Telelogic
Rhapsody

CORBA Development Guide

Rhapsody®

CORBA Development Guide

|

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

CORBA Setup, Libraries,and Files 1
CORBA Development ReqUIremMeNntS.t 1
Object Request Broker (ORB)t e e 2
Installing and Building Your TAO Libraries e 3
Accessing ACE and TAO DOWNIOAASottt e e 3
ACE and TAO SetUp PrOCESS . . . o ottt et e e e e e e e 4
TAO ProPeItiES . .o e e e e 5
Makefile Settings.t 5
Implementing a Class withthe ORBo e 6
IDL Compiler SEttiNgSt oo e 6
Mainling Codeot 6
Environment Parameter 7
Initialization Properties o e 7
Makefiles for Building CORBA Applications e 8
IDL Compiler-Generated Files e e e 9
File Naming CONVENLIONSot e e e e e e 9
FIle USA0Eot 10
Stereotypes and TYPeS . . oo it t 11
CORBA SterBOTY DS . . ittt e et et e 11
«CORBAMOAUIE» StEIrEOLYPE . . . v vt ittt e e e e e 11
«CORBAINterface» StEreOtyPeottt e 12
«CORBAEXCEPLION» StErEOIYPE . . . o ottt e 16
Mapping «CORBAEXCeptions» t0 COUEot e e 16
CORB A TY DS . oot 17
CORBA Predefined Reference Package. e 17
Defining Native CORBA TYPES . .« o oottt it e e e e e e e e e e e e e e e 17
Using Stereotypes to Define a CORBA UNION e 18
CORBA Types and Code GENEratioNttt ettt e e e e 18
Mapping CORBA Types t0 COUettt e e e e e e e 19
Creating a CORBA Model e 21

Rhapsody

Table of Contents

Building CORBA Applications e e 21
Rhapsody Sample Models 22
SDM_Observers Sample Model 22
Creating a New CORBA ProjeCt e e e e e 23
Creating the Required CORBA Stereotype.t e e e e 24
Creating the System’s Class and Inheritance. i 25
Implementing the SDM OpEerationSttt e e e 27
Defining the Notify Operation e e e e e 30
Creating the CORBA IObserver Interface. e e 32
Using the ISDM Interface to RegisterObServers. e e 34
Creating a Statechart for the evNotify Event. 35
Creating the Server Component e e e e e 37
Setting the CORBA Server Properties. o e e e e e 37
Defining the Server Initialization 38
Building the Server Component. e 39
Building the Client Component e e 39
Troubleshooting the Build e e e 39
Clients and SerVersS 41
Building the Client. 41
Running the Application throughan ORB i 41
Interpreting CORBA Interfaces e e 43
S VIS L it 43
Realizing Server AttribULESo e 44
Realizing Server Operationsttt e e 44
Realizing Server Relations 45
CORBA Type Translationo e e e e 45
Realizing Server ASSOCIAtIONS.ttt e e e 45
Gl NS, e e 46
Mixed and Standalone CORBA Interfaces 46
Mapping Clients and Servers to COmpoNeNnts e 46
Mapping to Deliverable COmpoNents e 46
Mapping Clients, Servers, and Interfaces to Libraries. i 47
Using External IDL Files i e e e e 48
Using Other ORBS e 49

iv CORBA Development Guide

Table of Contents

Adapting Rhapsody for Other ORBS. i e 49
Selecting a Different ORB. e 50
X . o 51

Rhapsody v

Table of Contents

Vi

CORBA Development Guide

CORBA Setup, Libraries, and Files

Rhapsody facilitates development of distributed applications using the Common Object Request
Broker Architecture (CORBA). Rhapsody’s CORBA helps you to develop your applications
to runin aclient-server environment, and it supplies tools to support the following tasks:

¢ Define, use, and manipulate CORBA modules

¢ Manage CORBA interfaces, exceptions, and types

¢ Use CORBA asanintegral part of the implementation model
¢ Link CORBA-domain constructs to the C++ domain

¢ Specify an IDL-to-C++ mapping and manage the mapping details (IDL isthe Interface
Definition Language.)

CORBA Development Requirements

Before using Rhapsody’s CORBA features, the devel oper should be familiar with Rhapsody in
C++. To use the CORBA features, the following system components must be installed and setup
on the developer’s computer:

+ AnORB (TAO)

+ AnIDL compiler (supplied with the ORB)

¢ CORBA header files

¢ ORB Librariesfor CORBA

Note

CORBA is supported in Windows C++ only; therefore, you must have a supported
Windows C++ compiler running on the development machine. When you install Rhapsody,
you must select the installed C++ compiler so that the CORBA features can be used.

Rhapsody 1

CORBA Setup, Libraries, and Files

Object Request Broker (ORB)

An Object Request Broker (ORB) running on the network acts as the “glue” for distributed
applications running on one or more processors. The ORB provides these services:

¢ Connects regquests from a client to the server component that is capable of responding to
the request, regardless of where on the network the server is running.

¢ Freestheclient from being forced to know the location of a server on the network in order

to use one of its services.

The supported Rhapsody CORBA ORB is TAO (from ACE). ACE is an open source framework
that provides many components and patterns for devel oping high-performance, distributed real-
time and embedded systems. The TAO ORB supports efficient abstractions for sockets,
demultiplexing loops, threads, synchronization primitives.

The following elements form the CORBA system architecture.

Interface

Definition

Language
(IDL) Domain

Rhapsody Class stereotyped
as a CORBA interface

¥

IDL compiler (supplied
with the ORB)

C++
Language
Domain

Client
Stub

\

Server

Skeleton

ORB

NETWORK

CORBA Development Guide

Installing and Building Your TAO Libraries

Installing and Building Your TAO Libraries

Before creating a CORBA project, you must first create the ORB libraries. Since TAO isthe
supported ORB, you must install ACE and build the TAO libraries before using Rhapsody’s
CORBA.

Accessing ACE and TAO Downloads

Rhapsody 7.0 requires the ACE-5.5 and TAO-1.5 versions. These are packaged as the ACE-
5.5+TAO-1.5.zip on the TAO Web site at http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/
TAO/TAO-INSTALL .html (shown below).

Scroll down from the starting point, shown below, to locate your system requirements and library
building instructions.

Document Index

o Building and Installing TAO from a distribution
¢ Building and Installing TAO from subversion

Building and Installing TAO from a distribution

The following table summarizes platforms on which TAO runs, see the ACE installation notes for an overview of all
the platforms ACE runs on, these are all candidates to run TAO on:

Fully supported, i.e., Solaris 7, 8 and 9, Windows 2000/XP (7.1, and 8.0 and Borland C++ Builder
continually tested and used |6/2006), Linux/Intel (Redhat, Debian and SuSe), Linux/Alpha (SuSe), VxWorks
daily 5.5.1/6.2/6.3, OpenVMS 8.2

Nearly fully supported, i.e., Windows 9x/ME, HP/UX 11.x, LynxOS, and AIX 4.x

periodically tested

Partially supported, i.e., FreeBSD, NetBSD, Chorus, Tandem NS, DEC UNIX 6.5, Linux/Alpha (Redhat and
infrequently tested Debian), and MACOSX

Planned support, i.e., pending MVS, Windows CE, SCO, UnixWare

Compilers whose support Borland C++ Builder 4 and 5, Sun/C++ 5.1 through 5.4, g++ prior to 2.95.x, HP/UX
were dropped recently 10.x, pSoS, Chorus

Any UNIX/POSIX/Win32 variation is a potential target platform for TAO. If you have porting questions or have a
problem compiling the TAO along with ACE wrappers on the platforms shown above please send email to either the
Newsgroup or to the TAO mailing list and we'll try to help you fix the problems. You can also submit bug reports and
enhancement requests in our bug tracking system.

TAO can be obtained electronically via the WWW and fip. TAO is bundled with the ACE release. You'll always need
the most recent version of ACE because TAO tracks and influences changes to ACE. Always use the ACE+TAO
release bundle as a single piece instead of trying to mix and match things up.

Rhapsody 3

CORBA Setup, Libraries, and Files

ACE and TAO Setup Process

You install Rhapsody after TAO and the CORBA libraries are built and your C++ compiler is
installed. The sequence of eventsis asfollows:

1

2
3
4,
5

Install a C++ compiler (such as Microsoft Visual C++.net Standard)
Install ACE

Install TAO and the CORBA header files

Build CORBA libraries

Install Rhapsody and specify the C++ environment

During the Rhapsody installation, the same C++ compiler you used to build the TAO CORBA
libraries must be selected as the C++ compiler to be used with Rhapsody.

Note

If you are using a different ORB, follow that vendor’s instructions to build the necessary
libraries. You may also refer to the Using Other ORBs section in this guide for additional
information.

CORBA Development Guide

TAO Properties

TAO Properties
The Rhapsody propertiesin the corsa: : Tao metaclass define how the TAO ORB interacts with
Rhapsody. These properties can be accessed for a CORBA project as follows:
1. Openthe C++ project that you want to use to create a CORBA maodel.

2. Select File> Project Properties. This displays the Properties tab in the Features dialog
box.

3. Select the All view and navigate to the corea: : Tao group of properties.

Thefollowing sections describe each group of the TAO properties according to their functions. For
additional information about CORBA properties, refer to the Creating the Server Component
section.

Makefile Settings

The following TAO properties specify makefile-related information:

¢ CcorBAIncludePath Specifiesthe path to the additional include files for your CORBA
ORB. The specified path is appended to the “include” path in the Rhapsody-generated
makefile. The default for this property is $ (ACE_ROOT) \TAO\ $ (ACE_ROOT) \
$ (ACE_ROOT) \TAO\orbsvcs.

¢ CcorBALibs Specifiesthe path to the TAO libraries for your CORBA ORB. The specified
path is appended to the object/library search path in the Rhapsody-generated makefile.
The three default library names, listed in this property’s selection area, are
TAO PortableServd.ib, TAO Valuetyped.lib, and aced.1ib. For more information
about TAO libraries, refer to the Installing and Building Your TAO Libraries Section.

¢ CPP_Conpi | eSwi t ches provides astring that allows you to specify additional C++
compiler switches.

¢ CPP_Li nkSwi t ches provides adefault empty string that allows you to specify additional
link switches.

¢ CPP_St andar dl ncl ude provides astring that allows you to specify additional header
filesto beincluded in the generated sources, that are required when your component is
compiled with the TAO include files. The default value is tao/CORBA . h; tao/
PortableServer/POA.h.

Note
Thisinformation is only used in the makefileif it is needed.

Rhapsody 5

CORBA Setup, Libraries, and Files

Implementing a Class with the ORB

Rhapsody gives you control over how a C++ class is bound to the ORB. Using the

CORBA: :Class: :DefaultImplementationMethod property, you can specify whether agiven C++
class should implement a CORBA interface using the inheritance approach or TIE approach. Once
you have set this property, Rhapsody uses the following properties (under corea: : T20) to
implement the interface:

¢ DefTIEString - If DefaultImplementationMethod iSSetto Tl E, the DefTIEString
property specifies atemplate for the string generated into every IDL file that contains a
CORBA interface.

¢ gskeleton - If DefaultImplementationMethod iSSettO Inheritance, the skeleton
property defines aformat string that the implementing class inherits. The default is
PoA sinterface. The CORBA interface name replaces”sinterface” in the generated
code.

IDL Compiler Settings
The following properties (under corea: : Tao) contain the settings for the IDL compiler:

¢ IDLCompileCommand Specifiesthe compile command for your IDL compiler.

¢ IDLCompileSwitches Specifiesyour IDL compiler’s compilation switches. There are two
ways to attach a CORBA implementation class to the ORB: BOA or TIE. The TAO “-B”
flag compilesthe IDL so that BOA objects are used. Thisis also the default for the

property.
Mainline Code

The serverMainLineTemplate property (under corsa: : Tao) specifies a code segment that is
generated in the executable main file if the Rhapsody configuration is defined asa CORBA server.
You define a configuration to be a server by setting the coreaenable property (under

CORBA: : Configuration) t0 CORBASer ver . This code segment should perform any initialization
and additional setup steps before diving into the CORBA loop.

If you modify the serverMainLineTemplate property, remember that every double-quote
character must preceded with a backslash (\).

Similarly, the clientMainLineTemplate property (under corea: : TA0) enablesyou to add code to
the main function of a CORBA client.

6 CORBA Development Guide

TAO Properties

Environment Parameter

If the AddcorRBAEnvParam property (under corea: : Ta0) iS set to Checked, an “environment”

parameter (of the type corBa_env) is added as the last argument to CORBA operations. The
default valueisd ear ed.

Initialization Properties

The following properties (under corsa: : Tao) enable you to control the initialization of the ORB:

¢ InitialInstance Specifiesany additional initial instance routines required by the ORB.
This code template will be generated for each instance of a specific class (implementing
one or more CORBA interfaces).

*

InitializeoRB Specifiesthe ORB initialization routines. In most cases, thisisthe first
executable command in the mai n function of the CORBA server.

Rhapsody 7

CORBA Setup, Libraries, and Files

Makefiles for Building CORBA Applications

The Rhapsody dual-phase code generation process produces IDL files for items tagged with
CORBA stereotypes and C++ files for the remaining items. CORBA setup codeis generated in the
second phase of code generation. The make processlinksthe IDL and C++ fileswith the CORBA
skeleton.

The make first callsthe IDL compiler to trandate the IDL code to C++. Next, it calls the C++
compiler to compile the C++ output of the IDL compiler, along with the Rhapsody native C++
output, into an assembly language image of the component.

Note

Rhapsody can animate only one executable at atime. Therefore, animation can be enabled
for either the client or the server component, but not both.

8 CORBA Development Guide

IDL Compiler-Generated Files

IDL Compiler-Generated Files

This section describes the files generated by the Interface Definition Language (IDL) compiler,
supplied with the ORB.

File Naming Conventions

The CORBA specification does not force ORB vendors to use a unified naming convention for
IDL compiler products. Moreover, it does not define what these products should contain.
Therefore, a set of properties was created in Rhapsody to address this issue.

All IDL compilers generate specification files (with function headers and signatures only) and
implementation files (with function definitions and bodies). For a given CORBA interface, the
IDL compiler can conceivably create the following code:

¢ Skeleton code - Server-side code. Can be built of two files, one for specification and one
for implementation.

¢ Stub code - Client-side code. Can be built of two files, one for specification and one for
implementation.

This means that the IDL compiler can potentially create four files, whose names are derived from
the IDL file name.
For example, compiling an IDL file named X. i dI with TAO leads to the following three files:

¢ X hh (specification fil€)

¢ XS.cpp (skeletonimplementation file)

¢ XC. cpp (stub implementation file)
Compiling the same X. i dI file with another IDL compiler, for example visibroker, leadsto the
following four files:

¢ X_s. hh (skeleton specification file)

¢ X_c. hh (stub specification file)

¢ X s. c (skeleton implementation file)

¢ X c. c (stub implementation fil€)
The following properties were created in Rhapsody to define the IDL compiler file-naming
behavior:

¢ ImplementationExtension Specifiesthe extension of implementationfiles. Thedefaultis
. Cpp.

¢ SkeletonImplementationName iSastring that defines the naming behavior for skeleton
implementation files. The default is $interfaces.

Rhapsody 9

CORBA Setup, Libraries, and Files

¢ sSkeletonSpecificationName iSastring that defines the naming behavior for skeleton
specification files. The default is sinterfaces.

¢ gspecificationExtension iSastring that specifiesthe extension for specification files.
Thedefaultis .h.

¢ StubImplementationName iSastring that defines the naming behavior for stub
implementation files. The default is ¢interfacec.

¢ StubSpecificationName iSastring that definesthe naming behavior for stub
specification files. The default is sinterfacec.

File Usage

When you want to create a server, you heed the skeleton code generated by the IDL compiler;
when you want to create a client, you need the stub code. However, with different ORBs and IDL
compilers, the skeleton and stub code is mapped to different files.

For example, server developers using TAO need only to compile and link with the generated
skeleton file (for example, XS. cpp and X. hh). However, server developers using visibroker
need to compile and link with both the skeleton file and the stub file (for example, X_s. hh,

X s.c,X c.hh,and X _c.c).

The following properties address this issue by specifying which files should be used to create a
client, server, or process that is both a client and a server:

¢ NeededObjForClient iSan enumerated type that specifies the file needed to create an
object. The default is stub.

¢ NeededObjForsServer iSan enumerated type that specifies the file needed to create a
server. The possible values are as follows:
- Stub
- Skeleton
- Both
¢ NeededObjForClientServer iSan enumerated type that specifiesthe file needed to create
aclient server. The possible values are as follows:
- Stub
- Skeleton
- Both

10 CORBA Development Guide

Stereotypes and Types

This section describes the CORBA stereotypes and types supported by Rhapsody and provides the
information necessary to understand the devel opment stepsin the Creating a CORBA Model Section.

CORBA Stereotypes

Rhapsody provides three stereotypes to indicate model elements that adhere to the CORBA
standard:

¢ «CORBAMbdul e»

¢ «CORBAI nt erface»

¢ «CORBAEXxcepti on»

«CORBAModule» Stereotype

The « CORBAMbdul e» stereotype is applied to packages. It indicates that a package contains only
CORBA -stereotyped model elements.

CORBA modules can contain:

¢ Other «CORBAMbdul e» stereotyped packages

¢ «CORBAI nt er f ace» stereotyped classes

¢+ «CORBAExcept i on» stereotyped classes

¢ CORBA types
Rhapsody does not generate C++ code for « CORBAMbdul e» stereotyped packages - it generates
them into CORBA modules.

The « CORBAMbdul e» stereotypeis optional for packages unless the package contains CORBA
types, which can be defined only in CORBA modules. If you want to define CORBA types, you
can do soin a CORBA module.

If the CPP_CG : Package: : Def i neNaneSpace property for the package is set to Tr ue,
Rhapsody generates the CORBA interfacesin the package - all encapsulated within the scope of a
CORBA module. The scope name is the same as the package name.

Rhapsody 11

Stereotypes and Types

«CORBAInterface» Stereotype

The «CORBAI nt er f ace» stereotypeis applied to classes. It indicates that a class should be
mapped to an IDL interface during code generation. Rhapsody generates only IDL code for
CORBA interfaces; it does not generate C++ code for them.

A classthat inherits from a « CORBAI nt er f ace» stereotyped class exposes the interface. The
CORBA interface itself exposes nothing.

Attributes and Operations of «<CORBAInterface»

A «CORBAI nt er f ace» class can have both attributes and operations. These are generated into
attributes and operations with the same names in the IDL interface. Data types used for attributes
and operations are generated “as-is’ inthe IDL files. Therefore, you must use CORBA data types,

defined in either the predefined CORBA types package or in your own « CORBAMbdul e» or
«CORBAI nt er f ace».

Create subclasses in the model to realize IDL interfaces as follows:

¢+ Every CORBA operation must have a corresponding C++ operation in the realizing class.

¢+ Every CORBA attribute must have a corresponding C++ attribute in the realizing class.
You must provide get and set operationsin the realizing class.

¢+ Every CORBA type (for example, | ong) must have a corresponding type (for example,
CORBA: : | ong) intherealizing class. You can import these types from the CORBA
predefined types package.

To simplify the process, you can drag-and-drop CORBA operations and attributes from a CORBA
interface to aregular class. Rhapsody automatically converts the types.

The following constraints apply to CORBA interfaces concerning code generation:

¢ Both attributes and operations of CORBA interfaces cannot be classified as public,
private, or protected. Therefore, generated IDL files refer only to public attributes and
operations. Protected and private attributes are ignored.

¢ «CORBAI nt er f ace» stereotyped classes cannot be instantiated. Therefore, operation
bodies, if they exist, are ignored.

¢ Thevirtual,static,andconst keywordshave no meaning for «CORBAI nt er f ace»

classes. Therefore, thevi rt ual / st ati ¢ keyword isignored during IDL attribute
generation.

You can make an attribute of a CORBA interfacer eadonl y (a CORBA keyword) by setting the
attribute’'s CORBA: : At tri but e: | sReadOnl y property to Tr ue. To make an operation of a
CORBA interface oneway, set the operation’s CORBA: : Oper at i on: : | sOneWay property to
True.

12

CORBA Development Guide

CORBA Stereotypes

In addition, the following standard UML options are available for operations:

¢ Operation arguments can have adirection of in, out, or inout. Specify these valuesin the
Argument dialog box.

¢ TheCORBA: : Oper ati on: : Thr owExcept i ons property enables you to specify the
exceptions that an operation throws. For example, if an operation throws the exceptions
excl andexc2, set"excl, exc2" forthe Thr owExcepti ons property.

Relations with «CORBAInterface» Classes

Relations between «CORBAI nt er f ace» classes are mapped to elementsin the generated IDL
depending on the type and multiplicity of the relation.

Associations and Aggregations

An outgoing or symmetric relation arrow leaving a «CORBAI nt er f ace» class can target only
another «CORBAI nt er f ace» class. Anincoming relation arrow coming into a

«CORBAI nt er f ace» class can originate in either aregular class or another « CORBAI nt er f ace»
class.

Outgoing or symmetric relations from « CORBAI nt er f ace» classes are mapped to accessor and
mutator methods (such asget (), set (), add(), and cl ear ()) in the generated IDL asfollows:

+ If the multiplicity of the target roleis one, the accessor’s return type and the type of the
mutator’s parameter are the same as the type of the target «CORBAI nt er f ace». In
addition, the mutator’s parameter has adirection of i n.

For example, thefollowing IDL is generated for theinterface A, which has adirected
relation to an interface B with amultiplicity of one:

interface A {

//// User-implicit entries ////
B getItsB();
void setItsB(in B p_B);

bi

+ If themultiplicity of thetarget role is greater than one, atype definition for an IDL
sequence is generated for the source interface.

For example, the following IDL sequence definition is generated for interface C,
which has a symmetric relation to interface D with amultiplicity of two:
typedef sequence<C> CSeq;

The CORBA: : Ol ass: : | DLSequence property enables you to specify the implementation of
the IDL sequence name, as follows:

* Thedefault value, $i nt er f aceSeq, expands to the name of the interface with the “ Seq”
suffix. For example, for an interface C, the generated sequence nameis CSeq.

Rhapsody 13

Stereotypes and Types

¢ You can turn off generation of the type definition by setting the property to an empty
string.

Generalizations

A «CORBAI nt er f ace» can inherit only from another «CORBAI nt er f ace».

Inheritance between two « CORBAI nt er f ace» classes is generated into an inheritance between
the corresponding IDL interfaces. For example, if a «CORBAI nt er f ace» Hinheritsfrom a
«CORBAI nt er f ace» G thefollowing IDL code is generated for H:

interface H : G {};

An inheritance arrow between a regular class and a «CORBAI nt er f ace» isinterpreted asa
realization (implementation) of the interface. Thisisthe typical architecture used to implement a
CORBA server.

Note

Generaly, for configurations with such a construct, the
CORBA: : Conf i gur ati on: : CORBAEnabl e property must be set to CORBASer ver to
avoid code generation errors.

There are two ways to realize object adaptersin CORBA:

¢ |nheritance
* TIE

The CORBA: : d ass: : Def aul t | npl enent at i onMet hod specifies the implementation method
(I nheri t ance or Tl E) for the project. In other words, if Def aul t | npl ement at i onMet hod is
settol nheri t ance, al realizations of CORBA interfaces are implemented using inheritance by
default.

For example, when using TAO and the inheritance implementation method, the following code is
generated for class J, which inherits from «CORBAI nt er f ace» | :

class J : virtual public IBOAImpl
public :
// Constructors and destructors
J(const char* instanceName = "");
-J();

}i
In the generated code, the realizing class J inherits from the | BOAI npl class, which is generated
by the TAO IDL compiler.

14

CORBA Development Guide

CORBA Stereotypes

You can override the default implementation method by setting the

CORBA: : Cl ass: : TI EReal i zes or I nheri t anceReal i zes property for aspecific classto the
name of the «CORBAI nt er f ace» classesthat it realizes. In other words, even if you are using
inheritance as the default implementation method for the project, you can still use TIE asthe
implementation method for a particular class by setting its TI EReal i zes property to the name of
the «CORBAI nt er f ace» that it realizes. You can have the same class realize different

«CORBAI nt er f ace» classes using different methods by setting the TI EReal i zes and

I nheritanceReal i zes propertiesfor the same class to the names of the « CORBAI nt er f ace»
classthat it should realize using either method.

Compositions

«CORBAI nt er f ace» classes cannot be contained in any element. «CORBAI nt er f ace» classes
themselves contain only « CORBAExcept i on» classes.

Rhapsody 15

Stereotypes and Types

«CORBAEXxception» Stereotype

The « CORBAEXcept i on» stereotypeis applied to classes. It indicates that the class should be
mapped during code generation to an IDL exception. CORBA IDL exceptions can be defined
within the scope of a«CORBAI nt er f ace» or aCORBA module. CORBA exceptions cannot have
aglobal scope.

CORBA IDL exceptions can have attributes, but not operations. Any operations found in a
«CORBAEXcept i on» class are ignored during code generation.

CORBA DL exceptions cannot inherit from other CORBA IDL exceptions.

Mapping «CORBAEXxceptions» to Code

A «CORBAExcept i on» stereotyped classis not generated in its own file. Instead, it is generated
into the file of the encapsulating entity - the class or package in which it is defined. Therefore, a
«CORBAExcept i on» defined in aclass can be “thrown” by any of its operations. An exception
defined in a CORBA module can be thrown by any operation in any class within that module.

To make your design clear, you should draw a «Usage» arrow from a class to an exception that it
throws.

16

CORBA Development Guide

CORBA Types

CORBA Types

Rhapsody includes a package of predefined CORBA types. This package contains the basic
CORBA IDL types, which you can assign to any attribute, operation return type, or argument or an
operation that belongs to a «CORBAI nt er f ace».

The predefined types are as follows:

any boolean char

double fixed float

long longdouble longlong
octet short string
unsignedlong unsignedlonglong unsignedshort
wchar wstring

CORBA Predefined Reference Package

To import the CORBA predefined types package into your model, do the following:

1
2.
3

4.

Select File> Add to Model.
Navigate to <Rhapsody_i nst al | >Shar e\ Properti es.
Inthe Add To Model dialog box, change the file type filter to Package (*.sbs).

Select the CORBA. sbs package, the As Reference radio button, and click Open.

The CORBA package is added as a read-only (RO) reference package to the model. Note that
because the CORBA types package is added as a reference package, no code is generated for it.

Once the CORBA package isimported, the CORBA IDL datatypes are displayed in the Type
drop-down list (for example, when you select Typeis Typedef’ ed in the Operation dialog box).

Defining Native CORBA Types

You can create CORBA structures, enumerations, and typedefs using the same steps you would for
creating such itemsin C++.

To define these CORBA types:

1

Create anew type inside a<<CORBA Modul e>> package or <<CORBA | nt er f ace>>
class.

On the General tab of the Features dialog box for the type, select L anguage from the
Kind drop-down list.

Rhapsody

17

Stereotypes and Types

3. Onthe Declaration tab of the Features dialog box, declare the IDL.
4, Click OK.

Note

To define a CORBA union, use the method described in the section, Using Stereotypes to
Define a CORBA Union

Using Stereotypes to Define a CORBA Union
To define a CORBA union, you use the stereotypes:

¢ <<CORBAFi xedUni on>>
¢ <<CORBAVari abl eUni on>>
To define a CORBA union, follow these steps:

1. Create anew typeinside a<<CORBA Mdul e>> package or <<CORBA | nt er f ace>>
class.

2. Onthe General tab of the Features dialog box for the type, select L anguage from the
Kind drop-down list.

3. Onthe Declaration tab of the Features dialog box, enter the code for the union.
4. Click OK.

5. Set the property CORBA: : Type: : CORBASt er eot ype to CORBAFi xedUni on or
CORBAVar i abl eUni on.

CORBA Types and Code Generation

CORBA types are ignored during C++ code generation; they are relevant only for CORBA IDL
generation. When generating IDL, Rhapsody maps any CORBA types to the corresponding C++
types based on the UML mapping scheme. Most IDL compilers use the same scheme.

You can override the default C++ mapping scheme as follows:

¢ To change the mapping scheme, modify thei n, i nout , out , and Ret ur nVval ue
properties under CORBA: : C++Mappi ng_CORBA<i npl enent at i on><t ype>.
For events and triggered operations, modify the property Tri gger Ar gunent .

¢ <implementation> is either Fi xed or Var i abl e (according to the value of the property
CORBA: : Type: : C++l npl enent at i on).
<type>isoneof Structure, Uni on, Enuner ati on, Array, Sequence, or Basi c.

18 CORBA Development Guide

CORBA Types

Mapping CORBA Types to Code

Because the mapping of CORBA data typesto C++ code is determined by both the type and usage
(for example, whether theitemisassigned toitsi n, i nout , out, or r et ur n), each typeis mapped
to acertain C++ construct according to its usage either during code generation or when you copy it
from the CORBA domain to the C++ domain (such as when you drag an attribute or operation
from a CORBA interface to aregular class).

There are two properties that affect mapping of CORBA typesto C++ code, in the case of types

and interfaces:

¢ CORBA: : Type: : C++l npl enent at i on - possible valuesare Fi xed and Vari abl e.

¢ CORBA: : 0 ass:: C++l npl enent at i on - possible values are Ref er ence and

Vari abl e.

The table below indicates the mapping settings used for the different property values.

Property . Metaclass Used when Declaring
Value C++ Implementation Argument in Operation Signature
Structure Fixed <Structure name> CORBA: : C++Mappi ng_CORBA
Fi xedSt r uct
Variable <Structure name>_var CORBA: : C++Mappi ng_CORBA
Vari abl eSt ruct
Array Typedef | Fixed <Typedef name> CORBA: : C++Mappi ng_CORBA
Fi xedArr ay
Variable <Typedef name>_var CORBA: : C++Mappi ng_CORBA
Vari abl eArray
Sequence Fixed <Typedef name>_var CORBA: : C++Mappi ng_CORBA
Typedef Sequence
Variable <Typedef name>_var CORBA: : C++Mappi ng_CORBA
Sequence
Language Type | Fixed <Type name> _User can choose; default
Variable -~

CORBA: : C++Mappi ng_CORBABas
ic

Simple
Typedef

Simple Typedef recurses to the last real type that the typedef redefines, and

uses the value of that type’s CORBA: : Type: : C++l npl enent at i on ifit
is a type, or the value of CORBA: : O ass: C++l npl enent ati onifitis
an interface, and the type’s corresponding

CORBA: : C++Mappi ng_ CORBA<implementation><type> metaclass.

Rhapsody

19

Stereotypes and Types

20

CORBA Development Guide

Creating a CORBA Model

This section illustrates some of the basic Rhapsody operations required to create a CORBA model.

Building CORBA Applications

The following steps define the general process for creating CORBA components using Rhapsody:

1

7.

Create a C++ project in Rhapsody. (See the Creating a New CORBA Project for more
details.)

Define CORBA interfaces by assigning CORBA stereotypes to model elements. (See the
Creating the Required CORBA Stereotype and Creating the CORBA IObserver Interface
section for more details.)

Create client and server relations between interfaces and classes in the structural
model. (See the Creating the System’s Class and Inheritance Sections for more details.)

Set up CORBA properties for the appropriate model elements. (See the creating the
Server Component for more details.)

Generate code. Rhapsody automatically generates Interface Definition Language
(IDL) code for the items tagged as CORBA stereotypes and C++ code for the
remaining items

Build client and server components. Rhapsody generates the IDL code needed for
the client and server components. ThisIDL code is then compiled by the IDL
compiler to create the necessary CORBA stubs and skeletons.

Start the server and client by running the executables.

You determine what classes you want to have communicate with each other and specify
that they have the <<CORBA Interface>> stereotype.

Rhapsody

21

Creating a CORBA Model

Rhapsody Sample Models

The instructions used in this example are based on the CORBA project in the C++ samplesin your
Rhapsody installation. The CORBA samples directory contains three projects for the SDM
(Security Door Management) model. You may find it useful to review these projects before
following the practice instructions in this section.

To examine the projects, follow these steps:

1. Open Rhapsody in C++: From the Windows Start menu, select Programs > Telelogic >
Telelogic Rhapsody version# > Rhapsody Development Edition > Rhapsody in C++.

2. Select File> Open to open the Open dialog box.
3. Navigate to Samples> CPPSamples > CORBA.

SDM_Observers Sample Model

In the Rhapsody C++ samples, the SDM_Observers model contains three different components:

¢ SDM (Security Door Management)

¢ policeObserver

¢ aarmObserver
Each component performs its own task. A client is developed in the Client_sdm_observers model.
This system is designed to detect unauthorized entry (“break-in") to protected buildings and to

notify the proper authorities to respond to a break-in. The general system requirements are as
follows:

¢ The Security Door Manager (SDM) software monitors a Door in order to detect a door
access violation (break-in).

+ |f thereisabreak-in, the software signifies a break-in and alist of observersis notified.
These observers are registered in the SDM.

+ Observers, such as police at the police station and security officers located remotely, are
notified and the alarm is activated.

+ The police observers and alarm observers are registered with the Security Door Manager,
and they request to be notified if a break-in (event) occurs.

+ When the break-in event occurs, the Act operation starts and the notification is sent to the
observers.

¢ Theadarmisactivated and the police are called.

22

CORBA Development Guide

Creating a New CORBA Project

Creating a New CORBA Project

When you create practice files, save your filesin adifferent directory from the sample directory to
allow you to compare your practice work with the original Rhapsody samples.

Create anew CORBA project with these steps:

1

Open Rhapsody in C++: From the Windows Start menu, select Programs > Telelogic >
Telelogic Rhapsody version# > Rhapsody Development Edition > Rhapsody in C++.
You must create this project using the C++ devel opment edition.

Select File > New from the main menu bar to display the New Project dialog box.

Type sam_observers asthe Project name and select afolder to use as your practice
project directory, as shown below.

D New Project g‘
Froject name: |Sdm_0bsewers|

In folder: |C:\RhapSody\Projed\Sdm_ObseNers Browse. .
Type: |Defau|t ﬂ

oK | Cancel | Help |

Usethe “Default” Type sinceit contains all of the items needed for a CORBA project.

Click OK. The system opens a new project and creates an Object Model Diagram named
Modell in the Drawing area.

Note: Inthe browser, select Object Model Diagrams > Model1, and right-click
Modell.

Select Diagram Properties from the menu, and in the General tab, typeMain_Model in
the Namefield.

Click OK to save the name change and close the dial og.

Rhapsody

23

Creating a CORBA Model

Creating the Required CORBA Stereotype

In order to create a CORBA component, you must then create a class and define it asa CORBA
interface stereotype. To create the interface class and make it a CORBA stereotype, follow these

steps:

6.

In the object model Main Model, select the Classicon =N
Drag the pointer in the diagram drawing area to create a class.

Type the name of the class, | SDM over the default name that the system supplied. Thisis
the interface for SDM.

Right-click the | SDMclass diagram and select Featur es from the menu.

Select the General tab and in the Stereotype field, select CORBAI nt er f ace from the
pull-down menu.

Click OK to save the changes and close the dial og.

Thel SDMclassis now a CORBA interface. During code generation Rhapsody generates IDL code
for this class. Your diagram should resembl e this example.

«CORBAInterfacen
ISDM

24

CORBA Development Guide

Creating the System'’s Class and Inheritance

Creating the System’s Class and Inheritance

In order to represent the system and create and inheritance between the system and its interface,
you must now create the SDM class with these steps:

1. Inthe object model diagram, draw another class named som below the 1spm class.

2. SdecttheInheritanceicon T and click on the top of the SDM class and then on the
bottom of the ISDM class to create the inheritance relationship between the two classes.
This means SDMimplements the CORBA interface | SDM At this point, the diagram
should resemble this example.

«CORBAInterface»
ISDM

SDM

In the browser, the open the Packages and right-click Default. Select Add New > Event.
Type evNot iy into the open areain the browser to create the Notify event.
In the browser, the open the Packages > Default > Classes > SDM.

Right-click and select the Features option to display the Features dialog box.

N o g M~ »

Select the Oper ations tab and from the <New> pull-down menu select the specified type,
listed below. Then enter the text to name the new operations and assign all three Public
visibility:

+ PrimitiveOperation - notify

¢ PrimitiveOperation - createRefFile

+ Reception - evNotify

Rhapsody 25

Creating a CORBA Model

At this point the Operations in the Features dialog box should resemble this
example.

Class : SDM in Default

Felations] Tags] Froperties
General Description] Attributes Operations l Paorts
T i x
MName | Visibility | Return Type | 4
& notify Public void
8 CreateRefFie Public woid

Fublic

<Mew >

|v0id Message_10)

Locate| 0K | |

8. Click OK to save the operations and close the dialog box. At this point, the browser
should resemble this example.

P:
= Drefault
-8 Classes
B «CorBAInterfaces 1SDM
--8 sDM
=@ Cperations
& CreaterefFief)
& evhotify()
& rotify()
= SuperClasses
T 150M
=X, Events
N evhotifin)

26 CORBA Development Guide

Creating the System'’s Class and Inheritance

Implementing the SDM Operations

At this point, the basic structure of the SDM system is drawn in the Object Model Diagram. Now
the operations in the system need to be implemented.

When the evNotify event is generated, the SDM needs to receive the event and call the Notify
operation, created in the previous section. To accomplish this, add the implementation code to the
Notify operation with these steps:

1. Right-click notify inthe browser to display a menu.

2. Select the Features option and then the Implementation tab in the Features dialog box.
Note that the item selected in the browser forms the title bar of the dialog box.

3. Typethe codein the Implementation area, as shown in this example:

Primitive Operation : notify in SDM *

General] Description Implementation lArguments] Relations] Tags] Properties]

fvaid natify()
OMIterator<IObserver ptr> chslter (itsObservers); -
for (ohsIter.reset(); *obsIter; obsItert+)
i
try |

(*obzIter) -> acti):;
'
catch (CORBA: : S8ystemExceptions e) |

omcerr << "Got CORBA exception in act () " << omendl;
omcerr << &e << omendl;
omcerr << "Aborting program. " << omendl;
'
ro .
4 3
< >

Locate| 0K |A|J|J|\,|" |

4, Click OK to save the code.

5. To display the Notify operation in the class, right-click the spm class in the diagram and
select Display Options.

6. Select the Operations tab.

Rhapsody 27

Creating a CORBA Model

7. Inthe All Elementslist, highlight the notify() item and click Display to put it into the
Shown in Diagram column, as shown in this example.

Display options of SDM §|
General] Aftributes Operations l
Shaow
(" MNone (Al (" Public & Explicit
Shown In Diagrarm All Elements
<< Display CreateRefFile()
enNatify])
Mowe Up
towe Dn
Remaove
oK | Cancel | Help |

8. Click OK to save thisdisplay change. At this point the diagram should resemble this
example.

«CORBAInterface s
ISDM

L

SDM

=] =]
B notifyvoid

Next you need to add the implementation code for createrefrile With these steps:

1. Right-click createrefFile in the browser.

2. Select the Features option and then the Implementation tab in the Features dialog box.

28 CORBA Development Guide

Creating the System’s Class and Inheritance

3. Typethecodein the Implementation area, as shown in the example below. To speed up
this step, you may want to copy this code from the SDM_Observers project in the
Samples directory.

Primitive Operation : createRefFile in SDM %]

General] Description Implementation lArguments] Relations] Tags] Froperties

|v0id createRefFile(CORBA:ORB var orh)

i[SDM_var sdm; -
COREBA: : 8tring var s;
try |

sdm = _this();

g = orb-robject_to_string(sdm.in());

'
catch (const CORBA: :Exceptions e)
i
cerr << e << endl;
) —1
const char * refFile = "3DM.ref"™;
std: :ofstream out (refFile);
if (out.fail ())
i

cerr << "Can't open " << refFile << "T: " << strerrorierrnc) << endl;
'
out << =.1inf() << endl;

out.close () ;
-
<| f

b | [#
Locate| 0K | |

4. Click OK to savethe code.

Rhapsody 29

Creating a CORBA Model

Defining the Notify Operation

Now the Notify operation needs alist of observers to notify. Make the following changesin the
diagram:

1. Totheright of the SDM class, draw another class and change the generated name to be
alarmObserver.

2. Totheright of the new alarmObserver class, draw apoliceobserver class. At this point
your diagram should resemble this example.

«CORBAInterface s
ISDM

SDM alarmOhserer policeObserver

B notifyvoid

The Notify operation also needsto call an act operation for the observers. Follow these steps to
add it:

1. Inthe browser, right-click the alarmobserver to display the menu and select Features.
2. Select the Operationstab to add the new operation.

3. Select PrimitiveOperation and nameit act. Assign it “Public” Visibility and a“Void”
Return Type.

4. Click OK to save.

5. Repeat steps 1 to 4 to create the policeobserver class.

30 CORBA Development Guide

Creating the System'’s Class and Inheritance

6. Then makethe Act operation display in the diagram. At this point, your diagram should

resemble this example.

«CORBAInterface s
ISDM

a} 0
SDM alarmOhserer policeObserver

[m] [m]

B notify(void B activoid B activoid

[m} m} u]

The act operation needsto be implemented with “activating alarm” or “calling the police.” Follow
these steps to add the necessary implementations:

1
2.

w

N oo g b

In the browser, right-click act () under the alarmobserver.
Select the Features option and then the | mplementation tab.

Type the following code in the Implementation area:

below.omcout << "Activating alarm..." << omendl;

Click OK to save.
In the browser, right-click act () under the policeobserver.
Select the Featur es option and then the Implementation tab.

Type the following code in the Implementation area:

omcout << "Calling the police..." << omendl;

Click OK to save.

Rhapsody

31

Creating a CORBA Model

Creating the CORBA IObserver Interface

In order to make all of these elements work together, the act operation isinherited by the

observers from the CORBA 1observer interface. When the act operationis called for Alarm
Observers, the alarm is activated.

Follow these steps to incorporate these concepts into the model:

1. Above the two observer classes, draw another class and change the generated name to be
IObserver.

2. Right-click to display the Features dialog box, on the General tab select
CcorBAInterface iNthe Stereotype field and sequential in the Concurrency field.

3. Click Apply to save the changes and keep the dialog box open.

4, Select the Operations tab, and add the PrimitiveOperation act in the same manner as
used previously. Click OK.

5. Right-click the new |Observer class and select the Display Options > Operations.

6. Select the act operation to be displayed and click OK. At this point the diagram should
resemble this example.

O————o0——0
«CORBAInterface s «CORBAInterfaces
ISDM I0bserer

[m] [m]

B actgvoid
T

SDM alarmOhserer policeObserver

B notify(void B activoid B activoid

7. SelecttheInheritanceicon T on the Drawing toolbar. Click on the alarmobserver and
draw an inheritance line to the 1observer and click to end the line.

8. Draw another inheritance line from policeobserver t0 the 10bserver.

9. Select the Directed Association icon ' on the Drawing toolbar. Click the spm classand

then the 1observer class. Type the name itsobservers in the area highlighted on the
line.

32 CORBA Development Guide

Creating the System’s Class and Inheritance

10. Right-click the directed association line and select “*” for the M ultiplicity in the dialog
box, as shown in this example. Click OK.

End?2 properties

] Association Tags]

Association properties

Aggregation Kind

Description:

® Mone (" Shared (" Composition

General End] | End? | Endl properties
Marme: ﬂ
Stereotype: | ﬂﬂ@
Roleof: [Default:Observer
Multiplicity: |* ~]

Qualifier. | ~|

[v Mavigable

Locate| 0K |

- |

11. Draw another directed association from ISDM to | Observer without giving the line a

name, but select “*” asthe Multiplicty, asfor the previous association. At this point your
diagram should resemble this example.

#CORBAINterfaces: * «CORBAINterfaces
ISDM IOhserver
B activoid
T itsObhgervers / \\
SDM alarmOhserver policeObserver
B notifed:void Bactgvoid B actdvoid

Rhapsody

33

Creating a CORBA Model

Using the ISDM Interface to RegisterObservers

The ISDM interfaceis the CORBA interface used to register the observers with the Security Door
Manager. | Observer isthe CORBA interface the Security Door Manager uses to communicate
with the observers. The class SDM has arelation to the |0bserver holding its list of attached
observers. The “attach” isimplemented by calling the Rhapsody-generated additsobservers
operation. Follow these steps to put these changes into the model:

1. Select the Directed Association icon " on the Drawi ng toolbar. Click the som class and

then the Tobserver class. Type the name itsobservers in the area highlighted on the
line.

2. Right-click the directed association line and select “*” for the Multiplicity in the dialog
box, as shown in this example. Click OK.

Association itsObservers: Endl=8DM->itsIObserver_1, End2=I0bserver-={= %]

End?Z properties] Agsociation Tags] Agsociation properties
General End1 l End2] Endl properties
MName: tzlObsenser ﬂ
Stereotype: | ﬂ EE
Rale aof : |Defau|t::|0bserver
Multiplicity: |* ~]
Qualifier: | ﬂ

Aggregation Kind

® Mone (" Shared (" Composition
[v Mavigable
Description:

| = J

Locate| 0K | |

34 CORBA Development Guide

Creating the System'’s Class and Inheritance

3. Draw another directed association from ISDM to |Observer without giving the line a

name, but select “*” asthe Multiplicty, asfor the previous association. At this point your
diagram should resemble this example.

+<CORBAIMterface:
ISDM

SDM

itsOh

«CORBAIntefaces
[Qbserver

B notifyQovaid

B actrvaid
BrVErS

/

™~

alarmOhserver

palice0hserer

B actqivoid

B actfovoid

Creating a Statechart for the evNotify Event

You must add a statechart to the SDM that showsthe evNotify actions. When the evNotify event is
generated (representing a criminal’s break-in to the protected building), the event is received by
SDM, and the Notify operation is called. Follow these steps to add the statechart:

1
2.

Right-click the spm class in the diagram.

Select New Satechart.

Select the Sateicon O
area.

from the Drawing toolbar and draw a state in the empty diagram

Select the Default Connector icon ‘"‘ and draw the connector from outside the state to
the edge of the state, as shown in this example.

state_0

S

evMotifynotify();

Rhapsody

35

Creating a CORBA Model

5. To complete the statechart, select the Transition icon > and draw the line from one
edge of the bottom of the state to the other edge.

6. TypeevNotify asthe namefor thistransition.

7. To complete the statechart, double-click the transition line to add thenotify () ; Action,
as shown in this example.

Transition : 1 in StatechartOfSDM

General lDescription] Tangs] Properties]

MNarme : | ﬂ

Stereatype: | ﬂﬂ@
Target | J|—

Trigger: |evNotifyin Default v |

Guard : | —

L_|

Locate| 0K | |

8. Click OK.

9. Click thetab for the object model diagram and note that a statechart icon is now displayed
in the SDM class. Theiconiscircled in this example.

36 CORBA Development Guide

Creating the Server Component

Creating the Server Component

To create the server component for this simple CORBA model, follow these steps:
1. Inthe browser, right-click the Componentsitem.
2. Select Add New Component.

3. TypespM_server asthe component name.

Setting the CORBA Server Properties

1. Inthebrowser, right-click the SDM_Server component and select Features and the
Propertiestab.

2. Sdect the All view.

3. Navigate to the CORBA: : Confi gur ati on: : CORBAEnabl e property and set it to
CORBAServer, as Shown below.

General]Scope]Description Felations | Tags Properies

Wiew Al -
+| C++Mapping_CORBAFixedSeqUence -~
+| C++Mapping_CORBAFxedSTuct
+| 4+ +Mapping_CORBAFedUnion
+| C++Mapping_CORBAINterfaceReference
+| C++Mapping_CORBAINterfacel ariable
H C++Mapping_CORBASequence
| C++Mapping_CORBAVariablehay
+| C++Mapping_CORBAVariableSTct
+H| C++Mapping_CORBAYariablelUnion
+| Class
=l Configuration

CCRBAENable
ExposeCorbalnterfaces

IDLExtension Jidl
IncludelDL

QORB TAC

CORBAServer

v

CORBA:Configuration:CORBAEnable ~
The CORBAEnahle property specifies whether to generate code for a CORBA client,
CORBA server, or neither.

The possible values are as follows:

* Mo - Generate code for neither a client nor a server.

* CORBAClient- Generate code for & CORBA client.

* CORBAServer- Generate code for a CORBA server.

(Default = Ma) v

Locate| 0K | |

Rhapsody 37

Creating a CORBA Model

4. Click OK to apply your changes and close the dialog box.

Defining the Server Initialization

1
2.

In the browser, expand the sbm_server > Configurations.

Double-click the Def aul t Conf i g configuration for the spm_server component to
display the Features dialog box.

Select the I nitialization tab.

IntheInitialization code field, type the code to instantiate SDM on startup.

Thel nst anceNanel nConst r uct or property (under CORBA: : Cl ass) specifies
whether to generate a constructor that can accept an instance name for a class that
implements a CORBA interface. If this property is Checked and the default
implementation method is| nheri t ance, you can instantiate arealizing class with a
specific name.

Asan dternative to writing initialization code manually, you can simply select SDM asan
“initial instance.” In this case, Rhapsody automatically creates asingleinitial instance
of SDM with a string name indicator.

Make sure that animation is disabled for the Def aul t Conf i g configuration (in the
Settings tab, the I nstrumentation M ode setting should be None).

Click OK to apply your changes and close the Features dial og box.

38

CORBA Development Guide

Building the Server Component

Building the Server Component

Now that the Server component is defined, generate code for it with these steps:

1. Fromthe main menu at the top of the interface, select the Code > Generate >
DefaultConfig options.

2. Buildthe SDM Ser ver component, select the Code > Build Server.exe menu options.

If the SDM_Ser ver component compiles without errors, you are now ready to build the
SDM Cl i ent component.

Building the Client Component

To generate code for the SDM_d i ent component, follow these steps:
1. Inthe browser, select the SDM Cl i ent component from the Component list.

2. From the main menu at the top of the interface, select the Code > Generate >
DefaultConfig options.

3. Buildthe SDM d i ent component, select the Code > Build Server.exe menu options.

Troubleshooting the Build

If errors display in the Build window at the bottom of the interface, examine the messages and
return to the section of the instructions relating to the feature referenced in the messages. Then
check the following:

¢ Go back through the instructions to be certain that all of the steps were performed.

¢ Did you create the project using the C++ development edition of Rhapsody?

¢+ Doyou havean IDL compiler installed?

Rhapsody 39

Creating a CORBA Model

40

CORBA Development Guide

Clients and Servers

CORBA interfaces play asignificant role in the design of both clients and servers. Servers are

CORBA -enabled executables that are able to respond to remote invocations. Serverslink to
CORBA skeletons.

Clients are components that use a server IDL, represented either by Rhapsody model elements, or
an external IDL file. Clientslink to CORBA stubs. The IDL compiler can generate server
(skeleton) code or client (stub) code from a CORBA interface.

Building the Client

There are several steps required to build the client:

¢+ Addaclient class to the Object Model Diagram
¢ Associate that client class to the CORBA |nterface class

Running the Application through an ORB

Before you can execute the model, you must start the ORB daemon. With TAO, you must also
register the new Ser ver component in the implementation repository.

Do the following:

1. Runthe ORB daemon (for example, or bi xd). Once the daemon is running, the following
message should be displayed in a new window:

[orbixd: Server "IT daemon" is now available to the network]

2. Open acommand prompt window, change directory to where the server program
(server. exe) islocated, and register the server component with the ORB. In TAO, the
command is as follows:

> putit Server <paths>\server.exe

Notethat the first argument to the put i t command isthe server logical name, which
consists of the component name by default. The second argument is the location of

Rhapsody 41

Clients and Servers

the server executable, which must include the full path - even if it isthe current
directory.

If the put i t command is successful, a message similar to the following is
displayed:

[<connecti on#>: New Connection (<hostnane>,
| T_daenon, *, <usernane>, pid=<program | D>,
optim zed)]

To check which servers are registered, use the following TAO command:
> |sit

In Rhapsody, select Code > Run Client.exe.

In the Animation toolbar, click Go to start the program. The program creates an instance
of A on startup.

Open the animated statechart for the A instance and generate an evTr y () event using the
Event Generator.

42

CORBA Development Guide

Interpreting CORBA Interfaces

Interpreting CORBA Interfaces

Rhapsody interprets the model and automatically decides whether to generate skeleton (server-
side) or stub (client-side) code for a CORBA interface. However, you can override the default
model interpretation using the following properties (under CORBA: : Confi gur ati on):

¢ ExposeCor bal nt er f aces - Generates server IDL code for the CORBA interface
¢ UseCor bal nt erf aces - Generates client IDL code for the CORBA interface

To use these properties, assign a comma-separated list of CORBA i nt er f aces from the scope to
the appropriate property. Rhapsody interprets the interface according to the request.

Servers

A classthat realizes a «CORBAI nt er f ace» essentially needs the server-side code for the
interface. Rhapsody interprets an inheritance relationship as a request to generate, compile, and
link with the server-side code of the CORBA interface.

A classthat directly or indirectly inherits from a CORBA interface must implement all the
operationsin the parent CORBA interfaces. The bodies of the CORBA interface methods must be
implemented in the realizing class. In addition, the realizing class must implement the attributes of
its parent CORBA interfaces, and provide accessor and mutator operations (with the appropriate
types) for each attribute.

You must manually implement all the attributes, operations, and associations of a CORBA
interface in the realizing class. The best way to do thisis to drag-and-drop attributes, operations,
and relations from the CORBA interface into the realizing class. This ensures that CORBA types
in the CORBA interface are translated to the corresponding C++ typesin therealizing class. It a'so
ensures that the appropriate accessors and mutators are generated for the attributes.

Itisimportant to follow all the guidelines described in the following sectionsfor server realization.
If you do not adhere to these guidelines, the compiler might report errors at compile time, or
CORBA exceptions might be thrown during run time. Rhapsody performs some checks to detect
possible violations before generating code.

Rhapsody 43

Clients and Servers

Realizing Server Attributes

Each attribute defined in a CORBA interface is mapped to a CORBA attribute of the same namein
the IDL file.The standard IDL generator generates accessor (get) and mutator (set) operations
for all attributes. For example, for an attribute named at t , the following accessor and mutator are
generated inthe IDL file:

att(); // accessor

att (value); // mutator
Classes that inherit from CORBA interfaces must implement the accessor and mutator operations
for each attribute, except for r eadonl y attributes, which do not require a mutator.

Although C++ alows method overloading, it does not allow a data member and a method to have
the same name. Therefore, the data member in the realizing class must not have the same name as
the attribute in the CORBA interface. You should copy the attributes from the CORBA interface to
therealizing class.

Realizing Server Operations

Classes that inherit from CORBA interfaces must implement each operation of the CORBA
interface. Each of the realizing operations must have the same name and the same number and
order of arguments as the operation in the parent CORBA interface. The argument typesin the
realizing operation must be derived from the interface according to the IDL-to-C++ mapping
scheme specified by the CORBA standard.

For example, if the following CORBA interface operation, the argument hastypel ong :

opl (long argl) ;

The type of the argument of the corresponding operation in the realizing classis CORBA: : | ong is
asfollows:

opl (CORBA: :long argl) ;

The type conversion is done automatically when you copy (drag-and-drop) the operation from the
CORBA interface to the realizing class.

The EnvPar aniType property (under CORBA: : TAO) specifies whether to generate an additional
CORBA_env & parameter for operations. This property isnormally set at the component level, thus
affecting all packages, classes, and operations within the component’s scope.

44 CORBA Development Guide

Servers

Realizing Server Relations

For every outgoing relation from a CORBA interface, you must provide the following methodsin
therealizing class:

¢ Anaccessor

* A mutator

¢ Anadd() method

¢ Aclear() method

If the multiplicity of the target role is not one, you must also provide a CORBA sequence
declaration (see Realizing Server Associations).

CORBA Type Translation

The types used in the realizing class must correspond to the CORBA types defined in a CORBA
module and the CORBAS! er eot ype property to create the correct argument list for generated
operations.

It isimportant to note the following:

+ User-defined CORBA IDL typesare generated in the IDL file generated for the package or
classin which the type is defined.

+ Typesdefined in a «CORBAMbdul e» stereotyped package are constrained to be only
CORBA DL types.

Realizing Server Associations

To realize adirected association from one CORBA interface to another CORBA interface, you
must implement the accessor operations in the subclass that implements the source CORBA
interface. Do this using one of the following methods:

¢ Directly define the accessorsin the realizing class.

¢ Draw an association with the same target role from the realizing class to the target
CORBA interface. Rhapsody generates accessors with appropriate signatures.

In the latter case, if the relation has a multiplicity of one, the return and argument type of the
accessor should be | B_pt r. If the multiplicity is many, the return type of the accessor should be
| B_seq, and the realizing operation should return an instance of the| B_seq classthat is
generated by the IDL compiler and populated with the associated objects.

Rhapsody 45

Clients and Servers

Clients

A class that has an association or a «Usage» relation to a CORBA interface needs the client-side
code for the interface. Rhapsody interprets an association/usage relationship as a request to
generate, compile, and link with the client-side code of the CORBA interface.

Mixed and Standalone CORBA Interfaces

A «CORBAI nt er f ace» class that has both children and relations |eads to the generation,
compilation, and linkage of both server-side and client-side code.

Rhapsody generates both server and client IDL code for the CORBA interface | Ser ver and, in
this case, keeps both. Thed i ent class, which has an association relation to | Ser ver, linksto
| Ser ver 'sclient-side (stub) code. The Ser ver class, which inheritsfrom | Ser ver, linksto

| Ser ver 's server-side (skeleton) code. Therefore, if you allocate the classes to components (as
described in the Hello World example), you end up with two executables (Cl i ent . exe and
Ser ver . exe) that share the CORBA interface.

Rhapsody cannot interpret a CORBA interface that has neither children nor relations. Therefore,
nothing (neither stub nor skeleton code) is generated for it. You can force stub or skeleton
generation using the ExposeCor bal nt er f aces and UseCor bal nt er f aces properties (under
CORBA: : Conf i gur ati on). See Interpreting CORBA Interfaces for details.

Mapping Clients and Servers to Components

In the CORBA context, a component can be either aclient, a server, or both. From the deliverable
point of view, a component can be either an executable or alibrary.

Mapping to Deliverable Components

The options for mapping CORBA components to deliverable components are as follows:

¢ CORBA server executable - You can map a CORBA interface and a class that
implements it to the same component. Rhapsody generates the code and makefile to
create a server executable from the component. Set the

CORBA: : Confi gurati on: : CORBAEnabl e property to CORBASer ver to generate a
CORBA server mai n() loop.

¢+ CORBA client executable - You can map a CORBA interface and a class that has an
association to it to the same component. Rhapsody generates the code and makefile to
create a client executable from the component. Set the CORBAEnabl e property to
CORBAC! i ent to generate a client executable.

46 CORBA Development Guide

Mapping Clients and Servers to Components

¢ CORBA client/server executable - You can map a CORBA interface, a class that
implementsiit, and a class that has an association to it to the same component. Rhapsody

generates the code and makefile to create an executable capable of running as both a
client and a server from the component.

¢ CORBA interfacelibrary - You can map your CORBA design into one component and
your C++ design into another component. The CORBA component can generate alibrary
that contains either the server library, the client library, or both. The C++ component can

then use thislibrary. See Mapping Clients and Servers to Components for more
information.

Mapping Clients, Servers, and Interfaces to Libraries

Using Rhapsody, you can create components with servers, clients, and interfaces packed in
libraries. To build alibrary, do the following:

1. Allocate only CORBA itemsto alibrary component.

2. Asdesired, set properties for the exposed (or used) classes, attributes, operations, and
types.

3. Generate code.

The end result isalibrary of stubs or skeletons, or whatever you have selected.

Rhapsody 47

Clients and Servers

Using External IDL Files

To include an external IDL filein a CORBA model, do the following:
1. Add the external CORBA interface class to the model.

In the password authentication sample, the | Ex interfaceis an external IDL file that
is supplied with a server.

2. SettheCG : Cl ass: : UseAsExt er nal property for the external class| Ex to Tr ue so
Rhapsody will not generate code for it.

3. Typethe name of the external IDL file (1 Ex. i dl)intheCG : d ass: : Fi | eNane
property for the external class| Ex.

Alternatively, you can set the CORBA: : Conf i gurati on: : | ncl udel DL property
for the configuration to the name of the external file

4. If theexternal filereferences any additional librariesthat are not part of the model, add the

external librariesin the Librariesfield of the Settings tab of the Configuration dialog
box.

Note: You can tailor the generated IDL code to various ORB vendors by inserting
vendor-specific code segments.

48 CORBA Development Guide

Using Other ORBs

Rhapsody is an open tool that you can adapt to ORBs, other than TAO, supplied by different
vendors.

Adapting Rhapsody for Other ORBS

To adapt Rhapsody to an ORB other than TAO, you must modify the ORB adapter layer. Thislayer
includes the following:

+ The name of the class being inherited from (assuming inheritance rather than delegation).
+ A batch file containing the command used to compile the IDL files.
¢ Anoptional CORBA _env parameter for operations.

+ Theformat of the file name to include (different for client and server).

The format of compiled IDL file names varies with the IDL compiler in use. For example, lona
addsan“S’ to the name of a server component in generated files (for example, an IDL file named
y.idl iscompiledinto C++ filesnamed yS. hh and yS. cpp), whereas other ORB vendors use
different conventions. CORBA properties ensure that the correct filename formats are generated in
the makefile for a particular CORBA environment.

¢ Thename and format for a publishing function.
¢ Theformat used to notify the ORB that a server is available.

¢ Theformat for an IOR retrieval function.

This section describes the set of properties that support the Rhapsody and CORBA workflow and
specifically, the property set used to record the differences between various ORB solutions.

Rhapsody 49

Using Other ORBs

Selecting a Different ORB

Thefile (inthe Shar e\ Pr oper ti es directory under the Rhapsody installation) contains the
subject CORBA properties. The ORB property (under CORBA: : Conf i gur at i on) defineswhich
ORB is selected to work with a specific configuration. You can build a component with different
configurations, each using a different ORB, by modifying the ORB property for each configuration.

By default, the ORB property is set to TAO. However, aUser Def i nedORB metaclass is also
available, whose default settings correspond to the TAO settings. To add another ORB, you can
modify the User Def i nedORB settings to hold the values of the new ORB.

In addition, you can add as many new ORB definitions as you want. This enables teams to use
different versions or dialects of the same ORB, or to evaluate new ORBs. To add multiple ORBS,
copy the User Def i nedORB settingsto the si t e. pr p file, edit them there, then add more ORB
entries as needed.

50

CORBA Development Guide

Index

A building 39, 41
CORBA 46
ACEORB 2 creating file usage 10
AddCORBAEnvPara property 7 files used to create 10
Aggregations 13 mainline code 6
W|th CORBA' nterface 13 mapp| ng to Components 46
Animation 8 start 21
Applications 21 stub code 9
bUIldI I’Ig 21 Code 6
distributed 1 IDL 24
makefiles 8 implementation 27, 31
Architecture 2 mainline 6
Associations 13 mapping CORBA types 19
realizing 45 mapping exceptions 16
with CORBAInterface 13 skeleton 9
Attributes stub 9
of CORBAInterface 12 template 7
realizing server 44 Code generation 8, 18, 21, 39
CORBA properties 10
B CORBA server-side 43
for CORBA interface 9
Browser for CORBA server 39
list new operations 26 Compilers 1
right-click menu 27 C++ 1
Build 39 C++ additional switchesfor 5
Building IDL 1,2
client 39 IDL filenaming 9
CORBA applications 21 IDL generated files 9
server 39 IDL settings 6
TAO libraries 3 mainline settings 6
Components
C deliverable 46
mapping clients and serversto 46
C++ language 1, 21 Composition
code generation 18 with CORBAInterface 15
compiler 1 Configuration
CORBA support 1 defining as CORBA server 6
mapping 1 Constructors 14, 38
C++Implementation property 19 CORBA 1,21
Classes 24 add environment parameter 7
BOA and TIE implementations 6 and Rhapsody workflow 49
CORBAInterface 13 animation 8
implementing with ORB 6 BOA classimplementation 6
inheritance 25 building applications 8
ClientMainLineTemplate property 6 client 46
Clients 41 code generation 18

Rhapsody

Index

create project 23

define union with stereotypes 18

defining types 17

example 21

exceptions 16

generated interface code 9

installation requirements 1

interface properties 6

interfaces 34, 43

IOR 49

libraries 4

makefiles 8

mixed interfaces 46

model samples 21

predefined reference package 17

properties 5, 37

requirements for example 22

servers 6

setup 1

skeleton 8, 41

standalone interfaces 46

stereotype 24

stereotypes 11

stub 41

system architecture 2

system requirements 1

TIE class implementation 6

typetrandation 45

types 17, 18
CORBA servers 43

realizing associations 45

realizing attributes 44

realizing operations 44

realizing relations 45
CORBAEnNable property 46
CORBAException stereotype 16

mapping to code 16
CORBA\Interface stereotype 12, 24

attributes and operations 12

relations with 13
CORBAL.ibs property 5
CORBAModule stereotype 11
CPP_LinkSwitches property 5

D

Def TIEString property 6
Destructors 14
Diagrams

display features 28
Display 28
Distributed applications 1

E

Environment parameter 7
EnvParamType property 44

Events 35

Exception 16

ExposeCorbal nterfaces property
CORBA interfaces 46
generating server-side code 43

External IDL file 48

F

Features dialog box 37
Implementation tab 27
Operationstab 25

FileName property 48

Files 9
creating clients and servers 10
external IDL 48
generated by IDL compiler 9
header 5
include 5
makefile properties 5
naming convention 9
usage 10

G

Generalizations
with CORBAInterface 14

IDL 1,8,21,24
in architecture 2
IDL compiler 1
file naming behavior 9
generated files 9
settings 6
IDL CompileCommand property 6
IDL CompileSwitches property 6
Implementation 27
Inheritance 25
creating 25
Installation 1
C++ compiler 4
C++ compiler selection 1
requirements 1
Rhapsody 4
TAO 3
InstanceNamel nConstructor property 38
Interface Definition Language (IDL) 1
Interfaces 21
CORBA 1,34
CORBA stereotype 8
define CORBA 21
defined with IDL 1
implementing 6
interpreting 43
IOR 49

52

CORBA Development Guide

Index

L

Libraries 4
build TAO 3
mapping to 47
pathto 5
Limitations
CORBA 1
CORBA animation 8
Link switches 5

M

Mainline code 6
Makefiles 5
for building CORBA applications 8
Map
clients and serversto components 46
CORBA typesto code 19
CORBAEXxception to code 16
tolibraries 47
Mixed interfaces 46
Models
creating example 21

O

Object Request Broker (ORB) 2
TAO 1
Open-source ORB 2
Operations 26
calling 34
CORBA environment parameter 44
implementing 27, 31
notify 30
of CORBAInterface 12
realizing 44
ORB 2
ORBS
adapter layer 49
ORBs
adding new 50
download required TAO version 3
implementing aclass 6
initialization 7
open-source 2
properties 5, 50
running program 41
running programs through 41
selecting different 50
TAO libraries 3
TAO setup process 4

P

Packages
predefined CORBA 17

Project
new 23

Properties 5, 37
AddCORBAENvPara 7
C++Implementation 19
ClientMainLineTemplate 6
CORBAEnable 46
CORBALibs 5
CPP_LinkSwitches 5
DefTIEString 6
EnvParamType 44
ExposeCorbal nterfaces 46
FileName 48
for code generation 10
for mapping CORBA types 19
IDLCompileCommand 6
IDL CompileSwitches 6
implementing interfaces 6
makefile 5
ORB 50
ServerMainLineTemplate 6
Skeleton 6
UseAsExterna 48
UseCorbal nterfaces 43, 46

R

Redize

Server associations 45

server attributes 44

server operations 44
Relations

realizing 45

with CORBAInterface class 13
Requirements 1, 22
Rhapsody

and CORBA workflow 49

CORBA model samples 21

default ORB 50

S

ServerMainLineTemplate property 6
Servers 41
code generation 39
CORBA 43
CORBA code generation 39
creating file usage 10
files used to create 10
generate code for 39
mainline code 6
mapping to components 46
properties 37
realizing relations 45
skeleton code 9
Start 21
Skeleton 8, 41

Rhapsody

53

Index

code 9

property 6
Standalone interfaces 46
Statechart 35
Stereotypes 11, 21

CORBA 8

CORBAEXxception 16

CORBAInterface 24

CORBAModule 11

defining aunion 18

required for CORBA 24
Stub 41

code 9

T

TAO 2
BOA implementation 6
build libraries 3
default 50
download required version 3
file naming conventions 9
path to libraries 5
properties 5
setup process 4
Tranglation
of CORBA types 45

Troubleshooting
CORBA 39

Types 17
code generation 18
CORBA trandation 45
defining native CORBA 17
mapping to code 19
predefined 17
reference package 17

U

UseAsExternal property 48

UseCorbal nterfaces property
CORBA interfaces 46
generating client-side code 43

UserDefined ORB property 50

V

Visibroker
file naming conventions 9

W

Windows 1

54

CORBA Development Guide

	Contents
	CORBA Setup, Libraries, and Files
	CORBA Development Requirements
	Object Request Broker (ORB)
	Installing and Building Your TAO Libraries
	Accessing ACE and TAO Downloads
	ACE and TAO Setup Process

	TAO Properties
	Makefile Settings
	Implementing a Class with the ORB
	IDL Compiler Settings
	Mainline Code
	Environment Parameter
	Initialization Properties

	Makefiles for Building CORBA Applications
	IDL Compiler-Generated Files
	File Naming Conventions
	File Usage

	Stereotypes and Types
	CORBA Stereotypes
	«CORBAModule» Stereotype
	«CORBAInterface» Stereotype
	Attributes and Operations of «CORBAInterface»
	Relations with «CORBAInterface» Classes

	«CORBAException» Stereotype
	Mapping «CORBAExceptions» to Code

	CORBA Types
	CORBA Predefined Reference Package
	Defining Native CORBA Types
	Using Stereotypes to Define a CORBA Union
	CORBA Types and Code Generation
	Mapping CORBA Types to Code

	Creating a CORBA Model
	Building CORBA Applications
	Rhapsody Sample Models
	SDM_Observers Sample Model
	Creating a New CORBA Project
	Creating the Required CORBA Stereotype
	Creating the System’s Class and Inheritance
	Implementing the SDM Operations
	Defining the Notify Operation
	Creating the CORBA IObserver Interface
	Using the ISDM Interface to RegisterObservers
	Creating a Statechart for the evNotify Event

	Creating the Server Component
	Setting the CORBA Server Properties
	Defining the Server Initialization
	Building the Server Component
	Building the Client Component
	Troubleshooting the Build

	Clients and Servers
	Building the Client
	Running the Application through an ORB
	Interpreting CORBA Interfaces
	Servers
	Realizing Server Attributes
	Realizing Server Operations
	Realizing Server Relations
	CORBA Type Translation
	Realizing Server Associations

	Clients
	Mixed and Standalone CORBA Interfaces
	Mapping Clients and Servers to Components
	Mapping to Deliverable Components
	Mapping Clients, Servers, and Interfaces to Libraries

	Using External IDL Files

	Using Other ORBs
	Adapting Rhapsody for Other ORBS
	Selecting a Different ORB

	Index

