM,
OMBoolean isRealTimeModel = TRUE) ;

Parameters

ticktime

Specifies the basic system tick, in milliseconds. Every ticktime, the framework and user
application are notified that the time was advanced.

defaultTicktime isdefinedint i mer . h asfollows:
static const unsigned defaultTicktine;

300 C++ Framework Execution Reference Manual

OMThreadTimer Class

The default value is specified in oxf . cpp asfollows:
const unsi gned
OMTi mer Manager Def aul t s: : defaul t Ti cktime = 100

maxTM

Specifies the maximum number of timeouts that can exist simultaneously in the system. The
value for max TMis used to construct the heap and matured list for storing timeouts.

defaultMaxTM isdefinedint i mer . h asfollows:
static const unsigned defaul t MaxTM

The default value is specified in oxf . cpp asfollows:
const unsi gned
OMTi mer Manager Def aul t s: : def aul t MaxTM = 100;

See Also

OMTimerManager

Rhapsody 301

OXF Reference Pages

OMTimeout Class

A timeout is an event used for notification that a specified time interval has expired (that is, it
implements a UML time event).

Timeouts are either created by instances entering states with timeout transitions, or delay
regquests from user code. In the latter case, thet i meout Del ayl d of thisevent is asfollows:
const short timeoutDelayld = -1;

The OMTi meout classisdeclared in the header fileevent . h.

OMTi meout uses the following comparison functions to manipulate its heap structure:
i nt operator==(OMIi meout & tn)
{ OMBool ean mat chDest = getDestination() ==
tn. getDestination();
OvBool ean matchld = ((getTineoutld() ==
tn.getTinmeoutld()) || (getTineoutld() ==
OvEvent AnyEvent1d) ||
(QOVEvent AnyEventld == tn.getTinmeoutld()));
return (matchDest && matchld);

i nt operator>(OMIineout& tn) {return dueTine >
tn. dueTi ne; }

i nt operator<(OMIineout& tn) {return dueTine <
tn. dueTi ne; }

Attribute Summary

timeoutDelayld Identifies a delay request from user code

Macro Summary

DECLARE_MEMORY_ALLOCATOR Specifies a set of methods that declare the
memory pool for timeouts

Construction Summary

OMTimeout Constructs an OMTi nmeout object

~OMTimeout Destroys the OMTi meout object

302 C++ Framework Execution Reference Manual

OMTimeout Class

Method Summary

operator == Determines whether the current values of
destinati on and Ti meout are the
same as those of the specified timeout

operator > Determines whether the current value of
Ti meout is greater than the due time of
the specified timeout

operator < Determines whether the current value of
Ti meout is less than the due time of the
specified timeout

Delete Deletes a timeout from the heap

getDelay Returns the current value of del ayTi ne

getDueTime Returns the due time of a timeout request

stored in the heap

getTimeoutld

Returns the current value for ti neout | d

isNotDelay Determines whether a timeout event is a
timeout delay

new Allocates additional memory

setDelay Sets the value of Ti neout

setDueTime Specifies the value for the Ti meout

attribute

setRelativeDueTime

Calculates and sets the due time for a
timeout based on the current system time
and the requested delay time

setState

Used by the framework to set the current
state

setTimeoutld

Specifies the value for t i neout | d

Attribute

timeoutDelayld

This global attribute identifies a delay request from user code. It is defined as

follows:

const short timeoutDelayId = -1;

Rhapsody

303

OXF Reference Pages

Macro
DECLARE MEMORY_ALLOCATOR

This public macro specifies a set of methods that declare the memory pool for
timeouts. The default number of timeoutsis 100.

The DECLARE_MEMORY_ALLOCATOR macro isdefined in MemAl | oc. h asfollows:

#define DECLARE MEMORY ALLOCATOR (CLASSNAME)
public:

CLASSNAME * OMMemoryPoolNextChunk;
DECLARE ALLOCATION_ OPERATORS
static void OMMemoryPoolIsEmpty () ;
static void OMMemoryPoolSetIncrement (int value) ;
static void OMCallMemoryPoolIsEmpty (
OMBoolean flagValue) ;
static void OMSetMemoryAllocator (
CLASSNAME* (*newAllocator) (int)) ;

OMTimeout
Visibility
Public
Description
The OMTimeout method is the constructor for the OMTi neout class.
Signatures

OMTi meout () ;

OMTi meout (short id, OVReactive* pdest, tinmeUnit delay,
const OwHandl e* theState);
Parameters
id
Specifies the timeout 1D

pdest
Specifies the destination OVReact i ve instance

delay
Specifies the requested delay, in milliseconds

theState

304 C++ Framework Execution Reference Manual

OMTimeout Class

Specifies an optiona state handle used for Rhapsody instrumentation purposes
See Also

~OMTimeout

~OMTimeout

Visibility

Public
Description

The ~OMTimeout method is the destructor for the OMTi meout class.
Signature

~OMTi meout () ;

See Also

OMTimeout

operator ==
Visibility
Public

Description

The == operator is a comparison function used by OMTi mer Manager to manipulate its heap
structure. It determines whether the current values of dest i nat i on and Ti neout arethe
same as those of the specified timeout.

The comparison yields one of the following values:
¢ 1—Thecurrent values of dest i nati on and Ti meout are the same as those of

the specified timeout.

¢ (0—Thecurrent values of dest i nat i on and Ti neout are not the same as those
of the specified timeout.

Signature

int operator == (OMIineout& tn) {
OVBool ean nat chDest = getDestination() ==
tn. getDestination();
OVBool ean matchld = ((getTimeoutld() ==

Rhapsody 305

OXF Reference Pages

tn.getTineoutld()) |]

(getTineoutl d() == OVEvent AnyEventld) ||

(OvEvent AnyEvent | d == tn.getTimeoutld()));
return (matchDest && matchld);}

Parameters

tn

Specifies the address of the timeout

See Also

operator >

operator <

operator >
Visibility
Public
Description

The > operator is a comparison function used by OMTi mer Manager to manipulate its heap
structure. It determines whether the current value of Ti meout is greater than the due time of
the specified timeout.

The comparison yields one of the following values:

¢ 1—Thecurrent value of Ti meout is greater than the due time for the specified
timeout.

¢ 0—Thecurrent value of Ti meout isnot greater than the due time for the specified
timeout.

Signature

int operator > (OMi nmeout & tn)

Parameters

tn

Specifies the address of the timeout
See Also

operator ==

operator <

306 C++ Framework Execution Reference Manual

OMTimeout Class

operator <
Visibility
Public
Description

The < operator is a comparison function used by OMTi mer Manager to manipulate its heap
structure. It determines whether the current value of Ti meout islessthan the due time of the
specified timeout.

The comparison yields one of the following values:

¢ 1—Thecurrent value of Ti meout islessthan the due time for the specified
timeout.

¢ 0—Thecurrent value of Ti meout isnot less than the due time for the specified
timeout.

Signature

int operator < (OMi nmeout& tn)

Parameters

tn

Specifies the address of the timeout
See Also
operator ==, page 305

operator >, page 306

Rhapsody 307

OXF Reference Pages

Delete

Visibility
Public

Description

The Del et e method del etes a timeout from the heap. Thisis the only method that should be
used to delete timeouts.

Signature

void Del ete();

Notes

¢ TheunschedTm method iterates through the heap, and callsthe Del et e method to
delete one or more timeouts.

¢ TheDECLARE_MEMORY_ALLOCATOR macro creates the memory pool for
timeouts. The Del et e operator returns memory to the memory pool. The new
operation gets memory from the memory pool.

See Also

DECLARE_MEMORY_ALLOCATOR

ne

unschedTm

308

C++ Framework Execution Reference Manual

OMTimeout Class

getDelay
Visibility
Public
Description
The get Del ay method returns the current value of del ayTi ne.
Signature

timeUnit getDel ay() const

Return
The value for timeout delays, in milliseconds
See Also

setDelay

getDueTime
Visibility
Public
Description
The get DueTi me method returns the due time of atimeout request stored in the heap.
Signature

timeUnit getDueTi me() const

Return

The time at which the timeout request becomes due (ready to be sent to the relevant thread as
an event)

Rhapsody 309

OXF Reference Pages

getTimeoutld
Visibility
Public
Description
Theget Ti meout | d method returns the current value for t i meout | d.
Signature

short getTi meoutld() const

Return
The timeout |ID

Notes

Rhapsody defines several special 1D values, asfollows:

Rhapsody ID Value Description

OvEvent Nul | I d -1 The null event ID

OVEvent Ti meout | d -2 The timeout event ID

OVEvent Cancel | edEvent 1 d -3 The canceled event ID

OVEvent AnyEvent | d -4 The ID for all events delegated to a
specific OVReact i ve instance

OMEvent St art Behavi or | d -5 The ID reserved for the
OVReact i ve st art Behavi or event

OVEvent OXFEndEvent | d -6 Used for COM support in terminating the
framework when it is used by multiple
COM servers in different DLLs

See Also

setTimeoutld

310 C++ Framework Execution Reference Manual

OMTimeout Class

isNotDelay
Visibility
Public

Description

The isNotDelay method determines whether atimeout event is atimeout delay.

Signature

OvBool ean i sNot Del ay() const

Return
The method returns one of the following Boolean values:

¢ TRUE—Thetimeout is not adelay.
¢ FALSE—Thetimeout isadelay.

new
Visibility
Public
Description
The new operator allocates additional memory.

The following macros call this method:

¢ GEN

¢ GEN _BY_GUI

¢ GEN BY X
Signature

void * operator new (size_t size, void * p);
Parameters
size

Specifies the memory required

p
Specifies a pointer to the memory location

Rhapsody

311

OXF Reference Pages

Notes
¢ Rhapsody overwrites the standard new operator to support its static architecture
during run time.
¢ Rhapsody uses nal | oc and dynamic memory allocation (DMA) during
initialization.
¢ TheDECLARE_MEMORY_ALLOCATOR macro creates the memory pool for
timeouts. The new operator gets memory from the memory pool. The Del et e
operation returns memory to the memory pool.
See Also
DECLARE_MEMORY_ALLOCATOR
Delete
GEN
GEN_BY_GUI
GEN_BY_X
setDelay
Visibility
Public
Description

The setDelay method sets the value of Ti meout .

Signature

voi d setDel ay(timeUnit del ay)

Parameters

delay
Specifies the timeout delay, in milliseconds

See Also

getDelay

312 C++ Framework Execution Reference Manual

OMTimeout Class

setDueTime

Visibility

Public
Description

The setDueTime method specifies the value for the Ti meout attribute.
Signature

voi d setDueTi me(tineUnit newbueTi ne)

Parameters

newDueTime

Specifies the new value for Ti meout
See Also

getDueTime

setRelativeDueTime
Visibility
Public
Description

The setRelativeDueTime method calculates and sets the due time for a timeout based on the
current system time and the requested delay time. This method is called by the set method.

Signature
voi d setRel ativeDueTi me(tineUnit now)

Parameters

now

Specifies the current system time

See Also

(%]
—+

Rhapsody 313

OXF Reference Pages

setState
Visibility
Public

Description

The setState method is used by the framework to set the current state. This method is used for
animation purposes.

Signature

void setState (const OMHandle * s)

See Also

getTimeoutld

314 C++ Framework Execution Reference Manual

OMTimeout Class

setTimeoutld
Visibility
Public
Description
The setTimeoutld method specifiesthe valuefor t i meout | d.
Signature

void setTinmeoutld (short id)
Parameters
id
Specifiesthe identifier to assigntoti neout I d

Notes

Rhapsody defines several special 1D values, asfollows:

Rhapsody ID Value Description

OVEvent Nul I 1d -1 The null event ID

OvEvent Ti neout 1 d -2 The timeout event ID

OVEvent Cancel | edEvent | d -3 The canceled event ID

OVEvent AnyEvent | d -4 The ID for all events delegated to a
specific OVReact i ve instance

OMEvent St art Behavi orl d -5 The ID reserved for the OVReact i ve
st art Behavi or event

OVEvent OXFEndEvent | d -6 Used for COM support in terminating the
framework when it is used by multiple
COM servers

Rhapsody 315

OXF Reference Pages

OMTimerManager Class

OMTi mer Manager providestimer services for all threads using a single timer task. The class
is declared in the header filet i ner. h.

OMTi mer Manager manages timeout requests and issues timeout events to the system objects.
OMTi mer Manager isasingleton active object. During framework initialization, the singleton
is created and a single new thread is created for managing the timeout requests.

Note

In every Rhapsody-generated application, a separate thread provides timer support for the
application. If your application is single-threaded, the Rhapsody-generated application will
have two threads—one thread for the application and one thread for timer support.

OMThr eadTi mer inheritsfrom OMTi ner Manager and performsthe actual timing servicesfor
the framework and your application. For more information on OMThr eadTi ner, see
OMThreadTimer Class.

OMTi mer Manager can implement two time models:

+ real time—Time advances according to the actual underlying operating system
clock.

+ simulated time—Time advances explicitly, by calling the consumeTime method,
or implicitly, when all reactive objects are idle (they do not have an event in their
event gueue) and thereis at least one pending timeout.

Simulated time is useful for debugging and algorithm validation.

The simulated time support is in run-time (a parameter is provided to the framework in the
application initialization). However, in order to switch between real and simulated time, you
need to regenerate and build the code.

In the current version, simulated time is handled at initialization time, viathei sReal Ti ne
parameter in OXF: : init.

The following methods are used with simulated time mode: init, the
OMTi mer Manager Def aul t s class, goNext (private), and goNextAndPost.

316 C++ Framework Execution Reference Manual

OMTimerManager Class

Attribute Summary

overflowMark

Specifies the value used to determine
whether the current system time has
“overflowed”

Construction Summary

OMTimerManager

Constructs an OMTi mer Manager object

~OMTimerManager

Destroys the OMTi mer Manager object

Method Summary

action Sends a matured timeout request to the
relevant thread, where it is then inserted
into the thread’s event queue

cbkBridge Is a bridge to get an interrupt from the

operating system via the t i meTi ckChbk
(private) method

clearlnstance

Cleans up the singleton instance of the
timer manager

consumeTime

Is used in simulated time mode to
simulate time consumption

destroyTimer

Cleans up the timer manager singleton
instance

etElapsedTime

Returns the value of m_Ti ne, the current
system time.

goNextAndPost Is used in simulated time mode

init Starts the timer ticking

initinstance Initializes the singleton instance

instance Creates the singleton instance of the timer
manager

resume Is used by the framework to resume the
timer during animation

set Delegates a timeout request to

OMTi mer Manager

setElapsedTime

Sets the value of m Ti ne, the current
system time

softUnschedTm Removes a specific timeout from the
matured list
suspend Is used by the framework to suspend the

timer during animation

Rhapsody

317

OXF Reference Pages

unschedTm Cancels a timeout request

Attributes

over flowM ark

This protected attribute specifies the value used to determine whether the current system time
(m_Ti me) has “overflowed.” m_Ti me isimplemented as an unsigned long integer; its
maximum value is implementation-dependent.

It isdefined as follows:

RP_FRAMEWORK DLL static const timeUnit
overflowMark;

The timeUnit method isdefinedinrawt ypes. h asfollows:

typedef unsigned long timeUnit;

Thevaluefor over f | owvar k isspecifiedinti mer . cpp asfollows:

const timeUnit OMTimerManager::overflowMark =
0x80000000;

The post method comparesm Ti ne to over f | owvar k after it gets a pointer to the current
timeout request in the heap. If m Ti me >=over f | owMar k, the post method iterates over the
heap to adjust the dueTi e of each timeout request, and resetsm Ti ne asfollows:

m Time &= ~overflowMark;

Updating dueTi me and m_Ti me uses system resources. You should monitor m Ti me carefully
for your application.

318

C++ Framework Execution Reference Manual

OMTimerManager Class

OMTimerManager
Visibility
Public
Description

The OMTimerManager method is the constructor for the OMTIi mer Manager class.

Signature

RP_FRAMEWORK DLL OMTimerManager (int ticktime =
OMTimerManagerDefaults::defaultTicktime,
unsigned int maxTM =

OMTimerManagerDefaults: :defaultMaxTM,
OMBoolean isRealTimeModel = TRUE) ;

Parameters

ticktime

Specifies the basic system tick, in milliseconds. At every tick, the Rhapsody framework and
user application are notified that the time was advanced.

Thedef aul t Ti ckt i nme specifies the default tick time, defined int i mer . h asfollows:
static const unsigned defaultTicktine;

The default value is specified in oxf . cpp asfollows:
const unsi gned OMIi mer Manager Def aul ts::
defaul t Ti ckti me = 100;

maxTM
Specifies the maximum number of timeouts that can exist simultaneously in the system. The
value for max TMis used to construct the heap and the matured list for storing timeouts.

Thedef aul t MaxTMisdefinedint i mer . h asfollows:
static const unsigned defaul t MaxTM

The default value is specified in oxf . cpp asfollows:
const unsi gned OMIi mer Manager Defaul ts: :
def aul t MaxTM = 100;

isRealTimeModel

Specifies whether the time model isreal (TRUE) or simulated (FALSE).

Rhapsody 319

OXF Reference Pages

Notes

¢ Thedefaul t Ti ckti me is100 milliseconds. Asyou decreaset i ckti ne (for
example, to 50 ms) you get a“finer” timer accuracy, but the thread consumes
more CPU time (because it's a separate thread). In addition, the actions that your
application performs every t i ckt i me aso take time. If you specify avery small
ti ckti me, the system might get into conflicts. You should use 100 milliseconds
for thisvalue.

¢ You can change the default clock tick of 100 milliseconds by editing the value
assigned to def aul t Ti ckt i me in the constructor and then recompiling the OXF
libraries.

¢ You can override the default tick time by setting the Ti ner Resol ut i on property
(under <l ang>_CG : Fr amewor k).

¢ Theframework uses max TMto construct a heap and amatured list of timeouts. The
def aul t MaxTM is 100. max TMenables the dynamic framework to provide a
static architecture, thereby avoid dynamic memory allocation during run time. In
addition, a static run-time architecture enables you to easily analyze the system.
Rhapsody static events facilitate real-time and safety-critical systems that do not
reguire (or allow) dynamic memory management during run time. Note, however,
that Rhapsody requires mal | oc during initialization and your application must
support dynamic memory management.

¢ TheDECLARE_MEMORY_ALLOCATOR macro creates the memory pool for
timeouts. The new operator gets memory from the memory pool. The Delete
operation returns memory to the memory pool.

¢ To change the value of maxTMfor your application, change the def aul t MaxTM
attribute. You can also override the default maximum number of timeouts by
setting the Ti mer MaxTi meout s property (under <l ang>_CG : Fr amewor k).

+ If your application exceeds max TMand tries to create additional timeouts, the
return value will be NULL. You must specify, in advance, the maximum number
of timeouts that can exist together in the system.

See Also

DECLARE MEMORY_ALLOCATOR

defaultMaxTM

defaultTicktime

320 C++ Framework Execution Reference Manual

OMTimerManager Class

~OMTimerManager

action

Visibility
Public

Description

The ~OMTimerManager method is the destructor for the OMTi mer Manager class. It deletes
(destroys) the operating system entity that the instance wraps.

Signature

RP_FRAMEWORK _DLL virtual ~OMIi ner Manager () ;

See Also

OMTimerManager

Visibility
Public

Description

The action method sends a matured timeout request to the relevant thread, whereit is then
inserted into the thread’s event queue.

This method is overridden by the OMTrhr eadTi mer : : act i on method.
Signature

RP_FRAMVEWORK DLL virtual void action (
OMTi meout *timeout);

Parameters

timeout

Specifies the timeout request to be sent to the thread

See Also

action

Rhapsody 321

OXF Reference Pages

cbkBridge
Visibility
Public
Description

The cbkBridge method is a bridge to get an interrupt from the operating system viathe
ti meTi ckCbk (private) method.

This method is defined because the API of most RTOSes expects a C function to handle an
interrupt.

Signature

RP_FRAMEWORK DLL static void cbkBridge (void *me)

Parameters

me

Gets the interrupt fromthet i meTi ckCbk method

clearinstance
Visibility
Public
Description
The clearinstance method cleans up the singleton instance of the timer manager.

Signature

RP_FRAMEWORK DLL static void clearInstance()

322 C++ Framework Execution Reference Manual

OMTimerManager Class

consumeTime
Visibility
Public
Description

The consumeTime method is used in simulated time mode to simulate time consumption. It
increases time incrementally so it can be preempted by other tasks.

Signature

RP_FRAMEWORK DLL void consumeTime (tineUnit interval,
timeUnit step = 1);

Parameters

interval

Definesthetimeinterval used for clock updates.

step

Defines how many intervals to change at each clock update. The default valueis 1.

decNonldleThreadCounter
Visibility
Public
Description

The decNonldleThreadCounter method decreases the nonl dl eThr eadCount er private
attribute.

Signature

RP_FRAMEWORK DLL void decNonIdleThreadCounter ()

See Also

incNonldleThreadCounter

Rhapsody 323

OXF Reference Pages

destroyTimer
Visibility
Public
Description
The destroyTimer method cleans up the timer manager singleton instance.
Signature

RP_FRAMEWORK DLL void destroyTimer ()

getElapsedTime
Visibility
Public
Description
The getElapsedTime method returns the value of m Ti e, the current system time.

This method is useful for debugging purposes. Using it, you can determine when a state was
entered, when an event was put in the event queue, and so on.

Signature
RP_FRAMEWORK DLL timeUnit getElapsedTime () const

Return
m_Ti me, the current system time
See Also

setElapsedTime

324 C++ Framework Execution Reference Manual

OMTimerManager Class

goNextAndPost
Visibility
Public
Description

The goNextAndPost method is used in simulated time mode. It creates a mutex, then calsthe
goNext method, followed by the post method. Note that goNext and post are private
methods.

Signature

RP_FRAMVEWORK DLL voi d goNext AndPost () ;

incNonldleThreadCounter
Visibility
Public
Description

TheincNonldleThreadCounter method increasesthe nonl dl eThr eadCount er private
attribute.

Signature

RP_FRAMEWORK DLL void incNonIdleThreadCounter ()

See Also

decNonldleThreadCounter

Rhapsody 325

OXF Reference Pages

init
Visibility
Public
Description
Theinit method starts the timer ticking. It is used by the framework initialization.
Inrea-timemode, i ni t createsan OMOSTi ckTi ner, asfollows:
osTi mer = theOSFactory() ->
creat eOMOSTi ckTi mer (tick, cbkBridge, this);
In simulated time mode, i ni t creates an OMOSI dl eTi ner, asfollows:
osTi mer = theOSFactory() ->
creat eOMOSI dl eTi mer (cbkBridge, this);
Signature
RP_FRAVEWORK DLL virtual void init();
initinstance
Visibility
Public
Description

The initinstance method initializes the singleton instance.

Signature

RP_FRAMEWORK DLL static OMTimerManager* initInstance (
int tickTime =

OMTimerManagerDefaults: :defaultTicktime,
unsigned int maxTM =

OMTimerManagerDefaults: :defaultMaxTM,
OMBoolean isRealTimeModel=TRUE) ;

Parameters

ticktime

Specifies the basic system tick, in milliseconds. At every tick, the Rhapsody framework and
user application are notified that the time was advanced.

326 C++ Framework Execution Reference Manual

OMTimerManager Class

Thedef aul t Ti ckt i nme specifies the default tick time, defined int i mer . h asfollows:
static const unsigned defaultTicktine;

The default value is specified in oxf . cpp asfollows:
const unsi gned OMTi mer Manager Def aul ts: :
defaul t Ti cktime = 100;

maxTM

Specifies the maximum number of timeouts that can exist simultaneously in the system. The
value for max TMis used to construct the heap and the matured list for storing timeouts.

Thedef aul t MaxTMisdefinedint i mer . h asfollows:
static const unsigned defaul t MaxTM

The default value is specified in oxf . cpp asfollows:
const unsi gned OMIi mer Manager Def aul ts::
def aul t MaxTM = 100;

isRealTimeModel

Specifies whether the time model isreal (TRUE) or simulated (FALSE).
instance
Visibility
Public
Description

Theinstance method creates the singleton instance of the timer manager.

Signature

RP_FRAMEWORK DLL static OMTimerManager* instance ()

Rhapsody 327

OXF Reference Pages

resume
Visibility
Public
Description
Theresume method is used by the framework to resume the timer during animation.
Signature

RP_FRAMEWORK DLL void resume ()

See Also

suspend

328 C++ Framework Execution Reference Manual

OMTimerManager Class

set
Visibility
Public
Description
The set method del egates a timeout request to OMTi mer Manager .
Signature

RP_FRAMEWORK _DLL voi d set (OMIi neout* timeout);

Parameters

timeout

Specifies the timeout event to be delegated to OMTi mer Manager

Notes
¢ Theset methodis called by the schedTm method, defined in ont hr ead. h.
¢ Theset method first locks a mutex, calls setRelativeDueTime to set the due time
for the timeout based on the current value of m Ti ne, then adds the timeout to the
timeout heap.
+ Aftertheset operationiscompleted, the heap contains alist of requested
timeouts, with the first timeout request in the heap scheduled to occur next.
See Also

schedTm

setRelativeDueTime

Rhapsody 329

OXF Reference Pages

setElapsedTime
Visibility
Public
Description

The setElapsedTime method sets the value of m_Ti ne, the current system time.

Note

Theset El apsedTi ne method is used for debugging purposes to start the timer at a
specific time. This method should be used only with great care.

Signature
RP_FRAMVEWORK DLL voi d set El apsedTinme (tineUnit newTine);
Parameters

newTime

Specifies the new system time
See Also

etElapsedTime

330 C++ Framework Execution Reference Manual

OMTimerManager Class

softUnschedTm
Visibility
Public
Description
The softUnschedTm method removes a specific timeout from the matured list.
This method is called only from ~OMTi nmeout , the timeout destructor.
Signature
RP_FRAMVEWORK _DLL voi d softUnschedTm (OMTIi neout * Ti neout) ;
Parameters

Timeout

Specifies the timeout to remove from the matured list
See Also

~OMTimeout

suspend
Visibility
Public
Description
The suspend method is used by the framework to suspend the timer during animation.
Signature

RP_FRAMEWORK DLL void suspend()

See Also

resume

Rhapsody 331

OXF Reference Pages

unschedTm
Visibility
Public
Description
The unschedTm method cancels atimeout request.

This method is used when:

¢ Exiting a state—The timeout is no longer relevant.

¢ An object has been destroyed—In this case, al timers associated with the object are
destroyed.

The unschedTmmethod works in the following way:

1. If the OVReact i ve instance does not exist, unsched Tmreturns; otherwise, it invokes a
mutex to protect the following operations:

¢ |fid == OMEventAnyEventld, unschedTmcancels al events whose destination
isthis specific instance of OVReact i ve.

¢ unschedTmcalsthei sCurr ent Event method to determine whether the current
event is delegated to this OVReact i ve. If it is, unschedTmcallsthe
findl nLi st method (private) to locate the timeout in the matured list, then
removes it from the matured list.

2. Next, unschedTmcreates three clones for the following items:

¢ Thetimeout ID, using the setTimeoutld method
¢ Thetimeout destination, using the setDestination method
¢ Thetimeout delay, using the setDelay method

3. TheunschedTmmethod iterates through the heap and calls the Delete method to delete
those timeouts whose destination is the specific OVReact i ve.

4. Finaly, the method looks for matching timeoutsin the matured list. It calls the
fi ndl nLi st method to iterate over the matured list to find matching timeouts. When it
finds one, it calls the setlid method to set the timeout’s ID to OMCancelledEventid, then
removes it from the matured list.

5. Ifid == OMEventTimeoutld, unschedTmcancels only that event.

332 C++ Framework Execution Reference Manual

OMTimerManager Class

Signature

RP_FRAMEWORK _DLL void unschedTm (short id,
OVReactive *c);

Parameters
id
Specifiesthe ID tag of the timeout request.

If OMEventAnyEventld is specified, unschedTmcancels all events whose destination is this
specific instance of OMReact i ve. If OMEventTimeoutld is specified, unschedTmcancels only
that timeout.

(¢}

Specifies a pointer to the OVReact i ve instance requestor. After atimeout has been canceled,
this parameter points to the instance that should be notified.

Notes

+ Canceling atimeout requires one of two actions:
— Deleting the timeout from the heap.

— Canceling it inside the event queue, if it isaready dispatched. Thisin done by
iterating the event queue.

¢ You can use unschedTmin cases where the statechart implementation is overridden.
¢ unschedTmiscaled by unschedTm (defined in ont hr ead. h).

See Also

OMEventAnyEventld

Delete
setDelay
setDestination

setlld

setTimeoutld

OMEventTimeoutld

Rhapsody 333

OXF Reference Pages

OMTimerManagerDefaults Class

OMTi mer Manager Def aul t s defines default values for the tick interval (defaultTicktime) and
the maximum number of time ticks before restarting the time tick count (defaultMaxTM).

This classis declared in the header file oxf . h.

Constant Summary

defaultMaxTM Specifies the default for the maximum
number of time ticks before restarting the
time tick count

defaultTicktime Specifies the default for the basic system
tick interval, in milliseconds

Constants
defaultMaxTM

Specifies the default for the maximum number of time ticks before restarting the
timetick count. It is used by the max TMparameter in OMTimerManager, the
constructor for the OMTi mer Manager class.

The default value is specified in oxf . cpp asfollows:

const unsigned OMTimerManagerDefaults::
defaultMaxTM = 100;
static const unsigned defaultMaxTM;

defaultTicktime

Specifies the default for the basic system tick interval, in milliseconds. It is used by
theti ckti me parameter in OMTimerManager, the constructor for the
OMTi nmer Manager class.

The default value is specified in oxf . cpp asfollows:

const unsigned OMTimerManagerDefaults::
defaultTicktime = 100;
static const unsigned defaultTicktime;

334 C++ Framework Execution Reference Manual

OMUADbstractContainer Class

OMUADbstractContainer Class

The OMAbst r act Cont ai ner classisthe base classfor abstract, typeless containers, based on
the template (typed) classes. It includes the friend class OMUI t er at or , which provides a
standard iterator for classes derived from OMUAbst r act Cont ai ner . See OMiterator Class for
more information on iteration methods.

This classis defined in the header file onuabscon. h.

Construction Summary

~OMUADbstractContainer Destroys the OMAbst r act Cont ai ner
object

Method Summary

getCurrent Gets the current element
getFirst Gets the first element in the container
getNext Gets the next element in the container

~OMUADbstractContainer
Visibility
Public
Description

The ~OMUAbstractContainer destroys the OMUAbst r uct Cont ai ner object.

Signature

virtual ~OMUAbstractContainer ()

Rhapsody 335

OXF Reference Pages

getCurrent
Visibility
Public
Description
The getCurrent method gets the current element in the container.
Signature

virtual void* getCurrent (void* pos) const=0;

Parameters

pos

Specifies the current position

getFirst

Visibility

Public
Description

The getFirst method gets the first element in the container.
Signature

virtual void getFirst (void*& pos) const=0;

Parameters

pos

Specifies the first position in the container

336 C++ Framework Execution Reference Manual

OMUADbstractContainer Class

getNext
Visibility
Public
Description
The getNext method gets the next element in the container.
Signature

virtual void getNext (void*& pos) const=0;

Parameters

pos

Specifies the next position in the container

Rhapsody 337

OXF Reference Pages

OMUCollection Class

In Rhapsody, onu* containers are containers that are not implemented with templates. The use
of template-free containers reduces the size of the generated code considerably. An
OMUCol | ect i on isatypeless, dynamically sized array.

This classis defined in the header file onucol | ec. h.

Attribute Summary

count Specifies the number of elements in the
collection

thelLink Specifies the link to the element in the collection

size Specifies the amount of memory allocated for the
collection

Construction Summary

OMUCollection Constructs an OMJUCol | ect i on object
~OMUCollection Destroys the OMUCol | ect i on object

Method Summary

operator [] Returns the element at the specified position

add Adds the specified element to the collection

addAt Adds the specified element to the collection at the
given index

find Looks for the specified element in the collection

etAt Returns the element found at the specified index

getCount Returns the number of elements in the collection

getCurrent Is used by the iterator to get the element at the
current position in the collection

getFirst Is used by the iterator to get the first position in
the collection

getNext Is used by the iterator to get the next position in
the collection

getSize Gets the size of the memory allocated for the
collection

iIsEmpty Determines whether the collection is empty

338 C++ Framework Execution Reference Manual

OMUCollection Class

remove

Deletes the specified element from the collection

removeAll

Deletes all the elements from the collection

removeBylndex

Deletes the element found at the specified index
in the collection

reorganize Reorganizes the contents of the collection
setAt Inserts the specified element at the given index in
the collection
Attributes
count

This attribute specifies the number of elementsin the collection. It is defined as

follows:

int count;

theLink

This attribute specifies the link to an element in the collection. It is defined as

follows:

void** theLink;

size

This attribute specifies the amount of memory allocated for the collection. Itis

defined as follows

int size;

Rhapsody

339

OXF Reference Pages

OMUCollection
Visibility
Public

Description

The oMUCollection method is the constructor for the OMJCol | ect i on class.

Signature

OMUCollection (int theSize=DefaultStartSize)

Parameters

theSize

The starting size. The default collection sizeis 20 elements.

See Also

~OMUCollection

~OMUCollection
Visibility
Public

Description

The ~OMUCollection method is the destructor for the OMJCol | ect i on class.

Signature

~OMUCollection ()

See Also

OMUCollection

340

C++ Framework Execution Reference Manual

OMUCollection Class

operator []
Visibility
Public
Description
The[] operator returns the element at the specified position.
Signatures

void * operator[] (int i)

const void * operator(] (int i) const
Parameters
i
The index of the element to return

Return

The element at the specified index, or NULL if you selected an out-of-range value

Rhapsody 341

OXF Reference Pages

add
Visibility
Public
Description
The add method adds the specified element to the collection.
Signature

void add(void* p)

Parameters

p
The element to add

See Also

addAt

remove

removeAll

removeBylndex

342 C++ Framework Execution Reference Manual

OMUCollection Class

addAt
Visibility
Public
Description
The addAt method adds the specified element to the collection at the given index.
Signature

int addAt (int index, void* p)

Parameters

index

The index at which to add the new element

P
The element to add

See Also
add
remove

removeAll

removeBylndex

Rhapsody 343

OXF Reference Pages

find
Visibility
Public
Description
Thefind method looks for the specified element in the collection.
Signature

int find(void* p) const

Parameters

p
The element you want to find

Return
The method returns one of the following values:

¢ 0—The éeement was not found in the collection.
¢ 1—The eement was found in the collection.

344 C++ Framework Execution Reference Manual

OMUCollection Class

getAt
Visibility
Public
Description
The getAt method returns the element found at the specified index.
Signature

void* getAt (int i) const
Parameters
i
The index of the element to retrieve

Return

The element found at the specified location

getCount
Visibility
Public

Description

The getCount method returns the number of elements in the collection.

Signature

int getCount () const

Return

The number of elementsin the collection

Rhapsody

345

OXF Reference Pages

getCurrent
Visibility
Public
Description

The getCurrent method is used by the iterator to get the element at the current position in the
collection.

Signature
void* getCurrent (void* pos) const
Parameters

pos

The position of the element to retrieve
Return

The element at the current position in the collection

getFirst

Visibility

Public
Description

The getFirst method is used by the iterator to get the first position in the collection.
Signature

void getFirst (void*& pos) const

Parameters

pos

The position of the element to retrieve

See Also

getNext

346 C++ Framework Execution Reference Manual

OMUCollection Class

getNext
Visibility
Public
Description
The getNext method is used by the iterator to get the next position in the collection.
Signature

void getNext (void*& pos) const

Parameters

pos

The position of the element to retrieve
See Also

getFirst

getSize
Visibility
Public
Description
The getSize method gets the size of the memory allocated for the collection.

Signature

int getSize () const

Return

The size

Rhapsody 347

OXF Reference Pages

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the collection is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—Thecollection is not empty.
¢ 1—Thecollection is empty.

348 C++ Framework Execution Reference Manual

OMUCollection Class

remove
Visibility
Public
Description
Theremove method del etes the specified element from the collection.

Signature
void remove (void* p) ;

Parameters

p
The element to delete

See Also

removeAll

removeBylndex

Rhapsody 349

OXF Reference Pages

removeAll
Visibility
Public
Description
The removeAll method deletes all the elements from the collection.
Signature

void removeAll ()

See Also

remove

removeBylndex

350 C++ Framework Execution Reference Manual

OMUCollection Class

removeBylndex
Visibility
Public
Description
TheremoveByindex method del etes the element found at the specified index in the collection.
Signature

void removeByIndex(int 1)
Parameters
i
Theindex of the element to delete

See Also

remove

removeAll

Rhapsody 351

OXF Reference Pages

reorganize
Visibility
Public
Description

Thereorganize method enables you to reorganize the contents of the collection, and enlarge it
if necessary.

Signature

void reorganize (int factor = DefaultFactor)

Parameters

factor

The growth factor. The default value is 2.

352 C++ Framework Execution Reference Manual

OMUCollection Class

setAt
Visibility
Public
Description
The setAt method inserts the specified element at the given index in the collection.
Signature

int setAt (int index, const void* p)

Parameters

index

The index at which to add the new element

P
The element to add

Return
The method returns one of the following values:

¢ 0—The method failed.
¢ 1—The method was successful.

Rhapsody 353

OXF Reference Pages

OMUIterator Class

The OMUI t er at or class provides a standard iterator for containers derived from
OMUADbst r uct Cont ai ner.

This classis defined in the header fileonuabscon. h.

Construction Summary

OMUlterator Constructs an OMUJI t er at or object

Method Summary

operator * Returns the current value of the iterator
operator ++ Increments the iterator
reset Resets the iterator to the first position in

the container

value Returns the current value of the iterator

354 C++ Framework Execution Reference Manual

OMUIlterator Class

OMUIlterator
Visibility
Public

Description

The oMUlterator method is the constructor for the OMUI t er at or class.

Signatures

OMUIterator () ;
OMUIterator (const OMUAbstractContainer& 1)

OMUIterator (const OMUAbstractContainer* 1)

Parameters

1
The container the iterator will visit

operator *
Visibility
Public
Description
The* operator returns the current value of the iterator.
Signature

void* operator* ()

Return

The current value of the iterator

Rhapsody

355

OXF Reference Pages

operator ++
Visibility
Public
Description
The ++ operator increments the iterator.

The first signature defines the ++ operator used for "++i " usage; the second signature is used

for "i ++".

Signatures
OMUIterator& operator++ () //prefix
OMUIterator operator++ (int i) //postfix

Parameters

i

Dummy parameter
reset
Visibility
Public
Description

Thereset method resets the iterator tp the first position in the container.

Signatures

void reset ()
void reset (OMUAbstractContainer& newLink)
Parameters

newLink

The new position

356 C++ Framework Execution Reference Manual

OMUIlterator Class

value
Visibility
Public
Description
The value method returns the current value of the iterator.
Signature

void* wvalue ()

Rhapsody 357

OXF Reference Pages

OMULIist Class

In Rhapsody, onu* containers are containers that are not implemented with templates. The use
of template-free containers reduces the size of the generated code considerably. An OMULI st

isatypeless, linked list.

This classis defined in the header fileonul i st . h.

Construction Summary

OMUL st Constructs an OMULI st object

~OMUList Destroys the OMULI st object
Flag Summary

first Specifies the first element in the list

last Specifies the last element in the list

Method Summary

operator [] Returns the element at the specified
position.

add Adds the specified element to the end of
the list

addAt Adds the specified element to the list at
the given index

addFirst Adds an element to the beginning of the
list

find Looks for the specified element in the list

etAt Returns the element found at the specified

index

getCount Returns the number of elements in the list

getCurrent Is used by the iterator to get the element
at the current position in the list

getFirst Is used by the iterator to get the first
position in the list

getNext Is used by the iterator to get the next
position in the list

isEmpty Determines whether the list is empty

removeFirst Removes the first item from the list

358

C++ Framework Execution Reference Manual

OMUList Class

remove Deletes the first occurrence of the
specified element from the list

removeAll Deletes all the elements from the list
removeFirst Deletes the first element from the list
removeltem Deletes the specified element from the list
removelast Deletes the last element from the list

Flags

first

Specifiesthe first element in thelist. It is defined as follows:
OMULi stltent first;

Specifiesthe last element in the list. It is defined as follows:
OMULi stltent |ast;

Example

Consider the following example:

OMUl terator iter(itsCbserver);

while (*iter)

{
(static_cast<Cbserver*>(*iter))->notify();
iter++;

Rhapsody 359

OXF Reference Pages

OMUList
Visibility
Public

Description

The oMUList method is the constructor for the OMULI st class. The method creates an empty
list.

Signature

OMUList ()

See Also

~OMUL ist

~OMUList
Visibility
Public
Description
The ~omUList method empties the list.
Signature

virtual ~OMUList ()

See Also

OMUL ist

360 C++ Framework Execution Reference Manual

OMUList Class

operator []
Visibility
Public
Description
The[] operator returns the element at the specified position.
Signature
void * operator([] (int i) const
Parameters
i

The index of the e ement to return

Rhapsody 361

OXF Reference Pages

add
Visibility
Public
Description
The add method adds the specified element to the end of thelist.
Signature

void add(void *p)

Parameters

p
The element to add to the list

See Also

addAt

addFirst

remove

removeAll
removeFirst

removel ast

362 C++ Framework Execution Reference Manual

OMUList Class

addAt
Visibility
Public
Description
The addAt method adds the specified element to the list at the given index.
Signature

void addAt (int i, void* p)
Parameters
i
Thelist index at which to add the element

P
The element to add

See Also
add
addFirst
remove
removeAll

removeFirst

removelast

Rhapsody 363

OXF Reference Pages

addFirst
Visibility
Public

Description

The addFirst method adds an element to the beginning of thelist.
Signature

void addFirst (void *p)

Parameters

p
The element to add to the beginning of thelist

See Also

remove
removeAll
removeFirst

removel ast

364 C++ Framework Execution Reference Manual

OMUList Class

find
Visibility
Public
Description
Thefind method looks for the specified element in the list.
Signature

int find(const void* p) const

Parameters

p
The element you want to find

Return
The method returns one of the following values:

¢ 0—Thedement was not found in the list.
¢ 1—Theedement wasfound inthelist.

Rhapsody 365

OXF Reference Pages

getAt
Visibility
Public
Description
The getAt method returns the element found at the specified index.
Signature

void* getAt (int i) const
Parameters
i
The index of the element to retrieve

See Also

getCount
getCurrent
getFirst

getNext

366 C++ Framework Execution Reference Manual

OMUList Class

getCount
Visibility
Public
Description
The getCount method returns the number of elementsin the list.
Signature

int getCount () const

Return

The number of eementsin the list

getCurrent
Visibility
Public
Description

The getCurrent method is used by the iterator to get the element at the current position in the
list.

Signature

virtual void* getCurrent (void* pos) const

Parameters

pos

The position of the element you want to retrieve

Rhapsody 367

OXF Reference Pages

getFirst
Visibility
Public
Description
The getFirst method is used by the iterator to get the first position in the list.
Signature

virtual void getFirst (void*& pos) const

Parameters

pos

The position
See Also

getNext

getNext
Visibility
Public
Description
The getNext method is used by the iterator to get the next positionin the list.
Signature

virtual void getNext (void*& pos) const

Parameters

pos

The position
See Also

getFirst

368 C++ Framework Execution Reference Manual

OMUList Class

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the list is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:
¢ 0—Thelist isnot empty.

¢ 1—Thelistisempty.

_removeFirst
Visibility
Public
Description
The _removeFirst method removes the first item from the list.

Note

It is safer to use the method removeFirst because that method has more checks than
removeFirst.

Signature

inline void _removeFirst ()

See Also

removekFirst

Rhapsody 369

OXF Reference Pages

remove
Visibility
Public
Description
Theremove method del etes the first occurrence of the specified element from the list.
Signature

void remove (const void* p)

Parameters

p
The element to delete

See Also

removeAll
removeFirst

removel ast

370 C++ Framework Execution Reference Manual

OMUList Class

removeAll
Visibility
Public
Description
The removeAll method deletes all the elements from the list.
Signature

void removeAll ()

See Also

remove
removekFirst

removel ast

removeFirst
Visibility
Public

Description

The removeFirst method deletes the first element from the list.

Signature

void removeFirst ()

See Also

remove
removeAll

removel ast

Rhapsody

371

OXF Reference Pages

removeltem
Visibility
Public
Description
Theremoveltem method del etes the specified element from the list.
Signature

void removeltem(const OMUListItem* item)

Parameters

item

The element to delete

See Also

remove
removeAll

removel ast

372 C++ Framework Execution Reference Manual

OMUList Class

removelast
Visibility
Public
Description

The removel ast method deletes the last element from thelist.

Note

This method is not efficient because the Rhapsody framework does not keep backward
pointers. It is preferable to use one of the other r enove functions to del ete elements from
thelist.

Signature

void removelast ()

See Also

remove
removeAll

removeltem

Rhapsody 373

OXF Reference Pages

OMULIistltem Class

The OMULI st | t emclassisahelper classfor OMULI st that contains functions that enable you
to manipulate list elements.

This classis defined in the header fileonul i st . h.

Construction Summary

OMUListltem Constructs an OMULI st | t emobject

Method Summary

connectTo Connects to the specified item in the list
getElement Gets the list element
getNext Gets the next item in the list
setElement Sets the specified list element
OMUListltem
Visibility
Public
Description

The oMUListitem method is the constructor for the OMULi st | t emclass.
Signature
OMUListItem(void* theElement)
Parameters

theElement

The new list e ement

374 C++ Framework Execution Reference Manual

OMUListltem Class

connectTo
Visibility
Public

Description

The connectTo method connects to the specified itemin the list.

Signature

void connectTo (OMUListItem* item)

Parameters
item
The item to connect to
getElement
Visibility
Public

Description

The getElement method gets the list element.

Signature

void* getElement () const
getNext
Visibility
Public

Description

The getNext method gets the next item in the list.

Signature

OMUListItem* getNext () const

Return

The next item in the list

Rhapsody

375

OXF Reference Pages

setElement
Visibility
Public
Description
The setElement method sets the specified list element.
Signature

void setElement (void* p)

Parameters

p
The list element to set

376 C++ Framework Execution Reference Manual

OMUMap Class

OMUMap Class

In Rhapsody, onu* containers are containers that are not implemented with templates. The use
of template-free containers reduces the size of the generated code considerably. An OMUMap is

atypeless map.

Thisclassis defined in the header file omumap. h.

Construction Summary

OMUMap Constructs an OMUMap object
~OMUMap Destroys the OMJUMap object

Method Summary

operator [] Returns the element found at the specified
location

add Adds an element to the map

find Determines whether the specified element is in
the map

getAt Returns the element for the specified key

getCount Returns the number of elements in the map

getKey Gets the element for the specified key

ISEmpty Determines whether the map is empty

lookUp Looks for the specified element in the map

remove Deletes the specified element from the map

removeAll Deletes all the elements from the map

removeKey Deletes the element from the map, given its key

Rhapsody

377

OXF Reference Pages

OMUMap
Visibility
Public
Description
The oMuMap method is the constructor for the OMUMap class.
Signature

OMUMap ()

See Also

~OMUMap

~OMUMap
Visibility
Public
Description

The ~omUMap method destroys the OMUMap object.

Signature

~OMUMap ()
See Also

OMMap

378 C++ Framework Execution Reference Manual

OMUMap Class

operator []
Visibility
Public
Description
The[] operator returns the element at the specified key.
Signature

void* operator[] (void* theKey) const

Parameters

theKey
The key of the element to get

Return

The element at the specified key

Rhapsody 379

OXF Reference Pages

add
Visibility
Public
Description
The add method adds the specified element to the given key.
Signature

void add(void* theKey, void* p);

Parameters

theKey
The map key to which to add the element

p
The element to add to the key

See Also

remove

removeAll

removeKey

380 C++ Framework Execution Reference Manual

OMUMap Class

find

getAt

Visibility

Public
Description

Thefind method determines whether the specified element isin the map.
Signature

int find(void* p) const

Parameters

p
The element to look for

Return
The method returns one of the following values:

¢ 0—Theelement was not found in the map.
¢ 1—Theelement was found.

Visibility

Public
Description

The getAt method returns the element for the specified key.
Signature

void* getAt (const void* theKey) const

Parameters

theKey

The key for the element to get

Rhapsody 381

OXF Reference Pages

getCount
Visibility
Public
Description
The getCount method returns the number of elementsin the map.
Signature

int getCount () const

Return

The number of elementsin the map

getKey
Visibility
Public
Description
The getkey method gets the element for the specified key.
Signature

void* getKey (const void* theKey) const

Parameters

theKey

The map key whose element you want

382 C++ Framework Execution Reference Manual

OMUMap Class

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the map is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—The map isnot empty.
¢ 1—Themapisempty.

lookUp
Visibility
Public
Description

ThelookUp method finds the specified element in the map, given its key. If the element is
found, the method places the contents of the element referenced by the key in the el enent
parameter, and returns the value 1.

Signature

int lookUp (const void* theKey, void*& element) const

Parameters

theKey
The map key

element

The element to look up
Return

The method returns one of the following values:

Rhapsody 383

OXF Reference Pages

¢ 0—The element was not found in the map.
¢ 1—The element was found.

remove
Visibility
Public
Description
Theremove method del etes the specified element from the map.
Signature

void remove (void* p)

Parameters

p
The element to delete

See Also
add

removeAll

removeKey

384 C++ Framework Execution Reference Manual

OMUMap Class

removeAll
Visibility
Public
Description
TheremoveAll method deletes all the elements from the map.
Signature

void removeAll ()

See Also

QD
(o

remove

removeKey

removeKey

Visibility

Public
Description

Theremovekey method deletes the element from the map, given its key.
Signature

void removeKey (void* theKey)

Parameters

theKey

The key for the element to delete
See Also
add

remove

removeAll

Rhapsody 385

OXF Reference Pages

OMUMapltem Class

The OMUMap! t emclassis ahelper class for OMUMap that contains functions that enable you to
manipulate map el ements.

This classis defined in the header file onumap. h.

Construction Summary

OMUMapltem Constructs an OMUMapl t emobject
~OMUMapltem Destroys the OMUMapl t emobject

Method Summary

‘ getElement Returns the current element

OMUMapltem
Visibility
Public
Description
The oMUMapltem method is the constructor for the OMUMapl t emclass.
Signature
OMUMapItem(void* theKey, void* theElement)
Parameters

theKey

The map key

theElement

The new map element
See Also

~OMUMapltem

386 C++ Framework Execution Reference Manual

OMUMapltem Class

~OMUMapltem
Visibility
Public
Description
The ~OMUMapltem method destroys the OMUMapI t emobject.
Signature

virtual ~OMUMapItem /()

See Also

OMMapltem

getElement
Visibility
Public
Description
The getElement method returns the current element.
Signature

void* getElement ()

Return

The current element

Rhapsody 387

OXF Reference Pages

OXF Class

The oxf . h file defines general API classes used by the execution framework.

Method Summary

animDereqgisterForeignThread Unregisters the external thread

animReqisterForeignThread Registers an external thread (not an
OMThr ead) in the animation framework

delay Delays the calling thread for the specified
length of time

end Ends the event processing of the default
event dispatching thread

getMemoryManager Returns the current framework memory
manager

getTheDefaultActiveClass Returns the default active class

getTheTickTimerFactory Returns the low-level timer factory

init Initializes the timer, creates the default

event dispatching thread, and initializes
the framework

setMemoryManager Specifies the current framework memory
manager
setTheDefaultActiveClass Registers an alternate default active

object on the framework

setTheTickTimerFactory Registers a timer factory on the
framework, causing the framework to use
the user-defined timers instead of the
predefined timers

start Starts the event processing of the default
event dispatching thread

388 C++ Framework Execution Reference Manual

OXF Class

animDeregisterForeignThread
Visibility
Public
Description

The animDeregisterForeignThread method unregisters the external thread.

Signature
static void animDeregisterForeignThread (void* theHandle) ;

Parameters

theHandle
Specifies the handle to the external thread to unregister

See Also

animReqisterForeignThread

Rhapsody 389

OXF Reference Pages

animRegisterForeignThread
Visibility
Public
Description

The animRegisterForeignThread method registers an external thread (not an OMThr ead) in the
animation framework.

Signature

static void animRegisterForeignThread (char * name,
void* theHandle) ;

Parameters

name

Specifies the name of the external thread

theHandle
Specifies the handle to the thread

See Also

animDereqgisterForeignThread

390 C++ Framework Execution Reference Manual

OXF Class

delay

end

Visibility

Public
Description

The delay method delays the calling thread for the specified length of time.
Signature

static void delay (timeUnit t);

Parameters

t

Specifies the delay, in milliseconds

Visibility
Public
Description

The end method closes the framework-dependent parts in the application, without closing the
application.

This method was added to support Microsoft COM technology, and is fully implemented for
Microsoft adapters only.

Signature

static void end() ;

See Also

Rhapsody 391

OXF Reference Pages

getMemoryManager
Visibility
Public
Description

The getMemoryManager method returns the current framework memory manager.

Signature

static OMAbstractMemoryAllocator* getMemoryManager ()

Return
The framework memory manager
See Also

setMemoryManager

getTheDefaultActiveClass
Visibility
Public
Description

The getTheDefaultActiveClass method returns the default active class.

Signature

static OMThread* getTheDefaultActiveClass()

Return
The default active class
See Also

setTheDefaultActiveClass

392 C++ Framework Execution Reference Manual

OXF Class

getTheTickTimerFactory
Visibility
Public
Description

The getTheTickTimerFactory method returns the low-level timer factory.

Signature

static const OMAbstractTickTimerFactory*
getTheTickTimerFactory ()

Return
t heTi ckTi ner Fact ory
See Also

setTheTickTimerFactory

Rhapsody 393

OXF Reference Pages

init
Visibility
Public
Description

In instrumented code, init initializes the framework instances that need to be available for the
application built on top of the framework.

This method must be called before any other framework-related code is executed.

Note

Youmust call OXF: :init() inaDLL evenif the application loading the DLL has called
OXF: :init(); otherwise, there will be aleak in the state machine thread handle.

Signature

static int init (
i nt nunProgArgs 0,
char **progArgs NULL,
unsigned int defaultPort = O,
const char* defaul t Host = NULL,
unsi gned ticktime =
OMTi mer Manager Def aul t s: : def aul t Ti ckti ne,
unsi gned maxTM =
OMTi mer Manager Def aul t s: : def aul t MaxTM
OMBoolean isRealTimeModel = TRUE) ;

Parameters

numProgArgs

Specifies the number of program arguments.

ProgArgs

Specifiesthe list of program arguments.

defaultPort

I's an animation-specific parameter that specifies the port used for communicating with the
animation server.

If you are using an animation port other than 6423 (the default value), this number must match
that assigned to the Ani mat i onPor t Nunber variablein your rhapsody. ini file.
defaultHost

I's an animation-specific parameter that specifies the default host name of the machine on
which Rhapsody is running.

394 C++ Framework Execution Reference Manual

OXF Class

tickTime

Specifies the basic system tick in milliseconds. Every ticktime, the framework timeout
manager checks for expired timeouts. The default ticktimeis every 100 milliseconds.

You can override the default tick time by setting the
<l ang>_CG : Franmewor k: : Ti mer Resol ut i on property.
maxTM

Specifies the maximum number of timeouts (set or matured) that can coexist in the
application. The default valueis 100 timeouts.

You can override the default maximum number of timeouts by setting the
<l ang>_CG : Framewor k: : Ti mer MaxTi meout s property.

isRealTimeModel

Specifies whether the model runsin real time (the default) or simulated time. The default value
isreal time.

OMTi mer Manager can implement two time models:

+ real time—Time advances according to the actual underlying operating system clock.

¢ simulated time—Time advances either explicitly, by calling the consumeTime method or
implicitly, when al reactive objects areidle (that is, they do not have an event in their
event gqueue) and thereis at least one pending timeout.

Simulated time is useful for debugging and algorithm validation.

Rhapsody

395

OXF Reference Pages

setMemoryManager

Visibility
Public

Description

The setMemoryManager method specifies the current framework memory manager. It controls
memory alocated in the framework at the application level (for example, when adding an
object to arelation implemented as OMLi st). If you do not register a memory manager, the
framework uses the global new and del et e operators.

To have an effect, call this method before making any memory allocation requests, or compile
the framework with the OM_ENABLE_MEMORY_MANAGER _SW TCH compiler flag.

Signature

static OMBoolean setMemoryManager (
OMAbstractMemoryAllocator* const memoryManager) ;

Parameters

memoryManager

Specifies the new framework memory manager
Return

The method returns TRUE if the memory manager was set successfully. Otherwise, it returns
FALSE.

See Also

getMemoryManager

396

C++ Framework Execution Reference Manual

OXF Class

setTheDefaultActiveClass
Visibility
Public

Description

The setTheDefaultActiveClass method registers an alternate default active object instead of the
OWMai nThr ead singleton. Thisis useful when you customize the behavior of application
active classes.

To have an effect, the user factory must be registered before the framework initialization
(OXF: : init) and before any request of the default active classis made.

Signature

static OMBoolean setTheDefaultActiveClass (OMThread* t);

Parameters

t

Specifies the new default active class
Return

The method returns TRUE if the active object was set successfully. Otherwise, it returns
FALSE.

See Also

getTheDefaultActiveClass

init

Rhapsody 397

OXF Reference Pages

setTheTickTimerFactory
Visibility
Public

Description

The setTheTickTimerFactory registers atimer factory on the framework, causing the
framework to use the user-defined timers instead of the predefined timers. You can register a
timer factory that does not create any timers, causing the timing mechanisms of the framework
to be disabled. For example:

disable tm()

To have an effect, the user factory must be registered before the framework initialization
(OXF: : init).

Note
You can set the low-level timer factory only once for the entire lifetime of the application.

Signature

static OMBoolean setTheTickTimerFactory (
const OMAbstractTickTimerFactory* factory);

Parameters

factory

Specifies the new low-level timer factory
Return

The method returns TRUE if the active object was set successfully. Otherwise, it returns
FALSE.

See Also

getTheTickTimerFactory

init

398 C++ Framework Execution Reference Manual

OXF Class

start
Visibility
Public
Description

The start method starts the event processing of the active class (by default, the

OWMai nThr ead singleton). The doFork parameter determines whether the current thread (the
caller of init) isthe default event dispatching thread or a new, separate thread. If doFor k is
FALSE, OXF: : start will not return, unless the default active classis destroyed.

OXF: : start does not return in the generated application (this can be controlled via a Rhapsody
property). Even if al statecharts terminate, it still runs. Thisis because the framework was
specifically written for embedded applications, which generally do not end. Use Ctrl+C to kill
the application.

Signature
static void start(int doFork = FALSE)
Parameters

doFork

Determines whether the current thread (the caller of init) isthe default event dispatching thread
or aseparate thread. If doFor k is TRUE, the control returnsto the caller; otherwise, control
remainsin OXF: : start for the lifetime of the application.

The syntax is asfollows:

i nt doFork = FALSE

This parameter is useful in environments such as M'S Windows, where the root thread has its
own “agenda’ (for example, GUI processing).

Rhapsody 399

OXF Reference Pages

400 C++ Framework Execution Reference Manual

Quick Reference

This section lists the framework methods, macros, and operators, and provides a brief description
of each. For ease of use, the methods are presented in alphabetical order.

Method Name

Description

operator *

Returns the current value of the iterator.
or
Is a customizable operator.

operator ++

Increments the iterator.

operator []

Returns the element at the specified location.

operator +

Adds a string.

operator +=

Adds to the existing string.

operator =

Sets a string.

operator ==

Determines whether two objects are equal.

operator >=

Determines whether the first object is greater than or equal
to the second.

operator <=

Determines whether the first object is less than or equal to
the second.

operator !=

Determines whether the first object is not equal to the
second.

oper ator >

Determines whether the first object is greater than the
second.

operator <

Determines whether the first object is less than the second.

operator <<

Compares an iostream and a string.

oper at or >>

Compares an iostream and a string.

gen

Queues events sent to the reactive object.

removeFirst

Removes the first item from the list.

~OMAbstractMemoryAllocator

Is the destructor for the OVAbst r act Menor yAl | ocat or
class.

~OMCollection Is the destructor for the OMCol | ect i on class.
~OMDelay Is the destructor for the OVDel ay class.
~OMEvent Is the destructor for the OVEvent class.
~OMGuard Is the destructor for the OMGuar d class.

Rhapsody

401

Quick Reference

Method Name

Description

~OMHeap Is the destructor for the OvHeap class.

~OML st Is the destructor for the OMLi st class.
~OMMainThread Is the destructor for the OMVai nThr ead class.
~OMMap Is the destructor for the OM\Vap class.
~OMMapltem Is the destructor for the OMMapl t emclass.
~OMMemoryManager Is the destructor for the OMVEnor yManager class.

~OMMemoryManagerSwitchHelper

Is the destructor for the OMMVenor yManager Swi t chHel per
class.

~OMProtected Is the destructor for the OVPr ot ect ed class.
~OMQueue Is the destructor for the OMQuUeue class.
~OMReactive Is the destructor for the OVReact i ve class.
~OMStack Is the destructor for the OVSt ack class.
~OMStaticArray Is the destructor for the OMSt at i cAr r ay class.
~OMString Is the destructor for the OVBt ri ng class.
~OMThread Is the destructor for the OMThr ead class.

~OMThreadTimer

Is the destructor for the OMThr eadTi nmer class.

~OMTimerManager

Is the destructor for the OMTi mer Manager class.

~OMTimeout

Is the destructor for the OMTi neout class.

~OMUAbstractContainer

Is the destructor for the OMUAbst r act Cont ai ner class.

~OMUCollection

Is the destructor for the OMUCol | ect i on class.

~OMUL st Is the destructor for the OMULI st class.

~OMUMap Is the destructor for the OMUMap class.

~OMUMapltem Is the destructor for the OMUMapI t emclass.

action Sends a matured timeout request to the relevant thread,
where it is then inserted into the thread’s event queue.

add Adds the specified element to the container.

addAt Adds the specified element to the collection at the given
index.

addFirst Adds an element at the beginning of the list.

allocPool Allocates a memory pool big enough to hold the specified

number of instances.

allowDeletelnThreadsCleanup

Postpones the destruction of a framework thread until the
application terminates and all user threads are deleted.

animDereqgisterForeignThread

Unregisters the external thread.

animReqisterForeignThread

Registers an external thread (not an OMThr ead) in the
animation framework.

callMemoryPoollsEmpty

Controls the overprint of the message displayed when the
pool is out of memory.

402

C++ Framework Execution Reference Manual

Method Name

Description

cancelEvent

Marks a single event as canceled (that is, it changes the
event's ID to OMCancelledEventld).

cancelEvents

Cancels all the queued events for the reactive object.

cbkBridge Is a bridge to get an interrupt from the operating system via
the ti meTi ckCbk (private) method.
cleanup Cleans up the allocated memory list.

cleanupAllThreads

“Kills” all threads in an application except for the main thread
and the thread running the cl eanupAl | Thr eads method.

cleanupThread

Provides a “hook” to allow a thread to be cleaned up without
a call to the DTOR.

clearInstance

Cleans up the singleton instance of the timer manager.

CompareNoCase

Performs a case-insensitive comparison of two strings.

connectTo

Connects the list item to the list.

consumeEvent

Is the main event consumption method.

consumeTime

Is used in simulated time mode to simulate time
consumption.

createRealTimeTimer

Creates a real-time timer.

createSimulatedTimeTimer

Creates a simulated-time timer.

cserialize

Passes the values of the instance to a string, which is then
sent to Rhapsody. It is part of the animation mechanism.

decNonldleThreadCounter

Decreases the nonl dl eThr eadCount er private attribute.

delay Delays the calling thread for the specified length of time.
Delete Deletes an event instance (releases the memory used by an

event), or deletes a timeout from the heap.

deleteMutex

Deletes the mutex and sets its value to NULL.

destroyThread

Destroys the thread, or destroys the default active class or
object for the framework.

destroyTimer

Cleans up the timer manager singleton instance.

discarnateTimeout

Destroys a timeout object for the reactive object.

doBusy Sets the value of omrStatus to 1 or TRUE.

doExecute Is the entry point to the thread main loop function.

Empty Empties the string.

end Ends the event processing of the default event dispatching
thread.

entDef Specifies the operation called when the state is entered from

a default transition.

enterState

Specifies the state entry action.

ent H st

Enters a history connector.

execute

Is the thread main loop function.

Rhapsody

403

Quick Reference

Method Name

Description

exitState Specifies the state exit action.

find Looks for the specified element in the container.

findMemory Searches for a recorded memory allocation.

free Is provided for backward compatibility. It calls the unl ock
method.

gen Is used by a sender object to send an event to a receiver
object.

get Gets the current element in the queue.

getAOMThread Is used by the framework for animation purposes.

getAt Returns the element found at the specified index.

GetBuffer Returns the string buffer.

getConcept Gets the current concept.

getCount Returns the number of elements in the container.

getCurrent Is used by the iterator to get the element at the current
position in the list.

getCurrentEvent Gets the currently processed event.

getDefaultMemoryManager

Returns the default memory manager.

getDelay Returns the current value of del ayTi me.

getDestination Returns the reactive destination of the event.

getDueTime Returns the due time of a timeout request stored in the heap.
getElapsedTime Returns the value of m_Ti me, the current system time.
getElement Gets the list element.

getEventClass

Returns the event class.

getEventQueue

Is used by the framework for animation purposes.

getFirst Is used by the iterator to get the first position in the container.
getFirstConcept Returns the first Concept element in the list.

getGuard Gets the reference to the OVPr ot ect ed part.

getHandle Gets the handle.

getinverseQueue

Returns the element that will be returned by get () in the
tail of the queue.

getKey Gets the element for the specified key.

getlLast Is used by the iterator to get the last position in the list.
getLastConcept Returns the last Concept element in the list.

getl astState Gets the last state.

GetlLength Returns the length of the string.

getlld Returns the event ID.

getMemory Records the memory allocated by the default manager.

404

C++ Framework Execution Reference Manual

Method Name

Description

getMemoryManager

Returns the current memory manager.

getNext

Gets the next item in the container.

getOsHandle

Returns the thread’s operating system ID.

getOSThreadEndClb

Requests a callback to end the current operating system
thread.

getQueue Returns the element that will be returned by get () in the
head of the queue.

getSize Returns the size of the memory allocated for the container.

getStepper Is used by the framework for animation purposes.

getSubState Returns the substate.

getTheDefaultActiveClass

Returns the default active class.

getTheTickTimerFactory

Returns the low-level timer factory.

getThread Retrieves the thread associated with a reactive object.
getTimeoutld Returns the current value for t i meout | d.
goNextAndPost Is used in simulated time mode.

handleEventNotConsumed

Is called when an event is not consumed by the reactive
class.

handleEventNotConsumed

Is called when a triggered operation is not consumed by the
reactive class.

in

Returns TRUE when the owner class is in this state.

incarnateTimeout

Creates a timeout object to be invoked on the reactive
object.

incNonldleThreadCounter

Increases the nonl dl eThr eadCount er private attribute.

increaseHead Increases the size of the queue head.
increaseTail Increases the size of the queue tail.
increment Increments the iterator by 1.

init Starts the timer ticking.

Initializes the timer, creates the default event dispatching
thread, and initializes the framework.

initializeMutex

Creates an RTOS mutex, if it has not been created already.

initiatePool Initiates the “bookkeeping” for the allocated pool.
initinstance Creates an instance of OMThr eadTi ner .
inNullConfig Determines whether an OMReact i ve instance should take

null transitions (transitions without triggers) in the state
machine.

Rhapsody

405

Quick Reference

Method Name

Description

instance

Creates and retrieves the singleton instance of
OWMai nThr ead.

or

Returns the singleton instance of the
OWEnor yManager Swi t chHel per.

isActive

Determines whether a reactive object is also an active
object.

isBus

Returns the current value of the omrStatus attribute.

isCancelledTimeout

Determines whether the event is canceled.

isCompleted Determines whether the OR state reached a final state, and
therefore can be exited on a null transition.
isCurrentEvent Determines whether the specified ID is the currently

processed event.

isDeleteAfterConsume

Returns TRUE if the event should be deleted by the event
dispatcher (OMThr ead) after its consumption.

ISEmpty Determines whether the string is empty.
ISEmpty Determines whether the container is empty.
isFrameworkEvent Returns TRUE if the event is an internal framework event.

isFrameworklnstance

Determines the current value of the frameworklInstance
attribute.

isFull Determines whether the queue is full.

isinDtor Determines whether event dispatching should be stopped.

isLogEmpty Determines whether the memory log is empty.

isNotDelay Determines whether a timeout event is a timeout delay.

isRealEvent Returns TRUE if the event is a null-transition event, a
timeout, or a user event.

isTimeout Returns TRUE if the event is a timeout.

isTypeOf Returns TRUE if the event is from a given type (has the
specified ID).

isvalid Makes sure the reactive class is not deleted.

lock Locks the mutex of the OVPr ot ect ed object.

| ookUp Looks for the specified element in the map.

new Allocates additional memory.

notifyToError

Writes messages to the error log.

notifyToOutput

Writes messages to standard output.

OMAnNdState Is the constructor for the OVANdSt at e class.
OMCollection Is the constructor for the OMCol | ect i on class.
OMComponentState Is the constructor for the OMConponent St at e class.
OMDelay Is the constructor for the OVDel ay class.

406

C++ Framework Execution Reference Manual

Method Name

Description

OMDestructiveString2X

Is used to support animation.

OMEvent

Is the constructor for the OVEvent class.

OMFinalState

Is the constructor for the OVFi nal St at e class.

OMFriendStartBehaviorEvent

Is the constructor for the OVFr i endSt ar t Behavi or Event
class.

OMFriendTimeout

Is the constructor for the OVFri endTi neout class.

omGetEventQueue

Returns the event queue.

OMGuard Is the constructor for the OM@uar d class. It locks the mutex
of the user object.

OMHeap Is the constructor for the OVHeap class.

OMlterator Is the constructor for the OM t er at or class.

OML eafState Is the constructor for the OVLeaf St at e class.

OMList Is the constructor for the OM.i st class.

OMListltem Is the constructor for the OMLi st | t emclass.

OMMap Is the constructor for the OVMap class.

OMMapltem Is the constructor for the OMVapl t emclass.

OMMemoryManager

| s the constructor for the OMMenor yManager class.

OMMemoryManagerSwitchHelper

Is the constructor for the
OwWenor yManager Swi t chHel per class.

OMOrState Is the constructor for the OMOr St at e.
OMProtected Is the constructor for the OVPr ot ect ed class.
OMQueue Is the constructor for the OMQueue class.
OMReactive Is the constructor for the OVReact i ve class.

OMSelfLinkedMemoryAllocator

Constructs the memory allocator, specifies whether it is
protected, and how much additional memory should be
allocated if the initial pool is exhausted.

OMStack

Is the constructor for the OVBt ack class.

OMState

Is the constructor for the OVSt at e class.

OMStartBehaviorEvent

Is the constructor for the OVBt ar t Behavi or class.

OMStaticArray

Is the constructor for the OVSt at i ¢ class.

OMString Is the constructor for the OVBt r i ng class.
OMThread Is the constructor for the OMThr ead class.
OMTimeout | s the constructor for the Ti neout class.

OMTimerManager

Is the constructor for the OMTi mer Manager class.

OMUCollection

Is the constructor for the OMJCol | ect i on class.

OMUlterator

Is the constructor for the OMUI t er at or class.

OMUL st

Is the constructor for the OMULI st class.

OMUListltem

Is the constructor for the OMULI st | t emclass.

Rhapsody

407

Quick Reference

Method Name

Description

OMUMap Is the constructor for the OMJUMap class.

OMUMapltem Is the constructor for the OMUMapl t emclass.

pop Pops an item off the stack.

popNullConfig Decrements the omrStatus attribute after a null transition is
taken.

push Pushes an item onto the stack.

pushNullConfig

Counts null transitions. After a state is exited on a null
transition, pushNul | Conf i g increments the onr St at us
attribute.

put Adds an element to the queue.
queueEvent Queues events to be processed by the thread event loop

(execute).

recordMemoryAllocation

Records a single memory allocation.

recordMemoryDeallocation

Records a single memory deallocation.

reqgisterWithOMReactive

Registers a user instance as a reactive class in the
animation framework.

remove

Deletes the specified element from the container.

removeAll

Deletes all the elements from the container.

removeBylndex

Deletes the element found at the specified index in the
container.

removeFirst

Deletes the first element from the list.

removeltem Deletes the specified element from the list.

removeKey Deletes the element from the map, given its key.

removelast Deletes the last element from the list.

reorganize Enables you to reorganize the contents of the collection.

reset Resets the iterator to the first position in the container.

resetSize Makes the string larger.

resume Resumes a thread or timer suspended by the suspend
method.

returnMemory Returns the memory from an instance.

rootState_dispatchEvent

Consumes an event inside a real statechart.

rootState_entDef

Initializes the statechart by taking the default transitions.

rootState_serializeStates

Is a virtual method that performs the actual event
consumption.

runToCompletion

Takes all the null transitions (if any) that can be taken after
an event has been consumed.

schedTm Creates a timeout request and delegates the request to
OMTi mer Manager .
serialize Is called during animation to send event information.

408

C++ Framework Execution Reference Manual

Method Name

Description

serializeStates

Is called during animation to send state information.

set

Delegates a timeout request to OMTi mer Manager .

setAllocator

Sets the allocation method.

SetAt

Sets a character at the specified position in the container.

setAt

Inserts the specified element at the given index in the array.

setCompleteStartBehavior

Sets the value of the OMRShouldCompleteStartBehavior
attribute.

SetDefaultBlock

Sets the default string size.

setDelay

Sets the value of Ti meout .

setDeleteAfterConsume

Determines whether the event should be deleted by the
event dispatcher (OMThr ead) after it is consumed.

setDestination

Sets the event reactive destination.

setDueTime Specifies the value for the Ti meout attribute.
setElapsedTime Sets the value of m Ti e, the current system time.
setElement Sets the specified list element.

setEndOSThreadInDtor

Specifies whether an operating system thread in destruction
should be deleted.

setEventGuard

Is used to set the event guard flag (m_eventGuard).

setFrameworkEvent

Sets the event to be considered as an internal framework
event.

setFrameworkinstance

Changes the value of the frameworkInstance attribute.

setHandle

Sets the handle.

setincrementNum

Overwrites the increment value.

setinDtor Specifies that event dispatching should be stopped.
setlid Sets the event ID.
setl astState Sets the last state..

setMaxNullSteps

Sets the maximum number of null transitions (those without
a trigger) that can be taken sequentially in the statechart.

setMemoryManager Specifies the current framework memory manager.
setPriority Sets the priority of the thread being executed.

setRelativeDueTime

Calculates and sets the due time for a timeout based on the
current system time and the requested delay time.

setShouldDelete

Specifies whether a reactive object should be deleted by its
active object when it reaches a termination connector in its
state machine.

setShouldTerminate

Specifies that a reactive instance can be safely destroyed by
its active instance.

setState

Is used by the framework to set the current state.

set SubSt at e

Sets the substate.

Rhapsody

409

Quick Reference

Method Name

Description

setTheDefaultActiveClass

Registers an alternate default active object on the
framework.

setTheTickTimerFactory

Registers a timer factory on the framework, causing the
framework to use the user-defined timers instead of the
predefined timers.

setThread

Is a mutator function that sets the thread of a reactive object.

setTimeoutld

Specifies the value for t i meout | d.

setToGuardReactive

Specifies the value of the toGuardReactive attribute.

setToGuardThread

Sets the toGuardThread flag.

setUpdateState

Specifies whether the singleton should be updated.

shouldCompleteRun

Checks the value of omrStatus to determine whether there
are null transitions to take.

shouldCompleteStartBehavior

Checks the start behavior state.

shouldDelete

Determines whether a reactive object should be deleted by
its active object when it reaches a termination connector in
its state machine.

shouldGuardThread

Determines whether the thread should be guarded.

shouldTerminate

Determines whether a reactive instance can be safely
destroyed by its active instance.

shouldUpdate

Determines whether the singleton should be updated (and
have new memory allocations recorded).

softUnschedTm

Removes a specific timeout from the matured list.

start

Starts the singleton event loop (OMThr ead: : execut e) of
the main thread singleton.

Starts the event processing of the default event dispatching
thread.

startBehavior

Initializes the behavioral mechanism and takes the initial
(default) transitions in the statechart before any events are
processed.

stopAllThreads

Is used to support the DLL version of the Rhapsody in C++
execution framework (COM).

suspend Suspends the thread or timer.

takeEvent Takes the specified event off the event queue for processing.
Is used by the event loop (within the thread) to make the
reactive object process an event.

takeTrigger Consumes a triggered operation event (synchronous event).

terminate Sets the OVReact i ve instance to the terminate state (the

statechart is entering a termination connector).

TimerManagerCallBack

Is a callback of the timer manager. which notifies the
manager of the tick.

410

C++ Framework Execution Reference Manual

Method Name

Description

top Deletes the top of the heap.
or
Moves the iterator to the first item in the stack.
trim This method is currently unused.
undoBusy Sets the value of the sm_busy attribute to 0 or FALSE.
unlock Unlocks the mutex of the OVPr ot ect ed object.
unschedTm Cancels a timeout request.
update Currently, this method is unused.
value Returns the current value of the iterator.
wakeup Resumes processing after the delay time has expired.

Rhapsody

411

Quick Reference

412 C++ Framework Execution Reference Manual

Index

Symbols

I= operator 261
* operator
OM terator 98
OMString 265
OMUIlterator 355
+ operator
OMString 255
++ operator
OM terator 99
OMUlterator 356
+= operator 256
< operator
OMString 263
OMTimeout 307
<< operator 264
<= operator
OMString 260
<x>os.cpp file 36
<x>oxf.mak file 36
= operator 257
== operator
OMString 258
OMTimeout 305
> operator
OMString 262
OMTimeout 306
>= operator 259
>> operator 264
[] operator
OMList 108
OMMap 131
OMStaticArray 247
OMString 254
OMUCaollection 341
OMUList 361
OMUMap 379
_gen 195
_removeFirst
OMList 118
OMUList 369
~OMAbstractMemoryAllocator destructor 41
~OMCollection destructor 51
~OMDelay destructor 60
~OMEvent destructor 68
~OMGuard destructor 90

~OMHeap destructor 93

~OMList destructor 107
~OMMainThread destructor 125
~OMMap destructor 131
~OMMapltem destructor 139
~OMMemoryManager destructor 143
~OMM emoryManagerSwitchHelper 148
~OM Protected destructor 163

~OM Queue destructor 172

~OM Reactive destructor 188

~OM Stack destructor 230

~OM StaticArray destructor 246

~OM String destructor 254
~OMThread destructor 277
~OMThreadTimer destructor 299
~OMTimeout destructor 305
~OMTimerManager destructor 321
~OMUAbstractContainer destructor 335
~OMUCollection destructor 340
~OMUList destructor 360
~OMUMap destructor 378
~OMUMapltem destructor 387

A

Abstract container 16

AbstractL ayer package 13

action

OMThreadTimer class 299
OMTimerManager class 321

Active

attribute 181

getTheDefaultActiveClass 392

isActive 202
object 29

setTheDefaultActiveClass 397

activeflag

OMComponentState 56

add

OMCaollection 52
OMHeap 94
OMList 108
OMMap 132
OMStaticArray 248
OMUCollection 342
OMUList 362

Rhapsody

413

Index

OMUMap 380
addAt
OMCaollection 52
OMList 110
OMUCollection 343
OMUList 363
addFirst
OMList 111
OMUList 364
Allocate
alocPool 42
new 311
OMSdfLinkedMemoryAllocator 44
setAllocator 45
alocPool 42
alowDéletelnThreadsCleanup 277
AMemAloc.hfile 34
Analyze 32
Animated statecharts 32
animDeregisterForeignThread 389
animRegisterForeignThread 390
aomthread attribute 273
Array
OMStaticArray 244
Attributes 181
active 181
aomthread 273
component 101
count 245
deleteAfterConsume 65
destination 65
eventConsumed 182
eventNotConsumed 182
eventQueue 273
frameworkEvent 65
frameworklInstance 181
Ild 66
m_grow 168
m_head 168
m_myQueue 168
m_tail 168
myStartBehaviorEvent 182
OMDefaultThread 183
OMEvent class 66
OMEventAnyEventld 66
OMEventCancelledEventld 66
OMEventNullld 66
OMEventOXFEndEventld 67
OMEventTimeoutld 67
omrStatus 182
OM StartBehavior_id 67
OMThread class 273
OMTimeout class 303
OMTimerManager 318
overflowMark 318
parent 235
rootState 187

size 245

theLink 245

thread 274
toGuardReactive 182
toGuardThread 274

B

Behavior 5
customizing timeout manager 11
implement reactive 2
package 4
startBehavior 224

Behavioral package 4

Block
SetDefaultBlock 269

Bridge
cbkBridge 322

BSP 283

Buffer
GetBuffer 266

C

Callbacks 46
timer manager 46
TimerManagerCallBack 48
callMemoryPool | sEmpty 42
Cancel
cancel Events OM Reactive class 189
cancel Events OM Thread class 279
IsCancelledTimeout 71
single event 22
cancel Event 278
cancel Events
OMReactive 189
OMThread class 279
cbkBridge 322
Classdiagram 5
Classes
active but not reactive 29
consuming events without SCs 30

getEventClass OMFriendStartBehaviorEvent 82

getEventClass OM FriendTimeout 85
getTheDefaultActiveClass 392
OMADbstractMemoryAllocator 41
OMADbstractTickTimerFactory 46
OMCallection 50

OM ComponentState 56
OMDelay 59

OMEvent 62

OMFriendTimeout 84

OMGuard 87

OMHeap 92

OMInfiniteLoop 97

OMlterator 97

OMList 105

414

C++ Framework Execution Reference Manual

Index

OMListltem 122
OMMainThread 124
OMMap 127
OMMapltem 138
OMMemoryManager 140

OMMemoryManagerSwitchHelper 147

OMOrState 156
OMProtected 161
OMQueue 167
OMReactive 177
OMStack 229
OM StartBehaviorEvent 233
OM State 234
OMStaticArray 244
OMString 252
OMThread 270
OMThreadTimer 298
OMTimeout 302
OMTimerManager 316
OMTimerManagerDefaults 334
OMUAbstractContainer 335
OMUCaollection 338
OMUlterator 354
OMUList 358
OMUListltem 374
OMUMap 377
OMUMapltem 386
SCs for documentation 30
setTheDefaultActiveClass 397
Cleanup 149
AllThreads 280
Thread 280
clearlnstance 322
Collection 16, 343
Collections
adding elements 52
adding template-free 342
creating 51
creating template-free 340
destroying 51
destroying template-free 340
finding an element 344
removing all elements 54
removing elements 53
removing elements by index 55
reorganizing 55
CompareNoCase 265
Complete
runToCompletion 211
shouldCompleteRun 220
Component attribute 101
Concept
getConcept
OMFina State 80
OMMapltem 139
OMState 238
getFirstConcept 115

getLastConcept 116
Configuring properties 34
connectTo

OMListltem 123

OMUListltem 375
Constructors

OMAnNdState 48

OMCaollection 51

OM ComponentState 57

OMDelay 60

OMEvent 67

OMFinal State 79

OMFriendStartBehaviorEvent 81

OMFriendTimeout 84

OMGuard 90

OMHeap 93

OM Iterator 98

OMLeaf State 102

OMList 107

OMListltem 122

OMMap 130

OMMapltem 138

OMMemoryManager 143

OMMemoryManagerSwitchHelper 148

OMOrState 157
OMProtected 163
OMQueue 171
OMReactive 188
OMStack 229
OM StartBehaviorEvent 233
OM State 236
OMStaticArray 246
OMString 253
OMThread 274
OMTimeout 304
OMTimerManager 319
OMUCollection 340
OMUIterator 355
OMUList 360
OMUListltem 374
OMUMap 378
OMUMapltem 386
consumeEvent 189
consumeTime 323
Consumption
handleEventNotConsumed 198
handleTONotConsumed 199
isDeleteAfterConsume 71
modifying 30
of triggered events 226
setDeleteAfterConsume 75
Container type 16
Containers package 15
CORBA 63
Count
elements 230
getCount

Rhapsody

415

Index

OMList 113 setShouldDelete 216
OMMap 134 shouldDelete 222
OMStaticArray 249 Timeout 308
OMUCollection 345 deleteAfterConsume attribute 65
OMUList 367 deleteMutex 164
getCount OMUMap 382 Deregister
count attribute 245 animDeregisterForeignThread 389
Create Derived event 74
createReal TimeTimer 46 Destination
event 20 attribute 65
createRea TimeTimer 46 canceling eventsto 22
createSimulatedTimeTimer 47 getting 69
cseridize setting 76
OMFriendStartBehaviorEvent class 82 destroyThread
OMFriendTimeout 85 OMMainThread class 125
Current OMThread class 281
event 203 destroyTimer 324
getCurrent Destructors
OMList 113 ~OMCaollection 51
OMUADbstractContainer 336 ~OMDelay 60
OMUCollection 346 ~OMEvent 68
OMUList 367 ~OMGuard 90
getCurrentEvent 196 ~OMHeap 93
Customizing 1 ~OMList 107
automated behavior code 2 ~OMMainThread 125
framework 2, 37 ~OMMap 131
installation for OS/RTOS 13 ~OMMapltem 139
OMThread 8 ~OMMemoryManager 143
operator 265 ~OMProtected 163
timeout framework behavior 11 ~OMQueue 172
~OMReactive 188
~OM Stack 230
D ~OM StaticArray 246
Debug 32 ~OMString 254
DECLARE_MEMORY _ALLOCATOR macro 304 ~OMThread 277
decNonldleThreadCounter 323 ~OMThreadTimer 299
Decrement ~OMTimeout 305
null transitions 206 ~OMTimerManager 321
Default ~OMUCollection 340
getTheDefaultActiveClass 392 ~OMULIist 360
setTheDefaultActiveClass 397 ~OMUMap 378
Default transition 209 ~OMUMapltem 387
defaultHost 394 OMADbstractMemoryAllocator 41
defaultMaxTM constant 334 OMUAbstractContainer 335
defaultPort 394 Diagrams
defaultTicktime constant 334 _statecharts 31
Delay discarnateTimeout 191
getDelay 309 Dispatch
isNotDelay 311 event 21
setDelay 312 rootState_dispatchEvent 208
timeout 27 stopping 205
delay 391 timeout 11
Delete SD 26
allowDeletelnThreadsCleanup 277 triggered operation 23
isDeleteAfterConsume 71 doBusy 192
OMEvent 69 doExecute 281
setDel eteAfterConsume 75 DTOR

416 C++ Framework Execution Reference Manual

Index

islnDtor 205
setEndOSThreadinDtor 291
setinDtor 214
START _DTOR_REACTIVE _GUARDED_SECTIO
N 88
Duetime 10
getting 309
relative 313
setting 313

E

Elements
adding to collections 52
adding to template-free collections 342
adding to template-free collections at a given
location 343
getElement OMUListltem 375
getElement OMUMapltem 387
removing 53
removing al from collections 54
removing all from template-free collections 350
removing from template-free collections 349
setElement 376
elements 342
Empty 266
end 391
END_REACTIVE_GUARDED_SECTION macro 88
END_THREAD_GUARDED_SECTION macro 88
endOfProcess flag 273
entDef
OM L eaf State 102
OMOrState 157
OM State 236
enterState
OM ComponentState 57
OM L eaf State 103
OMOrState 157
OMState 237
entHist 237
Event 9,19
cancelEvents 189
cancel Events OMThread class 279
canceling asingle 22
canceling al 22
canceling all events 22
consumeEvent 189
creating 20
current 203
dispatching 21
generating 20
generic handling 235
getCurrentEvent 196
getEventClass
OMFriendStartBehaviorEvent 82
getEventClass OMFriendTimeout 85
getEventQueue 284

handleEventNotConsumed 198
handling 19
isFrameworkEvent 72
isReal Event 73
modifying consumption 30
OMFriendStartBehaviorEvent 81
processing loop 281
queueEvent 288
gueuing 20
rootState_dispatchEvent 208
setEventGuard 212
setFrameworkEvent 76
stopping dispatch 214
takeEvent

OM ComponentState 58

OMReactive 225

OMState 243

Event loop 21
Event queue

omGetEventQueue 287

event relation 186
event.cpp file 34
event.hfile 34
eventConsumed 182
eventNotConsumed 182
eventQueue attribute 273
Events

cancelEvent 278
derived 74
generate & queue 20

Example

OMList 106
OMMap class 127
OMQueue class 168
OMStaticArray 245
OMUList 359

Execute 282

doExecute 281

execute sequence of calls 21
exitState

OMLeaf State 103
OMOrState 158
OM State 237

External thread

animRegisterForeignThread 390
deregistering 389

Factory

getTheTickTimerFactory 393
setTheTickTimerFactory 398

Files

event.cpp 34
event.h 34
framework 34
MemAlloc.h 34

Rhapsody

417

Index

omabscon.h 34
omcollec.h 34
omcon.h 34
omheap.h 34
omlist.h 34
ommap.h 34
omoutput.cpp 35
omoutput.h 35
omprotected.h 35
omgueue.h 35
omreactive.cpp 35
omreactive.h 35
omstack.h 35
omstatic.h 35
omstring.cpp 35
omstring.h 35
omthread.cpp 35
omthread.h 35
omtypes.h 35
os.h 35
oxf.cpp 35
oxf.h 35
rawtypes.h 35
state.cpp 35
state.h 35
timer.cpp 35
timer.h 35
find
OMHeap 94
OMList 112
OMMap 133
OMStaticArray 248
OMUCaollection 344
OMUList 365
OMUMap 381
First
_removeFirst
OMList 118
OMUList 369
addFirst
OMList 111
OMUList 364
getFirst
OMList 115
OMUADbstractContainer 336
OMUCollection 346
OMUList 368
removeFirst
OMList 119
OMUList 371
Flag
active
OM ComponentState 56
first
OMList 106
OMUList 359
last

OMList 106
OMUList 359

subState 156
frameworkEvent attribute 65
frameworklnstance attribute 181
Frameworks 1

advantages of 1

architecture 3

customizing 2, 37

files 34

initializing 394

isFrameworkEvent 72

isFrameworklnstance 204

OXF 2

OXF::init 394

properties 34

quick reference 401

setFrameworkEvent 76

setFrameworklInstance 213

start 399

starting the timer 326
free 164

G

gen 192
GEN macro 185
GEN_BY_GUI macro 185
GEN_BY_X macro 185
GEN_ISR macro 186
Generate
event 20
Generic event handling 235
Get
current system time 324
destination 69
getlld 70
get 172
getAOMThread 284
getAt
OMList 112
OMMap 133
OMStaticArray 249
OMUCollection 345
OMUList 366
OMUMap 381
GetBuffer 266
getConcept
OMFina State 80
OMMapltem 139
OM State 238
getCount
OMList 113
OMMap 134
OMStack 230
OMStaticArray 249
OMUCallection 345

418

C++ Framework Execution Reference Manual

Index

OMUList 367
OMUMap 382
getCurrent
OMList 113
OMUADbstractContainer 336
OMUCaollection 346
OMUList 367
getCurrentEvent 196
getDefaultMemoryManager 144
getDelay 309
getDestination 69
getDueTime 309
getElapsedTime 324
getElement
OMUListltem 375
OMUMapltem 387
getEventClass
OMFriendStartBehaviorEvent 82
OMFriendTimeout 85
getEventQueue 284
getFirst
OMList 115
OMUADbstractContainer 336
OMUCaollection 346
OMUList 368
getFirstConcept 115
getGuard
OMGuard 91
OMProtected 164
OMThread 284
getHandle 238
getinverseQueue 173
getkey
OMMap 134
OMUMap 382
getLast 116
getLastConcept 116
getL astState 239
GetLength 267
getlld 70
getMemory 145
OMAbstractMemoryAllocator 42
OMMemoryManager 145
getMemoryManager
OMMemoryManager 145
OMMemoryManager class 145
OXF class 392
getNext
OMList 117
OMListltem 123
OMUAbstractContainer 337
OMUCaollection 347
OMUList 368
OMUListitem 375
getOsHandle 285
getOsThreadEndClb 286
getQueue 173

getSize 347
OMQueue 174
OMStaticArray 250
getStepper 287
getSubState
OMOrState 158
OMState 239
getTheDefaultActiveClass 392
getTheTickTimerFactory 393
getThread 197
getTimeoutld 310
goNextAndPost 325
Guard
END_REACTIVE_GUARDED_SECTION
88
END_THREAD_GUARDED_SECTION 88
getGuard
OMGuard 91
OMProtected 164
OMThread 284
GUARD_OPERATION 88
OMGuard class 87
setEventGuard 212
setToGuardReactive 219
setToGuardThread 292
shouldGuardThread 293
START_DTOR_REACTIVE_GUARDED_SECTIO
N 88
START_DTOR_THREAD_GUARDED_SECTION
89
START_REACTIVE_GUARDED_SECTION 89
START_THREAD_GUARDED_SECTION 89
GUARD_OPERATION macro 88

H

Handle

derived events 74

getHandle 238

getOsHandle 285

setHandle 241
handleEventNotConsumed 198
handleTONotConsumed 199
Head

increaseHead 174
Heap 16

class 92

empty 95

finding an element 94

removing elements 95
Helpers

OMMemoryManagerSwitch 147
Host 394

Rhapsody

419

Index

of atimeout event 24
SetTimeoutld 315
in
OM ComponentState 57
OMLeaf State 103
OMOrState 159
OM State 240
incarnateTimeout 200
incNonldleThreadCounter 325
increaseHead 174
increaseTail _ 174
Increment
setlncrementNum 45
increment 99
Index
addAt
OMCaollection 52
addAt OMUCaollection 343
removing elements collections 55
removing elements from template-free
collections 351
init
OMTimerManager 326
OXF 394
Initialize
framework 394
init
OMTimerManager 326
OXF 394
initlnstance 300
OMThreadTimer 300
instance
OMTimerManager 326
mutex 165
timer 326
initializeMutex 165
initiatePool 43
initlnstance
OMThreadTimer 300
OMTimerManager 326
inNullConfig 201
Instance
clearlnstance 322
initializing 300
initlnstance
OMThreadTimer 300
OMTimerManager 326
isFrameworklnstance 204
setFrameworklnstance 213
thread 125
instance
OMMainThread 125
OMMainThread class 125
OMMemoryM anagerSwitchHelper class 150
OMTimerManager 327
Interrupt
cbkBridge 322

IS EVENT_TYPE_OF macro 235

isActive 202
isBusy 202
isCancelledTimeout 71
isCompleted 240
isCurrentEvent 203
isDeleteAfterConsume 71
iSEmpty 135
OMHeap 95
OMList 117
OMQueue 175
OMStack 231
OM StaticArray 250
OMString 267
OMUCollection 348
OMUList 369
OMUMap 383
isFrameworkEvent 72
isFrameworklnstance 204
isFull 175
isinDtor 205
isLogEmpty 150
isNotDelay 311
isRealEvent 73
isRea TimeModel 395
isTimeout 73
isTypeOf 74
isTypeOf method 74
isvalid 205
Item
removeltem 120
OMUList 372

K

Key
getkey
OMMap 134
OMUMap 382
removing 385

L

Last
getLast 116
getLastConcept 116
getLastState 239
removel ast
OMList 121
OMUList 373
setLastState 242
Length
GetLength 267
Library
OXF 4
I1d attribute 66
setting 77

420

C++ Framework Execution Reference Manual

Index

List 16
empty 117
finding an element
inalist 112
in atemplate-freelist 365
first element 115
next element 117
number of elements 113
removing all elements 119
removing elements 118
removing last element 121
lock
OMANdState 49
OMGuard 91
OMProtected 165
OMThread 287
lookUp
OMMap 135
OMUMap 383

M

m_eventGuard constant 186
m_grow attribute 168
m_head attribute 168
m_myQueue attribute 168
m_tail attribute 168
Macro
DECLARE_MEMORY_ALLOCATOR 304
defined in omprotected.h 88
END_REACTIVE_GUARDED_SECTION 88
END_THREAD_GUARDED_SECTION 88
GUARD_OPERATION 88
IS EVENT_TYPE_OF 235
OM_DECLARE_FRAMEWORK_MEMORY_ALL
OCATION_OPERATORS 235
OMDECLARE_GUARDED 88
OMReactive class 185
START_DTOR_REACTIVE_GUARDED_SECTIO
N 88
START_DTOR_THREAD_GUARDED_SECTION
89
START_REACTIVE_GUARDED_SECTION 89
START_THREAD_GUARDED_SECTION 89
Map 16
finding an element
inamap 133
in atemplate-free map 381
getting the key 134
looking up an element 135
number of elements 134
removing all elements 137
removing an element 136
Matured list
removing atimeout 331
maxTM 395
MemAlloc.hfile 34

Memory

~OMAbstractMemoryAllocator 41
alocating 311
callMemoryPoolIsEmpty 42
getDefaultMemoryManager 144
getMemory 145
OMAbstractMemoryAllocator 42
getMemoryManager 392
OMADbstractMemoryAllocator class 41
OMSdlfLinkedMemoryAllocator 44
returnMemory
OMADbstractMemoryAllocator 44
setMemoryManager 396

Memory management

getMemory 145

getMemoryM anager
OMMemoryManager class 145
OXF class 392

package overview 15

returnMemory 146

Methods

_gen 195
_removeFirst

OMList 118

OMUList 369
~OMAbstractMemoryAllocator 41
~OMCaollection 51
~OMDelay 60
~OMEvent 68
~OMGuard 90
~OMHeap 93
~OMList 107
~OMMainThread 125
~OMMap 131
~OMMapltem 139
~OMMemoryManager 143
~OMProtected 163
~OMQueue 172
~OMReactive 188
~OMStack 230
~OMString 254
~OMThread 277
~OMThreadTimer 299
~OMTimeout 305
~OMTimerManager 321
~OMUMapltem 387
action

OMThreadTimer 299

OMTimerManager 321

d

OMCollection 52
OMHeap 94
OMList 108
OMMap 132
OMStaticArray 248
OMUList 362
OMUMap 380

Rhapsody

421

Index

add OMUCollection 342
addAt
OMCaollection 52
OMList 110
OMUList 363
addAt OMUCaollection 343
addFirst
OMList 111
OMUList 364
alocPool 42
animDeregisterForeignThread 389
animRegisterForeignThread 390
callMemoryPool IsEmpty 42
cancel Event 278
cancel Events 189
cancel Events OM Thread class 279
cbkBridge 322
cleanup 149
cleanupAllThreads 280
cleanupThread 280
clearlnstance 322
CompareNoCase 265
connectTo
OMListltem 123
OMUListltem 375
consumeEvent 189
consumeTime 323
createRea TimeTimer 46
createSimulatedTimeTimer 47
cserialize
OMFriendStartBehaviorEvent 82
OMFriendTimeout 85
decNonldleThreadCounter 323
delay 391
Delete
OMEvent class 69
OMTimeout class 308
deleteMutex 164
destroyThread
OMMainThread class 125
OMThread class 281
destroyTimer 324
discarnateTimeout 191
doBusy 192
doExecute 281
Empty 266
end 391
entDef
OM Leaf State 102
OMOrState 157
OMState 236
enterState
OM ComponentState 57
OMLeaf State 103
OMOrState 157
OM State 237
entHist 237

execute 282
exitState
OM L eaf State 103
OMOrState 158
OMState 237
find
OMHeap 94
OMList 112
OMMap 133
OMStaticArray 248
OMUCallection 344
OMUMap 381
find OMUList 365
findMemory 149
free 164
gen 192
get 172
getAOMThread 284
getAt
OMList 112
OMMap 133
OMStaticArray 249
OMUCallection 345
OMUList 366
OMUMap 381
GetBuffer 266
getConcept
OMFinalState 80
OMMapltem 139
OM State 238
getCount
OMList 113
OMMap 134
OMStack 230
OMStaticArray 249
OMUList 367
OMUMap 382
getCount OMUCollection 345
getCurrent
OMList 113
OMUADbstractContainer 336
OMUCaollection 346
OMUList 367
getCurrentEvent 196
getDefaultMemoryManager 144
getDelay 309
getDestination 69
getDueTime 309
getElapsedTime 324
getElement OMUListltem 375
getElement OMUMapltem 387
getEmpty 135
getEventClass OMFriendStartBehaviorEvent 82
getEventClass OM FriendTimeout 85
getEventQueue 284
getFirst
OMList 115

422

C++ Framework Execution Reference Manual

Index

OMUAbstractContainer 336

OMUCallection 346

OMUList 368
getFirstConcept 115
getGuard

OMGuard 91

OMProtected 164

OMThread 284
getHandle 238
getinverseQueue 173
getkey

OMMap 134

OMUMap 382
getLast 116
getLastConcept 116
getLastState 239
GetLength 267
getlld 70
getMemory

OMAbstractMemoryAllocator 42

OMMemoryManager 145
getMemoryM anager
OMMemoryManager 145
OXF class 392
getNext
OMList 117
OMListltem 123
OMUAbstractContainer 337
OMUCallection 347
OMUList 368
OMUListltem 375
getOsHandle 285
getOSThreadEndClb 286
getQueue 173
getSize 347
OMQueue 174
OMStaticArray 250
getStepper 287
getSubState
OMOrState 158
OMState 239
getTheDefaultActiveClass 392
getTheTickTimerFactory 393
getThread 197
getTimeoutld 310
goNextAndPost 325
handleEventNotConsumed 198
handleTONotConsumed 199
in
OM ComponentState 57
OMLeaf State 103
OMOrState 159
OMState 240
incarnateTimeout 200
incNonldleThreadCounter 325
increaseHead 174
increaseTail_ 174

increment 99
init
OMTimerManager 326
OXF 394
initializeMutex 165
initiatePool 43
initlnstance
OMThreadTimer 300
OMTimerManager 326
inNullConfig 201
instance
OMMainThread 125
OMMemoryManagerSwitchHelper 150
OMTimerManager 327
isActive 202
isBusy 202
isCancelledTimeout 71
isCompleted 240
isCurrentEvent 203
isDeleteAfterConsume 71
| SEmpty
OMString 267
iSEmpty
OMHeap 95
OMList 117
OMMap 135
OMQueue 175
OMStack 231
OMStaticArray 250
OMUCollection 348
OMUList 369
OMUMap 383
isFrameworkEvent 72
isFrameworklnstance 204
isFull 175
islnDtor 205
isLogEmpty 150
isNotDelay 311
isRea Event 73
isTimeout 73
isTypeOf 74
isTypeof 74
isvalid 205
lock
OMAnNdState 49
OMGuard 91
OMProtected 165
OMThread 287
lookUp
OMMap 135
OMUMap 383
new 311
OMAnNdState 48
OMCallection 51
OMComponentState 57
OMDelay 60
OMDestructiveString2X 268

Rhapsody

423

Index

OMEvent 67
OMFinal State 79
OMFriendStartBehaviorEvent 81
omGetEventQueue 287
OMGuard 90
OMHeap 93
OM L eaf State 102
OMList 107
OMListltem 122
OMMap 130
OMMapltem 138
OMMemoryManager 143
OMMemoryManagerSwitchHelper 148
OMProtected 163
OMQueue 171
OMReactive 188
OM SdlfLinkedMemoryAllocator 44
OMStack 229, 232
OM StartBehaviorEvent 233
OMState 236
OMString 253
OMThread 274
OMTimeout 304
OMTimerManager 319
OMUMapltem 386
pop 231
popNullConfig 206
push 232
pushNullConfig 207
put 175
queueEvent 288
quick reference 401
recordMemoryAllocation 151
recordMemoryDeallocation 152
registerWithOM Reactive 207
remove
OMCallection 53
OMHeap 95
OMList 118
OMMap 136
OMUCallection 349
OMUList 370
OMUMap 384
removeAll
OMCallection 54
OMList 119
OMMap 137
OMStaticArray 251
removeAll OMUCaollection 350
removeAll OMUList 371
removeAll OMUMap 385
removeBylndex
OMCollection 55
OMUCollection 351
removeFirst
OMList 119
OMUList 371

removeltem
OMList 120
OMUList 372
removeKey 385
removel ast
OMList 121
OMUList 373
reorganize
OMCaollection 55
reorganize OMUCollection 352
reset
OM terator 100
OMUIterator 356
resetSize 268
resume 289
returnMemory 44
OMADbstractMemoryAllocator 44
OMMemoryManager 146
rootState_dispatchEvent 208
rootState entdef 209
rootState serializeStates 210
runToCompletion 211
schedTm 289
serialize
OMPFriendStartBehaviorEvent 83
OMFriendTimeout 86
serializeStates
OMLeaf State 104
OMOrState 159
OMReactive 211
OMState 241
set 329
setAllocator 45
SetAt 269
setAt
OMStaticArray 251
OMUCollection 353
setCompleteStartBehavior 212
SetDefaultBlock 269
setDelay 312
setDeleteAfterConsume 75
setDestination 76
setDueTime 313
setElapsedTime 330
setElement 376
setEndOSThreadinDtor 291
setEventGuard 212
setFrameworkEvent 76
setFrameworklInstance 213
setHandle 241
setlncrementNum 45
setinDtor 214
setlastState 242
setlld 77
setMaxNull Steps 214
setMemoryManager 396
setPriority 292

424

C++ Framework Execution Reference Manual

Index

setRelativeDueTime 313
setShouldDelete 216
setShouldTerminate 217
setState 314
setSubState

OMOrState 160

OMState 242
setTheDefaultActiveClass 397
setTheTickTimerFactory 398
setThread 218
setTimeoutld 315
setToGuardReactive 219
setToGuardThread 292
setUpdateState 153
shouldCompleteRun 220

shouldCompleteStartBehavior 221

shouldDelete 222
shouldGuardThread 293
shouldTerminate 223
shouldUpdate 153
softUnschedTm 331
start
OMMainThread class 126
OMThread class 293
OXF 399
startBehavior 224
stopAllThreads 294
suspend 295
takeEvent
OM ComponentState 58
OMReactive 225
OM State 243
takeTrigger 226
terminate 227
TimerManagerCallBack 48
top
OMHeap 9%
OMStack 232
trim 96
undoBusy 228
unlock
OMAnNdState 49
OMGuard 91
OMProtected 166
OMThread 295
unschedTm
OMThread class 296
OMTimerManager class 332
update 96
value
OM Iterator 100
OMUIlterator 357
wakeup 61
Model
testing 32
Modify
event consumption 30

Mutex

deleting 164

goNextAndPost 325

initializeMutex 165
myStartBehaviorEvent attribute 182
myThread relation 187

N

Next (getNext)
OMList 117
OMListltem 123
OMUADbstractContainer 337
OMUCollection 347
OMUList 368
OMUListltem 375

Null transition
decrementing 206
incrementing 207
maximum number 214
taking 211

Null transitions 201

numProgArgs 3%

O

OM_DECLARE_FRAMEWORK_MEMORY_ALLOC

ATION_OPERATORS macro 235
OM_ENABLE_MEMORY_MANAGER _SWITCH

switch 151, 152
omabscon.h file 34
OMADbstractMemoryAllocator class 41
OMAbstractTickTimerFactory class 46
OMAnNdState class 48

constructor 48
omcollec.h file 34
OMCollection class 50

constructor 51
OM ComponentState class 56

constructor 57
omcon.h file 34
OMDECLARE_GUARDED macro 88
OMDefaultThread attribute 183
OMDelay class 8,59

constructor 60

stopDelay flag 59
OMDestructiveString2X 268
OMEvent class 9, 62

attributes 66

Behavior package 5

constructor 67
OMEventAnyEventld attribute 66
OM EventCancelledEventld attribute 66
OMEventNullld attribute 66
OMEventOXFEndEventld attribute 67
OMEventTimeoutld attribute 67
OMFinalState class 78

Rhapsody

425

Index

constructor 79 attributes 181
OMFriendStartBehaviorEvent class 81 Behavioral package 5
constructor 81 constants 182
OMFriendTimeout class 84 constructor 188
constructor 84 declaration 177
omGetEventQueue method 287 defines and macros 185
OMGuard class 9, 87 relations 186
4.0 changes 87 omreactive.cpp file 35
constructor 90 omreactive.h file 35
OMHeap class 92 OMRInDtor constant 183
constructor 93 OMRNullConfig constant 184
omheap.h file 34 OMRNullConfigMask constant 184
OMInfiniteLoop class 97 OMRShouldCompleteStartBehavior constant 184
OM Iterator class 97 OMRShouldDel ete constant 184
constructor 98 OMRShouldTerminate constant 185
OML eaf State class 101 omrStatus
constructor 102 doBusy 192
OMList class 105 isBusy 202
constructor 107 undoBusy 228
omlist.hfile 34 omrStatus attribute 182
OMListltem class 122 OM SdlfLinkedMemoryAllocator 44
constructor 122 OM Stack class 229
OMMainThread class 8, 124 constructor 229
OMMap class 127 omstack.h file 35
constructor 130 OMStartBehavior_id attribute 67
example 127 OM StartBehaviorEvent class 233
ommap.h file 34 constructor 233
OMMapltem class 138 OMState class 234
OMMapltem constructor 138 constructor 236
OMMemoryManager class 140 omstatic.h file 35
constructor 143 OMStaticArray class 244
OMMemoryManagerSwitchHel per constructor 148 constructor 246
OMMemoryManagerSwitchHelper switch 147 OMString class 252
OMOrState class 156 constructor 253
constructor 157 omstring.cpp file 35
OMOSConnectionPort class 14 omstring.h file 35
OMOSEventHag class 14 OMThread class 8
OMOSFactory class 14 attributes 273
OMOSM essageQueue class 14 Behavioral package 5
OMOSMutex class 14 constructor 274
OMOSSemaphore class 14 customizing 8
OMOSSocket class 14 declaration 270
OMOSThread class 14 omthread.cpp file 35
OMOSTimer class 14 omthread.h file 35
omoutput.cpp file 35 OMThreadTimer class 11
omoutput.h file 35 declaration 298
OM Protected class 9 OMTimeout class 10, 302
Behaviora package 5 attribute 303
constructor 163 constructor 304
declaration 161 OMTimerManager attribute 318
omprotected.h file 35 OMTimerManager class 10
OMQueue class 167 Behaviora package 5
constructor 171 constructor 319
example 168 declaration 316
omgueue.h file 35 OMTimerManagerDefaults class 11
OMRDefaultStatus constant 183 declaration 334
OMReactive class 6, 189 omtypes.h file 35

426 C++ Framework Execution Reference Manual

Index

OMUADbstractContainer class 335

OMUCallection class 338
constructor 340
OMUIterator class 354
constructor 355
OMUList class 358
constructor 360
example 359
OMUListltem class 374
constructor 374
OMUMap class 377
constructor 378
OMUMapltem class 386
constructor 386
Operation
unconsumed 199
Operations
dispatch triggered 23
triggered 9, 177
operator 108
Operators
1= 261
*

OM Iterator 98
OMString 265
OMUIterator 355
+
OMString 255
++
OM lterator 99
OMUlterator 356
+= 256
<
OMString 263
OMTimeout 307
<< 264
<= 260
= 257

OMString 258
OMTimeout 305
>
OMString 262
OMTimeout 306
>= 259
>> 264

1
OMMap 131
OMStaticArray 247
OMString 254
OMUCollection 341
OMUList 361
OMUMap 379
new 311
os.hfile 35
OSL ayer package 4
description 13

OSWrappers package 14
overflowMark attribute 318
OXF 2

classdiagram 5

end 391

general class 388

init 394

library 4

packages 4

quick reference 401

RTOS 13

start 399

working with 2
oxf.cpp file 35
oxf.hfile 35

P

Packages

behavioral 4,5

operating system 4
parent attribute 235
Pool

allocPool 42

callMemoryPool ISEmpty 42

initiatePool 43
pop 231
popNullConfig 206
Port 394
Priority

setPriority 292
progArgs 394
Properties 34

framework 34
push 232
pushNullConfig 207
put 175

Q

Quality of service 33

Queue
event 20
full 175
get 173
getEventQueue 284
getinverseQueue 173
getQueue 173
increasing the head 174
increasing the tail 174
size 174

queueEvent 288

Quick reference 401

R

Rate monotonic analysis 32

Rhapsody

427

Index

rawtypes.h file 35
Reactive object 29
Real time 395
createReal TimeTimer 46
Real-time frameworks 1
recordMemoryAllocation 151
recordMemoryDeallocation 152
Register
animRegisterForeignThread 390
register
registerWithOM Reactive 207
registerWithOM Reactive 207
Relations
OMReactive class 186
Remove
_removeFirst 118
al elements
fromlist 119
from map 137
from static array 251
all elements from template-freelist 371
al elements from template-free map 385
element
from list 120
from map 136
elements
from heap 95
fromlist 118
frommap 136
from template-freelist 370
from template-free map 384
first element
fromlist 119
from template-freelist 371
item from template-free list 372
key 385
last element 121
from template-freelist 373
remove
OMCollection 53
OMHeap 95
OMList 118
OMMap 136
OMUCollection 349
OMUList 370
OMUMap 384
removeAll
OMCollection 54
OMList 119
OMMap 137
OMStaticArray 251
OMUCaollection 350
OMUList 371
OMUMap 385
removeBylndex
OMCaollection 55
OMUCollection 351

removeFrirst
OMList 119
OMUList 371
removeltem
OMList 120
OMUList 372
removeKey 385
removel ast
OMList 121
OMUList 373
reorganize
OMCaollection 55
OMUCollection 352
reset
OM lterator 100
OMUIterator 356
resetSize 268
resume
OMThread 289
OMTimerManager 328
returnMemory 146
OMAbstractMemoryAllocator 44
OMMemoryManager 146
Rhapsody 1
active abjects 29
configuring properties 34
delaying timeouts 27
dispatching events 21
dispatching timeouts
SD 26
framework files 34
generating and queuing events 20
library 4
OXF 2
reactive objects 29
real time model 395
statecharts 31
supported container types 16
testing the model 32
timeouts 24
unscheduling timeouts 27
rootState attribute 187
rootState dispatchEvent 208
rootState_entDef 209
rootState serializeStates 210
RTOS 13
runToCompletion 211

S

schedTm 289
Schedule
delay 28
timeout 25
Sequence diagrams 32
dispatch triggered operations 23
dispatched event 21

428

C++ Framework Execution Reference Manual

Index

for documentation 30

generation & queue events 20
serialize 83

cserialize

OMFriendStartBehaviorEvent 82

OMPFriendStartBehaviorEvent 83
OMPFriendTimeout 86
seridizeStates
OMLeaf State 104
OMOrState 159
OMReactive 211
OM State 241
Services package 4
description 15
Set
destination 76
setDeleteAfterConsume 75
set 329
setAllocator 45
SetAt 269
setAt
OMStaticArray 251
OMUCollection 353
setCompleteStartBehavior 212
SetDefaultBlock 269
setDelay 312
setDel eteAfterConsume 75
setDestination 76
setDueTime 313
setElapsedTime 330
setElement 376
setEndOSThreadInDtor 291
setEventGuard 212
setFrameworkEvent 76
setFrameworklnstance 213
setHandle 241
setlncrementNum 45
setinDtor 214
setLastState 242
setlld 77
setMaxNull Steps 214
setMemoryManager 396
setPriority 292
setRelativeDueTime 313
setShouldDelete 216
setShouldTerminate 217
setState 314
setSubState
OMOrState 160
OMState 242
setTheDefaultActiveClass 397
setTheTickTimerFactory 398
setThread 218
setTimeoutld 315
setToGuardReactive 219
setToGuardThread 292
setUpdateState 153

shouldCompleteRun 220
shouldCompl eteStartBehavior 221
shouldDelete 222
shouldGuardThread 293
shouldTerminate 223
shouldUpdate 153
Simulated time 395
consumeTime 323
createSimulatedTimeTimer 47
goNextAndPost 325
Size
getSize 347
OMQueue 174
OMStaticArray 250
resetSize 268
size attribute 245
softUnschedTm 331
Stack 229
Start 399
start
OMMainThread class 126
OMThread class 293
START _DTOR_REACTIVE_GUARDED_SECTION
macro 88
START DTOR _THREAD_GUARDED_SECTION
macro 89
START_REACTIVE_GUARDED_SECTION
macro 89
START_THREAD_GUARDED_SECTION macro 89
startBehavior 224
State
enterState
OM ComponentState 57
OMState 237
exitState 237
getLastState 239
getSubState
OMOrState 158
OMState 234
serializeState
OMLeaf State 104
OMOrState 159
setLastState 242
setState 314
setSubState
OMOrState 160
OM State 242
State machine 31
null transitions 201
shouldDéelete 222
termination connector 216
state.cpp file 35
state.h file 35
Statecharts 31
animated 32
Harel 31
Static 16

Rhapsody

429

Index

Static array
empty 250
example 245
finding an element 248
number of elements 249
OM StaticArray class 244
removing all elements 251
Stepper
getStepper 287
stopAllThreads 294
stopDelay flag 59
String
default block 269
length 267
Substate
getSubState
OMState 239
getting 158
setting 160
suspend 295
Switches
OMMemoryManagerSwitchHelper 147
Synchronous event
consuming 226
System time
getting 324
setting 330

T
Tall
increasing 174
takeEvent
OM ComponentState 58
OMReactive 225
OMState 243
processing events 6
takeTrigger 226
Target environment
customizing the OXF 13
Template-fre map
removing all elements 385
Template-free
adding elementsto alocation 343
current element 346
number of elements 345
Template-free collection
empty 348
first element 346
removing all elements 350
removing elements 349
removing elements by index 351
reorganizing 352
Template-freelist
current element 367
empty 369
finding an element 365

first element 368
number of elements 367
removing all elements 371
removing item 372
Template-free map
empty 383
getting the key 382
looking up an element 383
number of elements 382
Terminate 227
setShouldTerminate 217
shouldTerminate 223
Termination connector
setShouldDel ete 216
shouldDéelete 222
Test 32
theLink attribute 245
Thread
action
OMThreadTimer class 299
OMTimerManager class 321
alowDéletelnThreadsCleanup 277
animDeregisterForeignThread 389
animRegisterForeignThread 390
cleanupAllThreads 280
ending 286
getAOMThread 284
getThread 197
instance 125
operating system ID 285
resuming a suspended 289
setEndOST hreadinDtor 291
setPriority 292
setThread 218
shouldGuardThread 293
start 293
stopAllThreads 294
suspending 295
thread attribute 274
Tick timer
getTheTickTimerFactory 393
setTheTickTimerFactory 398
tickTime 395
Time
consumeTime 323
getElapsedTime 324
goNextAndPost 325
real 395
setElapsedTime 330
simulated 395
Timeout 24
canceling arequest 332
customizing behavior 11
delaying 27
delegating arequest 329
deleting from heap 308
discarnateTimeout 191

430

C++ Framework Execution Reference Manual

Index

dispatching 11

SD 26
getDelay 309
getDueTime 309
getTimeoutld 310
ID 24
incarnateTimeout 200
isCancelledTimeout 71
isNotDelay 311
isTimeout 73
maxTM 395
posting 10

removing from the matured list 331

schedTm 289
scheduling 25
setDelay 312
setDueTime 313
setRelativeDueTime 313
setTimeoutld 315
unschedTm
OMThread class 296
unscheduling 27
Timeout class
Behavior package 5
timeoutDelayld attribute 303
timeouts 320
timer.cpp file 35
timer.h file 35
TimerManagerCallBack 48
TimerMaxTimeouts property 320
TimerResol ution property
system timer 320
Timers 10
createReal TimeTimer 46
createSimulatedTimeTimer 47
getTheTickTimerFactory 393
starting 326
TimerManagerCallBack 48
toGuardReactive attribute 182
setting 219
ToGuardThread attribute
setting 292
toGuardThread attribute 274
top

OMHeap 96
OMStack 232

Transition
decrementing null 206
default 209
incrementing null 207
null 201, 214
taking null 211

Trigger 31
take Trigger methods 177
takeTrigger 226
transitions 19

Triggered operations 9, 177
dispatching 23
unconsumed 199

trim 96

U

UML 31

undoBusy 228

unlock
OMAnNdState 49
OMGuard 91
OMProtected 166
OMThread 295

unschedTm
OMThread class 296
OMTimerManager 332

Unschedule
timeout 27

update 96

V

value
OM Iterator 100
OMUIlterator 357

W
wakeup 61

Rhapsody

431

Index

432 C++ Framework Execution Reference Manual

	Contents
	Frameworks and OXF Overview
	Real-Time Frameworks
	The Object Execution Framework (OXF)
	Working with the Object Execution Framework
	The OXF Library

	Behavioral Package
	OMReactive Class
	OMThread Class
	OMMainThread Class
	OMDelay Class

	OMProtected Class
	OMGuard Class
	OMEvent Class
	OMTimeout Class
	OMTimerManager Class
	Customizing Timeout Manager Behavior
	OMThreadTimer Class
	OMTimerManagerDefaults Class

	OSLayer Package
	AbstractLayer Package
	Classes
	OSWrappers Package

	Services Package
	MemoryManagement Package
	Containers Package

	Event Handling
	Events
	Generating and Queuing an Event
	Dispatching an Event
	Canceling a Single Event
	Canceling All Events to a Destination
	Dispatching a Triggered Operation

	Timeouts
	Scheduling a Timeout
	Dispatching a Timeout
	Unscheduling a Timeout
	Delaying a Timeout

	Miscellaneous Topics
	Active and Reactive Classes
	Active Classes that are Not Reactive
	Reactive Classes that Consume Events Without Statecharts
	Classes with Statecharts Only as Documentation of Behavior
	Modifying Class Event Consumption

	State Machines
	Model Debugging, Testing, and Analysis
	Configuring Framework Properties
	The Framework Files
	Customizing the Framework

	OXF Reference Pages
	OMAbstractMemoryAllocator Class
	~OMAbstractMemoryAllocator
	allocPool
	callMemoryPoolIsEmpty
	getMemory
	initiatePool
	OMSelfLinkedMemoryAllocator
	returnMemory
	setAllocator
	setIncrementNum

	OMAbstractTickTimerFactory Class
	createRealTimeTimer
	createSimulatedTimeTimer
	TimerManagerCallBack

	OMAndState Class
	OMAndState
	lock
	unlock

	OMCollection Class
	OMCollection
	~OMCollection
	add
	addAt
	remove
	removeAll
	removeByIndex
	reorganize

	OMComponentState Class
	OMComponentState
	enterState
	in
	takeEvent

	OMDelay Class
	OMDelay
	~OMDelay
	wakeup

	OMEvent Class
	Attributes
	Constants
	OMEvent
	~OMEvent
	Delete
	getDestination
	getlId
	isCancelledTimeout
	isDeleteAfterConsume
	isFrameworkEvent
	isRealEvent
	isTimeout
	isTypeOf
	setDeleteAfterConsume
	setDestination
	setFrameworkEvent
	setlId

	OMFinalState Class
	OMFinalState
	getConcept

	OMFriendStartBehaviorEvent Class
	OMFriendStartBehaviorEvent
	cserialize
	getEventClass
	serialize

	OMFriendTimeout Class
	OMFriendTimeout
	cserialize
	getEventClass
	serialize

	OMGuard Class
	OMGuard
	~OMGuard
	getGuard
	lock
	unlock

	OMHeap Class
	OMHeap
	~OMHeap
	add
	find
	isEmpty
	remove
	top
	trim
	update

	OMInfiniteLoop Class
	OMIterator Class
	OMIterator
	operator *
	operator ++
	increment
	reset
	value

	OMLeafState Class
	OMLeafState
	entDef
	enterState
	exitState
	in
	serializeStates

	OMList Class
	OMList
	~OMList
	operator []
	add
	addAt
	addFirst
	find
	getAt
	getCount
	getCurrent
	getFirst
	getFirstConcept
	getLast
	getLastConcept
	getNext
	isEmpty
	_removeFirst
	remove
	removeAll
	removeFirst
	removeItem
	removeLast

	OMListItem Class
	OMListItem
	connectTo
	getNext

	OMMainThread Class
	~OMMainThread
	destroyThread
	instance
	start

	OMMap Class
	OMMap
	~OMMap
	operator []
	add
	find
	getAt
	getCount
	getKey
	isEmpty
	lookUp
	remove
	removeAll

	OMMapItem Class
	OMMapItem
	~OMMapItem
	getConcept

	OMMemoryManager Class
	OMMemoryManager
	~OMMemoryManager
	getDefaultMemoryManager
	getMemory
	getMemoryManager
	returnMemory

	OMMemoryManagerSwitchHelper Class
	OMMemoryManagerSwitchHelper
	~OMMemoryManagerSwitchHelper
	cleanup
	findMemory
	instance
	isLogEmpty
	recordMemoryAllocation
	recordMemoryDeallocation
	setUpdateState
	shouldUpdate

	OMNotifier Class
	notifyToError
	notifyToOutput

	OMOrState Class
	OMOrState
	entDef
	enterState
	exitState
	getSubState
	in
	serializeStates
	setSubState

	OMProtected Class
	OMProtected
	~OMProtected
	deleteMutex
	free
	getGuard
	initializeMutex
	lock
	unlock

	OMQueue Class
	OMQueue
	~OMQueue
	get
	getCount
	getInverseQueue
	getQueue
	getSize
	increaseHead_
	increaseTail_
	isEmpty
	isFull
	put

	OMReactive Class
	OMReactive
	~OMReactive
	cancelEvents
	consumeEvent
	discarnateTimeout
	doBusy
	gen
	_gen
	getCurrentEvent
	getThread
	handleEventNotConsumed
	handleTONotConsumed
	incarnateTimeout
	inNullConfig
	isActive
	isBusy
	isCurrentEvent
	isFrameworkInstance
	isInDtor
	isValid
	popNullConfig
	pushNullConfig
	registerWithOMReactive
	rootState_dispatchEvent
	rootState_entDef
	rootState_serializeStates
	runToCompletion
	serializeStates
	setCompleteStartBehavior
	setEventGuard
	setFrameworkInstance
	setInDtor
	setMaxNullSteps
	setShouldDelete
	setShouldTerminate
	setThread
	setToGuardReactive
	shouldCompleteRun
	shouldCompleteStartBehavior
	shouldDelete
	shouldTerminate
	startBehavior
	takeEvent
	takeTrigger
	terminate
	undoBusy

	OMStack Class
	OMStack
	~OMStack
	getCount
	isEmpty
	pop
	push
	top

	OMStartBehaviorEvent Class
	Animating Start Behavior
	OMStartBehaviorEvent

	OMState Class
	OMState
	entDef
	entHist
	enterState
	exitState
	getConcept
	getHandle
	getLastState
	getSubState
	in
	isCompleted
	serializeStates
	setHandle
	setLastState
	setSubState
	takeEvent

	OMStaticArray Class
	OMStaticArray
	~OMStaticArray
	operator []
	add
	find
	getAt
	getCount
	getSize
	isEmpty
	removeAll
	setAt

	OMString Class
	OMString
	~OMString
	operator []
	operator +
	operator +=
	operator =
	operator ==
	operator >=
	operator <=
	operator !=
	operator >
	operator <
	operator <<
	operator >>
	operator *
	CompareNoCase
	Empty
	GetBuffer
	GetLength
	IsEmpty
	OMDestructiveString2X
	resetSize
	SetAt
	SetDefaultBlock

	OMThread Class
	OMThread
	~OMThread
	allowDeleteInThreadsCleanup
	cancelEvent
	cancelEvents
	cleanupAllThreads
	cleanupThread
	destroyThread
	doExecute
	execute
	getAOMThread
	getEventQueue
	getGuard
	getOsHandle
	getOSThreadEndClb
	getStepper
	lock
	omGetEventQueue
	queueEvent
	resume
	schedTm
	setEndOSThreadInDtor
	setPriority
	setToGuardThread
	shouldGuardThread
	start
	stopAllThreads
	suspend
	unlock
	unschedTm

	OMThreadTimer Class
	~OMThreadTimer
	action
	initInstance

	OMTimeout Class
	OMTimeout
	~OMTimeout
	operator ==
	operator >
	operator <
	Delete
	getDelay
	getDueTime
	getTimeoutId
	isNotDelay
	new
	setDelay
	setDueTime
	setRelativeDueTime
	setState
	setTimeoutId

	OMTimerManager Class
	OMTimerManager
	~OMTimerManager
	action
	cbkBridge
	clearInstance
	consumeTime
	decNonIdleThreadCounter
	destroyTimer
	getElapsedTime
	goNextAndPost
	incNonIdleThreadCounter
	init
	initInstance
	instance
	resume
	set
	setElapsedTime
	softUnschedTm
	suspend
	unschedTm

	OMTimerManagerDefaults Class
	OMUAbstractContainer Class
	~OMUAbstractContainer
	getCurrent
	getFirst
	getNext

	OMUCollection Class
	OMUCollection
	~OMUCollection
	operator []
	add
	addAt
	find
	getAt
	getCount
	getCurrent
	getFirst
	getNext
	getSize
	isEmpty
	remove
	removeAll
	removeByIndex
	reorganize
	setAt

	OMUIterator Class
	OMUIterator
	operator *
	operator ++
	reset
	value

	OMUList Class
	OMUList
	~OMUList
	operator []
	add
	addAt
	addFirst
	find
	getAt
	getCount
	getCurrent
	getFirst
	getNext
	isEmpty
	_removeFirst
	remove
	removeAll
	removeFirst
	removeItem
	removeLast

	OMUListItem Class
	OMUListItem
	connectTo
	getElement
	getNext
	setElement

	OMUMap Class
	OMUMap
	~OMUMap
	operator []
	add
	find
	getAt
	getCount
	getKey
	isEmpty
	lookUp
	remove
	removeAll
	removeKey

	OMUMapItem Class
	OMUMapItem
	~OMUMapItem
	getElement

	OXF Class
	animDeregisterForeignThread
	animRegisterForeignThread
	delay
	end
	getMemoryManager
	getTheDefaultActiveClass
	getTheTickTimerFactory
	init
	setMemoryManager
	setTheDefaultActiveClass
	setTheTickTimerFactory
	start

	Quick Reference
	Index

