

Rhapsody®
CORBA Development Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
CORBA Setup, Libraries, and Files . 1
CORBA Development Requirements. 1

Object Request Broker (ORB) . 2

Installing and Building Your TAO Libraries . 3
Accessing ACE and TAO Downloads . 3
ACE and TAO Setup Process . 4

TAO Properties . 5
Makefile Settings. 5
Implementing a Class with the ORB . 6
IDL Compiler Settings . 6
Mainline Code . 6
Environment Parameter . 7
Initialization Properties . 7

Makefiles for Building CORBA Applications . 8

IDL Compiler-Generated Files . 9
File Naming Conventions . 9
File Usage . 10

Stereotypes and Types . 11
CORBA Stereotypes . 11

«CORBAModule» Stereotype . 11
«CORBAInterface» Stereotype . 12
«CORBAException» Stereotype . 16
Mapping «CORBAExceptions» to Code . 16

CORBA Types . 17
CORBA Predefined Reference Package. 17
Defining Native CORBA Types . 17
Using Stereotypes to Define a CORBA Union . 18
CORBA Types and Code Generation . 18
Mapping CORBA Types to Code . 19

Creating a CORBA Model . 21
Rhapsody iii

Table of Contents
Building CORBA Applications . 21

Rhapsody Sample Models . 22

SDM_Observers Sample Model . 22

Creating a New CORBA Project . 23

Creating the Required CORBA Stereotype . 24

Creating the System’s Class and Inheritance. 25
Implementing the SDM Operations . 27
Defining the Notify Operation . 30
Creating the CORBA IObserver Interface . 32
Using the ISDM Interface to RegisterObservers . 34
Creating a Statechart for the evNotify Event . 35

Creating the Server Component . 37

Setting the CORBA Server Properties. 37

Defining the Server Initialization . 38

Building the Server Component. 39

Building the Client Component . 39

Troubleshooting the Build . 39

Clients and Servers . 41
Building the Client. 41

Running the Application through an ORB . 41

Interpreting CORBA Interfaces . 43

Servers . 43
Realizing Server Attributes . 44
Realizing Server Operations . 44
Realizing Server Relations . 45
CORBA Type Translation . 45
Realizing Server Associations. 45

Clients. 46

Mixed and Standalone CORBA Interfaces . 46

Mapping Clients and Servers to Components . 46
Mapping to Deliverable Components . 46
Mapping Clients, Servers, and Interfaces to Libraries. 47

Using External IDL Files . 48

Using Other ORBs . 49
iv CORBA Development Guide

Table of Contents
Adapting Rhapsody for Other ORBS. 49

Selecting a Different ORB. 50

Index . 51
Rhapsody v

Table of Contents
vi CORBA Development Guide

CORBA Setup, Libraries, and Files
Rhapsody facilitates development of distributed applications using the Common Object Request
Broker Architecture (CORBA). Rhapsody’s CORBA helps you to develop your applications
to run in a client-server environment, and it supplies tools to support the following tasks:

� Define, use, and manipulate CORBA modules
� Manage CORBA interfaces, exceptions, and types
� Use CORBA as an integral part of the implementation model
� Link CORBA-domain constructs to the C++ domain
� Specify an IDL-to-C++ mapping and manage the mapping details (IDL is the Interface

Definition Language.)

CORBA Development Requirements
Before using Rhapsody’s CORBA features, the developer should be familiar with Rhapsody in
C++. To use the CORBA features, the following system components must be installed and setup
on the developer’s computer:

� An ORB (TAO)
� An IDL compiler (supplied with the ORB)
� CORBA header files
� ORB Libraries for CORBA

Note
CORBA is supported in Windows C++ only; therefore, you must have a supported
Windows C++ compiler running on the development machine. When you install Rhapsody,
you must select the installed C++ compiler so that the CORBA features can be used.
Rhapsody 1

CORBA Setup, Libraries, and Files
Object Request Broker (ORB)
An Object Request Broker (ORB) running on the network acts as the “glue” for distributed
applications running on one or more processors. The ORB provides these services:

� Connects requests from a client to the server component that is capable of responding to
the request, regardless of where on the network the server is running.

� Frees the client from being forced to know the location of a server on the network in order
to use one of its services.

The supported Rhapsody CORBA ORB is TAO (from ACE). ACE is an open source framework
that provides many components and patterns for developing high-performance, distributed real-
time and embedded systems. The TAO ORB supports efficient abstractions for sockets,
demultiplexing loops, threads, synchronization primitives.

The following elements form the CORBA system architecture.
2 CORBA Development Guide

Installing and Building Your TAO Libraries
Installing and Building Your TAO Libraries
Before creating a CORBA project, you must first create the ORB libraries. Since TAO is the
supported ORB, you must install ACE and build the TAO libraries before using Rhapsody’s
CORBA.

Accessing ACE and TAO Downloads

Rhapsody 7.0 requires the ACE-5.5 and TAO-1.5 versions. These are packaged as the ACE-
5.5+TAO-1.5.zip on the TAO Web site at http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/
TAO/TAO-INSTALL.html (shown below).

Scroll down from the starting point, shown below, to locate your system requirements and library
building instructions.
Rhapsody 3

CORBA Setup, Libraries, and Files
ACE and TAO Setup Process

You install Rhapsody after TAO and the CORBA libraries are built and your C++ compiler is
installed. The sequence of events is as follows:

1. Install a C++ compiler (such as Microsoft Visual C++.net Standard)

2. Install ACE

3. Install TAO and the CORBA header files

4. Build CORBA libraries

5. Install Rhapsody and specify the C++ environment

During the Rhapsody installation, the same C++ compiler you used to build the TAO CORBA
libraries must be selected as the C++ compiler to be used with Rhapsody.

Note
If you are using a different ORB, follow that vendor’s instructions to build the necessary
libraries. You may also refer to the Using Other ORBs section in this guide for additional
information.
4 CORBA Development Guide

TAO Properties
TAO Properties
The Rhapsody properties in the CORBA::TAO metaclass define how the TAO ORB interacts with
Rhapsody. These properties can be accessed for a CORBA project as follows:

1. Open the C++ project that you want to use to create a CORBA model.

2. Select File > Project Properties. This displays the Properties tab in the Features dialog
box.

3. Select the All view and navigate to the CORBA::TAO group of properties.

The following sections describe each group of the TAO properties according to their functions. For
additional information about CORBA properties, refer to the Creating the Server Component
section.

Makefile Settings

The following TAO properties specify makefile-related information:

� CORBAIncludePath specifies the path to the additional include files for your CORBA
ORB. The specified path is appended to the “include” path in the Rhapsody-generated
makefile. The default for this property is $(ACE_ROOT)\TAO\ $(ACE_ROOT)\
$(ACE_ROOT)\TAO\orbsvcs.

� CORBALibs specifies the path to the TAO libraries for your CORBA ORB. The specified
path is appended to the object/library search path in the Rhapsody-generated makefile.
The three default library names, listed in this property’s selection area, are
TAO_PortableServd.ib, TAO_Valuetyped.lib, and aced.lib. For more information
about TAO libraries, refer to the Installing and Building Your TAO Libraries section.

� CPP_CompileSwitches provides a string that allows you to specify additional C++
compiler switches.

� CPP_LinkSwitches provides a default empty string that allows you to specify additional
link switches.

� CPP_StandardInclude provides a string that allows you to specify additional header
files to be included in the generated sources, that are required when your component is
compiled with the TAO include files. The default value is tao/CORBA.h;tao/
PortableServer/POA.h.

Note
This information is only used in the makefile if it is needed.
Rhapsody 5

CORBA Setup, Libraries, and Files
Implementing a Class with the ORB

Rhapsody gives you control over how a C++ class is bound to the ORB. Using the
CORBA::Class::DefaultImplementationMethod property, you can specify whether a given C++
class should implement a CORBA interface using the inheritance approach or TIE approach. Once
you have set this property, Rhapsody uses the following properties (under CORBA::TAO) to
implement the interface:

� DefTIEString - If DefaultImplementationMethod is set to TIE, the DefTIEString
property specifies a template for the string generated into every IDL file that contains a
CORBA interface.

� Skeleton - If DefaultImplementationMethod is set to Inheritance, the Skeleton
property defines a format string that the implementing class inherits. The default is
POA_$interface. The CORBA interface name replaces “$interface” in the generated
code.

IDL Compiler Settings

The following properties (under CORBA::TAO) contain the settings for the IDL compiler:

� IDLCompileCommand specifies the compile command for your IDL compiler.
� IDLCompileSwitches specifies your IDL compiler’s compilation switches. There are two

ways to attach a CORBA implementation class to the ORB: BOA or TIE. The TAO “-B”
flag compiles the IDL so that BOA objects are used. This is also the default for the
property.

Mainline Code

The ServerMainLineTemplate property (under CORBA::TAO) specifies a code segment that is
generated in the executable main file if the Rhapsody configuration is defined as a CORBA server.
You define a configuration to be a server by setting the CORBAEnable property (under
CORBA::Configuration) to CORBAServer. This code segment should perform any initialization
and additional setup steps before diving into the CORBA loop.

If you modify the ServerMainLineTemplate property, remember that every double-quote
character must preceded with a backslash (\").

Similarly, the ClientMainLineTemplate property (under CORBA::TAO) enables you to add code to
the main function of a CORBA client.
6 CORBA Development Guide

TAO Properties
Environment Parameter

If the AddCORBAEnvParam property (under CORBA::TAO) is set to Checked, an “environment”
parameter (of the type CORBA_env) is added as the last argument to CORBA operations. The
default value is Cleared.

Initialization Properties

The following properties (under CORBA::TAO) enable you to control the initialization of the ORB:

� InitialInstance specifies any additional initial instance routines required by the ORB.
This code template will be generated for each instance of a specific class (implementing
one or more CORBA interfaces).

� InitializeORB specifies the ORB initialization routines. In most cases, this is the first
executable command in the main function of the CORBA server.
Rhapsody 7

CORBA Setup, Libraries, and Files
Makefiles for Building CORBA Applications
The Rhapsody dual-phase code generation process produces IDL files for items tagged with
CORBA stereotypes and C++ files for the remaining items. CORBA setup code is generated in the
second phase of code generation. The make process links the IDL and C++ files with the CORBA
skeleton.

The make first calls the IDL compiler to translate the IDL code to C++. Next, it calls the C++
compiler to compile the C++ output of the IDL compiler, along with the Rhapsody native C++
output, into an assembly language image of the component.

Note
Rhapsody can animate only one executable at a time. Therefore, animation can be enabled
for either the client or the server component, but not both.
8 CORBA Development Guide

IDL Compiler-Generated Files
IDL Compiler-Generated Files
This section describes the files generated by the Interface Definition Language (IDL) compiler,
supplied with the ORB.

File Naming Conventions

The CORBA specification does not force ORB vendors to use a unified naming convention for
IDL compiler products. Moreover, it does not define what these products should contain.
Therefore, a set of properties was created in Rhapsody to address this issue.

All IDL compilers generate specification files (with function headers and signatures only) and
implementation files (with function definitions and bodies). For a given CORBA interface, the
IDL compiler can conceivably create the following code:

� Skeleton code - Server-side code. Can be built of two files, one for specification and one
for implementation.

� Stub code - Client-side code. Can be built of two files, one for specification and one for
implementation.

This means that the IDL compiler can potentially create four files, whose names are derived from
the IDL file name.

For example, compiling an IDL file named X.idl with TAO leads to the following three files:

� X.hh (specification file)
� XS.cpp (skeleton implementation file)
� XC.cpp (stub implementation file)

Compiling the same X.idl file with another IDL compiler, for example Visibroker, leads to the
following four files:

� X_s.hh (skeleton specification file)
� X_c.hh (stub specification file)
� X_s.c (skeleton implementation file)
� X_c.c (stub implementation file)

The following properties were created in Rhapsody to define the IDL compiler file-naming
behavior:

� ImplementationExtension specifies the extension of implementation files. The default is
.cpp.

� SkeletonImplementationName is a string that defines the naming behavior for skeleton
implementation files. The default is $interfaceS.
Rhapsody 9

CORBA Setup, Libraries, and Files
� SkeletonSpecificationName is a string that defines the naming behavior for skeleton
specification files. The default is $interfaceS.

� SpecificationExtension is a string that specifies the extension for specification files.
The default is .h.

� StubImplementationName is a string that defines the naming behavior for stub
implementation files. The default is $interfaceC.

� StubSpecificationName is a string that defines the naming behavior for stub
specification files. The default is $interfaceC.

File Usage

When you want to create a server, you need the skeleton code generated by the IDL compiler;
when you want to create a client, you need the stub code. However, with different ORBs and IDL
compilers, the skeleton and stub code is mapped to different files.

For example, server developers using TAO need only to compile and link with the generated
skeleton file (for example, XS.cpp and X.hh). However, server developers using Visibroker
need to compile and link with both the skeleton file and the stub file (for example, X_s.hh,
X_s.c, X_c.hh, and X_c.c).

The following properties address this issue by specifying which files should be used to create a
client, server, or process that is both a client and a server:

� NeededObjForClient is an enumerated type that specifies the file needed to create an
object. The default is Stub.

� NeededObjForServer is an enumerated type that specifies the file needed to create a
server. The possible values are as follows:

– Stub

– Skeleton

– Both

� NeededObjForClientServer is an enumerated type that specifies the file needed to create
a client server. The possible values are as follows:

– Stub

– Skeleton

– Both
10 CORBA Development Guide

Stereotypes and Types
This section describes the CORBA stereotypes and types supported by Rhapsody and provides the
information necessary to understand the development steps in the Creating a CORBA Model section.

CORBA Stereotypes
Rhapsody provides three stereotypes to indicate model elements that adhere to the CORBA
standard:

� «CORBAModule»

� «CORBAInterface»

� «CORBAException»

«CORBAModule» Stereotype

The «CORBAModule» stereotype is applied to packages. It indicates that a package contains only
CORBA-stereotyped model elements.

CORBA modules can contain:

� Other «CORBAModule» stereotyped packages
� «CORBAInterface» stereotyped classes
� «CORBAException» stereotyped classes
� CORBA types

Rhapsody does not generate C++ code for «CORBAModule» stereotyped packages - it generates
them into CORBA modules.

The «CORBAModule» stereotype is optional for packages unless the package contains CORBA
types, which can be defined only in CORBA modules. If you want to define CORBA types, you
can do so in a CORBA module.

If the CPP_CG::Package::DefineNameSpace property for the package is set to True,
Rhapsody generates the CORBA interfaces in the package - all encapsulated within the scope of a
CORBA module. The scope name is the same as the package name.
Rhapsody 11

Stereotypes and Types
«CORBAInterface» Stereotype

The «CORBAInterface» stereotype is applied to classes. It indicates that a class should be
mapped to an IDL interface during code generation. Rhapsody generates only IDL code for
CORBA interfaces; it does not generate C++ code for them.

A class that inherits from a «CORBAInterface» stereotyped class exposes the interface. The
CORBA interface itself exposes nothing.

Attributes and Operations of «CORBAInterface»
A «CORBAInterface» class can have both attributes and operations. These are generated into
attributes and operations with the same names in the IDL interface. Data types used for attributes
and operations are generated “as-is” in the IDL files. Therefore, you must use CORBA data types,
defined in either the predefined CORBA types package or in your own «CORBAModule» or
«CORBAInterface».

Create subclasses in the model to realize IDL interfaces as follows:

� Every CORBA operation must have a corresponding C++ operation in the realizing class.
� Every CORBA attribute must have a corresponding C++ attribute in the realizing class.

You must provide get and set operations in the realizing class.
� Every CORBA type (for example, long) must have a corresponding type (for example,

CORBA::long) in the realizing class. You can import these types from the CORBA
predefined types package.

To simplify the process, you can drag-and-drop CORBA operations and attributes from a CORBA
interface to a regular class. Rhapsody automatically converts the types.

The following constraints apply to CORBA interfaces concerning code generation:

� Both attributes and operations of CORBA interfaces cannot be classified as public,
private, or protected. Therefore, generated IDL files refer only to public attributes and
operations. Protected and private attributes are ignored.

� «CORBAInterface» stereotyped classes cannot be instantiated. Therefore, operation
bodies, if they exist, are ignored.

� The virtual, static, and const keywords have no meaning for «CORBAInterface»
classes. Therefore, the virtual/static keyword is ignored during IDL attribute
generation.

You can make an attribute of a CORBA interface readonly (a CORBA keyword) by setting the
attribute’s CORBA::Attribute:IsReadOnly property to True. To make an operation of a
CORBA interface oneway, set the operation’s CORBA::Operation::IsOneWay property to
True.
12 CORBA Development Guide

CORBA Stereotypes
In addition, the following standard UML options are available for operations:

� Operation arguments can have a direction of in, out, or inout. Specify these values in the
Argument dialog box.

� The CORBA::Operation::ThrowExceptions property enables you to specify the
exceptions that an operation throws. For example, if an operation throws the exceptions
exc1 and exc2, set "exc1, exc2" for the ThrowExceptions property.

Relations with «CORBAInterface» Classes
Relations between «CORBAInterface» classes are mapped to elements in the generated IDL
depending on the type and multiplicity of the relation.

Associations and Aggregations

An outgoing or symmetric relation arrow leaving a «CORBAInterface» class can target only
another «CORBAInterface» class. An incoming relation arrow coming into a
«CORBAInterface» class can originate in either a regular class or another «CORBAInterface»
class.

Outgoing or symmetric relations from «CORBAInterface» classes are mapped to accessor and
mutator methods (such as get(), set(), add(), and clear()) in the generated IDL as follows:

� If the multiplicity of the target role is one, the accessor’s return type and the type of the
mutator’s parameter are the same as the type of the target «CORBAInterface». In
addition, the mutator’s parameter has a direction of in.

For example, the following IDL is generated for the interface A, which has a directed
relation to an interface B with a multiplicity of one:

interface A {
//// User-implicit entries ////

B getItsB();
void setItsB(in B p_B);

};

� If the multiplicity of the target role is greater than one, a type definition for an IDL
sequence is generated for the source interface.

For example, the following IDL sequence definition is generated for interface C,
which has a symmetric relation to interface D with a multiplicity of two:

typedef sequence<C> CSeq;

The CORBA::Class::IDLSequence property enables you to specify the implementation of
the IDL sequence name, as follows:

� The default value, $interfaceSeq, expands to the name of the interface with the “Seq”
suffix. For example, for an interface C, the generated sequence name is CSeq.
Rhapsody 13

Stereotypes and Types
� You can turn off generation of the type definition by setting the property to an empty
string.

Generalizations

A «CORBAInterface» can inherit only from another «CORBAInterface».

Inheritance between two «CORBAInterface» classes is generated into an inheritance between
the corresponding IDL interfaces. For example, if a «CORBAInterface» H inherits from a
«CORBAInterface» G, the following IDL code is generated for H:

interface H : G {};

An inheritance arrow between a regular class and a «CORBAInterface» is interpreted as a
realization (implementation) of the interface. This is the typical architecture used to implement a
CORBA server.

Note
Generally, for configurations with such a construct, the
CORBA::Configuration::CORBAEnable property must be set to CORBAServer to
avoid code generation errors.

There are two ways to realize object adapters in CORBA:

� Inheritance
� TIE

The CORBA::Class::DefaultImplementationMethod specifies the implementation method
(Inheritance or TIE) for the project. In other words, if DefaultImplementationMethod is
set to Inheritance, all realizations of CORBA interfaces are implemented using inheritance by
default.

For example, when using TAO and the inheritance implementation method, the following code is
generated for class J, which inherits from «CORBAInterface» I:

class J : virtual public IBOAImpl {
public :

// Constructors and destructors
J(const char* instanceName = "");
-J();

};

In the generated code, the realizing class J inherits from the IBOAImpl class, which is generated
by the TAO IDL compiler.
14 CORBA Development Guide

CORBA Stereotypes
You can override the default implementation method by setting the
CORBA::Class::TIERealizes or InheritanceRealizes property for a specific class to the
name of the «CORBAInterface» classes that it realizes. In other words, even if you are using
inheritance as the default implementation method for the project, you can still use TIE as the
implementation method for a particular class by setting its TIERealizes property to the name of
the «CORBAInterface» that it realizes. You can have the same class realize different
«CORBAInterface» classes using different methods by setting the TIERealizes and
InheritanceRealizes properties for the same class to the names of the «CORBAInterface»
class that it should realize using either method.

Compositions

«CORBAInterface» classes cannot be contained in any element. «CORBAInterface» classes
themselves contain only «CORBAException» classes.
Rhapsody 15

Stereotypes and Types
«CORBAException» Stereotype

The «CORBAException» stereotype is applied to classes. It indicates that the class should be
mapped during code generation to an IDL exception. CORBA IDL exceptions can be defined
within the scope of a «CORBAInterface» or a CORBA module. CORBA exceptions cannot have
a global scope.

CORBA IDL exceptions can have attributes, but not operations. Any operations found in a
«CORBAException» class are ignored during code generation.

CORBA IDL exceptions cannot inherit from other CORBA IDL exceptions.

Mapping «CORBAExceptions» to Code

A «CORBAException» stereotyped class is not generated in its own file. Instead, it is generated
into the file of the encapsulating entity - the class or package in which it is defined. Therefore, a
«CORBAException» defined in a class can be “thrown” by any of its operations. An exception
defined in a CORBA module can be thrown by any operation in any class within that module.

To make your design clear, you should draw a «Usage» arrow from a class to an exception that it
throws.
16 CORBA Development Guide

CORBA Types
CORBA Types
Rhapsody includes a package of predefined CORBA types. This package contains the basic
CORBA IDL types, which you can assign to any attribute, operation return type, or argument or an
operation that belongs to a «CORBAInterface».

The predefined types are as follows:

CORBA Predefined Reference Package

To import the CORBA predefined types package into your model, do the following:

1. Select File > Add to Model.

2. Navigate to <Rhapsody_install>Share\Properties.

3. In the Add To Model dialog box, change the file type filter to Package (*.sbs).

4. Select the CORBA.sbs package, the As Reference radio button, and click Open.

The CORBA package is added as a read-only (RO) reference package to the model. Note that
because the CORBA types package is added as a reference package, no code is generated for it.

Once the CORBA package is imported, the CORBA IDL data types are displayed in the Type
drop-down list (for example, when you select Type is Typedef’ed in the Operation dialog box).

Defining Native CORBA Types

You can create CORBA structures, enumerations, and typedefs using the same steps you would for
creating such items in C++.

To define these CORBA types:

1. Create a new type inside a <<CORBA Module>> package or <<CORBA Interface>>
class.

2. On the General tab of the Features dialog box for the type, select Language from the
Kind drop-down list.

any boolean char

double fixed float

long longdouble longlong

octet short string

unsignedlong unsignedlonglong unsignedshort

wchar wstring
Rhapsody 17

Stereotypes and Types
3. On the Declaration tab of the Features dialog box, declare the IDL.

4. Click OK.

Note
To define a CORBA union, use the method described in the section, Using Stereotypes to
Define a CORBA Union

Using Stereotypes to Define a CORBA Union

To define a CORBA union, you use the stereotypes:

� <<CORBAFixedUnion>>

� <<CORBAVariableUnion>>

To define a CORBA union, follow these steps:

1. Create a new type inside a <<CORBA Module>> package or <<CORBA Interface>>
class.

2. On the General tab of the Features dialog box for the type, select Language from the
Kind drop-down list.

3. On the Declaration tab of the Features dialog box, enter the code for the union.

4. Click OK.

5. Set the property CORBA::Type::CORBAStereotype to CORBAFixedUnion or
CORBAVariableUnion.

CORBA Types and Code Generation

CORBA types are ignored during C++ code generation; they are relevant only for CORBA IDL
generation. When generating IDL, Rhapsody maps any CORBA types to the corresponding C++
types based on the UML mapping scheme. Most IDL compilers use the same scheme.

You can override the default C++ mapping scheme as follows:

� To change the mapping scheme, modify the in, inout, out, and ReturnValue
properties under CORBA::C++Mapping_CORBA<implementation><type>.
For events and triggered operations, modify the property TriggerArgument.

� <implementation> is either Fixed or Variable (according to the value of the property
CORBA::Type::C++Implementation).
<type> is one of Structure, Union, Enumeration, Array, Sequence, or Basic.
18 CORBA Development Guide

CORBA Types
Mapping CORBA Types to Code

Because the mapping of CORBA data types to C++ code is determined by both the type and usage
(for example, whether the item is assigned to its in, inout, out, or return), each type is mapped
to a certain C++ construct according to its usage either during code generation or when you copy it
from the CORBA domain to the C++ domain (such as when you drag an attribute or operation
from a CORBA interface to a regular class).

There are two properties that affect mapping of CORBA types to C++ code, in the case of types
and interfaces:

� CORBA::Type::C++Implementation - possible values are Fixed and Variable.
� CORBA::Class::C++Implementation - possible values are Reference and

Variable.
The table below indicates the mapping settings used for the different property values.

Property
Value C++ Implementation Metaclass Used when Declaring

Argument in Operation Signature

Structure Fixed <Structure name> CORBA::C++Mapping_CORBA
FixedStruct

Variable <Structure name>_var CORBA::C++Mapping_CORBA
VariableStruct

Array Typedef Fixed <Typedef name> CORBA::C++Mapping_CORBA
FixedArray

Variable <Typedef name>_var CORBA::C++Mapping_CORBA
VariableArray

Sequence
Typedef

Fixed <Typedef name>_var CORBA::C++Mapping_CORBA
Sequence

Variable <Typedef name>_var CORBA::C++Mapping_CORBA
Sequence

Language Type Fixed <Type name> User can choose; default
is
CORBA::C++Mapping_CORBABas
ic

Variable

Simple
Typedef

Simple Typedef recurses to the last real type that the typedef redefines, and
uses the value of that type’s CORBA::Type::C++Implementation if it
is a type, or the value of CORBA::Class:C++Implementation if it is
an interface, and the type’s corresponding
CORBA::C++Mapping_CORBA<implementation><type> metaclass.
Rhapsody 19

Stereotypes and Types
20 CORBA Development Guide

Creating a CORBA Model
This section illustrates some of the basic Rhapsody operations required to create a CORBA model.

Building CORBA Applications
The following steps define the general process for creating CORBA components using Rhapsody:

1. Create a C++ project in Rhapsody. (See the Creating a New CORBA Project for more
details.)

2. Define CORBA interfaces by assigning CORBA stereotypes to model elements. (See the
Creating the Required CORBA Stereotype and Creating the CORBA IObserver Interface
section for more details.)

3. Create client and server relations between interfaces and classes in the structural
model. (See the Creating the System’s Class and Inheritance sections for more details.)

4. Set up CORBA properties for the appropriate model elements. (See the Creating the
Server Component for more details.)

5. Generate code. Rhapsody automatically generates Interface Definition Language
(IDL) code for the items tagged as CORBA stereotypes and C++ code for the
remaining items

6. Build client and server components. Rhapsody generates the IDL code needed for
the client and server components. This IDL code is then compiled by the IDL
compiler to create the necessary CORBA stubs and skeletons.

7. Start the server and client by running the executables.

You determine what classes you want to have communicate with each other and specify
that they have the <<CORBAInterface>> stereotype.
Rhapsody 21

Creating a CORBA Model
Rhapsody Sample Models
The instructions used in this example are based on the CORBA project in the C++ samples in your
Rhapsody installation. The CORBA samples directory contains three projects for the SDM
(Security Door Management) model. You may find it useful to review these projects before
following the practice instructions in this section.

To examine the projects, follow these steps:

1. Open Rhapsody in C++: From the Windows Start menu, select Programs > Telelogic >
Telelogic Rhapsody version# > Rhapsody Development Edition > Rhapsody in C++.

2. Select File > Open to open the Open dialog box.

3. Navigate to Samples > CPPSamples > CORBA.

SDM_Observers Sample Model
In the Rhapsody C++ samples, the SDM_Observers model contains three different components:

� SDM (Security Door Management)
� policeObserver
� alarmObserver

Each component performs its own task. A client is developed in the Client_sdm_observers model.

This system is designed to detect unauthorized entry (“break-in”) to protected buildings and to
notify the proper authorities to respond to a break-in. The general system requirements are as
follows:

� The Security Door Manager (SDM) software monitors a Door in order to detect a door
access violation (break-in).

� If there is a break-in, the software signifies a break-in and a list of observers is notified.
These observers are registered in the SDM.

� Observers, such as police at the police station and security officers located remotely, are
notified and the alarm is activated.

� The police observers and alarm observers are registered with the Security Door Manager,
and they request to be notified if a break-in (event) occurs.

� When the break-in event occurs, the Act operation starts and the notification is sent to the
observers.

� The alarm is activated and the police are called.
22 CORBA Development Guide

Creating a New CORBA Project
Creating a New CORBA Project
When you create practice files, save your files in a different directory from the sample directory to
allow you to compare your practice work with the original Rhapsody samples.

Create a new CORBA project with these steps:

1. Open Rhapsody in C++: From the Windows Start menu, select Programs > Telelogic >
Telelogic Rhapsody version# > Rhapsody Development Edition > Rhapsody in C++.
You must create this project using the C++ development edition.

2. Select File > New from the main menu bar to display the New Project dialog box.

3. Type Sdm_Observers as the Project name and select a folder to use as your practice
project directory, as shown below.

4. Use the “Default” Type since it contains all of the items needed for a CORBA project.

5. Click OK. The system opens a new project and creates an Object Model Diagram named
Model1 in the Drawing area.

Note: In the browser, select Object Model Diagrams > Model1, and right-click
Model1.

6. Select Diagram Properties from the menu, and in the General tab, type Main_Model in
the Name field.

7. Click OK to save the name change and close the dialog.
Rhapsody 23

Creating a CORBA Model
Creating the Required CORBA Stereotype
In order to create a CORBA component, you must then create a class and define it as a CORBA
interface stereotype. To create the interface class and make it a CORBA stereotype, follow these
steps:

1. In the object model Main_Model, select the Class icon .

2. Drag the pointer in the diagram drawing area to create a class.

3. Type the name of the class, ISDM, over the default name that the system supplied. This is
the interface for SDM.

4. Right-click the ISDM class diagram and select Features from the menu.

5. Select the General tab and in the Stereotype field, select CORBAInterface from the
pull-down menu.

6. Click OK to save the changes and close the dialog.

The ISDM class is now a CORBA interface. During code generation Rhapsody generates IDL code
for this class. Your diagram should resemble this example.
24 CORBA Development Guide

Creating the System’s Class and Inheritance
Creating the System’s Class and Inheritance
In order to represent the system and create and inheritance between the system and its interface,
you must now create the SDM class with these steps:

1. In the object model diagram, draw another class named SDM below the ISDM class.

2. Select the Inheritance icon and click on the top of the SDM class and then on the
bottom of the ISDM class to create the inheritance relationship between the two classes.
This means SDM implements the CORBA interface ISDM. At this point, the diagram
should resemble this example.

3. In the browser, the open the Packages and right-click Default. Select Add New > Event.

4. Type evNotify into the open area in the browser to create the Notify event.

5. In the browser, the open the Packages > Default > Classes > SDM.

6. Right-click and select the Features option to display the Features dialog box.

7. Select the Operations tab and from the <New> pull-down menu select the specified type,
listed below. Then enter the text to name the new operations and assign all three Public
visibility:

� PrimitiveOperation - notify
� PrimitiveOperation - CreateRefFile
� Reception - evNotify
Rhapsody 25

Creating a CORBA Model
At this point the Operations in the Features dialog box should resemble this
example.

8. Click OK to save the operations and close the dialog box. At this point, the browser
should resemble this example.
26 CORBA Development Guide

Creating the System’s Class and Inheritance
Implementing the SDM Operations

At this point, the basic structure of the SDM system is drawn in the Object Model Diagram. Now
the operations in the system need to be implemented.

When the evNotify event is generated, the SDM needs to receive the event and call the Notify
operation, created in the previous section. To accomplish this, add the implementation code to the
Notify operation with these steps:

1. Right-click Notify in the browser to display a menu.

2. Select the Features option and then the Implementation tab in the Features dialog box.
Note that the item selected in the browser forms the title bar of the dialog box.

3. Type the code in the Implementation area, as shown in this example:

4. Click OK to save the code.

5. To display the Notify operation in the class, right-click the SDM class in the diagram and
select Display Options.

6. Select the Operations tab.
Rhapsody 27

Creating a CORBA Model
7. In the All Elements list, highlight the notify() item and click Display to put it into the
Shown in Diagram column, as shown in this example.

8. Click OK to save this display change. At this point the diagram should resemble this
example.

Next you need to add the implementation code for CreateRefFile with these steps:

1. Right-click CreateRefFile in the browser.

2. Select the Features option and then the Implementation tab in the Features dialog box.
28 CORBA Development Guide

Creating the System’s Class and Inheritance
3. Type the code in the Implementation area, as shown in the example below. To speed up
this step, you may want to copy this code from the SDM_Observers project in the
Samples directory.

4. Click OK to save the code.
Rhapsody 29

Creating a CORBA Model
Defining the Notify Operation

Now the Notify operation needs a list of observers to notify. Make the following changes in the
diagram:

1. To the right of the SDM class, draw another class and change the generated name to be
alarmObserver.

2. To the right of the new alarmObserver class, draw a policeObserver class. At this point
your diagram should resemble this example.

The Notify operation also needs to call an Act operation for the observers. Follow these steps to
add it:

1. In the browser, right-click the alarmObserver to display the menu and select Features.

2. Select the Operations tab to add the new operation.

3. Select PrimitiveOperation and name it Act. Assign it “Public” Visibility and a “Void”
Return Type.

4. Click OK to save.

5. Repeat steps 1 to 4 to create the policeObserver class.
30 CORBA Development Guide

Creating the System’s Class and Inheritance
6. Then make the Act operation display in the diagram. At this point, your diagram should
resemble this example.

The Act operation needs to be implemented with “activating alarm” or “calling the police.” Follow
these steps to add the necessary implementations:

1. In the browser, right-click Act() under the alarmObserver.

2. Select the Features option and then the Implementation tab.

3. Type the following code in the Implementation area:

below.omcout << "Activating alarm..." << omendl;

4. Click OK to save.

5. In the browser, right-click Act() under the policeObserver.

6. Select the Features option and then the Implementation tab.

7. Type the following code in the Implementation area:

omcout << "Calling the police..." << omendl;

8. Click OK to save.
Rhapsody 31

Creating a CORBA Model
Creating the CORBA IObserver Interface

In order to make all of these elements work together, the Act operation is inherited by the
observers from the CORBA IObserver interface. When the Act operation is called for Alarm
Observers, the alarm is activated.

Follow these steps to incorporate these concepts into the model:

1. Above the two observer classes, draw another class and change the generated name to be
IObserver.

2. Right-click to display the Features dialog box, on the General tab select
CORBAInterface in the Stereotype field and Sequential in the Concurrency field.

3. Click Apply to save the changes and keep the dialog box open.

4. Select the Operations tab, and add the PrimitiveOperation act in the same manner as
used previously. Click OK.

5. Right-click the new IObserver class and select the Display Options > Operations.

6. Select the act operation to be displayed and click OK. At this point the diagram should
resemble this example.

7. Select the Inheritance icon on the Drawing toolbar. Click on the AlarmObserver and
draw an inheritance line to the IObserver and click to end the line.

8. Draw another inheritance line from policeObserver to the IObserver.

9. Select the Directed Association icon on the Drawing toolbar. Click the SDM class and
then the IObserver class. Type the name itsObservers in the area highlighted on the
line.
32 CORBA Development Guide

Creating the System’s Class and Inheritance
10. Right-click the directed association line and select “*” for the Multiplicity in the dialog
box, as shown in this example. Click OK.

11. Draw another directed association from ISDM to IObserver without giving the line a
name, but select “*” as the Multiplicty, as for the previous association. At this point your
diagram should resemble this example.
Rhapsody 33

Creating a CORBA Model
Using the ISDM Interface to RegisterObservers

The ISDM interface is the CORBA interface used to register the observers with the Security Door
Manager. IObserver is the CORBA interface the Security Door Manager uses to communicate
with the observers. The class SDM has a relation to the IObserver holding its list of attached
observers. The “attach” is implemented by calling the Rhapsody-generated addItsObservers
operation. Follow these steps to put these changes into the model:

1. Select the Directed Association icon on the Drawing toolbar. Click the SDM class and
then the IObserver class. Type the name itsObservers in the area highlighted on the
line.

2. Right-click the directed association line and select “*” for the Multiplicity in the dialog
box, as shown in this example. Click OK.
34 CORBA Development Guide

Creating the System’s Class and Inheritance
3. Draw another directed association from ISDM to IObserver without giving the line a
name, but select “*” as the Multiplicty, as for the previous association. At this point your
diagram should resemble this example.

Creating a Statechart for the evNotify Event

You must add a statechart to the SDM that shows the evNotify actions. When the evNotify event is
generated (representing a criminal’s break-in to the protected building), the event is received by
SDM, and the Notify operation is called. Follow these steps to add the statechart:

1. Right-click the SDM class in the diagram.

2. Select New Statechart.

3. Select the State icon from the Drawing toolbar and draw a state in the empty diagram
area.

4. Select the Default Connector icon and draw the connector from outside the state to
the edge of the state, as shown in this example.
Rhapsody 35

Creating a CORBA Model
5. To complete the statechart, select the Transition icon and draw the line from one
edge of the bottom of the state to the other edge.

6. Type evNotify as the name for this transition.

7. To complete the statechart, double-click the transition line to add the notify(); Action,
as shown in this example.

8. Click OK.

9. Click the tab for the object model diagram and note that a statechart icon is now displayed
in the SDM class. The icon is circled in this example.
36 CORBA Development Guide

Creating the Server Component
Creating the Server Component
To create the server component for this simple CORBA model, follow these steps:

1. In the browser, right-click the Components item.

2. Select Add New Component.

3. Type SDM_Server as the component name.

Setting the CORBA Server Properties
1. In the browser, right-click the SDM_Server component and select Features and the

Properties tab.

2. Select the All view.

3. Navigate to the CORBA::Configuration::CORBAEnable property and set it to
CORBAServer, as shown below.
Rhapsody 37

Creating a CORBA Model
4. Click OK to apply your changes and close the dialog box.

Defining the Server Initialization
1. In the browser, expand the SDM_Server > Configurations.

2. Double-click the DefaultConfig configuration for the SDM_Server component to
display the Features dialog box.

3. Select the Initialization tab.

4. In the Initialization code field, type the code to instantiate SDM on startup.

The InstanceNameInConstructor property (under CORBA::Class) specifies
whether to generate a constructor that can accept an instance name for a class that
implements a CORBA interface. If this property is Checked and the default
implementation method is Inheritance, you can instantiate a realizing class with a
specific name.

As an alternative to writing initialization code manually, you can simply select SDM as an
“initial instance.” In this case, Rhapsody automatically creates a single initial instance
ofSDM with a string name indicator.

5. Make sure that animation is disabled for the DefaultConfig configuration (in the
Settings tab, the Instrumentation Mode setting should be None).

6. Click OK to apply your changes and close the Features dialog box.
38 CORBA Development Guide

Building the Server Component
Building the Server Component
Now that the Server component is defined, generate code for it with these steps:

1. From the main menu at the top of the interface, select the Code > Generate >
DefaultConfig options.

2. Build the SDM_Server component, select the Code > Build Server.exe menu options.

If the SDM_Server component compiles without errors, you are now ready to build the
SDM_Client component.

Building the Client Component
To generate code for the SDM_Client component, follow these steps:

1. In the browser, select the SDM_Client component from the Component list.

2. From the main menu at the top of the interface, select the Code > Generate >
DefaultConfig options.

3. Build the SDM_Client component, select the Code > Build Server.exe menu options.

Troubleshooting the Build
If errors display in the Build window at the bottom of the interface, examine the messages and
return to the section of the instructions relating to the feature referenced in the messages. Then
check the following:

� Go back through the instructions to be certain that all of the steps were performed.
� Did you create the project using the C++ development edition of Rhapsody?
� Do you have an IDL compiler installed?
Rhapsody 39

Creating a CORBA Model
40 CORBA Development Guide

Clients and Servers
CORBA interfaces play a significant role in the design of both clients and servers. Servers are
CORBA-enabled executables that are able to respond to remote invocations. Servers link to
CORBA skeletons.

Clients are components that use a server IDL, represented either by Rhapsody model elements, or
an external IDL file. Clients link to CORBA stubs. The IDL compiler can generate server
(skeleton) code or client (stub) code from a CORBA interface.

Building the Client
There are several steps required to build the client:

� Add a client class to the Object Model Diagram
� Associate that client class to the CORBA Interface class

Running the Application through an ORB
Before you can execute the model, you must start the ORB daemon. With TAO, you must also
register the new Server component in the implementation repository.

Do the following:

1. Run the ORB daemon (for example, orbixd). Once the daemon is running, the following
message should be displayed in a new window:

[orbixd: Server "IT_daemon" is now available to the network]

2. Open a command prompt window, change directory to where the server program
(server.exe) is located, and register the server component with the ORB. In TAO, the
command is as follows:

> putit Server <path>\server.exe

Note that the first argument to the putit command is the server logical name, which
consists of the component name by default. The second argument is the location of
Rhapsody 41

Clients and Servers
the server executable, which must include the full path - even if it is the current
directory.

If the putit command is successful, a message similar to the following is
displayed:

[<connection#>: New Connection (<hostname>,
IT_daemon, *, <username>, pid=<program ID>,
optimized)]

To check which servers are registered, use the following TAO command:

> lsit

3. In Rhapsody, select Code > Run Client.exe.

4. In the Animation toolbar, click Go to start the program. The program creates an instance
of A on startup.

5. Open the animated statechart for the A instance and generate an evTry() event using the
Event Generator.
42 CORBA Development Guide

Interpreting CORBA Interfaces
Interpreting CORBA Interfaces
Rhapsody interprets the model and automatically decides whether to generate skeleton (server-
side) or stub (client-side) code for a CORBA interface. However, you can override the default
model interpretation using the following properties (under CORBA::Configuration):

� ExposeCorbaInterfaces - Generates server IDL code for the CORBA interface
� UseCorbaInterfaces - Generates client IDL code for the CORBA interface

To use these properties, assign a comma-separated list of CORBA interfaces from the scope to
the appropriate property. Rhapsody interprets the interface according to the request.

Servers
A class that realizes a «CORBAInterface» essentially needs the server-side code for the
interface. Rhapsody interprets an inheritance relationship as a request to generate, compile, and
link with the server-side code of the CORBA interface.

A class that directly or indirectly inherits from a CORBA interface must implement all the
operations in the parent CORBA interfaces. The bodies of the CORBA interface methods must be
implemented in the realizing class. In addition, the realizing class must implement the attributes of
its parent CORBA interfaces, and provide accessor and mutator operations (with the appropriate
types) for each attribute.

You must manually implement all the attributes, operations, and associations of a CORBA
interface in the realizing class. The best way to do this is to drag-and-drop attributes, operations,
and relations from the CORBA interface into the realizing class. This ensures that CORBA types
in the CORBA interface are translated to the corresponding C++ types in the realizing class. It also
ensures that the appropriate accessors and mutators are generated for the attributes.

It is important to follow all the guidelines described in the following sections for server realization.
If you do not adhere to these guidelines, the compiler might report errors at compile time, or
CORBA exceptions might be thrown during run time. Rhapsody performs some checks to detect
possible violations before generating code.
Rhapsody 43

Clients and Servers
Realizing Server Attributes

Each attribute defined in a CORBA interface is mapped to a CORBA attribute of the same name in
the IDL file.The standard IDL generator generates accessor (get) and mutator (set) operations
for all attributes. For example, for an attribute named att, the following accessor and mutator are
generated in the IDL file:

att(); // accessor
att(value); // mutator

Classes that inherit from CORBA interfaces must implement the accessor and mutator operations
for each attribute, except for readonly attributes, which do not require a mutator.

Although C++ allows method overloading, it does not allow a data member and a method to have
the same name. Therefore, the data member in the realizing class must not have the same name as
the attribute in the CORBA interface. You should copy the attributes from the CORBA interface to
the realizing class.

Realizing Server Operations

Classes that inherit from CORBA interfaces must implement each operation of the CORBA
interface. Each of the realizing operations must have the same name and the same number and
order of arguments as the operation in the parent CORBA interface. The argument types in the
realizing operation must be derived from the interface according to the IDL-to-C++ mapping
scheme specified by the CORBA standard.

For example, if the following CORBA interface operation, the argument has type long :

op1(long arg1);

The type of the argument of the corresponding operation in the realizing class is CORBA::long is
as follows:

op1(CORBA::long arg1);

The type conversion is done automatically when you copy (drag-and-drop) the operation from the
CORBA interface to the realizing class.

The EnvParamType property (under CORBA::TAO) specifies whether to generate an additional
CORBA_env& parameter for operations. This property is normally set at the component level, thus
affecting all packages, classes, and operations within the component’s scope.
44 CORBA Development Guide

Servers
Realizing Server Relations

For every outgoing relation from a CORBA interface, you must provide the following methods in
the realizing class:

� An accessor
� A mutator
� An add() method
� A clear() method

If the multiplicity of the target role is not one, you must also provide a CORBA sequence
declaration (see Realizing Server Associations).

CORBA Type Translation

The types used in the realizing class must correspond to the CORBA types defined in a CORBA
module and the CORBAStereotype property to create the correct argument list for generated
operations.

It is important to note the following:

� User-defined CORBA IDL types are generated in the IDL file generated for the package or
class in which the type is defined.

� Types defined in a «CORBAModule» stereotyped package are constrained to be only
CORBA IDL types.

Realizing Server Associations

To realize a directed association from one CORBA interface to another CORBA interface, you
must implement the accessor operations in the subclass that implements the source CORBA
interface. Do this using one of the following methods:

� Directly define the accessors in the realizing class.
� Draw an association with the same target role from the realizing class to the target

CORBA interface. Rhapsody generates accessors with appropriate signatures.
In the latter case, if the relation has a multiplicity of one, the return and argument type of the
accessor should be IB_ptr. If the multiplicity is many, the return type of the accessor should be
IB_seq, and the realizing operation should return an instance of the IB_seq class that is
generated by the IDL compiler and populated with the associated objects.
Rhapsody 45

Clients and Servers
Clients
A class that has an association or a «Usage» relation to a CORBA interface needs the client-side
code for the interface. Rhapsody interprets an association/usage relationship as a request to
generate, compile, and link with the client-side code of the CORBA interface.

Mixed and Standalone CORBA Interfaces
A «CORBAInterface» class that has both children and relations leads to the generation,
compilation, and linkage of both server-side and client-side code.

Rhapsody generates both server and client IDL code for the CORBA interface IServer and, in
this case, keeps both. The Client class, which has an association relation to IServer, links to
IServer’s client-side (stub) code. The Server class, which inherits from IServer, links to
IServer’s server-side (skeleton) code. Therefore, if you allocate the classes to components (as
described in the Hello World example), you end up with two executables (Client.exe and
Server.exe) that share the CORBA interface.

Rhapsody cannot interpret a CORBA interface that has neither children nor relations. Therefore,
nothing (neither stub nor skeleton code) is generated for it. You can force stub or skeleton
generation using the ExposeCorbaInterfaces and UseCorbaInterfaces properties (under
CORBA::Configuration). See Interpreting CORBA Interfaces for details.

Mapping Clients and Servers to Components
In the CORBA context, a component can be either a client, a server, or both. From the deliverable
point of view, a component can be either an executable or a library.

Mapping to Deliverable Components

The options for mapping CORBA components to deliverable components are as follows:

� CORBA server executable - You can map a CORBA interface and a class that
implements it to the same component. Rhapsody generates the code and makefile to
create a server executable from the component. Set the
CORBA::Configuration::CORBAEnable property to CORBAServer to generate a
CORBA server main() loop.

� CORBA client executable - You can map a CORBA interface and a class that has an
association to it to the same component. Rhapsody generates the code and makefile to
create a client executable from the component. Set the CORBAEnable property to
CORBAClient to generate a client executable.
46 CORBA Development Guide

Mapping Clients and Servers to Components
� CORBA client/server executable - You can map a CORBA interface, a class that
implements it, and a class that has an association to it to the same component. Rhapsody
generates the code and makefile to create an executable capable of running as both a
client and a server from the component.

� CORBA interface library - You can map your CORBA design into one component and
your C++ design into another component. The CORBA component can generate a library
that contains either the server library, the client library, or both. The C++ component can
then use this library. See Mapping Clients and Servers to Components for more
information.

Mapping Clients, Servers, and Interfaces to Libraries

Using Rhapsody, you can create components with servers, clients, and interfaces packed in
libraries. To build a library, do the following:

1. Allocate only CORBA items to a library component.

2. As desired, set properties for the exposed (or used) classes, attributes, operations, and
types.

3. Generate code.

The end result is a library of stubs or skeletons, or whatever you have selected.
Rhapsody 47

Clients and Servers
Using External IDL Files
To include an external IDL file in a CORBA model, do the following:

1. Add the external CORBA interface class to the model.

In the password authentication sample, the IEx interface is an external IDL file that
is supplied with a server.

2. Set the CG::Class::UseAsExternal property for the external class IEx to True so
Rhapsody will not generate code for it.

3. Type the name of the external IDL file (IEx.idl) in the CG::Class::FileName
property for the external class IEx.

Alternatively, you can set the CORBA::Configuration::IncludeIDL property
for the configuration to the name of the external file

4. If the external file references any additional libraries that are not part of the model, add the
external libraries in the Libraries field of the Settings tab of the Configuration dialog
box.

Note: You can tailor the generated IDL code to various ORB vendors by inserting
vendor-specific code segments.
48 CORBA Development Guide

Using Other ORBs
Rhapsody is an open tool that you can adapt to ORBs, other than TAO, supplied by different
vendors.

Adapting Rhapsody for Other ORBS
To adapt Rhapsody to an ORB other than TAO, you must modify the ORB adapter layer. This layer
includes the following:

� The name of the class being inherited from (assuming inheritance rather than delegation).
� A batch file containing the command used to compile the IDL files.
� An optional CORBA_env parameter for operations.
� The format of the file name to include (different for client and server).

The format of compiled IDL file names varies with the IDL compiler in use. For example, Iona
adds an “S” to the name of a server component in generated files (for example, an IDL file named
y.idl is compiled into C++ files named yS.hh and yS.cpp), whereas other ORB vendors use
different conventions. CORBA properties ensure that the correct filename formats are generated in
the makefile for a particular CORBA environment.

� The name and format for a publishing function.
� The format used to notify the ORB that a server is available.
� The format for an IOR retrieval function.

This section describes the set of properties that support the Rhapsody and CORBA workflow and
specifically, the property set used to record the differences between various ORB solutions.
Rhapsody 49

Using Other ORBs
Selecting a Different ORB
The file (in the Share\Properties directory under the Rhapsody installation) contains the
subject CORBA properties. The ORB property (under CORBA::Configuration) defines which
ORB is selected to work with a specific configuration. You can build a component with different
configurations, each using a different ORB, by modifying the ORB property for each configuration.

By default, the ORB property is set to TAO. However, a UserDefinedORB metaclass is also
available, whose default settings correspond to the TAO settings. To add another ORB, you can
modify the UserDefinedORB settings to hold the values of the new ORB.

In addition, you can add as many new ORB definitions as you want. This enables teams to use
different versions or dialects of the same ORB, or to evaluate new ORBs. To add multiple ORBs,
copy the UserDefinedORB settings to the site.prp file, edit them there, then add more ORB
entries as needed.
50 CORBA Development Guide

Index
A
ACE ORB 2
AddCORBAEnvPara property 7
Aggregations 13

with CORBAInterface 13
Animation 8
Applications 21

building 21
distributed 1
makefiles 8

Architecture 2
Associations 13

realizing 45
with CORBAInterface 13

Attributes
of CORBAInterface 12
realizing server 44

B
Browser

list new operations 26
right-click menu 27

Build 39
Building

client 39
CORBA applications 21
server 39
TAO libraries 3

C
C++ language 1, 21

code generation 18
compiler 1
CORBA support 1
mapping 1

C++Implementation property 19
Classes 24

BOA and TIE implementations 6
CORBAInterface 13
implementing with ORB 6
inheritance 25

ClientMainLineTemplate property 6
Clients 41

building 39, 41
CORBA 46
creating file usage 10
files used to create 10
mainline code 6
mapping to components 46
start 21
stub code 9

Code 6
IDL 24
implementation 27, 31
mainline 6
mapping CORBA types 19
mapping exceptions 16
skeleton 9
stub 9
template 7

Code generation 8, 18, 21, 39
CORBA properties 10
CORBA server-side 43
for CORBA interface 9
for CORBA server 39

Compilers 1
C++ 1
C++ additional switches for 5
IDL 1, 2
IDL file naming 9
IDL generated files 9
IDL settings 6
mainline settings 6

Components
deliverable 46
mapping clients and servers to 46

Composition
with CORBAInterface 15

Configuration
defining as CORBA server 6

Constructors 14, 38
CORBA 1, 21

add environment parameter 7
and Rhapsody workflow 49
animation 8
BOA class implementation 6
building applications 8
client 46
code generation 18
Rhapsody 51

Index
create project 23
define union with stereotypes 18
defining types 17
example 21
exceptions 16
generated interface code 9
installation requirements 1
interface properties 6
interfaces 34, 43
IOR 49
libraries 4
makefiles 8
mixed interfaces 46
model samples 21
predefined reference package 17
properties 5, 37
requirements for example 22
servers 6
setup 1
skeleton 8, 41
standalone interfaces 46
stereotype 24
stereotypes 11
stub 41
system architecture 2
system requirements 1
TIE class implementation 6
type translation 45
types 17, 18

CORBA servers 43
realizing associations 45
realizing attributes 44
realizing operations 44
realizing relations 45

CORBAEnable property 46
CORBAException stereotype 16

mapping to code 16
CORBAInterface stereotype 12, 24

attributes and operations 12
relations with 13

CORBALibs property 5
CORBAModule stereotype 11
CPP_LinkSwitches property 5

D
DefTIEString property 6
Destructors 14
Diagrams

display features 28
Display 28
Distributed applications 1

E
Environment parameter 7
EnvParamType property 44

Events 35
Exception 16
ExposeCorbaInterfaces property

CORBA interfaces 46
generating server-side code 43

External IDL file 48

F
Features dialog box 37

Implementation tab 27
Operations tab 25

FileName property 48
Files 9

creating clients and servers 10
external IDL 48
generated by IDL compiler 9
header 5
include 5
makefile properties 5
naming convention 9
usage 10

G
Generalizations

with CORBAInterface 14

I
IDL 1, 8, 21, 24

in architecture 2
IDL compiler 1

file naming behavior 9
generated files 9
settings 6

IDLCompileCommand property 6
IDLCompileSwitches property 6
Implementation 27
Inheritance 25

creating 25
Installation 1

C++ compiler 4
C++ compiler selection 1
requirements 1
Rhapsody 4
TAO 3

InstanceNameInConstructor property 38
Interface Definition Language (IDL) 1
Interfaces 21

CORBA 1, 34
CORBA stereotype 8
define CORBA 21
defined with IDL 1
implementing 6
interpreting 43

IOR 49
52 CORBA Development Guide

Index
L
Libraries 4

build TAO 3
mapping to 47
path to 5

Limitations
CORBA 1
CORBA animation 8

Link switches 5

M
Mainline code 6
Makefiles 5

for building CORBA applications 8
Map

clients and servers to components 46
CORBA types to code 19
CORBAException to code 16
to libraries 47

Mixed interfaces 46
Models

creating example 21

O
Object Request Broker (ORB) 2

TAO 1
Open-source ORB 2
Operations 26

calling 34
CORBA environment parameter 44
implementing 27, 31
notify 30
of CORBAInterface 12
realizing 44

ORB 2
ORBS

adapter layer 49
ORBs

adding new 50
download required TAO version 3
implementing a class 6
initialization 7
open-source 2
properties 5, 50
running program 41
running programs through 41
selecting different 50
TAO libraries 3
TAO setup process 4

P
Packages

predefined CORBA 17

Project
new 23

Properties 5, 37
AddCORBAEnvPara 7
C++Implementation 19
ClientMainLineTemplate 6
CORBAEnable 46
CORBALibs 5
CPP_LinkSwitches 5
DefTIEString 6
EnvParamType 44
ExposeCorbaInterfaces 46
FileName 48
for code generation 10
for mapping CORBA types 19
IDLCompileCommand 6
IDLCompileSwitches 6
implementing interfaces 6
makefile 5
ORB 50
ServerMainLineTemplate 6
Skeleton 6
UseAsExternal 48
UseCorbaInterfaces 43, 46

R
Realize

server associations 45
server attributes 44
server operations 44

Relations
realizing 45
with CORBAInterface class 13

Requirements 1, 22
Rhapsody

and CORBA workflow 49
CORBA model samples 21
default ORB 50

S
ServerMainLineTemplate property 6
Servers 41

code generation 39
CORBA 43
CORBA code generation 39
creating file usage 10
files used to create 10
generate code for 39
mainline code 6
mapping to components 46
properties 37
realizing relations 45
skeleton code 9
start 21

Skeleton 8, 41
Rhapsody 53

Index
code 9
property 6

Standalone interfaces 46
Statechart 35
Stereotypes 11, 21

CORBA 8
CORBAException 16
CORBAInterface 24
CORBAModule 11
defining a union 18
required for CORBA 24

Stub 41
code 9

T
TAO 2

BOA implementation 6
build libraries 3
default 50
download required version 3
file naming conventions 9
path to libraries 5
properties 5
setup process 4

Translation
of CORBA types 45

Troubleshooting
CORBA 39

Types 17
code generation 18
CORBA translation 45
defining native CORBA 17
mapping to code 19
predefined 17
reference package 17

U
UseAsExternal property 48
UseCorbaInterfaces property

CORBA interfaces 46
generating client-side code 43

UserDefined ORB property 50

V
Visibroker

file naming conventions 9

W
Windows 1
54 CORBA Development Guide

	Contents
	CORBA Setup, Libraries, and Files
	CORBA Development Requirements
	Object Request Broker (ORB)
	Installing and Building Your TAO Libraries
	Accessing ACE and TAO Downloads
	ACE and TAO Setup Process

	TAO Properties
	Makefile Settings
	Implementing a Class with the ORB
	IDL Compiler Settings
	Mainline Code
	Environment Parameter
	Initialization Properties

	Makefiles for Building CORBA Applications
	IDL Compiler-Generated Files
	File Naming Conventions
	File Usage

	Stereotypes and Types
	CORBA Stereotypes
	«CORBAModule» Stereotype
	«CORBAInterface» Stereotype
	Attributes and Operations of «CORBAInterface»
	Relations with «CORBAInterface» Classes

	«CORBAException» Stereotype
	Mapping «CORBAExceptions» to Code

	CORBA Types
	CORBA Predefined Reference Package
	Defining Native CORBA Types
	Using Stereotypes to Define a CORBA Union
	CORBA Types and Code Generation
	Mapping CORBA Types to Code

	Creating a CORBA Model
	Building CORBA Applications
	Rhapsody Sample Models
	SDM_Observers Sample Model
	Creating a New CORBA Project
	Creating the Required CORBA Stereotype
	Creating the System’s Class and Inheritance
	Implementing the SDM Operations
	Defining the Notify Operation
	Creating the CORBA IObserver Interface
	Using the ISDM Interface to RegisterObservers
	Creating a Statechart for the evNotify Event

	Creating the Server Component
	Setting the CORBA Server Properties
	Defining the Server Initialization
	Building the Server Component
	Building the Client Component
	Troubleshooting the Build

	Clients and Servers
	Building the Client
	Running the Application through an ORB
	Interpreting CORBA Interfaces
	Servers
	Realizing Server Attributes
	Realizing Server Operations
	Realizing Server Relations
	CORBA Type Translation
	Realizing Server Associations

	Clients
	Mixed and Standalone CORBA Interfaces
	Mapping Clients and Servers to Components
	Mapping to Deliverable Components
	Mapping Clients, Servers, and Interfaces to Libraries

	Using External IDL Files

	Using Other ORBs
	Adapting Rhapsody for Other ORBS
	Selecting a Different ORB

	Index

