

Rhapsody®
Code Generation Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
iv

Contents
C Code Generation Overview . 1
About this Guide . 1

Rhapsody in C . 2

About Properties . 3

Dynamic Model-Code Associativity. 5

Special Features of Rhapsody Code . 5

Code Generation Fundamentals . 6

Constructive Versus Non-Constructive Views . 7

Structural Model . 9
Constructing Systems from Objects . 9

Objects . 10
Specifying the Type of an Object . 11
Multiplicity of Objects . 13
Descriptions . 15
Object Interfaces . 16

Operations . 17
Implementing Operations in C. 17
Visibility of Operations. 19
Constructors and Destructors . 21
Primitive Operations . 27
Inline Operations . 28
Constant Operations . 29
Event Receptions . 29
Triggered Operations . 30
Invoking Operations . 30

Attributes . 31
Accessing Attributes . 32
Public Access . 32
Private Access . 33

Collaborations Between Objects . 34
Rhapsody in C v

Table of Contents
Inheritance . 35
Dependencies . 36
Compositions . 36
Links . 38
Interfaces . 46
Ports . 46
Components-based Development in RiC . 48

Singleton Objects . 49
Initializing Singletons. 49

External Objects . 50

Reactive Objects . 51

Concurrency Objects . 53
Stereotyped Application Objects . 53
Primitive Concurrency and Synchronization Objects . 56

Packages . 57
Global Variables . 57
Instrumenting a Package . 57
Package Constructors and Destructors. 58

Files . 59
Generating Code for Files . 60
FunctionalC Profile and the File Diagram . 60

Data Types . 61
Primitive Data Types . 61
User-Defined Data Types . 62

Structure of Generated Files . 63
Annotations . 63

Specification Files . 64
File Header . 66
Preprocessor Directives . 67
Structure Declarations. 68
Method Declarations . 69
File Footer . 70

Implementation Files. 71
File Header . 72
Preprocessor Directives . 72
Global Variables . 72
Method Implementations. 72
File Footer . 72
vi Code Generation Guide

Table of Contents
Component Model . 73
Components. 73

Configurations . 77

Folders . 77

Files . 78

Behavioral Model . 83
Sequence Diagrams . 83

Events. 86
Event Arguments. 86
Event Constructors and Destructors . 87
Static Allocation of Events. 88

Statecharts . 89
Accessing and Modifying Attributes . 90
Sending Events . 91
The params Keyword . 91

States . 92
Root State . 92

Transitions . 93
Inlining Transition Code . 93

Starting Statecharts . 96
Initializing Statecharts . 96
Starting Reactive Behavior . 96

Operations on States . 97
Entering a State . 97
Taking Events . 98
Dispatching Events . 100
Checking an Object’s State with IN(). 101
Exiting From a State with Exit() . 102

Predefined Actions . 103
RiCIS_IN() or IS_IN() . 103

RiCGEN() or CGEN() . 104

RiCGEN_BY_GUI() or CGEN_BY_GUI() . 105

RiCGEN_BY_X() or CGEN_BY_X() . 105

RiCGEN_ISR() or CGEN_ISR() . 107

RiCREPLY() or CREPLY() . 108
 Rhapsody in C vii

Table of Contents
RiCSETPARAMS() or CSETPARAMS() . 108

DYNAMICALLY_ALLOCATED() . 109

Index . 111
viii Code Generation Guide

C Code Generation Overview
Welcome to Rhapsody! Rhapsody® is an award-winning, UML-compliant, systems design,
application development, and collaboration platform. Rhapsody is used by systems engineers and
software developers to deliver embedded or real-time systems. Rhapsody uniquely combines a
graphical UML programming paradigm with advanced systems design and analysis capabilities
and seamlessly links with the target implementation language, resulting in a complete
model-driven development environment, from requirements capture through analysis, design,
implementation, and test.

About this Guide
This guide covers code generation for the C language for the Rhapsody product. While it goes over
in general the code generation process, its intent is to highlight the ways you can control the
generated code. To do that, various properties are discussed in detail. Note that not every property
available for C is mentioned.

For more general information about code generation in Rhapsody, see the “Code Generation”
section of the Rhapsody User Guide.

For a hands-on tutorial that shows you how to create a model, generate code, and run animation to
simulate the model you create, see the C Tutorial for Rhapsody.
Rhapsody in C 1

C Code Generation Overview
Rhapsody in C
Rhapsody in C is a visual development system that facilitates efficient construction of real-time
embedded applications in the C language. Unlike other C development systems, Rhapsody uses
the most advanced software development techniques currently available. Commonly described as
object-based, these techniques are standardized as the Unified Modeling Language™ (UML™).
Although C is not an object-oriented language, Rhapsody emphasizes those aspects of
object-based development that can be natively supported by the C programming language, yet
offers the major benefits of object-based development: encapsulation, conciseness, and reusability.

Rhapsody is based on the major views defined by the UML for describing software systems: use
case, static structure, collaborations (scenarios), and object behavior views. Rhapsody generates
production-quality C code directly from several of these views.

You can generate code either for an entire configuration or for selected UML classes. Inputs to the
code generator are the model and the code generation (C_CG and CG) properties. Outputs from the
code generator are source files in the C language: specification files, implementation files, and
makefiles.

Rhapsody in C generates full production C code for a variety of target platforms based on
UML 2.0 behavioral and structural diagrams. The Rhapsody in C product also allows you to
reverse engineer existing C code so that you re-use your intellectual property within a
Model-Driven environment.

As of version 7.1, C code generation in Rhapsody is compliant with MISRA-C:1998. Note that
there are justified violations, which are noted in the Rhapsody User Guide.

Rhapsody in C comes with a number of specialized C language profiles, such as FunctionalC and
CGCompatibilityPre70C. The FunctionalC profile tailors Rhapsody in C for the C coder, allowing
the user to functionally model an application using familiar constructs such as files, functions, call
graphs, and flow charts. Use the CGCompatibilityPre70C profile to make the code generation
backwards compatible with pre-7.0 Rhapsody models. For more information about the profiles
provided for Rhapsody in C, refer to the Rhapsody User Guide.

For more information about code generation in Rhapsody in C, refer to the Customizing C Code
Generation section in the Rhapsody User Guide.
2 Code Generation Guide

About Properties
About Properties
All Rhapsody products (in C, C++, Ada, and Java) provide you with a graphical user interface
(GUI) so you can view and edit the features of an element easily. You access the properties through
the Properties tab of the Features dialog box.

To open the Features dialog box, do one of the following in the Rhapsody browser or a diagram:

� Double-click an element (for example, mins [a variable])
� Right-click an element (for example, Execution [a diagram]), then select Features
� Select an element and press Alt + Enter
� Select an element and select View > Features

You can resize the Features dialog box and hide the tabs on this dialog box if you want. For more
information about the Features dialog box, refer to the section on it in the Rhapsody User Guide.

Note
Once you open the Features dialog box, you can leave it open and select other elements to
view their features.
Rhapsody in C 3

C Code Generation Overview
The Properties tab lists the properties associated with the selected Rhapsody element:

� The top left column on this tab shows the metaclass and property (for example,
Dependency and UsageType).

� The top right column shows the default for the selected property, if there is one (for
example, Specification).

� The box at the bottom portion of the Properties tab shows the definition for the property
selected in the upper left column of the tab. The definition display shows the names of the
subject, metaclass, property, and the definition for the property, as shown in the following
figure:

Note
Rhapsody documentation use a notation method with double colons to identify the location
of a specific property. For example, for the property in the above figure, the location is
CG::Dependency::UsageType where CG is the subject, Dependency is the metaclass, and
UsageType is the property.
4 Code Generation Guide

Dynamic Model-Code Associativity
Dynamic Model-Code Associativity
Dynamic model-code associativity (DMCA) means that changes made to the model are reflected in
the code and changes made to the code can be easily roundtripped back into the model. In this way,
Rhapsody maintains tight relationships and traceability between the model and the code. There is
no overhead from virtual machines or complex architectures. As you will see in the next sections,
the code is simply another straightforward view of the model.

Dynamic model-code associativity is applicable to all versions of Rhapsody (meaning, Rhapsody
in C, C++, Java, and Ada).

Special Features of Rhapsody Code
Rhapsody-generated code provides implementations of ANSI-compliant C code from design
diagrams. It is possible to include and link Rhapsody-generated C code in any C++ system, with
the appropriate wrapper. For example:

#ifdef _cplusplus
extern “C” {
#endif
/* wrapped C code */
#ifdef _cplusplus
}
#endif

Rhapsody-generated code supports static memory allocation where dynamic memory management
is not required, and for dynamic memory allocation based on the user configuration.

In addition, Rhapsody has features for managing source files, such as viewing, error handling, and
roundtripping, which provide full associativity between the code and your model.
Rhapsody in C 5

C Code Generation Overview
Code Generation Fundamentals
Inputs to the code generator are:

� Component, structural, and behavioral models built in Rhapsody
� Code generation properties set in Rhapsody

Outputs from the code generator are source files in the C language: specification files,
implementation files, and makefiles. In turn, these files are used as inputs to the compiler and
linker in later phases of the build process.
6 Code Generation Guide

Constructive Versus Non-Constructive Views
This object model diagram shows the elements involved in generating code, making, and finally
building a component in Rhapsody. The dependency arrows indicate which files are generated and
which files are included by the code generator and compiler, respectively. The thick borders
around the code generator and compiler indicate that these are active objects. The executable
component generated by the compiler is also an active object.

Constructive Versus Non-Constructive Views
Rhapsody generates code from the component, structural, and behavioral model elements you
create using various design views:

� The component model consists of the components, configurations, files, and folders to
which you map various modeling constructs via the browser.

� The structural model consists of a static view of the system created using object model
diagrams (OMDs).

� The behavioral model consists of the life-cycle behavior of the system as defined in
statecharts (SCs).

Object model diagrams and statecharts are considered constructive because Rhapsody generates
code from them. Structural Model describes the code generated from OMDs; Behavioral Model
describes the code generated from SCs.

Sequence diagrams (SDs) are only partially constructive. Rhapsody creates objects and operations
from the instances and messages that you draw in them. However, the bodies of operations must be
defined in the browser or a statechart.

Use case diagrams (UCDs) an activity diagrams are considered non-constructive because
Rhapsody does not generate code from them. They help you analyze the system based on
requirements and are useful for documentation purposes.
Rhapsody in C 7

C Code Generation Overview
8 Code Generation Guide

Structural Model
One of the major issues with object-based techniques is how to capture the logical structure of the
system. Real-time systems have a static nature such that their underlying instance structure exists
once the system starts because we do not want to dynamically allocate and free memory during run
time. Therefore, the static structure is an instance structure rather than a class structure, the
primary view in most non-real-time object-oriented (OO) systems. In Rhapsody, therefore, the
instance (or object) is the prime concept.

The structural model consists of the objects in the system and the static relationships that exist
between them. Groups of objects can be partitioned into packages or subsystems. Object model
diagrams (OMDs) define the structural model. This section describes the code generated from
OMDs.

Constructing Systems from Objects
Object-based modeling is applying the most fundamental engineering discipline of system
construction used by system, mechanical, and hardware engineers. In other engineering
disciplines, physical systems are represented as collections of parts (think of a mechanical or
electrical drawing). Each part (which itself may be a collection of parts) has its own purpose and
data. Early software design techniques did not follow this approach. Rather, they used functional
decomposition because early programming languages were built around how the computers work,
not how systems work.

At its core, each model is a decomposition of the system into modular, cohesive units with
well-defined interfaces. Many object have an internal state that controls its behavior. Objects can
be linked together (collaborate) to perform a certain task. Composite objects are constructed from
simpler objects via hierarchical composition, where the composite object (or aggregate) owns its
subobjects (or components). This theme follows the intuitive structure of any type of system
assembly, from mechanical to electrical to software.

Re-use of services is achieved through instantiation of objects, aggregation, and delegation.
Instantiation is the language mechanism that replicates an object type into a new object instance.
By aggregating an instance of a certain component, a composite object re-uses the services
provided by the component object.
Rhapsody in C 9

Structural Model
Objects
Objects are the structural building blocks of a system. They form a cohesive unit of state (data) and
services (behavior). Every object has a specification part (public) and an implementation part
(private).

In terms of C programming, an object is implemented as a set of data members packed in a
struct, and a set of related operations. With multiple instances, an object’s data is replicated for
each occurrence of the object.

For example, the following structure definition is generated in the specification file for an object A:

struct A_t {
 /* data members of A */
};
/* operations of A */

Some details of the implementation may differ for special types of objects (for example, see
Singleton Objects).

Note
Because C structures cannot be empty, if the object has neither data nor a statechart, an
RIC_EMPTY_STRUCT member is added as a placeholder to satisfy the C compiler.
RIC_EMPTY_STRUCT is a macro defined in the Rhapsody in C framework.
10 Code Generation Guide

Objects
Specifying the Type of an Object

Objects can be of either implicit or explicit type:

� Objects of implicit type are associated with their own structure.
� Objects of explicit type are defined in terms of another object type and its structure.

In the following figure, A is an object of implicit type, B is an object type, and C is an object that is
explicitly of type B.

Objects of Implicit Type
Objects of implicit type are simple objects that cannot be re-used for defining other objects.
Implicit types facilitate instance-based modeling. This is different from pure OO modeling, which
requires every structural entity to be an instance of an existing type. This is known as the type/
instance dichotomy in OO systems.

For objects of implicit type, a C structure is generated with the name of the object and the suffix
“_t.” A type is not defined for the object. For example, a C structure named A_t is generated in
the specification file for an object A that is of implicit type. This object has one attribute named
att1, which is generated as a data member of the structure, as follows:

struct A_t {
 /*** User-explicit entries ***/
 int att1;/*## attribute att1 */
};
Rhapsody in C 11

Structural Model
The object is instantiated and memory is actually allocated in the specification file for the package
to which the object belongs. For example, the following statements are generated in the
specification file for the Default package, to which the object A belongs:

struct A_t;
extern struct A_t A;

The first statement is a declaration of the structure A_t; the second is the actual definition and
memory allocation for an instance A of struct A_t.

Note
The extern keyword indicates that A is declared here but defined (once) elsewhere. Any
code following such a declaration can refer to A. If the same extern statement appears in
different files, all of these statements refer to the same A.

Rhapsody automatically generates operations to handle object creation, initialization, cleanup, and
destruction. These operations are analogous to what are known as constructors and destructors in
C++. For example, the following operations are automatically generated for A:

� A_Create() (see Object Creator)
� A_Init()
� A_Cleanup()
� A_Destroy() (see Object Destructor)

Note that Create() and Destroy() operations are not generated for singletons. See Singleton
Objects for more information.

Object Types
Object types support re-use, multiple instantiation, and dynamic instantiation. In essence, object
types are abstract data types (ADTs). They specify a template of an object that can be instantiated
in different contexts.

Object types are generated into C structures with their own type definitions in the specification file
for the object. The type definition introduces a type alias to the struct representing the object.
The type name consists of the name of the object type, without any suffix. For example, the
following structure and type definition are generated for an object type B:

typedef struct B B;
struct B {

/* data members of B */
};
/* operations of B */

Because B is an explicit type, other objects can be defined in terms of B. Both specification files
and implementation files are generated for object types. Creation, initialization, cleanup, and
destruction operations are all automatically generated for object types.
12 Code Generation Guide

Objects
The type B is declared in the specification file for the package that owns B, but memory is not
allocated for B until an object of type B is actually instantiated.

Object types can be instantiated either statically upon initialization of the system, or dynamically
during execution (the default is dynamically). Therefore, instances of object types might have a
different life span than the system. See Dynamic Memory Allocation for more information.

Objects of Explicit Type
Objects of explicit type are instances of an object type. Instances of object types obtain their
structure and behavior from the object type.

Neither specification files nor implementation files are generated for objects of explicit type.
Rather, an external declaration is generated in the specification file for the package to which the
object belongs. For example, the following declaration is generated for an object C of type B in the
specification file for the package that owns C:

struct B;
extern struct B C;

Multiplicity of Objects

Objects have a multiplicity that determines whether they should be implemented as a single object,
an array, a list, a collection, or a map. You can modify the default implementation using the
CG::Relation::Implementation property for the object.

Note that the Implementation property is under the metaclass Relation rather than Class
because even objects without any visible relations have at least one relation to an object type that is
hidden in the browser.

Bounded Multiplicity
Objects with bounded multiplicity (for example, 2) are allocated to an array with the same number
of elements as the multiplicity. For example, for an object B of implicit type with a multiplicity of
2, the following array is allocated:

extern struct B_t B[2];
Rhapsody in C 13

Structural Model
Unbounded Multiplicity
Objects with a multiplicity of * (unbounded) are allocated to an RiCList structure. For example,
for an object A with a multiplicity of *, the following structure is allocated:

extern RiCList A;

RiCList is a predefined list container type provided by the Rhapsody in C framework.

Unspecified or Single Multiplicity
Objects for which no multiplicity is specified have a default multiplicity of one. Single objects are
allocated to a simple structure. For example:

struct A_t {
 /* User explicit entries */
} A;

In this case, a single object A is allocated at the close of the A_t struct definition in the
specification file for A.
14 Code Generation Guide

Objects
Descriptions

Text entered in the Description field of the Features dialog box for an object is generated into a
comment that appears in the specification file for the package that owns the object, not in the
specification file for the object itself. The comment is generated immediately before the structure
allocation for the object. For example, if you enter the description “A is an object of implicit type”
in the Features dialog box for an object A that belongs to the Default package, the following
comment line appears before the structure allocation line in the Default.h file:

/* A is an object of implicit type */
extern struct A_t A;
Rhapsody in C 15

Structural Model
Object Interfaces

Objects provide interfaces and require interfaces. The provided interfaces are the object’s signals
(events and triggered operations) and services (functions). The required interfaces are realized
through a set of associations and dependencies to other objects through which the object
collaborates with the other objects.

The following figure shows the OMD from the home heating system (hhs) sample. It shows the
provided interfaces of two objects:

� theFurnace—reset(), motorReady(), fault(), and stopHeat()
� theRoom—vacated(), check(), occupied(), Fstopped(), and Fstarted()

In addition, it shows the required interfaces of the two objects through the symmetric association
drawn between them.
16 Code Generation Guide

Operations
Operations
Operations are services that can be performed by an object upon request. Operations can be
synchronous (such as procedure calls) or asynchronous (such as event receptions). Event
receptions are special operations that process events once received from an event queue. The
sending object does not wait for the processing to be completed, but “sends and forgets” the
message. Typically, statecharts handle events and behavioral code scripts (written in C) define
operations. However, statecharts can also handle synchronous operations, called triggered
operations, and conversely, code scripts can be specified to handle events.

Implementing Operations in C

Because the C language does not directly support the concept of object operations, there are two
issues that must be addressed when generating C code from object models:

� Associating an operation with a particular object
� Naming operations such that the C flat global namespace is not overloaded and

contentions are avoided

Associating an Operation with an Object
Because each operation associated with an object is implemented as a global function in C, it must
be provided with a context in the form of a pointer to the object on which it should operate. In
C++, this context is provided in the form of an implied this pointer as the first argument. In C,
however, the this pointer is not available. Therefore, in Rhapsody in C, the first argument to
operations is generally a pointer to the object associated with the operation. This context pointer is
conventionally called me. For example:

/*## operation close() */
void Valve_close(Valve* const me);

Because there is only one instance of a singleton object, the context pointer is not needed for
singleton operations. See Singleton Objects for more information.

You can change the name generated for the first argument using the C_CG::Operation::Me and
C_CG::Operation::MeDeclType properties. The Me property specifies the string used for the first
argument (for example, “me”). The MeDeclType property specifies the full type declaration for the
first argument. Its default value is as follows:

$objectName* const
Rhapsody in C 17

Structural Model
The objectName variable is replaced with the name of the object type. Adding a :i switch to the
objectName variable truncates the name to leave only the uppercase letters. For example, using
$objectName:i for an object named HomeHeatingSystem results in the name HHS.

Rhapsody automatically inserts the me argument into code generated for operations, but it is
important for you to remember to provide it when calling an operation of an object.

Naming of Operations
Because C has a flat namespace for functions, Rhapsody uses a naming convention to resolve
namespace contentions. The convention used is to prefix each (public) operation with the name of
the object on which it should operate. (See Visibility of Operations for information on different
naming conventions for private operations.)

For example, the Valve object has two public operations: open() and close(). These
operations are implemented as follows:

void Valve_open(struct Valve_t * const me);
void Valve_close(struct Valve_t * const me);
18 Code Generation Guide

Operations
Visibility of Operations

Operations can be public or private. Private operations are those used by an object for its own
internal affairs and are not part of the interface of the object. Public operations are services that the
object exposes for consumption by other objects. These comprise the contract of the object and
should remain stable throughout the lifecycle of the system to avoid ripple effects throughout the
system. Changes to private operations (and attributes) should not impact the rest of the system.

Declarations and definitions for public and private operations can be generated in either the
specification or implementation file for an object, depending on the visibility of the operation.

Note
Events and triggered operations are always public.

Operation names have different default formats, depending on whether the operation is public or
private:

� Public operation names have the format <object>_<opname>().
� Private operation names have the format <opname>().

You can change the default format of operation names using the following properties:

� The C_CG::Operation::PublicName property specifies the pattern used to generate
names of public operations in C.

� The C_CG::Operation::ProtectedName property specifies the pattern used to
generate names of private operations in C.
Rhapsody in C 19

Structural Model
Public Operations
Public operations are part of the object’s interface. Declarations of public operations are generated
in the specification file for the object, after the object’s struct declaration. Definitions of public
operations are generated in the implementation file for the object.

For example, the following declaration is generated in the specification file for the Valve object
for the public operation open():

/*## operation open() */
void Valve_open(Valve* const me);

The following definition is generated in the implementation file for the Valve object for the
public operation open():

void Valve_open(Valve* const me) {
NOTIFY_OPERATION(me, &me, NULL, Valve, Valve_open, Valve_open(),

0, Default_Valve_open_SERIALIZE);
/*#[operation open() */
/*#]*/

}

Note that the NOTIFY_OPERATION macro is used for animation. It notifies the animator that a
new operation has been called. The NOTIFY_OPERATION macro is only inserted into the code
when animation is enabled.

To control the way names are generated for public operations, use the
C_CG::Operation::PublicName property. The default value of this property,
$objectName_$opName, prefixes the name of the operation with the name of the object. For
example, the public operation to open the valve in the heating system is named Valve_open().

Use the :I switch after $objectName (for example, $objectName:I or $objectName:i) to
expand $objectName to be only uppercase letters (and digits) of the object name.
20 Code Generation Guide

Operations
Private Operations
Private operations are not exported. Both their declaration and definition are generated in the
implementation file for the object. The declarations of all of an object’s private operations are
grouped at the beginning of the implementation file, followed by the definitions of all the private
operations.

Private operations are tagged as static, which allows them to be accessed by other operations in
the same file.

For example, the following declaration is generated in the forward declarations section of the
implementation file for the Valve object if the close() operation is made private:

/* Forward declaration of protected methods */
/*## operation close() *\
static void close(Valve* const me);

The definition of the private operation is generated later in the same file, in the methods
implementation section:

/* Methods implementation */
static void close(Valve* const me) {

NOTIFY_OPERATION(me, &me, NULL, Valve, close, close(),
0, Default_Valve_close_SERIALIZE);

/*#[operation close() */
/*#]*/

}

You can control the way names for private operations are generated using the
C_CG::Operation::ProtectedName property. The default value of this property, $opName,
uses the user-assigned name for the private operation, such as myName().

Constructors and Destructors

Rhapsody automatically generates operations to create, initialize, clean up, and destroy objects.
Object constructors include creators and initializers; object destructors include cleanup and
destroy operations.

Object Creator
The object creation operation creates an object and calls its initializer. Its name has the format
<object>_Create().

The creator allocates memory for an object, calls the object’s initializer, and returns a pointer to the
object created.
Rhapsody in C 21

Structural Model
For example, the following is the creator generated for the object A:

A * A_Create() {
A* me = (A *) malloc(sizeof(A));
if(me!=NULL)

{
A_Init(me);

}
return me;

}

For reactive objects, a pointer to a task is added to the (end of the) creator’s argument list. This
pointer tells the reactive object which thread (task) it is running on. For example:

A * A_Create(RiCTask * p_task) {
A* me = (A *) malloc(sizeof(A));
if(me!=NULL)

{
A_Init(me, p_task);

}
DYNAMICALLY_ALLOCATED(me);
return me;

}

Because in C it is not possible to give an argument a default value, you can pass a value of NULL
for the task to cause the instance to run in the main task.

The C_CG::Class::AllocateMemory property and the C_CG::Event::AllocateMemory property
specify the string generated to allocate memory dynamically for objects or events. This string is
used in the Create() operation. The default value of this property is:

($cname*) malloc(sizeof($cname));

In generated code, the $cname keyword is replaced with the name of the object or event for which
memory is being allocated.

Dynamic Memory Allocation

You can create an object dynamically by calling its creator function. For example:

B *new_B;
new_B = B_create();

You can delete an object dynamically by calling its delete function. For example:

B_Destroy(new_B);
22 Code Generation Guide

Operations
Object Initializer
The initialization function initializes the attributes and links of an instance. The initializer assumes
that memory has previously been allocated for the object (either statically or dynamically). The
object initializer name has the format <object>_Init().

For example, the following is the prototype of the initializer generated for the object A:

void A_Init(struct A_t* const me);

The first argument is a constant pointer to the object being initialized. The const keyword defines
a constant pointer in ANSI C. Passing a constant pointer as an argument allows the operation to
change the value of the object that the pointer addresses, but not the address that the argument me
contains.

The object initializer has the following responsibilities, which it performs in the following order:

1. Calls subobject initializer functions, if the object has subobjects.

2. Sets links for association relations.

3. Executes user code entered for the body of a constructor. This code should include
initializations of the object’s data.

4. Initializes aggregated framework objects (for example, RiCTask, RiCReactive, and
RiCMonitor objects).

Subobject initialization includes calling the initializers for each subobject of a composite object. In
the case of arrays, the initialization of each subobject can include the $index keyword.

By default, the initializer has no arguments (other than the me argument). If you create an
initializer with arguments, you can enter initial values for the arguments in the Object dialog box.
Rhapsody generates initialization code for initializers with arguments from the values entered in
the Object dialog box.
Rhapsody in C 23

Structural Model
Initializing Subobjects

Compositions are initialized with a call to initRelations() in the initializer of the parent.
For example, the following initializer is generated for an object D that has a subobject E:

void D_Init(D* const me) {
initRelations(me);

}

The initRelations() call in D’s initializer calls the initializer for E:

static void initRelations(D* const me) {
 E_Init(&me->E);
}

If subobjects are implemented as an array (for example, because the subobject has a numeric
multiplicity greater than one), the subobjects are initialized using a while() loop in the
initRelations() operation. For example, if E’s multiplicity is two, E is implemented as a
two-element array inside D. The following while() loop is generated in D’s
initRelations() operation to initialize both instances of E:

static void initRelations(D* const me) {
E_Init(&(me->E));
{

RhpInteger iter = 0;
while (iter < 5){

E_Init(&((me->itsE)[iter]));
iter++;

}
}

}

24 Code Generation Guide

Operations
Setting Links

If related objects are not components of a composite object, you can have the main program
instantiate one of the objects by selecting it as an initial instance (in the Initialization tab for
the configuration). In that object’s initializer, you can create the related object explicitly and
then set the link to it. For example, if an object A and an object B are related and the main()
function instantiates A as an initial instance, then in the body of A’s initializer you can write the
following code to set its link to B:

B *itsB = B_Create();
A_setItsB(me, itsB);

Setting a link to a to-many relation involves calling the initializer for the container. In the
following code, the call to RiCCollection_Init() sets the Furnace’s link to three
itsRooms. Passing a value of RiCTRUE to RiCCollection_setFixedSize() says that
the collection is of fixed size:

void Furnace_Init(Furnace* const me, RiCTask * p_task) {
 RiCReactive_init(&me->ric_reactive, (void*)me,
 p_task, &Furnace_reactiveVtbl);
 RiCCollection_Init(&me->itsRoom, 3);
 NOTIFY_REACTIVE_CONSTRUCTOR(me, NULL, Furnace,
 Furnace, Furnace(), 0, Furnace_SERIALIZE);
 {
 RiCCollection_setFixedSize(&me->itsRoom,
 RiCTRUE);
 }
 initStatechart(me);
 NOTIFY_END_CONSTRUCTOR(me);
}

The NOTIFY_CONSTRUCTOR() and NOTIFY_END_CONSTRUCTOR() calls are
instrumentation macros generated when animation is enabled. The first macro notifies the
animator when the initializer has been called and creates an animation instance. The second
macro notifies the animator when the initializer is about to exit.

Executing User Initialization Code

User code entered for the constructor should include initializations of the attributes of the
object. You can specify the actual value for every parameter in the object constructor. The
actual value will be inserted verbatim as uninterpreted text.

User code is generated between the /*#[and /*#] symbols in the code. For example, you
could enter the following code in the Implementation field for the initializer:

RiCString temp;
RiCString_Init(&temp, "Hello World");
A_print(me, temp);
Rhapsody in C 25

Structural Model
This code is implemented as follows:

void A_Init(struct A_t* const me) {
 NOTIFY_CONSTRUCTOR(me, NULL, A, A, A(), 0,
 A_SERIALIZE);
 me->itsB = NULL;
 {
 /*#[operation A() */
 RiCString temp;
 RiCString_Init(&temp, "Hello World");
 A_print(me, temp);
 /*#]*/
 }
 NOTIFY_END_CONSTRUCTOR(me);
}

Object Cleanup
The object cleanup operation performs complementary operations to the initializer, releasing the
object’s links to other objects in reverse order.

Object Destructor
The destruction operation destroys an object. Its name has the format <object>_Destroy().

The Destroy() operation calls the object’s Cleanup() operation to clean up its links, then frees
any memory allocated for the object.

For example, the following is the Destroy() operation generated for the object A:

void A_Destroy(A* const me) {
if(me!=NULL)

{
A_Cleanup(me);

}
free(me);

}

The C_CG::Class::FreeMemory property and the C_CG::Event::FreeMemory property specify
the string generated to free memory previously allocated for objects or events. This string is used
in the Destroy() operation. The default value of this property is:

free($meName);

In generated code, the $meName keyword is replaced with the name of the object or event for which
memory is being freed.
26 Code Generation Guide

Operations
Primitive Operations

In addition to the operations that Rhapsody automatically generates, you can define your own
operations for objects. Each operation has a name and return type, and might include arguments.
User-defined operations are called primitive operations in Rhapsody.

Object operations (as opposed to functions or global operations) are mapped to C functions with
the same return type. The first argument generated for an operation is a pointer to the specific
object on which the operation is to operate. Following the me pointer is the operation’s original list
of arguments, as specified in the model.

For example, the following is the prototype generated for an operation named print() of object
type B:

void B_print(B* const me);

The function prototype is generated in the specification file for B. The only argument is a pointer to
an object of type B called me.

Enter the following lines in the implementation for B’s print() operation in the model:

char *str;
str = “This is B”;
printf(“%s\n”, str);

The following lines are added to the body of print() in the implementation file:

void B_print(B* const me) {
 NOTIFY_OPERATION(me, NULL, B, print, print(), 0,
 print_SERIALIZE);
 {
 /*#[operation print() */
 char *str;
 str = "This is B";
 printf("%s\n", str);
 /*#]*/
 }
}

You can manually edit the operation between the /*#[and /*#] symbols. Roundtrip your
changes back into the model by selecting Code > Roundtrip > <configuration name>.

A SERIALIZE macro is generated for operations (for example, print_SERIALIZE) if animation
is enabled and the operation has no arguments that need to be animated. The SERIALIZE macro is
used to display the operation during instrumentation. A SERIALIZE macro is not generated for
inline operations.
Rhapsody in C 27

Structural Model
Inline Operations

The C_CG::Operation::Inline property enables you to generate primitive operations and global
functions as macros. The macro is defined in the specification file of the owner object. The
operation call is replaced inline with the uninterpreted text specified for the macro during
preprocessing.

Only primitive operations and global functions for which the Inline property is set to in_header
can be generated as macros. The Inline property does not work for constructors or destructors.
There is no instrumentation for inline operations.

The macro is defined in the specification file of the owner object as follows:

#define OperationName(ArgumentList) \

The operation’s return type and argument types are ignored. Each generated line of the macro ends
with “ \”. Curly braces (“{“ and “}”) are not generated around user code. This enables you to
write short macros that return a value. The following is an example of such a macro definition:

(#define isEqual(arg1, arg2) (arg1)==(arg2))

If a macro is roundtripped, a backslash (“ \”) is added at the end of the line. The next code
generation adds a second backslash “ \ \”, which will cause compilation errors. The extra
backslash must be removed manually.

Error highlighting shows the line of the calling operation (macro call).

The following is an example of the code generated for a primitive operation op() of an object A.
The operation’s Inline property is set to in_header. The macro definition is generated in A’s
specification file (A.h). This operation calls the global function Global_F(), which can also be
generated inline, before exiting:

#define A_op(me) \
 /*#[operation op() */ \
 int i; \
 for(i = 0; i < 3; i++) { \
 printf(“LOOP\n”); \
 } \
 Global_F(); \
/*#] */
28 Code Generation Guide

Operations
Constant Operations

Constant operations cannot change the data on which they operate.

The me parameter of a constant operation points to a structure that is tagged as const. In this case,
the const keyword comes before the data type specifier in the argument list. For example, the
following is the generated code of a constant operation called check() that can access, but not
change, the contents of B:

void B_check(const B* const me) {
 /*#[operation check() */
 /*#]*/
}

Event Receptions

Events provide an asynchronous means of communication between objects. Both reactive objects
and tasks can receive events. Events can trigger transitions in statecharts.

Adding an event reception to an object defines the object’s ability to receive that kind of event. A
comment is added to the specification file of an object to indicate that it can consume a particular
kind of event. For example, if an object type G can receive an event ev1, the following comment is
added to G’s specification file.

/*** Events consumed ***/
/* ev1();*/

All events are handled through a common interface found in RiCReactive.

The event is actually defined in the package file.
Rhapsody in C 29

Structural Model
Triggered Operations

A triggered operation is a synchronous event that can return a value. It is a synchronous
communication between objects that can be invoked by one object to trigger a state transition in
another object. The body of the triggered operation is executed as a result of the transition.
Because a triggered operation is synchronous, the sending object must wait for it to return before
the sender can continue on its own thread.

The body of a triggered operation is set in the statechart of the receiving object by the action
language associated with a transition. Thus, the body of the same triggered operation can be
different based on the state of the object when the operation is invoked. To return a value from a
triggered operation, use the RiCREPLY(VALUE) macro as one of the action statements associated
with the triggered operation. See Predefined Actions for more information on the REPLY macro.

Invoking Operations

To invoke operations on objects, use standard C function calls in the following format:

<opname>(<object*>, p1,..,pn);

The first argument to the function must be a pointer to the object that is the target of the operation.
For example, if itsServer is a pointer to an object that has an operation start(), invoke this
operation with:

Server_start(itsServer, p1, p2);

If the object that is the target of the operation is a singleton, you can omit the context pointer as the
first argument of the function, as follows:

Singleton_start(p1, p2);
30 Code Generation Guide

Attributes
Attributes
Attributes are variables that an object encapsulates to maintain its state. Objects encapsulate
attributes as a set of data items. A data item designates a variable with a name and a type, where
the type is a data type. A data item for an object is mapped to a member of the object’s structure.
The member’s name and type are the same as those of the object data.

For example, the isClosed attribute of the Valve object type is embedded by value as a data
member inside the Valve structure:

struct Valve {
 /*** User explicit entries ***/
 RiCBoolean isClosed; /*## attribute isClosed ##*/
};

The RiCBoolean type is the C equivalent of OMBoolean, a Boolean data type defined in the
Rhapsody in C++ framework.

An accessor operation enables you to access the data, whereas a mutator operation enables you to
modify the data. The accessor is generated if the C_CG::Attribute::AccessorGenerate property
is set to Checked. Similarly, the mutator is generated if the C_CG::Attribute::MutatorGenerate
property is set to Always. The default AccessorGenerate is Cleared. The default for
MutatorGenerate is Never.

Accessor and mutator operations are generated in the user implicit entries area of the specification
file for the object type. For example, prototypes for the _getIsClosed() accessor operation and
the _setIsClosed() mutator operation are generated for the isClosed attribute in the Valve.h
file:

/*** User implicit entries ***/
RiCBoolean Valve _getIsClosed(const Valve* const me);
void Valve _setIsClosed(Valve* const me, RiCBoolean
 p_isClosed);

The bodies of the accessor and mutator operations are generated in the implementation file for the
object type. For example, the following implementations are generated for the _getIsClosed()
and _setIsClosed() operations in the Valve.c file:

/*** Methods implementation ***/
RiCBoolean Valve_getIsClosed(const Valve* const me) {

return me->isClosed;
}
void Valve _setIsClosed(Valve* const me, RiCBoolean
 p_isClosed) {
 me->isClosed = p_isClosed;
}

Rhapsody in C 31

Structural Model
Rhapsody generates attributes in the following order:

1. Attributes are grouped into user-defined and implicit attributes (such as relation
containers).

2. The attributes in each subgroup are generated in alphabetical order.

Accessing Attributes

Attributes can be tagged as public or private. Ideally, attributes should be private to the object as
part of its internal affairs. They should not be exposed as part of the object’s interface. This is
because attributes are an implementation issue and should not be part of the external contract of
the object. In this way, the implementation can be modified to follow changing requirements
without having any external impact. However, sometimes to satisfy efficiency constraints,
attributes can be made public so that peer objects can access them directly.

There is no difference in the way public or private attributes are generated in C. Attributes are
simply data members inside an object structure, and as such are always public.

However, when you assign public or private access to an attribute, the visibility applies to the
accessor and mutator operations for the attribute, not to the attribute itself:

� Assigning public access to an attribute causes the code generator to generate public
accessor and mutator operations for it.

� Assigning private access causes the code generator to generate static accessor and mutator
operations for it.

Public Access

For example, the following is the accessor generated for an attribute with public access:

int Furnace_getHeatReqs(const Furnace* const me);

The heatReqs attribute belongs to the Furnace object in the home heating system sample. The
prototype for the public accessor is generated in the specification file for the Furnace. The name
of the public operation includes the name of the object that is its target, in this case Furnace.

The body of the public accessor is generated in the implementation file for the Furnace:

int Furnace_getHeatReqs(const Furnace* const me) {
 return me->heatReqs;
}

32 Code Generation Guide

Attributes
Private Access

On the other hand, the following is the accessor generated for the same attribute with private
access:

static int getHeatReqs(const Furnace* const me);

The name of the static operation does not include the name of the object that is its target. Both the
prototype and body for the static operation are generated in the implementation file for the
Furnace:

static int getHeatReqs(const Furnace* const me) {
 return me->heatReqs;
}

Rhapsody in C 33

Structural Model
Collaborations Between Objects
System objects collaborate by exchanging events and invoking operations. Objects can access
other objects in four ways:

� Inheritance—Objects can inherit from one another.
� Dependencies—An object can directly access a global object by referencing its package

namespace. A dependency from an object to a package familiarizes the object with the
package namespace. See Dependencies for more information.

� Composition—Objects can access their subobjects and subobjects can access their owner
objects. See Compositions for more information.

� Parameters—Objects can receive references to other objects as arguments of operations
or events. This requires the definition of object types. See Specifying the Type of an Object
for more information.

� Links—Objects that reside inside other objects must be accessed via a link, because they
do not have a global identity. Links bind roles, which are the structural slots through
which an object refers to a link. See Links for more information.

� Interfaces—An object can have an interface, which is a kind of classifier that specifies a
contract consisting of a set of public services. An interface is a non-instantiable entity that
is realized by a class, object, block, file, and so forth, and may be realized by any number
of these entities.

� Ports—Objects can have ports. A port is a distinct interaction point between a class and
its environment or between (the behavior of) a class and its internal parts.
34 Code Generation Guide

Collaborations Between Objects
Inheritance

Inheritance is the derivation of one class from one or more other classes. The derived class inherits
the same data members and behaviors present in the parent class. It is the mechanism by which
more specific elements incorporate structure and behavior of more general elements related by
behavior. Inheritance is also known as generalization.

You can create inheritance by using the Inheritance tool for an object model diagram to draw an
inheritance arrow between two classes.

Inheriting from an External Class
To inherit from a class that is not part of the model, set the CG::Class::UseAsExternal
property for the class to Checked. This prevents code from being generated for the superclass.

To generate an #include of the class header file in the subclass, do one of the following:

� Add the external element to the scope of some component.
� Map the external element to a file in the component.
� Set the CG::Class::FileName property for the class to the name of its specification file

(for example, super.h). That file is included in the source files for classes that have
relations to it. If the FileName property is not set, no #include is generated.

If you need a class to import an entire package instead of a specific class, add a dependency (see
Dependencies) with a stereotype of «Usage» to the external package.
Rhapsody in C 35

Structural Model
Dependencies

Dependencies signify abstract links between objects. There are several types of predefined
dependencies that can be tagged with stereotypes. The Usage stereotype is the only one that
affects code generation in C. It implies a dependence on services provided by another object.

Note
The Send stereotype is a tag that indicates the sending of an event to another object. It has
no code generation side effects.

You can also define other stereotypes for dependencies.

A dependency is different from a link. A dependency does not have any structural implications,
but simply implies information that can be interpreted in several different ways. While a link has a
semantic connection among multiple objects and it is an instance of an association.

The Usage stereotype for dependencies is constructive, in that it changes the generated code
depending on the value assigned to the CG::Dependency::UsageType property for the
dependency. The possible values for this property are as follows:

� Specification—An #include statement is generated in the specification file of the
dependent.

� Implementation—An #include statement is generated in the implementation file of the
dependent.

� Existence—A forward declaration is generated in the specification file of the dependent.

Compositions

The primary means for handling complexity in object-based systems is through object
decomposition. An object can be comprised of other objects or subobjects (nested objects). A
subobject is an object defined within a parent object. The parent object (or owner) can delegate
requests to be handled by its subobjects, and the subobjects can communicate back to their parent
object.

Each of the subobjects knows the HomeHeatingSystem as its parent, and the
HomeHeatingSystem can access each of its subobjects by name. This view of the
HomeHeatingSystem is called an object structure view, because it shows the internal structure of
the object. The subobjects can be linked to each other or not, depending on the nature of the
system.

With compositions, the parent object holds the subobjects by value rather than by pointer. The
parent object is responsible for initializing and cleaning up after the subobjects. See Initializing
Subobjects for more information.
36 Code Generation Guide

Collaborations Between Objects
By default, a subobject designates a single instance and is implemented as a member of the parent
object’s structure. The member’s name and type are the same as the name and type of the
subobject. In other words, subobjects are embedded by value in the parent object, rather than as
pointers to objects.

When a subobject’s multiplicity is specified as a number greater than one, the subobjects are
implemented as an array by default. For example, theFurnace and theRooms are implemented
as members of the HomeHeatingSystem structure. The object theFurnace is implemented as a
single instance of type Furnace, and theRooms are implemented as an array of three Rooms:

typedef struct HomeHeatingSystem HomeHeatingSystem;
struct HomeHeatingSystem {
 RiCReactive ric_reactive;
 /*** User implicit entries ***/
 struct Furnace theFurnace;
 struct Room theRooms[3];
};

If a subobject’s multiplicity is not known in advance, it is implemented as a linked list. For
example, if you specified multiplicity of theRooms as * rather than 3, it would be implemented as
an RiCList as follows:

struct HomeHeatingSystem {
 RiCReactive ric_reactive;
 /*** User implicit entries ***/
 struct Furnace theFurnace;
 RiCList theRooms;
};

You can also implement subobjects using other types of dynamic containers (such as collections).
You specify how to implement concrete relations using the CG::Relation::Implementation
property. For example, setting the Implementation property for theRooms to
UnboundedUnordered would implement theRooms as an RiCCollection rather than as an
RiCList or array.

The properties under the subject RiCContainers determine how functions are generated for
various kinds of containers used to implement relations. See the definitions provided for the
properties on the applicable Properties tab of the Features dialog box. Refer also to the Properties
Reference Manual.
Rhapsody in C 37

Structural Model
Links

An association between objects is called a link. An object can have links to other objects as part of
its required interface. Through such links, the object can request services of or send events to
another object.

Links bind roles, which are the structural slots through which an object can refer to its links.
By default, a role is named its<object>, where <object> is the name of the peer on the
other end of the link.

Links can be symmetric or directional. With a symmetric link, both objects know each other,
implying two roles. With directional links, only one object has access to its peer via a single role.
See Symmetric Associations and Aggregations for more information.

Roles have multiplicity. A multiplicity of one means that the link connects an object to only one
other object. The default multiplicity is set by the
General::Relations::DefaultMultiplicity property.

If a link connects an object to more than one other object (multiplicity greater than 1), that link is
implemented by default as an array. In addition, a role can contain references in the form of
pointers, facilitating access to several members within the group.
38 Code Generation Guide

Collaborations Between Objects
Symmetric Associations
With symmetric links, the objects on both ends of the link know each other. Thus, two roles are
defined.

The sample OMD, as shown in the following figure, shows a symmetric association between
theFurnace and theRooms. This is a to-many link in which one furnace services three rooms.

Roles are implemented as:

� A struct data member
� An accessor function
� A mutator function
Rhapsody in C 39

Structural Model
Link Data Member

By default, a link is with a single instance. A link to a single instance is called scalar. A scalar
relation is generated into a data member in the object’s structure whose name is the same as the
role and whose type is a pointer to the other object. For example, an itsFurnace member of type
pointer to Furnace is generated as a member of the Room structure to represent the Room’s link to
the Furnace:

struct Room {
 /*** User implicit entries ***/
 struct Furnace * itsFurnace;
};

Link Accessor

The link accessor returns a pointer to the associated object. Its name has the format
<object>_get_<rolename>().

For example, the following accessor is generated for the itsFurnace role:

struct Furnace * Room_get_itsFurnace(const Room*
 const me);

This is the implementation of the link accessor:

struct Furnace * Room_get_itsFurnace(
 const Room* const me)
{
 return (struct Furnace *)me->itsFurnace;
}

Link Mutator

The link mutator sets a pointer to the associated object. If the link is symmetric, the mutator
also sets the reciprocal link.

Up to three methods can be generated for the link mutator:

� The first is part of the object’s provided interface.

This link mutator name has the format <object>_set<rolename>().
� The other two are helper functions generated only for symmetric relations that help to

establish the symmetric relation without creating an infinite loop.
For example, the following mutator is generated for the itsFurnace role:

void Room_setItsFurnace(Room* const me, struct Furnace
 *p_Furnace);

This is the implementation of the link mutator. The link between Furnace and the Room is
symmetric, so the mutator also sets the reciprocal link:
40 Code Generation Guide

Collaborations Between Objects
void Room_setItsFurnace(Room* const me, struct Furnace
 *p_Furnace) {
 if(p_Furnace != NULL)
 Furnace__addItsRoom(p_Furnace, me);
 Room__setItsFurnace(me, p_Furnace);
}

If the link is a symmetric relation, the first mutator calls a second that has a double underscore
before the word “set” in its name:

void Room__setItsFurnace(Room* const me, struct Furnace
 *p_Furnace) {
 if(me->itsFurnace != NULL)
 Furnace__removeItsRoom(me->itsFurnace, me);
 Room___setItsFurnace(me, p_Furnace);
}

If the link is a symmetric relation, the second mutator calls a third that has a triple underscore
before the word “set” in its name:

void Room___setItsFurnace(Room* const me,
 struct Furnace * p_Furnace) {
 me->itsFurnace = p_Furnace;
 if(p_Furnace != NULL) {
 NOTIFY_RELATION_ITEM_ADDED(me, Room, Furnace,
 "itsFurnace", p_Furnace, FALSE, TRUE);
 }
 else
 {
 NOTIFY_RELATION_CLEARED(me, Room,"itsFurnace");
 }
}

Together, these three operations set the symmetric link between the Furnace and the Room.
Rhapsody in C 41

Structural Model
Aggregations
Aggregation is a strong form of association that represents a part/whole relationship, as with a car
(whole) that has wheels (parts). The parts can have a life of their own, and do not necessarily come
into being and die with the creation and destruction of the whole (for example, the wheels can be
removed and re-used on another car before the original car is junked).

Aggregations are implemented as “shared” aggregations in Rhapsody, in that a part can be
simultaneously aggregated by several wholes because it is not physically embedded inside any of
them. Composition, on the other hand, is an even stronger form of “non-shared” aggregation, in
which the part is actually embedded inside the whole and comes into begin and dies with its
creation and destruction.

The rules for implementing aggregations (that are not compositions) as either pointers or
containers depending on the multiplicity and ordering of the relation are the same for aggregations
as for associations.

To-Many Links
The implementation described in the previous sections is for a scalar link, or a link to a single
object. Rhapsody implements links to more than one object, or to-many links, using various kinds
of containers, depending on the multiplicity and ordering of the link. Types of to-many links are as
follows:

� Bounded ordered
� Bounded unordered
� Embedded fixed
� Fixed
� Qualified
� Static Array
� Unbounded ordered
� Unbounded unordered
� User-specified

Appropriate accessor and mutator operations are generated for each kind of link, depending on the
container used to implement it. The defaults for implementing relations are modifiable through the
properties of the role.
42 Code Generation Guide

Collaborations Between Objects
Ordered Links

By default, ordered links to more than one object are implemented as an RiCList. A to-many
link is made ordered by setting its CG::Relation::Ordered property to Checked. This
includes relations where the multiplicity is known (bounded ordered relations) and those
where the multiplicity is not known (unbounded ordered relations).

Unordered Links

By default, unordered links to more than one object are implemented as an RiCCollection.
A to-many link is made unordered by setting its Ordered property to Cleared. This includes
relations where the multiplicity is known (bounded unordered relations) and those where the
multiplicity is not known (unbounded unordered relations).

Embedded Links

Links to subobjects are implemented as an embedded data member if the subobject’s
multiplicity is one (embedded scalar relation), or as an array if the subobject’s multiplicity has
a numeric value greater than one (embedded fixed relation).

For example, the HomeHeatingSystem object has one subobject called itsFurnace and
three subobjects called itsRoom, all embedded as components. In this case, theFurnace has
an embedded scalar relation and theRooms has an embedded fixed relation to
HomeHeatingSystem. These relations are implemented as follows:

struct HomeHeatingSystem {
 /*** User implicit entries ***/
 struct Furnace theFurnace;
 struct Room theRooms[3];
};

You can achieve the same effect by setting the CG::Relation::Implementation property
to Scalar for a scalar relation or Fixed for a fixed relation. These types of relation
implementations should be used only under two conditions:

� The related object is inside a composite object (component relation).
� The related object is embeddable (C_CG::Class::Embeddable is Checked).

Fixed Links

By default, to-many links with a fixed multiplicity are implemented as an
RiCCollection.

Qualified Links

By default, to-many links where a qualifier is specified on the link are implemented
as an RiCMap.
Rhapsody in C 43

Structural Model
Random Access Links

A random access link is a relation that has been enhanced to provide random access
to the items in the container. You can give a to-many link random access by setting
the C_CG::Relation::GetAt property for the role to Checked. The
C_CG::Relation::GetAtGenerate property must also be set to Checked. This
generates an accessor for the role that uses an appropriate getAt() method for the
container. The $index keyword is passed as a parameter to the getAt() method to
access a particular element inside the container. The default value for $index is int
i.

For example, the GetAt property for a bounded ordered relation has the following
value:

RiCList_getAt(&mecname, $index)

Setting the GetAt property for theRooms to Checked causes the following
accessor to be generated in the HomeHeatingSystem to allow it to access a
particular Room:

struct Room * HomeHeatingSystem_getTheRooms(
 const HomeHeatingSystem* const me, int i) {
 return RiCList_getAt(&me->theRooms, i);
}

44 Code Generation Guide

Collaborations Between Objects
Initializing Links within Packages
An initRelations() operation is generated for packages to initialize the links between the
objects in a package. The name of the link initialization operation has the format
<package>_initRelations().

For example, if the Default package has an object A of implicit type and an object C of type B,
and A has a directional link to type B, a Default_initRelations() operation is generated in
the implementation file for the Default package to initialize the link between A and C, the only
object of type B:

static void Default_initRelations() {
 A_Init(&A);
 B_Init(&C);
}

This operation calls the initialization operations for A and C, which in turn initialize the links to the
respective objects.
Rhapsody in C 45

Structural Model
Interfaces

Interfaces are a kind of classifier that specify a contract consisting of a set of public services. An
interface is a non-instantiable entity that is realized by a class, object, block, file, and so forth, and
may be realized by any number of these entities.

In terms of C programming, an interface is represented by a set of global function declarations and
a structure consisting of void pointers to the global virtual functions.

For example, given some class B with the global functions read() and parse(), there exists an
interface I_B with the following global declarations:

void I_B_parse(void * const void_me);
void I_B_read(void * const void_me);

and a structure as follows:

typedef struct I_B_Vtbl{
size_t I_B_offset;
RiCBoolean (*I_B_gen)(void * const void_me, RiCEvent* event,

RiCBoolean fromISR);

void (*I_B_parse)(void * const void_me);
void (*I_B_read)(void * const void_me);

} I_B_Vtbl;

Ports

A port is a distinct interaction point between a class and its environment or between (the behavior
of) a class and its internal parts. A port allows you to specify classes that are independent of the
environment in which they are embedded. The internal parts of the class can be completely
isolated from the environment and vice versa.

A port can have the following interfaces:

� Required interfaces—Characterize the requests that can be made from the port’s class
(via the port) to its environment (external objects). A required interface is denoted by a
socket notation.

� Provided interfaces—Characterize the requests that could be made from the environment
to the class via the port. A provided interface is denoted by a lollipop notation.

These interfaces are specified using a contract, which by itself is a provided interface.

If a port is behavioral, the messages of the provided interface are forwarded to the owner class; if
it is non-behavioral, the messages are sent to one of the internal parts of the class. Classes can
distinguish between events of the same type if they are received from different ports.
46 Code Generation Guide

Collaborations Between Objects
Partial Specification of Ports
If you specify ports without any contract (for example, an implicit contract with no provided and
required interfaces), Rhapsody assumes that the port relays events using the code generator. You
could link two such ports and the objects would be able to exchange events via these ports.

However, Rhapsody will notify you during code generation (with warnings or informational
messages) because the specification is still incomplete.

Considerations
Ports are interaction points through which objects can send or receive messages (primitive
operations, triggered operations, and events).

Ports in UML have a type, which in Rhapsody is called a contract. A contract of a port is like a
class for an object.

If a port has a contract (for example, interface I), the port provides I by definition. If you want the
port to provide an additional interface (for example, interface J), then, according to UML, I must
inherit J (because a port can have only one type). In the case of Rhapsody, this inheritance is
created automatically once you add J to the list of provided interfaces (again, this is a port with an
explicit contract I). According to the UML standard, if I and J are unrelated, you must specify a
new interface to be the contract and have this interface inherit both I and J.

Implicit Port Contracts

Some found that enforcing a specification of a special interface as the port’s contract to be
artificial, so Rhapsody provides the notion for an implicit contract. This means that if the contract
is implicit, you can specify a list of provided and required interfaces that are not related to each
other, whereas the contract interface remains implicit (no need to explicitly define a special
interface to be the port’s contract in the model).

Working with implicit contracts has pros and cons. If the port is connected to other ports that
provide and require only subsets of its provided and required interfaces, it is more natural to work
with implicit contracts. However, if the port is connected to another port that is exactly “reversed”
(see the check box in the port’s Features dialog box) or if other ports provide and require the same
set of interfaces, it makes sense to work with explicit contracts. This is similar to specifying
objects separately from the classes, or objects with implicit classes in the case when only a single
object of this type or class exists in the system.

Rapid Ports

Rapid ports are ports that have no provided and required interfaces (which means that the contract
is implicit, because a port with an explicit contract, by definition, provides a contract interface).
These ports relay any events that come through them. The notion of rapid ports is Rhapsody-
specific, and enables users to do rapid prototyping using ports. This functionality is especially
Rhapsody in C 47

Structural Model
beneficial to users who specify behavior using statecharts—without the need to elaborate the
contract at the early stages of the analysis or design.

Components-based Development in RiC

You can do component-based developed in Rhapsody in C (RiC) because there is code generation
support for interfaces and ports.

A class may realize an interface, that is, provide an implementation for the set of services it
specifies (that is, operations and event receptions). You use a realization relationship to indicate
that a class is realizing an interface. In addition, an interface may inherit another interface,
meaning that it augments the set of interfaces the superinterface specifies. You can specify
interfaces, realize them, and connect to objects via the interfaces.

RiC users can take advantage of service ports that allows the passing of operations and functions
via ports, in addition to passing events. You can specify ports with provided and required
interfaces. In addition, Rhapsody 7.1 provides code generation support for standard UML ports in
RiC and code generation of ports supports the initialization of links via ports. For more
information about ports, refer to the Rhapsody User Guide.

In this type of development in RiC, interfaces are treated as a specification of services (that is,
operations) and not as inheritance of data (attributes). Also, in this type of development in RiC,
realization (as opposed to inheritance) is used to distinguish between realizing an interface and
inheriting an interface/class.

As of Rhapsody 7.1, code generation supports realizing interfaces in C. This means interfaces and
ports specified in a C model will be implemented by the code generator. This means code
generation generates:

� Code for a C interface (a class with “pure virtual operations”)
– Virtual tables with function pointers
– Relay code from the interface to the realizing class according to the virtual

table
� The “realization code” for the realizing class

– Aggregating the interface
– Initializing the virtual table

� Links between objects that instantiate associations to the interface
48 Code Generation Guide

Singleton Objects
Singleton Objects
Objects with a multiplicity of one that are tagged with the Singleton stereotype are instantiated
only once throughout the life of the system. Singleton objects are implemented in C as a struct
and functions. The singleton property is not enforced on the data, however.

A singleton object is declared as a struct in the specification file. For example:

struct object_0_t {
 /* attributes of object_0 */
};

The singleton object is instantiated as a package object in the implementation file, as follows:

struct object_0_t object_0;

Because there can be only one instance of a singleton, its operations do not include a context
pointer as their first argument. For example, for a singleton object A with an operation op1() with
one argument a1, the following function prototype is generated:

/*## operation op1(int) */
void A_op1(int a1);

If the same object were not a singleton, the following function prototype would be generated:

/*## operation op1(int) */
void A_op1(struct A_t* const me, int a1);

Initializing Singletons

Init() and cleanup() operations are generated for singletons, but create() and destroy()
operations are not.

If a Rhapsody model has global instances, as in the case of singletons, something must call their
init() function. In C++, the problem is solved using default construction. In C, however, another
mechanism must be found. In the case of executable components, the main() function can call the
initializers of global objects. But with library components, the user of the library must call the
initializer before using a global object.

In Rhapsody in C, the component initializer calls the init() operations for all packages in the
component scope. In turn, the package initializer calls the init() operations generated for any
global objects, events, and so on, within the package scope.
Rhapsody in C 49

Structural Model
External Objects
External objects are objects that are generated outside of the current Rhapsody project. They could
have been created in Rhapsody or some other environment. The referencing of external objects
allows you, for example, to relate to external frameworks or legacy code from within a Rhapsody
model. All objects, or object types, that are read-only are assumed to be external.

You can mark an object as external by setting its CG::Class::UseAsExternal property to
Checked. No assumption is made regarding implicit interfaces of external objects, such as
accessors or mutators. Because they might not have been generated in Rhapsody, they are assumed
to be non-instrumented.

If you override the file name of an external object via the CG::Class::FileName property, an
#include statement is added to the implementation file whenever the element is added to a
regular object (package, dependency, relation, and so on). It is not necessary to add a file extension
because Rhapsody automatically adds the extension .h to the file name. For example, if you set
the FileName property of an external object B to myB, the following #include directive is
generated in the .c file for the package:

#include "myB.h"

You can also override the file name of an external object by adding the file to the component
model by adding the element to a file in the model.

If any other objects in the model have Usage dependencies to the external object, the same
#include directive is added to the specification files of those objects. See Dependencies for more
information.

For the model to compile, the location of the external file must be specified as either an include
path or under the compiler switches at the component or configuration level (using the Settings tab
of the Features dialog box for the configuration). If you added the external object to a file with the
correct path, no modification of the search path is needed.
50 Code Generation Guide

Reactive Objects
Reactive Objects
Reactive objects are objects that can receive and process events. They typically have state-based
behavior that is defined in a statechart. However, an object is considered reactive if it satisfies any
one of the following conditions:

� Has a statechart
� Has an event reception

If an object is reactive, an instance of an RiCReactive object is embedded by value in the
object’s structure as a data member. For example:

typedef struct Furnace Furnace;
struct Furnace {
 RiCReactive ric_reactive;
 /* attributes of Furnace */
};

Note that RiCReactive is an abstract data type provided by the Rhapsody in C framework to
define the event-handling behavior of reactive objects.

For every reactive object, an additional struct is defined in the implementation file to hold
pointers to functions that are defined as part of the statechart implementation. These pointers are
passed to the reactive member of an object type:

static const RiCReactive_Vtbl Furnace_reactiveVtbl = {
rootState_dispatchEvent,
rootState_entDef,
ROOT_STATE_SERIALIZE_STATES(rootState_serializeStates),
/* Violation of MISRA Rule 45 (Required): */

/* 'Type casting to or from pointers shall not be used.' */
/* The following cast is justified and is */
/* for Rhapsody auto-generated code use only. */
(RiCObjectDestroyMethod) Furnace_Destroy,

 NULL,
 NULL,
 NULL,
 (RiCObjectCleanupMethod) Furnace_Cleanup,
 (RiCObjectFreeMethod) FreeInstance

};
Rhapsody in C 51

Structural Model
Note the following:

� The RiCReactive_Vtbl virtual function table is defined in the Rhapsody in C
framework (in RiCReactive.h).

� The framework uses the rootState functions to connect to the generated statechart code.
These functions are as follows:

– The dispatchEvent() function consumes an event.
– The entDef() function starts running a statechart. It is called by the
startBehavior() function (see Starting Reactive Behavior).

– The serializeStates() function passes the instrumentation information
to enable visual updating of states in animated statecharts.

– The <object>_Destroy() function is responsible for destroying the object
and is called when a termination connector is reached.

The dispatchEvent(), entDef(), and serializeState() functions are implemented in the
handle closer files defined in the framework (RiCHdlCls.c). You can define functions to perform
similar tasks and link them to your project through the virtual function table, if desired. However,
this topic is beyond the scope of this book.

Initialization of a reactive object and the statechart that it drives are accomplished as part of the
object’s initialization function. For example, the following initializer for the Furnace object in the
HomeHeatingSystem calls RiCReactive_init() to initialize the reactive object, then calls
initStatechart() to initialize the object’s statechart:

void Furnace_Init(Furnace* const me, RiCTask * p_task) {
 RiCReactive_init(&me->ric_reactive, (void*)me,
 p_task, &Furnace_reactiveVtbl);
 /* relation initialization loop */
 initStatechart(me);
}

The RiCReactive_init() and initStatechart() functions are defined in the Rhapsody
framework.

The second parameter to the initializer, p_task, is a pointer to the task, with the associated event
queue, from which the reactive object processes events. If the reactive object is sequential, this
task is the system thread; if the reactive object is active, this task is the object’s own thread. See
Active Objects for more information.
52 Code Generation Guide

Concurrency Objects
Concurrency Objects
Rhapsody provides several types of objects for modeling timing constraints, priorities, resource
management, and performance. Rhapsody also provides facilities for allocating objects to tasks,
assigning priorities, and protecting shared resources.

Logically, the Rhapsody execution model is event-driven. Therefore, there is no need to use
multitasking to provide the desired system services because the underlying framework handles the
dispatching of events. Task allocation results from the consideration of time constraints and
handling of external outputs via polling or interrupt handlers.

To handle concurrency, Rhapsody provides two categories of objects:

� Stereotyped application objects
� Primitive concurrency and synchronization objects

Stereotyped Application Objects

The stereotyped application objects include active objects and guarded objects (also known as
protected objects, synchronized objects, or monitors).

Active Objects
Active objects are application objects that own a thread of control. Active objects have controller
capabilities. Each active object owns an event queue through which it processes its incoming
events. By default, subobjects share the thread (and consequently the event queue) of their parent
object, unless they are also active, in which case they each own their own thread.

The counterpart to active concurrency is sequential concurrency. Sequential objects run on the
system thread, allowing the system event queue to process the object’s events along with those of
other sequential objects in first in, first out (FIFO) order.
Rhapsody in C 53

Structural Model
Active objects are depicted similar to their sequential cousins in OMDs, but with thicker borders.
In the following figure, the CodeGenerator is depicted as an active object with a thick border,
whereas the Model and CGProperties objects are sequential and therefore have thin borders.

Rhapsody implements active objects by adding an object of a predefined type called RiCTask as a
data member. This enables the active object to re-use the capabilities of its embedded RiCTask
member. For example:

typedef struct A A;
struct A {
 RiCTask ric_task;
 /* other members of A */
};

Guarded Objects
Guarded objects encapsulate data shared by several active objects or tasks. They do not own their
own threads, but can synchronize calls from various threads.

Operations that are protected are called guarded operations. A guarded operation is considered
critical enough to need to enforce mutual exclusion. A guarded object is an object that owns at
least one guarded operation.

One way to implement a guarded object is to give it a mutex so every operation that is explicitly
set to be guarded locks the mutex at the beginning of the operation and releases it at the end.

An RiCMonitor member is added to the structures of guarded objects. For example:

typedef struct A A;
struct A {
 RiCMonitor ric_monitor;
 /* other members of A */
};

Note that RiCMonitor is a monitor type defined in the Rhapsody framework.

The ric_monitor subobject is used only for operations of this object that are specifically tagged
as guarded. You can tag an operation as guarded using the CG::Operation::Concurrency
property.

The guarded operation is protected inside a wrapper operation, which is responsible for the
protection. The guarded operation is generated as a private operation as follows:
54 Code Generation Guide

Concurrency Objects
� The wrapper operation name is the user-assigned name for the operation <opname>().
� The guarded operation name has the format <object>_<opname>_guarded().

For example, two functions are generated for a guarded operation increase() of an object B:

� B_increase()—The wrapper operation
� B_increase_guarded()—The actual guarded operation

The declaration for the wrapper operation is generated in the specification file for the object:

int B_increase(B* const me, int i);

The wrapper operation, increase(), obtains a lock on the ric_monitor object, calls the
guarded operation, and finally releases the lock:

int B_increase(B* const me, int i) {
 int wrapper_return_value;
 RIC_OPERATION_LOCK(&me->ric_monitor);
 wrapper_return_value = B_increase_guarded(me, i);
 RIC_OPERATION_FREE(&me->ric_monitor);
 return wrapper_return_value;
}

Once the wrapper function obtains a lock, the guarded operation is protected and can perform its
critical operations without being accessed by another object until the lock is freed:

static int B_increase_guarded(B* const me, int i) {
 {
 /*#[operation increase(int) */
 return i++;
 /*#]*/
 }
}

Similarly, the cleanup operation for guarded objects is generated into a wrapper operation and a
guarded operation that performs the cleanup. For example, the cleanup for a guarded object B first
locks B, then calls cleanup_guarded(), which does the actual cleanup:

void B_Cleanup(B* const me) {
 RIC_OPERATION_LOCK(&me->ric_monitor);
 B_Cleanup_guarded(me);
}
void B_Cleanup_guarded(B* const me) {
 RiCMonitor_cleanup(&me->ric_monitor);
}

You can also use the lock and free macros directly to avoid the overhead of wrapper operations.
Rhapsody in C 55

Structural Model
Primitive Concurrency and Synchronization Objects

Primitive concurrency and synchronization object types are defined outside of the system and
cannot be modified. They are essentially external objects that are defined in a C framework
package called OXF. For this reason, code is not generated for them.

Among these external objects is a set of primitive object types that support concurrency and
synchronization. Such services are normally provided by common real-time operating systems.
The concurrency and synchronization object types include the following:

� Task objects—Are distinguished from active objects. With active objects, the framework
is responsible for determining how the object behaves (in terms of owning its own thread,
event handler, and so on). With task objects, however, you can define how you want the
task to behave.

Typical operations on task objects include the following:
– start()
– stop()
– suspend()
– resume()

You can provide your own implementations for these operations.

� Message queues—Support intertask communication between active objects.
� Semaphores—Protect a shared resource by allowing only a limited number of objects to

hold a token (lock) on a resource at a time. Both semaphores and mutexes are RTOS
entities. See the RTOS Adapter Guide for more information.

� Mutexes—Provide binary mutual exclusion for a shared resource by allowing only one
object to hold the token at a time.

� Timer objects—Provide a timing feature that permits, for example, the output of a signal
at repeatable intervals.

You create any of these object types in your model by selecting the appropriate stereotype. The
primitive object types typically have an iconized representation to support easier readability of
diagrams.
56 Code Generation Guide

Packages
Packages
Packages allow partitioning of the system into functional domains. You can think of a system as a
single, high-level package, with everything else in the system contained in it. A package is a
collection of packages, objects and object types (in C), events, diagrams, globals, types, use cases,
and actors. Because packages can be nested with other packages, they enable you to partition a
system into smaller subsystems. Thus, package nesting provides a way to organize large projects
into package hierarchies.

Subsystems can contain objects, object types, events, diagrams, and other logical artifacts. They
can also contain basic programming constructs, such as functions and data items or variables. The
elements (objects, object types, and events) that belong to a package are all declared and allocated
within the context of the package file.

Packages themselves do not carry direct responsibilities or behavior—they are simply containers.
Packages are not instantiable and they cannot have multiple copies.

Rhapsody generates both a specification file and an implementation file for each package. The
package specification file includes forward declarations of public objects.

Global Variables

Global variable definitions are included in package implementation files after instrumentation
method definitions. For example, the global variable dT in the home heating system sample is
defined in the implementation file for the Default package as follows:

int dT; /*## attribute dT */

Note
When animation is enabled, the serialializeGlobalVars() method serializes the
global variables in the model by converting them to strings so they can be displayed during
instrumentation.

Instrumenting a Package

The OM_INSTRUMENT_PACKAGE() macro instruments the package. The third argument,
<package>_instrumentVtbl, references a virtual function table associated with animation
objects. The virtual function table allows you to create your own framework and connect it to
Rhapsody.
Rhapsody in C 57

Structural Model
Package Constructors and Destructors

The <package>_OMInitializer_Init() operation initializes the events in a package. For
example, if the Default package contains an event evCheck, the package initialization operation
is defined in the implementation file for the package as follows:

void Default_OMInitializer_Init() {
 ARC_INIT_EVENT(evCheck);
}

The <package>_OMInitializer_Cleanup() operation cleans up links between global objects
when the package is destroyed if the CG::Class::DeleteGlobalInstance property is set for
the objects.
58 Code Generation Guide

Files
Files
Rhapsody in C enables you to create model elements that represent files. A file is a graphical
representation of a specification (.h) or implementation (.c) source file. This new model element
enables you to use functional modeling and take advantage of the capabilities of Rhapsody
(modeling, execution, code generation, and reverse engineering), without radically changing the
existing files.

Note
Files are not the same as the file functionality in components that existed in previous
versions of Rhapsody. To differentiate between the two, the new file is called File in
Package and the old file element is called File in Component. A File in Component
includes only references to primary model elements (package, class, object, and block) and
shows their mapping to physical files during code generation.

A file element can include variables, functions, dependencies, types, parts, aggregate classes, and
other model elements. However, nested files are not allowed.

Rhapsody supports the following modeling behavior for files:

� You can drag files onto object model diagrams and structure diagrams.
� If you use the FunctionalC profile, then the File tool is available on the Drawing toolbars

for object model diagrams and structure diagrams.
� You can drag files onto a sequence diagram, or realize instance lines as files.
� A file can have a statechart or activity diagram.
� Files are implicit and always have a multiplicity of 1.
� Files are listed in the component scope and the initialization tree of a configuration. They

have influence in the initialization tree only in the case of a Derived scope.
� Files can be defined as separate units, and can have configuration management performed

on them.
� Files can be owned by packages only.
Rhapsody in C 59

Structural Model
Generating Code for Files

During code generation, files produce full production code, including behavioral code. In terms of
their modeling properties, modeled files are similar to implicit singleton objects.

Note the following:

� For an active or a reactive file, Rhapsody generates a public, implicit object (singleton)
that uses the active or reactive functionality. The name of the singleton is the name of the
file.

Note: The singleton instance is defined in the implementation source file, not in the
package source file.

� For a variable with a Constant modifier, Rhapsody generates a #define statement. For
example:

 #define MAX 66

FunctionalC Profile and the File Diagram

With Rhapsody in C you can use the FunctionalC profile. This profile tailors Rhapsody in C for
the C coder to allow you to functionally model an application using familiar constructs such as
files, functions, call graphs, and flow charts.

When you use the FunctionalC profile, you can draw file diagrams, which show how files interact
with one another. Typically, file diagrams show how the #include structure is created. File
diagrams provide a graphical representation of the system structure. The Rhapsody code generator
directly translates the elements and relationships modeled in file diagrams into C source code.

For a hands-on tutorial that shows you how to create a model that uses a file diagram, generate
code, and run animation to simulate the model, see the C Tutorial for Rhapsody.
60 Code Generation Guide

Data Types
Data Types
Rhapsody provides a set of predefined data types, which you can use for defining variables,
attributes of objects, and arguments to functions. You can also define your own types.

Primitive Data Types

The predefined types are defined in the PredefinedTypesC package (the PredefinedTypesC.sbs
file in the Share\Properties directory).

Predefined types include:

� char
� char*
� double
� float
� int
� long
� long double
� short
� unsigned char
� unsigned long
� unsigned short
� void
� void *
� RiCBoolean
� RiCString
� OMString
Rhapsody in C 61

Structural Model
RiCBoolean is a Boolean data type defined in the framework (in RiCTypes.h) as follows:

typedef unsigned char RiCBoolean;

RiCString is a string data type that is defined in the framework (in RiCString.h) as follows:

typedef struct RiCString {
 unsigned int size; /* The current allocated size */
 unsigned int count; /* The number of characters in
 the string (without \0) */
 char * string; /* the string */
} RiCString;

The RiCString type has a number of operations for creating, destroying, and manipulating
strings.

OMString is a string data type that is defined in the Rhapsody in C++ framework (in
omstring.h). The OMString type provides compatibility with models created in Rhapsody in
C++.

User-Defined Data Types

User-defined data types include data types that can be either enumerations or compositions of
primitive data types, such as arrays, structures, or unions.

Types are generated in the specification file for the package. For example, a type myType could
have the following declaration:

typedef char * myType

This type definition is generated verbatim in the package specification file, after the forward
declarations of objects and object types:

typedef char * myType;

A semicolon is automatically appended to the line, so you do not have to include it in the
declaration.

You can control the order in which types are generated in code using the Edit Type Order feature of
the package. Refer to the Rhapsody User Guide for more information.
62 Code Generation Guide

Structure of Generated Files
This section describes the structure of Rhapsody-generated specification (.h) and implementation
(.c) files, including the main sections within each of the files. Subsequent sections provide details
on how individual modeling constructs within the constructive design diagrams map to code.

Annotations
The generated source code is generously commented with annotations and, if instrumented, with
instrumentation macros. Annotations are comment lines starting with a comment symbol and two
pound signs (/*##). For example,

 /*## package Default */

Annotations demarcate new sections in the code and therefore play an important role in tracing
between design constructs and the corresponding code.

Note
Annotations are used for roundtrip and error highlighting. Do not edit or remove
annotations. Doing so will hinder tracing between the model and the code and might
interfere with Rhapsody’s ability to animate your model.
Rhapsody in C 63

Structure of Generated Files
Specification Files
When Rhapsody generates code for your project, it groups the code into predefined sections so you
can easily follow it. The prolog section of the specification file can begin with a multiline header
that includes the name of the generated file. The following figure shows the DataObject in the
Elevator sample expanded in the Browser:
64 Code Generation Guide

Specification Files
A specification file is divided into the following sections:

1. File header

2. Preprocessor directives

3. Structure declarations

4. Method declarations

5. File footer
Rhapsody in C 65

Structure of Generated Files
File Header

The C_CG::File::SpecificationHeader property specifies the multiline header to be generated
at the beginning of specification files.The default content for the SpecificationHeader property
in C is as follows:

/***

 Rhapsody in C : $RhapsodyVersion

 Login : $Login

 Component : $ComponentName

 Configuration : $ConfigurationName

 Model Element : $FullModelElementName

//! Generated Date : $CodeGeneratedDate

 File Path : $FullCodeGeneratedFileName

***/

Header format strings can contain any of the following keywords:

� $ProjectName for the project name.
� $ComponentName for the component name (for example, HelloWorld).
� $ConfigurationName for the configuration name (for example, HelloWorld).
� $ModelElementName for the name of the element mapped to the file. If there is more than

one, this is the name of the first element.
� $FullModelElementName for the name of the element mapped to the file (for example,

Default), including the full path. If there is more than one, this is the name of the first
element.

� $CodeGeneratedDate for the generation date.
� $CodeGeneratedTime for the generation time.
� $RhapsodyVersion for the version of Rhapsody that generated the file (for example, 7.1).
� $Login for the user who generated the file.
� $CodeGeneratedFileName for the name of the generated file.
� $FullCodeGeneratedFileName for the full file name (for example,

HelloWorld\Default.h).
� $Tag for the value of the specified element’s tag.
� $Property for the value of the element property with the specified name.
66 Code Generation Guide

Specification Files
To avoid redundant compilation, Rhapsody avoids unnecessary changes to specific lines prefixed
with a special string, defined by the C_CG::File::DiffDelimiter property. The default
DiffDelimiter value is //!. The keywords are resolved in the following order:

� Predefined keywords (such as $Name)
� Property keywords
� Tag keywords

Note the following:

� Keyword names can be written in parentheses. For example:
$(Name)

� If the value of a keyword is a MultiLine, each new line (except the first one) starts with the
value of the C_CG::Configuration::DescriptionBeginLine property; each line ends
with the value of the C_CG::Configuration::DescriptionEndLine property.

Preprocessor Directives

The preprocessor directives section of the file includes the following information:

� Element symbol check
� Include files
� Event symbols

Element Symbol Check
The #ifndef and #endif preprocessor directives check whether a symbol is defined for the
element being specified. If the symbol is not already defined for the element, Rhapsody defines
one. For example, a Display_H symbol is defined for the Display package.

A matching #endif is generated at the end of the specification file.

Include Files
The file lists the necessary include files for the project, including the appropriate framework (oxf)
header file for the language. For example, for the Ada language, the following header file is
included:

#include <oxf/Ric.h>

This file is located in the Share\C\oxf directory for Ada framework files. The Ric.h file defines
certain tracer and animation symbols and includes the remaining C framework files, which provide
predefined behaviors for real-time constructs such as events, event and message queues, tasks, and
timers.
Rhapsody in C 67

Structure of Generated Files
To specify additional include directives for header files, use the C_CG::Class::SpecIncludes
property.

For example, if the element has dependencies to reference packages or other modules that are not
part of the Rhapsody design, add the necessary include files to this property.

Event Symbols
If the element being specified is a package, it defines symbols for the events in the package.

The event symbol name has the following format:

<event>_<package>_id <ID number>

Each event has an ID number, starting with one. Event ID numbers increment based on the order in
which events were added to the model during design time. They have nothing to do with the order
in which events are displayed in the browser, which is generally alphabetical.

For example, if the Foobar package contained an evStart event, the following event symbol
would be defined:

#define evStart_Foobar_id 1

Structure Declarations

The structure declaration section allocates memory for object types and events that belong to the
package. Rhapsody names objects according to their type:

� Implicit—The name of an implicit object has the format <object>. For objects of
implicit type, Rhapsody generates a C structure with the name of the object and a suffix of
_t, which implies that the object is itself a type. For example, Display_t.

� Explicit—The name of an explicit object has the format
<object>:<object type>.

For example, the file Default.h includes the following structure declarations:

struct Display_t;
extern struct Display_t Display;

Note that event structures are defined in the specification file for the package that owns the event.
68 Code Generation Guide

Specification Files
If the Default package contains an object type A and an event evStart, the following
structures are allocated in this section:

struct A;

struct evStart;

The A structure is defined in the specification file for A (A.h); the event structure is defined in the
specification file for the package that owns the event.

For more information on implicit and explicit types, see Structural Model.

Method Declarations

The next section of the file includes declarations of methods (constructors and destructors) for
packages, objects, relations, and events.

Package Methods
Two methods (operations) are generated to initialize memory when an element is created and clean
up memory when the element is destroyed.

For example, the following initializer and cleanup methods are generated for the Default
package:

void Default_OMInitializer_Init();
void Default_OMInitializer_Cleanup();

Relation Methods
Rhapsody generates a constructor to initialize relations between elements within a package. The
relation initializer name has the format <package>_initRelations().

For example, the following method initializes relations between the objects in the Default
package:

static void Default_initRelations();

Applying the keyword static to the method allows it to be accessed by other operations in the
same file.
Rhapsody in C 69

Structure of Generated Files
Event Methods
Rhapsody generates the following constructors and destructors to deal with events:

� RiC_Create_<event>()—Creates an event. This constructor returns a pointer to the
newly created event.

� RiC_Destroy_<event>()—Destroys an event. This destructor receives a pointer to the
event that will be destroyed.

� <event>_Init()—Initializes memory when an event is created. The constructor points to
the memory address to be allocated.

� <event>_Cleanup()—Cleans up memory when an event is destroyed. The destructor
points to the memory address to be deallocated.

For example, Rhapsody generates the following methods for evStart events:

evStart * RiC_Create_evStart();
void RiC_Destroy_evStart(evStart* const me);
void evStart_Init(evStart* const me);
void evStart_Cleanup(evStart* const me);

File Footer

The specification file ends with a footer whose content is determined by the
C_CG::File::SpecificationFooter property. The following is the default content for the
SpecificationFooter property for C:

/***

 File Path: $FullCodeGeneratedFileName

**/

The variable FullCodeGeneratedFileName is replaced with the name of the specification file.
You can change the generated footer by modifying the SpecificationFooter property. Footer
format strings can contain any of the following keywords:

� $ProjectName for the project name.
� $ComponentName for the component name.
� $ConfigurationName for the configuration name.
� $ModelElementName for the name of the element mapped to the file. If there is more than

one, this is the name of the first element.
� $FullModelElementName for the name of the element mapped to the file, including the

full path. If there is more than one, this is the name of the first element.
� $CodeGeneratedDate for the generation date.
� $CodeGeneratedTime for the generation time.
� $RhapsodyVersion for the version of Rhapsody that generated the file.
70 Code Generation Guide

Implementation Files
� $Login for the user who generated the file.
� $CodeGeneratedFileName for the name of the generated file.
� $FullCodeGeneratedFileName for the full file name.
� $Tag for the value of the specified element’s tag.
� $Property for the value of the element property with the specified name.

To avoid redundant compilation, Rhapsody avoids unnecessary changes to specific lines prefixed
with a special string, defined by the C_CG::File::DiffDelimiter property. The default
DiffDelimiter value is //!. The keywords are resolved in the following order:

� Predefined keywords (such as $Name)
� Property keywords
� Tag keywords

Note the following:

� Keyword names can be written in parentheses. For example:
$(Name)

� If the value of a keyword is a MultiLine, each new line (except the first one) starts with the
value of the C_CG::Configuration::DescriptionBeginLine property; each line ends
with the value of the C_CG::Configuration::DescriptionEndLine property.

Implementation Files
The implementation (.c) file contains implementations of operations (methods) whose prototypes
are defined in the specification file. For example, when you run the HelloWorld sample, one of the
generated files is Default.c.

An implementation file is divided into the following sections:

1. File header

2. Preprocessor directives

3. Global variables

4. Method implementations

5. File footer
Rhapsody in C 71

Structure of Generated Files
File Header

As with specification files, implementation files begin with a multiline header. The
C_CG::File::ImplementationHeader property determines the content of the header. By default,
the value of this property is the same as the SpecificationHeader property.

Preprocessor Directives

The next section of the file lists the specification files of related packages, objects, and object
types. For example, the Default.h file includes the following files:

#include <oxf/RiCTask.h>
#include "Display.h"

To include additional files, use the C_CG::Class::ImpIncludes property.

Global Variables

The next section of the implementation file defines global variables and methods for serializing
global variables for instrumentation. If the implementation file is for a package, this section also
defines methods to initialize the events in the package, and to clean up memory when the package
is destroyed.

Method Implementations

The next section of the implementation file implements the bodies of both user-defined (explicit)
and automatically generated (implicit) methods.

File Footer

As with specification files, the implementation file ends with a multiline footer whose content is
determined by the C_CG::File::ImplementationFooter property. By default, the value of this
property is the same as the SpecificationFooter property.
72 Code Generation Guide

Component Model
The component model consists of the components, configurations, folders, and files to which you
can map various design constructs of the software model.

Components
Components are binary-level entities that are the end result of compilation. Libraries (.lib files)
and executables (.exe files) are the final output of the build process with the source files
generated by Rhapsody.

In the browser, you can specify the name and location of the final component. You can also specify
which elements to map to a component, the locations of any include files, and which libraries,
additional sources, and standard headers to link in during compilation.

If the component is an executable, Rhapsody generates a specification file and an implementation
file for it called Main<component>.h and Main<component>.c, respectively. These files are
named for the active component. For example, if the active component is called
DefaultComponent and it is an executable, the names for its source files are
MainDefaultComponent.h and MainDefaultComponent.c. If the component is a library, the
files are named simply <component>.h and <component>.c (without the “Main” prefix).
Rhapsody in C 73

Component Model
The component specification (.h) file declares the component and its initializer and cleanup
methods. For example:

/**
.
.
.
#ifndef MainDefaultComponent_H
#define MainDefaultComponent_H
/*---*/
/* MainDefaultComponent.h */
/*---*/

/* Constructors and destructors:*/

void DefaultComponent_Init();
void DefaultComponent_Cleanup();

#endif

/**
File Path: DefaultComponent\DefaultConfig\

MainDefaultComponent.h
**/
74 Code Generation Guide

Components
The component implementation (.c) file contains the main program loop. For example:

.

.

.
#include "MainDefaultComponent.h"
#include <oxf/Ric.h>
#include "Default.h"

/*---*/
/* MainDefaultComponent.c */
/*---*/

void DefaultComponent_Init() {
 Default_OMInitializer_Init();
}

void DefaultComponent_Cleanup() {
 Default_OMInitializer_Cleanup();
}

int main(int argc, char* argv[]) {
if(RiCOXFInit(argc, argv, 6423, "", 0, 0)) {

DefaultComponent_Init();
{

/*#[configuration
DefaultComponent\DefaultConfig */
/* your code goes here */;
/*#]*/

}
RiCOXFStart(FALSE);
DefaultComponent_Cleanup();
return 0;

}
else

return 1;
}

/**
File Path: DefaultComponent\DefaultConfig\

MainDefaultComponent.c
**/

The component specification file includes the Ric.h file, in which the real-time framework for
Rhapsody in C is defined.
Rhapsody in C 75

Component Model
The main program loop calls RiCOXFInit(), one of the functions provided by the framework.
This framework initialization function performs the following operations:

� Initializes the event dispatcher
� Sets the port number and host name for instrumentation
� Initializes the tick timer
� Creates the main task
� Creates a breakpoint manager
� Takes the first step in the main task
� Takes any operating-specific actions that need to be taken after the environment is set

If RiCOXFInit() returns successfully, the main() function then executes any initialization code
entered in the Initialization tab for the configuration. The main() function then calls the function
to initialize the component (for example, DefaultComponent_Init()). This function in turn
calls the functions to initialize any packages contained in the component.

Once the component is initialized, the main() function calls the RiCOXFStart() function,
which starts the main task. By default, the generated code passes a parameter value of FALSE to
the OXFStart() function. This means that the system should not fork a new task and the model
should run on the main system thread.

If you are creating a GUI application and the compiled component is a library that should not
interfere with the main program thread, you should pass a value of TRUE to RiCOXFStart(), thus
preventing the library from taking control of the system.

Together, the RiCOXFInit() and RiCOXFStart() functions start the Rhapsody model running.
They must be called before your model can start receiving events. If the component is a library that
will be linked into another application (for example, a GUI application), Rhapsody does not
generate a main() function for it. You must write the code to call these two functions, first
RiCOXFInit() and then RiCOXFStart(), somewhere in the main program loop for the
application to start the event processing.

Note that if your animation port number is set to any number other than the default of 6423 in your
rhapsody.ini file, you must pass the correct port number as the third parameter to
RiCOXFInit().

For example, in the home heating system sample, the program entry point for the GUI application
(hhsproto component) is defined in the hhsprdlg.cpp file with the following call:

RiCOXFInit(NULL, NULL, 6423, ””, 0, 0);
76 Code Generation Guide

Configurations
The third argument to RiCOXFInit(), 6423, is the default animation port number. If your
animation port is set to a different number, you can edit this argument to match the one in use (for
example, 6424). Otherwise, animation will not work.

Note
All global instances must be created before OXFInit() and OXFStart() are called.
Otherwise, the application will crash.

When the last event has been processed and the model has reached a termination point, the
main() function calls the function to clean up the component (for example,
DefaultComponent_Cleanup()).

Component source files are generated to the configuration directory, which is under the component
directory by default. For example:

<project_dir>\<component_dir>\<config_dir>

Configurations
Configurations define various flavors of a component. For example, by defining several
configurations you can generate different versions of the same component for various target
environments, with instrumentation enabled or disabled, and in debug or release versions.

Rhapsody generates a specification (.h) file, an implementation (.c) file, and a make (.mak) file
for each configuration of a component. These source files are all generated to the configuration
directory by default.

Folders
Rhapsody creates a folder with the name of the component, and under this folder is another one
with the name of the active configuration. By default, generated files are mapped to the
configuration folder. To map files to different folders, you can add folders to a component in the
browser, and then map elements to those folders.
Rhapsody in C 77

Component Model
Files
By default, Rhapsody in C generates a specification (.h) file and an implementation (.c) file for
each design element. These files have the same name as the element they represent, with different
extensions. However, you can override the default file mappings and map packages and classes to
files with user-specified names. In addition, you can map package files to the component file.

To add an element to a file, do the following:

1. In the browser, right-click a file and select Features from the pop-up menu, as shown in
the following figure. The Features dialog box opens.
78 Code Generation Guide

Files
2. On the General tab, specify the type of file that should be generated for the elements you
plan to add:

� Logical generates a specification file and an implementation file containing both
declaration and definition for the mapped elements. This is the default.

� Specification generates only a specification file containing declaration or
definition according to the mapping. Typically, a specification file includes
declarations.

� Implementation generates only an implementation file containing declaration or
definition according to the mapping. Typically, an implementation file includes
declarations.

� Other generates a specification file and an implementation file, or just a
specification file, or just an implementation from an included external file in a
build.

3. On the Elements tab, as shown in the following figure, click the New Element button .
The Select File Element dialog box opens.
Rhapsody in C 79

Component Model
4. In the Select File Element dialog box, select the element(s) you want to add to the file, as
shown in the following figure, then click OK.

5. If you selected Other as your type of file or just want to see which element type is
associated with a file, double-click the element on the Elements tab.

� If you selected Logical as your file of type (on the General tab), all your elements
are set with Specification+Implementation as the element type by default and
the Element Type box is disabled, as shown in the following figure.

� If you selected Specification, all your elements are set with that element type.
You can change this setting for an element if you want, as shown in the following
figure.
80 Code Generation Guide

Files
� If you selected Implementation, all your elements are set with that element type.
You can change this for an element if you want.

� If you selected Other, you can set whichever setting is available from the
Element Type drop-down list.

6. To add a text element to a file, click the New Text Element button, as shown in the
following figure. The File Text Element dialog box opens.

7. Enter your text in the File Text Element dialog box, as shown in the following figure, then
click OK.
Rhapsody in C 81

Component Model
8. Click OK on the Features dialog box to apply your changes.

The CG::File::AddToMakefile property (which supersedes the previous
GenerateInMakefileOnly property) enables you to include an external file (when the
CG::File::Generate property is set to Cleared) in a build. The CG::File::AddToMakefile
property works in conjunction with the CG::File::Generate property. This technique is used in
many of the Rhapsody samples with GUIs to include resources (such as dialog boxes) built with
MFC in a component. The external file is included in the makefile, and therefore compiled if
needed (although not generated by Rhapsody). Using this property is equivalent to adding a file as
an additional source under either a component or a configuration in the browser. See the
definitions provided for the properties on the applicable Properties tab of the Features dialog box.
Refer also to the Properties Reference Manual.
82 Code Generation Guide

Behavioral Model
To specify a system’s behavior, use the use cases to determine the interactions between the
system’s (static structure) objects. These interactions show how the system components
collaborate. Each interaction realizes one scenario within the system, typically starting with an
external event generated by a system actor and terminating at a point where the desired function, or
use case, is accomplished.

Sequence Diagrams
Sequence diagrams (SDs) describe message exchanges within your project. You can place
messages in a sequence diagram as part of developing the software system. You can also run an
animated sequence diagram to watch messages as they occur in an executing program.

Sequence diagram show scenarios of messages exchanges between roles played by objects. This
functionality can be used in numerous ways, including analysis and design scenarios, execution
traces, expected behavior in test cases, and so on.

Sequence diagrams help you understand the interactions and relationships between objects by
displaying the messages that they send to each other over time. In addition, they are the key tool
for viewing animated execution. When you run an animated program, its system dynamics are
shown as interactions between objects and the relative timing of events.

Sequence diagrams are the most common type of interaction diagrams.

Each scenario is depicted as a sequence diagram, where the system objects are depicted as
columns, with each column representing the lifeline of an object throughout the scenario. Lifelines
can also depict object states and timer events.

The vertical axis is the time dimension showing the exchange of messages between system objects.
Messages represent the interactions between objects in the form of events or operation calls. They
are depicted as arrows connecting the object lifelines.
Rhapsody in C 83

Behavioral Model
The following sequence diagram shows the collaborations that take place within the
HomeHeatingSystem once an inhabitant enters a room. The system objects are specified in the
first row. Nested objects can be identified using their object path, starting from the top level object
and following the hierarchy. With arrays of objects, an index indicates the instance.

The complete behavior requirement of an object is a projection of all object lifelines from each
scenario. The set of lifelines in a sequence diagram forms the complete lifecycle of an object as a
statechart.

Note
While executing the program with animation active in Rhapsody in C, global objects, which
belong to the package, have their original names as animation instance names without the
instance index. For example, the global object HomeHeatingSystem has an animation
instance name of HomeHeatingSystem rather than HomeHeatingSystem[0].
84 Code Generation Guide

Sequence Diagrams
In this scenario, the following messages are passed between objects as events:

Each of the events in the above scenario is generated into an event structure in the package
specification file. Because the HomeHeatingSystem example has only one package named
Default, the event definitions are generated in the Default.h file.

Message Sender Receiver Description

updateOcc() <inhabitant> OccSensor Someone has entered
the room.

occupied() <system> Room Room receives a timer.

updateDtemp() <inhabitant> Room Inhabitant sets a desired
temperature.

heatReq() Room Furnace Room requests heat from
Furnace.

motorReady() <system> Furnace System checks whether
the Furnace’s motor is
ready to operate.

Fstarted() Furnace Room Furnace tells Room that
it has started.

open() Room Valve Room tells the heating
Valve to open.

stopHeat() Room Furnace When the temperature is
warm enough, Room tells
Furnace to stop
generating heat.

close() Room Valve Room tells the heating
Valve to close.

Fstopped() Furnace Room Furnace tells Room that
it has stopped.
Rhapsody in C 85

Behavioral Model
Events
Events provide asynchronous communication between reactive objects or tasks. Events can trigger
transitions in statecharts.

In Rhapsody in C, events are implemented as objects (structures). The abstract data type and event
structure are defined in the package specification file as follows:

typedef struct evStart evStart;

struct evStart {
RiCEvent ric_event;

};

An instance of an RiCEvent object is embedded in the event’s structure as a data member.

Note
RiCEvent is a predefined event type provided by the Rhapsody in C framework.

Although events are implemented as objects, they are modeled as operations. Therefore, an event
does not have attributes and only has initialization and cleanup operations.

Each event is assigned a dynamic ID by default:

/*## package Default */
#define evStart_Default_id 1

The event ID can change if the same event is re-used in multiple components, for example, if the
same event is used in client and server components. To avoid this situation, which can cause
problems in distributed systems, you can assign a permanent ID to an event by setting its
CG::Event::Id property.

Event Arguments

Events can have data. Although modeled as arguments, the data are implemented as members of
the struct. For example, the following code is generated for an evStart event with an argument
called go:

typedef struct evStart evStart;
struct evStart {
 RiCEvent ric_event;
 /*** User explicit entries ***/
 int go;
};
86 Code Generation Guide

Events
Event Constructors and Destructors

Constructors and destructors are defined for the event in the package specification file. For
example:

/* Constructors and destructors: */
ev1 * RiC_Create_ev1();
void ev1_Init(ev1* const me);
void ev1_Cleanup(ev1* const me);
void RiC_Destroy_ev1(ev1* const me);

The names of event create and destroy operations have a slightly different pattern than names of
event initialize and cleanup operations:

� Create and destroy operation names for events have the format RiC_Create_<event>()
and RiC_Destroy_<event>(), respectively.

� Initialization and cleanup operation names for events have the format <event>_Init()
and <event>_Cleanup(), respectively.

The implementation of the event constructors and destructors is generated in the implementation
file for the package. For example:

ev1 * RiC_Create_ev1() {
ev1* me = (ev1*) malloc(sizeof(ev1));
ev1_Init(me);
return me;

}

With dynamically allocated events, the creator function allocates memory for the event and
initializes it via the event initializer:

void ev1_Init(ev1* const me) {
RiCEvent_init(&me->ric_event, ev1_Default_id, NULL);
me->ric_event.lId = ev1_Default_id;

}
void ev1_Cleanup(ev1* const me) {

RiCEvent_cleanup(&me->ric_event);
}
void RiCDestroy_ev1(ev1* const me) {

ev1_Cleanup(me);
free(me);

}

Note
It is possible to statically allocate a block of memory for events at the start of run time,
rather than using dynamic memory allocation during run time. See Static Allocation of
Events for more information.

See Sending Events for information on generating and sending events.
Rhapsody in C 87

Behavioral Model
Static Allocation of Events

It is possible to allocate events from a static memory pool, rather than dynamically allocating
memory for events during run time, by setting the following properties under CG::Event:

� AdditionalNumberOfInstances—Specifies the number of array elements that should be
added if the number of events exceeds the size of the original array

� BaseNumberOfInstances—Sets the initial size of the static array to be allocated for events
� EmptyMemoryPoolCallback—Specifies the name of the callback function that allocates

more memory if the static pool is exhausted
� EmptyMemoryPoolMessage—Specifies whether a message is displayed when the static

memory pool is empty
� ProtectStaticMemoryPool—Specifies whether to protect the static memory pool using

an operating system mutex
See the definitions provided for the properties on the applicable Properties tab of the Features
dialog box. Refer also to the Properties Reference Manual.

Note
In C, it is possible to allocate only events, but not user-defined objects, from static memory
pools.
88 Code Generation Guide

Statecharts
Statecharts
Statecharts specify the lifecycle of an object in terms of its logical states or modes, which
primarily determine the object’s response to external stimuli. Object states can be elicited from
both the problem statement and the object lifeline in sequence diagrams.

The following figure shows the statechart of the Room in the HomeHeatingSystem example.

From the lifeline of the Room in the SomeoneEntersTheRoom sequence diagram, you can see that
the Room polls its occupancy attribute to see whether it is occupied. If it is, it sends the required
heat to the Furnace once the inhabitant has set a desired temperature on the thermostat. Once the
Room receives a message from the Furnace saying that it has started, the Room sends a message to
the Valve telling it to open. When the room is warm enough, the Room tells the Furnace to stop
generating heat, and then closes the Valve. Finally, the Room receives an acknowledgement from
the Furnace letting it know that the Furnace has stopped.
Rhapsody in C 89

Behavioral Model
From this sequence of events, you can see that the Room has four regions of responsibility, or
concurrent states:

Accessing and Modifying Attributes

Attributes are accessed via the me pointer, which provides a context for the current object.
Therefore, specifying conditions, assigning values, and performing calculations requires accessing
attributes through this context variable.

Note
You can specify the actual name of the context variable generated as an argument to an
operation using the properties for the operation.

For example, in the Room statechart, testing the condition for heat demand is expressed as follows:

me->ctemp < me->wtemp

When entered as a guard on the transition from the heatOK state to the needsHeat state in the
heatMode region of the statechart, this comparison determines whether the Room’s current
temperature is lower than the working temperature.

Region Responsibility

mode Determine the working temperature based on the
occupancy.

heatMode Determine the need for heat.

FurnaceMode Monitor the state of the Furnace.

sampling Periodically sample the heat and occupancy
sensors.
90 Code Generation Guide

Statecharts
Sending Events

Events are generated via the RiCGEN() or CGEN() macro (see Predefined Actions). For example,
the following statement sends a stopHeat() event to the Furnace:

RiCGEN(me->itsFurnace,stopHeat());

The RiC or C prefix on the CGEN() macro distinguishes this service from a similar event
generation service provided by the Rhapsody framework for other languages. RiCGEN(), CGEN(),
and GEN() are all convenience macros that hide the details of event generation.

The first argument of the RiCGEN() statement is the target, or the object that is to receive the
event. The target can be:

� A global object that is visible to the sender.
� A subobject.
� A rolename that designates a link to a peer object. For example, the Room sends events to

the Furnace by accessing the link through the itsFurnace role.
� A parameter of the current event (the one being sent).
� The current object, as when a message-to-self is sent with RiCGEN(me, event()).

The second argument of the RiCGEN() statement is the event being sent, including event
arguments (if it has any). The arguments must agree with the event parameters. For example, the
following statement generates an updateDtemp event and sends it to the Room, passing the desired
temperature as an event parameter:

RiCGEN(me->itsRoom, updateDtemp(val));

The params Keyword

The params keyword provides access to the parameters of the consumed event. For example, in
the following transition, the value of the occupancy parameter passed with the updateOcc()
event received by the OccSensor object is passed as the second parameter of the set_occStat()
operation:

updateOcc()/
OccSensor_set_occStat(me, params->occupancy);

In this example, the updateOcc() event is the trigger of the transition and the
OccSensor_set_occStat() call is part of the action that is executed as a result.

In other words, when the OccSensor object receives an updateOcc() event with a parameter of
1, updateOcc(1), the sensor’s occStat attribute is updated with the value 1 as a result.
Rhapsody in C 91

Behavioral Model
States
Rhapsody in C supports only the Flat implementation of statecharts. In the Flat implementation,
states are implemented as enumerated types. Every state that has a substate is represented as a
struct member of the enum. For example, the statechart of the HomeHeatingSystem has only
one (apparent) state, the systemControl state. This is implemented in the HomeHeatingSystem
structure as follows:

struct HomeHeatingSystem {
 RiCReactive ric_reactive;
 /*states enumeration: */
 enum HomeHeatingSystem_Enum{

HomeHeatingSystem_RiCNonState=0,
HomeHeatingSystem_systemControl=1}

 rootState_subState,
 rootState_active;
};

Switch statements are used to select between the outward bound transitions from a state. The
switch statements are found in the operations that implement the event processing of a statechart.
These include, among others, the takeEvent(), dispatchEvent(), serializeStates(),
and exit() operations generated for each state. See the following sections for more informations:

� Reactive Objects

� Taking Events

� Dispatching Events

� Exiting From a State with Exit()

Root State

Every statechart has a root state, which is the initial state of the statechart. The default transition
leads from the (invisible) root state directly into the state that is the target of the default transition
when the object starts its behavior.

A <state>_active pointer is generated for every component state of an And state. This member
is the low-level active state (leaf state) used for taking events. The received event first tries to be
consumed by the <state>_active state. If it cannot, it then tries to be consumed by the parent.

A <state>_subState pointer is generated for each Or state (parent state). This member is the
active child state in the parent. It is used for exiting from the parent state. When the parent state
exits, its active child state should also exit.

By default, the root state is both a component state and an Or state. Therefore, both
rootState_subState and rootState_active members are generated for it in the object.
92 Code Generation Guide

Transitions
Transitions
Every transition is mapped to the object’s private operations for implementing statecharts, with
optimizations for “short” functions (see Inlining Transition Code). These operations set the
necessary values for the current active states, execute the actions, and so on. Several outbound
transitions from the same state are mapped to the same operation, and are distinguished using a
switch() statement.

Inlining Transition Code

The CG::Class::ComplexityForInlining property specifies the upper bound for the number of
lines in user code that are allowed to be inlined. The default is 3.

“User code” is the action part of transitions in statecharts. For example, using the value of 3, all
transitions with actions consisting of three lines or fewer of code are automatically inlined in the
calling function.

Inlining is replacing a function call in the generated code with the actual code statements that make
up the body of the function. This optimizes code execution at the expense of a slight increase in
code size. For example, increasing the number of lines that can be inlined from 3 to 5 has
shortened the code execution time up to 10%.

For example, in the statechart of the HomeHeatingSystem object, the systemControl state has an
out transition on a timeout with the following action part:

if(IS_IN(&me->theFurnace,Furnace_starting))
RiCGEN(&me->theFurnace,motorReady());
Rhapsody in C 93

Behavioral Model
This action sends a motorReady() event from the HomeHeatingSystem to the Furnace, if the
Furnace is in the starting state.

If the ComplexityForInlining property is set to 0 (the default value), the transition code is
generated in the takeEvent() operation of the systemControl state of the HomeHeatingSystem
object as follows:

int HomeHeatingSystem_systemControl_takeEvent(
HomeHeatingSystem* const me, short id) {
 int res = eventNotConsumed;
 if(id == Timeout_id)
 {

if(RiCTimeout_getTimeoutId((RiCTimeout*)
me->ric_reactive.current_event) ==
HomeHeatingSystem_Timeout_systemControl_id)

{
NOTIFY_TRANSITION_STARTED(me,HomeHeatingSystem,
"1");
HomeHeatingSystem_systemControl_exit(me);
{
/*#[transition 1 */
if(IS_IN(&me->theFurnace,Furnace_starting))
RiCGEN(&me->theFurnace, motorReady());
/*#]*/
}
systemControl_entDef(me);
NOTIFY_TRANSITION_TERMINATED(me,
HomeHeatingSystem,"1");
res = eventConsumed;

}
}
return res;

}

The dispatchEvent() operation of the rootState of the HomeHeatingSystem object calls the
takeEvent() operation as follows:

static int rootState_dispatchEvent(
void * const void_me, short id) {
HomeHeatingSystem * const me =

(HomeHeatingSystem *)void_me;
int res = eventNotConsumed;
switch (me->rootState_active) {

case HomeHeatingSystem_systemControl:
{
res =
HomeHeatingSystem_systemControl_takeEvent(
me, id);
break;
};

default:
break;

};
return res;

}

However, if ComplexityForInlining is set to 3, for example, because the action code is less than
three lines, it is generated directly in the dispatchEvent() operation of the rootState, replacing
the takeEvent() call as follows:
94 Code Generation Guide

Transitions
static int rootState_dispatchEvent(void * const void_me,
short id) {
HomeHeatingSystem * const me = (HomeHeatingSystem *)

void_me;
int res = eventNotConsumed;
switch (me->rootState_active) {

case HomeHeatingSystem_systemControl:
{

if(id == Timeout_id)
{
if(RiCTimeout_getTimeoutId(
(RiCTimeout*) me
->ric_reactive.current_event) ==
HomeHeatingSystem_Timeout_systemControl_id)
{
NOTIFY_TRANSITION_STARTED(me,HomeHeatingSystem,
"1");
RiCTask_unschedTm(me->ric_reactive.myTask,
HomeHeatingSystem_Timeout_systemControl_id,
&me->ric_reactive);
NOTIFY_STATE_EXITED(me,HomeHeatingSystem,
"ROOT.systemControl");
{
/*#[transition 1 */
if(IS_IN(&me->theFurnace, Furnace_starting))
RiCGEN(&me->theFurnace,motorReady());
/*#]*/
}
}
/* rest of dispatchEvent() */

}

Rhapsody in C 95

Behavioral Model
Starting Statecharts
Rhapsody generates two operations to initialize statecharts and start reactive behavior:

� initStatechart()

� startBehavior()

Initializing Statecharts

The initStatechart() operation initializes a reactive object’s statechart. For example, the
following initStatechart() operation, generated in the implementation file for the
HomeHeatingSystem, initializes the HomeHeatingSystem’s statechart:

static void initStatechart(HomeHeatingSystem* const me) {
me->rootState_subState = HomeHeatingSystem_RiCNonState;
me->rootState_active = HomeHeatingSystem_RiCNonState;

}

This routine initializes the rootState_subState and rootState_active pointers for the
HomeHeatingSystem object to <object>_RiCNonState (the default state is 0) when the object is
created.

Starting Reactive Behavior

The startBehavior() operation starts the behavior of reactive objects:

� The <package>_startBehavior() operation starts the behavior of the reactive objects in
a package.

� The <object>_startBehavior() operation starts the behavior of an individual object.
Note that startBehavior() should not be called from within the constructor.
96 Code Generation Guide

Operations on States
Operations on States
Rhapsody automatically generates functions to handle state-based operations, including:

� Entering a state
� Taking events
� Checking whether an object is in a particular state
� Exiting from a state

Note
The CG::Class::ImplementStatechart property must be set to Checked for these
operations to be generated.

These operations are generated in the Framework Entries section of the specification file for an
object.

Entering a State

The enter() operation allows an object to enter a state after the object has successfully received a
trigger and any possible guard condition has been passed. The enter() operation also executes
any user-defined action on entry for the state. The enter() operation name has the following
format:

<object>_<state>_enter(<object*> const <me>)

For example, the following enter() operation is generated for the systemControl state of the
HomeHeatingSystem:

void HomeHeatingSystem_systemControl_enter(
HomeHeatingSystem* const me);
Rhapsody in C 97

Behavioral Model
The enter() operation sets the <state>_subState and <state>_active members of the state
being exited (based on the statechart) to the one being entered. For example, the enter()
operation for the systemControl state of the HomeHeatingSystem sets these two members of the
rootState (the previous state) to the systemControl state (the one being entered), as follows:

void HomeHeatingSystem_systemControl_enter(
HomeHeatingSystem* const me) {
NOTIFY_STATE_ENTERED(me, HomeHeatingSystem,

"ROOT.systemControl");
me->rootState_subState = HomeHeatingSystem_systemControl;
me->rootState_active = HomeHeatingSystem_systemControl;
RiCTask_schedTm(me->ric_reactive.myTask, 3000,

HomeHeatingSystem_Timeout_systemControl_id,
&me->ric_reactive, "ROOT.systemControl");

}

Note
An enter() operation is not generated for the root state.

Taking Events

The takeEvent() operation takes an event off the event queue and evaluates whether that event is
valid to trigger a transition of the object out of its current state. The takeEvent() operation name
has the following format:

<object>_<state>_takeEvent(<object>* const <me>,
<event ID>)

The event ID is the identification number generated for an event at the top of the package
specification file.

For example, for the systemControl state of the HomeHeatingSystem, the following takeEvent()
operation is generated:

int HomeHeatingSystem_systemControl_takeEvent(
HomeHeatingSystem* const me, short id);
98 Code Generation Guide

Operations on States
This operation has the following implementation:

int HomeHeatingSystem_systemControl_takeEvent(
HomeHeatingSystem* const me, short id) {
int res = eventNotConsumed;
if(id == Timeout_id)

 {
if(RiCTimeout_getTimeoutId((RiCTimeout*)

me->ric_reactive.current_event) ==
HomeHeatingSystem_Timeout_systemControl_id)

 {
NOTIFY_TRANSITION_STARTED(me,
HomeHeatingSystem, "1");
HomeHeatingSystem_systemControl_exit(me);
{
/*#[transition 1 */
if(IS_IN(&me->theFurnace,Furnace_starting))
RiCGEN(&me->theFurnace,motorReady());
/*#]*/
}
systemControl_entDef(me);
NOTIFY_TRANSITION_TERMINATED(me,
HomeHeatingSystem, "1");
res = eventConsumed;

}
}
return res;

}

Note
A takeEvent() operation is not generated for the root state.
Rhapsody in C 99

Behavioral Model
Dispatching Events

The dispatchEvent() operation uses a switch statement to process the outbound transitions
from the states of an object. For example, the dispatchEvent() operation generated for the
operating state of the Furnace in the HomeHeatingSystem sample, uses roughly the following
switch statement to process the out transitions from the idle, shutting, working, and starting
substates of the operating orthogonal state:

static int operating_dispatchEvent(Furnace* const me,
short id) {

int res = eventNotConsumed;
switch (me->operating_active) {

case Furnace_idle:
{

/* process out transitions from idle state */
res = eventConsumed;
break;

};

case Furnace_shutting:
{

/* process out transitions from shutting
state */
res = eventConsumed;
break;

};
case Furnace_starting:
{

/* process out transitions from starting
 state */
res = eventConsumed;
break;

};
case Furnace_working:
{

/* process out transitions from working
state */
res = eventConsumed;
break;

};
default:
break;

};
return res;

}

100 Code Generation Guide

Operations on States
Checking an Object’s State with IN()

The IN() operation checks whether or not an object is in a particular state. The IN() operation
name has the following format:

<object>_<state>_IN(<object>* const <me>)

It returns True if the object is in the state, and False otherwise.

For example, for the systemControl state in the HomeHeatingSystem, the following IN()
operation is generated:

/*systemControl:*/
int HomeHeatingSystem_systemControl_IN(

HomeHeatingSystem* const me);

This operation has the following implementation:

int HomeHeatingSystem_systemControl_IN(
HomeHeatingSystem* const me) {
return me->rootState_subState ==

HomeHeatingSystem_systemControl;
}

Note the following:

� An IN() operation is also generated for the root state.
� You can use either the IN() operation generated for the state or the RiC_IS_IN() macro

for the object to determine whether an object is in a particular state. See RiCIS_IN() or
IS_IN() for more information on this macro.
Rhapsody in C 101

Behavioral Model
Exiting From a State with Exit()

The exit() operation allows an object to exit from a state. It also executes any user-defined action
on exit for the state. The exit() operation name has the following format:

<object>_<state>_exit(<object*> const <me>)

For example, the following exit() operation is generated for the systemControl state in the
HomeHeatingSystem:

void HomeHeatingSystem_systemControl_exit(
HomeHeatingSystem* const me);

This operation has the following implementation:

void HomeHeatingSystem_systemControl_exit(
HomeHeatingSystem* const me) {

RiCTask_unschedTm(me->ric_reactive.myTask,
HomeHeatingSystem_Timeout_systemControl_id,
&me->ric_reactive);

NOTIFY_STATE_EXITED(me, HomeHeatingSystem,
"ROOT.systemControl");

}

Note
An exit() operation is generated for the root state.
102 Code Generation Guide

Predefined Actions
Rhapsody provides several predefined action statements that you can use in addition to native
statements in the programming language anywhere you write code in Rhapsody.

For example, you can use predefined action statements in actions on transitions or in bodies of
triggered operations in statecharts. The action statements are defined in the real-time framework
(in RiCReactive.h) as macros to minimize their impact on the generated source code.

When generating events, note the following:

� If you are generating an event in the action part of a transition, the event name must
include parentheses. For example, if you are generating an event ev1, use ev1() instead
of ev1 as the name of the event to be generated.

� If the name of the instance that is the target of the event is not a pointer, use the address
operator & with the instance name as an argument to the event generation statement. For
example, when sending an event to itsRoom, where itsRoom is defined as an instance of
Room, use the address operator &itsRoom rather than itsRoom (pointer) as an
argument.

RiCIS_IN() or IS_IN()
The IS_IN() statement determines whether an object is in a particular state. RICIS_IN() has the
same effect as IS_IN(). This statement takes a pointer to an object and the name of the state being
checked as arguments. The name of the state has the format <object>_<state>.

For example, to make sure that a Furnace object is not in the faultS state before it transitions from
one state to another, you can use the following IS_IN() statement as a guard on a transition in the
statechart for the Furnace:

[!IS_IN(me,Furnace_faultS)]

The definition of IS_IN() is as follows:

#define IS_IN(me, state) state##_IN((me))

This macro calls the IN() operation generated for the state. See Checking an Object’s State with
IN().
Rhapsody in C 103

Predefined Actions
When referencing states, you must use the generated state name. This can be tricky when
referencing sibling states that have the same name. For example, if an object A has an And state B
with concurrent states B1 and B2, and each of these has a substate C, the following enumerated
values are generated for these states:

/*states enumeration: */

enum A_Enum{ A_RiCNonState=0, A_B=1, A_B2=2,
A_B2_C=3, A_B1=4, A_C=5 }

The generated name of substate C of B1 is A_C. Therefore, the proper macro call to see whether A
is in C of B1 would be IS_IN(me, A_C), not IS_IN(me, A_B1_C).

RiCGEN() or CGEN()
The RiCGEN() statement generates an event and sends it to a particular instance. RiCGEN() has
the same effect as CGEN().

For example, to send an Fstarted() event to an instance itsRoom[1], add the following code
to the action part of a transition:

RiCGEN(me->itsRoom[1], Fstarted());

The definition of RiCGEN() is as follows:

#define RiCGEN(INSTANCE,EVENT) \
{ \

if ((INSTANCE) != NULL) { \
RiCReactive * reactive = &((INSTANCE)->ric_reactive);\
RiCEvent * event = &(RiC_Create_##EVENT->ric_event); \
RiCReactive_gen(reactive, event, RiCFALSE); \

} \
}

104 Code Generation Guide

RiCGEN_BY_GUI() or CGEN_BY_GUI()
RiCGEN_BY_GUI() or CGEN_BY_GUI()
The RiCGEN_BY_GUI() statement generates an event from a GUI application and sends the event
to an instance. RiCGEN_BY_GUI() has the same effect as CGEN_BY_GUI().

For example, to send a fault() event to an instance GtheFurnace from a GUI application, use:

RiCGEN_BY_GUI(GtheFurnace, fault());

The definition of RiCGEN_BY_GUI() is as follows:

#define RiCGEN_BY_GUI(INSTANCE,EVENT) \
{\

if ((INSTANCE) != NULL) { \
RiCReactive * reactive = &((INSTANCE)->ric_reactive);\
RiCEvent * event = &(RiC_Create_##EVENT->ric_event); \
RiCReactive_genBySender(reactive, event, RiCGui); \

} \
}

RiCGEN_BY_GUI() uses the framework routine RiCReactive_genBySender() rather than
RiCReactive_gen() to actually send the event. With GUI applications, the GUI items are not
part of the Rhapsody model and the sender of the event can therefore not be known.
RiCReactive_genBySender() can identify a GUI item as the sender of the event.

RiCGEN_BY_X() or CGEN_BY_X()
The RiCGEN_BY_X() statement generates an event and sends it to an instance while identifying
the sender of the event. RiCGEN_BY_X() has the same effect as CGEN_BY_X(). Either statement
can be useful for sending events from within global functions.

RiCGEN_BY_X() uses the RiCReactive_genBySender() framework routine to send the event
because it identifies a particular object as the sender of the event.

For example, to send a fault() event to a Furnace[1] instance while identifying the sender of
the event as Room[2], use:

RiCGEN_BY_X(Furnace[1], fault(), Room[2], Room);

The last argument, in this case Room, identifies the type of the sender.

Use GEN_BY_X only in very special cases when you know which AOMAnimationItem is sending
the message, but Rhapsody cannot figure this out for itself. For example, you can create an
application with some GUI classes, GUI1 and GUI2, and some classes that do things, Huey and
Louey. You create all the classes in Rhapsody, so the animation shows instances of all four.
Rhapsody in C 105

Predefined Actions
Now associate some GUI with classes GUI1 and GUI2. Because GUIs are more easily created with
MFC wizards than with Rhapsody, use the wizards. The constructor of GUI1 constructs a modeless
dialog with some buttons.

Next, configure each of the buttons to generate an event. For example:

void myDialog::OnButtonXPushed() {
myHuey->GEN(E);

}

This is fine, except the animation does not know where the event came from. Instead, use
GEN_BY_GUI, as follows:

void myDialog::OnButtonXPushed() {
myHuey->GEN_BY_GUI

The animation output window displays the following message:

event E generated by GUI

If the class myDialog had a method GUI1 *myOwner that pointed to the instance of GUI1 to
which it belongs, you could write:

void myDialog::OnButtonXPushed() {
myHuey->GEN_BY_X(E,myOwner);

}

In this case, the animation (output window, event queue, and sequence diagrams) would display E
as coming from the correct GUI1 object. This is especially useful if the GUI and its dialogs are
test harnesses that create some real classes that are not yet written.

The definition of RiCGEN_BY_X() is as follows:

#define RiCGEN_BY_X(INSTANCE,EVENT,SENDER,theClass) \
{ \

if ((INSTANCE) != NULL) { \
RiCReactive * reactive = &((INSTANCE)->ric_reactive);\
RiCEvent * event = &(RiC_Create_##EVENT->ric_event); \
RiCReactive_genBySender(reactive, event, \

aomX2Item(SENDER,aomc##theClass)); \
} \

}

106 Code Generation Guide

RiCGEN_ISR() or CGEN_ISR()
RiCGEN_ISR() or CGEN_ISR()
The RiCGEN_ISR() statement generates an event from an interrupt service routine.
RiCGEN_ISR() has the same effect as CGEN_ISR().

The problem with generating events from interrupt service routines is that in some operating
systems (such as VxWorks), you are not allowed to allocate memory, delete memory, or block on a
resource (for example, lock() on a semaphore). Therefore, RiCGEN_ISR() does not allocate
new events, but uses a pointer to an event that you must supply.

There are two ways to use RiCGEN_ISR():

� Initialize your own event pool and use it to manage the supply of events to RiCGEN_ISR.
For example:
RiCGEN_ISR(myEventPool[theNextFreeEvent]);

To do this, you must set the CG::Event::DeleteAfterConsumption property to False.

� Use static memory management on events supplied by Rhapsody.
To do this, you must set the following static memory management properties under
CG::Event:

– BaseNumberOfInstances—Set to the number of events in the pool.
– AdditionalNumberOfInstances—Set to 0.
– ProtectStaticMemoryPool—Set to Cleared. This means that the event

memory pool is not multi-thread safe.
– DeleteAfterConsumption—Set to either False or Default.

The call to RiCGEN_ISR() is as follows:

RiCGEN_ISR(RiC_Create_ev());

The definition of RiCGEN_ISR() is as follows:

#define RiCGEN_ISR(INSTANCE,EVENT)
RiCReactive_gen(&((INSTANCE)->ric_reactive),
(RiCEvent*)EVENT, RiCTRUE)
Rhapsody in C 107

Predefined Actions
RiCREPLY() or CREPLY()
The RiCREPLY() statement returns a value from a triggered operation. RiCREPLY() has the same
effect as CREPLY().

For example, both of the following calls returns a value from a triggered operation:

count = 2;
RiCREPLY(count);

or

RiCREPLY(2);

The definition of RiCREPLY() is as follows:

#define RiCREPLY(retVal) params->ric_reply = (retVal)

RiCSETPARAMS() or CSETPARAMS()
The RiCSETPARAMS() statement sets the parameters of an event. RiCPARAMS() has the same
effect as CSETPARAMS(). You do not need to manually write RiCSETPARAMS() in code—it is
automatically generated in the dispatchEvent() routine of any event that has arguments.

When the event queue is ready to take an event, it calls RiCSETPARAMS() to allocate a variable
params as a pointer to the event. This macro enables you to write the following statement in the
guard or action part of a transition to access an argument of the event without repeating the name
of the event:

params-><argument>

For example, for a transition on an event ev1 with an argument arg1, you can check whether
arg1 is equal to 4 before taking the transition using the following call:

ev1[params->arg1 == 4]

The definition of RiCSETPARAMS() is as follows:

#define RiCSETPARAMS(me,type)type * params = \
(type *)((me)->ric_reactive.current_event)
108 Code Generation Guide

DYNAMICALLY_ALLOCATED()
DYNAMICALLY_ALLOCATED()
The DYNAMICALLY_ALLOCATED macro is used in the Create() operation to distinguish between
dynamically allocated and statically allocated instances. This difference allows the use of
termination connectors in the statecharts of statically allocated instances.

The definition of DYNAMICALLY_ALLOCATED() is as follows:

#define DYNAMICALLY_ALLOCATED(object) {RiCReactive_setshouldDelete(&object-
>ric_reactive,

RiCTRUE);
}

Rhapsody in C 109

Predefined Actions
110 Code Generation Guide

Index
Symbols
#endif directive 67
#ifndef directive 67
$ 70
$cname keyword 22
$index keyword 23, 44
$meName keyword 26
$Name keyword 67
<state>_active member 92
<state>_subState member 92

A
AccessorGenerate property 31
Action statements 103
Actions 103
Active objects 53
Activity diagrams 7
AdditionalNumberOfInstances property 88
AddToMakefile property 82
Aggregate 9
Aggregations 42
AllocateMemory property 22
Animation port number 76
Annotations 63
Arguments 86
Arguments for events 86
Assigning IDs 86
Associativity, dynamic model-code 5
Attributes 31, 32

B
BaseNumberOfInstances property 88
Behavioral model 7
Boolean data type 62
Bounded multiplicity 13

C
CGCompatibilityPre70C profile 2
CGEN macro 104
CGEN_BY_GUI macro 105
CGEN_BY_X macro 105
CGEN_ISR macro 107

Classes 35
Cleanup 26
Cleanup() method for events 70
Code generation 6
Code, optimizing 93
CodeGeneratedDate variable 66, 70
CodeGeneratedFileName variable 66, 71
CodeGeneratedTime variable 66, 70
Collaboration between objects 34
Collaboration, overview 34
ComplexityForInlining property 93
Component 73
Component model 7
ComponentName variable 66, 70
Components-based development 48
Compositions 36, 42
Concurrency 56
Concurrency objects 53
Concurrency property 54
Concurrent states 90
ConfigurationName variable 66, 70
Configurations 77
const keyword 23, 29
Constant operations 29
Constructive view 7
Constructor event 87
Contract 47
COXF library 56
CREPLY macro 108
CSETPARAMS macro 108

D
Data types 61

primitive 61
user-defined 62

Default.h file 72, 85
Default_OMInitializer_Cleanup() method 69
Default_OMInitializerInit() method 69
DefaultMultiplicity property 38
DeleteGlobalInstance property 58
Dependencies 36, 50
Destroy() operation 26
Destructor 26
Destructor event 87
Diagrams 83
Rhapsody in C 111

Index
DiffDelimiter property 67, 71
dispatchEvent() operation 92, 94, 100
DMCA 5
Dynamic memory allocation 5
Dynamic model-code associativity 5
DYNAMICALLY_ALLOCATED macro 109

E
Element, adding to a file 78
Elements

files 59
Embedded links 43
EmptyMemoryPoolCallback property 88
EmptyMemoryPoolMessage property 88
enter() operation 97
Entering a state 97
Event receptions 29
Events 29, 86

arguments 86
constructors and destructors 87
dispatching 100
methods for 70
parameter 91
sending 91
static allocation 88
structure allocations 69
symbol 68
taking 98

exit() operation 92, 102
Explicit type 68
extern keyword 12
External class, inheriting from 35
External file 82
External object 50
External objects 50

F
File diagrams 60
File header 66, 72
FileName property 35, 50
Files 59, 78

adding element 78
footer 70
including external in build 82

Fixed links 43
Fixed relation 43
Folders 77
Footer

for generated files 70
for implementation files 72

Framework library 56
FreeMemory property 26
FullCodeGeneratedFileName variable 66, 71
FullModelElementName variable 66, 70
Functional decomposition 9

FunctionalC profile 2, 60

G
General property 82
Generallization 35
Generated files

file header 66
global variable 72
implementation file 71
include file 67
specification file 64

GenerateInMakefileOnly property 82
GetAt property 44
GetAtGenerate property 44
Global variable 72
Global variables 57
Guarded objects 54
Guarded operations 54

H
Header

for implementation files 72
of specification files 66

I
Id property 86
ImpIncludes property 72
Implementation file

footer 72
header 72
include files 72
preprocessor directives 72
structure of 71

Implementation files 71
Implementation of private operations 21
Implementation option 79
Implementation property 37, 43
ImplementationFooter property 72
ImplementationHeader property 72
ImplementStatechart property 97
Implicit contract 47
Implicit contracts 47
Implicit type 68
IN() operation 101
Include file 67
Inheritance 35
Init() method for events 70
initRelations() method 69
initRelations() operation 24, 45
initStatechart() operation 96
Inline property 28
Inlining code 93
Instantiation 9
instrumentVtbl argument 57
112 Code Generation Guide

Index
Interfaces 46, 48
object 16
realizing 48
virtual tables 48

Invoke operations 30
IS_IN macro 103
IS_IN() macro 103

K
Keywords

$cname 22
$index 23, 44
$meName 26
$Name 67
const 23, 29
extern 12
params 91
static 69

L
Link accessor 40
Link data member 40
Link mutator 40
Link scalar 42
Links 38

embedded 43
fixed 43
ordered 43
qualified 43
randome access 44
symmetric 39
To-Many 42
unordered 43

Logical option 79
Login variable 66, 71

M
Macros 103

CGEN 104
CGEN_BY_GUI 105
CGEN_BY_X 105
CGEN_ISR 107
CREPLY 108
CSETPARAMS 108
DYNAMICALLY_ALLOCATED 109
IS_IN 103
IS_IN() 103
NOTIFY_CONSTRUCTOR() 25
NOTIFY_END_CONSTRUCTOR() 25
NOTIFY_OPERATION 20
OM_INSTRUMENT_PACKAGE() 57
RiCCollection_Init() 25
RiCGEN 104
RiCGEN_BY_GUI 105

RiCGEN_BY_X 105
RiCGEN_ISR 107
RiCIS_IN 103
RICIS_IN() 103
RiCREPLY 108
RiCSETPARAMS 108
SERIALIZE 27

me pointer 17
Me property 17
MeDeclType property 17
Memory

allocating statically 88
freeing 26

Memory management
dynamic 5
static 5

Method implementations 72
Methods 69

for events 70
for packages 69
for relations 69

MISRA-C 1998 2
Model views 7
ModelElementName variable 66, 70
Multiplicity

bounded 13
objects 13
unbounded 14
unspecified 14

MutatorGenerate property 31
Mutex 54

N
Naming operations 18
Non-constructive view 7
NOTIFY_CONSTRUCTOR() macro 25
NOTIFY_END_CONSTRUCTOR() 25
NOTIFY_OPERATION macro 20

O
Object

collaboration 34
external 50
reactive 51
singleton, invoking operations 30

Object interfaces 16
Object model diagrams 7
Object types 12

explicit 13
implementation file 21
structure allocation 69

objectName variable 18
Objects 9, 10

active 53
collabroations 34
Rhapsody in C 113

Index
concurrency 53
explicit type 68
external 50
guarded 54
implicit type 68
multiplicity 13, 14
multiplicity unspecified 14
name, specifying argument lists 18
reactive 51
synchronization 56

OM_INSTRUMENT_PACKAGE() macro 57
Operation 17

invoking 30
state-based 97

Operations 17
constant 29
context 17
Destroy() 26
dispatchEvent() 100
enter() 97
exit() 102
guarded 54
IN() 101
initRelations() 24
initStatechart() 96
invoking 30
naming 18
primitive 27
private 19, 21
public 19, 20
startBehavior() 96
takeEvent() 98, 99
triggered 30
visibility 19

Optimizing code 93
Ordered links 43
Ordered property 43
Other option 79

P
Package methods 69
Packages 57

constructors 58
destructors 58

params keyword 91
Port number 76
Ports 46

contract 47
implicit contracts 47
provided interfaces 46
rapid 47
required interfaces 46
service 48

Predefined actions 103
Preprocessor directive

in implementation files 72

Primitive concurrency 56
Primitive data types 61
Primitive operations 27
Private access 33
Private operations 21
Profiles for Rhapsody in C

CGCompatibilityPre70C 2
FunctionalC 2

ProjectName variable 66, 70
Properties 3

AccessorGenerate 31
AdditionalNumberOfInstances 88
AddToMakefile 82
AllocateMemory 22
BaseNumberOfinstances 88
ComplexityForInlining 93
Concurrency 54
DefaultMultiplicity 38
DeleteGlobalInstance 58
DiffDelimiter 67, 71
EmptyMemoryPoolCallback 88
EmptyMemoryPoolMessage 88
FileName 35, 50
FreeMemory 26
General 82
GenerateInMakefileOnly 82
GetAt 44
GetAtGenerate 44
Id 86
ImpIncludes 72
Implementation 37, 43
ImplementationFooter 72
ImplementationHeader 72
ImplementStatechart 97
Inline 28
Me 17
MeDeclType 17
MutatorGenerate 31
Ordered 43
ProtectedName 19
ProtectStaticMemoryPool 88
PublicName 19
SpecificationFooter 70
SpecificationHeader 66
SpecIncludes 68
UsageType 36
UseAsExternal 35, 50

Property variable 66, 71
ProtectedName property 19
ProtectStaticMemoryPool property 88
Public access 32
Public operation 20
PublicName property 19

Q
Qualified links 43
114 Code Generation Guide

Index
R
Random access links 44
Rapid ports 47
Reactive object 51
Reactive objects 51
Realization relationship 48
Relation

methods 69
ordered to-many 43
qualified to-many 43
random access to-many 44
scalar 40

Rhapsody 2
action statements 103
behavioral model 7
code generation 6
component model 7
components-based development 48
framework library 56
generated files 78
implementation files 71
including external file in build 82
macros 103
naming conventions for objects 68
sequence diagrams 83
specification files 64
structural model 7
wrapper 5

RhapsodyVersion variable 66, 70
Ric.h file 67
RiC_Create() method for events 70
RiC_Destroy() method for events 70
RiCBoolean type 62
RiCCollection_Init() macro 25
RiCGEN macro 104
RiCGEN_BY_GUI macro 105
RiCGEN_BY_X macro 105
RiCGEN_ISR macro 107
RiCIS_IN macro 103
RICIS_IN() macro 103
RiCList 37
RiCMonitor object 54
RiCOXFInit() function 76
RiCOXFStart() function 76
RiCReactive.h 103
RiCREPLY macro 108
RiCSETPARAMS macro 108
RiCString type 62
Root state 92

S
Scalar link 42
Scalar relation 40, 43
Sending events 91
Sequence diagrams 7, 83

SERIALIZE macro 27
serializeStates() operation 92
Service ports 48
Singleton 30, 49
Specification file

footer 70
header 66
method declarations 69
preprocessor directives 67
structure declarations 68
structure of 64

Specification option 79
SpecificationFooter property 70
SpecificationHeader property 66
SpecIncludes property 68
startBehavior() operation 96
Statecharts 7, 89
States 90, 92

entering 97
exiting 102
operations on 97

Static allocation of events 88
static keyword 21, 69
Static memory allocation 5
Static memory pools 88
Stereotype 49
Structural model 7
Symbol for events 68
Symmetric associations 39
Symmetric links 39

T
Tag variable 66, 71
takeEvent() operation 92, 94, 98, 99
this pointer 17
To-Many links 42
Transition 91
Transitions 93
Triggered operations 30
Tutorial 1, 60
Type

RiCBoolean 62
RiCString 62

U
UML (Unified Modeling Language) 2
Unbounded multiplicity 14
Unordered links 43
Unspecified multiplicity 14
UsageType property 36
Use case diagrams 7
UseAsExternal property 35, 50
User-defined data types 62
Rhapsody in C 115

Index
V
Variables

CodeGeneratedDate 66, 70
CodeGeneratedFileName 66, 71
CodeGeneratedTime 66, 70
ComponentName 66, 70
ConfigurationName 66, 70
FullCodeGeneratedFileName 66, 71
FullModelElementName 66, 70
Login 66, 71
ModelElementName 66, 70

ProjectName 66, 70
Property 66, 71
RhapsodyVersion 66, 70
Tag 66, 71

Virtual function table 57

W
while() loop 24
Wrapper 5
116 Code Generation Guide

	Contents
	C Code Generation Overview
	About this Guide
	Rhapsody in C
	About Properties
	Dynamic Model-Code Associativity
	Special Features of Rhapsody Code
	Code Generation Fundamentals
	Constructive Versus Non-Constructive Views

	Structural Model
	Constructing Systems from Objects
	Objects
	Specifying the Type of an Object
	Objects of Implicit Type
	Object Types
	Objects of Explicit Type

	Multiplicity of Objects
	Bounded Multiplicity
	Unbounded Multiplicity
	Unspecified or Single Multiplicity

	Descriptions
	Object Interfaces

	Operations
	Implementing Operations in C
	Associating an Operation with an Object
	Naming of Operations

	Visibility of Operations
	Public Operations
	Private Operations

	Constructors and Destructors
	Object Creator
	Object Initializer
	Object Cleanup
	Object Destructor

	Primitive Operations
	Inline Operations
	Constant Operations
	Event Receptions
	Triggered Operations
	Invoking Operations

	Attributes
	Accessing Attributes
	Public Access
	Private Access

	Collaborations Between Objects
	Inheritance
	Inheriting from an External Class

	Dependencies
	Compositions
	Links
	Symmetric Associations
	Aggregations
	To-Many Links
	Initializing Links within Packages

	Interfaces
	Ports
	Partial Specification of Ports
	Considerations

	Components-based Development in RiC

	Singleton Objects
	Initializing Singletons

	External Objects
	Reactive Objects
	Concurrency Objects
	Stereotyped Application Objects
	Active Objects
	Guarded Objects

	Primitive Concurrency and Synchronization Objects

	Packages
	Global Variables
	Instrumenting a Package
	Package Constructors and Destructors

	Files
	Generating Code for Files
	FunctionalC Profile and the File Diagram

	Data Types
	Primitive Data Types
	User-Defined Data Types

	Structure of Generated Files
	Annotations
	Specification Files
	File Header
	Preprocessor Directives
	Element Symbol Check
	Include Files
	Event Symbols

	Structure Declarations
	Method Declarations
	Package Methods
	Relation Methods
	Event Methods

	File Footer

	Implementation Files
	File Header
	Preprocessor Directives
	Global Variables
	Method Implementations
	File Footer

	Component Model
	Components
	Configurations
	Folders
	Files

	Behavioral Model
	Sequence Diagrams
	Events
	Event Arguments
	Event Constructors and Destructors
	Static Allocation of Events

	Statecharts
	Accessing and Modifying Attributes
	Sending Events
	The params Keyword

	States
	Root State

	Transitions
	Inlining Transition Code

	Starting Statecharts
	Initializing Statecharts
	Starting Reactive Behavior

	Operations on States
	Entering a State
	Taking Events
	Dispatching Events
	Checking an Object’s State with IN()
	Exiting From a State with Exit()

	Predefined Actions
	RiCIS_IN() or IS_IN()
	RiCGEN() or CGEN()
	RiCGEN_BY_GUI() or CGEN_BY_GUI()
	RiCGEN_BY_X() or CGEN_BY_X()
	RiCGEN_ISR() or CGEN_ISR()
	RiCREPLY() or CREPLY()
	RiCSETPARAMS() or CSETPARAMS()
	DYNAMICALLY_ALLOCATED()

	Index

