




Copyrights

© Copyright 2000, 2009

U.S. Government Users Restricted Rights - Use, duplication, or disclosure 
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the 
U.S.A. IBM may not offer the products, services, or features discussed in this 
document in other countries. Consult your local IBM representative for in-
formation on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or 
imply that only that IBM product, program, or service may be used. Any 
functionally equivalent product, program, or service that does not infringe 
any IBM intellectual property right may be used instead. However, it is the 
user's responsibility to evaluate and verify the operation of any non-IBM 
product, program, or service. 

IBM may have patents or pending patent applications covering subject 
matter described in this document. The furnishing of this document does not 
grant you any license to these patents. You can send written license inquiries 
to: 

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A. 

For license inquiries regarding double-byte character set (DBCS) informa-
tion, contact the IBM Intellectual Property Department in your country or 
send written inquiries to: 

IBM World Trade Asia Corporation
June 2009 IBM Rational Tau User Guide 3



Chapter : 
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan 

The following paragraph does not apply to the United Kingdom or any 
other country where such provisions are inconsistent with local law: IN-
TERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES 
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some 
states do not allow disclaimer of express or implied warranties in certain 
transactions. Therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical er-
rors. Changes are periodically made to the information herein; these changes 
will be incorporated in new editions of the publication. IBM may make im-
provements and/or changes in the product(s) and/or the program(s) described 
in this publication at any time without notice. 

Any references in this information to non-IBM Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of those 
Web sites. The materials at those Web sites are not part of the materials for 
this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it 
believes appropriate without incurring any obligation to you. 

Licensees of this program who wish to have information about it for the pur-
pose of enabling: (i) the exchange of information between independently cre-
ated programs and other programs (including this one) and (ii) the mutual use 
of the information which has been exchanged, should contact: 

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee. 
4 IBM Rational Tau User Guide June 2009



The licensed program described in this document and all licensed material 
available for it are provided by IBM under terms of the IBM Customer 
Agreement, IBM International Program License Agreement or any equiva-
lent agreement between us. 

Any performance data contained herein was determined in a controlled envi-
ronment. Therefore, the results obtained in other operating environments 
may vary significantly. Some measurements may have been made on devel-
opment-level systems and there is no guarantee that these measurements will 
be the same on generally available systems. Furthermore, some measure-
ments may have been estimated through extrapolation. Actual results may 
vary. Users of this document should verify the applicable data for their spe-
cific environment. 

Information concerning non-IBM products was obtained from the suppliers 
of those products, their published announcements or other publicly available 
sources. IBM has not tested those products and cannot confirm the accuracy 
of performance, compatibility or any other claims related to non-IBM prod-
ucts. Questions on the capabilities of non-IBM products should be addressed 
to the suppliers of those products.

This information contains examples of data and reports used in daily busi-
ness operations. To illustrate them as completely as possible, the examples 
include the names of individuals, companies, brands, and products. All of 
these names are fictitious and any similarity to the names and addresses used 
by an actual business enterprise is entirely coincidental. 

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear. 

Additional legal notices are described in the legal_information.html file that 
is included in your software installation.

Copyright license

This information contains sample application programs in source language, 
which illustrate programming techniques on various operating platforms. 
You may copy, modify, and distribute these sample programs in any form 
without payment to IBM, for the purposes of developing, using, marketing 
or distributing application programs conforming to the application program-
ming interface for the operating platform for which the sample programs are 
June 2009 IBM Rational Tau User Guide 5



Chapter : 
written. These examples have not been thoroughly tested under all condi-
tions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or 
function of these programs. 

Each copy or any portion of these sample programs or any derivative work, 
must include a copyright notice as follows: 

© (your company name) (year). Portions of this code are derived from IBM 
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. 

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of 
International Business Machines Corp., registered in many jurisdictions 
worldwide. Other product and service names might be trademarks of IBM or 
other companies. A current list of IBM trademarks is available on the Web at 

www.ibm.com/legal/copytrade.html

Adobe, the Adobe logo, PostScript, and the PostScript logo are either regis-
tered trademarks or trademarks of Adobe Systems Incorporated in the United 
States, and/or other countries. 

IT Infrastructure Library is a registered trademark of the Central Computer 
and Telecommunications Agency which is now part of the Office of Govern-
ment Commerce 

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino 
logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the 
United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other 
countries, or both. 

Microsoft, Windows, Windows NT, and the Windows logo are trademarks 
of Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the 
Office of Government Commerce, and is registered in the U.S. Patent and 
Trademark Office 

UNIX is a registered trademark of The Open Group in the United States and 
other countries. 
6 IBM Rational Tau User Guide June 2009

www.ibm.com/legal/copytrade.html
www.ibm.com/legal/copytrade.html


Java and all Java-based trademarks and logos are trademarks of Sun Micro-
systems, Inc. in the United States, other countries, or both. 

Other company, product or service names may be trademarks or service 
marks of others.
June 2009 IBM Rational Tau User Guide 7



Chapter : 
8 IBM Rational Tau User Guide June 2009



Introduction

IBM Rational Tau 4.3 is a tool for the analysis and development of service-
oriented architectures as well as other advanced software systems. Included 
in IBM Rational Tau 4.3 are tools for modeling applications using the UML 
notation. For an introduction to UML see chapter Chapter 8, UML Language 
Guide.

To fully take advantage of IBM Rational Tau and be able to start working 
quickly, it may prove useful to start with one of the tutorials included in this 
installation, like the Java Tutorial and the UML Tutorial. 

IBM Rational Tau 4.3 includes many capabilities for analysis and develop-
ment of service-oriented architectures, but of specific interest for this appli-
cation area are the following chapters:

• Chapter 69, Web Services Support, that describes the web service mod-
eling support in IBM Rational Tau 4.3 ,

• Chapter 73, Modeling XML Schemas, that describes how to model the 
XML data used by the web services,

• Chapter 67, Using Tau with System Architect, that describes how to use 
IBM Rational Tau 4.3 together with System Architect to enable an inte-
gration of the web service development with an enterprise architecture 
analysis.

• Chapter 71, WSDL/XSD Importer Reference, that describes how to im-
port existing service descriptions in WSDL or XSD and how to generate 
WSDL/XSD from UML models.

In addition, the following sections can provide useful information:

• Chapter 88, Useful Shortcut Keys will provide a listing of possible short-
cuts, this chapter can provide you with information on how to work faster 
and more efficient once you are familiar with what IBM Rational Tau can 
achieve. 
June 2009 IBM Rational Tau User Guide 9



Chapter : 
• Chapter 89, Setting Up the Tool Environment contains descriptions of 
how to set up IBM Rational Tau together with configuration manage-
ment and requirement management tools.
10 IBM Rational Tau User Guide June 2009



4
Introduction to IBM Rational Tau 

4.3

UML

IBM Rational Tau contains a set of model-driven tools based on UML 2.1 
which are backwards compatible with UML 1.x. There is support for the fol-
lowing diagram types:

• Use case diagram 

• Sequence diagram 

• State machine diagram 

• Activity diagram 

• Interaction overview diagram 

• Class diagram 

• Package diagram 

• Component diagram 

• Deployment diagram 

• Composite structure diagram (formerly called Architecture diagram) 

• Text diagrams (in UML syntax) 

You can easily verify your implementations by simulating real-time behavior 
using the Model Verifier.
June 2009 IBM Rational Tau User Guide 11



Chapter 4: Introduction to IBM Rational Tau 4.3
The UML tool set contains support for handling Java code. UML and Java 
being very similar languages it is possible to switch between the two in text 
diagrams and text symbols. The Java support and Eclipse integration in IBM 
Rational Tau are only supported for Windows operating systems. 

There is support for full C or C++ code generation and code generation for 
target integrations for market leading operating systems and real-time oper-
ating systems.

To be able to start working quickly with UML, the topics listed below may 
prove useful to start with:

• Description of Workflow
Provides you with a road map how to use the UML tools in different 
stages in your project.

• Working with Models
Describes the basics behind model-based development. It provides you 
with instructions and introductory information.

• UML Language Guide
This section is a guide to the UML language.

• Java Tutorial
A basic tutorial that allows you to work with the supported diagrams and 
to learn how to verify your model.

• UML Quick reference guide
Examples on common constructs in graphical and textual UML.

Overview of IBM Rational Tau User Interface
The complete IBM Rational Tau user interface contains several different 
areas that can be switched on and off at the will of the user: the Desktop, the 
Workspace window and the Output window. In addition there is a status bar 
in the lower part of the frame and a menu and Toolbar area at the top of the 
interface frame. The windows are all possible to dock according to the user’s 
preferences. It is also possible to drag-and-drop frequently used toolbars to a 
Shortcuts window. 
12 IBM Rational Tau User Guide June 2009



Overview of IBM Rational Tau User Interface
Desktop

The Desktop, or editing area, is the area of your working documents. This is 
where the actual development takes place. Here you will see diagrams, doc-
uments, source files, etc. Once you have opened them for editing or viewing. 
Which editor or viewer that is displayed depends on the file types that are in-
cluded in your project.

If you have more than one document opened on the desktop, you can move 
between with commands on the Window menu, or by pressing CTRL + TAB 
(forwards) or CTRL + SHIFT + TAB (backwards).

Hint
If you want to have your editor expanded to full screen, select Full Screen in 
the View menu. To go back, press ESC or ALT + ‘1’.

See also

“Working with windows” on page 19

Workspace window

The Workspace window is a graphical tool that presents and manages the 
structure of the workspace information in a number of Views. 

Figure 1: The IBM Rational Tau Desktop.

Workspace
window

Desktop

Output
window

Status bar

Menu bars
and 
toolbars
June 2009 IBM Rational Tau User Guide 13



Chapter 4: Introduction to IBM Rational Tau 4.3
The Workspace window shows the information structure with expandable 
nodes. By collapsing and expanding these nodes, and by using different 
views, you can focus on different sets of the information in the workspace.

It is possible to move the Workspace window and to make it a floating pal-
ette. When not floating, it is docked at this left-most position. When docked, 
the window can only be resized horizontally. The vertical boundary is deter-
mined at the top by the toolbars and at the bottom by the Output window.

Edit markers

Gray bar

In the File View and Model View, elements that can not be edited are marked 
with a gray bar between the element symbol and the element name. 

Red bar

In the Model View, when you edit your model there will appear a red bar be-
tween the element symbol and the element name, indicating a change during 
the current work session. 

Asterisk

When a text file has been edited but not yet save an asterisk will appear in the 
window title bar after the file name. 

Views

In the Workspace window you have access to a number of views. They are 
each accessible via separate tabs. The views show different aspects of the 
model. 

File View

The File View shows your workspace with all elements that are represented 
as files. This could be project files, UML models, text files or any other files 
that you have stored in your projects. However, since diagrams, classes, etc. 
are not represented as files, they will not appear. Instead, the files in the File 
View contain the textual representations of the model.
14 IBM Rational Tau User Guide June 2009



Overview of IBM Rational Tau User Interface
You select the File View by clicking the File View tab in the Workspace 
window. Here you can open, edit and save all files. However, if you delete a 
file it is only deleted from the File View. The file is still available in the file 
system of your operating system.

To get a better overview of your files, you can create folders. You can drag 
and drop files between folders. You can display properties by selecting an 
item, right-clicking it, and clicking Properties in the shortcut menu.

Model View

The Model View contains all the data that you are working with in an abstract 
structure. All UML elements are found here. Since the Model View shows 
all the elements that are not represented as files, this is the view to select 
when you add elements to the model and create diagrams. 

The elements in this view are considered as graphical representations of the 
model. You may use diagram editors for the design process, but you may as 
easily fully design a system just working with the nodes in the Model view.

You select the Model View by clicking the Model View tab in the Work-
space window. 

The shortcut menu on the project nodes or the Model nodes will contain a 
sub-menu called Model View Filters. This menu will contain check boxes 
that defines how a set of predefined filters are applied to the Model View. 

A Metamodel may include one Metaclass that has its base set to Resource. 
This model element will map to Resource elements in the loaded element at 
run-time and will thus only be visible in the Model View if the Show Files 
model view filter is turned on. It is possible to show files and resource ele-
ments in the Model View. Use the shortcut sub-menu Model View Filters 
and select Show Files.

A metamodel may include metaclasses that have their base set to object 
model classes that are subclasses of Diagram. These model elements will 
map to diagrams and will thus only be visible in the Model View if the Show 
Diagrams model view filter is turned on. 

For convenience the metaclasses are classified as either structural entities or 
as detailed entities. This will affect how the contents of the Model View is 
affected by the Show Details filter.
June 2009 IBM Rational Tau User Guide 15



Chapter 4: Introduction to IBM Rational Tau 4.3
A metamodel may include metaclasses that have their base set to object 
model classes that are subclasses of Implementation. These model elements 
will map to implementation-oriented elements and will thus only be visible 
in the Model View if the Show Implementations model view filter is turned 
on

When the Sort Definitions filter is active (indicated by check-mark in the 
menu item), model elements in a given Model View node are sorted in a lex-
icographical order. Diagram nodes will not be affected by the sort operation. 

The command Reconfigure Model View (from the View menu) allows you 
to filter the information in the Model View based on a predefined metamodel. 
This affects the project which the selected element belongs to. 

In some situations it is possible to cause a node in the Model View to “disap-
pear” when you have selected a filter different from the Standard View. This 
happens because some operations in IBM Rational Tau (like drag-and-drop) 
rely on the basic metamodel that is used for storage of UML information, 
while others (like showing the elements in tree form in the Model View) rely 
on the currently selected metamodel. When you switch to Standard View, 
this model is the same as the basic metamodel. The Diagram View will 
present the information based on model elements that can own diagrams and 
push the diagram nodes to directly below their owning elements. 

Typically this can happen in the following situations:

• drag-and-drop 

• cut and paste 

• creating diagrams from the Model Navigator Diagrams tab

To restore a node that have disappeared in this way you have two options:

• Use undo to get the node back at its original place.

• Switch to Standard View. In that view, all nodes will be visible. Any 
nodes that may have been drag-and-dropped to a position where they did 
not appear in the Model View will now show in their new place.

Instances

Instances is a tab in the Workspace window, which is only accessible when 
you start the Model Verifier. It shows:
16 IBM Rational Tau User Guide June 2009



Overview of IBM Rational Tau User Interface
• The agents that are being executed, with inheritances and instantiations 
flattened.

• Live agent instances with their instance number and attributes.

• Kernel dependent objects; the ready-queue and the system environment 
agent.

You select the Instance view by clicking the Instances tab in the Workspace 
window.

Files

Files are represented by icons in the File View in the Workspace window.

You may insert any file into your projects that you feel belongs there. The 
inserted files will show up as icons in the File View of the Workspace 
window. The Workspace window will start the associated program for 
viewing or editing if you double-click the file icon.

You may insert other UML files into your model folders. This enables you to 
share and move information between models. 

Shortcuts window

The Shortcuts window may contain toolbars, but it will only do so if you put 
them there. To put a Toolbar in the Shortcuts window, right-click the toolbar 
and click To Shortcut from the shortcut menu. You can reverse the process 
by right-clicking on the Shortcuts shown and clicking As Toolbar from the 
shortcut menu that appears.

The View menu Shortcuts command controls if the Shortcut window is 
shown. 

Note
Not all toolbars will be possible to submit to the shortcuts window. 

Output window

The Output window consists of a number of different tabs that records and 
displays information for the corresponding tool. This information is typically 
error messages, warnings, result of actions, logging of events, etc. Each tab 
represents a different tool.
June 2009 IBM Rational Tau User Guide 17



Chapter 4: Introduction to IBM Rational Tau 4.3
For some of the tabs, it is possible to navigate from the located element (in 
the subject column) to a presentation in a diagram.

The View menu Output command controls if the window is shown. 

General tabs

Messages 

The Messages tab shows general information regarding the project loading 
and other executed actions.

No navigation is available from this tab to other parts of the tool. 

Search result

This tab displays the result of a Find operation. 

Presentations

This tab displays the result of a List presentations operation. 

References

This tab displays the result of a List references operation. 

Script 

The Script tab shows the result of scripts, for example Tcl scripts.

UML tool tabs

Check 

You can initiate a complete check of the model to detect errors and warnings. 
This tab displays the result of the check. The errors remain in the list even 
after they are corrected. The list is changed the next time you invoke the 
check procedure.

Autocheck 

There is an automatic check for errors in the scope you are currently working 
in. The scope is determined from the diagram that is opened on the desktop. 
This tab displays the errors that are found. When the error is corrected, it is 
removed from the list.

Build 
18 IBM Rational Tau User Guide June 2009



Overview of IBM Rational Tau User Interface
The Build tab shows the result of the build process including semantic and 
syntactic checks and code generation. When building an application, all 
warnings and error messages are presented here. It is possible to navigate 
from error messages or warnings directly to the source in the appropriate ed-
itor.

Navigate

This tab contains a tabular model navigation tool, the Model Navigator 
which is used to navigate through any given model.

Model Verifier 

This tab shows the textual trace when you are verifying the behavior of your 
model. This tab also logs the commands that you type in the Model Verifier 
Console.

Working with windows

Arrange windows

Tile all document windows:

• On the Window menu, click Tile Horizontally or Tile Vertically.

Overlap document windows:

• On the Window menu, click Cascade.

To change the position of document windows:

Note
The docking state can not be changed for a window with tabbed documents.

1. Right-click the title bar of a document window.

2. In the menu select:

– Docked to dock the window within the application window. There 
are also options for where it should be docked.

– Floating to be able to move it outside the application window.

– MDI Child to make the window float within the editing area. There 
are also options for maximizing, minimizing and restoring the 
window.
June 2009 IBM Rational Tau User Guide 19



Chapter 4: Introduction to IBM Rational Tau 4.3
To view the active document in full screen:

• On the View menu, click Full Screen

Or

• Press ALT + 1

To view the active document in normal size:

To display the active document in normal size again after you have 
viewed it in full screen, do one of the following:

• Move the cursor to the top of the screen. When the menu bar appears, on 
the View menu, click Full Screen.

Or

• Press ALT + 1

Show and hide windows

Show or hide the workspace window:

• On the View menu, click Workspace

Or

• Press ALT + 0.

Show or hide the output window:

• On the View menu, click Output

Or

• Press ALT + 2.

Close windows

To close a document window:

• On the Window menu, click Close.

To close all document windows:

• On the Window menu, click Close All.
20 IBM Rational Tau User Guide June 2009



Overview of IBM Rational Tau User Interface
Create a new window

To create a new document window:

• On the Window menu, click New Window.

Tabbed documents

If the option “Tabbed documents” is enabled in general options page, docu-
ments will be opened as tabs in a single window. 

A document can be detached from a tabbed window by right-clicking the tab 
and selecting the Detach menu item. It will then function as a normal MDI 
child and the docking state can be changed.

Docking windows

There are three different modes for editor windows in the IBM Rational Tau 
framework. These are applied to each diagram window individually by right-
clicking the diagram title bar.

Note
The docking state can not be changed for a window with tabbed documents.

Docked

A docked editor window will align into the IBM Rational Tau frame-
work like the workspace window or the Output window. It will be pos-
sible to move the windows around to arrange a suitable view.

Floating

A floating window is on top of the IBM Rational Tau framework. It will 
turn into a docked window if it is moved towards the framework frame.

MDI child

An MDI child window is positioned into the desktop area. Adjusting 
can be done manually inside this area or with commands from the 
Window menu.
June 2009 IBM Rational Tau User Guide 21



Chapter 4: Introduction to IBM Rational Tau 4.3
Auto-hide docked window (Windows)

A window that has a pin symbol in the gripper bar can set to auto-hide mode. 
If the pin is pressed, the window will be hidden and a label representing the 
window will be displayed instead. By hovering with the mouse over the label 
the hidden window will be displayed. Window can be docked again by 
clicking on the pin symbol again.

Expand/Contract docked window

When two docked windows share the same side of the main window, a 
window can be expanded to take the whole side in possession by clicking on 
the arrow symbol on the gripper bar of the window (if available). By doing 
this the other windows on the side are minimized. The window can be con-
tracted by clicking on the arrow symbol again.

Stored workspace windows

All windows opened during a session will be reopened when the workspace 
is loaded again. The information will be saved in a .ttx file with the same path 
and name as the workspace.

See also

“Organizing the view” on page 171

Menu bar and toolbar

When you first start IBM Rational Tau, the toolbars appear just below the 
menu bar. 

Depending on your workspace preferences, and the size of your screen, you 
can display as many toolbars as you want, or none at all. You can add a button 
with a command to a toolbar, change the size of the buttons, and move the 
toolbars to different locations to suit your needs.

Menu Bar

The menu bar contains well-known menus such as File, Edit, Project, and so 
on. Depending on the task you are performing the number of menus differ.

Most menu commands have a shortcut assigned. A list of Useful Shortcut 
Keys is found in Common Reference.
22 IBM Rational Tau User Guide June 2009



Overview of IBM Rational Tau User Interface
You can add commands to the Tools menu allowing you to easy access to 
non-IBM Rational tools. This is done from the Tools tab. 

As an example, the following procedure demonstrates how to add the Win-
dows Notepad accessory to the Tools menu.

To add a command to the Tools menu:

1. From the Tools menu select Customize, and then click the Tools tab.

2. Click the New (Insert) button.

3. Type the name of the tool, as you want it to appear on the Tools menu, 
and press ENTER.

For example, if you want to add a command for the Windows Notepad 
accessory, you might type Notepad.

4. In the Command box, browse or type the path and name of the program, 
for example, C:\Windows\notepad.exe.

5. In the Arguments text box, browse or type any arguments to be passed 
to the program. Leave this field empty for the Notepad accessory. 

Note
You can use the drop-down arrow next to the Arguments text box to display 
a menu of arguments. Select an argument from the list to insert argument 
syntax into the Arguments text box.

6. The Initial Directory box is used to specify the file directory where the 
executable file for the command is located. For the Notepad accessory 
this field is left empty. 

When the command appears on the Tools menu, you may click it to run the 
program.

You can add arguments to be passed to the program by typing them in the 
Arguments text box, or set the initial directory for your program by typing it 
in the Initial Directory text box.

If the program you are adding to the Tools menu has a .pif file, the startup 
directory specified by the .pif file overrides the directory specified in the 
Initial Directory text box.
June 2009 IBM Rational Tau User Guide 23



Chapter 4: Introduction to IBM Rational Tau 4.3
Toolbar

The toolbar allows you to set up a palette of your most common used tools 
in order to have quick access to them. Once you have made any changes to 
the toolbar, these changes are saved and retrieved for your next work session.

The standard toolbar corresponds to the operations available in the menu bar. 
The standard toolbar can be toggled on and off from the View menu (Stan-
dard command) or from the toolbar area’s shortcut menu, the other toolbars 
only from the shortcut menu. 

Note
Not all toolbars and commands can be modified. This feature belongs to the 
IBM Rational Tau framework and is not supported for toolbars related to 
editors. 

To add a toolbar button:

1. Make sure that the toolbar you want to change is displayed.

2. From the Tools menu select Customize, and then click the Commands 
tab.

3. Add a button by clicking the name of the category in the Categories box, 
and then dragging the button or item from the Buttons area to the dis-
played toolbar. 

To delete a toolbar button:

1. Make sure that the toolbar you want to change is displayed.

2. From the Tools menu select Customize, and then click the Commands 
tab.

3. To delete a button, drag it off the toolbar.

When you delete a default button from a toolbar, the button is still available 
in the Customize dialog box. However, when you delete a toolbar button with 
a custom appearance, its appearance is permanently lost, although the com-
mand is still available (Customize dialog box, Commands tab).

Hint
To save a toolbar button with a custom appearance for later use, create a 
toolbar for storing unused buttons, move the button to this storage toolbar, 
and then hide the storage toolbar.
24 IBM Rational Tau User Guide June 2009



Overview of IBM Rational Tau User Interface
Show or hide toolbars:

1. From the Tools menu select Customize, and then click the Toolbars tab.

2. Select and clear toolbars to show or hide in the Toolbars list.

3. Click Close.

alternatively

1. Right-click anywhere in the toolbar area in the user interface.

2. Click the toolbar you want to show or hide. The menu closes automati-
cally.

To change the appearance of toolbar buttons:

1. From the Tools menu select Customize, and then click the Toolbars tab.

2. Select the following options:

– Show Tooltips to enable tooltips to be displayed when the cursor 
moves over a button or field in the toolbars.

– Large Buttons to display larger sized buttons in the toolbars.

3. Click Close.

Status bar

The status bar presents useful information about status of several different 
types of tasks, for example it lists errors and tooltips. Here will also be pre-
sented information about progress and current actions.

For text files the current line number and column position are shown in the 
right most corner of the Status bar. 

Line navigation

Navigation to a specific line in a text file is done by pressing CTRL + SHIFT 
+ G. Enter the wanted line number in the dialog that opens. 

Progress bar

There is one progress bar displayed showing the overall progress when 
opening a workspace to the right of the status bar.
June 2009 IBM Rational Tau User Guide 25



Chapter 4: Introduction to IBM Rational Tau 4.3
There can also be one displayed for the progress of the separate parts of the 
loading process displayed in the message field. In this case there will also be 
a message explaining the current action in progress.

Options

Tool options affect IBM Rational Tau, not just the current project or work-
space. There are different ways of changing these options:

In the Options dialog, there are different tabs for different options that you 
can change. The number of tabs differs depending on what type of project 
that is active. To see a description of an option in the Options dialog box, 
click the question mark in the dialog box title bar, and then click the option.

In the Advanced tab you may use a tree view for all options available in the 
Options dialog. The Advanced tab is activated from a check box in the Gen-
eral tab. To change the option values in the Advanced tab, select the value 
and click F2.

Options file

The option settings can be saved in an options file, .tot. This file can later 
be edited. 

If the options file is added to a project, you can double-click it in the File 
View to open it in an options editor. It is possible to save several options files 
in a project and select which one should be used. This is useful if you often 
switch options: Instead of changing the options directly, you just change the 
priority of the options files.

In the installation there will be a number of files with a .tot extension con-
taining internal framework settings and options. These files should normally 
not be edited by the user. Editing a file with a .tot extension may cause loss 
of data and incorrect behavior of the tool set. The options controlled should 
be edited from the Tools menu Options dialog. 

Change options

To change options:

1. On the Tools menu, click Options.

2. In the Options dialog box, select and clear options in the different tabs. 
In the Advanced tab press F2 to access an option value. 
26 IBM Rational Tau User Guide June 2009



Overview of IBM Rational Tau User Interface
3. Click OK.

Work with options Files

Save the current options in a new options file:

1. On the Project menu, click Options and then Save As.

2. In the Save As dialog, select a name and location for the options file 
(.tot).

3. Click Save.

4. Click Yes when you are asked to include the options file in your active 
project.

By including it in your project, you will be able to open it from the File 
View and edit it.

To edit an options file:

1. Make sure that an options file is included in your project, that is, visible 
in the File View.

2. Double-click the options file. It will be opened in the options editor.

3. In the options editor, expand the options tree until you are able to see 
your options.

4. Select an option.

5. On the selected option, click the Value field and press F2. This will make 
the field editable.

6. Enter a new value.

7. Close the file when you are finished. You will be prompted to save your 
changes.

Select which option file to use:

1. This is only possible when there are more than one options file included 
in your project, that is, visible in the File View.

2. On the Project menu, click Options and then Files.

3. In the Option Files dialog box, select an options file in the list and click 
the arrow buttons to move it up or down. The options file on top is the 
options file that will be used.

4. Click OK.
June 2009 IBM Rational Tau User Guide 27



Chapter 4: Introduction to IBM Rational Tau 4.3
Customizing 

It is possible to customize the appearance of the user interface. In the Cus-
tomize dialog box (Tools menu), there are options for customizing toolbars, 
the Tools menu, window layouts, and add-in modules. This is further de-
scribed in Chapter 73, Customizing Tau.

Local setup (UNIX)

Windows directory

In your home directory a new directory named windows will appear con-
taining a set of files used to align the properties for IBM Rational Tau be-
tween Windows and UNIX. The information stored in these files is not to be 
edited by the user. 

Copy and Paste

Selection of text and using the middle mouse button for directly pasting it in 
another terminal window is supported only from the tabs in the Output 
window. 

The dedicated buttons for Cut, Copy and Paste commands found on Solaris 
native terminals are not supported. 

File dialogs

It is possible to filter displayed files in file dialogs with for example “*.u2” 
to show only this file type. 

Generate support request

A tool for sending information to support can be opened by clicking Gen-
erate Support Request on the Help menu.

From the support tool it is possible to create screen dumps and video clips of 
Tau and send information directly to IBM Rational support.
28 IBM Rational Tau User Guide June 2009



Working with Workspaces
Working with Workspaces

Workspaces - overview

A workspace is a personal working area, where you can add your projects. It 
allows you to organize your projects in a logical way. You can define a 
number of different workspaces, but you can only work in one workspace at 
a time. There is no upper limit regarding the number of added projects.

You cannot share your workspace with other users, since the content of your 
workspace may not coincide with the needs of other users.

Projects are stored with path names relative to the workspace. This allows 
you to move a workspace and all its contents from one location to another 
without losing any information.

The information included in a workspace is stored in a text file with the .ttw 
extension.

Create a new workspace

IBM Rational Tau always starts with an empty active window. If you have 
not recently used workspaces, you may create a new one.

1. On the File menu, click New.

2. Click the Workspaces tab.

3. Type a name for your workspace.

4. Choose the location for your workspace. A folder with the same name as 
the workspace is created by default.

5. Click OK.

Open a workspace

Workspaces may be opened, closed, and saved, just as in any other standard 
application. Workspaces that you recently have worked with are available in 
a shortcut list. The list can contain up to eight different workspaces.
June 2009 IBM Rational Tau User Guide 29



Chapter 4: Introduction to IBM Rational Tau 4.3
Open a workspace:

1. On the File menu, click Open Workspace.

2. In the Open dialog, select or browse to the file you want to open. Click 
Open.

Open a recently opened workspace

1. On the File menu, point to Recent Workspaces. A list of the eight most 
recent workspaces is displayed.

2. Select a workspace.

Save and close a workspace
• Save a workspace: On the File menu, click Save Workspace.

• To close a workspace: On the File menu, click Close Workspace.

Add a project to a workspace

There are two methods of adding a project to your workspace:

From the File View:

1. In the File View, right-click your workspace, and click Insert project... 
from the shortcut menu.

2. In the Open dialog box, select the project you want to add.

3. Click Open.

From the Project menu:

1. On the Project menu, click Insert Project into Workspace... The Open 
dialog box appears.

2. In the Open dialog box, select the project you want to add. 

3. Click Open.

See also

“Create a new project with a new workspace” on page 32.
30 IBM Rational Tau User Guide June 2009



Working with Projects
Working with Projects

Projects - overview

A project contains a number of references to source files that together with 
instructions on how to compile them produce a program or final binary files. 

A project must be inserted in a workspace and you can work with many 
projects within the same workspace, allowing for diagrams and documents 
to be moved within and between projects. The same project can also be in-
cluded in different users’ workspaces. Projects that you add to a workspace 
can be located on other paths, on different drives, or directly in the root di-
rectory. This enables your team to work collectively with the same projects.

If there is no workspace open when you create a project, a directory for the 
workspace and a workspace file are also created. Alternatively, you may add 
a project to an existing, open workspace.

The files that are referenced in a project can be of any type and for conve-
nience they can be organized in user-created folders.

A project is not individual and can therefore be shared between users. Some 
settings are global: if one user adds a file, it is added to the projects of other 
users as well. Some settings, such as which font to use, are not global.

The information included in a project is stored in a text file with the .ttp ex-
tension. Files included in a project are stored with relative paths in the project 
file.

Active project

When you add a project to a workspace, it will become the active project. All 
commands on the Project menu will be applied to the active project. If you 
have more than one project in the open workspace, you must actively choose 
which project that should be active in the Active Project list that is available 
in the toolbar.

Recommendation for Windows users

It is generally recommended to place projects, and all of the included files in 
a logical drive (such as P:, Q:, etc.). This enhances interchangeability of 
models and projects between different members of a team. For instance, 
June 2009 IBM Rational Tau User Guide 31



Chapter 4: Introduction to IBM Rational Tau 4.3
when using the hyperlink or traceability link mechanisms the links will store 
an absolute location of the project. Also, for using the DOORS integration or 
other third-party-tool integrations this practice is recommended, and will 
allow navigation from DOORS to models without exactly replicating the file 
structure. For information on how to achieve this, see the subst DOS com-
mand, or consult your system administrator for more information. It is rec-
ommended to always open the tool through this location to achieve a consis-
tent logical model repository.

Starting to work with projects

When using the tool for the first time, you can, for example, create a file first 
and later add this to a project. But the recommended workflow is to create a 
project in a workspace, and subsequently add files. By doing this, you are in 
a better position to control your project.

You can either create a new workspace or work with an existing one for each 
project. Files in a project may be stored locally, or on other locations. The 
objective is to offer you a working environment that optimally suits your, and 
your project’s, needs.

As you create and modify a project, you can view the components included 
in the various views in the workspace window.

You have multiple choices to change and set your preferences, either on tool 
level or for your current project. It is for example possible to create custom 
toolbars, menu commands, and buttons.

Create a new project with a new workspace
1. On the File menu, click New.

2. Click the Projects tab.

3. Select the type of project you want to create.

4. Type a name for your project. Using the browse button, you can also 
change the location of the project. The option Create new workspace is 
selected by default.

5. Click OK.

6. If you want, you can change the project settings. Click the help button to 
receive more information about the settings.

7. Click Next and Finish.
32 IBM Rational Tau User Guide June 2009



Working with Projects
Create a new project in an existing workspace
1. Open the workspace you want to add the new project to.

2. On the File menu, click New.

3. Click the Projects tab.

4. Select the type of project you want to create.

5. Type a name for your project and click Add to current workspace.

6. Click OK.

7. If you want, you can change the project settings. Click the help button to 
receive more information about the settings.

8. Click Next and Finish.

Insert an existing project in a workspace

A project is handled within the workspace it is located in. The workspace can 
be opened, closed, and saved, just as in any other standard application. A 
project file (.ttp) can be inserted in any workspace, not just the one it is cre-
ated in. 

To insert a Project in an existing workspace:

1. Go to the File View tab in the Workspace window. 

2. Right-click the workspace icon, on the shortcut menu select Insert File. 
The Open dialog box appears.

3. Find the desired project, and click Open.

Note
To be able to view project files it is sometimes necessary to change the file 
filter in the Open dialog

See also

“Menu bar and toolbar” on page 22.

“Add a project to a workspace” on page 30.
June 2009 IBM Rational Tau User Guide 33



Chapter 4: Introduction to IBM Rational Tau 4.3
Add files and folders to your project

Add files to your project

You can add any type of files to your project, including project and work-
space files. A workspace added to a project is treated like a normal text file, 
without any functionality. Using drag and drop you can move your files to 
and from folders.

There are two ways of adding files to your project.

From the File View:

1. In the File View, right-click the project or a folder, and click Insert 
files... from the shortcut menu. 

2. In the Open dialog box, select the files you want to add

3. Click Open.

From the Project menu

1. On the Project menu, point to Add to Project and click Files. 

2. In the Open dialog box, select the files you want to insert

3. Click Open.

Note
When you add file from the project menu, you cannot decide the target 
folder. All files will be added at the root level of the project.

Open a recently accessed file

1. On the File menu, point to Recent Files. A list of the most recent files is 
displayed.

2. Select a file.

Add folders to a project

You can add folders to a project to logically organize your files. These 
folders are only defined in the project files – they are not represented in your 
file system. The file path in the operation system will remain unchanged.
34 IBM Rational Tau User Guide June 2009



Working with Projects
When adding folders you can define a list of file extensions. These indicate 
what type of files that will be included in the folder. The list will be used as 
a filter when you add files to a folder. Only the files with the listed extensions 
will be displayed in the add file dialog by default.

There are two ways of adding a folder to your project:

From the File View:

1. In the File View, right-click the project, and click New Folder from the 
shortcut menu. 

2. In the New Folder dialog box, type a name in the Folder name box.

3. Type one or more optional extensions in the Folder extension box in the 
form of *.<extension>. If you type more than one extension, separate 
them with a semicolon (;).

4. Click OK.

From the Project menu:

1. On the Project menu, point to Add To Project and click New Folder.

2. In the New Folder dialog box, type a name in the Folder name box.

3. Type one or more optional extensions in the Folder extension box in the 
form of *.<extension>. If you type more than one extension, separate 
them with a semicolon (;).

4. Click OK.

Activate a project

To enable any functionality for a project, it must be activated. Only one 
project in your workspace can be activated at a time. To activate a project do 
one of the following:

• In the File View, right-click the project. Click Set as Active Project 
from the shortcut menu.

• In the Project toolbar select the desired project in the Active project list. 

• In the Project menu open the Configurations dialog and use the Set ac-
tive button in the Configurations dialog.

Note
If you only have one project in your workspace, this project will automati-
cally be set as active.
June 2009 IBM Rational Tau User Guide 35



Chapter 4: Introduction to IBM Rational Tau 4.3
See also

“Project settings and configurations” on page 37

File and folder properties

You can view, and in some cases edit, properties for selected workspace 
items. Properties will only be available when a single item is selected in File 
View.

Properties for files, projects, and workspaces are view-only. Properties for 
folders are fully editable.

To view file and folder properties:

• In the File View, right-click an item and select Properties. You can also 
press ALT + ENTER.

Set or change folder properties:

1. In the File View, right-click a folder and select Properties.

2. In the Properties Editor box, change the Folder name and File exten-
sions.

3. Optional: press ENTER to apply and verify changes.

4. Unless you want to view or change preferences for other workspace 
items, close the dialog box by clicking the close button. 

To close the dialog box without saving any changes:

• Press ESC.

Create, open and close files

To create a new file:

1. On the File menu, click New.

2. Select the file type you want to create.

3. Specify File name and File location.

4. If you have an open project, you can decide if you want to include the file 
in the project.

5. Click OK.
36 IBM Rational Tau User Guide June 2009



Working with Projects
To open a file:

1. On the File menu, click Open.

2. In the Open dialog box, select or browse to the file you want to open.

3. Click Open.

Or:

1. On the File menu, click Recent Files. A list of the 8 most recent files is 
displayed.

2. Select file.

To close a file:

• On the File menu, click Close.

Move files

Moving around files (and also project and folder nodes) using drag and drop 
will not affect the current state of the loaded UML model entities, unless the 
file is moved between projects. If the file is moved between projects the con-
tained model elements will be removed from the source project and added to 
the target project. The Undo queue will be disabled after this move operation.

Project settings and configurations 

Project settings, available in the Settings dialog box, include options for anal-
ysis, code generation, building, execution, and logging. 

When you change options in the Settings dialog box, they will be saved in 
the currently active configuration. A project may contain several configura-
tions. You can Activate a project to set its configuration to be active in the 
Configurations dialog box, or in the corresponding lists in the toolbar.

Project settings

There are two ways of changing the settings for your project:
June 2009 IBM Rational Tau User Guide 37



Chapter 4: Introduction to IBM Rational Tau 4.3
From the File View:

1. In the File View, right-click the project, and click Settings on the 
shortcut menu.

2. The Settings dialog box appears. Change the settings according to your 
needs.

3. Click OK.

From the Project menu:

1. In the Project toolbar select the desired project in the Active configura-
tion list.

2. On the Project menu, click Settings.

3. The Settings dialog box appears. Change the settings according to your 
needs. 

4. Click OK.

Project Configurations

To add a new configuration:

1. On the Project menu, click Configurations.

2. In the Configurations dialog box, click Add.

3. In the Add Configurations dialog box, type a name for the configuration, 
select an existing configuration to copy the settings from, and select 
which project the new configuration should be associated with.

4. Click OK.

To remove a configuration:

1. On the Project menu, click Configurations.

2. In the Configurations dialog box, select a configuration.

3. Click Remove.

4. Click OK.
38 IBM Rational Tau User Guide June 2009



Working with Projects
Discovery based storage

Introduction

Discovery-based storage is necessary to support scenarios where the user 
does not wish to have one file (the project file) to have explicit knowledge of 
all files contained in a model. 

Discovery Path 

A discovery path, is a property of a project, and contains a list of locations in 
which IBM Rational Tau will search for files. Searching is recursive. 

This property is edited through a text field called “discovery location” on the 
folder “Discovery” property page. 

A discovery location may be a URN reference or a relative path, or a full path 
to a u2 model. 

• If a path is entered manually (without using the browse button) then the 
path will not be altered by IBM Rational Tau. 

• If the path is entered using the browse button the path will be adjusted 
with respect to the IBM Rational Tau->Options->General->URN map. 
That is, if the file is located under a URN location, then a URN reference 
will be calculated and saved. 

• If the path is entered using the browse button, and the path is not located 
under a URN location but is relative to the project, then this relative path 
is calculated and saved. 

If a path is entered manually (without using the browse button) then the path 
will not be altered by IBM Rational Tau. 

However, if the path is entered using the browse button the path will be ad-
justed with respect to the IBM Rational Tau->Options->General->URN 
map. That is, if the file is located under a URN location, then a URN refer-
ence will be calculated and saved. 

If he path is entered using the browse button, and the path is not located under 
a URN location but is relative to the project, then this relative path is calcu-
lated and saved. 

If the path is not in the same filesystem as the project then path is left as-is 
and saved. 
June 2009 IBM Rational Tau User Guide 39



Chapter 4: Introduction to IBM Rational Tau 4.3
A Shallow modifier may be added to a discovery location and has the same 
semantics as the .u2shallow file - see below. 

Wild cards are not supported in names of discovery locations. 

Resource Match Rules 

Resource Match Rules are regular expressions which specify which files 
should be covered by Discovery-based storage. 

The set of Match Rules may be either inclusive or exclusive. 

The rules are editable through the “discovery file filter” text field on the 
folder property page.

The rules are a semicolon separated list of file matching patterns.

If the list is empty (or non-existent) then everything is included 

The entries are applied in the order they appear in the list - first match wins. 

Directory Match Rules 

Directory Match Rules are regular expressions which specify which directo-
ries should be covered by Discovery-based storage. 

The set of Match Rules may be either inclusive or exclusive. 

The rules are editable through the “discovery directory filter” text field on the 
folder property page.

The rules are a semicolon separated list of directory matching patterns.

If the list is empty (or non-existent) then everything is included.

The entries are applied in the order they appear in the list - first match wins. 
40 IBM Rational Tau User Guide June 2009



Working with Projects
Directives 
• Ignore Directives 

If a file named .u2ignore exists in a directory being searched, the direc-
tory and all files within it will be ignored. 

If a file named “File.u2.u2ignore” exists then this means that the file 
“File.u2” will be ignored. 

If a file named directory.u2ignore exists then this means that the direc-
tory “directory” will be ignored. 

• Shallow Directives 

If a file named .u2shallow exists in a directory being searched, all sub-
directories within it will be ignored. 

If a file named directory.u2shallow exists in a directory being 
searched, then all subdirectories within “directory” will be ignored. 

• Discover Directive 

A file with the extension .u2discover may be used to provide an addi-
tional list of discovery locations, as well as a resource inclusion and ex-
clusion list. 

Note
Files with the extension *.u2x are always ignored. 

• .u2discover file format 

#This is a .u2discover file
DiscoveryPath:
#Do not recurse into subdirectories of the following 
location
Loca*tion1(Shallow)
Loca*tion2
ResourceInclusion(inclusive):
*.foo
*.boo
DirectoryInclusion(exclusive):
#Skip CVS subdirectories
CVS
June 2009 IBM Rational Tau User Guide 41



Chapter 4: Introduction to IBM Rational Tau 4.3
The Shallow modifier can be added to discovery locations. This is inter-
preted in the same way as the .u2shallow file extension (see above). 

A ResourceInclusion section may be qualified by either “inclusive” or 
“exclusive” (default is “inclusive” if not present). Lines starting with '#' 
are ignored. All whitespace-only lines are ignored. Sections can come in 
any order. Sections must start in first column. All sections are optional. 

A DirectoryInclusion section may be qualified by either “inclusive” 
or “exclusive” (default is “inclusive” if not present). 

Case is not significant in keywords and directives. 

I18N 

The .u2discover file is assumed to contain valid UNICODE characters in 
a UTF-8 stream. BOM or similar magic numbers are ignored. 

Interpretation Of Directives 

Directory/Resource Inclusion rules are applied per directory/resource. The 
inclusion rules present in the project are added to the match rules first, then 
when each directory is visited list of match rules present in the .u2discover 
file (if present) is appended. When a directory/resource is applied to the 
match rules, the first match wins. The additional .u2ignore/.u2shallow 
files are used to override any of the previously named matches. 

Generic SCC/Synergy 

The Generic SCC/Synergy integration works for files that are discovered in 
the same way as for normal files. 

Making Discovered Files Explicit In A Project 

To make a discovered file explicit in a project, simply drag it from its dis-
covery folder (in the File View) and drop it on the project node. 

Allowing An Explicit File To Be Discovered Instead 

Delete the file reference from the File View (choose “remove elements” from 
the subsequent pop-up). And make sure that the directory, in which the file 
is contained, is in the DirectoryPath property. Save and reload the project. 
42 IBM Rational Tau User Guide June 2009



Model and Diagrams
Filter syntax 

The only file matching wildcard supported is “*”. 

Manual Rediscovery 

It is possible to force a discovery after the project is loaded. The project con-
text menu has an entry called “Discover Files”. This only adds new files, it 
does not remove files that no longer exist.

Model and Diagrams

Models

The model comprises all diagrams that describe your system. Different dia-
grams describe different aspects of the application. When modeling a system 
in UML, class diagrams describe the entities and the relationships between 
these entities. 

Use case diagrams and use cases in form of sequence diagrams allows you to 
specify external interaction and an overview of a systems behavior. 

Activity diagrams and Interaction overview diagrams can be used to describe 
parallel behavior in a model. 

State machine diagrams describe the behavior of each active class and com-
posite structure diagrams describe the external behavior of an entity and how 
the entity interacts with other entities.

The application is compiled from the model. Different diagram types show 
different views of the model. This means that entities that are available in the 
diagram exist in the model, but not necessarily the other way around.

Model elements

Removing a symbol, a presentation element, from a diagram will normally 
not result in the deletion of the corresponding entity in the model since an en-
tity might be represented in more than one diagram.

However, deleting an entity in the model results in the deletion of the equiv-
alent symbols in the diagrams since it is the model that represents the appli-
cation and the diagrams only presents different aspects of the model. 
June 2009 IBM Rational Tau User Guide 43



Chapter 4: Introduction to IBM Rational Tau 4.3
Deletion of the presentation element will also delete the model element when 
there is a one-to-one relationship between the model element and the presen-
tation element. A one-to-one relationship exists when a model element can 
only have one editable presentation, for example this is the case with many 
state machine symbols.

The model elements are shown in the Model View of the Workspace 
window.

See also

Chapter 6, Working with Models

Chapter 8, UML Language Guide

“Views” on page 14

“Files” on page 17

Diagrams

A diagram is a representation of the model you are working with in UML. 
Depending on the type of diagram, you will be able to define different prop-
erties and actions.

Diagrams in general represent different views of a single model. There are a 
number of different types of diagrams. Their names are derived from UML 
concepts. Supported diagram types are:

• Activity Diagram

• Class diagram 

• Component diagram

• Composite structure diagram

• Deployment diagram

• Interaction overview diagram

• Package diagram 

• Sequence diagram 

• State machine diagram

• Text diagram

• Use case diagram
44 IBM Rational Tau User Guide June 2009



Model and Diagrams
Using the diagrams

As there are several different types of diagrams available to describe the 
model, this section gives some hints how they can be used.

The order to perform activities when building a UML model is optional. A 
possible workflow is displayed in Figure 2 on page 45.

Create a basic package and classes in your model

When you create a new project a package is automatically inserted, unless 
you disable this feature during project creation. It is possible to create new 
elements directly in the Model View by right-clicking on a package and from 
the shortcut menu select New and then choose the desired element from the 
submenu. To add a class diagram you right-click the package in the Model 
View and from the shortcut menu select New and then Class diagram.

Create use cases

A use case diagram can exist directly in a package, in a class or be grouped 
in a collaboration. A use case can be inserted directly in a package, in a class 
or in a collaboration. 

Figure 2: Diagram creation workflow

Create a basic package and classes 
in your model

Describe use cases

Write scenarios

Create dynamic behavior of ac-
tive classes

Create the architecture
June 2009 IBM Rational Tau User Guide 45



Chapter 4: Introduction to IBM Rational Tau 4.3
Write scenarios

Scenarios in form of sequence diagrams is very easy-to-understand way of 
illustrating use cases. Syntax is simple and intuitive to understand, sequence 
diagrams is also a good basis for a dynamic behavior design.

Create dynamic behavior of the classes

The next step is to define the behavior of classes that you have set to be ac-
tive. This is done using the state machine diagrams. For each Active class, 
add a state machine diagram to the model and when opened, build the in-
ternal state machine that defines the behavior of the class using the symbols 
available in the active toolbar.

Create architecture

The next step is to define how objects communicate. Instantiation of objects 
(parts) and communication between parts can be described with composite 
structure diagrams. Composite structure diagrams describe the internal struc-
ture of classes, attributes of classes and instantiations of classes.

The next step

To continue working, create a test project and get to know how IBM Rational 
Tau lets you work with different diagram types, elements and symbols.

See also

“UML Language Guide” on page 195

“Working with Diagrams” on page 165

Description of Workflow
The intention of this workflow description is to provide the users with a ge-
neric and simple road map on how the tool can assist in different project ac-
tivities. In a project this description needs to be tailored for the specific 
project organization and application domain. 

It may be simplified, but there might also be a need for a more complex pro-
cess, for example by applying an iterative design approach or taking product 
maintenance into account.
46 IBM Rational Tau User Guide June 2009



Description of Workflow
Workflow

A series of activities performed by people involved in a project in order 
to obtain a result, normally a working product, according to a process.

Workflows appear as a result of tailoring a generic development process to 
the needs of a specific project. Workflows are thus strongly dependent on 
both the generic development process as well as the tailoring that take place 
in the project start-up. In this chapter the activities are in focus rather than the 
workflow as such.

Normally the roles for the people in a project are specialized to focus on one 
or a few specific activities, for example architect, designer etc.

This workflow description is divided into:

• Requirements analysis activities

• System analysis activities

• System design activities

• Detailed design activities

• Implementation activities

When moving from one phase to another, it is recommended to make a base-
line, to freeze the model for that phase and continue the work in a new model 
in a new project, copying all information from the previous model that is 
useful in the new phase.

It is also worth noting that the division of work into clearly separated devel-
opment phases should only be a means to organize the work and information 
into practically manageable pieces. The number of phases and the distinction 
between them may also vary in different projects and organizations. Another 
factor that reduces the difference between the phases is the capabilities of ad-
vanced modeling languages, such as UML, and the availability of advanced 
tool support. 

With the strong simulation capabilities of UML models, a requirements 
model may actually be executable, thus effectively reducing the gap between 
requirements and implementation.
June 2009 IBM Rational Tau User Guide 47



Chapter 4: Introduction to IBM Rational Tau 4.3
Phase
Mostly used 
diagrams New project wizard

Requirements 
analysis activities

Use case diagram

Sequence diagram

Interaction overview 
diagram

Activity Diagram

Class diagram

UML for Modeling 
or
UML for Model Verification

System analysis 
activities

Use case diagram

Sequence diagram

Interaction overview 
diagram

Activity Diagram

Package diagram

Class diagram

Composite structure di-
agram

State machine diagram

UML for Model Verification

System design ac-
tivities

Use case diagram

Sequence diagram

Interaction overview 
diagram

Activity Diagram

Package diagram

Component diagram

Class diagram

Composite structure di-
agram

State machine diagram

UML for Model Verification
48 IBM Rational Tau User Guide June 2009



Description of Workflow
See also

“Projects tab” on page 2486 in Chapter 95, Dialog Help.

Requirements analysis activities

Overview

The purpose of the requirements analysis is to establish an understanding of 
the application domain and to capture, formalize, analyze and validate the 
user requirements on the system to be built.

Detailed design ac-
tivities

Package diagram

Component diagram

Class diagram

Composite structure di-
agram

State machine diagram

Text diagram

UML for Model Verification

Implementation 
activities

Deployment diagram UML for C Code Generation

UML for C++ Code Generation

System test activi-
ties

Sequence diagram

Composite structure di-
agram

UML for Model Verification

UML for C Code Generation

Figure 3: Overview of the requirements analysis activity

Phase Mostly used 
diagrams

New project wizard

Functional 
requirements

Scenarios

Use cases

Requirements model

Requirements 
Analysis
June 2009 IBM Rational Tau User Guide 49



Chapter 4: Introduction to IBM Rational Tau 4.3
Functional requirements from a requirements’ specification is normally the 
main input for the Requirements Analysis together with the knowledge and 
experience of domain experts.

Identify use cases

Identify a set of use cases that are considered to be sufficient to realize the 
functional requirements of the application within the application domain.

Create a requirements model

The purpose of the requirements model is to identify and document all the 
concepts found during the requirements analysis and to relate these concepts 
to each other.

• Identify sets of classes that are sufficient to realize the functional require-
ments within the application domain.

• Group the identified sets of classes into appropriate separated domains if 
needed and describe the relations between the classes.

• Implement an executable requirements model for each identified domain 
(optional). 

Create scenarios

Establish a set of Interactions (Sequence diagrams, Interaction overview di-
agrams) for the use cases that demonstrate how the class instances identified 
interact to realize the requirements covered by the use cases. A scenario can 
be regarded as an implementation of a use case.

Verification and validation activities
• Verify the requirements by executing the requirement model. (Optional)

• Store the test results as Interactions (Sequence diagrams) (Optional).

Use cases

From the functional requirements, identify a set of important Use Cases and 
the Actors involved in the use cases. Describe this in Use Case diagrams.
50 IBM Rational Tau User Guide June 2009



Description of Workflow
Requirements model

A Requirements Model consists of Class diagrams with the main Classes (in 
a domain context). Include:

• Important active entities, including Actors from the Use Cases

• Important messages as Signals

• Important data (Classes)

Optional: add a simple behavior description in a state-oriented state machine 
for each active entity so that the requirements model is executable. Simulate 
using the Model Verifier.

Scenarios

Detail each use case with a simple Interaction, described in a Sequence dia-
gram.

See also

“Use Case Modeling” on page 212

“Scenario Modeling” on page 219

“Class Modeling” on page 258

System analysis activities

Overview

While the purpose of the requirements analysis is to understand the problem 
to be solved and the requirements this puts on the system, the purpose of the 
system analysis is to understand the architecture of the system itself.
June 2009 IBM Rational Tau User Guide 51



Chapter 4: Introduction to IBM Rational Tau 4.3
Create a system model

The intention with the system model is that it is a means to describe a simple 
logical architecture, that is the main objects that need to be implemented in 
the completed system.

• Determine the classes from the requirements models to be reused in the 
system model.

• Establish a set of new system analysis classes sufficient to realize the re-
quirements concerned with application architecture and high-level tech-
nical architecture within the platform. 

• Combine the new system analysis classes and the re-used classes from 
different requirement models to form one or more system models.

• Implement one or more executable system models for each high-level ar-
chitectural part (optional). 

Refine use cases and scenarios

The purpose of the use cases and scenarios of the system model is to docu-
ment how the logical architecture is capable of implementing the require-
ments.

• Determine requirement analysis use cases that need to be modified as a 
function of the inclusion of high-level technical architecture and applica-
tion architecture considerations.

• Establish a set of new use cases that are needed in addition to the reused 
use cases due to the inclusion of the system analysis requirements within 
the platform.

Figure 4: Overview of the system analysis activity

Scenarios

Use cases

Requirements model

System
Analysis

System model

Scenarios

Use cases
52 IBM Rational Tau User Guide June 2009



Description of Workflow
• Establish a set of Interactions (Sequence diagrams, Interaction overview 
diagrams, Activity diagrams) for each use case that demonstrates how the 
identified classes interact to realize the requirements covered by the use 
case.

Verification and validation activities
• Verify the use cases and scenarios by executing the system model.

• Store the test results as Interactions (Sequence diagrams) (optional).

• Validate the system model.

System model

A System Model typically consists of:

• Package diagrams for Package structure and Package Dependency visu-
alizing the organization of the model.

• Class diagrams for the most important active entities (Active Classes) in 
a system context, that is to say that the system architecture should now 
be considered.

• Class diagrams related with messaging, Interface and Signal definitions 
for the most important messages as well as important message data (pas-
sive Classes and Datatypes).

• Class diagrams for passive data modeling, that is the most important pas-
sive Classes including important Operations and Attributes.

• Composite structure diagrams visualizing a simple architecture and com-
munication structure (Parts and Connectors) for modeled Active Classes.

• State machine diagrams for Active Classes, typically not too detailed, of 
the state-centric kind providing an overview of each state machine 
without defining all details on the transitions. 
It is a good idea to make these State machines complete, that is to say ex-
ecutable so that the model can be simulated using the Model Verifier.

It is not necessary to strictly separate class diagrams into clear categories as 
mentioned above. Often it is more important that the view in each diagram 
makes sense, for example by showing relations between active and passive 
classes. To visualize one definition in several contexts is also a frequently 
used UML technique and the strong, model-driven approach in the UML tool 
set makes it simple to maintain such models.
June 2009 IBM Rational Tau User Guide 53



Chapter 4: Introduction to IBM Rational Tau 4.3
Use cases and scenarios

Update the Use Cases according to the system context of the System Model 
rather that the domain context of the Requirements Model. Add use cases so 
that all functional requirements are covered by Use Cases. 

Scenarios (sequence diagrams) should be attached to each Use Case, pro-
viding a description of how all the active entities (Active Classes) interact in 
order to achieve the goal of the Use Case. If the architecture is complex, it is 
a good idea to have scenarios both on system level (showing the system and 
external Actor communication) as well as detailed level (showing how active 
entities within the system interact with each other and external Actor).

See also

“Scenario Modeling” on page 219

“Package Modeling” on page 251

“Class Modeling” on page 258

“Behavior Modeling” on page 326

System design activities

Overview

The major task of the system design activity is to define the precise architec-
ture of the system.

Figure 5: Overview of the system design activity

Scenarios

Use cases

System model

System
Design

Design model

Scenarios

Use cases
54 IBM Rational Tau User Guide June 2009



Description of Workflow
Create a design model

The intention with the design model during system design is to describe a 
precise architecture.

• Determine the classes from the system models to be reused in the design 
model.

• Establish a set of new system design classes that are sufficient to realize 
the detailed architectural and technical requirements within the technical 
domain.

• Combine the new system design classes and the re-used classes from dif-
ferent system models to form one or more design models.

• Implement one or more executable design models.

• If necessary, establish one or more target models in order to optimize per-
formance.

Refine use cases and scenarios

The purpose of the use cases and scenarios of the design model is to specify 
how the precise architecture is capable of implementing the requirements in 
a more detailed way compared to the system model.

• Determine system analysis use cases that need to be modified as a func-
tion of the inclusion of detailed technical requirements, technical archi-
tecture and application architecture considerations.

• Establish a set of new use cases that are needed in addition to the reused 
use cases due to the inclusion of the system design requirements within 
the platform.

• For each use case, establish a set of Interactions (Sequence diagrams, In-
teraction overview diagrams, Activity diagrams) that demonstrate how 
the identified classes interact to realize the requirements covered by the 
use case.

Verification and validation activities
• Verify the use cases and scenarios by executing the design model.

• Store the test results as Interactions (Sequence diagrams) (optional).

• Validate the design model.
June 2009 IBM Rational Tau User Guide 55



Chapter 4: Introduction to IBM Rational Tau 4.3
Design model

A design model typically consists of:

• Package diagrams for Package structure and Package Dependency visu-
alizing the organization of the model.

• Component diagrams for active entities (Active Classes). Now all active 
entities should be modeled.

• Class diagrams related with messaging, that is all Interfaces with the 
most important Signal definitions as well as important message data 
(passive Classes and Datatypes).

• Class diagrams for passive data modeling, that is the most important pas-
sive Classes including important Operations and Attributes.

• Composite Structure diagrams visualizing a detailed application archi-
tecture and communication structure (Parts and Connectors) for modeled 
Active Classes.

• State machine diagrams for Active Classes, typically not too detailed, of 
the state-centric kind providing an overview of each state machine 
without defining all details on the transitions. It is a good idea to make 
these State machines complete, that is to say executable so that the model 
can be simulated using the Model Verifier.

Use cases and scenarios

Update the Use Cases according to the completed application architecture. 

Update the Scenarios (Sequence diagrams) according to the completed appli-
cation architecture. If the architecture is complex, it is a good idea to have 
scenarios both on system level (showing the system and external Actor com-
munication) as well as on a detailed level (showing how active entities (Ac-
tive Classes) within the system interact with each other and external Actors).

See also

“Package Modeling” on page 251

“Class Modeling” on page 258

“Architecture Modeling” on page 295

“Behavior Modeling” on page 326
56 IBM Rational Tau User Guide June 2009



Description of Workflow
Detailed design activities

Overview

A detailed design activity is often a part of the System Design.

However, there is a point in separating these activities, since many functional 
requirements can be verified before the detailed design has started, by using 
the Model Verifier on the “high-level” System Design.

The purpose of the detailed design is to complete the design model by adding 
detailed behavior and detailed data modeling.

Refining the design model

Now, the design model should be fully specified:

• Complete passive data.

• Complete all operations of passive classes.

• Complete interfaces, messages, message data.

• Complete behavior design, now with transition-centric, detailed transi-
tions.

The detailed scenarios completed in the system design is a very effective 
source of information for completing the behavior design.

Verification and Validation activities
• Validate the detailed design model

• Make sure that all functional requirements (use cases) now have a de-
tailed design.

Design model

A detailed Design Model typically consists of:

• Package diagrams for Package structure and Package Dependency visu-
alizing the organization of the model.

• Component diagrams for active entities (Active Classes). Now all active 
entities should be modeled.

• Class diagrams related with messaging, that is all Interfaces and Signal 
definitions including all message data (passive Classes and Datatypes).
June 2009 IBM Rational Tau User Guide 57



Chapter 4: Introduction to IBM Rational Tau 4.3
• Class diagrams for all passive data, that is passive Classes including all 
Operations and Attributes.

• Composite Structure diagrams visualizing a detailed application archi-
tecture and communication structure (Parts and Connectors) for modeled 
Active Classes.

• State machine diagrams for Active Classes, detailed with complete tran-
sition behavior. Most often this means that a transition-centric presenta-
tion of the State machines is preferred.

• Operation Body or State machine diagrams for all Operations

• In some cases Text diagrams can be used for Operations.

See also

“Class Modeling” on page 258

“Behavior Modeling” on page 326

Implementation activities

Overview

Although this activity is placed after the Detailed Design activity in this 
workflow description, it is recommended to start the activity as early as pos-
sible, in order to get implementation feedback that may affect both the se-
lected application architecture as well as the detailed design.

An incremental approach can assist in getting early implementation feedback 
and is generally recommended.

The Implementation Activity in a project is highly automated. A few steps 
can be identified, though:

Planning the code architecture
• Use deployment diagrams to illustrate relations to hardware or funda-

mental software layers.

• Import external C/C++ APIs into the Model.

• Decide the file structure of the generated code (makefile).

• Select a target environment and application area (example: WIn32, 
threaded application).
58 IBM Rational Tau User Guide June 2009



Description of Workflow
• Tailor Code Generator settings.

Implementation
• Implement the signalling interface to the environment (“Environment 

Functions”).

• Tailor the target integration.

Verification and validation activities
• Debug the signalling interface and all other hand-written code.

• Test.

See also

Chapter 26, Building and Code Generation Overview and Examples

Chapter 27, Building Applications Reference

Chapter 35, C Code Generator Reference

Chapter 15, C/C++ Import

Chapter 52, C++ Application Generator Reference

System test activities

Overview

The purpose of the System Test activity is to use the UML Testing Profile to 
test if the requirements are fulfilled by the UML system created in previous 
activities and that the system behaves as expected.

Figure 6: System test activity

Scenarios

Use cases

System model

System
Test Test model
June 2009 IBM Rational Tau User Guide 59



Chapter 4: Introduction to IBM Rational Tau 4.3
Create test model

A test model typically consists of

• A Test Context class containing 

– composite structure diagram with parts describing the SUT (System 
Under Test) and an instantiation of the test component

– a set of test cases

– the test component

• Dependencies to the UML model produced in previous activities

Creating test cases

If test results (Interactions described in Sequence diagrams) from previous 
activities are saved, these interactions are candidates for test cases. Also the 
scenarios from previous activities are candidates. These interactions should 
be translated to Test Cases and (most likely) refined to be able to be executed.

Test model

A Test Context class is a «Test Context» stereotyped class. The test Compo-
nent is «Test Component» stereotyped class. The parts described by the 
Composite Structure diagram are an instance of the Test Component and a 
«SUT» stereotyped part. The SUT is typically an instance of the top level 
class (the system) produced in the Detailed Design activity. Signals and 
datatypes are typically reused (imported or accessed) from the UML system 
created earlier.

Test cases

Test cases are «Test Case» stereotyped operations on the Test Context class. 
They are typically implemented in Sequence diagrams and specify how the 
SUT should communicate with its environment.

Testing

Testing is done by building the test context class using the C Code Generator 
and running the tests in batch. Failing test cases are debugged using the 
Model Verifier.
60 IBM Rational Tau User Guide June 2009



Description of Workflow
See also

“Creating a test model” on page 1749 in Chapter 61, UML Testing Profile
June 2009 IBM Rational Tau User Guide 61



Chapter 4: Introduction to IBM Rational Tau 4.3
How to Use Help
This help file includes basic and advanced topics covering the supported 
functionality.

Additional product documentation is available in the section “Additional Re-
sources” on page 2509. There you can find tutorials, language descriptions, 
the installation guide and links to external sites, for instance the IBM Ra-
tional Tau Support site.

Additional documentation in Adobe PDF format is also available on the in-
stallation CD.

Navigate in the help file

The help file contains functionality that helps you to easier find the informa-
tion that you are looking for:

• “Search” on page 62

• “Search highlighting” on page 63

• “Index” on page 63

• “Locate search or index results” on page 64

• “Bookmark topics in the help file” on page 64

• “Print help topics” on page 64

Search

To perform a full-text search:

1. In the help viewer, click the Search tab.

2. Type your search string in the Type in the word(s) to search for field. 
You may use regular expressions, operators, and nested expressions 
when searching. 

3. Optionally, you may check some of the following options: Search pre-
vious result, Match similar words and Search titles only.

4. Click List Topics.

5. To open a topic, double-click the topic in the Select topic list or select a 
topic and click Display.
62 IBM Rational Tau User Guide June 2009

http://support.telelogic.com/en/tau/" target="_blank
http://support.telelogic.com/en/tau/" target="_blank


How to Use Help
Example 1: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

To search for words beginning with “link”, type the following in the search 
field:

link*

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Search highlighting

The words that you are searching for are highlighted on all pages where they 
are found. If you want to, you can turn off this functionality.

Turn off search highlighting:

1. In the help viewer, click the Options button and then click Search High-
light Off.

2. If you have already performed a search, click the Display button in the 
help viewer and the search highlighting disappear.

The search highlighting functionality is now turned off until you enable it 
again.

Turn on search highlighting:

1. In the help viewer, click the Options button and then click Search High-
light On.

2. If you have already performed a search, click the Display button in the 
help viewer and the search highlighting re-appear.

The search highlighting functionality is now turned on until you disable it 
again.

Index

To see the list of index entries, select the Index tab. To find the entry you are 
looking for, type the first letters of the word or scroll the list. To view the 
entry, double-click the entry or select the entry and click Display.
June 2009 IBM Rational Tau User Guide 63



Chapter 4: Introduction to IBM Rational Tau 4.3
Locate search or index results

When you are using the search or the index functionality, the topic you are 
looking for will be displayed in the right-hand window. To locate where this 
topic is listed in the table of contents, click the Locate button. This allows 
you to easily find related topics or to learn where this topic is located the next 
time you are looking for it.

Bookmark topics in the help file

If you know that there are topics that you will refer to often or that there are 
topics that you consider important for your work, you can bookmark them as 
you would do in a regular web browser.

Bookmark a topic:

1. Find your topic using the Contents, Index or Search tabs.

2. Click the Favorites tab. The name of the topic is listed in the Current 
topic field.

3. Click Add. The topic is now displayed in the topics list. 

Print help topics

You can print a single topic or you can select to print several topics within 
the same chapter. 

Print an active topic:

• Right-click the displayed topic in the right-hand window and click Print. 
The print dialog opens.

Print a single topic from the table of contents

1. Right-click the topic window in the table of contents and click Print. The 
Print Topics dialog opens. 

2. Click Print the selected topic and click OK. The Print dialog opens.

Print multiple topics:

1. Right-click a book icon in the table of contents and click Print. The Print 
Topics dialog opens.

2. Click Print the selected heading and all sub-topics and click OK. The 
print dialog opens.
64 IBM Rational Tau User Guide June 2009



How to Use Help
Search syntax in help

The help viewer supports full text search, and you can search for any combi-
nation of letters (a-z) and numbers (0-9). Words like “the”, “a”, “and”, “but”, 
are reserved and cannot be searched for. In addition, you cannot search for 
punctuation marks such as colon (:), semicolon (;), hyphen (-) and period (.).

You can group search elements by using quotes and parenthesis.

Match similar words

The Search tab in the help viewer includes a Match similar words option. 
If you select this, you will be able to find all occurrences of a word, including 
common suffixes. For example, if you search for “run”, the words “run”, 
“running”, and “runner” will be found, but not “runtime”.

Regular expressions

The following regular expressions may be used when searching the help:

• * for matching 0 or more characters.

• ? for matching 1 characters.

• A string within quotes (“ab cd”) for matching the string literally.

Operators

You may use the following operators to refine a search in the help: AND, 
OR, NOT, and NEAR. The search string is evaluated from left to right. See 
table below for examples:

Search for this: Type this in the search field

Topics containing “analyze”, “anal-
ysis”, “analyses”, “analyzed”, and 
“analyzing”

analy*

Topics containing “analyzer” and 
“analyzed”, but not “analyze” or 
“analyzers”

analyze?

Topics containing the literal phrase 
“analyze and generate”

“analyze and generate”
June 2009 IBM Rational Tau User Guide 65



Chapter 4: Introduction to IBM Rational Tau 4.3
Nested expressions

By using parentheses, you may nest expressions to perform a complex search 
in the help. An expression within parentheses will be evaluated first, before 
the rest of the search expression. Expressions may not be nested more than 5 
levels.

Search for this: Type this in the search field

Topics containing both “work-
space” and “file”

workspace AND file

or

workspace & file

or

workspace file

Topics containing either “work-
space” or “file”

workspace OR file

or

workspace | file

Topics containing “workspace” but 
not “file”

workspace NOT file

or

workspace | file

Topics containing “workspace” and 
“file” close together, that is “work-
space” within 8 words of “file”

workspace NEAR file

Topics containing “workspace” but 
not “file”, or topics containing 
“workspace” but not “directory”

workspace NOT file OR directory
66 IBM Rational Tau User Guide June 2009



How to Use Help
Search for this: Type this in the search field

Topics containing “workspace” 
without either of “file” or “direc-
tory”

workspace NOT (file OR directory)

Topics containing “workspace” 
with and “file” and “project” close 
together; or topics containing 
“workspace” with “directory” and 
“project” close together

workspace AND ((file OR direc-
tory) NEAR project)
June 2009 IBM Rational Tau User Guide 67



Chapter 4: Introduction to IBM Rational Tau 4.3
68 IBM Rational Tau User Guide June 2009



UML Modeling

The chapters that are listed under UML Modeling describe functionality that 
is exclusive to UML projects. 
June 2009 IBM Rational Tau User Guide 69



Chapter : 
70 IBM Rational Tau User Guide June 2009



6
Working with Models

This chapter is intended to give an introduction to model-based development. 
It contains the background to how model bindings are maintained. It explains 
the syntax color scheme for text information. 

See also

“Description of Workflow” on page 46 

“Working with Diagrams” on page 165

“UML Language Guide” on page 195
June 2009 IBM Rational Tau User Guide 71



Chapter 6: Working with Models
Models and Model Elements

Model-based development

The model-based nature of the UML tool set offers strong mechanisms to aid 
you in creating and maintaining complex models.

There are two different ways of working:

• diagram-centric, where you create your model as you are creating and 
editing the diagrams of the model.

• model-centric, where you create your model in the Model View browser 
and afterwards define your diagram views.

It is of course also possible to combine these two paradigms.

Diagram-centric workflow

The diagram-centric workflow is well known for users experienced with 
graphical languages. An example how this is carried out can look like the fol-
lowing:

• Create a diagram.

• Create the entities in that diagram.

• For the defined entities, create new diagrams that describe these entities 
in further detail.

A benefit with this approach is that you have a graphical context when you 
create new entities, which makes it easier to get it right.

Model-centric workflow

The model centric workflow is not dependent on the graphical presentations 
that may or may not exist for the definitions in a model. Example of work-
flow:

• Define model elements in the model browser.

• New model elements are placed within this model structure.

• Diagrams are created whenever needed or wanted to visualize relevant 
parts of the model.
72 IBM Rational Tau User Guide June 2009



Models and Model Elements
• Visualizing entities in the diagrams is easily done by dragging an element 
from the Model View browser to the diagram.

• Model elements may be visualized several times, and in different dia-
gram views.

One consequence of model-based development is that it is sometimes op-
tional to describe entities within diagrams. If completeness of the diagram 
representation of the model is important, the tool can be configured to check 
for entities that are not represented graphically.

Model element and Presentation element

Model element

When creating a new definition by entering a new name on either a new ob-
ject or an existing object, the tool will recognize that it does not exist in the 
model. This will create a new Model element. This model element will be 
visible in the Model view of the Workspace window.

Presentation element

A symbol in a diagram is a Presentation element, which is based on a model 
element. There can in many cases be any number of presentation elements to 
a given model element. 

Element properties

Changing properties on a presentation element, like for example the name of 
an attribute in a class symbol, this change will also take place in other pre-
sentations of the class. The change has been done on the model element, and 
all presentations that show the affected property will be updated.

If you add a new attribute to the class (either in the model browser or in one 
of the presented class symbols), this will not automatically appear in all pre-
sentations. The attribute is of course available in the model so that it can be 
conveniently added in the class symbols where it is wanted to visualize this 
property.

Delete 

If you delete an attribute in a class symbol, this will only remove the presen-
tation of the attribute in that symbol. 
June 2009 IBM Rational Tau User Guide 73



Chapter 6: Working with Models
Delete from Model 

When you delete the attribute in the Model View, this will delete the model 
element for the attribute and subsequently all presentation elements of the at-
tribute will disappear (it is also possible to right-click on a presentation ele-
ment in a diagram and use the shortcut menu command Delete from Model). 

If you delete a class that is referenced in other places, for example as an at-
tribute type in other classes, these references will become unbound when the 
class is deleted. This is immediately reflected in the diagrams (by a red 
wave).

Model element

Binding

When creating a new definition by entering a new name, the tool will recog-
nize that it does not exist in the model. This is indicated by the text color, 
which is gray. If you want to use this name for a definition of a new model 
element, you have to commit the name (by simply pressing return).

When referencing an existing definition, the tool binds the typed name to the 
model element. This is indicated by the text color changing. If the name 
cannot be resolved (the name can be misspelled or the definition may not be 
visible according to the visibility rules), this is indicated by a red wave below 
the symbol.

GUID

A UML entity is by default given a unique randomly generated identifier, 
called a Globally unique identifier, GUID. A GUID remains unchanged for 
the entire lifetime of an entity.

Automatic naming of new elements

When adding new symbols that can define model elements, a default name 
is created for the symbol so that the name is unique in the current scope. You 
can just start typing (without selecting the text) to change the given name to 
your wanted name.
74 IBM Rational Tau User Guide June 2009



Models and Model Elements
Copying and moving model elements

A model element can be copied and pasted. 

If you copy a symbol that references a model element and paste this symbol, 
this will just give a new presentation of the existing model element. 
Changing the name in one of these two symbols will also change the name in 
the other symbol: they are both presentations of the same element.

If you copy a model element in the browser, you can paste this in another 
place (here it is a copy of the model element itself). If you paste into the same 
scope you will have two conflicting definitions with the same name, some-
thing the checker will report. If you change the name of one of the model el-
ements, the conflict will be resolved.

You can also copy model elements between projects. A structured way to 
reuse definitions between projects is to put them in packages, possibly de-
fined in the same model (.u2) file.

Just as model elements can be copied, they can also be moved, typically by 
dragging from one scope to another or from one project to another.It is also 
possible to do a save of an element in separate file, see “Save in New File” 
on page 168 in Chapter 7, Working with Diagrams. 

Model in several files

It is possible to split the model in several files automatically by selecting a 
package or class in the browser and using the command Auto create files in 
the context sensitive menu. The model will now be split into several files 
with class as the finest granularity.

To enable this you go to the Tools menu and point to Options. Go to the 
UML Basic Editing tab and set the option Default Create file mode to 
Package and Classes. 

Auto create files is active for elements that can be saved to a new file. If 
Auto create files is selected all classes and packages below the selected ele-
ment are stored in separate files. The files are given the same name as the root 
element. If a file with this name already exists in the project then a number 
is added to the file name.

Auto create files is also available for project nodes (.ttp) and model nodes. 
Auto create files is not active for Libraries and Predefined packages.
June 2009 IBM Rational Tau User Guide 75



Chapter 6: Working with Models
Text Highlighting

Syntax highlighting

These are the main categories of syntax colored text tokens:

In these categories there are subcategories that are based on the actual con-
tents of the text or information added in the later passes (detailed below). 
Pointing on a token with the mouse gives a tool tip indicating semantic infor-
mation about the token, such as the token type, or the type of object repre-
sented by the token. For instance: “‘IfAction’, class X, 2 references are cur-
rently bound to this object, CTRL + Click to navigate”.

Syntax error markers

If the text contains a syntax error, the text contains markers at the position of 
the error. If pointing to the position of the marker, a tool-tip provides the 
syntax error message, for example: 
‘Syntax Error, found token?, expected Name’.

Category Name Default color palette

Names Black, dark red and gray

Literals Brown

Keywords Blue (slightly violet)

Comments Green

Errors Red

Brackets, Braces, 
Parenthesis, etc.

Black

Figure 7: Example of syntax text coloring

const Integer i = 3;
const Duration DefaultTimeout = 10;
signal ack(Boolean); /*  comment */
timer tim () = DefaultTimeout;
76 IBM Rational Tau User Guide June 2009



Models and Model Elements
The markers are in the shape of upwards-pointing triangles of a height not 
exceeding half the height of the text, and with a center near the position of 
the text base line. The color of the marker depends on the severity of the 
error:

Semantic highlighting

Names in text are subject to additional highlighting rules, extending the 
Syntax highlighting.

• Rules for name text coloring:

Severity Color

Fatal error Orange

Error Red

Warning Yellow

Information Light blue

Figure 8: Syntax error markers

Color Rule Description Highlighting

A name represents a definition Name is in black color

A name represents an identifier bound to a 
Type

Name is in dark green color

A name represents an identifier bound to an 
Event Class (Signal, Timer and Operation)

Name is in dark blue color

A name represents an identifier bound to an 
Attribute, Variable or Parameter

Name is in dark red color

A name cannot be determined to represent 
either (syntax error etc.)

Name is in dark gray color

const ==Integer i = 3;
June 2009 IBM Rational Tau User Guide 77



Chapter 6: Working with Models
• Rules for name underlining:

Pointing the mouse at a highlighted name indicates the current status of the 
text in a tool tip. In particular this diagnoses the situation in some way if 
pointing to a name with one such underline. For example: “This reference is 
currently not bound, see AutoCheck log for details.” 

Object Location

In several places in a UML model, it is possible to locate a definition, for ex-
ample by double-clicking an object in the Model View or in an output pane, 
or by choosing the Locate command for an object in an output pane. When 
this is performed, the correct diagram appears with the definition highlighted 
by yellow text background. Alternatively, if there are several possible pre-
sentations of the definition (or none), the Create Presentation is activated. 

Name navigation

It is possible to navigate on names by holding CTRL and clicking on non-
gray representations of names with no underline. The tool-tip also indicates 
this possibility.

Properties 

The complete set of properties of a model element is not always possible to 
edit through its presentation elements in diagrams. For this purpose there is 
a Properties Editor in which it is possible to view and edit the properties of a 

Underline Rule Description Highlighting

Unbound identifier A red saw-tooth-shaped underline

Obsolete identifier A green saw-tooth-shaped underline

Figure 9: Location marker

String<Pid> ListOfServers;
 

78 IBM Rational Tau User Guide June 2009



Models and Model Elements
model element. The Properties editor is opened from the shortcut menu 
(right-click on an element and point to Properties...), or press ALT + 
ENTER. 

Model checking

Autocheck

As you are defining your model, it is continuously being checked by the tool. 
The Autocheck tab in the Output window is updated, whenever you modify 
the model, and presents a list of Errors and warnings.

Due to the design of the checking functionality, you will not have to wait for 
your large and complex model to be analyzed.

Editor feedback

You will get instant feedback as you are editing your diagrams. If you type 
the wrong syntax, a syntax error marker will appear at the position where the 
error is made. A tool tip will also indicate the nature of the error (for example 
syntax error).

If you enter a name that is not known (for example misspelled) or a name that 
is not visible according to the visibility rules, this is indicated by a saw-tooth-
shaped red line below the name.

The normal behavior is that when a name binds to an existing definition a 
Semantic highlighting will occur, resulting in a color change of the text. 

Syntax parse

When you edit text in diagram symbols, if the text is parsed correctly, the text 
is added to the model. After that, the text will be written back to the diagram 
symbol again based on the model.

This Text parsing is a consequence of the tight model-based approach. In 
some cases it will be written to one specific (of several possible) syntax al-
ternative, thus not preserving your exact formatting. 
June 2009 IBM Rational Tau User Guide 79



Chapter 6: Working with Models
Restore model (F8)

It is possible to restore a model during text editing when the changes are not 
found correct by the syntax parser. This is done with the command F8, while 
the selection for the syntax error is still active in text edit. This will restore 
the text from the model information. 

This command should be used with care. It will erase any text that is not 
bound to the model, like comments. When the model is first created and no 
correct model has been parsed, this command will erase everything. 

Name support

There are different ways you can get help from the tool when you want to ref-
erence a definition.

• Create Presentation lets you browse and navigate quickly through your 
complete model.

• Name completion

After typing the first letters of the name, for example ca, pressing CTRL 
+ SPACEBAR the tool will try to complete the name to an existing 
name, for example card. If there are multiple matches a Name comple-
tion scroll menu will open. Some special cases can be identified

– Typing after a period ('.'). Name completion will list candidates 
matching the written characters that are local or inherited members 
(structural features or event classes) to the type of the left side expres-
sion.

– Typing after a scope qualifier ('::'). Name completion will list candi-
dates that are in the namespace of the left side expression.

• Reference existing

When creating a new symbol (that can define or reference a model ele-
ment) using the Diagram element creation toolbar and pressing the right 
mouse button in the diagram, the shortcut menu appears, with a submenu 
called Reference existing. This submenu contains a list of all visible def-
initions of the symbol kind, so that the wanted identifier can be chosen.

Checking a complete model

Apart from the Autocheck, a model check can also be invoked manually. To 
check a complete model use Check all quick button (in toolbar Analyzing).
80 IBM Rational Tau User Guide June 2009



Models and Diagrams
Checking a part of a model

Select the part in the Model View to be checked. Use Check selection quick 
button (in toolbar Analyzing). 

Errors and warnings

If any problems are detected during a check of the model, this will be re-
ported in the Check tab in the Output window. Each problem (warnings and 
errors) can normally be traced back to its origin, either in a diagram, or in the 
Model View browser. This is done by double-clicking the message or by se-
lecting the message and right-click, then choose Locate in the shortcut menu. 

Models and Diagrams

Diagrams

Different views of the model

Diagrams are presentations of a model, typically focusing on one particular 
aspect and part of the model. One of the powers of UML is the capability to 
give different views of a model. This means that model elements are refer-
enced in several places. Normally, this could be a problem when maintaining 
the model, but with the strong model-based tool support, all references are 
automatically kept up-to-date, that is if properties of a model element 
change, these changes will be reflected in all places where the element is ref-
erenced.

Presentation element

Symbols

Symbols are presentation elements that differ from model elements. If a 
symbol is deleted, the model element is still present in the model. The model 
element will be deleted when one of the following applies:

• the element is deleted in the Model View browser

• the command Delete from Model is performed on the symbol.

If you change the name of an attribute in a class symbol, this change will also 
take place in other presentations of the class. 
June 2009 IBM Rational Tau User Guide 81



Chapter 6: Working with Models
If you add a new attribute to the class (either in the model browser or in one 
of the presented class symbols), this will not automatically appear in all pre-
sentations. The attribute is of course available in the model so that it can be 
conveniently added in the class symbols where it is wanted to visualize this 
property.

If you Delete an attribute in a class symbol, this will only remove the presen-
tation of the attribute in that symbol. If you delete the attribute in the Model 
View browser, all presentations of the attribute in different class symbols 
will disappear.

If you delete the class itself in the Model View browser, the symbols refer-
ring to this class will disappear from all diagrams. If the class is referenced 
in other places, for example as an attribute type in other classes, these refer-
ences will become unbound when the class is deleted. This is immediately 
reflected in the diagrams (by a red wave) and also by Autocheck.
82 IBM Rational Tau User Guide June 2009



Properties Editor
Properties Editor

Opening the Properties Editor

The Properties Editor is opened by selecting an element in the Model View 
or in a diagram, and selecting “Properties...” in the shortcut menu. The Prop-
erties Editor will open as a docked window. Similar to other editors it can be 
undocked, or docked at a different location by right-clicking in its title bar. 
The Properties Editor will stay open until you close it. 

Multiple windows 

It is possible to open more than one Properties Editor. This can for example 
be useful when comparing the values of properties on different elements. To 
enable this you must deactivate Track selection for one of the Properties Ed-
itor windows. 

The Properties Editor View

The view of the Properties Editor consists of the following areas from top to 
bottom (see Figure 10 on page 84):

• In the top left of the window is shown the selected element, element name 
and icon. 

• An “Options...” button for setting Properties Editor Options for the cur-
rent window. 

• A Filter selection menu that controls which properties of the element that 
are displayed.

• A “Stereotypes...” button for controlling which stereotypes that are ap-
plied to the element. The dialog that is opened when pressing this button 
is the same as is opened when the “Stereotypes...” menu item is chosen 
in the shortcut menu of an element.

• Controls for viewing and editing properties of the element. This area is 
dynamically populated with controls based on the edited element and the 
selected filter.
June 2009 IBM Rational Tau User Guide 83



Chapter 6: Working with Models
The Filter list consists of the following items (not necessarily in this order 
though):

• Name of the Metaclass of the edited element.
When this item is selected the Properties Editor will display the Metafea-
ture values of the element (see “Different Kinds of Properties” on page 
85).

• Name of each stereotype that is applied to the edited element.
This includes both stereotypes with optional (0..1) and non-optional (1) 
extension to their metaclass. See “Extensibility” on page 382 for more in-
formation about stereotype extensions. However, hidden stereotypes (a 
stereotype which has the <<hidden>> stereotype applied) are not listed.

Figure 10: Properties editor.

Edited element

Options button

Stereotypes button

Filter list

Properties controls
84 IBM Rational Tau User Guide June 2009



Properties Editor
• “Comment” 
When this item is selected the Properties Editor will display the comment 
that is attached to the edited element. If no comment is attached, a button 
will appear that lets you create a comment for the element. If multiple 
comments are attached to the element, the first comment will be dis-
played.

• “All Properties” 
When this item is selected the set of properties is not filtered, and the 
Properties Editor will display all properties for the edited element. The 
order of the property controls will be the same as the order of the corre-
sponding items in the Filter list.

Properties Editor view when selecting an instance

When an instance is selected some of the standard controls of the Properties 
Editor view described above no longer make sense, and will therefore be re-
moved:

• The Stereotypes button is removed, because it is not possible to apply ste-
reotypes on instances.

• The Options button is removed, because some options are not applicable 
for instances.

• The Filter list is replaced with information about the signature (e.g. a 
class) of the instance.

The typical case when you will see this modified Properties Editor view is 
when an instance is selected in the Model View, for example a stereotype in-
stance. However, an instance can also be selected when editing a tagged 
value for an attribute typed by a structured type, such as a class.

Different Kinds of Properties

There are in principle two different kinds of properties that can be associated 
with the selected element, Metafeature values and Tagged values. The Prop-
erties Editor can edit both kinds of properties.

Metafeature values

These are values for the metafeatures of the element’s Metaclass.
The set of metafeatures for an element is fixed (and to some extent dictated 
by the UML standard), so it is not possible to add new metafeatures. The ex-
June 2009 IBM Rational Tau User Guide 85



Chapter 6: Working with Models
isting set of metafeatures can however be filtered so that only values for some 
metafeatures are displayed in the Properties Editor.
An example of a metafeature value is the “Active” property of a class.

Tagged values

These are values for attributes of the stereotypes that are applied to the ele-
ment. Contrary to Metafeature values the number of tagged values on an el-
ement can be arbitrary large since it is possible to apply any number of ste-
reotypes on an element and each of these stereotypes may have any number 
of attributes.
An example of a tagged value is the “Icon File” property that lets you specify 
an icon to be displayed for a symbol. Another example is shown in Figure 14 
on page 92.

Properties Editor Options

The Properties Editor Options dialog is reached from the “Options” button of 
the Properties Editor, see Figure 11 on page 87. The options that are set in 
this dialog only affects the current Properties Editor, and only as long as it 
stays open. This means that it is possible to have two different Properties Ed-
itors open each of which uses a different set of options.

Note
Some of the options are also available in the general Options, allowing you 
to set and store options for all Properties Editors that are opened. The 
values of some options can also be modified using the General Shortcut 
Menu of the Properties Editor.
86 IBM Rational Tau User Guide June 2009



Properties Editor
View

By default the Properties Editor uses the Control View for editing property 
values. This view contains controls for editing element properties in form of 
check boxes, pull-down menus etc. For Tagged values textual editing in 
UML syntax is also possible. This is supported by using the Text View. 

Textual editing has the main benefit of giving a compact description of 
tagged values. Furthermore it is also easier to copy tagged values from one 
Properties Editor to another or from a text diagram or text symbol if Text 
View is selected. An alternative to using the Text View for editing tagged 
values of an element is to use a Stereotype Instance symbol in a diagram.

Text field values entered in the Control view will be committed to the model 
when you leave edit mode for the field.

Property view

The Properties Editor can be customized using a Metamodel. Such a meta-
model controls for example which metafeatures that are available for each 
Metaclass, and the Properties Editor will use this information when deciding 
which properties to display for an element. See “Customizing the Properties 
Editor” on page 94 for more information on how to use metamodels.

Figure 11: Options dialog for Properties editor.
June 2009 IBM Rational Tau User Guide 87



Chapter 6: Working with Models
Track selection

By default the Properties Editor will show properties for the element that is 
selected in the Model View or in the diagrams. Sometimes it is useful to turn 
off this selection tracking to be able to compare the properties of two dif-
ferent elements. This is done by opening the Properties editor for the element 
you want to be fixed. Then point to the Options... button and in the dialog 
make sure that Track selection is not selected. Now you can open another 
Properties editor for any other element, this new properties window will then 
track your selection in the model. 

Edit properties of symbols/lines

If a symbol or line is selected the Properties Editor will by default show the 
properties for the model element that corresponds to that symbol or line. In 
order to show the properties of the selected symbol or line instead this option 
should be selected. 

For example, if a class symbol is selected, the Properties Editor will normally 
show the properties for the corresponding class. However, if the Edit prop-
erties of symbols/lines option is set, the properties for the class symbol will 
be shown instead.

Preferred filter

This option controls which filter item that is the preferred when a new ele-
ment is selected. Available items are Metaclass, Stereotype, Comment and 
All Properties. The option will take effect the next time the edited item is 
changed.

General Shortcut Menu 

The Properties Editor has a shortcut menu that will appear if the right mouse 
button is clicked in the editor view outside a control. The menu is shown in 
Figure 12 on page 89.
88 IBM Rational Tau User Guide June 2009



Properties Editor
Update View

Refreshes the Properties Editor view. The Properties Editor will normally 
update its view automatically if values are changed from outside the Proper-
ties Editor. However, there are situations when it is necessary to force an up-
date, for example if new attributes are added to an applied stereotype whose 
attribute values are currently displayed, or if the active property Metamodel 
is changed when the Properties Editor stays open.

View

This menu item is a shortcut for the corresponding option in the Options di-
alog, see “Properties Editor Options” on page 86.

Track Selection

This menu item is a shortcut for the corresponding option in the Options di-
alog, see “Properties Editor Options” on page 86.

Delete Instance

This menu item is available when editing Tagged values for one single ap-
plied stereotype. It will delete the entire stereotype instance, effectively re-
moving all tagged values contained in that instance. It can be seen as a 
shortcut for opening the “Stereotypes” dialog and removing the edited ste-
reotype from the list of applied stereotypes.

Figure 12: Shortcut menu in Properties editor.
June 2009 IBM Rational Tau User Guide 89



Chapter 6: Working with Models
Delete All Values

This menu item will delete the values of all displayed properties. Those prop-
erties that have a default value will obtain that value, others will be unspeci-
fied. In the case of editing Tagged values, this menu item will remove all 
tagged values, but keep the applied stereotype instance.

Goto Owner

This is a convenient shortcut for going to the property page of the edited el-
ement’s owner. For example, if the properties of a class attribute is edited, 
“Goto Owner” will display the properties for the attribute’s owner, i.e. the 
class.

Note
Some menu items of the Properties Editor shortcut menu are not available 
when an instance is selected for editing.

Control Shortcut Menu 

There is also a shortcut menu for each property control. The exact contents 
of this menu depends on the kind of property control. For example the edit 
controls have the standard Cut/Copy/Paste menu items. The menu items 
shown in Figure 13 on page 90 are common for all property controls.

Delete Value

This menu item will delete the value of the property control. If the property 
has a default value, it will obtain that default value, otherwise it will get an 
unspecified value.

Figure 13: Property control, shortcut menu example.
90 IBM Rational Tau User Guide June 2009



Properties Editor
Goto Value

The list controls may show a value that is a list of other elements in the 
model. For such controls the Goto Value menu item will navigate to the se-
lected element of the list. 

For example, most elements have a Comments list which display the list of 
all comments that are attached to the edited element. If one of these com-
ments are selected, the Goto Value menu item will be enabled and if chosen 
the Properties Editor will display the properties of the selected Comment in-
stead (it typically just has one property - the comment text).

What’s This?

If the attribute that corresponds to the property control (i.e. an attribute in a 
stereotype or in a Metaclass) has a comment attached, this menu item will be 
enabled. If chosen, that comment will be displayed in a tool tip. Stereotype 
and Metamodel designers should use the possibility to add comments to ste-
reotype and metaclass attributes in order to help the user of the stereotype or 
metaclass to know which value that should be entered in the property control. 

For certain controls (for example those showing Metafeature values) a stan-
dard What’s This? text may be displayed even if the attribute has no com-
ment attached. Such a text appears when the value to be entered in the control 
is text that is translated into model elements. The tool tip then displays the 
kind of text that should be entered into the control. For example, if a UML 
expression should be entered in the control the tool tip may say “Expression”.

Color Codes 

When editing Tagged values (i.e. not Metafeature values) the Properties Ed-
itor uses a color coding scheme for showing the status of a tagged value. 

A tagged value that has been specified explicitly in the applied stereotype in-
stance is indicated by displaying the property control in a white color.

A tagged value that is unspecified in the stereotype instance, but for which 
the corresponding stereotype attribute has a default value, is indicated by dis-
playing the property control in a green color.

A tagged value that is unspecified in the stereotype instance, and for which 
the corresponding stereotype attribute has no default value specified, is indi-
cated by displaying the property control in a yellow color.
June 2009 IBM Rational Tau User Guide 91



Chapter 6: Working with Models
These color codes should be used by the designer of a stereotype, to express 
the intent of the stereotype attributes to the user of the stereotype. A green 
value signals that it is optional to specify a value for the attribute, since there 
is an appropriate default value. A yellow value signals that the user should 
specify a value, since no appropriate default value is available for that partic-
ular attribute. 

Example 2: Stereotype with colored attribute fields –––––––––––––––––––––––––

Consider a stereotype with three attributes. In Figure 14 on page 92 the ste-
reotype MyStereo is applied to a class X. The user specifies a value for the 
second attribute, thus the color for this field will change from yellow to 
white.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Another colorization that is used is to show whether the text of a control con-
tains a syntax error. Such syntax checks are made for all controls whose text 
must comply with the U2 textual syntax grammar. Text containing a syntax 

Figure 14: Stereotype with attributes.
92 IBM Rational Tau User Guide June 2009



Properties Editor
error will be shown in red, while correct text will be black. If you leave ed-
iting while the text for such a control is red, the value will go back to its pre-
viously correct value. This colorization is thus a help to avoid accidentally 
loosing information while editing.

Example 3: Syntax error colorization in the Properties Editor–––––––––––––––––

The ‘Realizes’ metafeature of a Port expects a list of identifiers. The current 
text (see Figure 15 on page 93) for the metafeature contains a syntax error 
since ‘signal’ is a UML keyword. Hence, if leaving edit mode now, that value 
will go back to the previously correct value (whatever that is).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 15: Correct and incorrect metafeature values.
June 2009 IBM Rational Tau User Guide 93



Chapter 6: Working with Models
Customizing the Properties Editor
When designing a stereotype to be applied to an element, two user roles can 
be identified; the designer of the stereotype who decides which attributes the 
stereotype shall have, and the user of the stereotype who applies it to an ele-
ment and specifies Tagged values for the stereotype attributes. Although 
these roles could be possessed by the same individual it is very common that 
the designer and the user of a stereotype are two different people.

This section will address the designer role, describing how to design a new 
stereotype or Metaclass. This also includes how to utilize the various possi-
bilities for customizing the Properties Editor to edit instances of these stereo-
types and metaclasses in the way the designer wants.

The Properties Editor uses a profile to control most of its customization, 
called the TTDExtensionManagement Profile, and is available in the Library 
folder of any model. 

Designing a Stereotype

The following steps should be taken in order to design a stereotype for use 
with the Properties Editor:

• Decide where to place the definition of the new stereotype. If the stereo-
type is only intended to be used locally within the current project, it could 
be added in the same file as the elements on which it should be applied. 
However, it is typical that a stereotype shall be used in multiple projects, 
and then it should be placed in a package that is stored in a file of its own. 
Such a reusable package with stereotypes is typically a so called profile 
package. See “Add-Ins” on page 2017 for more information on how to 
load such a package as a library in the tool.

• Give the stereotype a good name. The name of the stereotype will appear 
in the Stereotypes dialog, in the filter list of the Properties Editor and in 
some symbols in the diagrams. Sometimes it can be useful to use the 
TTDExtensionManagement::instancePresentation stereotype in 
order to specify a more user-friendly display name for the stereotype. 
Such a specified display name will be shown in the Stereotypes dialog 
and in the filter list of the Properties Editor. See “TTDExtensionManage-
ment Profile” on page 99 for more information.
94 IBM Rational Tau User Guide June 2009



Customizing the Properties Editor
• Make a comment for the stereotype. This comment should describe the 
purpose of the stereotype, any constraints on elements onto which it can 
be applied and so on. The comment will be displayed at the bottom of the 
Stereotypes dialog, when the stereotype is selected. It will also be dis-
played as a tool tip for presentations of the stereotype.

• Add attributes with appropriate types and multiplicities to the stereo-
types. A stereotype attribute may have any type and Multiplicity, but you 
should be aware of the subset of types and multiplicities that are sup-
ported by the Properties Editor when using its Control View for editing. 
If an attribute has a non-supported type or multiplicity, values for that at-
tribute cannot be edited in the Control View. Instead the Text View has 
to be used. 

The table below specifies the supported combinations of types and multiplic-
ities, and which graphical control that will be used in each case. See also the 
table in section “Designing a Metaclass” on page 97 in Chapter 6, Working 
with Models for a listing of the supported combinations of types and multi-
plicities that are applicable for attributes in metaclasses only. 

Attribute type and multiplicity Property control

Boolean

Single multiplicity

CheckBox

Charstring

Single multiplicity

EditControl

Charstring

Non-single multiplicity

EditList

Enumeration

Single multiplicity

DropDownMenu
(one item for each literal)

Enumeration

Non-single multiplicity

CheckBoxList

(one check box for each lit-
eral)

Structured type (e.g. a class)
Non-optional, single multiplicity (1)

Attribute is a part (composition)

Group

(with one subcontrol for 
each attribute of the struc-
tured type)
June 2009 IBM Rational Tau User Guide 95



Chapter 6: Working with Models
Naturally, a syntype of any of the above mentioned types are also supported.

• In case the default control for an attribute is not appropriate you may 
apply the TTDExtensionManagement::extensionPresentation ste-
reotype to an attribute, specifying a custom control as a tagged value. See 
“TTDExtensionManagement Profile” on page 99 for more information. 

• It is possible to add additional “non-value” controls to the property page 
of the stereotype. For example you could add a static text or a button to 
the property page. This is done by applying the 
TTDExtensionManagement::instancePresentation stereotype to 
the stereotype and specifying the additional controls as Tagged values for 
the nonValueControls attribute.

• Use the possibility to attach a comment to each stereotype attribute. The 
comment text will be visible to the user of the stereotype in the What’s 
This shortcut menu item on the control that corresponds to the attribute.

• Consider the possibility of using inheritance between stereotypes. The 
property page for the derived stereotype will include all base stereotype 
attributes followed by the attributes of the derived stereotype.

Structured type (e.g. a class)
Optional, single multiplicity (0..1)

InstanceEditControl

Structured type (e.g. a class)
Non-single multiplicity

InstanceEditList

Metaclass type
Single multiplicity
Reference

DropDownMenu
(one item for each visible 
definition of the metaclass)

Metaclass type
Non-single multiplicity
Reference

EditControl

All other types

Single multiplicity

EditControl (expecting a U2 
expression)

All other types

Non-single multiplicity

EditControl (expecting a 
comma-separated list of U2 
expressions)

Attribute type and multiplicity Property control
96 IBM Rational Tau User Guide June 2009



Customizing the Properties Editor
• Specify the kind of elements onto which the stereotype shall be appli-
cable. This is done by establishing an Extension between the stereotype 
and a Metaclass. The meaning of this is that the stereotype will be appli-
cable to all elements of the specified metaclass. The UML semantics state 
that if a stereotype lacks extensions, it cannot be applied to any kind of 
element.
If you want the stereotype to be automatically available for all instances 
of the extended metaclass, you should make the extension non-optional 
(type “1” on the extension line). Thereby the stereotype will be available 
in the filter list of the Properties Editor without first having to apply it to 
the edited element. 
If you want the stereotype to be manually applied, you should make the 
extension optional (type “0..1” on the extension line).
It is allowed to use multiple extensions. The stereotype will be available 
for all elements that is of any of the specified metaclasses.

Now you are ready to test the new stereotype. Create an element of the cor-
rect kind, i.e. an element of a metaclass that is extended by the stereotype. 
Make sure the stereotype is visible from the location of the created element. 
Open the Properties Editor on the created element and take a look at the prop-
erty page for the new stereotype. If you specified an optional extension you 
should first apply the stereotype, using the “Stereotypes...” button.

Designing a Metaclass

The process of designing a Metaclass is almost the same as when designing 
a stereotype. The main difference is how to specify the elements for which 
the metaclass shall be available in the Properties Editor. For a metaclass this 
is done by applying the <<metaclass>> stereotype to the class that describes 
the metaclass. It is in fact this step that makes it a metaclass instead of an or-
dinary class. The tagged value for the base attribute shall specify the name 
of the built-in UML metaclass on which the new metaclass shall be based. 
June 2009 IBM Rational Tau User Guide 97



Chapter 6: Working with Models
Note
A good starting point for learning how to design a metaclass, is to study the 
TTDMetamodel profile that is available as a library in all models. Here you 
can find information about the names of the built-in metaclasses and 
metafeatures to be used as base for your own metaclasses and their at-
tributes. You can also see example of use of the TTDExtensionManagement 
Profile for customizing the Properties Editor for elements of the specified 
metaclasses.
It is TTDMetamodel that is referred to as “Standard Property View” in the 
Options dialog of the Properties Editor.

In contrast to a stereotype it is not possible for a metaclass to specify plain 
new attributes. All attributes of a metaclass must be based on already existing 
metafeatures of the base metaclass. This is done by applying the 
metafeature stereotype to the metaclass attributes. If the name of the meta-
class attribute is the same as the name of the corresponding metafeature, the 
base tagged value can be omitted. Otherwise it has to be specified.

Note
The careful user will find some metaclass attributes in TTDMetamodel 
which do not correspond to metafeatures of the base metaclass. These are 
so called query features, and they use the <<queryFeature>> stereotype to 
specify a query agent that computes entities from the model. Query features 
are not displayed in the Properties Editor - only in Model View.

The table below specifies the supported combinations of types and multiplic-
ities that are applicable for attributes in metaclasses only, and which graph-
ical control that will be used in each case. Compare with the table in section 
Designing a Stereotype for a listing of combinations that are valid for all Ste-
reotype attributes. 

Attribute type and multiplicity Property control

Metaclass type
Single multiplicity
Composition

EditControl

Metaclass type
Non-single multiplicity
Composition

EntityList
98 IBM Rational Tau User Guide June 2009



TTDExtensionManagement Profile
When your new metaclass is ready you will have to place it in a package and 
store the package in a file of its own. The predefined stereotype 
<<propertyModel>> should be applied on the package. Then you should 
follow the normal procedure for writing Add-Ins that loads the profile. When 
the profile has been loaded you can use the “Options...” button of the Prop-
erties Editor to specify the profile package as the property view to use with 
the Properties Editor.

TTDExtensionManagement Profile
The TTDExtensionManagement profile contains stereotypes and classes that 
allows you to customize the property pages for your own stereotypes and 
metaclasses. Here are the details of this profile, and also some examples of 
how to use it.

Stereotypes

The profile contains three stereotypes that are relevant for the Properties Ed-
itor: instancePresentation, extensionPresentation and 
filterStereotypes.

instancePresentation 

The instancePresentation stereotype may be applied on a stereotype or 
Metaclass to customize how instances of the stereotype or metaclass will be 
presented in the Properties Editor.
June 2009 IBM Rational Tau User Guide 99



Chapter 6: Working with Models
displayName: Charstring

This attribute specifies the display name of instances of the stereotype or 
metaclass. It is used in the filter list of the Properties Editor and in the Ste-
reotypes dialog. It is also used in some other places in the tool, such as in tool 
tips and in the Model View.

If no tagged value is specified for this attribute, the name of the stereotype or 
metaclass will be used as display name.

pagePriority: Real

This attribute controls the relative order of two stereotype instances in the 
filter list of the Properties Editor and in the property page (if the All Proper-
ties filter is used). An instance of a stereotype with a higher page priority will 
be placed before an instance of a stereotype with a lower page priority 
number. Any specified page priority is considered to be a higher priority 
value than an unspecified page priority.

Figure 16: The <<instancePresentation>> stereotype

 

Control

 

 

 

+ nonValueControls0..*

  

<<stereotype>>

instancePresentation

displayName : Charstring
pagePriority : Real

0..1

<<metaclass>>

::TTDMetamodel::Signature
100 IBM Rational Tau User Guide June 2009



TTDExtensionManagement Profile
Note
If you want to specify a page priority you must use a single numeric value. 
More complex expressions will not be evaluated.

nonValueControls: Control[*]

This attribute specifies a list of “non-value” controls, i.e. controls in a prop-
erty page that do not correspond to a particular attribute. Examples of such 
controls are “adornments” such as static texts, but it could also be controls 
with some behavior, such as a Button.

extensionPresentation

The extensionPresentation stereotype (Figure 17 on page 101) may be 
applied on an attribute of a stereotype or a Metaclass to customize how the 
Properties Editor will draw the control that corresponds to that attribute. 

Figure 17: The <<extensionPresentation>> stereotype

 

Control

 

 

 

+ control0..1

  

<<stereotype>>

extensionPresentation

+isVisible :Boolean =true
+translator : Translator

0..1

<<metaclass>>

::TTDMetamodel::StructuralFeature
June 2009 IBM Rational Tau User Guide 101



Chapter 6: Working with Models
isVisible: Boolean

This attribute controls whether the control for the attribute shall be visible on 
the property page or not. You may set its value to false in order to hide the 
control for an attribute completely.

translator: Translator

This attribute is used exclusively for parts typed by a metaclass. As men-
tioned in “Designing a Metaclass” on page 97 the Properties Editor uses an 
EditControl (in case of single multiplicity) or an EntityList (in case of non-
single multiplicity) as the control for such an attribute. Since the text that is 
entered into these controls in this case is UML textual syntax, a parser (trans-
lator) is needed to interpret the text. The Translator enumeration contains one 
literal for each available entry point of the UML grammar. Although the 
Translator enumeration resides in a hidden (internal) profile, you can find out 
the names of its literals with the following procedure: 

• Create an enumeration symbol in a class diagram by right-clicking and 
choosing Reference existing. 

• In the list that appears, select the U2ParserProfile::Translator. 

• Right-click on the enumeration symbol and choose “Show Literals” from 
the Show/Hide submenu.

Note
Use the List References command (available in the shortcut menu) to find 
out how the Translator literals are used in the TTDMetamodel profile. For 
example, listing the references for the literal PEP_Multiplicity shows that it 
is used as the translator of the StructuralFeature::Multiplicity attribute. 
Thus, this translator is used for parsing the multiplicity syntax of UML.

control: Control[0..1]

As mentioned in “Designing a Stereotype” on page 94 the Properties Editor 
uses a default control based on the type and multiplicity, and sometimes also 
the aggregation kind, of an attribute. The control attribute makes it possible 
to specify that a non-default control shall be used for an attribute, or that 
some properties of the default control should be changed.

Example 4: Specifying a custom control using the Text View––––––––––––––––––

extensionPresentation(.
control = EditControl(.
102 IBM Rational Tau User Guide June 2009



TTDExtensionManagement Profile
text = "My Control",
autoLayout = GrowRight

.)
.)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The Control class is an abstract class with one derived class for each control 
that is supported by the Properties Editor.

filterStereotypes

The filterStereotypes stereotype may be applied on a package to reduce 
the number of stereotypes that will be shown in the Properties Editor when 
an element in that package is selected. 

appliedProfile: Package[*]

If this list of profile packages is specified, the Properties Editor and the Ste-
reotypes dialog will only show stereotypes defined in these packages for a se-
lected element in the package on which the filterStereotypes stereotype 
is applied.

Figure 18: The <<filterStereotypes>> stereotype

<<stereotype,instancePresentation>>

filterStereotypes
<<stereotype,instancePresentation>>

filterStereotypes

<<metaclass,browserNode>>

::TTDMetamodel::Package
<<metaclass,browserNode>>

::TTDMetamodel::Package

0..10..1
 

appliedProfile

0..*

 

 

 

0..*

 

 

June 2009 IBM Rational Tau User Guide 103



Chapter 6: Working with Models
Control model

The TTDExtensionManagement profile contains a number of Control 
classes representing graphical controls used by the Properties Editor. See the 
class diagram Controls for an overview of all available control classes.

Control

The Control class is a common base class for all control classes.

text: Charstring

This attribute controls which caption to use for the control. If it is left unspec-
ified, the caption will be the name of the edited stereotype or metaclass at-
tribute.

isEnabled: Boolean

By default a control will be enabled, meaning that it can be used for editing 
the displayed value. If this attribute is set to false, the control will instead be 
disabled. In some situations the Properties Editor will force a control to be 
disabled, regardless of the value for this attribute. This happens if the file that 
contains the edited element is read-only, and also for attributes that are de-
rived.

onEnable: Operation

This attribute can be used to give a dynamic condition for when a control 
shall be enabled. If an agent operation is specified here it will be called each 
time the Properties Editor needs to decide whether the control shall be en-
abled or not. The model context of the agent call is the edited element. The 
call has the following parameters:

• [out] enable : Boolean

The agent should set this out parameter to false if the control shall be dis-
abled. By default the control will be enabled.

• stereotypeInstance : Entity

The stereotype instance that is edited in the property page containing the 
control. This parameter is only passed when the edited instance is a ste-
reotype instance.

Note
When isEnabled is false the onEnable agent will not be invoked.
104 IBM Rational Tau User Guide June 2009



TTDExtensionManagement Profile
See also

“Agents” on page 2055 in Chapter 79, Agents

Button

The Button class represents a button that can be pushed. It is not used for 
editing a value, but can be used as a non-value control on a property page. 
CheckBox is a special kind of button, a toggle box control, which can be used 
to edit boolean values. 

onClicked: Operation

This attribute can be used to specify some behavior to be executed when the 
button is clicked. It may specify an agent operation, which will be invoked 
when the button is clicked. The model context of the agent call is the edited 
element. There are no parameters in the agent call. 

EditControl

An EditControl can be used for editing string values. There are two spe-
cialized versions of the class that can be used when the edited string is a di-
rectory name or a filename. They will add a browse button [...] for opening a 
directory or file selection dialog, as an alternative for manually typing the 
name in the control.

There is also a special kind of EditControl called InstanceEditControl. It 
is used for editing instances (for example instances of classes). The instance 
is shown using textual syntax in the control, but to edit the instance there is 
a browse button [...] which will bring up another Property Editor for editing 
the selected instance.

isMultiLine: Boolean

By default an edit control shows exactly one line of text. By setting this at-
tribute to true, the control will enable multiline editing. In order to see more 
than one line of text at the same time, the vertical size of the control may have 
to be extended. See PositionedControl for more information on how to do 
this.
June 2009 IBM Rational Tau User Guide 105



Chapter 6: Working with Models
EditList

An EditList control can be used to edit lists of strings. The control contains 
buttons for creating a new string in the list and for deleting a selected string 
from the list. There are also two buttons for moving a selected string up or 
down in the list. A string can also be moved by drag and drop in the list di-
rectly.

There are two specialized versions of EditList that can be used when the ed-
ited strings are directory or file names. They are called DirectoryEditList 
and FileEditList and will add a browse button [...] for opening a directory 
or file selection dialog, as an alternative for manually typing the name in the 
control. 

There is also a special kind of EditList known as an EntityList, that can be 
used as the control for metaclass attributes (i.e. metafeatures) that are com-
positions typed by another metaclass. Each edited item in an EntityList is 
thus an element in the model. The string displayed in the control for such an 
element is its textual UML syntax.

Another special kind of EditList is the InstanceEditList which is used for 
editing a list of instances (for example instances of classes). The instances are 
shown using textual syntax in the control (one instance on each line). To edit 
one of the instance double-click on it, and press the browse button [...] which 
appears. Doing so will bring up another Property Editor for editing the se-
lected instance.

Figure 19: An EditList control with buttons for creating, deleting and moving strings.
106 IBM Rational Tau User Guide June 2009



TTDExtensionManagement Profile
StaticText

A StaticText is a non-value control that can be used as an adornment in a 
property page. It can for example be useful to add a static text for giving in-
structions to the Properties Editor user on how to specify values in the sup-
plied controls.

EnumeratedList

This is an abstract class that is the common base for controls that edit lists of 
enumerated elements. There are two concrete specializations of this class; 
DropDownMenu and CheckBoxList.

items: Charstring[*]

If an enumerated list is used as the control for an attribute that is typed by an 
enumeration, it will contain one item for each literal of the enumeration. The 
name of each item will by default be the name of the corresponding literal. 
However, by specifying a list of strings as the value of the items attribute 
the names of the list items can be customized.

DropDownMenu

A DropDownMenu is a list of items edited in a drop down menu.

isEditable: Boolean

By default the user can only select one of the existing items from a drop down 
menu. By setting this attribute to true, the drop down menu will be editable, 
allowing the user to type the name of the item manually.

CheckBoxList

A CheckBoxList is a list of items edited in a list of check boxes. Hence this 
control allows multiple list items to be selected.

Group

A Group is just a container control that can contain other controls. It is typi-
cally used as the control for a part attribute of multiplicity 1 typed by a struc-
tured type. There is then one contained subcontrol for each attribute of the 
structured type.
June 2009 IBM Rational Tau User Guide 107



Chapter 6: Working with Models
ColorControl

A ColorControl can be used for attributes of integral type. The value of 
such a control is interpreted as a color reference, with three components; 
Red, Green and Blue (RGB). 

The color value can either be edited using a standard color picker dialog 
(opened by clicking on the arrow button), or the RGB value can be typed di-
rectly using the syntax RGB(<red>, <green>, <blue>).

QueryControl

A QueryControl has a similar appearance as a DropDownMenu, but instead 
of having a fixed list of entities, the list is dynamically populated by exe-
cuting a query (see Queries). The value of the control is a reference to the en-
tity that is selected from the query result.

query: Operation

This attribute is a reference to the query agent to execute in order to populate 
the list.

Figure 20: A ColorControl with green color as value

Figure 21: QueryControl definition

QueryControl

<<primitive>>

::Predefined::OperationReference

 

'query'1

 

'query'1
108 IBM Rational Tau User Guide June 2009



TTDExtensionManagement Profile
NavigationButton

A NavigationButton can be used as the control for metafeatures of single 
multiplicity that are typed by a metaclass. This means that the value of the 
control is a reference to another entity in the model. When the button is 
pressed the property page for that entity is shown.

Navigation buttons can be used when there is a relationship between two en-
tities in a model to make it easier to reach the property page for one of the 
entities from the property page of the other entity.

GotoOwnerButton

A GotoOwnerButton is a special kind of NavigationButton which always 
performs navigation to the composition owner of the edited element.

ValueControl

Some control classes inherit the ValueControl class, representing controls 
that can display and edit a value. 

value: Charstring

This attribute is used internally by the Properties Editor to hold a representa-
tion of the control’s value. However, it can also be explicitly specified to 
force a control to always show a particular value.

onNewValue: Operation

Figure 22: ValueControl classes

 

ValueControl

+ 'value' : 
Charstring

 

 
 

onNewValue 

 

onNewValue 
<<primitive>>

::Predefined::OperationReference

 

//
A control that may contain a value
(encoded as a character string). The 'onNewValue'
operation (agent) gets invoked each time the
control changes value. It can for example be used
to validate the value, or propagate it to another
control.

 

June 2009 IBM Rational Tau User Guide 109



Chapter 6: Working with Models
This attribute specifies an agent operation which will be invoked each time 
the control gets a new value. It can be used as a means for validating the en-
tered value of a control, or to propagate a value to another control. The agent 
will be called just before the new value is set, with the edited element as its 
model context, and with the following parameters:

• attribute : Entity

The edited attribute (stereotype or Metaclass attribute)

• newValue : Entity

The new value to be set to the control.

• stereotypeInstance : Entity

If the edited attribute is a stereotype attribute, this parameter is the ste-
reotype instance that is about to be modified. Otherwise this parameter is 
not passed.

PositionedControl

The PositionedControl class represents those properties of a control that 
are related to its graphical position and size. By default the Properties Editor 
applies a simple kind of autolayout for determining where a control shall be 
positioned. Attributes will be positioned left aligned and top-down, and au-
tolayout position for a control is calculated relative to the preceding control. 
The attributes of the PositionedControl class makes it possible to customize 
this layout to some extent.

x: Integer

Specify a value for this attribute to override the default horizontal position of 
the control.

y: Integer

Figure 23: PositionedControl.

 

PositionedControl

+ x : Integer
+ y : Integer
+ width : Integer
+ height : Integer
+ autoLayout : AutoLayoutKind [0..1]
110 IBM Rational Tau User Guide June 2009



TTDExtensionManagement Profile
Specify a value for this attribute to override the default vertical position of 
the control.

Note
To override the default placement of a control you must give a value both 
for the x and y attributes. The position you give to a control will affect a suc-
ceeding control that uses default layout.

width: Integer

Specify a value for this attribute to override the default width of the control.

height: Integer

Specify a value for this attribute to override the default height of the control.

autoLayout: AutoLayoutKind

This attribute specifies an option to the autolayout algorithm that decides 
how a control is affected by resizing the Properties Editor window. The fol-
lowing values can be used for this attribute:

• GrowRight

The size of the control grows at its right side when the size of the Prop-
erties Editor window is increased. This is the default behaviour for most 
controls.

• GrowBottom

The size of the control grows at its bottom side when the size of the Prop-
erties Editor window is increased.

• GrowRightAndBottom

This size of the control grows at both its right and bottom sides when the 
size of the Properties Editor window is increased.
June 2009 IBM Rational Tau User Guide 111



Chapter 6: Working with Models
Create Presentation
The Create Presentation dialog provides a natural entry point to models, as 
an alternative to using the New command to Create diagrams from the Model 
View. This dialog is opened from the shortcut menu of any element. 

Create Presentation dialog

The Create Presentation dialog has a title and a set of tabs. The dialog title 
shows the type and name of the current entity that the Create Presentation is 
focused on. The tabs each contain a tab description and a list of alternatives. 

A click on an alternative in a tab closes the dialog, creates model elements, 
symbols, lines or diagrams as needed, and navigates to them. 

New Symbol 

With the New Symbol tab, you can create a symbol for the current entity ei-
ther in an existing diagram or create a new diagram containing a presentation 
element for the entity. 

New Diagram 

The New Diagram tab follows the Model View creation rules. From this tab 
you may create a diagram below the current entity. This is equivalent to using 
the Model View shortcut menu New for creating diagrams. 

Location column

The location of the alternative in the model.

Diagram Name column

Name of the alternative.

Item Type column, Diagram Type column

The type of the described entity. For instance: Class, ClassSymbol or 
ClassDiagram.
112 IBM Rational Tau User Guide June 2009



Create Presentation
See also

“Model navigation/creation” on page 114

“Add symbols” on page 173 in Chapter 7, Working with Diagrams
June 2009 IBM Rational Tau User Guide 113



Chapter 6: Working with Models
Model Navigator
The Model Navigator is a tab, named Navigate, in the Output window that 
allows you to browse and navigate through various aspects of any entity in a 
model.

The key purpose of the Model Navigator is to provide a natural and powerful 
tool for navigation in the model. While the Model View displays the model 
based on a hierarchical scope view, the Model Navigator has a number of dif-
ferent views allowing you to cross-examine the model based on the model’s 
internal relations.

The model navigator also allows you to:

• Select and display diagrams. 

• Navigate to a symbol or line representing the current entity. 

• Take navigation shortcuts to entities related to the current entity. 

If you select Model Navigator from the Model View shortcut menu or an ed-
itor shortcut menu, then the Model Navigator will be opened. 

Model navigation/creation

When you double-click an element in a diagram or in the Model view a 
model navigation/creation will be activated

• If there is any presentation element representing the double-clicked ele-
ment the diagram with this element will become active and the Navigate 
tab will be activated.

• If there is no presentation element representing the double-clicked ele-
ment the Create Presentation dialog will be opened. 

Model navigator tabs

The Model Navigator tab itself has a set of tabs. These tabs each contain a 
tab description and a list of alternatives. The set of tabs depends on the cur-
rent entity. The start tab in the window will be selected by using the fol-
lowing criteria:

• Latest used tab

• Highest priority of applicable tabs
114 IBM Rational Tau User Guide June 2009



Model Navigator
Column widths may be resized by dragging the vertical bar to the right of 
each column header.

Sorting

Alternatives in tab lists are initially sorted in ascending order based on the 
name column. For tabs without a name column, the type or index number 
column is used instead. 

Manual sorting is done by clicking on a column header. Repeated clicks will 
reverse the sort order.

Tab categories

The Model Navigator tabs can be categorized into two main groups: 

• Tabs that show the alternative in the Model View or in a diagram. In this 
group you find the Presentation tabs and the Links tab.

• Tabs that refocuses (on CTRL + click) the Model Navigator on a new 
model element. This type of tabs are called Entity tabs.

Below, you will find more information on the different tab groups.

• Presentation tabs

A click on an alternative in a presentation tab navigates to a symbol or 
line in a diagram (the Symbols tab), or to a diagram itself (the Diagrams 
tab).

• The Links tab

A click on an alternative in the Links tab closes the dialog and navigates 
to the other link endpoint.

• Entity tabs

On CTRL + click on an alternative in an entity tab the Model Navigator 
refocuses on the clicked alternative, which becomes the new current en-
tity. The new current entity is selected in the Model View, if possible. In 
this category, you find the Package, Features, Bookmarks, Definitions, 
Shortcuts, References, Model Index and Recent tabs.

The Model Navigator tabs are ordered according to the table below.
June 2009 IBM Rational Tau User Guide 115



Chapter 6: Working with Models
Navigation

Double-clicking on an alternative will show the alternative in both the Model 
View and a diagram (if this is possible to do).

Holding down CTRL while you click or double-click will refocus the model 
navigator on the clicked alternative, as well as show the alternative in both 
the Model View and a diagram (if this is possible to do).

Holding down SHIFT while you click or double-click will show the alterna-
tive only in the Model View, not in a diagram.

The tab and alternative shortcut menus in the Model Navigator contain a list 
of recent Model Navigator entities. This list allows you to refocus the Model 
Navigator on an entity that recently has been the current Model Navigator en-
tity. 

Presentation tabs

Symbols

The Symbols tab shows symbols and lines related to the current entity.

Priority Tab name Category

1 Symbols Presentation

2 Diagrams Presentation

3 Links Link

4 Package Entity

5 Features Entity

6 Bookmarks Entity

7 Definitions Entity

8 Shortcuts Entity

9 References Entity

10 Model Index Entity

11 Recent Entity
116 IBM Rational Tau User Guide June 2009



Model Navigator
Diagrams

The Diagrams tab shows diagrams closely related to the current entity.

Links 

The Links tab contains a list of incoming and outgoing hyperlinks for the cur-
rent entity. Click on a link to navigate to the other link endpoint associated 
with the link.

Entity tabs

Package

The Package tab shows a complete list of definitions visible in the package 
containing the current entity.

Features

If the current entity is a class or something similar (more precisely: If the cur-
rent entity is a Classifier or is contained in a Classifier), then the Features tab 
lists the definitions in that class, together with any inherited definitions.

Definitions

The Definitions tab shows a complete list of local and inherited definitions 
in the scope of the current entity.

References

The References tab will list Model references to the current Definition, for 
quick navigation to the places where the Definition is used. This information 
is similar to the Model View shortcut menu choice List references.

Shortcuts

The Shortcuts tab provides quick navigation through some commonly used 
relationships of a model. The most common shortcuts are described in the 
text about the Shortcut column.
June 2009 IBM Rational Tau User Guide 117



Chapter 6: Working with Models
Bookmarks

The Bookmarks tab provides a method for setting and navigating through 
bookmarks, to select places in the model that you anticipate re-visiting. The 
contents of this tab will only be persistent over the current tool session. 
Adding and removing items from the list is done by clicking on the Add/Re-
move and Remove all bookmarks rows in the list. 

From the shortcut menu for any model element in the Model View you can 
choose Bookmark to add the selected element to this list. 

Model Index

The Model Index tab contains an alphabetical list of all definitions in the 
model with the exception of unnamed parameters (return parameters). See 
also description of the Find dialog. 

Recent

The Recent tab keeps track of entities that the Model Navigator has been fo-
cused on, allowing you to refocus the Model Navigator on any of your re-
cently visited entities. You can as an alternative to this tab use the shortcut 
menu, which contains the 5 most recent Model Navigator entities.

Columns

Below is a list of the columns appearing in the Model Navigator and a short 
description of the listed information.

Index column

This column can be found in the Recent tab and in the Bookmarks tab. It con-
tains numbers indicating the order that entities were visited in. A lower 
number means a more recently visited entity.

Links column

The number of incoming and outgoing links to and from the current entity.

Location column

The location of the alternative in the model.
118 IBM Rational Tau User Guide June 2009



Model Navigator
Name column, Diagram Name column

Name of the alternative.

Page column

The diagram page number. This column can be found in the Diagrams tab.

Role column

The role the current entity plays in the listed reference. This column can be 
found in the References tab.

Shortcut column

This column contains a list of shortcuts from the current entity to various re-
lated entities. This column can be found in the Shortcuts tab. Here are a 
couple of examples on shortcuts that may appear in the Shortcut column:

• The Scope shortcut: Refocus the Model Navigator on the scope entity 
that contains the current entity.

• The Container shortcut: Refocus on the entity that owns the current en-
tity.

• The Model Root shortcut: Refocus on the model root for the current en-
tity. This shortcut is especially useful when having a workspace with 
more than one model.

• The Predefined Package shortcut: Refocus on the internal library of pre-
defined types.

Type column, Item Type column, Diagram Type column

The type of the described entity. For instance: Class, ClassSymbol or 
ClassDiagram.

Views column

Number of symbols and lines representing the current definition.
June 2009 IBM Rational Tau User Guide 119



Chapter 6: Working with Models
Generate Diagram
IBM Rational Tau supports automatic generation of diagrams in order to vi-
sualize existing model elements. There are a number of built-in diagram gen-
erators available, for generating commonly useful diagrams, such as inherit-
ance diagrams, composition diagrams, dependency diagrams etc. It is also 
possible to add additional custom diagram generators to support specific vi-
sualization needs.

To generate a diagram, follow these steps:

1. Select an element in the Model View. The selected element will be the 
context of the generated diagram. For example, if you want to visualize 
super- and sub-classes of a certain class, then you should select that class.

2. In the context menu select Generate Diagram and choose which dia-
gram generator to use in the sub menu. For example, to generate an in-
heritance diagram, select “Generate inheritance view”.

The generated diagram is typically placed under the selected context ele-
ment, but some diagram generators may place it elsewhere in the model, for 
example as a top-level diagram, or in a separate package. Afterwards you 
may move it to where you want it to be.

Note
Some diagram generators are available for selected entities under which 
the diagram created by the generator cannot be placed. For example, 
ClassDiagrams cannot be created under an Operation, although some dia-
gram generators are available when an Operation is selected. In these 
cases an error message will be printed in the Message Tab if the diagram 
generator is invoked.
120 IBM Rational Tau User Guide June 2009



Generate Diagram
Diagram Generation Parameters

Diagram generators may take actual parameters to control how the diagram 
shall be generated. For example, when generating an inheritance view for a 
class, a parameter controls whether the diagram only shall show immediate 
super- and sub-classes, or if all recursive super- and sub-classes shall be 
shown.

When a diagram generator is run from the Generate Diagram context menu, 
default values are used for these parameters. To change the actual parameters 
use the command Edit Diagram Generation Parameters available in the 
context menu of the generated diagram. You can also edit them by opening 
the Properties Editor on the generated diagram, and selecting the <<gener-
ated>> stereotype as filter. Parameters can then either be edited textually in 
the Parameters field, or you may press the Edit Parameters button.

Regenerate Diagram

A generated diagram can be regenerated based on new information in the 
model. For example, you may want to regenerate an inheritance diagram 
when new super- or sub-classes have been added. You may also want to re-
generate a diagram if you have modified the Diagram Generation Parame-
ters.

Figure 24: The Generate Diagram context menu
June 2009 IBM Rational Tau User Guide 121



Chapter 6: Working with Models
To regenerate a generated diagram choose the Regenerate command avail-
able in the diagram context menu. It is also possible to regenerate all gener-
ated diagrams in the model by selecting the Regenerate All Diagrams com-
mand in the Tools menu. Only generated diagrams are affected by these 
commands.

Important!
When a diagram is regenerated everything it contains will be deleted and 
regenerated. This means that if you have made manual modifications to the 
diagram, such as changing layout, colors etc., these changes will be lost. 

Convert a generated diagram into an ordinary diagram

To avoid accidentally regenerating a generated diagram that has been modi-
fied, it is recommended to convert the diagram into an ordinary non-gener-
ated diagram if you want to maintain it manually. To do so follow these steps:

1. Select the generated diagram in Model View.

2. Select Stereotypes... in the context menu.

3. Uncheck the ‘generated’ checkbox and press OK.

After this it is no longer possible to regenerate the diagram.

Using Diagram Generators in Existing Diagrams

A diagram generator doesn’t have to always generate a new diagram. It is 
also possible to use a diagram generator in order to add information to an ex-
isting diagram. The steps to do so are:

1. Drag the context element from the Model View into a diagram using the 
right mouse button.

2. Drop the element on the diagram and select Visualize in Diagram in the 
context menu that appears.

3. In the sub menu select which diagram generator to use.

The symbols and lines generated by the diagram generator will be inserted in 
the diagram where the entity was dropped.
122 IBM Rational Tau User Guide June 2009



Generate Diagram
Advanced Diagram Generators

In addition to the diagram generators you will find in the Generate Diagram 
context menu there are also a few more advanced diagram generators. To use 
these diagram generators select the Advanced... command in the Generate 
Diagram context menu. This will open the Advanced Generate Diagram di-
alog:

This dialog only provide a limited set of diagram generators, but each of 
these diagram generators have several customizable layout options.

Diagram type

First thing to do in the Advanced Generate Diagram dialog is to select the 
wanted diagram type. Only the diagram types where there is a method to gen-
erate a diagram is displayed.

Figure 25: The advanced diagram generator dialog
June 2009 IBM Rational Tau User Guide 123



Chapter 6: Working with Models
Generation settings

Secondly, the Method of generation can be selected. Only methods of gen-
eration that can be applied for the above selected diagram type is available.

A description of the selected generation method is displayed below the list of 
available generation methods.

Settings for the selected generation method are available by pressing the Ad-
vanced button. These settings will be associated with the generated diagram 
and can be edited after generation in the Properties Editor.

Customization

It is possible to create your own diagram generators in order to generate 
custom diagrams. See Adding Diagram Generators for more information on 
this topic.

It is also possible to invoke diagram generators programmatically. This can 
be useful for example when implementing add-ins. See Invoking Diagram 
Generators Programmatically for more details.
124 IBM Rational Tau User Guide June 2009



Queries
Queries
This section describes how to perform a query on a UML model in order to 
find entities that fulfill certain conditions. 

Queries are useful for finding entities in the model that cannot be found by 
using the more basic search facilities of the Find dialog. Using a query is an 
alternative to using one of the standard APIs for finding the wanted informa-
tion. Since a query may contain calls to many of the available API functions 
(COM, C++, Tcl), the expressive power of a query is equivalent to using the 
APIs.

Concepts

A query is an operation that yields a collection of entities from the model.

A predicate is an operation that yields a boolean true or false.

Both a query and a predicate may take any number of input arguments. One 
input argument that always is implicitly present is the model context. This 
is an entity on which the query or predicate is invoked. 

In order to be able to define query and predicate operations in a UML model, 
there is a built-in library called TTDQuery, which defines the stereotypes in 
Figure 26 on page 125. See also “The Query Dialog” on page 129. 

In addition to these stereotypes, the TTDQuery profile also contains a number 
of built-in queries and predicates, that are ready to use.

Figure 26: TTDQuery library with stereotypes

<<stereotype>>

query

<<metaclass,browserNode>>

::TTDMetamodel::Operation

0..10..1

<<stereotype>>

predicate

0..10..1
June 2009 IBM Rational Tau User Guide 125



Chapter 6: Working with Models
Calls to queries and predicates can be put together in a Query expression. 
This is an expression that can be interpreted by IBM Rational Tau, and just 
like when invoking a query operation, the result of the interpretation is a col-
lection of entities from the model. A query expression may use boolean op-
erators and literals, as well as a small subset of the collection operators that 
are found in OCL, in order to modify the result obtained by calling queries 
and predicates. 

Note
Many operations of the public APIs work as either queries or predicates. 
These operations are also available for use in query expressions. The UML 
definition of these API operations can be found in the library called u2.

Query expression

A query expression is written in textual UML expression syntax. The type of 
a query expression must be a collection of entities. This means that when a 
query expression is interpreted the result should be a collection of entities.

All sub-expressions that are contained in a query expression must be of either 
boolean type, or the type should be a collection of entities. For expressions 
of boolean type, the usual boolean operators can be used. The following 
boolean operators and literals are supported within a query expression:

and (&&)
or (||)
not (!)
true
false

Parentheses can also be used.

For expressions whose type is a collection of entities, a number of predefined 
Collection Operators may be used. 

Collection Operators

Certain predefined operators may be used on the collection of entities that re-
sult from executing an expression within a query expression. The names and 
semantics of these operations come from OCL (Object Constraint Lan-
guage). In fact, a query expression is a legal OCL expression, except that pe-
riods (.) are used instead of the arrow notation (->) when invoking a pre-
defined collection operation. However, only a subset of OCL is supported. 
This subset allows powerful queries to be performed.
126 IBM Rational Tau User Guide June 2009



Queries
select

Syntax: 

select(<boolean expr>)

Type: collection of entities

select projects one collection of entities into another collection of entities. 
The resulting collection will contain those entities in the input collection for 
which the boolean expression evaluates to true. Thus, select can be used 
to filter a collection through a predicate.

exists

Syntax: 

exists(<boolean expr>)

Type: boolean

Exists is a boolean operator that returns true if there exists at least one en-
tity in the input collection for which the boolean expression evaluates to 
true, otherwise it returns false.

isEmpty

Syntax: 

isEmpty()

Type: boolean

This operator returns true if the input collection is empty. Otherwise it re-
turns false.

Examples

Here are some examples of query expressions that uses some of the available 
Built-in Queries and Predicates, combined with predefined boolean opera-
tors and collection operators.

Example 5 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Find all active classes defined in a package.

[model context = the package]
June 2009 IBM Rational Tau User Guide 127



Chapter 6: Working with Models
GetAllEntities().select(IsKindOf("Class") and 
HasPropertyWithValue("isActive", "true"))

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 6 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Find all attributes in the model that are directly owned by a class.

[model context = the model, i.e. the Session]

GetAllEntities().select(IsKindOf("Attribute") && 
GetOwner().exists(IsKindOf("Class")))

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 7 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Find all «access» dependencies in the model.

[model context = the model, i.e. the Session]

GetAllEntities().select(not 
GetTaggedValue("access(..)").isEmpty())

This query will obtain the wanted result, but is quite inefficient since it will 
check for an applied «access» stereotype on each entity in the model. Perfor-
mance will be greatly improved just by adding a check that the entity must 
be a dependency. For all entities that are not dependencies, there is no need 
to invoke the GetTaggedValue query.

GetAllEntities().select(IsKindOf("Dependency") and not 
GetTaggedValue("access(..)").isEmpty())

You can rewrite the expression by using the HasAppliedStereotype pred-
icate, which is the recommended way to check if a stereotype is applied on 
an element.

GetAllEntities().select(IsKindOf("Dependency") and 
HasAppliedStereotype("access"))

Finally, it should be mentioned that the most efficient (and also the shortest) 
query expression for finding the «access» dependencies makes use of the 
built-in GetStereotypedEntities query:

[model context = the «access» stereotype, found in the 
TTDPredefinedStereotypes library]

GetStereotypedEntities()
128 IBM Rational Tau User Guide June 2009



Queries
As seen in this example there can be alternative query expressions that can 
be used to obtain the same result. There can be a great difference in execution 
performance between different semantically equivalent queries, so it is can 
be worthwhile to consider different alternatives before writing a query ex-
pression.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The Query Dialog

The Query dialog allows you to construct a Query expression to execute. The 
dialog is opened by selecting an entity in the Model View or the diagrams, 
and selecting the menu item Edit -> Query. The selected entity will be the 
model context of the query expression.

Note
The model context of the query expression may be a presentation element 
(e.g. a symbol or a line in a diagram). Thus, if you open the query dialog 
from a selected entity in a diagram, the selected presentation element will 
be the model context. Use the context menu “Show in Model View” to find 
the corresponding element in the Model View, in case you want to run the 
query on the model element instead.

The Query dialog lists all available Queries and predicates that can be found 
in the current model. This list consists of all “built-in” queries and predicates 
that are supplied in the predefined TTDQuery and u2 libraries, together with 
all queries and predicates that are defined elsewhere (for example user-de-
fined queries and predicates).

The query expression is executed by pressing the Execute button. By default 
the result will be output in the “Search Result” tab, but this can be changed 
by typing another tab name in the drop down control.

You may construct the query expression either by writing the expression di-
rectly in the edit control, or you can double-click on entries in the list of 
available queries and predicates. If the selected operation (query or predi-
cate) do not have any formal input parameters, a call to the operation will be 
added directly at the position of the cursor in the query expression text. If, 
however, the operation has at least one formal input parameter, a dialog (see 
Figure 27 on page 130) will pop-up which allows you to provide the corre-
sponding actual parameter for the operation call. 
June 2009 IBM Rational Tau User Guide 129



Chapter 6: Working with Models
This dialog is in fact a Properties Editor (the parameters are seen as proper-
ties of the operation) and edited values follow the same Color Codes as the 
Properties editor. Other features of the Properties Editor, such as obtaining 
“What’s This?” help on the meaning of the parameters are also available.

Saving a query expression as a new query

The Query dialog has a Save button that allows you to save a query expres-
sion as a new query in the model. Use this possibility if you have constructed 
a query expression that you want to save for the future. You will be prompted 
to specify a name and description of the new query, as well as a location in 
the model where it shall be stored. It can be a good idea to put all queries in 
a common place, for example in a profile package stored in a separate .u2 
file. Thereby you can include and use your saved queries in multiple projects.

When you have saved a query expression as a new query, it immediately be-
comes available in the list of queries and predicates that are ready to use in 
new query expressions.

Figure 27 Specify actual parameters
130 IBM Rational Tau User Guide June 2009



Queries
Built-in Queries and Predicates

A number of built-in queries and predicates are available for use in query ex-
pressions. These are defined and documented in the profile libraries 
TTDQuery and u2.

In addition to these, it is possible to add user-defined queries and predicates 
as described in User-defined Queries and Predicates.

User-defined Queries and Predicates

It is possible to define additional queries and predicates than those that are 
supplied as “built-in”. This is done by defining an agent which has the 
<<query>> or <<predicate>> stereotype applied. The implementation of 
such Agents must fulfill the signature of a query or predicate. Thus a query 
agent must return a list of entities, and a predicate agent must return a 
boolean value. This mandatory output parameter is passed as the first param-
eter to the agent. In addition the agent may take any number of input param-
eters. These parameters may have any type supported by Agents.

Executing a Query Expression from the APIs

It is possible to execute a Query expression programmatically from all the 
public APIs, using the agent in Figure 28 on page 131. 

This agent is (like any other agent) invoked using the InvokeAgent operation.

Example 8: Executing a query expression from the Tcl API

This small example shows how to execute the query expression 
“GetAllEntities()” from a Tcl script. The script just prints the Tcl ids of 
the resulting entities.

set s [std::GetSelection]
set a [u2::FindByGuid $U2 

Figure 28 Agent for query execution

<<operation,agent>>

ExecuteQueryExpression

out result : u2::ITtdEntity [*]
queryExpr : Charstring
June 2009 IBM Rational Tau User Guide 131



Chapter 6: Working with Models
"@TTDQuery@ExecuteQueryExpression"]
set p [lappend p {} "GetAllEntities()"]
u2::InvokeAgent $U2 $a $s p
output [lindex $p 0]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
132 IBM Rational Tau User Guide June 2009



Drag and Drop
Drag and Drop
This section describes how drag and drop can be used to work with the 
model.

A drag and drop operation can be done with three different variations of drag 
sources and drop targets:

• Within the model view.

• From model view to a diagram.

• Within and between diagrams.

A drag and drop operation can be done either with the left or the right mouse 
button. If a drag and drop operation is done with the right mouse button, a 
context menu is opened listing the possible operations to perform as a result 
of the drag from the source element to the target element. The context menu 
will always have a highlighted alternative. This is the operation that will be 
performed when a drag and drop operation is done using the left mouse 
button. There can also be modifier key within parenthesis next to the opera-
tion. If so, this operation can be performed by holding down this modifier key 
will doing a drag and drop using the left mouse button.

Next follows the different operations available using drag and drop.

Within the Model View

Move

Moves an element within the model view.

This is the default operation for drag and drop within the model view and will 
be performed if drag and drop is done using the left mouse button.

Copy

Copies an element within the model view.

This operation can be performed by doing a drag and drop operation using 
the left mouse button while holding down the CTRL button.
June 2009 IBM Rational Tau User Guide 133



Chapter 6: Working with Models
Link

Creates a link between the drag source element and the drop target element. 
The currently active link type will be used.

Copy with Traceability

Copies an element (including subelements) in the model view and creates 
<<trace>> dependencies from the copy to the original.

The operation is performed by doing a drag and drop operation using the 
right mouse button and choosing the “Copy with Traceability” command in 
the pop-up menu.

The dependencies will be created for all definitions, like e.g. packages, 
classes, attributes and operations.

See also

“Working with links” on page 2441

From Model View to a Diagram

Create Presentation

Creates a symbol representing the drag source element in the context of the 
drop target element.

This is the default operation for drag and drop from the model view to a dia-
gram and will be performed if drag and drop is done using the left mouse 
button.

Create Presentation (include lines)

Does the same thing as Create Presentation with the addition that lines rep-
resenting the drag source element connections to other elements in the drop 
target diagram will be created.
134 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
Visualize in Diagram

This is a sub-menu containing the possible diagram generation methods that 
are available for the drag source element and the drop target diagram. The 
drag source elements will be visualized in the diagram without affecting any 
already existing elements in the diagram.

See also

“Generate Diagram” on page 120

Within and between Diagrams

Drag and drop within and between diagrams has the same operations as 
within the model view.

Compare and Merge Versions
It is possible to compare versions originating from the same model. The com-
parison is done between model or project files (.u2 or .ttp extension). Dif-
ferences can be accepted automatically or manually. When using the com-
pare and merge for more than two versions of the same model it is 
recommended to use a configuration management system to ensure complete 
version control.

Note
Model elements will always have a GUID. To be able to use the Compare or 
Merge features it is necessary that the versions used really originate from 
the same model. Models created in parallel with identical entity names will 
have different GUIDs on model elements that otherwise appear to be iden-
tical.

Merge variations

There are three basic variations of a compare or merge operation. These vari-
ations will be referred to as 2- 3- and 4-way compare (merge). The 2-way op-
eration is used to compare or merge any two versions of the same model. The 
3- and 4-way merge is performed when working with versions of the same 
model that have developed on different configuration branches under version 
control. 

• 2-way: Compare or merge two versions of the same model into one. 
June 2009 IBM Rational Tau User Guide 135



Chapter 6: Working with Models
• 3-way: Compare or merge two versions of the same model into one, 
taking into consideration their (closest) common ancestor.

• 4-way: Compare or merge two versions of the same model. The 4-way 
compare (merge) is used to take into consideration a previous merge, 
where merge decisions from this previous merge will be propagated au-
tomatically to the resulting model. 

Configuration 

Consider the configuration in Figure 29 on page 136. On the main configu-
ration branch there is at the beginning version A1. 

Version A1 is changed. The new version (version controlled) is called ver-
sion A2. 

Version A1 is branched to version A1.1 that later is to be merged with ver-
sion A2 in order to get version A3. This merge can be done without taking 
into consideration the relation with A1 as closest common ancestor (2-way 
merge, Figure 29 on page 136) or it can be done with version information 
from A1 (3-way merge, Figure 30 on page 137).

Figure 29: 2-way merge version tree

2-way mergeA1.1

A2 A3A1
136 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
The 2-way merge and the 3-way merge will in the example given both result 
in version A3. From a configuration management perspective it would be 
recommended to always use the 3-way merge, thus always considering the 
common ancestor. 

The 2-way merge is sometimes preferred over a 3-way merge. This could be 
for a number of reasons, some examples:

• The 2-way merge is simpler to run

• You do not have access to the common ancestor version or it is necessary 
to specify the name manually of the common ancestor and there is a large 
risk of errors if the wrong common ancestor is specified

• When you need to review all differences manually and there is no need 
to have any automated support for resolving the differences

• The 2-way merge is only an update where all modifications are checked 
through the compare feature, this would be the case if the development is 
not branched or if one of the branches has not changed

Work is continued on version A1.1 as well as on version A3, resulting in ver-
sions A1.2 and version A4 respectively. These versions could then be 
merged by a 4-way merge into version A5, see Figure 31 on page 138. The 
4-way merge will then consider the previous merge (resulting in A3) and the 
properties that were handled by this merge will not appear, allowing you to 
focus on merging the changes done for A1.1 to A1.2 and A3 to A4. 

Figure 30: 3-way merge version tree

A1.1

A2 A3

3-way merge

A1
June 2009 IBM Rational Tau User Guide 137



Chapter 6: Working with Models
Name conventions 

Given the example above, the name conventions will then name the versions 
in these different situations to the following. The described 2-way merge and 
3-way merge gives the same result. Which to use would depend on 

• 2-way merge: The current version is called Version 1, A2 in Figure 29 
on page 136. A1.1 is called Version 2. After the merge is completed A3 
is the result. 

• 3-way: Considering a merge towards the main configuration branch, A2 
is Version 1, A1.1 is Version 2 and A1 is Common ancestor. After the 
merge is completed A3 is the result.

• 4-way: Considering a merge towards the main configuration branch, A4 
is Version 1 and A3 is ancestor to version 1. A1.2 is Version 2 and A1.1 
is ancestor to version 2. After the merge is completed A5 is the result. 

Note
When the term Common ancestor is used it is always presumed that it refers 
to the closest common ancestor, as there may be several versions before A1 
that are common ancestors to any pair of files in the example. 

Project Merge

A project to project merge, which contains multiple files, can be performed 
simply by specifying *.ttp files for version 2 and for ancestor 1 and an-
cestor 2, instead of model (.u2) files. Since models normally contain quite 
a bit of hierarchy, using project merge will aid the automatic merge function 
in making the right decisions. Merging projects is preferred to merging indi-

Figure 31: 4-way merge version tree

A1.1 A1.2

A2 A3 A4 A5

Previous merge 4-way merge

A1
138 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
vidual model files since it will assure that all the model elements are loaded 
during the merge. It also means that you can merge all model (.u2) files at 
one time instead of running the one merge for every model file.

Compare/Merge considerations

There are some issues to think about with regards to Compare/Merge:

• An ancestor should be a real ancestor (whenever possible, do not use the 
same file as version 1).

• The entire project should be loaded in the tool (not just one of the files, 
because a change in one file might affect other files, and said change 
must be propagated, otherwise inconsistencies may result).

• It is recommended that all files are saved before a merge. This is to guar-
antee that canceling a merge operation returns the model to the state it 
was in before the merge operation was invoked. 

Compare versions

From the Tools menu, select Compare Versions to display the dialog 
window for this feature (see Figure 32 on page 140), containing options for 
the compare operation. 

Version 2 - read from file

This field contains the name of the file (.u2 or .ttp) containing the version 
(of the same original model) to compare with. For a 2-way compare this is 
the previous version of the file. For a 3-way compare this is a version be-
longing to a configuration-controlled branch. For a 4-way compare this is a 
version belonging to a configuration-controlled branch, where a previous 
merge is taken into consideration. 

Common ancestor (3-way) or Ancestor to version 1 (4-way)

For a 3-way compare this field is used to select a file name (.u2 or .ttp) 
containing (closest) Common ancestor. This version must be the common 
origin of both Version 2 and the version currently loaded. 

For a 4-way compare this field is used to select a file name (.u2 or .ttp) 
containing the closest ancestor from previous merge to the version currently 
loaded. This should be the version that was the result of the latest merge op-
eration with ancestor to version 2. 
June 2009 IBM Rational Tau User Guide 139



Chapter 6: Working with Models
Ancestor to version 2 (4-way)

A 4-way compare is done with a previous merge as reference. For a 4-way 
compare the field “Ancestor to version 2” is used to select a file name (.u2 
or .ttp) containing the closest ancestor from this previous merge to the ver-
sion selected in “Version 2 - read from file” field. This would normally be 
one of the versions used in the previous merge operation that resulted in an-
cestor to version 1.

Figure 32: Compare Versions dialog
140 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
Model Selection
• Compare complete file (default): This will apply the compare operation 

on the complete model. This is recommended in most cases. 

• Compare only selected: This will apply the compare operation only on 
the selection made in the diagram or the Workspace window. 

Review differences dialog
• Always: This option will always present the operation result in a Review 

differences dialog.

• If conflicts: This option will present the operation result in a Review dif-
ferences dialog if there are any conflicting definitions, for example no di-
alog will appear when the differences only consists of model elements 
that have been added. 

• Never: This option will only present a summary of the operation in a re-
sult dialog.

Difference minimization

It is recommended that the Actions option is set for most use of the Compare 
and Merge feature. When Actions is set the Compare operation will ignore 
GUID differences that originate from any intermediate model unbinding. 
This will for example happen when you disconnect a part of a flow to insert 
a new symbol. The disconnected flow will become unbound for a while and 
when reconnected the symbols will receive new GUID values. 

Merge versions

From the Tools menu, select Merge Versions to call up the dialog window 
for this feature (see Figure 33 on page 142). 

Version 2 - read from file

This field contains the name of the file (.u2 or .ttp) containing the version 
(from the same original model) to merge with. For a 2-way merge this is the 
previous version of the file. For a 3-way merge this is a version belonging to 
a configuration-controlled branch. For a 4-way merge this is a version be-
longing to a configuration-controlled branch, where a previous merge is 
taken into consideration. 
June 2009 IBM Rational Tau User Guide 141



Chapter 6: Working with Models
Common ancestor (3-way) or Ancestor to version 1 (4-way)

For a 3-way merge this field is used to select a file name (.u2 or .ttp) con-
taining (closest) Common ancestor. This version must be the common or-
igin of both Version 2 and the version currently loaded. 

For a 4-way merge this field is used to select a file name (.u2 or .ttp) con-
taining the closest ancestor to the version currently loaded. This should be the 
version that was the result of the latest merge operation with ancestor to ver-
sion 2. 

Figure 33: Merge Versions dialog
142 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
Ancestor to version 2 (4-way)

A 4-way merge is done with a previous merge as reference. For a 4-way 
merge the field “Ancestor to version 2” is used to select a file name (.u2 or 
.ttp) containing the closest ancestor from this previous merge to the version 
selected in the “Version 2 - read from file” field. This would normally be one 
of the versions used in the previous merge operation that resulted in ancestor 
to version 1.

Note
4-way merge: Revert to the version represented by ancestor to version 2 is 
done by first performing Accept 2 for the property and then Reject 2. This 
will revert the property to the status for ancestor to version 2. 

Model Selection
• Merge complete file (default): This will apply the merge operation on the 

complete model. This is recommended in most cases. 

• Merge only selected: This will apply the merge operation only on the se-
lection made in the diagram or the Workspace window. 

Review differences dialog

See corresponding section under “Compare versions” on page 139 for a de-
scription of these options.

Conflict resolution

This option is enabled when 3-way or 4-way merge is performed. It decides 
what should happen with conflicts not automatically merged by the merge 
operation:

• Initially choose version 1: selecting this option the merge operation will 
use the properties of Version 1, the version currently loaded, to create the 
resulting version.

• Initially choose version 2: selecting this option the merge operation will 
use the properties of Version 2, the version given as argument in “Ver-
sion 2 - read from file” field, to create the resulting version.
June 2009 IBM Rational Tau User Guide 143



Chapter 6: Working with Models
• Leave unresolved: selecting this option the merge operation will leave 
the conflicts in an unresolved state. The merge operation can not be fin-
ished until all unresolved conflicts have been resolved by choosing the 
wanted version explicitly. The merge operation will use the properties of 
ancestor to Version 1, the version given as argument in “Common an-
cestor (3-way) or Ancestor to version 1 (4-way)” field, to create the tem-
porary resulting version.

If there is a difference which is not desired then it can be rejected after the 
merge has been performed.

Note
This option does not have any impact on non-conflicting differences. This 
means that non-conflicting differences of Version 1 and non-conflicting dif-
ferences of Version 2 will be included to the resulting version anyway.

Command line usage

It is possible to launch the Compare or Merge dialog from the command line 
via the Tcl scripts u2compare.tcl and u2merge.tcl found in the etc di-
rectory in the IBM Rational Tau installation. The u2compare.tcl and 
u2merge.tcl scripts support two modes of operation:

• Single file mode, for operations on model files (.u2)

• Project mode, for operations on Project files (.ttp)

Note
In the call to IBM Rational Tau (VCS.EXE on Windows or tau on UNIX) the 
tcl files must be specified with full path. I.e. on Windows the call should be
VCS.EXE -script "C:\Program Files\IBM Ra-

tional\TAU\4.3\etc\u2compare.tcl" ...

Single File Mode
<Tau> -script {u2compare.tcl | u2merge.tcl}

{forceVersion1 | forceVersion2 | leaveUnresolved}
{reviewDifferencesNever | reviewDifferencesAlways | 

reviewDifferencesIfConflicts}
{suppressSetupNever | suppressSetup}
{true | false}
[<version1>.ttp | <version1>.ttw]
<version1>.u2 <version2>.u2
[<ancestor1>.u2 [<ancestor2>.u2]]

Project Mode
<Tau> -script {u2compare.tcl | u2merge.tcl}

{forceVersion1 | forceVersion2 | leaveUnresolved}
144 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
{reviewDifferencesNever | reviewDifferencesAlways | 
reviewDifferencesIfConflicts}

{suppressSetupNever | suppressSetup}
{true | false}
{<version1>.ttp | <version1>.ttw}
<version1>.ttp <version2>.ttp
[<ancestor1>.ttp [<ancestor2>.ttp]]

The tables below explains the attributes used in the commands.

Example 9: Single File merge with one ancestor file on Windows ––––––––––––––

VCS.EXE -script "C:\Program Files\IBM 
Rational\TAU\4.3\etc\u2merge.tcl" forceVersion1 
reviewDifferencesAlways suppressSetupNever false 
C:/work/version1/project.ttp C:/work/version1/file.u2 
C:/work/version2/file.u2 C:/work/ancestor/file.u2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ForceVersion Description

forceVersion1 initially choose version 1 in case of conflict.

forceVersion2 initially choose version 2 in case of conflict.

leaveUnresolved leave conflicts unresolved.

ReviewDifferences Description

reviewDifferencesNever never show review differences dialog.

reviewDifferencesAlways always show review differences dialog.

reviewDifferencesIfConflicts show review differences only in the 
case of conflicts.

SuppressSetup Description

suppressSetupNever do not suppress the Compare/Merge setup dialog.

suppressSetup suppress the Compare/Merge setup dialog.

ExitOnSuccess Description

true close Tau after successful operation

false do not close Tau after operation
June 2009 IBM Rational Tau User Guide 145



Chapter 6: Working with Models
Example 10: Project merge with two ancestors and relative paths on Windows ––

VCS.EXE -script "C:\Program Files\IBM 
Rational\TAU\4.3\etc\u2merge.tcl" forceVersion1 
reviewDifferencesAlways suppressSetupNever false 
version1/project.ttp version1/project.ttp 
version2/project.ttp ancestor1/project.ttp 
ancestor2/project.ttp

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 11: Single file compare with relative paths on UNIX ––––––––––––––––

tau -script ${TAU_HOME}/etc/u2compare.tcl forceVersion1 
reviewDifferencesAlways suppressSetupNever false 
version1/file.u2 version2/file.u2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Review differences dialog

Output from compare/merge operation

When you have entered your selections the result will be shown either in 
Output window or in a Review differences dialog (see Figure 34 on page 
147). When the result is only a summary of the compared information there 
will only be a summary (messages in the Output window) displaying the re-
sult from the operation. The options setting for “Conflict resolution” will to-
gether with the status of the version differences affect the appearance of the 
“Review differences dialog”.
146 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
Model view

On the left side of the review difference dialog a model view displays all the 
differences in the model. Special icons provide additional information such 
as version where changes have been done, found conflicts and a current 
merge state for those changes. The meanings of the icons are listed below.

Figure 34: Review Difference dialog

Icon Icon Meaning

Model element has been added in Version 1

Model Element has been added in Version 2

Model element has been deleted in Version 1

Model element has been deleted in Version 2
June 2009 IBM Rational Tau User Guide 147



Chapter 6: Working with Models
Model view filter

A filter can be applied on the model view. The following options are avail-
able:

• No filter: Everything in the model is displayed.

• Only differences: All entities affected by one or more differences are 
displayed.

• Only conflicts: All entities affected by one or more conflicts are dis-
played.

• Only unresolved: All entities affected by one or more unresolved con-
flicts are displayed.

Model element has been modified in Version 1

Model element has been modified in Version 2

Model element has been modified in both version, no conflict.

Conflict, model element has been deleted in Version 1 and 
modified in Version 2
Conflict, model element has been modified in Version 1 and 
deleted in Version 2

Conflict, model element has modified in both version

Model element does not contain direct differences, but has dif-
ferences in children

Icon Icon Meaning

Unresolved conflict

Version 1 is accepted

Version 2 is accepted

Modifications in Version 1 and/or Version 2 are rejected

Modifications in both versions are accepted

Icon Icon Meaning
148 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
Version 1

This window displays a presentation of the currently selected Difference 
item or composite difference, with the properties of the version that was 
loaded in the tool before applying the compare (merge) operation.

Result

This window displays the properties of the version that will be loaded in the 
tool after a merge operation.

Version 2

This window displays a presentation of the currently selected Difference 
item or composite difference, with the properties of the version given as ar-
gument in the “Version 2 - read from file” field.

Zoom ruler

The zoom ruler to the right of the graphic windows allows simultaneous 
zoom of the three displayed presentations.

Difference list

The difference list displays all the differences for the entity selected in the 
model view and its children. See section “Difference Grouping” on page 153 
for a description of the nodes visible in the difference list.

Difference list columns
• Subject: This column contains an icon and an identifier for any item or 

group of items that have been identified to represent a composite differ-
ence between the two compared versions.

• Version 1: This column contains the version information on composite 
differences (number of differences in the group) or the items (item spe-
cific property) belonging to Version 1. 

• Version 2: This column contains the version information on composite 
differences (number of differences in the group) or the items (item spe-
cific property) belonging to Version 2. 

• Selected version (merge only): This column shows the version for the 
difference that currently is included in the merge Result.
June 2009 IBM Rational Tau User Guide 149



Chapter 6: Working with Models
Difference list filter

A filter can be applied on the difference list. The following possibilities are 
available:

• No filter: All differences are displayed.

• Only conflicts: Only conflicts are displayed.

• Only unresolved: Only unresolved conflicts are displayed.

Context Menu

By right-clicking an entity in the model view or an item in the difference list 
a context menu is opened (see Figure 35 on page 150) with the following op-
erations available:

Select both versions

Differences from both versions are merged into the model. If a conflict can 
be consolidated the merged result will be entered into the model. If the con-
flict cannot be consolidated then it will be resolved according to the option 
“Conflict resolution” and a corresponding difference(s) will be merged into 
the model. This operation is done hierarchically on the selected entity and all 
its children. If the changes have been done in one version only or the changes 
from both versions have been already accepted, then this menu item is dis-
abled.

Select version 1 only

Figure 35: Context Menu
150 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
Only differences from version 1 are merged into the model. If there are dif-
ferences from version 2 currently in the model the ancestor version will be 
entered instead. This operation is done hierarchically on the selected entity 
and all its children. If there is no changes in the version 1 or the changes have 
been already accepted, then this menu item is disabled.

Select version 2 only

Only differences from version 2 are merged into the model. If there are dif-
ferences from version 1 currently in the model the ancestor version will be 
entered instead. This operation is done hierarchically on the selected entity 
and all its children. If there is no changes in the version 2 or the changes have 
been already accepted, then this menu item is disabled.

Select ancestor only

Differences from version 1 and version 2 will be rejected from the model. 
This operation is done hierarchically on the selected entity and all its chil-
dren. If the changes have been already rejected, then this menu item is dis-
abled.

External text compare/External text merge

An external textual compare and merge tools can be used for comparing 
and/or merging comments, text symbols, task symbols and instance expres-
sions. The “External text compare...” and “External text merge...” operations 
are available where applicable.

If an external textual merge is done, the result will be checked if it can be re-
entered into the model. If it cannot be entered into the model, the result file 
from the external tool is saved and the path is reported together with an error 
message box.

Path and command line switches for the external text compare/merge tool are 
available via the Tools menu, Options dialog, under the Compare/Merge tab.

Add bookmark

A bookmark can be added on a selected entity. A comment can be added to 
the bookmark. The bookmarks can later be listed in the model navigator.
June 2009 IBM Rational Tau User Guide 151



Chapter 6: Working with Models
Save List

This will save the difference list in XML format to an external file. To view 
the contents of that file in a more readable format, the XML file should be 
used together with an XSL style sheet file. In the installation there are two ex-
amples of such a style sheet. The files are called u2compare.xsl (difference 
centric style) and u2compare_diagrams.xsl (diagram centric style) and are 
found in the etc directory in the installation.

To view the XML file, copy the XSL file to the same directory as the XML 
file and give it the same name as the saved XML file (but with the file exten-
sion xsl). When that is done, it is possible to open the XML file in a web 
browser and the contents will be readable.

The size of the generated images and whether unparsed text should be saved 
can be modified with the options for save review information via the Tools 
menu, Options dialog, under the Compare/Merge tab.

Abbreviated

The “Abbreviated” check box can be used to reduce the verbosity of the dif-
ference description text.

Ignore layout

The Ignore layout can be used to temporarily hide differences having to do 
with layout only (position, size and line segment points changes). These dif-
ferences are not removed from the list they are simply hidden and are taken 
into account even while hidden.

Show Actions

With this option set the model differences will be shown rather than textual 
differences only. This concerns statements in action symbols, text symbols 
and text diagrams. 

Show Ancestors

With this option set the ancestor version(s) will be displayed as well.

Cancel

Cancels any changes and restores Version 1 to its original state. 
152 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
Difference Grouping

The model centric information view is used to group changes into sets of dif-
ferences. Each model element has own set of properties. All differences re-
lated to those properties are added into the same group even if modifications 
have been done in different versions. The separate groups are created for dif-
ferences in semantic and presentation models, see Figure 36 on page 153. 
Each group has a representative element. The representative element for top-
level groups is one of those elements which are visible in the model view, i.e. 
“Definition”, “Implementation” or “Diagram” in terms of UML meta-model. 
The following rules are applied while doing the grouping:

• Difference related to created or deleted entity is added into the group 
where representative element is an owner of created or deleted entity, see 
Figure 37 on page 154.

• Differences related to moved entity are added into two groups. The 
“Moved (from)” difference is added into the group where representative 
element is an owner in ancestor version, i.e. the “old” owner. The 
“Moved (to)” difference is added into the group where representative el-
ement is an owner in modified version, i.e. the “new” owner, see 
Figure 38 on page 154.

• Differences related to modified attributes are added into the group where 
representative element is the corresponding modified model element, see 
Figure 39 on page 154.

Figure 36: Semantic and presentation model differences grouping
June 2009 IBM Rational Tau User Guide 153



Chapter 6: Working with Models
Figure 37: Grouping of “created entity” and “deleted entity” differences

Figure 38: Grouping of “moved entity” differences

Figure 39: Grouping of “modified attributes” differences
154 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
In the Difference list each group is represented by a set of sub-nodes. There 
are five main kinds of nodes (see Figure 40 on page 155):

Composite Group Node

This composite node contains the set of differences directly or indirectly 
owned by the representative element. This group can contain all other kinds 
of nodes.

Composite Conflict Group Node

This composite node contains conflicting differences which are owned by 
different representative elements. For example, if entity has been moved in 
Version 1 and in Version 2 and the new owners of that entity are different in 
Version 1 and Version 2, then the Composite Conflict Group will be created. 
This group can contain Difference Nodes only.

Conflict Node

This node corresponds to conflicting differences which are related to the 
same representative element.

Consolidated Node

This node corresponds to consolidated differences which are related to the 
same representative element.

Difference Node

Figure 40: Nodes in Difference list
June 2009 IBM Rational Tau User Guide 155



Chapter 6: Working with Models
This node describes the simple change that has been made in Version 1 or in 
Version 2.

By using the Context Menu it is possible to accept or reject any individual 
difference as well as a group of differences. The merge tool sets up additional 
relations between differences. Thus the accepting of some individual differ-
ence may automatically lead to accepting or rejecting another difference(s). 
Such relations are used in order to preserve semantic consistency of the 
merged models.

Textual merge

The merge tool uses two different strategies for merging, model-based merge 
and textual merge. The purpose of the textual merge is to enable merging 
within text symbols where model-based merge is not sufficient. Both model-
based merge and textual merge is built into the merge tool and uses the same 
graphical interface. This means that the list of differences in the Review dif-
ferences dialog could be model-based differences or textual differences.

Dynamic differences

Some symbols, for example action symbols and text symbols can contain 
model elements, an example of this is a textual description of a class. Thus 
the text within these symbols can change during a merge operation de-
pending on the versions of other differences in the model that are chosen. 
This leads to that a textual merge must be done dynamically during a model 
merge. The merge tool detects the differences in the symbols that act as a text 
container. Two additional nodes are used while representing the textual dif-
ferences (see Figure 41 on page 157): 

Composite Textual Difference Node

This group node corresponds to a group of primitive textual differences. This 
group can contain Textual Difference Nodes only.

Textual Difference Node

This node corresponds to a primitive textual difference. There are two oper-
ations that represent modifications in the text: Remove and Insert. Remove 
means that a part of the text has been deleted (in comparison with the an-
cestor version). Insert means that a new text has been added.
156 IBM Rational Tau User Guide June 2009



Compare and Merge Versions
Selecting versions

As well as for the semantic and presentation model differences it is possible 
to accept or reject the group of textual differences or an individual textual dif-
ference. The merge tool sets up relations between textual differences and se-
mantic model differences. As soon as textual difference is accepted/rejected 
the corresponding semantic difference is accepted/rejected. And vice versa, 
as soon as semantic difference is accepted/rejected, the corresponding textual 
difference is accepted/rejected. 

When Textual Difference Node is selected in Difference list, the modified 
part of code is highlighted in the one or several windows which represent An-
cestor, Version 1, Version 2 and Result models, see Figure 42 on page 158.

If the selected node corresponds to Remove operation, then the removed part 
of the text is selected in Ancestor window (and in Result window, if that op-
eration is rejected). If the selected node corresponds to Insert operation, then 
the inserted part of the text is selected in Version 1 (and/or Version 2) 
window (and in the Result window, if that operation is accepted).

Figure 41: Textual difference nodes
June 2009 IBM Rational Tau User Guide 157



Chapter 6: Working with Models
Coloring

The colors are used in the Review differences dialog in order to simplify the 
understanding of changes that have been done in both versions. The blue 
color is used to mark presentation elements that correspond to model ele-
ments modified in version 1 only. The green color is used to mark presenta-
tion elements corresponding to model elements that have been modified in 
version 2 only. And presentation elements that correspond to model elements 

Figure 42: Textual difference highlighting
158 IBM Rational Tau User Guide June 2009



Basic Models to Get Started
modified in both versions are marked by red color. The same coloring is ap-
plied to modified presentation model elements, i.e. Symbols and Lines as 
well as to parts of the text.

Basic Models to Get Started
When working with models it is necessary that your model has a certain level 
of completion for it to be executable with the Model Verifier. This level of 
completion may vary depending on your requirements and will not be en-
tirely covered by the check functionality. The check functionality covers the 
syntax and semantic check from a model perspective, but not from a code 
generation perspective. The model must pass the check function, but there 
may be further restrictions that prevent code generation. 

This section aims to explain some basic requirements to achieve completion 
with respect to generating code for a Model Verifier or a C Code Application. 
These are similar and build on the same mapping tables between UML and 
application code.

See also

Chapter 89, Setting Up the Tool Environment, for more information on how 
to create a new workspace with a project. 

“UML Language Guide” on page 195 in Chapter 8, UML Language Guide 

Initial design

Active classes and behavior

In most cases a UML design starts with defining a package as a container. 
For any system to be meaningful to run as a Model Verifier or application it 
has to have an active class. The dynamic behavior is normally modeled in a 
State Machine implementation, belonging to a State Machine model element 
(usually named initialize or named after the active class it belongs to). These 
encapsulating elements will be produced when creating a new State machine 
diagram. One of the fundamental stages in your workflow is to determine the 
top-level active class for your system. 
June 2009 IBM Rational Tau User Guide 159



Chapter 6: Working with Models
Model example

In order to create a Model Verifier it is required that there is a Build Artifact. 
You are prompted to specify build type and Build Root for this artifact if it 
does not exist. An executable model (Figure 43 on page 160) can be made up 
of:

• a package (optional)

• a class diagram (optional)

• at least one active class

• at least one State Machine, with a State Machine implementation (op-
tional, in the sense that it can be implicit) 

• at least one build artifact

The design of your model can be made in the Workspace window directly in 
the model, using the shortcut menu and creating element with the New sub-
menu. This most natural way to start is however by creating a class diagram 
in the package. 

Running the Model Verifier on the example above there will be an implicit 
State machine generated, with no actual behavior. 

Signalling example

An active class has to have a port to have any form of communication based 
on UML signals and interfaces. The port is defined with the signals or inter-
faces that it can transmit. A model with (internal or external) communication 
(Figure 44 on page 161) will have:

• at least one signal (which is used in the state machine defining the dy-
namic behavior)

• at least one port

Figure 43: Model with an active class
160 IBM Rational Tau User Guide June 2009



Basic Models to Get Started
• an interface (optional)

The use of interfaces to encapsulate signals is also a fundamental stage in the 
workflow when designing your UML model. 

State machine

This will be possible to generate code for, but there will be an implicit state 
machine that will not have any behavior that can be simulated. 

Adding a simple state machine to the model makes the behavior more visible 
(Figure 45 on page 162).

Figure 44: Model with interfaces and signals
June 2009 IBM Rational Tau User Guide 161



Chapter 6: Working with Models
Internal communication

Open and closed systems

The model in Figure 44 on page 161 is describing an open system. An open 
system is here referring to a system that interacts with its environment. A 
closed system may be designed from an open system where the interaction is 
built into the system. 

The example will now be enhanced with another active class (Class2) which 
will be having Class1 as a part. A new interface (I3) and signal (Sig3) is 
added, Figure 46 on page 163. 

Figure 45: State machine with signal
162 IBM Rational Tau User Guide June 2009



Basic Models to Get Started
Ports and behavior ports

The port in the example is used for communication with the environment. 
Ports will also be used for communication with other parts of the model. In 
a larger design there can be an active class which in turn contains active 
classes. A behavior port will allow the design to show the communication be-
tween a part and the state machine in (an instance of) the class that owns the 
part. 

Figure 46: Class2 and new interface

Figure 47: Behavior port in composite structure diagram
June 2009 IBM Rational Tau User Guide 163



Chapter 6: Working with Models
Architecture 

Composite structure diagrams are necessary only when there is an ambiguity 
in how signals can be transmitted in a model. Composite structure diagrams 
can be of great use to explicitly show how a complex model with active 
classes is structured. If the top class has a state machine that requires com-
munication with its parts this can be modeled in a composite structure dia-
gram with a behavior port, Figure 47 on page 163. 

The state machine for Class2 is shown in Figure 48 on page 164. 

Figure 48: State machine for Class2 
164 IBM Rational Tau User Guide June 2009



7
Working with Diagrams

When you have opened a project you are ready to edit your model.

When editing the model, you are provided the best view if the Model View 
tab in your Workspace window is active. Here you can easily see how the 
changes you do in diagrams affect the model.

How you should use the diagram editors in combination with the model in-
formation is highly dependent on the application that you want to create. The 
recommendations below are meant to help you getting familiar with the tool 
and later you can adapt and change the workflow to fit your needs. 
June 2009 IBM Rational Tau User Guide 165



Chapter 7: Working with Diagrams
Common Diagram Operations
Common diagram operations include:

• Create diagrams

• Open, save and print diagrams

• Move diagrams

• Resize diagrams

• Save in New File

• Find

• Text parsing

• Diagram auto layout

• Organizing the view

Grid

The diagram drawing area will always have an active grid, which means that 
there will be a snap to grid which is always set to on. The grid spacing is set 
to 2 millimeters and cannot be changed. It is possible to show or hide the grid 
from the shortcut menu or by changing in the Options, default is hidden. All 
symbols, lines and text fields (except those fixed in symbols) will adhere to 
the grid. When a symbol is resized, it is done in grid steps. This also applies 
to auto resizing. 

Frame 

All diagrams will have a frame enclosing all symbols, except port symbols 
which can be placed on the frame. The upper left corner of the frame symbol 
will be at (x=10, y=10) millimeters, measured from the canvas top left 
corner. The frame is sized according to the diagram size and layout. The po-
sition can be overruled if extra space is needed for symbols placed on or out-
side the frame.

The frame may be resized and moved in all directions, canvas space permit-
ting.

Heading 

The diagram heading is positioned in the top left corner of the diagram. The 
text is calculated from the properties of the defining entity.
166 IBM Rational Tau User Guide June 2009



Common Diagram Operations
Diagram Name 

The diagram name is positioned in the top right corner of the diagram. The 
text is right aligned. The information is calculated from the model informa-
tion, and thus only editable through the Model view.

Create diagrams

A diagram contains a set of presentation elements representing elements 
from your model. Diagrams are managed through the Workspace window. 

1. In the Workspace window, click the Model View tab.

2. Select or create a suitable package.

3. You are now able to choose New from the shortcut menu to create an ap-
propriate diagram (or model element).

See also

“Create Presentation” on page 112 in Chapter 6, Working with Models

Open, save and print diagrams

Information in the diagram is saved in a file when you save the project. If you 
do not specify a file, the information will reside in the data file (.u2 exten-
sion). This file will normally reside together with the project (.ttp) and 
workspace (.ttw) file you are currently using.

• To open a diagram: double-click the diagram icon in the Model View.

• To print an open diagram: on the File menu, click Print...

The diagram size when creating a new diagram is derived from the printer 
settings. For example, if the page layout is set to landscape on the printer, di-
agrams will have a landscape orientation. 

Save diagram image

A diagram can be exported as an image in a range of formats including JPEG, 
GIF, BMP and SVG.

A diagram can be saved as an image by opening it and clicking Save As... on 
the File menu. A save dialog will open where a file path and wanted image 
format can be selected.
June 2009 IBM Rational Tau User Guide 167



Chapter 7: Working with Diagrams
Save in New File

An operation is provided to store a UML element in a separate file. This is 
provided in the Model View of the workspace window as a separate shortcut 
menu choice “Save in New File...”. When selected you will be prompted for 
a file name and the element will be stored in the indicated file.

The following elements can be saved in new files:

• Definition

• Implementation

• Class diagram

See also

“Select diagrams to be printed” on page 2468 in Chapter 92, Printing

“Save” on page 2494 in Chapter 95, Dialog Help

Move diagrams

You can move diagrams within projects and between projects in the same 
workspace.

• Click the icon corresponding to the diagram in the Model View and drag 
the diagram to its desired location.

Resize diagrams

When a diagram is created the default is that the diagram is placed in an auto 
size mode. This mode can be turned off or on from the diagram shortcut 
menu or the diagram element properties toolbar. When the diagram is in auto 
size mode diagram elements can be dropped, inserted, pasted, moved etc. 
anywhere on the editor canvas. If the element is placed outside the frame the 
diagram will automatically be resized to fit the element. The auto size mode 
will always keep the minimum full pages to contain all diagram elements.

The initial diagram size and layout is determined by the Print settings (size 
and orientation). If no printer is installed the size is determined from the cur-
rent Options set. Resize of the diagram is done in two steps. If the diagram is 
to be enlarged, it can be done in one of the following ways:
168 IBM Rational Tau User Guide June 2009



Common Diagram Operations
• Change the size of the diagram from the shortcut menu. Right-click on 
the diagram in the Model view and select Diagram size..., this will open 
a dialog that allows you to control the size manually or return to auto 
sizing. 

• When auto size is off, you can increase the diagram size in steps of whole 
papers by holding down CTRL and clicking on the drag handles of the 
frame symbol. If CTRL + SHIFT keys are pressed when clicking on the 
handles the diagram will be decreased in size. The mouse cursor will 
change appearance according to which keys are pressed.

The frame symbol is automatically resized to match the resize of the diagram. 
When resizing the diagram to make it smaller the frame symbol may not be 
made smaller than the extent of all symbols (or lines) in the diagram. The 
frame must be at least 1 grid point apart from any symbol (line) inside. The 
diagram name symbol will be moved automatically when the diagram is re-
sized. Ports and lines connected to the frame move with the frame. The size 
of the canvas may not be made smaller than the frame + margins. Resize of 
the frame should follow the grid.

Find

Open the Find Diagrams and Definitions dialog by choosing Find from the 
Edit menu. Through the dialog it is possible to locate definitions. To find the 
usage of a definition it is possible to Find text in diagrams too. Results are 
shown in tab Search result in the Output window. To list where an entity is 
used, right-click the entity in the Model view and from the shortcut menu 
click List references. 

See also

“Model Index” on page 118.

Text parsing

In general, C++ style syntax is used in text symbols (and external files). 
UML style syntax is used in all other symbols. However, the parsers accept 
some minor deviation from UML (“public” instead of “+”, “output” instead 
of “^”, etc.) but will unparse everything in UML style. In text symbols, UML 
style deviations are accepted, but will be converted to C++ style (i.e. “+” as 
visibility operator is converted to “public”). 

These changes fall into this category: 
June 2009 IBM Rational Tau User Guide 169



Chapter 7: Working with Diagrams
• Visibility: + converts to public 

• Visibility: # converts to protected

• Visibility: - converts to private 

• Signal Sending: ^ converts to output 

• Decision alternative: else converts to default 

There are some other properties of the unparse phase: 

• “in” parameter direction kind is not unparsed 

• quotation marks are removed from names that do not need it (for example 
‘Name1’ becomes Name1 after unparse) 

• “in / out” parameter direction kind is unparsed as “inout” 

• data types only with literals become enumerated data types, i.e. 
datatype colors { literals red, green; } un-parsed as enum 
colors { red, green } 

The unparser will expand shortcut notations. Several attributes, remote vari-
ables, signals, timers, exceptions or synonyms defined at once (for example, 
Integer i, j, k;) will be unparsed as several separate definitions 
(Integer i; Integer j; Integer k;). 

The unparsed adds omitted parenthesis in signal and timer definitions (i.e. 
“timer T” becomes “timer T()”). 

Open ranges (if possible) are converted to UML style: “>= n” is converted 
to “n..*” and “>=0” is converted to “0..*”.

Auto-quote

The purpose of auto-quote is to assist you with typing quotation marks. If you 
add a whitespace in a name there should be quotation marks added wrapping 
the text. Only a limited set of symbols (labels) are auto-quoted. Typically la-
bels that contains names are auto-quoted. 

Word wrapping

Word wrapping allows words to be broken up into several lines. This is ap-
plied to multiline labels and to non-autosized symbols. The algorithm for de-
termining where to break a word looks for any of the following: ‘:’, “::”, 
whitespace, capital letter, comma (‘,’), period (‘.’), underscore.
170 IBM Rational Tau User Guide June 2009



Common Diagram Operations
Diagram auto layout

The shortcut menu for diagrams (canvas background) includes an Auto-
matic layout menu item for diagram types that has an auto layout algorithm 
associated with it. If this menu item is selected the diagram elements will be 
placed in a layout suitable for that specific diagram type. For example will 
Class diagrams and state machine diagrams have a hierarchical layout. 

The auto layout algorithms will be used when placing diagram elements with 
the Show elements dialog.

When using the auto layout:

• It is only Generalization lines that are included in the layout algorithm in 
class diagrams.

• Flow lines and transition lines are included in the layout algorithm in 
state machine diagrams.

Organizing the view

The editors have several features allowing you to organize your view. These 
include shortcuts for scrolling and zoom in/out. 

When a diagram is closed, the current scroll and zoom settings can be saved 
to a separate file with the extension .u2x and the name 
<project>_DiagramSettings. This file is not added to the project (ttp 
file). Instead when a project is loaded there is a step that loads files with the 
extension .u2s and a corresponding name. This feature is controlled by the 
option Remember scroll and zoom. 

Scroll

When your diagram is sized so it is not entirely visible in the desktop area it 
is possible to scroll the view. Scrolling your diagram view can be done with 
the window scroll bars.

(Windows) It is possible to scroll with the IntelliMouse pointing device.

• Vertical scrolling is done by use of the scroll wheel.

• Horizontal scrolling is done by pressing CTRL and at the same time use 
the scroll wheel.
June 2009 IBM Rational Tau User Guide 171



Chapter 7: Working with Diagrams
Zoom

It is possible to zoom in fixed steps via the Zoom command on the View 
menu. 

It is possible to do a continuous zoom via the shortcut menu. Right-click in 
a diagram, point to zoom and select the desired enlargement level. When not 
in text edit mode it is possible to use “-” (minus) for zoom out and “+” (plus) 
for zoom in. 

(Windows) It is possible to zoom with the IntelliMouse pointing device.

• Press SHIFT and use the middle mouse button, the diagram will zoom. 

• Double-click on the scroll wheel will zoom to 100%. 

• SHIFT + Double-click on the scroll wheel will zoom to fit the current di-
agram width in the desktop area.

See also

“Docking windows” on page 21

“Workspace Operations” on page 2402

Common Symbol Operations
• “Symbol information” on page 173

• “Add symbols” on page 173

• “Show elements” on page 175

• “Select symbols” on page 176

• “Move symbols” on page 176

• “Resize symbols” on page 177

• “Connect symbols” on page 178

• “Edit text fields in symbols” on page 179

• “Diagram element properties” on page 180

• “Handling comments” on page 181

• “Copy, cut, delete or paste symbols” on page 182

• “Icon” on page 183

• “Image Selector” on page 184

• “Undo” on page 185
172 IBM Rational Tau User Guide June 2009



Common Symbol Operations
• “Model references” on page 185

• “Update model” on page 187

• “Nested symbols” on page 187

Symbol information

Symbols and lines in diagrams will present context sensitive information on 
tool tips when you let the cursor rest on them. This feature can be controlled 
from the Tools menu Options command via the UML Advanced Editing tab. 

The selection of Show symbol and line tooltips will allow you to see con-
textual model information, for example stereotype and model bind informa-
tion. 

The selection of Show edit mode tooltips will allow you to see information 
from syntax parsing while in text edit mode. 

Show/hide model element details toolbar

The Show/hide model element details toolbar lets you toggle showing and 
hiding of certain features of symbols in diagrams. These settings are remem-
bered per diagram element. If the setting is applied on the diagram, all dia-
gram elements without a setting of their own, will inherit the diagram setting.

• Show/Hide qualifiers

Toggles the qualifying parts of a label text. For example: 
Package1::Package2::Class1 will be toggled to Class1. 

• Show/Hide stereotypes

Toggles the stereotype label. When the label is hidden the space occupied 
by it is considered minimal and can thus affect the symbol size.

• Show/Hide quotation marks

Toggles the automatic quotation marks, thus a limited set of symbols are 
auto-quoted and those symbols are affected by this button. The text will 
still be considered quoted when the quotation marks are hidden. Auto-
quoted text is typically names containing a whitespace.

Add symbols

To add a symbol, you click its corresponding icon in the Diagram element 
toolbar, then click or right-click in the diagram to position the symbol. 
June 2009 IBM Rational Tau User Guide 173



Chapter 7: Working with Diagrams
It is also possible to generate symbols from the Model View. You can in 
many cases drag a Model element into the desired diagram.

In state machine diagrams it is possible to Insert a symbol in the flow by 
pressing CTRL and then click in the diagram element toolbar on the new 
symbol. The symbol will be positioned after the currently selected symbol.

Reference existing

When you right-click to position a symbol a shortcut menu will appear for 
most symbols. Symbols that do not have this menu are:

• Transition line (used in state machine diagrams when designing in State-
oriented view). 

• State machine transition symbols not related to states, signals and opera-
tions. 

The shortcut menu contains the following choices: Create New <element>, 
Leave Unbound, Reference existing. 

• Create New <element>: a new symbol will be created and a corre-
sponding model element will be created in the model.

• Leave Unbound: a new symbol will be created but no corresponding 
model element will be created.

• Reference existing: will display a drop-down box with existing model 
elements matching type and scope.

Auto placement

In many cases it is desired to position a symbol in connection with the pre-
vious, for example a port on a class. For this purpose auto placement of sym-
bols is supported. 

• Hold down SHIFT and click the symbol toolbar. The symbol clicked will 
be connected to the currently selected symbol. 

• Hold down CTRL and click the symbol toolbar. The symbol clicked will 
be inserted between the currently selected symbol and the next one.

The symbols in the toolbar will be dimmed if they cannot be connected in a 
syntactically correct flow to the currently selected symbol.

It is also possible to use the SHIFT + SPACEBAR and CTRL + SPACEBAR 
shortcuts to get a list of the symbols that can be auto placed. 
174 IBM Rational Tau User Guide June 2009



Common Symbol Operations
See also

“Name support” on page 80 in Chapter 6, Working with Models

“Create Presentation” on page 112 in Chapter 6, Working with Models

“Model navigation/creation” on page 114 in Chapter 6, Working with Models

“Diagram auto layout” on page 171

“Show elements” on page 175

“Creating a message” on page 228

Show elements

The Show Elements dialog makes it possible to decide what model elements 
to show as symbols in the current diagram.

Show Elements is available:

• From the Tools menu 

• In diagram shortcut menus. 

When Show Elements is invoked, a dialog appears, with a list of model ele-
ments that can be shown as symbols in the current diagram. By adding or re-
moving check marks for model elements, you can add or remove symbols for 
their corresponding presentation from the diagram.

The Show Elements dialog has the following features:

• The All button allows you to check all model elements in the list with one 
click.

• The None button allows you to remove all existing check marks with one 
click.
June 2009 IBM Rational Tau User Guide 175



Chapter 7: Working with Diagrams
• The Short list check box makes it possible to toggle between a short and 
a long list of model elements. 

– The short list contains model elements that are natural to show in the 
current diagram. (For instance, a class in a class diagram.) Model el-
ements that are already shown as symbols in the current diagram, are 
also included in the short list, even if they are not natural to show in 
the current diagram.

– The long list contains all model elements from the selected scope that 
can be shown as symbols in the current diagram. In addition to the 
natural model elements for the current diagram, this list also includes 
more uncommon conversions. (For instance, the alternative to show 
a class as an actor in a use case diagram is included in the long list.)

• The Select scope button brings up a dialog, in which it is possible to se-
lect the scope or scopes to pick model elements from for the list in the 
main dialog. As default, only model elements from the local scope where 
the diagram resides is included in the list.

Select symbols

Pressing CTRL while double clicking outside a text field (but within the 
symbol boundaries) will select the symbol, outgoing lines and all connected 
symbols.

Click and drag (when not clicking on a symbol or line) will create a selection 
rectangle. Everything that is placed within the rectangle is selected.

Click and drag while pressing CTRL (when not clicking on a symbol or line) 
will create a selection rectangle. Everything that is intersecting the rectangle 
is selected.

In a state machine flow if you do CTRL + double-click on a symbol in a flow 
this will select the symbol and all symbols after. This also works when the 
flow is branched. 

Move symbols

To move a symbol, click it and drag it to the desired location within the dia-
gram. It is also possible to drag symbols to other diagrams. 

Symbols with text fields should be selected as not to enter the text edit mode. 
The cursor will change appearance to indicate this. 
176 IBM Rational Tau User Guide June 2009



Common Symbol Operations
Moving text fields

It is possible to move some text fields (labels). This is true for labels that be-
longs to lines and for labels that belongs to symbols with the label outside of 
the symbol boundaries (port, pin, etc.).

This is done by first selecting a label, which then can be dragged in one of its 
handles. The new position will be saved as an offset to the default position. 
If you move a line or symbol with a label, then the label will also move and 
preserve the offset.

The offset can be removed by clicking on the shortcut command Reset all 
label positions. That will reset all labels belonging to the currently selected 
symbol to their default position.

Labels can be dragged to anywhere on the desktop, even outside the frame 
symbol and diagram area. Labels outside the diagram area will not be 
printed.

Resize symbols

To resize symbols manually

1. Select the symbol in question.

2. Place the mouse over one of the eight gray squares.

3. Drag the mouse until the symbol is the size you want it to be.

Autosize symbols 

All symbols offer the choice of Autosize, which adapts the symbol to the size 
of the text entered within it. Right-click the symbol and choose Autosize 
from the shortcut menu.

Collapse symbol

A symbol with compartments (for example a class symbol) can be collapsed 
by checking the “Collapsed” menu item in the shortcut menu for that symbol. 
Compartments and any labels inside the compartments will not be visible 
when in a collapsed state.
June 2009 IBM Rational Tau User Guide 177



Chapter 7: Working with Diagrams
Resized symbol indicators

When three dots appear outside a symbol’s lower right corner, the size of the 
symbol is too small to show all text that is available in the symbol’s text 
fields. To resize the symbol to adapt to the text, select the symbol and double-
click the dots.

Connect symbols

To connect symbols manually

1. Click a symbol and find its line handles.

2. Drag the line to the other symbol. 

3. The end of the line will appear as a circle with crossbars when you reach 
the second symbol. Complete the connection by clicking inside the 
symbol close to the border position where you would like to attach the 
line.

Some connections will result in model elements. If you for example drag the 
generalization handle to another class in a class diagram you will end up with 
a line between the two classes as well as new icons in the Model View, in-
forming you that a generalization has been added. 

Symbols in a State machine diagram can be connected automatically to a 
flow with Auto placement.

See also

“Draw lines” on page 192

Symbol flow editing

In diagrams which have a concept of flows, such as state chart diagrams and 
activity diagrams, there are certain operations possible to manage these 
flows.

Select a flow or a branch of a flow

If you do CTRL + double-click on a symbol in a flow this will select the 
symbol and all symbols after the selected symbol. This also works when the 
flow is branched. 
178 IBM Rational Tau User Guide June 2009



Common Symbol Operations
Append symbols to the flow

When adding symbols in an diagram you can create a connected flow of sym-
bols. Hold down SHIFT and click the toolbar. The symbol clicked will be 
connected to the currently selected symbol. The symbols in the toolbar will 
be dimmed if they cannot be connected in a syntactically correct flow to the 
currently selected symbol. 

See also

“Auto placement” on page 174

Insert a symbol in the flow

Insert operation is possible when CTRL is pressed and a button is clicked 
while the selection corresponds to one of the following cases:

• A single selected symbol (insert operation after this symbol)

• A single selected line (insert operation on this line)

• Two selected symbols with one line between them (insert operation be-
tween the symbols)

Note
• Using CTRL + decision symbol is not possible. There are several pos-

sible flows out from a decision symbol and because of this it is not sup-
ported to insert a decision symbol this way.

See also

“Auto placement” on page 174

Remove a symbol from the flow

When a symbol is cut or deleted from a flow an auto-created line replaces the 
removed symbol and its connected lines if possible. 

Edit text fields in symbols

To be able to edit a text field in a symbol, the symbol must first be selected.
June 2009 IBM Rational Tau User Guide 179



Chapter 7: Working with Diagrams
• To edit a text field in a symbol, select the symbol and click in the text 
field at the position where you would like to add or change. You are now 
able to enter your text changes. Text within guillemets, «» (for example 
stereotype information), cannot be edited.

• If a symbol is selected, and a double-click is done in a text field the 
closest text word will be selected. If the symbol is not selected, the 
double-click will be done on the symbol (normally navigation).

• If a symbol is selected, click and drag in a text field in the symbol will 
enter edit mode and select the text. If the symbol is not selected, the 
symbol will be moved.

• Pressing F2 will enter edit mode for the main text of the selected symbol. 
For a single line text all text will be selected, while for a multi line text, 
there will be no selection and the text insertion marker will be placed at 
the end of the text.

If you enter syntactically incorrect text in the symbol, it will be marked with 
a red indicator positioned at the first error. The text is checked continuously 
as you type.

Note
Double clicking outside a text field (but within the symbol boundaries) will 
always perform the double click operation for the symbol (normally naviga-
tion).

Diagram element properties 

A specific toolbar called Diagram Element Properties is available. This will 
contain drop-down boxes that control various properties of the selected 
symbol(s)/line(s):

• font

• font size

• symbol / line background color

The toolbar contains a button that will remove the set properties and revert 
to default styles.

If no symbol is selected, the toolbar commands will apply to all symbols in 
the current diagram, except symbols with individually applied properties.
180 IBM Rational Tau User Guide June 2009



Common Symbol Operations
Handling comments

Comment symbols can be added to all symbols. 

1. Click on the comment symbol on the toolbar. 

2. Position the symbol in the diagram. 

3. Connect the annotation line from the comment symbol to the symbol you 
want the comment to belong to.

Comments and constraints

The shortcut command Show Comments for Signature symbols (in the sub-
menu to Show/Hide) will create and attach a comment symbol for each com-
ment model element owned by the signature symbol that does not already 
have a comment symbol in the current diagram.

The shortcut command Show Constraints as Symbols for Signature sym-
bols will create and attach one constraint symbol for each constraint model 
element owned by the signature symbol that does not already have a symbol 
in the current diagram.

Column of Remarks

Two or more comment symbols form a Column of Remarks when they are 
positioned close and aligned or almost aligned in vertical position, see 
Figure 49 on page 182. The vertical positions will be auto-adjusted to form a 
left-aligned column when a column of remarks is detected. 

The column can be moved in the horizontal direction by pressing SHIFT and 
moving the top comment symbol a small vertical distance (less than the total 
width of the column). If another comment symbol in the column is moved a 
small distance (with SHIFT pressed), it will be repositioned back into its 
place in the column. Moving any comment symbol a larger distance will re-
move it from the column. 
June 2009 IBM Rational Tau User Guide 181



Chapter 7: Working with Diagrams
Note
The top comment symbol in the column of remarks must be positioned below 
the lifeline headers to be included in the column.

Copy, cut, delete or paste symbols

All symbols have a shortcut menu that you may access by right-clicking on 
the symbol. From this menu, choose Cut, Copy or Paste according to your 
needs.

You can also drag symbols to other tools, for example MS Word.

To delete a symbol, select it and press the Delete key. 

Figure 49:Column of remarks
182 IBM Rational Tau User Guide June 2009



Common Symbol Operations
Note
A Delete operation may or may not affect your model depending on the type 
of symbol and its relation to the model. When you add symbols to your dia-
grams this will in most cases add information to your model. When you de-
lete a symbol in a diagram it will only delete information in the model if 
there is a one-to-one relation with the symbol and the model. This is for ex-
ample the case with State machine flow symbols. To delete a symbol and its 
corresponding model element use Delete from Model. 

Icon

User-specified icons

It is possible to use an image file and replace selected symbol icons with a 
user-specified icon. The icon can be specified on the following levels:

• for a specific symbol

• for a specific semantic model element, implying that all symbols that are 
associated with the model element will use the icon 

• for a specific stereotype, implying that all symbols that are associated 
with model elements stereotyped by the symbol will use the icon

• for a specific type (for example class or datatype), implying that all sym-
bols that are associated with instances of the type will use the icon

Add stereotype

This feature is controlled by a stereotype. To activate this you right-click the 
model element that is to have the icon, and from the shortcut menu select 
Apply Stereotypes. In the dialog apply the stereotype 
TTDStereotypeDetails::Icon. You can also through the Properties editor 
open this dialog using the Stereotypes button.

The entities that this stereotype can be applied to is controlled by the Meta-
model properties. To view this information go to the Library section in the 
Model View and open the package for TTDStereotypeDetails. In the class 
diagrams you can view the relations between the supported entities (meta-
classes) and the icon stereotype. 
June 2009 IBM Rational Tau User Guide 183



Chapter 7: Working with Diagrams
Ordering

If more than one user-specified icon is specified among the alternatives 
above, then the order is according to the list above. Thus, if an icon is speci-
fied for a specific symbol, this will be used, otherwise the icon for the model 
element is used and so on.

Icon mode

For symbols identified with a user-specified icon there will be a shortcut 
menu choice called Icon mode. When selected this menu choice will cause 
the symbol to be visualized instead of the usual symbol.

Image file

The icon is defined by a property of the symbol, model element or applied 
stereotype and can be changed using the Properties dialog for the entity. In 
this dialog select Icon in the Filter drop-down menu to display a text field 
called Icon File. The text in this field is a relative path from the model file 
(.u2) to where the image file can be found.

The formats that are supported for the icon image files are

• bitmap (file extension “.bmp”)

• JPEG compressed images (file extension “.jpeg” or “.jpg”)

• Enhanced Meta File (file extension “.emf”)

• GIF (file extension “.gif”)

• TIFF (file extension “.tif”, “.tiff”)

• Targa (file extension “.tga”, “.targa”)

• PCX (file extension “.pcx”)

Note
Using a white and transparent background for an icon image may result in 
a black background when Printing Diagrams. 

Image Selector

The symbols in diagrams can also be displayed with a user-defined image 
using the Image Selector. This function is delivered with the Add-Ins. Acti-
vate the add-in ImageSelector, then the commands Load image and Re-
move image are available in the Tools menu.
184 IBM Rational Tau User Guide June 2009



Common Symbol Operations
Undo 

Multiple level of Undo and Redo is available. The whole tool (workspace 
window and editors) has a common undo stack. When an operation is un-
done, it is put first in the redo stack to make it possible to redo the undone 
operation. 

Note
You can undo operations in diagrams that are not currently visible. 

Some special considerations have to be taken when using Undo and Redo 
when in text-editing mode. Undo steps will be available for each update. An 
update is made according to the following scheme: a series of character ad-
ditions will not cause an update until you do something else, for example 
back space, delete, arrow keys or mouse selection. Similarly will a series of 
deletes not cause an update until you do something different. 

When doing an explicit unload (including revert) of a file/resource in a 
project the Undo stack is emptied.

Undo is not possible for file system operations.

The Undo stack is not emptied when a Save is performed.

Model references

To find references to model definitions and their usage there is a group of 
shortcut commands with similar features. These commands have a contex-
tual nature meaning that they will be dependant on the element that they are 
applied on. 

List references

List References is a shortcut command in the Model View, which applies to 
all model elements. The command calls up a dialog and returns a reference 
list in the References tab of the Output window. Possible settings:

• References made to...
The listing contains all references to the model element, for example 
usage of a specific class as a type for an attribute is a reference to the 
class.
June 2009 IBM Rational Tau User Guide 185



Chapter 7: Working with Diagrams
• References made from...
The listing contains references from a selection, for example references 
from an attribute to the class used as its type. 

• Include Contained Hierarchy in Report
When selected, this alternative will cause the tool to recursively include 
any references to or from the elements contained under the selected ele-
ment. An example is to find for all definitions outside a package, used by 
the package and its contained definitions.

• Include Internal references in Report
When selected, this alternative will cause the tool to report references 
originating in the object or its contained hierarchy to itself, or to its con-
tained hierarchy. An example of this is to find all uses of a package and 
of its contents without finding references made within the package.

List presentations

List Presentations is a shortcut command in the Model View, which applies 
to all model elements. Returns a list of all presentation elements in the Pre-
sentations tab of the Output window. 

Reference existing

This is a shortcut command when placing a new symbol. 

Navigate

Shortcut command in the Model View, opens the Model Navigator or if there 
is no existing presentation for the element the Create Presentation dialog. 

When you have a selection of multiple nodes in the Model view the com-
mands List References and List Presentations will be applied to all selected 
elements. 

See also

“Add symbols” on page 173 in Chapter 7, Working with Diagrams
186 IBM Rational Tau User Guide June 2009



Common Symbol Operations
Update model

When the Active Modeler add-in is activated the shortcut menu will contain 
a new choice named Update model. This command is used on unbound en-
tities, to invoke them in the current model. 

This feature is available in composite structure diagrams, use case diagrams 
and sequence diagrams. 

Usage

To update the model from a presentation element, select the element, right-
click and select Update Model from the shortcut menu. The command is only 
available when there is a registered update model procedure for an element 
in the current selection. The Update Model command is also available in the 
Tools menu.

The Active Modeler tab in the Output window is filled with information 
about changes made to the model during the execution of the command. To 
navigate these changes, double-click a row in the tab or use F4 and SHIFT + 
F4 to traverse the list.

It is possible to undo the update model command just as any other command. 
The entire command is considered to be one action, even if more than one 
change is made to the model, and consequently all changes done by the com-
mand will be undone in one step.

Nested symbols

Some symbols can be placed inside other symbols. When a symbol is created 
inside another symbol, the model element of the parent symbol is used as 
context for creation.

If the parent symbol is auto-sized the size of the parent will change to fit the 
created symbol. Otherwise the new symbol will be resized to fit within the 
boundaries of the parent symbol. A nested symbol can not be dragged outside 
the parent symbol boundaries.

Symbols with compartments

Symbols with compartments have some special functionality related to the 
compartments and the contained text fields.
June 2009 IBM Rational Tau User Guide 187



Chapter 7: Working with Diagrams
Compartments can contain text fields which in turn is associated with model 
elements. Compartment text fields are left-aligned.

Certain symbols, like for example the class symbol, are created with a default 
set of compartments. The class symbol for example will have an attribute and 
an operation compartment.

Compartments can be selected, and there are a set of operations possible to 
perform on them.

When hovering over a compartment for a moment, a tool tip will display the 
compartment type.

Resizing

When a symbol with compartments is resized, any compartment that does not 
fit in the symbol will be hidden. If some content in the compartment can be 
hidden instead of the entire symbol, this will be done instead.

When a symbol is larger than necessary to display all the compartment con-
tents, then the extra space will be evenly distributed among the compart-
ments.

Creating compartments

If a symbol can contain compartments there is a Compartments sub-menu 
available on the symbol’s shortcut menu. The sub-menu contains a set of op-
erations for creating compartments in the form Create <Element> compart-
ment. Executing one of these operations will create a compartment that can 
be used to create and display elements of the element type. New compart-
ments will be added in the bottom of the symbol.

Deleting compartments

A compartment can be deleted by selecting it and using the normal Delete 
command. Certain compartments can also be directly associated with the 
model elements that the compartment is showing, and in that case the Delete 
Model command can also be used.

Moving compartments

The order of compartments can be changed by using the Move Up and Move 
Down commands available on the Move toolbar.
188 IBM Rational Tau User Guide June 2009



Common Symbol Operations
Show/Hide on compartments

When a specific compartment is selected, the shortcut menu will give the 
possibility to show and hide elements of the type that the compartment is 
used for. Show and hide operation will only be displayed in the shortcut 
menu if they are applicable.

When the symbol is selected, the shortcut menu will give the possibility to 
show and hide elements in any of the existing compartments, or create a new 
compartment to display a certain type of model element. These operations 
will only be displayed if applicable. If there are several compartments 
showing the same type of model element, show and hide operations will only 
be done on the one first in order. To show and hide elements on a specific 
compartment use the shortcut menu of the compartment instead.

It should be noted that the owned model elements will not be shown by de-
fault if an already created element is dragged into a diagram.

See also

“Default Class Symbol Appearance” on page 2499

For the elements to become visible it is also possible to drag-and-drop them 
into the compartment or symbol or type them in manually. 

Hint

Using Name completion is a good way of avoiding to create new features by 
mistake. Start typing the name, press CTRL + SPACEBAR or SHIFT + SPA-
CEBAR, if there are multiple possibilities a list will be displayed.

Compartment text fields

Delete element

A text field in a compartment is a separate presentational element that is as-
sociated with a model element. Due to this it is not possible to delete a text 
field connected to a model element by deleting all text on the line. To delete 
the element associated with the label, enter text mode and use the Delete <El-
ement> operation from the shortcut menu.
June 2009 IBM Rational Tau User Guide 189



Chapter 7: Working with Diagrams
Note
It is not possible to delete a text field connected to a model element by de-
leting the text on the line, this will only delete the characters on that line. 
The row will still be connected to the model element. 

A text field not connected to a model element can be deleted by deleting all 
the text on the line and then pressing backspace or delete. It is also possible 
to delete an empty text field not connected to a model element by pressing 
backspace when the text cursor is first on the text line below or by pressing 
delete when the text cursor is last on the text line above. 

Hide element

To hide a specific element displayed in a compartment text field enter text 
edit mode and use the Hide <Element> operation from the shortcut menu.

Move text fields

It is possible to move feature text fields up and down with the Move Up and 
Move Down toolbar buttons (found on the Move toolbar).

Common Line Operations
• Line styles

• Draw lines

• Editing vertices

• Move lines

• Delete lines

• Re-direct and bi-direct lines

Line styles

There are five different line styles that can be applied to a line. After a line is 
created these styles are available in the context menu on the line.
190 IBM Rational Tau User Guide June 2009



Common Line Operations
Auto-routed (assign endpoints)

Line is routed automatically so that obstacles are avoided. Line is orthogonal 
as long as there is a possible route for the line. In other cases the line is drawn 
as a straight line. Endpoints are automatically reassigned to make the shortest 
route as possible. When an endpoint is moved the line style of that line will 
automatically be changed to Auto-routed (keep endpoints).

Note that there is no difference in behavior from the Auto-routed (keep end-
points) line style if the line can only be connected at the center of a symbol.

Auto-routed (keep endpoints)

Line is routed automatically so that obstacles are avoided. Line is orthogonal 
as long as there is a possible route for the line. In other cases the line is drawn 
as a straight line.

If the source endpoint is shared with another line of the same type, a tree 
structure will be routed as far as it is possible. This is only possible for certain 
type of lines that are common to draw as tree structures, such as the general-
ization line.

Orthogonal

Line is always kept orthogonal and line vertices and segments can be moved. 
Vertices can be added and removed from the line.

Non-orthogonal

Line vertices can be moved, added and removed without restrictions. If a 
non-orthogonal line is rearranged into an orthogonal line, the line style is au-
tomatically changed to Orthogonal.

Bezier

Will give the line a curved layout. When the line is selected two control 
points are displayed which can be used to shape the curve.

See also

“UML Editing Line Styles” on page 2502
June 2009 IBM Rational Tau User Guide 191



Chapter 7: Working with Diagrams
Draw lines

A line can be created either by using the toolbar button or the line handle rep-
resenting the line.

Creating a line with a line handle

1. Select the source symbol.

2. Click the line handle.

3. Add vertices and/or lock endpoint (optional).

4. Click the target symbol or line.

Creating a line with a toolbar button

1. Click the toolbar button.

2. Click the source symbol.

3. Add vertices and/or lock endpoint (optional).

4. Click the target symbol or line.

Vertices can be added while creating the line, with the exception of auto-
routed lines. When it is allowed to place a vertex the cursor will have the 
shape of a plus sign.

For all line styles it is possible to lock the starting point position to the 
symbol edge, if the starting point is selectable. When creating a line with the 
line style Auto-routed (assign endpoints) or Auto-routed (keep endpoints) a 
cursor in the shape of a padlock is displayed. When clicking at this state the 
starting point of the line will be locked to its current position. If the line have 
the line style Auto-routed (assign endpoints) as default line style and the end-
point is locked in this way, the line style will automatically be changed to 
Auto-routed (keep endpoints). When creating a line with a line style different 
from Auto-routed (assign endpoints) and Auto-routed (keep endpoints) the 
starting point can be locked by holding down SHIFT and clicking.

Editing vertices

To add a vertex for an existing line hold down CTRL and click on the seg-
ment where the vertex should be created.

To remove a vertex hold down CTRL and click on the vertex that should be 
removed.
192 IBM Rational Tau User Guide June 2009



Common Line Operations
This can only be done for lines with the line style Orthogonal or Non-orthog-
onal applied. The mouse cursor will change to indicate that the operation is 
possible.

See also

“Connect symbols” on page 178

Move lines

To move a line, click one of the endpoints and drag it to the desired location.

Delete lines

Lines are in many cases representing a model element which will remain in 
the model even if they are deleted from a diagram. If you want to completely 
remove a line, for example an association, then make sure to use Delete from 
Model.

Re-direct and bi-direct lines
• To re-direct a line (when applicable), right-click the line and choose Re-

direct from the shortcut menu. 

• To bi-direct a line (when applicable), right-click the line with the cursor 
close to the side without direction or signal list. Select Enabled Direc-
tion from the shortcut menu. 

• If a line is bi-directed, and you want to allow it only one direction, locate 
the cursor over the line, close to the side you want to disable. Then dese-
lect Enabled Direction from the shortcut menu. 

You can also re-direct the line before or after this operation to make it 
point in the desired direction.
June 2009 IBM Rational Tau User Guide 193



Chapter 7: Working with Diagrams
194 IBM Rational Tau User Guide June 2009



8
UML Language Guide

This chapter describes the UML language as implemented and supported in 
IBM Rational Tau 4.3. 

• For more information on the supported version of UML, see “UML ver-
sion” on page 196.

See also

Chapter 6, Working with Models

Chapter 7, Working with Diagrams

“Description of Workflow” on page 46 in Chapter 4, Introduction to IBM 
Rational Tau 4.3 
June 2009 IBM Rational Tau User Guide 195



Chapter 8: UML Language Guide
Introduction
UML is a modeling language that allows you to specify, visualize, document, 
and construct software and systems. In subsequent sections you find infor-
mation about the different diagrams and constructs that can be used to de-
scribe the structure and behavior of systems at different levels of abstraction. 
Some constructs are more useful in early development phases, such as re-
quirements and analysis, while others are more useful in later development 
phases, such as design, implementation, and test. This ability to tie together 
the different development phases is one of the primary strengths of UML. 

UML version

The language used in IBM Rational Tau is based on the latest OMG UML 
2.1 Superstructure submission. In some cases the implementation of IBM 
Rational Tau differs from the language specification; this is primarily due ei-
ther to tool optimizations or the fact that some design decisions were founded 
on earlier versions of the submission.

IBM Rational Tau also includes some extensions to the language, for ex-
ample the possibility to use a textual syntax in conjunction with the graphical 
notation defined for UML.

Diagrams

UML consists of a set of diagrams that are used to express different view-
points of a system. Some diagrams focus on the structure of the system, while 
others are dedicated to describing behavioral aspects of the system, such as 
how an entity interacts with another entity or the set of actions to be per-
formed under specific conditions. Typically, these diagrams are the primary 
means through which you specify systems.

The diagrams that are supported in IBM Rational Tau are the following:
196 IBM Rational Tau User Guide June 2009



Introduction
Models and diagrams

A model is a representation of a physical system, and is typically defined by 
the entities contained in one or more packages. 

Diagram Purpose

Use case diagram Describes how a set of actors interacts in terms 
of use cases, usually in the context of a subject 
(the described system).

Sequence diagram Describes the event sequence for a use case or 
an operation.

Package diagram Describes packages and dependencies between 
them.

Class diagram Declares classes and their relations to each 
other, typically in the scope of a package or an-
other (container) class.

Composite structure dia-
gram

Describes how parts of a (container) class are 
connected to each other to form an internal 
structure of the container.

Activity Diagram Used to show parallel and intertwined be-
havior. This may allow a simplified view of a 
complex structure where it is possible to focus 
on a specific flow of control.

Interaction overview di-
agram

Describes some form of parallel behavior. It is 
often used to describe a use case.

Component diagram Focused on the design of components and 
shows relations and structure of components

Deployment diagram Used to show how the physical implementation 
is structured and the relations between soft-
ware and hardware

State machine diagram Defines the behavior of classes, state machines 
and operations.

Text diagram Defines an entity textually, rather than graphi-
cally. 
June 2009 IBM Rational Tau User Guide 197



Chapter 8: UML Language Guide
In IBM Rational Tau, everything that is in a project belongs to the same 
model. 

Since the model is a representation of a system, it should only be as detailed 
as necessary. If, for example, it should be used as the source for automatic 
application generation, it needs to contain quite a lot more detail at an algo-
rithmic level than if it is used to visualize requirements. 

The model contains all entities that are necessary to describe a system; this 
includes diagrams and model elements. The model, or rather the model ele-
ments it contains, are typically shown in different diagrams using symbols 
(sometimes called presentation elements, as opposed to model elements).

Model elements

The primary contents of a model are model elements such as classes, at-
tributes, operations, actions, and constraints. A model element is used to 
store all characteristics of an entity. It is then possible to show different as-
pects of a model element in diagrams. For example, one class diagram may 
show the attributes and operations of the class, while another class diagram 
may shown the class hierarchy in which it is defined. These diagrams give 
partial views of the same model element, but many more are possible.

Symbols

Symbols are used to graphically visualize (parts of) model elements. Each 
symbol is a two-dimensional object that is shown in a diagram. It has a size 
that specifies its dimensions and a position that is given in terms of the coor-
dinate system of its diagram. 

Most symbols are direct visualizations of a corresponding model element, 
such as the class symbol but there are a few that have no underlying model 
element, such as the text symbol. These are then only associated with a spe-
cific diagram.

The distinction between model element and symbol is important, but in daily 
speak the distinction between the two is often blurred. A class model element 
or a class symbol is commonly referred to simply as class.
198 IBM Rational Tau User Guide June 2009



Introduction
Different views of a model element

In Figure 50 on page 199, there is an example of the model element a, which 
is shown using three different views. First, it is shown as an attribute of the 
class C. Second, it is shown as an association end between the classes C and 
D. Third, it is shown as a part of the internal structure of class C.

Here it is also possible to appreciate the difference between a model deletion 
(Delete from Model) and an ordinary Delete from a diagram. The browser 
view to the left shows the model, and when deleting elements from the 
browser view you delete them from the model and the diagrams in which 
they are shown. The two diagram views to the right, however, show the same 
attribute a in three different ways: in the attribute compartment of the class 
C, as an association end between the classes C and D, and as a part of the in-
ternal structure of the class C. 

Deleting symbols and model elements

Elements can be deleted in two different ways from a diagram. An ordinary 
Delete removes the symbol, but the model element is retained in the model. 
A Delete from Model operation deletes the element from the model and from 
all other diagrams in which it is shown.

Figure 50: Example of different views of an attribute
June 2009 IBM Rational Tau User Guide 199



Chapter 8: UML Language Guide
In some diagrams, model elements and symbols are tightly connected with 
each other. This includes text diagrams, sequence diagrams, and state ma-
chine diagrams. Here, there is a one-to-one mapping between symbols and 
model elements, and if one is deleted then the other is also deleted. (In other 
words, a delete is the same as a Delete from Model in these diagrams.) In par-
ticular, this is applies to for example actions and transitions, but not for 
states.

See also

“Add symbols” on page 173

“Move symbols” on page 176

“Resize symbols” on page 177

“Connect symbols” on page 178

“Edit text fields in symbols” on page 179

“Copy, cut, delete or paste symbols” on page 182

List of language constructs

The following table lists all the concrete model elements as well as the most 
significant other language constructs in UML.

UML model element

Accept Event, Accept Time Event, Access, Action (in operation body, 
state machine and state machine diagram), Action (in interaction and se-
quence diagrams), Action Node (in activity diagrams), Active class, Ac-
tivity, Activity Final, Actors, Aggregation, Arbitrary value (any) expres-
sion, Artifact, Assignment, Association, Attribute 

Behavior port 

Choice, Class, Classifier, Comment, Component, Composite state, Com-
position, Compound statement, Conditional expression, Constant, Con-
nector (in composite structure diagrams), Connector (in activity diagrams), 
Continuation, Co-region, Create
200 IBM Rational Tau User Guide June 2009



Introduction
Datatype, Decision (in state machine diagrams), Decision (in activity dia-
grams), Dependency, Deployment, Deployment specification, Diagrams, 
Destroy

Entry connection point, Execution environment, Exit connection point, 
Expressions, Extension

Field expression, Flow Final, Fork

Generalization, Guard

History nextstate

Imperative expressions, Realization, Import, Index expression, Initial 
Node, Inline Frame, Interaction, Interaction reference, Interface, Internals

Join, Junction

Lifeline, Literal

Manifestation, Merge, Message, Method, Method call

New, Nextstate, Node, Now expression

Object Node, Offspring, Operation, Operation body, Signal sending action 
(output)

Package, Parent, Part, Activity Partition, Pid expressions, Pin, Port, Pre-
defined, Profile

Range check expression, Realized interface, Required interface, Return

Save, Self, Send Signal, Sender, Signal, Signallist, Signature, Initial tran-
sition, State, State machine, State machine implementation, State expres-
sion, Stereotype, Stop, Subjects, Syntype

Tag definition, Tagged value, Target code expression, Action (task), This 
expression, Timer, Timer active expression, Timer reset, Timer reset ac-
tion, Timer set, Timer set action, Timer timeout, Transition

Use cases

UML model element
June 2009 IBM Rational Tau User Guide 201



Chapter 8: UML Language Guide
Scope, model elements, and diagrams

Some model elements, like packages and classes, represent name scopes. 
This means that they are allowed to contain definitions of other model ele-
ments. All definitions within a name scope must be uniquely named, or the 
semantic checker will complain. You can think of a scope as a container or 
grouping of model elements that belong together.

Most scopes may not only contain model elements, but also diagrams in 
which those model elements are shown. The table below shows which dia-
grams are available for each scope.

Scope unit Allowed model elements Diagrams

Package Package, Class, Use cases, Ar-
tifact, Stereotype, Association, 
Datatype, Interface, Syntype, 
Choice, Operation, Attribute, 
Signal, Signallist, Timer, State 
machine 

Class diagram

Sequence diagram

Text diagram

Use case diagram

Class Class, Artifact, Stereotype, 
Datatype, Interface, Syntype, 
Choice, Signal, Signallist, 
Timer, Attribute, Operation, 
Use cases, State machine, 

Class diagram

Composite structure 
diagram,

Text diagram

Use cases Interaction, State machine im-
plementation, Artifact, Opera-
tion body

Sequence diagram

State machine dia-
gram

Text diagram

Interaction Lifeline Sequence diagram

Use case diagram

Stereotype Attribute

Datatype Literal, Operation

Choice Attribute, Operation, 

Interface Signal, Timer, Attribute, Oper-
ation
202 IBM Rational Tau User Guide June 2009



General Language Constructs
Overloaded Definitions

For certain kinds of definitions it is allowed to have many definitions with 
the same name in a scope. This is true for behavioral features, such as Oper-
ation, Signal, Timer and State machine. These definitions are identified not 
only by their names, but also by the types of their parameters. The name and 
list of parameter types is called the signature of the behavioral feature. All 
behavioral features in the same scope must have unique signatures. Two be-
havioral features in the same scope which have the same name, but different 
signatures, are said to be overloaded.

General Language Constructs
There are some language constructs in UML that are common to several di-
agrams. 

Operation Operation body, State machine 
implementation, Interaction

Operation body State machine, Class, Artifact, 
Stereotype, Datatype, Inter-
face, Syntype, Signal, Signal-
list, Timer, Operation, At-
tribute

State machine dia-
gram

Text diagram

State machine im-
plementation

Class, Artifact, Stereotype, 
Datatype, Interface, Syntype, 
Signal, Signallist, Timer, Op-
eration, State, Action, At-
tribute

State machine dia-
gram

Class diagram

Use case diagram

Text diagram

Activity imple-
mentation

Initial Node, Action Node, Ob-
ject Node, Decision, Merge, 
Fork, Join, Connector, Accept 
Event, Send Signal, Accept 
Time Event, Activity Final, 
Flow Final, Activity Partition

Activity Diagram

Compound state-
ment

Action, Attribute 

Scope unit Allowed model elements Diagrams
June 2009 IBM Rational Tau User Guide 203



Chapter 8: UML Language Guide
Names

All definitions in a UML model should have a name—an identifier. There are 
certain rules to which these have to adhere.

Naming rules

The characters that are allowed in a name are letters, digits, and ‘_’ (under-
score). 

The first character of a name cannot be a digit, but should be either a letter or 
an underscore. There is furthermore a special case for destructor names, 
which always start with an initial ‘~’ (tilde).

Using spaces and special characters in identifiers

By enclosing a name in single quotes, it is possible to get rid of the above 
mentioned restrictions, so that (almost) any character can be part of a name, 
see Figure 51 on page 204. For example, it is possible to use spaces in a name 
as long as the name is enclosed by single quotes, see Example 12 on page 
205. 

There exist a number of escape characters for string handling. They are \n, \t, 
\b, \r and \f and can be placed inside charstring (inside “”) or used as a char-
acter (e.g. '\n'). 

The “\"” is used in charstring, “\'” respectively as character, and “\\” is 
used in both to represent backslash. Any other escaped character between 
quotes ('\+', '\s') is interpreted as identifier (+ and s respectively). Inside a 
quoted string any other character can follow the slash, representing just itself 
(e.g. “a\qa” = “aqa”). 

\n: new line
\t: tab 
\b: backspace
\r: carriage return 
\f: form feed 

Figure 51: Using special characters in identifiers
204 IBM Rational Tau User Guide June 2009



General Language Constructs
\": quotation mark, e.g. "my \"quoted\" word"
\': apostrophe character, '\''
\\: backslash 

Example 12: Spaces in identifiers ––––––––––––––––––––––––––––––––––––––––

Boolean 'has finished'=false;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Case sensitivity

Identifiers are case sensitive. This means that names that differ only in the 
way they use lower and upper case characters are distinct. 

Example 13: Case sensitivity –––––––––––––––––––––––––––––––––––––––––––––

Integer MyInt, myint; // Two distinct attributes

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

References

Named definitions may be referenced from other places in a model. In simple 
cases a reference just consists of the name of the definition (enclosed in 
single quotes if necessary). However, in the general case a reference can be 
more complex.

• A reference may contain a qualifier. 

In some cases it is necessary to qualify a name in order to be able to distin-
guish a definition in one scope from another definition with the same name 
but in another scope. This is done by prefixing the identifier with the scope 
path and using the special scope resolution operator “::”. Global names have 
no path, and are simply preceded by “::”. Qualifiers that start with “::” are 
called absolute qualifiers, while those that start with a name are called rela-
tive qualifiers.

• A reference may contain actual template arguments.

If the referenced definition is a template (i.e. has Template parameters) the 
reference must contain actual values for its template parameters. The actual 
template arguments are given as a comma separated list after the name within 
‘<‘ ‘>’ brackets.

• A reference may contain a list of parameter types.
June 2009 IBM Rational Tau User Guide 205



Chapter 8: UML Language Guide
When referring to a behavioral feature you must add the names of the param-
eter types, since not only the name but also the parameter types are part of 
the signature of the behavioral feature. The parameter type names are given 
enclosed in parenthesis after the name.

Example 14: Different kinds of references –––––––––––––––––––––––––––––––––

In this example two attributes refer to their types using a qualified name.

::Predefined::Integer i;

UtilityTypes::Sorts::ClientIdx j;

If the type is a template class actual template arguments must be specified:

MyClass<Integer, 4> k;

When referring to a behavioral feature such as an operation, the parameter 
types must be specified. Note also the keyword ‘operation’ which must be 
used to syntactically disambiguate such a reference from an ordinary call of 
the operation.

OperationReference r = operation foo(Integer, Boolean);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Reserved words

Some names are reserved words in IBM Rational Tau and cannot be used to 
name model elements directly. For a complete list of reserved words, see .

Although it is possible to use reserved words as names of definitions by en-
closing them with single quotes, risk for confusion is apparent and this 
should be done only when absolutely necessary.

Example 15: Using single quotes for names that are otherwise reserved–––––––––

Integer ‘class’; // confusing attribute name, but valid

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
206 IBM Rational Tau User Guide June 2009



General Language Constructs
See also

“Reserved words” on page 955, an extended list which is applicable when 
generating an application or a Model Verifier.

Alternative syntax

In addition to the graphical notation defined by UML, a complementary tex-
tual syntax is defined for describing the model in plain text. This can be used 
in lieu of the graphical symbols, or in conjunction with them.

The text is shown either in a Text diagram or inside a Text symbol within a 
diagram. 

In Figure 52 on page 207, the same model element is shown twice in a single 
diagram. To the left, a graphical notation is used, and to the right, a textual 
syntax within a text symbol is used. Changes in either of these views are au-
tomatically propagated to the other.

Common element properties

The following properties exist for many different kinds of model elements. 
They can be inspected and controlled through the Properties Editor.

Figure 52: Example of differences between the syntax in 
class symbols and the textual syntax
June 2009 IBM Rational Tau User Guide 207



Chapter 8: UML Language Guide
Visibility

Many model elements have a visibility, which is used to determine access 
rights for elements outside the scope in which the element is defined. Within 
a scope, all elements can be accessed regardless of visibility. There are dif-
ferent levels of visibility:

• Public
All elements that can see (access) the container of the element with 
public visibility can also access the element.

• Protected
All elements in the same scope as the element with protected visibility 
and the subclasses of its container can access the element

• Private
Only elements within the same scope as the element with private visi-
bility can access the element.

• Package
An element with package visibility is accessible by all elements enclosed 
within the same package.

• None
If visibility is not specified, the element gets a default visibility according 
to the table below.

The default visibility of a definition is decided by its scope and type. 

Scope Visibility

Class, Choice, 
Stereotype, 
Collaboration, 
Artifact 

Private

Package Public

Interface Public

DataType Public
208 IBM Rational Tau User Guide June 2009



General Language Constructs
Note
Literals always have public visibility. 
All literals and public static members of a datatype are visible outside of a 
datatype without a qualifier. Qualifiers are only required to resolve ambi-
guities, for example when two datatypes in the same scope have literals with 
the same name.

Virtuality

Virtuality comes into play when you have generalization between classifiers 
such as classes, and determines whether contained model elements of a spe-
cialized class can be redefined or not.

Virtuality only applies to elements that are contained in types (classifiers that 
can be specialized). If the container is specialized, the individual virtuality of 
each contained element controls if that element may be changed.

• Virtual
If a contained element is virtual, it is allowed to redefine (change) this el-
ement when its container is specialized.

• Redefined
If an element in a specialized container is redefined, it is changing the 
definition of the original element from the base container. The original 
element in the base container must be virtual.

A redefined element is still virtual, that is if the container is specialized 
once more, the element may be redefined further.

• Finalized
If an element in a specialized container is finalized, it is changing the def-
inition of the original element from the base container. The original ele-
ment in the base container must be virtual. Finalizing also implies pro-
hibiting further redefinition of this element if the container is specialized 
once more. In this sense, finalized means “redefined but not virtual“.

• None
If a contained element has no virtuality, it is not allowed to redefine 
(change) this element when the container is specialized.

Derived

If an element is derived, it means that its value can be calculated by means 
of other elements. Exactly how to specify how to perform the calculation of 
the value is context dependent.
June 2009 IBM Rational Tau User Guide 209



Chapter 8: UML Language Guide
A common case of derived elements are derived attributes. For these the der-
ivation rules used when accessing the attribute can be specified using ac-
cessor operations called ‘get’ and ‘set’.

Example 16: Specifying derivation rules for a derived attribute –––––––––––––––

Integer y;
Integer / x
  get { return 5; }
  set { y = value; };

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Other properties
• External

If a definition is external, it means that it resides outside this model. The 
code generators supplied will not generate code for external elements. 
External elements can thus be seen as model representations of externally 
available definitions.

• Abstract
If a classifier is abstract, it is not allowed to directly instantiate the clas-
sifier. If an abstract classifier is specialized, which it typically is, it is al-
lowed to instantiate the specializing classifier (unless it too is marked as 
abstract).

• Static
If a definition is static, all instances of the containing classifier shares the 
implementation for this element, that is uses the same piece of data. 
Hence a static definition can be used without having an instance of the 
classifier in which it is defined.

Parameters

Definitions that are behavioral features, such as Operation, Signal or State 
machine, may have parameters. The general format (used in classifier sym-
bols and in the Properties Editor) is:

name:type, name2: type2

A parameter has a direction which specifies the direction in which data 
“flows” in a call to the behavior:

• In (default)
Data is passed from the caller to the invoked behavior.
210 IBM Rational Tau User Guide June 2009



General Language Constructs
• In/Out
Data is passed from the caller to the invoked behavior and also from the 
invoked behavior back to the caller.

• Out
Data is passed from the invoked behavior back to the caller.

• Return
Data is passed from the invoked behavior back to the caller as the return 
value of the call. At most one parameter may be a return parameter.

Template parameters

A template parameter is a concept for allowing flexible, context-free classi-
fiers. Another name for template parameters is context parameters.

Elements that can be specialized or that can be instantiated (called) may have 
template parameters, for example classes and operations.

Template parameters are bound with actual parameter “values” either at in-
stantiation or when the containing classifier is specialized or redefined. It is 
allowed to bind a subset of the template parameters at specialization. On in-
stantiation, all template parameters must be bound.

As a general rule, whenever a template definition is referenced actual values 
for all its template parameters must be specified. There are two exceptions to 
this rule

1. If a template parameter has a default value, it is not needed to give an ac-
tual value for it. The default value will then be used.

2. In calls to a behavioral feature with template parameters it is not neces-
sary to specify the actual template arguments if these can be deduced 
from the actual call arguments used in the call.

The operators reinterpret_cast<T> and cast<T> cannot be used as ac-
tual template parameters. Any template instantiation containing 
reinterpret_cast<T> or cast<T> operator cannot be resolved by name 
resolution.

Example 17: Template instantiation containing casting operator–––––––––––––––

The following example illustrates this restriction:

template<const Integer x>
class MyTemplate { }
enum E { L }
June 2009 IBM Rational Tau User Guide 211



Chapter 8: UML Language Guide
 
/* These template instantations cannot be resolved */
MyTemplate<cast<Integer>(L)> myVar1; 
MyTemplate<reinterpret_cast<Integer>(L)> myVar1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Predefined names

In the provided utility package Predefined are found a number of useful 
datatypes, literal values and operations. The names of these entities are not 
reserved, but it is recommended to avoid using these names for other entities 
as that is likely to cause human misinterpretation. 

See also

“Predefined” on page 386 

Use Case Modeling
Use case modeling focuses on determining the context of a system or parts 
of it, often in terms of the actors that interact with it, but also on modeling the 
requirements of the behavior of these elements.

Use case diagram

A use case diagram illustrates a usage situation by showing the relationships 
between use cases and actors. A use case diagram gives a static view of dy-
namic aspects of systems.
212 IBM Rational Tau User Guide June 2009



Use Case Modeling
Example

Model elements in use case diagrams

The following elements are found in use case diagrams

• Use cases

• Actors

• Subjects

• Dependencies

• Includes

• Extends

• Generalizations

• Association

Figure 53: Use case diagram with Actors, Use Cases, a Subject
and Association relationship between the Actors and the Use Cases
June 2009 IBM Rational Tau User Guide 213



Chapter 8: UML Language Guide
Create a use case diagram

Use case diagrams can be included in packages, classes and collaborations. 

1. Select the package (class, collaboration) in the Model View.

2. From the shortcut menu select New and then Use Case diagram. 

Use cases can then be drawn using the toolbar or you can drag use cases 
from your model into a use case diagram. 

• To use the toolbar, first click on the use case symbol and then click in 
your diagram where you want to position the use case symbol.

Use cases

A use case represents a coherent unit of functionality provided by a system 
or parts of a system. Usually, the system is represented by a class. The func-
tionality is often manifested in terms of communications between the system 
and one or more outside actors, including the behavior performed by the 
system.

A use case is in many ways similar to an operation, and is in fact modeled as 
an operation with the stereotype «use case».

Symbol

A use case is visualized through the use case symbol in a use case diagram. 
It can be specified within the scope of:

• a package

• a class

• a collaboration

• an implementation

Figure 54: Use case symbol
214 IBM Rational Tau User Guide June 2009



Use Case Modeling
The description of a use case

The behavior of a use case can be defined by:

• an interaction 

• a state machine

• an operation body

• an activity

It is also possible to describe the behavior of a use case textually. In this case, 
there is often some structure to the text, where the name of the use case is 
given, followed by its goals, preconditions and post conditions, exceptional 
cases, and the actual functionality in the form of actions that should be per-
formed by the use case.

Example 18: A textual use case –––––––––––––––––––––––––––––––––––––––––––

Use case: CloseAccount
Goal: Close a user account and make sure the balance of 
the account is settled
Preconditions: Customer has an open account
Postconditions: Customer has closed the account and has 
paid outstanding dues
Description: 
1. Check balance of account
2.a If balance is positive, pay customer
2.b If balance is negative, collect payment from 
customer
3. Terminate card associated with account
4. Close account

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Naming use cases

When naming Use Cases, it is common to use some kind of verbal descrip-
tion, typically a phrase which contains a verb and an object, for example “do 
something”. It is possible to use this name convention, in spite of the fact that 
names may not contain spaces, by using a quoted name:

Example 19: Quoted use case name –––––––––––––––––––––––––––––––––––––––

<<usecase>> void 'Open Account' ();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

More often, the verb and the noun are written together without the white 
space.
June 2009 IBM Rational Tau User Guide 215



Chapter 8: UML Language Guide
Actors

An actor represents an entity that takes part in a use case, for example to ini-
tiate the functionality or as a resource for information needed by the use case.

Symbol

An actor is visualized using a stick figure symbol in a use case diagram. Ac-
tors are connected to use cases using Association.

The role of an actor

In a use case diagram, the focus is on showing the relationships between ac-
tors and use cases. An actor is an entity that is involved in use cases, most 
often in the context of one or more Subjects. An actor is external to the sub-
ject for which the use case is defined, and can be human users, external hard-
ware devices, or other subjects. An actor is not necessarily one single phys-
ical entity, but can for example be an entire computer network.

In different use cases, there can be different actors representing the same 
physical entity, but with a different role. An actor may also represent dif-
ferent physical entities in different use cases.

The actor is either a reference to a part or an instance of a class.

In a use case diagram the focus is on showing the relationships between ac-
tors and use cases. However, sometimes it is also beneficial to focus on the 
type-like aspects of an actor. For example to show how actors relate to each 
other using inheritance or show some properties of the actor. This is shown 
in class diagrams where actors are visualized as a class symbol with the 
«actor» stereotype.

The Actor symbol visualizes stereotypes applied to the actor and the class 
that the actor references (only if no stereotype is applied to the actor)

Figure 55: Actor symbol
216 IBM Rational Tau User Guide June 2009



Use Case Modeling
Subjects

A subject defines the system boundary for a set of use cases. A subject can 
represent a system, subsystem or class. The subject is either a reference to a 
part or an instance of a class.

Subject corresponds to the System Boundary of use cases in UML 1.X.

Symbol

Use cases can be enclosed inside a subject symbol. The subject symbol is 
drawn around a set of use cases that represent the behavior of for example an 
active class. A name and the class type can be written in the upper right 
corner of a subject symbol.

A hatched background color can be assigned to the subject symbol.

Relationships

The following relationships can be used within a collaboration or a use case 
diagram:

Association

The association relationship is used between an actor and a use case and in-
dicates that an actor participates in that use case. Reversely, the use case is 
performed by the actor. One actor may participate in several use cases and 
one use case may have several participating actors. Association text is in-
formal.

Figure 56: Subject symbol (ATM)

atm : ATM

'Clos e  Account'
 

Ba nk : Ba nkCe ntra l
:us e r

'Ope n Account'
 

June 2009 IBM Rational Tau User Guide 217



Chapter 8: UML Language Guide
Includes

The include relationship is used between different use cases to indicate that 
one use case is part of another use case. This provides a mechanism to split 
large use cases into smaller ones. The behavior of the including use case is 
typically not meaningful by itself, but is dependent on the included use cases.

Extends

The extend relationship is used between different use cases to indicate how 
and when a use case should be inserted into an extended use case. The ex-
tended use case should be complete by itself; the extensions typically de-
scribe supplementary functionality to be addressed under certain conditions.

Dependencies

Dependencies may be specified between use cases or between actors. A de-
pendency does not give any indication about how the entities are related.

When a dependency is created between two use cases it will implicitly be-
come an include relationship.

Generalizations

A generalization can be specified between use cases; one use case may spe-
cialize a more general use case. For actors that are associated with classes a 
generalization can be specified. Generalization text is informal.

See also

“Relationships in UML” on page 371

Update model

When the Active Modeler add-in is activated the shortcut menu will contain 
a new choice named Update model. This command is used on unbound en-
tities, to invoke them in the current model. 

For use case diagrams the following is supported:

Use Case Diagram

Updates the entire diagram by updating every element of the diagram.
218 IBM Rational Tau User Guide June 2009



Scenario Modeling
Actor Symbol

If actor symbol is bound, but the type of the actor is unbound, a new class is 
created. The name of the class is the same as the name of the “actor” + 
“Class”. If the actor symbol is unbound (grey lines) an attribute corre-
sponding to the actor is created in addition to the class.

Subject Symbol

If the type of the Subject is unbound, a new class is created. The name of the 
class is the same as the name of the “subject” + “Class”.

Scenario Modeling
Scenario modeling focuses on describing scenarios of system or subsystem 
usage. These scenarios are described as sequences of events that occur on 
lifelines.

When describing message interactions in increasing detail during this mod-
eling activity, a clearer view emerges of how the responsibilities are divided 
between components of the system, but also of the borderline between the 
system and the external actors that interact with it.

The scenario modeling activity often takes place rather early in the analysis 
activity, but can of course also continue, with greater precision, in the design 
activity. The scenarios that are produced are specifications of the dynamic in-
terfaces of the system and system components. They often have a twofold 
purpose:

• as a basis for the behavior modeling of components

• as a basis for test cases.

In UML scenarios are modeled using Interactions and the events are shown 
in Sequence diagrams as described in this section. Interaction overview dia-
grams are used to control and coordinate individual interactions.

Scenario modeling is very often done as part of a use case analysis. For each 
use case an interaction is created describing the behavior associated with the 
use case and a sequence diagram is used to visualize the interaction.
June 2009 IBM Rational Tau User Guide 219



Chapter 8: UML Language Guide
Sequence diagram

Description

A Sequence diagram describes an Interaction, visualizing the message inter-
change between lifelines, but also other event occurrences.

Example

Model elements in sequence diagrams

The following model elements can be found in sequence diagrams:

• Lifeline

• Message

Figure 57: Sequence diagram
220 IBM Rational Tau User Guide June 2009



Scenario Modeling
• Action

• State

• Interaction reference

• Timer event

• Time specification line

• Create

• Destroy

• Inline Frame

• Co-region

• Continuation

• Method call

Create a sequence diagram

A sequence diagram is a graphical description of the implementation of an 
Interaction. When creating a sequence diagram for example in a package it 
will automatically be encapsulated in an Interaction with its implementation.

It is however also possible to give a sequence diagram as implementation of 
other behaviors, such as operations and use cases. To accomplish this the se-
quence diagram can be created directly inside the behavior itself.

There are also options related to sequence diagrams:

• Message separation

• Lifeline separation

The lifeline ruler section

When the header is not visible on screen at its normal position in the diagram 
because the header is scrolled out of sight in the vertical direction, then the 
header is instead visible in the lifeline ruler section.

Interaction

An interaction is a description of the behavior of a use case, operation or 
other entity that can have a behavior. In an interaction the focus is on infor-
mation exchange between parts. It is typically described by a Sequence dia-
gram.
June 2009 IBM Rational Tau User Guide 221



Chapter 8: UML Language Guide
The semantics of an interaction is defined by the set of traces that can be de-
rived from the interaction. A trace is a sequence of event occurrences. This 
sequence is not necessarily totally ordered. The traces may describe both 
possible and impossible scenarios. 

Interactions can be referenced from within other interactions, thus allowing 
reuse. This is normally done by the Interaction reference symbol that refer-
ence another use case or operation that contains an interaction as its behavior 
definition. It is also possible to refer to an interaction by a Lifeline decompo-
sition.

Interactions are typically used in two different ways:

• to specify the externally visible behavior of a system and its components

• to describe a trace of an execution of a system

See also

“Sequence diagram” on page 220

“Use cases” on page 214

Interaction reference

An Interaction Reference is used to represent references of interactions in se-
quence diagrams. The referenced interaction is usually described in a se-
quence diagram of its own.The name used in the Interaction Reference is the 
name of the use case or operation that contains the interaction, not the name 
of the interaction itself.

The interaction reference is useful in two ways:

• It can be used as an encapsulation mechanism to hide detailed interac-
tions while focusing on the important message interchange

• It enables reuse of interaction descriptions.
222 IBM Rational Tau User Guide June 2009



Scenario Modeling
Symbol

Syntax

The Interaction Reference symbol contains a name, referring to a use case, 
operation or other entity that can contain an interaction.

See also

“Interaction” on page 221

“Use cases” on page 214

“Sequence diagram” on page 220

“Attach/Detach from lifeline” on page 224

Lifeline

A Lifeline represents an individual participant in an interaction. While Parts 
and structural features may have Multiplicity greater than 1, lifelines repre-
sent only one interacting entity. If a lifeline represents a part that has greater 
multiplicity than 1, a specific instance must be chosen through indexing.

Symbol

The lifeline symbol consists of a head and an axis. If the lifeline has not been 
created yet, the axis is drawn by a dashed line. When a lifeline is destroyed 
(the instance is terminated), the axis is again drawn with a dashed line.

Figure 58: Interaction reference

re f
Clos e Account
June 2009 IBM Rational Tau User Guide 223



Chapter 8: UML Language Guide
Create a lifeline

To create a lifeline you can either: 

• Use the Diagram element toolbar and select a lifeline symbol. Place it in 
your diagram. Type in the appropriate information in the heading, for ex-
ample Partname or Classname.

• Drag a class symbol from your model into the sequence diagram to create 
a lifeline representing this class. The lifeline will represent any instance 
of the class, text in heading symbol reading Classname.

• Drag a part from your model to create a lifeline representing this part. 
The lifeline will represent the instance of the part, text in head reading 
Partname (or Qualifier::Partname if scope qualifier is necessary). 

Attach/Detach from lifeline

When a symbol that can span over several life lines (such as the inline frame 
symbol) is selected there is a button next to each lifeline covered by the 
symbol. This button attaches or detaches the symbol from the lifeline the 
button is next to, depending on its current state. If the symbol is currently at-
tached, the button display a minus sign (-). Otherwise the button display a 
plus sign (+).

Figure 59: Lifeline symbol

Ba nk
224 IBM Rational Tau User Guide June 2009



Scenario Modeling
Ordering of events

The order of event occurrences along a Lifeline is significant, denoting the 
order in which these event occurrences will occur. The absolute distances be-
tween the event occurrences on the Lifeline are, however, irrelevant for the 
semantics.

Although the order of events is strictly specified on one lifeline, there is gen-
erally no ordering between events on different lifelines. It is possible to de-
scribe a distributed system using an interaction or a sequence diagram, so that 
each asynchronous component is described by its own lifeline.

The only mechanism to order events on different lifelines in the general case 
is to synchronize them by message sending. The ordering mechanism of se-
quence diagrams is often called partial ordering; they do not describe a total 
order, nor a complete disorder.

For systems that by nature are not asynchronous or distributed (normal pro-
grams, without threading), it is of course possible to have a stricter order in-
terpretation than the general, asynchronous case.

Lifeline decomposition

A lifeline can refer to a composite, that is to an object with parts. This is a 
way to reduce complexity of interactions and focus on the most important 
message interchange.

In some situations, though, you also want to see the internal communication, 
that is to say the detailed message interactions between the parts of a com-
posite object. The decomposition mechanism offers this duality: it is possible 
to have two descriptions of the same behavior: one high-level description and 
one detailed. The detailed interaction is referenced in the lifeline heading and 
is defined in a separate use case or operation, as the example in Figure 60 on 
page 226 shows.
June 2009 IBM Rational Tau User Guide 225



Chapter 8: UML Language Guide
Decomposition example

Syntax

The following syntax is accepted in a Lifeline:

Bank

An instance name, referring to a Part, Port, Attribute or Subject.

Figure 60: Example of lifeline decomposition

: us e r a tm:ATM  re f Colle ctMone yDe ta ile d ba nk:Ba nkCe ntra l

s d CollectMoney interaction  CollectMoney (1/1)

Ente rCa rd ()

  

Ente rCa rd ()

  
Ente rCode ()

  

Ente rCode ()

  Va lida te  ()

  

Va lida te  ()

  
OK  ()

  

OK  ()

  Dis pla y ()

  

Dis pla y ()

  

ba nk:Ba nkCe ntra l: us e r a tm.dis p a tm.ctrla tm.ui

s d CollectMoneyDetailed interaction  CollectMoneyDetailed (1/1)

Ente rCa rd ()

  

Ente rCa rd ()

  Ca rd ()

  

Ca rd ()

  Ente rCode ()

  

Ente rCode ()

  Code ()

  

Code ()

  Va lida te  ()

  

Va lida te  ()

  
OK  ()

  

OK  ()

  Dis pla y ()

  

Dis pla y ()

  Dis pla y ()

  

Dis pla y ()

  
226 IBM Rational Tau User Guide June 2009



Scenario Modeling
Bank: BankCentral

An instance name and a type name, referring to a Class.

:BankCentral

A type name, referring to a Class.

atm[3]

An instance name with a selector expression to reduce the Multiplicity to 1 
instance.

atm.Display

An instance name with an attribute referring to a part.

atm ref OpenAccountDetailed

An instance name and a lifeline decomposition, referring to a Use Case or an 
Operation, described in a separate interaction and Sequence diagram.

atm[2].Display:ATM ref CloseAccountDetailed

An instance name with selector, part, type and lifeline decomposition.

Message

A message is an occurrence of a Signal, a method call, or a method reply. It 
normally has two events; one send event (out) on the sending lifeline and one 
receive event (in) on the receiving lifeline. A message can be horizontal or it 
can have a slope, but the receive event should not appear above the send 
event in the diagram. 

Symbol

Figure 61: Messages

s 1 (3.14)

  

s 1 (3.14)

  

s 2 (Inte ge r, Re a l)

  

s 2 (Inte ge r, Re a l)

 

Va lida te  ()

  

Va lida te  ()

  
June 2009 IBM Rational Tau User Guide 227



Chapter 8: UML Language Guide
It may take time to send a message and pass it to the receiving side, but a 
slope does not have that interpretation. Correspondingly, a horizontal mes-
sage is not necessarily directly delivered at the receiver. 

Because of the relationship between signals and messages, the name of a 
message must always refer to a visible Signal in the model. If the signal has 
parameters, the message should have actual parameter expressions.

Creating a message

Messages have three associated text fields, one for signal name and parame-
ters and two for Gate names. 

There are two different methods for placing messages allowing you to create 
messages in a simple and unrestricted way.

Traditional: Click on Message line in the Diagram element toolbar. 
Click on the sender lifeline, then on the receiver lifeline. 

Single-click: Click on Message line in the Diagram element toolbar. 
When you click and hold between lifelines the message will attach to the 
lifeline to the left. When you release the lifeline will attach to the lifeline to 
the right. You can now do several things to create the message you aim for:

• Release to attach the receive point to the lifeline to the right

• Drag to cross any intersecting lifelines, release close to the left of the life-
line you want to receive the message.

• SHIFT + click to send the message from right-to-left. 

Summary of how different line types can be created:

• Normal message: Select message in the toolbar. Click between lifelines 
for left-to-right direction. SHIFT + click for right-to-left direction. Click 
and hold, then drag to cross intersecting lifelines, release to attach next 
lifeline in message direction. 

• Message to self: Select Message line in the element toolbar. Then click 
twice on the same lifeline. 

Reference existing signals when you draw a message 

1. Click on Message line in the Diagram element toolbar. 

2. Point and click on the lifeline that the message should go from.
228 IBM Rational Tau User Guide June 2009



Scenario Modeling
3. Point and right-click close to the lifeline that the message should go to. 
Point to Reference existing on the shortcut menu and select the signal 
from the list.

Reference existing will display the signals visible in the scope.The signals 
that are shown are computed as follows:

• If the target lifeline has a type, then the signals/operations shown in the 
list are all signals that can be received by this type taking into account 
signals in realized interfaces, signals defined in the class itself etc.

• If the source lifeline has a type, then the signals/operations shown in the 
list are all signals that can be sent by this type, taking into account all re-
quired interfaces.

• If the source and target lifelines do not have types, but the target lifeline 
has a selector then the signals/operations shown in the list are all signals 
that can be received by the type of the selector taking into account signals 
in realized interfaces, signals defined in the class itself etc.

• If the source and target lifelines do not have types, but the source lifeline 
has a selector then the signals/operations shown in the list are all signals 
that can be sent by this type, taking into account all required interfaces 
that exist.

• If none of the above conditions apply, the signals/operations shown in the 
list are all signals visible from the lifeline itself.

• If none of the above mentions conditions apply, the signals/operations 
shown in the list are all signals visible from the lifeline itself.

A message can in some cases be drawn so it is only connected to one lifeline. 
This is particularly useful when using sequence diagrams for tracing. There 
are four message types that can be identified:

• New, the message is sent but not yet received. The message is connected 
to its sender.

• Lost, the message is sent but will not be received. The message is con-
nected to its sender and a small circle is drawn at the message arrowhead.

• Old, the message is received but the sender is so far unspecified. The 
message is connected to its receiver.

• Found, the message is received but the sender is unknown. The message 
is connected to its receiver and origins from a small circle.

Use the property editor to mark a message as Lost or Found.
June 2009 IBM Rational Tau User Guide 229



Chapter 8: UML Language Guide
A message line can also be auto created in the following ways:

• SHIFT + click on the message in the symbol element toolbar when a life-
line is selected creates a new message. The new message is placed last on 
the lifeline, but before any destroy lifeline symbol.

• SHIFT + click on the message in the symbol element toolbar when two 
lifelines are selected creates a normal message between the lifelines. The 
normal message is horizontal, placed last on the lifelines (before any de-
stroy lifeline symbol), and has a left to right direction.

• SHIFT + click on the message in the symbol element toolbar when a mes-
sage is selected creates a normal message immediately below the selected 
message. The normal message is connected to the same lifelines as the 
selected message and has the same direction.

Note
When you edit a message, you will see all parameters for that message, in-
dependently of whether parameters are shown or not. When you leave ed-
iting mode, the message text will go back to showing parameters or not in 
the same way as other messages do

Toggle parameters

Hides or shows all message parameters in the diagram. As default, parame-
ters are shown. When you enter edit mode for a message text, the parameters 
will be shown for all messages. 

Incomplete message

A message may be incomplete in the sense that only one of its events is spec-
ified. If the receive event (in) is missing, it is a Lost message. If the send 
event (out) is missing, it is a Found message.

Lost message

A lost message is a message where the send event is known, but there is no 
receive event. This can be used to describe the case when a message never 
reaches its destination. 
230 IBM Rational Tau User Guide June 2009



Scenario Modeling
Found message

A found message is a message where the receive event is known, but there is 
no (known) send event. This can be used to model the case when the origin 
of the message is outside the scope of the description. It can also be used to 
avoid over-specification: when several lifelines can be the sender, but which 
one is not relevant to the scenario. 

Copying a message

There are two different methods of copying messages. The first method al-
ways keeps message sender and receiver.

CTRL + Drag: Press CTRL key and hold it. Then click and hold a message 
you want to be copied. Drag the message and drop it to the new position. Re-
lease CTRL key.

The other method allows setting different sender and receiver.

Copy and Paste commands: Open the shortcut menu for a message you 
want to be copied by right-clicking on this line. Choose Copy from the menu. 
Open the shortcut menu by right-clicking in a place in the diagram where the 
new message should be inserted. Choose Paste from the menu. You can also 

Figure 62: Lost Message

Figure 63: Found Message

s 1 ()

s 1  ()
June 2009 IBM Rational Tau User Guide 231



Chapter 8: UML Language Guide
use CTRL + C and CTRL + V shortcuts for performing Copy and Paste com-
mands, but note that the position of the new message is defined by the point 
in the diagram where you clicked last before pasting.

There are the following options.

• If the point you clicked is between two lifelines, then the new message 
will be inserted between these lifelines.

• If the point you clicked is either before the first lifeline or after the last 
lifeline, then the sender and receiver will be kept as in source message.

Timer event

A timer is normally described by two distinct events in an interaction. The 
first event is the timer set, the second event is either a time-out or a reset. 

A timer needs to be declared, before it can be used (just as messages need the 
corresponding signals or operations to be declared). Timers are declared with 
the Timer symbol in class diagrams or using textual syntax in a text symbol 
or text diagram.

The timer event symbols have one text field, for name and parameters.

Timer set

The set event creates a timer instance, which now is active. The timer set 
event maps to the Timer set action.

Timer reset

The reset event cancels an active timer. The timer reset event maps to the 
Timer reset action.

Timer timeout

The timeout event occurs when the timer duration has passed and the timer 
signal has been received and consumed by a state machine. The timeout 
event maps to a timer signal consumption.
232 IBM Rational Tau User Guide June 2009



Scenario Modeling
Symbols

See also

“Timer” on page 283

“Timer set action” on page 345

“Timer reset action” on page 345

Time specification line

The Time specification line is used to create an Absolute time line, a Rela-
tive time line and a General ordering line. 

Absolute time line

An absolute time line can be added to the left or right of a lifeline, specifying 
an absolute time or a range, “{<Time>}”. The line can be moved up or down 
along the lifeline. An absolute time line is created by clicking in the symbol 
palette on Time specification line, and by drawing a line connected to a life-
line in only one end.

Relative time line

A relative time line is created by clicking in the symbol palette on Time 
specification line, and by drawing a line connected to the same lifeline in 
both ends. 

Figure 64: Timer set, reset and timeout symbols

Ba nkTim e r

Ba nkTim e r

Ba nkTim e r
June 2009 IBM Rational Tau User Guide 233



Chapter 8: UML Language Guide
A specific time duration observation, “{<Duration>}”, or a time duration 
constraint, “{<Duration>..<Duration>}”, can be specified in the text 
field. 

A relative time line has an upper border, a lower border and a duration. The 
line is always drawn on the right side of a lifeline, but can be moved to the 
left side. The borders can be moved up or down along the lifeline. 

In most cases, the start and stop events of a relative time line are connected 
to other events of the lifeline. For instance:

• The arrival of a message

• The sending of a message

• The start/top of a reference symbol

• The end/bottom of a reference symbol

It is allowed to place a Relative time line start or stop at a place where the 
event is not connected to other events. 

General ordering line 

The general ordering line is a time specification line going between two life-
lines. Create a general ordering line by clicking on Time specification line 
in the symbol palette, and by drawing the line between two lifelines.

The general ordering line is used to specify the order of events on different 
lifelines without using message lines. It is visualized as a dashed line, with a 
filled arrow in the middle. No text is normally associated with the line, but it 
is possible to associate a specific duration, “{<Duration>}”, or a range, 
“{<Duration>..<Duration>}” with the line.
234 IBM Rational Tau User Guide June 2009



Scenario Modeling
Symbols

State

The state symbol is used to indicate that the instance described by the lifeline 
is in a specific state. 

Symbol

In scenario specifications, the use of the state is mostly done to highlight a 
certain state. Normally, you do not indicate all passed states along the life-
line. 

The State will bind to a model element if the state machine of the active class 
that the lifeline references has a state with the same name.

For traces, though, each state symbol maps to a specific Nextstate occurrence 
in a state machine transition. This is true if the lifeline object only has one 
main state machine; for active objects with parts, that is active objects that 
have several state machines, a simple mapping is not feasible.

Figure 65: Absolute time line, Relative time line and General ordering line

Figure 66: State

Wa itForOK
June 2009 IBM Rational Tau User Guide 235



Chapter 8: UML Language Guide
Action

The action symbol is used to express events that occur in a lifeline. It corre-
sponds to an action symbol in a State machine. Informal statements must be 
written as comments. 

Symbol

The allowed textual syntax in the Action is the same as for the Action (task) 
symbol in state machine diagrams.

Create

The Create event corresponds to the New operation applied on active classes.

The lifeline that is created is dashed before the reception of the create event, 
meaning that it has yet to be created. The name on the create line is the name 
of the class corresponding to the lifeline. 

Figure 67: Action

Re s =MyOp (3);
236 IBM Rational Tau User Guide June 2009



Scenario Modeling
Symbol

Creating a Create line

When drawing a lifeline representing a dynamic instance of a class it is pos-
sible to draw the create event. This is done with the Create line button in the 
diagram element toolbar and is handled much like a message. The name of a 
create line is the name of the class corresponding to the lifeline. It refers to a 
constructor operation for the class. A create line have three associated text 
fields, one for the constructor operation name and parameters and two for 
Gate names. Formal parameters can be added similar to adding of operation 
parameters to a method call line. 

Binding of a constructor

Binding of a constructor initializer reference to a base class constructor fails 
if the base class constructor is called initialize. The recommendation is to 
name it to the same name as the class.

Example 20: Constructor initialize that does not bind –––––––––––––––––––––––

class AutoDispatchableClass : tor::DispatchableClass {
  initialize(tor::DispatchableClass d) {
    d.addToCurrentDispatcher(this);
    init();
    'start'();
  }
}

Figure 68: Create line
June 2009 IBM Rational Tau User Guide 237



Chapter 8: UML Language Guide
class MyClass : AutoDispatchableClass {
  initialize(tor::DispatchableClass d): 
AutoDispatchableClass(d) {  }
}

The AutoDispatchableClass reference does not bind.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Destroy

The Destroy event represents a termination of the instance. It corresponds to 
the Stop action in a State machine. Events can not occur on a lifeline after the 
destroy event.

Symbol

Inline Frame

The inline frame symbol provides a way to group messages that should be 
treated similarly within an interaction. This means that it is possible to ex-
press different kinds of variations in a single diagram rather than having to 
create a new diagram for each possible variation.

Figure 69: Destroy
238 IBM Rational Tau User Guide June 2009



Scenario Modeling
Symbol

It is possible to have inline frame symbols inside other inline frame symbols. 
When a second inline frame symbol is added at the same height as an existing 
inline frame symbol, this will place a new inline frame symbol inside the ex-
isting inline frame symbol. 

An inline frame symbol can have one or several inline frame sections. The 
default inline frame symbol has one inline frame section. Inline frame sepa-
rator lines divide the inline frame symbol into several inline frame sections. 
Each inline frame separator line has a constraint text. 

An inline frame separator line is created with a line handle that appears when 
an inline frame symbol is single-selected.

You can drag the inline frame separator line up or down within the symbol, 
but it is not possible to cross another separator line connected to the same in-
line frame symbol. An inline frame separator line can be deleted by selecting 
the separator line and pressing the delete key. 

When a section is removed, objects in that section will also be removed as 
they are a part of the removed separator.

If the inline frame symbol is deleted, the contained objects are deleted with it.

The inline frame symbol has one text, which is a combination of:

Figure 70: Inline frame
June 2009 IBM Rational Tau User Guide 239



Chapter 8: UML Language Guide
• Operator keywords: Examples: seq (default keyword), alt, else, loop, 
assert. 

• Constraint text. Examples: “[a<3]”, “else”

It is possible to assign a background color to the inline frame symbol. The 
color will be shown as diagonal colored lines in the background of the 
symbol.

Variations

There are several different possible variations, where the frame is sometimes 
split to express alternative groups of messages. The available variations are 
the following:

• alt: Expresses one branch of an alternative, or a decision. The frame can 
be split into multiple operands, and each operand can be associated with 
a condition. Only the alternative branch whose condition is evaluated to 
true will be chosen. Exactly one of the branches may be an else branch.

• opt: Expresses that the grouped messages are optional, meaning they do 
not have to happen. An optional frame cannot be split. It is possible to 
associate the optional frame with a condition, in which case it behaves 
just like an alternative, where the second choice is empty.

• loop: Expresses that a set of messages should be repeated a number of 
times. A loop frame cannot be split. The number of iterations is given 
using a minimum value and a maximum value of the format “loop(min, 
max)”. It is possible to give “max” the value “*” which then denotes an 
infinite loop.

• par: Expresses that the messages of multiple operands can be interleaved 
with each other, or occur in parallel, but the ordering constraint within 
each operand must still be preserved. To be meaningful, a parallel frame 
must be split.

• seq: This represents the normal semantics of sequence diagrams, where 
each lifeline is independent of other lifelines. Weak sequencing is prima-
rily used to override strict sequencing.
240 IBM Rational Tau User Guide June 2009



Scenario Modeling
• strict: Expresses that the messages enclosed either in the sequence di-
agram or the combined fragment should have strict sequencing, that is to 
say that the vertical position in the diagram is equivalent to the order in 
which things will happen. Compare this with weak sequencing, which is 
the default for a sequence diagram, where each lifeline has its own time-
line. When using strict sequencing, you can think of this as having a 
common global time for the involved lifelines.

• neg: Expresses that the set of messages represented are invalid. 

• critical: Expresses that the enclosed messages cannot be interleaved 
by other inline frames. This can for example be used within a parallel 
frame to override the implied interleaving for a set of messages.

• break: Expresses an exceptional occurrence that interrupts the rest of the 
sequence diagram, and instead performs the set of messages enclosed by 
the break frame. A break frame cannot be split.

• assert: Expresses that the sequences expressed by the assert frame are 
the only valid ones, and that all other sequences are invalid. An assert 
frame cannot be split.

• ignore: Expresses that a given set of messages are insignificant and 
should not be shown within the frame. This gives a way to only show the 
most important messages of an interaction. The format is ignore 
{<list_of_messages>}. The converse operation is consider. An ignore 
frame cannot be split.

• consider: Expresses that a given set of messages are significant within 
the frame, and that messages not shown are thus insignificant. The format 
is consider {<list_of_messages>}. The converse operation is ignore. A 
consider frame cannot be split.

See also

“Attach/Detach from lifeline” on page 224

Co-region

Symbol and lines can be connected to the lifeline in the normal way also in-
side the co-region symbol. When symbols are connected inside the co-region 
symbol, they are always covering the co-region symbol.

A co-region is used to indicate that the order in which elements on a single 
lifeline is insignificant.
June 2009 IBM Rational Tau User Guide 241



Chapter 8: UML Language Guide
Symbol

Continuation

Continuations are only used in alternative inline frames, and acts as labels 
that decide how to continue from one part of a sequence to another. An alter-
native or interaction that ends with a continuation can only be continued in 
an interaction or alternative that starts with the same continuation.

Symbol

Figure 71: Co-region

Figure 72: Continuations
242 IBM Rational Tau User Guide June 2009



Scenario Modeling
The continuation symbol looks like the state symbol, but may span multiple 
lifelines.

The symbol contains a text field, located in the center of the symbol. The en-
tered text is not parsed, just saved in the symbol. 

It is not possible to place symbols and lines inside the continuation symbol.

See also

“Attach/Detach from lifeline” on page 224

Method call

A method call is similar to a message, but is always synchronous. This means 
that it will always be associated with a method reply. Method calls are used 
to model for example how operations are invoked between different classes.

Symbol

A method call results in four graphical elements: a call, which is a solid 
arrow, a reply, which is a dashed arrow, an activation area, and a suspension 
area. The suspension area is a dashed rectangle on the caller lifeline, while 
the activation is a solid rectangle on the called lifeline.

The call message and reply message have three associated text fields each, 
one for operation name and parameters and two for Gate names. 

Figure 73: Method call and reply
June 2009 IBM Rational Tau User Guide 243



Chapter 8: UML Language Guide
To draw a complete method call:

1. Click on Method call in the Diagram element toolbar. 

2. Place the call message start event on the lifeline that the method call 
should origin from, drag it to the receiver. 

3. Type in operation name and parameter information or drag an operation 
from the model onto the message. 

4. Edit the operation parameter type information in the call message and 
reply message name fields. 

The main text of the reply message should normally refer to the same method 
as in the call message. The parameters may be different, for instance when 
the method has assigned values to out parameters, and there may also be a 
return value. It is allowed to only give a return value for the reply line: “: 
<value>”. 

Deleting a method call or reply line, connected suspension and activation 
area symbols are also deleted. 

Deleting a suspension or activation area symbol, only the symbol is deleted, 
not any connected method call or reply lines.

When you drag a call or reply message the Method call symbol will be re-
sized in the corresponding direction.

Gate names

With the shortcut menu choice Add/Remove Gate text, gate names can be 
added to a message, method call or create event. The two gate name texts are 
placed below the line. When a gate text is activated, the gate gets a default 
name, which can be edited. 

Activation and suspension

The lifeline from which the method call originates is suspended while the re-
ceiver is busy executing. This means that it is not doing anything but waiting 
for a reply. The lifeline that receives the method call becomes activated while 
it is executing the method that is invoked. Once the reply has been sent back 
to the caller, both the activation and suspension areas are closed
244 IBM Rational Tau User Guide June 2009



Scenario Modeling
Update model

When the Active Modeler add-in is activated the shortcut menu will contain 
a new choice named Update model. This command is used on unbound en-
tities, to create model elements in the current model to which they can be 
bound. 

For sequence diagrams the following is supported:

Sequence diagram

Updates the entire diagram by updating every element of the diagram. 

Interaction Occurrence Symbol

Creates a new use case with a sequence diagram in the same context as the 
use case that owns the reference. The name of the reference symbol is used 
to name the new use case. If no name is supplied, the default name will be 
used.

Qualified names are not considered. The qualifier will be part of the name of 
the new use case.

Lifeline Symbol

If the type of the lifeline is unbound or if the lifeline is not typed, a class is 
created and the type of the lifeline is updated. If there is an unbound type it 
is used to name the class. If the lifeline is named, the name is used to name 
the class accordingly: “lifeline name” + “Class”. If the lifeline is not 
named, a default name will be used.

If the lifeline has a name it is used to see if the lifeline has a corresponding 
attribute or not. If there is no corresponding attribute, a new one is created.

Update model is executed for each Message Line with this lifeline as source 
or destination. Update model is executed for all symbols owned by this life-
line, for example states and timers.

Qualified names are not considered.
June 2009 IBM Rational Tau User Guide 245



Chapter 8: UML Language Guide
Message Line

Creates a signal matching the text of the message line. The types of the pa-
rameters are derived from the values on the message line. If a parameter is 
represented by an unbound identifier, a new attribute with the type Any and 
the same name as the identifier is created in the sequence diagram.

The signal is added to an interface if possible. The types of the lifelines are 
used to search for a suitable interface. 

• If the types have ports with an interface that is realized and required in 
the correct direction, this interface is reused. 

• If no matching interface is found, or if the lifelines are not typed, other 
message lines are searched for an interface.

• If there are other message lines between the same lifelines with a bound 
signal that belongs to an interface, this interface is reused. 

• If no interface can be found in any of these ways, a new one is created.

In addition, if the source and destination lifelines are typed, their types are 
updated to be able to send and receive the signal. If they are passive, they are 
made active. If they do not have a port a new port is created. The port is up-
dated to require or realize the interface containing the signal.

Method call line

Creates an operation in the class typing the destination lifeline. If the lifeline 
is not typed, or the type is unbound, an error is generated. The parameters and 
return value of the operation is calculated by the values of the method call 
line. The reply line is used to calculate the return type.

If the operation is already bound and the owner is an interface, the operation 
is copied from the interface to the class.

Method reply line

Checks if the operation has a return value and creates one if this is not the 
case. The type is derived from the value of the reply line. If there already is 
a return parameter and its type is different from the type of the supplied 
value, an error is generated. 

The update will only work if the operation is bound.
246 IBM Rational Tau User Guide June 2009



Scenario Modeling
NextState Action Occurrence symbol

Creates a state in the state machine of the class typing the lifeline. The name 
of the state is the same as the text in the symbol. If the lifeline is not typed or 
the type is not bound, an error is reported. If there's no state machine in the 
class, a new one is created.

Timer Set symbol

Creates a timer in the type typing the lifeline that owns the Timer Set 
Symbol. The name of the timer is the same as the text on the timer symbol. 
If no name is given the default name is used. If the lifeline is not typed, an 
error is reported and the model is left untouched.

Timer parameters and default duration are not considered.

Timer Timeout symbol

See Timer Set symbol.

Timer Reset symbol

See Timer Set symbol.

Appearance and filtered delete

Compress Layout

The Compress Layout button will compress the distance between messages 
and lifelines to be as defined in the tool Options for sequence diagrams. 

When the Compress Layout button is pressed the lifelines are compressed 
and lined up by moving lifelines in the horizontal direction.

When the Compress Layout button is pressed together with the SHIFT button 
the lifelines will be compressed as described above, and objects on lifelines 
are also compressed, by moving these objects up or down along the lifelines. 

When you press and hold CTRL and press Compress layout the lifelines are 
reordered to have the lifeline with the first event (for example a signal 
sending) to the left in the diagram.
June 2009 IBM Rational Tau User Guide 247



Chapter 8: UML Language Guide
When you press and hold SHIFT + CTRL and press Compress layout the 
lifelines and objects on lifelines are compressed as described above, and life-
lines are reordered to have the lifeline with the first event (for example a 
signal sending) to the left in the diagram.

Delete selected signals

Deletes the selected messages. This command will also delete messages 
using the same signals as the selected messages. Can also be used to delete 
other objects:

This command will delete all <X>, when <X> is selected.

<X> is one of:

• create line

• state symbol

• timer symbol (set, reset and time-out)

• time specification line (absolute time, relative time, general ordering 
line)

• method call (call line, activation symbol, reply line, suspension symbol)

• action symbol

• destroy symbol

• reference symbol

• inline frame symbol

• continuation symbol

• text symbol

• comment symbol

Keep selected signals

If you press SHIFT and at point to Delete selected signals on the toolbar, the 
command will reverse the filtering effect: Only those messages that are se-
lected, and those messages using the same signals as those messages that are 
selected, will remain in the sequence diagram. For other objects, there are the 
following rules:

This command will delete all <X>, if there is no selected <X> (<X> is de-
fined in Delete selected signals).
248 IBM Rational Tau User Guide June 2009



Scenario Modeling
Make space 

This command will make space below the selected symbol or line. Press 
SHIFT and point to Make space in the toolbar to remove space below the 
selected symbol or line.

Interaction overview diagram

Interaction overview diagram is a form of Activity Diagram that focuses on 
the control flow between Interactions.

Interaction references in interaction overview diagrams can both define and 
reference operations/activities. Interaction reference is used instead of Ac-
tion Node node and Object Node. An Activity edge and control constructs 
such as Decision, Fork and Activity Final nodes are the same as in activity 
diagrams.

The table below lists how you can represent the most common interaction op-
erands listed in Variations in an interaction overview diagram.

Operand Interaction overview construct

alt A Decision node matched with a corresponding 
Merge node.

par A Fork node matched with a corresponding Join 
node.

loop Decisions and graph cycles in the diagram.
June 2009 IBM Rational Tau User Guide 249



Chapter 8: UML Language Guide
Create an interaction overview diagram

Interaction overview diagrams can be included in classes and use cases. 

1. Select the class (use case) in the Model View. 

2. From the shortcut menu select New and then Interaction overview dia-
gram. 

Model elements in interaction overview diagrams

The following model elements can be found in interaction overview dia-
grams:

• Decision

• Flow Final

• Fork

• Initial Node

• Join

• Merge

Figure 74: Interaction overview diagram

r e f

startBehavior
 

startBehavior
 

r e f
parallell1

 
parallell1

 
r e f

parallell2
 

parallell2
 

  

  

[else][else]

  

  

  

  

  

  
[x > 10][x > 10]
250 IBM Rational Tau User Guide June 2009



Package Modeling
• Interaction reference, see Action Node

• Relationships

See also

“Sequence diagram” on page 220

“Activity Diagram” on page 307

Package Modeling
When larger systems are to be modeled, the Package construct is vital for or-
ganizing all the different definitions into logical and manageable groups. A 
good principle for the organization is to group semantically close elements 
that are likely to change together.

Package diagram

Package diagrams are used to visualize collections of Packages and the Re-
lationships between them. It is used to model the breakdown of a system into 
logical packages and dependencies between these packages.

The package diagram contains packages and dependencies between these 
packages (for example Import and Access dependencies).

A Class diagram can be used for the same purpose.
June 2009 IBM Rational Tau User Guide 251



Chapter 8: UML Language Guide
Example

Model elements in package diagrams

The following model elements can be found in package diagrams:

• Package

• Relationships

See also

“Class diagram” on page 259 

Package

A Package is a mechanism for organizing elements into groups. A package 
provides a namespace for the grouped elements. Within the package, those 
elements can be referred to directly using their names, but from outside the 
package it is often necessary to qualify the names of the model elements.

Figure 75: Packages and their relationships
252 IBM Rational Tau User Guide June 2009



Package Modeling
A model normally consists of several packages that depend on each other. 
Understanding how packages relate to each other is critical when modeling 
systems of any complexity, but the larger the system becomes, the more im-
portant this activity becomes since it is often a reflection of the system archi-
tecture.

Symbol

Packages also let you control the visibility and access rights to the individual 
elements defined in the packages.

• Definitions (such as classes and other packages) may be collected in a 
Package.

• A Package may be imported or accessed by another Package.

It is possible to nest other symbols hierarchically inside a package symbol. 
An element created inside a package symbol will have the package as owner.

Syntax

The package symbol contains a text field with the name of the package. 
When the referenced package is defined in another namespace the package 
name is preceded by a qualifier, like in “OuterPackage::MyPackage”.

See also

“Relationships” on page 253

Relationships

The following Relationships can be used in package diagrams. These are de-
scribed further in the section Relationships in UML.

• Dependency

• Containment

Figure 76: Package

BasicTypes

 

June 2009 IBM Rational Tau User Guide 253



Chapter 8: UML Language Guide
A dependency is often stereotyped to give a more precise meaning to the de-
pendency. Two common stereotypes used for that purpose are the <<im-
port>> and <<access>> stereotypes described below.

Import

Import is a special kind of Dependency that is valid in particular between 
Packages, but also from for example Classes or State machines to packages. 
Its role is to import the names of definitions from a package into the current 
namespace, which is usually also a package. This provides a means to avoid 
having to use qualifiers. Names of definitions in a package P that has been 
imported by another package Q are automatically included in packages that 
in turn import or access package Q.

Note
Be restrictive with using import dependencies, as the set of names that be-
come accessible without qualifier in the importing scope can become very 
large. It is often better to use access dependencies. If only a small subset of 
definitions shall be used the use of qualifiers should also be considered. Al-
though qualified names mean more typing, it becomes very clear for all 
readers of a model which definition that is used.

Access

Access is a special kind of Dependency that is valid in particular between 
Packages, but also from for example Classes or State machines to packages. 
Its role is to import the names of definitions from a package into the current 
namespace, which is usually also a package. This provides a means to avoid 
having to use qualifiers. Names of definitions in a package P that has been 
accessed by another package Q are not included in packages that in turn im-
port or access package Q.

Figure 77: Import
254 IBM Rational Tau User Guide June 2009



Package Modeling
An import is very closely related to an access; the distinction is primarily that 
an import is transitive, meaning that if a package is accessed or imported, you 
automatically also get the names of the definitions that are in turn imported 
by that package, but not the names of the definitions that are in turn accessed. 
Looking at Figure 75 on page 252, the package TermBasic is accessed by 
the package TermInterface, meaning that it is possible to refer to the names 
of definitions in TermBasic directly in TermInterface. However, these 
names are not directly available in package SystemComponents, which im-
ports package TermInterface. In SystemComponents, it is therefore neces-
sary to either explicitly access or import package TermBasic to refer to those 
names or explicitly qualify the names.

From an architectural point of view, accesses are preferred over imports 
since they force you to consider all the packages that you need, and will not 
bring in excess baggage by accident. 

Note
It is not necessary to import or access a package to be able to reference def-
initions within it. As long as the definitions are public, they can be refer-
enced using qualification, for example “TermBasic::Xterm” can be used 
to reference the element Xterm in package TermBasic. For understand-
ability, however, it is usually a good idea to produce a description of how 
packages depend on each other. 

See also

“Relationships in UML” on page 371 

Figure 78: Access
June 2009 IBM Rational Tau User Guide 255



Chapter 8: UML Language Guide
<<noScope>> Packages

A «noScope» package is typically used when there is a need to divide the el-
ements of a package into more than one file. However, it can also be used as 
soon as there is a need to structure the contents of a package into different 
parts but when the package from a UML name scope point still should be 
viewed as one entity.

Semantically a package stereotyped by the «noScope» stereotype will be as 
visible as any other package in the model view. It will also work as other 
packages with respect to storing it in a separate file. From a semantic point 
of view all of the elements in the «noScope» package are considered to be 
part of the containing package. When referring to an element in a «noScope» 
package using a qualifier, the name of the «noScope» package should nor-
mally not be used as part of the qualifier. The «noScope» stereotype makes 
all definitions visible outside of the package without a qualifier. It is possible 
to use an explicit qualifier to resolve ambiguous cases. 

Example 21: «noScope» package –––––––––––––––––––––––––––––––––––––––––

package A {
    <<noScope>> package B {
        class C {

        }
    }
    C c; // <<noScope>> makes C visible 
}

package A {
    <<noScope>> package B {
        class C {

        }
    }
    class C { }
    C c; // class A::C hides class B::C
}

package A {
    <<noScope>> package B1 {
        class C {

        }
    }
    <<noScope>> package B2 {
        class C {

        }
    }
256 IBM Rational Tau User Guide June 2009



Package Modeling
    B1::C c; 
/* 'C' is an ambiguous name. B1::C or B2::C must be 
used. If C is used without qualifier there will be name 
resolution errors. */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The «noScope» stereotype is not generally supported in formal models in-
tended for code generation. The C code generator supports the stereotype 
partially, with the following notable restrictions:
- «noScope» packages cannot have incoming or outgoing dependencies. 
These must be directed to the nearest enclosing normal package instead.
- The name of a «noScope» package cannot be used as a qualifier.
- A «noScope» package cannot be the top-most package.
The semantic checker will not detect violations of these restrictions.

<<openNamespace>> Packages

In some situations it is useful to be able to incrementally define a package as 
the sum of a set of packages. Depending on what packages are loaded in a 
specific session the package will from a logical point of view have different 
contents.

This can in IBM Rational Tau be accomplished using «openNamespace» 
packages. In practise it works as follows: Define two packages in the same 
scope (for example as model roots). Give the package the same name and ste-
reotype both of them with the «openNamespace» stereotype. From a seman-
tics point of view the contents of the packages will now be merged. This im-
plies that elements from one of the packages can directly be used in the other 
package without qualifier and also that the used names must be unique within 
all of the merged packages.

It is possible to have a hierarchy of nested «openNamespace» packages. So 
for example if you have an «openNamespace» Top containing an «open-
Namespace» Sub stored in one file you can have another file that also con-
tains an «openNamespace» Top with an «openNamespace» Sub. If you load 
both of these files into the same project both the contents of Top and the con-
tents of Sub will be merged.

The most important scenario when «openNamespace» packages are used is 
when you have a base version of a package hierarchy that is maintained sep-
arately but want to extend this, for example with a sub-package, when using 
it in a specific application.
June 2009 IBM Rational Tau User Guide 257



Chapter 8: UML Language Guide
Class Modeling
Class modeling is the process of identifying the kind of objects that are part 
of the system being designed. This activity often takes place early in the de-
sign phase, or even in the analysis phase, typically after the objects that are 
part of the designed system have been identified (through use case and/or 
scenario modeling). Objects that appear to share the same properties, be-
havior, and relationships with other objects are then grouped together and 
modeled as a class of objects.

Apart from identifying classes, the class modeling activity also involves the 
definition of these classes. This is typically done in a Class diagram. For each 
identified class, the following typical questions are answered:

Does the class have structure? 
What parts does an instance of the class contain?

The structure of a class is described in a class diagram by means of attributes, 
and relationships such as generalizations and associations. A composite 
structure diagram can also be used to show how a class is composed.

Does the class have behavior? 
Which operations are available?

The behavior of a class is perceived as operations on the class, and the signa-
ture of these operations are described in a class diagram. The same goes for 
other behavioral features of the class such as signals, timers or state ma-
chines.

Which relationships exist between the class and other elements?

A class may have relationships not only to other classes, but also to inter-
faces, datatypes, choices, etc. In the section “Relationships in UML” on page 
371 you will find information on how to use them in class modeling.

Is the class active or passive?

Simply put you may say that an Active class defines dynamic event-triggered 
behavior and a passive class handle information. An instance of an active 
class has the ability to dispatch events.
258 IBM Rational Tau User Guide June 2009



Class Modeling
Which communication ports does the class expose to its environment?

The ports of a class may be visualized in a class diagram.

Class diagram

A Class diagram gives a static view of the model and is used to describe the 
types of the objects in a model. These types are typically Classes, but could 
also be other classifiers such as primitive, enumeration, interface, choice or 
syntype. A class diagram may also show relationships between the types, and 
their structural and behavioral features.

The definitions that are shown in a class diagram will by default be contained 
in the scope (for example a class or package) that owns the diagram, but it is 
also possible to show definitions from another scope.

In “Package Modeling” on page 251, information is provided on how to use 
package diagrams as a means for describing the packages of a system and 
how they depend on each other, but the same information can alternatively 
be described in a class diagram.

Example of class diagram

Figure 79: Class diagram
June 2009 IBM Rational Tau User Guide 259



Chapter 8: UML Language Guide
Model elements in class diagrams

The following model elements can be visualized in class diagrams:

• Artifact

• Collaboration

• Class

– Active class

• Attribute

• Operation

• Port

• Interface 

– Realized interface

– Required interface

• Signal

• Signallist

• Timer

• Datatype

• Choice

• Syntype

• State machine

• Relationships

See also

“Package diagram” on page 251.

Class

A Class is an abstraction of a group of objects that share the same properties 
(attributes), behavior (operations), structure, and relationships. A class may 
be instantiated (as long as it is not defined to be abstract) into a number of 
instances, all of which share the same properties.
260 IBM Rational Tau User Guide June 2009



Class Modeling
Symbol

If instances of a class will maintain their own thread of execution (run con-
currently with other instances), the class is said to be an Active class. If not, 
the instances will execute in the thread of another active instance, and the 
class is then said to be Passive.

To make a class active either:

• In the diagram (or the Model View), right-click the class you want to set 
as active, then on the shortcut menu click Active. 

• Open the Properties Editor for the class and select Active.

The active class is displayed in the diagram with double vertical border lines. 

A class may also have an internal structure, visualized in a composite struc-
ture (former architecture) diagram with parts and connectors, that describe 
how it is structured from an internal communication point-of-view. It may 
also have a state machine (called Initialize or the same name as the class) that 
describes it from a run-time execution point of view. This state machine is 
the “main” behavior that will be scheduled for execution when the instance 
of an active class is created. 

Furthermore, a class may have a set of Ports, which specify how instances of 
the class may be connected to other instances in the architectural description 
of the class. The ports may also be used to group sets of interfaces that are 
exposed to different stakeholders.

There are several ways to add classes to a model. 

Figure 80: Class with Attributes and Operations

Shape

 

#origin:Coordinate

-projection:ProjectionType

moveTo(Coordinate)

scale(Real)

display(proj:ProjectionType) : ResultType

+lineColor:Color

+fillColor:Color

move(Coordinate)
June 2009 IBM Rational Tau User Guide 261



Chapter 8: UML Language Guide
• A class can be added directly in the Model View of the workspace 
window. Select the scope where the class should reside and from the 
shortcut menu select New/Class.

• Draw a class in a class diagram. Create and open a class diagram, select 
a class symbol from the toolbar and place it in the diagram. 

• A textual definition of a class can be inserted in a text symbol or in a text 
diagram.

• From a composite structure diagram: When double-clicking on an un-
bound part with no type name. This will allow you to create a new dia-
gram describing the part in question, and this diagram will belong to an 
inline class created to the part. Possible diagrams are: class diagrams, 
composite structure diagrams, state machine diagrams, use case dia-
grams.

Multiple state machines in an active class

You can insert any number of state machines in an active class. However the 
following applies:

• If one of the state machines is named initialize or has the same name as 
the class, this state machine is considered to be the main state machine of 
the class. This state machine is executed when an instance of the class is 
created. If you omit this state machine, the Start and Stop symbols will 
automatically be inserted in the state machine diagram during the build 
process.

• Other state machines in the active class must explicitly be called in order 
to be executed. For example, it is possible to use such statemachines as 
the behavior when defining composite states.

Syntax

The class symbol contains compartments with editable text fields: 

• Class Heading (required)

• Attribute (optional)

• Operation (optional).

• Constraint compartment (optional).

• Stereotype instance compartment (optional).
262 IBM Rational Tau User Guide June 2009



Class Modeling
Class heading

The following example shows different class headings. 

Example 22: Class heading ––––––––––––––––––––––––––––––––––––––––––––––

A simple class: 

myClass

A class including virtuality:

redefined myC

A class using template parameters:

MyParamClass < type T, Integer c >

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Attribute

Example 23: Classes and attributes –––––––––––––––––––––––––––––––––––––––

A class with an Attribute: 

public A : Integer = 4

Attributes with multiplicity: 

A: Integer [10]
B: Integer [3,>15]
C: Integer [*]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Operation

Example 24: Signal ––––––––––––––––––––––––––––––––––––––––––––––––––––

signal s (Integer, Real)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 25: A method example ––––––––––––––––––––––––––––––––––––––––––

private m( x: Integer) : Integer

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 263



Chapter 8: UML Language Guide
Abstract class

A class can be abstract. This means that it is not possible to create instances 
of this class. The class thus needs to be specialized before it can be instanti-
ated.

If a class is abstract then the name of the class is shown using italics in the 
class symbol.

To make a class abstract either:

• In the diagram (or the Model View), right-click the class you want to set 
as abstract, then on the shortcut menu click Abstract. 

• Open the Properties Editor for the class and select Abstract.

Virtuality

Virtuality defines whether a class can be redefined or not. This is only appli-
cable if the class is contained in another class.

Visibility

The visibility of a feature of a class, typically an attribute or operation, de-
fines if it can be accessed from outside the class where it is defined.

• None

When no visibility is defined for a feature.

• Public

This feature can be referenced from any place where its contained class 
is visible.

• Protected

This feature can be referenced from any descendant (by specialization) 
of the class that defines the feature.

• Private

Only the class that defines a private feature can use the feature.

• Package

This feature can be referenced from any place within the nearest en-
closing package from which its contained class is visible.

For more information about visibility, see Visibility.
264 IBM Rational Tau User Guide June 2009



Class Modeling
External class

To define a class as external:

Open the Properties Editor for the class and select External. The external 
property is only shown in the Properties editor.

Classes and components

There is no specific concept for components representing abstractions, but it 
can be modeled in other ways.

Classes and components are very similar in UML. A Component is a subclass 
of Class in the Metamodel. They can both have attributes, operations, com-
posite structure (what is drawn in composite structure diagrams), ports, inter-
faces, etc. The primary purpose of the component is to provide terminology, 
and to highlight those features that are most important in component-based 
modeling. This includes the ability to represent how the component is real-
ized, and also to specify the required and provided interfaces of the compo-
nent. Typically, the provided interfaces are realized by one of the realizing 
classifiers.

Constraint compartment

It is possible to attach one or several constraint compartments to a class 
symbol, with the Add Constraint Compartment shortcut menu choice. A 
constraint compartment can also be attached to other class-like symbols, 
such as interface or stereotype symbols.

A constraint compartment is placed below the last visible ordinary compart-
ment of the class symbol.

A constraint compartment is similar to a Constraint symbol, with one read-
only “{}” text label and a main text label that is editable.

The shortcut command Show Constraints as Compartments will create 
and attach one Constraint compartment for each constraint owned by the 
model element corresponding to the class symbol that does not already have 
a constraint compartment below the class symbol. The shortcut command 
Show Constraints as Symbols will create and attach one Constraint symbol 
for each constraint owned by the model element corresponding to the class 
symbol. 
June 2009 IBM Rational Tau User Guide 265



Chapter 8: UML Language Guide
Stereotype instance compartment

It is possible to attach one or several stereotype instance compartments to a 
class symbol, with the Add Stereotype Instance Compartment shortcut 
menu choice. A stereotype instance compartment can also be attached to 
other class-like symbols, such as interface or stereotype symbols.

A stereotype instance compartment is placed below the last visible ordinary 
compartment of the class symbol.

A stereotype instance compartment is similar to a Stereotype instance 
symbol, with one read-only “«»” text label and a main text label that is edit-
able. 

The shortcut command Show Stereotypes as Compartments for class sym-
bols will create and attach one Stereotype instance compartment for each ste-
reotype instance applied to the model element associated with the class 
symbol that does not already have a stereotype instance compartment below 
the class symbol.The shortcut command Show Stereotypes as Symbols will 
create and attach one Stereotype instance symbol for each stereotype in-
stance owned by the model element corresponding to the class symbol.

See also

“Datatype” on page 284

“Choice” on page 287

Collaboration

The collaboration symbol behaves like a class symbol, including support for 
Icon Mode, but the collaboration symbol is not showing attributes and oper-
ations in the symbol.

Attribute

An attribute is a structural feature that may hold one or several values at run-
time.

Attributes are used for modeling several different, but related, constructs of 
the UML language: 
266 IBM Rational Tau User Guide June 2009



Class Modeling
• Attributes

An attribute of a Structured Classifier is modeled as an Attribute. The in-
stance of such an attribute is often called a field, and it may be referenced 
by using a Field Expression. There are also so called class-scoped at-
tributes (also called static attributes). All instances of a class share the 
same value for a class-scoped attribute.

In composite structure diagrams, attributes with composition aggregation 
are often referred to as parts, which is due to the particular nature of that 
view to show the hierarchical structure of a class. 

Attributes are also used to represent the ends of an association.

• Local variables

A local variable of a state machine, operation or compound statement is 
modeled as an Attribute. Such an attribute may be referenced directly by 
its name, with a scope qualifier if necessary.

• Constants

A constant is modeled as a read-only Attribute. The value of the constant 
is the Default value of the attribute. Typically constants are defined on 
package level, but it is possible to define a constant wherever an attribute 
can be defined. Constants may be referenced directly by its name, with a 
scope qualifier if necessary. As the name indicates, the value of the con-
stant may not be changed once it has been set.

An attribute always has exactly one static type. This type is determined at the 
point of defining the attribute, and can be either:

• a class,

• an interface,

• a primitive or enumeration,

• a syntype,

• a delegate,

• or a choice.

Attributes are closely related to associations. A navigable association end 
and an attribute is in practice the same thing. This implies that it is possible 
to first define an attribute and then visualize this attribute in a class diagram 
as the role name of a navigable end of an association. The opposite is of 
course also possible: Start by defining an association with one navigable as-
sociation end. Then visualize the association end in the attribute compart-
ment of a class symbol as an attribute.
June 2009 IBM Rational Tau User Guide 267



Chapter 8: UML Language Guide
The navigability is necessary if you want to use a specific association end/at-
tribute that it is associated with to make a call.

Example 26: Navigability –––––––––––––––––––––––––––––––––––––––––––––––

Given the classes A and B. You want to invoke an operation B.op() from the 
class A. 

With an association with an association end name (“role name”) ‘b’ in the di-
rection from A to B you can make a call ‘b.op();’ only if the association is 
navigable.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Attributes can also be visualized as symbols in composite structure diagrams. 
Although this is allowed for all attributes of the containing class, this possi-
bility is often only used for parts.

Aggregation kind

If an attribute is typed by a class this implies that the values for this attribute 
will be objects, that is instances of the class. In this case the attribute can have 
different aggregation kinds that determine the lifetime relationship between 
instances of the class containing the attribute and the value instances:

• None

There is no lifetime dependency between the instances of the two classes. 
This implies that the attribute will contain one or more references to in-
stances of the value class.

• Shared aggregation

There is no lifetime dependency between the instances of the two classes. 
However, informally one is considered to be “owned” by the other. In the 
attribute compartment a shared aggregation is indicated by the keyword 
“shared” before the attribute name as in “shared a:myclass”. Some code 
generators may attach a specific semantics to shared but in practice it is 
rarely used due to its weak semantics, and it is normally better to use an 
association with no aggregation instead.
268 IBM Rational Tau User Guide June 2009



Class Modeling
• Composition

There is a strong part/whole relationship between instances of the con-
taining class and instances of the value class. In practice this implies that 
there is a lifetime dependency between the two instances. If the con-
taining instance is terminated then the contained instance will also termi-
nate. Composition is indicated by the keyword “part” before the attribute 
name as in “part a:myclass”

Note
A non-static attribute may hold a value only when its defining context has 
been instantiated. The possible defining contexts listed above for an at-
tribute are instantiated differently. For example, a package is instantiated 
when it is used, and an event class is instantiated when it is invoked. 

Default value

An attribute may have a default value specified as an Expression. If it does 
not have a default value, its value remains undefined when the defining con-
text is instantiated until it is explicitly assigned.

Port

An attribute that is typed by a Class may have communication ports to which 
connectors can be connected. These connectors describe communication 
paths in a system that convey signals to and from the attribute. This is mainly 
used when the attribute represents a part.

Multiplicity

An attribute may have a multiplicity, modeled as a collection of ranges. It 
specifies a restriction on how many instances the attribute may hold at run-
time.

Depending on whether the multiplicity of the attribute is >1 or not the actual 
type of the attribute is different. If the multiplicity is >1 then the attribute will 
have a container type that can hold a list of values. If the multiplicity is ex-
actly 1 (or 0..1) then this is not the case.

Depending on what datatype libraries are available the container type may be 
different. Typically different code generators will supply different container 
types to provide a suitable integration with the target language. If no specific 
datatype library is loaded the String type will be used in the built-in pre-
June 2009 IBM Rational Tau User Guide 269



Chapter 8: UML Language Guide
defined package as the type of attributes with multiplicity > 1. (The String 
type is a predefined collection type that represent an ordered list, or a se-
quence. The values in the list must adhere to the type of the attribute.)

In the attribute compartment of a class symbol the multiplicity is shown 
within brackets after the type of the attribute as in:

a : myClass [*]

In the above example, the multiplicity is unbound (represented by the as-
terisk), meaning that it can have any number of values. 

If no multiplicity is given it is considered to be 1 by default.

Initial cardinality

For a composite attribute with a multiplicity > 1 there is a shorthand that al-
lows specifying the initial number of instances using an Expression. That 
number specifies how many instances that will be automatically created 
when the owning Class is instantiated. If an initial number of instances is 
omitted, exactly one instance will be created. 

Note
If and how the cardinality is interpreted is code generator dependent. Some 
code generators may ignore the cardinality of an attribute.

The initial cardinality can be given if an attribute is shown using a part 
symbol in a composite structure diagram. However, in this kind of symbol 
the syntax is as in:

a : myClass [*] / 2

where the initial number of instances for ‘a’ would be 2.

Visibility

It is possible to specify Visibility for attributes. This can be one of public, 
private, protected or package. 

Derived

An attribute can be declared to be derived. This indicates that the value of 
the attribute is not stored in the corresponding object, but instead is computed 
from for example the values of other attributes. The syntax for a derived at-
tribute is a ‘/’ preceding the attribute name as in
270 IBM Rational Tau User Guide June 2009



Class Modeling
/a:myClass

For more information on how to specify the derivation rule for a derived at-
tribute, see Derived.

Static

A static attribute is an attribute that is owned by the class scope rather than 
the instance scope. This means that there is only one Attribute instance that 
is shared by all the instances of a particular class. 

Constant 

A Constant attribute is an attribute which value cannot be modified dynami-
cally. The value of the constant is the default value of the attribute. 

An external Constant attribute means that the value is defined outside of the 
model or at a later time (build time for example).

Example 27: Textual constant declaration––––––––––––––––––––––––––––––––––

const Integer a = 10;
const Integer extern ext_const;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Operation

An operation is a declaration that instances of a class will be able to handle 
calls that match the signature of the operation. An operation can be imple-
mented either by an operation body or a state machine. This implementation 
(often called a method) will be executed when the operation has been in-
voked. This means that if the receiver is a passive instance, the implementa-
tion will be executed immediately after the operation has been invoked, 
while if the receiver is an active instance the execution of the implementation 
may be delayed and executed some time in the future when the instance is in 
a state where the operation call is accepted.

Operations can be declared textually in text symbols or text diagrams, in the 
operations compartment of a class symbol, and using a special operation 
symbol.
June 2009 IBM Rational Tau User Guide 271



Chapter 8: UML Language Guide
IBM Rational Tau supports a derived property for operations as an exten-
sion to standard UML. This can be used to indicate that the operation has no 
implementation but is implicitly computed. This property is for analysis only 
and will not affect any generated code.

Symbol

Syntax

The symbol contains two editable text fields: Operation Heading and Param-
eters. The bottom field is always empty. 

Active class

An Active Class is a class with its own thread of control. It is distinguished 
from the normal (passive) class by the property Active. Graphically, this is 
indicated by the special Active Class symbol, as in Figure 82 on page 272.

Symbol

Figure 81: Operation

Figure 82: Active Class 

display

<<operation>>

proj:ProjectionType

return ResultType

ATMSystem

 

part bank : BankCentral

part atm : ATM
272 IBM Rational Tau User Guide June 2009



Class Modeling
You can make a class active by:

• Selecting it and in the shortcut menu choose Active.

• Selecting it and in the Properties Editor select Active.

The active class is the fundamental building block for modeling real-time be-
havior in UML. Active classes define both the structure (architecture) and 
behavior of a model. This duality of the active class concept in UML offers 
strong and flexible design capabilities.

Structure

The structure of an active class is defined in one or several Composite struc-
ture diagram, which defines the active class as a set of instances of other ac-
tive classes. These active classes can also have structure, thus enabling de-
scriptions of complex architectures.

Behavior

The behavior of an active class is defined by a State machine in one or several 
State machine diagram. This state machine should be named initialize(), 
or given the same name as the class.

In order for an active class to be completely specified, it must have either a 
structure definition, a state machine definition, or both.

Figure 83: Active Class with Ports and Realized and Required Interfaces

ATM

 

part disp : Display

part ui : UserInterface

part userSession : Controller [0..10]

toUserfromUser

bank

BankInterfaceBankToATM

mgtIFC

Display, CardEnterCard,EnterCode
June 2009 IBM Rational Tau User Guide 273



Chapter 8: UML Language Guide
An active class has its own flow of control and can both initiate behavior and 
passively react to behavior as observed on its interfaces. Traditionalists 
prefer the name reactive class instead of active class, since such classes are 
typically event-driven. The initiation of behavior is often done through the 
use of timers; at the expiration of a timer some behavior is kicked into gear.

When an active class has several contained parts defined in its composite 
structure diagram(s), each part executes asynchronously and concurrently 
with other parts in the system. This semantic ensures that the model can be 
deployed in a distributed physical environment and is not dependent on being 
run on a single processor with shared memory access.

An active class can realize and require interfaces via a Port. Ports together 
with their required and realized interfaces define the static contract between 
the active class and its environment. 

Attributes and operations

In the active Class symbol, it is possible to specify or show attributes of the 
class in the second compartment of the symbol and operations in the third 
compartment. 

See also

“Attribute” on page 266

“Operation” on page 263.

Port

Ports are named interaction points of an active class. They specify the imple-
mented interface (realized) and the needed interfaces from other classes (re-
quired).

Ports are typically used only on active classes. To visualize an already cre-
ated port on an active class symbol or a part symbol, use the Show/Hide 
command on the shortcut menu and point to Show Ports.
274 IBM Rational Tau User Guide June 2009



Class Modeling
Symbol

Hint
The easiest way to attach a port symbol is to first select the frame of the 
symbol where the port symbol should be placed and then click the port 
symbol in the toolbar.

Port type

The symbol has one text field that should contain a name and that optionally 
may contain a type. The type of the port is mainly intended to be used in an 
analysis phase.

Note
The code generators in IBM Rational Tau do not take the port type into ac-
count. Instead code is generated based on the information given for realized 
and required interfaces of the port.

Behavior ports

There are two different kinds of ports: behavior ports and non-behavior ports. 
The difference between these two different kinds of ports is that a behavior 
port is directly associated with the state machine of the class, whereas a non-
behavior port needs to be connected using connectors and are typically only 
relaying the communication from outside the class to some of the internal 
parts of the class.

A Behavior port is a port that is directly connected to the state machine of the 
class. All signals sent to this port are consumed by the behavior of the class 
itself.

Figure 84: Ports on a Class and Ports on a Part

p2 : pt2 [0..5] / 2

 g1

g2ATM

 bank

toUser fromUser

mgtIFC
June 2009 IBM Rational Tau User Guide 275



Chapter 8: UML Language Guide
Ports and interfaces

For each port, the realized and required interfaces may be specified. The re-
alized interface of a port defines the incoming requests that can be handled 
via the port. The required interface defines the outgoing requests that must 
be handled by a class connected to the port from the outside via one or more 
connectors. In Figure 83 on page 273 you will find an example of ports with 
realized and required interfaces.

When defining the structure or behavior of an active class, ports can be de-
clared on the border of a diagram used for this purpose (a composite structure 
diagram or a State machine diagram). Ports can also be referenced from 
parts, where they are shown on the border of the part symbol.

It is also possible to send messages through a port (without knowledge about 
possible receivers at the other end of the attached connector) from a state ma-
chine as an addressing mechanism. 

The realized (or required) interface of a port may typically contain references 
to interfaces, but also to a signal list, signal or attribute.

The realized and required interfaces of a port are visualized by attaching the 
Realized interface symbol and the Required interface symbol to the port. On 
these symbols, the supported or needed Interface names (signal list, signal or 
attribute) can be specified.

Another way to specify the Realized and Required Interface of a Port is by 
the Properties Dialog.

Ports represent:

• Connection points for Interfaces to classes

• Connection points for Connector lines in Composite structure diagram, 
connecting instances of these classes with other instances or with the en-
closing frame symbol.

The port symbol can be placed 

• On Class symbols

• On Part symbols

• On Behavior symbols

• On the frame of a State machine that is owned by an active class

• On the frame of a composite structure diagrams
276 IBM Rational Tau User Guide June 2009



Class Modeling
• Within Architecture and State machine diagrams (which has the same se-
mantics as when the port is placed on the frame of these diagrams).

A port can have both explicit and implicit connectors. Each Port symbol can 
have zero, one or two interface symbols attached to it.

When you have two interface symbols, one of them should be defined as a 
Realized Interface symbol specifying the incoming interfaces (or signals) to 
the port and the other should be defined as a Required Interface symbol spec-
ifying the outgoing interfaces from the port.

Ports with or without interfaces can be drawn directly on a class. Either:

• Select the class and hold down SHIFT while you click on the toolbar port 
symbol. Type the port name. The port will be positioned on the class’ left 
border segment as close as possible to the upper left corner.

• Click on the toolbar port symbol, click on the class where you want to po-
sition the port. Edit the name text field. 

Inheritance

In case of a generalization between classes where there are ports belonging 
to the supertype these ports will also be inherited. 

Ports can be declared public and private to distinguish if a port is externally 
exposed or if it is only used internally. It is possible to add more signals to 
ports in subclasses.

Interface

An interface is a structured classifier that may not be instantiated. Instead, it 
is used for grouping a set of attributes, operations, and signals that must be 
implemented by the class that implements the interface. A class that imple-

Figure 85: A port with realized and required interfaces
June 2009 IBM Rational Tau User Guide 277



Chapter 8: UML Language Guide
ments an interface is said to realize the interface, thus supporting the opera-
tions declared in the interfaces. A class can also require interfaces, it is then 
dependent on other active class(es) in order to perform its operations.

Symbol

The operations of an interface typically describe services that are offered by 
the class(es) that realizes the interface. Naturally, a class may realize more 
than one interface.

Apart from operations, an interface may contain signals and attributes. It may 
also contain other definitions, such as types.

An interface can be specialized and may have Template parameters. Multiple 
inheritance of interfaces is a useful mechanism to define the communication 
interfaces of active classes.

Interfaces can also be associated to each other to provide a definition of pro-
tocols or contracts between classes that realize the involved interfaces. An 
example is given in Figure 87 on page 279 that defines the MgmI and 
MgmReplyI interfaces. The association between the two interfaces estab-
lishes a relationship between them. This means that wherever one of the in-
terfaces is referenced, for example on a port or associated with a connector, 
the other interface will automatically be inserted in the other direction. So, 
for example if a class realizes the MgmI interface via a port then the 
MgmReplyI interface will automatically be a required interface of the same 
port

Figure 86: Interface symbol

BankInterface

<<interf ace>>

+signal Register(CardId:CardInfoType, CodeId:CodeArray)

+signal Validate(CardId:CardInfoType, CodeId:CodeArray)

+AddClient ( ATMClient:ClientInfoType) : ResultType

+CentralId:NodeType
278 IBM Rational Tau User Guide June 2009



Class Modeling
.

Figure 87A contract defined using two associated interfaces

Syntax

The symbol contains three editable text fields: 

• Heading,

• Attribute, and

• Operation. 

The heading field is used to define the name of the interface.

The attribute field contains definitions of attributes that must be implemented 
by classes realizing the interface. Typically, this is a shorthand for a getter 
operation and a setter operation to a protected attribute of the realizing class.

The operations field contains definitions of operations and signals that must 
be handled by classes realizing the interface.

See also

“Realized interface” on page 279

“Required interface” on page 280

“Pid” on page 359

Realized interface

A realized interface attached to a port on a Class visualizes what interfaces 
the Class realizes through that port. Interfaces, signals, signal lists and at-
tributes may be specified in the text field.

MgmReplyI
<<interface>>

signal Serv ice(srv I)

MgmI
<<interface>>

 

signal ReqServ ice()

  

 

 

 

 

June 2009 IBM Rational Tau User Guide 279



Chapter 8: UML Language Guide
Symbol

Syntax

The symbol contains a text field.

Example 28: Realized interface ––––––––––––––––––––––––––––––––––––––––––

S, p, SigList

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Interface” on page 277

“Required interface” on page 280

“Pid” on page 359

Required interface

A required interface attached to a port on a class visualizes what requests the 
class expects to be handled through the port. Interfaces, signals, signal lists, 
and attributes may be specified in the text field.

Figure 88: Realized Interface

BankInterface,  atm_central_sigs

BankCentral

 

atm
280 IBM Rational Tau User Guide June 2009



Class Modeling
Symbol

Syntax

The symbol contains a text field.

Example 29: Required interface ––––––––––––––––––––––––––––––––––––––––––

S, p, SigList

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Interface” on page 277

“Realized interface” on page 279

“Pid” on page 359

Signal

A Signal is one of the primary means for communication in UML. A signal 
represents an asynchronous message that is sent between active classes. The 
signal can carry data, which must conform to the declared parameter types of 
the signal. 

A signal is most conveniently declared together with other signals, opera-
tions and attributes in an Interface that represents the capabilities of the 
classes that realize the interface. 

However, a standalone signal declaration can also be made using a special 
signal symbol similar to a class symbol as shown in Figure 90 on page 282.

Figure 89: Required Interface

ATM

 

bank BankInterface
June 2009 IBM Rational Tau User Guide 281



Chapter 8: UML Language Guide
If numerous distinct signals will be used, it is often more practical to declare 
the signals textually in a text symbol:

Example 30: Textual signal declaration––––––––––––––––––––––––––––––––––––

signal Init (IDType id, Charstring iData);
signal SetupReq, SetupInd, AbortReq, AbortInd;
signal ForwardedMsg (IDType, MsgData);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Syntax

The signal symbol contains two editable text fields: 

• Heading 

• Parameters

The heading field declares the name of the signal and the parameters field de-
clares the parameters of the signals. The name of the parameters may be 
omitted, but the parameter types are required.

The third compartment that exists for many class like symbols is always 
empty for signal symbols.

See also

“Message” on page 227

“Signallist” on page 283

“Interface” on page 277

“Timer” on page 283

“None” on page 387

Figure 90Signal

Init

<<signal>>

id:IDType

iData:Charstring
282 IBM Rational Tau User Guide June 2009



Class Modeling
Signallist

The keyword signallist is used to denote a group of related signals in 
order to make the description easier to comprehend. It is typically used in 
ports and connectors.

Example 31: signallist declaration ––––––––––––––––––––––––––––––––––––––––

signallist MgtSignals = MOGetStatus, MOSet, MOReset;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
Using an Interface to group signals together is a more structured approach, 
compared to signal lists, since the Interface also encapsulates the signal 
declarations.

See also

“Signal” on page 281

“Interface” on page 277

Timer

A Timer is an event that, in the same fashion as a signal, can trigger transi-
tions. A timer is set by an implementation executed by an active class and at 
timeout, a timer event can be received by the state machine of that same ac-
tive class instance. A time value is associated with an active timer, which is 
the time of the timeout.

Symbol

Timers can, like signals, have parameters. This can be used to allow to set 
more than one timer of the same kind without resetting the already active 
timer; that is several timers with different parameter values may be active at 
the same time.

Figure 91: Timer

DisplayTimer

<<timer>>

id:Natural
June 2009 IBM Rational Tau User Guide 283



Chapter 8: UML Language Guide
Syntax

Timers can also be declared textually in a text symbol:

Example 32: Textual timer declaration ––––––––––––––––––––––––––––––––––––

timer DisplayTimer (Natural id) = 2;
timer BankTimer () = BankTimeout;
timer UserTimer ();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

When declaring a timer textually, it is also possible to give the timer a default 
duration, that is a duration before timeout that allows to set the timer without 
specifying the duration.

See also

“Timer handling and time” on page 361

“Timer set action” on page 345

“Timer reset action” on page 345

“Timer set” on page 232

“Timer reset” on page 232

“Timer timeout” on page 232

“Timer active expression” on page 358

Datatype

Datatypes are used for two different purposes:

• To describe primitive types that are available

• To describe user-defined enumeration types

Primitive types are most often defined in model libraries that accompany 
specific UML profiles, either standalone profiles or profiles defined to be 
used together with specific code generators. In the latter case the datatypes 
typically define the target language primitive types and makes them available 
in UML models.

It is however also possible to define primitive datatypes in user models, but 
this may cause code generation problems.
284 IBM Rational Tau User Guide June 2009



Class Modeling
An enumeration defines a set of values simply by enumerating them as a list 
of enumeration literals.

In any case the datatype may also optionally contain behavior that is defined 
by operations. 

Symbol

Enumerated datatype

An enumerated datatype is a datatype where the literal values are logical 
names. The logical names can optionally be attached to an integral value 
specified by a simple expression. 

The available default operations are:

• Equality (==, !=)

• Relational operations (<, >, <=, >=)

• Assignment (=)

Example 33: Enumerated datatype –––––––––––––––––––––––––––––––––––––––

enum UKColors { blue, red, white }

Figure 92: Enumeration Datatype

Figure 93: Datatype with operator

UKColors

<<enumeration>>

Blue

Red

White
June 2009 IBM Rational Tau User Guide 285



Chapter 8: UML Language Guide
enum LinePrinterState { 
outOfService = 1, 
inServiceFree =2, 
inServiceBusy = 6

} 

void op() {
LinePrinterState e;
Integer i;
e = cast<LinePrinterState>(1);
e = inServiceFree;

        i = cast<Integer>(e);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
It is possible to convert between Integer and enumeration types using the 
cast operation as in the operation op in Example 33 on page 285.

Primitive datatypes

Primitive datatypes are usually defined in model libraries in profiles but can 
also be user defined. However, a user-defined primitive type will not have a 
literal syntax, which makes them less useful in practice.

There are however two ways to relate the datatype to another already existing 
datatype:

• use copy constructors

• use inheritance

In both of these cases the literal syntax of the existing datatype will be used. 
The copy constructor mechanism is the recommended mechanism to intro-
duce new primitive datatypes in UML and this is what is used in most model 
libraries.

Note
Primitive datatypes usually need special treatment in code generators. A 
user-defined primitive datatype is not likely to work in a code generator un-
less specifically stated in the code generator documentation.

Example 34: Datatype with operators –––––––––––––––––––––––––––––––––––––

datatype simpleInt {
simpleInt(Integer) {}

}
datatype myInt : Integer
{

286 IBM Rational Tau User Guide June 2009



Class Modeling
myInt plus1 ( myInt i) { return i+1;} 
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Literal

A Literal is a definition of an element of the type defined by an enumerated 
datatype. The literal is owned by that datatype. The visibility of a literal is 
always public.

Aside from having a name (which all definitions have), a literal may also 
have an integral value which allows it to be used in arithmetic expressions.

Choice

A Choice is a datatype that can hold one value. This value can be of different 
datatypes during the execution. A choice of which type is made when as-
signing a value to a variable. For each potential type field, there is a boolean 
operator IsPresent() that can check if the field is present or not. 

Example 35: choice–––––––––––––––––––––––––––––––––––––––––––––––––––––

choice IntOrBool {
    Integer a;
    Boolean b;
}

IntorBool ib;
Integer i;
Boolean b=true;

ib.a=5; 
i=ib.IsPresent("a")?ib.a:0; /* check if ib is Integer;

 if Integer, return ib, 
 if not, return 0 */

ib.b=b;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 36: choice–––––––––––––––––––––––––––––––––––––––––––––––––––––

choice IntOrBool {
  Integer a;
  Real r;
  Integer GetInt() {
    if (IsPresent("r")) {
      return 0;
    } else {
      return a;
    }
  }
}

Using the IsPresent() operator:
June 2009 IBM Rational Tau User Guide 287



Chapter 8: UML Language Guide
IntOrBool MyVar;
Real num_real;
Integer num_int;
MyVar.a=1;
if(IsPresent(MyVar,"a"))
  {
    num_int =MyVar.a;
    MyVar.r=3.14;
  } 
  else
  {
    num_real=MyVar.r;
  }
if (MyVar.IsPresent("r")) {
switch (MyVar.r) {
  case 3.14 :
  {
    nextstate idle;
  }
  default :
  {
    nextstate idle;
  }
}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A choice instance value can be specified by an instance expression having 
only one assignment where choice_field = value.

Example 37: Choice instance value –––––––––––––––––––––––––––––––––––––––

  choice choice_type
  {
    public Integer ifield;
    public Boolean bfield;
  }
  choice_type an_int = choice_type (. ifield = 1.);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Syntype

A syntype is a datatype that is based on another datatype, the parent type. The 
two types are not distinct in terms of type compatibility and literals. The lit-
erals of a syntype are either identical with or a subset of the literals of the 
parent. A syntype can be regarded as an alias of another type; an alias that 
may be constrained.

Example 38: Syntype –––––––––––––––––––––––––––––––––––––––––––––––––––

syntype myInt = Integer constants (> -10, != 0, <10);
syntype smallPrime = Natural constants (1,2,3,5,7);
288 IBM Rational Tau User Guide June 2009



Object Modeling
Integer [1..10] myvar; /* inline syntype definition */

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

State machine

The State machine concept is explained in detail in the Behavior Modeling 
section. 

Stereotype

The Stereotype concept is explained in detail in the Extensibility section. 

Relationships

The following Relationships can be used in class diagrams. These are de-
scribed further in the section Relationships in UML.

• Association

• Aggregation

• Composition

• Dependency

• Extension

• Generalization 

• Realization

• Manifestation.

• Containment

Object Modeling
While class modeling focuses on finding the kinds of objects in the designed 
application, object modeling is concerned with describing how these objects 
may appear at run-time. Typical questions for this analysis activity may be:

• Which objects exist in the application at different points in time?

• What does the objects look like in terms of attribute values etc.?

• How are the objects linked to each other? Which objects have knowl-
edge of which other objects?
June 2009 IBM Rational Tau User Guide 289



Chapter 8: UML Language Guide
Objects are also knows as instances, and instance modeling is thus also used 
as a term for describing this analysis activity.

It is common to perform object modeling in parallel with class modeling. As 
objects of the application are identified they can be defined in the model. 
This can be done even before the type of the object is known.

In most real-world applications the number of objects at run-time is very 
large. It is therefore common to only describe those objects that are of special 
interest for the design. For example, it may be particularly interesting to iden-
tify objects that get created at application start-up time to get an under-
standing of the initialization phase of the application.

Object modeling uses mainly Object Diagrams for defining objects and their 
relationships, although Class diagrams are sometimes also used. 

Object Diagram

An object diagram gives a static view of objects that exist in an application 
at a specific point in time (a “snapshot” view). The objects shown in an object 
diagram can be named, and it is possible to specify the type of objects. The 
objects’ attribute values, called slots, can also be specified. Links between 
objects can be visualized using link lines.

A named object in IBM Rational Tau is called a named instance to distin-
guish it from unnamed instances, such as applied stereotype instances. A 
Named Instance is a definition which by default is placed in the scope con-
taining the object diagram. It is, however, also possible to show named in-
stances from other scopes by dragging them from the Model View onto an 
object diagram.

An object diagram may contain multiple instance symbols showing the same 
named instance.

Example of object diagram

The object diagram below shows a snapshot view of objects available in the 
application described by the class diagram shown in Figure 79 on page 259.
290 IBM Rational Tau User Guide June 2009



Object Modeling
This object diagram tells us that at some point in time (supposedly at initial-
ization time judging from the name of the diagram) this application contains 
one instance of the TrafficSystem class. It has one instance of Car, called 
testCar, in its vehicle list attribute. The testCar object has the value 
Registered for its regKind attribute.

Model elements in object diagrams

The following model elements can be visualized in object diagrams:

• Named Instance

• Slot

• Dependency

See also

“Class diagram” on page 259.

Figure 94: Object diagram

package Calculator Initialization{1/3}

theSystem : TrafficSystem

testCar : Car
regKind = Registered

 

vehicle[]

 

vehicle[]
June 2009 IBM Rational Tau User Guide 291



Chapter 8: UML Language Guide
Named Instance

A named instance represents an object (instance) in a modeled system and 
describes this object completely or partially. Since objects may change over 
time, a named instance only provides information about the object at a spe-
cific point in time, or for a specific time period. Note that UML object dia-
grams do not provide means for formally specifying 

• the point in time, or time period, where the object complies with the 
named instance specification

• whether or not the named instance is a complete or partial specification 
of the object

A named instance may have a name. Often this name is to be interpreted in-
formally, and does not correspond to any property at the run-time object de-
scribed by the named instance. However, the usual rules for definitions apply 
to named instances. For example, the names of named instances in the same 
scope must be unique (see Scope, model elements, and diagrams).

A named instance may have a type. If the specified type is a class, the named 
instance describes an object of that class. If it is a datatype, the named in-
stance describes a value of that datatype. It is also possible to specify a be-
havioral feature, such as an operation or a signal, as the type. In that case the 
named instance describes an event in the system. For example, if the type is 
an operation the named instance describes an operation call, and if the type 
is a signal it describes an event of that signal.

The type of a named instance can also be an association. In that case the 
named instance represents a Link.

It is allowed to specify an abstract type for a named instance. This does not 
mean that the described object is of abstract type, but merely that all shown 
properties for the object belong to the abstract type only. The described run-
time object would have a type that is a concrete subtype of the abstract type.

If the named instance type contains structural features, such as class at-
tributes or signal parameters, the named instance may specify values for 
those structural features. Such a value specification is called a Slot.

A named instance is shown in an object diagram using an InstanceSymbol. 
292 IBM Rational Tau User Guide June 2009



Object Modeling
As can be seen an instance symbol contains two basic compartments. The 
upper compartment holds the name and type of the named instance, while the 
lower compartment contains the slots. Note that the syntax for defining a slot 
is the usual assignment syntax (the structural feature is assigned a value). For 
data type values a plain value can also be used.

Note
Currently the semantic checker will not check type compatibility between a 
datatype value and the datatype. Hence, datatype values in object diagrams 
are for informal modeling only.

Link

A link is a named instance whose type is an association. It describes a run-
time relationship between two objects. In programming language terms, a 
link could correspond to a pointer or a reference.

Links can be visualized in object diagrams in two ways:

1. As a link line, connecting two instance symbols.

2. As an ordinary slot in an instance symbol, where the right hand side of 
the slot refers to the target named instance.

Figure 95: Instance symbols defining named instances

Figure 96: Two ways to specify a link

opCall : op

p1 = 4
p2 = true

<<operation>>

op
p1 : Integer
p2 : Boolean

//
Operation call

testCar : Car
regKind = Registered

//
Class object

v : Natural

5

//
Datatype value

emp : Employee
manager = mgr

mgr : Manager

 
manager
 
manager
June 2009 IBM Rational Tau User Guide 293



Chapter 8: UML Language Guide
The text that is entered on the target end of a link line is an expression (see 
Expressions). It becomes the left hand side of a Slot expression.

The name of a link can be specified by typing it in a label in the center of the 
link line.

Slot

A slot is a value specification for a structural feature belonging to the type of 
a named instance.

Slots are used for showing those values of an object that are of interest. The 
fact that a named instance has no slots defined does not mean that the corre-
sponding object has no structural feature values, but merely that those values 
are not of interest in the model.

Slots may reference all kinds of structural features of a type, including inher-
ited features, and features with non-public visibility.

A slot is an assignment of a value (the right hand side) to a structural feature 
(the left hand side). The right hand side is often just a plain identifier, but 
more advanced expressions can also be used. Refer to the following model:

Slots defined for an instance of TrafficSystem can for example have the left 
hand sides listed in the table below:

Figure 97: Three classes with relationships

Slot left hand side Meaning

vehicle[] One instance in the vehicle collection. The index 
of the instance in the collection is not specified.

vehicle[4] One instance in the vehicle collection, located at 
index 4.

vehicle[].driver The driver instance of an instance in the vehicle 
collection.

TrafficSystem

 
 

Vehicle

regKind : RegKind 
vehicle

* 
vehicle

*

Driver

 
driver

1 
driver

1

294 IBM Rational Tau User Guide June 2009



Architecture Modeling
Note that if the latter example is visualized with a link line we can show these 
kinds of indirect links between objects in a compact way:

Self reference

There are two equivalent ways to specify self references for objects. The 
right hand side of such a slot can either be a reference to the containing 
named instance, or the keyword this can be used.

Architecture Modeling
During architecture modeling, the internal structure of active classes is de-
scribed from a communication point of view. This is done by connecting the 
attributes of the class (in this context referred to as parts) with connectors, 
and to specify which signals that may be sent along these connectors. This 
structure of parts and connectors is called the architecture, or composite 
structure, of the class.

Architecture modeling typically takes place after, or in parallel with, class 
modeling during the design phase.

Composite structure diagram

A composite structure (former architecture) diagram defines the internal run-
time structure of an active class, in terms of other active classes. These 
building blocks are referred to as parts when they are composite parts of the 
containing class. Furthermore the parts are also restricted to be instantiations 

Figure 98: Visualizing the link from the traffic system to the driver of its first vehicle

Figure 99: Self reference shown in slot label and with link line

theSystem : TrafficSystem d : Driver

 
vehicle[0].driver

 
vehicle[0].driver

inst : SomeClass
p = this

 

pp
June 2009 IBM Rational Tau User Guide 295



Chapter 8: UML Language Guide
of active classes. Composite structure diagrams may also express the com-
munication within the active class by visualizing connectors between the 
communication ports of the parts. 

Example

Part

A part represents one or more instances that is owned by a containing class 
instance. 

As for all attributes a part can have a Multiplicity that constrains the number 
of run-time instances that may exist. If the part has a multiplicity > 1, then a 
container type is assumed for the parts. The specific container type can differ 
depending on the loaded profiles and Add-Ins, but by default the String type 
is used. 

When an instance of the containing class is created, a set of instances corre-
sponding to these parts may be created either immediately or at some later 
time as described by the initial cardinality and the multiplicity for the part.

Figure 100: Composite structure diagram with parts, ports and connectors

atm:ATM

 

bank:BankCentral

 

toUser

fromUser

bank

mgtIFC

atm

UserDisplay

   

UserCtrlIfc

   

ATM_Bank_Channel  ATM_Bank_Channel

 

mgtCtrl

 

Display, Card

EnterCard, EnterCode

CommunicationView active class system  (2/2)
296 IBM Rational Tau User Guide June 2009



Architecture Modeling
Symbol

• If the part symbol has only a name, the implicit class is constructed auto-
matically when the part symbol is created.

• More than one part symbol with the same name can be present in the 
same composite structure diagram.

If the referenced class is omitted, this corresponds to a part definition with an 
inline class definition. Specifying a part in this way means that the class def-
inition is not separated from the usage of the class which makes the descrip-
tion more compact, but on the other hand less suitable for reuse.

A part of an active class may be shown in the attribute compartment of the 
active class symbol, since a part is an Attribute of the containing class. When 
an attribute is of the kind part, it describes a composition relationship be-
tween the container class and the part class.

Figure 102: A part visualized in the attribute compartment of a class symbol.

It is also possible to give an overview of a hierarchy of parts using composi-
tion relations in a class diagram as in Figure 103 on page 298

The initial cardinality determines the number of initial instances that will be 
created automatically when the containing entity is created. If no initial car-
dinality is given, the number of initially created instances will be equal to the 
lower bound of the Multiplicity of the part. If no multiplicity is given, one 

Figure 101: Part

s e s s ion:Se s s ionHa ndle r [0.. 5] / 0

 
ne t

te rm _io

sys
 

part p : pTy pe
June 2009 IBM Rational Tau User Guide 297



Chapter 8: UML Language Guide
instance will be created automatically and there will be no upper bound for 
the number of simultaneous instances. These instances are instances of the 
classifier typing the part. 

Parts may be joined by connectors attached to ports. Parts are used to de-
scribe both static and dynamically created and terminated active instances.

A part specifies that a set of instances may exist; this set of instances is a 
subset of the total set of instances specified by the classifier typing the part. 
When an instance of the containing class is terminated, the contained in-
stances will also terminate.

A part symbol refers to an attribute in the model. The appearance of a part 
symbol in a composite structure diagram varies with the aggregation kind of 
the corresponding attribute. If the Aggregation kind is composite, the outline 
of the part symbol is a solid line. If the aggregation kind is reference or 
shared, the outline of the part symbol is dashed.

Figure 103: A part hierarchy visualized using composition in a class diagram

Example 39: Simple part––––––––––––––––––––––––––––––––––––––––––––––––

myP

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

sys
 

 

 

qType
 

 

pType
 

 p

  

  

 

q

  

 

 

 r

  

  

 

s

  

 

 

sType
 

 

rType
 

298 IBM Rational Tau User Guide June 2009



Architecture Modeling
Example 40: Type-based part ––––––––––––––––––––––––––––––––––––––––––––

myP : PT

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 41: Part with initial and maximum number of instances specified ––––––

myP : PT [0..10] / 1

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Connector

A Connector specifies a medium that enables communication between parts 
of an active class or between the environment of an active class and one of 
its parts. Connectors can visualize communication paths in an intuitive 
fashion.

A connector may be unidirectional or bi-directional and specifies for each di-
rection the allowed information. Information that can be sent or conveyed on 
a connector can be described by: signal, attribute, signal list and interface. 
When the number of signals is large, it is more convenient to define an inter-
face or a signal list to use for each direction of the connector.

By default a connector has no name, it is non-delayed and it is bi-directional. 
It is possible to control the properties for a connector line from the shortcut 
menu on the connector line. 

Symbol

A connector line specifies the communication path between two end points, 
for example ports attached to part symbols, to behavior symbols or to the 
frame of the diagram.

• If necessary connectors are omitted, some code generators may be able 
to create them implicitly.

Figure 104: Connector types

c4s ig2, s ig3 s ig1

c3 i1
Non-delaying, unidirectional Connector

Non-delaying, bidirectional Connector
June 2009 IBM Rational Tau User Guide 299



Chapter 8: UML Language Guide
• You can re-direct and bi-direct a connector from the shortcut menu.

• When you re-direct a bi-directional connector the signal list areas change 
places.

• The name of the connector is optional.

• The lists of interfaces, signals etc. associated with a connector are op-
tional.

The structure of an active class can contain either explicit or implicit con-
nector lines or both. Explicit connectors are visible while implicit connectors 
are invisible and cannot be referenced. 

Implicit connectors are calculated from all matching realized and required in-
terfaces on:

• Ports on parts contained in the containing class, 

• Ports of the containing class,

• Behavior ports of the containing class.

Note
If a port has explicit connectors no implicit connectors will be connected to 
the port.

Syntax

The line contains two (uni-directional connector) or three (bidirectional con-
nector) editable text fields.

The center field specifies the name of the connector and the field placed at 
the end of the line specifies the signal list area. There is one signal list area 
for each arrowhead in the line. The signal list areas may be empty.

Stereotypes applied to the connector line are visible in a non-editable text 
field, positioned above the name field.

Example 42: Connector signal list ––––––––––––––––––––––––––––––––––––––––

i1,i2,sl1

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Signal lists and interfaces

It is possible to draw a connector with signal lists to a port. In this situation 
the following applies:
300 IBM Rational Tau User Guide June 2009



Architecture Modeling
• When there are no signals or interface given on any of the signal lists the 
information on the connected ports is used to deduce the signals and in-
terfaces.

• When there are any signals or interfaces given on the signal lists associ-
ated with a connector then all transported signals and interfaces must be 
mentioned. 

A shortcut menu choice for connector lines in composite structure diagrams 
Show All Signals is available. This fills the signal list text fields with signals 
and interfaces taken from the attached ports.

• Existing signals and interfaces will not be removed from affected signal 
lists.

• Only signals and interfaces not already existing are added to the signal 
list.

• The union of signals and interfaces found in the two attached ports is 
used. It is thus enough for a signal or interface to appear in one port, for 
the signal to show up in a signal list.

• If a signal is realized or required determines which signal list the signal 
will be put in.

Part communication

Normally communication between parts is explicitly modeled with ports and 
connector lines between ports. 

It is not necessary to explicitly model communication if it is unambiguous, 
that is if the classes for the parts in the diagram have defined ports that can 
be connected in only one possible way. 

It is allowed to connect a connector directly to a part symbol. The behavior 
is that an unnamed port is created, attached to the part and the connector is 
connected to this part. This is allowed both when creating a connector and 
when reconnecting an existing connector. This port is not deleted if the con-
nector line is deleted, the port must be manually deleted if it is not needed in 
the model anymore. 

Behavior port

Even if an active class has structure, that is has parts, it may also have its own 
behavior, expressed as a state machine. This behavior can be referenced in 
the Composite structure diagram using a behavior port. 
June 2009 IBM Rational Tau User Guide 301



Chapter 8: UML Language Guide
The main purpose of the behavior port is when defining Connectors between 
a Part of the Active Class and the Behavior of the Active class; in this case it 
must have a Behavior Port.

It is possible to attach connectors to a behavior port in the same way as for 
Ports on Parts in order to define the communication interface of the state ma-
chine. It is allowed to have several behavior port in one diagram; in this case, 
they all refer to the same underlying behavior.

Symbol

The Behavior port symbol specifies a reference to the unique state machine 
of the defined class.

• There can be several behavior port symbols present in one diagram.

• There is no text field in the symbol.

Behavior ports looks like ordinary ports in class diagrams. The appended be-
havior information is only shown in architecture and state machine diagrams.

Hint
You can add the behavior symbol to a composite structure diagram in two 
ways. Either by adding a port symbol to the diagram or by dragging an ex-
isting port from the Model View browser to the composite structure dia-
gram. In both cases you also have to choose the command behavior port 
from the shortcut menu, or set this property using the Properties Editor.

Relationships

Dependency

The Dependency relationship in composite structure diagrams is used be-
tween parts, to show that one part is dependent of another. One common use 
is to indicate a create dependency between parts, that is that instances of one 
part can create new instances of another part.

Figure 105: A behavior port
302 IBM Rational Tau User Guide June 2009



Component Modeling
Update model

When the Active Modeler add-in is activated the shortcut menu will contain 
a new choice named Update model. This command is used on unbound en-
tities, to invoke them in the current model. 

For composite structure diagrams the following is supported:

Composite Structure diagram

Updates the entire diagram by updating every element of the diagram.

Connector Line

If the connector is bound and there are unbound signals in its labels, these 
signals are created and added to the required/realized lists of the connected 
ports.

If the connector is not bound (grey line) the connector is created and the la-
bels filled with information from the connected ports. The enabled direction 
is also derived from the ports.

Part Symbol

Creates an active class and updates the type of the part symbol. Adds a port 
to the class and the part symbol. The active class contains a simple state ma-
chine to make it possible to build directly. The name of the class is derived 
from the name of the part if any.

Component Modeling
Component modeling is about identifying key Component of a system and 
model their Interfaces and Relationships.

The key focus when modeling components is to enforce strong encapsulation 
by hiding the implementation details inside a component and only expose a 
small set of well defined interfaces.

Weak coupling, i.e. minimized dependencies between different components, 
is another design principle often applied in component modeling.
June 2009 IBM Rational Tau User Guide 303



Chapter 8: UML Language Guide
Component diagram

A component diagram describes the static structure of a system through a set 
of Components, their Relationships and their Realized interfaces and Re-
quired interfaces. Other model elements like Classes and Artifacts can also 
be shown in a component diagram to illustrate their relationships with the 
components.

Example

Model elements in component diagrams

The following elements are found in component diagrams

• Component

• Artifact

• Class

• Interface

• Port

• Realized interface

• Required interface

• Relationships

Figure 106: Component diagram

<<component>>

ChatServer

- clients : ChatClient [*]

+ registerClient(c : ChatClient)

<<component>>

ChatServer

- clients : ChatClient [*]

+ registerClient(c : ChatClient)
  

IChatServerIChatServer

<<interface>>

INetworkServices

+ connect()
+ disconnect()

<<interface>>

INetworkServices

+ connect()
+ disconnect()

<<interface>>

IChatServer

+ registerClient(c : ChatClient)
+ unregisterClient(c : ChatClient)
+ sendMessageTo(m : Message, r : ChatClient)

<<interface>>

IChatServer

+ registerClient(c : ChatClient)
+ unregisterClient(c : ChatClient)
+ sendMessageTo(m : Message, r : ChatClient)

<<component>>

ChatClient
<<component>>

ChatClient

  

IChatServerIChatServer

INetworkServicesINetworkServices
304 IBM Rational Tau User Guide June 2009



Component Modeling
See also

“Class diagram” on page 259

Component

A component is a small part of a system that is well encapsulated and pro-
vides a well specified service. 

The service provided by a component is specified through its Realized inter-
faces. A component should only be accessed through them. The component 
may also be dependent on other services; this is specified through its Re-
quired interfaces.

The implementation of the component, i.e. its behavior and architecture 
should not be exposed to clients. When only the Interfaces are exposed, one 
component can easily be substituted with another one, with a completely dif-
ferent implementation, without affecting the client.

The differences between a Class and a component in UML is minimal, and 
they can be used interchangeably. Anything that can be done with a class can 
also be done with a component. When using components though, the design 
principles outlined above should be adhered to.

Symbol

The component symbol is identical to the Class Symbol, with the keyword 
«component» added to the top.

See also

“Class” on page 260.

Figure 107: Component with a port and realized/required interfaces

<<component>>

ChatServer

- clients : ChatClient [*]

+ registerClient(c : ChatClient)

<<component>>

ChatServer

- clients : ChatClient [*]

+ registerClient(c : ChatClient)
  

IChatServerIChatServer

INetworkServicesINetworkServices
June 2009 IBM Rational Tau User Guide 305



Chapter 8: UML Language Guide
Relationships

The following relationships can be used in Component diagrams:

• Association

• Aggregation

• Composition

• Dependency

• Generalization 

• Realization

• Manifestation

• Containment

Activity Modeling
Activity modeling is about using Activity Diagrams to model behavior by or-
ganizing it into small behavioral units and to describe the control and data 
flow between these units. It can also describe how these units are distributed 
across a system.

Activity modeling can be used at an abstract level for business modeling or 
at a very low level to model behavior at action code level. It is particularly 
useful for the modeling of asynchronous and distributed systems.

This chapter describes the execution semantics for activity models as speci-
fied by the UML standard. In IBM Rational Tau this semantics is of impor-
tance when simulating activities, as described in “Activity Simulation” on 
page 476. Deviations from, or extensions to, the UML standard in that imple-
mentation are mentioned in notes, where applicable.

See also

“Scenario Modeling” on page 219

“Behavior Modeling” on page 326
306 IBM Rational Tau User Guide June 2009



Activity Modeling
Activity Diagram

An activity diagram describes how a behavior is divided into small behav-
ioral units, Action Nodes, and controls the execution sequence between them 
using Activity edges and control constructs such as Decision, Fork and Ac-
tivity Final nodes.

Object Nodes and Pins are used to describe how objects and data are passed 
between the different actions.

Activity Partitions are used to group related actions into groups, for example 
by function or by owner.

Activity diagrams are similar to flowcharts.

Create an activity diagram

Activity diagrams can be included in packages, classes, use cases, operations 
and activities. 

1. Select the entity where to create the activity diagram in the Model View. 

2. From the shortcut menu select New and then Activity diagram.

Figure 108: Activity diagram

Receive
Order

 
Receive
Order

 
Fill
Order

 
Fill
Order

 
Ship
Order

 
Ship
Order

 

Send
Invoice

 
Send
Invoice

 
Make
Payment

 
Make
Payment

 
Accept
Payment

 
Accept
Payment

 

InvoiceInvoice

  
  

  Close
Order

 
Close
Order

 

  

  
  

[order
rejected]

[order
rejected]

[order
accepted]

[order
accepted]

    

  

    

  

  

  
  
June 2009 IBM Rational Tau User Guide 307



Chapter 8: UML Language Guide
Flow orientation

Although the flow in an activity diagram can go in any direction there is a 
setting to help you create a structured flow aligned either horizontally or ver-
tically. This is controlled via the Tools menu, Options dialog. Select the 
UML Advanced Editing tab, look in the Activity diagrams section: Orienta-
tion: Horizontal or Vertical. Horizontal is default.

When horizontal orientation is chosen for activity diagrams, it is easy to 
create horizontal activity flows:

• Line handles are placed on the middle of the right symbol border.

• New fork/join symbols have a vertical orientation as default. (Already 
existing fork/join symbols are not changed when the default orientation 
is changed.)

• New partition symbols have as default a header size where the height is 
larger than the width. (Already existing partition symbols are not 
changed when the default orientation is changed.)

When vertical orientation is chosen:

• Line handles are placed on the middle of the bottom symbol border.

• New fork/join symbols have a horizontal orientation as default.

• New partition symbols have a default header size where the width is 
larger than the height.

It is possible to change the default flow orientation while appending symbols 
in a flow by pressing SHIFT + CTRL together. 

Activity symbols from model elements

Copying information from the Model View to an activity diagram using 
drag-and-drop is possible. For example it is possible to drag-and-drop an op-
eration node to create an activity symbol which references this operation. 
The same can be done with interaction nodes, state machine nodes and use 
case nodes. 

Note
Actions must be selected (via the shortcut menu) for an existing activity 
symbol in order for the reference to be visible before dragging an activity 
node to the activity symbol. 
308 IBM Rational Tau User Guide June 2009



Activity Modeling
Model elements in activity diagrams

The following elements are found in activity diagrams:

• Initial Node

• Action Node

• Object Node

• Decision

• Merge

• Fork

• Join

• Connector

• Accept Event

• Send Signal

• Accept Time Event

• Activity Final

• Flow Final

• Activity Partition

• Pin

• Relationships.

Activity

An activity is a Signature representing the behavior of a use case, operation 
or any other entity that can have a behavior. An activity focuses on breaking 
down the behavior into small behavioral units, Action Nodes, and control the 
execution of these units based on a token flow model. The implementation of 
an activity is typically described by an Activity Diagram.

Symbol

Figure 109: Activity

<<operation,'activity'>>

verifyTransaction

id : TransactionId
June 2009 IBM Rational Tau User Guide 309



Chapter 8: UML Language Guide
Syntax

An activity symbol is based on the Operation symbol. It has an editable field 
for the name of the activity, and a compartment for Parameters of the activity.

Stereotypes applied to the activity are visible in a non-editable text field, po-
sitioned above the name field.

Activity implementation

An activity implementation is the Implementation of an Activity signature. It 
contains the Activity Diagrams and a set of activity nodes connected by Ac-
tivity edges. An activity implementation is normally created implicitly when 
creating an Activity Diagram.

Token flows

The execution semantics of an activity implementation is based on a token 
flow model.Tokens flow from one activity node to other activity nodes 
through connected Activity edges. There are two kinds of token:

– Control token

– Data token (also known as object token)

An activity edge can transport both kinds of tokens. When a control token is 
transported across the edge it represents a control flow, and when a data 
token is transported across the edge it represents a data flow. A control flow 
is an activity edge with any activity nodes linked to its ends, except object 
nodes. A data flow is an activity edge with an object node linked to at least 
one of the edge's ends.

Control tokens constitute a state of logic control of a modeled system, 
whereas data tokens are needed to represent a state of data units which are 
flowing through a modeled system. 

An activity edge is a directed edge which is linked to action nodes, control 
nodes, object nodes, pins or connectors. The direction of an edge represents 
the direction of the flow. The semantics of an activity edge depends on its 
target and source nodes.

When an activity is invoked (called) its activity implementation starts its ex-
ecution by placing a control token on each Initial Node it contains. These to-
kens then flow downstream across outgoing activity edges and collect on the 
incoming activity edge ends of those activity nodes to which these edges are 
310 IBM Rational Tau User Guide June 2009



Activity Modeling
connected. An activity node is allowed to start executing as soon as its input 
condition is fulfilled. Different kinds of activity nodes have different input 
conditions, but a typical condition is that there must be a token available on 
each incoming activity edge end before execution can start. When the ac-
tivity node has completed its execution it delivers a token (of some kind) on 
all outgoing activity edge ends. These tokens eventually reach other activity 
nodes, and the procedure is repeated.

The activity implementation continues to execute as long as there are tokens 
flowing in it. If none of the activity nodes in the activity implementation has 
its input condition fulfilled, no tokens will flow, but the activity implemen-
tation is still in an executing mode, that is control will not be returned to the 
caller of the activity. Only when a special activity node, the Activity Final 
node, is executed will the entire activity implementation finish its execution 
and control is returned to the caller of the activity.

Initial Node

An initial node specifies a starting point for the control flow in an activity im-
plementation. When an activity is invoked and its implementation begins ex-
ecuting each initial node of its implementation receives a control token.

Note that an activity implementation can have any number of initial nodes, 
meaning that multiple control flows can be started. Note also the it is not re-
quired to have any initial nodes at all. Flows can also start from a Pin, an Ac-
cept Event and an Accept Time Event.

An initial node may not have any incoming activity edges, and therefore has 
no input condition. It executes as soon as it receives a control token and then 
offers this token to outgoing edges.

Symbol

Figure 110: Initial node
June 2009 IBM Rational Tau User Guide 311



Chapter 8: UML Language Guide
Action Node

An action node is a piece of executable functionality in an activity. The be-
havior of an action node can be specified in many ways, for example using 
an Activity, Operation, or a State machine. But it is also allowed not to asso-
ciate a behavior to an action node. This can be useful at early stages of devel-
opment, when the details of the behavior is not known.

The behavior of an action node, if any, can either be defined inline in the ac-
tion node, or it can be referenced from the action node. Inline defined behav-
iors are appropriate in order to specify composite hierarchical activity imple-
mentations. Compare with Composite state. Referenced behaviors are 
appropriate in order to reuse the same behavior for multiple action nodes in 
a model. When using a referenced behavior it should normally be an activity, 
but in general it is possible to refer to any operation. The referenced behavior 
may in turn have an implementation. For example, a referenced activity may 
have an activity implementation.

The input condition for an action node is fulfilled when a token is available 
on all incoming activity edges. It then consumes these tokens and starts its 
execution. When it has finished its execution, control tokens are offered on 
all outgoing edges. 

Avoid execution deadlocks

As long as the input condition for an action node is not fulfilled it cannot ex-
ecute. To avoid deadlocks in the execution it is therefore very important to 
understand the semantics of Token flows in an activity implementation. As 
an example of a common misunderstanding, consider the activity implemen-
tation in Figure 111 on page 312 below.

Figure 111: Control flow between action nodes

 

A

B

C

 

 

 

 

 

 

312 IBM Rational Tau User Guide June 2009



Activity Modeling
In this example we have three action nodes A, B, C and two control flow 
edges from A to C and from B to C respectively. Here C can be executed only 
when both of these edges have a token. If only the edge from A to C has a 
token, then the C node will wait for a token on the edge from B to C node. It 
is important to understand that nodes are collected on edges not on nodes.

If we instead would want the C node to execute when at least one of these 
edges have a token we should insert a Merge node between them as shown 
below.

Pins

If an action node has a behavior it can have Pins representing Parameters to 
its behavior. It is significant if a token reaches an action node directly via an 
incoming activity edge, or indirectly via an attached pin. In the former case 
the action node will be executed when its input condition is fulfilled. In the 
latter case, however, the action node itself does not execute. Instead the token 
flows into the behavior implementation in a “streaming” way, so that execu-
tion of the behavior implementation starts with a data token on a pin, rather 
than with a control token on an initial node. It is possible to combine these 
two mechanisms, by letting both a control token flow into the action node 
and data tokens flow into its pins. That is a common way of designing when 
the behavior needs data for its execution. It then obtains input data on the 
input pins, and a control token to control when execution shall begin. Before 
finishing the execution by executing an activity final node, output data is typ-
ically offered as data tokens placed on the output pins.

For more information about pins see Pin.

Figure 112: Using a merge node

 
A

B

C
 

 

 

 

 

 
 

 

 

 

June 2009 IBM Rational Tau User Guide 313



Chapter 8: UML Language Guide
Symbol

A shortcut menu choice Actions is available. When checked the a text field 
is added for action code. The default is to not display the Actions text field.

A shortcut menu choice Partition Reference is available. This command 
will display the text field for Partition Reference above the symbol name 
field. The default is to not display the Partition Reference text field. 

A shortcut menu choice Show All Parameters is available. The Show All 
Parameters command will make all Pin/Parameter symbols visible for the 
current selection. 

Syntax

The action node symbol may have an informal name. If it references a be-
havior the signature of the behavior appears after a colon. If it has an inline 
behavior a “rake” symbol is shown in the upper right corner of the symbol.

Activity partitions in which an action node is explicitly contained, may be 
specified in a separate text field above the name field. The syntax is a 
comma-separated list of references to activity partitions enclosed in paren-
thesis.

Stereotypes applied to the action node are visible in a non-editable text field, 
positioned above the activity partition reference field.

Object Node

An object node represents an instance of a classifier, for example a Class, 
participating in the flow. The instance and its values is available for use by 
the activity.

Figure 113: Action nodes with and without pins, and with and without a behavior (inline 
to the left and referenced to the right)
314 IBM Rational Tau User Guide June 2009



Activity Modeling
The input condition for an object node is that there must be a token on each 
incoming activity edge before it may execute. Execution of an object node 
simply means that a data token is placed on each outgoing edge. The type of 
the data token is the type of the object node, that is the classifier.

An object node does not specify how the output data is obtained. To do that 
an Action Node node with an output pin can be used instead. The behavior 
of the action node then specifies how to compute the data.

Symbol

Syntax

The object node symbol has one text label containing the name of the classi-
fier it represents. It is also possible to give an informal name for the object 
node. The syntax is then <name> : <type>.

Stereotypes applied to the object node are visible in a non-editable text field, 
positioned above the name field.

Decision

A decision node is a control node used in a flow to select one out of several 
outgoing flows based on guard conditions. A decision node has one incoming 
edge and multiple outgoing edges, each with a guard. 

When a token arrives at the incoming edge of a decision node, the guards of 
the outgoing edges are evaluated. The order in which the guards are evalu-
ated is not defined by UML, except that any ‘else’ guard is evaluated last. It 
is therefore recommended to specify guard conditions that are mutually ex-
clusive. At most one of the guards may be an “else” guard. This guard con-
dition is fulfilled if no other guard condition is fulfilled. 

The input token will be placed on the first edge that is encountered for which 
its guard condition is fulfilled. If no such edge is found the token is consumed 
by the decision node. This is typically an exceptional situation which is best 
avoided by using an ‘else’ guard on one of the edges

Figure 114: Object node

AccountAccount
June 2009 IBM Rational Tau User Guide 315



Chapter 8: UML Language Guide
Note
The current implementation of the activity execution semantics in the Ac-
tivity Simulator only supports informal decisions and decision answers. 
When such a decision node is executed the Model Verifier will prompt inter-
actively for which outgoing edge to select. This is a useful feature at early 
stages of development, since it allows activities to be simulated before the 
exact guard conditions are known.

Symbol

When formally defined the guard conditions shall evaluate to boolean ex-
pressions. Any visible variables, e.g. local variables of an activity implemen-
tation, may be used in the guard condition. The keyword else is used in a 
guard to indicate that the edge is selected if none of the other guards evalu-
ates to true.

To merge back multiple outgoing decision flows into a single flow, use a 
Merge node.

Note
The Decision and Merge nodes share the same symbol in the symbol palette 
of the activity diagram editor.

Merge

A merge node is a control node used to bring together multiple flows into 
one. Whenever a token arrives at one of the incoming edges, it is relayed onto 
the outgoing edge. Unlike Join, it is not a synchronization of the incoming 
flows.

Figure 115: Decision node

  
  

[else][else]

[x > 10][x > 10]
316 IBM Rational Tau User Guide June 2009



Activity Modeling
Symbol

Note
The Merge and Decision nodes share the same symbol in the symbol palette 
of the activity diagram editor.

Fork

A fork node is a control node that splits one flow into multiple concurrent 
flows. Whenever a token arrives at the input edge it will be copied, and one 
copy will be placed on each outgoing edge. A fork node is thus a means for 
introducing parallelism in an activity model.

To join multiple concurrent flows back into one single flow, use the Join 
node.

Symbol

Note
The Fork and Join nodes share the same symbol in the symbol palette of the 
activity diagram editor.

Figure 116: Merge node

Figure 117: Fork node

  
    

  

  

  

  

  

  
June 2009 IBM Rational Tau User Guide 317



Chapter 8: UML Language Guide
Join

A join node is a control node used to join, or synchronize, multiple concur-
rent flows back into one single flow. 

The input condition for a join node is that there must be a token available on 
all incoming edges. When that condition is fulfilled tokens are placed on the 
outgoing edge according to the following rules:

• If all input tokens are control tokens, then one single control token is 
placed on the outgoing edge.

• If some of the input tokens are data tokens, then all these tokens, but only 
these, are placed on the outgoing edge.

Note
The current implementation of the activity execution semantics in the Ac-
tivity Simulator does not follow this rule. Instead it is the token that arrives 
last to the join that will decide which kind of token that is placed on the out-
going edge.

To fork a single flow into multiple concurrent flows, use the Fork node.

Symbol

Note
The Join and Fork nodes share the same symbol in the symbol palette of the 
activity diagram editor.

Figure 118: Join

  

  

  

  
318 IBM Rational Tau User Guide June 2009



Activity Modeling
Connector

Connector nodes are used as a graphical short hand to simplify drawing of 
complex flows. An Activity edge can end in a connector node and be con-
tinued at another connector node with the same name. This can be used to 
split an activity implementation specification over multiple activity dia-
grams.

A connector node may have many incoming edges, but at most one outgoing 
edge. Semantically a connector node is equivalent with a Merge node. A 
token that arrives at an incoming edge of a connector node is relayed onto its 
outgoing edge. If a connector node does not have an outgoing edge it is se-
mantically equivalent with a Flow Final node.

Symbol

Syntax

The connector node symbol has one text label containing the name of the 
connector node.

Accept Event

An accept event node is used to indicate waiting for a specific event, typi-
cally a Signal. When the specific event is received, the flow continues by 
placing control tokens on all outgoing edges.

Semantically an accept event node is equivalent with an Action Node node, 
with a behavior that waits for the event to be received.

Data passed on with the event can be used later in the flow by using output 
Pins from the accept event node. An accept event node may not have any 
input Pins.

Figure 119: Connector node

AA AA
    
June 2009 IBM Rational Tau User Guide 319



Chapter 8: UML Language Guide
The accept event action is similar to an Signal Receipt (Input) in a State ma-
chine.

Symbol

Send Signal

The send signal node is used to create an instance of a Signal and send it. It 
is similar to the Signal sending action (output) in a State machine.

Semantically a send signal node is equivalent with an Action Node node, 
with a behavior that sends the signal.

A send signal node may have input Pins providing actual arguments for the 
formal parameters of the signal to send. It may not have any output Pins.

Symbol

Accept Time Event

An accept time event is a special version of the Accept Event node. It is used 
to indicate waiting for a specific time event, typically a Timer timeout or an 
absolute time value. When the specific time event is received, the flow con-
tinues by placing control tokens on all outgoing edges.

For more information about timers, see Timer handling and time.

Contrary to an Accept Event node, an accept time event node may not have 
any Pins. In order to wait for a timer with parameters, use an Accept Event 
node instead.

Figure 120: Accept event node

Figure 121: Send signal symbol

order
received

processOrder()
320 IBM Rational Tau User Guide June 2009



Activity Modeling
Symbol

Activity Final

The activity final node indicates the termination of an activity. When a token 
reaches an activity final node, all flows of the activity are terminated, and the 
execution of the activity is completed. Control is returned to the caller of the 
activity.

An activity final node may have an arbitrary number of input edges, but no 
output edges.

To terminate a single flow of an activity, use Flow Final nodes.

Symbol

Flow Final

The flow final indicates the termination of a single flow in an activity. Only 
that particular flow is terminated, not the entire activity. There might still be 
other ongoing flows (compare Fork) in the activity.

Tokens received by a flow final node will be consumed by it. A flow final 
node may have an arbitrary number of input edges, but no output edges.

To terminate the entire activity, use Activity Final nodes.

Symbol

Figure 122: Accept time event

Figure 123: Activity final

Figure 124: Flow final

t1
June 2009 IBM Rational Tau User Guide 321



Chapter 8: UML Language Guide
Activity Partition

An activity partition, sometimes called a swimlane, is a grouping mechanism 
used to group related Action Nodes to each other. They provide a way of 
splitting an activity diagram into different sections to make it easy to see 
which section that performs a certain activity, and how data flows between 
the different sections.

For example, in business modeling, the different subdivisions of a company 
can each be represented by a partition. Another example is to let each parti-
tion represent a thread in a real-time operating system. The diagram would 
then show how the actions of a system are distributed among threads.

An activity partition may have a type, which typically is a Class. This ex-
presses a constraint that those instances that perform the actions of the ac-
tivity partition, must be instances of that type. The activity partition may fur-
ther constrain performed actions by specifying one particular instance, which 
then must perform the actions. It may also specify an Attribute, which then 
must contain the instances that perform the actions.

Symbol

A constraint concerning type, instance or attribute for the activity partition is 
specified in a label just below the name label. The syntax is the same as is 
used for a Lifeline.

Figure 125: Activity partition

'Order processing'
 

 

'Order processing'
 

 

322 IBM Rational Tau User Guide June 2009



Activity Modeling
Action Node node symbols that are graphically contained in an activity par-
tition symbol represent actions that belong to that activity partition. It is pos-
sible for an action node to belong to more than one activity partition. This can 
happen when using activity partition symbols that are rotated, so that the in-
tersection of two activity partition symbols contains the same action node 
symbol. However, it is not possible to accomplish involvement in more than 
two activity partitions this way, because an activity diagram only has two di-
mensions. In order to specify that an action node belongs to more than two 
activity partitions an explicit list of included partitions may be specified for 
the action node. If an action node has an explicit list of activity partition ref-
erences it overrides the implicit reference that can be deduced from the 
graphical position.

Example 43: Implicit and explicit activity partition references–––––––––––––––––

Figure 126: Action nodes referring to activity partitions
June 2009 IBM Rational Tau User Guide 323



Chapter 8: UML Language Guide
The action nodes above use both implicit activity partition reference (de-
duced from the graphical position of the action node symbol) and explicit ac-
tivity partition references. 

A does not belong to any partition.

B belongs to partition P2 (implicit reference)

C belongs to partition P1 (implicit reference)

D belongs to partition P1 and partition P2 (implicit reference)

E belongs to partition P1 and partition P2 (explicit reference)

F belongs to partition P1 (explicit reference)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Partition symbol as Dimension Specification symbol

When there are several rows of partition symbols, the partition symbol in the 
top row may be used as a dimension specification symbol. The partition 
symbol has a shortcut menu choice for Dimension. A partition has a plain 
text in the main label while a dimension has an italic font in the main label.

It is possible to use both horizontal and vertical dimensions at the same time.

Pin

A pin represents a parameter of the behavior of an Action Node node, and are 
used for passing data to and from that behavior. They can be seen as Object 
Nodes for inputs and outputs to actions.

Pins that have incoming edges input data to the behavior, and are therefore 
called input pins. Pins that have outgoing edges output data from the be-
havior, and are consequently called output pins. The direction of the Param-
eters represented by the pin should match how edges are connected to the pin. 
For example, an input pin should only have incoming edges, and the corre-
sponding parameter should have “in” direction.

The semantics of executing a pin is the same as for an Object Node. Hence, 
execution places a data token on each outgoing edge, and the type of these 
data tokens is the type of the parameter represented by the pin.
324 IBM Rational Tau User Guide June 2009



Activity Modeling
A pin may be streaming or non-streaming. In the streaming case the pin can 
execute to produce output data tokens even when the behavior of the Action 
Node node is executing. In fact there is no connection between the presence 
of tokens on streaming input pins and the condition for when the behavior of 
the Action Node node is invoked. In the non-streaming case, however, the 
behavior will not execute until tokens are available on all input pins.

Note
The current implementation of the activity execution semantics in the Ac-
tivity Simulator only supports streaming pins. However, a non-streaming 
pin can be emulated by combining a streaming pin with a Join node in the 
activity implementation of the Action Node node behavior. The join node 
then has two incoming edges; one from the pin on which the data token will 
arrive, and one from the Initial Node on which the control token will arrive 
when the behavior is executed.

Symbol

Syntax

The pin text has the same syntax as Parameters, i.e. name : Type.

Relationships

Activity edge

An activity edge is used to connect nodes in an activity implementation. It 
enables the flow of control and data tokens between the two connected nodes.

An activity edge is always directed, meaning that a token only can flow in 
one direction over an activity edge. The direction of an edge represents the 
direction of the flow. An activity edge can transport both kinds of tokens. 
When a control token is transported across the edge it represents a control 
flow, and when a data token is transported across the edge it represents a data 
flow.

An activity edge can have an informal name describing the flow it represents.

Figure 127: Pin symbol

id : Integer
June 2009 IBM Rational Tau User Guide 325



Chapter 8: UML Language Guide
Behavior Modeling
In order to obtain an executable model, the detailed behavior of operations 
and active classes must be specified. This is done during behavior modeling, 
an activity that usually takes place at the end of the design phase.

A behavior specification may contain states (that is a State machine imple-
mentation), or it may be stateless (that is an Operation body). In either case 
there are two ways to describe the behavior:

• As a state machine in a State machine diagram

• As a textual description in a Text diagram.

For implementations that contain states, the graphical form (State machine 
diagram) is often to be preferred, while for simple implementations of oper-
ations it could be enough with a textual description of the actions that consti-
tute the Operation body.

State machine diagram

A State machine diagram visualizes a State machine. There are two different 
styles of drawing state machine diagrams supported. They are described and 
exemplified below. It is possible to combine the two styles.

Figure 128: Activity edge

       

a1
 

a1
 

a2
 

a2
   
326 IBM Rational Tau User Guide June 2009



Behavior Modeling
State-oriented view

The state-oriented view of a state machine gives good overview of a complex 
state machine but is less practical when focusing on the control flow and 
communication aspects of a specific set of transitions. For this reason, it is 
also possible to describe the state machine in a transition-oriented way, with 
explicit symbols for different actions that can be performed during the tran-
sition.

Figure 129: State-oriented view of a state machine

idle

makingCoffee

coffeeReq /  ̂fillWater;coffeeReq /  ̂fillWater;

waitCoffee

waterOK /  ̂fillCoffee;waterOK /  ̂fillCoffee;

heatingCofee

coffeeOK /  ̂heatWater;coffeeOK /  ̂heatWater;

heated /  ̂cupOfCoffee;heated /  ̂cupOfCoffee;

makingTea

teaReq / f̂illWater;teaReq / f̂illWater;

heatingTea

waterOK /  ̂heatWater;waterOK /  ̂heatWater;

heated / ĉupOfWater;heated / ĉupOfWater;

 

June 2009 IBM Rational Tau User Guide 327



Chapter 8: UML Language Guide
Transition-oriented view

Create a state machine diagram

State machine diagrams can be included in classes and operations (including 
use cases). 

1. Select the entity where to create the statemachine diagram in the Model 
View. 

2. From the shortcut menu select New and then State machine diagram. 

State machine

A UML state machine is a finite state machine extended with data and signal 
handling. The basic elements of a state machine is the state and the transition. 
In a model based on the state machine paradigm, execution is carried out with 
a certain state as the starting point and a triggering event that causes a transi-
tion to be executed. In the transition, actions can be carried out. At the end of 
the transition, a new state is entered. The state machine will be idle in this 
state until a new triggering event that may start a transition occurs. An alter-
native way to end a transition is to stop the entire state machine (active class).

Figure 130: Transition-oriented view of a state machine

 

idle

coffeeReq

fillWater

makingCoffee

teaReq

fillWater

makingTea

makingCoffee

waterOK

fillCoffee

waitCoffee

waitCoffee

coffeeOK

heatWater

heatingCoffee

heatingCoffee

heated

cupOfCoffee

idle

makingTea

waterOK

heatWater

heatingTea

heatingTea

heated

cupOfWater

idle
328 IBM Rational Tau User Guide June 2009



Behavior Modeling
Hint
State machines are most simply created either by right-click of a class in the 
Model View and choosing New->State machine diagram in the shortcut 
menu or by opening the Create Presentation dialog. 

Symbol

Syntax

The symbol contains two editable text fields: 

• Class Heading 

• Parameters 

(The Operation field is empty.)

The Parameters field contains the formal parameters of the state machine. 
These are used for:

• Passing values to an active class instance upon creation.

• Passing values to a composite state when entering it.

State

A State represents a situation in a State machine where the containing object 
is waiting for an event that will trigger a transition to another State. This sit-
uation may have a static condition (if the state does not have substates); in 
this case the state machine is inactive while in the state. The situation can also 
be dynamic in the sense that there can be state machine behavior hidden in 
substates of the state.

Figure 131: State machine

sub

<<statemachine>>

i:Integer

r:Real
June 2009 IBM Rational Tau User Guide 329



Chapter 8: UML Language Guide
Symbol

The State symbol references one or more states and acts as source and/or 
target for transitions leading from or to this state (or set of states).

Syntax
• Simple state:

State1
• State with state list:

St1,st2
• State with asterisk state, including list of not included states:

*(st1,st2)

An asterisk state is a shortcut that refers to all states defined in the current 
state machine except the states mentioned in the list following the ‘*’ 
symbol.

Since state machines are hierarchical a state may contain a sub-state ma-
chine. This is indicated in the syntax by giving the name of the state machine 
after a colon following the name of the state as in Figure 133 on page 330

Figure 132: State

Figure 133: Sub-state reference

idle s:sub s (4,3) via en1
330 IBM Rational Tau User Guide June 2009



Behavior Modeling
The <state>:<state machine> syntax may only be used for state symbols 
without incoming lines (i.e. the state symbol should not be a “nextstate”). It 
is a syntax error if a state symbol with the label s:myStatemachine has in-
coming lines.

Note
The state symbol may not contain a list of states or an asterisk state defini-
tion if there are transitions that has this particular state symbol as target. 
State lists and asterisk states may only specify the source of transitions, not 
the target of transitions.

If a state has a substate state machine and this state machine has an entry 
point then the entry point may be indicated in the state symbol. This may only 
be used if there only exist one transition that has the state symbol as its target 
state.

Example 44: State with via clause ––––––––––––––––––––––––––––––––––––––––

State St1 containing a ‘via’ clause that determines the entry point in a sub-
state state machine: 

St1 via entry1

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If a state has a substate this is indicated in the state symbol by a “rake” in the 
upper right corner, symbolizing a split flow, see Figure 134 on page 331.

Figure 134: State with substate
June 2009 IBM Rational Tau User Guide 331



Chapter 8: UML Language Guide
Since the State symbol can be used for both defining a state and referencing 
a state (the target state of a transition), it is possible to let the symbol act as 
both an end point for a transition and the starting point for a new transition, 
thus chaining the transitions. This makes sense if using a state-oriented 
layout of the state machine. When using a transition-oriented layout it is 
however good practice to avoid this, and always separate the transitions, as 
in the example above, for the sake of readability.

If a state acts as source for many transitions, it is allowed to specify these in 
different diagrams in order to improve readability. Thus the State symbol is 
a partial definition of the state.

If the same transition is valid in several states, it is possible to refer to several 
states from the State symbol. 

See also

“Composite state” on page 362

Transition

A Transition is a sequence of actions that are executed when a State machine 
changes the active state.

The syntax used for transitions falls into two different categories depending 
on if a state-oriented or transition oriented syntax is used. The state-oriented 
transition syntax is described in “Simple transition” on page 352, the transi-
tion-oriented syntax is described by a set of trigger symbols for starting the 
transitions and then a set of action symbols that describe the transition de-
tails.

The different trigger symbols correspond to what event that causes the tran-
sition to be initiated. Based on this, different kinds of transitions can be dis-
tinguished:

• triggered transitions

• guarded transitions

• labelled transitions

• initial transitions
332 IBM Rational Tau User Guide June 2009



Behavior Modeling
A triggered transition is characterized by the trigger that is associated with 
the transitions. Typically this trigger is defined by the specific signal, but it 
may also be defined by for example a timer or by an operation. Triggered 
transitions are described in more detail in section “Signal Receipt (Input)” on 
page 335

A guarded transition is characterized by the fact that it is not triggered by a 
specific event. Instead it is triggered either by a certain condition (Guard) that 
can be true or false. 

Labelled transitions are not real transitions in terms of describing a state-to-
state behavior. Instead they are used to decompose a transition into two (or 
more) parts that can be described on two different pages in a diagram. Junc-
tion is also a related construct to labelled transitions used to divide flows.

The Initial Transition (Start) is the transition that will be executed directly 
when the state machine is created.

A transition always ends with the state machine entering a state, with a stop, 
with a return or with the transfer of control to another transition.

Guarded transition

A Guarded Transition may or may not have a trigger. 

If the guarded transition has a trigger, the evaluation of the expression will 
be done after the triggering event has happened. If the expression evaluates 
to true, the transition is fired. If the expression evaluates to false, the state 
machine will remain in the state and the signal that caused the triggering 
event will be kept in the signal queue.

See also

“Save” on page 349

History nextstate

The History nextstate is used at the end of a transition to return to the last vis-
ited state.

The symbol can be used to end both simple transitions and flow line (de-
tailed) transitions.
June 2009 IBM Rational Tau User Guide 333



Chapter 8: UML Language Guide
Shallow history

By default, the History nextstate is shallow. This means that when a nextstate 
with History is interpreted at the end of a transition, the next state will be the 
one in which the current transition is activated. 

History nextstate can also be expressed with a normal nextstate, using a hy-
phen instead of a name in the symbol.

nextstate -;

Deep history

It is possible to make the history nextstate deep. This means that similar to 
the shallow history, the next state will be the one in which the current transi-
tion is activated. This will apply recursively to all levels of substates of the 
entered state.

Hint
You can make the history nextstate deep by selecting it and choosing the 
command Deep History from the shortcut menu.

Deep history nextstate can also be expressed with a normal nextstate, using 
the following syntax:

nextstate ^-;

Figure 135: Shallow History nextstate

Figure 136: Deep History Nextstate

Ack

Nak
334 IBM Rational Tau User Guide June 2009



Behavior Modeling
Examples

In the above example, the transition will end up in the state that was active 
when the transition was triggered.

Signal Receipt (Input)

The signal receipt symbol defines which signals that should trigger a partic-
ular transition. 

The transition can be guarded by a guard expression that also is shown in the 
symbol.

Symbol

The signal receipt symbol receives a signal and must always be preceded by 
a State symbol. Together they define a transition.

Hint
You can flip the symbol horizontally from the shortcut menu.
When you delete the signal receipt symbol, the succeeding subtree is deleted 
as well.

Figure 137: Shallow History Nextstate with an asterisk state transition

Figure 138:Signal Receipt

Card(header, infoString)
June 2009 IBM Rational Tau User Guide 335



Chapter 8: UML Language Guide
If the same transition behavior should be invoked for several triggers in one 
state, it is possible to have a list of identifiers in the signal receipt symbol. 
This mechanism does not allow handling the parameters of each signal and 
all the signals will trigger the same transition that ends in one nextstate.

When receiving a signal, its parameters are normally stored in local vari-
ables. It is also allowed to ignore parameters.

The optional guard expression is defined after the trigger and is surrounded 
by square brackets.

Signal queue

A State machine is associated with a signal queue that stores the signals that 
are sent to the state machine in the order they arrive. 

It is not necessary to specify a transition for every possible trigger in each 
state. Often it is possible to predict which signals that may arrive, from your 
knowledge about the application or domain you are modeling. If the next 
signal to consume from the signal queue is not handled in the current state, 
that signal will be thrown away. It is also possible to Save a signal tempo-
rarily. 

Syntax

The following kinds may be referenced as triggers in a signal receipt symbol:

• Signal

• Timer

• Operation.

Example 45: Simple signal receipt ––––––––––––––––––––––––––––––––––––––––

s1( i )

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 46: Signal Receipt with several triggers––––––––––––––––––––––––––––

s1(i), myTimer, s3

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
336 IBM Rational Tau User Guide June 2009



Behavior Modeling
Example 47: Signal Receipt with virtuality –––––––––––––––––––––––––––––––––

redefined input s1( i )

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 48: Asterisk signal receipt –––––––––––––––––––––––––––––––––––––––

It is allowed to specify that all triggers may invoke the transition. This is done 
by using an asterisk to denote all visible triggers.

* 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 49: Guarded signal receipt ––––––––––––––––––––––––––––––––––––––

s1 [ x>10 ] 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Start

The Start symbol defines the starting point of a state machine or one starting 
point of a composite state. The start symbol thus defines the initial transition.

Symbol

Syntax

The start symbol has one text field that can be used for:

• Referencing an entry point in a composite state

Entry1

• Defining virtuality for the transition

virtual
virtual Entry2

Figure 139: Start

 

June 2009 IBM Rational Tau User Guide 337



Chapter 8: UML Language Guide
Action

Actions are typically done in the Action symbol using a textual syntax. The 
available actions are:

• Local variable definition statement

• Empty statement

• Compound statement

• Assignment

• Action

– Signal Sending (output)

– New

– Set

– Reset

• Expression statement

• If statement

• Decision statement

• Target code statement

• While statement

• For statement

• Delete statement

• Try statement

• Terminating statement

– Return

– Break

– Continue

– Stop

– Nextstate

– Goto (join)

– Throw
338 IBM Rational Tau User Guide June 2009



Behavior Modeling
A few of these statements also have a graphical syntax, that is a dedicated 
symbol. The stop, return, decision and signal sending statements have dis-
tinct symbols that allow highlighting of important operations on the transi-
tion. It is of course allowed to use the textual syntax for these statements as 
well. The most important actions are described below. 

Signal sending action (output)

The signal sending action in a transition allows to send signals to other State 
machines, the environment or within the same state machine. If the signal has 
parameters, expressions matching the parameter types should be provided. It 
is allowed to ignore parameters when sending a signal.

It is allowed to specify more than one signal at a signal sending, which will 
be handled as sending separate, consecutive signals.

Symbol

The signal sending symbol sends a signal from a transition.

Hint
You can flip the symbol horizontally from the shortcut menu.

Signal addressing

There are several ways to direct a signal to a receiver or routing the signal, 
including:

• Omitting addressing

• Directing the signal as a method application on the receiver

• Signal Sending via port or interface

Each of these addressing mechanisms are described below. Direct addressing 
of a signal is expressed using period (“<receiver>.<signal>”) for the method 
application on a receiver.

Figure 140: Signal Sending

Card(header, "test card 1")
June 2009 IBM Rational Tau User Guide 339



Chapter 8: UML Language Guide
Signal sending

No address or path is specified. The signal will be sent on one of the possible 
paths (that is a port / connector).

Receiver is this

If the context is a state machine or an operation of an active class, this means 
the state machine of the current active instance, that is the same as self.

If the context is an operation of a passive class, self should be used instead, 
to reference to the state machine of the current instance. In this context, this 
refers to the instance of the passive class

Signal sending via port or interface

A port identifier is given. The signal will be sent via this port 

If an anonymous port that realizes exactly one interface is defined for the 
class the identifier can also be an Interface name. In this case it refers to the 
anonymous port.

Receiver is an attribute

Either a variable or attribute is given as destination. The type of the variable 
or attribute must either be an interface (signal sending via) or an active class 
(or the special type Pid defined in the RTUtilities package).

The attribute may also refer to one of the implicit attributes self, sender, 
parent or offspring.

Receiver is an expression

The expression must be typed by an interface or an active class (or the special 
type Pid defined in the RTUtilities package). This is a similar situation to 
when Receiver is an attribute. The difference is that more complex expres-
sions can be given within the parenthesis, for example field or string extrac-
tion.
340 IBM Rational Tau User Guide June 2009



Behavior Modeling
Examples

Example 50: Addressing mechanisms –––––––––––––––––––––––––––––––––––––

No address or path is specified: 

SuspendInd

Receiver is an implicit attribute: 

sender.Ack(id)

Receiver is an attribute, signal carries parameters: 

Bank.Card(carddata)

Receiver is a Pid expression (indexed array with Pid elements): 

(myList[10].addr).Sig1

An interface (referring to a port):

Ack(id) via myInterface

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

All these addressing mechanisms have the following in common: 

• If there is no alive instance of a state machine at the end of the commu-
nication path, the signal will be lost.

• If the destination references a state machine instance that has terminated, 
the signal will be lost.

• If the receiving state machine is in a state were the signal is not handled, 
the signal will be lost.

Decision

The decision construct is used to perform alternative actions in a transition 
dependent on the value of an expression. It is a mechanism similar to a 
switch. A decision has one question part, which contains a dynamic expres-
sion that is evaluated when the decision is executed. Furthermore, a decision 
has multiple answer parts, each containing a range expression (or just a 
simple expression containing a value or a constant) and leading to different 
partial transitions. 
June 2009 IBM Rational Tau User Guide 341



Chapter 8: UML Language Guide
Symbol

The Decision symbol specifies alternative paths in the behavior part of a tran-
sition. 

• An expression must be defined. Each path is labeled with an answer that 
should match the expression for the path to be taken.

• When you delete the decision symbol, the succeeding subtree is deleted 
as well.

Decision answer

The Decision Answer symbol specifies one alternative path in the behavior 
part of a transition and contains a range condition which is an answer to a de-
cision question.

A range condition is given either as 

• a specific value (for example “10” or “true”)

• an open range (for example “>10”)

• an closed range (for example “2..10”)

• a comma separated list of the above mentioned alternatives.

Informal decisions

To facilitate early verification of models it is possible to specify informal de-
cisions. These are characterized by having an expression that is a character 
string and answers that also are character strings.

Figure 141: Use of decision

a m ount

100..500 <0, 1,5..10e ls e

notok ok e rrAm ount
342 IBM Rational Tau User Guide June 2009



Behavior Modeling
Nondeterministic decisions

It is also possible to describe a nondeterministic decision. This is done by 
giving the expression “any” (without quotes) and leaving the decision an-
swers empty.

Syntax

Example 51: Decision expression text example ––––––––––––––––––––––––––––––

v+4

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 52: Decision alternative text example ––––––––––––––––––––––––––––––

Simple example:

True

Open range:

>10

Closed range:

0..3

Several ranges:

<-5, 0..2, >10

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Guard

A guard symbol can be used for either:

• Triggering a transition based on a certain condition evaluating to “true”.

• A connect transition, that is leaving a substate via an exit point.
June 2009 IBM Rational Tau User Guide 343



Chapter 8: UML Language Guide
Symbol

If a guarded transition is based on a condition, the invocation of the transition 
occurs when the provided expression defining the condition is evaluated to 
true. The provided expression must be a simple expression and it may not 
cause any side effects.

If the transition is defined by referencing an exit point, then the source state 
of the transition must have a substate state machine. The transition is exe-
cuted whenever this substate state machine exits via the specified exit point.

Syntax

Example 53: Guarded transition –––––––––––––––––––––––––––––––––––––––––

[ x>10 ]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 54: Connect transition ––––––––––––––––––––––––––––––––––––––––––

A transition triggered by leaving a composite state via a named exit point 
called ‘a’

[ a ]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 55: Connect transition ––––––––––––––––––––––––––––––––––––––––––

A transition triggered by leaving a composite state via an unnamed exit point.

[ ]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 142: Guarded transition

WaitAWhile

now<=t0+MaxWait
344 IBM Rational Tau User Guide June 2009



Behavior Modeling
Timer set action

The Timer Set Action creates a timer instance, which now is active. Per-
forming set once more on an active timer instance, implicitly resets the first 
timer instance and creates a new timer instance.

A timer with parameters may have several timer instances active at the same 
time, as long as the parameter values are distinct.

Syntax

Example 56: Absolute time ––––––––––––––––––––––––––––––––––––––––––––––

set (MyTimer, aTime);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 57: Relative time –––––––––––––––––––––––––––––––––––––––––––––––

set (MyTimer, now+10);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 58: Timer with default duration ––––––––––––––––––––––––––––––––––

timer MyTimer () = 5;
...
set(MyTimer);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 59: Timer with parameter –––––––––––––––––––––––––––––––––––––––

timer MyTimer (Integer id);
Integer i = 1;
...
set (MyTimer (i), now+5);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Timer active expression” on page 358

Timer reset action

The Timer Reset Action resets an active timer instance, if such an instance 
exists.
June 2009 IBM Rational Tau User Guide 345



Chapter 8: UML Language Guide
Syntax

Example 60: Reset of normal timer –––––––––––––––––––––––––––––––––––––––

reset(MyTimer);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 61: Reset of timer with parameter ––––––––––––––––––––––––––––––––

reset(MyTimer(i));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Action (task)

The Action symbol is used for writing textual code in the behavior part of a 
transition, for example variable assignments, for-loops and calls of value re-
turning procedures.

Symbol

Syntax

Example 62: Simple example ––––––––––––––––––––––––––––––––––––––––––––

Integer v1;
v1 = 4;
output s(v1);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Assignment

Assignments are done according to the syntax in the example below. The left 
hand side of the assignment can contain a variable identifier, an element of 
an indexed variable or a struct field of a struct or class. The right hand side 
contains an expression of the same type as the left hand side.

Figure 143: Action symbol

set(t, now+10);
for(Integer i=1;i<=5;i=i+1){
    output Ack(i) to ListOfServers[i];
}

346 IBM Rational Tau User Guide June 2009



Behavior Modeling
Example 63: Various assignments ––––––––––––––––––––––––––––––––––––––––

Integer i = 0;
myObject = new (theType);
person.age = person.age+1;
arrival[currentDate,person] = now;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The assignment can also be used as an expression in itself. The returned 
value of an assignment expression is the right hand side expression, if the as-
signment is successful.

Example 64: Assignment expression–––––––––––––––––––––––––––––––––––––––

if ((a=10)==10) { output s; };

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Compound statement

A compound statement contains a number of statements enclosed within 
braces {}. It also defines a namespace which makes it possible to declare 
local variables within a compound statement.

New

The new statement is used to create instances of both active and passive 
classes. To create an instance of the same class as the current class, the key-
word this can be used. The new construct returns a reference to the created 
object.

It is of course always possible to communicate with the created instance 
using a reference to the object, so by assigning the result of new to a refer-
ence attribute it is possible to for example send signals directly to the created 
instance or to call an operation on the instance.

However, to make it possible to communicate with the instance using the 
ports and connectors that exists in a model, the created instance must be 
added to the architecture (the structure of connectors and ports) that exists in 
the application.
June 2009 IBM Rational Tau User Guide 347



Chapter 8: UML Language Guide
Note
The way an instance is added to the architecture depends on the particular 
code generator that is used. The description in this section defines how to 
do it in the context of the Model Verifier and the C code generator. Section 
“Attributes” on page 1621 in Chapter 52, C++ Application Generator 
Reference describes the corresponding functionality when using the C++ 
code generator.

When using the Model Verifier or C code generator an instance is added to 
the architecture simply by adding it to a composite attribute of an active ob-
ject that contains a connector structure. The way this is done depends on the 
multiplicity of the attribute. It the attribute has multiplicity [0..1] a simple 
assignment is enough. If the attribute has a multiplicity > 1 then an append 
expression should be used. See examples below.

Performing new on a class or instance set with a restricted number of allowed 
instances (Multiplicity) is a request that will not be carried out if the max-
imum number of allowed instances would be exceeded. In this case the value 
NULL will be returned.

The dependency relationship can be used between parts in order to visualize 
that an instance in a part can create a new instance of another part.

Example 65: New statements ––––––––––––––––––––––––––––––––––––––––––––

/* Type based creation based on the type ‘a’.
The created instance is not inserted into any attribute 
and can thus not be accessed using connectors/ports. */
new a;

/* Creation based on the type of the creator */
new this;

/* Creation plus assignment to a non-composite 
attribute. Note that the instance can not be reached 
using ports/connectors */
a aRef;
aRef = new a;

/* Creation plus assignment to a composite attribute. 
The instance can be reached using the connector 
structure of the creating object that contains the aPart 
attribute (that is assumed to be defined as ‘part 
a[0..1] aPart;’ */
aPart = new a;

/* Creation plus assignment to a composite attribute 
with multiplicity >0. The instance can be reached using 
the connector structure of the creating object. The 
348 IBM Rational Tau User Guide June 2009



Behavior Modeling
aMultPart attribute can for example be defined as ‘part 
a[*] aMultPart;’*/
aMultPart.append(new a);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Save

It is often wanted to deal with arriving signals in a certain order. However, 
signals arriving from the outside world may not always arrive in the order 
that is expected. To temporarily save a signal in the signal queue, while 
looking for other signals to consume, the Save symbol should be used.

Several signals may be saved in each state, but if a saved signal is not handled 
in the next state, it again risks being discarded.

Symbol

The Save symbol saves signals from being discarded when being next to con-
sumed in the state that does not handle the signal. 

• This symbol should always be preceded by a State symbol. 

• You cannot insert any symbols after the Save symbol.

Syntax

Example 66: Save ––––––––––––––––––––––––––––––––––––––––––––––––––––––

A simple example:

save s;

Asterisk save:

save *;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 144Using the save symbol

*(idle)

NewJob, Terminate
June 2009 IBM Rational Tau User Guide 349



Chapter 8: UML Language Guide
Stop

The Stop symbol stops the execution of the current instance. It is possible to 
delete an instance of an active class only from within the state machine of the 
class, by performing the stop action. 

Symbol

The stop action is handled in the following way:

1. If the instance is a simple state machine without any parts, the state ma-
chine will be immediately stopped.

2. If the instance contains parts, each of the part instances will be handled 
according to 1) above, as well as this instance.

Return

The Return symbol finishes the execution of operations or substates and 
transfers the control to the calling context.

Symbol

Figure 145: Stop

Figure 146: Return in Operation

idle

Terminate

i+1

 

350 IBM Rational Tau User Guide June 2009



Behavior Modeling
Syntax

Example 67: Return simple example ––––––––––––––––––––––––––––––––––––––

4+r

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 68: Return with exit point name in composite state ––––––––––––––––––

exP2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the operation has no return type or if the composite state exit is through the 
default exit point, the text field should be empty.

Junction

Normally, the state and nextstate are sufficient mechanisms to split up a com-
plex state machine into several diagrams. However, if a transition is very 
long, it might be necessary to split the description of the transition into sev-
eral parts. This can be done by the Junction symbol, which is used both as a 
label and as a jump statement. Another reason for using the junction might 
be to avoid having crossing flowlines in a complex flow. 

Symbol

The Junction symbol corresponds to the label and join symbols but is also 
used in all cases where there is a need to merge flow lines. 

• The Junction symbol can have more than one incoming flow line.

Figure 147: Using the junction as a label and corresponding goto

idle

Terminate

Termination

Termination
June 2009 IBM Rational Tau User Guide 351



Chapter 8: UML Language Guide
Syntax

The symbol contains a text field.

Flow

The Flow line connects two symbols in a transition.

• If you have a symbol selected in the drawing area, and then add another 
symbol from the toolbar while holding the <SHIFT> key down, then a 
flow line will automatically be created between the symbols.

• You can also create the line by drawing it from the line handle and con-
necting it to the next symbol.

• If you delete a symbol the line connected to the symbol will also be de-
leted.

Simple transition

The Simple Transition line is used to define a transition when using a state-
oriented style.

• You can draw a Simple Transition line from the State symbol only.

• You can create the line by drawing it from the line handle and connecting 
it to the next symbol.

• If you delete a symbol the line connected to the symbol will also be de-
leted.

Syntax

There is one text field associated with a simple transition line. This text field 
describes both the trigger of the transition, the guard and the actions on the 
transition.

The trigger and guard follow the same syntax as is used in an Signal Receipt 
(Input) symbol. The actions follow the same syntax as in a Action (task) 
symbol with the exception that a short-hand is used to denote signal sending 
to save diagrams space: ‘^s’ means the same as ‘output s’.

Simple example

s1(x) / ^s;

Simple transition with guard
352 IBM Rational Tau User Guide June 2009



Behavior Modeling
[ x>10 ] / myproc(x);

Both guard and signal receipt

s1 [ x>10 ] / myproc(x);

Expressions

Expressions in UML are similar to expressions in most programming lan-
guages. As expected, expressions may contain references to variables (at-
tributes), literals, constants and operations (calls). 

Many expressions may be used as actions by appending a semicolon (;) after 
the expression. For example, the following expressions are commonly used 
as actions:

• Assignment Expression

• Call expression

• New expression

• Conditional expression

There are a couple of expressions for special variable access or creation of 
complex values:

• Field expression

• Index expression

• Instance expression

• This expression

There is also a group of expressions, that similar to variable access, depend 
on the underlying dynamic state of the system, they are often referred to as 
Imperative expressions:

• Arbitrary value (any) expression

• Now expression

• Pid expressions

– Self 

– Sender 

– Parent 

– Offspring 

• Timer active expression
June 2009 IBM Rational Tau User Guide 353



Chapter 8: UML Language Guide
Other expressions available are:

• Range check expression

• Target code expression

Call expression

A call expression is used for calling operations. It may contain actual param-
eters for the operation call.

Example 69: Call expression–––––––––––––––––––––––––––––––––––––––––––––

foo(3, true, “mmo”)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The value of a call expression is the actual value of the operation’s return pa-
rameter after the call. If the called operation has no return parameter, the call 
expression has no value, and must then only be used as a stand-alone expres-
sion in an expression action.

Before the operation call takes place the expressions provided as actual argu-
ments will be evaluated. Note, however, that UML does not define the order 
in which the expressions will be evaluated. The actual evaluation order de-
pends on which code generator that is used, and sometimes even on which 
compiler that is used for compiling generated code. Therefore, it is recom-
mended that models do not depend on the evaluation order of actual argu-
ments in call expressions.

Example 70: Argument evaluation order is undefined –––––––––––––––––––––––

foo(f1(), f2())

The operations in this example can either be called in the order ‘f2’, ‘f1’, 
‘foo’ (right-to-left evaluation order) or ‘f1’, ‘f2’, ‘foo’ (left-to-right evalua-
tion order).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
When using the C code generator (including Model Verifier and Model Val-
idator, but excluding AgileC) call arguments will always be evaluated from 
left to right, regardless of which target compiler that is used. Still it is not 
recommended to exploit this behavior since the evaluation order is not de-
fined in the UML standard.
354 IBM Rational Tau User Guide June 2009



Behavior Modeling
New expression

The new expression contains the new() construct as described in “New” on 
page 347.

Conditional expression

A Conditional Expression has the form

expr_1 ? expr_2 : expr_3

where the first expression is of the boolean type and the second and third ex-
pressions are of the same type.

The expression expr_1 is evaluated first. If it is true, then the expression 
expr_2 is evaluated and provided as the resulting value of the conditional ex-
pression, otherwise expr_3 is evaluated and given as result.

Example 71: Conditional expression ––––––––––––––––––––––––––––––––––––––

imax = ( i > j ) ? i : j; /* imax = max (i, j) */

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Field expression

The Field Expression is used to access a field of a structured datatype, that is 
an attribute of a class.

Example 72: Field expression ––––––––––––––––––––––––––––––––––––––––––––

a.b = true;
test = a.b;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Index expression

The Index Expression is used to access an element of an indexed datatype, 
typically an array or a string.

Example 73: Index expression––––––––––––––––––––––––––––––––––––––––––––

iarr[i, j] = 1;
i = iarr[k,l];

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 355



Chapter 8: UML Language Guide
Instance expression

The Instance Expression is used to create complex values in one operation. 
By this, it is possible to initialize a structured type in one operation, instead 
of initializing each field separately. Note, however, that constructors are rec-
ommended for initializing structured types.

Example 74: Instance expression –––––––––––––––––––––––––––––––––––––––––

class sType {
    Integer Age;
    Charstring Name;
    Boolean MaleGender;
}
s = sType(. ‘John’, 44, true .);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Instance expressions are also used to describe stereotype instances con-
taining tagged values.

This expression

This refers to the current instance. If this is used in an operation of a passive 
class, this refers to the instance of the passive class. If this is used in an op-
eration of an active class or in a state machine, this refers to the instance of 
the active class.

Imperative expressions

Imperative Expressions include:

• Arbitrary value (any) expression

• Now expression

• Pid expressions

• State expression

• Timer active expression

Arbitrary value (any) expression

The any Expression yields an arbitrary value of the provided type.

Example 75: any expression –––––––––––––––––––––––––––––––––––––––––––––

anInt = any(Integer);
356 IBM Rational Tau User Guide June 2009



Behavior Modeling
output resultSig(any(Boolean));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Now expression

The Now Expression returns the current time value.

Example 76: Now expression–––––––––––––––––––––––––––––––––––––––––––––

Time time_0 = now;
set(delayTimer, now + 10);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Pid expressions

Pid expressions are expressions of the datatype Pid. A Pid Expression is ei-
ther of self, parent, offspring or sender, as described in “Pid” on page 359. 

Example 77: Pid expressions –––––––––––––––––––––––––––––––––––––––––––––

currentClientId = sender;
new serverAgent;
if (offspring != NULL) 
output sender.serverId(offspring)
else output sender.AllServersBusy;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

State expression

The State Expression can be used to check the most recently visited state in 
the current state machine. If the state machine contains composite states, the 
expression returns the most recently visited state of the nearest enclosing 
scope. The returned expression will be of the Charstring datatype. If no state 
has been visited, an empty string is returned.

Example 78: State expression ––––––––––––––––––––––––––––––––––––––––––––

if (state  == "idle") return ; 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 357



Chapter 8: UML Language Guide
Timer active expression

The Timer Active expression is used to check if a named timer is active or 
not. A boolean value will be returned. A timer is active either if the timer has 
not expired yet or if the timer has expired but the timer signal has not been 
consumed yet (or discarded).

Example 79: Timer active expression –––––––––––––––––––––––––––––––––––––

if (active(userTimeout)) reset(userTimeout);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Range check expression

A Range Check Expression is used to check if an expression meets a value 
range condition at run-time. It has the form:

expr_1 in type type_ident

Where type_ident may be further restricted by a constraint. The range check 
expression will return a Boolean value depending on if the expression 
matches the provided type.

Example 80: Range check expressions–––––––––––––––––––––––––––––––––––––

sender in type clientType;
intVar in type Integer constants (1..9, -9..-1);
age in type ageSyntype;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Target code expression

A Target Code Expression is dependent of the selected implementation lan-
guage and contains implementation language code that is not parsed by the 
UML parser, but instead added directly to the generated code.

Target code has the format

[[ target_code_details ]]

The target code (for example Inline C/C++) can contain any expression in the 
implementation language that matches the type that the UML context speci-
fies.

If the target code contains the text 

]]
358 IBM Rational Tau User Guide June 2009



Behavior Modeling
this must be escaped by a # as 

#]] 

If the target code contains 

#

this must be escaped by a # as 

##

If it is needed to reference model entities from the target code, this has the 
form #(name) where name is an identifier in the model.

Example 81: Target code expression ––––––––––––––––––––––––––––––––––––––

Real side_a, side_b;
...
Real hypotenuse = [[ sqrt( pow(#(side_a),2) + pow(#(side_b),2) )]];

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“C Application” on page 977

Pid 

Each active class has access to four different Pid expressions, that can be 
seen as accessing implicit attributes belonging to the instance itself.

Self

The Self expression returns a Pid value that refers to the instance.

Sender

The Sender expression returns a Pid value that refers to the active object 
which this instance received its most recent signal from. If no signal has been 
received, the value NULL will be returned.

Parent

The parent expression returns a Pid value that refers to the active object that 
created this instance. If this instance is statically created at system start-up, 
the value NULL will be returned.
June 2009 IBM Rational Tau User Guide 359



Chapter 8: UML Language Guide
Offspring

The offspring expression returns a Pid value that refers to the most recent 
created active object. If no active object has been created (by this instance), 
the value NULL will be returned.

Note
The implicit attributes corresponding to the Pid expressions in each active 
object are not globally updated when a state machine terminates. 

Pid values can be seen as references to active objects. The values are of the 
predefined datatype Pid, defined in the TTDRTTypes package.

Hint
To have access to the TTDRTTypes package where the Pid datatype is de-
fined, switch on the RTUtilities add-in. This is done from the Tools menu. 
Select Customize, then open the Add-Ins tab and select RTUtilities. Once 
this is done the TTDRTTypes package is available under the Library node in 
the Model View

References to active objects

Variables of the datatype Pid may be declared. However, such a variable may 
contain references to all kinds of active objects, which may be too unre-
stricted. Variables referencing active objects can be restricted by typing them 
as either

• an interface, or

• an active class.

This allows for static type checking to verify that a value will refer to an in-
stance of a certain kind, for example when trying to perform an assignment.
360 IBM Rational Tau User Guide June 2009



Behavior Modeling
Timer handling and time

A timer is defined by the special Timer symbol or by a corresponding textual 
syntax. In the declaration of the timer it is allowed to specify a default dura-
tion, that is the time between the timer set and the timeout. If the timer needs 
to be cancelled, the reset action is used. A timer should be declared within 
the scope of the active class that the state machine handling the timer defines, 
typically in a class diagram of the active class. 

Figure 148: Use of Pid variable
June 2009 IBM Rational Tau User Guide 361



Chapter 8: UML Language Guide
Timers are automatically monitored by the run-time system keeping track of 
all active timers. At the time of timeout, a timer signal is sent to the process 
who set the timer, who needs to consume the timer signal by a normal signal 
receipt in an appropriate state. Just like ordinary signals, timer signals that 
cannot be received in a state may be discarded. 

Hint
To have access to the TTDRTTypes package where the datatypes related to 
timers are defined, switch on the RTUtilities add-in. This is done from 
the Tools menu. Select Customize, then open the Add-Ins tab and select 
RTUtilities. Once this is done the TTDRTTypes package is available 
under the Library node in the Model View

Composite state

A composite state is a state which is composed by other states and transitions. 
While in any of the substates of the composite state, a trigger with a transition 
defined for the composite state will cause an exit of the composite state (and 
substates) for a new state.

A composite state can be created in two ways: either by an inline state ma-
chine definition or by referring to a state machine defined elsewhere.

A composite state can implicitly be created when a state machine diagram is 
created on a state.

A composite state is marked with a “rake” symbol in the upper right corner 
of the state symbol.

Figure 149: Timer handling

 

timer delay () = 10;
timer waitResp ();

servReq

set(waitResp, now+5);

waitForResp

waitForResp

servResp

reset(waitResp);

idle

waitResp

set(delay);

waitDelay

waitDelay

delay

servReq

waitResp

waitResp
362 IBM Rational Tau User Guide June 2009



Behavior Modeling
The composite state may have several entry and exit points, which are la-
belled.

Transitions in a substate has higher priority than transitions in an outer state. 
This applies both to transitions triggered by signals and to transitions trig-
gered by timers.

This is in UML referred to as transition overriding.

Entry connection point

An Entry Connection Point is a named starting point for entering a composite 
state. Entry connection points are referenced at a start symbol inside a com-
posite state and in the nextstate symbol when entering a composite state.

There must be at least one named or unnamed start symbol in a composite 
state. Not more than one start symbol can be named in a composite state.

Figure 150: Use of a composite state

 

WaitKeyStroke

keyStroke(Key)

KeyType Key;
Integer Nr = 0;
syntype CodeType = String <KeyType>;
CodeType Code;

Nr

<4

Nr=Nr+1;
Code = append (Code, Key);

else

validateUserCode
(Code)

WaitKeyStroke

StatechartDiagram state WaitCode (1/1)

WaitCode

userCardOK

OpenDoor

WrongCode

WaitCard
June 2009 IBM Rational Tau User Guide 363



Chapter 8: UML Language Guide
Hint
An Entry connection point is defined in the Model View by selecting a state 
machine and choosing the New / Entry Connection Point command in the 
shortcut menu.

Exit connection point

An Exit Connection Point is a named exit for leaving a composite state. Exit 
connection points are referenced at a return symbol in a composite state and 
at connect transitions leading out of composite states. 

If there are more than one connect transition from a composite state, at most 
one of these connect transitions can be unnamed.

Hint
An Exit connection point is defined in the Model View by selecting a state 
machine and choosing the New / Exit Connection Point command in the 
shortcut menu.

State machine inheritance

A State machine can be specialized, either directly by inheritance between 
state machines or by specialization of the active class that owns the state ma-
chine. A specialized state machine may add features or change features of the 
original state machine. Features that may be added include states, transitions, 
variables and other entities that can be declared in a state machine. In order 
for allowing a feature to be changed by specialization, it must be declared as 
virtual in the original state machine. A virtual definition may be redefined 
in the specialized state machine. The following concepts can be virtual (and 
thus redefined) in a state machine:

• Transitions

– Start

– Signal Receipt

– Guard

– Save

• Operation
364 IBM Rational Tau User Guide June 2009



Behavior Modeling
Operation body

An Operation Body is a method without states. The action is often a com-
pound action, which contains a list of other actions. 

Hint
A text diagram is a convenient way to define an operation body. To do this 
simply right-click and choose New->Text Diagram from the shortcut menu 
for an operation in the Model View. Then type the textual definition of the 
operation body in the diagram.

An Operation Body may be informal, meaning that the specification of how 
to execute it is not formally expressed in the UML language, but maybe in 
some other language. In that case the operation body will contain an informal 
expression containing the informal description.

See also

“State machine implementation” on page 365

“Internals” on page 366

“Implementation” on page 389

“Text diagram” on page 378

State machine implementation

A State machine Implementation is a method containing states and every-
thing else needed to realize the State machine signature. A State machine Im-
plementation is typically implicitly defined when defining a State machine.

See also

“State machine” on page 328

“Internals” on page 366

“Implementation” on page 389
June 2009 IBM Rational Tau User Guide 365



Chapter 8: UML Language Guide
Internals

Internals are used to be able to divide a class definition into one signature-
oriented part and one implementation-oriented part and then store the signa-
ture for a class in a different file than the implementation of the class. The 
purpose of this is to facilitate component-based modeling by allowing sepa-
rate version handling and delivery for the signature and the implementation.

See also

“State machine implementation” on page 365

“Operation body” on page 365

“Implementation” on page 389

Text extension symbol

The text extension symbol can be connected to the action symbol to display 
the content of the action symbol. This is particularly useful when drawing 
transition oriented flows where an action with a large amount of text can dis-
turb the overview of the diagram. The action code can be edited either in the 
action symbol or in the text extension symbol.

Deployment Modeling
In deployment modeling, the run-time architecture of the system is modeled. 
It describes how deployable pieces of the software, Artifacts, are deployed 
onto Nodes representing physical computation resources. Deployment spec-
ifications are used to describe how artifacts are deployed onto nodes. Asso-
ciations are used to model connections between nodes.

Deployment diagram

A deployment diagram specifies a set of Artifacts deployed onto a set of in-
terconnected Nodes. A Deployment specification is used to specify execu-
tion parameters used when deploying an artifact onto a node. An Execution 
environment can be used to model a node providing a set of services to the 
artifacts deployed onto it.
366 IBM Rational Tau User Guide June 2009



Deployment Modeling
Example

Model elements in deployment diagrams

The following elements are found in deployment diagrams

• Artifact

• Node

• Execution environment

• Deployment specification

• Artifact

• Class

• Relationships

See also

“Class diagram” on page 259

Figure 151: Deployment diagram

<<executionEnvironment>>

J2EEServer
<<executionEnvironment>>

J2EEServer

 

DataStore
 

DataStore

<<arti fact>>

'TransactionHandler.jar'
<<arti fact>>

'TransactionHandler.jar'

<<deploymentSpecification>>

transactionSpec

encryptionMode : EncryptionKind = high
enableEncryption : Boolean = true

<<deploymentSpecification>>

transactionSpec

encryptionMode : EncryptionKind = high
enableEncryption : Boolean = true

<<deploy>><<deploy>>

  

  

 *

   

 *

 

<<arti fact>>

'PresentationLayer.jar'
<<arti fact>>

'PresentationLayer.jar'

<<deploy>><<deploy>>
June 2009 IBM Rational Tau User Guide 367



Chapter 8: UML Language Guide
“Component diagram” on page 304

Artifact

An Artifact represents a physical piece of information that is used or pro-
duced by a software development process. Examples of artifacts include 
source files, scripts, libraries and executable programs.

An artifact manifests a number of elements through Manifestation relations, 
meaning that the artifact is built up, or constructed from, these elements. For 
example, an artifact representing a header file in C++ can have a manifesta-
tion relation to the class declared in the header file. This information can then 
be used by a code generator when generating the physical header file from 
the model.

During deployment modeling, artifacts are deployed on nodes using the De-
ployment relationship.

Artifacts are similar to Classes and can have Attributes and Operations. Ar-
tifacts can also participate in the following relations: Dependency (of any el-
ement), Generalization (between artifacts), Composition (typically to other 
artifacts). In addition, an artifact is a namespace and can therefore own other 
model elements.

Symbol

The artifact symbol is identical to the Class Symbol, with the keyword 
«artifact» added to the top.

Node

A node is a named computational resource, typically a specific computer. 
Nodes can be connected using Associations to model network topologies.

Figure 152: Artifact symbol

<<artifact>>

'TransactionHandler.jar'

 

368 IBM Rational Tau User Guide June 2009



Deployment Modeling
Symbol

Syntax

A node is depicted as a 3-dimensional cube with the name inside.

Execution environment

A special kind of Node offering an execution environment for the artifacts 
deployed onto it. The execution environment typically consists of a set of ser-
vices required by the artifacts during execution.

A typical example is a J2EE server prepared for deployment of J2EE beans.

Symbol

Syntax

Same as node with the stereotype «executionEnvironment» applied.

Deployment specification

A deployment specification is used to specify a set of properties acting as ex-
ecution parameters for an artifact when deployed onto a Node.

Figure 153: Node symbol

Figure 154: Execution environment symbol

 

myApplicationServer

<<executionEnvironment>>

J2EEServer
June 2009 IBM Rational Tau User Guide 369



Chapter 8: UML Language Guide
A deployment specification is applied to an artifact by drawing a Depen-
dency from the specification to the artifact.

Symbol

Syntax

Same as class with the «deploymentSpecification» stereotype applied.

Relationships

The following relationships can be used in Deployment diagrams:

• Deployment

• Manifestation

• Association

• Aggregation

• Composition

• Generalization 

• Dependency

Deployment

A special kind of Dependency used to deploy an artifact onto a deployment 
target, typically a Node. An artifact deployed onto a node will perform its ex-
ecution in the context of that node.

Figure 155: Deployment specification symbol

<<deploymentSpecification>>

transactionSpec

encryptionMode : EncryptionKind = high
enableEncryption : Boolean = true

<<deploymentSpecification>>

transactionSpec

encryptionMode : EncryptionKind = high
enableEncryption : Boolean = true
370 IBM Rational Tau User Guide June 2009



Relationships in UML
Manifestation

Manifestation is a special kind of Dependency used from an Artifact to a set 
of other elements to describe that the artifact is built up, or constructed from, 
these elements.

For example, an artifact representing a header file in C++ can have a mani-
festation relation to the Class declared in the header file. This information 
can then be used by a code generator when generating the physical header file 
from the model.

Relationships in UML
For general help on editing lines, please see:

“Draw lines” on page 192

“Move lines” on page 193

“Delete lines” on page 193

“Re-direct and bi-direct lines” on page 193

Figure 156: Deployment dependency

Figure 157: Manifestation dependency

<<artifact>>

'TransactionHandler.jar'

 

<<artifact>>

'TransactionHandler.jar'

 

<<executionEnvironment>>

J2EEServer
<<executionEnvironment>>

J2EEServer
<<deploy>><<deploy>>

 

myClass
 

myClass
<<artifact>>

'myClass.h'
<<artifact>>

'myClass.h' <<manifest>><<manifest>>
June 2009 IBM Rational Tau User Guide 371



Chapter 8: UML Language Guide
Dependency

A Dependency is a relationship between two definitions, saying that one of 
these definitions (the client) is dependent on the other definition (the sup-
plier) for some reason. The somewhat loose semantics of a Dependency 
makes it usable when the other relationship classes are inappropriate and 
cannot model a certain relationship.

There is one case when the dependency is used in a more specific way: indi-
cating a creation relationship between instances of active classes, that is 
when an instance uses the New statement to create a new instance of a class. 
In this case, the dependency can be used between parts or between a part and 
the behavior symbol that refers to the state machine of the enclosing active 
class.

It is common to give dependencies a more detailed semantics by means of 
applying stereotypes on them. For example, see Import and Access depen-
dencies.

Generalization

A Generalization is a relationship between two Signatures (for example 
classes or operations), saying that one of these is a more general signature, 
and the other is a more specific one. The more specific signature inherits 
member definitions from the more general signature, and may also contain 
additional members. Because of this, the generalization relationship is also 
known as inheritance.

If a generalization is established between two types (for example two 
classes) the more specific type defines a subtype of the more general type 
(which is sometimes called a supertype). This means that an instance of the 
more general type may be substituted by an instance of the more specific 
type. In other words, a specialized type is assignment compatible with the 
more general type.

Syntax

The generalization line has a text field, which may contain the discriminator.
372 IBM Rational Tau User Guide June 2009



Relationships in UML
Realization

The Realization relationship is a special kind of the Generalization relation-
ship. A Realization is used between a class and an interface to express that 
the realizing class conforms to (implements) the interface.

Association

An Association is a semantic relationship between two or many Classifiers, 
indicating that instances of these classifiers will be related.

Symbol

The line contains one name field, two role name fields and two Multiplicity 
fields.

An Association has two association ends, represented as attributes. These at-
tributes could either both be owned by the association (reflecting the situa-
tion when none of the associated classifiers are affected by the association), 
or one attribute could be owned by the association and one by the connected-
to classifier C (reflecting the situation when the association is navigable only 
in the direction from C), or the attributes could be owned by one connected-
to classifier each (reflecting the situation when the association is navigable 
in both directions). In the case when the association is unidirectional, the 
second (remote) Attribute will only exist if it is needed (for example if it car-
ries a role name or a multiplicity).

An Association may also have properties that belong to the Association it-
self, and not to any particular association end. 

Figure 158: Association

  

 

 

 

Links  

 

 

 

Links

 attr

 

 

 

 

 role_b

 

role_a

 

 

x a_x

 

 

1..*

x

June 2009 IBM Rational Tau User Guide 373



Chapter 8: UML Language Guide
An association can be navigable in both directions. 

Multiplicity

Multiplicity at an association end defines how many instances of the class 
that can be related by the association.

Aggregation kind

An Association is either a normal association, an Aggregation or a Compo-
sition.

You can change aggregation type on the shortcut menu that is displayed 
when you click the ending parts of the line. The alternatives are Association, 
Aggregation and Composition. You must first add role names before you can 
select aggregation type.

• An Aggregation line specifies that an instance of the aggregate class is an 
informally considered owned by the instance of the component class.

• A Composition line specifies a stronger form of aggregation where the 
instance of the aggregate class exists only as long as the component class 
exists. The lifetime of the contained instance is thus strongly tied to the 
lifetime of the containing instance.

Navigable end

A navigable end is an association end that is also an attribute of the classifier 
that is the type of the other end.

Symbol

The line contains one name field, two role name fields and two Multiplicity 
fields.
374 IBM Rational Tau User Guide June 2009



Relationships in UML
Examples

Example 82: Role text ––––––––––––––––––––––––––––––––––––––––––––––––––

+ myrole

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 83: Multiplicity text ––––––––––––––––––––––––––––––––––––––––––––

Infinite range:

*

Range condition:

0..3

Multiple range conditions:

1..7,>10

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Attribute” on page 266

“Aggregation” on page 376

“Composition” on page 376

Figure 159: Association

  

 

 

 

Links  

 

 

 

Links

 attr

 

 

 

 

 role_b

 

role_a

 

 

x a_x

 

 

1..*

x

June 2009 IBM Rational Tau User Guide 375



Chapter 8: UML Language Guide
Aggregation

Aggregation is a special kind of Association. It is a binary association that 
specifies an aggregation relationship (a whole/part relationship). 

An aggregation has two ends, an aggregate end and a part end. An aggrega-
tion specifies that an instance of a classifier on the aggregate end aggregates 
an instance of the classifier at the part end. The aggregate instance may in 
turn be part of another aggregate.

An aggregation part may be part of more than one aggregate.

Symbol

See also

“Attribute” on page 266

“Association” on page 373

“Composition” on page 376

Composition

Composition is a special kind of Aggregation. The composite part is strongly 
owned by the composite and may thus only be part of one composition.

Composite parts that are typed by active classes can also be used as parts of 
the internal structure of a class as described by Composite structure dia-
grams.

Figure 160: Aggregation

y role1

 

 

*

y

376 IBM Rational Tau User Guide June 2009



Relationships in UML
Symbol

See also

“Attribute” on page 266

“Association” on page 373

“Aggregation” on page 376

“Part” on page 296

“Composite structure diagram” on page 295

Containment

The Containment relationship shows that one definition contains another 
definition. The contained definition appears in the scope of the container def-
inition. When used between namespaces, such as packages, the containment 
relationship is sometimes also called namespace nesting.

Symbol

The Containment line is drawn from the container definition to the contained 
definition, and shows a plus sign at the container side.

Figure 161: Composition and a corresponding attribute

Figure 162: Containment

ct

 

 

part d:dt [*]

dt

 

 

 

 d

 

 

*

 

June 2009 IBM Rational Tau User Guide 377



Chapter 8: UML Language Guide
Extension

Extension is used between a stereotype and a metaclass (a Metamodel class) 
to indicate that the stereotype extends the metamodel class.

Association

Description

Association is described in detail in the section Use Case Modeling.

Text diagram
The text diagram can be used to show the textual syntax of the contents of a 
definition. For some definitions this is common and sometimes this can be an 
alternative to the graphical presentation in the regular diagrams. A typical ex-
ample where it can be more practical to use the text diagram is when defining 
an Operation Body.

Create a text diagram

Text diagrams can be included anywhere in your model where you could 
have any type of diagram containing a text symbol with formal UML infor-
mation. A text diagram will act as a container for model elements and pre-
sentation elements, just like a text symbol in another diagram. To create a 
text diagram you select a suitable reference node in your model and from the 
shortcut menu select New and then Text diagram. 

Elements in text diagrams

There are two main ways of adding information to a text diagram.

• Type in the information into the diagram. The model is updated as you 
type.

• Use a drag-and-drop operation from the model in the workspace window 
Model View into the text diagram.

Entities in text diagrams are always model elements irrespective of how they 
have been created. This means that all editing will effect your model and any 
presentation elements.
378 IBM Rational Tau User Guide June 2009



Common Symbols
It is possible to indent a selected block of text using TAB key. Use SHIFT + 
TAB key for negative indent.

See also

“Text parsing” on page 169 in Chapter 7, Working with Diagrams

UML Textual Syntax 

Common Symbols

Frame 

The symbols in a diagram are enclosed by the Frame symbol placed on the 
canvas.

• The frame has margins on all sides.

• You may resize and move the frame in all directions on the canvas, in-
cluding the margins.

Text symbol 

The Text Symbol is used for defining variables, interfaces, datatypes etc.

It is not possible to connect lines to the symbol.

Syntax

Example 84: Including the definition of an interface and a syntype –––––––––––––

interface i {
  signal s;
}
syntype s = Integer;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 85: Including the definition of a stereotyped class –––––––––––––––––––

<<struct>> class X {
  private Integer I;
  void inc ( Integer incr ) {
    I = I + incr;
  }
June 2009 IBM Rational Tau User Guide 379

adds/textual_syntax.htm


Chapter 8: UML Language Guide
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Comment

You use the Comment symbol to define comment text related to graphical 
symbols in a diagram.

Comments can also be made in the textual syntax. 

Comment symbol

The comment symbol is drawn similar to a Text symbol, but has a read-only 
text label in the upper left corner of the symbol. The text is set to “//”, to dis-
tinguish the constraint symbol from for example a constraint symbol. It is 
possible to connect the symbol to another symbol with an Annotation line.

The comment symbol is connected on the left side but you can flip the 
symbol horizontally from the shortcut menu to connect it from the right side 
instead. When a Comment symbol in a diagram is not connected to any other 
symbol then the comment model element belongs to the element owning the 
diagram. If a Comment symbol is connected to two or more symbols in a di-
agram, then the comment model element belongs to the element owning the 
diagram

Syntax

The text is informal and will not be syntactically checked.

See also

“Handling comments” on page 181

Constraint

You use the Constraint symbol to define constraint text related to graphical 
symbols in a diagram.

Constraints can also be made in the textual syntax. 
380 IBM Rational Tau User Guide June 2009



Common Symbols
Constraint symbol

The constraint symbol is drawn similar to a Comment symbol, but has a read-
only text label in the upper left corner of the symbol. The text is set to “{}”, 
to distinguish the constraint symbol from a comment symbol. It is possible 
to connect the symbol to another symbol with an Annotation line.

Syntax

The text is informal and will not be syntactically checked.

Stereotype instance

You use the Stereotype instance symbol to define stereotype instance text re-
lated to a model element.

Stereotype instance symbols can also be made in the textual syntax. 

Stereotype instance symbol

The stereotype instance symbol is drawn similar to a Comment symbol, but 
has a read-only text label in the upper left corner of the symbol. The text is 
set to “«»”, to distinguish the constraint symbol from a comment symbol. It 
is possible to connect the symbol to another symbol with an Annotation line.

Syntax

The text is informal and will not be syntactically checked.

Annotation line

The Annotation line connects the Comment, Constraint and Stereotype in-
stance symbol to another element.

You can draw an Annotation line from the line handle on the symbol and at-
tach it to any symbol, inside the diagram frame, other than other Comment, 
Constraint and Stereotype instance symbols. It is also not allowed to attach 
it to a Text symbol. 
June 2009 IBM Rational Tau User Guide 381



Chapter 8: UML Language Guide
Extensibility
UML is a language that you can customize - in a controlled way. There are 
predefined mechanisms to extend UML constructs and to specialize them to 
a use for a specific purpose.

The extensibility mechanism of UML is based on the concept of Profile and 
Metamodel.

A metamodel is simply a special kind of UML package class model that is 
used to describe the information stored in a repository in a tool. A package is 
a metamodel if the package name is preceded by the keyword «metamodel». 
A metamodel typically contains a set of classes stereotyped by the keyword 
«metaclass» that define the metaclasses.

It is possible to define different metamodels and use the build-in repository 
to store user-level models based on these metamodels. The only requirement 
is that the metamodel must be possible to map to the object model used to 
define the run-time repository and storage.

A profile is a special kind of package, identified by the keyword «profile» be-
fore the package name in the heading. A profile contains a set of stereotypes, 
that have attributes (called tagged value definitions) and that extend one or 
more metaclasses.

In a user model the stereotype can be applied to an object that is an instance 
of the extended Metaclass. This will automatically make it possible to add 
values

Metamodel

A metamodel is a set of metaclasses, metaattributes etc. that defines a con-
ceptual view of the information stored in the model repository. The main 
practical usage of a metamodel is to form a basis for profile definitions. 

A user profile can define stereotypes that extend the metaclasses in order to 
associate more information to model elements. The extra information is from 
a user’s point of view editable using the Properties Editor and is stored in the 
model repository.

The UML tool set is able to represent different metamodels each giving a dif-
ferent view of a specific model. 
382 IBM Rational Tau User Guide June 2009



Extensibility
Hint
An example of a metamodel is given in the installation. Simply check the 
TTDMetamodel package in the Library node in the Model View. This 
package is a simple metamodel that describes the information stored.The 
purpose of the TTDMetamodel is to give a view that is very close to the un-
derlying repository structure and each of the classes found in this meta-
model corresponds directly to a core class found in the repository defini-
tion. However, the TTDMetamodel is a simplification of the core repository 
in the sense that only the classes that are useful to stereotype are included. 
Another simplification is that almost all of the associations and attributes 
found in the core repository model are omitted.

Metaclass

A metaclass is used to categorize a set of elements stored in a UML reposi-
tory. It can be defined in metamodels using class symbols where the class 
name is stereotyped by «metaclass».

Stereotype

A Stereotype is used to extend the information that can be stored in the model 
for a given entity. The extra information is described by the attributes of the 
stereotype.

Figure 163: Stereotype Example

Figure 163 on page 383 shows an example of how to extend all classes with 
information about the author of the class definition. This is accomplished by 
defining a stereotype AuthorInfo with an attribute name that extends the 
Metaclass TTDMetamodel::Class.

Tag definition

Tag Definitions are the attributes of a stereotype. When the stereotype is ap-
plied, the tag definitions are used by giving them specific values.

AuthorInfo
<<stereotype>>

name:Charstring

::TTDMetamodel::Class
<<metaclass>>

11
June 2009 IBM Rational Tau User Guide 383



Chapter 8: UML Language Guide
Tagged value

Tagged values are the values that can be given tag definitions. These values 
are set using the Properties Editor.

Showing Applied Stereotypes

It is possible to see stereotypes applied to a model element in the Model 
View. To see the stereotypes applied to a model element, do like this: 

• On the Tools menu, click Options. 

• In the Options dialog box, select the UML Basic Editing tab. 

• Check the Show stereotypes instances check box. 

• Click OK.

See also

“Extension” on page 384

Profile

A profile is a special kind of package that is identified by the stereotype «pro-
file». Profiles are used to extend the information that can be stored in a UML 
repository by defining stereotypes that extend metaclasses. Figure 163 on 
page 383 shows an example of a simple profile.

A profile is applied by using the package Import or Access constructs, for ex-
ample if a model should adapt a certain profile, the top package of the model 
should have an import or access that references the package that defines the 
wanted profile.

Extension

Extension is used between a Stereotype and a Metamodel class to indicate 
that the stereotype extends the metamodel class.

There is one text field associated with the extension line. This can have the 
text ‘1’ or ‘0..1’. If the text is ‘1’ then all elements that are instances of the 
extended Metaclass will automatically have the stereotype applied.

If the text is ‘0..1’ then you will have to manually apply the stereotype. In 
Figure 163 on page 383 is an example of an extension line.
384 IBM Rational Tau User Guide June 2009



Predefined Data
When the stereotype is manually applied, some symbols (class symbol, 
signal symbol etc.) will show the applied stereotype in the symbol. 

Predefined Data
The data modeling constructs in UML are powerful and allows for modeling 
and defining data in numerous ways. However, UML does not contain many 
built-in datatypes. Instead UML can be extended with different sets of 
datatypes depending on the application area. This is done by defining 
datatypes in model libraries (also often referred to as predefined packages).

For convenience there are different sets of predefined data that can be used:

Predefined

This package contains generic datatypes with operations that always can be 
used.

Profile TTDRTTypes

This package contains datatypes and operations supported only in the Model 
Verifier and in the C Code Generator. 

Profile TTDCppPredefined

This package contains datatypes and operations supported only in the C++ 
Application Generator. 

Hint
The details of the predefined packages are most easily checked in the tool it-
self. To access a predefine package you typically must switch on an add-in. 
This is done if you from the Tools menu select Customize, in the dialog go to 
the Add-Ins tab. This tab allows you to switch on the suitable profiles. To 
check the packages mentioned in this sections switch on the RTUtilities 
and CppTypes add-ins.

See also

“Datatype” on page 284 
June 2009 IBM Rational Tau User Guide 385



Chapter 8: UML Language Guide
Predefined

The package Predefined is a proprietary extension to UML, which is always 
available in a project. This package is automatically used by the model de-
fined in a project. The package defines a number of datatypes, but also a few 
other utilities.

Some of the datatypes exist in OMG UML (e.g. Integer or Boolean), but the 
Predefined package provides operations for these datatypes which is not 
done in the standard.

For each datatype, there is a set of operations to be applied on expressions of 
the type.

The package contains the following definitions:

The Package Predefined is also available for inspection or browsing directly 
in the Model view. Each project has a node called predefined package. Ex-
panding this node lets you browse the available datatypes, operators and 
other definitions.

PLUS_INFINITY

PLUS_INFINITY is a constant of the datatype Real. It can be used as a ref-
erence to the largest Real number that can be used on host, or on a specific 
target.

MINUS_INFINITY

PLUS_INFINITY is a constant of the datatype Real. It can be used as a ref-
erence to the largest negative Real number that can be used on host, or on a 
specific target.

Kind Definitions

Datatypes Boolean, Character, String, Charstring, Integer, 
Natural, Real, Array, Any

Constants PLUS_INFINITY, MINUS_INFINITY
386 IBM Rational Tau User Guide June 2009



Metamodel Classes
Profile TTDRTTypes

None

The package also includes a predefined signal: none.

This signal is a system built-in signal used to model indeterministic behavior. 
It is only used in abstract specifications or model intended for simulation, not 
in models which applications should be built from.

The usage of none is as a trigger, to define an indeterministic transition 
(spontaneous transition). The cause of this event cannot be controlled; not 
when it occurs and not how frequently it occurs.

It can be controlled by the Model Verifier, though, during simulation. In the 
Messages window, it is possible to insert the signal ::NONE.

Metamodel Classes
A few of the more important metaclasses are described below.

Metamodel profile

The TTDMetamodel is available for inspection and browsing directly in the 
Model view. When adding a project, there is always a node with the applied 
profiles, TTDMetamodel is one of these profiles. Expand Library node and 
the TTDMetamodel profile package to see the language model elements, 
abstract metaclasses and the relationships between these.

Classifier

Classifier is a Metaclass in the UML language. 

A Classifier is a description of data and is the Signature of a set of instances 
or Instance Sets. A Classifier defines a type, which for example may be the 
type of a StructuralFeature. A Classifier may be associated to other Clas-
sifiers by means of Associations.

Most class-like model elements are classifiers, including:

• Class

• Datatype, Syntype, Choice
June 2009 IBM Rational Tau User Guide 387



Chapter 8: UML Language Guide
• Stereotype

• Interface

• Collaboration

Signature

Signature is a Metaclass in the UML language.

A Signature is an entity that can be the basis for the definition of another Sig-
nature. There are two main mechanisms that enable this: 

• Specialization, or inheritance 

• Parameterization 

Specialization means that a super-signature may be specialized into a set of 
sub-signatures. Each sub-signature shares all the properties of the super-sig-
nature and may have some additional ones too. In the Metamodel the special-
ization mechanism is modeled by the Generalization class which is owned by 
Signature.

Parameterization means that a Signature may have a list of formal context pa-
rameters. Such a Signature is known as a template. Formal context parame-
ters of a template may be substituted by actual context parameters when the 
template is instantiated (for example in a TemplateTypeInstantiation). 
Parameterization could make a Signature more flexible for use in different 
contexts. In the metamodel the parameterization mechanism is modeled by 
the ContextParameter class which is owned by Signature.

In addition to these two mechanisms for defining new Signatures based on 
another Signature, there is a third such mechanism that only one Signature 
has; the Syntype. This mechanism defines a new Signature by possibly con-
straining another one.

Some Signatures may have an Implementation. In that case the Signature acts 
as a façade for the Implementation, hiding all details which users of the Sig-
nature do not need to know. A façade allows for separating of a definition 
from its implementation and is what enables separate compilation of parts of 
a system. Compare for example with the use of header files in C program-
ming. The following statements are true for a façade: 

• A façade does not depend on its implementation. 

• A façade does not depend on its uses. (This is in fact true for all Defini-
tions.) 
388 IBM Rational Tau User Guide June 2009



Metamodel Classes
An implementation may only depend on façades. 

The following model elements are signatures:

• Classifier

• Operation, signal, timer

Implementation

An Implementation describes details about a Signature which users of the 
signature do not need to know about, but that are necessary from an execu-
tion point of view. While a Signature typically describes static properties of 
an entity, the corresponding Implementation is more concerned with the dy-
namic properties.

There are two main kinds of Implementations; Internals and Method. An In-
ternals describes how a Class is structured, both physically and from a com-
munication point of view, while a Method describes an Operation, a 
StateType, or a Class from a run-time execution point of view.

An Implementation only depends on Signatures (also referred to as façades), 
not on the usage of these Signatures. This is important in order to enable sep-
arate analysis of parts of a system.

Method

A Method is the implementation of an Operation. It describes how it is exe-
cuted at run-time. There are three kinds of methods, each of which has its 
own semantics of execution:

• Operation body – a stateless method which is executed by executing the 
Action of the OperationBody.

• State machine implementation – a method with states and transitions 
which is executed by executing the Action associated with a Transition 
that can be initiated in the active state.

• Interaction – a method which describes the interaction and information 
exchange between a set of attributes. Contrary to other methods, an inter-
action may not only provide a complete specification of how the opera-
tion shall be executed, but it may also be used to describe how it actually 
is executed (that is describing a trace), or provide a partial description of 
how it must execute (thereby putting semantic requirements on its other 
Methods).
June 2009 IBM Rational Tau User Guide 389



Chapter 8: UML Language Guide
• Activity implementation - a method executing a controlled set of small 
behavioral units.

Signature and implementation

Signature and Implementation are two metaclasses in the UML language. A 
signature declares an entity and an implementation defines the same entity. 
The idea is that these concepts make it possible to separate the signature 
physically from the implementation (compare header files for C and C++).

The concepts for which it is possible to do this are:

Operation

Operation signature and Operation body, Activity implementation, State ma-
chine implementation or Interaction.

Activity

Activity signature and Activity implementation.

State machine

State machine signature and State machine implementation.

Class

Class signature and Internals.
390 IBM Rational Tau User Guide June 2009



Collection Types and Multiplicity
Collection Types and Multiplicity
There is a strong relation between the Multiplicity concept and collection 
types. This section details the aspects of this relationship.

Implicit collections

When defining an attribute in UML the Multiplicity can be used to define that 
the attribute is multi-valued. From a UML point of view the multiplicity de-
fines a constraint on the implementation of the attribute. An implicit instan-
tiation of the String collection type is by default used as implementation. So, 
when using the attribute in action code you can use the operations defined for 
the String collection type.

Example 86: append, length and indexing operations available for String.–––––––

Consider the situation in Figure 164 on page 391, showing a class C with an 
attribute myD with multiplicity *. 

When using the myD attribute in action code you can now use the operations 
available for the String collection type. You can for example define the op 
operation as in Figure 165 on page 392. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 164: Class with * multiplicity 
June 2009 IBM Rational Tau User Guide 391



Chapter 8: UML Language Guide
Changing the implicit collection type

In some situations you can decide to change the implicit type, in order to use 
a different set of operations or different implementation characteristics.

This can be done in two different ways; by using informal multiplicity or by 
using the <<containerType>> stereotype.

Informal multiplicity

Informal multiplicity means that the UML multiplicity should not imply any 
special container type to be used for the collection. Instead the type of the at-
tribute is assumed to be the container type.

Assume that you want to use the Bag collection type instead of the standard 
String.

If you use the property pages you should change the Type of the myD attribute 
to Bag<D> and select the InformalMultiplicity property. By selecting 
this option you make sure that the Multiplicity of the attribute is viewed as a 
constraint only and that the collection type is the specified Bag<D> and not 
the implicit String type. If informal multiplicity is not turned on, then the im-
plicit collection type is still used and the complete type definition for the at-
tribute would be String< Bag<D> >. However if you set the 
InformalMultiplicity property no implicit collection type is used. 

Figure 165: Operator definition 
392 IBM Rational Tau User Guide June 2009



Collection Types and Multiplicity
If you make the change in the textual syntax used in a text symbol you change 
the definition of the attribute from D[*] myD; to Bag<D> {[*]} myD;. The 
curly braces syntax is used for the multiplicity to be interpreted informally as 
a constraint. 

If you choose to do the change in the attribute compartment you would 
change the text from myD:D[*] to myD: Bag<D> {[*]}. Notice that the 
curly braces notation is also here used to show that the given multiplicity will 
be interpreted in an informal manner that will not imply an implicit collection 
type. 

The <<containerType>> stereotype

If you have a large number of attributes with non-single multiplicity and 
want to change collection type for all of them, it can be cumbersome to mark 
them all as having informal multiplicity. In that case you can instead use the 
predefined <<containerType>> stereotype. That stereotype can be applied 
on the Model level, or at any package or classifier in the model. It contains a 
tagged value ‘Type’ which specifies the implicit container type for all at-
tributes contained in that scope.

If the specified container type is a template type it should have just one type 
template parameter. For example:

<<containerType (. Type = MyContainerType<Any> .)>> 
package P {}

‘Any’ here refers to the actual type of the attribute, i.e. the element type of 
the collection.

It is possible to apply <<containerType>> on different scope levels in the 
model. If there exist more than one <<containerType>> instance in the 
scope path from an attribute to the Model node, the one that is closest to the 
attribute scope-wise will be used.

If you change container type you may have to invoke the ‘Check All’ com-
mand to force the model to be rebound, taking the new container type speci-
fication into account.
June 2009 IBM Rational Tau User Guide 393



Chapter 8: UML Language Guide
Note
When creating a UML model targeted at a language in which no represen-
tation of the UML String type exists (e.g. Java or C#), the <<container-
Type>> stereotype is typically always applied (often at Model level) speci-
fying an appropriate default container type that is available in the target 
language.

Multiplicity and composition

In general the aggregation kind is used to determine the lifetime dependency 
between two related objects. A composition implies a lifetime dependency, 
a reference (and also shared dependency) does not imply any lifetime depen-
dency. Composition also implies that one specific instance may only be part 
of one container. From UML point of view this is only a static constraint, but 
from an implementation point of view several things can be deduced from 
this when combining composition with a static Multiplicity. 

Similar to multiplicity IBM Rational Tau can use the aggregation kind either 
as formally or informally. If used formally IBM Rational Tau will automati-
cally deduce an implementation. If used informally the aggregation kind is 
only viewed as an informal constraint on the model. 

IBM Rational Tau uses by default a formal interpretation of composition plus 
static multiplicity to give an implementation with properties. 

Example 87: Multiplicity––––––––––––––––––––––––––––––––––––––––––––––––

part A[1] a; 

The 'a' object is allocated and terminated together with the container. For ex-
ample assume that A is a passive class, then the C Code Generator would 
generate code where the attribute 'a' is written inline together with the con-
taining C. 

part A[4] a;

Four A objects are allocated and terminated together with the container. For 
example assume that A is a passive class, then the C Code Generator would 
generate code where the attribute 'a' is written inline together with the con-
taining C struct, in the sense that it is generated as an array of A's as opposed 
to an array of pointers to A. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
394 IBM Rational Tau User Guide June 2009



Collection Types and Multiplicity
As with multiplicity the formal interpretation of aggregation kind can be 
turned off. It is controlled by the same mechanism as the formal/informal 
multiplicity. If informal multiplicity is defined it automatically implies in-
formal aggregation kind and vice versa. 

Value<> template

If informal multiplicity/aggregation kind is used then you can define if you 
want value or reference semantics in the definition of the type of the attribute. 
This can be done using the Value<> template. 

Example 88: Value semantics –––––––––––––––––––––––––––––––––––––

Value<A> a;

String<Value<A>> {[4]} a; 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 89: Reference semantics ––––––––––––––––––––––––––––––––––

A a;//

String<A> {[4]} a; 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

When using a composite attribute there are some aspects to be aware of as 
illustrated in the following example. In particular when mixing the usage of 
composition and usual references and when mixing Value instantiations and 
UML level composition. 

Example 90: Mixing composition and instantiation ––––––––––––––––––––––––––

class C {}
class D {
Value<Value<C>> myC1; // Means the same as 
                      // 'Value<C> myc1'
part Value<C> myC2; // Means the same as 'Value<C> myc2'
                    // and as 'part C myC2'
Value<C>[*] CList1; // Means the same as 
                    // 'part C[*] CList1'
} 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 395



Chapter 8: UML Language Guide
Summary of multiplicity and collection types

To summarize the implicit generation of collection types and the usage of 
composition semantics:

• If an attribute has multiplicity >1 it will get an implicit String collection 
type.

• If an attribute has a fixed multiplicity AND it is has composite aggrega-
tion kind instances will automatically be allocated as part of the container 
(but in a code generator specific way)

• If the default implementation of multiplicity and aggregation kind is not 
what you want, it can be turned off using the 'Informal multiplicity' prop-
erty available for the attribute.

Note
These rules apply in general to all entities that can have a multiplicity, for 
example operation and signal parameters.

Value template in updated models

In earlier IBM Rational Tau versions the Value<> template was not present. 
When upgrading from these models the tool automatically adds Value ele-
ments where needed, see Example 91 on page 396. 

Example 91: Model upgrade ––––––––––––––––––––––––––––––––––––––––––––

Model from 2.2:

class Class2 { }
syntype Class2String = String < Class2 > constants 
(0..10);
class Class1 {
    public part Class2String myPart;
}

Upgraded model:

class Class2 { }
syntype Class2String = String < Class2 > constants 
(0..10);
syntype Class2String_Value = String<Value<Class2> >;
class Class1 {
    public Class2String_Value myPart;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
396 IBM Rational Tau User Guide June 2009



SysML
SysML
This section contains a listing of the diagrams and symbols of the SysML 
support in IBM Rational Tau. 

SysML is a visual modeling language for specification, analysis, design, ver-
ification and validation of systems that may include hardware, software, 
data, procedures and facilities.

SysML is UML adapted for systems engineering.

SysML is a UML 2.x profile.

SysML is a response by the SysML Partners to an RFP issued by the Object 
Management Group (OMG) and co-sponsored by the International Council 
of Systems Engineering Model Driven System Design working group (IN-
COSE MDSD) and ISO Application Protocol for the interchange of systems 
engineering data (ISO AP-233) working group for a “UML for System En-
gineering” modeling language. 

Main goals of SysML 
• improve communications across the system development lifecycle

• enhance knowledge capture

• increase re-use of designs

• permit early verification of designs

• lower maintenance costs.

SysML will enable model based design, leading to consistent, unambiguous 
designs and specifications. Since SysML is based upon UML 2.0, the same 
model can be re-used as a specification and initial starting point for those 
parts of the system allocated to software. This can help to reduce errors and 
maintenance cost by bridging the gap between systems and software engi-
neering. 

SysML is UML adapted for systems engineering (hardware and software). 
With SysML, you can model things like:

• Requirements, see “Modeling Requirements” on page 1713

• Allocations, e.g. functional allocations from behavior to structure.

• Parametric constraints
June 2009 IBM Rational Tau User Guide 397



Chapter 8: UML Language Guide
SysML in IBM Rational Tau

SysML is one of the Add-Ins distributed in the installation. To create a model 
using the SysML language this addin must be activated.

• From the Tools menu select Customize. 

• Go to the Add-ins tab and check SysML. 

As a result a SysML menu will appear.

You can switch the Model View between the SysML view and the Standard 
view. 

• From the View menu select Reconfigure Model View and point to the 
desired view.

Note
The requirements part of SysML is uses the Requirements profile. For more 
details, see “Modeling Requirements” on page 1713.

SysML diagram types
• Activity diagram

• Block definition diagram (related to Class diagram)

• Internal block diagram (related to Composite structure diagram)

• Parametric block diagram (related to Composite structure diagram)

• Requirement diagram (related to Class diagram)

• Sequence diagram

• State machine diagram

• Use case diagram

SysML diagrams and symbols

Activity diagram

The activity diagram used in SysML is a normal UML Activity Diagram.

Block definition diagram

Related to Class diagram, with the following symbols and lines:

• Artifact symbol
398 IBM Rational Tau User Guide June 2009



SysML
• Block symbol 

• Parametric definition symbol

• Collaboration symbol 

• Flow Port

• Flow Specification

• Interface symbol 

• Operation symbol 

• Package symbol 

• Port symbol 

• Primitive/enumeration symbol 

• Realized interface symbol 

• Required interface symbol 

• Signal symbol 

• State machine symbol 

• Stereotype symbol 

• Timer symbol 

• Association/aggregation/composition line 

• Dependency line 

• Extension line 

• Generalization/realization line 

• Text symbol

• Comment symbol

• Constraint symbol

• Stereotype Instance symbol

• Text symbol

• Comment symbol

• Constraint symbol

• Stereotype Instance symbol

Internal block diagram

Related to Composite structure diagram, with the following symbols and 
lines:
June 2009 IBM Rational Tau User Guide 399



Chapter 8: UML Language Guide
• Flow port symbol

• Part symbol 

• Port symbol 

• Binding line

• Connector line 

• Text symbol

• Comment symbol

• Constraint symbol

• Stereotype Instance symbol

• Text symbol

• Comment symbol

• Constraint symbol

• Stereotype Instance symbol

Parametric block diagram

Related to Composite structure diagram, with the following symbols and 
lines:

• Constraint Parameter

• Flow port

• Parametric Use

• Part symbol 

• Port symbol 

• Binding connector line 

• Text symbol

• Comment symbol

• Constraint symbol

• Stereotype Instance symbol

Requirement diagram

Related to Class diagram, with the following symbols and lines:

• Block symbol 
400 IBM Rational Tau User Guide June 2009



SysML
• Package symbol 

• Requirement symbol 

• Allocate dependency line 

• Association/aggregation/composition line 

• Dependency line 

• Derive dependency line 

• Generalization/realization line 

• Satisfy dependency line 

• Text symbol

• Comment symbol

• Constraint symbol

• Stereotype Instance symbol

Sequence diagram

The sequence diagram used in SysML is a normal UML Sequence diagram.

State machine diagram

A normal UML State machine diagram:

Use case diagram

The use case diagram used in SysML is a normal UML Use case diagram.

Stereotypes on SysML diagram types

Auto-applied

The following stereotypes are auto-applied on SysML diagram types. 

• «internalBlockDiagram» (related to Composite structure diagram)

• «parametricDiagram» (related to Composite structure diagram)

• «requirementDiagram» (related to Class diagram)

• «blockDiagram» (related to Class diagram) 
June 2009 IBM Rational Tau User Guide 401



Chapter 8: UML Language Guide
Stereotype that can be applied to Diagram

«diagramDescription» with Version, Description, Reference and Com-
pleteness tagged values.

Stereotypes that can be applied to Class
• «constraint» with an Equation tagged value.

• «block»

• «requirement» with Text and Id and tagged values.

Stereotypes that can be applied to Comment
• «rationale»

Stereotypes that can be applied to Dependency
• «allocate»

• «binding»

• «deriveReqt»

• «copy»

• «satisfy»

• «trace»

• «verify»

Stereotypes that can be applied to ObjectNode and ActivityEdge
• «continuous»

• «discrete»

• «overwrite»

• «noBuffer»

Stereotypes that can be applied to ActivityEdge
• «optional»

• «control»

• «stream»

• «probability» with a Value tagged value
402 IBM Rational Tau User Guide June 2009



SysML
Stereotypes that can be applied to Operation and Activity
• «controlOperator»

• «nullTransformation»

Stereotypes that can be applied to InformalConstraint
• «precondition»

• «postcondition»

• «resourceConstraint»

• A ControlValue enumeration: disable, enable.

SysML reports

The following SysML specific reports are available:

• SysML Dependency Matrix

• SysML Dependency Report

• SysML Requirements Report

• SysML Requirements Gap Report

SysML Dependency Matrix

Displays source and target elements of dependencies in a matrix. The dif-
ferent dependencies each has its own report. The following reports are avail-
able:

• All

• All - Reversed

• Allocate

• Allocate - Reversed

• Derive

• Derive - Reversed

• Satisfy

• Satisfy - Reversed

• Verify 

• Verify - Reversed
June 2009 IBM Rational Tau User Guide 403



Chapter 8: UML Language Guide
The source elements are listed vertically and target elements horizontally, 
but if the reverse matrix is displayed the source is displayed horizontally and 
the target vertically.

SysML Dependency Report

Lists all dependencies in a table. For each dependency, the following prop-
erties are displayed:

• Trace kind

• Source name

• Source kind

• Target name

• Target kind

The table can be saved in a .CSV file.

SysML Requirements Report 

Lists all requirements in a table. For each requirement, the following proper-
ties are displayed:

• Id

• Text

See also

“Requirement Reports” on page 1716

SysML Requirements Gap Report

A requirements gap report in tabular format. For each requirement, the fol-
lowing properties are displayed:

• Id

• Text

• Incoming requirement dependencies

• Outgoing requirement dependencies

• Connected name

• Connected type
404 IBM Rational Tau User Guide June 2009



SysML
See also

“Requirement Reports” on page 1716

Deprecated concepts

Since the SysML specification is still evolving, the set of implemented fea-
tures is subject to change, and therefore some concepts have been deprecated.

They have been moved to a package called SysMLdeprecated and usage of 
them is strongly discouraged. The elements in this package (and any in-
stances of them, such as stereotype instances) will be removed in future re-
leases.

To avoid losing data from any of these concepts, the data must be transferred 
someplace else either manually or programmatically by using the APIs.

The following concepts have been changed or deprecated:

• «requirement»

The «requirement» stereotype has been replaced with the one from the 
Requirements profile. The new version has only two attributes, Text and 
Id. Instances of the old stereotype has been replaced with two instances, 
one of the new requirement stereotype and one of the «requirementDep-
recated» stereotype. The tagged values from the original «requirement» 
stereotype missing in the new one, are found in this instance.

• verifyMethodKind

• riskKind

• optimizationDirectionKind

• «effectiveness»
June 2009 IBM Rational Tau User Guide 405



Chapter 8: UML Language Guide
Profile for Schedulability, Performance, and 
Time

This section lists all stereotypes, tagged values and enumerations of the 
UML Profile for Schedulability, Performance, and Time also commonly 
referred to as the UML Real-time profile.

Note
Some tagged values can only be edited using the textual syntax. These are 
marked as italic in this document.

RTresourceModeling

GRMacquire

GRMblocking : Boolean

GRMcode

GRMrealize

GRMmapping : GRMmappingString

GRMdeploys

GRMrelease

GRMrequires

RTtimeModeling

RTaction

RTstart : RTtimeValue

RTend : RTtimeValue

RTduration : RTtimeValue
406 IBM Rational Tau User Guide June 2009



Profile for Schedulability, Performance, and Time
RTclkInterrupt

RTstimulus

RTstart : RTtimeValue

RTend : RTtimeValue

RTclock

RTclockId : Charstring

RTdelay

RTevent

RTat : RTtimeValue

RTinterval

RTintState : RTtimeValue

RTintEnd : RTtimeValue

RTintDuration : RTtimeValue

RTnewClock

RTnewTimer

RTtimerPar : RTtimeValue

RTpause

RTreset

RTset

RTtimePar : RTtimeValue
June 2009 IBM Rational Tau User Guide 407



Chapter 8: UML Language Guide
RTstart

RTtime

RTkind : RTkindEnum

RTtimeout

RTtimer

RTduration : RTtimeValue

RTperiodic : Boolean

RTtimeService

RTtimingMechanism

RTstability : Real

RTdrift : Real

RTskew : Real

RTmaxValue : RTtimeValue

RTorigin : Charstring

RTresolution : RTtimeValue

RToffset : RTtimeValue

RTaccuracy : RTtimeValue

RTcurrentVal : RTtimeValue

RTkindEnum

Literals:

• dense

• discrete
408 IBM Rational Tau User Guide June 2009



Profile for Schedulability, Performance, and Time
RTconcurrencyModeling

CRaction

CRatomic : Boolean

CRasynch

CRconcurrent

CRcontains

CRdeferred

CRimmediate

CRthreading : CRthreadingEnum

CRmsgQ

CRsynch

CRthreadingEnum

Literals:

• local

• remote

SAprofile

SAaction

SApriority : Integer

SAblocking : RTtimeValue

SAdelay : RTtimeValue

SApreempted : RTtimeValue
June 2009 IBM Rational Tau User Guide 409



Chapter 8: UML Language Guide
SAready : RTtimeValue

SArelease : RTtimeValue

SAworstCase : RTtimeValue

SAabsDeadline : RTtimeValue

SAlaxity : SAlaxityEnum

SArelDeadline : RTtimeValue

SAengine

SAaccessPolicy : SAaccessControlPolicyEnum

SAcontextSwitch : TimeFunction

SAschedulable : Boolean

SApreemptible : Boolean

SApriorityRange : Range

SArate : Real

SAschedulingPolicy : SAschedulingPolicyEnum

SAutilization : Real

SAaccessPolParam : Real

SAowns

SAprecedes

SAresource

SAacquisition : RTtimeValue

SAcapacity : Integer

SAdeacquisition : RTtimeValue

SAconsumable : Boolean

SAaccessControl : SAaccessControlPolicyEnum
410 IBM Rational Tau User Guide June 2009



Profile for Schedulability, Performance, and Time
SAptyCeiling : Integer

SApreemptible : Boolean

SAaccessCtrlParam : Real

SAresponse

SAutilization : Real

SAspare : RTtimeValue

SAslack : RTtimeValue

SAoverlaps : Integer

SAschedRes

SAscheduler

SAschedulingPolicy : SAschedulingPolicyEnum

SAsituation

SAtrigger

SAschedulable : Boolean

SAoccurrence : RTarrivalPattern

SAendToEnd : Charstring

SAusedHost

SAuses

SAlaxityEnum

Literals:

• hard

• soft
June 2009 IBM Rational Tau User Guide 411



Chapter 8: UML Language Guide
SAschedulingPolicyEnum

Literals:

• rateMonotonic

• deadlineMonotonic

• HKL

• fixedPriority

• minimumLaxityFirst

• maximizeAccruedUtility

• MinimumSlackTime

SAaccessControlPolicyEnum

Literals:

• FIFO

• priorityInheritance

• noPreemption

• highestLockers

• priorityCeiling

PAprofile

PAclosedLoad

PArespTime : PAperfValue

PApriority : Integer

PApopulation : Integer

PAextDelay : PAperfValue

PAcontext

PAhost

PAutilization : Real
412 IBM Rational Tau User Guide June 2009



Profile for Schedulability, Performance, and Time
PAschdPolicy : PAschdPolicyEnum

PArate : Real

PActxtSwT : PAperfValue

PAprioRange : Range

PApreemptable : Boolean

PAthroughput : Real

PAopenLoad

PArespTime : PAperfValue

PApriority : Integer

PAoccurrence : RTarrivalPattern

PAresource

PAutilization : Real

PAschdPolicy : PAschdPolicyEnum

PAcapacity : Integer

PAaxTime : PAperfValue

PArespTime : PAperfValue

PAwaitTime : PAperfValue

PAthroughput : Real

PAstep

PAdemand : PAperfValue

PArespTime : PAperfValue

PAprob : Real

PArep : Integer

PAdelay : PAperfValue
June 2009 IBM Rational Tau User Guide 413



Chapter 8: UML Language Guide
PAextOp : PAextOpValue

PAinterval : PAperfValue

PAschdPolicyEnum

Literals:

• FIFO

• priority

RSAprofile

RSAclient

RSAtimeout : RTtimeValue

RSAclPrio : Integer

RSAprivate : Integer

RSAconnection

RSAshared : Boolean

RSAhiPrio : Integer

RSAloPrio : Integer

RSAmutex

RSAorb

RSAserver

RSAsrvPrio : Integer

RSAchannel

RSAschedulingPolicy : RSAschedulingPolicyEnum

RSAaverageLatency : RTtimeValue
414 IBM Rational Tau User Guide June 2009



Profile for Schedulability, Performance, and Time
RSAschedulingPolicyEnum

Literals:

• FIFO

• RateMonotonic

• DeadlineMonotonic

• HKL

• FixedPriority

• MinimumLaxityFirst

• MaximizeAccruedUtility

• MinimumSlackTime
June 2009 IBM Rational Tau User Guide 415



Chapter 8: UML Language Guide
416 IBM Rational Tau User Guide June 2009



9
Error and Warning Messages

This document is a reference guide to error and warning messages from the 
UML tool set.
June 2009 IBM Rational Tau User Guide 417



Chapter 9: Error and Warning Messages
General Application Errors and Warnings

IBM Rational Tau minidumps (Windows)

IBM Rational Tau has built in debug information capturing capabilities on 
the Windows platform. If at anytime during running the tool you receive a 
window saying IBM Rational Tau has crashed and a minidump has been cre-
ated please contact your local IBM Rational Tau support. The minidump 
contains the current call stack and can help identify which calls have been 
made. This can help to identify if an error occurred due to internal tool calls 
and in these cases may make it possible to resolve problems not already iden-
tified. With consideration to dependencies on operating systems and third 
party calls this information can also be of help to improve integrations to the 
environment and publish clearer requirements for third party software which 
IBM Rational Tau is dependent on.

Minidump location

The minidumps are by default created in a local settings directory but can be 
relocated using an environment variable. 

Default location:

C:\Documents and Settings\<user>\Local Settings\Temp

Environment variable example:

TAU_DUMP_PATH=c:\DevTools\IBM Rational\minidumps\

Minidump contents

The minidumps only contain the call stack and registers, and no memory. this 
means that there is no information about the model that the minidump origi-
nated from. 

Figure 166: Using special characters in identifiers
418 IBM Rational Tau User Guide June 2009



Errors and Warnings from Build
Errors and Warnings from Build
It should be observed that there can be restrictions on constructions that may 
be allowed in your UML design, but that will not be allowed to generate code 
from. These restrictions may vary for different build types (code generators).

Phases and identifiers

There are several phases involved when transforming a UML model to an-
other language, or format. During the processing of the model, error and 
warning messages may be presented from each phase to help you identify 
where the problems occur. The Verbose mode may be useful to switch on to 
get as much information as possible from the build process. The prefixes 
identifying the phases are:

• TSX: Syntax Analysis

• TSC: Semantic Check

• TNR: Name Resolution

• TAB: Application Build

• TCI: C/C++ Import

• TIL: Intermediate Language

• TCC: C Code Generation

• TCG: C++ Generation

• TSI, OGC: SDL Import 

• TUI: UML 1.x Import 

TSX: Syntax Analysis

The syntax analysis checks how language elements are constructed and put 
together in order to form correct UML constructions.

TSC: Semantic Check

The semantic check verifies that the UML model is complete and that the re-
lations between language constructs are meaningful.

Complete listing of the semantic checks per code generator stereotype.
June 2009 IBM Rational Tau User Guide 419

adds/SemanticChecks.html


Chapter 9: Error and Warning Messages
TNR: Name Resolution

The name resolution identifies names of the UML entities and attempts to 
bind them to the correct definition in the model.

TAB: Application Build

The application builder manages the entire process of generating another rep-
resentation or application from the UML model.

TCI: C/C++ Import

The C/C++ import places external C or C++ header files into UML packages 
and transforms the data type declarations into a UML data model. 

TIL: Intermediate Language

The intermediate language phase makes any necessary transformations from 
the UML model to an intermediate representation required for efficient C 
code generation. The intermediate model is then used by the C Code Gener-
ator which outputs C code and the necessary makefiles to build an applica-
tion.

TCC: C Code Generation

The intermediate model is used as input in which the C Code Generator out-
puts C code and the necessary makefiles to build an application. Most output 
from this stage will result in compiler errors or warnings, but some messages 
will also be visible from the generator itself.

TCG: C++ Generation

The C++ generation creates a set of C++ declarations based on the UML 
model.

TSI, OGC: SDL Import

Error Messages from the SDL import operation will be printed in the Script 
tab of the Output window.
420 IBM Rational Tau User Guide June 2009



Errors and Warnings from Build
TUI: UML 1.x Import

Error Messages from the UML import operation will be printed in the Script 
tab of the Output window.
June 2009 IBM Rational Tau User Guide 421



Chapter 9: Error and Warning Messages
TSX: Syntax Analysis
The syntax analysis checks how language elements are constructed and put 
together in order to form correct UML constructions.

The direct cause of syntax errors will in most cases be possible to locate in 
the UML model. 

Errors and warnings from this phase are prefixed with TSX.

Internal error: <string>

These kinds of errors should not appear. If they do, please contact IBM Ra-
tional Tau Support.

TSX0026: Port should not contain two in or two out 
parts

This error does not occur by normal usage of the tool. If incorrect customi-
zation or Add-Ins have been used, they can create such models. The correc-
tion should then be made in the customization or add-in.

TSX0047: Tagged values are not allowed here

In some places, for example inside a class symbol, you are prohibited to edit 
properties (Tagged values). Only the stereotype itself can be added.

The preferred way to edit properties is by using the Properties Editor.
422 IBM Rational Tau User Guide June 2009

http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/


TSC: Semantic Check
TSC: Semantic Check

About semantic checks

The semantic check verifies that the UML model is complete and that the re-
lations between language constructs are meaningful.

Semantic errors occur when there are incomplete constructs in your model. 
The UML Language Guide can be useful to identify supported constructs.

Errors and warnings from this phase are prefixed with TSC.

Complete listing of the semantic checks per code generator stereotype.

TSC0123: A cyclic dependency was found in definition 
of the %n. (via <string>)

This is a cyclic dependency error. Since two classes cannot be containers for 
the other one at the same time, this is illegal.

The following is an example of this error:

Example 92 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

class X {
    part Y y;
}

class Y {
    part X x;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC0134: Incomplete transition. A transition must end 
with stop, nextstate or join action

A decision must cover all answer possibilities, including 'else'. 
June 2009 IBM Rational Tau User Guide 423

adds/SemanticChecks.html


Chapter 9: Error and Warning Messages
TSC0092: A corresponding 'virtual' or 'redefined' 
operation was not found in the parent signatures (or 
parent signatures does not exist).

There are a number of situations that may be the cause of this error. The fol-
lowing examples shows the situations which can occur. 

Using a redefined operation in an active class that does not have generaliza-
tions: 

Example 93: Class without generalizations. ––––––––––––––––––––––––––––––––

active class P {
  redefined void Op() { }  
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Using a redefined operation in a generalization of an active class can cause 
this error: 

Example 94: No matching operation in the parent class. –––––––––––––––––––––

active class P {    
}
active class C : P {
     redefined void Op() { }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

When the operation (Op) in the parent class has a different signature there can 
be the following situations:

Example 95: Virtuality must be “virtual” or “redefined”. ––––––––––––––––––––

It is not possible to redefine non-virtual operations. 

active class P {
     void Op () {   } 
}
active class C : P {
    redefined void Op() { }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

Example 96: Different return type. –––––––––––––––––––––––––––––––––––––––

active class P {
424 IBM Rational Tau User Guide June 2009



TSC: Semantic Check
    virtual Integer Op () { return 1; } 
}
active class C : P {
    redefined void Op() { }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 97: Different count of formal parameters. –––––––––––––––––––––––––

active class P {
    virtual void Op (Integer x) {  } 
}
active class C : P {
    redefined void Op() { }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

Example 98: Different type of formal parameters. ––––––––––––––––––––––––––

active class P {
    virtual void Op (Integer x) {  }
}
active class C : P {
    redefined void Op(Real x) { } 
} 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC0196: A finalized operation cannot be redefined.

Operation in the parent class is finalized, but it has the same signature as in 
the child. 

Example 99: Finalized operation –––––––––––––––––––––––––––––––––––––––––

active class P {
    finalized void Op () { }
}
active class C : P {
    redefined void Op() { }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC0236: Operation '<name>' cannot be specified as 
'Realized' on a port.

The check will detect the following case:

active class <class name>
June 2009 IBM Rational Tau User Guide 425



Chapter 9: Error and Warning Messages
{
    port <port name> in with <in_name>;
}

where <in_name> is bound to some operation with the same name.

Example 100 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

active class a {
   void foo()  {}
   port p in with foo;
}

This will be reported as an error. To remedy this, foo() must be defined 
in an interface to the active class a.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC0237: Operation '<name>' cannot be specified as 
'Required' on a port.

The check will detect the following case:

active class <class name>
{
    port <port name> out with <out_name>;
}

where <out_name> is bound to some operation with the same name.

Example 101 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

active class a {
   void foo()  {}
   port p out with foo;
}

This will be reported as an error. To remedy this, foo() must be defined 
in an interface to the active class a.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC2300: Expression 'any (type)' cannot be of interface 
or state machine type

The following is an example of this error:
426 IBM Rational Tau User Guide June 2009



TSC: Semantic Check
Example 102 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

interface I {
}

active class X {
    Integer Op () {
        switch (any (I)) {
            case 5  : { return 1; }
            default : { return 0; }
        }
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC2302: An association from a datatype may not have 
a navigable remote association end

Since datatypes cannot have attributes, it is illegal to have an association 
from a datatype. The navigability must always be to the datatype.

This error does not occur by normal usage of the tool. If incorrect customi-
zation or Add-Ins have been used, they can create such models. The correc-
tion should then be made in the customization or add-in.

TSC2303: At most one association end may be aggregate 
or composite

Since aggregation and composition are different kind of “part-of” constructs, 
two classes cannot be containers for each other.

Example 103 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This situation could occur in the situation shown in Figure 167 on page 427. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 167: Classes with circular references.

X
 

Y
 

a

myX

0..1

myY

0..1
June 2009 IBM Rational Tau User Guide 427



Chapter 9: Error and Warning Messages
TSC2304: An attribute that is not a part may not have 
initial count

In UML it is not possible to specify the initial count for regular attributes. 
That is something that is only possible for parts.

The following is an example of this error:

Example 104 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

class Z {
    Integer [1..*] a / 1;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC2305: A part cannot have a default value

Parts are instances of active classes and they cannot have default values. The 
following is an example of this error:

Example 105 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

active class X {
    part Y a = 10;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC2306: A composite attribute or association end may 
not be typed by a datatype

Composite attributes also known as parts in UML must not be instances of 
datatypes.

The following is an example of this error:

Example 106 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

class X {
    part Integer d;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
428 IBM Rational Tau User Guide June 2009



TSC: Semantic Check
TSC2307: A composite attribute may not have a type, 
which owns this attribute (directly or indirectly)

This is a cyclic dependency error. Since a class cannot be a container for it-
self this is illegal.

The following is an example of this error:

Example 107 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

class X {
    part X y;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC2308: The 'via' of a call expression should reference 
either a port or a connector

The following is an example of this error:

Example 108 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

class Y {}
signal sig ();
active class X {
    port p out with sig;
    void Op () {
        output sig via Y;
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC0269: Generalization between 'Interface I' and 
'Class Y' is not allowed

The following is an example of this error:

Example 109 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

class Y {    
}
interface I : Y {
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 429



Chapter 9: Error and Warning Messages
TSC2325: Cyclic inheritance

This error is caused if a Signature is based on itself, directly or indirectly.

The following is an example of this error:

Example 110 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

class X : Y {
}
class Y : X {  
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TSC4001: When generating C code, return values must 
be handled in left hand side of assignment expression

Return values from for example value returning operations must not be ig-
nored. Such return values must be saved in for example an attribute. 

Example 111 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Consider an Operation Op, returning an Integer:

Op ():Integer

Call to Op:

...
Integer i;
...
i=Op(); // Correct way of calling Op
Op(); // Error is reported
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This check is performed only when the semantic checker is run in the context 
of a build which involves any of the C code generators and build types. 
(Model Verifier, C Code Generator and AgileC Code Generator). 
430 IBM Rational Tau User Guide June 2009



TNR: Name Resolution
TNR: Name Resolution
The name resolution identifies names of the UML entities and binds them to 
the correct definition in the model. Name resolution errors are caused by in-
consistencies in your model. This may happen when you change names on 
entities in such a way that ambiguities occur and can not be resolved in a de-
terministic way.

Errors and warnings from this phase are prefixed with TNR. 

TNR errors where the Subject of the error refers to the project file (.ttp file) 
rather than to a UML entity, should be reported to IBM Rational Tau Sup-
port.

TNR0023: Failed to locate element referred by: <name>

Entities can be located by its name (name binding) or by its GUID (GUID 
binding). 

Name binding uses the name to refer to an entity in the current scope. GUID 
binding means that an entity is referred by its unique id (GUID). That means 
that this error occurs if an entity for some reason is removed and it is referred 
somewhere in the model by its GUID.

Solutions are to load the entity with the correct GUID, remove the reference 
or change the reference so it uses name binding.
June 2009 IBM Rational Tau User Guide 431

http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/


Chapter 9: Error and Warning Messages
TAB: Application Build
The application builder is a IBM Rational Tau application that manages the 
entire process of generating another representation or application from the 
UML model.

Errors from the toolset responsible for this process could be related to an in-
correct set-up of your development platform. Errors that are not related to the 
restrictions found in the release notes should be reported to IBM Rational 
Tau Support.

Errors and warnings from this phase are prefixed with TAB.
432 IBM Rational Tau User Guide June 2009

http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/


TCI: C/C++ Import
TCI: C/C++ Import
The C/C++ import places external C or C++ header files into UML packages 
and transforms the data type declarations into a UML data model. 

This phase works on external data models, which must be correct with re-
spect to C/C++. Details of supported constructs and the resulting UML 
model are found in “Operation Principles” on page 542 in Chapter 15, 
C/C++ Import.

Errors and warnings from this phase are prefixed with TCI. 
June 2009 IBM Rational Tau User Guide 433



Chapter 9: Error and Warning Messages
TIL: Intermediate Language
The intermediate language phase makes any necessary transformations from 
the UML model to an intermediate representation required for efficient C 
code generation. The intermediate model is then used by the C Code Gener-
ator.

This phase operates on a model, which has been found semantically correct 
with respect to UML. Errors that are not related to restrictions found in the 
release notes should be reported to IBM Rational Tau Support. 

To help diagnose the situation, please send a complete model to IBM Ra-
tional Tau Support. so that the case can be addressed promptly.

To assist support in solving the situation, you can set the environment vari-
able TTD_INTERMEDIATE_U2_MODEL to 1 and rerun the build. This 
will result in saving on file an intermediate model which represents the trans-
formations needed to generate code. The file is named 
intermediate_model.u2 and is located in folder defined as Target Direc-
tory. Including this with your UML model will help support resolve the 
problem promptly. 

Errors and warnings from this phase are prefixed with TIL. 
434 IBM Rational Tau User Guide June 2009

http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/


TCC: C Code Generation
TCC: C Code Generation
The intermediate model is used as input in which the C Code Generator out-
puts C code and the necessary makefiles to build an application. Most output 
from this stage will result in compiler errors or warnings, but some messages 
will also be visible from the C Code Generator itself. 

To help diagnose the situation, please send a complete model to IBM Ra-
tional Tau Support. so that the case can be addressed promptly.

Errors and warnings from this phase are prefixed with TCC. 
June 2009 IBM Rational Tau User Guide 435

http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/


Chapter 9: Error and Warning Messages
TCG: C++ Generation
The C++ generation creates a set of C++ declarations based on the UML 
model. 

This phase works on a model, which has been found semantically correct 
with respect to UML. Errors that are not related to restrictions found in the 
release notes should be reported to IBM Rational Tau Support.

To help diagnose the situation, please send a complete model to IBM Ra-
tional Tau Support. so that the case can be addressed promptly.

Errors and warnings from this phase are prefixed with TCG. 
436 IBM Rational Tau User Guide June 2009

http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/


UML for Model Verification

The chapters listed under UML for Model Verification describe how the sim-
ulation and test features can be applied on a UML model. 
June 2009 IBM Rational Tau User Guide 437



Chapter : 
438 IBM Rational Tau User Guide June 2009



11
Verifying an Application

The Model Verifier allows you to verify the behavior of your UML model 
and that the implementation is correct.

When you are building an instrumented application for the Model Verifier, 
you are performing similar instructions as you are when building an applica-
tion with the C Code Generator. This section lists the basic build function-
ality and it covers the basic usage of the Model Verifier.

See also

Chapter 12, Model Verifier Reference.

Chapter 55, Debugging a C++ Application.
June 2009 IBM Rational Tau User Guide 439



Chapter 11: Verifying an Application
Overview of the Model Verifier
The Model Verifier allows you to verify the behavior of your UML model 
and to verify that the implementation is correct. Using the Application 
Builder, you generate a C code executable program, that is an instrumented 
application, from your model and you link it with a predefined run-time li-
brary which is customized for simulation purposes. To simulate the model 
means that you run the executable program using various commands and 
breakpoints. You can run the simulation automatically or can manually step 
through transitions, send signals, etc.

You can control the Model Verifier from the user interface or you can control 
it using Model Verifier Console commands. During the simulation session 
you can view different aspects of your implementation. You can focus on the 
internal behavior of the model, or maybe you are just interested in verifying 
the signaling to and from the environment.

The execution of the simulation session can be traced graphically in state ma-
chine or activity diagrams, textually in the Output window or in sequence di-
agrams. The simulation session produces logs that can be saved as text files.

If your application communicates with the environment, this behavior can 
also be simulated. By sending messages, you simulate signals going in to 
your model from the environment.

During the simulation session, you have a number of views available that dis-
plays different aspects of the simulation. This allows you to monitor values, 
steps, etc.

You can also use the Model Verifier for simulating activities. See Activity 
Simulation for more details.

Generating an Instrumented Application
There are several methods available for generating an instrumented applica-
tion. Which to use is dependent on your needs. 

Important!
You must have a C/C++ compiler installed to generate an executable Model 
Verifier application. 
440 IBM Rational Tau User Guide June 2009



Generating an Instrumented Application
Using Build Artifacts

This method allows you to specify the build settings by applying stereotypes 
and attributes in order to customize the build of the application, should the 
default build settings not be adequate. 

To use a Build Artifact to build a Model Verifier: 

– If required, create the build artifact. Right-click and choose Model 
Verifier from the shortcut menu, followed by the submenu New Ar-
tifact. 

– Right click the build artifact for the Model Verifier of your choice. 
On the shortcut menu, select Build (Model Verifier), and then the 
submenu Build.

Hint
This build artifact can now be reused for the build and launch of future 
Model Verifier sessions.You do not have to create a new build artifact for 
each build. 

Building a Selective Model Element

Since build artifacts are mandatory for a build to take place, it is not possible 
to order the build of a Model Verifier on a UML model element without first 
having to create a build artifact. 

However, the tool provides the functionality to simplify this. 

1. Right-click the desired Build Root in the model view

2. Select the menu choice Model Verifier followed by the menu choice 
New Artifact. 

– A build artifact with default settings suitable for the build of a Model 
Verifier, and with a default name ArtifactNNNN is created for you. 

3. Now select the command Model Verifier again and the submenu 
Launch.

Using Configurations for Build

This method allows you to build several build artifacts at the same time. 
However, at most one of those build artifacts should be a Model Verifier 
build artifact, since only one instance of the Model Verifier is allowed to ex-
ecute at the same time.
June 2009 IBM Rational Tau User Guide 441



Chapter 11: Verifying an Application
Note
To simulate an activity model you need to use a specific Add-in (ADSim) 
which creates a Build Artifact automatically for you from the activity to 
simulate. This build artifact can then be launched as usual, as described 
above. For more information on the topic of activity simulation see Activity 
Simulation.

See also

Chapter 27, Building Applications Reference

Running the Model Verifier
You can start the Model Verifier after a Model Verifier build is completed 
without errors. When the Model Verifier starts, the Instances tab opens in the 
Workspace window. In the Output window, the Model Verifier tab opens.

Start the Model Verifier

You can either start a Model Verifier executable resulting from a previous 
build, or build and start a Model Verifier with one command. 

Start Model Verifier without building

You can use this command if you have already built a Model Verifier. 
Avoiding a rebuild speeds up the launch process, however no checks are per-
formed to verify that the Model Verifier originates from the model currently 
loaded in the workspace. If that is not the case, or if the model has changed 
since it was built, then incorrect or incomplete information may likely be dis-
played by the Model Verifier.

1. On the Build menu, select Start Model Verifier.

2. In the dialog that is displayed, specify the name and location of a file that 
contains a Model Verifier executable (this file has to be created by a pre-
vious build).

– The Browse button is a handy feature to browse through the file 
system using a standard Open dialog. 

After the OK button is pressed, IBM Rational Tau attempts to launch the 
Model Verifier on the specified executable, after performing some non-ex-
haustive checks that the file seems to contain a Model Verifier executable.
442 IBM Rational Tau User Guide June 2009



Running the Model Verifier
Launching after Using Build Artifacts

This method is useful if you already have created a build artifact for a Model 
Verifier.

1. In the Model View, right-click the build artifact manifesting the Model 
Verifier to launch.

2. On the shortcut menu, select Build (Model Verifier), followed by the 
menu choice Launch.

A Model Verifier is built and, if the build is successful, the newly built Model 
Verifier is launched.

Launching after Building a Selective Model Element

If you do not yet have any suitable build artifact for a Model Verifier, you 
can proceed as follows:

1. In the Model View, right-click the class to become the Build Root.

2. On the shortcut menu, select Model Verifier followed by the menu 
choice New Artifact.

– A new build artifact named ArtifactNNNN is created

– If desired, rename the newly created build artifact, and adjust the 
build settings (optional).

3. On the shortcut menu, select Model Verifier again, then select the name 
of the newly created artifact (named Artifact0001 by default) and lastly 
Launch.

Launching after Using Configurations for Build

This method is handy in case you want to build multiple build artifacts, of 
which one is a Model Verifier, and launch the newly built Model Verifier. 
One special application is when your configuration contains exactly one 
Model Verifier build artifact.

– In the project toolbar, click the button Execute Configuration. This 
orders a build of all build artifacts contained in the active configura-
tion and launches the newly built Model Verifier
June 2009 IBM Rational Tau User Guide 443



Chapter 11: Verifying an Application
Note
At most one Model Verifier can be launched at the same time. If multiple 
Model Verifier build artifacts are found, all are built but only one will be 
launched. 

Note
The user must have administrator privileges on Windows Vista in order to 
unblock the ports used by the generated application.

Exit the Model Verifier

To exit the Model Verifier, you can proceed with either of following:

– On the Verify menu, select Stop Model Verifier. 

– On the Build menu, select Stop

Instances

When you start the Model Verifier, the Instances tab opens. It displays:

• A tree of active class instances that are being executed. Inheritance rela-
tionships and instantiations are flattened and new nodes that are repre-
senting live active class instances with their instance number are shown.

• Run-time dependent objects: the ready queue, the timer queue, the 
system environment instance and the active timer list if that object exists.

Attributes and formal parameters are displayed as child nodes of active class 
instances nodes. Their values, however, are displayed in the Watch window.

Implicit attributes are created to represent:

• The control state of state machines, the state attribute

• Predefined identifiers of data type Pid: Sender, Parents, Offsprings

• The call stack of instances of active classes, the CallStack attribute

• The message queue of the instances of active classes, the Queue attribute.

Ready queue

The ReadyQueue object is shown as a list of identifiers. The syntax of the 
identifiers is: instance_name[instance_number]

The following information is displayed on the same line as the identifier:
444 IBM Rational Tau User Guide June 2009



Tracing the Execution
• The current state of the active class instance: <state_name>. If the in-
stance is executing a transition, indicating that it is leaving its state, the 
state is instead displayed as: (state_name)

• The next signal to be consumed: >signal_name

• The length of the message queue: ]number

Timer queue

The elements in the TimerQueue object are similar to those in a message with 
an additional field of the type Time.

Tracing the Execution
When you are running your Model Verifier, you can easily obtain trace in-
formation of the execution. This allows you to track each transition and event 
in your application. You can select between three different tracing methods.

• Textual tracing

• UML model tracking

• Sequence diagram tracing.

You can enable any combination of the three methods above.

Textual trace

The textual trace displays each executed step in the simulation in the Model 
Verifier tab in the Output window. You can select the extent of the displayed 
information by setting the trace level of the output. Trace levels from 0 to 6 
are available. The trace level 1 is set by default. Level 0 indicates that the tex-
tual trace is disabled.

You can also decide which unit that the trace levels should be applied to. A 
unit is an active class instance. If you do not specify any unit, the trace set-
tings apply to all units.

The trace level can only be changed using the Model Verifier Console input.

• To change the trace level, type set-trace <optional unit name> 
<trace-level>.

– If you type ‘?’ as the unit name, a list with all available units will be 
presented,
June 2009 IBM Rational Tau User Guide 445



Chapter 11: Verifying an Application
• To disable the textual trace, type set-trace 0.

See also

“Textual trace levels” on page 492

“Set-Trace” on page 525

Custom textual trace

It is possible to trace custom text messages to the Model Verifier console. 
This can be used to print application specific debug information, and could 
be a useful complement to the built-in trace information.

In order to trace a text message in the console window the utility function 
xPrintString() can be used. The function is defined in the libraries for the 
Model Verifier, in the file scttypes.h 

Example 112: Using xPrintString() –––––––––––––––––––––––––––––––––––––––

#include <scttypes.h> /* For the definition */
...
xPrintString("Bugs Bunny\n");
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Formatting of strings prior to trace

xPrintString() expects a preformatted string to trace. If you need to 
format the string you can either do this before calling xPrintString() (see 
Example 113 on page 446), or you can use the function xWriteBuf_Fmt(). 
This function accepts “printf”-style arguments.

Example 113: Formatting of strings–––––––––––––––––––––––––––––––––––––––

Achieving the results expressed using the C statement:

printf("x=%d\n", 4);

Should be achieved in two steps, as follows:

char str[20]; /* array long enough to hold the result */
sprintf(str, "x=%d\n", 4); 
xPrintString(str);

Or, alternatively:
446 IBM Rational Tau User Guide June 2009



Tracing the Execution
xWriteBuf_Fmt("x=%d\n", 4);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Textual trace for applications

You may also combine the textual trace used when running the Model Veri-
fier with the ability to print trace messages while running the target applica-
tion. To manage the trace code and distinguish its use between Model Veri-
fier and target application sessions, you could combine both uses by 
conditional compilation looking at a significant C macro (such as XTRACE), 
as exemplified below:

Example 114: Combining Model Verifier and application traces –––––––––––––––

#ifdef XTRACE
  /* XTRACE is defined for Model Verifier */
  #define myprintf(S) xPrintString(S)
#else
  /* If not Model Verifier, then assume application*/
  #define myprintf(S) printf(S)
#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML model tracking

This tracking method allows you to follow execution in the UML diagrams 
that were used for defining the simulated model. For example, it is possible 
to follow execution of state machine transitions and statements in state chart, 
class and text diagrams of your UML model. Using the ADSim add-in, exe-
cution can also be tracked in activity diagrams (see Activity Simulation for 
more information).

When the tracking starts, the diagram with the selected statement opens. 
When the execution continues, the next statement in the diagram is high-
lighted and so on.

Note
UML model tracking is enabled by default.

Enabling UML model tracking

To enable UML model tracking, perform one of the following tasks:

• On the Verify menu, click Show next statement.
June 2009 IBM Rational Tau User Guide 447



Chapter 11: Verifying an Application
• Click the Show next statement button on the Model Verifier toolbar.

UML model tracking is enabled when the button is pressed in.

Disabling UML model tracking

To disable UML model tracking, execute the command Show next state-
ment again.

State machine vs. Activity tracking mode

By default the Model Verifier executes in state machine mode. In this mode 
the focus is on displaying the current point of execution, that is the statement 
that is about to be executed next. A green triangle is inserted beside the 
symbol or the statement within a symbol that is about to be executed.

When simulating activity models, which use an execution model based on 
token flows, it is more appropriate to use the activity mode. Then the focus 
is to track the execution of activity nodes, as a consequence of token flows. 
Activity node execution is tracked textually, and graphically by selecting the 
executing activity node symbol.

When starting the Model Verifier it will automatically select the appropriate 
tracking mode for your model. If needed, you can switch between state ma-
chine and activity tracking mode by using the commands statemachine-
mode and activity-mode in the Model Verifier Console input.

Note
If the activity-mode command is not used when simulating an activity 
model, tracking will be done in state machines generated by the ADSim 
add-in. This can be confusing, and is generally not recommended. It is not 
possible to track the execution to both state machines and activities simulta-
neously.

See also

“Change sequence trace level and UML model tracking level” on page 476

“Execution tracking levels” on page 493
448 IBM Rational Tau User Guide June 2009



Tracing the Execution
Sequence diagram tracing

This tracing method allows you to follow each transition in a sequence dia-
gram, and to observe signal sending that takes place in the transitions. 

Enabling sequence diagram tracing

To enable tracking in sequence diagrams, perform one of the following tasks:

• On the Verify menu, click Tracing in Sequence Diagram.

• Click the Tracing in Sequence Diagram button on the Model Verifier 
toolbar.

Sequence diagrams tracing is enabled when the Tracing in sequence diagram 
button is pressed in.

The sequence diagram trace window can be opened as a normal window, or 
as a docked window. This behavior can be controlled by the option Dock se-
quence diagram trace window.

See also

“Sequence diagrams” on page 2500

Disabling sequence diagram tracing
• To disable sequence diagram tracing, execute the command Tracing in 

Sequence Diagram once more.

Navigating to the UML source

If you double-click a symbol in the sequence diagram, you will navigate to 
the position where the symbol originated.

Interrupting the trace

The tracing is interrupted if the model is changed during the tracing, for in-
stance if you move the newly created sequence diagram from its default lo-
cation. However, you can open a new sequence diagram and continue the 
tracing in that diagram.
June 2009 IBM Rational Tau User Guide 449



Chapter 11: Verifying an Application
Changing sequence diagram trace levels

The granularity of the information presented when tracing in sequence dia-
grams can be changed to the user’s convenience. 

Hint
When using both UML model tracking and sequence diagram tracing at the 
same time, it is convenient to dock the sequence diagram window at one 
side of the IBM Rational Tau IDE. To do this, right-click on the title bar of 
the sequence diagram window and select “Docked to...”. 

Hint
For any realistically sized application it is typical that the sequence dia-
gram that results from a trace will contain a large number of lifelines. A se-
quence diagram trace of an activity simulation session typically also leads 
to a large number of lifelines. In this situation it is often useful to zoom out 
the diagram to get an overview. Use for example “Zoom -> Zoom to fit” in 
the diagram context menu. In this overview mode texts on symbols and lines 
are typically too small to read. But by resting the mouse over a symbol or 
line in the diagram its text will be displayed in a tool-tip.

See also

“Change sequence trace level and UML model tracking level” on page 476

“Sequence diagram trace levels” on page 493

Executing the Application
There are several different commands available to start the execution. Select 
the command that suits your needs.

Start the execution

The execution can be started using one of the following methods:

• On the Verify menu, click the command you want to use.

• Select the command from the Model Verifier toolbar.

• Type the command in the Model Verifier Console.
450 IBM Rational Tau User Guide June 2009



Executing the Application
See also

“Syntax of commands” on page 503

“Model Verifier Console” on page 475

Stop the execution

When you have started the executed with, for instance, the Go command, you 
can only stop the execution by using one of the following methods:

• On the Verify menu, click Break.

• Select Break from the Model Verifier toolbar

• Type break in the Model Verifier Console

Note
The execution also stops at each active breakpoint, when the application be-
comes idle or when a dynamic error has occurred.

Re-start the execution

You can run the same simulation over and over again by using one of the fol-
lowing methods:

• On the Verify menu, click Restart.

• Select Restart from the Model Verifier toolbar

The simulation always restarts from the beginning, that is simulation time 
zero. If you want to run the simulation from a specific position, it must be run 
in replaying mode.

See also

“Replaying Mode” on page 464

Run-Time prompting

Some constructs like informal decisions, ANY decisions and non-imple-
mented operators require user input to continue the execution. 
June 2009 IBM Rational Tau User Guide 451



Chapter 11: Verifying an Application
Decision prompting

When an informal decision or an ANY decision is reached in the execution, 
a dialog opens displaying the possible choices. Select your choice, click OK 
and the execution resumes.

Operation prompting

When an operation of a passive or active class is declared but has no imple-
mentation, its execution opens a dialog. This dialog contains a tree structure 
similar to a Watch window.

The tree structure shows the stack frame of the operator call, that is a root 
node with the name of the operation, with child nodes for each argument, and 
a child node called result. If the operation belongs to a passive class and is 
not static, there is also a node named itself which is the object on which the 
operation is applied.

• You can modify any element of the tree. Each assignment is registered in 
the current scenario.

• You can also use other commands to modify the state of the model, for 
instance if the operation belongs to an active class it may want to send a 
signal

• Click the OK button to continue execution.

Insert and remove breakpoints

Breakpoints can be set to allow you to stop the execution at positions that are 
of interest. Breakpoints can be set in the model at any time, it is not necessary 
to have a started Model Verifier application. 

Insert breakpoints

To insert a breakpoint:

1. Open the diagram that contains the symbol where you want to insert the 
breakpoint.

2. Right-click the symbol, or click in its text, and select Insert/Remove 
Breakpoint from the shortcut menu. A red dot is added to the symbol 
frame or next to a statement within a symbol frame to indicate that the 
breakpoint has been inserted.
452 IBM Rational Tau User Guide June 2009



Executing the Application
You can also insert a breakpoint via commands in the Verify menu from the 
Model Verifier toolbar.

Inserted breakpoints are listed in the Breakpoint window.

Precise positioning of breakpoints

Below are some examples of how to set breakpoints to achieve the exact po-
sition you desire.

• To set a breakpoint to a specific statement, when an action symbol con-
tains several statements, position the cursor before the ending semicolon 
of the statement.This also applies to setting breakpoints in text diagrams. 

• To insert a breakpoint on a for statement, position the cursor anywhere 
in the keyword for.

• To insert a breakpoint on a while-do statement, position the cursor any-
where in the keyword do.

• To insert a breakpoint on a nextstate action, insert it on the flow line 
going to the state symbol.

Remove breakpoints

To remove a breakpoint:

1. Open the state machine diagram that contains the symbol where the 
breakpoint is inserted.

2. Right-click the symbol and click Insert/Remove Breakpoint from the 
shortcut menu.

You can also remove breakpoints from the Breakpoints window.

List breakpoints

To list breakpoints:

All inserted breakpoints can be listed in the Breakpoint window. This allows 
you to locate any existing breakpoint in your model.

• On the Edit menu, click Breakpoints
June 2009 IBM Rational Tau User Guide 453



Chapter 11: Verifying an Application
You can enable and disable breakpoints by selecting or clearing the check 
boxes in the Breakpoints window. Disabling a breakpoint is not the same as 
removing the breakpoint. Removed breakpoints are not listed in the Break-
points window.

If you double-click the breakpoint entry, the diagram where the breakpoint is 
set opens.

See also

“Model Verifier Console” on page 475

Send messages

To simulate the behavior of the environment, you can manually send mes-
sages from the environment to your model. The messages you want to send 
must be inserted in a message list. A message is a signal with its parameters 
including sender and receiver paths.

You can also add internal messages to the list. An internal message is a mes-
sage that has both its sender and receiver within your model. This allows you 
to verify incomplete systems. You can manually send messages that are not 
yet implemented. This feature also allows you to test the robustness of your 
model. You can test, for instance, that the model can handle unexpected sig-
nals.

You can send messages any time during the simulation session.

Create a message

To create a message:

1. On the View menu, point to Model Verifier Windows and click Mes-
sages. The Message list opens in the Output window.

2. Right-click the first row in the list and click Insert from the shortcut 
menu that appears.

3. Click each column to display a list of available signals, senders etc. Make 
your selections.

Elements of the lists in the separate boxes are given with their complete path, 
so that they can be precisely identified. Examples of paths are 
“a_block.a_process[an_integer]” or “a_package::a_signal”. 
454 IBM Rational Tau User Guide June 2009



Executing the Application
The syntax of the Parameters field is the UML syntax for a list of expres-
sions. Two predefined values are provided, a list of the parameters sorts and 
[[-]] sign. When you select [[-]], the Model Verifier selects a “default NULL” 
value for you. For example, default NULL value for integer is 0, and for a 
character string it is an empty string (“ ”). 

You can type text instead of choosing an element in the box. In this case you 
can specify an incomplete path. This means that you can omit the beginning 
of the path. However, you must not omit the end, not even the instance 
number. 

Note
When typing a reference to a signal it must be followed by a comma-sepa-
rated list of the signal parameter types enclosed within parenthesis. This is 
required since there may be many signals with the same name, but with dif-
ferent parameter types. If the referenced signal has no parameters, the 
signal name should be followed by an empty pair of parenthesis.

Send a signal

To send a signal:

1. In the Message list, right-click the signal you want to send.

2. Click Send to send the signal.

Complex signal parameter values

Sometimes you may have very complex values that need to be inserted in the 
Parameters field. The following instructions will help you to define the pa-
rameter value:

1. Choose the [[-]] expression in the Parameters field.

2. Send the message.

3. Open a Watch window on the Queue of destination instances.

4. Open the Watch tree to observe the message that you have sent.

5. Press F2 and set the parameter values.

6. Select the tree nodes which represent the parameters.

7. Apply the Deep Copy command.

8. Paste the result in the Parameters field.
June 2009 IBM Rational Tau User Guide 455



Chapter 11: Verifying an Application
Complex parameters (classes, strings etc.) that are part declared will be re-
ferred by value, parameters that are not part declared will be referenced by a 
pointer. To assign a new value to a parameter that are not part declared it 
must be enclosed in curly brackets ({}). Classes must be type casted to be ac-
cepted. Elements of passive classes must be formally assigned to the element 
name.

Example 115: Signal parameters –––––––––––––––––––––––––––––––––––––––––

class Class2 {
    Integer p1;
    Real p2;
}
interface i {
    signal mySig1( myString par1);
}
syntype myString = String<Class2>;

To send a signal mySig1 here is an example of how to enter a value of type 
myString in the parameter field of the Messages window. 

{Class2 (. p1=8, p2=5.1 .), Class2 (. p1=4, p2=5.6 .)} 

This example represents a string with two elements of type Class2. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Passive class values” on page 500 in Chapter 12, Model Verifier Reference 
for information on how values can be entered in other situations and using 
the syntax of other supported languages like SDL and ASN.1.

Watch window

During the simulation session, you can watch in a separate window any of 
the model objects that are available in the Instances view. You can watch ac-
tive class instances, active class instance sets, attributes of active class in-
stances, attribute elements and run-time objects such as message queues, 
timer instances and call stacks.

The values are displayed in a Watch window. You can watch as many objects 
as you want and you can open multiple watch windows.

The objects are stored in the Watch window even if you close the view 
window.
456 IBM Rational Tau User Guide June 2009



Executing the Application
Watching instance objects

To watch instance objects:

1. Right-click the object in the Instances view.

2. Click Watch.

A Watch window opens displaying the object and its values. If a watch 
window is already opened, the object is added to the latest selected watch.

You can also drag and drop an object from the Instances view if a Watch 
window is already opened. Any object in the Instances view can be watched.

Removing instance objects from the Watch window

To remove instance objects:

• In the Watch window, right-click the object you want to remove and click 
Unwatch. This removes the selected tree root from the view.

Opening an empty Watch window

To open a new, empty Watch window:

• From the Verify menu, click Open new watch.

View and edit via the Console window

For viewing/editing complex types such as an array or a structured data type 
during a debugging session the Model Verifier Console window can be an ef-
fective tool. With some console commands you can print/edit the whole at-
tribute, a range of elements or one element. 

Example 116: Print an array element––––––––––––––––––––––––––––––––––––––

Consider an attribute named myData, which is a pointer to a struct, and con-
tains an array as one of its elements. 

Examine-Variable (MyClass:1) myData -> bits  22

This will print the 22nd element in the array.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 457



Chapter 11: Verifying an Application
Example 117: Print a range of array elements ––––––––––––––––––––––––––––––

Consider an attribute named myData, which is a pointer to a struct, and con-
tains an array as one of its elements. 

Examine-Variable (MyClass:1) myData -> bits  22 25

This will print element 22 to 25 in the array.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 118: Initialize an element –––––––––––––––––––––––––––––––––––––––

Consider an attribute named myData, which is a pointer to a struct, and con-
tains an array as one of its elements. 

Assign-Value (MyClass:1) myData -> bits 22 1

This will set the 22nd element to 1.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 119: Print an array element –––––––––––––––––––––––––––––––––––––

Consider an attribute named myData, which is a pointer to a struct, and con-
tains an array as one of its elements. 

Examine-Variable (MyClass:1) myData

This will print the whole array.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Print address and value of a pointer

This command will set the Model Verifier mode to print only the address of 
pointers. This is the default mode.

REF-Address-Notation

The following command will change the Model Verifier mode to follow the 
pointer and print the value of the element referred to:

REF-Value-Notation
458 IBM Rational Tau User Guide June 2009



Executing the Application
Change element values

During the simulation session, you can change the values of the elements 
manually. This feature allows you to quickly test different values for an ele-
ment.

To change the element value:

1. In the Watch window, click the element and press F2.

2. Type the new value in the text field that appears. Press ENTER.

If you type an illegal value, the element will preserve its previous value.

Display element values

In some situations, for example at a certain point in time during the simula-
tion session, it is of interest to know the values of attributes, signals, states, 
etc. The values are displayed in the Model Verifier tab in the Output window. 
This means that the values are saved if you want to log the debug results.

1. In the Instances view, select the elements you want to display.

2. Right-click the elements you selected and click Display. The values are 
displayed in the Output window.

See also

“Log the result” on page 461

Copy and paste element values

It is possible to copy and paste the values of the elements in the Instance view 
or in the Watch view. The commands that are available are Copy, Deep copy 
and Paste.

Note
No element altering commands are provided (such as Cut), except for pre-
defined text operations in edit mode.
June 2009 IBM Rational Tau User Guide 459



Chapter 11: Verifying an Application
Copy

The Copy command can be applied on objects that are not active, nor opera-
tion, nor messages. The command makes a copy of a text representing the 
value of the object as a UML expression. When several objects are copied at 
the same time, their values are separated by commas.

The copied text can then be pasted to assign a given value to another element 
during the session.

When an object contains references to other objects, it is the physical address 
of the other object that is copied. When a physical address is copied, it is not 
recommended to paste it in your model since physical addresses are not valid 
in later sessions.

To copy using the Copy command:

1. Click the object in the Instances View or in the Watch window.

2. From the Edit menu, click Copy. 

3. Select the object you want to assign the value.

4. Press F2 to enter edit mode.

5. Right-click the field and click Paste from the shortcut menu.

Deep copy

This command is similar to the Copy command. The only difference is that 
when the object contains a reference to another object, it is the value of the 
other object which is copied rather than the physical address.

The resulting text can then be pasted, for instance, to assign a given value to 
another object, or in the parameters field in the Messages dialog, or in your 
model to define named constants, or to define values of signal parameters in 
Sequence diagram, etc.

The Paste command can be applied when the copied object is a UML static 
constant attribute: the UML expression which defines the constant is as-
signed to the object.

To copy using the Deep Copy command:

1. Right-click the object in the Instances View or in the Watch window.

2. From the shortcut menu that opens, click Deep Copy.

3. Select the object you want to assign the value.
460 IBM Rational Tau User Guide June 2009



Executing the Application
4. Press F2 to enter edit mode.

5. Right-click the field and click Paste from the shortcut menu.

See also

“UML Expressions” on page 471 

Create or delete instances

To be able to create and delete instances enhances the possibilities to verify 
your model. You can create and remove instances in either the Instances 
window or in the Watch window.

To create a new instance
1. Right-click the active class instance you want to make a new instance of.

2. Click New.

To delete an instance
1. Right-click the object you want to delete.

2. Click Delete Instance. This command:

– Stops the selected object if it is an instance of active class

– Resets the selected object if it is a timer instance

– Deletes the selected object if it is under a pointer object

– Removes the selected object if it is a messages of a message queue

– Removes the selected object if it is a passive list object.

Locate objects

The definition of the objects in the Instances view and in the Watch window, 
can easily be located by double-clicking the object. The definition is dis-
played in the diagram type that best describes the object.

Log the result

The result of the execution can be logged. You can log the textual trace and 
the sequence diagram tracking.
June 2009 IBM Rational Tau User Guide 461



Chapter 11: Verifying an Application
Log the textual trace

The textual trace is displayed in the Model Verifier tab in the Output 
window. To save the result in a text file, perform the following tasks:

1. In the Output window, click the Model Verifier tab.

2. Right-click anywhere in the text area, and click Select all on the shortcut 
menu that opens.

3. Right-click once more in the text area, and click Save as on the shortcut 
menu.

4. Decide a name for the log file and save the file.

Log the sequence diagram trace

To save the result, perform the following tasks:

1. Make sure that Tracing in Sequence Diagram is enabled.

2. Start the execution.

3. Right-click the package DebugTrace that is available in the Model View 
and click Save in New File.

To save the result in a text file, perform the following tasks:

1. In the Model Verifier Console, type start-batch 2 <filename.txt>

2. Start the execution.

3. When you are done, type stop-msc-log. 

The file is saved in the same folder where your model is saved.

Static coverage views

The static coverage views are displayed as separate tabs in the Output 
window. The available tabs are Coverage Statistics, Code Coverage and 
Transition Coverage.

You can sort the lines in the report tabs according to any column by clicking 
on the column header. To sort according to a “primary” column and a “sec-
ondary” column, you sort first by the secondary column, then by the primary 
one.
462 IBM Rational Tau User Guide June 2009



Executing the Application
To view coverage statistics

Follow the instructions below to view the coverage statistics:

1. From the Verify menu, click Show Coverage Statistics. The Coverage 
Statistics tab opens in the Output window.

2. In Coverage Statistics tab, right-click a line and from the shortcut menu 
that opens, click Show Coverage Details. Depending on what kind of 
line it is, the Code Coverage tab or the Transition Coverage tab opens.

An alternative way to open the coverage details tabs is to double-click the 
line in the Coverage Statistics tab.

3. Select one of the coverage details tabs and right-click a line. From the 
shortcut menu, click Locate. The corresponding source will now be dis-
played in a state machine diagram.

The coverage information is updated each time you issue this command. Fur-
thermore, the “Code Coverage” and “Transition Coverage” views are up-
dated if they are defined.

Coverage Statistics tab

The Coverage Statistics tab lists the operations of the model that is being ex-
ecuted. The columns of the “Coverage Statistics” report are:

• Operation: This is the name of the operation

• Path: This is the full path of the operation

• Kind: The available values are:

– statements if the line describes the coverage of statements

– transitions if the line describes the coverage of transitions

• Number: This is the number of statements or transitions of the operation

• Covered: This is the number of statements or transitions that are covered, 
that is executed at least once during the session.

• % Covered: This list how much of the statements or transitions that has 
been executed.

• Maximum queue length: For operations which are constructors of ac-
tive classes, this columns lists the maximum length of the queue of the 
instances of the active class, which was reached during the sessions.
June 2009 IBM Rational Tau User Guide 463



Chapter 11: Verifying an Application
Code Coverage tab

The Code Coverage tab lists detailed information about the statements of the 
operations. The columns of the Code Coverage report are:

• Operation: This is the name of the operation.

• Path: This is the full path of the operation.

• Statement: This columns lists the statement that is executed.

• Coverage: This lists the number of time the statement was executed 
during the session.

Transition Coverage tab

The Transition Coverage tab lists detailed information about the transitions 
of the operations. The columns of the Transition Coverage report are:

• Operation: This is the name of the operation.

• Path: This is the full path of the operation.

• State: This is the state from which the transition starts.

• Signal: This is the path of the signal which triggers the transition.

• Coverage: This lists the number of time the transition was executed 
during the session.

Replaying Mode
The replay mode allows you to record all performed executions steps and 
user commands from the initial state of the application. The execution steps 
and user commands are saved in a scenario. The scenario can be saved and 
be replayed to any given state within the application.

You can for instance record the scenario which passes through a complex ini-
tialization phase of your application, and replay it whenever you need. Or 
you can record a scenario if the debug session must be interrupted and con-
tinued later.

Execution steps that are recorded in a scenario are:

• Transitions

• Time-out of timers.
464 IBM Rational Tau User Guide June 2009



Replaying Mode
User commands recorded in a scenario are the commands which modify the 
state of the application. They are:

• Signal Sending

• New

• Delete

• Re-arrange

• Assignment.

Open a scenario

When you open a scenario, that scenario becomes the current scenario. The 
previous contents in the current scenario will be deleted.

The scenario can be viewed in the Scenario window.

Load a scenario file

To load a scenario file:

1. On the File menu, click Open Scenario.

2. Select the scenario file you want to use and click Open.

Backward compatibility

If you open a scenario file that was saved in a previous version of IBM Ra-
tional Tau, signal sending and assignment steps are transformed to ensure 
backward compatibility. 

• For signal sending steps, parameters of messages are marked with an 
SDL prefix. This means that the parameters will not be handled as UML 
expressions.

• For assignment steps, the assigned value is transformed as a UML infor-
mation expression with an SDL prefix. This means that the values will 
not be handled as UML expressions.
June 2009 IBM Rational Tau User Guide 465



Chapter 11: Verifying an Application
Important!
The names of implicit instances can change between releases. This can thus 
require you to edit or regenerate scenarios that have been generated in an 
earlier version.
A Receiver of a message can for example change from:
mm_om.AAA.@part_@implicit_process[1]
to:
mm_om.AAA.@part_@implicit_process_0[1]

Note
A scenario generated in a previous version of IBM Rational Tau may be in-
valid due to the fact that the scenario file is not converted to reflect internal 
model changes. Such changes in the model files are automatically converted 
when you open a .u2 file in a newer version of IBM Rational Tau.

Save a scenario

Each time you execute a simulation, the executions steps are listed in the cur-
rent scenario. This scenario is overwritten each time you start a new execu-
tion.

However, you can save the current scenario into a file, to replay it later. Sce-
nario files have a suffix .ttdscn and the suggested default name of the cur-
rent scenario is default.ttdscn.

Save a scenario

To save a scenario:

1. Execute the steps you want to include in the scenario. The performed 
steps are listed in the scenario window.

2. On the File menu, click Save Scenario.

View the contents of a scenario

Each execution step is listed in the scenario window. The scenario is a list of 
text elements describing each step. This list is not editable from the Scenario 
window.

When you are running the scenario, you can follow each execution step. Ex-
ecuted steps are marked in the respective check boxes.
466 IBM Rational Tau User Guide June 2009



Replaying Mode
To open the Scenario window
• On the View menu, point to Model Verifier Windows and click Sce-

nario.

See also

“Execution steps” on page 530

“User commands” on page 530

Execute a scenario

The scenario cannot be executed if the steps do not match the application. In 
this case you will be notified in the Model Verifier tab of the Output window.

The scenario always starts from the first execution step. When executed, each 
step is checked.

To execute a scenario:

1. On the Verify menu, click Replay Mode, if it is not already enabled.

2. Select the command you want to run:

– Use the Go command to execute all steps in the current scenario. The 
execution is only interrupted by breakpoints.

– Use the Next Transition command to execute the next step of the 
current scenario. It can be a transition, a time-out, or a user command. 
This command is disabled if the current position in the current sce-
nario is at the end.

– Use the Step Into command to step into the transition which is de-
scribed by the next scenario step.

– The Step Into, Step Over and Step Out commands behave as usual 
when a transition is already under execution, otherwise they are dis-
abled.

Note
The behavior of the commands above are only valid if the Model Verifier is 
set in replay mode.
June 2009 IBM Rational Tau User Guide 467



Chapter 11: Verifying an Application
Model Verifier Configuration
A Model Verifier configuration lists properties and actions that you have per-
formed during the execution. The information in the configuration includes:

• Messages that you have inserted in the Messages window.

• Breakpoints that you have inserted and that are listed in the Breakpoints 
window. Break conditions that are set through Model Verifier Console 
commands Breakpoint-* are not included.

• Sequence diagram trace levels that you have set to another value than 
“according to parent”.

• Execution tracking levels that you have set to another value than “ac-
cording to parent”.

• Instances that you have added to each Watch window.

Note
The graphical layout of Watch windows is not saved.

Each time you execute a model, a current configuration is created. The cur-
rent configuration can be saved and thus be reused later. This means that each 
time you execute a model, you do not have to insert your breakpoints, mes-
sages etc. 

You can save the whole configuration or parts of it. When you stop the Model 
Verifier, the current configuration is saved in the Target Directory and 
named after the Model Verifier executable. The next time the Model Verifier 
is launched, the file is loaded at start-up.

See also

“Save Model Verifier configurations” on page 468

“Replaying Mode” on page 464

Save Model Verifier configurations

Each time that you stop the Model Verifier, the current Model Verifier con-
figuration is automatically saved in a file with the extension .ttdcfg. The 
name of the configuration file is derived from the name Model Verifier exe-
cutable and it is saved by default in the Target Directory. 
468 IBM Rational Tau User Guide June 2009



Model Verifier Configuration
All information in the current configuration is saved in the default configu-
ration file. However, if you want to save a subset of the configuration infor-
mation, or if you want to save the configuration without stopping the Model 
Verifier, you can manually save the configuration file.

Note
Only trace and tracking levels that differ from “according to parent” are 
saved.

To manually save a Model Verifier configuration:

1. Execute the steps you want to include in the configuration.

2. On the File menu, click Save Model Verifier Configuration.

3. In the dialog that opens, select what type of information that you want to 
save in the configuration.

The All check box is selected by default. To save a subset of the config-
uration options, clear the All check box and select the desired check 
boxes.

4. In the File name field, name the configuration file and select where to 
save it. The default name of the file is default.ttdcfg and the default 
position is in the Target Directory.

Load Model Verifier configurations

When you start the Model Verifier, the configuration file is automatically 
loaded. This file contains the settings from the last time the project was used 
to run an execution.

However, you can also load a manually saved configuration file. There are 
two methods available to do this. You can either:

• Open a configuration.

• Include a configuration.

If you want to automatically load a manually saved configuration file the 
next time you start the Model Verifier, you must replace the generated con-
figuration file with your saved file after you have stopped the Model Veri-
fier.
June 2009 IBM Rational Tau User Guide 469



Chapter 11: Verifying an Application
Open a Model Verifier configuration

To open a configuration means that you overwrite the settings in the current 
configuration with the properties that are saved in the configuration file that 
you want to open.

Only the objects that are saved in the configuration will overwrite objects in 
the current configuration. For instance, if the configuration file is saved with 
the Messages check box cleared, then the messages in the Messages window 
of the current configuration will not be overwritten.

1. From the File menu, click Open Model Verifier Configuration.

2. In the dialog that opens, select the .ttdcfg file you want to open and 
click Open.

Note
If you try to open a configuration generated in a previous version of IBM 
Rational Tau that does not reflect changes that you may have made to the 
model, elements that are no longer valid will be ignored.

Note
A configuration generated in a previous version of IBM Rational Tau may 
be invalid due to the fact that a configuration file is not converted to reflect 
internal model changes. Such changes in the model files are automatically 
converted when you open a .u2 file in a newer version of IBM Rational Tau.

Include Model Verifier configuration

To include a configuration means that the objects in the configuration file 
merge with the objects in the current configuration. For Breakpoints and 
Messages, merging means that duplicated objects are ignored. For trace and 
tracking levels, merging means that the new levels are applied after the cur-
rent ones.

For instance if you have message A in the saved configuration and message 
B in the current configuration, both messages will be available after include. 
Compare this with the Open command where signal B would be overwritten.

1. From the File menu, click Include Model Verifier Configuration.

2. In the dialog that opens, select the .ttdcfg file you want to include and 
click Open.
470 IBM Rational Tau User Guide June 2009



UML Expressions
Console commands

Model Verifier configurations can be saved and loaded in the Model Verifier 
Console mode using the commands !U2::Debug save and !U2::Debug open.

UML Expressions
The UML syntax of expressions is used to assign or to represent the values 
of objects in the Model Verifier. To achieve this, the Model Verifier includes 
conversion algorithms between the model of UML expression and the model 
of Model Verifier objects.

For the cases where no ordinary expression can represent a value, informal 
expressions (also called target expressions) are used. The contents of the in-
formal expressions are specific to the Model Verifier, and cannot be handled 
by the rest of the tool.

A subset of UML constants expressions are supported by the Model Verifier 
as input.

Note
In the following sections, expressions are described by their name given in 
the UML textual syntax definition, for instance < integer name>, not by 
their name in the Metamodel, which would have been IntegerValue instead 
of < integer name>.

Mapping of values to expressions

The kind of expression that is used to represent the value of an object de-
pends on the type of the object:

Object Expression

Integer-like objects 
and objects of type 
Null

<literal> of the kind <integer name>

Real-like objects <literal> of the kind <real name>

Time and Duration-
like objects

<literal> of the kind <real name>, without exponent

Boolean-like objects ‘true’ or ‘false’ identifiers
June 2009 IBM Rational Tau User Guide 471



Chapter 11: Verifying an Application
Charstring-like ob-
jects

<literal> of the kind <character string> (with 
double-quotes as delimiter, and use of ‘\’ to include 
double-quotes in the string

Octet-like and 
OctetString-like 
objects

<literal> of the kind <hex string>

BitString-like ob-
jects

<literal> of the kind <bit string>

Bit-like objects ‘0’ or ‘1’

Character-like ob-
jects

• <literal> of the kind <character>

• If the previous notation is not possible, <target 
expression> containing a hexadecimal number, 
for instance ‘[[0x7f]]’

Pid-like objects • The ‘NULL’ literal

• For non-NULL Pid values: <target expression> 
containing the full path of the instance which is 
referenced, for instance [[Match.p2[1] ]] 

Note the space after the ‘[1]’ 

Enumerated objects <identifier> referring to the literal name

Passive class objects <structure primary>, where the names of attributes 
are mandatory, and all non-optional attributes must 
be specified, even private attributes.

String-like and 
Array-like objects 
(including multiple 
attributes)

<list expression>

Object Expression
472 IBM Rational Tau User Guide June 2009



UML Expressions
When pointers are processed by a Deep Copy command or in a Sequence di-
agram trace, the recursive processing of referenced objects can result in a 
graph of objects. To represent this as expressions, the objects which are ref-
erenced more than once are given a kind of label the first time they are refer-
enced and their value is represented. The next time they are referenced, only 
the label is given.

The label is represented as an informal expression. Its value is made of an un-
derscore character and an integer, for instance [[_1]].

The label is associated to the object value by using an assignment expression, 
for instance “([[_1]] = MyClass (. …attribute values… .)”.

Such labels are valid only within an expression, or without the list of expres-
sions of a message definition.

Example 120: Expression using object labels –––––––––––––––––––––––––––––––

Given a class:

class MyClass { 
MyClass previous; 
Integer value; 
MyClass next; 

}

an expression can be 

( [[_1]] = MyClass (. previous NULL, value 1, next 

Choice objects < structure primary>, where only the active at-
tribute is specified.

References to other 
objects (“pointers”)

• The ‘NULL’ literal

• When the Deep Copy command is used, or in 
Sequence diagram traces: the value of the refer-
enced object is directly used

• Otherwise: a <target expression> containing a 
hexadecimal number representing the physical 
address, for instance [[0x12efbc]]

“General Array” ob-
jects

The value cannot be mapped to an expression.

Object Expression
June 2009 IBM Rational Tau User Guide 473



Chapter 11: Verifying an Application
MyClass (. previous [[_1]], value 2, next NULL .) .) )

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The Deep Copy processing is not suitable for all possible data structures, 
since the tool cannot guess the semantics of your model. But it is suitable for 
frequent patterns like linked lists or trees, provided that you do not refer to 
a sub-object having “owner” or “parent”-like links.

Important!
The Deep Copy algorithm is not able to detect that a pointer refers to a part 
of a larger object. The algorithm always considers that a pointer refers to 
an object on its own.

Mapping of expressions to values

When the Model Verifier uses a UML expression to build or assign the value 
of an object, it supports:

• Expressions that the Model Verifier would build to represent the value, 
as described in “Mapping of values to expressions” on page 471.

• Parenthesis expressions: ‘(‘<expression> ‘)’ 

• In the case of expressions copied from the UML model: <identifier> that 
refers to static constant attributes. In case the expression that specifies the 
value of the constant is used, the address of the constant is never used.

• Informal expressions containing only a dash sign ‘[[-]]’, which tells the 
tool to create some value according to the type of the object.

• When you describe a graph of objects by associating labels to objects (as 
described in “Mapping of values to expressions” on page 471), the labels 
must have an underscore as first character, but they can have any string 
after it, so you can for instance use 
“[[_FirstElementOfTypeMyClass]]” instead of “[[_1]]”.

Note
Operation calls are not supported in expressions, nor references to attribute 
objects.
474 IBM Rational Tau User Guide June 2009



Error Handling
Error Handling
Violations of the dynamic rules of UML causes dynamic errors during the 
execution of a simulation. Dynamic errors are displayed in the Output 
window.

After a dynamic error has been detected, the execution of the simulation is 
resumed until the current statement is ended.

Model Verifier Console
It is also possible to run the Model Verifier using textual command input. 
There are two types of commands that you can use. The commands that start 
with ‘!’ have a counterpart in the user interface.

Follow the instructions below to start the console window:

1. On the View menu, point to Model Verifier Windows and click Con-
sole. The console opens.

2. Type the command you want to use and the required commands param-
eters.

3. Press ENTER.

The output of the commands is presented in the Model Verifier tab in the 
Output window.

Hint
Commands that recently have been issued are saved and can be re-issued by 
clicking the arrow to the right of the console field.

Note
You cannot undo any commands.

Some of the commands require that you enter parameter values. If you do not 
type the required parameters, you will be prompted to do so:

• Type ‘?’ to get a list of possible parameters.

• Type ‘-’ to accept default values for the parameters. If no default value 
exists, a list of possible values is displayed.

Note
The ‘?’ and ‘-’ commands do not apply to commands that start with ‘!’
June 2009 IBM Rational Tau User Guide 475



Chapter 11: Verifying an Application
See also

“User commands” on page 530

“Console commands” on page 506

Trace and Tracking levels

Change sequence trace level and UML model tracking level

In the Instances view, right-click the instance you want to change and click 
Trace and Tracking Level from the shortcut menu.

To change Sequence diagram trace levels:

• Click the Trace level you want and close the dialog.

To change Execution tracking levels:

• Click the Tracking level you want and close the dialog.

Activity Simulation
You can use the Model Verifier to simulate activity models. The execution 
semantics of UML activities is based on tokens flowing into and out from ac-
tivity nodes. See Activity Modeling for more detailed information on the se-
mantics of activities. 

The capability to simulate activity models is provided by an add-in called 
ADSim.

Activating the ADSim Add-In

To be able to simulate activity models you must first activate the ADSim add-
in. Perform the following steps:

1. In the Tools menu, select Customize.... 

2. Click the Add-Ins tab and check the ADSim add-in.

3. Click OK.
476 IBM Rational Tau User Guide June 2009



Activity Simulation
Starting the Activity Simulation

To simulate an activity, perform the following steps:

1. In the Model View select the activity you want to simulate.

2. Do one of the following:

– Right-click the activity and select Create simulation model, or

– In the main menu, select ADSim > Create simulation model, or

– Right-click the activity and select Activity Simulator > New Arti-
fact. A build artifact for activity simulation will be created. Right-
click this artifact and select Build (Activity Simulator) > Create 
simulation model.

ADSim performs an analysis of the activity and translates it into an active 
class that implements the activity’s behavior. ADSim also creates a wrapper 
active class that initiates the activity, as well as a Model Verifier build arti-
fact manifesting the wrapper active class. To avoid modifying the original 
activity model, the wrapper active class and the Model Verifier build artifact 
are placed in a new top-level package that is stored in its own .u2 file. 

When the analysis completes, you can use the Model Verifier to build and 
launch an executable from the generated build artifact. For more information, 
see Start the Model Verifier. By default, the Model Verifier runs in Activity-
Mode when started on a build artifact generated by ADSim. See State ma-
chine vs. Activity tracking mode for more information about the activity vs. 
the statemachine tracking mode.

Hint
The ADSim menu also contains the Simulate command. This command cre-
ates the simulation model and automatically launches the generated build 
artifact.

Commands to Step Through the Activity Model

You can simulate the execution of the activity as usual with the Model Ver-
ifier, however, the execution commands are slightly different in context. The 
two main commands that are intended to be used for activity simulation are:

• Next-Transition: This command executes one node in an activity.
June 2009 IBM Rational Tau User Guide 477



Chapter 11: Verifying an Application
• Go: This command runs the simulation until one of the following events 
occurs: 

– input from the environment, or 

– a decision by the user. 

If a breakpoint is hit, execution stops at the activity node where the break-
point is set.

Textual Trace

During the activity simulation session, textual messages are traced to the 
Model Verifier console. These messages describe on an action/token level 
what is occurring in the simulation model. For example, you get a message 
when an activity node executes, or when tokens are sent in the model.

The textual trace is always available.

Activity Diagram Trace

When the activity diagram trace is activated, the activity node symbol is se-
lected in the activity diagram. Note that the behavior is different compared 
to the similar functionality in state charts. For activity diagrams it is the most 
recently executed activity node that is selected in the diagram. The green ex-
ecution marker triangle also appears on the executed activity node.

The activity diagram trace is activated or deactivated by the Show Next 
Statement option available in the Verify menu. It is enabled by default.

Trace Colorization

As activity nodes execute, their symbols change color in the activity dia-
gram, allowing you to see the parts of an activity implementation as it is ex-
ecuted.

The color information is stored in a package called ‘Trace data for <name> 
(<date>)’, where <name> is the name of the simulated activity and <date> is 
the date and time when the simulation session started. You can save that 
package into a file of its own for future analysis and reference. 
478 IBM Rational Tau User Guide June 2009



Activity Simulation
Hint
If you save the trace data packages from multiple simulation sessions in 
their own files, you can later load all the files into the model in order to vi-
sualize the union of all execution paths taken during these simulation ses-
sions. This can be useful when looking for parts of the activity model that 
are never executed (coverage analysis).

To remove the colorization data, delete the trace data package from the 
model.

Setting trace color

To set the color to use for tracing:

1. In the Model View select the Model Verifier build artifact which is lo-
cated in the created Activity Simulation Model.

2. Open the Properties Editor (Alt + Enter)

3. Select Activity Simulation Build Artifact in the Filter list.

4. Set the Execution Trace Color property, either by clicking the button or 
entering the RGB value directly in the text field.

Sequence Diagram Trace

You can use the Model Verifier sequence diagram trace functionality when 
simulating an activity. When you click the toolbar button for sequence dia-
gram tracing during an activity simulation session, a dialog appears which 
provides the following options:

• No tracing
Select this to turn off sequence diagram tracing.

• Node based tracing
With this tracing the sequence diagram will show one lifeline for each ac-
tivity node. Message lines are used to show the flow of control and data 
tokens between the activity nodes.
June 2009 IBM Rational Tau User Guide 479



Chapter 11: Verifying an Application
• Partition based tracing
With this tracing the sequence diagram will show one lifeline for each 
partition in the activity implementation. For activity implementations 
that do not contain any partitions the default is to use node based tracing. 
The dialog allows you to fully customize which partitions and activity 
nodes to include in the trace.

You can bring up the trace dialog at any time during the simulation session 
in order to turn on or off the sequence diagram trace, or to switch between 
node based and partition based tracing.

Breakpoints

You can use breakpoints to stop execution at specific activity nodes. A break-
point will be hit just before the activity node is about to execute, which is 
when all needed tokens are available for it to consume. When multiple tokens 
are flowing in different parts of an activity model it can be slightly confusing 
because execution is not sequential, but is based on independent tokens. Such 
a situation is similar to the traditional debugging of a multi-threaded pro-
gram.

Breakpoints can be set on the following nodes:

• Initial

• Activity/Action

• AcceptEvent

• SendSignalAction

• Decision/Merge

• Fork/Join

• ActivityFinal

• FlowFinal

Supported Activity Nodes

The following activity nodes are supported for activity simulation:

• Initial

• Activity/action

• Decision/merge
480 IBM Rational Tau User Guide June 2009



Activity Simulation
• Fork/join

• Connector

• Accept event

• Send signal

• Activity final

• Flow final

• Object

Control and data flows, partitions, streaming pins and nested activities are 
also supported.

Sending Signals to the Activity

When Accept Event nodes are present in the activity, you can to use the 
normal Model Verifier Message view to send signals from the environment 
of the activity. To activate the Message view, click View->Model Verifier 
Windows->Messages.

Note that the receiver of the messages sent to the activity must be the instance 
in the simulation model called Communicator. This instance is part of the 
main activity.

An Example

Example 121: Performing an activity simulation ––––––––––––––––––––––––––––

Assume we want to simulate an activity with the following implementation:
June 2009 IBM Rational Tau User Guide 481



Chapter 11: Verifying an Application
We activate the ADSim add-in and select Activity1 in the Model View. We 
then invoke the Create simulation model command in the ADSim menu. 
The following messages are displayed in the Message tab:

Running the ADSimGenerate
Preparing activity Activity1 for simulation...
Activity transformation completed!
Start simulation by launching the generated Model 
Verifier build artifact Build_MV_Activity1.

We can then launch the Model Verifier from the generated build artifact and 
start the simulation. To single-step the execution we use the Next-Transition 
command (see User commands). 

During execution we will get the following printout in the Model Verifier 
console:

Initial_1 executed
    Sent control token to Do Something_2
Do Something_2 executed
    Sent control token to ActivityFinal_3
ActivityFinal_3 executed

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The messages that are traced to the Model Verifier console during simulation 
provide information on the following:

1. Execution of activity nodes.

2. Sending of control or data tokens from one activity node to another. If a 
data token is sent its type is also printed.
482 IBM Rational Tau User Guide June 2009



Web Service Simulation
3. Reception of a token that does not lead to the execution of an activity 
node. The current number of tokens that have been received by the ac-
tivity node is printed, as well as the total number of tokens that must be 
received before it can execute.

Getting Started with Activity Simulation

The example projects available in the New wizard includes a model suitable 
for activity simulation. The project is called umlActivitySimulation and can 
be found in the Samples tab available from the File->New command.

Web Service Simulation
It is possible to call web services in a model that is simulated with the Model 
Verifier. This feature allows you both to simulate web services you have de-
veloped yourself, and to include functionality provided by external web ser-
vices in your UML model.

The capability to call web services from a UML simulation model is pro-
vided by an add-in called WSSim.

Note

Web Service simulation functionality is only supported on Windows oper-
ating systems. 

Activating the WSSim Add-In

To be able to call a web service from UML you must first activate the WSSim 
add-in. Perform the following steps:

1. In the Tools menu, select Customize.... 

2. Click the Add-Ins tab and check the WSSim add-in.

3. Click Close.

Note
Activating the WSSim add-in will also automatically activate the WSDL 
Add-in in order to be able to import the WSDL file of the web service to be 
called.
June 2009 IBM Rational Tau User Guide 483



Chapter 11: Verifying an Application
If you create a new project for WSDL/XSD modelling there is an option Sup-
port simulation of web services. If this option is set the WSSim add-in will 
be loaded automatically.

Calling a Web Service from UML

Before you can call a web service from your UML model you must first im-
port its WSDL file into IBM Rational Tau. This is done using the 
WSDL/XSD Import Wizard. It is recommended to have the Model node se-
lected when using the wizard so that the resulting WSDL package is placed 
as a new top-level package in the model. If you are working in the WSDL 
view you can select the project node instead, since the Model node will not 
be visible then.

In the WSDL/XSD Import Wizard there are two checkboxes available:

• Generate UML Web Service Interface
By selecting this option a UML model acting as an interface for the im-
ported web services will automatically be generated. See Generating a 
UML web service interface from a WSDL package for more information 
about this interface model.

• Generate web service consumer
By selecting this option the importer will create a template model for 
consuming the imported web services. See Generating a web service con-
sumer for more details.

Generating a UML web service interface from a WSDL package

When a UML interface model is created for an imported WSDL package the 
following happens:

1. The UML web service interface package is created next to the WSDL 
package. It constitutes a UML API for the web services described by that 
WSDL package and contains definitions which you can use from your 
UML model in order to call the web services. For example, a web service 
is represented by means of an active class which exposes appropriate op-
erations, allowing you to call the web service from UML.

2. Glue code needed for calling the web service is generated. This code is 
placed in a directory called __wssim<N>, where N is a number appended 
to make the name unique. This directory is located in the project direc-
tory.
484 IBM Rational Tau User Guide June 2009



Web Service Simulation
If you have already imported the WSDL without using the options described 
above, you can use an explicit command for generating the UML web service 
interface. To do so right-click on the WSDL package, and perform the com-
mand “Generate/Update UML Web Service Interface” which the WSSim 
add-in has made available in the context menu. 

The context menu of a WSDL package also contains a command called 
“Generate UML API”. It only performs step 1) above, skipping glue code 
generation, and can be useful if the intent only is to represent usage of a web 
service in a UML model, and to simulate the model but not call the real web 
services. For example, in case the web service is not yet implemented, it can 
obviously not be called for real. But a client UML model containing calls to 
it, can still be developed and simulated.

Using the generated UML web service interface

Now you are ready to start using the definitions of the generated UML web 
service interface package from your UML model. Typical steps include:

1. Adding an <<import>> dependency from a package in your model to the 
generated UML web service interface package.

2. Creating an instance of the active class that represents the web service. 
This class is located in a subpackage called “Services” in the generated 
UML package.

3. Set the URL of the web service. This is done by calling the 
“set_serviceUrl” operation that is available on the web service active 
class. If the URL is the same as specified in the imported WSDL file (in 
the <soap:address> tag) you may pass as argument the Charstring at-
tribute located in the “URLs” subpackage of the generated UML 
package. That attribute has the URL from the WSDL file stored as its de-
fault value.

4. Calling an operation on the web service active class which performs the 
actual web service call. This operation is prefixed with “call_” and there 
are usually several overloaded versions to choose between. Which one to 
use depends on how you want to specify the actual arguments to the web 
service and how to handle errors that may arise. See Error Handling 
below for more information.

5. Adding a Model Verifier build artifact for your client model. You should 
use a Make-Template file for this build artifact which can be found in the 
generated __wssim target directory (the file is called soap.tpm).
June 2009 IBM Rational Tau User Guide 485



Chapter 11: Verifying an Application
Generating a web service consumer

The WSSim add-in provides a useful command in the context menu of the 
generated UML API package, called “Generate Web Service Consumer“. 
As the name suggests this command will generate a template model which 
consumes the imported web services. Basically this means an automation of 
the above mentioned steps. The template model will contain a Model Verifier 
build artifact which can be launched to test the web services instantly.

Using multiple web services

It is possible to use more than one web service from the UML model. This 
can be achieved in several ways. The easiest is if all the WSDL files for the 
web services to use are imported from the beginning using the WSDL/XSD 
Import Wizard. A template web service consumer model generated by the 
wizard will in that case consume all the imported web services.

It is also possible to do this step after the WSDL/XSD Import Wizard has 
been run. By selecting multiple WSDL packages in the Model View and in-
voking the context menu command “Generate/Update UML Web Service In-
terface”, then one interface package will be generated for each selected 
WSDL package, but they will share the same __wssim directory, containing 
glue code for all WSDL packages. You can then select these generated pack-
ages and invoke the context menu command “Generate Web Service Con-
sumer” in order to generate one single model for consuming all the selected 
web services.

If you need to start using a new web service from an already existing con-
sumer model, you could import the new web service separately, generating a 
template consumer model for it. Then you can copy relevant parts from that 
generated consumer model into your existing model.

Type Mapping

WSDL elements representing input and output data from a web service are 
translated to UML classes by WSSim. These classes are located in a sub-
package called “Types” in the UML API package. The classes contain at-
tributes typed by ordinary UML types. This is achieved by mapping XSD 
types to UML types according to the table below:
486 IBM Rational Tau User Guide June 2009



Web Service Simulation
XSD Type UML Predefined Type

anyType Charstring

anySimpleType Charstring

duration Charstring

dateTime Integer

time Integer

date Charstring

gYearMonth Integer

gYear Integer

gMonthDay Integer

gDay Integer

gMonth Integer

boolean Boolean

base64Binary Charstring

hexBinary Charstring

float Real

double Real

anyURI Charstring

QName Charstring

NOTATION Charstring

string Charstring

normalizedString Charstring

token Charstring

language Charstring

Name Charstring

NMTOKEN Charstring

NCName Charstring

NMTOKENS Charstring
June 2009 IBM Rational Tau User Guide 487



Chapter 11: Verifying an Application
Simple XSD types containing enumerations are mapped to UML Datatypes 
with literals. Simple XSD types without enumerations are mapped to syn-
types.

Date and Time

As can be seen in the above table the XSD date type is represented by a 
Charstring in UML. The format of this string is YYYY-MM-DD. To facilitate 
working with the XSD dateTime type some utilities exist in the WSSType 
UML library. 

ID Charstring

IDREF Charstring

ENTITY Charstring

IDREFS Charstring

ENTITIES Charstring

decimal Integer

integer Integer

nonPositiveInteger Integer

long Integer

nonNegativeInteger Integer

negativeInteger Integer

int Integer

unsignedLong Integer

positiveInteger Integer

short Integer

unsignedInt Integer

byte Integer

unsignedShort Integer

unsignedByte Integer

XSD Type UML Predefined Type
488 IBM Rational Tau User Guide June 2009



Web Service Simulation
SOAP Headers

Some web services require the use of SOAP headers for passing data addi-
tional to the parameter data. Typically SOAP headers are used for contextual 
data which remains constant in multiple calls to a web service. Examples of 
such contextual data may include user account information (user name and 
password), or a session identifier in a conversation spanning over multiple 
web service calls.

In UML SOAP header data is represented by means of attributes on the web 
service active class. To set the SOAP header data, you should assign values 
to these attributes before calling the web service operations. The attributes 
have private visibility but there exist public accessor operations for getting 
and setting their values.

Asynchronous Web Service Calls

The generated UML web service interface model supports calling web ser-
vices asynchronously. The web service is represented by an active class 
which has a simple state machine. This state machine can handle signals rep-
resenting asynchronous calls of the web service. The definition of these sig-
nals can be found in the “Interfaces & Signals” subpackage of the generated 
UML package. There is one signal for passing input parameters in the web 
service call, and one reply signal that carries output parameter data.

Error Handling

Some overloaded versions of the generated web service “call_” operations 
support error handling while some do not. If you are not interested in han-
dling errors that may arise when calling a web service you should call an op-
eration with the “NR” suffix (NR = No Return value). If, however, you want 
to handle such errors you should call one of the other “call_” operations 
which return an instance of the SOAP_CallResult class, defined like this:

class SOAP_CallResult 
{
public Boolean wasError;
public Charstring errorDescription;

}

The ‘wasError’ attribute is set to true upon error, and the ‘errorDescription’ 
attribute is then set to an error message.
June 2009 IBM Rational Tau User Guide 489



Chapter 11: Verifying an Application
Error Reporting

When a web service invocation error is detected it is reported in the following 
ways:

• It will be reported in the WSSim tab. The subject of the error is the UML 
operation that represents the call to the web service, which makes it easy 
to find which web service invocation that fails, in case multiple web ser-
vices are called in a model.

• It will be printed in a log file called tlog_mv_soap.log, which will be 
placed in the Model Verifier target application directory.

Troubleshooting

Most web services can be called from IBM Rational Tau but you should be 
aware of some limitations that may prevent certain web service calls from 
working, or require work-arounds.

Web service call-backs

Certain web services require the client to implement certain call-back inter-
faces. Such web services cannot be directly called from IBM Rational Tau, 
since there is no automated support for creating such call-back web services 
realizing the required interfaces.

Non-Supported types

Web services having parameters typed by a non-supported type cannot be 
called from IBM Rational Tau. See Type Mapping for a list of all supported 
types and their mapping to predefined UML types.

Non-Supported bindings

The only web service binding that is currently supported is SOAP 1.1. Web 
services which use other bindings, such as SOAP 1.2 or HTTP, can not be 
called from IBM Rational Tau.
490 IBM Rational Tau User Guide June 2009



12
Model Verifier Reference

This section is a reference manual to the Model Verifier. Instructions on how 
to use the Model Verifier are available in “Verifying an Application” on page 
439.
June 2009 IBM Rational Tau User Guide 491



Chapter 12: Model Verifier Reference
Trace Levels
This section lists the following trace and tracking levels:

• Textual trace levels

• Execution tracking levels

• Sequence diagram trace levels

Textual trace levels

Textual trace levels 0 to 6 are available. 

Trace level 0

The textual trace is disabled.

Trace level 1

This level only displays signals sent to and received from the environment.

Trace level 2

This level shows what causes a transition to occur. An example of this infor-
mation is:

*** TRANSITION START
*      PId    : p1:1
*      State  : Idle
*      Input  : Plong
*      Sender : p2:1
*      Now    : 0.0000

Trace level 3

This level adds important actions to the output, for example signal sending, 
next state, stop, etc.

*** TRANSITION START
*      PId    : p2:1
*      State  : Idle
*      Input  : Pling
*      Sender : p1:1
*      Now    : 0.0000
*   OUTPUT of Plong to p1:1
*** NEXTSTATE  Idle
492 IBM Rational Tau User Guide June 2009



Trace Levels
Trace level 4

This level shows additional tasks like action and decision.

Trace level 5

This level adds results of actions, for example null transitions, discarded sig-
nals, etc.

Trace level 6

This level also prints parameter values for signals, timers, etc.

Execution tracking levels

The following levels are available for tracking in state machine diagrams:

• Never 

The execution tracking is disabled.

• When yielding control

If the current execution point is inside a transition and the execution is 
interrupted, the next statement to be executed is tracked.

If the current execution point is outside a transition, the last statement 
that was executed in the last transition is tracked.

• Continuously

Each statement being executed is tracked while the execution is going on.

• According to Parent

This level sets the tracking level identical to the parent element in the 
model.

Sequence diagram trace levels

A sequence diagram trace always includes a sender instance and a receiver 
instance. 

• Never 

This level disables the trace of the events in the sequence diagram.
June 2009 IBM Rational Tau User Guide 493



Chapter 12: Model Verifier Reference
• If source or target 

This level enables trace only if the receiver’s sequence diagram trace 
level has not been set to Never.

• Always 

This level enables sequence diagram trace regardless of the receiver’s se-
quence diagram trace level.

• On block level 

This level enables trace of the given agent, hiding enclosed agents.

• According to Parent 

This level sets the trace level identical to the sender’s parent element in 
the model.

User Interface Commands
The Model Verifier user interface commands listed in this section can be 
started either from the toolbar or from the Verify menu. The commands can 
also be run from the Model Verifier console.

See also

“Syntax of commands” on page 503

“Console commands” on page 506

List of user interface commands

The Model Verifier user interface commands listed in this section can be 
started either from the toolbar or from the Verify menu. The commands can 
also be entered in the Model Verifier console.

• Go 

The execution runs until the users stops it (using for example the Stop 
Debugging command) or when a breakpoint is reached.
494 IBM Rational Tau User Guide June 2009



User Interface Commands
• Next Transition 

Use this command to run the system until the next transition in the State 
machine diagram. The execution stops at the next State symbol or at a 
Stop symbol.

If the Realtime option for Simulation kind is used and the next transition 
is a timer scheduled in the future, (more than a second from now), then 
the command Next-Transition will run the simulation for one second and 
then pause.

Giving a Next-Transition command within a transition will execute the 
remaining part of the transition.

• Step Into 

Use this command to step statement by statement through the transitions. 
(An action symbol may contain several statements.)

The Step into command also steps into operations.

• Step Local 

This command will step one statement in the current state machine, as 
opposed to the Step Over command that steps to the next statement in any 
state machine. (This command is not available from the tool bar.)

• Step Over 

This command is similar to Step into, with the difference that all steps in 
an operations are executed at once. 

• Step Out 

Use this command to execute the remaining steps in an operation, in-
cluding the return symbol.

• Insert/Remove Breakpoint 

Use this command to insert or remove breakpoints. A red dot is attached 
to the symbol where the breakpoint has been inserted.

• Break 

Use this command to break the execution. The execution continues from 
the location where the execution was halted when the go command or one 
of the step commands is executed.

• Restart 

Use this command to reset the application to its initial state.

• Stop Debugging 

Use this command to stop the debug session.
June 2009 IBM Rational Tau User Guide 495



Chapter 12: Model Verifier Reference
Console
The console commands in the following section can be used to run the Model 
Verifier from the Model Verifier console window.

Input and output of values of passive types

Values are represented as UML Expressions However, there are situations 
where UML expressions cannot be used. If that is the case, values must be 
represented as describes in this section.

The following situations describe when values as UML expressions cannot 
be used:

• Values displayed in textual execution traces when the command Set-
Trace has been used. 

• Values that are found in scenarios and Model Verifier configuration files 
that were created in previous versions of IBM Rational Tau (2.2 and ear-
lier). 

• Values that you can specify in Watch windows using the syntax: 
[[SDL:value]]. This may be used in cases where no UML expressions 
are available, for instance for general array types.

• As arguments for the Set-Timer command.

The syntax of literals of the predefined data types follows the SDL definition 
of literals. There are, however, some extensions that will be described where 
applicable. As an option, it is also possible to use the ASN.1 syntax for 
values. On input both value notations are supported, while there are com-
mands to select the type of output to be produced (SDL-Value-Notation and 
ASN1-Value-Notation).

Integer and natural values

The format of integers conforms exactly with the SDL and the ASN.1 stan-
dard, that is, an integer consists of a sequence of digits, possibly preceded by 
a ‘+’ or ‘-’. However, with the command Define-Integer-Output-Mode it is 
possible to define the base of integers on output (decimal, hexadecimal, 
octal), which also affects how they may be entered. Hexadecimal values are 
preceded with “0x”, and octal values are preceded with ‘0’ (a zero).
496 IBM Rational Tau User Guide June 2009



Console
Boolean values

Boolean values are entered (and printed) as true and false, using upper or 
lower case letters. Abbreviation is allowed on input. In ASN.1 mode the 
value is printed in capital letters (TRUE, FALSE). 

Real values

The SDL literal syntax of real values has been extended to include the nota-
tion with an ‘E’ for exponents, in the same way as in many programming lan-
guages.

Example 122: Real Values in SDL Syntax ––––––––––––––––––––––––––––––––––

The real number 1.4527 * 1024 can be written 1.4527E24

The real number 4.46 * 10-4 can be written 4.46E-4

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The syntax for real values in ASN.1 is described by Example 123 on page 
497. 

Example 123: Real values in ASN.1 syntax –––––––––––––––––––––––––––––––––

{mantissa 23456, base 10, exponent -3}

This is the value 23.456.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Time and Duration values

The format for Time and Duration values follows the SDL standards, that is 
real values without exponent notation, with one extension. On input time 
values can either be absolute or relative to NOW. If the time value is given 
without a sign an absolute time value is assumed, while if a plus or minus 
sign precedes the value, a value relative to NOW is assumed.

Example 124: Time values in SDL syntax ––––––––––––––––––––––––––––––––––

123.5 is interpreted as 123.5

+5.5 is interpreted as NOW + 5.5
June 2009 IBM Rational Tau User Guide 497



Chapter 12: Model Verifier Reference
-8.0 is interpreted as NOW - 8.0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Character values

Character values are entered and printed either using hexadecimal notation, 
0xFF or according to the SDL standard, including the literals for the non-
printable characters.

Charstring values

Charstring values can be entered and printed according to the SDL standard, 
that is, a single quote ( ’ ) followed by a number of characters followed by a 
single quote. Any quote (’) within a Charstring has to be given twice. On 
output a non-printable character within a Charstring is printed as a single 
quote followed by the character literal followed by a single quote.

The ASN.1 syntax for Charstring is similar to the SDL syntax. The delimiter 
character, single quote character (‘), is however replaced by the double quote 
character (“).

Example 125: Charstring values in SDL syntax –––––––––––––––––––––––––––––

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Pid values

Apart from the value null, which is a valid Pid value, a Pid value consists of 
two parts, the name of the active class and an instance number, which is an 
integer greater than 0. 

The first instance of an active class that is created will have instance number 
1, the second that is created will have instance number 2, and so on. The 
syntax is Name:No, where Name is the instance name and No is the instance 
number.

’’ An empty string

’abc’ A string of three characters

’a’NUL’c’ The second character is NUL
498 IBM Rational Tau User Guide June 2009



Console
On input the name and the instance number may, as an alternative, be sepa-
rated by one or more spaces, if the command parameter is a Pid value. In the 
same circumstances the instance number is not necessary (and will not be 
prompted for) if there is only one instance of the active class. If, however, the 
command parameter is a unit that might be an instance of an active class, only 
a colon (‘:’) is allowed between the name and the instance number and the 
colon must follow directly after the class name. Examples of such situations 
are the unit parameter in Set-Trace and Signal-Log.

On output a Pid value may be followed by a plus sign (‘+’), which indicates 
that the instance is dead; that is, has executed a stop action. The plus sign is 
chosen as it is reminiscent of the ‘†’ character.

Bit

The Bit sort contains two values, 0 and 1. This syntax is used for input and 
output.

BitString

For BitString values the following syntax is used:

'0110'B

The characters between the two single quotes must be 0 or 1. On input the 
syntax for OctetString can also be used.

Octet

The syntax used for an octet value is two HEX digits. Examples:

'00'h '46'h 'F2'h 'a1'h 'CC'h

The characters 0-9, a-f, and A-F are allowed.

OctetString

The syntax for OctetString is the following:

'3A6F'H

Each pair of two HEX values in the string is treated as an Octet value. If there 
is an odd number of characters an extra 0 is inserted last in the string.
June 2009 IBM Rational Tau User Guide 499



Chapter 12: Model Verifier Reference
ObjectIdentifier

The sort ObjectIdentifier is treated as a String(Natural). This means that the 
syntax, in case SDL value notation is used, will be:

(. 2, 3, 11 .)

On input the items in the list should be separated by a comma and/or spaces. 
If ASN.1 value notation has been selected, the syntax will be:

{ 2 3 11 }

On input the items in the list should be separated by a comma and/or spaces.

Enumerated values

Types that in SDL are defined as an enumeration of possible values can be 
entered and printed using the literals of the SDL data type definition. On 
input, the literals can be abbreviated as long as they are unique.

Passive class values

A passive class value is entered and printed as the two characters “(.” fol-
lowed by a list of components followed by the two characters “.)”. The com-
ponents should, on input, be separated by a comma and/or a number of spaces 
(or carriage returns or tabs). 

Example 126: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

(. 23, true, 'a' .)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If ASN.1 syntax is used, the component names will also be present. 

Example 127: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

{ Comp1 2, Comp2 TRUE, Comp3 'a' }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

On input the components using ASN.1 syntax may come in any order. Com-
ponents not given any value will have the value 0, whatever that means for 
the data type.

Optional components that are not present, will not be printed. That means 
that there is an empty position between two commas.
500 IBM Rational Tau User Guide June 2009



Console
Choice values

The syntax for a choice value is ComponentName:ComponentValue. If, for 
example, a choice contains a component C1 of type Integer, then

C1:11

is a valid choice value.

Array values

An array value is entered and printed as “(:” followed by a list of components 
followed by a “:)”. The components should, on input, be separated by a 
comma and/or a number of spaces (or carriage returns or tabs). There should 
also be a space between the last component and the terminating “:)”. In 
ASN.1 syntax, ‘{’ and ‘}’ are used as delimiters.

There are two syntaxes for array components depending on the implementa-
tion that the C Code Generator has selected for the array implementation. The 
easiest way to determine which syntax to use on input is to look at an attribute 
of the array sort. If an array is a simple array (that is index type is a simple 
type with one range condition and a limited range), the SDL syntax for an 
array value is according to Example 128 on page 501.

Example 128: Simple array value –––––––––––––––––––––––––––––––––––––––––

(: 1, 10, 23, 2, 11 :)
If ASN.1 value notation is selected, replace “(:” and “:)” by ‘{’ and ‘}’.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
• If the array is a general array, the a syntax according to Example 129 on 

page 501 should be used.

Example 129: General array value ––––––––––––––––––––––––––––––––––––––––

(: (others:2), (10:3), (11:4) :)
For index 10 the value is 3, for index 11 the value is 4, and for all other 
indexes the value is 2. On input the commas, the parenthesis, and the co-
lons in the components may be replaced by one or more spaces (or car-
riage returns or tabs).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For simple arrays the second syntax is also accepted. If the first syntax is used 
for simple arrays it is not mandatory to enter all values for the array compo-
nents; by entering “:)” or “}” the rest of the components are set to a “null” 
value (that is the computer’s memory for the value is set to 0).
June 2009 IBM Rational Tau User Guide 501



Chapter 12: Model Verifier Reference
String values

A string value starts with “(.” and ends with “.)”. The components of the 
string is then enumerated, separated with commas. 

Example 130: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

(. 1, 3, 6, 37 .)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

On input the commas can be replaced by one or more spaces (or carriage re-
turns or tabs). In ASN.1 syntax, ‘{’ and ‘}’ are used as delimiters instead of 
“(.” and “.)”.

PowerSet values

A PowerSet value starts with a ‘[’ and ends with a ‘]’. The elements in the 
PowerSet is then enumerated, separated with commas. 

Example 131: Power set value –––––––––––––––––––––––––––––––––––––––––––

[ 1, 3, 6, 37 ]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

On input the commas can be replaced by one or more spaces (or carriage re-
turns or tabs).

Bag values

A bag value starts with a ‘{’ and ends with a ‘}’. The elements in the bag is 
then enumerated, separated with commas. 

Example 132: Bag value ––––––––––––––––––––––––––––––––––––––––––––––––

{ 1, 3, 6, 37 }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

On input the commas can be replaced by one or more spaces (or carriage re-
turns or tabs). If the same value occurs more than once, then this value is in 
SDL syntax not enumerated several times. Instead, the number of occur-
rences is indicated after the value. 

Example 133: Multiple identical values in bag –––––––––––––––––––––––––––––

{ 1, 3:4, 6:2, 37 }
502 IBM Rational Tau User Guide June 2009



Console
This is identical to

{ 1, 3, 3, 3, 3, 6, 6, 37 }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In ASN.1 syntax, each member is given explicitly according to the last ex-
ample. On input items are separated by comma and/or one or more spaces. It 
is also allowed to mention the same value several times, with or without a 
number of items each time.

Own and ORef values and passive object references

There are two possible syntaxes for pointer type values (Own and ORef). Ei-
ther the pointer address as a HEX value, or the value of the data area refer-
enced by the pointer. The value Null is printed as Null in both syntaxes. In 
the monitor system two commands are available to determine the syntax to 
be used (REF-Address-Notation and REF-Value-Notation). On input both 
syntaxes are allowed independently of what syntax that has been selected.

Example 134: Address notation ––––––––––––––––––––––––––––––––––––––––––

0x23A20020

HEX(23A20020)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Complex signal parameter values” on page 455 in Chapter 11, Verifying an 
Application for more information on how to enter complex values to signals 
in the Messages window in UML syntax.

Syntax of commands

Introduction

As there are two types of commands, the syntax between them differ slightly. 
The information below is mainly applicable for commands that do not start 
with ‘!’.
June 2009 IBM Rational Tau User Guide 503



Chapter 12: Model Verifier Reference
Command Names

A command name may be abbreviated by giving sufficient characters to dis-
tinguish it from other command names. A special character, the hyphen (-), 
is used to separate command names into distinct parts. Any part may be ab-
breviated as long as the command name does not become ambiguous.

Consider, as an example, the command name List-Breakpoints. The com-
mand name may be typed List-B or L-B. However, as there are more than 
one command beginning with the word “List”, typing List could not distin-
guish between them. In that case the message

Command was ambiguous, it might be an abbreviation of:

would be displayed followed by a list of all commands starting with “List”. 

There is no distinction made between upper and lower case letters.

Parameters

Command parameters are separated by one or several spaces, carriage re-
turns or tabs. A colon is also accepted between a name and an instance 
number, when a Pid value is required. If the parameter list following a com-
mand name is not complete you will be notified in the Output window. You 
will be asked to provide the expected parameters.

Parameters may be abbreviated as long as the parameter value does not be-
come ambiguous. There is no distinction made between upper and lower case 
letters.

Note
The keywords Sender, Parent, Self and Offspring cannot be abbreviated.

Matching of parameters

When a (possibly abbreviated) parameter name is entered and is to be 
matched with a non-abbreviated name, only names in the entity class of in-
terest are considered. If a name is expected as parameter, only the names de-
noting active classes will be part of the search for the full name.

Signal names and timer names are in the same entity class; formal parameters 
of state machines and attributes are in the same entity class; every other type 
of name is in an entity class of its own.
504 IBM Rational Tau User Guide June 2009



Console
Knowledge of previous parameters is used to narrow the search for a given 
parameter name.

Qualifiers

Names can cause problems, if, for example, there are two active classes with 
the same name in two different ‘blocks’, or if the ‘system’ and an active class 
contain signal definitions with the same name.

In the first situation the class name will always be ambiguous and in the 
second case the name of the signal defined in the ‘system’ will always be 
used. To solve cases like this, qualifiers with the same syntax as in SDL can 
be used. To reach a ‘process’ P defined in ‘block’ B in ‘system’ S, the fol-
lowing notations can be used: 

system S / block B P
<<system S / block B>> P

The words “system”, “block”, “process”, “procedure”, and “substructure” in 
the qualifier must not be abbreviated, while all names of, for example, blocks 
and processes may be abbreviated according to the usual rules. It is only nec-
essary to give those parts of the qualifier that make the qualifier path unique. 
The slash ‘ / ’ in a qualifier may be omitted and replaced by one or more 
spaces. The angle brackets that are part of the qualifier when printed may be 
omitted when entering the qualifier.

Instance path

Instance path is the UML representation of a resulting qualifier path origi-
nating from a Manifest relation of an object. Examples of instance paths are:

Match.p1
{Match.p1[2]}

The path must be the full path, starting from the top-level instance. If the ob-
ject is specified with brackets ([ ]), braces ({}) must be used as in the ex-
ample above.

Signal and timer parameters

Parameters of signal instances and timer instances are entered in the same 
way as for command parameters. The parameters can also be entered directly 
after the signal or timer name, possibly enclosed by parenthesis.
June 2009 IBM Rational Tau User Guide 505



Chapter 12: Model Verifier Reference
Example 135: Signal and timer parameters in simulator command ––––––––––––

Signal name : S
Parameter 1 (Integer) : 3
Parameter 2 (Boolean) : true

The same specification could also be given as:

Signal name : S 3 true

or as:

Signal name : S (3 true)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

When entering signal parameters it is not necessary to give all parameter 
values. By entering ‘-’ at the parameter’s position, the parameter is given a 
“null” value (that is the computer’s memory for the value is set to 0). By en-
tering ‘)’, the rest of the parameters are given “null” values.

Example 136: Signal parameters in command ––––––––––––––––––––––––––––––

Signal name : S -, true

will give the first parameter a “null” value.

Signal name : S (3, -)

will give the second parameter a “null” value. Could also be given as:

Signal name : S (3)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Errors in commands

If an error in a command name or in one of its parameters is detected, an error 
message is printed and the execution of the command is interrupted. A com-
mand is either executed completely or not at all.

Console commands

? (Interactive Context Sensitive Help)

Parameters: (None)

When typing a ‘?’ (question mark), a list of all possible allowed values, com-
mands or types at the current position is displayed. After the list has been pre-
sented, you must type one of the available values in order to continue. 
506 IBM Rational Tau User Guide June 2009



Console
Typing ‘?’ at the prompt level gives a list of all available commands, after 
which a command can be entered.

Note
This command does not apply for commands that start with ‘!’

!U2::Debug add_message

Parameters:

<sender path> <signal path> <connector name> 
<receiver path> < parameter string>

Use this command to add messages to your messages list.

The <sender path> indicates the path to the sending agent and <receiver 
path> indicates the path to the receiving agent. An instance within an in-
stance is separated with a period ‘.’.

The <signal path> indicates the path to the signal. An example of a signal 
path would be:

::<object>::<signal name>

!U2::Debug assign

Parameters:

<object reference> <value>

This command allows you to assign a new value to an object. Use the com-
mand !U2::Debug path2object to the locate the object reference.

!U2::Debug break

This command is equivalent to “Break” on page 495. 

!U2::Debug delete

Parameters:

<object reference>

This command executes the delete command on a specified object. Use the 
command !U2::Debug path2object to the locate the object reference.
June 2009 IBM Rational Tau User Guide 507



Chapter 12: Model Verifier Reference
!U2::Debug display

Parameters:

<object reference>

This command allows you to display the value of the object in the console. 
Use the command !U2::Debug path2object to the locate the object reference.

!U2::Debug echo

Parameters: 

<arguments>

This command displays all arguments in the Model Verifier tab in the Output 
window.

!U2::Debug exec

Parameters: 

<command>

This command will execute the parameter as a command.

Example 137: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

!U2::Debug exec "Go-Forever"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

!U2::Debug go

This command is equivalent to “Go” on page 494. 

!U2::Debug new

Parameters:

<object reference>

This command executes the new command on a specified object. Use the 
command !U2::Debug path2object to the locate the object reference. 

!U2::Debug next transition

This command is equivalent to “Next Transition” on page 495. 
508 IBM Rational Tau User Guide June 2009



Console
!U2::Debug open

Parameters:

<path name> <optional argument>

Use this command to load a scenario files (.ttdscn) or when you Load 
Model Verifier configurations (.ttdcfg). The optional argument is only 
valid for configuration files. 

• If the argument -merge is added, the objects in the configuration file you 
want to open, merge with the objects in the current configuration. 

• If the argument is omitted, the objects in the configuration file overwrite 
the corresponding objects in the current configuration.

Example 138: Command with parameters –––––––––––––––––––––––––––––––––

!U2::Debug open c:/project/test.ttdcfg -merge

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

!U2::Debug output

Parameters: 

-from <sender path> -to <receiver path> [-via <connector 
name>]: <signal name and parameters in parenthesis>

This command sends the specified message.

!U2::Debug path2object

Parameters:

<instance path>

This command returns the object reference for the Instance path. The object 
reference is needed in order to execute other commands. 

!U2::Debug restart

This command is equivalent to “Restart” on page 495. 

!U2::Debug save

Parameters:
June 2009 IBM Rational Tau User Guide 509



Chapter 12: Model Verifier Reference
<path name> <optional arguments>

Use this command to save a scenario or when you Save Model Verifier con-
figurations for future use. Scenario files must have the extension .ttdscn, 
while configuration files must have the extension .ttdcfg

The optional arguments only apply for configuration files and they decide 
which objects in the configuration that should be saved. If there are no argu-
ments, all objects are saved. The available arguments are:

Examples of parameters for this command are:

c:/project/test.ttdscn

c:/project/test.ttdcfg -messages -msc_trace

!U2::Debug set_breakpoint

Parameters: 

<U2 statement>

This command sets a breakpoint on the UML statement specified as a refer-
ence to the model.

!U2::Debug set_msc_trace

Parameters: 

<object reference> <integer trace level>

This command sets the Sequence diagram trace levels for the specified ob-
ject. Use the command !U2::Debug path2object to the locate the object ref-
erence. 

Argument Definition

-messages Messages will be saved

-breakpoints Breakpoints will be saved

-gr_trace Execution tracking levels will be saved

-msc_trace Sequence diagram trace levels will be saved

-watches The root elements in watch windows will be saved
510 IBM Rational Tau User Guide June 2009



Console
The values for <integer trace level> are:

0=Never 

1=If source or target 

2=Always 

3=On block level 

4=According to Parent 

Example 139: Setting the trace level ––––––––––––––––––––––––––––––––––––––

!U2::Debug set_msc_trace [U2::Debug path2object {CoffeeMachine}] 3

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

!U2::Debug set_replay

Parameters:

<boolean>

This command sets the Model Verifier in replay mode if the boolean expres-
sion is true.

!U2::Debug set_tracking_level

Parameters: 

<object reference> <integer trace level>

This command sets the Execution tracking levels for the specified object. 
Use the command !U2::Debug path2object to the locate the object reference. 

The values for <integer trace level> are:

0=Never 

1=When yielding control 

2=Continuously 

3=According to Parent 

!U2::Debug start_msc

Parameters: 

<Trace value>
June 2009 IBM Rational Tau User Guide 511



Chapter 12: Model Verifier Reference
This command starts the logging of events in a sequence diagram on the fly. 
Stop the log by using the command !U2::Debug stop_msc. Valid trace levels 
are: 

0 = only messages 

1 = messages and states 

2 = full trace, actions, messages and states 

!U2::Debug step in

This command is equivalent to “Step Into” on page 495.

!U2::Debug step local

This command is equivalent to “Step Local” on page 495. 

!U2::Debug step out

This command is equivalent to “Step Out” on page 495. 

!U2::Debug step over

This command is equivalent to “Step Over” on page 495. 

!U2::Debug stop_msc

This command stops the logging of events in a sequence diagram.

Activity-Mode

Parameters: (None)

This command sets a number of Model Verifier settings appropriate for ac-
tivity simulation. When the Model Verifier operates in activity mode it does 
not show the next statement to execute. Instead the focus is on the execution 
of activities, and if the ADSim add-in is activated, the execution will be 
tracked in activity diagrams.

To leave the activity simulation mode, use the command Statemachine-
Mode.
512 IBM Rational Tau User Guide June 2009



Console
Assign-Value

Parameters:

<object reference> <value>

This command is equivalent to “!U2::Debug assign” on page 507. 

ASN1-Value-Notation

Parameters: (None)

The value notation used in all outputs of values is set to ASN.1 value nota-
tion.

Breakpoint-Output

Parameters:

<Signal name> <Receiver class name> <Receiver instance
number> <Sender class name> <Sender instance number>
<Counter> <Optional breakpoint commands>

A breakpoint is inserted and a breakpoint command is defined. The break-
point condition defines sending one or several signals and is specified by the 
parameters.

The <Counter> parameter indicates how many times the breakpoint condi-
tion should be true before the execution breaks. Default value for this param-
eter is 1, which means that the execution stops each time the breakpoint con-
dition is true.

The <Optional breakpoint commands> parameter can be used to execute 
one or more Model Verifier commands when the breakpoint is triggered. 
Commands should be separated by “ ; “, that is space, semicolon, space.

Breakpoint-Transition

Parameters:

<Class name> <Instance number> <State name> <Signal name> 
<Sender class name> <Sender instance number> <Counter> 
<Optional breakpoint commands>

A breakpoint is activated and a breakpoint condition is defined. If a break-
point condition is matched by a transition, the execution stops immediately 
before the transition is started. The breakpoint condition matches one or sev-
June 2009 IBM Rational Tau User Guide 513



Chapter 12: Model Verifier Reference
eral transitions and is specified by the parameters. Any of the parameters may 
be omitted, which implies that any value will match the missing fields in the 
breakpoint condition. Initially no breakpoints are active.

The <Counter> parameter is used to indicate how many times the breakpoint 
condition should be true before the breakpoint is activated. Default value for 
this parameter is 1, which means that the execution stops each time the break-
point condition is true.

The <Optional breakpoint commands> parameter can be used to give console 
commands that should be executed when the breakpoint is triggered. Console 
commands should be separated by “ ; ”, that is space, semicolon, space.

Breakpoint-Variable

Parameters:

<Attribute name> <Optional breakpoint commands>

This command inserts a breakpoint on the specified attribute in the instance 
of active class given by the current scope. If the value of the attribute is 
changed, the execution breaks. The value is only checked between symbols 
and between assignment statements in actions.

The breakpoint is also triggered when the attribute no longer exists, that is 
the Pid containing the attribute is stopped or the operation containing the at-
tribute has reached its end. In this case, the breakpoint is automatically re-
moved. 

The <Optional breakpoint commands> parameter can be used to execute 
one or more Model Verifier commands when the breakpoint is triggered. 
Commands should be separated by “ ; “, that is space, semicolon, space.

Call-env

Parameters: (None)

This command calls xInEnv for a Model Verifier generated with Simulation 
kind set to With Environment. 

Cd

Parameters:

<Directory>
514 IBM Rational Tau User Guide June 2009



Console
This command changes the current working directory to the specified direc-
tory.

Clear-Coverage-Table

Parameters: (None)

This command is used to reset the coverage table to 0 in all positions, which 
means restart counting coverage from now.

Close-Signal-Log

Parameters:

<Entry number>

Stops the signal log with the specified entry number and closes the corre-
sponding log file. If only one log file is being used, the entry number param-
eter can be omitted.

Command-Log-Off

Parameters: (None)

The command log facility is turned off. Compare with the command Com-
mand-Log-On for details.

Command-Log-On

Parameters:

<Optional file name>

This command enables logging of all the commands that are typed in the 
Model Verifier console. The first time this command is used, a file name for 
the log file must be stated. After that any further Command-Log-On com-
mands, without a file name, will append more information to the previous log 
file, while a Command-Log-On command with a file name will close the old 
log file and start using a new file with the specified name.

Initially the command log functionality is turned off. When activated, it can 
be turned off explicitly by using the command Command-Log-Off.
June 2009 IBM Rational Tau User Guide 515



Chapter 12: Model Verifier Reference
The generated log file is directly possible to use as a file in the command In-
clude-File. It will, however, contain exactly the commands given in the ses-
sion, even those that were not executed due to command errors. The con-
cluding Command-Log-Off command will also be part of the log file.

Create

Parameters:

<object reference> 

This command is equivalent to “!U2::Debug new” on page 508. 

Define-Integer-Output-Mode

Parameters: 

"dec" | "hex" | "oct"

Defines whether Integer values are printed in decimal, hexadecimal or octal 
format. In hexadecimal format the output is preceded with “0x”, in octal 
format the output is preceded with ‘0’ (a zero).

On input: if the format is set to hexadecimal or octal, the string determines 
the base as follows: After an optional leading sign a leading zero indicates 
octal conversion, and a leading “0x” hexadecimal conversion. Otherwise, 
decimal conversion is used.

The default is “dec”, and no input conversion is performed.

Define-MSC-Trace-Channels

Parameters:

"On" | "Off"

Defines whether the env instance should be split into one instance for each 
connector to “env” in the sequence diagrams trace. The default is “Off”.

Display-Array-With-Index

Parameters:

"On" | "Off"
516 IBM Rational Tau User Guide June 2009



Console
When value is On and an array is displayed in execution traces, the value of 
the array element is printed with its index. Index is added before the value of 
the array element. The default is “Off”.

Examine-Timer-Instance

Parameters: 

<Entry Number>

The parameters of the specified timer instance are printed. The entry number 
is the number associated with the timer when the List-Timer command is 
used.

Examine-Variable

Parameters:

<object reference> 

This command is equivalent to “!U2::Debug display” on page 508. 

Exit

Parameters: (None)

This command is equivalent to “Stop Debugging” on page 495. 

Go

Parameters: (None)

This command is equivalent to “Go” on page 494. 

Go-Forever

Parameters: (None)

The execution will continue until a breakpoint becomes active or that you 
stop the execution manually. To stop the execution of transitions, press 
<Return> (and only this key).

If the UML model becomes completely idle (no possible transition and no ac-
tive timer), the simulation waits for external stimulus.
June 2009 IBM Rational Tau User Guide 517



Chapter 12: Model Verifier Reference
Include-File

Parameters: 

<File Name>

This command provides the possibility to execute a sequence of console 
commands that are stored in a text file. The Include-File facility can be useful 
for including, for example, an initialization sequence or a complete test case. 
It is allowed to use Include-File in an included sequence of commands; up to 
five nested levels of include files can be handled.

List-Breakpoints

Parameters: (None)

This command lists all active breakpoints in the model. Each breakpoint is 
assigned en entry number.

List-GR-Trace-Values

Parameters: (None)

This command lists the trace value that is being used for textual tracking.

List-MSC-Log

Parameters: (None)

This command returns the current status of the sequence diagrams log (off / 
interactive / batch).

List-Ready-Queue

Deprecated (well, not at 100%, as current procedure is not given in TT/D: let 
us say this is a bug). no included

List-Signal-Log

Parameters: (None)

Print information about currently active signal logs. Each log is assigned an 
entry number.
518 IBM Rational Tau User Guide June 2009



Console
List-Timer

Parameters: (None)

A list of all currently active timers is produced. For each timer, its corre-
sponding process instance and associated time is given. An entry number will 
also be part of the list, which can be used in the command Examine-Timer-
Instance.

List-Trace-Values

Parameters: (None)

The values of all currently defined traces are listed. The list contains the trace 
unit type (‘system’, ‘block’, ‘process’, Pid), the unit name and the trace value 
(both numeric and a textual explanation).

Log-Off

Parameters: (None)

This command turns off the interaction log facility, compare with Log-On.

Log-On

Parameters:

<Optional file name>

This command takes an optional file name as parameter and enables logging 
of all the interaction between you and the simulation program that is visible 
on the screen. The first time the command is entered, a file name for the log 
file has to be given as parameter. After that if you enter the command without 
a file name, more information will be appended to the previous log file. Each 
time you enter the command with a file name, the old log file will be closed 
and a new file will be opened with the specified file name.

Initially the interaction log facility is turned off. It can be turned off explicitly 
by using the command Log-Off.

Next-Local-Statement

Parameters: (None)

This command is equivalent to “Step Local” on page 495.
June 2009 IBM Rational Tau User Guide 519



Chapter 12: Model Verifier Reference
Next-Statement

Parameters: (None)

This command is equivalent to “Step Into” on page 495.

Next-Transition

Parameters: (None)

This command is equivalent to “Next Transition” on page 495. 

Next-Visible-Transition

Parameters: (None)

A number of transitions are executed up to and including the next transition 
with a trace value that is not disabled. For a timer output transition, it is the 
trace value for the corresponding instance that is considered.

This command should be used with care, as it might result in executing the 
simulation program forever if no transition with active trace is ever executed. 
To stop the execution of transitions, press <Return>.

Now

Parameters: (None)

The current value of the simulation time is printed.

Print-Coverage-Table

Parameters:

<File name>

This command can be used to obtain test coverage information and profiling 
information. Each time the command is issued, a file with the name specified 
as parameter is created in the work directory containing the relevant informa-
tion. The coverage file always reflects the situation from the start of the sim-
ulation. 

Note
The specified file is always overwritten, that is there is no confirmation mes-
sage if an existing file is specified.
520 IBM Rational Tau User Guide June 2009



Console
The generated file consists of two sections, first a summary with profiling in-
formation, containing the number of transitions and the number of symbols 
executed by each active class. Secondly the file contains detailed information 
about how many times each symbol and each state - input combination is ex-
ecuted.

Example 140: Profiling Information in Coverage File ––––––––––––––––––––––––

*************** PROFILING INFORMATION **************

2  System DemonGame : Transitions = 13, Symbols = 40
3  Block GameBlock
4  Process Main : Transitions = 3 (23%),
                  Symbols = 10 (25%), MaxQ = 2
4  Process Game : Transitions = 6 (46%),
                  Symbols = 15 (37%), MaxQ = 2
3  Block DemonBlock
4  Process Demon : Transitions = 4 (30%),
                  Symbols = 15 (37%), MaxQ = 1

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The information should be interpreted in the following way:

• As transitions, the number of executed signal receipt symbols + guards 
on triggered transition + start symbols are counted. 

• As symbols, the number of executed symbols (action, signal sending, de-
cision, set, reset, call, stop, return, create, nextstate, input, guard on trig-
gered transition, start) are counted. 

• The number of transitions and the number of executed symbols are, as 
shown in the example above, presented both for the ‘system’ and for each 
active class. The relative numbers for the active classes are, of course, 
relative to the numbers for the ‘system’. 

• MaxQ is the maximum input port queue length for any instance of the 
active class. Start up signals, used to implement create, and guard on trig-
gered transition are counted as signals in MaxQ.

• The numbers at the beginning of each line are the scope level of the that 
unit. This can be used to determine if, for example, an operation is de-
fined within or after another operation.

Note
To be true, profiling information execution time ought to be measured in-
stead of the number of transitions and number of executed symbols, but this 
information is still very valuable for getting a feeling for the load distribu-
tion.
June 2009 IBM Rational Tau User Guide 521



Chapter 12: Model Verifier Reference
Proceed-To-Timer

Parameters: (None)

This command will execute all transitions up to but not including the next 
timer output. The timer output will not be executed even if it is the next tran-
sition. 

Proceed-Until

Parameters:

<Time value>

The execution of the simulation is resumed. The console will become active 
when the value of the time first becomes equal to the time value given as pa-
rameter.

Relative time values can be given using the ‘+’ sign. Entering “+5.0” as pa-
rameter is interpreted as the time value NOW+5.0.

Quit

Parameters: (None)

This command is equivalent to “Stop Debugging” on page 495. 

REF-Address-Notation

Parameters: (None)

REF values (pointers introduced using the Own and ORef templates) are 
printed as addresses, using the HEX value for the address. The Null value is 
printed as Null. On input, both this syntax and the Value Notation (compare 
with command REF-Value-Notation) can be used.

Note
This command only applies to values that are displayed in execution traces 
in the Output window.

REF-Value-Notation

Parameters: (None)
522 IBM Rational Tau User Guide June 2009



Console
REF values (pointers introduced using the Own and ORef templates) are 
printed as NEW(<the value the pointer refers to>). This is the default 
syntax for REF values. It means that complete lists or graphs will be printed.

Example 141: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

NEW( (. 1, NEW( (. 2, Null .) ) .) )

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

To avoid problems in cyclic graphs a special syntax is used if a pointer refers 
to an address already presented in the output. OLD n, where n is a digit, means 
a reference to the nth NEW in the printed value. 

Example 142: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

NEW( (. 1, NEW( (. 2, OLD 1 .) ) .) )

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The Null value is printed as Null. On input both this syntax and the Address-
Notation (compare with command REF-Address-Notation) can be used.

Note
This command only applies to values that are displayed in execution traces 
in the Output window.

Remove-All-Breakpoints

Parameters: (None)

This command removes all inserted breakpoints.

Remove-Breakpoint

Parameters: <entry number>

This command removes breakpoints in the model. The List-Breakpoints 
command lists the entry numbers for each inserted breakpoints.

Reset-GR-Trace

Parameters:

<Optional unit name>
June 2009 IBM Rational Tau User Guide 523



Chapter 12: Model Verifier Reference
The GR trace value of the given unit is reset to undefined. If no unit is spec-
ified the GR trace value of the system is reset to undefined. As there always 
has to be a GR trace value defined for the system, Reset-GR-Trace on the 
system is considered to be equal to setting the GR trace value to 0.

Reset-Timer

Parameters:

<Timer name> <Timer parameters>

The result of the command is exactly the same as if the process instance 
given by the current scope had executed a reset action. If the reset action 
causes a timer signal to be removed and this signal was selected for the next 
transition, the process instance will execute an implicit nextstate action.

Reset-Trace

Parameters:

<Optional unit name>

The trace value of the given unit is reset to undefined. If no unit is specified 
the trace value of the system is reset to undefined. As there always has to be 
a trace value defined on the system, Reset-Trace on the system is considered 
to be equal to setting the trace value to 0.

Note
The user interface is not updated when this command is used.

SDL-Value-Notation

Parameters: (None)

The value notation used in all outputs of values is set to SDL value notation. 
This is the default value notation.

Save-Breakpoints

Parameters:

<File name>

This command saves all breakpoints in a file. It is written as a text file with 
commands. 
524 IBM Rational Tau User Guide June 2009



Console
Save-State

Parameters:

<File name>

This command will save the state of the current simulation in a file, with the 
name specified as parameter (in the work directory). It is written as a text file 
with special commands, so the state can be restored with the Restore-State 
command.

Set-GR-Trace

Parameters:

<Optional unit name> <Trace value>

The GR trace value is assigned to the specified entity. If no unit is specified 
the GR trace value is assigned to the whole model. The initial GR trace value 
of the system is 0, i.e. no execution tracking in the diagrams is enabled. The 
value of 1 enables execution tracking.

Set-MSC-Trace

Parameters:

<Optional unit name> <Trace value>

This command is equivalent to “!U2::Debug set_msc_trace” on page 510. 

Set-Timer

Parameters:

<Timer name> <Timer parameters> <Time value>

The result of the command is exactly the same as if the instance of active 
class in the current scope had executed a set timer action. If the set action 
causes a timer signal to be removed and this signal is selected for the next 
transition, the instance will execute an implicit nextstate action.

Set-Trace

Parameters:

<Optional unit name> <Trace value>
June 2009 IBM Rational Tau User Guide 525



Chapter 12: Model Verifier Reference
The Textual trace levels is assigned to the specified unit, or node. If no unit 
is specified the trace value is assigned to the whole model. The trace value 
specifies which type of information that will be displayed in the textual trace. 
The initial trace value for the model is 4, while it is undefined for all other 
units.

Show-C-Line-Number

Parameters: (None)

The command displays where in the C code the execution is suspended. The 
file name and the line is displayed in the Output window.

Show-Next-Symbol

Parameters: (None)

The symbol in turn to be executed will be selected in a state machine dia-
gram.

Show-Previous-Symbol

Parameters: (None)

The last executed symbol will be selected in a state machine diagram.

Show-Versions

Parameters: (None)

The versions of the SDL to C Compiler and the run-time kernel that gener-
ated the currently executing program are presented.

Signal-Log

Parameters:

<Unit name> <File Name>

This commands starts logging of signals to a specified file. The <Unit 
name> parameter specifies which entity that will be logged. Only signals to 
and from this entity will be listed in the file. Use the command Close-Signal-
Log when the log is complete.

To view the log use the command List-Signal-Log.
526 IBM Rational Tau User Guide June 2009



Console
Start-Batch-MSC-Log

Parameters: 

<Symbol level> <File name>

This command starts the logging of events which can be translated into the 
corresponding sequence diagram events in a log file. Stop the log by using 
the command Stop-MSC-Log.

The results will be stored in a log file.

The symbol level parameter determines if states and actions should be in-
cluded in the log. For a description of the possible symbol level values.

The file name parameter to this command can be any valid file name.

Start-env

Parameters: (None)

This command initiates the possibility to call environment API functions 
from a Model Verifier generated with Simulation kind set to With 
Environment. 

Statemachine-Mode

Parameters: (None)

By default the Model Verifier operates in state machine mode, meaning that 
execution can be tracked in state machine (and text) diagrams. However, 
when simulating activities the focus is more on the execution of activities, 
and a special activity mode is then used instead (see the Activity-Mode com-
mand). Use the Statemachine-Mode command to leave the activity simula-
tion mode.

Stop-env

Parameters: (None)

This command stops the calling of environment API functions from a Model 
Verifier executable. This command is only available when a Model Verifier 
has been generated with Simulation kind set to With Environment.
June 2009 IBM Rational Tau User Guide 527



Chapter 12: Model Verifier Reference
Stop-MSC-Log

Parameters: (None)

This command stops the logging of sequence diagram events. In the case of 
a batch mode logging, the log file will be closed. Compare with the command 
Start-Batch-MSC-Log for more details.

Following this command, it is possible to log the rest of the session on a new 
file.

Special console commands

In the following is a list of console commands that are for various reasons not 
fully documented. They are normally not necessary to use and should only in 
rare occasions be considered, typically on recommendations from IBM Ra-
tional Tau Support in combination with workarounds to complex simulation 
situations. Some of these commands can be considered deprecated as they 
are similar or identical to other menu and toolbar commands. 

%

Breakpoint-At

Define-At-Delay

Define-Continue-Mode

Define-Delay

Down

Examine-PId

Examine-Signal-Instance

Finish

List-Input-Port

List-MSC-Trace-Values

List-Process

Nextstate

Next-Symbol
528 IBM Rational Tau User Guide June 2009



Console
Output-From-Env

Output-Internal

Output-None

Output-To

Output-Via

Performance-Simulation

Print-Paths

Rearrange-Input-Port

Rearrange-Ready-Queue

REF-Deref-Value-Notation

Remove-At

Remove-Delay

Remove-Signal-Instance

Reset-MSC-Trace

Restore-State

Save-Delay

Scope

Set-Scope

Show-Breakpoint

Stack

Start-Interactive-MSC-Log

Step-Statement

Step-Symbol

Stop

SymbolTable

Up
June 2009 IBM Rational Tau User Guide 529



Chapter 12: Model Verifier Reference
xSet

Replay Mode
In replay mode you can record:

• Execution steps

• User commands

Execution steps

The following execution steps are recorded in a scenario:

• A transition is described by the path of the active class instance, the state 
from which it starts, and the signal it consumes. This is displayed as:

active_class_instance_path: from state_path input 
signal_path

• A time-out is described by the path of the active class instance which sets 
the timer, and the path of the timer. This is displayed as

active_class_instance_path: timer timer_path

User commands

User commands recorded in a scenario are the commands which modify the 
state of the application:

• Output is described by the information that is available in the Messages 
window. It is displayed as: 

output from sender_path [via connector name] to 
destination_path : signal_path [ (parameters values) ]

• New is described by the path of the parent of the created object. This is 
displayed as:

new object_path

• Delete is described by the path of the deleted object, This is displayed as:

delete object_path

• Rearrange is described by the path of the parent object, and source and 
destination positions. This is displayed as:

collection_path: source_index -> destination_index
530 IBM Rational Tau User Guide June 2009



Dynamic Errors
• Assignment is described by the path of the assigned object, and the new 
value expression. This is displayed as:

assigned_object_path = new_value

Dynamic Errors
Error messages are presented as described in Example 143 on page 531. 

Example 143: Dynamic Error Printout ––––––––––––––––––––––––––––––––––––

************************* ERROR ************************
Error in SDL Decision: Value is 12:

Entering decision error state
TRANSITION
  Process        : Ctrl:1
  State          : Idle
  Input          : Coin
  Symbol         : #SDTREF(U2,"u2:C:\Program 
Files\IBM\Rational\TAU\4.3\examples\CM\
CM.u2#7t6K1VwL19VLrn8XRELUlHzI|pos(1,18)")
TRACE BACK
  Process        : Ctrl
  System         : CoffeeMachine
********************************************************

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Action on dynamic errors

After a dynamic error, the execution of the simulation program continues 
until the current symbol is ended. The following actions will be taken:

• If the error is a signal sending error the signal will not be sent.

• If the error is a decision error the instance of active class will immedi-
ately be placed in a decision error state. The input port will not be af-
fected when the decision error state is entered. All signals sent to an in-
stance of active class in a decision error state will be saved in the input 
port.

• If the error occurred during the creation of static instances of active 
classes, that is the initial number of instances is greater than the max-
imum number of instances, an error message is given and the number of 
instances specified by initial number of instances are created.

• If the error occurred during an import or view action a data area of the 
correct size containing zero in all positions is returned.
June 2009 IBM Rational Tau User Guide 531



Chapter 12: Model Verifier Reference
• If the error is found in a range condition check during an assignment, the 
attribute to the left of the assignment operator will be assigned the com-
puted value, although it is out of bounds.

• If the error is found during a range check of an array index the index 
value will be changed to be the lowest value of the index type. This 
means that the corresponding C array will never be indexed out of its 
bounds.

• If the error occurred during selection of an optional component in a struct 
or when selecting a component in a choice, an error message is given 
and the operation is performed anyhow.

• If a Null pointer (Own and ORef) is de-referenced, a new data area of cor-
rect size is allocated containing zeros. This data area is assigned to the 
pointer. After the error message the statement containing the de-refer-
encing is performed.

• If the error occurred within an expression the operator that found the 
error returns a default value and the evaluation of the expression is con-
tinued.
532 IBM Rational Tau User Guide June 2009



UML Import and Export

The chapters in this section describe IBM Rational Tau’s capabilities for im-
porting and exporting data in external formats from and to a UML model. 
This includes features for information exchange with other modeling tools.

See also

Adding Importers to learn how to add custom importers to IBM Rational 
Tau.
June 2009 IBM Rational Tau User Guide 533



Chapter : 
534 IBM Rational Tau User Guide June 2009



14
.NET Assembly Importer

The .NET Assembly importer is a tool for importing a .NET assembly or a 
COM component into a UML model. After the assembly or component has 
been imported into the model its contents can be visualized and it can be ac-
cessed from the UML model.

In this document we use the term component both for .NET assemblies and 
COM components since they are handled in almost the same way by the im-
porter. 

The .NET Assembly Importer is available on Windows platforms only.
June 2009 IBM Rational Tau User Guide 535



Chapter 14: .NET Assembly Importer
Operation Principles
The main application area of the .NET Assembly Importer is to create a UML 
representation of a component. This representation serve mainly two dif-
ferent purposes:

– Visualization. By importing a component its contents can be visual-
ized in diagrams and Model View.

– Access. The imported definitions from the component can be ac-
cessed and used in the UML model. 

When importing a component only the definitions it exposes will be im-
ported. The implementation of the component is not imported to the model. 
All imported definitions from a component are put in one or sometimes many 
UML packages. In addition a file artifact will be created that represents the 
imported component in the model.

Import a Component

To import a component into UML:

• Select the Model item in Model View.

• Open the Import Wizard (File menu, Import... command).

• Select Import .NET assembly or COM component in the dialog.

The wizard then displays the following dialog allowing you to specify which 
components to import:
536 IBM Rational Tau User Guide June 2009



Operation Principles
The .NET tab of the dialog lists all .NET assemblies that are present in the 
Global Assembly Cache (GAC) on the computer. For each assembly its ver-
sion number is also shown.

The COM tab of the dialog lists all COM components that are registered in 
the system registry on the computer. For each COM component the file that 
contains its type library is also shown.

In case the component you want to import is not registered in the GAC, nor 
in the system registry, it won’t be present in any of the lists. In that case you 
can use the Browse... button to locate the component in the file system.

You may select any number of .NET assemblies or COM components to be 
imported. All components that are listed in the bottom list will be imported 
when the Finish button is pressed.

Figure 168: The Import .NET assembly or COM component wizard
June 2009 IBM Rational Tau User Guide 537



Chapter 14: .NET Assembly Importer
Reimport a Component

Normally a component is only imported once into the model. However, there 
are situations when you might want to repeat the import at a later point in 
time for the same component. For example, if changes have been made in the 
component a repeated import can be used in order to update the model with 
these changes.

To update the model by reimporting a component select the command Im-
port component that is available in the context menu on the file artifact that 
represents the component in the model.

Translation Rules
This section describes the translation rules that are used when importing a 
component into the UML model. The terminology used here is oriented to-
wards .NET assemblies rather than COM components. The reason is that a 
COM component that is imported will first be converted to a .NET assembly, 
using the standard type library importer tool that is part of the .NET frame-
work. This interop assembly is then translated to UML.

Assembly and Namespace

Each namespace is translated to a UML package with the same name as the 
namespace.

The assembly itself also defines a top-level scope for the types it contains. 
Hence the assembly will also be translated to a UML package with the same 
name as the assembly.

Class

A class is translated to a UML class with the same name as the class.

If the class inherits from another class, or implements interfaces, the UML 
class will contain corresponding generalizations.

Fields of the class are translated to corresponding attributes of the UML 
class.
538 IBM Rational Tau User Guide June 2009



Translation Rules
Interface

An interface is translated to a UML interface with the same name as the in-
terface.

If the interface inherits from other interfaces, the UML interface will contain 
corresponding generalizations.

Method

A method of a class or interface is translated to a UML operation contained 
in the corresponding UML class or interface. Parameters of the method are 
translated to parameters of the UML operation. The names of both the im-
ported method and parameters are the same as the originals.

Enumeration

An enumeration is translated to a UML datatype with the same name as the 
enumeration. The literals of the enumeration are translated to corresponding 
literals of the UML datatype.
June 2009 IBM Rational Tau User Guide 539



Chapter 14: .NET Assembly Importer
540 IBM Rational Tau User Guide June 2009



15
C/C++ Import 

This section is a reference and guide to the C/C++ import functionality, 
which takes a set of C/C++ header files, preprocesses them, and translates the 
declarations in these headers into corresponding UML representations. 

The C/C++ importer can also be instructed to import statements that are 
present in inline implementations of imported functions, making it a useful 
tool when migrating C/C++ header files to UML.

This document describes the rules for this translation process, and the oper-
ation principles for the C/C++ import.
June 2009 IBM Rational Tau User Guide 541



Chapter 15: C/C++ Import
Operation Principles
The main application area of the C/C++ import is to provide access to ex-
ternal C/C++ code from UML applications developed with the UML tool set. 
This is achieved by parsing a set of C/C++ header files, checking their syntax 
and semantics, and then translating the C/C++ definitions to their corre-
sponding UML definitions according to a fixed set of C/C++ to UML trans-
lation rules. 

Another application area is to produce a graphical documentation of legacy 
code, aiming at helping you understanding its design, structure, dependen-
cies and inheritance tree. 

Yet another application area is to use C/C++ import as a means for migrating 
an existing C/C++ application to UML, with the intention to continue its de-
velopment in UML and to generate new C/C++ code with the IBM Rational 
Tau code generators. Such a migration does not necessarily have to be done 
for every part of an application. A common scenario is to only generate 
header files from the imported UML model, while still keeping and main-
taining existing implementation files in C/C++. The C/C++ importer facili-
tates this migration scenario through an option for also importing action code 
(statements) that are present in inline implementations of header files. There 
is also an option for letting the C/C++ importer create a set of header file ar-
tifacts, and a build artifact, that are appropriate for regenerating the header 
files using the C++ Application Generator.

Target UML package

Each import of C/C++ will result in a number of UML elements that are 
stored in the package that is designated as target. Even though assigning any 
package as target is possible, for example the package containing your UML 
model under development, there may be advantages to assign an empty 
package to start with, for instance to gain more visibility and understanding 
of what has actually been imported. 

Input

You may specify any set of input C or C++ header files as input to an im-
porting scheme. The files that are specified as input are preprocessed ac-
cording to your preferences, before the actual translation is done.
542 IBM Rational Tau User Guide June 2009



Operation Principles
Preprocessor

The C/C++ import is designed to take advantage of the conditional compiling 
and other directives provided by a C/C++ preprocessor, in order to allow a 
flexible importing scheme, supporting the fundamental idea about how the 
code is intended to be compiled. The C/C++ mode of the Import Wizard is 
designed in a way that allows you to specify any preprocessor, and any pre-
processor options. Some Preprocessor restrictions may apply. 

Note
Importing a C/C++ header file consists of two steps, preprocessing and im-
port. During preprocessing the header file is preprocessed. It is possible to 
specify your own preprocessor, and any preprocessor options. 
During import to UML all macros and other preprocessor constructs are 
expanded in the imported (preprocessed) file. Original macro names and 
definitions are not saved and are not imported to UML. 

Syntax and semantic checks

After the C/C++ code is preprocessed, the necessary syntactic and semantic 
checks are done to verify the completeness of the imported header files be-
fore translation to UML. These checks encompass the subset of the C and 
C++ languages that is supported by the C/C++ import. 

The imported C/C++ code must always be fully syntactically correct. If 
syntax errors are detected these are reported, and the import will not proceed.

During import, a limited subset of semantic checks are performed. However, 
the C/C++ Importer is not a replacement for a C/C++ compiler, and it is usu-
ally possible to import a program even if it contains several semantic errors. 
If you are uncertain about the correctness of the code that is imported, it is 
recommended to use a C/C++ compiler to verify the correctness before doing 
the import. 

C/C++ to UML translation rules

The translation of each C/C++ construct or topic that is possible to import is 
described in a subsection of its own. See General Translation Rules and the 
following sections.

Most of the language constructs are illustrated with examples for how im-
ported C/C++ definitions are translated to UML.
June 2009 IBM Rational Tau User Guide 543



Chapter 15: C/C++ Import
Note
The purpose of the examples is to illustrate a particular translation rule 
only. Therefore details in the translated UML not directly related to that 
translation rule may be omitted for the sake of brevity. Also, keep in mind 
that exactly how the translated UML will look like often depends on which 
options that have been used in the import.

Created UML definitions

The generated UML definitions are put in the UML package that is desig-
nated as “target” for the import. After the package is included in a project, 
you can then refer to these UML definitions from the UML model, which al-
lows full syntactic and semantic analysis.

You may have multiple packages, each of them functioning as target con-
tainer for a subset of all definitions. This allows for instance to separate C and 
C++ definitions, and also to separate code of various origins that has been de-
veloped using different flavors of C and C++. For each such import, you may 
have different settings for preprocessor, language (C or C++), and the C++ 
dialect that is used.

Trace back to source headers

The importing scheme keeps track of the location of entities in the source 
header files so that you can easily look up any imported entity in your C/C++ 
programming environment or any text editor. Navigation from IBM Rational 
Tau is done by means of the Go to source command that is available in the 
context menu of an imported entity.

Example 144: Navigate to source headers from an imported entity–––––––––––––

Assume the following C++ file test.h is imported to UML:

class C {};

After the import of this file you may right-click on the class C in the import 
package and select Go to source. A submenu will list all occurrences of class 
C in the imported header files, in this case “test.h: 1”.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
544 IBM Rational Tau User Guide June 2009



Operation Principles
Compiler and language support

The translation rules are designed to support both C and C++ target com-
pilers, using any supported C/C++ dialect. To a large extent, the translation 
rules are independent of whether a C or C++ target compiler is used. How-
ever, when C/C++ Import executes in “C mode”, a few translation rules are 
slightly modified.

These modifications are described in the section “Translation rules for C 
compilers” on page 613.

Import C/C++ 

To import C/C++ files into UML:

• Select the Model item in Model View.

• Open the Import Wizard (File menu, Import... command).

• Select Import C/C++ in the dialog.

Header files and options are specified in the cppImportSpecification ste-
reotype, applied to a package. Imported definitions will be placed into this 
package stereotyped by cppImportSpecification. The Import wizard will 
automatically apply this stereotype, and store all settings made in the wizard 
using tagged values. You may later use the Properties Editor for inspecting 
or changing these settings, or add more advanced settings that are not avail-
able from the Import wizard. See Specify import options for more informa-
tion.

Specify import input

The first page of the C/C++ import wizard lets you specify the input files. 
Simply browse and select the files to import.

Note
Under Windows you must choose to either select a set of C/C++ files to im-
port, or to select a single Visual Studio project file (.vcproj). In the latter 
case you must also select a configuration defined in that project file. The 
preprocessor settings of the selected configuration will be used in the im-
port.
June 2009 IBM Rational Tau User Guide 545



Chapter 15: C/C++ Import
Specify import settings

The second page of the C/C++ import wizard lets you set some common op-
tions for the import. You can specify the following:

• C/C++ dialect. The default dialect (Standard C/C++) conforms to the 
ISO/IEC 14882 standard of the C++ language, and the ANSI/ISO 9899-
1989 standard of the C language. Other dialects that are supported are 
GNU, Borland and Microsoft. For more information see C/C++ dialect.

• Action code import. This option controls how the importer handles func-
tion bodies that are present in the imported files. By default such bodies 
are not imported to the UML model. If you want to import them you can 
either import them to UML actions, or you can import them as informal 
actions. The option to import action code is typically used when the pur-
pose of the import is to migrate a legacy C/C++ application to UML, and 
later regenerate it using the C++ Application Generator. However, it may 
of course also be used if the purpose of the import is to visualize a C/C++ 
program in UML. See Action code strategy for more information.

• Source files contain only C. By default the importer assumes that the im-
ported header files contain C/C++. If you are importing plain C header 
files (i.e. no use of C++) then you should set this option. The importer 
then operates in “C mode”. For more information see C only.

• Import only exported definitions. Some compilers support the 
__declspec(dllexport) construct as a means for specifying those def-
initions that are exported from a dynamic link library or shared object. By 
using this option it is possible to only import such definitions. This can 
be useful when only the exported interface of a library shall be imported 
to UML. For more information see Import only exported definitions.

• Generate GUIDs based on scoped name. By default imported entities 
will get random GUIDs. If you intend to do repeated imports it is more 
appropriate to use the option to generate GUIDs that are based on the 
scoped names of the imported definitions. See GUID name option for 
more information.

• Generate artifacts. If this option is enabled the importer will generate file 
artifacts that represent the imported files. It will also generate a build ar-
tifact for the C++ Application Generator, which will manifest the file ar-
tifacts. The purpose of these artifacts is to facilitate the regeneration of 
the imported files using the C++ Application Generator. See Generate ar-
tifacts for more information.
546 IBM Rational Tau User Guide June 2009



Operation Principles
• Import now. Turning this option off before clicking Finish in the Import 
Wizard disables the actual import and allows you to specify the import 
options before the C/C++ import is launched (usually the first time the 
C/C++ import is called). See Specify import options for how to specify 
these import options. When appropriate import options have been set, use 
the Import C/C++ command (available in the context menu of the im-
port package) to perform the import. 

Even if you leave the “Import now” option enabled in the wizard, you 
will need to use the Import C/C++ command if you want to repeat the 
same import operation at a later point in time (for example because 
changes have been made in the imported files). Note that such repeated 
imports require some special attention; see Repeated Import Consider-
ations for more information.

Specify u2 file for package ImportedDefinitions

The third page of the C/C++ import wizard allows you to specify a model 
(.u2) file where to save the result package of the import. When a package is 
saved in a model (.u2) file any imported header file paths become relative to 
this model file. The flag “Use absolute paths for input header files” should 
be set if the paths should not be relative to the model file. 

Import output

The result of the import will be placed in a new package located in the con-
text of your current Model View selection, named “ImportedDefinitions”. 
You may want to move the generated definitions to a “source” package, tidy 
up the diagrams and add comments. 

Specify import options

The C/C++ import options are edited by opening the Properties Editor using 
the cppImportSpecification filter (stereotype).

1. Open the Properties dialog for the imported package. In the Filter drop-
down menu select cppImportSpecification. 

2. Adjust the available options to adequate values.
June 2009 IBM Rational Tau User Guide 547



Chapter 15: C/C++ Import
Specify import input in C/C++ import options

You may use a wildcard notation in the input header files field in cppIm-
portSpecification filter (stereotype). Thus you can write for example 
e:\test\*.h or e:\test\* in this field and matching file names will be 
marked for import.

Manual C/C++ Import 

This step is normally not necessary to perform. The necessary Add-Ins are 
loaded when the Import Wizard is used. 

1. From the Tools menu select Customize.

2. Click the add-ins tab in the dialog to list the currently available add-in 
modules. 

3. In the list of available add-ins, select the CppImport add-in and then 
close the dialog. 

A UML profile package named TTDCppImport is now loaded and appears 
in the Library node in the Model View. This package contains the cppIm-
portSpecification stereotype and its attributes with the settings for the C/C++ 
import.

You may then apply this stereotype to a package, and set appropriate import 
options by editing the tagged values of that stereotype. The import operation 
is performed by right-clicking on the package in the Model View, and se-
lecting the Import C/C++ command.
548 IBM Rational Tau User Guide June 2009



Repeated Import Considerations
Repeated Import Considerations
Normally a C/C++ import is an operation that only is performed once for a 
set of C/C++ files. However, there are situations when you might want to re-
peat the import at a later point in time for the same set of files. For example, 
if changes have been made in the input files a repeated import can be used in 
order to update the model with these changes.

Important!
When a repeated import is performed from the context of some import 
package, all existing imported UML entities in that package will first be de-
leted before the package is populated with new imported entities. Any infor-
mation added to these imported entities in the UML model will hence be 
lost. It is not possible to perform an “Undo” of a repeated C/C++ import, 
so be careful.

GUID name option 

UML entities that result from a translation like the C/C++ import are by de-
fault given randomly generated GUIDs.

Importing C/C++ definitions repeatedly implies that references to the entities 
(typically from presentation elements) become unresolved the next time an 
import is made. To cope with this, the option GUID algorithm can be set to 
Based on scoped name, in order to have each GUID generated from the 
(fully qualified) name in the original C/C++ definition.

Important!
When using a GUID algorithm based on scoped names it is very important 
that the imported header files are semantically correct. If the files are incor-
rect, so that for example a C++ scope contains two definitions with the 
same name, then two UML entities will get the same GUID. After saving the 
model, it can therefore not be loaded again due to a GUID conflict. Because 
of this, always save the import package in a separate .u2 file if you want to 
do repeated imports. Should a GUID conflict arise you can then just remove 
the import package .u2 file from your project and still load the remaining 
parts of your model.

For some entities the “scoped name” is computed according to special rules, 
described next. The purpose of these rules is to guarantee the uniqueness of 
generated GUIDs. These rules are applicable to Generalization, Return pa-
rameter, Formal parameter and Operation. 
June 2009 IBM Rational Tau User Guide 549



Chapter 15: C/C++ Import
Generalization

For a generalization, the GUID becomes “X-inherits-Y”, where 

• X is the name of the subtype (qualified relative the package into which 
the import is made)

• Y is the name of the supertype.

Return parameter

For a return parameter, the GUID becomes “X-return-parameter”, where X 
is the qualified signature of the operation to which the return parameter be-
longs.

Formal parameter

For a formal parameter, the GUID becomes “X-Y”, where 

• X is the qualified signature of the operation to which the parameter be-
longs.

• Y is “fparN”, where ‘N’ denotes the ordinal number of the parameter.

Attribute

For an attribute, the GUID becomes the qualified name of the attribute pre-
fixed with “attr--”.

Operation

For an operation, the GUID becomes the qualified signature of the operation.
550 IBM Rational Tau User Guide June 2009



General Translation Rules
General Translation Rules

External

By default imported definitions are marked as external in UML. Thereby it 
is indicated that these definitions correspond to C/C++ definitions that are 
external to the UML model. 

There is an option “Set “External” attributes for imported definitions” in the 
cppImportSpecification stereotype that can be turned off in order to not mark 
imported definitions as external. This can for example be useful if the C/C++ 
import is done with the purpose of migrating legacy code to UML. With this 
option turned off the external property will only be set if the C/C++ defini-
tion is explicitly declared to be extern. This is done since for some kinds of 
definitions (for example constants) the translation rules from UML to C++ 
are different for external and non-external definitions.

In the translation rule examples in the following sections this option is as-
sumed to be set. That is, the UML definitions are normally not marked as ex-
ternal in the examples for brevity reasons.

Names
A C/C++ identifier is given the same name in UML.

When a C/C++ name is a UML keyword, it will be quoted with apostrophes 
in order to create a valid UML name.

Example 145: Translation of names –––––––––––––––––––––––––––––––––––––––

C/C++:

void OpenFile();
double signal; // UML keyword "signal"
typedef int part; // UML keyword "part"
part port; // UML keywords "part" and "port"

UML:

public void OpenFile();
public double 'signal';
public syntype 'part' = int;
public 'part' 'port';

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 551



Chapter 15: C/C++ Import
Fundamental Types
A fundamental C/C++ type is mapped to a UML type with the same name. 

UML representations of all fundamental C/C++ types are available in the 
TTDCppPredefined profile package, which is loaded with the CppTypes 
add-in. 

During C/C++ import it is assumed that this package is available, and refer-
ences to the types in that package will be generated. Should the package not 
be available at the time when the import takes place, a warning message is 
issued to inform that a large number of unbound references as the result of 
the translation can be expected.

Translation from C/C++ fundamental types to UML

The table below shows the mapping between fundamental C/C++ types and 
UML types. In most cases, a type in the TTDCppPredefined profile package 
is a syntype of a predefined UML type.

C/C++ Fundamental Type UML Type Predefined 
UML Type

signed int,
int

int Integer

unsigned int,
unsigned

'unsigned int' Integer

signed long int,
signed long,
long int, 
long

'long int' Integer

unsigned long int,
unsigned long

'unsigned long int' Integer

signed short int,
signed short,
short int,
short

'short int' Integer

unsigned short int,
unsigned short

'unsigned short 
int'

Integer
552 IBM Rational Tau User Guide June 2009



Pointer, Array and Reference Type
Note
The special void type is not represented explicitly in UML. Instead this type 
is translated by omitting input and result arguments to operations as de-
scribed in the section about translation of Function.

Pointer, Array and Reference Type
The pointer (*) and array ([ ]) type specifiers of C/C++, and the reference 
(&) type specifier of C++, make it possible to create the following:

• Pointer type specifier, 

• Array type specifier,

• Reference type specifier, 

• No type specifier,

and combinations of these. 

signed long long int,
signed long long,
long long int,
long long

'long long int' Integer

unsigned long long int,
unsigned long long

'unsigned long long 
int'

Integer

char char Character

signed char 'signed char' Character

unsigned char 'unsigned char' Character

wchar_t 'wchar_t' Character

float float Real

double,
long double

double Real

bool bool Boolean

void N/A N/A

C/C++ Fundamental Type UML Type Predefined 
UML Type
June 2009 IBM Rational Tau User Guide 553



Chapter 15: C/C++ Import
Pointer type specifier

A pointer type specifier is translated to a template instantiation of the CPtr 
template of the TTDCppPredefined profile package. The CPtr template has 
operations corresponding to the operations that can be performed on a C/C++ 
pointer.

Example 146: Translation of pointers –––––––––––––––––––––––––––––––––––––

C/C++:

typedef int* p_int;
extern void* p_userdata;
typedef char** pp_char;

UML:

public syntype p_int = CPtr<int>;
public 'void*' extern p_userdata;
public syntype pp_char = CPtr<'char*'>;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Untyped pointers

Untyped pointers (void*) are translated to a special UML type in the 
TTDCppPredefined profile package, called ‘void*’. It is defined as fol-
lows:

syntype 'void*' = CPtr<Any>;

Operations for CPtr<> like SetValue and GetValue should not be used with 
‘void*’, because Any means nothing and you can not directly define values 
of the type Any.

The ‘void*’ type can only be used as a conversion buffer between C++ 
void* and UML values. In UML‘void*’ can be converted to CPtr<> types 
and UML class references and back without any special cast. For all other 
UML types a conversion between‘void*’ and a UML type can be fulfilled 
only by an explicit call of the cast<> operation.

Note
If you want to generate code, you must always insert explicit cast operators 
for 'void*' conversion! You will not get any error messages when checking 
your UML model if cast is not used, but the generated code will not compile.
554 IBM Rational Tau User Guide June 2009



Pointer, Array and Reference Type
Example 147: Translation and usage of C++ void* type ––––––––––––––––––––––

C/C++:

  typedef void* voidstar;
  typedef struct Str {
    voidstar  ptr;
  } Str;

Imported UML:

  public syntype voidstar = 'void*';
  public <<struct>> class Str {
    public voidstar ptr;
  }

'void*' usage in UML:

  part Str x;  CPtr<int> pi;
  pi = new CPtr<int>();
  pi.SetValue(10);
  x.ptr = cast<'void*'>( pi );    // 'void*' = CPtr<int>
  pi = cast<CPtr<int> >( x.ptr ); // CPtr<int> = 'void*'

  class C {}
  CPtr<C> pc;
C c = new C();

  x.ptr = cast<voidstar>( c );    // 'void*' = class 
reference
  pc = cast<CPtr<C> >( x.ptr );   // CPtr<C> = 'void*'
  c = pc;                         // class reference = 
CPtr<C>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 147 on page 555 illustrates the following rules of 'void*' usage in 
UML:

• There are no memory allocation and deallocation functions for 'void*' 
in UML. One way to initialize 'void*' in UML is to create an object of 
a class (new C()) or initialize a CPtr<> type (new CPtr<int>() ) and 
then assign it to 'void*' with use of cast.

• If a'void*' variable in UML should point to some UML object with 
value semantics (for example, int), CPtr<type> should be used to 
create a pointer. 

• Note the UML syntax for actual template arguments that are template in-
stantiations: cast<CPtr<int> > . The syntax requires a blank after the 
first closing bracket. For increased readability you may define syntypes 
of the CPtr<> types. 
June 2009 IBM Rational Tau User Guide 555



Chapter 15: C/C++ Import
• cast<CPtr<Any> > can not be used! Only cast <'void*'> can be 
used! 

• cast operation can use direct type name ( cast<'void*'> ) or any of 
its synonyms as defined with syntypes ( cast<voidstar> ). 

• Casting 'void*' to a class reference will not work in the generated C code 
- this is a restriction on the C Code Generator - so if such a conversion is 
needed, 'void*' should be explicitly cast to CPtr<class>, then 
CPtr<class> can be implicitly cast to class reference. 

'void*' can be initialized by calling the UML new operator. It can also be ini-
tialized by a GetAddress call.

Example 148: void* initialization in UML –––––––––––––––––––––––––––––––––

C/C++:

typedef void* voidstar;

Imported UML:

public syntype voidstar = 'void*';

void* initialization in UML:

'void*' pv1, pv2;  CPtr<int> pi;  int i;
pi = new CPtr<int>();
pi.SetValue(10);
pv1 = cast<'void*'>( pi );       // 'void*' = CPtr<int>

i = 12;
pi = CPtr<int>::GetAddress( i );
pv2 = cast< voidstar >( pi );    // 'void*' = CPtr<int>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML'void*' values can be passed to a C++ function taking void*. C++ 
void* values returned by C++ functions can be stored in UML'void*' 
values.

Example 149: Calling C++ functions from UML ––––––––––––––––––––––––––––

C/C++:

typedef void* MyVoidStar;
MyVoidStar init( void );
void finit( MyVoidStar );
556 IBM Rational Tau User Guide June 2009



Pointer, Array and Reference Type
Imported UML:

public syntype MyVoidStar = 'void*';
public MyVoidStar init();
public void finit( MyVoidStar );

Calling C++ functions from UML:

CPtr<int> pi;
pi = cast< CPtr<int> > ( init() );
finit( cast<MyVoidStar>( pi ) );

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Pointer to char

Pointers to char (char*, wchar_t*) are also mapped to a special UML type 
from the TTDCppPredefined profile package, called 'char*' and 'wchar_t*'. 
These types are defined in the following way:

<<External="true">> datatype 'TCHAR*' : CPtr<TCHAR> {
    public 'TCHAR*'( Charstring str);
    public <<External="true">> Charstring ToString();
}
<<External="true">> syntype TCHAR = Character;
syntype 'char*' = 'TCHAR*';
syntype 'wchar_t*' = 'TCHAR*';

The UML type 'TCHAR*' inherits all operations defined for the CPtr tem-
plate, and adds two new operations - a constructor from the UML type 
Charstring and a conversion operation from 'TCHAR*' to Charstring. 
These operations are intended for conversion between UML character strings 
and C++ char* strings.

There is an option “Import char* to CPtr<char>” in the cppImportSpecifica-
tion stereotype that can be turned on if you prefer to treat pointers to char as 
pointers in general. That could be of interest if the conversion facilities to and 
from UML Charstrings are not needed.

Array type specifier

An array type specifier is translated to a template instantiation of the CArray 
template of the TTDCppPredefined profile package.

The reason why a special CArray template is used instead of using the ordi-
nary Multiplicity specification of UML is that "[]" is a type specifier in 
C/C++, while in UML it is a specifier on a structural feature. If multiplicity 
June 2009 IBM Rational Tau User Guide 557



Chapter 15: C/C++ Import
had been used, it would not have been possible to translate typedef, since 
no structural feature is present in its translation, as shown in Example 150 on 
page 558. 

Example 150: Translation of arrays–––––––––––––––––––––––––––––––––––––––

C/C++:

extern char c_arr1[20];
typedef int array_of_ints[1024];
extern char c_arr2[];

UML:

public CArray<char, 20> extern c_arr1;
public syntype array_of_ints = CArray<int, 1024>;
public ‘char*’ extern c_arr2;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Unbounded array

Array specifiers that do not specify the size of the array (also referred to as 
“unbounded arrays”) are translated in the same way as a pointer specifier. For 
an example see Example 150 on page 558.

See also

Pointer type specifier

Reference type specifier

Reference type specifiers do not need to be translated, since they are implicit 
in UML, that is the default is the reference semantics for a UML type.

Example 151: Translation of references –––––––––––––––––––––––––––––––––––

C/C++:

extern int i; 
/* i is initialized elsewhere */
extern int& r; 
/* r is initialized to i, elsewhere (int& r = i;) */

UML:

public int extern i;
558 IBM Rational Tau User Guide June 2009



Pointer, Array and Reference Type
public int extern r;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

References could also appear as specifiers for formal function arguments, 
and return types. The translation of the reference type specifier in that context 
is described in “Arguments and return type” on page 565.

References used on return types of a function gets the <<CppReference>> 
stereotype applied on the corresponding operation return parameter. See 
Example 160 on page 567 for an example.

No type specifier
• If a type, other than a predefined C/C++ type, has no type specifier at all, 

then UML structural features that are typed by the corresponding UML 
type become parts.

• If the UML type is used for typing entities that are not structural features 
(for example a syntype), the lack of type specifiers does not lead to any 
special translation. 

• In the case of a syntype, structural features typed by it will become parts, 
and the rule is applied recursively throughout the “syntype chain”. The 
reason for this rule is that the default is the reference semantics in UML. 

Example 152: Translation of types without type specifiers ––––––––––––––––––––

C/C++:

class MyClass {};
MyClass value_var; // Value semantics 
extern MyClass& ref_var; // Reference semantics 

UML:

public class MyClass {};
public part MyClass value_var;
public MyClass extern ref_var;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Predefined type

If the type is a predefined type, the default is the value semantics (as in 
C/C++). In that case, structural features typed by the type will be translated 
as usual. 
June 2009 IBM Rational Tau User Guide 559



Chapter 15: C/C++ Import
Enumerated Types
An enumerated type is translated to a datatype with literals corresponding to 
the enum literals. 

In case the enumerated type has no literals, it can be treated as an integer in 
C/C++, and is consequently translated to a syntype of int.

Example 153: Translation of enumerated types –––––––––––––––––––––––––––––

C/C++:

enum {} v;
enum E2 {}; // Enum without literals
enum E3 {a, b = 10, c = b + 5};

UML:

public syntype incomplete_v = int;
public incomplete_v v;
public syntype E2 = int;
public enum E3 { a, b = 10, c = [[b + 5]]}

For more information about the translation of constant expressions, that may 
be specified for C/C++ literals, see Constant expression.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Implicit conversions from int to enum” on page 619

Typedef
A typedef is translated to a UML syntype.

Example 154: Translation of a type definition in C ––––––––––––––––––––––––––

C/C++:

typedef int MyInt;
typedef struct r {
  int a;
} r; // Typedef name is the same as the tag name!
typedef struct q {
  bool m_bShall;
} *q; // Typedef name is the same as the tag name, 
      // and there is a type specifier.
560 IBM Rational Tau User Guide June 2009



Typedef
typedef struct s {
  MyInt a;
}; // Omitted typedef name - legal but rare!
typedef void myvoid;
typedef myvoid myvoid2;
myvoid f(myvoid2);

UML:

public syntype MyInt = int;
public <<struct>> class r {
  public int a;
}
public <<struct>> class q {
  public bool m_bShall;
}
public <<struct>> class s {
  public MyInt a;
}
public void f();

The translation of q above will yield a warning (“Conflicting typedef name”) 
during import and the typedef will not be translated. For more information 
see Typedef declaration of tagged types.

Note also that a typedef of void is not translated, but usage of such a typedef 
name is translated as if void had been used instead. See Typedef with void 
type for more information.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Typedef declaration of tagged types

For typedef declarations of a tagged type, where the typedef name is the 
same as the name of the tag, and where the typedef type is not a forward 
declaration without definition, the following rule applies:

If the typedef type of such a typedef has type specifiers, it does not define 
a new type name, and hence no syntype is generated. The reason for not gen-
erating such a syntype is that there would otherwise be a naming conflict if 
it is translated according to the normal rules for Pointer, Array and Reference 
Type. 

Typedef without name

A typedef declaration where the typedef name has been omitted, does not 
define a new type name, and hence no syntype is generated.
June 2009 IBM Rational Tau User Guide 561



Chapter 15: C/C++ Import
Typedef with void type

A typedef where the typedef type is void, or a typedef of void does not 
define a new type name, and hence no syntype is generated, but the typedef 
name is remembered. 

References to the typedef name will then be translated in the same way as 
void would have been translated in that context.

Function

General, function prototype

A function prototype is translated to a UML operation.This rule is valid for 
both member and non-member functions. 

Example 155: Translation of functions in general –––––––––––––––––––––––––––

C/C++:

char myfunc1(char);
int myfunc2(void);
void myfunc3();
void myfunc4(int);
bool myfunc5(void* p1, double p2);

UML:

public char myfunc1(char);
public int myfunc2();
public void myfunc3();
public void myfunc4(int);
public bool myfunc5 ('void*' p1, double p2);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Non-member function

Non-member functions will result in operations in the package into which the 
import is made, while member functions will be put as operations of a class 
or choice. 
562 IBM Rational Tau User Guide June 2009



Function
Member function

Although the translation rules as such are identical as for non-member func-
tions, a C++ member function may be “richer in features” in its declaration. 
The translation rules for such member-specific features of a function are de-
scribed in the relevant subsections of the section describing the translation of 
Class, Struct and Union. 

Formal arguments

A formal argument of the function is translated to a corresponding formal pa-
rameter of the UML operation, unless it is of void type in which case it will 
not be translated.

Return type

The return type of the function is translated to a return type parameter of the 
UML operation.

Function declaration without prototype

A function declaration without a prototype (old-style) is translated as an or-
dinary function with a prototype, provided that the arguments of the function 
are properly declared.

Function declarations without a prototype are supported by the C/C++ im-
port, but only if declarations of all function arguments are present. 

Example 156: Translation of function without prototype –––––––––––––––––––––

C/C++:

float average(x,y,z)
float x,y;
char z;
{
  return 1.1;
}

UML:

public float average(float x, float y, char z);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 563



Chapter 15: C/C++ Import
Overloaded functions

A set of overloaded functions are translated to a corresponding set of over-
loaded UML operations.

Example 157: Translation of overloaded functions ––––––––––––––––––––––––––

C/C++:

int f0();
int f0(double);
int f1(int);
int f1(const int);

UML:

public int f0();
public int f0(double);
public int f1(int);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Overloading on const is not supported in UML, but it is allowed in C++. The 
reason is that const is a part of a type in C++ and a const type is distinguished 
from the same type without const. In UML const is not a property of the type 
and name resolution does not take it into account while resolving calls of 
overloaded operations.

Overloading by using const as a specifier on a member function can also lead 
to that not all overloaded versions of the function can be imported to UML. 
See the example below.

Example 158: Overloading on const ––––––––––––––––––––––––––––––––––––––

The following C++ declaration will not be fully imported to UML:

C/C++:

class X {
   int func( int x );
   int func( int x ) const;
};

Output:

Ignored conflicting declaration 'func'

UML:

public class X {
  private <<IsQuery = "true">> int func( int x );
564 IBM Rational Tau User Guide June 2009



Function
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Ambiguities between overloaded functions” on page 568

Arguments and return type

In UML by default function arguments are passed by reference. The excep-
tion is datatypes which follow value semantics. In C++ function arguments 
have value semantics by default.

Due to these difference, the rules in the table below are applied. In the exam-
ples, a type with the name 'D' is used for C++ types which are translated to 
UML datatypes (for example, simple types, pointer, array, enum). Types 
named 'C' denote all other possible C++ types. 

Rule/example C++ UML

1) C++ argument of type D is 
translated to UML argument 
without direction or part speci-
fiers

void F(D); void F(D);

2) C++ argument of type C is 
translated to UML part argument

void F(C); void F
(part C);

3) C++ argument of type D 
passed by reference (&) is trans-
lated to C:\Program 
Files\IBM\Rational\TAU\4.3 
inout argument

void F(D&); void F
(inout D);
June 2009 IBM Rational Tau User Guide 565



Chapter 15: C/C++ Import
The import for C++ reference arguments is aligned with the following UML 
to C++ translation rules:

• A UML reference is translated to a C++ pointer 

• An inout parameter is translated to a C++ reference parameter 

• Part arguments are translated to common C++ arguments (part is ignored, 
only the name of the type is printed)

• A datatype is not a UML reference so it is mapped in the same way as 
part arguments

For more details see Type of typed definitions in the C++ Application Gen-
erator documentation.

Example 159: Translation of formal arguments–––––––––––––––––––––––––––––

C/C++:

class C {
    int x;
};
typedef C* pC;

void F1( int x );
void F2( int& x );
void F3( int*& x );
void F4( int**& x );

void F5( C x );
void F6( C& x );
void F7( C*& x );

4) C++ argument of type C 
passed by reference (&) is trans-
lated to UML part argument with 
inout direction

void F(C&); void F
(inout part C);

5) C++ pointer to D type passed 
by reference (&) is translated to 
UML inout argument of type CPtr 
<D>

void F(D*&); void F
(inout CPtr<D>);

6) C++ pointer to C type passed 
by reference (&) is translated to 
UML inout argument

void F(C*&); void F(inout C);

Rule/example C++ UML
566 IBM Rational Tau User Guide June 2009



Function
void F8( pC x );
void F9( pC& x );
void F10( pC*& x );

UML:

public class C {
  private int x;
}
syntype pC = CPtr<C>;

void F1( int x );
void F2( inout int x );
void F3( inout CPtr<int> x );
void F4( inout CPtr<CPtr<int> > x );

void F5( part C x );
void F6( inout part C x );
void F7( inout C x );

void F8( pC x );
void F9( inout pC x );
void F10( inout CPtr<pC> x );

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Constant arguments are translated to read-only UML operation parameters.

Example 160: Translation of function arguments and return value –––––––––––––

C/C++:

int f1 (int p1, int& p2, const int& p3, const int* p4, 
int *const p5);
int& f2();
const int& f3();
class MyClass {};
void f4(MyClass& p1, MyClass p3, MyClass* p2);

UML:

public int f1(int p1, inout int p2, const inout int p3, 
const CPtr<int> p4, CPtr<int> p5);
public (<<CppReference>> int) f2();
public (<<CppReference>> int) f3();
public class MyClass {}
public void f4 (inout part MyClass p1, part MyClass p3, 
MyClass p2);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 567



Chapter 15: C/C++ Import
Note that a C++ function that returns a pointer to a constant type, for example 
const char*, will in UML be translated to an operation that returns the type 
without const specifier. This is normally not a problem at UML level, but 
might become an issue when generating C or C++ code that uses that func-
tion. See Pointer to constant for more information.

Default argument

A function argument with a default value specified is translated to a UML op-
eration parameter with a default value. If the default value is a constant ex-
pression it is translated as specified in Constant expression.

Example 161: Translation of functions with default arguments ––––––––––––––––

C/C++:

int func(int a, int b = 5, int c = 7);
int func(int a); // Ambiguous function!

UML:

public int func(int a, int b = 5, int c = 7);
public int func(int a);

Note that a call of func with just one actual argument will be ambiguous both 
in C++ and UML. See Ambiguities between overloaded functions for more 
information.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Ambiguities between overloaded functions

In C++, ambiguities between overloaded functions is allowed, provided that 
the functions are never called with a set of actual arguments that make the 
call unresolvable. 

The same is true for UML. The second version of func in Example 161 on 
page 568 is hence acceptable as a definition in UML, but it cannot be called. 

Unspecified argument

Functions with unspecified arguments (also referred to as Ellipsis function) 
are not supported. If such a function is encountered by the C/C++ Importer 
the ellipsis arguments (...) will be ignored. 
568 IBM Rational Tau User Guide June 2009



Function
A workaround is to define a set of wrapper functions in a C/C++ header that 
is imported to UML. These wrapper functions specify the versions of the el-
lipsis function that should be used in the UML model.

Example 162: Translation of ellipsis functions ––––––––––––––––––––––––––––––

C/C++:

int printf(const char *, ...);

/* Wrapper functions */
int printf_int(const char* s, int a) { return printf(s, 
a); }
int printf_str(const char* s, const char* a) { return 
printf(s, a); }

UML:

public int printf(const ‘char*’);
public int printf_int(const ‘char*’ s, int a);
public int printf_str(const ‘char*’ s, const ‘char*’ a);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Inline function

A function that is declared to be inline is translated as an ordinary function.

The inline keyword on functions could be seen as a directive to the C++ com-
piler, which only affects the way that calls to these functions are generated.

Note
The “inline” property will be kept using the inline stereotype from the TTD-
CppPredefined profile.

Example 163: Translation of inline functions –––––––––––––––––––––––––––––––

C/C++:

inline int fac(int n){return (n == 1) ? 1 : n * fac(n - 1);};

UML:

public <<inline>> int fac ( int n);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 569



Chapter 15: C/C++ Import
Function pointer

Function pointers are mapped to UML interfaces with the 
«operationReference» stereotype. The name of the interface will be the 
type definition name. If a function pointer type is used in inline code (without 
a typedef), then the name of the interface will be on the form 
“fpointer_<formal parameter type names>_returns_<return 
parameter type name>“. The resulting interface will only contain one op-
eration named “call”.

Calling a function through a function pointer is in UML done with 

i = myOp.call( 10 ); 

where myOp is an attribute typed by the generated function pointer interface.

Example 164: Translation of function pointers –––––––––––––––––––––––––––––

C/C++:

typedef int (*PFunc) ( int );
void Func ( bool (*pointer) ( bool ) );
int (* qq) ( int );
int (* Func1( bool ) ) ( int );

UML:

public <<operationReference>> interface PFunc {
  int call( int);
}
public void Func( fpointer_bool_returns_bool pointer );
<<operationReference>> interface fpointer_bool_returns_bool {
  bool call( bool);
}
public fpointer_int_returns_int extern qq;
public fpointer_int_returns_int Func1( bool );
<<operationReference>> interface fpointer_int_returns_int {
  int call( int);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Function type

An alternative way of declaring function pointers in C/C++ makes use of 
function types. A pointer declarator can be added when using a function type 
in order to declare a function pointer.
570 IBM Rational Tau User Guide June 2009



Function
In UML function types are not supported, and the C/C++ Importer will print 
a warning if it encounters a function type declaration being used. However, 
the importer can still handle usage of function types with a pointer declarator 
correctly, and it will treat such definitions in the same way as ordinary func-
tion pointer declarations.

Example 165: Translation of function pointers using function types ––––––––––––

C/C++:

typedef void (foo)(int);
foo* pfn;
foo fn; // Yields warning during import
typedef foo foo2; 
foo2 fn2; // Yields warning during import

UML:

public <<operationReference>> interface foo {
void call(int);

}
public foo extern pfn;
public syntype foo2 = foo;

As can be seen in this example, variables typed by a function type is not 
translated to UML (fn and fn2). However, if a function type is used with a 
pointer declarator (pfn) it will be translated according to the normal rules for 
function pointers.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Function body

By default the C/C++ importer does not import the body (statements) of 
functions that are present in the imported header files. However, there is an 
option “Action code strategy” in the cppImportSpecification stereotype that 
can be turned on in order to translate function bodies to UML. This option is 
intended to be used when the purpose of the C/C++ import is to migrate 
legacy code to UML.

The body of a C/C++ function is translated to an operation body for the UML 
operation that is the translation of the function. This operation body will con-
tain a list of actions corresponding to the C/C++ statements of the function 
body. The translation rules for different kinds of statements are described 
below.
June 2009 IBM Rational Tau User Guide 571



Chapter 15: C/C++ Import
Note that the “Action code strategy” option also allows function bodies to be 
imported using informal UML. In that case the entire body of the function 
will be copied verbatim into an informal UML action. 

Example 166: Translation of function bodies –––––––––––––––––––––––––––––––

C/C++:

int m() {
  int a = 3;
  return a;
}

UML (with “Action code strategy” set to import using UML actions):

int m() {
  int a = 3;
  return a;
}

UML (with “Action code strategy” set to import using informal UML):

int m() {
[[
  int a = 3;
  return a;
]]
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Labelled statement

A statement that has a label is translated to a UML action with a corre-
sponding label attached. A UML action may have atmost one label attached. 
This means that if the statement has multiple labels, the C/C++ importer will 
insert empty actions before the result action, in order to preserve all labels in 
the translation.

Example 167: Translation of labelled statements ––––––––––––––––––––––––––––

C/C++:

A: foo();
B:
EXIT: return;

UML:

A: foo();
572 IBM Rational Tau User Guide June 2009



Function
B: ;
EXIT: return;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Declaration statement

A declaration statement is translated to a UML definition action. Just like in 
C++, UML definitions may be declared anywhere in a list of actions.

The translation rules for the different kinds of C/C++ actions are described 
in their own chapters. See for example Enumerated Types, Typedef, Func-
tion, Variable, Constant and Class, Struct and Union.

Example 168: Translation of declaration statements –––––––––––––––––––––––––

C/C++:

typedef unsigned int UINT;
UINT a = 5;

UML:

syntype UINT = 'unsigned int';
UINT a = 5;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Expression statement

An expression statement is translated to a UML expression action. For more 
information about the translation of the expression within an expression 
statement see Expression.

If the expression of an expression statement cannot be represented as a cor-
responding UML expression, the expression action will be translated to an 
informal UML action ([[...]];), which preserves the original C/C++ expres-
sion untranslated.

The expression of an expression statement is optional. If it is omitted the ex-
pression statement is translated to an “empty” UML action (a single semi-
colon).

Example 169: Translation of expression statements ––––––––––––––––––––––––––

C/C++:

int a = 5 + 6 - foo();
June 2009 IBM Rational Tau User Guide 573



Chapter 15: C/C++ Import
bool b = true && !false;
a--;
a = sizeof(int);
a += 5;
;

UML:

int a = 5 + 6 - foo();
bool b = true && ! false;
a --;
a = [[sizeof(int)]];
[[a += 5]];
;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Break statement

A break statement is translated to a UML break action. See Example 170 on 
page 574 for an example.

Continue statement

A continue statement is translated to a UML continue action. See 
Example 170 on page 574 for an example.

For statement

A for-statement is translated to a UML for-action, which is a special kind of 
loop action.

Example 170: Translation of for statements ––––––––––––––––––––––––––––––––

C/C++:

for(int i = 0; i < 10; i++) {
if (i == 5)
break;

if (i == 4)
continue;

}

UML:

for ( int i = 0; i < 10; i ++) {
    if (i == 5)
        break;
    if (i == 4)
        continue;
574 IBM Rational Tau User Guide June 2009



Function
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Do statement

A do-statement is translated to a UML do-action, which is a special kind of 
loop action.

Example 171: Translation of do statements–––––––––––––––––––––––––––––––––

C/C++:

do {
  compute(x);
} while (x >= 0);

UML:

do
{
    compute(x);
}
while (x >= 0);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Goto statement

A goto statement is translated to a UML join action.

Example 172: Translation of goto statements –––––––––––––––––––––––––––––––

C/C++:

if (!valid())
     goto ERROR;

  return 0;

  ERROR: return -1;

UML:

if (! valid())
    goto ERROR;
return 0;
ERROR : return - 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also Labelled statement for the translation of labelled statements.
June 2009 IBM Rational Tau User Guide 575



Chapter 15: C/C++ Import
If statement

An if-statement is translated to a UML if-action. Else branches are also di-
rectly translated to corresponding Else branches in UML.

Example 173: Translation of if statements –––––––––––––––––––––––––––––––––

C/C++:

x = getX();
if (x == y)
equal();

else if (x < y)
less();

else
{
greater();

}

UML:

x = getX();
if (x == y)
    equal();
else
    if (x < y)
        less();
    else
        {
            greater();
        }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Switch statement

A switch statement is translated to a UML decision action. Case branches, 
and the optional default branch, are also translated to corresponding branches 
in UML.

Example 174: Translation of switch statements –––––––––––––––––––––––––––––

C/C++:

switch (e) {
case 1 : 
{
  i = 1;
  break;
}
case 2  : 
  break;
576 IBM Rational Tau User Guide June 2009



Function
 default : {i = 3;}
}

UML:

switch (e) {
    case 1 :
        {
            i = 1;
            break;
        }
    case 2 :
        break;
    default :
        {
            i = 3;
        }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

While statement

A while-statement is translated to a UML while-action, which is a special 
kind of loop action.

Example 175: Translation of while statements ––––––––––––––––––––––––––––––

C/C++:

while (true) {
  if (done())
    break;
}

UML:

while (true) {
    if (done())
        break;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Return statement

A return statement is translated to a UML return action. See Example 172 on 
page 575 for an example.
June 2009 IBM Rational Tau User Guide 577



Chapter 15: C/C++ Import
Try statement

A try statement is translated to a UML try action. Catch clauses are also 
translated to corresponding UML catch clauses.

Note that a “re-throw” of an exception in a catch clause must be done in UML 
by referring to the caught exception parameter. Hence a catch(...) clause 
in C++ is translated to a UML catch clause with a named exception param-
eter typed by Any. The name of this exception parameter is by default 
Exception, but if the catch clause contains a local definition with that name, 
or a reference to a non-local definition with that name, a suffix is appended 
to make the name of the exception parameter unique within the scope of the 
catch clause.

Example 176: Translation of try statements ––––––––––––––––––––––––––––––––

C/C++:

try {
test();

}
catch (char* error_msg)
{
printf("%s", error_msg);

}
catch (...)
{
throw;

}

try {
test2();

}
catch (...) {
bool Exception = true;
throw;

}

UML:

try {
test();

}
catch ('char*' error_msg)
{
printf([["%s"]], error_msg);

}
catch (Any Exception)
{
throw Exception;
578 IBM Rational Tau User Guide June 2009



Scope Unit
}

try {
test2();

}
catch(Any Exception1)
{
bool Exception = true;
throw Exception1;

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Compound statement

A compound statement is translated to a UML compound action.

Example 177: Translation of compund statements –––––––––––––––––––––––––––

C/C++:

int a = 5;
{
int a = 6;
a++;

}
a--;

UML:

int a = 5;
{
    int a = 6;
    a ++;
}
a --;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Scope Unit
• Namespace

• Class, struct and union

• Template classes

Namespace

A namespace is translated to a UML package. 
June 2009 IBM Rational Tau User Guide 579



Chapter 15: C/C++ Import
Note
Global declarations are placed in the package into which the import is 
made. That package will be marked by the <<globalNamespace>> stereo-
type of the TTDCppPredefined profile.

Example 178: Translation of definitions in the global namespace ––––––––––––––

C/C++:

int i;
void op(unsigned int);

UML (in the import package):

public int i;
public void op('unsigned int');

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Class, struct and union

Refer to the main topic Class, Struct and Union.

Example 179: Translation of nested scope units–––––––––––––––––––––––––––––

C/C++:

class C {
public:
  int ci;
  class CC {
  public:
    int op();
  };
};

UML:

public class C {
  public int ci;
  public class CC {

public int op();
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Template classes

C++ class templates are mapped to UML class templates. 
580 IBM Rational Tau User Guide June 2009



Variable
Example 180: Translation of template nested definitions –––––––––––––––––––––

C/C++:

template <class C> class String {
  struct Srep {
    C* s;
    int sz;
    int n;
  };
  Srep *rep;
public:
  String();
  String(const C*);
  String(const String&);
  C read(int i) const;
};

UML:

template <type C > public class String {
  private <<struct>> class Srep {
    public C s;
    public int sz;
    public int n;
  }
  private Srep rep;
  public String();
  public String( const C );
  public String( const inout part String<C> );
  public <<IsQuery="true">> part C read( int i );
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Variable
A variable is translated to a UML attribute. This rule is valid for both member 
and non-member variables. 

Example 181: Translation of variables–––––––––––––––––––––––––––––––––––––

C/C++:

int ivar, jvar;
class X {
  int j;
public:
  int Get() { return j;};
} xvar;
June 2009 IBM Rational Tau User Guide 581



Chapter 15: C/C++ Import
UML:

public int ivar;
public int jvar;
public class X {
    private int j;
    public int Get ();
}
public part X xvar;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Non-member variable

Non-member variables will result in attributes in the package into which the 
import is made.

Member variable

Member variables will become attributes of a class or choice. 

Although the translation rules as such are identical as for a Non-member 
variable, a C++ member variable may have more “features” in its declara-
tion. The translation rules for such member-specific features of a variable are 
described in the relevant sections of the section “Class, Struct and Union” on 
page 586. 

Constant
A constant is translated to a UML attribute which is read-only (i.e. change-
ability set to “frozen”). This rule is valid for both member and non-member 
constants. 

Non-member constants will result in attributes in the package into which the 
import is made, while member constants will be put as attributes of a class 
or choice. 

Although the translation rules as such are identical, a C++ member constant 
may have more “features” in its declaration. The translation rules for such 
member-specific features of a constant are described in the section “Member 
constants” on page 594. 

If the constant has a constant expression specified, the corresponding UML 
attribute will have a default value that is the translation of that expression ac-
cording to the rules described in Constant expression.
582 IBM Rational Tau User Guide June 2009



Expression
Example 182: Translation of constants ––––––––––––––––––––––––––––––––––––

C/C++:

class MyClass;
const double pi = 3.14159;
const MyClass m(7, 'x');
extern const int extconst; // Defined elsewhere.

UML:

public class MyClass {}
public const double pi = 3.14159;
public const part MyClass m with (7, ‘x’);
public const int extern extconst;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Constants as preprocessor macros

It is not uncommon, especially in older C APIs, to have Preprocessor macros 
represent constants. Such constants will not be translated to UML since the 
preprocessor will remove them before the translation starts. In order to access 
such constants from the UML model, you have to use inline target code 
([[...]]).

See also

“Macro” on page 611

Expression
There are two kinds of expressions in C++; constant and non-constant ex-
pressions. When importing declarations only (that is no function bodies) only 
Constant expressions are translated. When the C/C++ importer is used for 
migrating legacy code to UML also non-constant expressions may be en-
countered and will then be translated.

The translation rules used for translating C/C++ expressions into UML ex-
pressions are the reverse of the rules for generating C++ from UML expres-
sions using the C++ Application Generator. See “Expression” on page 1573 
in Chapter 52, C++ Application Generator Reference for more details.

C/C++ expressions that have no corresponding representation in UML are 
translated to informal expressions ([[...]]).
June 2009 IBM Rational Tau User Guide 583



Chapter 15: C/C++ Import
Binary and unary expressions

A binary C/C++ expression references an operator taking two operands, 
while a unary expression references an operator taking just one operand. 
Some operators of the C/C++ language have no representation in UML. Bi-
nary and unary expressions that refer to such operators are translated to in-
formal UML expressions ([[...]]). The table below lists the operators that do 
have a UML representation. Binary and unary expressions using these oper-
ators can therefore be translated to UML.

C/C++ operator Kind

! Logical not Unary

!= Inequality Binary

&& Logical and Binary

* Multiplicity Binary

+ Addition Binary

+ Plus Unary

- Subtraction Binary

- Negation Unary

/ Division Binary

< Less than Binary

<= Less than or equal to Binary

= Assignment Binary

== Equality Binary

> Greater than Binary

>= Greater than or equal to Binary

[] Array subscript Binary

<< Left shift Binary

>> Right shift Binary

|| Logical or Binary

++ Prefix increment Unary

++ Postfix increment Unary
584 IBM Rational Tau User Guide June 2009



Expression
Constant expression

Constant expressions may be encountered at a number of places in a C/C++ 
header, for example as constant initialization for variables, or as size speci-
fiers of array type specifiers bitfields. 

Constant expressions are sometimes evaluated during the translation to 
UML. This happens when the result of an expression has a semantic impact 
also at UML level, for example, a constant expression representing the size 
of an array.

When evaluating a constant expression there are two kinds of expressions 
which are not fully supported, since a proper evaluation of these requires 
knowledge about the compilation environment:

• cast expressions 

The expression of the cast will be evaluated, but no modification will be 
done of the value (due to type modifications etc.). If a cast expression is 
encountered a warning is issued that the casting is ignored.

• sizeof expressions 

The evaluation of a sizeof expression depends on properties of the plat-
form where the C/C++ code is compiled, and can thus not be handled by 
the C/C++ import. If a sizeof expression is encountered a warning is is-
sued and it is assumed that the expression evaluates to an informal ex-
pression.

Example 183: Translation of constant expressions –––––––––––––––––––––––––––

C/C++:

enum e { a, b, c = 10 };
const int i = (2+c)*b;
struct s{
  int f1 : (2+c)*b; // Evaluating
};

-- Prefix decrement Unary

-- Postfix decrement Unary

% Modulus Binary

new New expression Unary

C/C++ operator Kind
June 2009 IBM Rational Tau User Guide 585



Chapter 15: C/C++ Import
const int uncmn = (int) (bool) 4; 
typedef int intarr[sizeof(int)+1]; 
// Assume that sizeof(int)+1 is an informal expression

UML:

public enum e {
  a,
  b,
  c = 10
}
const int i = [[(2 + c) * b]];
public <<struct>> class s {
  public <<bitfield(.'size' = 12.)>> int extern f1;
}
const int uncmn = [[(int) (bool) 4]];
public syntype intarr = CArray<int, ([[sizeof(int)+1]])>;

Messages:

Unable to evaluate sizeof expression. It will be 
imported as an informal expression.

Can not translate C++ expression, importing it to 
informal expression [[ ... ]]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Expression evaluation” on page 618

Class, Struct and Union
• A class or a struct is translated to a UML class. 

• A union is translated to a UML choice.

• Structs are marked with a <<struct>> stereotype.

Example 184: Translation of class, struct and union –––––––––––––––––––––––––

C/C++:

class C {};
struct S {};
union U {};

UML:

public class C {}
public <<struct>> class S {}
public choice U {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
586 IBM Rational Tau User Guide June 2009



Class, Struct and Union
Class, struct, or union without tag

If a class, struct, or union has no tag, it is an incomplete type declaration. 

See also

“Incomplete Type Declaration” on page 602

Anonymous union

An anonymous union is translated by making its members become attributes 
of the UML class or choice that is the translation of the enclosing C/C++ 
scope unit. The reason for this translation rule is that, contrary to an ordinary 
union, an anonymous union is no scope unit in C/C++.

Example 185: Translation of anonymous unions ––––––––––––––––––––––––––––

C/C++:

struct S {
  int i;
  union {
    int j;
    int k;
  };
};

UML:

public <<struct>> class S {
  public int i;
  public int j;
  public int k;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
An anonymous union is not an incomplete type declaration, although the 
syntax is similar. An anonymous union is not used to declare a type nor a 
variable, and does not define a type at all. Consequently, the translation 
rules for anonymous unions and incomplete types differ significantly. 

See also

“Incomplete Type Declaration” on page 602
June 2009 IBM Rational Tau User Guide 587



Chapter 15: C/C++ Import
Constructor

A constructor for a class is translated to a UML constructor, that is an oper-
ation in the corresponding UML class having the same name as the class. 

There are two different kinds of constructors in C++: user-defined construc-
tors, which are explicitly declared and implemented, and implicit construc-
tors, which are implicitly declared and are auto-generated by the C++ com-
piler (provided that they are not already explicitly declared).

While a class may contain an arbitrary number of user-defined constructors, 
it may at the most contain two auto-generated ones; a parameter-less (or de-
fault) constructor and a copy constructor. A parameter-less constructor is 
available only if the class has no user-defined constructors, and a copy con-
structor is available only if no user-defined copy constructor is declared.

There are no auto-generated constructors in UML. Default and copy con-
structor are not explicitly inserted to imported C++ classes. The reasons are:

• In UML, object assignment (c1 = c2) works because all classes have an 
implicit conversion to datatype Any, and this type has an assignment op-
erator defined

• auto-generated C++ constructors are explicitly added to the generated 
code

• The C++ Application Generator produces C++ where auto-generated 
constructors are present

Example 186: Translation of constructors –––––––––––––––––––––––––––––––––

The example below imports a C++ class with three user-defined constructors 
and one implicit copy constructor. 

C/C++:

class C {
public:
  C();
  C(int i);
  C(char c);
};

UML:

public class C {
  public C();
  public C(int i);
  public C(char c);
588 IBM Rational Tau User Guide June 2009



Class, Struct and Union
}

Constructors may be overloaded just as functions can. The rules for over-
loaded functions thus also apply on constructors. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Overloaded functions” on page 564

Destructor

A destructor for a class is translated to a UML destructor, that is an operation 
in the corresponding UML class having the same name as the class prefixed 
with a tilde character (‘~’)

Example 187: Translation of destructors–––––––––––––––––––––––––––––––––––

C/C++:

class D {
public:
  ~D();
};

UML:

public class D {
  public ~D();
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Member

Member variables of a C++ class are translated to attributes in the UML 
class, that is the translation of that class. Member functions are translated to 
operation in the same class.

Other declarations than variables and functions in a class, for example type 
declarations, are also sometimes called members of the class, but they are not 
translated according to the translation rule above. Instead they are considered 
to be declarations on their own, but defined in an enclosing scope unit (that 
is the class).
June 2009 IBM Rational Tau User Guide 589



Chapter 15: C/C++ Import
Example 188: Translation of class members––––––––––––––––––––––––––––––––

C/C++:

class C {
  public:
  int mv1; // Member variable
  void mf1(long long p1); // Member function
  enum e {a,b,c}; // "Member" type declaration
};

UML:

public class C {
  public int mv1;
public void mf1 ('long long int' p1);

  public enum e {a, b, c}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Member access specifier

Members with public (respectively private and protected) access spec-
ifier are translated to members with a “public” (respectively “private”, 
“protected”) visibility kind.

The default behavior (when visibility is omitted) corresponds to the C++ 
rules: 

• for structs and unions, members are imported as public if visibility is 
omitted 

• class members are imported as private if visibility is not specified

Example 189: Translation of members with different access specifiers––––––––––

C/C++:

class C {
private:
  int i;
protected:
  int j;
public:
  int k;
  int GetI();
  int GetJ();
  int Calc (int x, int y);
};

UML:
590 IBM Rational Tau User Guide June 2009



Class, Struct and Union
public class C {
  private int i;
  protected int j;
  public int k;
public int GetI();
public int GetJ();
public int Calc(int x, int y);

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Virtual member functions

A virtual member function is translated to a UML operation with a “virtual” 
virtuality kind.

Example 190: Translation of virtual members functions ––––––––––––––––––––––

C/C++:

class CPen {
public:
  virtual void Draw(); // Virtual member function
  double GetRep(); // Non-virtual member function
};
class CPenD : public CPen {
public:
  virtual void Draw(); // Redefinition of CPen::Draw()
};

UML:

public class CPen {
public virtual void Draw();
public double GetRep();

}
public class CPenD : CPen {
public virtual void Draw();

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Pure virtual member functions

A pure virtual member function is translated in the same way as an ordinary 
member function.

Although “pure virtuality” does not affect the translation of the member 
function itself, it has an impact on how the containing class, which is an ab-
stract class, is translated.
June 2009 IBM Rational Tau User Guide 591



Chapter 15: C/C++ Import
Example 191: Translation of “pure virtual” class to abstract class –––––––––––––

C/C++:

class C {
public:
  virtual int f(int) = 0; // pure virtual member 
function
  C() {};
};
class D : public C {
};

UML:

abstract public class C {
public int f ( int );

    public C () ;
}
public class D : C { 
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

C++ classes that contain only pure virtual member functions, can be trans-
lated to UML interfaces. This is controlled through the Properties Editor for 
the cppImportSpecification, by selection of the “Import C++ pure virtual 
classes to UML interfaces” check box. 

Example 192: Translation of pure virtual class to interface –––––––––––––––––––

C/C++:

class Shape {
  public:
    virtual void rotate(int) = 0;
    virtual void draw() = 0;
    virtual bool isclosed() = 0;
};

class Box : Shape {
};

UML:

public interface Shape {
  void rotate( int );
  void draw();
  bool isclosed();
}
public class Box : Shape {
592 IBM Rational Tau User Guide June 2009



Class, Struct and Union
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

An interface is a “stronger” concept than an abstract class in UML. One dif-
ference is that for interfaces the UML checker will print warning messages 
if one of the interface functions is not implemented in the inheriting (real-
izing) class. This is not the case for abstract classes, because the implemen-
tation can then be provided further down in the inheritance hierarchy.

Example 193: Warning messages for functions that are not implemented –––––––

Class Box: Warning: TSC0124: Operation 'rotate' in 
interface 'Shape' was not realized by class 'Box'.
Class Box: Warning: TSC0124: Operation 'draw' in 
interface 'Shape' was not realized by class 'Box'.
Class Box: Warning: TSC0124: Operation 'isclosed' in 
interface 'Shape' was not realized by class 'Box'.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Static members

A static member is translated to a static UML attribute or operation (that is 
with “Classifier” owner scope)

Example 194: Translation of static members –––––––––––––––––––––––––––––––

C/C++:

class C {
public:
  static int k;
  static void InitI(int);
};

UML:

public class C {
    public static int k;
    public static void InitI ( int ) ;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Constant members

A constant member is translated as an ordinary member with changeability 
set to “frozen”.
June 2009 IBM Rational Tau User Guide 593



Chapter 15: C/C++ Import
Example 195: Translation of constant members ––––––––––––––––––––––––––––

C/C++:

class C {
public:
  const int cm; // constant member
  C(int k) : cm(k) {};
  void Do(double);
  void Undo(double) const; //constant member function
};

UML:

public class C {
const int cm;
public C ( int k ) ;
public void Do ( double );
public <<IsQuery="true">> void Undo ( double );

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Member constants

A member constant is translated as an ordinary member with changeability 
set to “frozen”, and with a default value.

Example 196: Translation of member constants ––––––––––––––––––––––––––––

C/C++:

class X {
public:
  static const int i = 99; // member constant
};
const int X::i; // definition of i

UML:

public class X {
public static const int i = 99;

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Mutable member variables

A mutable member variable is translated as an ordinary Member variable. 
594 IBM Rational Tau User Guide June 2009



Class, Struct and Union
Bitfield member variables

A C++ struct, union, or class may have member variables that are bitfields.

Bitfield member variables are mapped to UML member variables with the 
<<bitfield>> stereotype applied (from the TTDCppPredefined profile 
package). The size is specified as a tagged value. The bitfield size can be ed-
ited via the Properties Editor. 

Example 197: Translation of bitfield member variables ––––––––––––––––––––––

C/C++:

struct mybitfields {
  unsigned a : 4;
  unsigned b : 5;
  unsigned c : 7;
};

UML:

public <<struct>> class mybitfields {
  public <<bitfield(.'size' = 4.)>> 'unsigned int' a;
  public <<bitfield(.'size' = 5.)>> 'unsigned int' b;
  public <<bitfield(.'size' = 7.)>> 'unsigned int' c;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Class inside Union

A class defined inside a union is imported into the union owner scope.

This rule governs that a C++ union is imported to a UML choice, but it is not 
allowed to define classes inside choices in UML.

Example 198: Translation of classes inside unions –––––––––––––––––––––––––––

C/C++:

typedef struct S1 {
  union U1 {
    struct S2 {
    } vS2;
  } vU1;
};

UML:

public <<struct>> class S1 {
  public <<struct>> class S2 {
June 2009 IBM Rational Tau User Guide 595



Chapter 15: C/C++ Import
  }
  public <<IsUnion = "true">> choice U1 {
    public part S2 vS2;
  }
  public part U1 vU1;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Friend

Friendship between a class C and another declaration D affects what mem-
bers of C that the implementation of D may access. In UML this is repre-
sented by a dependency with the <<friend>> stereotype applied (from the 
TTDCppPredefined profile package).

Example 199: Translation of friend declarations ––––––––––––––––––––––––––––

C/C++:

class X {};
class Y {
  friend class X;
};

UML:

public class X { }
public class Y <<friend>> dependency to X { }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
Since the C++ friend concept does not exist in UML the UML Checker will 
not consider <<friend>> stereotypes when checking the visibility of ac-
cessed definitions. Thus, to utilize a friend declaration from behavior code 
you must use inline C++ code.

Inheritance

Inheritance relationships are translated to UML generalizations.

Example 200: Translation of inheritance ––––––––––––––––––––––––––––––––––

C++:

class A {
public:
  int am;
596 IBM Rational Tau User Guide June 2009



Class, Struct and Union
  A(char);
};
class B : public A {
public:
  char bm;
  virtual void calc();
  void set();
};
class C : public B {
public:
  int am;
  double cm;
  void calc(); // Redefines B::calc()
  void set();
};

UML:

public class A {
    public int am;
    public A ( char ) ;
}
public class B : A {
    public char bm;

public virtual void calc ();
public void 'set' ();

}
public class C : B {
    public int am;
    public double cm;

public void calc ();
public void 'set' ();

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In C++ inheritance of unspecified visibility between classes means private 
visibility. This information is kept using the <<inheritanceVisibility>> 
stereotype of the TTDCppPredefined profile. The reason for this is that by 
default, public inheritance visibility is used by C++ Application Generator 
for UML generalization. See Inheritance access specifier for more informa-
tion.

Multiple inheritance

The translation rule for C++ inheritance is also used when a class inherits 
from more than one base class.

Example 201: Translation of multiple inheritance –––––––––––––––––––––––––––

C/C++:
June 2009 IBM Rational Tau User Guide 597



Chapter 15: C/C++ Import
class A {
public:

  int m;
};
class B {
public:

  int m;
  int n;
};

class C: public A, public B {
};

UML:

public class A {
    public int m;
}
public class B {
    public int m ;
    public int n;
}
public class C : A, B {
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Virtual inheritance

Virtual inheritance is translated in the same way as ordinary inheritance.

A virtual inheritance will be translated by setting the stereotype 
<<virtualInheritance>> from the TTDCppPredefined profile. 

Inheritance access specifier

C++ supports access specifiers (public, protected, private) on inheritance as 
a means to reduce the accessibility of inherited members. In UML this is not 
possible (i.e. all inheritance is “public”).

A protected or private access specifier will therefore be translated by ap-
plying the <<inheritanceVisibility>> stereotype from the TTDCppPre-
defined profile. Use the Properties Editor on the UML generalization to edit 
this information.
598 IBM Rational Tau User Guide June 2009



Class, Struct and Union
Forward declarations

A forward declaration is not translated to UML. This rule is valid for all for-
ward declarations for which there are definitions later on in the header file. 
This is the most common use case, and the purpose of such forward declara-
tions is simply to make an identifier known to the C/C++ compiler so that it 
may be used before it is defined.

However, it is possible to make a forward declaration for which no definition 
exists in the header file. In that case, an extra type to represent the missing 
definition is generated. 

Example 202: Translation of forward declarations ––––––––––––––––––––––––––

C/C++:

class A;
class B {
  public:
    static A& g() { return *pA; }
  private:
    static A* pA;
};

UML:

public class A {
}
public class B {
  public static (<<CppReference>> part A) g();
  private static A pA;
}

Here class A is forward declared, and has no definition in the imported file. 
Hence the C/C++ Importer will create an empty class for representing it.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Generation of class and package diagrams

The C/C++ Importer creates class and package diagrams if there are im-
ported definitions to visualize in such diagrams. A class diagram named C++ 
Imported Types is then generated and contains symbols for imported 
classes, interfaces and datatypes (not syntypes and choices though) including 
lines representing generalizations and associations. 
June 2009 IBM Rational Tau User Guide 599



Chapter 15: C/C++ Import
The C/C++ Importer will also generate a package diagram named C++ Im-
ported Packages for a package containing other (nested) packages.

Example 203: Creating class diagram –––––––––––––––––––––––––––––––––––––

C/C++:

namespace N{
  class A  { int z; };
  class B : A { long y; };
  class C : A { double x; };
}
class D { long h; };
class E { D d1; };
class F { D* d2; };

Figure 169: Class diagram “C++ Imported Types” in package “N”
600 IBM Rational Tau User Guide June 2009



Class, Struct and Union
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 170: Package diagram “C++ Imported Packages” in import package

Figure 171: Class diagram “C++ Imported Types” in package “N”
June 2009 IBM Rational Tau User Guide 601



Chapter 15: C/C++ Import
Incomplete Type Declaration
C/C++ allows declarations of incomplete classes, structs, unions and enu-
merations. These types are declared as incomplete by not giving them a tag. 
Incomplete types are therefore also sometimes called tag-less types.

Incomplete types can be used in

• Data declarations (for example variables, constants etc.)

• Type declarations (for example typedef)

• “Pointless” declarations (for example without declaring neither data nor 
type). Incomplete types in “pointless” declarations will not be translated 
to UML, and warnings are issued that the declarations were ignored.

Incomplete types are imported in the same way as named types of the same 
kind. For type declarations, no syntype will be generated unless more than 
one type name is defined with the same type declaration.

Example 204: Incomplete types in type definitions ––––––––––––––––––––––––––

C/C++

typedef enum { aa, bb, cc } tEnum1;

typedef class {
public:
  int i;
  int j;
  enum tEnum2 { xx, yy, zz } k;
  void init(int ii, int jj, tEnum1 kk);
} CIncomplete;

UML

public enum tEnum1 {
    aa,
    bb,
    cc
}
public class CIncomplete {
    public int i;
    public int j;
    public enum tEnum2 {
        xx,
        yy,
        zz
    }
    public tEnum2 k;
    public void init( int ii, int jj, tEnum1 kk);
602 IBM Rational Tau User Guide June 2009



Incomplete Type Declaration
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Incomplete types that are used in data or type declarations are given the name 
of the last declared variable or type, prefixed with “incomplete_”. 

Example 205: Translation of incomplete types ––––––––––––––––––––––––––––––

C/C++:

struct S {
  int i;
struct {
  int j;
} ss1, *ss2, ss3[2]; // Data declarations
};
typedef enum {
  a, b, c
} ss1, *ss2, ss3[2]; // Type declarations
typedef struct {
  int i;
}; // Missing type name - "pointless" declaration
struct {
  int i;
}; // Missing variable name - "pointless" declaration

UML:

public <<struct>> class S {
  public int i;
  public <<struct>> class ‘incomplete_ss3@1’ {
    public int j;
  }
  public part ‘incomplete_ss3@1’ ss1;
  public ‘incomplete_ss3@1’ ss2;
  public CArray<‘incomplete_ss3@1’, 2> ss3;
}
public incomplete_ss3 enum  {a, b, c}
public syntype ss1 = incomplete_ss3;
public syntype ss2 = CPtr<incomplete_ss3>;
public syntype ss3 = CArray<incomplete_ss3, 2>;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
Incomplete classes, structures and unions define scope units although they 
are incomplete. The translation rules in chapter “Scope Unit” on page 579 
apply as usual.
June 2009 IBM Rational Tau User Guide 603



Chapter 15: C/C++ Import
Overloaded Operator
Overloaded operators are imported to UML operator definitions.

Example 206: Overloaded operators ––––––––––––––––––––––––––––––––––––––

C/C++: 

class MyInt {
public:
   int x;
   MyInt operator+ ( const MyInt& i );
};

UML:

public class MyInt {
    public int x;
    public part MyInt '\+'( const inout part MyInt i );
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Overloaded conversion operators” on page 616

Template
• Class template

• Function template

See also

“Pointer to constant” on page 620

Class template

C++ class templates are translated to UML class templates. C++ template pa-
rameters are translated to UML template parameters. Value template param-
eters are translated to UML const value template parameters, all other tem-
plate parameters are mapped to UML type template parameters.

Example 207: Translation of class templates –––––––––––––––––––––––––––––––

C/C++:
604 IBM Rational Tau User Guide June 2009



Template
template <class T, int i> class Buffer {
  T v[i]; 
  int size;
};

UML:

template <type T, const int i> public class Buffer {
  private CArray<T, ([[i]])> v;
  private int ‘size’;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Template class members are mapped in the same way as members of an or-
dinary class. If the template name is referenced from the body of a template 
class, actual template parameters are attached. Otherwise the corresponding 
UML reference will not bind to the template.

Example 208: Translation of class templates –––––––––––––––––––––––––––––––

C/C++:

template <class C> class String {
public:
  String();
  String(const C*);
  String(const String&); // reference to template name
};

UML:

template <type C> public class String {
  public String();
  public String( const C );
  public String( const inout part String<C> ); // actual 
parameter C attached
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A C++ template instantiation is mapped to a UML template instantiation. Ac-
tual values for value template parameters will be translated as constant ex-
pressions; see Constant expression.

Example 209: Translation of template instantiation –––––––––––––––––––––––––

C/C++:

template <class T, int i> class Buffer {
  T v[i]; 
June 2009 IBM Rational Tau User Guide 605



Chapter 15: C/C++ Import
  int sz;
};

Buffer<char, 127> cbuf;

UML:

template <type T, const int i> public class Buffer {
  private CArray<T, ([[i]])> v;
  private int sz;
}

public part Buffer<char, 127> cbuf;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 210: Translation of template instantiation –––––––––––––––––––––––––

C/C++:

template <class C> class String {
  C*rep;
public:
  String();
  String(const C*);
  String(const String&);
  C read(int i) const;
};

String<char> cs;
String<unsigned char> us;
String<wchar_t> ws;

class Jchar {
};
String<Jchar> js;
typedef String<char> CString;

UML:

template <type C> public class String {
  private C rep;
  public String();
  public String( const C );
  public String( const inout part String<C> );
  public <<IsQuery="true">> part C read( int i);
}

public part String<char> cs;
public part String<'unsigned char'> us;
public part String<wchar_t> ws;

public class Jchar {
606 IBM Rational Tau User Guide June 2009



Template
}
public part String<Jchar> js;
public syntype CString = String<char>;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Function template

C++ function templates are translated to UML function templates. C++ func-
tion template parameters are translated to UML function template parameters 
in the same way as for template classes (see Class template).

Example 211: Translation of template functions ––––––––––––––––––––––––––––

C/C++:

template <class T> void sort(int *);

UML:

template <type T > public void sort( CPtr<int> );

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Default template arguments

C++ template arguments with default values specified are translated to UML 
template parameters with default values.

Example 212: Default template arguments –––––––––––––––––––––––––––––––––

C/C++:

template <class T, class U = char> class C {
public:
  T t;
  T f();
  C(U chr);
};

C<int> var1;
C<int, char> var2;
C<int, bool> var3;

UML:

template <type T, type U = char> public class C {
  public part T t;
  public T f();
  public C( part U chr );
June 2009 IBM Rational Tau User Guide 607



Chapter 15: C/C++ Import
}

public part C<int> var1;
public part C<int, char> var2;
public part C<int, bool> var3;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Exception
The specification that a function may throw certain exception types are trans-
lated into a corresponding specification of the UML operation that is the 
translation of the function.

If a function is specified to throw no exceptions at all (throw()) this is rep-
resented in UML by the application of the <<noException>> stereotype of 
the TTDCppPredefined profile.

Example 213: Translation of exception specification on functions ––––––––––––––

C/C++:

double foo() throw(char, int);
void bar() throw();

U2:

public double foo() throw char, int;
public <<noException>> void bar();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Miscellaneous
• Language constructs

• Compiler-specific language constructs

• Non-language constructs

• Translation rules for C compilers
608 IBM Rational Tau User Guide June 2009



Miscellaneous
Language constructs

Volatile

A volatile declaration is translated in the same way as an ordinary declara-
tion. The volatile specifier can be looked upon as some kind of compiler di-
rective, and needs therefore not be visible in the UML translation.

Linkage

The linkage of a C/C++ definition is normally not visible in the UML trans-
lation. However, if the definition have extern linkage explicitly specified this 
will be represented in UML by means of the ‘external’ property on the im-
ported definition. 

Example 214: Translation of definitions with different linkage ––––––––––––––––

C/C++:

extern int a; // Declaration of a
extern int a; // Legal redeclaration of a
int a; // Definition of a
extern "C" {
  struct S {
    int x;
  };
}
static void foo();

UML:

public int extern a;
public <<struct>> class S {
  public int x;
}
public void foo();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Using directive

A C++ using directive (“using namespace”) is translated to an <<access>> 
dependency. The supplier of the dependency is the package that corresponds 
to the referenced namespace.

Example 215: Translation of using directives –––––––––––––––––––––––––––––––

C/C++:
June 2009 IBM Rational Tau User Guide 609



Chapter 15: C/C++ Import
namespace X {
  class C {};
}

using namespace X;

C var;

UML:

package ImportedDefinitions <<access>> dependency to X {
    package X {
        public class C { }
    }
    public part C extern var;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Using declaration

A C++ using declaration (“using”) is translated to an <<access>> depen-
dency. The supplier of the dependency is the UML definition that corre-
sponds to the referenced C++ definition.

Example 216: Translation of using declarations–––––––––––––––––––––––––––––

C/C++:

namespace K
{
  class A {};
}

using K::A;
A aInst;

UML:

<<access>> dependency to K::A;

package K {
    public class A { }
}
public part A extern aInst;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
610 IBM Rational Tau User Guide June 2009



Miscellaneous
Compiler-specific language constructs

Most C/C++ compilers add their own specific additions to the C/C++ lan-
guage they support. The C/C++ Importer allows the presence of such con-
structs in the input files if the appropriate language dialect is used (see C/C++ 
dialect for more information). However, usually these language extensions 
have no impact on the UML translation.

Exceptions to this rule are listed below.

__declspec

Use of the __declspec keyword supported by the Microsoft and GNU com-
pilers is translated using the <<__declspec>> stereotype of the TTDCpp-
Predefined profile.

Example 217: Translation of the __declspec keyword ––––––––––––––––––––––––

C/C++:

void __declspec(dllexport) foo();

UML:

void <<__declspec(. modifier = __declspecModifier(. kind 
= “dllexport”.) .)>> foo();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Non-language constructs

Macro

Macros are preprocessed and expanded to the values specified by you in the 
C/C++ files and also using the values defined in the preprocessor Options. 
The resulting C/C++ code is then translated to UML. Refer to the sections 
about translation rules for respective language constructs. 

See also

“Preprocessor” on page 618
June 2009 IBM Rational Tau User Guide 611



Chapter 15: C/C++ Import
Referencing predefined types in C/C++

It is possible to use special type references in imported C/C++ headers which 
will be mapped to the predefined UML types. These type references are on 
the form SDL_<name>, where <name> is the name of a predefined UML type. 
For example, SDL_Integer is mapped to the UML Integer type.

The prefix SDL is used since this feature mainly is designed to be used with 
the C code generator which uses this prefix on its C implementations of the 
predefined types. If the imported header file includes the definition of these 
types from the C code generator library headers, the option Translation of de-
pending declarations can be set to Off in order to prevent new UML types to 
be generated for these SDL_ prefixed types.

The table below lists these special type references that can be recognized by 
the C/C++ Importer:

C/C++ type reference UML type

SDL_Boolean, SDL_boolean Boolean

SDL_Integer, SDL_integer Integer

SDL_Real, SDL_real Real

SDL_Natural, SDL_natural Natural

SDL_Time, SDL_time Time

SDL_Duration, SDL_duration Duration

SDL_PId Pid

SDL_Character, SDL_character Character

SDL_Charstring, SDL_charstring Charstring

SDL_IA5String IA5String

SDL_NumericString NumericString

SDL_VisibleString VisibleString

SDL_PrintableString PrintableString

SDL_Bit Bit

SDL_Bit_String BitString

SDL_Octet Octet
612 IBM Rational Tau User Guide June 2009



STL support
When any of these names are recognized during the translation, an informa-
tion message is printed. 

Example 218: Using C names of predefined UML types ––––––––––––––––––––––

C/C++: 

SDL_Integer func();

UML: 

public Integer func();

Message:

Information sdltypes.h(8): Recognized C++ name 
'SDL_Integer' of predefined SDL type. Imported to 
'Integer'

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Translation rules for C compilers

Language

The Language attribute in C Application stereotype will set to C instead of 
C++.

STL support 
A special library package "std" with UML versions of C++ Standard Tem-
plate Library definitions is available. These definitions will be referenced 
from the UML model when a C++ header using STL definitions is imported 
to UML. To use these definitions, there is thus no need to import standard 
STL headers to UML.

The std package supports:

SDL_Octet_String OctetString

SDL_Object_Identifier ObjectIdentifier

SDL_Null Any

C/C++ type reference UML type
June 2009 IBM Rational Tau User Guide 613



Chapter 15: C/C++ Import
• STL containers: 

vector, list, set, multiset, map, multimap, pair, deque, 
queue, priority_queue, stack, string

• STL algorithms: 

for_each, find, find_if, adjacent_find, count, count_if, 
search, search_n, find_end, find_first_of, iter_swap, 
swap_ranges, transform, replace, replace_if, 
replace_copy, replace_copy_if, generate, generate_n, 
remove, remove_if, remove_copy, remove_copy_if, unique, 
unique_copy, reverse, reverse_copy, rotate, rotate_copy, 
random_shuffle, partition, stable_partition, sort, 
stable_sort, partial_sort, partial_sort_copy, 
nth_element, lower_bound, upper_bound, equal_range, 
binary_search, merge, inplace_merge, includes, set_union, 
set_intersection, set_difference, 
set_symmetric_difference, push_heap, pop_heap, 
make_heap, sort_heap, max_element, min_element, 
next_permutation, prev_permutation

• STL Input/Output facilities; examples of these are: 

basic streams and file input/output streams including 
cin, cout, cerr, <<, >>

If STL support is required in UML, the std package should be added to the 
project by activating the add-in CppStdLibrary.

Note
The STL support is currently limited to work with the C++ Application Gen-
erator. STL can not be used with the C Code Generator. In general, any im-
ported C++ code that uses templates can not be used with the C Code Gen-
erator.

C/C++ Import and Build Types
• C Code Generator

• C++ Application Generator

C Code Generator

The following code generation attributes in the C Application stereotype will 
be set when importing:

• Language is set to C (when importing in C mode) or C++ (otherwise).
614 IBM Rational Tau User Guide June 2009



C/C++ Import and Build Types
• C name is used to declare a reference name for struct, union and enum 
when importing in C mode.

C++ Application Generator

For the C++ Application Generator, stereotypes from the TTDCppPre-
defined profile are used. You can find information about these stereotypes in 
the Package TTDCppPredefined documentation.
June 2009 IBM Rational Tau User Guide 615



Chapter 15: C/C++ Import
Known Restrictions

C++ language restrictions

Overloaded conversion operators

Overloaded conversion operators are not supported. The following warning 
message is issued:

Ignoring conversion operator. Conversion operators are 
not yet supported.

Overloading on const

Overloading on const is not supported. Such overloaded definition is ignored 
during import with a warning message:

Ignored conflicting declaration

Ellipsis function

Ellipsis function arguments are ignored. The following warning message is 
issued:

Cannot translate ellipsis function 'MyFunc'.

However, the function itself is imported (including the arguments preceding 
the ellipsis). See Unspecified argument for a technique that can be used to 
call different versions of an ellipsis function from UML.

Function pointers

There are some limitations when importing function pointers:

1. Formal parameters that have a reference type are not considered. 

Example 219: Formal parameters with a reference type –––––––––––––––––––––

C++:

typedef int (*pf)(int& );
int f1(int& i);
const pf pf1 = f1;

UML:
616 IBM Rational Tau User Guide June 2009



Known Restrictions
public <<operationReference>> interface pf {int 
call(inout int);}
public int f1(inout int i);
public const pf pf1 = operation f1(int);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2. Formal parameters that have a constant type are not considered.

Example 220: Formal parameters with a constant type ––––––––––––––––––––––

C++:

typedef int (*pf)(const int);
int f1(const int i);
const pf pf1 = f1;

UML:

public <<operationReference>> interface pf {
     int call(const int);}
public int f1(const int i);
public  const pf pf1 = operation f1(int);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
3. Formal parameters that have a class type transmitted by value are not 

considered. 

Example 221: Formal parameters with a class type transmitted by value –––––––

C++:

class X {};
typedef int (*pf)(X);
int f1(X i);
const pf pf1 = f1;

UML:

public class X {}
public <<operationReference>> interface pf {
     int call( part X);
}
public int f1( part X i);
public const pf pf1 = operation f1(X); 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
4. Function types are not supported (although pointers to function types 

are). See Function type for more information.
June 2009 IBM Rational Tau User Guide 617



Chapter 15: C/C++ Import
Exceptions

All constant types that are declared as exception types will be imported 
without a const qualifier and a warning message will be produced to inform 
you of this:

Constant type is used as exception. This exception will 
be imported without const 

Example 222: Constant as exception ––––––––––––––––––––––––––––––––––––––

C++:

void foo () throw (const int);

UML:

public void foo() throw int;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Preprocessor

Macro names and macro definitions as well as other preprocessor constructs 
are not translated to UML.

Expression evaluation

Most of the expressions are not evaluated during import, they are translated 
to an informal UML expression. Expression are evaluated when the result of 
an expression has semantic impact also at UML level, for example, constant 
expression representing the size of an array.

There are two restrictions for evaluated expressions.

• sizeof expressions are not evaluated during import, instead they are 
imported as informal expressions:

struct afx_float {
char floatBits[ sizeof(float) ];

};

Warning: Unable to evaluate sizeof expression. It will be 
imported as informal expression.

public <<struct>> class afx_float {
public CArray<char, ([[sizeof(float)]])> floatBits;

}

618 IBM Rational Tau User Guide June 2009



Known Restrictions
• cast expressions are ignored during expression evaluation, so it will not 
influence on modification of the value due to type modifications at UML 
level.

Furthermore, some of the operators in C/C++ have no representation in 
UML. Binary or unary expressions using these operators are therefore trans-
lated to informal expressions. Examples of such operators include ‘+=’, ‘-=’, 
‘,’ etc. See Binary and unary expressions for more information.

Implicit conversions from int to enum

Implicit conversions from int to enum or from enum to int are not supported. 

Example 223: Implicit and explicit cast –––––––––––––––––––––––––––––––––––

public enum cars {  volvo, saab, audi, vw, bmw  }
...
int a;
a = volvo; // ERROR: not allowed
...
int b; 
cars c;
b = cast<int>(volvo); 
c = cast<cars>(1);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Using template parameter as qualifier

When a template parameter is used as qualifier, the semantic analysis may 
report errors on imported definitions. This is due to that it is not allowed to 
use template parameter as a qualifier in templates.

Example 224: Error from imported syntype –––––––––––––––––––––––––––––––

C++:

template <class X> class Y {
  typedef X::pointer iterator;
  iterator End;
};

Imported UML:

template <type X > public class Y {
  private syntype iterator = X::pointer;
  private iterator End;
}

June 2009 IBM Rational Tau User Guide 619



Chapter 15: C/C++ Import
Imported syntype will produce error messages:

Syntype iterator: Error: TNR0047: 
Failed to find definition of pointer (while looking for Type).
Syntype iterator: Error: TNR0034: 
Failed to find Type X::pointer of Syntype.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Pointer to constant

There is no representation of a C++ const pointer in UML. C++ pointer to 
constant is not supported in UML.

Consider, for example, the C++ type const char*. It will be imported to 
const 'char*' type in UML, which is a constant, i.e. it should be assigned 
a value only once during initialization. However, C++ const char* is a 
pointer to a constant, which means that it is a variable pointing to a constant 
and it can change its value:

const char* cc;
cc = "constant string 1";
cc = "constant string 2";

More limitations apply with the C code generation - UML constants can not 
be initialized by a function call. This will cause an error message when trying 
to use an imported function that returns a pointer to a constant string:

Example 225: Using C++ pointers to constant in UML –––––––––––––––––––––––

C/C++:

const char* func1( const int a );

Imported UML:

public 'char*' func1( const int a );

Storing external function result:

If const 'char*' variable is used to store func1 return value in UML, then as a 
constant, it should be initialized upon definition:

const 'char*' cc = func1( 1 );

and the following error message is printed by C code generator:

ERROR TIL2084: Procedure call not allowed where constant required

If 'char*' variable is used:

'char*' cc = func1( 1 );
620 IBM Rational Tau User Guide June 2009



Known Restrictions
then error message is printed by the C compiler:

const01.c(511) : error C2440: '=' : cannot convert from 'const char 
*' to 'char *'

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

It is not possible to use C++ pointers to constant in UML, in particular, C++ 
constant strings that are returned by some functions.

There are two possible alternatives:

1. Change the C++ header files to use a typedef instead of directly using 
const char*. Then it is possible to use this external type to store C++ con-
stant strings. 

Example 226: Storing C++ constant strings in UML –––––––––––––––––––––––––

C/C++:

typedef const char* cstr;
cstr func1( const int a );

Imported UML:

public syntype cstr = 'char*';
public cstr func1(const int a);

Storing external function result:

cstr cc = func1( 1 );

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2. Leave the C++ header files as they are and instead use a UML cast 

(cast<'char*'>) operation to call the external function. The external 
function can be called as:
'char*' cc = cast<'char*'>( func1(1) );

Note
When using assigned value it is important that the string pointed to by the 
variable is not changed. The external C++ code most likely relies on the 
value being a constant.
June 2009 IBM Rational Tau User Guide 621



Chapter 15: C/C++ Import
Usability restrictions

Importing a header with standard includes

When an imported header file contains other included header files, and the 
option Do not import definitions from included header files is switched off, 
all definitions from included files will be imported. When the tree of include 
files is big, especially for standard includes, the imported model becomes 
large which may affect performance. Individual definitions can be imported 
using Selective import. 
622 IBM Rational Tau User Guide June 2009



16
DOORS Import

For information on how to import requirements and links created in DOORS 
into IBM Rational Tau, see “Importing requirements” on page 1724 in 
Chapter 59, Working together with DOORS.
June 2009 IBM Rational Tau User Guide 623



Chapter 16: DOORS Import
624 IBM Rational Tau User Guide June 2009



17
SDL Import 

This chapter describes the support in IBM Rational Tau for import of SDL 
specifications and the resulting transformation to UML models.
June 2009 IBM Rational Tau User Guide 625



Chapter 17: SDL Import
Operation Principles
The SDL import is based on a file containing an SDL specification and trans-
forms it to a corresponding UML model using a set of predefined transfor-
mation rules (“SDL to UML Transformation Rules” on page 632). The re-
sulting model is then automatically loaded and the user can proceed with the 
remaining work in order to achieve the intended results towards a complete 
UML model. 

Import an SDL system

SDL import for SDL Suite

The SDL System must be complete and semantically correct to ensure a suc-
cessful import. This can be confirmed by running a Full Analyze on your 
system before exporting.

CIF information can be added to SDL PR files by the SDL Suite CIF ex-
porter, which should be invoked using the Generate/Convert GR to IBM 
Rational IBM Rational Tau G2 CIF... menu choice in SDL Suite (SDL 
Suite 4.6.1 and later). Refer to IBM Rational IBM Rational Tau SDL Suite 
documentation for more information about this feature. 

Note
State machine diagrams from process diagrams will only be generated if 
import is done from CIF. The layout of elements on the diagram will be very 
similar to layout in the original SDL model.

To get a convenient format of SDL-PR with CIF comments for SDL import 
from SDL Suite 4.6.0 and earlier, the command Generate/Convert GR to 
CIF... should be used. The following settings/options should be applied

• CIF generation should be chosen for *.sdt file

• Generate one CIF file should be on 

• Include CIF comments boxes should be on

• Include graphical SDT references should be off.

• Desired CIF file name: should be placed in the target directory of your 
system
626 IBM Rational Tau User Guide June 2009



Operation Principles
Note
For the models imported from SDL without CIF information, state chart di-
agrams can be created by drag-and-drop state machine implementation 
onto state machine diagram. In this case autolayout is applied to the cre-
ated diagram elements (see Diagram auto layout for more informtion about 
autolayout).

If the SDL system utilizes the CPP2SDL utility or if external C/C++ defini-
tions exist in the system. Definitions tagged ‘EXTERNAL’ will not be rep-
resented in the imported UML model. If these definitions are used within the 
model then name-resolution errors will occur after import of the SDL system. 
To avoid this import the external C/C++ code before proceeding and apply 
the noScope stereotype to the resulting package. Before code generation this 
stereotype will have to be replaced with a dependency between the required 
packages or errors will be issued.

In order to activate SDL import, a workspace with a project must be open. 

• Select Model item in Model View.

• Open the Import Wizard (File menu, Import... command).

• Select Import SDL in the dialog window and press OK.

• Specify the file to import in the dialog window that appears. 

• SDL Dialect: should be SDL Suite.

• SDL/PR or SDL/CIF should be set according to your desired results.

The following should be the result when the second dialog closes: 

• A package ImportedSDLDefinition is created in the model

• A stereotype sdlImportSpecification is applied to the package.

• The SDL file that the import is based on is stored as a value in the stereo-
type instance for the package.

• The import operation is performed, and the result is added to the created 
package.

Importing from Japanese edition of SDL Suite

Note
This is applicable for the Japanese edition of SDL Suite only and can be dis-
regarded from when importing from the standard (English) version of SDL 
Suite.
June 2009 IBM Rational Tau User Guide 627



Chapter 17: SDL Import
SDL Suite Japanese edition, which is supported on Solaris and Windows sys-
tems, uses “native” encoding when storing Japanese texts (such as character 
strings and comments). Native in this case means SHIFT-JIS on Windows 
and EUC-JP on Solaris. 

However, for SDL import it is assumed that texts to be encoded are using 
UTF-8 and therefore files created by SDL Suite need to be converted prior to 
import. As a user convenience, this conversion is done prior to import, by 
calling the iconv utility, a standard program for converting various encod-
ings to UTF-8 under Solaris/Linux/Cygwin. (iconv is provided with the 
IBM Rational Tau installation). 

The encodings that supported by iconv can be listed with iconv -l Any of 
these values could be assigned to the environment variable 
TauImportedSDLEncoding in order to specify which encoding is used for 
the input SDL files. The useful values in this case are: 

• SHIFT-JIS if SDL files were created using SDL Suite Japanese edition 
on Windows

• EUC-JP if SDL files were created using SDL Suite Japanese edition on 
Solaris

• UTF-8 if files have already been converted to UTF-8

The value of the environment variable is passed verbatim to the iconv utility 
to specify the encoding of the source SDL files. If the variable is not present 
or has no value, then it is assumed that files are encoded using UTF-8.

SDL import for ObjectGeode

The ObjectGeode SDL import interface is in essence identical to the Import 
from SDL Suite interface. The difference being the dialect.

• SDL Dialect: should be ObjectGeode.

• SDL/PR or SDL/CIF should be set according to your desired results. 

• Files has to be saved as SDL for Export in ObjectGeode to be possible 
to import.

Note
SDL-PR with CIF information is the default, native storage format for Ob-
jectGeode and CIF comments are printed when the SDL file is saved.
628 IBM Rational Tau User Guide June 2009



Operation Principles
Supported SDL

The SDL import supports SDL-96, either expressed as plain SDL-PR (tex-
tual syntax) or as SDL-PR enriched with CIF comments (Common 
Interchange Format). 

Note
For more information about SDL and CIF, refer to the Z.100 and Z.105 rec-
ommendations from ITU-T. For more information about how SDL and CIF 
are supported in IBM Rational Tau SDL Suite and ObjectGeode, refer to the 
user documentation for these tools.

SDL-PR

The SDL import supports plain SDL-PR specifications. Such specifications 
are imported to UML models, and the semantics of the original SDL specifi-
cation has been preserved as much as possible. 

Example 227: SDL-PR text specifications ––––––––––––––––––––––––––––––––––

system MySystem;
  signal ok;
  channel c from b to env with ok; endchannel;
  block b;
    procedure out_ok; returns Boolean;
      start;
        output ok;
        return true;
    endprocedure;
    signalroute sg from p to env with ok;
    connect c and sg;
    process p(1,1); signalset;
      dcl v Boolean;
      start;
        task v := "not"(call out_ok);
        stop;
    endprocess;
  endblock;
endsystem;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

CIF

The SDL import also supports import of graphical information from SDL 
specifications represented using the CIF (Common Interchange Format for 
SDL) comments. Importing CIF preserves as much as possible of the graph-
June 2009 IBM Rational Tau User Guide 629



Chapter 17: SDL Import
ical layout such as positioning and size of symbols, lines and text attributes, 
so that the generated UML models and presentation elements look familiar 
to the user. 

Example 228: SDL specification enriched with graphical information ––––––––––

/* CIF SystemDiagram */
/* CIF Page 1 (1900,2300) */
/* CIF Frame (150,150),(1600,2000) */
/* CIF PackageReference (175,25),(200,100) */
/* CIF Specific SDT Version 1.0 */
/* CIF Specific SDT OriginalFileName 'C:\IBM 
Rational\SDL_TTCN_Suite4.4\sdt\examples\demongame\DemonG
ame.ssy' */
/* CIF Specific SDT Page 1 Scale 100 AutoNumbered */
system DemonGame;
/* CIF CurrentPage 1 */
/* CIF Text (600,250),(200,100) */
SIGNAL
Newgame, Probe, Result, Endgame,
Win, Lose, Score(Integer), Bump;
/* CIF End Text */
/* CIF Channel (150,475),(600,475) */
/* CIF TextPosition (525,425) */
/* CIF TextPosition (275,500) SignalList1 */
/* CIF Arrow1Position (262,475) */
channel C1 from env to GameBlock with Newgame, Probe, 
Result, Endgame;
endchannel C1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Supported tools and versions

The SDL import supports the following tools and versions. 

• Import from IBM Rational Tau SDL Suite version 4.4 and later

• Import from ObjectGeode version 4.2 

Import from SDL Suite

The level of SDL support, regarding the precise SDL version and proprietary 
extensions is the same as the support provided by the SDL Analyzer in SDL 
Suite, operating in case sensitive mode. 

Refer to the SDL Suite user documentation for more information on how to 
convert an SDL system to be case sensitive: User’s Guide, CPP2SDL Migra-
tion Guide, Migration Guidelines, Update to case-sensitive SDL. 
630 IBM Rational Tau User Guide June 2009



Operation Principles
Import from ObjectGeode

For ObjectGeode, the level of SDL support, regarding the precise SDL ver-
sion and proprietary extensions is the same as the SDL support in Object-
Geode SDL_API. 

Refer to the user documentation for ObjectGeode for more information.

Activate SDL import

The SDL import is called from the IBM Rational Tau graphical user inter-
face. The SDL Import functionality is enabled through specific Add-Ins for 
the supported tools. The appropriate add-in will normally be activated by the 
first use of the Import wizard. 

It is possible to activate it manually; from the Tools menu select Customize 
and then select the appropriate add-in.

Note
To be able to activate the SDL import, a workspace must first be opened and 
a project must be created, otherwise the add-in can not be activated.

Both SDL Suite and ObjectGeode SDL import are available through Add-
Ins. There is one add-in designated for each of these tools. Make sure to se-
lect the add-in that corresponds to the tool you want to import data from. 

• Select the SDL96Import addin in order to enable the IBM Rational Tau 
SDL Suite SDL Import. 

• Select the OGSDLImport addin for ObjectGeode SDL Import. 
June 2009 IBM Rational Tau User Guide 631



Chapter 17: SDL Import
SDL to UML Transformation Rules

Structure and scopes

Top-level definitions

The following top-level definitions from SDL specification are imported:

• Package definition

• System definition

• Type based system definition

A top-level system is imported to a package containing an active class. All 
signals, signal lists, types, synonyms in the system scope and interfaces de-
fined for remote definitions are inserted into the package. The system itself 
with all other definitions is mapped to an active class inside a package. Full 
qualifiers, if generated, start from the target package where all imported def-
initions are inserted.

Example 229: System definition –––––––––––––––––––––––––––––––––––––––––

SDL

system MySystem;
  signal ok;
  ...
  output ok to p;
  output ok to system MySystem/block b1 p;
  ...
endsystem;

UML

package MySystem {
  active class MySystem {
    ...
    ^ p.ImportedSDLDefinitions::MySystem::ok();
    ^ 
ImportedSDLDefinitions::MySystem::MySystem::b1_T::p.ok()
;
    ...
  }
  signal ok;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
632 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
As a support for the command line version of SDL import, a build artifact 
pointing to the active class is also generated. Full qualifiers, if generated, 
start from the global scope. The build artifact is generated only if SDL import 
is operated from a command line. 

Example 230: Importing system definition from the command line ––––––––––––

UML

package MySystem {
  active class MySystem {
    ...
    ^ p.::MySystem::ok();
    ^ ::MySystem::MySystem::b1_T::p.ok();
    ...
  }
  signal ok;
}
artifact Build <<manifest>> dependency to 
MySystem::MySystem { }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

An SDL package is imported to a UML package that contains imported enti-
ties from the corresponding SDL package. 

Example 231: Package definition –––––––––––––––––––––––––––––––––––––––––

SDL

package MyPackage;
...

endpackage;

UML

package MyPackage {
...

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A package use clause is transformed to a dependency with the «access» 
stereotype. Use clauses from the system definition is applied to the created 
package with the active class.

Example 232: Package use ––––––––––––––––––––––––––––––––––––––––––––––

SDL

package MyPackage;
June 2009 IBM Rational Tau User Guide 633



Chapter 17: SDL Import
...
endpackage;

use MyPackage;
system MySystem;
...

endsystem;

UML

package MyPackage {
...

}

package MySystem <<access>> dependency to MyPackage {
active class MySystem 
MyPackage {
...
}

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A type based system definition is imported to an active class which inherits 
the specified parent system type. 

Example 233: Type based system definition ––––––––––––––––––––––––––––––––

SDL

system MySystem : MySystemType;

UML

active class MySystem : MySystemType {
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

System type, block type, process type

System types, block types and process types are imported into active classes 
that contain imported definitions, which correspond to the scoped definitions 
from the imported SDL entity. 

Example 234: Block type and Process type ––––––––––––––––––––––––––––––––

SDL

block type bt1;
  process type p1;
    ...
634 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
  endprocess type;
  ...
endblock type;

UML

active public class bt1 {
  active public class p1 {
     ...
  }
  ...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Process type inheritance is mapped to class generalization and state machine 
generalization. 

Example 235: Process type inheritance ––––––––––––––––––––––––––––––––––––

SDL

process type ptype; fpar i Integer;
  start virtual;
    stop;
endprocess type;

process type psuper inherits ptype; fpar k Integer;
  start redefined;
    stop;
endprocess type;

UML

active public class ptype {
  virtual statemachine ptype( Integer fpar_i) {
    virtual start {
      ptype::i = fpar_i;
      stop;
    }
  }
  Integer i;
}

active public class psuper : ptype {
  virtual statemachine psuper( Integer fpar_k) : 
ptype(Integer) {
     redefined start {
       ptype::i = fpar_i;
       psuper::k = fpar_k;
       stop;
     }
  }
  Integer k;
June 2009 IBM Rational Tau User Guide 635



Chapter 17: SDL Import
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Service type 

Service type is not supported. 

Block instance, process instance

Block instances and process instances are transformed to attributes of an ac-
tive class that corresponds to the governing block type or process type. 
Aggregation of imported attributes is set to “composite”:

Example 236: Block instance and Process instance ––––––––––––––––––––––––––

SDL

block type bt1;
  ...
endblock type;
block b1 : bt1;

UML

active public class bt1 {
...
}
part bt1 b1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The initial number of process instances is mapped to the initial number of at-
tribute instances in UML.

Example 237: Initial number of process instances ––––––––––––––––––––––––––

SDL

process type p1;
  ...
endprocess type;
process pi(10):p1;
process pii(1):p1;

UML

active public class p1 {
  ...
}
part p1 pi / 10;
636 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
part p1 pii / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the maximum number of process instances is specified, it is imported to at-
tribute Multiplicity. The multiplicity is equal to range 0..max, where max is 
the maximum number of instances. 

Example 238: Maximum number of process instances––––––––––––––––––––––––

SDL

process type p1;
  ...
endprocess type;
process pi(10,20):p1;
process pii(0,11):p1;

UML

active public class p1 {
  ...
}
part p1 [0..20] pi / 10;
part p1 [0..11] pii / 0;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Service type instance 

Service type instance is not supported. 

Block and process 

Blocks and processes are imported as attributes of active classes, similar to 
the block instance and process instance import, but active classes are created 
from imported blocks and processes and get the same name with the suffix 
“_T” (T standing for Type). Parent type is specified as inline type in the im-
ported model. 

• For blocks, the initial number of attribute instances is set to 1. 

• For processes, the initial and maximum number of process instances is 
imported according to the table below.
June 2009 IBM Rational Tau User Guide 637



Chapter 17: SDL Import
Example 239: Block and process –––––––––––––––––––––––––––––––––––––––––

SDL

block b;
  process p(1,1);
    ...
  endprocess;
  ...
endblock;

UML

part active class b_T {
  part active class p_T {
    ...
  } [0..1] p / 1;
  ...
} b / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Block substructure 

Block substructure is not imported to UML. All definitions from substructure 
are imported to the active class corresponding to the substructure owner, as 
shown in Example 240 on page 638.

Example 240: Block substructure ––––––––––––––––––––––––––––––––––––––––

SDL

block type bt;
  substructure;
    block bs;
      ...
    endblock;

SDL process UML attribute Condition

process p(N, 
MAX)

[0..MAX] p / 
N

process p(1); 
process p();

p / 1 There are NO create p; state-
ments

process p(1);
process p();

[0..*] p / 1 There is at least one create p; 
statement

process p(N); [0..*] p / N N == 0  or  N > 1
638 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
    ...
  endsubstructure;
endblock type;

UML

active public class bt {
  part active class bs_T {
    ...
  } bs / 1;
  ...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Channel substructure

Channel substructure can not be correctly imported to a UML model and is 
disregarded from. Any substructure elements are imported to the same scope 
as the channel is defined in. 

Procedure

Procedures without return value are imported as UML operations into the 
owning class. Return type is set to void. All internal definitions of the SDL 
procedure are also imported. 

Example 241: Procedure ––––––––––––––––––––––––––––––––––––––––––––––––

SDL

procedure out_ok; 
  start;
    output ok;
    return;
endprocedure;

UML

void out_ok() statemachine {
  start {
    ^ ok();
    return;
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Procedure formal parameters are imported correspondingly. If the type of pa-
rameter is mapped to UML class, composite aggregation kind is set for this 
parameter.
June 2009 IBM Rational Tau User Guide 639



Chapter 17: SDL Import
Example 242: Procedure formal parameters –––––––––––––––––––––––––––––––

SDL

newtype S struct 
  x Integer;
endnewtype;
procedure p; fpar  a Integer, b S;
start;

    task x := a;
    task y := b;
    return;
  endprocedure p;

UML

class S {
  public Integer x;
}
void p(in Integer a, in part S b) 
statemachine {
  start {
    x = a;
    y = b;
    return ;
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

All operation parameters are imported to UML Parameters. If you open Prop-
erties for a parameter, it has a “Direction” feature that can be one of the fol-
lowing: “In”, “Out”, “In/Out” or “Return”. 

Procedure return is imported from operation formal parameter list as an at-
tribute with “Return” direction. 

An external procedure is imported to a UML external operation (compare 
with “External definitions” on page 687).

Example 243: External procedure–––––––––––––––––––––––––––––––––––

SDL

procedure prd1;
  fpar a Integer, in/out b Integer;
  returns Integer;
external;

UML
640 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
extern Integer prd1( in Integer a, inout Integer b );

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For specific SDL procedures in SDL it is allowed to use the last IN/OUT pa-
rameter as procedure return parameter and pass a value to it. When this kind 
of procedure calls are present in SDL model, the definition of the procedure 
is modified. There will be one additional IN parameter for procedure result 
is added to the end of procedure formal list. Procedure calls are also updated 
so the last actual parameter is used as a variable where the operation result is 
saved. For the normal calls, default value is passed for the generated last IN 
parameter.

Example 244: Procedure return as last IN/OUT parameter –––––––––––––––––––

SDL

procedure p1; returns res Integer;
    start;
      task res := res + 1;
      return res;
endprocedure;
task x := call p1(); /* normal */
task call p1(x);     /* specific */

UML

Integer p1( in Integer res ) statemachine {
  start {
    res = res + 1;
    return res;
  }
}
x = p1(0); /* normal, 0 - default value for Integer */
x = p1(x); /* specific */

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The opposite situation is also possible. The last IN/OUT parameter can be 
used as procedure return, for example, it is allowed to write:

task x := call proc(7); instead of call proc(7, x);

When there are such procedure calls in the imported SDL model, the proce-
dure call is modified. 

Example 245: Last IN-OUT parameter and no return––––––––––––––––––––––––

SDL

procedure proc1;
June 2009 IBM Rational Tau User Guide 641



Chapter 17: SDL Import
fpar in a Integer, in/out b Integer;
start;
  task b := a+10;
  return;
endprocedure;

procedure proc2;
fpar in a Integer; returns Integer;
start;
  return a+10;
endprocedure;

procedure proc3;
fpar in a Integer; returns b Integer;
start;
  task b := a+10;
  return;
endprocedure;

call proc1(7, var1);
call proc2(7, var1);
call proc3(7, var1);

task var2 := call proc1(7);
task var1 := call proc2(7);
task var1 := call proc3(7);

UML

void proc1(in Integer a, inout Integer b) statemachine {
  start {
    b = a + 10;
    return ;
  }
}
Integer proc2(in Integer a) statemachine {
  start {
    return a + 10;
  }
}
Integer proc3(in Integer a) statemachine {
  Integer b;
  start {
    b = a + 10;
    return b;
  }
}

proc1(7, var1);
var1 = proc2(7);
var1 = proc3(7);

proc1(7, var2);
var1 = proc2(7);
var1 = proc3(7);
642 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
For the procedure call examples where procedure result is used as last in/out 
parameter (proc2, proc3) warning messages will be printed. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Transformations of the return result and last IN/OUT parameter are not ap-
plied to external procedures.

Virtual and redefined procedures

Virtual procedures can be redefined in the inheriting entity. If redefined pro-
cedure does not have explicit ATLEAST constraint or explicit inheritance, 
generalization to the corresponding virtual procedure (with full qualifier) is 
generated to UML:

Example 246: Redefined procedure –––––––––––––––––––––––––––––––––––––––

SDL

process type pt1;
  virtual procedure pr2; fpar in xxx Integer; returns 
Natural;
  endprocedure pr2;
endprocess type;

process type pt2 inherits pt1;
  redefined procedure pr2;
  endprocedure pr2;
endprocess type;

UML 

active public class pt1 {
  virtual Natural pr2(in Integer xxx, in Natural result)
  statemachine {
  }
}

active public class pt2 : pt1 {
  redefined void pr2() : virtprd::pt1::pr2
  statemachine {
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 643



Chapter 17: SDL Import
Remote procedure

Remote procedure calls (RPCs) are handled through ports. An RPC is similar 
to signal sending to another process that implements a remote procedure 
(outgoing request for execution of remote procedure).

For remote procedures, interfaces are created. They have the same name as 
the procedure but a postfix “_I” is added. In a class that realizes an exported 
procedure, a port is added that realizes this interface. In a class where a pro-
cedure is called, a port is added that requires this interface. Generated ports 
are unique for each remote procedure and are named 
rpc_port_<procedure_name>

Example 247: Remote procedure –––––––––––––––––––––––––––––––––––––––––

SDL

remote procedure setv;
  fpar in Integer;

process P1(1,1);
  exported procedure setv; fpar in i Integer;
  endprocedure;
endprocess;

process P2 (1, 1);
  imported procedure setv; fpar in Integer;
    ...
    call setv(10);
    ...
endprocess;

UML

interface setv_I {
  void setv( in Integer);
}

part active class P1_T {
  public void setv( in Integer i) statemachine {
    ...
  }
  port rpc_port setv in with setv_I;
} [0..1] P1 / 1;

part active class P2_T {
...

  setv(10);
  port rpc_port setv out with setv_I;
} [0..1] P2 / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
644 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
“Exported as p procedure my_x” - this construction means that a procedure is 
referenced by name 'my_x' inside its visibility scope, but it is renamed during 
export and referenced by another name from where it is imported. Since a 
UML operation cannot have two different names, exported-as name is al-
ways used for the procedure name in the imported model. Information mes-
sage is printed.

Example 248: Exported as remote procedures ––––––––––––––––––––––––––––––

SDL

remote procedure p; returns Integer;
process p(1,1); signalset;
  exported as p procedure xx; returns Integer;
    ...
  endprocedure;
  ...
  task x := call xx;
  ...
endprocess;

UML

interface p_I {
  Integer p();
}
part active class p_T {
  public Integer p() comment "procedure xx" statemachine 
{
    ...
  }
  ...
  x = p();
  ...
} [0..1] p / 1;

Messages

Information: TSI0200: Importing SDL started
Information: TSI0206: Procedure 'xx' has been imported 
under the "exported as" name 'p'
Information: TSI0202: Importing SDL completed

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 645



Chapter 17: SDL Import
Communication

Signal, signallist

SDL signals are imported to UML signals. Signals formal parameters are 
preserved during import. If signal parameter is mapped to UML class, it is 
imported with composite aggregation. 

SDL signallist is imported to UML signallist:

Example 249: Signal lists and signals––––––––––––––––––––––––––––––––––––––

SDL

newtype MyStruct struct 
  x Integer;
endnewtype;
signal ok, s(Integer, MyStruct);
signallist sl = ok, s;

UML

class S {
  public Integer x;
}
signal ok;
signal s(Integer, part MyStruct);
signallist sl = ok, s;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Signal refinement is not imported. 

Signal inheritance is preserved during import:

Example 250: Signal inheritance –––––––––––––––––––––––––––––––––––––––––

SDL 

signal s(Integer);
signal ss inherits s (Natural);

UML 

signal s(Integer);
signal ss(Natural) : s;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
646 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
Gates

SDL gates are transformed to ports. Signals from gate constraint are im-
ported and inserted to “realized” signal set for incoming signals (in with...), 
or to “required” signal set for outgoing signals (out with...):

Example 251: Block with gate ––––––––––––––––––––––––––––––––––––––––––––

SDL

block type bt2;
  gate g in from bt1 with ok;
  gate g2 out with ok;
  process type p2;
    gate gp in with ok; out with ok;
    ...
  endprocess type;
  ...
endblock type;

UML

active public class bt2 {
  port g in with ok;
  port g2 out with ok;
  active public class p2 {
    port gp in with ok out with ok;
    ...
  }
  ...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Channels and signal routes

Channels and signal routes are imported as UML connectors. In UML, 
connectors always end with gates. For each channel or signal route in SDL, 
gates are generated to UML model. Implicitly generated gates have the same 
June 2009 IBM Rational Tau User Guide 647



Chapter 17: SDL Import
name as corresponding channel or signal route. There are no name conflicts, 
because gates and connectors with the same name are generated to different 
scopes. Connector end points are computed according to the following:

1. If a link is connected to an instance and a gate is specified for connector 
endpoint, it will be imported as connector end point. The gate itself will 
be imported to the instance scope. 

Example 252: Signals on a gate ––––––––––––––––––––––––––––––––––––––––––

SDL

block b;
  signalroute sr from p via g to env with ok;
  ...
  process type pt;
    gate g out with ok;
    ...
  endprocess type;
  process p(1,1):pt;
endblock;

UML

part active class b_T {
  connector sr from p.g to c with ok;
  ...
  active public class pt {
    port g out with ok;
    ...
  }
  part pt [0..1] p / 1;
  
} b / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2. If a channel is connected to the environment (to the border of the dia-

gram), and a gate is specified, it will be imported as connector end point. 
The gate itself will be imported to the class of instance that contains the 
link being imported. Signals on the gate will also be imported. 

3. If a link is connected to an instance but connected gate is not specified, 
an implicit gate will be inserted into the instance parent class and it will 
be given the name of the imported channel or signal route. Signals carried 
on the link will be added to the created port.

Example 253: Implicit gate –––––––––––––––––––––––––––––––––––––––––––––

SDL
648 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
block GameBlock;
  ...
  signalroute R5 from Main to Game with GameOver;
  process Main;
    ...
  endprocess;

  process Game;
    ...
  endprocess;

endblock;

UML

part active class GameBlock_T {
  ...
  connector R5 from Main.R5 to Game.R5 with GameOver;
  part active class Main_T {
    port R5 out with GameOver;
    ...
  } Main / 1;
  part active class Game_T {
    port R5 in with GameOver;
    ...
  } Game / 1;
} GameBlock / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
4. If a channel is connected to the environment (to the border of the dia-

gram) and this is not the outermost scope but the link is connected to 
some other link in the surrounding scope, an implicit gate will be inserted 
into the instance parent class and it will be given the name of the external 
link from surrounding entity to which the imported link is connected. 
Signals carried on the link will be added to the created port.

5. If a channel is connected to the environment (to the border of the dia-
gram) and this is the outermost scope, an implicit gate will be inserted 
into the instance parent class and it will be given the name “Env”. Signals 
carried on the link will be added to the created port:

Example 254: Implicit gate in parent class –––––––––––––––––––––––––––––––––

SDL

system DemonGame;
  channel C1 from env to GameBlock with Newgame, Probe, 
Result, Endgame;
  endchannel C1;
  ...
  block GameBlock;
    signalroute R2 from env to Game with Probe, Result;
June 2009 IBM Rational Tau User Guide 649



Chapter 17: SDL Import
    connect C1 and R2;
    ...
    ...
  endblock;
endsystem;

UML

package DemonGame {
  active class DemonGame {
    ...
    connector C1 from Env to GameBlock.C1 with Newgame, 
Probe, Result, Endgame;
    port Env in with Newgame, Probe, Result, Endgame;
    part active class GameBlock_T {
      connector R2 from C1 to Game.R2 with Probe, 
Result;
      port C1 in with Probe, Result, Newgame, Endgame;
      ...
    } GameBlock / 1;
  }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Delaying property for connectors is not transformed as UML do not have de-
layed property on connectors.

Connection

Connection itself is not imported. It only influences on the number of gates 
and the names of gates that are implicitly created for link endpoints (“Chan-
nels and signal routes” on page 647).

Implicit communication gates and links

In SDL some of communication links can be created implicitly. In UML 
there are no such rules, so all implicit links should be constructed during im-
port. This is done with implicit ports in the SDL import, the connectors them-
selves are added by the UML semantic analyzer.

For all SDL implicit signal routes and channels, ports with names “io_port” 
are added to the imported model. These ports represent end points for im-
plicit connectors:

Example 255: Implicit signal routes–––––––––––––––––––––––––––––––––––––––

SDL

system MySystem;
650 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
  signal ok;
  channel c from b1 to env with ok;
  endchannel;
  block b1;
    process p(1,1); signalset;
      start;
        output ok;
        stop;
    endprocess;
  endblock;
endsystem;

UML

package MySystem {
  active class MySystem {
    connector c from b1.c to Env with ok;
    part active class b1_T {
      part active class p_T {
        statemachine p_T {
          start {
            ^ ok();
            stop;
          }
        }
        port io_port out with ok;
      } [0..1] p / 1;
      port c out with ok;
    } b1 / 1;
    port Env out with ok;
  }
  signal ok;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Behavior

State machine

An SDL process is imported to a UML state machine named after the re-
sulting class. 

Example 256: Process to UML state machine –––––––––––––––––––––––––––––––

SDL

process p(1,1); signalset;
  start;
    output ok;
    stop;
endprocess;
June 2009 IBM Rational Tau User Guide 651



Chapter 17: SDL Import
UML

part active class p_T {
  statemachine p_T {
    start {
      ^ ok();
      stop;
    }
  }
} [0..1] p / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Procedure is directly mapped to UML procedure with state machine body:

Example 257: Procedure –––––––––––––––––––––––––––––––––––––––––––––––

SDL

block b;
  procedure out_ok; returns Boolean;
    start;
      output ok;
      return true;
  endprocedure;
  ...
endblock;

UML

part active class b_T {
  Boolean out_ok(in Boolean result ) 
statemachine {
    start {
      ^ ok();
      return true;
    }
  }
} b / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

SDL textual procedure definitions are mapped to UML procedure with tex-
tual body:

Example 258: Procedure in SDL-PR –––––––––––––––––––––––––––––––––––––

SDL

block b;
  procedure plus1; fpar x Integer; returns Integer;
  start;
    task x := x + 1;
    join L;
652 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
    connection L : return x;
  endprocedure;
  ...
endblock;

UML

part active class b_T {
  Integer plus1(in Integer, in Integer result ) {
    x = x + 1;
    goto L;
    L : return x;
  }
  ...
} b / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

SDL state machine is directly mapped to UML state machine. 

Example 259: State machine –––––––––––––––––––––––––––––––––––––––––––––

SDL

process Main;
  dcl GameP Pid;
  start;
    nextstate Game_Off;

  state Game_Off;
      input Newgame;
      create Game;
      task GameP := offspring;
      nextstate Game_On;
  endstate;

  state Game_On;
      input Endgame;
      output GameOver;
      task GameP := Null;
      nextstate Game_Off;
  endstate;
endprocess Main;

UML

part active class Main_T {
  Pid GameP;
  statemachine Main_T {
    start {
      nextstate Game_Off;
    }
    state Game_Off;
    state Game_On;
    for state Game_Off;
June 2009 IBM Rational Tau User Guide 653



Chapter 17: SDL Import
      input Newgame() {
        Game = new Game_T();
        GameP = offspring;
        nextstate Game_On;
      }
    for state Game_On;
      input Endgame() {
        ^ GameOver();
        GameP = NULL;
        nextstate Game_Off;
      }
  }
} Main / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 260: State machine–––––––––––––––––––––––––––––––––––––––––––––

SDL

procedure ReadKeys; fpar in NumberKeys Natural, in/out 
KeyData KeyArrayType; returns ReadResultType;
  dcl KeyIndex Natural:=1,
      Key Character;
  start;
    set(KeyTimer);
    nextstate WaitKeyStroke;
  state WaitKeyStroke;
    input KeyStroke(Key);
    task KeyData(KeyIndex) := Key;
    decision KeyIndex >= NumberKeys;
      (false):
        set(KeyTimer);
        task KeyIndex:=KeyIndex+1;
        nextstate WaitKeyStroke;

      (true):
        reset(KeyTimer);
        return Successful;
    enddecision;

    input KeyTimer;
    return TimedOut;
  endstate;
endprocedure ReadKeys;

UML

ReadResultType ReadKeys( in Natural NumberKeys, inout 
KeyArrayType KeyData) statemachine {
  Natural KeyIndex = 1;
  Character Key;
  start {
    set KeyTimer();
    nextstate WaitKeyStroke;
654 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
  }
  state WaitKeyStroke;
  for state WaitKeyStroke;
    input KeyStroke(Key) {
      KeyData[KeyIndex] = Key;
      switch (KeyIndex >= NumberKeys){
        case ==false : {
           set KeyTimer();
           KeyIndex = KeyIndex + 1;
           nextstate WaitKeyStroke;
        }
        case ==true : {
           reset KeyTimer();
           return Successful;
        }
      }
      input KeyTimer() {
      return TimedOut;
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Procedure call

Procedure call is mapped to similar UML operation call. One difference be-
tween those calls is the handling of omitted parameters. In SDL it is allowed 
to omit any IN parameters from procedure call, but in UML it is allowed to 
omit only the last parameter(s) from actual parameter list and only if default 
values are defined in procedure prototype. Implicit default values are not in-
serted to imported procedure prototype; instead, default values are inserted 
directly to the procedure call.

The following implicit default values are used: 

SDL type  UML default value

Integer, Duration, Octet 0

Boolean false

Character '0'

Charstring “”

Real, Time 0.0

Pid NULL

Bit ‘\0’
June 2009 IBM Rational Tau User Guide 655



Chapter 17: SDL Import
For all other types a variable is generated to the surrounding scope and it is 
passed to the procedure call. The name of the variable is default_<number> 
and it is not initialized.

Example 261: Procedure call with omitted parameters–––––––––––––––––––––––

SDL

newtype S struct 
  x Integer;
endnewtype;
procedure p; fpar  a Integer, b S;
endprocedure p;
...
dcl Svar S;
call p();
call p(1,);
call p(, Svar);

UML

class S {
  public Integer x;
}
void p(in Integer a, in part S b) statemachine {
}
...
part S Svar;
{
  part S default_0001;
  p(0, default_0001);
}
{
  part S default_0001;
  p(1, default_0001);
}
{
  p(0, Svar);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Bit_string ''B

Octet_string '00'H

User defined datatype with literals First literal in datatype definition

SDL type  UML default value
656 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
Create statement

The mapping for create statements depends on the type of the created pro-
cess. If maximum number of process instances is 2 or more then this is a 
multi-instance process and creating is mapped to the appending of the new 
instance of an active class to the set of class instances.

Example 262: Create of multi-instance process––––––––––––––––––––––––––––––

SDL 

process MyProcess(1,5);
endprocess MyProcess;

create MyProcess;

UML 

part active class MyProcess_T {
} [0..5] MyProcess / 1;

MyProcess.append(new MyProcess_T());

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If a process can not have more than one instance, create statement is mapped 
to the direct call of operator “new”:

Example 263: Create of single-instance process –––––––––––––––––––––––––––––

SDL 

process Game;
endprocess Game;

create Game;

UML 

part active class Game_T {
} Game / 1;

Game = new Game_T();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

When maximum number of process instances is an external constant, this 
process is considered to be multi-instance and create statement is mapped to 
append call:
June 2009 IBM Rational Tau User Guide 657



Chapter 17: SDL Import
Example 264: Create of a process with external instance number ––––––––––––––

SDL 

synonym Max Integer = external 'C';
process type pt;
  create p;
endprocess type;
process p(1, Max) : pt;

UML 

const Integer extern Max;
active public class pt {
  p.append(new pt());
}
part pt [0..Max] p / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For each omitted actual parameter in SDL create statement, corresponding 
default value is inserted into the constructor call.

Example 265: Create statements –––––––––––––––––––––––––––––––––––––––––

SDL

process pr(1,6);fpar a,b Integer; signalset s,ss;
    …
    create pr();
    create pr(,);
    create pr(2);
    create pr(2,);
    create pr(,2);
    …
  endprocess;

UML

part active class pr_T {
    …
    statemachine pr_T( Integer fpar_a = 0,
       Integer fpar_b) {
      …
      pr.append(new pr_T(0, 0));
      pr.append(new pr_T(0, 0));
      pr.append(new pr_T(2, 0));
      pr.append(new pr_T(2, 0));
      pr.append(new pr_T(0, 2));
    }
    …
  } [1..6] pr / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
658 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
Output statement

Output statement is mapped directly to UML signal sending statement. 
Omitted parameters in signal output are treated in the same way as omitted 
parameter in procedure call:

Example 266: Signal output –––––––––––––––––––––––––––––––––––––––––––––

SDL

signal ss( Integer, Integer );
  ...
  output ss(5);
  output ss(6,);
  output ss();
  output ss(,7);

UML

signal ss(Integer, Integer);
^ ss(5, 0);
^ ss(6, 0);
^ ss(0, 0);
^ ss(0, 7);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Output via-list is imported to the corresponding UML via list. If the same en-
tity is referenced several times in via list, it is imported only once.

Output via non-local ports or links is not supported in UML, and all missing 
output and input ports are implicitly generated to UML model. Output via 
SDL channel is not imported to UML. Qualifiers on via elements are also ig-
nored.

Example 267: Output via –––––––––––––––––––––––––––––––––––––––––––––––

SDL 

system OutputVia;
  signal ok;
  channel c1 from t to env with ok;endchannel;
  block t;
    signalroute sr1 from p1 to env with ok;
    connect c1 and sr1;
    process p1(1,1);
      start;
      output ok via c1,c1,c1,sr1,sr1;
      output ok via <<system OutputVia/block t>> sr1;
      stop;
    endprocess p1;
June 2009 IBM Rational Tau User Guide 659



Chapter 17: SDL Import
  endblock t;
endsystem;

UML 

package OutputVia {
  active class OutputVia {
    part active class t_T {
        part active class p1_T {
            statemachine p1_T {
                start {
                    ^ ok() via sr1;
                    ^ ok() via sr1;
                    stop;
                }
            }
            port sr1 out with ok;
        } [0..1] p1 / 1;
        connector sr1 from p1.sr1 to c1 with ok;
        port c1 out with ok;
    } t / 1;
    connector c1 from t.c1 to Env with ok;
    port Env out with ok;
  }
  signal ok;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For output to Pid-expression, full qualifier is added to all output items. Qual-
ifiers are needed since output item is resolved in the context of to-expression, 
but for Pid-expression there is no context.

Example 268: Output to Pid-expression –––––––––––––––––––––––––––––––––––

SDL 

system OutputTo;
  signal ok;
  syntype MyPid = Pid endsyntype;
  block t;
    signal pong;
    ...
    process p2(1,1);
      dcl s MyPid;
      ...
      task s := sender;
      output pong to s;
      ...
      output pong to sender;
      ...
    endprocess p2;
  endblock t;
endsystem;
660 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
UML 

package OutputTo {
  active class OutputTo {
    part active class t_T {
      signal pong;
      ...
      part active class p2_T {
        MyPid s = NULL;
        ...
        s = sender;
        ^ 
s.ImportedSDLDefinitions::OutputTo::OutputTo::t_T::pong(
);
        ...
        ^ 
sender.ImportedSDLDefinitions::OutputTo::OutputTo::t_T::
pong();
      } [0..1] p2 / 1;
    } t / 1;
  }
  signal ok;
  syntype MyPid = Pid;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Input statement

An input statement is mapped directly to a UML signal receipt statement. For 
each omitted parameter in a signal input a variable is generated to the sur-
rounding scope and passed to the input expression. The name of the variable 
is default_<number> and it will not be initialized.

Example 269: Signal input ––––––––––––––––––––––––––––––––––––––––––––––

SDL 

signal s(Natural),ss(Integer,Integer);
block b;
  process p(1,6); signalset s,ss;
    ...
    state A;
      input s(), ss();
      nextstate A1;
    
    state A1;
      input ss(v);
      nextstate A2;
    
    state A2;
      input ss(,v);
June 2009 IBM Rational Tau User Guide 661



Chapter 17: SDL Import
      nextstate A3;
    
    state A3;
      input ss(v,);
      stop;
    endstate;
  endprocess;
endblock;

UML 

signal s( Natural);
signal ss( Integer, Integer);
part active class b_T {
  part active class p_T {
    private Integer default_0006;
    private Integer default_0005;
    private Integer default_0004;
    private Integer default_0003;
    private Integer default_0002;
    private Natural default_0001;
    statemachine p_T() {
      state A; state A1; state A2; state A3;
      for state A;
        input s(default_0001),
             ss(default_0002, default_0003) {
          nextstate A1;
      }
      for state A1;
        input ss(v, default_0004) {
          nextstate A2;
      }
      for state A2;
        input ss(default_0005, v) {
          nextstate A3;
      }
      for state A3;
        input ss(v, default_0006) {
          stop;
      }
    }
  } [0..6] p / 1;
} b / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Informal statement

In SDL, some actions can be specified informally, inside informal state-
ments. These statements are mapped to UML comments attached to empty 
statements. Informal text is inserted into the comment string. Surrounding 
quotes are removed:
662 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
Example 270: Informal statement ––––––––––––––––––––––––––––––––––––––––

SDL

call p(1);
  decision 'Decide?';
  ('my decision') : 
    task 'do something';
    task 'do it once again';
    output ok;
    stop;
  else :
    task 'do something else';
    output ok;
  stop;
enddecision;

UML

p(1);
  switch ("Decide?") {
  case =="my decision" :
  {
    comment "do something";
    comment "do it once again";
    ^ ok();
    stop;
  }
  default :
  {
    comment "do something else";
    ^ ok();
    stop;
  }
  }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
When C code is generated from these informal statements, nested comments 
will be generated that will cause fail in the build process. This can be 
avoided by placing informal text inside an action symbol.

Code generation directives

IBM Rational Tau SDL Suite has support for proprietary extensions using 
special comments - also know as directives to the code generator. These di-
rectives can contain C code that should be inserted in the generated C code. 
June 2009 IBM Rational Tau User Guide 663



Chapter 17: SDL Import
#CODE directive

C code may be included in SDL tasks by using the #CODE directive. This 
directive has the syntax /*#CODE C code */ and it can be placed near SDL 
task statements (as defined in the SDL Suite documentation). This directive 
is mapped to a UML informal action. C code inside the directive is inserted 
into the UML informal action without any changes:

Example 271: #CODE directive ––––––––––––––––––––––––––––––––––––––––––

SDL

start;
  task 
/*#CODE
testvalue := testvalue + 1;
*/
  testvalue := testvalue+2
/*#CODE
testvalue = testvalue+3;
*/
  ,
/*#CODE
testvalue = testvalue+4;
*/
  testvalue := testvalue+5
/*#CODE
testvalue = testvalue+6;
*/
  ;
/*#CODE
#(testvalue) = #(testvalue)+7;
*/
  task 'stop the kernel' /*#CODE  SDL_Halt(); */;

UML

start {
  [[ testvalue = testvalue+1; ]]
  [[ testvalue = testvalue+7; ]]
  testvalue = testvalue + 2;
  [[ testvalue = testvalue+3; ]]
  [[ testvalue = testvalue+4; ]]
  testvalue = testvalue + 5;
  [[ testvalue = testvalue+6; ]]
  comment "stop the kernel";
  [[ SDL_Halt(); ]]
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
664 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
#ADT directive

IBM Rational Tau SDL Suite C Code generator offers a possibility to include 
implementations written in C of the operator and literal functions. They are 
introduced with #ADT directives that are recognized when placed immedi-
ately before the reserved word ENDNEWTYPE (or ENDSYNTYPE). 

These directives are also imported and stored in UML model in ADT stereo-
types (defined in the CApplication customization module) that contains a 
text string attribute with the body of ADT directive.

If an #ADT directive is used to implement operators from a newtype defined 
with generator transformations, it will not be correctly imported. Operators 
for this datatype are imported to the same scope as where the datatype is de-
fined and the datatype itself is imported to a UML syntype (compare with 
“Newtype with generator transformation, adding operator” on page 680). 
The corresponding ADT stereotype will be attached incorrectly and disre-
garded during code generation.

Example 272: Data type implementation for newtype ––––––––––––––––––––––––

SDL

process Central;
  NEWTYPE CardBaseType
    Array(CardBaseIndexType, CardRecordType);
    OPERATORS
      Full: CardBaseType -> Boolean;
      Register: CardBaseType, CardType, CardRecordType -
> CardBaseType;
      Validate: CardBaseType, CardRecordType -> 
ResultType;
/*#ADT(B)
#BODY
...
*/
  ENDNEWTYPE CardBaseType;
  …
endprocess Central;

UML

part active <<ADT(.bodyText = "#ADT(B)\n#BODY …", 
generateBodyText = true.)>> class Central_T {
  static <<External="true">> Boolean Full( CardBaseType) 
comment "Implemented in #ADT #BODY-section";
  static <<External="true">> CardBaseType Register( 
CardBaseType, CardType, part CardRecordType) comment 
"Implemented in #ADT #BODY-section";
  static <<External="true">> ResultType Validate( 
June 2009 IBM Rational Tau User Guide 665



Chapter 17: SDL Import
CardBaseType, part CardRecordType) comment "Implemented 
in #ADT #BODY-section";
  syntype CardBaseType = Array<CardBaseIndexType, 
Value<CardRecordType> >;
  ...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#INCLUDE directive

IBM Rational Tau SDL Suite directive #INCLUDE 'file' makes the SDL 
Analyzer include the contents of 'file' to the place of the directive. In-
cluded definitions are imported to UML with the exception of definitions in-
cluded from any of the predefined files:

BasicC++Types.pr
BasicCTypes.pr
C++Pointer.pr
CPointer.pr
CharConvert.pr

Example 273: Include of predefined files ––––––––––––––––––––––––––––––––––

SDL

system Mysystem;
  /*#INCLUDE 'BasicC++Types.pr'*/
  /*#INCLUDE 'C++Pointer.pr'*/
  /*#INCLUDE 'CharConvert.pr'*/
  newtype Ptr Ref(Integer) endnewtype;
  ...
endsystem;

UML

active class Mysystem {
  syntype Ptr = CPtr<Integer>;
  ...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Restrictions for code directives

Extended form of #CODE directive with #TYPE, #HEADING and #BODY sec-
tions is not supported.

Only directives inside comments are imported in the described way, other 
cases, for example, x + #CODE('a'), is not supported.
666 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
Data types

Simple data types

SDL predefined simple data types and operations are mapped to the corre-
sponding UML basic data types and operations according to the following ta-
bles. Predefined data types and constants mapping:

SDL UML 

boolean Boolean

true true

false false

character Character

charstring Charstring

ia5string IA5string

numericstring NumericString

duration Duration

time Time

bit Bit

octet Octet

string String

powerset PowerSet

bag Bag

pid Pid

null NULL

integer Integer

float float

visiblestring VisibleString

printablestring PrintableString

real Real

natural Natural

plus_infinity PLUS_INFINITY
June 2009 IBM Rational Tau User Guide 667



Chapter 17: SDL Import
Predefined operations

minus_infinity MINUS_INFINITY

array Array

oref ORef

bit_string BitString

octet_string OctetString

own Own

object_identifier ObjectIdentifier

any_type AnyType

SDL UML

/= !=

// +

= ==

not not

and and

or or

xor xor

mod mod

rem rem

in in

num num

chr chr

mkstring mkstring

length length

first first

last last

substring substring

SDL UML 
668 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
In SDL there are two forms of incl and del operations for SDL Bag and 
Powerset:

incl : Itemsort,  Powerset  -> Powerset;
incl : Itemsort,  in/out Powerset;

There is only one form of incl and del operations in UML. The short form 
without a return value is not supported in UML, so all references to this are 
transformed so the second (in/out) parameter is used on the left-hand side 
of an assignment expression.

Example 274: Short form for Powerset operation –––––––––––––––––––––––––––

SDL

newtype Power
  Powerset (Integer)
endnewtype;
task incl(1, pow1);

UML

append append

bitstr (that returns bit_string) String2BitString

bitstr (that returns octet) String2Octet

bitstr (that returns octet_string) bitstr

hexstr (that returns bit_string) HexString2BitString

hexstr (that returns octet) HexString2Octet

hexstr (that returns octet_string) hexstr

shiftl shiftl

shiftr shiftr

i2o I2O

o2i O2I

incl incl

take take

makebag makebag

fix fix

SDL UML
June 2009 IBM Rational Tau User Guide 669



Chapter 17: SDL Import
syntype Power = PowerSet<Integer>;
pow1 = Power::incl(1, pow1);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Predefined C++ types

Simple data type “unsigned_char” is a part of SDL package representing 
C++ types. This type is defined as a synonym of SDL type “Octet”. It is 
mapped directly to UML type “Octet”:

Example 275: Mapping for SDL unsigned_char –––––––––––––––––––––––––

SDL 

newtype MyType Ref(unsigned_char) endnewtype;
syntype Myunsigned = unsigned_char endsyntype;
dcl x unsigned_char;
dcl y Myunsigned;
dcl p MyType;
dcl i Integer;
task x := p*>;
task y := x;
task i := O2I(y);
task x := I2O(i);

UML 

syntype MyType = CPtr<Octet>;
syntype Myunsigned = Octet;
Octet x;
Myunsigned y;
MyType p;
Integer i;
x = p.GetValue();
y = x;
i = O2I(y);
x = I2O(i);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A special SDL type representing pointer to void “ptr_void” is mapped to 
UML type ‘void*‘. A special SDL type representing C string “ptr_char” 
is mapped to UML type ‘char*’.

In the SDL Suite there are special operators that are generated to the imported 
enum types. These operators are called EnumToInt and IntToEnum and they 
are used for transformations between integer and enumerated values. 
EnumToInt and IntToEnum are imported to the call of cast<> operator in 
UML:
670 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
Example 276: EnumToInt and IntToEnum ––––––––––––––––––––––––––––––––

SDL 

dcl i Integer;
dcl e MyEnum := a;
task i := EnumToInt( e );
task e := IntToEnum( i );

UML 

Integer i;
MyEnum e = a;
i = cast<Integer>(e);
e = cast<MyEnum>(i);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Special import rules are applied when casting types from ptr_void to 
Ref<T>, and from ptr_char to Charstring:

• cast(Charstring) to ptr_char: this is omitted because there is implicit 
conversion from Charstring to ‘char*’ in UML

• cast(ptr_char) to Charstring is imported to a call of the operator 
‘char*’.ToString(); 

• cast(Ref<T>) to ptr_void is imported to cast<'void*'>( CPtr<T> 
)

• cast<ptr_void> to Ref<T> is imported to UML cast from 'void*' to 
CPtr<T>

Example 277: Special import rules for SDL cast–––––––––––––––––––––––––––––

SDL 

newtype Ptr Ref(Integer) endnewtype;
dcl Invar  Integer;
dcl Outvar Ptr;
dcl Vs     ptr_void;
dcl pc     ptr_char;
dcl str    Charstring;
task Outvar := &Invar, 
     Vs := cast(Outvar),
     Outvar := cast(Vs);
task str := 'My String',
     pc := cast(str),
     str := cast(pc);

UML 

syntype Ptr = CPtr<Integer>;
June 2009 IBM Rational Tau User Guide 671



Chapter 17: SDL Import
Integer Invar;
Ptr Outvar;
'void*' Vs;
'char*' pc;
Charstring str;
Outvar = GetAddress<Integer>(Invar);
Vs = cast<'void*'>(Outvar);
Outvar = cast<Ptr>(Vs);
str = "My String";
pc = str;
str = pc.ToString();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following table summarizes special mapping rules for data types and op-
erators used to support external C++ types in SDL:

Conflicts with UML Predefined types

SDL user-defined type can conflict with the UML predefined type after im-
port. This simply means that imported user-defined type will have the same 
name as UML type from one of the predefined packages 
TTDCppPredefined, TTDRTTypes and Predefined.

There is an option Import user-defined types that conflict with UML pre-
defined types that controls the handling of conflicting types during SDL im-
port. By default, this option is set to false and conflicting types are not im-
ported. An information message will alert you on this situation:

Information: TSI0209: SDL user-defined type conflicts 
with UML predefined type 'short int' from package 
'TTDCppPredefined'. SDL type is NOT imported.

SDL UML

Data types

unsigned_char Octet

ptr_void ‘void*’

ptr_char ‘char*’

Operators

EnumToInt cast<>

IntToEnum cast<>
672 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
If the option is true, conflicting types are imported and a warning is gener-
ated:

Warning : TSI0210: SDL user-defined type conflicts with 
UML predefined type 'short int' from package 
'TTDCppPredefined'. Consider revising imported type.

Structured data types

SDL struct type is mapped to UML class with public fields.

Example 278: Struct––––––––––––––––––––––––––––––––––––––––––––––––––––

SDL

newtype n struct
  f1 Integer;
  f2 Boolean;
endnewtype;

UML

class n {
  public Integer f1;
  public Boolean f2;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
Comparison operation for structured data types: v1 == v2, where v1 and v2 
are values of a struct - this operation is comparing references, but not 
nested values of structured type.

Optional fields are mapped to public fields with [0..1] Multiplicity. Fields 
with one type defined with field name list in SDL are mapped to separate 
field declarations on different lines in UML. Inline field initialization is 
mapped to similar initialization in UML.

Example 279: Struct with optional fields –––––––––––––––––––––––––––––––––––

SDL

newtype str struct
  a, b Integer;
  c    Boolean optional;
  d    str2 optional;
  e    Charstring := 'IBM Rational';
  f    arr3 := (. 11 .);
endnewtype;
June 2009 IBM Rational Tau User Guide 673



Chapter 17: SDL Import
UML

class str {
  public Integer a;
  public Integer b;
  public Boolean [0..1] c;
  public part str2 [0..1] d;
  public Charstring e = "IBM Rational";
  public arr3 f = arr3 (.11.);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

SDL choice is mapped to UML choice with public fields.

Example 280: SDL choice –––––––––––––––––––––––––––––––––––––––––––––––

SDL

newtype c choice
  f1 Integer;
  f2 Boolean;
endnewtype;

UML

choice c {
  public Integer f1;
  public Boolean f2;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The general UML form of choice creation with initialization of a specific 
field is the following

<choice name> (. <field name> = <expression> .)

Example 281: SDL choice with initialization –––––––––––––––––––––––––––––––

SDL

newtype choice_type choice
a Integer;
b Boolean;

endnewtype;

dcl an_int choice_type:= a : 1; 
/* Initialization of field a by value 1 */
674 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
UML

choice choice_type
{

public Integer a;
public Boolean b;

}

choice_type an_int = choice_type (. a = 1 .);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Other SDL data types are mapped to UML datatypes and all operators are 
also mapped. For such data types basic operation prototypes are also inserted 
(except data types that contain only literals). 

Example 282: Operators ––––––––––––––––––––––––––––––––––––––––––––––––

SDL

newtype dummy
  operators
    op: Charstring -> Charstring;
  operator op; fpar i Charstring; returns Charstring;
    start;
      return call p( i // 'def' );
  endoperator;
endnewtype;

UML

datatype dummy {
  static <<IsQuery="true">> Charstring op( Charstring i) 
{
    return p(i + "def");
  }
  extern public static dummy '\='( dummy, dummy);
  extern public static Boolean '=='( dummy, dummy);
  extern public static Boolean '!='( dummy, dummy);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Default values in SDL newtype and syntype

Default values in SDL newtype and syntype are supported in the SDL import. 
If default value is specified for a type, it is used to initialize variables and 
fields of this type and it is passed to procedure calls, signals, etc. if the actual 
value is omitted.
June 2009 IBM Rational Tau User Guide 675



Chapter 17: SDL Import
Example 283: Default values in SDL newtype and syntype––––––––––––––––––––

SDL

newtype lights
  literals red, yellow, green
  default  yellow
endnewtype;

syntype __lights = lights
  default  green
endsyntype;

newtype X struct
  x Integer;
  y lights;
endnewtype;

signal ok(lights);

procedure out_ok; fpar ii Integer, ss __lights; returns 
Boolean;
  start;
    output ok;
    return true;
endprocedure;

dcl v Boolean;
dcl s1 lights;
dcl s2 lights := red;
dcl s3 __lights;
dcl s4 __lights := red;

input ok(s1);
task v := "not"(call out_ok(1));

UML

enum lights { red, yellow, green }
syntype __lights = lights;
class X {
  public Integer x;
  public lights y = yellow;
}
signal ok( lights );
Boolean out_ok( in Integer ii, in __lights ss, in 
Boolean result )
statemachine {
  start {
    ^ ok(yellow);
    return true;
  }
}

lights s1 = yellow;
676 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
lights s2 = red;
__lights s3 = green;
__lights s4 = red;
input ok(s1) {
v = not out_ok(1, green, false);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Checking presence

Several implicit Present operators are available for SDL types. They allow 
to check presence of choice and optional structure fields.

Implicit boolean operator <field name>present(<variable>) applied to 
optional structure fields is imported to an expression of the form: 

<variable>.<field name> != NULL 

Example 284: Checking presence for optional struct field–––––––––––––––––––––

SDL 

newtype seq struct
  a Integer;
  r Integer;
  z Integer optional;
endnewtype

dcl  v seq;
dcl  b Boolean;
task b := zPresent( v );

UML 

class seq {
  public Integer a;
  public Integer r;
  public Integer [0..1] z;
}

part seq v;
Boolean b;
b = (v.z != NULL);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The implicit boolean operator <field name>present(<variable>) ap-
plied to a choice field is transformed to an operator call on the form 

<variable>.IsPresent("<field name>")
June 2009 IBM Rational Tau User Guide 677



Chapter 17: SDL Import
Example 285: Checking presence for choice field––––––––––––––––––––––––––––

SDL 

newtype cho choice
  x Integer;
  y Boolean;
endnewtype;

dcl  myc cho;
dcl  b Boolean;
task b := yPresent( myc );

UML 

choice cho {
  public Integer x;
  public Boolean y;
}

part cho myc;
Boolean b;
b = myc.IsPresent("y");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The implicit <ChoiceName>present type with literals equal to choice field 
names is mapped to a UML explicit enumerated type <ChoiceName>_enum. 
All references to <ChoiceName>present are renamed to 
<ChoiceName>_enum.

Example 286: Enumerated type for handling present field in choice type––––––––

SDL 

newtype MyChoice choice
  bfield Boolean;
  ifield Integer;
endnewtype;

UML 

choice MyChoice {
  public Boolean bfield;
  public Integer ifield;
}
enum MyChoice_enum {
  bfield,
  ifield
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
678 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
The implicit choice field present is typed by <ChoiceName>present. It 
holds the name of the active choice field. By checking the present field it is 
possible to find out which field is active.

“=” and “/=” boolean expressions referencing implicit choice field 
“present” are mapped to corresponding checks for 
<variable>.IsPresent("<field name>").

Example 287: Checking implicit field present ––––––––––––––––––––––––––––––

SDL 

newtype cho choice
  x Integer;
  y Boolean;
endnewtype;

dcl  myc cho;
dcl  b Boolean;
task b := ( myc!present /= y );
task b := ( myc!present = y );

UML 

choice cho {
  public Integer x;
  public Boolean y;
}

part cho myc;
Boolean b;
b = (not myc.IsPresent("y"));
b = (myc.IsPresent("y"));

The last transformation is applied only if there is no user defined explicit 
field called “present” in the choice type.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

All other references to implicit choice field present are mapped to a condi-
tional expression checking presence for all choice fields.

Example 288: Reference to implicit choice field “present” ––––––––––––––––––––

SDL 

newtype MyChoice choice
  bfi Boolean;
  ifi Integer;
endnewtype;
June 2009 IBM Rational Tau User Guide 679



Chapter 17: SDL Import
dcl ch MyChoice;
dcl v  MyChoicepresent;
task ch!ifi := 10;
task v := ch!present;
task v := bfi;

UML 

choice MyChoice {
  public Boolean bfi;
  public Integer ifi;
}
enum MyChoice_enum {
  bfi,
  ifi
}
MyChoice ch;
MyChoice_enum v;
ch.ifi = 10;
v = ch.IsPresent("bfi") ? bfi : ifi;
v = MyChoice_enum::bfi;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Generators

Predefined SDL generators are imported. They are mapped to corresponding 
template instantiations. All template function calls (like mkstring) are pre-
fixed by type name qualifier. 

Example 289: Newtype with generator ––––––––––––––––––––––––––––––––––––

SDL

newtype t
  String( Integer, Empty )
endnewtype;

task v2 := mkstring( 1 );

UML

syntype t = String<Integer>;
v2 = t::mkstring(1);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Newtype with generator transformation, adding operator

Operators from newtypes with generator transformations are mapped to the 
same scope where the datatype is defined.
680 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
Example 290: Newtype with generator transformation –––––––––––––––––––––––

SDL

  newtype t4
    array( Index, Integer)
    operators
      op4 : Integer -> Integer;
  endnewtype;

UML

public static <<IsQuery="true">> Integer op4( Integer) ;
syntype t4 = Array<Index, Integer> ;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If one of the operators from such newtype is implemented using the #ADT 
directive, the corresponding stereotype will be attached to the wrong node in 
the imported model, and disregarded during code generation.

Newtype with literals

SDL newtype containing only literals is mapped to UML enum type. User-
defined literals are prefixed with type qualifier in all places they are used.

Example 291: Newtype with literals –––––––––––––––––––––––––––––––––––––––

SDL

newtype SomeType
  literals Some1, Some2, Some3
    default Some2
endnewtype;

newtype SomeType2
  inherits SomeType
endnewtype;

dcl var0 SomeType;
dcl var1 SomeType2;
task var1 := Some1;

UML

enum SomeType {
  Some1,
  Some2,
  Some3
}
datatype SomeType2 : SomeType
{

June 2009 IBM Rational Tau User Guide 681



Chapter 17: SDL Import
  public <<External="true">> SomeType2( SomeType);
  public static <<External="true">> SomeType2 '\='( 
SomeType2, SomeType2);
  public static <<External="true">> Boolean '=='( 
SomeType2, SomeType2);
  public static <<External="true">> Boolean '!='( 
SomeType2, SomeType2);
}
SomeType var0 = SomeType::Some2;
SomeType2 var1;
var1 = SomeType2::Some1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Generator Ref and operators “&” and “*>”

Predefined generator Ref representing C++ pointer is imported to UML tem-
plate datatype CPtr<T> from TTDCppPredefined profile.

Operator “&” is mapped to the call of template function GetAddress defined 
in CPtr datatype. Operator “*>” is mapped to the call of the GetValue func-
tion.

Example 292: Operators “&” and “*>” mapping –––––––––––––––––––––––––––

SDL 

newtype Iptr
  Ref(Integer);
endnewtype;

dcl a Integer;
dcl p Iptr;
task p := &a;
task a := p*>;

UML 

syntype Iptr = CPtr<Integer>;
Integer a;
Iptr p;
p = GetAddress<Integer>(a);
a = p.GetValue();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Data type inheritance

Data type inheritance is mapped correspondingly. For all parents in inherit-
ance chain conversion operators to parent types are generated to the inher-
iting datatype.
682 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
Example 293: Datatype inheritance –––––––––––––––––––––––––––––––––––––––

SDL

newtype SomeType
  literals Some1, Some2, Some3
    default Some2
endnewtype;

newtype SomeType2
  inherits SomeType
endnewtype;

newtype SomeType3
  inherits SomeType2
endnewtype;

UML

enum SomeType {
  Some1,
  Some2,
  Some3
}
datatype SomeType2 : SomeType
{
  public <<External="true">> SomeType2( SomeType);
  public static <<External="true">> SomeType2 '\='( 
SomeType2, SomeType2);
  public static <<External="true">> Boolean '=='( 
SomeType2, SomeType2);
  public static <<External="true">> Boolean '!='( 
SomeType2, SomeType2);
}
datatype SomeType3 : SomeType2
{
  public <<External="true">> SomeType3( SomeType2);
  public <<External="true">> SomeType3( SomeType);
  public static <<External="true">> SomeType3 '\='( 
SomeType3, SomeType3);
  public static <<External="true">> Boolean '=='( 
SomeType3, SomeType3);
  public static <<External="true">> Boolean '!='( 
SomeType3, SomeType3);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Variables

SDL variable declarations are mapped to UML variable definitions without 
explicitly specified visibility.
June 2009 IBM Rational Tau User Guide 683



Chapter 17: SDL Import
Example 294: Variables–––––––––––––––––––––––––––––––––––––––––––––––––

SDL

dcl v1 Integer;
dcl v2 Boolean;

UML

Integer v1;
Boolean v2;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Viewed/revealed variables

Viewed and revealed variables are handled through ports. For each viewed 
variable (name) an interface called <name>_var_I is created. An implicit 
port revealed_port_<name> is generated to the class where revealed vari-
able is defined. To each class where revealed variable is accessed an implicit 
port viewed_port_<name> is generated. Implicit connectors between class 
instances with revealed variable and class instances referencing this variable 
are generated:

Example 295: Viewed/revealed variables ––––––––––––––––––––––––––––––––––

SDL 

block b;
  process p;
    dcl revealed j boolean;
  endprocess;

  process type pt2;
    viewed j boolean;
    dcl i boolean;
    task i := view (j);
  endprocess type;
  
  process p2(1,1) : pt2;
endblock;

UML 

part active class b_T {
  interface j_var_I {
    Boolean j;
  }
  part active class p_T {
    public Boolean j;
    port revealed_port_j in with j_var_I;
684 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
  } p / 1;
  active public class pt2 {
    port viewed_port_j out with j_var_I;
    Boolean i;
    virtual statemachine pt2 {
      start {
        i = j;
        stop;
      }
    }
  }
  part pt2 [0..1] p2 / 1;
  connector p2_p_j_var from p2.viewed_port_j to 
p.revealed_port_j with j_var_I;
} b / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Remote variables

Remote variables are handled through ports, similar to Remote procedure.

General rules

Process formal parameters

Process type formal parameters are imported as formal parameters of the 
state machine, which is added into the class definition that corresponds to the 
process type. Parameter names are prefixed with “fpar_”. 

For each process type formal parameter, an attribute is added to the class def-
inition and these attributes are initialized in the first statements of the state 
machine:

Example 296: Process formal parameters ––––––––––––––––––––––––––––––––––

SDL

process type pt; fpar a, b Integer;
    … 
  endprocess type;

UML

active public class pt {
  …
  virtual statemachine pt( Integer fpar_a,
                                   Integer fpar_b) {
    start {
      pt::b = fpar_b;
June 2009 IBM Rational Tau User Guide 685



Chapter 17: SDL Import
      pt::a = fpar_a;
      …
    }
    …
  }
  Integer a = 0;
  Integer b = 0;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Process formal parameters are added to the inline class that is created for the 
implicit process type.

Qualifiers

Qualifiers are transformed to UML qualifiers, but the specification of the 
kind of an entity (for example a system or a process) is lost.

Virtuality

Virtuality is imported.

Comments

SDL comments are imported to UML model.

Textual SDL comments (comment '…';) are attached to the corresponding 
model element after import.

C-style comments from textual diagrams and symbols are imported, but their 
location is not always preserved and some of them are lost. Most of C-style 
comments from task symbols are lost. The result will be different depending 
on the source of the imported SDL (SDL Suite or ObjectGeode).

Example 297: Importing C-style comments from SDL Suite ––––––––––––––––––

SDL

signal sig1 /* 1 */;
signal sig2(Integer) /* 2 */;
signal sig3(Boolean /* 3 */) /* 4 */; /* 5 */

UML

signal sig1 comment " 1 ";
signal sig2( Integer);
686 IBM Rational Tau User Guide June 2009



SDL to UML Transformation Rules
signal sig3( Boolean) comment " 5 ";

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 298: Importing C-style comments from ObjectGeode ––––––––––––––––

For ObjectGeode import, the situation is that if a comment is written in the 
middle of the element definition, it is inserted before or after this definition 
in the imported UML. 

SDL

/* 1 */
signal /* 2 */ s1;
signal s2 /* 3 */; /* 4 */

UML

/* 1 */
/* 2 */
signal s1;
/* 3 */
/* 4 */
signal s2;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

External definitions

SDL definitions marked external 'C' or external 'C++' are not im-
ported to UML by SDL import, such definitions should be imported to UML 
with C/C++ Import.

In the case of an ignored definition there will be an information message, for 
example:

Information: TSI0211: External 'C' or 'C++' procedure 
'DEK_c_AlgorithmPriority' has been ignored. Use C/C++ 
import to map C and C++ definitions to UML.

All other SDL definitions marked as external are imported to UML external 
definitions.
June 2009 IBM Rational Tau User Guide 687



Chapter 17: SDL Import
Restrictions on SDL Import 

General SDL language restrictions

Semantically correct SDL

An SDL specification must be a complete, semantically correct SDL system 
in order to be imported. Incomplete, or incorrect specifications cannot be im-
ported. 

Case sensitivity 

The SDL Z.100 recommendation exists in two flavours with respect to case 
sensitivity. Case sensitivity has been introduced in later versions of SDL and 
hence SDL systems designed with recent versions of SDL tools, such as SDL 
Suite 4.4 and later, can be designed using the SDL tool in case sensitive 
mode. 

UML is a case sensitive language. SDL import operates in a case preserving 
mode and therefore it is required that the source SDL system is correct with 
respect to upper and lower case, otherwise the resulting UML may be seman-
tically incorrect due to definitions and references that do not match, or key-
words that are not be properly recognized. 

This means that:

• SDL definitions and references to definitions must be written with case 
sensitivity through the SDL system. 

• All SDL keywords must use upper or lower cases in a consistent fashion. 

There may be a need to modify the system prior to import, in order to apply 
upper and lower cases in a consistent fashion. Refer to the SDL tool user doc-
umentation for support on how to convert an SDL system to case sensitive 
SDL.
688 IBM Rational Tau User Guide June 2009



Restrictions on SDL Import
Not supported SDL language concepts

Virtual process type definitions

Virtual process type definitions are imported, but use of virtuality for corre-
sponding active classes is not supported in UML. This is a constraint on 
UML models.

Virtual process types are imported to virtual active classes, so all their con-
tents is available, but semantic checker prints error messages about unsup-
ported virtual types.

Guidelines:

Manually change the structure of imported model so that virtuality on types 
is not used. Individual solution for each model should be applied.

Example 299: Virtual process type –––––––––––––––––––––––––––––––––––––––

SDL

block type BType1;
  virtual process type pt1;
  endprocess type pt1;
  process p1(1,1) : pt1;
endblock type BType1;
block type BType2 inherits BType1;
  redefined process type pt1;
  endprocess type pt1;
endblock type BType2;

UML

active public class BType1 {
  active virtual public class pt1 {
  }
  part pt1 [0 .. 1] p1 / 1;
}
active public class BType2 : BType1 {
  active redefined public class pt1 {
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Messages

Class pt1: Error: TSC2023: The use of virtual, redefined 
or finalized types is not supported.
June 2009 IBM Rational Tau User Guide 689



Chapter 17: SDL Import
Service, service type, service type instance

Services are not imported. A possible workaround is to replace any services 
with other SDL constructs that can be imported, for example processes, and 
then manually change the structure of the imported model. One option can be 
to combine all services (imported, for example, as processes) into one UML 
state machine, although an individual solution for each model must be con-
sidered.

Example 300: Service ––––––––––––––––––––––––––––––––––––––––––––––––––

SDL:

PROCESS P1(1,1); SIGNALSET Sig1R, Sig2R, SigInternal;
  SERVICE S1; SIGNALSET Sig1R;
  ENDSERVICE;
  SERVICE S2; SIGNALSET Sig2R, SigInternal;
  ENDSERVICE;
ENDPROCESS;

Import messages:

Warning    : TSI0224: cdtserv01.sdl(25,11): Services are 
not imported to UML. Service 'S1' has been ignored.
Warning    : TSI0224: cdtserv01.sdl(35,11): Services are 
not imported to UML. Service 'S2' has been ignored.

SDL changed (services are replaced by processes):

/* PROCESS P1(1,1); SIGNALSET Sig1R, Sig2R, SigInternal; 
*/
PROCESS S1; SIGNALSET Sig1R;
ENDPROCESS;
PROCESS S2; SIGNALSET Sig2R, SigInternal;
ENDPROCESS;
/* ENDPROCESS; */

UML (to be changed manually):

part active class S1_T {
  statemachine S1_T {
    …
  }
  port io_port in with Sig1R out with SigInternal, Sig1;
} S1 / 1;
part active class S2_T {
  statemachine S2_T {
    …
  }
  port io_port in with Sig2R, SigInternal out with Sig2, 
ok;
690 IBM Rational Tau User Guide June 2009



Restrictions on SDL Import
} S2 / 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Create this

The construction “create this” is not supported. 

Signal refinement

Signal refinement is not imported.

Channel substructure

Channel substructure is not imported. All substructure elements are imported 
to the same scope as the channel is defined in.

Delayed connectors

The “delay” property for connectors is not supported because in UML con-
nectors do not delay signals. In UML the delaying property for connectors 
can be represented by a user-defined stereotype. The corresponding stereo-
type can be manually applied to imported channels, but it will not be pro-
cessed by any of the existing code generators.

Macros

Macros are not imported to UML.

Select

The SDL construct “Select if (<Boolean expression>)” is the analogue to a 
Conditional Compilation. The Selected body appears in an SDL model only 
if the boolean expression is evaluated to true. This kind of preprocessing 
is done before any SDL Import, and any selected entities are imported. The 
Select construct itself is not imported to UML.

Example:

SDL:

system S;
select if ( false );
  signal ss1;
endselect;
June 2009 IBM Rational Tau User Guide 691



Chapter 17: SDL Import
select if ( true );
  signal ss2;
endselect;
  signal ok;
  …
endsystem;

UML:

package S {
  active class S {
    …
  }
  signal ss2;
  signal ok;
}

In UML, the select-if construct can for example be redesigned by using the 
Conditional Compilation feature.

Name clashes

Some SDL constructs with the same name can result in name clashes in the 
generated UML. One example of such clashes are literals and other entities, 
for example:

Example 301: Name clashes –––––––––––––––––––––––––––––––––––––––––––––

SDL

  signal DR;
  newtype IPDUType
    literals CR, CC, DR, DT, AK;
  endnewtype IPDUType;

UML

  signal DR;
  enum IPDUType {
    CR, CC, DR, DT, AK
  }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In SDL names of literals and other definitions can be correctly resolved, but 
in UML there will be errors because of name clashes.

Similar situations can appear when there are two entities with the same name 
in nested scopes.
692 IBM Rational Tau User Guide June 2009



Restrictions on SDL Import
Transition option

SDL transition option can be imported to UML decision statement, but a 
transition option is not supported by the SDL Suite Analyzer.

Include expression

SDL include expression is not supported.

Axioms

Axioms cannot be imported to UML. It is not possible to represent SDL ax-
iomatic information in UML. 

RPC transition

“Input procedure my_x;” – This code means that transition is made only 
when remote procedure is called. This is not supported in UML. 

Inline initialization of arrays

Inline initialization of array elements is not allowed in UML, but it is allowed 
in SDL. Initialization will be imported but the model will not be correct. 

Example 302: Inline initialization of arrays–––––––––––––––––––––––––––––––––

SDL

newtype St1 struct
  aSt1 Integer;
  bSt1 Charstring;
endnewtype;

newtype A Array (Integer, St1)
endnewtype;

block B1;

process P1 (1, 1);
signalset;

dcl var A := (. (. 10, 'hello' .) .);
start;

UML

class St1 {
  public Integer aSt1;
June 2009 IBM Rational Tau User Guide 693



Chapter 17: SDL Import
  public Charstring bSt1;
}

syntype A = Array<Integer, St1>;

part active class B1_T {

   part active class P1_T {

private A a = A (. St1 (.10, "hello".) .);
   statemachine P1_T {
      start {
...

The generated UML model will give the following error messages:

InstanceExpr 'St1 (.10, "hello".)': Error: TNR0047: 
Failed to find definition of St1 (while looking for 
InstanceOf).
InstanceExpr 'St1 (.10, "hello".)': Error: TNR0051: 
Context resolution failed for InstanceOf in 
'InstanceExpr <unnamed>'.
InstanceExpr 'St1 (.10, "hello".)': Error: TNR0034: 
Failed to find InstanceOf of InstanceExpr (by ref:St1).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In UML an array can not be initialized in the same place where it is declared, 
so a workaround is to manually add initialization of array variables to the ap-
propriate place. This could for example be done at the beginning of the state 
machine:

Example 303: Initialization of array variables ––––––––––––––––––––––––––––––

statemachine P1_T {
   start {
     a[0] = St1 (.10, "hello".);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Procedure as qualifier

Procedures can not be used as qualifiers in UML. Such qualifiers are not im-
ported to UML and a warning message is reported.

Example 304: Procedure qualifiers –––––––––––––––––––––––––––––––––––––––

SDL

process HelloWorld;
694 IBM Rational Tau User Guide June 2009



Restrictions on SDL Import
  dcl i Integer := 5;

  procedure op; fpar in a Integer; returns Integer;
    newtype XXX
      literals lit_a, lit_b, lit_c;
    endnewtype;
    dcl i Integer;
    dcl x XXX;
    start;
      task { procedure op i := a + 1; };
      task process HelloWorld i := a;
      task x := procedure op/type XXX lit_b;
      return i;
  endprocedure op;
  ...
endprocess HelloWorld;

UML

part active class HelloWorld_T {
  Integer i = 5;
  Integer op(in Integer a) statemachine {
    enum XXX {
      lit_a, lit_b, lit_c
    }
    Integer i;
    XXX x;
    start {
      i = a + 1;
      HelloWorld_T::i = a;
      x = XXX::lit_b;
      return i;
    }
  }
  ...
} HelloWorld / 1;

Messages

Information: TSI0200: Importing SDL started
Warning: TSI0204: Procedure can not be used as 
qualifier, qualifier 'op' for identifier 'i' is not 
imported
Warning: TSI0204: Procedure can not be used as 
qualifier, qualifier 'op' for identifier 'XXX' is not 
imported
Information: TSI0202: Importing SDL completed

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 695



Chapter 17: SDL Import
ERROR expression

The ERROR expression is not supported in UML, so it can not be correctly 
mapped. In the SDL import an ERROR identifier is generated for the SDL 
ERROR keyword and a warning message is issued. The imported ERROR iden-
tifier should be manually replaced by the appropriate code, because this iden-
tifier will not be resolved and will cause semantic errors in the UML model.

Example 305: ERROR expression warning message –––––––––––––––––––––––––

Messages

Information: TSI0200: Importing SDL started
Warning: TSI0205: ERROR term is not supported in UML, 
expect semantic errors on imported 'ERROR' ident
Information: TSI0202: Importing SDL completed

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Restrictions in import from SDL Suite 

Import of datatypes with implementation

The implementation of a datatype are ignored when importing SDL with 
#ADT directives referencing datatypes in the following SDL-PR files, orig-
inating from SDL Suite:

access.pr
byte.pr
cm_pidlist.pr
file.pr
idnode.pr
list1.pr
list1_noname.pr
list2.pr
list2_noname.pr
random.pr
unsigned.pr
unsigned_long.pr

If datatypes with an #ADT implementation are imported from one of these 
files, the code resulting from these #ADT directives will not be imported. An 
information message will appear:

Information: TSI0215: D:\SDLImport\file.pr(123,5): #ADT 
implementation for 'TextFile' datatype from predefined 
'file.pr' has not been imported.
696 IBM Rational Tau User Guide June 2009



Restrictions on SDL Import
#ADT directive used to implement operators

If the #ADT directive is used to implement operators from a newtype defined 
with generator transformations, it will not be correctly imported. Operators 
from this data type will be imported into the same scope as the datatype is 
defined in. The datatype itself is imported to a UML syntype. The corre-
sponding ADT stereotype will be attached to the wrong node and then disre-
garded during code generation. 

Illegal re-declaration of connectors

In case several signal routes are connected to the same connector, then they 
must use the same graphical connection point in the SDL diagrams. Repeated 
“graphical declarations” of a connector in SDL will lead to semantic errors 
in UML, referring to illegal re-declarations of connectors. 

A possible workaround is to use the same connection point.

Multiple comment symbols result in syntax errors

Having multiple comment symbols connected to the same SDL symbol will 
cause SDL Suite to generate CIF files that are syntactically incorrect and that 
thus cannot be imported. 

There are two workarounds. 

• Concatenate contents into one comment symbol. 

• Upgrade to SDL Suite 4.4.6 or later.

Include graphical SDT References must not be checked

Turning the option Include graphical SDT references on will result in CIF 
comments not to be properly handled and in turn there will be no graphical 
elements (diagrams/symbols...) created. 

SDL analyzer is operated in case sensitive mode

The SDL analyzer (that checks the source SDL prior to transformation to 
UML) requires the source SDL to be case sensitive. Should errors be reported 
by the SDL analyzer, then the SDL must be modified. 
June 2009 IBM Rational Tau User Guide 697



Chapter 17: SDL Import
Hint
SDL Suite version 4.4 and later provides tool and script support to convert 
an SDL system to case sensitive SDL. Refer to the chapter “Migration 
Guidelines”, section “Update to case-sensitive SDL”.

Restrictions when importing from ObjectGeode

Explicit use of implicit operators

Explicit use of implicit predefined operators for structured types, like 
modify, extract, make, is allowed only inside the operator definition body in 
SDL standard. Use of such operators in other places will not be correctly im-
ported to UML, except when used as in Example 306 on page 698.

Example 306: Explicit use of modify operator ––––––––––––––––––––––––––––––

When the name on the left-hand side of an assignment is the same as the first 
argument in the construction<name>modify();. Then the modify operator 
will be imported to a field expression assignment on the form: 

value.name = <expression>;

SDL

newtype N struct
  a Integer;
  b Boolean;
endnewtype;
dcl m N;
task m := amodify(m,1);

UML

class N {
  public Integer a;
  public Boolean b;
}
part N m;
m.a = 1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
698 IBM Rational Tau User Guide June 2009



Example Section
Example Section

DemonGame (Imported from SDL Suite)

This example describes SDL-PR import, and diagram import, for the 
DemonGame system. Diagrams are imported from SDL Suite CIF comments 
that are inserted inside the textual SDL specification.

Example 307: SDL-PR for DemonGame example –––––––––––––––––––––––––––

system DemonGame;

  SIGNAL Newgame, Probe, Result, Endgame, Win, Lose, 
Score(Integer), Bump;
  channel C1 from env to GameBlock with Newgame, Probe, Result, 
Endgame;
  endchannel C1;
  channel C2 from GameBlock to env with Win, Lose, Score;
  endchannel C2;
  channel C3 from DemonBlock to GameBlock with Bump;
  endchannel C3;

  block GameBlock;
    SIGNAL GameOver;
    signalroute R2 from env to Game with Probe, Result;
    signalroute R1 from env to Main with Newgame, Endgame;
    signalroute R5 from Main to Game with GameOver;
    signalroute R3 from Game to env with Win, Lose, Score;
    signalroute R4 from env to Game with Bump;

    process Main;
      DCL GameP Pid;
      start;
        nextstate Game_Off;
      state Game_Off;
        input Newgame;
        create Game;
        task GameP := offspring;
        nextstate Game_On;
      endstate;
      state Game_On;
        input Endgame;
        output GameOver;
        task GameP := Null;
        nextstate Game_Off;
      endstate;
    endprocess Main;

    process Game;
      DCL Count Integer;
      start ;
        task Count:=0;
        nextstate Losing;
      state Losing;
        input Probe;
        output Lose;
        task Count:= Count-1;
        nextstate -;
        input Bump;
        nextstate Winning;
June 2009 IBM Rational Tau User Guide 699



Chapter 17: SDL Import
      endstate;
      state Winning;
        input Bump;
        nextstate Losing;
        input Probe;
        output Win;
        task Count:=Count+1;
        nextstate -;
      endstate;
      state *;
        input Result;
        output Score(Count);
        nextstate -;
        input GameOver;
        stop ;
      endstate;
    endprocess Game;

    connect C1 and R2, R1;
    connect C2 and R3;
    connect C3 and R4;

  endblock GameBlock;

  block DemonBlock;
    signalroute R1 from Demon to env with Bump;

    process Demon;
      timer T;
      start ;
        set(now+1,T);
        nextstate Generate;
      state Generate;
        input T;
        output Bump;
        set(now+1, T);
        nextstate -;
      endstate;
    endprocess Demon;

    connect C3 and R1;
  endblock DemonBlock;
endsystem DemonGame;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 308: Resulting UML model for DemonGame example –––––––––––––––

package DemonGame {
  active class DemonGame {
  part active class GameBlock_T {
    signal GameOver;

    part active class Main_T {
      Pid GameP;
      port R1 in with Newgame, Endgame;
      port R5 out with GameOver;
      statemachine Main_T {
        start {
          nextstate Game_Off;
        }
        state Game_Off;
        state Game_On;
        for state Game_Off;
          input Newgame() {
700 IBM Rational Tau User Guide June 2009



Example Section
            Game = new Game_T();
            GameP = offspring;
            nextstate Game_On;
          }
        for state Game_On;
          input Endgame() {
            ^ GameOver();
            GameP = NULL;
            nextstate Game_Off;
          }
      }
    } Main / 1;

    part active class Game_T {
      private Integer Count;
      port R2 in with Probe, Result;
      port R5 in with GameOver;
      port R3 out with Win, Lose, Score;
      port R4 in with Bump;
      statemachine Game_T {
        start {
          Count = 0;
          nextstate Losing;
        }
        state Losing;
        state Winning;
        for state Losing;
          input Probe() {
            ^ Lose();
            Count = Count - 1;
            nextstate -;
          }
          input Bump() {
            nextstate Winning;
          }
        for state Winning;
          input Bump() {
            nextstate Losing;
          }
          input Probe() {
            ^ Win();
            Count = Count + 1;
            nextstate -;
          }
        for state *;
          input Result() {
            ^ Score(Count);
            nextstate -;
          }
          input GameOver() {
            stop;
          }
      }
    } Game / 1;

    connector R2 from C1 to Game.R2 with Probe, Result;
    port C1 in with Probe, Result, Newgame, Endgame;
    connector R1 from C1 to Main.R1 with Newgame, Endgame;
    connector R5 from Main.R5 to Game.R5 with GameOver;
    connector R3 from Game.R3 to C2 with Win, Lose, Score;
    port C2 out with Win, Lose, Score;
    connector R4 from C3 to Game.R4 with Bump;
    port C3 in with Bump;
  } GameBlock / 1;

  part active class DemonBlock_T {
June 2009 IBM Rational Tau User Guide 701



Chapter 17: SDL Import
    part active class Demon_T {
      timer T;
      port R1 out with Bump;
      statemachine Demon_T {
        start {
          set T() = now + 1;
          nextstate Generate;
        }
        state Generate;
        for state Generate;
          input T() {
            ^ Bump();
            set T() = now + 1;
            nextstate -;
          }
      }
    } Demon / 1;
    connector R1 from Demon.R1 to C3 with Bump;
    port C3 out with Bump;
  } DemonBlock / 1;
  connector C1 from Env to GameBlock.C1 with Newgame, Probe, 
Result, Endgame;
  port Env in with Newgame, Probe, Result, Endgame out with Win, 
Lose, Score;
  connector C2 from GameBlock.C2 to Env with Win, Lose, Score;
  connector C3 from DemonBlock.C3 to GameBlock.C3 with Bump;
}
  signal Newgame;
  signal Probe;
  signal Result;
  signal Endgame;
  signal Win;
  signal Lose;
  signal Score(Integer);
  signal Bump;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
702 IBM Rational Tau User Guide June 2009



Error Messages
Error Messages

General

There are several sources for messages during SDL-PR and SDL CIF Import:

• Messages printed by the SDL Analyzer, which checks the correctness of 
the imported SDL file with respect to SDL syntax semantics. Message 
codes from SDL Analyzer are prefixed with TIL. 

• Messages printed by the CIF Analyzer that checks the structure and con-
tents of the CIF comments in the SDL specification. 

• Messages printed during SDL import and CIF import (message codes 
that are prefixed with “OGC” refer to ObjectGeode import). 

All the messages during SDL import are printed to the Script tab in the 
Output window.

Messages from SDL and CIF import

Messages from SDL and CIF import: 

Code Text Comment

TSI19019 Unable to get license For OG and SDL Suite

TSI19001 Invalid option: <string> For OG and SDL Suite

TSI19002 The option is set twice: 
<string>

For OG and SDL Suite

TSI19003 Option requires additional 
argument: <string>

For OG and SDL Suite

TSI19011 There should be at least one 
input file.

For OG and SDL Suite

TSI19012 The errors occurred during 
profile(s) loading.

For OG and SDL Suite

TSI19013 Only one of -check, 
-quickcheck and -
fullcheck could be speci-
fied

For OG and SDL Suite
June 2009 IBM Rational Tau User Guide 703



Chapter 17: SDL Import
TSI19014 -semanPath could not be 
used with -quickcheck or 
-fullcheck

For OG and SDL Suite

TSI19015 -semanPath or -
semanConfig could be 
used only together with 
check or transform options

For OG and SDL Suite

TSI19016 Output file(s) format is in-
valid or undefined: 
'<name>

For OG and SDL Suite

TSI19017 Input file(s) format is in-
valid or undefined: 
'<name>

For OG and SDL Suite

TSI19018 Failed to load predefined 
package.

For OG and SDL Suite

TSI19004 Cannot identify input file 
format: there is not exten-
sion.

For OG and SDL Suite

TSI19005 Non-standard extension 
'<string>' in input file name 
(use 
-inputFormat to specify 
file type)

For OG and SDL Suite

TSI19061 Cannot identify output file 
format: there is not exten-
sion.

For OG and SDL Suite

TSI19062 Non-standard extension 
'<string>' in output file 
name 
(use -outputFormat to 
specify file type)

For OG and SDL Suite

TSI19007 Error in Tcl script: <string> For OG and SDL Suite

TSI19009 Can not open output file. For OG and SDL Suite

Code Text Comment
704 IBM Rational Tau User Guide June 2009



Error Messages
TSI0204 Warning - Procedure can 
not be used as qualifier, 
qualifier '%s' for identifier 
'%s' is not imported

This message is printed when you 
use Procedure as qualifier. 

TSI0205 Warning - ERROR term is 
not supported in UML, ex-
pect semantic errors on im-
ported 'ERROR' ident

This message is printed for each 
usage of the ERROR expression 
in imported SDL.

TSI0206 Information - Procedure 
'%s' has been imported 
under the “exported as” 
name '%s'

Message is printed when Remote 
procedure with an “exported-
as” name is imported. 

TSI0209 Information - SDL user-de-
fined type conflicts with 
UML predefined type '%s' 
from package '%s'. SDL 
type is NOT imported.

Message is printed when there are 
Conflicts with UML Predefined 
types and SDL user-defined 
types.

TSI0210 Warning - SDL user-de-
fined type conflicts with 
UML predefined type '%s' 
from package '%s'. Con-
sider revising imported 
type.

Message is printed when there are 
Conflicts with UML Predefined 
types and SDL user-defined types 
after import. 

TSI0211 Information - External 'C' 
or 'C++' %s '%s' has been 
ignored. Use C++ Importer 
to map C and C++ defini-
tions to UML.

See External definitions.

Code Text Comment
June 2009 IBM Rational Tau User Guide 705



Chapter 17: SDL Import
OGC0517 (Information, Warning, 
Error, FatalError) - OG 
native message: “%s”, line 
%d, %s: %s.

ObjectGeode native message is 
printed. The first two parameters 
are processed file and line 
number. The last two parameters 
are native error code and native 
error message. The severity de-
pends on severity of native error 
message. See ObjectGeode docu-
mentation (Appendix E Geo-
decheck, E.3.3).

OGC0518 Information - Converting 
OG to SDT started.

Message is printed when con-
verting from ObjectGeode to SDT 
is started

OGC0519 Information - Converting 
OG to SDT completed.

Message is printed when con-
verting from ObjectGeode to SDT 
is completed

Code Text Comment
706 IBM Rational Tau User Guide June 2009



18
Rose Import

This chapter describes how to import models created in Rational Rose into 
IBM Rational Tau. The purpose of this feature is to migrate Rose models to 
IBM Rational Tau.

Note
Using the Rose import tool is the preferred way to import Rose models. 
Using XMI import for Rose models is discouraged since it will produce an 
inferior result.
June 2009 IBM Rational Tau User Guide 707



Chapter 18: Rose Import
Overview
The Rose Importer is a feature for migrating Rational Rose models into IBM 
Rational Tau. 

The main features of the Rose Importer are the following:

• Full or partial import of Rose model files

– Model elements and diagrams including layout information

• The importer works directly on Rose model files and does not rely on 
having Rational Rose installed

• Fully customizable Rose model to U2 file mapping

• The importer can be executed interactively (see “Getting started” on page 
709) or from the command line (see “Command line user interface” on 
page 718)
708 IBM Rational Tau User Guide June 2009



Getting started
Getting started
To import a Rose model into IBM Rational Tau:

• Start IBM Rational Tau and create a new project, or use an existing 
project

• Select the Model node in the Model View

• Start the Import Wizard by selecting File/Import...

• Select Import from Rational Rose and click OK

• Click your way through the different pages of the Rose Import Wizard

To import a model from a command window without starting IBM Rational 
Tau, use the Command line user interface.
June 2009 IBM Rational Tau User Guide 709



Chapter 18: Rose Import
Rose Import Wizard
This section describes the different steps of the Rose Import Wizard in detail.

The First Step of Rose Import Wizard

The first step of the import process is to specify which model files to import 
and how to interpret them.

• Specifying model files

• Model file locale

• Loading of referenced model files

• Default location of created U2 files

Specify all model file information and click the Next button. The import 
wizard then parses all the specified files.

Note
Parsing of large model files can take some time. The parsing can be termi-
nated by using the Cancel button.

Figure 172: The first step of Rose Import Wizard
710 IBM Rational Tau User Guide June 2009



Rose Import Wizard
Specifying model files

The main purpose of the first step is to determine the files to be imported. The 
set of files is listed in the centre of the dialog and can be changed by means 
of buttons Add Files..., Up, Down and Remove. 

• Pressing Add Files… button invokes standard open file dialog with mul-
tiple selection allowed. The files selected in the dialog are added to the 
end of the file list.

• Pressing Up and Down buttons moves the files currently selected in the 
list on position up or down respectively.

• Pressing Remove button removes the files currently selected from the 
list.

Model file locale

The encoding of the model files being imported is set using the Locale list 
box. By default the current system locale is used. When importing a file cre-
ated using a different locale, the proper locale should be selected in this list 
box in order to correctly represent localized definitions in IBM Rational Tau.

Loading of referenced model files

Checkbox Load subunits automatically is used to specify parser behavior 
when it finds a reference to an external file. If the checkbox is checked the 
parser will try to find the file by the path specified and parse it. Otherwise it 
will keep unit unloaded. See the next section for details.

Default location of created U2 files

The default location of the U2 files created during import can be customized 
using the U2 files at Rose files location option. 

By default, when the option is enabled, all created U2 files are stored at the 
same place as the corresponding Rose model files. When this option is dis-
abled, all U2 files are created in the folder of the current IBM Rational Tau 
project file.

Example 309Default file location

Assume you are working with a project called my_tau_proj stored in

C:\IBM Rational Tau\my_tau_projects\my_tau_proj.ttp
June 2009 IBM Rational Tau User Guide 711



Chapter 18: Rose Import
and are importing a Rose model consisting of three files each stored in a dif-
ferent folder:

C:\my_rose_prj\a\first.mdl
C:\my_rose_prj\b\second.cat
C:\my_rose_prj\c\third.cat.

When importing these files with the default file location, three U2 files are 
created and stored the same directories as corresponding Rose model files:

C:\my_rose_prj\a\first.u2
C:\my_rose_prj\b\second.u2
C:\my_rose_prj\c\third.u2

If the options is disabled, the following files will be created instead:

C:\IBM Rational Tau\my_tau_projects\first.u2
C:\IBM Rational Tau\my_tau_projects\second.u2
C:\IBM Rational Tau\my_tau_projects\third.u2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
This option only controls the default file locations. The file mapping can be 
fully customized in the next import step, see Specifying U2 file mapping.

The Second Step of Rose Import Wizard

The second step of the import process is to specify which parts of the models 
that should actually be imported and how to store the result.

• Specify which parts of the model to import

• Specifying U2 file mapping

• Locating missing files

• Setting up virtual paths
712 IBM Rational Tau User Guide June 2009



Rose Import Wizard
• Log file

Specify what to import and the file mapping and then click Next. The model 
is imported and saved into U2 files as specified.

Specify which parts of the model to import

The parsed models are presented in a tree-view control. The tree-view does 
not show the full structure of the models, only enough detail to specify a file 
mapping.

To the left of each tree item there is a checkbox describing its state in the im-
port process.

• Empty checkbox means that neither the entity nor its children will be im-
ported.

• Grey ticked checkbox means that the entity but not all (maybe none) of 
its children will be imported.

• Black ticked checkbox means that the entity as well as all of its children 
will be imported.

A red circle indicates an unresolved file reference. See Locating missing files 
for information on how to resolve any missing file references.

Figure 173: The second step of Rose Import Wizard
June 2009 IBM Rational Tau User Guide 713



Chapter 18: Rose Import
Locating missing files

If the imported model file(s) contain references to external files which can 
not be located automatically, a red circle appears in front of the node in the 
tree-view. There are two ways of resolving missing file references:

• Locate the file manually

Double click the node in the tree-view and locate the file using the stan-
dard open file dialog. Once located, the model file is parsed and the tree-
view is updated to show the newly collected data.

• Set up the virtual paths. See Setting up virtual paths

Specifying U2 file mapping

The tree-view is also used to specify the U2 file mapping for the imported 
models. Each black node in the tree-view can be associated with a U2 file.

To associate as node with a U2 file:

• Double click the node in the tree-view and browse to the desired location 
of the file

• Enter a file name and click Save

For every node that has a mapping to a U2 file, the file name is appended to 
the node name using the following format:

nodeName [[U2 file name]]

The default mapping is one U2 file for each Rose model file, with the same 
name and stored in the current project directory.

Diagrams cannot be placed in separate u2 files. Their tree nodes are high-
lighted with blue colour in the tree.

Setting up virtual paths

Virtual paths are supported by Rational Rose in order to support collabora-
tion by allowing a project to easily be reconfigured for new environment.

If a model containing virtual paths is to be imported the importer tries to re-
solve the path using Rational Rose registry entries. However if the resolution 
fails, e.g. if Rational Rose is not installed on the machine where the import 
is performed, then units with unresolved virtual paths appear as unloaded 
units in the model-tree view. Check Figure 173 on page 713 for an example. 
714 IBM Rational Tau User Guide June 2009



Rose Import Wizard
To specify location for such units there are two ways available. The first is 
as described above, double-click on the unit tree item and pick the file in the 
dialog. The second option is to define virtual path variable values. This may 
be more useful in case when several unloaded units use the same virtual path 
variable.

To change the virtual path mappings:

• Click the Setup Virtual Path... button

• Add and/or edit the virtual path variables as described below

• Click OK

The Virtual Path Setup Dialog is depicted on Figure 174 on page 715. Ini-
tially it contains all the variables which can be extracted from Rational Rose 
registry data, however the importer stores them internally in the file

%APPLICATION DATA%/IBM Rational/Shared/tau_virtpath.cfg

Note
The changes made to Virtual Paths in the Rose Importer are not propagated 
to Rose if it is installed.

To add a virtual path mapping:

• Click Add and enter the variable name

• Select the newly added variable and click the Browse... button to locate 
the virtual path folder

To change the name of an existing virtual path variable:

Figure 174: Virtual Paths Setup dialog
June 2009 IBM Rational Tau User Guide 715



Chapter 18: Rose Import
• Double click in the name column of the variable and enter a new name.

To change the folder of an existing virtual path variable:

• Select the variable and click the Browse... button to locate the new vir-
tual path folder

To remove an existing virtual path variable:

• Select the variable and click the Remove button

The option Reload all Rose models as Virtual Paths are updated controls 
whether the parsed model files shall be reparsed or not when applying 
changes to the virtual paths. If this options is enabled, all model files are rep-
arsed using the new virtual paths.

Note
When reparsing all model files, any customized U2 file mappings, are lost.

Log file

If Generate log file is checked, all of the error and warning messages will be 
written to a log file named the same as the first mdl file with the extension 
.log and it is stored in the current IBM Rational Tau project directory

The Third Step of Rose Import Wizard

When the second step of the import wizard is completed, the import process 
is started. A progress bar indicates the current progress of the import, and 
warning and error messages are continously displayed.

Note
Warning and error messages can optionally be written to a Log file.
716 IBM Rational Tau User Guide June 2009



Rose Import Wizard
The import can be aborted at any time by pressing the Cancel button.

When import is completed the buttons Restart and Close become active al-
lowing a user to restart the importer or finish the wizard.

After a user has clicked the Close button, the files created during the import 
are added to the current IBM Rational Tau project and loaded in IBM Ra-
tional Tau.

Figure 175: Rose import is done
June 2009 IBM Rational Tau User Guide 717



Chapter 18: Rose Import
Command line user interface
The Rose Importer can be started from the command line using the following 
syntax:

MDLImpBatch.exe [-p <vpm file>] { <file>.mdl | <file>.ptl }+ <file>.u2

<vpm file>

A virtual path map file as described in Setting up virtual paths
{ <file>.mdl | <file>.ptl }+

A list of model and/or petal files

<file>.u2

The resulting top level .u2 file

When using the command line interface the generated file(s) have to be 
added to a project manually. This can be done by opening the project and 
using the Project->Add to project...->Files command. If the project is Dis-
covery Based, command a refresh of the project by using Manual Redis-
covery.
718 IBM Rational Tau User Guide June 2009



Transformation rules
Transformation rules
In most cases the elements from Rose are imported into IBM Rational Tau as 
the same kind of UML element, for example a class in Rose is imported as a 
class in IBM Rational Tau. However for certain constructs the import per-
forms a transformation in order to be able to import as much as possible.

This section describes the transformation rules used during the import.

Class diagram

An Actor symbol on a Class diagram is transformed to a Class symbol.

A UseCase symbol on a Class diagram is transformed to an Operation 
symbol.

A Class symbol on a UseCase diagram is transformed to an Actor symbol.

Collaboration diagram

A Collaboration diagram is transformed to a Sequence diagram. All objects 
on a Collaboration diagram are transformed to LifeLine symbols. 

State diagram

State diagrams that contain nested states are imported according to the fol-
lowing algorithm: Diagrams are divided into several “levels”. Each level 
contains its own diagram cloned from the top-level diagram. Each of the 
nested states from the same level and from the same scope (i.e. substates of 
the same composition state) are placed on the same diagram. The position 
and size of state symbols and coordinates of transition lines are not changed. 
The transition line between states on the same level and scope are  imported 
without transformation. Otherwise the importer creates additional transition 
lines.

Activity diagram

Activity diagrams that contains nested activities are processed in the same 
way as State diagrams with nested states, see State diagram. A State symbol 
on an Activity diagram is transformed to an ActionActivitySymbol
June 2009 IBM Rational Tau User Guide 719



Chapter 18: Rose Import
Tier diagram

A Tier diagram is transformed to a Class diagram.

Common rules

A Text label is transformed to a Comment symbol.
720 IBM Rational Tau User Guide June 2009



Known limitations
Known limitations
This section describes the known limitations and unsupported constructs.

Note
Many of the limitations and transformations are caused by differences in the 
UML 1.x and UML 2.1 specifications.

Model file format

When importing old Rose models (Petal version less than or equal to 43) 
some data can be lost.

Rose models stored in a non-ASCII format cannot be fully imported. Ele-
ments containing non-ASCII characters cannot be imported.

All diagrams

Compartments are not supported

Fonts

The following attributes of class “Font” are not supported: script, bold, 
italics, underline, strike.

Symbols

The importer will keep the layout of imported diagrams, including the size of 
the imported symbols. This may cause parts of the text in the symbols to be 
cut. To overcome this set the symbol to use autosize, see Autosize symbols.
June 2009 IBM Rational Tau User Guide 721



Chapter 18: Rose Import
Example 310Cut symbol text

The figure below illustrates symbol text that has been cut. The ellipsis, …, in 
the left diagram indicates that there is some text that is not visible. In the right 
diagram, autosize has been enabled on the use case symbol, and the entire 
text is displayed.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Activity diagrams

History and HistoryAll are not supported.

Class diagrams

Line between AssociationClass and Association is not supported.

Constraint line between associations is not supported.

'Name direction' is not supported.

Sequence diagrams

Attribute “frequency” of a message is not supported.

Documentation on a message is not supported.

State diagrams

Partition is not supported.

Figure 176: Cut symbol text

UCD package P1 {1/1}

Actor1
 

Use
Case1

 

UCD package P1 {1/1}

Actor1
 

UseCase1
 

722 IBM Rational Tau User Guide June 2009



Known limitations
Tier diagrams

Tiers are not supported

UseCase diagrams

Name of association between UseCase and Actor is not supported.

Feature 'derived' of association between UseCase and Actor is not supported.

Generalizations between Actors are not supported in use case diagrams.
June 2009 IBM Rational Tau User Guide 723



Chapter 18: Rose Import
724 IBM Rational Tau User Guide June 2009



19
Together Import

This chapter describes how to import models created in Borland Together 
into IBM Rational Tau. The purpose of this feature is to migrate Together 
models to IBM Rational Tau.

The importer supports Together® Architect 2006 Service Pack 1 for Eclipse. 
Models created using earlier versions have to be migrated to this version be-
fore they can be imported into IBM Rational Tau.

Note
Using the Together import tool is the preferred way to import Together 
models. Using XMI import for Together models is discouraged since it will 
produce an inferior result.
June 2009 IBM Rational Tau User Guide 725



Chapter 19: Together Import
Overview
The Together Importer is a feature for migrating Borland Together models 
into IBM Rational Tau. 

The main features of the Together Importer are the following:

• Full or partial import of Together model files

– Model elements and diagrams including layout information

• The importer works directly on existing model files and does not rely on 
having Together installed

• Fully customizable Together model to U2 file mapping

• The importer can be executed interactively (see “Getting started” on page 
727) or from the command line (see “Command line user interface” on 
page 737)
726 IBM Rational Tau User Guide June 2009



Getting started
Getting started
To import a Together model into IBM Rational Tau:

• Start IBM Rational Tau and create a new project, or use an existing 
project

• Select the Model node in the Model View

• Start the Import Wizard by selecting File/Import...

• Select Import from Borland Together Architect and click OK

• Click your way through the different pages of the Together Import 
Wizard

To import a model from a command window without starting IBM Rational 
Tau, use the Command line user interface.
June 2009 IBM Rational Tau User Guide 727



Chapter 19: Together Import
Together Import Wizard
This section describes the different steps of the Together Import Wizard in 
detail.

• Step 1

• Step 2

• Step 3

• Step 4

Step 1

The first step of the import process is to specify which projects to import and 
how to interpret them.

• Specifying projects

• Linked resources

• Default location of created U2 files

Specify all model file information and click the Next button. The import 
wizard then parses all the specified files.

Figure 177: The first step of the Together Import Wizard
728 IBM Rational Tau User Guide June 2009



Together Import Wizard
Note
Parsing of large project can take some time. The parsing can be terminated 
by using the Cancel button.

Specifying projects

To specify which projects to import, press the Add Projects button and se-
lect a folder. All projects within the folder (including any of its subfolders, 
recursively) are added to the project list.

This can be repeated any number of times to import many projects at once. 
A project will only be added to the list once, even if its folder is added more 
than once.

To edit or rearrange the list of projects, use the Up, Down or Remove but-
tons.

• Pressing Up and Down buttons moves the selected project(s) up or down 
in the list.

• Pressing Remove button removes the selected project(s) from the list.

Linked resources

Linked resources (files and folders) are by default inserted into the Tau 
project. This can by changed by unchecking the Add linked resource to the 
IBM Rational Tau projects check-box.

Default location of created U2 files

The default location of the U2 files created during import can be customized 
using the Store U2 files at Together files location option. 

By default, when the option is enabled, all created U2 files are stored in the 
root folder of the corresponding Together project. When this option is dis-
abled, all U2 files are created in the folder of the current IBM Rational Tau 
project file.

Example 311Default file location

Assume you are working with a project called ImportedProjects stored in

C:\IBM Rational Tau\ImportedProjects\ImportedProjects.ttp

and are importing three Together projects:
June 2009 IBM Rational Tau User Guide 729



Chapter 19: Together Import
C:\Project1
C:\Project2
C:\Project3

When importing these files with the default file location, the U2 files are cre-
ated and stored in the project folders:

C:\Together\Project1\Project1.u2
C:\Together\Project2\Project2.u2
C:\Together\Project3\Project3.u2

If the options is disabled, the following files will be created instead:

C:\Tau\ImportedProjects\Project1.u2
C:\Tau\ImportedProjects\Project2.u2
C:\Tau\ImportedProjects\Project3.u2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
This option only controls the default file locations. The file mapping can be 
fully customized in the next import step, see Specifying U2 file mapping.

Step 2

During the second step the selected project files are parsed and the parse in-
formation is displayed.

Figure 178: The second step of the Together Import Wizard
730 IBM Rational Tau User Guide June 2009



Together Import Wizard
Step 3

The second step of the import process is to specify which parts of the models 
that should actually be imported and how to store the result.

• Specify which parts of the model to import

• Specifying U2 file mapping

• Locating missing files

• Setting up import options

• Log file

Specify what to import and the file mapping and then click Next. The model 
is imported and saved into U2 files as specified.

Specify which parts of the model to import

The parsed models are presented in a tree-view control. The tree-view does 
not show the full structure of the models, only enough detail to specify a file 
mapping.

Figure 179: The third step of the Together Import Wizard
June 2009 IBM Rational Tau User Guide 731



Chapter 19: Together Import
There are two tree-view modes: standard view mode and a diagram view 
mode. The Use Diagram View check box is used to toggle between the 
modes.

To the left of each tree item there is a checkbox describing its state in the im-
port process.

• Empty checkbox means that neither the entity nor its children will be im-
ported.

• Grey ticked checkbox means that the entity but not all (maybe none) of 
its children will be imported.

• Black ticked checkbox means that the entity as well as all of its children 
will be imported.

A red circle indicates an unresolved file reference. See Locating missing files 
for information on how to resolve any missing file references.

Locating missing files

If the imported model file(s) contain references to external files which can 
not be located automatically, a red circle appears in front of the node in the 
tree-view. There are two ways of resolving missing file references:

• Locate the file manually

Double click the node in the tree-view and locate the file using the stan-
dard open file dialog. Once located, the model file is parsed and the tree-
view is updated to show the newly collected data.

• Set up the path variables. See Setting up import options

Specifying U2 file mapping

The tree-view is also used to specify the U2 file mapping for the imported 
models. Each black node in the tree-view can be associated with a U2 file.

To associate as node with a U2 file:

• Double click the node in the tree-view and browse to the desired location 
of the file

• Enter a file name and click Save

For every node that has a mapping to a U2 file, the file name is appended to 
the node name using the following format:
732 IBM Rational Tau User Guide June 2009



Together Import Wizard
nodeName [[U2 file name]]

The default mapping is one U2 file for each Together model file, with the 
same name and stored in the current project directory.

Diagrams cannot be placed in separate u2 files. Their tree nodes are high-
lighted with blue color in the tree.

Setting up import options

Additional import options and/or path variables can be specified while im-
porting Together models.

The Import Options Page is depicted on Figure 180 on page 733.

To change the import options:

• Click the Options... button

• Select Import Options Page

• Select or deselect available options

• Click OK

Path variables are supported by Together in order to support collaboration by 
allowing a project to be easily reconfigured for a new environment.

Figure 180: Import Options Page
June 2009 IBM Rational Tau User Guide 733



Chapter 19: Together Import
When importing a project containing path variables the importer tries to re-
solve the path(s) using Together registry entries. If the resolution fails, e.g. if 
Together is not installed on the machine where the import is performed, then 
units with unresolved paths appear as unloaded units in the model-tree view. 
To specify the location for unresolved units there are two ways available. The 
first is as described above, double-click on the unit tree item and pick the file 
in the dialog. The second option is to define path variable values. This may 
be more useful in case when several unloaded units share the same path.

To change the path variables:

• Click the Options... button

• Select Path Variables Page

• Add and/or edit the path variables as described below

• Click OK

The Path Variables Page is depicted on Figure 181 on page 734. Initially it 
contains all the variables which can be extracted from Together registry data, 
however the importer stores them internally in the file

%APPLICATION DATA%/IBM Rational/Shared/tau_virtpath.cfg

Note
The changes made to path variables in the Together Importer are not prop-
agated to Together if it is installed.

To add a path variable:

Figure 181: Path Variables Page
734 IBM Rational Tau User Guide June 2009



Together Import Wizard
• Click Add and enter the variable name

• Select the newly added variable and click the Browse... button to locate 
the variable folder

To change the name of an existing path variable:

• Double click in the name column of the variable and enter a new name.

To change the folder of an existing path variable:

• Select the variable and click the Browse... button to locate the new vari-
able folder

To remove an existing path variable:

• Select the variable and click the Remove button

The option Reload all Together project as Path Variables are updated 
controls whether the parsed model files shall be reparsed or not when ap-
plying changes to the path variables. If this options is enabled, all model files 
are reparsed using the new variables, if disabled only the ones resolved due 
to added variables are parsed.

Note
When reparsing all model files, any customized U2 file mappings, are lost.

Log file

If Save all logs to file is checked, all of the error and warning messages will 
be written to a log file named the same as the first project with the extension 
.log and it is stored in the current IBM Rational Tau project directory

Step 4

When the third step of the import wizard is completed, the import process is 
started. A progress bar indicates the current progress of the import, and 
warning and error messages are continuously displayed.

Note
Warning and error messages can optionally be written to a Log file.
June 2009 IBM Rational Tau User Guide 735



Chapter 19: Together Import
The import can be aborted at any time by pressing the Cancel button.

When the import is completed the Finish and New Import buttons are en-
abled to finish the wizard or to import more projects.

When the Finish button is clicked, the files created during import are added 
to the current IBM Rational Tau project and loaded in IBM Rational Tau.

Figure 182: The fourth step of the Together import wizard
736 IBM Rational Tau User Guide June 2009



Command line user interface
Command line user interface
The Together Importer can be started from the command line using the fol-
lowing syntax:

BTXImpBatch.exe [-noGui <inputDir>+ <outputFile>.u2]

If the importer is started without any parameters it is started with the graph-
ical user interface. 

-noGui

A flag that tells the importer to run without GUI

<inputDir>+

A list of folders containing Together models to import

<outputFile>.u2

The resulting top level .u2 file

When using the command line interface the generated file(s) have to be 
added to a project manually. This can be done by opening the project and 
using the Project->Add to project...->Files command. If the project is Dis-
covery Based, command a refresh of the project by using Manual Redis-
covery.
June 2009 IBM Rational Tau User Guide 737



Chapter 19: Together Import
Transformation rules
In most cases the elements from Together are imported into IBM Rational 
Tau as the same kind of UML element, for example a class in Together is im-
ported as a class in IBM Rational Tau. However for certain constructs the im-
port performs a transformation in order to be able to import as much as pos-
sible.

This section describes the transformation rules used during the import.

Class diagram

Actor symbol

An Actor symbol on a Class diagram is transformed to a Class symbol.

UseCase symbol

A UseCase symbol on a Class diagram is transformed to an Operation 
symbol.

UseCase diagram

Class symbol

A Class symbol on a UseCase diagram is transformed to an Actor symbol.

Communication diagram

A Communication diagram is transformed to a Sequence diagram. All ob-
jects on a Communication diagram are transformed to LifeLine symbols. 

State diagram

A State diagram that contains nested states is imported according to the fol-
lowing algorithm:

The diagram is divided into several “levels”. Each level contains its own di-
agram cloned from the top-level diagram. Each of the nested states from the 
same level and from the same scope (i.e. substates of the same composition 
state) are placed to the same diagram. The position and size of the state sym-
738 IBM Rational Tau User Guide June 2009



Transformation rules
bols and the coordinates of transition lines are not changed. Transition lines 
between states on the same level and scope are imported without transforma-
tion. Otherwise additional transition lines are created.

Activity diagram

The Activity diagram that contains nested activities are processed in the 
same way as a State diagram with the nested states.

State symbol

A State symbol on an Activity diagram is transformed to an ActionActivi-
tySymbol.

Common rules

A Text label is transformed to a Comment symbol.
June 2009 IBM Rational Tau User Guide 739



Chapter 19: Together Import
740 IBM Rational Tau User Guide June 2009



20
UML 1.x Import 

This chapter describes the import of UML 1.x models and diagrams created 
by other UML tools than IBM Rational Tau.
June 2009 IBM Rational Tau User Guide 741



Chapter 20: UML 1.x Import
Operation Principles

XMI 

XMI - XML Metadata Interchange - is a UML metadata representation stan-
dard based on XML that allows to interchange UML models between dif-
ferent (separate) tools. XMI DTDs (XML Document Type Definitions) serve 
as syntax specifications for XMI documents, and allow generic XML tools 
to be used to compose and validate XMI documents.

A UML meta model class is represented in the XMI DTD by an XML ele-
ment whose name is the class name. The element definition describes the at-
tributes of the class; references to association ends relating to the class; and 
nested classes, either explicitly or through composition associations.

An attribute of a Metamodel class is represented in the DTD by an XML el-
ement whose name is the attribute name.

An association (both with and without containment) between metamodel 
classes is represented by two XML elements that represent the roles of the 
association ends.

XMI import

During UML import a file that complies to the XMI standard is read, and 
after interpreting the contents of the XMI file a UML model is created. After 
the import has been done, presentation elements (diagrams and symbols) are 
created in order to visualize the imported contents. Furthermore, if the im-
ported XMI file contains diagram and symbol information that, such infor-
mation will be use to preserve the appearance of the resulting UML model. 

XMI files without any diagram information will be imported, but only UML 
model elements will be created.

XMI import add-in

The XMI import is provided among the Add-Ins and named XMIImport.
742 IBM Rational Tau User Guide June 2009



Operation Principles
XMI import architecture

The architecture of this feature is outlined in Figure 183 on page 743. The 
XMI Reader module reads a file with XMI specification. XMI Reader trans-
forms information from each tag and passes it to the UML API. 

All elements of the UML model are created in the UML API. The core of 
UML API is a set of C++ classes with the same class hierarchy as in the UML 
meta model. The UML API is the module builder, which (together with XMI 
Reader) creates a skeleton of UML model on the fly (tag by tag).

Some kinds of information can not be added to UML model in this phase. 
This is collected and passed to UML Resolver module. 

The U2 Resolver performs a set of transformations to the skeleton of UML 
model.

Example 312: UML resolver ––––––––––––––––––––––––––––––––––––––––––––

An example of information passed to the U2 resolver is import of an “enu-
meration” data type. For example Rational Rose will export “enumeration” 
as a class stereotyped by «enumeration», however in IBM Rational Tau 
“enumeration” is a DataType. Information about applied stereotypes is not 
available during Class import, thus this Class must be transformed later. In-
formation about required transformation is passed to the U2 Resolver during 
stereotype import.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 183: XMI import architecture.
June 2009 IBM Rational Tau User Guide 743



Chapter 20: UML 1.x Import
Import an XMI file

The XMI import is called from IBM Rational Tau graphical user interface. 
In order to activate the XMI import, a workspace with a project must be open. 

• Select a Package in the Model View.

• Open the Import Wizard (File menu, Import... command).

• Select Import XMI in the dialog window and press OK.

• Specify the XMI file to import in the dialog window that appears. 

The following should be the result when the second dialog closes: 

• A package ImportedXMIDefinitions is created in the model

• A stereotype xmiImportSpecification is applied to the package.

• The XMI file to import is stored as a value in the stereotype instance for 
the package.

• The import operation is performed, and the result is added to the created 
package.

Importing XMI specification with the same settings once again

In the Model View select a package with the xmiImportSpecification ste-
reotype applied.

Right-click on the package and in the pop up menu, select Import XMI.

The import operation is performed, and the result is placed into the package.

To change settings (select file to import), the properties in the stereotype in-
stance for the package can be edited, before doing an Import XMI com-
mand.

Note
When the Import wizard dialog is used, a new package is created. When Im-
port XMI from the pop up menu is reused, the existing package is reused.

Supported XMI and UML

Language and version support

The following languages and versions are supported by the XMI import:
744 IBM Rational Tau User Guide June 2009



Supported XMI and UML
• XMI 1.0/1.1

• UML 1.4

Listed below are the UML 1.4 entities that are supported by the XMI import. 
Relations and attributes to entities are also supported unless specified other-
wise. 

Foundation / core
Association
AssociationEnd
Attribute
Class
Comment
Component
Constraint
DataType
Dependency
ElementResidence
Enumeration
EnumerationLiteral
Generalization
Interface
Method
Operation
Parameter
Permission
StructuralFeature

Foundation / extension mechanisms
Stereotype
TaggedValue
TagDefinition

Foundation / data types
Boolean
BooleanExpression
Expression
Integer
Multiplicity
MultiplicityRange
Name
ProcedureExpression
String
Uninterpreted

Model management
Model
Package
June 2009 IBM Rational Tau User Guide 745



Chapter 20: UML 1.x Import
Subsystem

Behavioral elements / common behavior
ActionSequence
Argument
CallAction
CreateAction
DestroyAction
Exception
ReturnAction
SendAction
Signal
TerminateAction
UninterpretedAction

Behavioral elements / collaborations
ClassifierRole
Collaboration
Interaction
Message

Behavioral elements / use cases
Actor
Extend
Include
UseCase

Behavioral elements / state machines
CompositeState
CallEvent
FinalState
Guard
Pseudostate
Initial
Choice
Junction
DeepHistory
ShallowHistory
SignalEvent
State
SimpleState
StateMachine

Supported diagram types

Provided that the XMI file contains the required diagram information, the 
XMI import supports the following UML diagram types:

• Class diagram 
746 IBM Rational Tau User Guide June 2009



Supported XMI and UML
• Component diagram

• Deployment diagram

• Package diagram

• Activity diagram

• Sequence diagram 

• Use case diagram

• State machine diagram

Importing with preserved layout

Diagrams that belong to this category are diagrams in which the graphical 
layout is present in the XMI file. 

• Class diagram 

• Component diagram

• Deployment diagram

• Package diagram

• Activity diagram

• Use case diagram 

• Sequence diagram

• State machine diagram 

Import of nested states

Although the layout is preserved some special considerations apply for 
nested states. 

• For each state with nested states a set of diagrams will be created (one for 
each nested level). 

• The positions of states on these diagrams will as far as possible be the 
same as on original.

• Start and Return symbols will be created on each new diagram when nec-
essary. The positions of these symbols will as far as possible be the same 
as the position of corresponding symbols on the higher nested level.

• New entry and exit connection points will be created when necessary.

• Transition events and actions containing large amounts of text may 
overlap. 
June 2009 IBM Rational Tau User Guide 747



Chapter 20: UML 1.x Import
Import from UML 1.x tools 

In general terms, the XMI import tool supports XMI files from the following 
UML 1.x tools that comply to the supported XMI version(s). 

• Rational Rose/Unisys (JCR.2 v.1.3.x)

• IBM Rational Tau UML Suite

• Borland Together

• IBM XMI Toolkit.

Rhapsody

Rhapsody exports XMI, but without any diagram information The informa-
tion in the XMI files originating from Rhapsody is used to create model ele-
ments. This will result in a UML structure in the workspace window (but no 
diagrams). 

Rational Rose
• Rational Rose with Unisys extensions exports XMI with diagram infor-

mation. This information is used during the XMI import when creating 
the diagrams (provided that the diagrams are among the Supported dia-
gram types).

• Diagram layouts are preserved for class diagrams, use case diagrams and 
sequence diagrams. 

• Rational Rose names are supported.

Note
It is strongly recommended to use the Rose Import feature to import models 
from Rational Rose instead of the XMI import. The Rose Import features 
works directly on the model files and is therefore able to preserve signifi-
cantly more information.

Preserve DOORS links

It is possible to preserve DOORS links during import of XMI from Rational 
Rose. 

• Export the UML model. Make sure that the “Generate UUIDs” check 
button is selected.

• Import the generated XMI into IBM Rational Tau.
748 IBM Rational Tau User Guide June 2009



Restrictions
• Export the new UML from IBM Rational Tau to DOORS, using the ex-
isting DOORS integration commands.

• Open the IBM Rational Tau surrogate module in DOORS, and select the 
menu choice Import Links from Rational Rose and follow the instruc-
tions.

When these actions will be completed, all links to or from the surrogate 
module in DOORS (created by the DOORS Rose Link integration) will then 
be copied for the IBM Rational Tau surrogate module.

IBM Rational Tau UML Suite
• IBM Rational Tau UML Suite with Unisys extensions exports XMI with 

diagram information. This information is used during the XMI import 
when creating the diagrams (provided that the diagrams are among the 
Supported diagram types).

• Diagram layouts are preserved for class diagrams, use case diagrams and 
sequence diagrams. 

See also

“Language and version support” on page 744 

Restrictions
In addition to the level of XMI/UML support stated elsewhere in this chapter, 
the following sections describe other known restrictions. 

Type and variable definitions
• Local datatype definitions are not visible in state machine diagrams.

• Local variable definitions are not visible in state machine diagrams.

Incomplete model

XMI specification must be a complete, semantically correct UML model in 
order to be imported. In general, incomplete, or incorrect, specifications 
cannot be imported to IBM Rational Tau, however in some cases such spec-
ifications can be imported as a complete specification or with losing some 
model information. 
June 2009 IBM Rational Tau User Guide 749



Chapter 20: UML 1.x Import
Example 313: Import of incomplete model ––––––––––––––––––––––––––––––––

In Example1 FinalState will not be imported because this state will be trans-
formed to a ReturnAction. This action should be owned by the incoming (to 
FinalState) transition, and as such a transition does not exist in the example 
FinalState will not be imported.

In Example2 all diagram elements will be imported, although this diagram is 
also incomplete (there is no InitialState in this diagram).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Unsupported classes

Some UML constructs will not be processed during XMI import. 

The error message TUI0004 (unsupported classes) will be printed for the fol-
lowing constructs:

Foundation: Core
• Artifact

• Association (between Use Cases)

• Binding

• Flow

• Generalization (between Actors)

Behavioral Elements: Common Behavior 
• AttributeLink

• ComponentInstance

• DataValue

Figure 184: Incomplete models.
750 IBM Rational Tau User Guide June 2009



Restrictions
• Instance

• Link

• LinkEnd

• NodeInstance

• Object

• Reception

• Stimulus

• SubsystemInstance

Behavioral Elements: ActivityGraphs
• ClassifierInState

• ObjectFlowState

• Pseudostate (Shallow history and Deep history)

Behavioral Elements: Collaborations 
• AssociationEndRole

• AssociationRole

• CollaborationInstanceSet

• InteractionInstanceSet

Behavioral Elements: State Machines 
• ChangeEvent

• StubState

• TimeEvent

Behavioral Elements: Use Cases
• UseCaseInstance

Unsupported attributes

An error message for unsupported attributes (TUI0006) will be printed for 
the following attributes: 
June 2009 IBM Rational Tau User Guide 751



Chapter 20: UML 1.x Import
Foundation: Core
• AssociationEnd

– Specification

• Attribute

– AssociationEnd

• BehavioralFeature

– RaisedSignal

• Component

– Deployment

• Constraint

– ConstrainedStereotype

• Feature

– Owner

• Method

– Body

– OwnerScope

• ModelElement

– Presentation

– Template

• Operation

– Concurrency

– Occurrence

– Specification

Foundation: Data Types
• Expression

– Language

Foundation: Extension Mechanisms
• Stereotype

– Icon

– StereotypeConstraint
752 IBM Rational Tau User Guide June 2009



Restrictions
Behavioral Elements: Collaborations
• Collaboration

– RepresentedClassifier

– RepresentedOperation

• Interaction

– Context

• Message

– Activator

Behavioral Elements: State Machines
• CompositeState 

– Concurrent property

Behavioral Elements: Use Cases
• Actor

– Abstract property

• Use Case

– ExtensionPoint

Model Management
• Subsystem

– Instantiable property

Unsupported composition

An error message for unsupported composition (TUI0008) will be printed for 
the following constructions:

Foundation: Core
• AssociationEnd

– Qualifier

• Component

– Implementation
June 2009 IBM Rational Tau User Guide 753



Chapter 20: UML 1.x Import
Behavioral Elements: ActivityGraphs
• State

– InternalTransitions (actions of an activity)

– State (from StateMachine)

– Pseudostate: History (Shallow history and Deep History)

Behavioral Elements: Collaborations
• Collaboration

– ConstrainingElement

Behavioral Elements: State Machines
• StateMachine

– SynchState (Synchronization bar)

• State

– InternalTransition (actions of a state)

– Pseudostate: Junction

Collaboration diagram is not supported at all.

Export restrictions

In some cases Rational Rose provides incomplete export. This may result in 
that some information will be lost after import. The known problems (not ex-
ported features) of Rational Rose exporter (Unisys 1.3.6) are listed below. 

Class diagram
• Class

– Type (ParameterizedClass, ClassUtility, InstantiatedClass etc.)

– Multiplicity

– Space

– Concurrency

– Format (show visibility)

• Attribute

– Containment
754 IBM Rational Tau User Guide June 2009



Restrictions
• Operation

– Protocol

– Qualification

– Size

– Time

• Binary Association

– Constraints

– Containment

– Derived

– Friend

– LinkElement

– Name Direction

• Inheritance

– Documentation

– Virtual inheritance

– Friendship Required

• Realization

– Documentation

• Dependency/Instantiates

– Multiplicity from

– Multiplicity to

– Friendship Required

State diagram
• Transition

– Stereotype

– Documentation

Sequence diagram
• Message

– Frequency (periodic, aperiodic)

• Destruction Marker
June 2009 IBM Rational Tau User Guide 755



Chapter 20: UML 1.x Import
Use Case diagram
• Actor

– Type

– Multiplicity

• Use Case

– Stereotype

– Rank

• Binary Association

– Derived

– Link Element

– Name Direction

– Constraints

– Friend

– Containment

• Dependency

Package diagram
• Dependency

– Documentation

Component diagram
• Package

– Global

• Component

– Declarations

Deployment diagram
• Processor

– Scheduling

• Process

– Priority

• Device

– Stereotype
756 IBM Rational Tau User Guide June 2009



Restrictions
• Connection

Activity diagram
• Swimlane

– Documentation

• Object

• Object Flow
June 2009 IBM Rational Tau User Guide 757



Chapter 20: UML 1.x Import
Error Messages

General

Messages during XMI import are printed in the Output window.

Messages from XMI import

Code Text Comment

TUI0004 Attribute 
'<name>' 
(<name>) of class 
'<name>' is unsup-
ported

Error occurs when XMI specification con-
tains attribute that is not specified in XMI 
standard or it cannot be applied to current 
class in IBM Rational Tau. For example, at-
tribute 'isAbstract' of class 'Actor' cannot be 
applied in IBM Rational Tau.

TUI0006 Composition 
'<name>' from 
class '<name>' to 
class '<name>' is 
unsupported

This error message will be printed in case 
when composition from one class to other 
class is unsupported. For example, the 'qual-
ifier' composition is unsupported in IBM Ra-
tional Tau.

TUI0008 Class '<name>' is 
unsupported

Error occurs when imported XMI specifica-
tion contains unsupported class, for example 
'Instance'.

TUI0009 Graphical ele-
ment '<name>' of 
class '<name>' 
was not drawn

This error message will be printed in case 
when a corresponding ModelElement cannot 
be found for a PresentationElement. For ex-
ample, the corresponding ModelElement is 
unsupported.

TUI0010 Diagram represen-
tation of '<name>', 
with value 
'<name>', is un-
supported

Error occurs when presentation element is 
not supported by IBM Rational Tau. For ex-
ample, a PresentationElement for stereotype.
758 IBM Rational Tau User Guide June 2009



Error Messages
TUI0016 Failed to open file 
'<name>'

File passed to XMI Importer cannot be open

TUI0017 Parse error oc-
curred during 
parsing of XMI 
file

This error message will be printed in case 
when XML parser cannot read information 
from XMI specification. For example, XML 
parser cannot find end tag.

TUI0022 Internal error Internal error occurs during importing.

Code Text Comment
June 2009 IBM Rational Tau User Guide 759



Chapter 20: UML 1.x Import
760 IBM Rational Tau User Guide June 2009



21
UML 1.x Export

This chapter describes how IBM Rational Tau supports export of model data 
in XMI format to Tools using UML 1.x.
June 2009 IBM Rational Tau User Guide 761



Chapter 21: UML 1.x Export
XMI Export

Operation principles

The UML exporter generates a file format that complies with the XMI stan-
dard. During export, both model elements and presentation elements are 
written out to the file. Diagram and symbol layout information is included in 
order to preserve the appearance of the UML model according to Unisys 
XML plug-in.

XMI export add-in

The XMI export is provided among the Add-Ins and is named XMIExport. 

Export to an XMI file

The XMI exporter is called from the IBM Rational Tau graphical user inter-
face.

• Initiate the XMI Export (Tools menu, Export Model to XMI... com-
mand). 

• Specify the XMI file to export to in the next dialog window that appears. 

When more than one project exists in the workspace, the XMI export is done 
on the selected project. Otherwise, i.e. when zero or more than one projects 
are selected, the menu choice is dimmed.

Supported XMI and tool versions

The XMI exporter supports the following:

• XMI 1.1

The XMI exporter is tested for the following target tool environment:

• Rational Rose Enterprise Edition 2003

• Rose XML Tools (UniSys XML plug-in) 1.3.6 for Rational Rose

Supported UML entities

Following is a list of tables covering IBM Rational Tau UML entities that are 
supported by the XMI exporter and shows:
762 IBM Rational Tau User Guide June 2009



XMI Export
• UML Entity
The UML entity - in IBM Rational Tau

• Export
The resulting entity in Rose if exported from IBM Rational Tau and im-
ported into Rose.

• Roundtrip
The resulting entity in IBM Rational Tau if doing an XMI roundtrip.

All other entities not mentioned in this list are not exported.

UML Diagram Export Roundtrip

Activity diagram [Same] [Same]

Class diagram [Same] [Same]

Component diagram Class diagram Class diagram

Deployment diagram Class diagram Class diagram

Package diagram Class diagram Class diagram

Sequence diagram [Same] [Same]

State machine diagram [Same] [Same]

Text diagram Class diagram 
with a note

Class diagram with a note

Use case diagram Class diagram Class diagram

General Export Roundtrip

Comment symbol Note [Same]

Annotation line Anchor [Same]

Text symbol Note Comment symbol

<Any>

Comments Documentation Nothing

Stereotype [Same] [Same]
June 2009 IBM Rational Tau User Guide 763



Chapter 21: UML 1.x Export
Links Files Nothing

Color [Same] [Same]

Font [Same] [Same]

Activity diagram Export Roundtrip

Activity symbol [Same] [Same]

• Name [Same] [Same]

Actions ‘Entry’ action Nothing

Activity Class stereo-
typed as «ac-
tivity»

Class stereotyped as «ac-
tivity»

Initial Node [Same] [Same]

Activity Final End State Activity Final

Flow Final End State Activity Final

Activity line Transition [Same]

Text Transition 
Label

[Same]

Fork/Join Synchroniza-
tion

[Same]

Decision [Same] [Same]

• Name [Same] [Same]

General Export Roundtrip
764 IBM Rational Tau User Guide June 2009



XMI Export
SendSignalSymbol Unnamed ac-
tivity with a 
‘Do/send’ ac-
tion

Auto-renamed activity 
without action

AcceptEventSymbol Unnamed ac-
tivity with a 
‘Do/receive’ 
action

Auto-renamed activity 
without action

Accept-
TimeEventSymbol

Unnamed ac-
tivity with a 
‘Do/receive’ 
action

Auto-renamed activity 
without action

Class diagram Export Roundtrip

Class [Same] [Same]

• Name [Same] [Same]

• Abstract [Same] [Same]

• Template param-
eters

Formal arguments [Same]

• Visibility Export control [Same]

Class Attribute [Same] [Same]

• Name [Same] [Same]

• Type [Same] [Same]

• Visibility Export control [Same]

• Default value Initial value [Same]

• Derived [Same] [Same]

Class Operation [Same] [Same]

• Name [Same] [Same]

• Return type [Same] [Same]

Activity diagram Export Roundtrip
June 2009 IBM Rational Tau User Guide 765



Chapter 21: UML 1.x Export
• Visibility Export control [Same]

• Raised excep-
tions

Exceptions [Same]

Class Operation Pa-
rameter

[Same] [Same]

• Name [Same] [Same]

• Type [Same] [Same]

• Default value [Same] [Same]

Required Interface Interface Class stereotyped as «inter-
face»

Realized Interface Interface Class stereotyped as «inter-
face»

Interface [Same] Class stereotyped as «inter-
face»

Timer Class stereotyped as 
«timer»

Class stereotyped as «timer»

Signal Class stereotyped as 
«signal»

[Same]

Stereotype Class stereotyped as 
«stereotype»

Class stereotyped as «stereo-
type»

Operation Class stereotyped as 
«operation»

Class stereotyped as «opera-
tion»

State machine Class stereotyped as 
«statemachine»

Class stereotyped as 
«statemachine»

Primitive/Enumera-
tion 

Class stereotyped as 
«primitive»/«enu-
meration»

Class stereotyped as «primi-
tive»/DataType

Artifact Class stereotyped as 
«artifact»

Class stereotyped as «arti-
fact»

Collaboration Class stereotyped as 
«collaboration»

Class stereotyped as «collab-
oration»

Class diagram Export Roundtrip
766 IBM Rational Tau User Guide June 2009



XMI Export
Choice Class stereotyped as 
«choice»

Class stereotyped as 
«choice»

Association line [Same] [Same]

• Name [Same] [Same]

Association role [Same] [Same]

• Name [Same] [Same]

• Visibility Export control [Same]

Constraints [Same] [Same]

Multiplicity [Same] [Same]

Aggregation Aggregate, Con-
tainment

[Same]

Owner scope Static Nothing

Generalization/Real-
ization line

[Same] [Same]

Dependency line [Same] [Same]

Extension line Dependency stereo-
typed as «extend»

Dependency stereotyped as 
«extend»

Component diagram Export Roundtrip

Component symbol Class stereotyped as 
«component»

[Same]

Class diagram Export Roundtrip
June 2009 IBM Rational Tau User Guide 767



Chapter 21: UML 1.x Export
Deployment diagram Export Roundtrip

DeploymentSpecifica-
tionSymbol

Class stereotyped as 
«deploymentSpecifi-
cation»

Class stereotyped as «de-
ploymentSpecification»

ExecutionEnviron-
mentSymbol

Class stereotyped as 
«executionEnviron-
ment»

Class stereotyped as «ex-
ecutionEnvironment»

NodeSymbol Class stereotyped as 
«node»

Class stereotyped as 
«node»

Package diagram Export Roundtrip

Package [Same] [Same]

• Name [Same] [Same]

Dependency line [Same] [Same]

Sequence diagram Export Roundtrip

Lifeline [Same] [Same]

• Name [Same] [Same]

• Type Class [Same]

Message Simple message [Same]

• Name [Same] [Same]

Method call Procedure Call 
message

Message

• Name [Same] [Same]

Method reply Return message [Same]

• Name [Same] [Same]

Timeout Timeout message Message
768 IBM Rational Tau User Guide June 2009



XMI Export
• Name [Same] [Same]

Create line Message where the 
name is suffixed by 
‘:{Create}’

Message where the name is 
suffixed by ‘:{Create}’

Interaction Class stereotyped 
as «interaction»

Class stereotyped as «inter-
action»

State machine dia-
gram

Export Roundtrip

State [Same] [Same]

• Name [Same] [Same]

Multi-state (state 
with a state list or as-
terisk state)

State with state 
name set to the 
original state text

State with state name set to 
the original state text

Transition line [Same] [Same]

Label [Same] [Same]

Decision [Same] [Same]

Decision question Name [Same]

Decision answer 
symbol

Transition Guard 
Condition

Transition Guard Condition

Start [Same] [Same]

Stop End State Return

Return End State [Same]

Flow line Transition Transition

Signal Receipt Transition Event Transition Event

Sequence diagram Export Roundtrip
June 2009 IBM Rational Tau User Guide 769



Chapter 21: UML 1.x Export
Model hierarchy

The containment hierarchy in Rational Rose is structured as shown in 
Figure 185 on page 771. 

Guard symbol Transition Guard 
Condition

Transition Guard Condition

Action symbol Transition Action Nothing

Signal sending Transition Send 
Event

Nothing

Use Case diagram Export Roundtrip

Actor [Same] [Same]

• Name [Same] [Same]

• Visibility Export control [Same]

Use Case [Same] [Same]

• Name [Same] [Same]

Performance line Association ste-
reotyped as «per-
formance»

[Same]

Dependency line [Same] Nothing

• Name [Same] Nothing

Generalization line [Same] [Same]

State machine dia-
gram

Export Roundtrip
770 IBM Rational Tau User Guide June 2009



XMI Export
Rational Rose views are defined as packages. Logical View is a hard coded 
predefined package, which is the default place where the Rational Rose XMI 
module imports model elements and diagrams.

Figure 185: The containment hierarchy
June 2009 IBM Rational Tau User Guide 771



Chapter 21: UML 1.x Export
State/Activity Implementations represent state machine specifications and 
are placed directly beneath the element for which they apply. The hierarchy 
can be infinitely deep since Packages and Classes (via Classes, Class Utili-
ties, Actors and Interfaces) can be nested. All elements can have Files and 
URLs beneath them.

As a general rule, containments in an XMI file that are not supported will be 
lost on XMI import. 

Model transformations

Some transformations take place in order to preserve as much model infor-
mation as possible. 

The table below shows:

• IBM Rational Tau entity.

• A description of the reason to move entities in exported XMI.

• Entities that are moved up in the hierarchy if contained by the IBM Ra-
tional Tau entity. 
772 IBM Rational Tau User Guide June 2009



XMI Export
IBM Rational 
Tau Description Moved Entities

Internals This has no coun-
terpart.

Class diagram, Package 
diagram, Text diagram, 
UseCase diagram, Activity, 
Actor, Artifact, Association, 
Attribute, Choice, Class, 
Collaboration, DataType, 
Interaction, Interface, 
Operation, Signal, 
StateMachine, Stereotype, 
Timer, UseCase

State Machine 
Implementation

This level is very 
restricted re-
garding the types 
of entities al-
lowed.

Activity, Actor, Artifact, 
Association, Attribute, 
Choice, Class, Collaboration, 
DataType, Interface, 
Operation, Signal, 
Stereotype, Timer, UseCase, 
Class diagram, Package 
diagram, Text diagram, Use 
Case diagram

Activity Imple-
mentation

This level is very 
restricted re-
garding the types 
of entities al-
lowed.

Actor, Artifact, Choice, 
Class, Collaboration, 
DataType, Interface, Signal, 
Stereotype, Timer, Use Case 
diagram

Interaction Im-
plementation

This has no coun-
terpart.

Activity, Actor, Artifact, 
Attribute, Choice, Class, 
Collaboration, DataType, 
Interface, Operation, Signal, 
StateMachine, Stereotype, 
Timer, UseCase, Sequence 
diagram, UseCase diagram

Nested classes State machine di-
agrams beneath 
nested classes are 
not imported.

State machine diagram
June 2009 IBM Rational Tau User Guide 773



Chapter 21: UML 1.x Export
Restrictions for XMI export to Rational Rose

There are a number of limitations in the Rational Rose XMI Import on IBM 
Rational Tau exported XMI data. The following is a list of known issues. 

Class Interface beneath 
classes are not 
imported.

Interface

Attribute Do not contain 
anything.

Artifact, Choice, Class, 
Collaboration, DataType, 
Interface, Stereotype

Choice Transformed into 
a class.

UseCase

General Features Description

Visibility options These settings cannot be transferred through XMI 
and therefore sometimes diagram elements overlap 
if they do not have the same visibility options set as 
in IBM Rational Tau. Examples of this are Class at-
tributes, operations and operation signatures. If 
they are switched off in IBM Rational Tau, but 
switched on when importing the XMI data, this 
might cause symbol overlap because of the re-
sulting difference in size of Class symbols.

Diagram types Use Case diagrams are imported as Class diagrams 
in Logical View.

Lines Lines lose their vertices on import.

Line color is not imported.

Elements Cannot import more than one instance of a symbol 
(e.g class) in the same diagram.

Notes Size is not imported.

A note gets duplicated once for each of its anchors.

IBM Rational 
Tau

Description Moved Entities
774 IBM Rational Tau User Guide June 2009



XMI Export
Activity diagram Description

Activity When an activity has both a stereotype and a sub-ac-
tivity beneath it, it does not import/display properly.

Fill color, Font and Font size are not imported.

Decision Fill color, Font and Font size are not imported.

Object Not imported.

Class diagram Description

Class Multiplicity is not imported.

A Class beneath an Interface is not imported.

Attributes and Operations are not imported for 
nested classes.

Class Attribute Static is not imported.

Interface Attributes are not imported.

Package Font, Font size and Fill color are not imported.

Association Derived is not imported.

Constraints is not imported.

Package diagram Description

Package Fill color, Font and Font size are not imported.

Sequence diagram Description

Lifeline The horizontal spacing may not show correctly in ex-
ported XMI, especially if the associated text is long.

Fill color, Font and Font size are not imported.
June 2009 IBM Rational Tau User Guide 775



Chapter 21: UML 1.x Export
Error and warning messages

Error and warning messages are given in the Output window in a tab called 
XMIExport and these messages are all navigable. 

UML entities that cannot be represented in XMI generates an error message.

Message Space is added vertically between messages on import.

Messages on the same vertical coordinates get into dif-
ferent levels on the lifeline.

Line color, Font and Font size are not imported.

Destruction Marker Not imported.

Note Does not connect Anchors to Messages on import.

State machine dia-
gram Description

State If a state exists more than once in the same diagram, 
only one symbol is imported.

Fill color, Font and Font size are not imported.

Decision Fill color, Font and Font size are not imported.

Transition line Line color, Font and Font size are not imported.

Use Case diagram Description

Actor Size is not imported.

Multiplicity is not imported

Use Case Stereotype is not imported.

Size is not imported.

Dependency Not imported if drawn between Use Cases.

Sequence diagram Description
776 IBM Rational Tau User Guide June 2009



XMI Export
There is a warning message given when UML entities are transformed or 
moved in the containment hierarchy. This is due to incapabilities of Rational 
Rose to handle such constructs,.
June 2009 IBM Rational Tau User Guide 777



Chapter 21: UML 1.x Export
778 IBM Rational Tau User Guide June 2009



22
CORBA IDL Exporter

This document describes how to export CORBA IDL from UML models.
June 2009 IBM Rational Tau User Guide 779



Chapter 22: CORBA IDL Exporter
The CORBA IDL Exporter
The CORBA IDL exporter is one of the delivered Add-Ins, and is comprised 
of several parts:

• a CORBA profile, which contains a number of stereotypes that are rele-
vant when mapping UML to CORBA IDL; this package also includes 
stereotypes that are used to control code generation options, such as file 
options and naming conventions, as well as the agents that perform the 
actual code generation

• a CCM profile, which contains a number of stereotypes that allows you 
to take the CORBA Component Model (CCM) and CORBA Implemen-
tation Framework (CIF) into account

• a CORBA package, which contains a number of predefined IDL types 
and type templates to customize the code generation and to allow the use 
of native IDL types in UML models

• a TCL script that 

– controls the contextual menus that apply to the IDL exporter

– simplifies the application of stereotypes to model elements through a 
CORBA specific menu and a CCM specific menu

Activating the CORBA IDL add-in

The add-in is called CORBAIDLGenerator, and is activated by checking the 
corresponding entry under the add-in tab in the Tools | Customize dialog.

Creating a CORBA IDL artifact

A CORBA IDL artifact is used to determine what should be exported from a 
UML model.

The easiest way to create such an artifact is to right-click on an appropriate 
model element in the model view, and select the “New CORBA IDL Arti-
fact” menu item. The menu item is only applicable when the selected model 
element is a package, class, or interface. The command is also available from 
the CORBA menu that becomes available when the CORBA IDL add-in is 
activated.
780 IBM Rational Tau User Guide June 2009



The CORBA IDL Exporter
An alternative way of creating an IDL artifact is to create a deployment dia-
gram, in which an artifact is manually marked with the stereotype 
«IDLGenerator». In addition, it is necessary to create a manifest depen-
dency to the model element(s) that are going to be exported into IDL.

Note
The IDL artifact must be saved in a file before any IDL can be generated.

The IDLGenerator stereotype

The stereotype «IDLGenerator» extends Artifact. The purpose of the ste-
reotype is to provide a number of options when exporting UML to IDL. 

• targetDir: the directory in which the exported IDL file(s) should be 
stored; if a relative path is used, the target directory is relative to the di-
rectory in which the model (.u2) file of the artifact is stored.

• fileName: the file name of the generated file (if file mapping is 
ONE_FILE); otherwise, the name of the top-most file

• fileSuffix: a suffix that is appended to all generated file names

• fileMapping: governs how model elements are mapped into files; the 
available options are ONE_FILE, MODULE_STRUCTURED, and 
MODULE_FLAT. 

• isAsyncDefault: indicates whether operations should be one-way or not 
by default; default is one-way (true). The default value can be overridden 
by applying the stereotype «CORBAOperation», and then setting the 
tagged value overrideIsDefaultAsync.

File Mappings

When the file mapping is ONE_FILE, all model elements indicated by an ar-
tifact are generated into a single IDL file adhering to the file options. 

In the case of MODULE_STRUCTURED, each package in the model that is 
marked as a «CORBAModule» is generated into a file of its own. Each package 
also corresponds directly to a directory in the file structure. In the 
MODULE_FLAT case, each package marked as a «CORBAModule» is also 
generated into a file of its own. In this case, however, all file names are man-
gled using the scoped name of the package as the file name, and placed in a 
single directory.
June 2009 IBM Rational Tau User Guide 781



Chapter 22: CORBA IDL Exporter
The file name is only applicable to the top-level file if more than one file is 
generated. In all other cases, the name of the module is used also as the file 
name.

Exporting IDL

Once an IDL artifact has been created, it is possible to export IDL. This is 
done by right-clicking on the IDL artifact, and selecting “GenerateCORBA 
IDL”. This command is also available from the CORBA menu.

Exported files are by default put in a directory of its own in the same direc-
tory as where the artifact’s .u2 file is stored. The target directory and file 
name can be modified using the options described above.

Marking model elements

Currently, only model elements that are marked using a CORBA-specific 
stereotype (see “The CORBA Profile” on page 787) are considered when 
mapping IDL. 

The easiest way to mark model elements is to select them, either in the model 
view or in a diagram, and then use the CORBA menu or the CCM menu to 
select the IDL concept that the model element represents. This will automat-
ically apply the appropriate stereotype from the CORBA or CCM profiles, 
respectively. It may be necessary to tune the settings using the property ed-
itor, such as indicating whether an operation should be one-way or not.

It is also possible to mark a model element by right-clicking on it, and se-
lecting the menu command “Stereotypes...”. The resulting dialog box only 
shows the applicable stereotypes, and you check the appropriate one.

Alternatively, as a third approach, you can select “Stereotypes...” from 
within the properties editor when the appropriate model element is selected.

Using CORBA IDL datatypes

Activating the CORBA profile gives access to a package CORBA (under Li-
braries in the model view) that contains IDL datatypes that can be used when 
modeling in UML. This also includes a number of template types, such as se-
quence and array. An exhaustive list of these types can be found in “Pre-
defined IDL types” on page 783.
782 IBM Rational Tau User Guide June 2009



Predefined IDL types
Predefined IDL types
The CORBA IDL exporter comes with a number of predefined types that can 
be used when modeling in UML. These types are then reused when exporting 
IDL. This further means that they are independent of any target programming 
language to which the exported IDL may later be mapped.

Simple types

The predefined types are:

short
long
long long
unsigned short
unsigned long
unsigned long long
float
double
long double
boolean
char
octet
wchar
string
wstring
Object
native
any
TypeCode

Template types

The following template types are defined:

sequence
array
string
wstring
fixed

sequence

The sequence template comes in two flavors: one that has an upper bound 
and one that does not. Their signatures are:

sequence<type T>
sequence<type T, const Natural index>
June 2009 IBM Rational Tau User Guide 783



Chapter 22: CORBA IDL Exporter
The following is an example of how these sequence templates might be used 
in UML:

// UML
<<CORBATypedef>> syntype Seq1 = sequence<long>;

<<CORBATypedef>> class Seq2 {
sequence<long, 5> dummy;

}

<<CORBATypedef>> syntype Seq3 = sequence<Seq1>;

array

The array template is different from how arrays work in IDL, since multidi-
mensional arrays are not directly supported, and also because the square 
brackets are not used. The signature of the array template is:

array<type T, const Natural index>

Note
To accomplish the effect of a multidimensional array, you have to use an 
array of an array, as is the case for MultiArray below. 

The following is an example of how this array template might be used in 
UML:

// UML
<<CORBATypedef>> syntype MyArr1 = array<4, long>;

<<CORBATypedef>> class MyArr2 {
array<5, char> dummy;

}

<<CORBATypedef>> syntype MyArr3 = array<6, MyArr2>;

<<CORBATypedef>> syntype MultiArray = array<3, MyArr1>;

string

The string type comes in two flavours, only one of which is a template type. 
Their signatures are:

string
string<const Natural size>

The following is an example of how the string and string template might be 
used in UML:

<<CORBATypedef>> syntype MyStr1 = string;
784 IBM Rational Tau User Guide June 2009



Predefined IDL types
<<CORBATypedef>> class MyStr2 {
string<5> dummy;

}

<<CORBAInterface>> interface I3 {
string a;
MyStr1 b;
MyStr2 c;

};

wstring

The wstring type comes in two flavours, only one of which is a template type. 
Their signatures are:

wstring
wstring<const Natural size>

The following is an example of how the wstring and wstring template might 
be used in UML:

<<CORBATypedef>> syntype MyStr1 = wstring;

<<CORBATypedef>> class MyStr2 {
wstring<5> dummy;

}

<<CORBAInterface>> interface I3 {
wstring a;
MyStr1 b;
MyStr2 c;

};

fixed

The fixed template has the following signature:

fixed<const Natural digit, const Natural scale>

The following is an example of how the fixed template might be used in 
UML:

// UML
<<CORBAInterface>> interface I5 {

fixed<7, 3> a;
};
June 2009 IBM Rational Tau User Guide 785



Chapter 22: CORBA IDL Exporter
UML predefined types

In addition, it is possible to use predefined UML types, such as Integer, Nat-
ural, and Real. Their mappings to IDL are described in “Predefined type” on 
page 807.
786 IBM Rational Tau User Guide June 2009



The CORBA Profile
The CORBA Profile
The following stereotypes are used to control the mappings when exporting 
UML to IDL. The corresponding mappings are outlined in “Mapping rules” 
on page 796. 

The stereotypes defined here comprise the ones that are available in the UML 
profile for CORBA specification from the OMG. However, they have been 
updated to take UML 2.1 into account, so there are some differences in which 
stereotypes are supported and the metaclasses that they extend.

CORBA

The stereotype «CORBA» is abstract, and is used only as a superclass to other 
stereotypes.

CORBAAttribute

The stereotype «CORBAAttribute» extends Attribute. See “Attribute” on 
page 797 for further information.

The tagged value isConstant is used to indicate that the attribute represent 
a constant value. Note that there is no need to use a utility class to represent 
module level constants, as it is allowed to put attributes directly in packages.

The fact that an attribute is readonly is represented through the metafeature 
isReadOnly, which is a property of the base metaclass Attribute.

The stereotypes on an attribute can be visualized in a diagram by dragging 
the attribute from the browser view into for example a class diagram.

CORBABoxedValue

The stereotype «CORBABoxedValue» extends Syntype and Class. 

CORBAEnum

The stereotype «CORBAEnum» extends DataType. See “Enumeration” on 
page 800 for further information.
June 2009 IBM Rational Tau User Guide 787



Chapter 22: CORBA IDL Exporter
CORBAException

The stereotype «CORBAException» extends Class. See “Exception” on page 
801 for further information.

CORBAInclude

The stereotype «CORBAInclude» extends Dependency. See “Include” on 
page 802 for further information.

CORBAInterface

The stereotype «CORBAInterface» extends Interface. See “Interface” on 
page 802 for further information. For backward compatibility reasons the 
stereotype also extends Class, but this use is not recommended despite the 
fact that the CORBA specification uses only this approach. With UML 2.1, 
the metaclass Interface provides a much more natural mapping to the 
CORBA interface.

The tagged value isLocal is used to indicate whether the interface is local 
or not. By default, interfaces are not local.

CORBAModule

The stereotype «CORBAModule» extends Package. See “Package” on page 
804 for further information.

CORBAOperation

The stereotype «CORBAOperation» extends Operation and Signal. See “Op-
eration” on page 803 and “Signal” on page 808 for further information.

It has a tagged value overrideIsDefaultAsync, which is used to override 
the default mapping for operations (which is as one-way operations).

It has another tagged value context, which carries strings that are associated 
with the operation.

The fact that an attribute is readonly is represented through the metafeature 
isReadOnly, which is a property of the base metaclass Attribute.

The stereotypes on an operation can be visualized in a diagram by dragging 
the operation from the browser view into for example a class diagram.
788 IBM Rational Tau User Guide June 2009



The CORBA Profile
CORBASequence

The stereotype «CORBASequence» extends Class. See “Sequence” on page 
808 for further information.

CORBAStruct

The stereotype «CORBAStruct» extends Class. See “Struct” on page 808 for 
further information.

CORBATruncatable

The stereotype «CORBATruncatable» extends Generalization.

CORBATypedef

The stereotype «CORBATypedef» extends Syntype, Class, DataType, and In-
terface. See “Syntype” on page 809 for further information.

CORBAUnion

The stereotype «CORBAUnion» extends Class. See “Union” on page 810 for 
further information. 

It has a tagged value isSimple, which is used to declare simple unions with 
a discriminator automatically set to the type long, and where the case labels 
are set to 0, 1, 2, etc. No default case can be defined in this mode.

Related stereotypes are case and discriminator.

CORBAValue

The stereotype «CORBAValue» extends Interface.

The tagged value isCustom is used to indicate whether the value uses 
custom marshalling or not. See “Value” on page 810 for further information. 

CORBAValueFactory

The stereotype «CORBAValueFactory» extends Operation.
June 2009 IBM Rational Tau User Guide 789



Chapter 22: CORBA IDL Exporter
case

The stereotype «case» extends Attribute. A case can only be used on classes 
that are marked «CORBAUnion».

The stereotype has a tagged value label that is used to express the condition 
that is to be used to select (“switch”) the case.

It also has a tagged value isDefault that is used to indicate that the case is 
the default one. If this value is true, the case label is ignored.

A union can have at most one case that have isDefault set to true.

discriminator

The stereotype «discriminator» extends Attribute. A discriminator can 
only be used on classes that are marked «CORBAUnion», and each such union 
can have only one discriminator.

IDLFile

The stereotype «IDLFile» extends Artifact. See “Include” on page 802 for 
further information.

It has a tagged value file, which is used to indicate the actual IDL file that is 
represented by the artifact.

IDLGenerator

The stereotype «IDLGenerator» extends Artifact. See “The IDLGenerator 
stereotype” on page 781 for further information.

Extraneous stereotypes

The following stereotypes are defined in the CORBA profile specification, 
but not supported by the IDL exporter. Either they are defined as abstract in 
the CORBA profile specification (in which case they have no practical pur-
pose for the exporter), or they are replaced by other stereotypes or constructs 
as outlined previously.

• CORBAAnonymousArray (see Array template)

• CORBAArray (see Array template)

• CORBAAnonymousSequence (see Sequence template)
790 IBM Rational Tau User Guide June 2009



The CCM Profile
• CORBAConstant (see CORBAAttribute)

• CORBAConstants (see CORBAAttribute)

• CORBAConstructedType (abstract)

• CORBACustomValue (see CORBAValue)

• CORBAUserDefinedType (abstract)

• CORBAIndexedType (abstract)

• CORBAObjectType (abstract)

• CORBAStructType (abstract)

• CORBAStructuredType (abstract)

• CORBAUserDefinedType (abstract)

• CORBAValueSupports (implicit through generalizations between COR-
BAValues and CORBAInterfaces)

• CORBAWrapper (abstract)

• oneway (see CORBAOperation)

• readonly (see CORBAOperation and CORBAAttribute)

• readonlyEnd (redundant;)

• switch (see discriminator)

• switchEnd (redundant)

The CCM Profile
The following stereotypes are used to control the mappings when exporting 
UML to IDL. The corresponding mappings are outlined in “Mapping rules” 
on page 796. 

The stereotypes defined here comprise the ones that are available in the UML 
profile for CCM specification from the OMG. However, they have been up-
dated to take UML 2.1 into account, so there are some differences in which 
stereotypes are supported and the metaclasses that they extend.

Supported stereotypes

CORBAArtifact

The stereotype «CORBAArtifact» extends Class. See “Artifact” on page 
796 for further information.
June 2009 IBM Rational Tau User Guide 791



Chapter 22: CORBA IDL Exporter
CORBAComponent

The stereotype «CORBAComponent» extends Class. See “Component” on 
page 798 for further information.

CORBAComponentImpl

The stereotype «CORBAComponentImpl» extends Class. See “Component” 
on page 798 for further information.

The stereotype has a tagged value category which is used to indicate what 
kind of component is represented; the available literals of the enumeration 
are: entity, process, service, or session. 

The stereotype has another tagged value composite, which is used to indi-
cate the name of the enclosing composition. 

CORBAEvent

The stereotype «CORBAEvent» extends Interface. See “Event” on page 801 
for further information. 

CORBAEventSink

The stereotype «CORBAEventSink» extends Port. See “Port” on page 805 for 
further information.

This stereotype replaces «CORBAConsumes» from the CCM specification, 
since the port concept provides a more natural mapping.

CORBAEventSource

The stereotype «CORBAEventSource» extends Port. It has a tagged value 
sourceKind, which is an enumeration with the allowed literals Emitter or 
Publisher. See “Port” on page 805 for further information.

This stereotype replaces «CORBAPublishes» and «CORBAEmits» from the 
CCM specification, since the port concept provides a more natural mapping.

CORBAFacet

The stereotype «CORBAFacet» extends Port. See “Port” on page 805 for fur-
ther information.
792 IBM Rational Tau User Guide June 2009



The CCM Profile
This stereotype replaces «CORBAProvides» from the CCM specification, 
since the port concept provides a more natural mapping.

CORBAFactory

The stereotype «CORBAFactory» extends Operation. See “Home” on page 
801 for further information.

CORBAFinder

The stereotype «CORBAFinder» extends Operation. See “Home” on page 
801 for further information.

CORBAHome

The stereotype «CORBAHome» is a special kind of «CORBAInterface». See 
“Home” on page 801 for further information.

CORBAHomeImpl

The stereotype «CORBAHomeImpl» extends Class. See “Home” on page 801 
for further information.

CORBAImplements

The stereotype «CORBAImplements» extends Dependency. See “Imple-
ments” on page 802 for further information.

In the CCM specification, this stereotype extends Association, but the meta-
class Dependency carries much less overhead.

CORBAIsProvidedBy

The stereotype «CORBAIsProvidedBy» extends Dependency.

CORBAManages

The stereotype «CORBAManages» extends Dependency. See “Manages” on 
page 803 for further information.

In the CCM specification, this stereotype extends Association, but the meta-
class Dependency carries much less overhead.
June 2009 IBM Rational Tau User Guide 793



Chapter 22: CORBA IDL Exporter
CORBAPrimaryKey

The stereotype «CORBAPrimaryKey» extends Attribute.

CORBAReceptacle

The stereotype «CORBAReceptacle» extends Port. See “Port” on page 805 
for further information.

The stereotype has a tagged value isMultiple, which is used to indiate 
whether multiple connections are allowed or not.

This stereotype replaces «CORBAUses» from the CCM specification, since 
the port concept provides a more natural mapping.

CORBASegment

The stereotype «CORBASegment» extends Class. See “Segment” on page 807 
for further information.

The stereotype has a tagged value features that is used to indicate the fea-
tures that are supported by the segment.

It also has a tagged value isSerialized to indicate whether the segment is 
serialized or not.

CORBASupports

The stereotype «CORBASupports» extends Generalization.

Extraneous stereotypes

The following stereotypes defined in the CCM profile specification, but are 
not supported by the IDL exporter. Either they are defined as abstract in the 
CCM profile specification (in which case they have no practical purpose for 
the exporter), or they are replaced by other stereotypes as outlined previ-
ously.

• CORBAConsumes (see CORBAEventSink)

• CORBAEmits (see CORBAEventSource)

• CORBAEventPort (abstract)

• CORBAProvides (see CORBAFacet)

• CORBAPublishes (see CORBAEventSource
794 IBM Rational Tau User Guide June 2009



The CCM Profile
• CORBAUses (see CORBAReceptacle)
June 2009 IBM Rational Tau User Guide 795



Chapter 22: CORBA IDL Exporter
Mapping rules
This section describes how the different UML constructs are mapped when 
exporting them to IDL.

In most cases, it is required that a UML construct is marked using a relevant 
CORBA stereotype for any IDL to be generated. 

Note
It is not a good idea to apply several CORBA stereotypes to the same model 
element, as only one of them will be considered (arbitrarily) when gener-
ating IDL. 

Artifact

A class marked «CORBAArtifact» in UML is mapped to an artifact of a seg-
ment in IDL. No IDL is generated for classes that are not related to segments 
through a «CORBAIsProvided» dependency. Also see “Segment” on page 
807. An example is shown in “Component” on page 798.

Association

Associations are not directly mapped. Instead, each navigable association 
end is mapped as an IDL attribute, case, or field, depending on the owner. If 
the association end has a multiplicity, this is mapped as described in “Multi-
plicity” on page 803.

It is in most cases sufficient to mark the owning classifier for the association 
ends to exported. A notable exception is a union’s case and discriminators, 
as described in “Union” on page 810. 

The UML model in Figure 186 on page 796 is mapped to the following IDL:

Figure 186
796 IBM Rational Tau User Guide June 2009



Mapping rules
interface I2 {
};

interface I1 {
attribute I2 myI2;
attribute sequence<I2> myOtherI2;

};

Attribute

An attribute marked «CORBAAttribute» in UML is mapped to an attribute 
in IDL, unless it is constant (see “Constant” on page 799). It it normally not 
necessary to use the stereotype, since all attributes of a marked class will be 
exported.

The following snippet of UML:

<<CORBAInterface>> class C1 {
long a;
char [0..1] b;
wchar [*] c;
boolean d;

}

<<CORBAStruct>> class S1 {
string e;
‘unsigned long’ [8] f;
C1 [1] g;

}

is mapped to the following IDL:

interface C1 {
attribute long a;
attribute sequence<char, 1> b;
attribute sequence<wchar> c;
attribute boolean d;

};

struct S1 {
string e;
sequence<unsigned long, 8> f;
C1 g;

};

Restrictions

Unless they are constant, attributes may only be defined as part of classes or 
interfaces to be considered for IDL export. Attributes that are defined in 
packages are thus not mapped to IDL.
June 2009 IBM Rational Tau User Guide 797



Chapter 22: CORBA IDL Exporter
Class

A class marked «CORBAInterface» in UML is mapped to an interface in 
IDL. An example of this is shown in “Attribute” on page 797.

A class marked «CORBAStruct» in UML is mapped to a struct in IDL. Also 
see “Struct” on page 808.

A class marked «CORBAUnion» in UML is mapped to a union in IDL. Also 
see “Union” on page 810.

A class marked «CORBAException» in UML is mapped to an exception in 
IDL. Also see “Exception” on page 801.

A class marked «CORBATypedef» in UML is mapped to an exception in IDL. 
Also see “Type definition” on page 809.

Restrictions

Classes may only be defined as part of packages to be considered for IDL ex-
port. Classes that are declared inline are thus not taken into account.

Comment

Comments that are attached to model elements that are exported are turned 
into IDL comments (preceded by ‘//’). Comments can either be written in 
comment symbols or in the property editor field intended for comments.

Component

A class marked «CORBAComponent» in UML is mapped to a component in 
IDL. Similarly, a class marked «CORBAComponentImpl» in UML is mapped 
to a component composition in IDL, which contains a reference to its man-
aging home implementation. A dependency marked «CORBAComponent» 
from the component implementation to a component in UML is mapped to a 
an implements relationship from the composite component to the corre-
sponding component in IDL.

If the component implementation has parts, and those parts are typed by a 
class that is marked «CORBASegment» in UML, then the composite compo-
nent will show those segments in IDL (together with their artifacts).
798 IBM Rational Tau User Guide June 2009



Mapping rules
The example shown in Figure 187 on page 799 is mapped to the following 
IDL:

composite entity PhilosopherImpl {
home executor PhilosopherHomeImpl {

implements PhilosopherHome;
manages PhilosopherEntityImpl {

segment Segment1 {
provides (Artifact1);

};
};

};
};

Constant

An attribute marked «CORBAAttribute» in UML that is also constant is 
mapped to a constant in IDL. 

Note
Constants used as multiplicities are evaluated to their integer values when 
mapped to IDL.

Figure 187
June 2009 IBM Rational Tau User Guide 799



Chapter 22: CORBA IDL Exporter
The following snippet of UML:

<<CORBAModule>> package M5 {
<<CORBAAttribute(.isConstant=true.)>>
const Integer nval = 5;

<<CORBAAttribute(.isConstant=true.)>>
const Integer mval = nval;

<<CORBAInterface>> class C1 {
<<CORBAAttribute(.isConstant = true.)>> 
const Real cval = 22.7;

long [nval] x;
}

}

is mapped to the following IDL:

module M5 {
const Integer nval = 5;
const Integer mval = nval;

interface C1 {
const double cval = 22.7;
attribute sequence<long, 5> x;

};
};

Note
Constant expressions are not evaluated, which means that only integer lit-
erals and other constants are currently supported. 

Enumeration

An enumeration marked «CORBAEnum» in UML is mapped to an enumeration 
in IDL.

The following snippet of UML:

<<CORBAEnum>> enum Color {
red,
green,
blue

}

is mapped to the following IDL:

enum Color {
red,
green,
blue

};
800 IBM Rational Tau User Guide June 2009



Mapping rules
Event

An interface marked as «CORBAEvent» in UML is mapped to an event type 
in IDL. 

Exception

A class marked «CORBAException» in UML is mapped to an exception in 
IDL.

The following snippet of UML:

<<CORBAException>> class Error {
string e;

}

<<CORBAInterface>> class C1 {
<<CORBAOperation(.overrideIsDefaultAsync = true.)>>
void op() throw Error();

}

is mapped to the following IDL:

exception Error {
e string;

};

interface C1 {
void op() raises (Error);

};

Home

An interface marked as «CORBAHome» in UML is mapped to a home declara-
tion in IDL. The home interface can have a primary key, which in UML is 
represented through a dependency or association marked 
«CORBAPrimaryKey»; the supplier of the dependency must be a value type.

An example is shown in “Component” on page 798. An operation marked as 
«CORBAFactory» in UML is mapped to a factory operation in IDL. Simi-
larly, an operation marked as «CORBAFinder» in UML is mapped to a finder 
operation in IDL.

The following snippet of UML:

<<CORBAHome>> interface Ifc {
<<CORBAFactory>> void myFactory(in boolean b);
<<CORBAFinder>> void myFinder(in long a);

}

is mapped to the following IDL:
June 2009 IBM Rational Tau User Guide 801



Chapter 22: CORBA IDL Exporter
home Ifc {
factory myFactory(in boolean b);
finder myFinder(in long a);

};

Include

When generating IDL, the include statements that are required when multiple 
files are generated from an artifact are automatically created. However, 
sometimes it is necessary to refer to already existing IDL files, and rather 
than to add those manually in the generated files they can be represented in 
the model. For this purpose, the stereotype «CORBAInclude» is provided. 

Such a dependency from an artifact marked «IDLGenerator» to an artifact 
marked «IDLFile» in UML is mapped to an include statement of the indi-
cated file.

Important!
The «CORBAInclude» stereotype is taken into account only when it is used 
between properly marked artifacts. In particular, it is not a replacement for 
the normal access or import dependencies between packages.

Implements

A dependency marked «CORBAImplements» in UML is mapped to an imple-
mentats statement in IDL. The dependency always goes from a component 
implementation to its component, or from a home implementation to its 
home interface.

An example is shown in “Component” on page 798.

Interface

An interface marked «CORBAInterface» in UML is mapped to an interface 
in IDL. 

Restrictions

Interfaces may only be defined as part of packages to be considered for IDL 
export.
802 IBM Rational Tau User Guide June 2009



Mapping rules
Manages

A dependency marked «CORBAManages» in UML is mapped to a manages 
statement in IDL. The dependency always goes from a home implementation 
to a component implementation, or from a home interface to a component.

An example is shown in “Component” on page 798.

Multiplicity

Multiplicities may consist of multiple ranges, but must only be made up of 
integer literals or constants. The multiplicities are evaluated into a single 
range that includes all legal values. All multiplicities are mapped into se-
quences, which are either bound or unbound, with the exception of those that 
have a multiplicity of exactly 1 (one).

In the case of multiple ranges, the upper bound equates to the maximum 
value present in the ranges. 

Operation

An operation marked «CORBAOperation» in UML is mapped depending on 
its tagged values. By default, an operation is mapped to a one-way operation 
in IDL. By setting the stereotype overrideIsDefaultAsync to true, the 
IDL operation will be generated as an ordinary operation in IDL.

The following snippet of UML:

<<CORBAInterface>> interface I1 {

UML IDL

long [1] long

long [0..1] sequence<long, 1>

long [0..*] sequence<long>

long [1..*] sequence<long>

long [6..*] sequence<long>

long [3..8] sequence<long, 8>

long [7..7] sequence<long, 7>

long [1, 7..9, 3, 5] sequence<long, 9>
June 2009 IBM Rational Tau User Guide 803



Chapter 22: CORBA IDL Exporter
signal op1;

<<CORBAOperation(.overrideIsDefaultAsync = true.)>>
long op2();

void op3(in long a);

<<CORBAOperation(.overrideIsDefaultAsync = true.)>>
string<5> op4(inout char b, in long c);

}

is mapped to the following IDL:

interface I1 {
oneway void op1();
long op2();
oneway void op3(in long a);
string<5> op4(inout char b, in long c);

};

Restrictions

If an operation is mapped to a one-way operation only in-parameters are al-
lowed.

Operations may only be defined as part of classes or interfaces to be consid-
ered for IDL export.

Package

A package marked «CORBAModule» in UML is mapped to a module in IDL.

The following snippet of UML:

<<CORBAModule>> package P1 {
<<CORBAInterface>> interface I2 {

long a;
    }
}

is mapped to the following IDL:

module P1 {
interface I2 {

attribute long a;
};

};

Parameter

Parameters need not be marked using a CORBA stereotype, because they are 
always associated with their owning operations or signals.
804 IBM Rational Tau User Guide June 2009



Mapping rules
The direction kind of a parameter in UML correspond directly to the same 
direction kind in IDL. 

Port

There are several different stereotypes that make it possible to map ports into 
IDL:

• A port marked «CORBAFacet» is mapped to a provides.

• A port marked «CORBAReceptacle» is mapped to a uses.

• A port marked «CORBAEventSink» is mapped to a consumes.

• A port marked «CORBAEventSource» is mapped to an emits or pub-
lishes.

UML IDL

in in

inout inout

out out

return return
June 2009 IBM Rational Tau User Guide 805



Chapter 22: CORBA IDL Exporter
To make the mappings more visually distinct, it is possible to apply icons to 
the ports, as is shown in Figure 188 on page 806. This is done through the 
icon stereotype. 

This example is mapped to the following IDL:

interface i1 { };
interface i2 { };
interface i3 { };
eventtype e1 { };
eventtype e2 { };
eventtype e3 { };

component MyComponent1 {
provides i1 fct;
uses i2 rcptcl;
uses multiple i3 mrcptcl;

Figure 188
806 IBM Rational Tau User Guide June 2009



Mapping rules
consumes e1 snk;
emits e2 emtsrc;
publishes e3 pblshsrc;

};

Predefined type

The simple predefined IDL types (see “Predefined IDL types” on page 783) 
are mapped as is.

The template types (see “Predefined IDL types” on page 783) are mapped to 
the corresponding IDL types.

You can also use the predefined UML data types, which are then mapped ac-
cording to the following table: 

Restrictions

The tagged value isOneway must be set to true when the stereotype 
«CORBAOperation» is applied to signals.

Segment

A class marked «CORBASegment» in UML is mapped to a segment of a com-
ponent implementation in IDL. No IDL is generated for classes that are not 
parts of component implementations. Also see “Artifact” on page 796. An 
example is shown in “Component” on page 798.

UML IDL

Natural unsigned long

Integer long

Boolean boolean

Character char

Real double

Charstring string
June 2009 IBM Rational Tau User Guide 807



Chapter 22: CORBA IDL Exporter
Sequence

A class marked «CORBASequence» in UML is mapped to a sequence. The 
type of the sequence is specified using an attribute. The name of the attribute 
is irrelevant; only the type is taken into account. This is an alternative to 
using the sequence template type.

The following snippet of UML:

<<CORBASequence>> class MySeq {
string dummy;

}

<<CORBASequence>> class MyOtherSeq {
MySeq x;

}

<<CORBASequence>> class MyThirdSeq {
MyOtherSeq y;

}

is mapped to the following IDL:

typedef sequence<string> MySeq;

typedef sequence<MySeq> MyOtherSeq;

typedef sequence<MyOtherSeq> MyThirdSeq;

Signal

A signal marked «CORBAOperation» in UML is mapped to a one-way oper-
ation. See “Operation” on page 803 for an example.

Note
This results in the same mapping as a UML operation that is marked 
«CORBAOperation», where the tagged value isOneway is set to true and 
only in-parameters are used.

Restrictions

Signals may only be defined as part of interfaces to be considered for IDL 
export.

Struct

A class marked «CORBAStruct» in UML is mapped to a struct in IDL. See 
“Attribute” on page 797 for an example.
808 IBM Rational Tau User Guide June 2009



Mapping rules
Syntype

A syntype marked «CORBATypedef» in UML is mapped to a typedef in IDL. 
This is an alternative to using a type definition.

The following snippet of UML:

<<CORBATypedef>> syntype MyOtherType = string;
<<CORBATypedef>> syntype SeqLong = sequence<long>;

is mapped to the following IDL:

typedef string MyOtherType;
typedef sequence<long> SeqLong;

Type definition

A class marked «CORBATypedef» in UML is mapped to a typedef in IDL. 
This is an alternative to using a syntype.

The following snippet of UML:

<<CORBATypedef>> class MyType {
long dummy;

}

is mapped to the following IDL:

typedef long MyType;

It is also possible to use a generalization to define a type definition. However, 
the generalization can only be between elements of the same kinds, such as 
two data types, two interfaces, or two classes.

The following snippet of UML:

<<CORBATypedef>> datatype MyBool : boolean {
}

is mapped to the following IDL:

typedef boolean MyBool;

Important!
Rather than using template types such as sequences and arrays anony-
mously for attributes and parameters (in the form attr: 
sequence<long>), it is better to define type definitions of them, and then 
use those instead (e.g. attr: SeqLong).
June 2009 IBM Rational Tau User Guide 809



Chapter 22: CORBA IDL Exporter
Union

A class marked «CORBAUnion» in UML is mapped to a union in IDL. The 
type of an attribute marked «discriminator» is mapped to the union dis-
criminator. The name of the attribute marked as discriminator is ignored. The 
tagged value label of attributes marked «case» is mapped to a case label for 
the union member.

The following snippet of UML:

<<CORBAUnion (.isSimple = true.)>> class U1 {
long a;
char b;
string c;

}

<<CORBAUnion>> class U2 {
<<discriminator>> Color d;
<<‘case’(.label = "green".)>> long e;
<<‘case’(.label = "blue".)>> boolean f;
<<‘case’(.isDefault = true.)>> string g;

}

is mapped to the following IDL:

union U1 switch (long) {
case 0: long a;
case 1: char b;
case 2: string c;

};

union U2 switch (Color) {
case green: e long;
case blue: f boolean:
default: g string;

};

Restrictions

Only attributes of the class that are marked «discriminator» or «case» are 
taken into account when exporting IDL, unless the union is marked as 
simple, in which case discriminators and cases are ignored.

Value

An interface marked as «CORBAValue» in UML is mapped to a value type in 
IDL. 
810 IBM Rational Tau User Guide June 2009



Known restrictions
Known restrictions

Anonymous type

Anonymous template types may not work with all IDL compilers.

Value types

The IDL Code Generator implements a large subset of the UML profile for 
CORBA, but not all of it. Specifically, value types are currently not sup-
ported by the exporter. 

As the OMG specification is based on UML 1.X, the implementation has 
been adapted to be more suitable for UML 2.1. 

C++ support

The support for CORBA IDL does not extend to generation of for example 
C++ that is integrated with ORBs, nor does it include an importer of CORBA 
IDL.
June 2009 IBM Rational Tau User Guide 811



Chapter 22: CORBA IDL Exporter
812 IBM Rational Tau User Guide June 2009



23
Import of MSVS Solution files

This chapter describes how to import Visual Studio Solution files (.sln files) 
into Tau to visualize component dependencies.
June 2009 IBM Rational Tau User Guide 813



Chapter 23: Import of MSVS Solution files
Overview
The MSVS Solution Importer is used to import Visual Studio (MSVS) Solu-
tion files into Tau. Once imported, the components that are generated by the 
solution and the dependencies between them can be viewed and browsed 
graphically using various UML diagrams. A component is created in Tau 
corresponding to one .vcproj file (MSVS project file) in the solution.

The default setting of the importer is to create a one-to-one mapping between 
a component and a .vcproj file, so the generated graphs can also be used to 
see the dependencies between .vcproj files. It is also possible to generate ar-
tifacts that represent import libraries. This option makes it possible to see all 
generated components for the Solution. One .vcproj file then results into two 
artifacts - one that represents the main output of the generation and one that 
represents its corresponding "import" library.
814 IBM Rational Tau User Guide June 2009



Getting started
Getting started
To import a MSVS Solution file:

• Start IBM Rational Tau and either create a new project or use an existing 
project.

• Start the Import Wizard by selecting File/Import...

• Select Import MSVS Solution and click OK

• Click your way through the MSVS Solution Import Wizard.

Note
Please note that the only version of Visual Studio that is supported by the 
MSVS Solution importer is Visual Studio 2008.
June 2009 IBM Rational Tau User Guide 815



Chapter 23: Import of MSVS Solution files
MSVS Solution Import Wizard
This section describes the MSVS Solution import wizard in detail.

The first step of MSVS Solution import wizard

The first step of the import process is to specify what Solution file to import, 
what configuration and platform to use and specify additional import op-
tions.

• Initially the Browse button must be selected and a Solution file chosen. 
When that is done the importer wizard will read the Solution file and will 
after that show available configurations and platforms for that Solution.

• Select a Configuration and a Platform.

• As an optional step, select or deselect any of the options described below.

• Select Import.

Figure 189: The first step of MSVS Solution Import wizard
816 IBM Rational Tau User Guide June 2009



MSVS Solution Import Wizard
If the Generate artifacts for external libraries option is unchecked, no ar-
tifacts and dependencies to these artifacts are generated for libraries referred 
to in the vcproj files but not generated by any of the vcproj files in the Solu-
tion. This could be Visual Studio libraries, Windows DLLs or other external 
components used by the vcproj files in the Solution.

If the Generate artifacts for “import“ libraries is checked and a vcproj file 
has specified a library in the Import Library option in the Linker -> Ad-
vanced section of the vcproj file, an artifact representing that library and de-
pendencies to that artifact are generated.

If the Generate dependencies overview diagram for each project option 
is unchecked, only one diagram is generated. That diagram will show all ar-
tifacts and their dependencies. If the option is set, the importer will generate 
one diagram for each vcproj file showing the components and its dependen-
cies for that particular project.

In vcproj files it is required to specify all dependencies needed to build the 
specified component, so also indirect dependencies are necessary to have in 
the vcproj file. Importing a Solution file can generate a very complex over-
view diagram, showing all indirect dependencies. The Filer indirect depen-
dencies option optimizes the dependency graph and will not generate the in-
direct dependencies. Unchecking this option will show all dependencies 
specified in the vcproj file.

The MSVS Solution importer requires that you have Visual Studio installed, 
because the importer uses Visual Studio to extract the information from the 
Solution and vcproj files. If the Verbose mode option is checked, a detailed 
description of what is done during import is in the importer log. 

The second step of MSVS Solution import wizard

The second step in the import wizard is actually only a progress page 
showing the current status of the import. As soon as you get to this step, the 
importer starts to communicate with Visual Studio to extract information 
from the Solution and vcproj files.

During import it is possible to abort the import by selecting Cancel. Se-
lecting New Import will show the first step of the import wizard again and 
a new import can take place

Pressing Finish will close the import wizard.
June 2009 IBM Rational Tau User Guide 817



Chapter 23: Import of MSVS Solution files
Result of import

The MSVS Solution importer will generate a package with a <<MSVSSolu-
tion>> stereotype set. This stereotype has the same tagged values as the op-
tions in the first step of the importer wizard.

All artifacts are placed inside the package. Neither the package nor the enti-
ties in the package are saved in a file automatically, that has to be done by 
the user. To do this, right-click on the top-level package and select "Save in 
New File...", enter a valid file name and press OK.
818 IBM Rational Tau User Guide June 2009



Re-import of a Solution
Re-import of a Solution
Right clicking a package that is the result of a MSVS Solution import (having 
the <<MSVSSolution>> stereotype set) enables the context menu option Up-
date model from Visual Studio solution. Selecting this option will redo the 
import and everything inside that package will be removed and replaced with 
the content of the new import.
June 2009 IBM Rational Tau User Guide 819



Chapter 23: Import of MSVS Solution files
820 IBM Rational Tau User Guide June 2009



24
File/Folder Importer

This chapter describes how file system entities (files and folders) can be im-
ported into Tau to obtain a model representation of them. The File/Folder im-
porter supports exensibility modules which can be used for processing im-
ported files/folders in order to extend their default model representation.
June 2009 IBM Rational Tau User Guide 821



Chapter 24: File/Folder Importer
Overview
The File/Folder importer is a tool for importing files and folders into a UML 
representation. In its basic form the resulting model consists of file artifacts 
(representing imported files) and packages (representing imported folders). 

The importer also supports the processing of imported files and folders by 
using domain specific extension modules. An extension module can for ex-
ample analyze imported files of certain kinds and create dependencies be-
tween the corresponding file artifacts in order to visualize some aspects of 
the file contents. It is possible to add custom extension modules to be used 
with the importer.

Getting Started

You access the File/Folder importer by using the Import Wizard:

• Create a new project or use an existing project.

• Start the Import Wizard by selecting File/Import...

• Select Import Files/Folders and click OK

• Click your way through the File/Folder Import Wizard.
822 IBM Rational Tau User Guide June 2009



File/Folder Import Wizard
File/Folder Import Wizard
This chapter describes the File/Folder import wizard in detail.

The First Step of the File/Folder Import Wizard

The first step of the import process is to specify which files and/or folders to 
import from the file system.

• Use the Add files... button to open a standard dialog for selecting files 
from the file system. The dialog allows multiple files to be selected.

• Use the Add folder... button to open a standard dialog for selecting a 
folder from the file system.

• Double-click in the white area to directly type the path of the file or folder 
to import. This can be useful if you want to use wildcards in the path 
(such as C:\docs\*.txt).

• Select an item in the list and press the Delete button in order to remove 
an entry from the list.

• Use the Up or Down buttons for moving items up or down in the list. The 
order in the list defines the order in which the paths will be imported.

Figure 190: The first step of the File/Folder Import wizard
June 2009 IBM Rational Tau User Guide 823



Chapter 24: File/Folder Importer
Paths in the list may contain URNs. They may also be relative. A relative 
path is interpreted against the location of the project file.

When you have completed the list with files and folders to import, proceed 
to the next wizard page by pressing Next.

The Second Step of the File/Folder Import Wizard

The second step in the import wizard presents a list of available extension 
modules. See Built-in Extension Modules for a description of those exten-
sion modules that are shipped with IBM Rational Tau.

You may select one of these extension modules to process imported files and 
folders. If the selected extension module has some options these can be ed-
ited by pressing the Options... button.

Pressing Finish will close the import wizard and perform the import.

Result of Import

The File/Folder importer places generated file artifacts and packages in a 
top-level package called Imported Files/Folders<index>, where 
<index> is an index to make the package name unique.

Figure 191: The second step of the File/Folder Import wizard
824 IBM Rational Tau User Guide June 2009



File/Folder Import Wizard
After the import you may use diagram generators (see Generate Diagram) in 
order to visualize imported elements including additional information built 
by the selected extension module.

Hint
A file artifact representing a text file can be double-clicked in IBM Rational 
Tau in order to open the file in the text editor.

Reimport

It is possible to perform a reimport of the files/folders by following these 
steps:

• Select the package resulting from the import in the Model View.

• Right-click and select the command Update Model for Files/Folders in 
the context menu.

Options selected in the File/Folder import wizard are stored as tagged values 
on the package created by the importer. The Properties Editor may be used 
to edit these options prior to performing the reimport command, in case you 
want to change any of the options.
June 2009 IBM Rational Tau User Guide 825



Chapter 24: File/Folder Importer
Built-in Extension Modules
This chapter describes the extension modules for the Files/Folder importer 
that are shipped with IBM Rational Tau. See Adding Extension Modules for 
the File/Folder Importer for information about adding additional custom ex-
tension modules.

C/C++ Include Analysis

This extension module performs an analysis of #include directives within 
imported C/C++ header files (files with suffix .h). Each #include directive 
is mapped to an <<include>> dependency between the file artifact that rep-
resents the including file, and the file artifact that represents the included file.

Use the includePath option (see Options) to define the paths where to look 
for files that are included using a relative path.

Generating a Dependency Diagram

In order to visualize the include dependencies in a diagram a diagram gener-
ator may be used after the import:

• Select the package created by the File/Folder importer in the Model 
View.

• Right-click and select Generate Diagram / Generate Dependency 
View for Contained Definitions.

The resulting class diagram will show the file artifacts and their include de-
pendencies.

Options

The C/C++ Include Analysis extension module supports the following op-
tions:

includePath

A list of paths of where to look for included files. These paths are typically 
the same as is used with a C/C++ preprocessor when preprocessing the files.
826 IBM Rational Tau User Guide June 2009



UML to Applications

The chapters under UML to Applications describe how to build applications 
based on UML models. The information in this section is common for all 
UML projects using the supplied code generators. 
June 2009 IBM Rational Tau User Guide 827



Chapter : 
828 IBM Rational Tau User Guide June 2009



26
Building and Code Generation 

Overview and Examples

In this chapter the following information is available:

• A user guide to building applications from UML models with the C, C++ 
and Java code generators.

• An overview of the build and code generation process in IBM Rational 
Tau, with emphasis on the C Code Generator and AgileC Code Gener-
ator.

• An introduction into how to use UML composite structure diagrams with 
a special focus on the support provided in the C Advanced and AgileC 
Code Generator. The part-whole relationships and how to use these con-
cepts together with dynamic creation of instances.

• The CPtr type which is intended to provide features similar to a low-level 
pointer type in UML modeling. It is intended mainly for UML applica-
tions that interface with manually coded C or C++ components. 

• The threaded integrations with Real-time operating systems. 

• Examples of “C” applications generated with IBM Rational Tau, illus-
trating how to interface the generated code with the environment and 
how to deploy it to target.
June 2009 IBM Rational Tau User Guide 829



Chapter 26: Building and Code Generation Overview and Examples
See also

“C++ Support in IBM Rational Tau” on page 1513.

Chapter 42, Java Support.

Note
In order to run a generated application on Windows Vista, you may have to 
have administrator privileges and run the application with elevated privi-
leges.
830 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
Building Applications with IBM Rational Tau

General

The input to the build process from a UML model to an executing application 
consists of the following:

• The UML model itself.

• Build and code generation settings described in Using Build Artifacts.

– Several build artifacts can be defined for each model.

• Configuration, allowing a group of build artifacts to be processed in one 
build. 

• External (user provided) code, definitions and libraries that should be in-
cluded in the build process to be compiled and linked with the generated 
code.

Building in Interactive or Batch Mode

Building can be done either from the IBM Rational Tau graphical user inter-
face, or in batch mode from the command line prompt. 

See also

“Interactive Build Interface” on page 930 

“Batch Build Interface” on page 943. 

Using Build Artifacts

A Build Artifact is an artifact in the UML model, with a build stereotype at-
tached (i.e. «build» or any of its children), and holding properties dedicated 
to the build process. Build artifacts can be placed anywhere a class is allowed 
to be placed, and are not subject to the normal scope rules regarding the root 
object it refers to. 

A build artifact contains the following information:

• Build Root. A build root defines an element in the UML model delim-
iting the scope of the build. 
June 2009 IBM Rational Tau User Guide 831



Chapter 26: Building and Code Generation Overview and Examples
• Build Type. A build type defines which code generator to use for the 
build. 

• Build Settings. Build settings define settings to use by the code generator. 
These settings can be specific for a particular code generator, or generic.

• Target Directory, specifying where to put the files that are produced by 
the tools invoked by the build.

• Error Limit. If the number of errors associated with a build exceeds this 
limit, the build is aborted.

Adding a build artifact

Adding a build artifact to the model is easiest done in the following way:

1. Make sure the appropriate build type is enabled.

2. Right-click the model element to use as build root, select the build type, 
and then New Artifact

3. Use the Properties Editor to add additional stereotypes required to 
specify advanced options pertaining to the build type. The Filter drop-
down menu contains the currently applied stereotypes. 

Accessing and specifying properties defined in a build artifact

Each of the build artifacts holds one instantiation of a build stereotype. The 
build stereotype defines the build settings relevant for the actual build type.

To access these attributes:

1. Right-click the Build Artifact in the workspace window.

2. Select Build Settings. This opens the Properties Editor.

3. Click Stereotypes if required, in order to add additional build stereotypes 
that should be instantiated on this artifact. 

4. Select the build stereotype from the Filter drop-down menu.

5. The properties (build settings) are now displayed and can be changed by 
the user. Changes are committed as they are applied in the editor. 
832 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
Location of a build artifact

The location of a build artifact in the model view has no semantic meaning. 
The build artifact can be moved to any valid location of the user’s preference, 
for example into the build root or any other location of the workspace area 
that feels convenient. 

Mandatory use of artifacts

At least one build artifact must be present for any build to take place. 

– When attempting to build a model without a build artifact, a build ar-
tifact will be created by a Build Wizard where you will be prompted 
to specify the required information. The build artifact is also inserted 
into the active Configuration, so that a build of the configuration will 
include a build of that artifact 

Multiple build artifacts – configurations

For each UML model, multiple build artifacts can be used, so that different 
applications can be generated from one UML model. For instance, it may be 
convenient to have a build artifact that produces a Model Verifier for debug 
purpose on host computer, and a build artifact that builds an application for 
deployment on target. 

Furthermore, multiple build artifacts can be grouped into a Configuration as 
a convenient way so specify the build of multiple artifacts through one user 
operation only.

Builds can be initiated with a selection. The selected objects are used to form 
a list of build artifact using the rules:

• If an object is a build artifact it is added to the list.

• If an object is not a build artifact, the set of build artifacts that “manifest” 
the object (or any parent objects) is formed

• If the set is empty the “Build Wizard” appears to aid the user

• If the set contains exactly one build artifact, that is added to the list

• If the set contains more than one build artifact, the “Build Wizard” ap-
pears to aid the user
June 2009 IBM Rational Tau User Guide 833



Chapter 26: Building and Code Generation Overview and Examples
For “Build” and “Verify” operations the list of build artifacts is then ap-
pended with the build artifacts to which any build artifact already in the list 
has a dependency. This means that if for example build artifact “A” depends 
on build artifact “B” and you build “A”, “B” will also be built.

The list of build artifacts is ordered with respect to dependencies before the 
build operation starts. If there are circular dependencies, the resulting order 
is not defined.

See also

“Using Configurations for Build” on page 849. 

Using Thread Artifacts

A Build Artifact is optionally composed of a number of thread artifacts. A 
thread artifact is an artifact with the stereotype «thread» attached. The Class 
diagram editor is used for modeling such classes. 

A thread artifact can be used in several build artifacts. 

Thread artifacts are used exclusively with the AgileC Code Generator and C 
Code Generator.

For the C++ Application Generator and the Java code generator threads are 
defined and manipulated programmatically using utilities in the TOR library.

Examples of use

How to used thread artifacts is explained by studying the examples of use of 
thread artifacts provided at the end of this chapter 

See also

“Application Examples” on page 922 

Using File Artifacts

In order to specify how model elements should be implemented on files, and 
also to add external components and specify “make” dependencies between 
sources and targets, you use file artifacts. 
834 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
Note
File artifacts cannot be used to specify implementation aspects or depen-
dencies for applications generated by Model Verifier, C Code Generator 
and AgileC Code Generator. Instead, you must use the code generation set-
tings dedicated to the associated code generators. 

Using file artifacts to control C++ code generation

A typical application area for file artifacts is to specify the mapping scheme 
between classes and C++ code files generated by the C++ Application Gen-
erator, using the stereotypes C++ implementation file and C++ header file. 
By overriding the mapping scheme used by the C++ Application Generator 
(1:1 mapping is used by default, meaning that each class will be mapped to 
one C++ source file and one C++ header file), you can control in detail how 
the tool stores the generated code on files. 

This fine granularity may simplify configuration management in a multi-user 
environment, and also will likely simplify the task of the C++ compiler. 
However it may be convenient to group classes that belong together, or 
classes that contain parts of the model that are stable and where few changes 
can be expected into packages and create a few C++ file artifacts that are as-
sociated with these classes or packages. 

Using file artifacts for C++ roundtrip 

C++ file artifacts also ‘connect’ the classes with the generated code and this 
connection allows to synchronize the model and the code (by using the Up-
date Configuration command) in order to propagate changes done by the user 
to the C++ files after they were generated by the code generator. 

The desired level of granularity when manifesting C++ files depends on con-
figuration management considerations, and on the level of flexibility that is 
needed. See “Using file artifacts to control C++ code generation” on page 
835. 

Use file artifacts to specify C++ targets and make scheme

File artifacts can be used to specify that the model should be compiled and 
linked into a number of targets. Targets denote either libraries or executable 
applications. This allows to split up the resulting application into a number 
or libraries. 
June 2009 IBM Rational Tau User Guide 835



Chapter 26: Building and Code Generation Overview and Examples
To specify a C++ target:

1. Add a file artifact specialized either as a library or as an executable.

– The library file artifact can be further specialized to denote a stati-
cally or dynamically linked library.

2. Add dependencies from the library/executable to its ‘sources’

– library file artifacts should depend on all C++ implementation file ar-
tifacts that are part of the library.

– executable file artifacts should depend on a C++ implementation file 
artifacts that manifest suitable UML elements – for instance an oper-
ation manifested as the main() function in the C++ code.

– executable file artifacts should also depend on all the library file ar-
tifacts that are needed for the application to execute properly.

As a result of this, a make file that defines the sources, dependencies and how 
to link the libraries is created for you. The generated make file is adapted to 
support Windows and UNIX flavors of “make” and can be augmented with 
user-defined code, by using the attributes in the Make settings stereotype. 

Using file artifacts to specifying C++ objects 

IBM Rational Tau in its present version does not support customizing the 
make dependencies between C++ implementation files and arbitrary object 
files. Make dependencies assume preserving file base names. 

Using file artifacts when generating Java

Just like for C++ the Java code generator uses file artifacts to define the map-
ping between model elements and files. However, contrary to C++ the Java 
language puts several constraints on the contents of Java source files. For ex-
ample it is not allowed to have more than one top-level class in a Java file, 
and its name should match the name of the file.

Because of these constraints file artifacts are usually not manually managed 
when generating Java code from IBM Rational Tau. Instead file artifacts are 
added automatically as needed when performing code generation or 
roundtrip operations.
836 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
Example of Use of File Artifacts

In this section is discussed how you could use file artifacts to customize the 
make dependencies and the manifestation of model elements on C++ files. 

Consider a model that is specified to be deployed as an application in the fol-
lowing way:

• The model has a main() operation, from which is generated the C++ code 
for the main() function of the application. This code is to be put on sep-
arate main.cpp and main.h files

• The has a package, say “a”, containing global definitions. The package 
contains a class “a” that should be compiled as a library stored on a.lib 
The generated source code is to be manifested by the files a.cpp and a.h 

• The model also includes a class, say “support”, which is defined and im-
plemented externally, The implementation and definition of the class is 
available on the existing files support.cpp and support.h No code 
should be generated for the “support” class, but the files should be 
present in the compile and link scheme, and also must have dependencies 
to a.h where global definitions are found. 

– To specify that the class “support” is defined and implemented exter-
nally, its attribute External must be set to true

• The files above should be compiled and linked into the resulting applica-
tion my_application.exe

Creating the file artifacts

Start by creating the required file artifacts, for each of the files identified 
above (main.cpp etc.). For each file, proceed as follows:

1. Create a file artifact (New -> Artifact).

2. Name it in accordance with the name of the file you are processing.

3. Using the Properties Editor, specialize the file artifact as either a C++ im-
plementation file, a C++ header file, an executable or a library. 

– Click Stereotypes if required in order to add the required stereotype.
June 2009 IBM Rational Tau User Guide 837



Chapter 26: Building and Code Generation Overview and Examples
The result after all files have been specified is depicted in Figure 192 on page 
838. 

Specifying the make dependencies

You now need to specify the make dependencies, to ensure a correct and re-
liable compilation and linking scheme. To do this:

1. Create a class diagram, e.g. “Make and source deployment”. 

2. Drag and drop the file artifacts that you created in the previous step to 
that class diagram.

3. Draw dependency lines that represent the make dependencies between 
sources/libraries/executable:

– From my_application.exe to the library a.lib 

– From my_application.exe to the external code support.cpp

– From a.lib to its implementation a.cpp

4. Draw dependency lines that represent the make dependencies between 
definitions and implementations. These dependencies should have the 
«include» stereotype added. 

– From a.cpp to a.h

– From support.cpp to support.h

– From main.cpp to a.h (since a.h contains global definitions)

– From support.h to a.h (idem)

Figure 192: Model View showing the required file artifacts
838 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
The resulting class diagram with the make dependencies specified should 
look like Figure 193 on page 839

Specifying the manifestations

The last task is to specify how the model elements “main()”, “a” and 
“support” should be connected to the files manifesting their implementations 
and definitions. This can be done in the class diagram used to specify the 
make dependencies, if you think it is handy to have all dependencies and 
manifestations depicted in one single diagram. 

• The definition of class “a” is manifested by a.h (by drawing a 
«manifest» dependency, and its implementation is manifested by 
a.cpp (by drawing a «manifest implementation» dependency.

• In the same way, the definition and implementation of the class “support” 
is manifested by support.h and support.cpp

• The “main()” operation is manifested by its implementation main.cpp 
only (there is no main.h).

The result is depicted in Figure 194 on page 840.

Figure 193: The make dependencies for the files building up the application
June 2009 IBM Rational Tau User Guide 839



Chapter 26: Building and Code Generation Overview and Examples
.

Using Build Roots

For each Build Artifact, a Build Root has to be provided. A build root de-
limits the ‘sub-model’ that will be built – the model elements that are defined 
by the build root, or referred to and included according to the UML language 
scope rules. 

– The build root of the artifact is identified by a «manifest» dependency 
from the build artifact to the element it uses as build root. 

Changing the build root

A build root is designated when creating the build artifact using the Build 
Wizard. 

Should you want to change the build root, the most straightforward way to 
change it is the following: 

1. Right-click the build artifact and from the shortcut menu select the com-
mand Select Build Root. 

2. In the dialog that is issued, specify the model element of your choice (a 
package or a class) to use as root for the build.

Figure 194: Model elements manifested by C++ files.
840 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
3. Close the dialog using the OK button.

Suitable build roots for C build types

The following elements may be suitable to use as build root for build artifacts 
that invoke the Model Verifier, C Code Generator and AgileC Code Gener-
ator:

• The topmost active class

• A package 

Note
Using a package as build root will build a library rather than an applica-
tion. The attribute Target should be set to Library instead of Executable. 
Build of libraries is discussed in detail in Chapter 29, Guidelines for Large-
Scale Application Development. 

Suitable build roots for C++ build types

The following elements may be suitable to use as build root for build artifacts 
that invoke the C++ Application Generator:

• The topmost active class 

• A package

• A class

Suitable build roots for Java build types

The following elements may be suitable to use as build root for build artifacts 
that invoke the Java code generator:

• The topmost active class 

• A package

• A class

Using Build Types

To manage the large number of combinations that are the result of all pos-
sible settings for the build process and the components that are involved, the 
notion of build type is introduced: a build type defines in essence which code 
generator a Build Artifact uses.
June 2009 IBM Rational Tau User Guide 841



Chapter 26: Building and Code Generation Overview and Examples
IBM Rational Tau supports build types that use the Model Verifier, AgileC 
Code Generator, C Code Generator, C++ Application Generator and 
Java Code Generator. In addition to these ‘true code generators’ IBM Ra-
tional Tau also allows you to use the build types Makefile Generator and 
Make, which generate a “make file” and invoke the “make” utility. 

Note
The Model Verifier is, technically speaking, a specific application of the C 
Code Generator, in which the generated C code is instrumented to provide 
what is required to support for debugging, tracing and simulation at UML 
level (such as symbolic information, command-line interpreter and a graph-
ical user interface). A Model Verifier build follows a similar build flow as 
when building a C application, but the resulting applications differ.

Below follows an overview of the settings that are available to the user, for 
each build type:

Enabling (loading) a build type

In order for a build type to become available, its corresponding Add-in must 
first be activated. This is done by the project wizard when creating a project.

Should you want to enable another build type than the one that is preset when 
creating the project, it can be done by loading the corresponding Add-in. 
From the Tools menu select Customize. The Add-Ins tab displays the cur-
rently available add-in modules. Each of these modules can be made avail-
able individually.

1. Check the toggle corresponding to the build type of your choice:

– Select Make to enable the use of the “make” utility from within IBM 
Rational Tau, 

– Makefilegen to enable the Makefile Generator, 

– AgileCApplication to enable the AgileC Code Generator,

– CApplication to enable the C Code Generator, 

– ModelVerifier to enable the Model Verifier 

– CppGen to enable the C++ Application Generator. 

– JavaApplication to enable the Java Code Generator.
842 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
2. Clicking Close loads the add-in modules that are selected in the dialog, 
and adds their profiles to the model. Information about which profiles are 
loaded is displayed in Script tab in the Output window. 

As a result of loading a profile, the associated build type/code generator 
and the settings it supports now becomes available for selection in the 
Filter drop-down menu of the Properties Editor. 

Specifying the build type

The build type can be specified in either of the following ways

• When attempting to build a model not having any build artifact, the Build 
Wizard is activated and prompts the user for a build type.

• With the shortcut menu activated on a model element that is possible to 
use as Build Root, select the desired build type and then select the com-
mand New Artifact. This creates a build artifact with the desired build 
type. 

Considerations related to projects with multiple build types

For projects where several Add-Ins have been loaded (see Enabling (loading) 
a build type, above), you may gain access to multiple build types. By adding 
additional artifacts to the Configuration this allows you to build a variety of 
applications from the model, using one single build command that builds 
multiple build artifacts. 

You can for instance have a build artifact that generates a Model Verifier and 
one build artifact that generates an AgileC Code Generator application, and 
build both applications with one build command only. 

Note
You should not have multiple build types added to one build artifact. Having 
multiple build type stereotypes attached to one build artifact means that the 
build type that is actually used is undefined. Therefore you should Remove 
not used build types. 
June 2009 IBM Rational Tau User Guide 843



Chapter 26: Building and Code Generation Overview and Examples
Remove not used build types

To remove a build type from a build artifact,

– Select the artifact and open the Properties Editor

– Use the Stereotypes button to open a dialog that displays the stereo-
types currently added to the build artifact 

– Clear the check box for any build type that should be removed and 
close the dialog.

Changing the build type

It is not recommended to change the build type for a build artifact since the 
stereotypes are added with default values for their attributes, while the values 
for attributes that have been removed are lost and no longer possible to re-
store. It is instead recommended to create a new build artifact with the de-
sired build type. It can however be done by using the Properties Editor, 
clicking Stereotypes and checking the stereotypes. 

Performing Separate Builds

By defining a Build Root different from the topmost active class (the class 
without owner), you can break down a build scheme into separate builds. For 
instance you may want to be able to generate code and compile a package 
only, instead of having to generate code for the whole model, enforcing a 
build of all packages even though no global changes have taken place since 
the last build. 

For a successful separate build to take place is depending on if the ‘separate 
build’ feature is supported by the code generator which is defined in the 
Build Artifact.

– To break down your build into separate builds, create as many build 
artifacts as required and associate each of them with a suitable build 
root. 

– Models that are built using C++ Application Generator can also be 
modularized by defining the C++ targets that should be managed by 
the Makefile Generator (executables or libraries). 

See also

“Use file artifacts to specify C++ targets and make scheme” on page 835
844 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
“Building a Selective Model Element” on page 848.

Using Build Settings

Build settings can either be generic for any build type (regardless of which 
code generator it uses), or be specific for a given Build Type. 

Build stereotypes

There are different types of build stereotypes, each of them corresponding to 
a different code generator. The values that are defined by each build stereo-
type represent the build settings supported by the corresponding code gener-
ator.

All of the build stereotypes inherit from the stereotype named «build»

– It may be convenient to check the UML Basic Editing option Show 
stereotype instances in order to visualize in the workspace window 
which stereotypes are attached to a build artifact. 

Accessing and changing build settings

Once a stereotype has been added, its properties – the corresponding build 
settings – can be accessed, and changed if required. 

– To display and change these settings, the Properties Editor is used. 

Removing build settings

By removing a stereotype from a build artifact, all its properties are removed 
and the corresponding build settings are reverted to their default values.

See also

Section “Stereotypes and attributes” on page 2015 for a reference to the build 
settings available to the user. 
June 2009 IBM Rational Tau User Guide 845



Chapter 26: Building and Code Generation Overview and Examples
Specifying C Targets

C target name

For the build types AgileC Code Generator, C Code Generator and Model 
Verifier, the base name of the target, that is to say the base name of execut-
able file, is automatically derived from the name of the Build Root that the 
Build Artifact is referring to.

Specifying and “make” of C targets

The make file used to compile and link such applications is at present time 
not fully embodied by the IBM Rational Tau user interface. The makefile 
contents is however adaptable through the use of “Make template files”

A stereotype with C code generation settings is available to specify which 
Make template file to use, but how to customize the make template file must 
be done outside the tool. To learn more about to customize make template 
file, see the chapter about the C Code Generator runtime libraries, section 
“Library files” on page 1063 in Chapter 33, C and AgileC Runtime Libraries. 

Specifying C++ Targets

C++ target name

Unless you specify the name of the C++ target, the name of the resulting ap-
plication is 

• application.exe on Windows 

• application on UNIX.

Specifying and “make” of C++ targets

The default scheme (where all classes are mapped 1:1 to C++ files and then 
compiler and linked to one monolith) can be overridden by tailoring an arbi-
trary number of C++ targets. This is achieved by using file artifacts. 

See also

“Use file artifacts to specify C++ targets and make scheme” on page 835
846 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
Target Directory

The target directory is the location on the file system where all files are 
written for a Build Artifact.

Unless specified in the build artifact, the name of the target directory is the 
same as the build artifact.

For each build artifact, the attribute Target Directory can be used to over-
ride the naming convention described above. 

Hint
The name of the implicit target directory is subject to be changed in future 
releases. It is recommended to use an explicit target directory. If possible 
write code and make rules so they do not rely on the names of generated di-
rectories.

Target directory and make template files

A target directory can be specified either as an absolute path or a path relative 
to the project directory. When specifying relative path for a Make template 
file file, the location of this file should be given relative to the target direc-
tory.

The make template file typically contains references to source code files. The 
contents of the make template file is copied into the generated makefile. 
These references to source code files should in the case of a Bare application 
be made relative to the target directory.

When a threaded system is built, a sub-directory to the target directory is cre-
ated, which name is derived from the Build Root. The generated code, in-
cluding the make file, is placed in that sub-directory where it will be com-
piled and linked.

Error Limit

If the number of error messages associated with the build artifact exceeds this 
number, the build is aborted. When a build is aborted the total number of er-
rors may exceed this number as all pending error messages are processed.  If 
the error limit is set to zero, builds are not aborted regardless of the number 
of error messages generated.
June 2009 IBM Rational Tau User Guide 847



Chapter 26: Building and Code Generation Overview and Examples
Building Using Build Artifact

An artifact build is started by right-clicking the Build Artifact of the user’s 
choice, selecting Build (< build type >) on the shortcut menu, and the ap-
propriate item on the sub-menu:

• Check (performs semantic check)

• Generate (as Check, and then generates code)

• Build (as Generate, and then compiles and links)

• Launch (as Build, and then starts the application – this command is sup-
ported for Model Verifier only)

• Update (synchronizes with external C++ code, used for roundtrip engi-
neering)

• Clean (executes "make clean")

The tool reads the generic settings and also the settings that are tagged for the 
build type defined in the Build Artifact (e.g. code generator specific settings), 
and submits the Build Root defined by the build artifact to the code gener-
ator.

Building a Selective Model Element

A build of a selective element is initiated by right-clicking the package or 
class to be built. In the shortcut menu, one item is present for each active 
build type. 

• For each of these build types, there is a list of available build artifacts that 
manifest the selected element.

– For each of the build artifacts, the available build commands is listed 
in a sub-menu. See “Building Using Build Artifact” on page 848.

• There is also a menu choice New Artifact. This menu choice creates a 
new build artifact with the selected element as Build Root. 
848 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
Using Configurations for Build

Building a configuration

Ordering a build of a Configuration is performed in the following way:

1. Make sure the configuration that should be built is the active configura-
tion in the project tool bar. 

2. On the Build menu, select the appropriate menu choice (Check, 
Generate, Build...)

Adding or removing a build artifact to/from a configuration

Build artifacts are added (or removed) to a configuration by using the project 
settings page. 

1. Select the configuration that you want to add (remove) artifacts to in the 
project tool bar.

2. On the Project menu, select Settings. A dialog is displayed.

– The tree that is displayed left-most in the dialog lists the files con-
tained in the project. This information is however not used when 
building UML models and should be disregarded from.

– The lists that are displayed beneath the Build tab show all build arti-
facts that are currently contained in the active configuration. 

3. Select the artifacts of your choice and use the left and right arrow buttons 
to add or remove them from the configuration. These lists support selec-
tion of multiple items, so you can move several items in one operation.

4. Once the artifacts that you want to be part of the configuration are present 
in the left list, click OK to confirm. 

Note
Clicking Cancel has the same meaning as clicking OK. Hence, should you 
want to cancel the operation, the contents of the configuration should be re-
verted using Undo after the dialog is closed. 

Errors and Warnings from Build

The build process from UML model to executing application includes sev-
eral phases. Each of these phases will cause the tool to print messages in the 
Build tab in the Output window. The Error Limit can be used to abort a build 
when a certain number of errors has been reached.
June 2009 IBM Rational Tau User Guide 849



Chapter 26: Building and Code Generation Overview and Examples
• An initial analysis phase checks the model for semantic correctness in the 
context of the build type that has been chosen. This phase may return 
warnings, and sometimes errors, which should in most cases correspond 
to errors and warnings from the Check Selection or Check All com-
mands. 

• After the analysis phase is completed and the tool has determined that the 
model and build settings are suitable to build, the tool launches the code 
generator. Since there may be restrictions in the support of advanced 
UML constructs when generating code that the semantic checker does 
not detect, additional errors may be displayed in this phase.

• The make file generator defined by the build type creates a make file, and 
then executes “make”. In case default settings are used, meaning that no 
user defined make template file or make settings have been defined, this 
phase should never report any errors. Diagnostics reported by the “make” 
utility are printed in the Output window as well. 

• As a result of executing “make”, the code generated from the model and 
user-provided code are compiled. In virtually all cases, code that is gen-
erated by the tool should always compile successfully. Compiler mes-
sages are echoed verbatim to the output window. 

• Lastly, the object files are linked with the run-time library and with user-
provided libraries. This phase should not report any errors provided that 
entities that are declared “external” in the UML model are also available 
in the libraries with correct type and name. Linker messages are dis-
played in the output window. 

The severity of each printed message is one the following: Information / 
Warning / Error. 
850 IBM Rational Tau User Guide June 2009



Building Applications with IBM Rational Tau
Note
Sometimes the semantic checks that are performed prior to code generation 
do not report the same result as Check Selection or Check All would do. It is 
important to understand the difference between how these semantic checks 
are performed.
Check Selection and Check All operate on the in-memory model of IBM Ra-
tional Tau. Check Selection checks a selected model entity, while Check All 
checks the entire model. Note also that Check All starts by unbinding the en-
tire model, in order to also detect binding inconsistencies and problems.
The semantic checks performed by the code generators are basically the 
same, but the checks are performed on the copy of the model that was 
loaded by the code generators. This is typically a subset of the original 
model. Also, a set of code generator specific checks will also be performed 
in this case.
To avoid confusion it is always best to use Check All prior to code genera-
tion to ensure that the model is correct. If Check All reports errors, fix these 
before attempting code generation.

See also

“Error and Warning Messages” on page 417

“Restrictions in UML Support when Building C Applications” on page 949
June 2009 IBM Rational Tau User Guide 851



Chapter 26: Building and Code Generation Overview and Examples
Makefile Generator
The Makefile generator is in principle a code generator that operates like 
other code generators with the difference that it is able to read a single model 
(.u2) file rather than an entire project (it can also read a project).

Usage

The Makefile generator is very configurable using a large set of “generator 
parameters”. These parameters govern how internal transformations are 
made, names are mangled, and how rules and commands are written to the 
Makefile.

The Makefile generator can be used in two ways;

explicit

The user creates a make-model in project and creates a Build Artifact 
stereotyped by “Makefile generator”. The build artifact has a depen-
dency to the make-model that is stereotyped “manifest”. This is how all 
code generators work.

implicit

This is the “normal” modus operandi. The user does not invoke the 
Makefile generator as such. Instead, it is invoked as a result from an-
other code generator (i.e. the C++ code generator) which as a by product 
generates a Makefile model file. Whenever the Application Builder re-
ceives a build result file of the type “make-model” after a code gener-
ator has completed, it launches the Makefile generator using the make 
model u2 file as input. Also, if the build artifact that was used to invoke 
the “main” code generator is stereotyped by “Makefile generator Set-
tings” the settings of that stereotype is given to the Makefile code gen-
erator. I.e. the “Makefile Generator Settings” stereotype is used to 
change the default behavior of the Makefile code generator (it does not 
used as a prerequisite for the code generator to be run).

Code Generator Stereotypes

As a code generator the Makefile code generator is defined in the profile 
package “MakefileGen”. This defines the two stereotypes “Makefile gener-
ator” and “Makefile Generator Settings” (see diagram below). The stereo-
type “Makefile Generator Settings” contains all settings specific to the 
852 IBM Rational Tau User Guide June 2009



Makefile Generator
Makefile code generator while the stereotype “Makefile generator” contains 
only what it inherits from “build” and “Makefile Generator Settings”, it does 
not define any attributes by itself.

.

When the Makefile code generator is used explicitly the build stereotype 
“Makefile Generator” is used. When the Makefile code generator is used im-
plicitly, the stereotype “Makefile Generator Settings” may be added to the 
Build Artifact to change the default behavior. The default Generator Param-
eters used when a Makefile is generated depend on the host system (Win32, 
Solaris or Linux).

The settings defined in “Makefile Generator Settings” are:

Dialect

This determines the dialect of the generated Makefile; “gmake” for a 
GNU C/C++ (and classical) compatible makefile or “nmake” for a 
Win32 nmake compatible Makefile. The default depends on the Target 
Kind.

Target

This determines if the target is to build an executable or library (static 
or dynamic). The default is to generate a Makefile suitable to build an 
executable.

Target Kind

Figure 195: “Makefile Generator” and “Makefile Generator Settings” 
June 2009 IBM Rational Tau User Guide 853



Chapter 26: Building and Code Generation Overview and Examples
This controls the overall configuration of the Makefile generation. The 
default depends on the host system, for example “Win32 - cl” on Win32 
systems, “Linux - g++“on Linux systems or “Solaris - CC“on Solaris.

User Code

This field is used to override the settings implied by Target Kind. Any 
additional make variables can be defined here.

Example 314: Build artifact for C++ code generation ––––––––––––––––––––––––

The Build Artifact “HelloWorldArt” manifests the active class “Hello”. 
The artifact is used for C++ code generation. The artifact is also stereotyped 
with the “Makefile Generator Settings” stereotype that is used to override the 
defaults used when a Makefile is generated. The stereotype settings look like:

.

This will produce a Makefile suited for Solaris and a GNU C/C++ tool chain.

.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 196: The build artifact “HelloWorldArt” manifests the active class “Hello”

Figure 197: Makefile Generator stereotype settings
854 IBM Rational Tau User Guide June 2009



Makefile Generator
File Stereotypes

The Makefile generator recognizes artifacts stereotyped by the file artifacts:

Name Defined in Comment

PHONY MakefileGen This is used for “phony” targets 
such as “all” and “clean”. Note 
that this is not a stereotype that 
inherits the “file” stereotype, in-
stead it just extends artifact.

objectFile MakefileGen This is used to represent object 
files.

executable TTDFileModel This is used to represent execut-
able files.

library TTDFileModel This is used to represent li-
braries in general. Artifacts with 
this stereotype are treated as if 
stereotyped with 
“staticLibrary”.

staticLibrary TTDFileModel This is used to represent static 
libraries (archives under non 
Win32 systems and lib files 
under Win32). 

dynamicLibrary TTDFileModel This is used to represent dy-
namic libraries (shared object 
files on ELF systems, DLLs 
under Win32). 

cppImplementation
File

TTDFileModel This is used to represent C++ 
implementation files. 

cppHeaderFile TTDFileModel This is used to represent C++ 
header files. 
June 2009 IBM Rational Tau User Guide 855



Chapter 26: Building and Code Generation Overview and Examples
Make Model

The input to the Makefile code generator is a model (or a part of a model) 
that contains file artifacts stereotyped with File Stereotypes. Dependencies 
between the file artifacts are interpreted as make dependencies. Any stereo-
types on the dependencies are ignored. Transformations

A number of model transformations are performed before the final Makefile 
is written. In this section the notion “cpp file” is used for an artifact stereo-
typed by “cppImplementationFile”, “obj file” is used for an artifact 
stereotyped by “objectFile” etc. The term lib file is used for an artifact ste-
reotyped by “library”, “staticLibrary” or “dynamicLibrary”. The no-
tion A “depends on” B is used for a dependency where A is the client and B 
is the supplier.

Collect include models

Automatic object files

For each cpp file that does not have an obj file that depends on it, a new 
obj file is created that depends on the cpp file.

Routing to object file

If an executable file, a library file or PHONY depends on a cpp file, that 
dependency is changed to depend on the obj file that depends on the 
cpp file. The transformation “Automatic object files” ensures that there 
is such an obj file.

Default target

If there are obj files without dependencies from executable or library 
files a new default target (exe or lib, depending on the “Target” at-
tribute) is created and dependencies are set up to the obj files. If the new 
default target is an executable, dependencies are created from it to each 
library.

Default “all” target

If there is no PHONY target named “all”, one is created that depends on 
all executable and library files.

Default “clean” target

If there is no PHONY target named “clean”, one is created that depends 
on all executable, library and object files.
856 IBM Rational Tau User Guide June 2009



Makefile Generator
Name transformation

Executable, library and object file names are transformed if the corre-
sponding generator parameter is set. The names are transformed ac-
cording to the generator parameters. The flag parameters are; 
“transformExeName”, “transformObjName”, 
“transformStaticLibName” and “transformDynamicLibName”. 
The names are mangled using the parameters; “executableName”, 
“objectFileName”, “staticLibName” and “dynamicLibName”. Be-
fore mangling, the artifact name is stripped of any path and known 
suffix, then the new name is mangled after witch the path is restored. 
Suffixes: 

".exe", ".obj", ".lib", ".dll", ".u2", ".ttp", ".ttw", 
".o", ".a", ".so", ".asm", ".m", ".mak", ".cxx", ".hh", 
".hpp", ".C", ".rc", ".res", ".cc", ".hh".

Path transformation

Paths are transformed according to the pathDialect parameter. The path 
separator is modified ('/' versus '\'), any drive specified is removed under 
UNIX and the path is quoted if it contains irregular characters. The 
transformation is applied to .obj, .exe, .lib, .cpp and hpp files and 
to the (internal) list of include paths.

Example 315: Make model with targets and dependencies 

.

all : myApp.exe myLib.lib
myApp.exe : a.obj myLib.lib 
myLib.lib : b.obj
a.obj : a.cpp
b.obj : b.cpp
clean :

Figure 198: Make model targets and dependencies 
June 2009 IBM Rational Tau User Guide 857



Chapter 26: Building and Code Generation Overview and Examples
Note the intermediate object files.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Generator Parameters

The generator parameters control how the Makefile is generated. The param-
eters are organized in sets; the default set, one set for each target kind and the 
user set. When the generator fetches a parameter it searches the user set, the 
set corresponding to the target kind and finally the default set.

Data written to the “User Code” attribute of the stereotypes “Makefile Gen-
erator Settings” or “Makefile generator” are put into the “user” set.

Built-in parameters

In the following the term “default” indicates that the particular value of the 
parameter is in the “default” parameter set for each Target Kind.

Some of the values of the built-in parameters describe how a string should be 
modified. This is used using a set of codes, all composed of a '%' followed 
by a single character. The codes are:

The last three can only be used in command parameters.

E.g. if “dynamicLibName” is “lib%x.so” and the name of the dynamic lib 
artifact is “MyLib”, it will be changed to “libMyLib.so”.

Code Description

%% The code is replaced by a single %

%x The code is replaced by the name

%q The code is replaced by the name but quoted if it contains “un-
usual” characters.

%b The code is replaced by the base name

%t The code is replaced by the target name

%d The code is replaced by the first dependency

%D The code is replaced by a space separated list of all dependencies.
858 IBM Rational Tau User Guide June 2009



Makefile Generator
Also in command parameters the sequence '\n' (a back slash followed by a 
lower-case 'n') is expanded to a new-line followed by a horizontal tab. This 
allows commands to be multi line.

The base name replacement code %b is primarily intended for replacing li-
brary file names with the “base name” (as in “-l%b”). The replacements are: 
“libX.a” to “X”, “libX.so” to “X” and “X.lib” to “X”.

applicationBaseName

This is the base name of the Default target (executable). Default is “applica-
tion”.

compileCppCommand

This defines the command(s) used to compile a cpp file. The default is:

"$(CXX) -c $(CPPFLAGS) $(CXXFLAGS) -o %t %d"

Codes: "%%" "%t" "%d" "%D", expands '\n'.

cppDefineFormat

This is the format of command line defines to the compiler. The default is "-
D%x".

Codes: "%%" "%x" "%q" "%b"

cppIncludeFormat

This is the format of command line include paths to the compiler. The default 
is "-I%x".

Codes: "%%" "%x" "%q" "%b"

dynamicLibBaseName

This is the base name of the Default target (dynamic library). Default is 
"rary" (because the base name is later mangled using "lib%x.so").

Codes: "%%" "%x" "%q" "%b"

dynamicLibName

This defines how dynamic library names are mangled. The default is 
"lib%x.so".

Codes: "%%" "%x" "%q" "%b"
June 2009 IBM Rational Tau User Guide 859



Chapter 26: Building and Code Generation Overview and Examples
executableName

This defines how executable names are mangled. The default is "%x".

Codes: "%%" "%x" "%q" "%b"

linkDynamicLibCommand

This defines the command(s) that is used to produce a dynamic library. The 
default is:

"$(CXX) $(LDSOFLAGS) -o %t %D $(LDLIBS)".

Codes: "%%" "%t" "%d" "%D", expands '\n'.

linkExeCommand

This defines the command(s) that produce an executable. Default is:

"$(CXX) $(LDFLAGS) -o %t %D $(LDLIBS)"

Codes: "%%" "%t" "%d" "%D", expands '\n'.

linkFormat

This is used when an executable or dynamic library has a dependency to a 
library. The name of the library is added to the list of dependencies using this 
format. Default is: “-l%b”

Codes: "%%" "%x" "%q" "%b"

linkStaticLibCommand

This defines the command(s) that is used to produce a static library. The de-
fault is:

"$(AR) $(ARFLAGS) %t %D".

Codes:"%%" "%t" "%d" "%D", expands '\n'.

makeCommentFormat

This defines the format of comments in the Makefile.Default is "# %x".

Codes: "%%" "%x" "%q" "%b"

makeDependencyFormat

This defines the format of make dependencies. Default is "%x".

Codes: "%%" "%x" "%q" "%b"
860 IBM Rational Tau User Guide June 2009



Makefile Generator
makeDereferenceFormat

This defines the format of make variable de-references used in the Makefile. 
The default is "$(%x)".

Codes: "%%" "%x" "%q" "%b"

makeDialect

This is the dialect of the Makefile. There is no default.

makeTargetFormat

This defines the format for make targets. Default is "%x".

Codes: "%%" "%x" "%q" "%b"

makeTargetType

This determines the type of Default target. Valid values are “Executable” 
(this is the default), “Static Library” and “Dynamic Library”. This parameter 
is set using the “Target” attribute of the stereotypes “Makefile Generator Set-
tings” and “Makefile generator”.

makefileName

This is the name of the generated Makefile. The default is “Makefile”.

objectFileName

This defines how object file names are mangled. The default is "%x.o".

Codes: "%%" "%x" "%q" "%b"

staticLibBaseName

This is the base name of the Default target (static library). Default is "rary" 
(because the base name is later mangled using "lib%x.a").

staticLibName

This defines how static library names are mangled. The default is 
"lib%x.a".

Codes: "%%" "%x" "%q" "%b"
June 2009 IBM Rational Tau User Guide 861



Chapter 26: Building and Code Generation Overview and Examples
transformDynamicLibName

This is a Boolean flag that is used to enable transformation of dynamic li-
brary file names. The default is “true”.

transformExeName

This is a Boolean flag that is used to enable transformation of executable file 
names. The default is “true”.

transformObjName

This is a Boolean flag that is used to enable transformation of object file 
names. The default is “true”.

transformStaticLibName

This is a Boolean flag that is used to enable transformation of static library 
file names. The default is “true”.

pathDialect

This defines the Path transformation. Possible values are: 

• “dos”

– Any '/' is changed to a '\'.

– Any preceding drive specification is not removed.

– If the path contains any other token than “0-9A-Za-z/._-:\” it is 
embraced in double quotes.

• “unix”

– Any '\' is changed to a '/'.

– Any preceding drive specification is removed.

– If the path contains any other token than “0-9A-Za-z/._-” it is em-
braced in double quotes.

• “cygwin”

– Any '\' is changed to a '/'.

– Any preceding drive specification is not removed.

– If the path contains any other token than “0-9A-Za-z/._-:” it is em-
braced in double quotes.

Any other value disables the transformations.
862 IBM Rational Tau User Guide June 2009



Makefile Generator
Make parameters

All parameters that are not built in parameters are transferred to the Makefile 
as they are. The Makefile code generator does not in any way interpret or 
place any meaning into the value, presence or absence of any of these param-
eters.

The set of make parameters is not fixed but depend on the target kind (i.e. 
some parameters are only present for a specific target kind). Note also that 
the variables used are those normally used on the corresponding platform and 
tool chain. This means that the semantics can differ (i.e. “CPP” is used for 
the C pre-processor on all systems except Win32 where it is used for the 
compiler).

Target Kind

The target kind is used to define a set of parameters. It combines the notion 
of target operating system and tool set (compiler linker etc.) to use. The fol-
lowing target kinds are used. 

In the following tables the names of the built-in parameters all start with a '$'. 
If a user needs to override the value of a built-in parameter it should be added 
to the “User Code” attribute with the initial '$'. Any parameter with a name 
that does not begin with a '$' is treated as a make parameter and totally ig-
nored by the Makefile generator (except from being echoed to the Makefile 
without interpretation).

Target kind Description

Win32 - cl Microsoft 32 bit Windows operating system 
using the tool chain supplied with the Mi-
crosoft Visual Development Environment.

Cygwin - g++ This targets the Cygwin environment running 
on top of Microsoft 32 bit Windows using the 
gnu tool chain supplied with Cygwin.

Linux - g++ This uses the gnu tool chain under Linux.

Solaris - CC This uses the SUNWsPro tool chain under So-
laris.

Solaris - g++ This uses the gnu tool chain under Solaris.
June 2009 IBM Rational Tau User Guide 863



Chapter 26: Building and Code Generation Overview and Examples
Default values for makefile generator parameters

Win32 - cl values for makefile generator parameters

Name Value Description

RM rm -f This is the delete file 
command used by the 
“clean” target.

DEFINES $(TAUDEFINES -D_REENTRANT

INCLUDES $(TAUINCLUDES)

CPPFLAGS $(INCLUDES) $(DEFINES)

CXXFLAGS -O2 -fpic

TAUDEFINES The value of this is set 
by the Makefile code 
generator. It should 
not be assigned in any 
other way.

TAUINCLUDES The value of this is set 
by the Makefile code 
generator. It should 
not be assigned in any 
other way.

Name Value Description

$makeDialect nmake nmake is used 
on Win32

$staticLibBaseName library

$dynamicLibBaseName library

$makefileName makefile.mak

$executableName %x.exe

$staticLibName %x.lib

$dynamicLibName %x.dll

$objectFileName %x.obj
864 IBM Rational Tau User Guide June 2009



Makefile Generator
$cppIncludeFormat /I %q

$cppDefineFormat /D %q

makeTargetFormat %q

makeDependencyFormat %d

$linkExeCommand link $(LINKEXEFLAGS) 
/out:%t %D

$linkStaticLibCommand lib $(LINKLIBFLAGS) 
/out:%t %D

$linkDynamicLibCommand link $(LINKDLLFLAGS) 
/out:%t %D

$compileCppCommand $(CPP) $(CPPFLAGS) 
/Fo%t /c %d

$pathDialect dos

RM del /f

CPP cl

DEFINES $(TAUDEFINES) /D 
\"WIN32\" /D 
\"NDEBUG\" 
$(SUBSYSDEF)

CPPFLAGS /nologo /MT /W3 /GR 
/GX /O2 $(INCLUDES) 
$(DEFINES)

CXXFLAGS $(CPPFLAGS)

CFLAGS $(CPPFLAGS)

SUBSYSFLAG /subsystem:console

SUBSYSDEF /D "_CONSOLE"

LINKLIBS kernel32.lib 
user32.lib gdi32.lib 
winspool.lib 
comdlg32.lib 
advapi32.lib 
shell32.lib ole32.lib 
oleaut32.lib uuid.lib 
odbc32.lib 
odbccp32.lib 
ws2_32.lib

Name Value Description
June 2009 IBM Rational Tau User Guide 865



Chapter 26: Building and Code Generation Overview and Examples
Cygwin - g++ values for makefile generator parameters

Linux - g++ values for makefile generator parameters

LINKEXEFLAGS $(LINKLIBS) /nologo 
$(SUBSYSFLAG)

LINKLIBFLAGS /nologo $(SUBSYSFLAG)

LINKDLLFLAGS $(LINKLIBS) /nologo 
$(SUBSYSFLAG) /DLL

Name Value Description

$makeDialect gmake

pathDialect cygwin

AR ar

ARFLAGS crv

CXX g++

CXXFLAGS -O2

LDFLAGS The value is 
empty

LDSOFLAGS -shared $(LDFLAGS)

LDLIBS -lrt -lpthread -lm

Name Value Description

$makeDialect gmake

AR ar

ARFLAGS crv

CXX g++

Name Value Description
866 IBM Rational Tau User Guide June 2009



Makefile Generator
Solaris - CC values for makefile generator parameters

Solaris - g++ values for makefile generator parameters

LDFLAGS The value is 
empty

LDSOFLAGS -shared $(LDFLAGS)

LDLIBS -lrt -lpthread -lm

Name Value Description

$makeDialect gmake

AR ar

ARFLAGS -xar -o

CXX CC

CXXFLAGS -O2 -pic -
instances=static

LDFLAGS The value is 
empty

LDSOFLAGS -G $(LDFLAGS)

LDLIBS -lsocket -lnsl -lrt -
lpthread

Name Value Description

$makeDialect gmake

AR ar

ARFLAGS crv

CXX g++

Name Value Description
June 2009 IBM Rational Tau User Guide 867



Chapter 26: Building and Code Generation Overview and Examples
Makefile

The name of the generated Makefile is given by the “$makefileName” pa-
rameter. The generated Makefile is composed of the following sections (in 
order):

Preamble

This is a set of comments that describes the origin of the Makefile.

Dialect specification

This is a comment that is used later by the Makefile execution to figure 
out what dialect the Makefile uses. It is a comment with the string 
“MakeDialect=” immediately followed by “nmake” or “gmake”.

Make parameters

All make parameters are written to the Makefile. No particular order is 
used.

The all target

The dependencies to this target are emitted in the order; executables, dy-
namic library targets, static library targets, library targets and other tar-
gets. This target does not have a command.

Executable targets

The target uses the parameter “$linkExeCommand”.

Dynamic library targets

The target uses the parameter “$linkDynamicLibCommand”.

Library targets

The target uses the parameter “$linkStaticLibCommand”.

Static library targets

LDFLAGS The value is 
empty

LDSOFLAGS -shared $(LDFLAGS)

LDLIBS -lsocket -lnsl -lrt -
lpthread

Name Value Description
868 IBM Rational Tau User Guide June 2009



Makefile Generator
The target uses the parameter “$linkStaticLibCommand”.

Object file targets

The target uses the parameter “$compileCppCommand”.

The clean target

Postamble

This is a comment that says “END”.
June 2009 IBM Rational Tau User Guide 869



Chapter 26: Building and Code Generation Overview and Examples
Code Generation in IBM Rational Tau

Figure 199: Code generation in IBM Rational Tau.

Unmanaged C/C++ API

AgileC Code Generator
/C Code Generator/

Transformer
to intermediate code

C++ Application
Generator

Managed C++ 
code

Intermediate code

C

inline C/C++

inline C/C++

C/C++
import

R/T libEnv. function

C/C++ make, compile & link

C++ makefile

UML

UML

UML

Semantic
Checker

Semantic
Checker

C/C++ import

C code 
generation

C++ application 
generation

makefile

Roundtrip
Parse/Unparse

R/T lib
870 IBM Rational Tau User Guide June 2009



Code Generation in IBM Rational Tau
C/C++ import

The C/C++ import is mainly intended to provides access to external C/C++ 
APIs from UML applications developed with IBM Rational Tau, hence 
allow to include legacy code in a project where UML is used for the devel-
opment of new applications. Importing C/C++ code is achieved by parsing a 
set of C/C++ header files and then translating the C/C++ definitions to their 
corresponding UML definitions, according to a fixed set of C/C++ to UML 
translation rules. 

Target

The UML elements that are created during import are added to UML pack-
ages designated by the user. Such packages could already contain UML 
models under development, or be packages that act as a containers dedicated 
to hold the result from the import.

After an import, next step would be to refer to the imported UML elements 
from within the application modeled in UML. Imported UML could also be 
copied and pasted into the packages that contain the model that defines the 
actual application under development.

Preprocessing

The C/C++ import is designed to take advantage of the preprocessor and the 
paradigm of Conditional Compilation that is frequently used in the C/C++ 
world. This allows a flexible importing that is aligned with the ideas that 
govern the design of the imported code and how it should be compiled. 

C and C++ support

When importing, you can specify whether the source language is plain ISO 
C, or if C++ can be expected in the input. The required subset of the C and 
C++ syntax and semantic rules is checked to ensure that the sources hold 
enough information to be able to correctly translate them to UML. Various 
popular dialects of the C and C++ languages are supported to broaden the ap-
plication range. (See “C/C++ dialect” on page 982 in Chapter 28, Stereotypes 
for Code Generation.)
June 2009 IBM Rational Tau User Guide 871



Chapter 26: Building and Code Generation Overview and Examples
Translation rules

The translation to UML obeys a set of translation rules that have been de-
signed to capture a rich part of the C/C++ languages and also result into UML 
models that you can easily refer to from within the UML model under devel-
opment. 

Trace back to source

Each of the UML elements that are generated during import contains at-
tributes with information about what source header file, and where in the file 
the source definition is found.

See also

“C/C++ Import” on page 541.

C code generation

From your UML models, the C Code Generator Reference and the AgileC 
Code Generator Reference create complete real-time application code. The 
generated code is designed to be easily augmented with external C/C++ code 
and is compiled and linked with the run-time library of your choice, which 
will give the application the desired properties. Conditional compilation 
through the means of the preprocessor is used extensively to achieve a high 
degree of flexibility and scalability. 

UML models

UML models are managed as ‘native’ source. Full support for UML is pro-
vided, including extensive semantic checks and complete generation of ap-
plication code in C.

The elements in the model that will become part of the generated C code, in-
clude the following:

• Active classes become executable code. The behavior of the application 
is specified by state machine diagrams, which serve as detailed design 
or implementation specifications.

• Other classes (that is non-active classes) become data types, including 
operators on these data types. When used or instantiated, such classes 
may therefore, in addition to data, also result in code.
872 IBM Rational Tau User Guide June 2009



Code Generation in IBM Rational Tau
• Composite structure diagrams specify the interface to the environ-
ment, and also the internal interfaces between the state machines. From 
the composite structure diagrams the code that implements the connec-
tion and signalling between state machines is generated, and also the in-
terface to the environment.

• Build artifacts are used to control build properties. A Build Artifact can 
exist in the model view and be presented in a class diagram. 

• The project containing the model can also contain any number of Con-
figurations that each may include any number of build artifacts. 

• Thread artifacts are used to control the deployment of the application 
into threads. A Thread Artifact represents a set of instances, usually 
based on an active class. A build artifact can be explicitly modeled into 
one or more thread artifacts, which will be used to determine how the in-
stances in a model are to be built. A thread artifact has a relation to one 
or more build artifacts. 

Settings

The settings for the code generation are defined in build artifacts that are in-
corporated in the model and that hold the information that should be sepa-
rated from the abstract model. 

Build artifacts specify for instance the code generator settings, runtime li-
braries and external code. Furthermore, a build artifact also holds the infor-
mation required to successfully compile and link the target application.

Inline C/C++

IBM Rational Tau supports “inline” C or C++ code. Such code can be added 
virtually anywhere in the UML model where it makes sense. Inline code is 
forwarded almost verbatim to the C Code Generator and the AgileC Code 
Generator and will hence become embedded in the final generated applica-
tion code. There are some rules for the inline C code. 

• Inline C code is written within double brackets [[ ]]

• Comments in inline C (using /* */) are not supported

• The ‘#’ sign is used to escape characters in UML code, for example a pre-
processor operator is written double hash signs (##), UML entities can be 
accessed using “#(<UML name>)”
June 2009 IBM Rational Tau User Guide 873



Chapter 26: Building and Code Generation Overview and Examples
Example 316: Inline C, implementing a UML operation––––––––––––––––––––––

The UML operation below (SetClock) sends an integer value to a C function 
(SetTime) used for initializing a user defined clock function. 

void SetClock( Integer TimeNow) {
[[
##ifdef USER_CLOCK_FUNC
SetTime((xint32)#(TimeNow));
##endif 
]]
}

The operation will be empty if the compiler switch USER_CLOCK_FUNC is not 
set at compile time. The UML Integer argument is type casted to a 32-bit in-
teger type (xint32). (This type is defined by the C Code Generator.) Below 
is the corresponding C code for the function prototype of SetTime. 

void SetTime (xint32 newTime); 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Escaping # in inline C code

In inline C code, ‘#’ (hash) signs are used with a special meaning. Therefore 
‘#’ must be escaped when writing C code to be used inline in IBM Rational 
Tau. The ‘#’ sign is also used to escape characters in UML code. 

#(<UML name>)
##0, ##1, ..., ##9
####0, ####1, ..., ####9

The above constructs are replaced by the C name for some appropriate unit 
defined in the source. In all other cases a ‘#’ will represent nothing but a ‘#’. 

However there are some situations when the translation rules above make it 
impossible to include the intended C code. In format strings it is, for ex-
ample, possible to have a # followed by a digit. To do this the ‘#’ has to be 
escaped. 

A sequence of three ‘#’ in the intermediate code, that is ###, will be copied 
as one ‘#’. To achieve this it is necessary to escape each ‘#’ in the UML code, 
thus a sequence of six ‘#’ signs will result in one ‘#’ in the generated code. 

Example 317: Escaping of ###### ––––––––––––––––––––––––––––––––––––––––

######1 

becomes:
874 IBM Rational Tau User Guide June 2009



Code Generation in IBM Rational Tau
#1

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Checking model before build

UML semantic checking

Upon a build command, an exhaustive semantic check is done to verify that 
the input UML model is correct and complete. When a check is done in the 
context of a build of a C application, the semantic checker also performs ad-
ditional checks that catch restrictions imposed by the C Code Generator / Ag-
ileC Code Generator and the run-time systems used by the applications they 
generate.

Given that the model is verified to be semantically correct, code generation 
is initiated. 

Intermediate code

As a prerequisite to application code generation to C, the UML tool set starts 
by transforming the UML model to an intermediate format. This interme-
diate code can be regarded as a refinement of the source UML model, en-
riched with action semantics and run-time dynamics that are needed for the 
C Code Generator and AgileC Code Generator to be able to generate appli-
cation code with real-time properties. 

The transformation is transparent to the user, and takes advantage of some 
powerful features. This transformation is controlled by one of the Add-Ins 
named IMGen. 

• When creating this representation, the transformation tool will identify 
any inline C code that is added by the user, and forward it to the C Code 
Generator and the AgileC Code Generator verbatim.

• In the source UML model, you have the option to tag parts of the model 
that you do not want to generate code for in a build. 

• The transformation tool also identifies any UML elements that the user 
has tagged as “external” in the model, meaning that the definition of the 
code is available elsewhere (likely in C/C++ files that should eventually 
be added to the compile and link scheme to build a complete application).
June 2009 IBM Rational Tau User Guide 875



Chapter 26: Building and Code Generation Overview and Examples
IMGen uses for performance reasons GUID binding and not name binding. 
As a result of this, some name resolution errors are not caught until late in the 
build process and certain TIL errors might occur. If that happens, run a 
“Check All” and correct your model.

C code generation

The C Code Generator and the AgileC Code Generator first check that the 
intermediate representation code is correct and complete. After the interme-
diate code has passed these checks, the C Code Generator and the AgileC 
Code Generator generate complete application C code from it. 

UML to C 

UML to C translation, run-time semantics and optimization

When translating UML to C, the C Code Generator and the AgileC Code 
Generator use a number of translation rules that ensure that the code obeys 
run-time semantics, scheduling and signalling issues in a safe way, even in 
exceptional situations. The code is generated in such a way that it is given 
good execution performance, while keeping the code size reasonably low. 
Dynamic memory is managed in a wise way in order to avoid memory frag-
mentation. 

Navigation from model view to source code

The Code Generators enables model to code navigation. If there exist header 
or implementation files as a result of code generation, navigating from a 
UML element to the corresponding lines in code is done by right-clicking on 
it in the model view and choosing Go to source. This command is also avail-
able for navigation from the generated code and back to the model. 

File references to the generated code will appear in a package in the Model 
view named “Result of C/C++ Generation”. 

This feature is for the C code generator stereotypes (Model Verifier, C Code 
Generator) associated with the option “Generate reference package”. This 
option is activated by default. 
876 IBM Rational Tau User Guide June 2009



Code Generation in IBM Rational Tau
C and C++ support

The C code is generated as plain ISO C, or as C with support for C++ com-
pilers, depending on the user’s preferences. This option is provided in order 
to cope with issues related to the C/C++ compiler that is used, and also if any 
external C++ code should become part of the final application.

Runtime libraries

When building C applications, you have the option to specify what target 
system the code should be compiled for. The workflow one would follow in 
most cases would to start by compiling the code so that it can be executed 
and debugged on your host computer. After the application has been verified 
to behave as expected, then you would probably proceed by compiling it for 
your target system, run further tests and finalize the integration with the en-
vironment.

The combinations are numerous and a number of pre-defined C and AgileC 
Runtime Libraries are provided, to be used for the frequent application areas. 

Environment support

To become a self-contained application, the application code needs to be in-
terfaced with the environment it is designed to interact with. Such interaction 
is performed through the means of signals sent to and from the environment. 
By providing a few functions only, to ensure that the environment is properly 
initialized and closed, and to ensure that the interaction between the UML 
model and the “real world” is handled correctly, you have developed a self-
contained application. 

When the option “Generate environment Template Functions” is set, the C 
Code Generator and the AgileC Code Generator produce the following:

• Skeletons for the Environment Functions for C Applications, to help you 
write the code that handles the receiving and sending of signals to/from 
the environment.

• A System interface header file, in which the interface between the system 
and its environment is defined, and that also contains the definition of 
some data types that map the representation of UML concepts to C. This 
header file is required when including the functions that integrate the ap-
plication code with its environment and is commonly referred to as 
system interface header file (the .ifc file).
June 2009 IBM Rational Tau User Guide 877



Chapter 26: Building and Code Generation Overview and Examples
• A make template file that specifies how to compile and link the applica-
tion. This make template file can be used by the user to include external 
C or C++ code to the compile and link scheme.

make

As a final step in the build process, the Application Builder will invoke 
“make” for you, using the generated makefile and possibly the make tem-
plate file that is specified to use in the C Code Generator and the AgileC 
Code Generator settings.

The generated C code, the run-time library of your choice and external code 
that is defined in the make template file are now compiled with the desired 
properties which were defined when the makefile was created. 

The actual “make” program that is used depends on the operating system and 
compiler environment that you are using and have specified. 

See also

Chapter 27, Building Applications Reference

Chapter 33, C and AgileC Runtime Libraries

Chapter 39, AgileC Code Generator Reference

Execution modes

An application generated by the C Code Generator or the AgileC Code Gen-
erator can be executed in two modes, bare and threaded. 

Bare

The application is executed as one unit, in which all the parts are scheduled 
by the internal scheduler in a quasi-parallel way. This means that a transition 
is always executed to its completion and can not be interrupted by another 
transition. When the transition is finished the event is selected and the corre-
sponding transition is executed. This execution mode is called bare.

The bare execution mode does not require much from the execution platform. 
If the application uses timers or needs the current time for some other reason, 
the platform must include a way to read a clock. If the application requires 
dynamic memory, then this has to be implemented, either by using the 
878 IBM Rational Tau User Guide June 2009



Code Generation in IBM Rational Tau
memory package included in the AgileC Code Generator that manages 
memory inside a static array, or by providing two functions similar to the C 
standard functions malloc and free.

Threaded

In the other mode, called threaded, the execution relies on an underlying op-
erating system that supports some kind of parallel execution (threads, tasks, 
processes or whatever the parallel executing entity is called). In this mode the 
parts are divided into a number of groups, where each group executes in one 
thread. Inside a thread the scheduling is the same as in the case above, quasi-
parallel execution, but between threads the underlying operating system 
gives possibilities for context switches between the threads. In this way 
higher priority operations can be preempt a lower priority operation and be 
executed “at once” (given that it is supported by the underlying operating 
system).

Details about how the integration with the operating system is implemented 
for the threaded mode can be found in “Integration with Compiler and Oper-
ating System” on page 1283.

Considerations when selecting execution mode

The decision if the mode without an underlying operating system is adequate 
or not, should be made by comparing the longest transition, which will be the 
maximum latency in the application, with the maximum time allowed from 
the most critical situation is detected, until the code handling this must start 
to execute. If the anticipated execution time for the longest transition is 
shorter than the required task switch latency, then you will have the best 
overall performance running without an extra operating system (Bare), or at 
least with all relevant active classes mapped to the same thread. If the latency 
is not sufficiently small, then you have to rely on preemptive context 
switching properties (between threads) within an external operating system 
(Threaded).
June 2009 IBM Rational Tau User Guide 879



Chapter 26: Building and Code Generation Overview and Examples
Conditional Compilation
Sometimes one single UML model has to describe several different versions 
of an application. The different versions can for example be intended for dif-
ferent platforms or may be one debug/test version and one release version.

In IBM Rational Tau different versions of an application are normally cre-
ated by having different artifacts describing the different versions. Each arti-
fact should contain the necessary information to be able to define the details 
of the application to be produced by running a code generator based on the 
artifact.

This is also the case for the conditional compilation support. The artifacts are 
extended to also describe the conditions that define the conditional compila-
tion.

UML Level Support

On a UML level the conditional compilation is described by a predefined ste-
reotype «conditional» that can be applied to the following entities:

• definitions (e.g. class, signal, operation and interface)

• composite statements (i.e. blocks surrounded by { } in UML textual 
syntax)

• transitions

In addition a possibility to define conditional decision statements to allow 
conditional compilation in graphical state machine diagrams is also intro-
duced.

The «conditional» stereotype has one attribute: expr:Boolean. This at-
tribute defines a condition that determines if the entity is part of an applica-
tion generation or not. Prior to code generation these expressions are evalu-
ated. Entities whose conditional expression evaluates to false will be 
removed from the model and hence are not subject to code generation.

Note
Some code generators support to keep also conditional entities whose con-
dition is false, and instead generate these entities within preprocessor 
blocks (thus postponing removal until preprocessing the generated code). 
See Impact on Code Generation for more information.
880 IBM Rational Tau User Guide June 2009



Conditional Compilation
The expressions used in «conditional» elements (and in conditional deci-
sion answers) may only reference Boolean constants, global or package level 
attributes stereotyped by «conditionalConstant», tests on the predefined 
attribute activeCG and may only include the literals 'true' and 'false' and 
the following operations:

• not

• and

• or

The tests on activeCG are used to check what code generator is used in the 
current build. The activeCG attribute is a Charstring attribute and its value 
is initialized automatically. Conditional expressions can use this attribute to 
test if it is equal to “CGEN” or “CPPAPPGEN” to include or exclude parts 
of the model in C and C++ code generation. The operators “==” and “!=” are 
supported for the tests. An example:

«conditional(.expr = activeCG=="CGEN".)>> {
    i = 10;
}
«conditional(.expr = activeCG!="CGEN".)>> {
    i = 20;
}

Note
The <<informal>> stereotype can also be used for conditional compilation 
as it is equivalent to a conditional expression which evaluates to false.

Conditional Definitions

From a syntactic point of view the stereotype is shown using graphical syntax 
for definitions. The value of the attribute is edited using the Properties Editor 
like in Figure 200 on page 882.
June 2009 IBM Rational Tau User Guide 881



Chapter 26: Building and Code Generation Overview and Examples
It is also possible to use UML textual syntax to apply the stereotype:

Conditional action statements

For composite statements the syntax would be only textual syntax as shown 
in the following statement sequence:

i = 10;
«conditional(. expr = A .)>> {
  j = 11;
}

Conditional transitions

The «conditional» stereotype is not shown in graphics for transitions.

Conditional Decisions

Decision symbols can be marked as conditional. The mechanism is to use to 
mark a decision as conditional using a predefined identifier 
CONDITIONAL. Give the conditional expression in one of the decision an-
swers and include the conditional actions in this branch, see Figure 202 on 
page 883.

Figure 200: Edit a conditional expression

Figure 201: The «conditional» stereotype applied in UML textual syntax

<<conditional(.expr = "A".)>> class myclass {
    
}

882 IBM Rational Tau User Guide June 2009



Conditional Compilation
Restrictions on conditional decisions

There are a number of static constraints on conditional decisions:

• The decision expression must be a Boolean expression following the 
same rules as other conditional expressions

• There must only be two branches in the decision

Figure 202: Decision symbols marked as conditional 
June 2009 IBM Rational Tau User Guide 883



Chapter 26: Building and Code Generation Overview and Examples
• The branch not containing the conditional actions must be marked as 
'else'

• The conditional branch must join the flow of the 'else' branch before the 
first symbol on the 'else' branch following the decision answer symbol.

Artifacts and Conditional Compilation

When building an application in IBM Rational Tau the build settings are de-
scribed by a Build Artifact.

This kind of artifacts are also used to set up the values controlling the condi-
tional compilation.

Conditional expressions may only reference constants or 
«conditionalConstant» attributes defined in a global scope. The artifacts 
provide a means to define build specific values for the global scope at-
tributes. This is provided by means of a special operation in the artifact that 
must be called conditionalInit(). The body of this operation may only 
contain a set of assignment statements that give values to 
«conditionalConstant» attributes.

Note
This is the only way to provide values to the «conditionalConstant» at-
tributes. It is for example not possible to give them default values so all 
«conditionalConstant» attributes that are used in the model must be 
given values in the conditionalInit operations.

Example 318: Assign values to global attributes ––––––––––––––––––––––––––––

Assume three global attributes:

<<conditionalConstant>> Boolean Debug;
<<conditionalConstant>> Boolean Test;
<<conditionalConstant>> Boolean Instrument;

Initialize these in the conditionalInit() operation:

void conditionalInit(){
Debug = true;
Test = false;
Instrument = Debug or Test;

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
884 IBM Rational Tau User Guide June 2009



Conditional Compilation
Impact on Code Generation

The details of the support for the «conditional» stereotype / conditional 
decisions in different code generators is determined by the specific code gen-
erator but two different kinds of support are provided:'

• A pre-processing strategy

• A target language mapping strategy

If the pre-processing strategy is used the «conditional» stereotypes / con-
ditional decisions are handled during a specific pass of the code generator. 
Essentially the expressions are interpreted and the model element for which 
the conditional expression is false is removed from the model. The code that 
is generated will thus not contain any representation of these model elements.

If a target language mapping strategy is used then the «conditional» ste-
reotypes / conditional decisions are mapped to conditional statements in the 
target language, like e.g. #ifdef statements in C/C++.

The pre-processing strategy is mainly useful in a forward generation sce-
nario, but can be applied independent of target language. For example it can 
be applied to Java code generation even though Java does not support a con-
ditional compilation concept.

The target language mapping scenario works both for a roundtrip scenario 
and a forward generation scenario. But it is limited to code generation for 
languages that support a conditional compilation concept.

The C code generators always use the pre-processing strategy whereas the 
C++ code generator uses the target language mapping strategy if roundtrip is 
enabled and the pre-processing strategy if roundtrip is not enabled. The Java 
code generator uses the pre-processing strategy.

Restrictions

Conditional compilation is handled at code generation time only. It is not 
possible to define e.g. two different classes with the same name in the same 
scope using different conditional expressions. 

Conditional compilation is not supported by other code generators than the 
C, C++ and Java code generators.
June 2009 IBM Rational Tau User Guide 885



Chapter 26: Building and Code Generation Overview and Examples
Composite Structures
The purpose of this section is to give an introduction into how to use UML 
composite structure diagrams with a special focus on the support provided in 
the C Advanced and Agile C code generators. In particular it will show how 
composite structure diagrams relate to part-whole relationships and how to 
use these concepts together with dynamic creation of instances and asynchro-
nous communication.

Parts vs. whole relations

In software engineering there is a common need to express that one entity is 
a part of another entity. Typically this is used to show how different compo-
nents are composed of other components in a hierarchical fashion. This rela-
tion is in UML expressed as a composite association. The graphical syntax is 
as shown in Figure 203 on page 886.

The same example can also be shown using one class symbol where the part 
is shown in the attributes compartment (Figure 204 on page 887). 

Figure 203: Class A with B part called ‘myb’.
886 IBM Rational Tau User Guide June 2009



Composite Structures
Yet another way to show the same example is to use textual syntax in e.g. a 
text symbol in a diagram inside the A class (Figure 205 on page 887). 

In the example so far the part-whole relation has been a one-to-one relation. 
However, the relationship can of course be more complex. The most 
common cases are when a container contains either a fixed number of parts 
or when the parts are created dynamically with or without an upper bound on 
the number of allowed instances. In any case this is shown by the Multiplicity 
of the part end of the composite association (Figure 206 on page 888). 

Figure 204: Part shown in the attributes compartment’.

Figure 205: Textual syntax for part.
June 2009 IBM Rational Tau User Guide 887



Chapter 26: Building and Code Generation Overview and Examples
The same example using attribute definitions in a class symbol is shown in 
Figure 207 on page 888. 

The same example using definitions in a text symbol is shown in Figure 208 
on page 889. 

Figure 206: Container with parts of various multiplicity.

Figure 207: Class with parts.
888 IBM Rational Tau User Guide June 2009



Composite Structures
The intention in this example is that whenever an instance of class A is cre-
ated, immediately there must be two instances of ExactlyTwo created since 
there is a fixed multiplicity of 2. No instances of the AtMostTwo or 
UnlimitedNo classes should be created. Instance of these classes are ex-
pected to be created later in the lifetime of the A instance.

However, whenever the A instance is terminated, all of the contained in-
stance should also terminate.

The examples so far shows only use of passive classes. The semantics is the 
same for active classes that contain a separate thread of control and the 
classes could just as well have been active as shown in Figure 209 on page 
889. 

Composite structure vs. part-whole relationships

Composite Structure diagrams are used to show the internal structure of 
UML classes. The ‘internal structure’ that is shown consists of the attributes 
of the class and the connectors that link them together. All kinds of attributes 

Figure 208: Part definitions in a text symbol.

Figure 209: Active classes with parts.
June 2009 IBM Rational Tau User Guide 889



Chapter 26: Building and Code Generation Overview and Examples
can be visualized in a composite structure diagram; composite attributes, 
non-composite attributes, attributes typed by classes and attributes typed by 
datatypes.

An example of this general case is Figure 210 on page 890 (note the dashed 
symbol indicating that ‘aReference’ is not a composite part):

From a design point-of-view the composite structure diagrams provide two 
benefits:

• They give a visual view of the internal structure, making it easier to un-
derstand the structure of a complex application.

• They provide the ‘glue’ to put together components through an ad-
dressing mechanism that allows the parts to be designed independently 
and then graphically linked together when composing the containing en-
tity.

The visualization should be self-evident from the example, but the ad-
dressing mechanism may need some more elaboration. It is based on the pos-
sibility to communicate via the ports of a class instead of based on the iden-
tity of the receiver. So, e.g. if a class A has a port p, then it is possible to write 
the following statement somewhere in the behavior code of class A:

output s() via p;

Figure 210: Composite structure diagrams with the internal structure of a UML class.
890 IBM Rational Tau User Guide June 2009



Composite Structures
The semantic of this statement is that a signal ‘s’ is sent via the port ‘p’, for-
warded via the connector that in a given context is connected to ‘p’ and fi-
nally received by whoever is connected to the other end of the connector. The 
identity of the receiver is completely determined by the composite structure 
diagram where ‘A’ is instantiated.

To make the graphical glue to work the classes should however preferably be 
designed according to certain rules:

• They should have ports with required and/or realized interfaces

• They should use the ports to establish communication with the outside 
world

• They should be designed to be self-contained and have their own thread 
of control. They should thus be active classes.

The implication is that a component typically consists of the following defi-
nitions:

• An active class with ports

• A set of interfaces

A simple example is shown in Figure 211 on page 892. 
June 2009 IBM Rational Tau User Guide 891



Chapter 26: Building and Code Generation Overview and Examples
This component can now be used in a composite structure diagram 
(Figure 212 on page 892) as a part of a larger system. 

In most cases composite structure diagrams focus on the composite attributes 
that define the parts of the class. This is also the reason why the diagram 
(slightly misleading) officially in UML also is called ‘Composite Structure 
diagram’.

Figure 211: Active class with ports.

Figure 212: Components in a composite structure diagram.
892 IBM Rational Tau User Guide June 2009



Composite Structures
Composite Structure diagrams can be used both for active classes and for 
passive classes, but since they often show loosely coupled architectural enti-
ties they are in practise mainly used to describe the top-level active parts that 
define the architecture of an application. Parts that communicate using asyn-
chronous communication and that may be distributed over a network.

In the C code generators the support is restricted to this common case: Com-
posite Structure diagrams can only be used to define the internal structure of 
active classes and is only allowed to contain composite parts typed by other 
active classes.

Dynamically created active instances vs. part-whole 
relationships

In UML active instances can be created dynamically using the ‘new’ state-
ment. Depending on the structure of the application a newly created instance 
can either be created as a composite part of a containing entity or it can be 
created outside all composition hierarchies and composite structures.

The choice depends on how the instance is intended to be used. If the corre-
sponding class (or classes communicating with it) is coded as a component 
with ports etc. and relies on the ports for communication then it needs to be 
inserted in an internal structure to work properly.

If, on the other hand, the class and its surrounding classes do not rely on ports 
for communication but instead always specify the receiving instance when 
sending signals or calling operations then it does not need to be inserted in 
the internal structure of a containing entity.

In the AgileC Code Generator the composition relation is very strictly en-
forced. A newly created instance must either directly be inserted in a compo-
sition relation or it will be considered to be outside all composition relations. 
The syntax used depends on the Multiplicity of the attribute but are shown in 
Example 319 on page 893. 

Example 319: Attribute multiplicity ––––––––––––––––––––––––––––––––––––––

A[0..1] Aref;
// Aref is a reference to one A instance

A[*] Arefs;
// Arefs is a list of reference to A instances

part A[0..1] Apart;
// Apart is a composite part for one A instance
part A[*] Aparts;
June 2009 IBM Rational Tau User Guide 893



Chapter 26: Building and Code Generation Overview and Examples
// Aparts is a composite part for a list of A instances

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 320: Instance creation ––––––––––––––––––––––––––––––––––––––––––

Aref = new A(); 
// This created an A instance outside all 
// composition hierarchies/internal structures
// and keeps a reference to it in Aref´

Arefs.append( new A() );
// This created an A instance outside all
// composition hierarchies/internal structures
// and added a reference to it in ‘Arefs´

Apart = new A();
// This created an A instance as a composite
// part of the containing entity
// as defined by the composite part ‘Apart´
‘
Aparts.append( new A() ); 
// This created an A instance as a composite 
// part of the containing entity and added 
// it to the composite part ‘Aparts´

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

 A common situation is that you need to get a reference to a new instance that 
is added to a composite part. This is accomplished with the ‘offspring’ mech-
anism in UML as in Example 321 on page 894. 

Example 321: Reference from offspring –––––––––––––––––––––––––––––––––––

part A[*] Aparts;
A Aref;
Aparts.append( new A() )
Aref = offspring; 
// Aref will now reference the newly create instance

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The offspring variable will always hold a reference to the latest active in-
stance that is created. 

It is recommended to not rely on that the offspring values will be unaffected 
by other create operations in application code. Assign offspring to an at-
tribute or variable before creating any new instances!

Another aspect that should be noted is that the dynamic creation of instances 
that should be inserted into a composite structure always should be per-
formed by the containing class, i.e. the class that owns the part attribute 
where the instances is inserted. A typical structure for a component is to have 
a behavior defined by a state machine and a set of parts that will contain the 
894 IBM Rational Tau User Guide June 2009



Composite Structures
dynamically created parts. The dynamic creation of the instances is done by 
the state machine code. Figure 213 on page 895 show a fairly typical struc-
ture. First the diagram containing a component definition that defines an 
‘AServer’ that provides on management port (‘mgm’) and a service port (‘s’).

The internal composite structure of the AServer looks as Figure 214 on page 
896. 

Note
The locally defined class LocalServer that is the class that implements the 
serviceI interface. 

Figure 213: Component definition with management port (‘mgm’) and service port.
June 2009 IBM Rational Tau User Guide 895



Chapter 26: Building and Code Generation Overview and Examples
The main server class (‘AServer’) only supports one service. In a more real-
istic case there would of course be more services and AServer would have 
had more local parts. The state machine of the AServer class is shown in 
Figure 215 on page 896. 

Finally, the state machine of the very simple LocalServer class that imple-
ments the service is shown in Figure 216 on page 897. 

Figure 214: Server class with one service.

Figure 215: State machine in the server class. 
896 IBM Rational Tau User Guide June 2009



Composite Structures
Communicating with created instances

As described above there are two different ways to send signals or call oper-
ations on active classes:

• Using the composite structure to find the receiver

• Using explicit addressing of the receiver

There main practical benefit with using the composite structure in terms of 
ports, connectors etc. is that its simplifies the initialization of an application. 
There is no need to communicate references to the different instances that 
will form the executing application during an initialization step. This is par-
ticularly important for embedded applications with hard constraints on how 
dynamically allocated memory is used. The extreme (but fairly common) 
case is a situation where all instances are statically allocated already at ini-
tialization time and no dynamic memory is allocated at all during the execu-
tion. In this case addressing based on ports is very efficient.

Figure 216: State machine for the service. 
June 2009 IBM Rational Tau User Guide 897



Chapter 26: Building and Code Generation Overview and Examples
To be able to use addressing using the composite structure combined with 
dynamic instantiation it is essential to remember to explicitly insert the dy-
namically created instances that should be accessible using the port/con-
nector structure in the composite structure as described in the previous sec-
tion. If this is not done the communication will not succeed.

In case dynamically created instances are not created as part of a composite 
structure they will not be accessible via the ports/connectors. Instead you 
need to use explicit addressing when sending signals or calling operations.

The static structure of a simple example that uses only explicit addressing is 
given by Figure 217 on page 898, by an extract from a class diagram.

There are two active classes ‘A’ and ‘C’ in Figure 217 on page 898, where 
the ‘A’ class has a reference to the ‘C’ class. The ‘A’ class can now create an 
instance of the ‘C’ class and then send a signal to it, as you can see in 
Figure 218 on page 899, from the state machine of class ‘A’:

Figure 217:Static structure with explicit addressing.
898 IBM Rational Tau User Guide June 2009



Composite Structures
In this example you do not create any ports on A and C nor do you create any 
composite structure. When sending the signal it is done directly based on the 
‘myC’ reference and not sent based on any ports.

Even though you do not define any ports on the classes in the example above 
it is possible to use interfaces and ports also when the ports are not used to 
specify the target in a signal sending or a call. By separating the interfaces 
from the implementation of the interfaces you get more extensible and reus-
able design. So, the classes above could as in Figure 219 on page 900, while 
keeping all behavior code. 

Figure 218: State machine of class ‘A’.
June 2009 IBM Rational Tau User Guide 899



Chapter 26: Building and Code Generation Overview and Examples
The benefit is mainly that the ‘A’ and ‘C’ classes now can be reused as com-
ponents in a composite structure. This would not have been possible in the 
previous example where you did not use interfaces and ports. So, if the 
classes are to be designed to encourage reuse it is better to use interfaces and 
ports.

Iterating over parts

In many situations it is required to iterate over all instances contained in a 
composite attribute, i.e. a part. This can be done as in this example. Assume 
that you have an active class Sys with an internal architecture according to 
Figure 220 on page 901. 

Figure 219: Separated interfaces.
900 IBM Rational Tau User Guide June 2009



Composite Structures
Some minor comments on Figure 220 on page 901:

• The behavior port lp. This port makes the state machine of Sys visible 
in the composite structure diagram and you can connect ports on the in-
ternal parts to the state machine of Sys itself.

• The name and the information flows associated with the connector are 
omitted. This is a shorthand that can be used to avoid cluttering a diagram 
with too many details.

It is now possible to iterate over the instances in the b part from inside the 
Sys state machine. This can be done using the length operator and indexing 
as in Figure 221 on page 902. 

Figure 220: Class Sys.
June 2009 IBM Rational Tau User Guide 901



Chapter 26: Building and Code Generation Overview and Examples
Restrictions in C code generators

This section summarizes some of the most important constraints that the C 
code generators (C Code Generator, AgileC Code Generator) put on the 
UML model with respect to architecture and composition of active classes. 
Failure to heed these restrictions will likely lead to undesired behavior.

Composite structure diagrams & composition

Composite structure diagrams are only allowed in active classes.

Only active classes may be used as types of the attributes shown in composite 
structure diagrams.

The attributes shown in composite structure diagrams must be composite 
parts and not references.

Dynamic creation of composite classes

It is not possible to dynamically create instances of classes with internal ar-
chitecture. More precisely this means that if an active class has a composite 
part typed by another active class it is not possible to create an instance of the 

Figure 221: Iteration over the instances. 
902 IBM Rational Tau User Guide June 2009



Composite Structures
outer class. An example: Consider an active class A. Inside A is a composite 
structure diagram with a part symbol typed by B (another active class). It is 
now not possible to dynamically create A instances.

In practise this can be handled using a pattern with a ‘manager’ class that dy-
namically creates all necessary instances, see section Dynamically created 
active instances vs. part-whole relationships, where the ‘AServer’ acted as a 
manager of the contained ‘LocalServer’ instances.

Instance termination

The only way to terminate an instance of an active class is for the instance to 
execute a stop action. It can not be terminated from other instances. In prac-
tise this means that active classes that should be possible to stop from the 
'outside' should include a transition with a signal (e.g. called 'terminate') that 
performs necessary clean up actions and then performs a stop.

Instance creation

Instances that should be inserted in an architecture, i.e. that should be added 
to a composite attribute, must be created by the owner of the attribute. It is 
thus not allowed to reference an attribute defined in a containing scope from 
within a nested class when creating a new instance. To get around this you 
can define an operator in the owner of the attribute which creates and ap-
pends the attribute and returns a reference to the newly created class. This op-
erator can then be called in the nested class.
June 2009 IBM Rational Tau User Guide 903



Chapter 26: Building and Code Generation Overview and Examples
Using the CPtr Type in IBM Rational Tau
The CPtr type is intended to provide features similar to a low-level pointer 
type in UML modeling. It is intended mainly for UML applications that in-
terface with manually coded C or C++ components, but can be used in all 
UML application intended for C code generation. When importing external 
C/C++ declarations all pointers in the external code will be translated to CPtr 
instantiations in the UML model. 

Introduction

Consider for example the following fragment from a .h file:

int * ip;
typedef struct c {
  int i;
} * cp;
int op( cp p );

This will in UML be converted to:

CPtr<int> ip;
class c {
  int i;
}
syntype cp = CPtr<c>;
int op( cp p );
   

From a UML point of view the CPtr type can be seen either as a wrapper class 
that gives class properties to data types or as a low-level alternative to the 
usual class references in UML that provides some additional capabilities. 
The CPtr type is defined in the TTDCppPredefined UML package that is 
loaded by the CppTypes addin and provides following four operators:

SetValue
GetValue
GetAddress
‘[]’

The details of how to use these operators in the UML model is described in 
the rest of this technical note.

CPtr and data types

When using CPtr together with data types it acts like a wrapper class that pro-
vides the following features:
904 IBM Rational Tau User Guide June 2009



Using the CPtr Type in IBM Rational Tau
• It can be dynamically created using ‘new’ statements

• The contained value can be accessed using a ‘GetValue’ method

• The contained value can be changed using a ‘SetValue’ method

• It can be created based on an existing attribute or variable using the 
GetAddress operator

• It can be viewed as an array and indexed. This is only possible when the 
array is allocated in C/C++ code and is mainly intended for integrating 
with external C/C++ code.

Example 322: CPtr allocation and access–––––––––––––––––––––––––––––––––––

class c {
  Integer i;
  Integer j;
  CPtr<Integer> ip;
  CPtr<Integer> jp;
  void test() {

    /* Allocation of a CPtr, usage of SetValue/GetValue 
*/
    ip = new CPtr<Integer>();
    ip.SetValue(10);
    i = ip.GetValue(); // ‘i’ is now 10

    /* Accessing an attribute using GetAddress */
    j = 20;
    jp = CPtr<Integer>::GetAddress(j);
    jp.SetValue(30); // ‘j’ is now also set to 30

    /* Viewing a CPtr as an array */
    CPtr<Integer> intArray;
    Integer len,index;
    [[
      #(intArray) = malloc(10*sizeof(#(Integer)));
      #(len) = 10;
    ]]
    for (index=0; index<len; index=index+1) {
      intArray[index] = 44;
    }
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 905



Chapter 26: Building and Code Generation Overview and Examples
CPtr and classes

CPtr can be used together with classes to provide a low-level view on refer-
ences to objects. However, since this does not give any major benefits com-
pared to using regular references it is not recommended practice for pure 
UML modeling.

The main usage of CPtr and classes is thus when accessing external C/C++ 
code. All structs and classes in external C/C++ code will generate class def-
initions in the corresponding UML. Consider the following example of C 
code:

typedef struct c {
  int i;
} * cp;
int op( cp p );

The imported UML model will essentially contain the following declara-
tions:

class c {
  public int i;
}
syntype cp = CPtr<c>;
int op( cp p );

This can be used from behavior code in the UML model. An example:

cp mycp;
int i;
mycp = new cp();
i = op( mycp );

Recursive use of CPtr

CPtr can be applied recursively. This corresponds to pointers to pointers in 
C/C++ code and works both for CPtr types applied to data types and classes. 
For classes there is one level of indirection less, since a reference to a class 
is treated as semantically the same as a CPtr to the class. So, “new c()” will 
return a reference to “c” and “new CPtr<c>()” will return a pointer to a ref-
erence to “c”.

Example 323: Recursive CPtr––––––––––––––––––––––––––––––––––––––––––––

class c {
   CPtr<Integer> ip;
   CPtr< CPtr<Integer> > ipp;
   CPtr<c> cp;
906 IBM Rational Tau User Guide June 2009



Using the CPtr Type in IBM Rational Tau
   CPtr< CPtr<c> > cpp;
   void test() {
     ip = new CPtr<Integer>();
     ipp = new CPtr< CPtr<Integer> >();
     ip.SetValue(11);
     ipp.SetValue(ip);
     cp = new c();
     cpp = new CPtr<c>();
     cpp.SetValue(cp);
   }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Assignment compatibility of CPtr types

CPtr instantiations are assignment compatible and can be formulated like the 
following:

CPtr<Integer> i1;
CPtr<Integer> i2;
i1 = i2;

When calling operators there is an implicit assignment performed. 

Example 324: Import an external function –––––––––––––––––––––––––––––––––

int op(int * i);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 325: External function in behavioral code of the UML model –––––––––

CPtr<Integer> ip;
ip = new CPtr<Integer>();
ip.SetValue(10);
op( ip );

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Recursive usage of SetValue/GetValue

SetValue/GetValue can be called recursively allowing for them to be used 
as they are in the following constructions:

class c {
  syntype ipType = CPtr<Integer>;
  syntype ippType = CPtr<ipType>;
  ipType ip;
  ippType ipp;
  void test() {
    ip = new ipType();
    ipp = new ippType();
June 2009 IBM Rational Tau User Guide 907



Chapter 26: Building and Code Generation Overview and Examples
    ipp.SetValue(ip);
    ipp.GetValue().SetValue(10);
  }
}

Converting between CPtr and references

A common requirement is to be able to convert between a CPtr applied to a 
class and a usual reference to the class. This is fully supported in the tool and 
may be used in line with the following:

class c {
  public Integer i;
}
syntype CPtr_c = CPtr<c>;
class test {
  CPtr_c cp;
  c cr;
  void test() {
    cr = new c();
    cp = cr;
  }
}

The same can be done with a part as shown by the following example:

part c cv;
CPtr<c> cp;
void test() {
   cv.i=10;
   cp = cv;
}

908 IBM Rational Tau User Guide June 2009



Threaded OS Integrations
Threaded OS Integrations

Overview

RTOS

In the following section the term RTOS integration will be used frequently 
to refer to an adaptation of kernel source code for a specific RTOS (Real-time 
operating system) to allow an application generated by IBM Rational Tau 
from a UML model to run on that RTOS. This adaptation is partly prepared 
in the code delivered for a limited set of operating systems. 

Version differences

The difference between previous versions of threaded integrations and the 
ones presented here is not that large. The integration principles are almost ex-
actly the same. The major difference is that previous versions of integrations 
were expressed using macros, while the new ones uses a functional interface. 
Another difference is that all previous versions were mixed into one header 
file, while in the new integration, each RTOS integration is implemented 
using one header (.h) and one body (.c) file. Both these changes are made 
to increase the readability and to simplify debugging. The change in file 
structure makes it also easier to implement new integrations and for a cus-
tomer to modify an integration.

Previous integrations:
• SUN Solaris (This is a POSIX pthread integration and can be used on 

most UNIX-like operation system.)

• Win32

New integrations:
• POSIX pthreads (tested on SUN Solaris and Linux but can be used on 

most UNIX-like operation system.)

• Win32
June 2009 IBM Rational Tau User Guide 909



Chapter 26: Building and Code Generation Overview and Examples
RTOS integration files

Each RTOS integration consists of two files with the names rtapidef.h and 
rtapidef.c. The rtapidef.h file is included in the scttypes.h file, while the 
rtapidef.c file is included in the sctsdl.c file. As rtapidef.c is included in 
sctsdl.c there are no new files to compile and the make files are not effected, 
except for some compilation options discussed below.

Compilation switches

When it comes to compilation none of the compilation switches used for the 
current threaded integrations should be defined. To use the new integrations 
the following should be given:

• a switch selecting an application kernel, for example SCTAPPLCLENV

• the switch THREADED

• a compiler option to tell the compiler where to find the rtapidef.h and the 
rtapidef.c file. 

Example: cc -DSCTAPPLCLENV -DTHREADED -I/some/suitable/path

In the remaining part of this document the new threaded integrations are de-
scribed in detail. 

Threaded integrations

To implement a new integration or to understand an existing one it is recom-
mended to use this manual together with the code for some existing integra-
tion(s). There are some major aspects that have to be handled to implement 
an integration with real-time operating system. 

• It is necessary to implement a clock function.

• There is need for a number of mutexes or binary semaphores to protect 
some shared data.

• Some startup code, for creating threads with relevant properties and syn-
chronizing them are needed.

• A thread must be able to suspend its execution when it has nothing to do. 
It must then be possible to wake it up again when a signal is sent to a part 
in the thread.
910 IBM Rational Tau User Guide June 2009



Threaded OS Integrations
To explain the details in these integration aspects the POSIX integration will 
be used as an example. Apart from the code mentioned below the rtapidef.h 
should include the necessary system include files to be able to access the con-
cepts needed. 

Example 326: Includes in rtapidef.h for POSIX –––––––––––––––––––––––––––––

#include <pthread.h>
#include <sched.h>
#include <semaphore.h>
#include <time.h>
#include <sys/time.h>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the RTOS has any requirements on the main function, which might be the 
case, it is possible to rename the main function included in uml_kern.c by de-
fining XMAIN_NAME to for example:

#define XMAIN_NAME agilec_main

Then the user has to implement a proper main function that calls the 
agilec_main function. 

The clock function

To support the SDL concept of timers, a clock function is necessary. The 
generated code and the kernel assumes that there is a clock function called 
xNow that returns the current time. Time values are represented by values of 
type SDL_Time which is defined as:

typedef struct
  s, ns xint32;
} SDL_Time;

xint32 is implemented as a 32-bit int. The components s and ns represent 
the number of seconds and nanoseconds passed from some time in the past 
depending on the implementation of the clock function.

There are two standard implementations of the clock function, one for UNIX 
like systems and one for Windows. In Windows the standard function 
_ftime is used to read the system clock, while on UNIX like systems the 
standard function clock_gettime is used.

To implement a clock function you should include code in your own 
rtapidef.h and rtapidef.c files according to the details below. 
June 2009 IBM Rational Tau User Guide 911



Chapter 26: Building and Code Generation Overview and Examples
If timers are not used and the clock is not explicitly accessed in SDL or C, 
there is no need for a clock implementation. Just include the macro defini-
tion:

#define xInitSystime()

in rtapidef.h.

If a clock implementation is needed then include the following prototypes in 
rtapidef.h:

extern void xInitSystime(void);
extern SDL_Time xNow (void);

If no initialization function is needed then the xInitSystime function can 
be replaced by the macro.

#define xInitSystime()

In the file rtapidef.c the implementation of these functions should be pro-
vided. The implementations will depend a lot on the support in software and 
hardware for the underlying architecture.

Protection of shared data

It is necessary to protect the list of available signals, the list of available 
timers, and a few other things. For this four global mutexes or binary sema-
phores are needed. These variables should be defined extern in 
rtapidef.h and declared in rtapidef.c. The names of the variables 
should be the same as in the example given below.

Example 327: In rtapidef.h: –––––––––––––––––––––––––––––––––––––––––––––

extern pthread_mutex_t xFreeSignalMutex;
extern pthread_mutex_t xFreeTimerMutex;
extern pthread_mutex_t xCreateMutex;
#ifdef USER_CFG_USE_MEMORY_PACK
  extern pthread_mutex_t xMemoryMutex;
#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 328: In rtapidef.c:

pthread_mutex_t xFreeSignalMutex;
pthread_mutex_t xFreeTimerMutex;
pthread_mutex_t xCreateMutex;
#ifdef USER_CFG_USE_MEMORY_PACK
  pthread_mutex_t xMemoryMutex;
912 IBM Rational Tau User Guide June 2009



Threaded OS Integrations
#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

These four variables should be initialized during the startup of the applica-
tion to an unlocked state. The function xThreadInit is a proper place for 
this initialization. 

Example 329: xThreadInit ––––––––––––––––––––––––––––––––––––––––––––––

void xThreadInit (void)
{
  (void)pthread_mutex_init(&xFreeSignalMutex, 0);
  (void)pthread_mutex_init(&xFreeTimerMutex, 0);
  (void)pthread_mutex_init(&xCreateMutex, 0);
  #ifdef USER_CFG_USE_MEMORY_PACK
    (void)pthread_mutex_init(&xMemoryMutex, 0);
  #endif
  ....
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The lock and unlock operation must also be implemented for mutexes or bi-
nary semaphores. The following two functions should be implemented.

Example: In rtapidef.h:

extern void xThreadLock (pthread_mutex_t *);
extern void xThreadUnlock (pthread_mutex_t *);

In rtapidef.c:

void xThreadLock (pthread_mutex_t *M)
{
  (void)pthread_mutex_lock(M);
}

void xThreadUnlock (pthread_mutex_t *M)
{
  (void)pthread_mutex_unlock(M);
}

Startup phase - creating the threads

After some basic initialization the kernel will in the main function start the 
specified threads. For each thread the functions xThreadInitOneThread 
and xThreadStartThread will be called, where xThreadInitOneThread 
should perform some thread specific initialization and 
xThreadStartThread should start the thread. Each thread should run the 
June 2009 IBM Rational Tau User Guide 913



Chapter 26: Building and Code Generation Overview and Examples
function xMainLoop declared in the kernel. This is performed by using a 
wrapper function, xThreadEntryFunc, which is defined in the integration 
and is the function really started in the thread. 

After all the threads have been started the function xThreadGo is called in 
the function main. Some more information on these functions are given 
below.

It is important that the started threads do not execute any SDL transitions be-
fore all threads are created. Therefore the xThreadEntryFunc will as first 
action wait on a semaphore. The xThreadGo function will when all threads 
are created release this semaphore.

Many functions has a pointer to type xSystemData as parameter. This con-
tains the local information for the thread. Among other things it contains a 
field of type xThreadVars, which should be defined in the RTOS integra-
tion.

Example: xThreadVars type in rtapidef.h

typedef struct {
  pthread_mutex_t SignalQueueMutex;
  pthread_cond_t  SignalQueueCond;
  pthread_t       ThreadId;
} xThreadVars;

where the two first fields will be discussed in the next section, and the 
ThreadId will be used during the startup phase to store the identity of the 
threads.

The code for the behavior described in this section should look something 
like the following example.

Example: In rtapidef.h:

extern sem_t xInitSem;
#if !defined(USER_CFG_USE_xInEnv) && !defined(XENV)
  extern sem_t xMainThreadSem;
#endif

extern void xThreadInitOneThread (
struct _xSystemData *);

extern void xThreadStartThread (
struct _xSystemData *,
unsigned int, unsigned int,
unsigned int, unsigned int);

In rtapidef.c:
914 IBM Rational Tau User Guide June 2009



Threaded OS Integrations
sem_t xInitSem;
#if !defined(USER_CFG_USE_xInEnv) && !defined(XENV)
sem_t xMainThreadSem;

#endif

void xThreadInit (void)
{
....
(void)sem_init(&xInitSem, 0, 0);

}

void xThreadInitOneThread(struct _xSystemData *xSysDP)
{
  (void)pthread_mutex_init(

&xSysDP->ThreadVars.SignalQueueMutex, 0);
  (void)pthread_cond_init(

&xSysDP->ThreadVars.SignalQueueCond, 0);
}

static void *xThreadEntryFunc (void *xSysDP)
{
  (void)sem_wait(&xInitSem);
  (void)sem_post(&xInitSem);
  xMainLoop((xSystemData *)xSysDP);
}

void xThreadStartThread(struct _xSystemData *xSysDP,
                        unsigned int StackSize,
                        unsigned int Prio,
                        unsigned int User1,
                        unsigned int User2)
{
  pthread_attr_t Attributes;
  ....
  (void)pthread_create(&xSysDP->ThreadVars.ThreadId,
                       &Attributes, xThreadEntryFunc,

(void *)xSysDP);
  ....
}

void xThreadGo(void)
{
  (void)sem_post(&xInitSem);

  #if defined(USER_CFG_USE_xInEnv)
    xInEnv();  /* AgileC */
  #elif defined(XENV)
    xInEnv(xNow());  /* Cadvanced */
  #else
    (void)sem_init(&xMainThreadSem, 0, 0);
    (void)sem_wait(&xMainThreadSem);
  #endif
}

June 2009 IBM Rational Tau User Guide 915



Chapter 26: Building and Code Generation Overview and Examples
The xInitSem semaphore is used for synchronization of the threads. It is ini-
tialized in the beginning of xThreadInit to 0, that is to a blocking state. 
After that the xThreadStartThread once for each thread that is to be 
started. The function pthread_create will call the function given as third 
parameter (xThreadEntryFunc) with the void * parameter given as fourth 
parameter (the xSysD pointer) as parameter. pthread_create will also store 
the identity of the thread in the variable passed as first parameter. The second 
parameter is the properties of the thread. This will be discussed later in this 
section.

If any of the threads get a chance to execute before all the threads are created, 
these threads will hang on the sem_wait call in xThreadEntryFunc, until 
the main thread calls xThreadGo that will post the semaphore xInitSem 
once. One of the threads waiting on this semaphore will then be able to exe-
cute and will immediately post the semaphore again. This will continue until 
all threads are free to execute.

After that all threads are running and depending on the OS and the applica-
tion properties, the main thread can perform different things. The recommen-
dation is to call the xInEnv function and let that function run in this thread. 
For more details see the discussion on xInEnv. Another alternative is to hang 
the main thread on a semaphore, as shown above using the semaphore 
xMainThreadSem (if xInEnv is not used). In this case you can post the 
xMainThreadSem semaphore anywhere to restart the execution of the main 
thread.

When the main thread returns from the function xThreadStart, the program 
will continue to execute in the main function and will perform a call to exit. 
The behavior of a threaded program when the main thread performs exit, is 
OS dependent. In POSIX pthreads all threads are stopped at such an action. 
That is the reason it is important to hang the main thread at the end of the 
xThreadStart function. 

Now to the properties of the threads. In most RTOS, properties like stack size 
and priority can be set for individual threads. Together with the definition of 
the thread artifacts, four integer values can be specified. 

• The first value is interpreted as the stack size.

• The second value is interpreted as the priority.

• The third and fourth values can be used for other properties, defined by 
the RTOS integration or defined by you. 
916 IBM Rational Tau User Guide June 2009



Threaded OS Integrations
The currently predefined integrations only makes use of the first and second 
values. These values are passed as parameters to the xTreadStartThread 
function.

How the properties are set up in detail depend on the RTOS. Please see the 
available integrations, in the function xThreadStartThread, for examples.

In rtapidef.h proper default values for the four xThreadData fields 
should be set up. These default values are used if no value is specified in the 
thread definition.

Example:

#define DEFAULT_STACKSIZE     1024
#define DEFAULT_PRIO             0
#define DEFAULT_USER1            0
#define DEFAULT_USER2            0

Suspending and waking up threads

When a thread finds out that it has nothing more to do, at least just for the 
moment, it should suspend itself to make the processor available for other 
threads. The thread should then wake up again either when a timer has ex-
pired and needs to be handled, or when some other thread (including xInEnv) 
sends a signal that should be treated by the suspended thread.

To implement these features one mutex or binary semaphore is used together 
with some sort of conditional variable. You need the possibility to perform a 
condition wait, with or without a time-out. You need also a way to signal to 
a thread to wake up again. These two entities are needed for each thread and 
is therefore included in the xThreadVars struct mentioned earlier:

typedef struct {
  pthread_mutex_t SignalQueueMutex;
  pthread_cond_t  SignalQueueCond;
  pthread_t       ThreadId;
} xThreadVars;

The purpose of the SignalQueueMutex is to protect the signal queue where 
signals from the outside of the thread are inserted. The SignalQueueCond 
should facilitate the conditional wait.
June 2009 IBM Rational Tau User Guide 917



Chapter 26: Building and Code Generation Overview and Examples
The SignalQueueMutex should be initialized in xThreadInitOneThread. 
If SignalQueueCond needs to be initialized it could be performed at the 
same place. 

Example 330 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

void xThreadInitOneThread(struct _xSystemData *xSysDP)
{
(void)pthread_mutex_init(&xSysDP->ThreadVars.SignalQueueMutex, 0);
(void)pthread_cond_init(&xSysDP->ThreadVars.SignalQueueCond, 0);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The SignalQueueMutex is locked by using the function xThreadLock, dis-
cussed above. It is then unlocked in three different ways:

• xThreadUnlock (discussed above)

• xThreadWaitUnlock 

• xThreadSignalUnlock 

The xThreadWaitUnlock is called by the thread itself when it has come to 
the conclusion that it should suspend itself, while xThreadSignalUnlock is 
called by another thread that wants to wake up the current thread. Both func-
tions are passed the xSysD pointer for the thread that the operation should be 
performed on.

Example: In rtapidef.h:

extern void xThreadWaitUnlock (struct _xSystemData *);
extern void xThreadSignalUnlock (struct _xSystemData *);

Example: In rtapidef.c:

void xThreadWaitUnlock (struct _xSystemData *xSysDP)
{
  #if defined(CFG_USED_TIMER) || defined(THREADED)
  #ifdef THREADED
      /* Cadvanced */
    if (xSysDP->xTimerQueue->Suc==xSysDP->xTimerQueue) { 
  #else
      /* AgileC */
    if (! xSysDP->TimerQueue) {
  #endif
      (void)pthread_cond_wait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex);

    } else {
      struct timespec timeout;
      #ifdef THREADED
          /* Cadvanced */
918 IBM Rational Tau User Guide June 2009



Threaded OS Integrations
        timeout.tv_sec =
((xTimerNode)xSysDP->xTimerQueue->Suc)->
TimerTime.s;

        timeout.tv_nsec =
((xTimerNode)xSysDP->xTimerQueue->Suc)->
TimerTime.ns;

      #else
          /* AgileC */
        timeout.tv_sec = xSysDP->TimerQueue->Time.s;
        timeout.tv_nsec = xSysDP->TimerQueue->Time.ns;
      #endif
      (void)pthread_cond_timedwait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex,
&timeout);

      
    }
  #else
    (void)pthread_cond_wait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex);

  #endif
  (void)pthread_mutex_unlock(

&xSysDP->ThreadVars.SignalQueueMutex);
}

void xThreadSignalUnlock (struct _xSystemData *xSysDP)
{
  (void)pthread_cond_signal(

&xSysDP->ThreadVars.SignalQueueCond);
  (void)pthread_mutex_unlock(

&xSysDP->ThreadVars.SignalQueueMutex);
}

At the time when xThreadWaitUnlock or xThreadSignalUnlock is called 
the SignalQueueMutex will be locked and must therefore be unlocked at the 
end of both functions.

In xThreadWaitUnlock the thread wants to suspend itself. If timers are used 
and there is a timer active in the timer queue, it should wait until the timer 
expires or until some other thread tells it to wake up. In POSIX pthreads the 
function pthread_cond_wait performs exactly this. If timers are not used 
or there is no timer active, the thread should be suspended until someone else 
wakes it up. In POSIX pthreads this can be achieved with the function 
pthread_cond_wait.

In xThreadSignalUnlock the thread given by the parameter should be 
waken up. Here the pthread function pthread_cond_signal can be used.
June 2009 IBM Rational Tau User Guide 919



Chapter 26: Building and Code Generation Overview and Examples
The integrations described here are also used for SDL Suite. This adds a few 
requirements in the implementation of a threaded integration. First a function 
that can stop a thread is needed. 

In rtapidef.h:

#if defined(THREADED) || defined(CFG_USED_DYNAMIC_THREADS)
extern void xThreadStopThread(struct _xSystemData *);
#endif

In rtapidef.c:

#if defined(THREADED) || defined(CFG_USED_DYNAMIC_THREADS)
void xThreadStopThread(struct _xSystemData *xSysDP)
{
  pthread_mutex_destroy(&xSysDP->ThreadVars.SignalQueueMutex);
  pthread_cond_destroy(&xSysDP->ThreadVars.SignalQueueCond);
  pthread_exit(0);
}
#endif

The xThreadStopThread function should clean up the thread specific sema-
phores and stop the thread. It is always the thread that should be stopped that 
will call this function to stop itself. 

Another difference is the way timers are accessed for the two code genera-
tors. This effects the details in the xThreadWaitUnlock function. Please see 
this function above and especially the sections under #ifdef THREADED.

Example 331: Defines in scttypes.h –––––––––––––––––––––––––––––––––––––––

The following defines are relevant (from scttypes.h):

#define THREADED_GLOBAL_VARS
#define THREADED_GLOBAL_INIT \
     xThreadInit();
#define THREADED_THREAD_VARS \
     xThreadVars ThreadVars;
#define THREADED_THREAD_INIT(SYSD) \
     xThreadInitOneThread(SYSD);
#define THREADED_THREAD_BEGINNING(SYSD)
#define THREADED_AFTER_THREAD_START \
     xThreadGo();
#define THREADED_START_THREAD(F, SYSD, STACKSIZE, PRIO, USER1, 
USER2) \
xThreadStartThread(SYSD, STACKSIZE, PRIO, USER1, USER2);
#define THREADED_STOP_THREAD(SYSD) \
     xThreadStopThread(SYSD);
#define THREADED_LOCK_INPUTPORT(SYSD) \
     xThreadLock(&SYSD->ThreadVars.SignalQueueMutex);
#define THREADED_UNLOCK_INPUTPORT(SYSD) \
     xThreadUnlock(&SYSD->ThreadVars.SignalQueueMutex);
#define THREADED_WAIT_AND_UNLOCK_INPUTPORT(SYSD) \
     xThreadWaitUnlock(SYSD);
#define THREADED_SIGNAL_AND_UNLOCK_INPUTPORT(SYSD) \
     xThreadSignalUnlock(SYSD);
#define THREADED_LISTREAD_START  xThreadLock(&xFreeSignalMutex);
#define THREADED_LISTWRITE_START xThreadLock(&xFreeSignalMutex);
920 IBM Rational Tau User Guide June 2009



Threaded OS Integrations
#define THREADED_LISTACCESS_END  xThreadUnlock(&xFreeSignalMutex);
#define THREADED_EXPORT_START    xThreadLock(&xCreateMutex);
#define THREADED_EXPORT_END      xThreadUnlock(&xCreateMutex);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 921



Chapter 26: Building and Code Generation Overview and Examples
Application Examples
To fully assimilate and take advantage of the examples in this section, it is 
assumed that you have a knowledge of IBM Rational Tau, how to work with 
projects, models and diagrams, how to build applications and so forth. 

The examples can all be started from within IBM Rational Tau if you go to 
the File menu and open the New dialog. Locate the Template tab and select 
the desired example to run. 

Examples with environment (EchoServer)

The examples are complete to allow “hands on” exercises, where you build 
the applications, run them and probably spend some time learning and under-
standing the supplied code to assimilate how to implement the integration be-
tween UML, C and C++ languages. 

Behavior

The application in the collection of examples models a small server, with a 
limited and simplistic functionality. The way the application behaves is the 
following:

1. For every reception of the signal Say(Charstring, Duration), sent to 
the system from the environment, the active class Server dynamically 
creates an instance of the active class RequestHandler. 

2. RequestHandler waits the number of time units specified by the Duration 
parameter.

3. The Charstring parameter is then concatenated to itself.

4. Lastly, the signal Echo(Charstring) is signal sending to the environment 
from the active class RequestHandler.

Deployment and threading example

The “Deploy” example highlights the deployment and threading aspects of 
code generation. The AgileC Code Generator is used as the main flavor of 
code generator, since it is indented for situations where efficiency of the gen-
erated code is of importance.
922 IBM Rational Tau User Guide June 2009



Application Examples
Behavior

The deployment example is a typical Client-Server system. The top active 
class “Top” contains two components “m” and “s” of the types “Master” and 
“Slave”, respectively (left part of Figure 222 on page 923). The master sends 
a request to the slave and waits for a reply. This is repeated 100 times (200 
signals are sent). Before the first signal is sent the master prints the string 
“Starting” to stdout, and after the last signal is received it prints the string 
“Done”.

The Slave class contains both a state machine and a component “s1” of the 
type “S1”. When the Slave class receives a request from the Master class, it 
initiates a signalling exchange sequence with its part “s1”. The signalling se-
quence is repeated 100000 times before the Slave class responds to the 
Master class. In total two million signals are sent in this example.

Figure 223 on page 924 demonstrates the situation in an alternative notation 
(squares represent active classes, circles represent state machines and lines 
signal flows). 

Figure 222: Deployment in a composite structure diagrams
June 2009 IBM Rational Tau User Guide 923



Chapter 26: Building and Code Generation Overview and Examples
Note
The Master state machine and the Slave state machine communicate and, 
similarly how the Slave state machine communicates with the state machine 
in its part s1.

Deployment into threads

The example could be deployed in many ways, depending on both the type 
of application to generate (Model Verifier or AgileC Code Generator appli-
cation) and what kind of target system. Also the mapping of the state ma-
chines to different threads within the application can be varied. 

In this example the following mappings to threads are used:

• One thread, containing all state machines

• Two threads – one thread holds the part m and one holds the part s.

• Three threads – one thread for each state machine

The class diagrams named “Deployment One Thread”, “Deployment Two 
Threads” and “Deployment Three Threads” describe these three cases.

Figure 223: Deployment alternative notation

Figure 224: Deployment mappings
924 IBM Rational Tau User Guide June 2009



Application Examples
Figure 225: Deployment into one Thread

Figure 226: Deployment into two Threads
June 2009 IBM Rational Tau User Guide 925



Chapter 26: Building and Code Generation Overview and Examples
Thread artifacts

Thread Artifacts are named compositions of the Build Artifacts. The Thread 
Artifact “T1” is used in both the two- and three-threaded cases.

Each of the thread artifacts holds a list of instance names of the state ma-
chines that the thread should contain. These names are fully qualified UML 
instance names relative to the “manifested” class. In this case there are the 
following possibilities:

• m – Denotes the part m of the Top class.

• s – Denotes the part s of the Top class.

• s.self – Denotes the state machine in the part s of the Top class.

• s.p1 – Denotes the part p1 in the part s of the Top class.

This list of instance names is edited using “Build Settings”, for example 
Right-click on the “T” artifact and select “Build Settings”. The following ed-
itor is displayed:

Figure 227: Deployment into three Threads
926 IBM Rational Tau User Guide June 2009



Application Examples
In addition to the list of instances that are to run in a thread, it is also possible 
to set the priority and stack size for each thread. The two attributes named 
“User 1” and “User 2” are available for the user to specify additional proper-
ties for the thread. (In this example none of these additional values are used.)

Three more build artifacts are provided in the example:

• Single – This Build Artifact is not composed of any thread artifacts and 
is used to build a bare version. In this case the behavior is the same as that 
of the “One” thread. 

• ModelVerify – This artifact is used to build a Model Verifier executable.

Building

Each of the Build Artifacts described earlier can be built by right-click on the 
artifact and selecting Build on the shortcut menu, or from the Build menu 
using the command Build Configuration.

Figure 228: Properties for thread artifact T
June 2009 IBM Rational Tau User Guide 927



Chapter 26: Building and Code Generation Overview and Examples
In this case, the class diagram named “Configuration ALL” can be used to 
build the four Build Artifacts “ModelVerify”, “One”, “Two” and “Three”.

Execution

Only the executable produced by the “ModelVerify” Build Artifact can be 
launched from within the IBM Rational Tau framework. To launch any of 
other executable a command shell is required.

Execution performance

The three threading scenarios have different timing characteristics, and 
hence show different execution performance. In the example, signal sending 
is the main issue. The following execution times were measured on a 
800MHz Intel CPU running Windows 2000.

Although these time measurements are crude, they do highlight the addi-
tional overhead due to signal sending between threads. 

Figure 229: Configuration diagram

Artifact One Two Three

Time (s) 0.7 0.8 15.0
928 IBM Rational Tau User Guide June 2009



27
Building Applications Reference

This document is a reference to the build of C, C++ and Java applications 
from UML models.
June 2009 IBM Rational Tau User Guide 929



Chapter 27: Building Applications Reference
Interactive Build Interface
The Application Builder manifests itself through the following components: 
Build Artifacts, Configurations, a Build Wizard, a Build Menu and build set-
tings contained in Stereotypes and attributes that are accessed through the 
Properties Editor. 

Build Artifact

A build artifact is an artifact with a build stereotype applied. The build ste-
reotype defines which kind of build artifact it is, for example a C++ or Java 
build artifact. If more than one build stereotype is applied to an artifact, it is 
not defined which is used if a build operation is initiated on the artifact.

Build artifacts are displayed in the workspace window by using icons with a 
special graphical appearance to easily associate a build artifact with its func-
tion (defined by the attributes in the «Icon» stereotype). This makes it easier 
to distinguish between build artifacts. The figure below demonstrate the con-
nection between the icon of a build artifact shown in the model view and the 
<<Icon>> stereotype on the corresponding build stereotype.

See also

“Using Build Artifacts” on page 831.

Build Stereotype

The definition of a build stereotype defines a set of build operations and the 
build settings. The build settings are the attributes of the build stereotype and 
represent the settings for all tools associated with the build stereotype, such 

Figure 230: Artifact Icons
930 IBM Rational Tau User Guide June 2009



Interactive Build Interface
as code generators or run-time systems. The build operations specify the var-
ious actions that can be initiated on a build artifact. The build operations ap-
pear in the build shortcut menu.

All build stereotypes inherit from the (abstract) generic build stereotype 
«build».

Note
The generic build stereotype «build» is normally hidden in order to reduce 
the visible stereotypes.

Build Operations

There are two kinds of build operations; "dynamic" and "static".

A dynamic build operation is defined using an operation of a build stereo-
type. That is, the build stereotype “owns“ the definition of the operation. The 
name of the operation is used in the Build shortcut menu. This makes it pos-
sible to choose any name of the operation, not just “Generate”, “Build” or 
“Make” as mandated by the static build operations.

The figure above demonstrates the build artifact ‘C#’ with the build opera-
tion ‘Generate’ and how these names are used in the build menu.

The two stereotypes «bopAgent» and «bopABW» are used to define the ac-
tual action of the dynamic build operation. One of them must be applied to 
the definition of the operation. If neither is applied, the operation is not rec-
ognized as a build operation. If both are applied, the behavior is not defined.

«bopAgent» is used to specify that the action of the build operation is exe-
cuted using Agents that execute within the address space of IBM Rational 
Tau. «bopABW» is used to specify that the action of a build operation is ex-
ecuted using an external executable in a process by itself. This means that 
IBM Rational Tau is not blocked during the execution of code generation and 
the code generation can be interrupted using the “Stop Build” button.

Figure 231: Build Operation
June 2009 IBM Rational Tau User Guide 931



Chapter 27: Building Applications Reference
If the executable specified using «bopABW» is "ABWGen" agents are used 
in the same way as if «bopAgent» was used, with the important difference 
that they execute in an external process.

The static build operations are used to describe a static set of operations; 
"check", "generate", "build", "make", "clean", "launch" and "update". 

Note
Static build operations are deprecated. The new and more flexible dynamic 
build operations should be used instead. Static build operations are de-
scribed here for completeness only.

See also

“ABWGen” on page 2033

Configuration

A IBM Rational Tau project contains at least one configuration, of which ex-
actly one is the active configuration. The current project and the active con-
figuration of the current project are visible in the project tool bar. 

A configuration groups an arbitrary number of build artifacts. When building 
a configuration, all the build artifacts it contains are built in quasi-parallel 
fashion. The order in which they are built is described in Multiple build arti-
facts – configurations. 

Build Root

A build root specifies and delimits the subset of the model to build. More in-
formation about how to use build roots is available in the user’s guide. 

See also

“Using Build Roots” on page 840 

Build Type

A build type specifies which code generator is used by a Build Artifact. The 
available build types are: 

• Model Verifier
932 IBM Rational Tau User Guide June 2009



Interactive Build Interface
• C Code Generator

• AgileC Code Generator

• C++ Application Generator

• Java

• Make settings

• Makefile generator

All of the build types above inherit from the generic build type build, which 
does not define any particular code generator and it is not possible to use for 
real builds. 

See also

“Using Build Types” on page 841

Build Settings

Build settings control how to build a model. Each Build Type has its indi-
vidual build settings. These build settings are implemented as Build stereo-
types and properties. For each Build Artifact, a number of stereotypes can be 
attached. 

Below is a summary of the build settings available for the supported build 
types. 

Model Verifier settings

This build type gives you the option to specify the following settings:

• Specifying a Target Directory

• Including support for sending signals to the environment and receiving 
signals from the environment

• Specifying the host platform

• Which C/C++ compiler to use

• Supplying a make template file

• Option to compile in C++ mode

• Specifying to compile the generated code as an application or as a library

• Convenience settings such as verbosity and suppressing warnings.
June 2009 IBM Rational Tau User Guide 933



Chapter 27: Building Applications Reference
C Code Generator settings

This build type allows to specify the same settings as for the Model Verifier, 
including the following additions:

• Option to generate a threaded application

• Prefixing of generated names in C

• A user-defined (customized) run-time library can also be specified as an 
alternative to one of the defined libraries that are provided with the C 
Code Generator. 

AgileC Code Generator settings

This build type allows to specify the settings that can be found for the Model 
Verifier and C Code Generator, and with the following addition:

• Advanced settings for naming of generated code

• Settings for handling of processes, signals, timers

• Settings that impact the run-time performance such as dynamic memory 
management

• Run-time error detection in the generated code.

C++ Application Generator settings

This build type allows to specify the settings that can be found for the C++ 
Application Generator. Some example settings include:

• Specifying a Target Directory

• Specifying prefixing of names.

• Options for how to layout and organize the generated code.

• How to link with the Tau Object Run Time (TOR) library.

• Which unit of time to use in a generated application which makes use of 
timers.

• Which port and host to use when debugging a generated C++ application 
with IBM Rational Tau.

• If changes made in generated files should be possible to round-trip back 
to the UML model.

• Whether code generation and/or model update should be automatically 
performed or not.
934 IBM Rational Tau User Guide June 2009



Interactive Build Interface
See Translation Options for a complete listing.

Java code generator settings

This build type allows to specify the settings that can be found for the Java 
code generator. Some example settings include:

• Specifying a Target Directory

• Which Java version to use.

• Whether code generation and/or model update should be automatically 
performed or not.

See Java Build Artifact Settings for a complete listing.

Make settings

This build type allows to specify the following:

• Which platform specific conventions should be used when calling 
“make”

• Which make file to submit as input

• Specifying user defined options to “make”

Makefile Generator settings

This build type allows to specify the following:

• Where to put the generated make file

• Which dialect of “make” to use

• Specifying user defined section to add to the generated make file.

See also

“Model Verifier” on page 1000 

“AgileC Code Generator” on page 960 

“Make settings” on page 997

“Makefile generator” on page 998 
June 2009 IBM Rational Tau User Guide 935



Chapter 27: Building Applications Reference
Build Wizard

The build wizard dialog prompts the user for the information required for a 
build in the following cases:

• When a build is initiated on a Build Artifact with incomplete settings. In 
this case the Build Root and/or build type are preset to the value of the 
build artifact. The values that are defined when using the wizard are then 
stored in the build artifact.

• When a build is initiated on a model element that is not a build artifact, 
and has no build artifact associated. In this case the build root is filled in.

• When a Configuration build is initiated and the list of build artifacts in 
the configuration is empty.

Properties specified in the build wizard

The build wizard prompts the user to specify the following properties:

• Manifests

This field displays the fully qualified name of the Build Root to build. 
Manifests specifies a relation between a Build Artifact and the element 
(e.g. a class or package) that is used as root for a build.

• Set

Pressing the Set button allows to designate the build root in a class hier-
archy tree, based on the current project model.

• Build type

• The Build Type choice is used to designate the Build Type. The avail-
able choices depend on which build types are enabled in the project and 
on the literal values available in the build type enumeration type (which 
is to be set as a property on a build artifact).Add artifact to active con-
figuration (optional choice)

This toggle allows to insert the artifact (which is created after the wizard 
has completed) into the currently active Configuration. See “Multiple 
build artifacts – configurations” on page 833. 

• Properties (optional choice)

– This button opens a modal Properties Editor where properties that are 
not accessible in the build wizard, such as the build artifact name, can 
be changed. 
936 IBM Rational Tau User Guide June 2009



Interactive Build Interface
File Artifact

A file artifact is an artifact with a file stereotype attached. All file stereotypes 
inherit from the generic stereotype «file»

These artifacts are used to specify how model elements are implemented on, 
or ‘connected’ to files. They are also used to model dependencies between 
UML sources and executables or libraries, to ensure a proper chain of build 
dependencies.

By adding a file stereotype to an artifact, it becomes specialized and is given 
a purpose when transforming the abstract model to a concrete implementa-
tion – i.e. when building the application. 

The following file artifacts are available to use when building applications 
using the C++ Application Generator:

• cppHeaderfile

• cppImplementationfile 

• executable 

• library

– dynamicLibrary

– staticLibrary

• makefile 

The following file artifacts are available to use when building applications 
using the Java code generator:

• javaFile

• jarFile 

Note
When building applications with the present version of IBM Rational Tau, 
file artifacts are used by the C++ Application Generator and the Java code 
generator only. The connection between model elements and files cannot be 
specified using file artifacts for applications generated by the AgileC Code 
Generator, C Code Generator and Model Verifier. 

See also

“Using File Artifacts” on page 834.
June 2009 IBM Rational Tau User Guide 937



Chapter 27: Building Applications Reference
Thread Artifact

A thread artifact is an artifact with the stereotype «thread» attached. Thread 
artifacts are stereotyped classes that represent the threads within an execut-
able application. The Class diagram editor is used for modeling such classes. 

Thread artifacts are used exclusively with the AgileC Code Generator and C 
Code Generator.

For the C++ Application Generator and the Java code generator threads are 
defined and manipulated programmatically using utilities in the TOR library.

See also

“Using Thread Artifacts” on page 834 

Project Tool Bar

The project tool bar consists of the Active project, Active configuration, Ac-
tive tool and a Build tool bar with quick buttons. 

Active project

This box allows to switch between the projects contained in the currently 
loaded workspace. 

Active configuration

This box allows to change the active Configuration. The list of items avail-
able for selection contains the configurations defined in the active project. 
Changing the active configuration is a handy feature when managing mul-
tiple builds from a model. 

Active tool

This box defines the ‘tool’ used when building applications. At present time 
it contains one item only – Application Builder.

Build tool bar

The build tool bar contains quick buttons to access the frequently used com-
mands that order the build of a configuration: 
938 IBM Rational Tau User Guide June 2009



Interactive Build Interface
See also

“Working with Projects” on page 31 for a user guide to projects.

“Using Configurations for Build” on page 849 for a guide to using configu-
rations when building applications.

“Build Menu” on page 939 for a reference to these commands. 

Build Menu

The build menu provides all of the build commands that are supported for a 
Configuration build. 

– The most frequently used commands are also available as quick but-
tons in the project tool bar. 

– When right-clicking a Build Artifact in the workspace window, the 
shortcut menu holds the build commands that are supported for an ar-
tifact build. 

Build operations are divided into several ordered steps:

1. Prepare for build and check. This step is always performed (except for 
the Stop command). Here it is checked that the configuration and build 
artifacts are valid and that the model is correct and suitable for build. 

2. Generate. This step generates code from the model and for C/C++ code 
generation also a make file.

3. Build. This step executes “make”, if a make file was generated in the 
Generate step.

4. Launch. This step executes the generated executable, if the previous 
steps resulted in such an executable.

Command Shortcut

Update Configuration SHIFT F6

Generate Configuration F6

Build Configuration F7

Stop CTRL + Scroll Lock

Execute Configuration F5
June 2009 IBM Rational Tau User Guide 939



Chapter 27: Building Applications Reference
The steps are executed in the listed order, and repeated for each build artifact 
in the configuration. The last step executed depends on which build operation 
is invoked – how “far” the build should go. 

Stop

This command stops all build operation in progress, and terminates the cur-
rently active Model Verifier session (if any).

Check Configuration

This command performs a semantic check on the Configuration. The se-
mantic checker is operated in the context of the build type defined by the 
build artifact(s) contained in the configuration.

Check Configuration differs from the regular Check command in that the 
model is checked with respect to additional rules imposed by restrictions in 
the code generator, or the target language, defined by the build type. The in-
tention is to catch such problems as early as possible in the build chain. 

Note
Many, although not all of the UML constraints imposed by code generator 
specific restrictions are found by the semantic checker. However, some con-
straints are found first when generating code. More information on restric-
tions can be found in “Restrictions in UML Support when Building C Appli-
cations” on page 949 and “Restrictions in UML Support when Building 
C++ Applications” on page 956.

Generate Configuration

This command first checks that the configuration is suitable for build (see 
Check Configuration. 

Next, if the part of the model manifested by the Build Root of the build arti-
fact is found semantically correct and is supported by the code generator de-
fined in the build artifact, code is generated according to the settings defined 
in the build artifact. For C and C++ a make file is also generated.

Build Configuration

This command first checks that the Configuration is suitable for build, and 
then generates code and make files (see Check Configuration and Generate 
Configuration). 
940 IBM Rational Tau User Guide June 2009



Interactive Build Interface
After code and make files are successfully generated, the generated code is 
compiled and linked according to the make settings defined in the build arti-
fact. 

Execute Configuration

This command first checks, generates and builds the Configuration (see 
Check Configuration, Generate Configuration and Build Configuration. If 
the build is successful, the resulting application is launched. 

Note
Only Model Verifier and C++ applications take advantage of this feature. 

Update Configuration

This command updates the part of the model defined by the build roots con-
tained in the build artifacts in the Configuration from the source files that are 
manifested by Using File Artifacts. Changes made in these source files are 
propagated back to the model.

Note
Model update is not supported by the AgileC Code Generator, C Code Gen-
erator and Model Verifier. 

Clean Configuration

This command performs a “make clean” operation on the make file. This op-
eration deletes object files, libraries and executables resulting from a pre-
vious build. 

Start Model Verifier

This command launches a Model Verifier application without building it. 
Following the command, the user is prompted to specify a file containing a 
Model Verifier executable. 

Note
No checks are performed to verify that the application originates from the 
model currently loaded in the workspace. If that is not the case, or if the 
model has changed since it was built, incorrect or incomplete information 
may likely be displayed by the Model Verifier. 
June 2009 IBM Rational Tau User Guide 941



Chapter 27: Building Applications Reference
Build Shortcut Menu

The build shortcut menu (appears when right-clicking a Build Artifact or a 
model element that is suitable to use as Build Root) has one of two appear-
ances.

Build shortcut menu on build artifacts

When activated on a Build Artifact, the build shortcut menu displays the fol-
lowing: 

[Build type] followed by a submenu with the available build commands. 
These build commands are identical to the commands on the Build Menu (for 
example Check, Generate, Build, Update, Clean and Launch). 

Build shortcut menu on model elements

When activated on a model element that is suitable to use as build root (a 
package or a class), the build shortcut menu appears as follows:

• A list of all build types that are currently enabled in the project

• Each of these build types has a submenu, with all build artifacts with 
matching build type in the active Configuration

• A command to create a new build artifact. 
942 IBM Rational Tau User Guide June 2009



Batch Build Interface
Batch Build Interface
IBM Rational Tau can be invoked to build applications from the command 
line prompt using the command taubatch.

taubatch [Options]

Input

The input to taubatch is specified as an option in the command, and consists 
of the following in combination:

• A project file (.ttp file), using the -p “project file” option

• A Configuration, using the -c “Configuration Name” option

• A Build Artifact, using the -g GUID or -o element option.

Output

Build index file

taubatch generates a build index file in the Target Directory, containing a 
list of files generated the last time this Build Type was used. This file is 
empty if the build failed for some reason. 

The name of the build index file is:

build_index_" <guid-of-artifact> ".xml

in which the GUID of the artifact is mangled so that all tokens not in the set 
“0-1, @-Z, a-z, _” are replaced with a “_”.

The build index file uses XML for representing the information, according to 
the following build index file DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE BI [
  <!ELEMENT list (file)+ >
  <!ELEMENT file EMPTY>
    <!ATTLIST file name CDATA #REQUIRED>
    <!ATTLIST file time INT #REQUIRED>
    <!ATTLIST file type CDATA #IMPLIED>
]>

Each entry in the list describes a generated file and contains the following at-
tributes:
June 2009 IBM Rational Tau User Guide 943



Chapter 27: Building Applications Reference
Code generator output

The output from the code generators consists of C/C++/Java source files, and 
possibly also make files and other useful files and reports. 

See also

Chapter 35, C Code Generator Reference

Chapter 39, AgileC Code Generator Reference

Chapter 52, C++ Application Generator Reference

Chapter 43, Java Code Generator Reference

Options

The options recognized by taubatch are the following:

-B

Short form for --Build

This option specifies to order a build including semantic check, generation 
of code and make file and lastly execution of ‘make’ on the ‘Makefile’. 

This option cannot be used in combination with any of the options -C, -G and 
-S

-c “Configuration Name”

A short form for --config "Configuration Name"

Attribute Description

Name The name of the file

Type The type of the file, for example “debugger” for a 
“Model Verifier” executable.

Time Time when the file was generated, in seconds, 
counting from 1970-01-01:00:00:00
944 IBM Rational Tau User Guide June 2009



Batch Build Interface
This option specifies to use the Configuration specified by “Configuration 
Name” as input to the build. As a result of this, all of the build artifacts con-
tained in the configuration are built. 

-C

Short form for --Clean 

This option performs a clean of the files generated by the ‘make’ utility – 
usually removal of generated object files, libraries and executables. Which 
flavor of ‘make’ and which ‘Makefile’ is used is defined in the Build Artifact 
used for the build. 

This option cannot be used in combination with any of the options -B, -G and 
-S

-g GUID

A short form for --guid GUID

This option uses a build artifact referred to by its Globally Unique Identifier 
as input to the build. 

A way to obtain the GUID in the general case is to look for it in the .u2 file 
where the build artifact is stored. GUIDs for elements that are essential for 
the build (such as build roots) are also found in a generated table of contents 
(see option “-T”).

-G

Short form for --Generate

This option checks and generates code and a make file (in case of C/C++) for 
the subset of the model manifested by the Build Root(s) defined in the input 
to the build. 

This option cannot be used in combination with any of the options -B, -C, and 
-S

-h 

A short form for --help 
June 2009 IBM Rational Tau User Guide 945



Chapter 27: Building Applications Reference
This option prints help about the available options on stdout and then exits 
taubatch

-l (lower case L)

Short form for --listbt 

This options prints the build types available in the project file on stdout and 
then exits taubatch

-o element 

Short form for --object element

element is the qualified name of the build artifact to submit as input to 
taubatch 

This option is mutually exclusive with the options -g GUID and -c “Config-
uration Name”

-p “project file”

Short form for --project "project file" 

“project file” is the name of the project file (.ttp file) to submit as input 
to the build.

-r

Short form for --rebind-by-name

This option forces the tool to use full name resolution when a model is read. 
This is usually not necessary and also causes the build to take longer time. 

-S

Short for --Semantic-check 

This option orders a build that is limited to checking the input for semantic 
correctness and that it is suitable for build. 

This option cannot be used in combination with any of the options -B, -C, and 
-G
946 IBM Rational Tau User Guide June 2009



Batch Build Interface
-T 

Short form for --TOC 

This option generates a file containing a table of contents of a project file, 
holding information about:

• The name space structure (packages and classes) in an indented list

• The available build artifacts

• The available configurations.

-V

Short form for --Version 

This option prints the version of taubatch on stdout and then exits

Examples of Using taubatch

Example 332: Example of using the -T option–––––––––––––––––––––––––––––––

$ taubatch -p PingPong.ttp -T
IBM Rational IBM Rational Tau Application Builder

TAB1026: Table of contents
DJhxxINnrzALDYVY-Le5U27I : pingpong_artifact
L0SZSIZK9BlLsxk94E9IS*dE : PingPong
b7xI3LmvPyFLuTiXGEwHCW1I :   Match
w2rrRLYFz60L-H2dZL99rzgV :     Player2
bKPz0VVWI2FLMsNWILWqtuoI :     Player1
7MNyDEJTh40Ld5wkyIy1RczL : Agile

Configurations:
  ALL
  Default
  MyConfig

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 333: Build of a configuration and a build artifact––––––––––––––––––––

To build the Configuration “MyConfig”:

taubatch -p PingPong.ttp -c MyConfig

To build the Build Artifact “Agile”:

taubatch -p PingPong.ttp -o Agile
June 2009 IBM Rational Tau User Guide 947



Chapter 27: Building Applications Reference
Both MyConfig and Agile must be defined in the project file PingPong.ttp

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
948 IBM Rational Tau User Guide June 2009



Restrictions in UML Support when Building C Applications
Restrictions in UML Support when Building C 
Applications

This section lists the restrictions in UML support when building applications 
using any of the C based build types. 

• Model Verifier

• C Code Generator

• AgileC Code Generator

Restrictions in C build types

Active code generators 

In order to generate code efficiently, it is recommended that each project 
limits the number of active code generators to one. E.g. if both the C++ Ap-
plication Generator and the Model Verifier code generator are active in a 
project, the code generation may require longer time to complete and/or re-
quire larger memory resources.

All C build types

The following UML constructs, or use of UML, are not supported by any of 
the C build types (Model Verifier, C Code Generator and AgileC Code Gen-
erator)

Classes

• Comparison operators (‘==’ and ‘!=’) in generated C code may some-
times not work for instances of external classes. This can cause compila-
tion errors. These operators may work in some conditions. An example 
is if a user-defined stand-alone operator ‘==’ for a C++ class is placed in 
a header file and the same header file is included into a model by the 
means of the CApplication stereotype. Then the operator will work for 
instances of the imported C++ class.

• Dynamic creation of instance of active classes that have internal struc-
ture.

• Creation of passive class is not allowed to be a standalone action.

• Passive classes may not contain operations with states.
June 2009 IBM Rational Tau User Guide 949



Chapter 27: Building Applications Reference
• Passive classes may not realize any interfaces.

• Non const attributes in packages are ignored unless the package is exter-
nally defined in C or C++.

• Methods of a passive class cannot call methods of an active class.

• Multiplicity constraints are not supported for a passive attribute. 

Example 334: Multiplicity constraints for a passive attribute –––––––––––––––––

class A { }
part A [1..10] mypart; // constraint [1..10] is ignored

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Constructors and destructors

• Constructors must have a realizing method.

• Static constructors and destructors are not allowed.

• At most one constructor state machine can be present in a class.

• It is not possible to call inherited constructors from a constructor in a pas-
sive class.

Destructors are only partially supported. To work-around this:

• Active classes should be implemented to be able to receive a signal that 
eventually stops the state machine after required clean-up.

• In passive classes, destructors cannot call other operations. 

Example 335: Destructors cannot call other operations ––––––––––––––––––––––

class B 
{ 
public void Foo() { }

}
class A
{

B refB;   
~A()
{
refB.Foo(); // Not supported, error TCC0924
delete refB; 

}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Ports

• Ports are not allowed in passive classes.
950 IBM Rational Tau User Guide June 2009



Restrictions in UML Support when Building C Applications
• Ports cannot be redefined. 

Operations

• Calling of superclass operations using a qualifier is not supported.

• Calling operations on an active class from a global operation is not sup-
ported.

• Return value from value-returning operations must be handled in the left 
hand side of an assignment expression.

• A “delete” operation may not be applied to a part.

• Redefinition of a finalized operation is not allowed.

• Static operations cannot access non-static attributes. 

Signals

• Parameters in received signals must not be omitted.

• Signal Sending via “all” is not supported.

• Optional parameters are not supported. Multiplicity [0..1] on signal pa-
rameters is ignored when generating C code.

Operators

• For templates Own and Oref:
The support in the C code generators for templates Own and Oref is lim-
ited. It is not recommended to use these templates.

• Bit type:
The relation operators <, >, <=, >= are not supported by the C code gen-
erators.

• Operation “Octet '[]' (Octet, Integer, Bit)” in Octet type:
Assigning a new value to a bit in Octet is not supported in the C code gen-
erators.

• For operation “Octet '\=' (Octet, BitString)” in Octet type:
Assigning an Octet from a BitString value is not supported in the C 
code generators.

• The operator power is not supported by the code generator, and should 
be implemented externally, if used. 

Timers

• Timers must not be defined in packages. Timers must instead be defined 
in the active classes where they are used. 
June 2009 IBM Rational Tau User Guide 951



Chapter 27: Building Applications Reference
• Operation active on timers is not supported for timers with parameters. 
Only timers without parameters can be tested. 

Actions

• Try Actions are not supported.

• Join, Return and Stop actions are not allowed inside loops.

• The Start Transition must have a terminating Action.

• Receiving signal “none” is not supported.

• Deep History Nextstate Action is not supported.

Attributes

• Static attributes are not supported – such attributes correspond to global 
data in C and the generated C code has no support for accessing such 
variables in a safe way in real-time applications. 

– If global data is needed in an application, such global data could be 
implemented in an active class that can accessed by all active classes, 
through a signal interface to read and write global data. 

– An alternative lightweight solution is to implement the static at-
tributes as static C variables. 

• Inheritance of (virtual) operations from a parent class requires the fol-
lowing:

– Operation attributes must be re-declared in the (finalized) child class

– Attributes must however not use the same name in the parent and 
child operation. 

• Integer and enum types are not type compatible. Attributes of such types 
cannot be mixed in expressions and operators. 

Miscellaneous

• The STL support is currently limited to work with the C++ Application 
Generator. STL can not be used with the C Code Generator. In general, 
any imported C++ code that uses templates can not be used with the C 
Code Generator. 

• The C code generators do not support Function pointer as described for 
C/C++ import.

• Range check expression is not supported when generating C code.
952 IBM Rational Tau User Guide June 2009



Restrictions in UML Support when Building C Applications
• Regarding Model Verifier 2.2 to 2.3 migration, the naming convention 
has changed for certain data types. This will result in the .ttdcfg file 
may not work if the model contains two or more enumerated types with 
identical literals. 

• Use of literal values or expressions containing only literal values as both 
arguments for a comparison operator may yield an analysis error. 

• The noScope stereotype was introduced to solve browser grouping prob-
lems. It is not recommended for any models intended for code genera-
tion.

Example 336: Unsupported expressions––––––––––––––––––––––––––––––––––––

The following type of constructs will not work, if used for example in a de-
cision:

2+2==4
0!=1

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
• Multiple inheritance is not supported.

• Dynamic creation of instance of a choice is not allowed.

• A model must contain at least one active class otherwise the application 
has no behavior (the application is possible to build but will not execute).

• User-defined templates are not supported.

• State expression is not supported. 

• A model intended for C code generation should not depend on actors, se-
quence diagrams and use-cases. These UML language constructs are in-
formal and are not supported at C code generation.

• Using the API to load a profile package (addin), using 
u2::LoadLibrary and letting the tool calculate the dependency will re-
sult in that the C Code Generator will ignore the package. 
For a profile package to be generated C code for, the profile package 
should be loaded using the following Tcl command instead:
u2::LoadFile <model> <profile pacakge> 

false<=loadAsProfile>

This will load the profile package as a file into the model. The user can 
then set up the required dependency to the profile package (thus forcing 
code generation of the package). 
June 2009 IBM Rational Tau User Guide 953



Chapter 27: Building Applications Reference
AgileC Code Generator

In addition to the restrictions that are applicable for All C build types, the fol-
lowing UML constructs, or use of UML, are not supported by the build type 
that uses the AgileC Code Generator. 

Classes

• Active classes that have internal structure can only have Multiplicity one 
([1]).

• Declaring an infinite number of instances of active classes.

– Although this is supported, the use of infinite number of instances is 
not recommended for execution performance reasons. 

Parts

• It is not possible to add to a part anything different from the construct 
“new <active class name>”. For instance the following is not supported:

active class A { }
part A [*] mypart;
A tmp;
tmp = new A();
mypart.append(tmp); // not possible

Operations

• Operations with states are not supported.

• Call of virtual or redefined operations from an operation is not supported

• Call of operations in other active classes from an operation is not sup-
ported.

Timers

• Timers with any other parameter type than Integer.

• Timers with more than one parameter.

• Timer duration cannot be set with Real values. Timer duration must in-
stead be an expression of type Duration.

Miscellaneous

• “any” decision.

• Informal decisions.

• Transitions with guards without an event expression.

• Part indexes are not supported.
954 IBM Rational Tau User Guide June 2009



Restrictions in UML Support when Building C Applications
Reserved words

All C build types

These restrictions are applicable to all C build types (Model Verifier, C Code 
Generator and AgileC Code Generator): 

The following words must not be used in order to name any item in UML 
models (such as name of classes, attributes...) if “C” applications are to be 
built from the model. (The model although it is correct from a UML perspec-
tive will not be accepted by the code generator.)

break, choice, optional, remote

Model Verifier execution

The following words are accepted by the C code generators, and the result 
will become a working application. However the Model Verifier sequence 
diagram trace may report an error when encountering an entity with such a 
name. In such case the trace will not display the expected result. This will 
also apply to any name containing a hyphen '-'. 

action, all, alt, as, before, begin, block, by, comment, 

concurrent, condition, connect, create, decomposed, 

empty, end, endconcurrent, endmsc, endexpr, env, exc, 

expr, external, found, from, gate, in, inf, inline, inst, 

instance, loop, lost, msc, mscdocument, msg, opt, order, 

par, process, reference, related, reset, service, seq, 

set, shared, stop, subst, system, text, timeout, tim, to, 

via 

Note
This restriction applies to the words written in any case configuration, the 
Model Verifier sequence diagram trace is case insensitive, e.g. both System 
and SYSTEM are reserved. 
June 2009 IBM Rational Tau User Guide 955



Chapter 27: Building Applications Reference
Restrictions in UML Support when Building 
C++ Applications

This section lists the restrictions in UML support when using the C++ Appli-
cation Generator. 

The following restrictions apply. For a more detailed information on what is 
supported it is important to study the General Translation Rules and C++ 
Textual Syntax. 

Active code generators 

In order to generate code efficiently, it is recommended that each project 
limits the number of active code generators to one. E.g. if both the C++ Ap-
plication Generator and the Model Verifier code generator are active in a 
project, the code generation may require longer time to complete and/or re-
quire larger memory resources.

UML restrictions
• No support for deferred events in state machines (also known as ‘save’ 

of signals)

• No support for operations in datatypes

• No support for UML reception mechanism

• The C++ code generator is usually able to handle circular include depen-
dencies, by adding appropriate forward declarations. However, in some 
cases a manual resolution of such dependencies are required. In case of 
circular include dependencies (Class1.h includes Class2.h which in-
cludes Class1.h) compile errors can occur. This can be solved by adding 
a forward declaration like:

//<USER>
    class Class1;
//</USER>

• Restrictions in roundtrip C++ supportNo support for function pointers

• No support for template specialization

• No support for pointers to class members

See also

Chapter 51, C++ Textual Syntax
956 IBM Rational Tau User Guide June 2009



Restrictions in UML Support when Building C++ Applications
“General Translation Rules” on page 1540 in Chapter 52, C++ Application 
Generator Reference
June 2009 IBM Rational Tau User Guide 957



Chapter 27: Building Applications Reference
Restrictions in UML Support when Building 
Java Applications

This section lists the restrictions in UML support when using the Java code 
generator. 

The following restrictions apply. For a more detailed information on what is 
supported it is important to study the Java Code Generator Reference. In gen-
eral UML constructs not mentioned in that document is considered unsup-
ported.

Active code generators 

In order to generate code efficiently, it is recommended that each project 
limits the number of active code generators to one. E.g. if both the C++ Ap-
plication Generator and the Java code generator are active in a project, the 
code generation may require longer time to complete and/or require larger 
memory resources.

• UML restrictionsNo support for deferred events in state machines (also 
known as ‘save’ of signals)

• No support for operations in datatypes

• No support for UML reception mechanism

• No support for architectural constructs such as ports and connectors

• No support for parameters with default values or optional parameters

• No support for operations implemented by means of state-less state ma-
chines

• No support for syntypes
958 IBM Rational Tau User Guide June 2009



28
Stereotypes for Code Generation 

This section contains a reference to the code generator and build artifact ste-
reotypes, listed in alphabetic order. 
June 2009 IBM Rational Tau User Guide 959



Chapter 28: Stereotypes for Code Generation
Stereotypes

AgileC Code Generator

This stereotype inherits from the stereotype «build» and contains the at-
tributes that control the generation of C code performed by the AgileC Code 
Generator. 

Some of the attributes used by the AgileC Code Generator have the same 
name and semantics as those used by the C Code Generator. They are listed 
below for completeness. Descriptions are available by following the refer-
ences to the section about the C Code Generator stereotype. 

Additional Preprocessor Defines

This attribute is described in the section about the C Code Generator stereo-
type, Additional Preprocessor Defines.

Code generation properties

This control groups attributes that define properties for the code generated by 
the AgileC Code Generator.

• Name mangling

– Type: {Prefix | Suffix}

– Default: Suffix

This attribute controls the name mangling of generated names in C code. 
As the name scopes in UML and C are not the same, it is not possible to 
use the UML names directly in the generated C code. 

By default the AgileC Code Generator will add a suffix to the UML name 
and use that as an identifier in C, to ensure that the C identifier is unique. 
If a user has used long UML names and at the same time the C compiler 
uses a limited number of characters to determine if two names are the 
same, name clashes might occur. By using prefixes instead of suffixes 
such situations can be avoided.
960 IBM Rational Tau User Guide June 2009



Stereotypes
• Comments

– Type: {Sparse | Structure | Explanation}

– Default: Sparse

In the C code generated for state machines it is possible to specify the 
level of comments that are added to the code. The following levels are 
possible:

– Sparse: Only some comments used to identify transitions are in-
cluded.

– Structure: As Sparse, adding a comment for each translated UML 
symbol.

– Explanation: As Structure, adding comments giving some explana-
tions to the code.

• Connector name, Constant name, Type name, Literal name, Signal 
name

– Type: String

– Default: see table below

These attributes control the prefixes or suffixes of generated C names in the 
Interface header file (.ifc) for connectors, constants, types, literals and sig-
nals. 

%n is the name of the entity, %s is the name of the scope. Omit %n in order to 
exclude the definitions completely from the file.

UML entity C name

Connector name cha_%n

Constant name con_%n

Type name typ_%n

Literal name lit_%n_%s

Signal name sig_%n
June 2009 IBM Rational Tau User Guide 961



Chapter 28: Stereotypes for Code Generation
• Operators in environment header file

– Type: Boolean

– Default: True

This attribute configures if operators should be present in the Interface 
header file (.ifc), or not.

• Include references to UML source as comments

– Type: Boolean

– Default: False

Enabling this feature instructs the AgileC Code Generator to include 
calls to trace functions in the generated code. This attribute must be set 
True if the feature Print UML level trace on stdout is enabled.

• Always include stdio.h

– Type: Boolean

– Default: False

This attribute defines if the file stdio.h should be included in the in-
clude files submitted to make

• Print UML level trace on stdout

– Type: Boolean

– Default: False

This attribute defines if a trace of important UML actions and events 
should be printed on stdout. Important actions are receiving/sending 
signals, create and timer actions.

• Generate MISRA compliant code

– Type: Boolean

– Default: False

This attribute defines if the generated code should be MISRA compliant. 
The generated code may not be fully patronized. For examples there may 
be duplicated code segments rather than unconditional jumps to labels.

Compile and link

This attribute is described in the section about the C Code Generator stereo-
type. 
962 IBM Rational Tau User Guide June 2009



Stereotypes
Dynamic memory allocation

This control groups the attributes that define how to manage dynamic 
memory. 

• Use memory management package provided with AgileC

– Type: Boolean

– Default: False

This attribute defines to use the memory management package provided 
in the library, instead of the OS functions malloc and free. If this 
package is used, then the attribute Memory pool size should be set to an 
appropriate value by the user.

• Memory pool size

– Type: Integer

– Default: 8192 (bytes)

This attribute defines the number of bytes to be used by the pool of dy-
namic memory. To avoid unnecessary problems this value should be a 
multiple of 16 (see Minimum block size). 

• Minimum block size

– Type: Integer

– Default: (empty)

This attribute defines the minimum size of a block of allocated memory. 
This value should be a multiple of 16, with 16 the lowest value.

Error detection

This control groups the attributes that define the application error detections 
performed at run time.
June 2009 IBM Rational Tau User Guide 963



Chapter 28: Stereotypes for Code Generation
• Basic run-time error check

– Type: Boolean

– Default: False

This attribute enables the run time checks of the following basic state ma-
chine properties:

– Check that memory is available for creation or sending of signals

– Check that memory is available when allocating the parameters of a 
signal

– Check that memory is available for creation of timer instance

– Check that xOutEnv() is present when a signal is sent to the environ-
ment

– Check when a signal is discarded

– Check attempts to create more instances when maximum limit is 
reached.

• Index checks in arrays

– Type: Boolean

– Default: False

This attribute enables the check that indexing in array is within allowed 
range.

• Syntype range checks

– Type: Boolean

– Default: False

This attribute enables the check that syntype values are within allowed 
values.

• Checks in predefined operators

– Type: Boolean

– Default: False

This attribute enables the check on error situations when executing pre-
defined operators.
964 IBM Rational Tau User Guide June 2009



Stereotypes
• Check that the decision value matches an answer

– Type: Boolean

– Default: False

This attribute enables the check that there is a valid path out from a deci-
sion. 

• Checks for null pointers

– Type: Boolean

– Default: False

This attribute checks that pointers have not the value NULL before de-
referencing them. 

• Enable checks inside the memory management package

– Type: Boolean

– Default: False

This attribute enables checks on the memory management package. This 
package is in turn used by setting the attribute Use memory management 
package provided with AgileC to True.

• Print errors on stdout

– Type: Boolean

– Default: False

This attribute defines if error messages should be printed on stdout 

• Print errors on stderr

– Type: Boolean

– Default: False

This attribute defines if error messages should be printed on stderr 

• Print errors with error messages, not only numbers

– Type: Boolean

– Default: False

This attribute defines if error messages should be printed, or the error 
message number only. 
June 2009 IBM Rational Tau User Guide 965



Chapter 28: Stereotypes for Code Generation
• Call a user provided function at warnings

– Type: Boolean

– Default: False

If this attribute is defined, a user provided function is called in case of a 
warning detected at run time: 

void xUserWarnAction (unsigned char WarningNumber); 

• Call a user provided function at errors

– Type: Boolean

– Default: False

If this attribute is defined, a user provided function is called in case of an 
error detected at run time: 

void xUserErrAction (unsigned char ErrorNumber); 

Environment

This control groups the attributes that define the call of the environment 
functions xInitEnv / xCloseEnv / xInEnv / xOutEnv at appropriate 
places in the generated application. 

• Type: Boolean

• Default: False

Calls to each of these functions can be defined separately. These functions 
are to be supplied by the user and their purpose and design guidelines are de-
scribed in detail in the reference to the AgileC Code Generator. 

Extra code

Type: String (multi-line)

Default: (empty)

This control specifies two attributes: Head and Tail, each of them specifying 
an optional user code section to be placed in the beginning or end of the file 
uml_cfg.h

Generate environment template functions

This attribute is described in the section about the C Code Generator stereo-
type.
966 IBM Rational Tau User Guide June 2009



Stereotypes
Make template file

This attribute is described in the section about the C Code Generator stereo-
type.

Operators in environment header file

This attribute is described in the section about the C Code Generator stereo-
type.

Process properties

Type: Integer (positive)

Default: 5

In case there are parts with unlimited maximum number of instances, 
memory will be dynamically allocated at start-up to satisfy the needs for the 
number of initial instances, and adding the value given in this attribute. The 
value must be positive.

Signal properties

This control groups the attributes that govern how signals should be handled 
at run-time.

• Use priorities on signals 

– Type: Boolean

– Default: False

This attribute defines if the signal queue should be sorted first in priority 
order and then in arrival order, or in arrival order only. 

• Length of static signal queue

– Type: Integer

– Default: 20

This attribute defines the length of the static signal queue. If dynamic sig-
nals are not used (see Prevent dynamic signals), then an error will occur 
if the signal queue is full when an attempt to send a signal is made. 
June 2009 IBM Rational Tau User Guide 967



Chapter 28: Stereotypes for Code Generation
• Prevent dynamic signals

– Type: Boolean

– Default: False

This attribute is used to turn off usage of dynamic memory for signals. 
This feature should normally be turned off in smaller systems, where dy-
namic memory is not to be used. In that case, it is important to set the at-
tribute Length of static signal queue to an appropriate value

• Signals with dynamic parameters are never discarded

– Type: Boolean

– Default: False

This attribute defines removal of the code for freeing signal parameters 
in case a signal is discarded (only applicable if signals with dynamic pa-
rameters are used). 

If this attribute is set to True, and a signal with dynamic parameters is dis-
carded, a memory leak will be introduced (memory will not be de-allo-
cated and returned to the pool).

• Priority for timer signals

– Type: Integer

– Default: 50

This attribute sets the priority for all timer signals.

• Priority for startup/create signals

– Type: Integer

– Default: 50

This attribute sets the priority for all startup/create signals.

• Default priority for signals

– Type: Integer

– Default: 50

This attribute sets the priority for all signals that do not have an explicit 
priority defined.

• Signal parameter size

– Type: Integer

– Default: (empty)

This attribute sets the size of inline field for signal parameters. Parame-
ters larger than this require dynamic memory.
968 IBM Rational Tau User Guide June 2009



Stereotypes
Timer properties
• Length of static timer queue

– Type: Integer 

– Default: (empty)

For timers without parameters, this attribute defines the maximum 
amount of possible active timers. 

For timers with parameters this value may, in extreme cases, be too 
small. If dynamic timers are not used (see Prevent dynamic timers), an 
error occurs if the timer queue is full at the same time as an attempt to set 
a timer is made.

• Prevent dynamic timers

– Type: Boolean

– Default: False

This attribute controls the use of dynamic memory for timers. This fea-
ture should normally be turned off in smaller systems, where dynamic 
memory is not to be used. In such a case, it is important to set Length of 
static timer queue to an appropriate value.

Support C++

This attribute is described in the section about the C Code Generator stereo-
type.

Suppress C level warnings

This attribute is described in the section about the C Code Generator stereo-
type.

Target directory

Type: String

Default: (empty)

This attribute controls where the files generated by the AgileC Code Gener-
ator are to be written on the file system. Both Absolute and relative path is 
accepted. If specified relative, the “root” is the location of the current project 
(.ttp) file.
June 2009 IBM Rational Tau User Guide 969



Chapter 28: Stereotypes for Code Generation
This attribute has an empty default value, in which case the conventions for 
Target Directory naming and location take effect.

Target kind

This attribute is described in the section about the C Code Generator stereo-
type.

User defined kernel

This attribute is described in the section about the C Code Generator stereo-
type.

Verbose mode

Type: Boolean

Default: False

This attribute controls if the AgileC Code Generator should print exhaustive 
reports and diagnostics in the message output area when generating code. 

build

This stereotype extends the Metaclass Artifact and serves as a ‘base class’ 
for all ‘real’ build stereotypes, which inherit from it. The stereotype «build» 
has no effect in practice and is not meant to be used by itself. Instead, the fol-
lowing stereotypes are available for practical use:

• «AgileC Code Generator»

• «C Code Generator»

• «C++ Application Generator»

• «Makefile generator»

• «Model Verifier»

The stereotype «build» is by default hidden in its profile and is documented 
for the sake of completeness. 

Target directory

Type: String
970 IBM Rational Tau User Guide June 2009



Stereotypes
Default: (empty)

This attribute controls where the files, generated as the result of building 
using the current Build Artifact, are to be written on the file system. If the 
location of the file is specified as a relative path, the “root” is the location of 
the current project (.ttp) file.

This attribute has an empty default value, in which case the conventions for 
Target Directory naming and location take effect.

C Code Generator

This stereotype inherits from the base stereotype «build» and contains the at-
tributes that control the generation of C code performed by the C Code Gen-
erator.

Additional Preprocessor Defines

Type: String

Default: (empty)

This attribute allows user to specify additional compilation switches, that 
will be passed to the compiler and that will influence on the compilation of 
all C/C++ files including the files from the kernel.

Preprocessor defines should be specified using the syntax of compiler com-
mand line, i.e. it should include -D flag (or similar), for example:

-DUSERDEF1 -DUSERDEF2=15

This string should not be quoted, since quotes are inserted automatically.

Advanced options

Type: String (multi-line)

Default: (empty)

This attribute is used to define additional advanced options to be passed to 
the C Code Generator. The options are appended after other code generation 
options are specified, in the order they appear in the text box. 
June 2009 IBM Rational Tau User Guide 971



Chapter 28: Stereotypes for Code Generation
Note
By using this feature in any other way than the supported options described 
above, risk is that code generation options are overridden or changed in an 
undesirable way, resulting into unexpected behavior. 

The following options are supported:

• Set-Signal-Number
This option instructs the C Code Generator to assign numbers to signals 
to/from the environment, in order to easier lookup the signals when 
sending them to the environment. 

As a result of this, a file named <basename>.hs with information 
about signal numbers assigned by the C Code Generator is produced. See 
“Improving performance of xOutEnv when many signals” on page 1048 
for how to use this feature. 

Note
For this file to be correct, the complete application must be built. Partial 
builds may result in incorrect signal numbering. 

• Set-SDL-Coder 
This option instructs the C Code Generator to generate information about 
how data is encoded in the signals to/from the environment. 

This options results into the creation of two additional files, <base-
name>_cod.h and <basename>_cod.c See “Encoding and decoding of 
signal parameters” on page 1038 for how to use this feature.

Code generation properties

Type: String

Default: 

UML entity C name

Connector name cha_%n

Constant name con_%n

Type name typ_%n

Literal name lit_%n_%s

Signal names sig_%n
972 IBM Rational Tau User Guide June 2009



Stereotypes
These attributes control the prefix or suffix of generated C names in the 
System interface header file. 

Operators in environment header file: see “Operators in environment 
header file” on page 974. 

Compile and link 

Type: Boolean

Default: True

This attribute defines if a make file for compiling and linking the C files 
should be generated by the AgileC Code Generator or the C Code Generator 
and be automatically executed during the build process. (The options of cre-
ating and executing the makefile cannot be controlled individually.)

Expand macros

Type: Boolean

Default: False

This attribute controls if macros in C code should be expanded and processed 
after code generation, to make the code more readable and easier to debug on 
C level. This processing is done by the C Compiler Driver utility.

Note
Expanding macros is not supported with Target kind set to Win32. 

Generate environment template functions

Type: Boolean

Default: False

This attribute controls if files with skeletons for the Environment Functions 
should be created by the {AgileC Code Generator | C Code Generator} when 
generating an application or a Model Verifier.

The System interface header file (.ifc), which holds an up-to-date defini-
tion of the interface to the environment is always created regardless of the 
value of this attribute.
June 2009 IBM Rational Tau User Guide 973



Chapter 28: Stereotypes for Code Generation
Make template file

Type: String

Default: (empty)

This attribute controls if the C Code Generator or AgileC Code Generator 
should use a given make template file (such a file has to be provided by the 
user) when creating the make file for the system. Such a template make file 
allows to include external code that should be compiled and linked with the 
generated C code. A relative path is relative to project directory, ‘+’ signifies 
to use the .tpm file in the target directory that has the generated default name 
(dependant on build root name).

Operators in environment header file 

Type: Boolean

Default: False

This attribute controls whether the definition of UML operators should be 
present or not in the system interface header file created by the C Code Gen-
erator. 

Simulation kind

Type: SimulationKind

Default: Standard

This attribute controls the time handling for the Model Verifier. 
SimulationKind can be either:

Standard
Realtime
With Environment

Standard denotes a discrete simulation where the environment is controlled 
through the Model Verifier interface.

Given the value Realtime there will be a real-time clock timer delay in set 
timers. The delay will be one second per time unit. The macro XCLOCK is 
set at compile time. 
974 IBM Rational Tau User Guide June 2009



Stereotypes
With Environment will generate a Model Verifier with environment con-
trol also through the application API. The macro XENV will be set at com-
pile time. 

Support C++

Type: Boolean

Default: False

This attribute controls if the code generated by the C Code Generator or 
AgileC Code Generator should be given properties that make it possible to 
compile it with C++ compilers, or if the code should be compiled using an 
ISO C compiler. The properties of major concern are in particular the han-
dling of external code to be compiled and linked with the application code 
and run-time library. 

This attribute also controls that a suitable library with the _cpp suffix will be 
used when compiling and linking the code. 

Suppress C level warnings

Type: Boolean

Default: False

This attribute controls if warning messages that are issued from the following 
tools should be suppressed. (Such warnings can be disregarded from in most 
practical cases). 

• C Code Generator / AgileC Code Generator / Model Verifier 

• C compiler

• C linker

Target directory

Type: String

Default: (empty)

This attribute controls where the files generated by the C Code Generator are 
to be written on the file system. Both Absolute and relative path is accepted. 
If specified relative, the “root” is the location of the current project (.ttp) 
file.
June 2009 IBM Rational Tau User Guide 975



Chapter 28: Stereotypes for Code Generation
This attribute has an empty default value, in which case the conventions for 
Target Directory naming and location take effect.

Target kind

Type: TargetKind

Default: (depending on host)

This attribute controls what kind of target application will be built with the 
C Code Generator.

The possible values for TargetKind are either Win32, Solaris - cc, 
Solaris - gcc, Linux - gcc or Cygwin.

Note
The Solaris - cc, Solaris - gcc and Linux - gcc Target kind are only sup-
ported on UNIX.

User defined kernel

Type: String

Default: (empty)

This attribute defines if a user-defined run-time library should be used when 
compiling and linking the application, instead of using one of the provided 
libraries that are provided with the C Code Generator.

Such a library is identified by a directory, containing the files with definitions 
of C macros and compiler switches that govern how the code will be prepro-
cessed and compiled. 

Verbose mode

Type: Boolean

Default: False

This attribute controls if the C Code Generator should print informative re-
ports, diagnostics and messages in the message output area, or not. 
976 IBM Rational Tau User Guide June 2009



Stereotypes
See also

“Supported libraries” on page 1060 in Chapter 33, C and AgileC Runtime 
Libraries. 

“Library files” on page 1063 in Chapter 33, C and AgileC Runtime Libraries.

C Application

This stereotype controls the generation of code when building a C applica-
tion, using any of the code generators AgileC Code Generator, C Code Gen-
erator and Model Verifier.

The stereotype controls the following:

• Disabling the code generation for individual model elements. 

• A flexible way for how to import external C or C++ declarations when 
generating C applications. Such C or C++ code could either be hand-
written code or third party libraries. 

Generate C code

Type: Boolean

Default: True

This attribute controls whether an element in the UML model should be in-
cluded or not in a build that uses the C Code Generator or Model Verifier 
build types. 

The default behavior for such builds is to include all the classes and the pack-
ages that are contained in the class designated as Using Build Roots for a 
Build Artifact. 

With this attribute you can decide to discard individual elements in the 
model, which allows for instance to exclude parts of the application that are 
not yet implemented, or that are not found to work properly. 

The impact of discarding an element may result in semantically incorrect 
models, or inability to generate code. 

Include File

Type: String
June 2009 IBM Rational Tau User Guide 977



Chapter 28: Stereotypes for Code Generation
Default: (empty)

This attribute defines that a file (typically a C or C++ header file) with ex-
ternal definitions should be included in the code generated for the element 
that this attribute applies to. 

In the generated C code there will be created a C/C++ #include statement 
that includes the file with the external definitions.

Hint
This String attribute designates one file at most. Should you need to include 
more than one header file, then you can create a header file that contains 
the #include statements for all the header files that are needed for the gen-
erated code to compile and link (and usually nothing else but these state-
ments), and specify this file to be used as Include File in the Properties Ed-
itor.

Language

Type: langKind

Default: C

This attribute specifies which programming language is used for the external 
declaration. The available values for langKind are C and C++.

If C++ is the language used, then the attribute Support C++ for the C Code 
Generator stereotype (or Model Verifier, depending on the build type) should 
usually be set to True, for the generated C code to properly compile and link 
with external code, and/or for the generated executable to behave as ex-
pected.

C name

Type: String

Default: (empty)

This attribute defines the name that the element will be given in the C code, 
overriding the naming scheme that is defined by the C Code Generator.
978 IBM Rational Tau User Guide June 2009



Stereotypes
It also defines if, in the code that is generated by the C Code Generator, an 
element should be referred to using a given name, other than the name given 
in the UML model. This way, you may include external declarations, where 
names are given, without having to keep track of the naming scheme that is 
adopted by the C Code Generator. 

See also

“Names in Generated C Code” on page 1119

“Target code expression” on page 358

C Application Customization

This stereotype allows to customize advanced settings used for the genera-
tion of C code. The settings in this stereotype are shared by all the C build 
types (C Code Generator, AgileC Code Generator and Model Verifier), in 
order to preserve the behavior of the application that is used to debug the 
system on host and the application that is deployed to target. 

Priority

Type: Integer (0..255)

Default: (empty)

This attribute allows to specify priorities on signal definitions. The C Code 
Generator, AgileC Code Generator and Model Verifier have the ability to ar-
range the signal queue according to signal priority (in addition to the default 
which is to sort the queue according to arrival order). 

Lower values mean higher priorities. 

By default this attribute is empty, meaning that the code generators will add 
signals into the signal queue according to the signal arrival order.

C++ Application Generator

This stereotype contains settings used for the generation of C++ code per-
formed by the C++ Application Generator. 

The attributes of this stereotype corresponds to the Translation Options of the 
C++ Application Generator.
June 2009 IBM Rational Tau User Guide 979



Chapter 28: Stereotypes for Code Generation
C++ header file

This stereotype specifies that the type definitions for the C++ code that is 
generated by the C++ Application Generator for the model element should 
be stored on a given file. 

Files that manifest C++ code will be taken into account by the Makefile Gen-
erator and dependencies to these files will be present in the make file it gen-
erates.

File name

Type: String

Default: (empty)

This attribute specifies the name of the header file on which the C++ Appli-
cation Generator should store the C++ definitions generated for the model el-
ement. This name must be specified including the file extension (such as .h, 
.hpp). 

Precompiled

Type: Boolean

Default: False

This attribute indicates that the file that is specified exists in a precompiled 
version. This feature is only supported by C++ compilers on Windows.

C++ implementation file

This stereotype specifies that the C++ code implementation code that is gen-
erated by the C++ Application Generator for the model element should be 
stored on a given file. 

Files that manifest C++ code will be taken into account as sources by the 
Makefile Generator. Dependencies to these files will be present in the make 
file it generates.
980 IBM Rational Tau User Guide June 2009



Stereotypes
File name

This attribute specifies the name of the source file on which the C++ Appli-
cation Generator should store the C++ code generated for the model element. 
This name must be specified including the file extension (such as .c, .cpp). 

See also

“library” on page 996

cppImportSpecification

The stereotype cppImportSpecification is applied on a UML package that 
is used as “target” for the model elements that are created as the result of 
C/C++ Import.

Add source file references to enable navigation from the UML model to 
the C++ source 

Type: Boolean

Default: True

With this attribute set to True, this option allows the user to select in the 
model view an element in an imported package and from the shortcut menu 
select Go to source. This will then open the source header file and navigate 
to the origin of the selected element.

Always generate constant expressions within [[]]

Type: Boolean

Default: False

When this attribute is set to True the importer will translate all constant 
C/C++ expressions to UML target code expressions ([[...]]). Otherwise it will 
try to translate expressions to UML expressions.

C only

Type: Boolean

Default: False
June 2009 IBM Rational Tau User Guide 981



Chapter 28: Stereotypes for Code Generation
With this attribute, you can decide to execute import in C mode. In C mode, 
it is assumed that no C++ constructs are encountered in the definitions. If this 
assumption does not hold, that is if any C++ code is encountered in the input, 
the result of the translation is undefined.

When importing C and C++ header files, there should be one package as-
signed to store the elements resulting from each import pass, to ensure a sep-
arate handling of C and C++, and subsequently there should be separate Input 
header files and possibly Preprocessor settings. 

C/C++ dialect

This area groups a set of boolean attributes, that can be individually turned 
to True or False, to enable the support for a given C/C++ dialect. 

If no dialect at all is enabled, then the ISO C, or the C++ ISO/IEC 14882 stan-
dard is supported (depending on if the code is imported as C only or not).

• GNU C/C++

Type: Boolean

Default: False

This attribute controls if the import should be compliant with the GNU 
C/C++ dialect. 

• Microsoft C/C++

Type: Boolean

Default: False

This attribute controls if the import should be compliant with the Mi-
crosoft Visual C/C++ dialect. 

• Borland C/C++

Type: Boolean

Default: False

This attribute controls if the import should be compliant with the Borland 
C/C++ dialect. 

Do not import definitions from included header files

Type: Boolean

Default: True
982 IBM Rational Tau User Guide June 2009



Stereotypes
This option is to avoid import of definitions from nested libraries that may 
result in a very large number of imported definitions.

If this option is set to False, all definitions from all referenced header files 
will be imported to the resulting package. 

With this option set to True, definitions from included header files are not 
imported to the resulting package. This is irrespective if standard header files 
(#include <header.h>) or user header files (#include "header.h") are 
used. If several header files should be imported, all of them must be listed 
among the input header files, even if they include each other. If you also use 
Selective import and a definition from an imported header in turn references 
another definition from another included header file, then this depending def-
inition will be imported to the resulting model when the option Translation 
of depending declarations is set.

Note
If standard header files are used, the number of imported definitions can be-
come very big which may affect performance.

Generate artifacts

Type: Boolean

Default: False

If this attribute is True the importer will generate file artifacts that represent 
the imported files. It will also generate a build artifact for the C++ Applica-
tion Generator, which will manifest the file artifacts. The purpose of these ar-
tifacts is to facilitate the regeneration of the imported files using the C++ Ap-
plication Generator, and this option is hence intended mainly when the 
purpose of the import is migration from C++ to UML. If the import is re-
peated the file artifacts will be updated to reflect the files that were imported, 
but the build artifact will not be touched. It is therefore safe to manually 
change options on this artifact to set-up the C++ code generation; these set-
tings will not be overwritten in case of a repeated import.

GUID algorithm

Type: GuidStrategyKind

Default: Random
June 2009 IBM Rational Tau User Guide 983



Chapter 28: Stereotypes for Code Generation
This attribute controls whether GUID should be generated using a random 
pattern or should be named from the names defined in the C/C++ header 
files. Possible values for GuidStrategyKind is Random and Name.

Action code strategy

Type: ActionCodeStrategy

Default: DoNotImportAc (“Don’t Import Action Code”)

If this attribute is set to ImportAC (“Import Action Code“) all function 
bodies that are present in the imported files will be imported, using UML ac-
tions. This is typically used when the purpose of the import is to migrate a 
legacy C/C++ application to UML, and later regenerate it using the C++ Ap-
plication Generator. But also otherwise it can be of interest to bring the func-
tion bodies to UML. 

Sometimes it is more convenient to import function bodies using informal 
actions in the UML model. To do so set this attribute to 
ImportACAsInformal (“Import Action Code as Informal”). In this case the 
function body contents will be copied verbatim into the UML operation body 
as an informal action. This has the advantage of preserving code layout, 
macros etc. in the operation body which otherwise is lost during the import. 
However, it also means that the UML checker won’t check the correctness of 
the operation body.

Import char* as CPtr<char>

Type: Boolean

Default: False

This option is available in order to be able to import C/C++ char* as 
CPtr<char> rather than as ‘char*’.

Overriding the default behavior by turning this option to True will cause ex-
ternal char* definitions to be imported as CPtr<char> instead of 'char*'. 
This may be useful if the model already contains character strings that have 
been imported using tool versions prior to 2.3.00.

Import C++ pure virtual classes to UML interfaces

Type: Boolean
984 IBM Rational Tau User Guide June 2009



Stereotypes
Default: True

This option allows to specify how to import C++ pure virtual classes:

• With this option set to True, C++ classes that contain only pure virtual 
methods, will be imported to UML interfaces

• With this option set to False, C++ pure virtual classes will be mapped to 
UML abstract classes

For more information see “Pure virtual member functions” on page 591. 

Import unsigned char to Octet

Type: Boolean

Default: False

With this option set to true, C++ type unsigned char will be mapped to UML 
type Octet. Such mapping is useful for the systems migrated from SDL Suite, 
since C++ type unsigned char is represented by the SDL type Octet, de-
fined in the SDL Suite predefined packages for C++ support.

If this option is set to False, the C++ type unsigned char is mapped to the 
corresponding UML type “unsigned char”.

Import class pointers to UML references

Type: Boolean

Default: True

This setting defines if import of C++ pointers to classes should result into di-
rect references to UML classes (a mapping that was introduced in version 
2.3.00), or instead use the CPtr<T> template as was done in anterior ver-
sions. 

This setting is mainly intended to provide backwards-compatibility with C++ 
import mapping schemes that were used in versions prior to 2.3.00, but at the 
expense of poorer functionality available after import (see Example 337 on 
page 986). 

Consider the import of the following defined in C++:

class C {}
class D {
C* c;
June 2009 IBM Rational Tau User Guide 985



Chapter 28: Stereotypes for Code Generation
}
void op (C* par);

By default the import will generate the following UML definitions:

class C {};
class D {
C c;

}
void op (C par);

By setting this attribute to False, the following UML would be generated in-
stead:

class C {};
class D {
CPtr<C> c;

}
void op (CPtr<C> par);

Example 337: Visualizing association between imported classes –––––––––––––––

Consider the following C++ definitions:

class a {
public:
  int x;
};

class b {
public:
 a* a1;
};

int Getx( b* pb );

Importing these two classes will result into two UML classes and one opera-
tion. If these definitions are dragged to a class diagram, association lines be-
tween classes b and a, and between operation Getx and class b will be drawn 
automatically as in Figure 232 on page 987. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
986 IBM Rational Tau User Guide June 2009



Stereotypes
Input header files

Type: List of Charstring

Default: ““

This setting defines a list of input files (that is C/C++ headers) that contain 
the declarations that are to be processed during import and placed in the 
Output header file and ultimately become translated to UML.

There is a button on the toolbar that allows to insert items to the list of files 
to import. For each click of the New / Insert button, you may either 

• Type in the name of the header file of your choice, or 

• Click the Browse button that appears to the right of the newly created 
item, and designate the file in the subsequent Open dialog. 

Files that should no longer be imported, are removed from the list with the 
Delete button. 

Figure 232: 
June 2009 IBM Rational Tau User Guide 987



Chapter 28: Stereotypes for Code Generation
The list of files is passed as a list of #include <filename> to the 
Preprocessor currently defined. Depending on technical limitations in the 
preprocessor, or in the C/C++ Import, conflicts resulting from for example 
illegal re-declarations may cause the import to fail in whole or parts. The 
Move Up and Move Down buttons allow you to rearrange the order in which 
files are imported. The importing scheme follows a top-down order, and, if 
the order in which definitions are imported is of significance, you may need 
to rearrange the list for the import to work properly. 

The list of header files may also require appropriate values for the settings C 
only and Preprocessor.

Options

Type: Charstring

Default: ““

This text box specifies options that should be passed to the Preprocessor. 
Typically such options could be preprocessor macros that are expanded to 
given values. 

Example 338: Preprocessor options –––––––––––––––––––––––––––––––––––––––

/Dmymacro1/Dmymacro2

The syntax for defining a macro, that is /D in the example, depends on the 
actual preprocessor used (with the Preprocessor attribute).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Output header file

Type: Charstring

Default: ““

This setting defines the output header file produced during C/C++ Import. It 
will consist of a #include statement for each of the Input header files spec-
ified to import. This output header file is the file that will be parsed and trans-
lated into UML.
988 IBM Rational Tau User Guide June 2009



Stereotypes
Since the output header file should be included in the final C code generated 
by the C Code Generator, it is usually a good idea to place it in the build 
Target Directory. If no code generation is going to be made, the Output 
header file attribute can be left unspecified. (In such a case a temporary 
output file will be created by the tool).

Preprocessor

Type: Charstring

Default: ““(An empty value is interpreted during import as “cl” on Windows 
or “cpp” on UNIX.)

This text field allows to specify which Preprocessor to use prior to importing 
the header files. The text field would typically contain the command used to 
invoke the preprocessor, or a suitable script that “embeds” the actual prepro-
cessor used.

Such a command or script can be typed in directly, or be specified by clicking 
the Browse button and using the Open dialog to locate the file.

During C/C++ import the following preprocessors are recognized (by name):

• cl (Microsoft Visual C/C++ preprocessor) – Windows only

• cpp32 (Borland C/C++ preprocessor) – Windows only

• cpp – UNIX only

• g++/gcc (GNU C/C++ preprocessor) – UNIX (including Cygwin) 

If the preprocessor you want to use is not among the ones recognized on your 
platform, you could write a shell script which calls the preprocessor. Be sure 
to give the script a name different to the names listed above. The C/C++ im-
port will call the script with two parameters:

1. The name of the input header to preprocess.

2. The name of the file where the result of preprocessing should be stored.

Example 3391: Shell script for gcc on Windows ––––––––––––––––––––––––––––

This script file calls the gcc preprocessor (from cygwin). The preprocessor is 
specified by mycpp.bat in the cppImportSpecification for the package Im-
portedDefinitions.

Click on the package ImportedDefinitions, choose “Import” – mycpp.bat is 
called. The log in the output tab shows:
June 2009 IBM Rational Tau User Guide 989



Chapter 28: Stereotypes for Code Generation
gcc -E -v -I . -x c++ %1 -o %2.i
@copy %2.i %2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 340: Shell script for user-defined preprocessor on UNIX –––––––––––––

An example script for UNIX platforms, mycpp.sh, is shown below.

gcc -E -v -I . -x c++ $1 -o $2.i
cp $2.i $2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Selective import

Type: List of Charstring

Default: ““

This edit list may contain a list of an arbitrary number of C/C++ identifiers. 
These identifiers will be made available in the model by translation of the 
corresponding declarations. 

By default this list is empty that means all C/C++ declarations that are parsed 
will be imported into the model. If the same identifier is entered multiple 
times, it will be imported only once. In the case od an selective import you 
should also do a Translation of depending declarations to guarantee that the 
resulting set of UML declarations is complete and congruent. 

Set External attributes for imported definitions

Type: Boolean

Default: True

With this attribute set to true, the external attribute will be set for imported 
definitions.

This option should be set to False when the intention is not to reuse the im-
ported definitions. 

Translation of depending declarations

Type: Boolean

Default: True
990 IBM Rational Tau User Guide June 2009



Stereotypes
With this attribute set to true, if an identifier in an import specification refers 
to a declaration that in turn depends on other declarations, then all these de-
pending declarations are translated as well. This principle is applied recur-
sively to all declarations that depend on depending declarations, thereby 
making sure that the resulting UML declarations are complete and con-
gruent.

With this attribute set to false, depending declarations will not be translated 
automatically. In such a case, the tool cannot guarantee that the resulting set 
of UML declarations is complete and congruent. This is especially important 
when you do a Selective import. If the option “Do not import definitions 
from included header files” is true (default), you must ensure that you list all 
header files that are necessary for all depending declarations. 

Import only exported definitions

Type: Boolean

Default: False

With this attribute set to true, the C/C++ Importer will only import those def-
initions that are marked with the __declspec(dllexport) keyword. Use of 
this option requires a C/C++ compiler with support for the __declspec key-
word.

Java

This stereotype is used for defining a Java build artifact, used in order to gen-
erate and roundtrip Java source code from UML.

The attributes of this stereotype corresponds to the Java Build Artifact Set-
tings of the Java code generator.

Configuration

This stereotype contains settings controlling which configuration(s) a Build 
Artifact belongs to.

Note
A build artifact may have multiple configuration stereotypes attached, one 
for each configuration it is contained in. This is visualized by multiple oc-
currences displayed in the Filter drop-down menu in the Properties Editor. 
June 2009 IBM Rational Tau User Guide 991



Chapter 28: Stereotypes for Code Generation
name

Type: String

Default: (empty)

This attribute contains the name of the Configuration that the build artifact 
belongs to. 

dynamicLibrary

This stereotype inherits from the parent stereotype «library  >> and is used 
in order to specialize a file artifact so that it manifests a dynamically linked 
library. 

This stereotype is suitable to apply to UML packages. 

File artifacts using the dynamicLibrary stereotype are managed by the Make-
file Generator so that dependencies are established to the C++ source files 
files manifested in the UML package that the stereotype is added to. 

The C++ sources that are linked to become the following:

Note
This stereotype is only used by the models that are built using the C++ Ap-
plication Generator.

File name

Type: String

Default: (empty)

This attribute designates the base name of the file that implements the dy-
namic library specified by the file artifact. 

Platform Resulting file

Windows <File name>.DLL (Windows application extension)

UNIX lib<xxx>.so (shared object)
992 IBM Rational Tau User Guide June 2009



Stereotypes
executable

This stereotype is used in order to specialize a file artifact to have it manifest 
an executing application. It is suitable to add it to model elements that define 
a scope that contain all definitions and implementations required for a suc-
cessful compile and link – typically a top level class.

File artifacts using the executable stereotype are managed by the Makefile 
Generator so that dependencies are established to the C++ source files and 
libraries manifested in scope defined by the element that the stereotype is 
added to. 

The C++ objects and libraries are linked to become the following:

Note
This stereotype is only used by the models that are built using the C++ Ap-
plication Generator.

file

This stereotype extends the Metaclass Artifact and specializes an artifact to 
become a File Artifact. It is a base stereotype, marked as hidden in its profile 
and has no practical use in its basic form. 

Instead, the following specialized file stereotypes are available for practical 
use when modeling and building applications:

• «C++ header file»

• «C++ implementation file»

• «dynamicLibrary»

• «executable»

• «staticLibrary»

Note
These file artifacts are not used when models are built using the C Code 
Generator, AgileC Code Generator or Model Verifier. 

Platform Resulting file

Windows <File name>.EXE (Windows application)

UNIX <File name> (ELF Executable Library Format)
June 2009 IBM Rational Tau User Guide 993



Chapter 28: Stereotypes for Code Generation
File name

Type: String

Default: (empty)

This attribute designates the base name of the file that manifests the UML el-
ement that the stereotype is applied on. 

Icon

This stereotype contains attributes that allow to tailor the appearance of 
graphical elements in the workspace window and in the editors.

16 x 16 Pixels Bitmap file

Type: String

Default: (model element dependent)

This attribute specifies which appearance is given to elements when dis-
played in the workspace window. It is typically taken advantage of by build 
artifacts and file artifacts (elements that have the «file» or «build» stereotype 
added, to give them an appearance that is easily associated with its function. 

The string should specify a file containing a suitable 16 x 16 pixel bitmap or 
icon. Default values refer to files stored in the etc directory of the IBM Ra-
tional Tau installation. 

The value of the attribute has no semantic impact on the model or how it is 
built. The impact is only ‘cosmetic’. 

Icon File

Type: String

Default: (empty)

This attribute specifies which appearance is given to symbols when dis-
played in the editor window. It is supported by a subset of the ‘important’ 
UML symbols, such as Package, Class, Part and State. 

The string should specify a file containing a suitable bitmap or icon file. 

If the attribute is empty, the symbol is displayed using the factory settings – 
UML symbols are visualized according to the standards set by OMG. 
994 IBM Rational Tau User Guide June 2009



Stereotypes
This attribute has no semantic meaning, the effect is ‘eye-candy’. 

KeepIconProportions

Type: Boolean

Default: False

With this attribute set to true, the height - width ratio is the same as in the 
original image.

See also

“Icon” on page 183 in Chapter 7, Working with Diagrams

LabelPosition

labelVertPosition

Type: {TopOutside | TopInside | VCenter | BottomInside | BottomOutside} 

Default: (empty)

This attribute allows to specify how text labels for symbols should be placed 
vertically. 

labelHorzPosition

Type: {LeftOutside | LeftInside | HCenter | RightInside | RightOutside} 

Default: (empty)

This attribute allows to specify how text labels for symbols should be placed 
horizontally. 

jarFile

This stereotype is used by UML models that are managed and built using the 
Java technology supported by IBM Rational Tau. It is not used when building 
applications that use the C or C++ technology. 

See also

“Java Files” on page 1334 in Chapter 42, Java Support
June 2009 IBM Rational Tau User Guide 995



Chapter 28: Stereotypes for Code Generation
javaFile

This stereotype is used by UML models that are managed and built using the 
Java technology supported by IBM Rational Tau. It is not used when building 
applications that use the C or C++ technology. 

See also

“Java Files” on page 1334 in Chapter 42, Java Support

library

This stereotype is used in order to specialize a file artifact so that it specifies 
a library. The concept of library in this case corresponds to a ‘generic object 
file component’ suitable to manage in an atomic way and that can be input to 
the linker. It does not however specify any details concerning the library 
properties or details about its technology.

This stereotype is suitable to apply to UML packages. 

File artifacts using the library stereotype are managed by the Makefile Gen-
erator in such a way that make dependencies are defined in the generated 
make file, between the source files implementing the model elements and the 
file specified by the file artifact. 

Instead of the stereotype library, the following stereotypes can be used once 
the library properties are better known, and the preferred library technology 
choice is decided:

• «dynamicLibrary»

• «staticLibrary»

Note
This stereotype is only used by the models that are built using the C++ Ap-
plication Generator.

File name

Type: String

Default: (empty)

This attribute designates which file implements the library specified by the 
file artifact. 
996 IBM Rational Tau User Guide June 2009



Stereotypes
See also

“C++ implementation file” on page 980

makefile

This stereotype is used internally by the tool in order to manage the genera-
tion of make files in a safe and correct way. 

It is listed for the sake of completeness but is not intended to be used by the 
user.

Although using this stereotype may result in make files produced by the 
Makefile Generator that work in practice, this could be the result of ‘pure 
luck’. Therefore this stereotype should not be used by the user, unless explic-
itly instructed to do so by a trusted IBM Rational source.

Make settings

This stereotype contains the settings used when executing the “make” utility. 
The “make” utility is run as a result of ordering a build command that in-
volves the compilation of the generated code (e.g. Build Configuration). 

The make utility can execute either:

• Transparently, operating on the make file that is generated by the Make-
file Generator

• Explicitly on a make file provided by the user.

Command

Type: String

Default: (empty)

This attribute specifies the actual “make” command to be performed instead 
of the default command. 

Dialect

Type: {DEFAULT | gmake | nmake | sunmake}

Default: DEFAULT
June 2009 IBM Rational Tau User Guide 997



Chapter 28: Stereotypes for Code Generation
This attribute allows to specify which dialect of “make” is used when sub-
mitting the make file to the “make” utility, and ensuring that file paths and 
options are specified in the proper way. 

• DEFAULT assumes that make is called ‘native’ according to the host op-
erating system.

– nmake for Windows hosts (using backslashes in file paths, and 
slashes for options)

– gmake for Linux hosts (using slashes in file paths, and dashes for op-
tions) 

– sunmake for Solaris hosts (using slashes in file paths, and dashes for 
options) 

• gmake and sunmake specify to use UNIX conventions when calling 
“make”

• nmake specifies to use Windows conventions when calling “make”

Makefile

Type: String

Default: (empty)

With this attribute can be specified a particular make file to use as input in-
stead of the make file that is generated by the Makefile Generator. 

Options

Type: String (multi-line)

Default: (empty)

This attribute specifies an arbitrary number of user defined options, to be 
used when invoking the “make” utility. 

Makefile generator

This stereotype inherits from the base stereotype «build» and contains the 
settings that control the contents and location of the generated make file. The 
generated make file is produced by the Makefile Generator as a result of or-
dering a build command involving code and make file generation (e.g. Gen-
erate Configuration). 
998 IBM Rational Tau User Guide June 2009



Stereotypes
Dialect

Type: {Default | gmake | nmake | sunmake}

Default: DEFAULT

This attribute allows to override the dialect that is used when generating the 
contents of the make file, which may be necessary if the generated applica-
tion should be easily compiled on another host computer than the one hosting 
IBM Rational Tau.

• DEFAULT will have the tool use the make dialect that is ‘native’ on the 
host operating system.

– nmake for Windows hosts

– gmake for Linux hosts

– sunmake for Solaris hosts

• gmake instructs the tool to use the make dialect defined by GNU 
“gmake” utility, and the GNU C/C++ tool chain. This should be used on 
Linux and Solaris hosts.

• sunmake instructs the tool to use the make dialect defined by SUN work-
shop, and the forte C++ tool chain. 

• nmake instructs the tool to use the dialect used by Microsoft “nmake”

Target directory

Type: String

Default: (empty)

This attribute controls where the make file generated by the Makefile Gener-
ator is to be written on the file system. Both absolute and relative path is ac-
cepted. If specified relative, the “root” is the location of the current project 
(.ttp) file.

This attribute has an empty default value, in which case the conventions for 
Target Directory naming and location take effect.

User code

Type: String (multi-line)

Default: (empty)
June 2009 IBM Rational Tau User Guide 999



Chapter 28: Stereotypes for Code Generation
This attribute specifies user code to be inserted to the generated make file by 
the Makefile Generator. This feature allows to customize the contents of the 
generated make file to the user’s convenience and is provided mainly for 
openness. 

The user provided section is inserted between the “compiler macro defini-
tions” section and the “dependencies” section in the generated make file.

Model Verifier

This stereotype inherits from the base stereotype «build» and contains the at-
tributes that control the generation of a Model Verifier – an application that 
is instrumented to support simulation, tracing and also detailed debugging of 
the application at UML level.

Additional Preprocessor Defines

This attribute is described in the section about the C Code Generator stereo-
type, Additional Preprocessor Defines.

Expand macros

Type: Boolean

Default: False

This attribute controls if macros in C code should be expanded and processed 
after code generation, to make the C code more readable, and make it easier 
for you to take advantage of a C debugger while running the Model Verifier. 
This processing is done by the C Compiler Driver utility.

Note
Expand macros is not supported with Target kind set to Win32. 

Generate environment template functions

Type: Boolean

Default: False

This attribute controls if files with skeletons for the Environment Functions 
should be created when building the Model Verifier.
1000 IBM Rational Tau User Guide June 2009



Stereotypes
The System interface header file (.ifc), holds an up-to-date definition of the 
interface to the environment is always created regardless of the value of this 
attribute.

Make template file

Type: String

Default: (empty)

This attribute controls if the tool should use a given make template file (that 
has to be provided by you) when creating the make file used for the Model 
Verifier. Such a template make file allows to include external code that 
should be compiled and linked with the generated C code. A relative path is 
relative to project directory, ‘+’ signifies to use the .tpm file in the target di-
rectory that has the generated default name (dependant on build root name).

Suppress C level warnings

This attribute is described in the section about the C Code Generator stereo-
type.

Support C++

Type: Boolean

Default: False

This attribute controls if the Model Verifier that is built should be given prop-
erties that make it possible to compile it with C++ compilers, or if the code 
should be compiled using an ISO C compiler. The properties of major con-
cern are in particular the handling of external code to be compiled and linked 
with the application code and run-time library. 

This attribute also controls that a suitable library with the _cpp suffix will be 
used when compiling and linking the code. 

Target directory

Type: String

Default: (empty)
June 2009 IBM Rational Tau User Guide 1001



Chapter 28: Stereotypes for Code Generation
This attribute controls where the files, generated as the result of building 
using the current Build Artifact, are to be written on the file system. If the 
location is specified as a relative path, the “root” is the location of the current 
project (.ttp) file.

This attribute has an empty default value, in which case the conventions for 
Target Directory naming and location take effect.

Target kind

Type: TargetKind

Default: Win32

This attribute controls what kind of target application will be built with the 
C Code Generator.

The possible value for TargetKind is set by a drop-down menu. It can be 
either Win32, Win32-gcc, Solaris-cc, Solaris-gcc or Linux-gcc.

Note
1. The Solaris and Linux values are only supported for the UNIX version.
2. The value Win32-gcc is meaningful only if you have installed the GNU C 
compiler according to the Installation Guide. Furthermore, Win32-gcc does 
only support Model Verifier without any environment functions. 

Verbose mode

Type: Boolean

Default: False

This attribute controls if the C Code Generator should print exhaustive re-
ports and diagnostics in the message output area when generating code for a 
Model Verifier. 

See also

“Generate environment template functions” on page 973 in Chapter 28, 
Stereotypes for Code Generation

“Make template file” on page 974 in Chapter 28, Stereotypes for Code 
Generation 
1002 IBM Rational Tau User Guide June 2009



Stereotypes
“Supported libraries” on page 1060 in Chapter 33, C and AgileC Runtime 
Libraries

objectFile

This stereotype is used internally by the tool in order to manage “make” de-
pendencies between source files and the object files generated by the C++ 
compiler. It is also used internally to define dependencies to targets (execut-
ables or libraries)

It is listed for the sake of completeness but is not intended to be used by the 
user.

Although using this stereotype may result in make files produced by the 
Makefile Generator that work in practice, this could be the result of ‘pure 
luck’. Therefore this stereotype should not be used by the user, unless explic-
itly instructed to do so by a trusted IBM Rational source.

Source reference

The stereotype Source reference contains attributes that hold information 
about which definition an element is imported from.

The main application area is to allow a navigation to the originating C/C++ 
definition, by selecting Go to C/C++ source on the shortcut menu. Your pre-
ferred text editor for working on C/C++ source and header files will open a 
window on the file that is specified by the attribute File. 

If technically possible and supported by the text editor, the text insertion 
cursor will be positioned on the line and column defined by the attributes 
Line and Column.

Note
The attributes are given their values during C/C++ Import. These values 
should not be modified by the user, or the references will become erroneous.

File

Type: Charstring

Default: (empty)
June 2009 IBM Rational Tau User Guide 1003



Chapter 28: Stereotypes for Code Generation
This attribute tells which C/C++ header file contains the definition of an el-
ement that is created as the result of an import. The attribute is empty for el-
ements that have not been created as the result of an import.

Line

Type: Integer

Default: (empty)

This attribute refines the information about the originating C/C++ definition 
from which an element is imported, by telling on which line in the C/C++ 
header File the declaration of the definition is found during import. The start 
count for lines (usually 0 or 1) is depending on the Preprocessor.

The attribute is empty for elements that have not been created as the result of 
an import.

Column

Type: Integer 

Default: (empty)

This attribute refines the information about the originating C/C++ definition 
from which an element is imported, by telling on which column in the C/C++ 
header File the declaration of the definition is found during import. The start 
count for columns (usually 0 or 1) is depending on the Preprocessor used.

The attribute is empty for elements that have not been created as the result of 
an import.

staticLibrary

This stereotype inherits from the parent stereotype «library» and is used in 
order to specialize a file artifact so that it manifests a statically linked library. 

This stereotype is suitable to apply to UML packages. 

File artifacts using the staticLibrary stereotype are managed by the Makefile 
Generator so that dependencies are established to the C++ source files man-
ifested in the UML package that the stereotype is added to. 

The C++ sources that are linked to become the following:
1004 IBM Rational Tau User Guide June 2009



Stereotypes
Note
This stereotype is only used by the models that are built using the C++ Ap-
plication Generator.

File name

Type: String

Default: (empty)

This attribute designates the base name of the file that implements the static 
library or archive specified by the file artifact. 

thread

This stereotype extends the Metaclass Artifact and is used to specialize an 
artifact into a thread artifact. It contains attributes that allow to specify how 
an application should execute in separate threads. 

Instances

Type: String (multi-line)

Default: (empty)

This attribute contains a list of instances that should execute in a thread of 
their own. Each element in the list should be a UML fully qualified instance 
name.

One thread per instance

Type: Boolean

Default: False

This attribute specifies if each instance mapped to the «thread» stereotype 
should execute in a separate run-time thread, or if all instances mapped to the 
thread stereotype should execute in the same run-time thread.

Platform Resulting file

Windows <File name>.LIB (library)

UNIX lib<xxx>.a (archive)
June 2009 IBM Rational Tau User Guide 1005



Chapter 28: Stereotypes for Code Generation
Setting this attribute to True has the same effect as creating a «thread» ste-
reotype for each instance.

Priority

Type: Integer

Default: (empty)

This attribute specifies which priority should be applied to the thread at 
thread creation. The value of the attribute is present verbatim in the generated 
code, in a parameter to the call of the operating system primitive that creates 
a thread. 

If the attribute is left empty, the thread is created with default priority. 

Stack size

Type: Integer

Default: (empty)

This attribute specifies which stack size should be applied to the thread at 
thread creation. The value of the attribute is present verbatim in the generated 
code, in a parameter to the call of the operating system primitive that creates 
a thread. 

If the attribute is left empty, the thread is created with default stack size. 

User 1, User 2

Type: Integer

Default: (empty)

These attributes allow to define up to two integer parameters that are passed 
verbatim to the underlying operating system when creating a thread. 

If any of these attribute is left empty, the call of the thread creation primitive 
uses a default value for the corresponding parameter. 
1006 IBM Rational Tau User Guide June 2009



29
Guidelines for Large-Scale 
Application Development

This document discusses how to take advantage of the features in IBM Ra-
tional Tau intended for projects that create, manipulate and generate applica-
tions originating from large models. Special emphasis is given to projects 
that use the C Code Generator.

For a reference to the tool features, see Chapter 27, Building Applications 
Reference.
June 2009 IBM Rational Tau User Guide 1007



Chapter 29: Guidelines for Large-Scale Application Development
Introduction
Some problem areas when designing large applications are the following:

• Dividing the model into appropriate files to enable efficient configura-
tion and version management

• Creating a suitable model structure to minimize build times when gener-
ating code from the model.

Both of these aspects of application design are treated in this document.

Library Builds
When developing a very large application a common strategy is to divide the 
application into different modules that are handled by different teams/per-
sons and that have decently stable interfaces to each other. The idea in this 
situation is that each team only should care about the module it is responsible 
for and the interfaces to other modules. The implementation of the other 
modules is taken care of by other teams that should deliver libraries that cor-
respond to stable builds of the other modules.

This approach has several benefits:

• Clearly defined responsibilities for each teams

• Clearly defined interfaces between the teams

• Reduced build times since each team only needs to build its own module.

The general scheme when working using library builds is thus that the appli-
cation is divided into a set of modules, each one with a well-defined interface 
and each one designed to be compiled into one library. When working with 
a specific module only the current module is modified and only the library 
that is produced from this module is built.

Typically there also exists one 'main' module that defines the initialization of 
the application, using for example a main() function or by other suitable 
means. This module contains the code that is executed when the application 
starts. For each module there might also exist a test framework, that essen-
tially is a 'main' module created for testing purposes only.
1008 IBM Rational Tau User Guide June 2009



Library Builds
Library artifacts

This scheme is supported in UML based on the concept of Library Build 
Artifacts. From a UML point of view a Build Artifact is an artifact that is 
stereotyped with a stereotype inheriting from the «build» stereotype. A typ-
ical example would be a «'C Advanced Application'», «'Model Verifier'» or 
«'C++ Application'» artifact. 

A library build artifact is a Build Artifact with the 'Target' property set to 
'Library' instead of 'Executable'. This means that the target file that is pro-
duced when building the artifact not is an executable file, but rather a library 
that should be linked together with other libraries to form an executable.

Note
All library build artifacts must be of the same type. You cannot mix different 
build types within one project.

A library artifact should «manifest» the model elements that should be in-
cluded in the library. At present time, the tool supports only the case when 
the library contains all elements in one specific package. This is represented 
by having a «manifest» dependency from the library build artifact to the 
package itself. This is also the only supported way to create libraries when 
using the C Code Generator. 

Note
The packages that are manifested by library artifacts must be top-level 
packages.

When building based on the library build artifact only the library is produced. 
To create a complete executable the 'main' module need to be built. In UML 
a 'main' module is represented by a build artifact with 'target' set to 'execut-
able'. To identify the class that should be created when starting the applica-
tion you use a «manifest» dependency from the build artifact to this selected 
class.

You also need to specify «include» dependencies between the build artifacts 
to give the tool information on what relationships exists between the li-
braries. 

Note
At present time, the «include» dependencies must be manually derived from 
the model and explicitly added where needed. 
June 2009 IBM Rational Tau User Guide 1009



Chapter 29: Guidelines for Large-Scale Application Development
The following illustrates the described concepts. In the chosen example is an 
application composed of two main libraries (called Pkg1 and Pkg2), each 
containing one package with a set of definitions. The model also has one li-
brary (called Interfaces) containing the common interfaces, signals etc., 
and lastly a main module (called LibraryExample).

Figure 233: Package overview of the example
1010 IBM Rational Tau User Guide June 2009



Library Builds
The Interfaces package is defined as follows:

Figure 234: System overview

Figure 235: Contents of package Interfaces.
June 2009 IBM Rational Tau User Guide 1011



Chapter 29: Guidelines for Large-Scale Application Development
There are two interfaces, i1 and i2. There is also a Model Verifier Build Ar-
tifact Interfaces that manifests the package. If you were to check the prop-
erties of this artifact you would see that it has the Target property set to Li-
brary.

Pkg1 is defined as shown in Figure 236 on page 1012. 

Pkg1 contains one active class called c1 and a «'Model Verifier'» build ar-
tifact Pkg1Art. The c1 class realizes the i1 interface and requires the i2 in-
terface. Since these interfaces are defined in the Interfaces package above 
there should be an «import» dependency from Pkg1 to Interfaces to ac-
cess their definitions. There should also be an «include» dependency from 
Pkg1Art to InterfacesArt to show that the Pkg1Art depends on the 
InterfacesArt.

Pkg2 is very similar to Pkg1, with the difference that it contains another class 
as shown in Figure 237 on page 1013. 

Figure 236: Contents of package Pkg1
1012 IBM Rational Tau User Guide June 2009



Library Builds
In Figure 238 on page 1013 is shown the dependencies between the 
LibraryBuildExample artifact and the library artifacts it is depending on:

Some aspects worth noting in this example are:

Figure 237: Contents of package Pkg2

Figure 238: Artifact dependencies
June 2009 IBM Rational Tau User Guide 1013



Chapter 29: Guidelines for Large-Scale Application Development
• The usage of the 'Interfaces' package as a library module that includes 
the common definitions needed for the modules that contain active 
classes.

• Typically all of the packages would be stored in separate files. So there 
would be four UML files: One for each of the packages Interfaces, 
Pkg1, Pkg2 and LibraryExample.

• There should be no library build artifact for the package in which ‘main’ 
is placed.

• The same Target Directory should be used for all build artifacts. See 
“The build process” on page 1015. 

Implementation vs. signature files

To benefit from the library concept it is essential to have a well-defined in-
terface between the modules and also to be able to separate this interface 
from the implementation of the module. In UML a module interface is de-
scribed by a package that contains the type definition of a set of classes to-
gether with a set of interfaces, signals, data types etc. that are used in the 
public parts of the class definitions. In practice it is useful to store this kind 
of package in a separate file to have the version management of the package 
independent of the version management for the remaining parts of the model. 
In IBM Rational Tau it is possible to store for example a package in a sepa-
rate file, by using the command Save in New File available on the shortcut 
menu in the Model View.

The second part of the solution is to be able to store the implementation as-
pects of the classes defined in the package in one or more separate files which 
versions can be handled independently of the file containing the module in-
terface. In practice 'implementation aspects' consist of two parts:

• State machines and operation bodies that define the behavior of opera-
tions

• Private attributes.

In IBM Rational Tau you can move a state machine implementation or oper-
ation body to a separate file by dragging the body in the model view to one 
of the files shown in the Files folder in the Model View. Alternatively you 
can choose the Save in New File command for the implementation in the 
Model View similarly as for packages.
1014 IBM Rational Tau User Guide June 2009



Library Builds
For the example in the previous section the natural implication would be to 
store the state machine implementations of c1 and c2 in separate files.

The build process

To build the complete application you need to first build each of the libraries 
and then finally build the main module. But, before you do this, you should 
make sure to set up the Target Directory property of the different build arti-
facts to a common directory, for example “mytargetdir”. This will ensure 
that the C compiler will be able to find the libraries during the linking phase.

For the example above you would give four build commands, first to build 
libraries for the Interfaces, Pkg1 and Pkg2 modules and finally to build the 
executable as described by the LibraryExampleArt artifact.

Note
The libraries must be build in a ‘bottom-up’ order, i.e. before a specific 
package is built, all packages it depends on must be built.

Restrictions in the C code

The library based build has many advantages but there are some restrictions 
that are necessary to understand to be able to take advantage of the library 
build supported by C Code Generator. These restrictions are described 
below.

Container types and library builds

When generating code for an entity, for example a class, the C Code Gener-
ator also generates a number of utility types for the class. Some examples in-
clude code for pointers to the class and code corresponding to an implicit col-
lection type for the class used wherever the model contains an attribute typed 
by the class that has multiplicity >1. Other examples include types used 
wherever a template container type is instantiated with the class as a param-
eter, for example when a Bag or Array of the class is used as the type of an 
attribute.

If library builds are not used, the code generation includes a global analysis 
of the way the class is used and if template instantiations are found the cor-
responding types are generated in C code. However, if library builds are used 
June 2009 IBM Rational Tau User Guide 1015



Chapter 29: Guidelines for Large-Scale Application Development
it can not be made sure that all possible instantiations are known when gen-
erating code for the library module. So, it is not possible to perform a global 
analysis of how the class is used.

Instead code is generated only for the following cases:

• Pointers to the class

• String instantiations.

The implication is that it is possible to use the class as the type of for example 
an attribute both with multiplicity 1 and a multiplicity >1. It is also possible 
to use a String of the class. However, all other attempts to use a template col-
lection type instantiation with the class as parameter will generate an error 
since there will be no C code generated for the corresponding C type.

Fortunately there is a simple way to force the tool to generate the C code that 
corresponds to a particular template type instantiation. You can do this by 
simply defining a syntype that contains the template instantiation you want 
and that is stereotyped by «CollectionType». So, for example if you define 
a class C and want to use a Bag<C> as the type of for example an attribute 
then you must define a syntype definition “«CollectionType» syntype 
Bag_C = Bag<C>;” somewhere in his model. The most natural place to de-
fine this syntype is usually at the same location as where the class C is de-
fined but any location in the model that is visible from where the Bag<C> def-
initions are used is also suitable.

The collection type restriction also applies to datatypes, even though the dis-
cussion in this section has been about classes. 

Recursive package import/access

The C Code Generator has a restriction with respect to how «import» and 
«access» dependencies can be used: It is not allowed to have recursive «im-
port»/«access» dependencies. This applies both to a situation where library 
builds are used and when they are not used.

Library packages and inheritance of active classes

If you have a library package with an active class and would like to use this 
active class for example in another library package, the class can only be in-
stantiated. It is not possible to define another class that inherits the original. 
So all active classes that inherit each other must be defined in the same li-
brary package.
1016 IBM Rational Tau User Guide June 2009



Library Builds
The reason for this is that, in order to generate code for inheritance, it is nec-
essary to know the details on the states and transitions of the inherited class 
and this is typically hidden in the implementation part of a class.
June 2009 IBM Rational Tau User Guide 1017



Chapter 29: Guidelines for Large-Scale Application Development
Managing File Size Using <<noScope>> 
Packages

An important aspect when developing a large model is to be able to support 
a large team that can concurrently work on the same model. The general 
strategy used in IBM Rational Tau to support this situation is to store the 
model in more than one file and then have different team members work on 
different files. The most common unit that is used for file splitting is to have 
packages in separate files and to have implementations of for example 
classes in separate files. However, in some cases it is useful to have other 
mechanisms, most often to make it possible to divide the model into more 
files. This section describes a method for how to accomplish this based on 
<<noScope>> Packages. 

Note
Since a «noScope» package does not form a scope unit, it is not allowed to 
have «import» or «access» dependencies to or from «noScope» packages. 
1018 IBM Rational Tau User Guide June 2009



Improving Build Performance
Improving Build Performance

<<bindByGuid>> packages

When generating code based on a model, the code generation is composed of 
several phases. One of the main phases is the name resolution phase, during 
which all references in the model are resolved. IBM Rational Tau can do this 
resolution in two modes, based on the unique identifiers that are generated 
for the model elements or based on the name and qualifiers of the elements 
and their position in the scope hierarchy. Normally IBM Rational Tau will 
use both mechanisms when resolving a name to be able to detect inconsisten-
cies and propagate name changes. However, this will take extra time when 
loading the model and, in particularly for library packages that are seldom 
changed, it is not necessary.

If you apply the «bindByGuid» stereotype to a package you will force the 
tool to avoid the name based resolution for the entities in a package and only 
rely on resolution based on a unique identifier. This will not have any impact 
on what happens when interactively working with the elements in the 
package, name change propagation and similar features will still work. It will 
only affect what happens when loading the package from a file, however 
since this is exactly what you are doing when you generate C code for a 
model it can in some situations be an efficient way to improve the perfor-
mance of the C code generation.
June 2009 IBM Rational Tau User Guide 1019



Chapter 29: Guidelines for Large-Scale Application Development
1020 IBM Rational Tau User Guide June 2009



30
Requirement Traceability in 

Generated Code

The C, C++ and Java code generators of IBM Rational Tau support the an-
notation of generated code with references to DOORS requirements. This is 
a means to obtain traceability from generated C, C++ or Java definitions to 
requirements to which these definitions are related.

This document describes how to utilize this feature.
June 2009 IBM Rational Tau User Guide 1021



Chapter 30: Requirement Traceability in Generated Code
Introduction
When developing complex applications requirements management and anal-
ysis is often a key to success. If the requirements are vaguely specified or 
poorly analyzed the risks are high that the application that shall meet the re-
quirements will not do so.

A requirement management and analysis tool such as DOORS greatly helps 
in the requirement analysis phase of a project. When moving into the design 
phase where IBM Rational Tau is used for modeling and implementation, it 
is possible to establish references from design elements to the corresponding 
requirements. Such references are known as traceability links, and can be es-
tablished using the integration between DOORS and IBM Rational Tau. See 
Working together with DOORS for more information about the capabilities 
of this integration.

During application development the traceability links between the IBM Ra-
tional Tau model and the DOORS requirements are mainly used for naviga-
tion purposes. However, when generating code from the model this informa-
tion can also be used for annotating the generated code with references to the 
DOORS requirements. Having such annotations in the generated code helps 
answering common questions like the following:

• Have all requirements been implemented by the generated application?

• Which impact will a new requirement have on the generated code? 

• Does one single C, C++ or Java definition realize multiple requirements?

• Is the implementation of one requirement localized to the same source 
file or is it spread out over multiple files?

• Is the implementation of one requirement localized to the same module 
(library or executable) or is it spread out across the entire application?

• Which impact will the removal of an implemented requirement have on 
the generated code?

Requirements references in generated code also makes the generated code 
more readable, and are sometimes even required when validating the code 
against certain standards or certification programs.
1022 IBM Rational Tau User Guide June 2009



The U2ReqTrace Add-in
The U2ReqTrace Add-in
The feature of annotating generated code with requirements references is 
available in the form of a IBM Rational Tau add-in called U2ReqTrace. 

The intended workflow when using this add-in is the following:

1. Requirements are defined using DOORS, and are saved in one or many 
formal DOORS modules.

2. When designing and implementing the UML model these formal 
DOORS modules are imported into IBM Rational Tau. See Importing re-
quirements for more information on how to do this.

3. Traceability links are established between UML model elements and 
DOORS requirements. See Requirement relations for more information 
on how to do this.

4. The U2ReqTrace add-in is activated.See Activating add-ins for informa-
tion about how to activate an add-in.

5. The <<requirementRefAnnotation>> stereotype is applied on the 
build artifact. Appropriate Options are set as tagged values for this ste-
reotype, using the Properties Editor.

6. A C, C++ or Java application is generated from the application. A defi-
nition in the C/C++/Java code that corresponds to a UML definition for 
which a traceability link exists will get an annotation in the form of a 
source code comment. It contains a reference to the DOORS require-
ment, and also the requirement text. Which information from the 
DOORS requirement that will be printed can be customized by Options 
to U2ReqTrace.

Although these steps are presented sequentially here, it is common to per-
form them in an iterative manner. If a new requirement is added at a later 
stage, the DOORS module can be reimported and traceability links can be 
added to the new requirement (either from new or existing UML model ele-
ments). Then the code can be regenerated (fully or partially).
June 2009 IBM Rational Tau User Guide 1023



Chapter 30: Requirement Traceability in Generated Code
Annotation Formatting

Generated code is annotated by means of source code comments. By default 
these annotations are printed just before the C/C++/Java definition that has a 
requirement reference. It is also possible to have all annotations generated at 
either the beginning or end of a source file (see Options for more informa-
tion). 

The formatting of the annotation comments depend on where they are gener-
ated. A comment that is generated just before the annotated definition has the 
following format:

/*** Realizes requirement /<DB>/<P>/<M>#<ID>
<Req Heading>
"<Req Short Text>"
"<Req Object Text>"

**********************************************************/

A comment that is generated at the beginning or end of a file has the fol-
lowing format:

/**** Requirements realized by definitions in this file 
****
***********************************************************
*
<Def Name>(<Line>) : /<DB>/<P>/<M>#<ID>

<Req Heading>
"<Req Short Text>"
"<Req Object Text>"

**********************************************************/

When generating C++ or Java code double-slash comments (//) will be used 
instead of C comments (/* */).

The “variables” used above have the following meaning:

<DB> The name of the DOORS database

<P> The path to the DOORS formal module

<M> The name of the DOORS formal module

<ID> The requirement ID

<Req Heading> The requirement heading text

<Req Short Text> The short text of the requirement
1024 IBM Rational Tau User Guide June 2009



The U2ReqTrace Add-in
Example 341: Formatting of requirement annotation comments –––––––––––––––

A comment printed just before the annotated definition could look like this:

//// Realizes requirement /DOORS 
Database//Tau2_7_Requirements/U2ReqTrace#6
// Support both C, C++ and Java code generators
// "Requirement traceability should be supported both for 
the C, C++ and Java code generators"
///////////////////////////////////////////////////////////
/
class U2ReqTracer {};

A comment printed at the beginning or end of a file could look like this:

///// Requirements realized by definitions in this file 
////
///////////////////////////////////////////////////////////
/
//U2ReqTracer(12) : /DOORS 
Database//Tau2_7_Requirements/U2ReqTrace#6
// Support both C, C++ and Java code generators
// "Requirement traceability should be supported both for 
the C, C++ and Java code generators"
///////////////////////////////////////////////////////////
/

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
When using the U2ReqTrace add-in for a C++ build artifact that uses 
roundtripping, the annotation comments will be printed inside GENER-
ATED tags since the information they contain does not correspond to any-
thing in the UML model. This ensures that roundtripping can be used also 
on annotated files.

<Req Object Text> The object text of the requirement

<Def Name> The name of the annotated definition

<Line> The line number where to find the generated def-
inition in the file
June 2009 IBM Rational Tau User Guide 1025



Chapter 30: Requirement Traceability in Generated Code
Options

Generated code will be annotated with requirement references if the 
<<requirementRefAnnotation>> stereotype is applied on the build arti-
fact that is used when generating the code. This stereotype is defined in the 
ReqTraceability profile package that gets loaded when the U2ReqTrace add-
in is activated.

The following options can be set as tagged values for the 
<<requirementRefAnnotation>> stereotype, using for example the Prop-
erties Editor:

• Annotate Code
This option must be enabled for the code to be annotated. If it is disabled 
the other options are not relevant. This option is useful if you want to 
temporarily disable the printing of requirement references while still 
keeping the values of all the other options.

• Text Size Limit
This option specifies the maximum number of characters to print for any 
DOORS requirement text. By default the limit is set to 255 characters. If 
you want the entire text to be printed, set this option to 0.

• File Placement
This option allows you to control where in the generated file the require-
ment references are printed. The default value is “Before Definition” 
which means that requirement references will be printed immediately be-
fore the corresponding C/C++/Java definition. It is also possible to set 
this option to “File Header” (all requirements are printed at the beginning 
of the file) or “File Footer” (all requirements are printed at the end of the 
file). Note that the formatting of the printed annotations depends on this 
option. See Annotation Formatting for more information and examples.

• Print Headings
This option controls whether the heading of the requirement should be 
printed. It is enabled by default.

• Print Short Text
This option controls whether the short description (short text) of the re-
quirement should be printed. It is enabled by default.

• Print Object Text
This option controls whether the long description (object text) of the re-
quirement should be printed. It is enabled by default.
1026 IBM Rational Tau User Guide June 2009



The U2ReqTrace Add-in
Usage

The U2ReqTrace add-in has no specific commands in the user interface. It is 
completely integrated with the C, C++ and Java code generators and is auto-
matically invoked after the generation of C/C++/Java code. More precisely 
it is invoked after the insertion of the code generation result package that 
these code generators produce.

The following message is printed in the Build log when U2ReqTrace has an-
notated a generated file:

Successfully annotated "C:\CGTest\MyFile.h" with 
requirements references.

In case any errors occur, these are also printed as messages in the Build log.

Note that U2ReqTrace requires a connection to DOORS in order to extract 
the requirement information. If DOORS has not been started when gener-
ating the code, it will be launched automatically. 

API Access

The U2ReqTrace is implemented as an agent. It can therefore be accessed 
from the public IBM Rational Tau APIs using the InvokeAgent API method. 
The agent is defined in the ReqTraceability profile and is called 
AnnotateGeneratedCodeWithRequirementsReferences.

It is also possible to integrate U2ReqTrace with any custom code generator. 
As can be seen in the profile the agent is triggered on the Insert cross refer-
ence file tool event. Hence it will work for any code generator that can pro-
duce a cross-reference file (also known as a code generation result package) 
on the same format as used by the C, C++ and Java code generators. 
U2ReqTrace works by analyzing the result package contents, extracts 
DOORS information for generated definitions that have traceability links to 
DOORS requirements, annotates the generated code with source code com-
ments containing the extracted information, and finally updates the informa-
tion in the result package if necessary (line numbers may need an offset to 
account for inserted comments).
June 2009 IBM Rational Tau User Guide 1027



Chapter 30: Requirement Traceability in Generated Code
1028 IBM Rational Tau User Guide June 2009



UML for C Code Generation

The chapters listed under UML for C Code Generation describe how a UML 
project is turned into a C application using the C Code Generator and the Ag-
ileC Code Generator. 
June 2009 IBM Rational Tau User Guide 1029



Chapter : 
1030 IBM Rational Tau User Guide June 2009



32
Environment Functions for C 

Applications

This section describes how you should proceed in order to design the inter-
face between application code generated with the C Code Generator and the 
environment to the system.

An overview of the architecture of a C application is presented, and how it is 
interfaced with its environment.

Guidelines and design recommendation for the environment functions are 
then given. The intended use is to provide guidelines and hints how to in-
clude the functions into the application code in order to achieve good results.

See also

In case you need to look up reference information about the operation prin-
ciples for the C Code Generator, please refer to the following chapters:

C Code Generator Reference

C Code Generator Run-Time Model

C Code Generator Symbol Table

C Code Generator Macros
June 2009 IBM Rational Tau User Guide 1031



Chapter 32: Environment Functions for C Applications
Introduction
An application generated using the C Code Generator can be viewed as con-
sisting of three parts:

• The generated code that implements the system

• The physical environment of the system

• The environment functions, where you connect the system with the envi-
ronment of the system

Generated code

The system behaves as a state machine, in which transitions are executed in 
priority order, signals are sent from an instance of an active class to another 
instance, initiating new transitions, timer signals are sent, and so on. These 
are examples of internal actions that only affect the execution of the system. 

A system communicates with its environment by sending and receiving sig-
nals. 

Figure 239: Interface between application and environment.

Environment
 Functions

   Physical
Environment

Signal
interface

Interface containing:
Read and write on files
Read and write on ports
Read and write on sockets
Communication over network
Handling of interrupts, 
and so on...

System
1032 IBM Rational Tau User Guide June 2009



Introduction
Physical environment

The physical environment of an application could consist of an operating 
system, a file system, some hardware devices, a network of computers etc. In 
this “real world” other actions than just signal sending are required. Exam-
ples of actions that an application has to perform are: to read or to write on a 
file, to send or receive data over a network, to respond to interrupts signals, 
to read and to write information on hardware ports or on sockets. 

Environment functions

The environment functions are the place where the two worlds, the system 
and the physical environment, meet. Here, signals sent from the system to the 
environment can induce all kinds of events in the physical environment, and 
events in the environment can cause signals to be sent into the system. 

You have to provide such environment functions, as the C Code Generator 
has no knowledge of the physical environment, or of the actions that should 
be performed.

Distributed applications

In a distributed system, an application might consist of several communi-
cating systems. Each system will then become one executable program. It 
might execute either as an operating system task, communicating with other 
operating system tasks, or it might execute in a processor of its own, commu-
nicating over a network with other processors. There may also be combina-
tions of these cases. For the sake of simplicity, the operating system tasks or 
processors nodes are called communicating over a network. In the event of 
communicating operating system (OS) tasks, the network will be the media 
for the inter-process communication provided by the OS.

Generating an application consisting of several nodes communicating over a 
network is possible using the C Code Generator. However, you will then 
need to implement the communication between the nodes in the environment 
functions.

Note
All nodes in a network do not need to be programs generated by the C Code 
Generator from UML models. As long as a node can communicate with 
other nodes, it may be implemented using any technique.
June 2009 IBM Rational Tau User Guide 1033



Chapter 32: Environment Functions for C Applications
The Pid values (references to instances of active classes), are a problem in a 
distributed world containing several communicating systems. It is desired 
that, for example, “Sender.Output” works, even if Sender refers to an in-
stance of an active class in another system. To cope with this, a global node 
number has been introduced as a component in a Pid value. The global node 
number, which is a unique integer value assigned to each node, identifies the 
node where the current instance is resident, while the other component in the 
Pid value is a local identification of the instance within its node.

Additional advantages

The split of an application into the system and the environment functions has 
additional advantages. It separates the logical decision to perform the action 
(for example the decision to send a signal to the environment) from the im-
plementation details of the action (for example handling the signal in the en-
vironment functions). 

This kind of separation reduces the complexity of the problem and also al-
lows separate testing. Furthermore, it allows the development in parallel of 
the logical behavior (implemented in the system) and the interface towards 
the environment (implemented in the environment functions). When the 
signal interface between the system and its environment is defined, it is pos-
sible to proceed with both development activities in parallel, and easily inte-
grate the results at the end.

Building the application

How to build the Application, i.e. generate code from the UML model, com-
pile and link the code using the appropriate code generator settings, compiler 
options and so forth is described in Chapter 27, Building Applications Ref-
erence.

Simulating and debugging the application

When an application is developed, it is appropriate to start using the Model 
Verifier to simulate and debug the UML model on your host computer, 
without any environment, in order to verify that the code from the UML 
model behaves as expected. In such a simulation mode, the environment is 
provided through the Model Verifier user interface, which allows you to re-
ceive signals from the environment, and to observe and trace the signals that 
are sent to the environment.
1034 IBM Rational Tau User Guide June 2009



Essentials About Generated C Code
Target application

Your next task is to include the required support to interface the application 
with the environment, and then to compile and link the application for your 
target environment. 

See also

C and AgileC Runtime Libraries

Essentials About Generated C Code
This section describes briefly what you need to know about how signals and 
instances of active classes are represented in the generated C code. The 
symbol table, which is a representation of the static structure of the system, 
is also discussed to help you understand how to proceed when interfacing the 
generated code with the environment functions. The information provided in 
this section is used when the environment functions are described later in this 
guide.

An exhaustive reference documentation to the generated C code is available 
in: C Code Generator Run-Time Model and C Code Generator Symbol 
Table.

Types representing signals

A signal is represented by a C struct containing general information about the 
signal followed by the parameters carried by the signal.

A general type definition xSignalRec for a signal without parameters and 
for a pointer to such a signal, xSignalNode, are given below. These types 
can be found in the file scttypes.h. These types may be used for type 
casting of any signal to access the general components.

typedef struct xSignalRec *xSignalNode;
typedef struct xSignalRec {
  xSignalNode Pre;
  xSignalNode Suc;
  SDL_PId     Receiver;
  SDL_PId     Sender;
  xIdNode     NameNode;
  int         Prio;
} xSignalRec;

Such a xSignalRec contains the following components:
June 2009 IBM Rational Tau User Guide 1035



Chapter 32: Environment Functions for C Applications
• Pre and Suc. These components are used to link the signal in the input 
port list of the receiving instance of an active class. The input port is im-
plemented as a double linked list. When a signal has been consumed and 
the information contained in the signal is no longer needed, the signal 
will be returned to an avail list to be re-used in future signal sendings. 
The component Suc is used to link the signal into the avail list, while Pre 
will be (xSignalNode)0 as long as the signal is in the avail list.

• Receiver. The receiving instance.

• Sender. The sending instance.

• NameNode. This component is a pointer to the node in the symbol table 
that represents the signal type. The symbol table is a tree with informa-
tion about the system and contains, among other things, one node for 
each signal type that is defined within the system. 

• Prio. The priority of the signal.

In the generated code there will be types to represent the parameters of the 
signals according to the following examples:

Example 342: Generated C code for signal definition ––––––––––––––––––––––––

Assume the following signal definitions:

signal S1(Integer);
signal S2;
signal S3(Integer, Boolean, OwnType);

then the C code below is generated:

typedef struct {
  SIGNAL_VARS
  SDL_Integer Param1;
} ySignalPar_z0f_S1;
typedef ySignalPar_z0f_S1 *yPDP_z0f_S1;

typedef struct {
  SIGNAL_VARS
  SDL_Integer Param1;
  SDL_Boolean Param2;
  z09_OwnType Param3;
} ySignalPar_z0h_S3;
typedef ySignalPar_z0h_S3 *yPDP_z0h_S3;

where SIGNAL_VARS is a C macro defined in scttypes.h That macro is ex-
panded to the common components in a signal struct.
1036 IBM Rational Tau User Guide June 2009



Essentials About Generated C Code
Note
The signal S2 has no type definition, which is correct since no types are 
generated for signal without parameters.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For each signal with parameters there are two generated types, a struct type 
and a pointer type. 

The struct type contains one component for each parameter in the signal def-
inition and the components will be named Param1, Param2 and so on. The 
components will be placed in the same order in the struct as the parameters 
are placed in the signal definition.

Example 343: Generated C code for structure signal parameters ––––––––––––––

<<struct>> class MyStruct {
  Integer x;
  Integer y;
}

signal MySig1( MyStruct );

Generated C code:

typedef struct z_paraext_H0_MyStruct_s {
  SDL_Integer x;
  SDL_Integer y;
  z09_OwnType Param3;
} z_paraext_H0_MyStruct;

typedef struct z_paraext_H0_MyStruct_s 
*z_paraext_H1_ptr_MyStruct;

typedef struct {
  SIGNAL_VARS
  z_paraext_H1_ptr_MyStruct Param1; /* Note: this is a 
pointer to structure */
} ySignalPar_z_paraext_S2_MySig1;

typedef ySignalPar_z_paraext_S2_MySig1 
*yPDP_z_paraext_S2_MySig1;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

By default, in UML all structure and class attribute have reference aggrega-
tion, and signal MySig1 will contain a reference to structure MyStruct, which 
will result in a pointer in the generated C code. If this is the case and refer-
ence is really needed, then when sending such signals from environment, 
memory allocation and deallocation for signal parameters should be handled 
manually by user.
June 2009 IBM Rational Tau User Guide 1037



Chapter 32: Environment Functions for C Applications
If you need to pass MyStruct parameters by value, signal parameter should 
be defined with composite aggregation like this:

signal MySig1( part MyStruct );

This can be done either manually in the text diagram, or in the Properties 
menu for signal parameter by choosing “Composition (part)” value for “Ag-
gregation” drop-down list.

Representation of UML data types in C

In the section “Translation of Data Types” on page 1098 is a reference to the 
C representation of UML data types. 

Encoding and decoding of signal parameters

To implement an automatic handling of signals including its parameters (like 
coders/decoders), run-time information about the layout of data in the signals 
is needed. The C Code Generator generates such information if Set-SDL-
Coder is specified in the Advanced options for the C Code Generator.

With this option on, the C Code Generator will generate two files for you: 
<basename>_cod.h and <basename>_cod.c The C Code Generator also 
automatically updates the generated makefile in order to include compile and 
link of the generated <basename>_cod.c file.

Note
The coder library that is present in the IBM Rational Tau installation is not 
supported to be used in any way as a framework for coders/decoders.

Representation of signals outside interfaces

A signal which is defined in a top-level package (or its sub-packages) and is 
present in an interface inside the same package (or in sub-packages) will be 
the same signal in the generated C code.

When there is no common signal definition in a package, signals with iden-
tical names defined in different interfaces are treated as different signals in 
generated C code.

Example 344: Signal defined in top-level package –––––––––––––––––––––––––––

The signal “S” below will be of the same signal definition in both interface 
I1 and I2.
1038 IBM Rational Tau User Guide June 2009



Essentials About Generated C Code
package signals {
    signal S;
    interface I1 {
        signal S;
    }
    active class C <<import>> dependency to p1 {
        active class C1 {
            port in with I1;
        }
        part C1 C1;
        part p1::C2 C2;
    }
    package p1 {
        active class C2 {
            port out with I2;
        }
        interface I2 {
            signal S;
        }
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Types representing instances of active classes

A Pid value is a struct consisting of two components, a global node number, 
which is an integer (usually generated by Function xGlobalNodeNumber) 
and a local Pid value, which is a pointer.

typedef xLocalPIdRec *xLocalPIdNode;

typedef struct {
  int GlobalNodeNr;
  xLocalPIdNode LocalPId;
} SDL_PId;

The global node number identifies the system that the instance of an active 
class belongs to, while the local Pid value identifies the instance within the 
system. The local Pid pointer value is only valid within this system and must 
therefore not be referenced outside the system where it is defined.

By introducing a global node number in the Pid values, these values are pos-
sible to interpret throughout an application consisting of several systems. 
You can also define your own Pid values in non-UML defined parts of the 
application and still communicate using signals.
June 2009 IBM Rational Tau User Guide 1039



Chapter 32: Environment Functions for C Applications
The variable SDL_NULL, which represents a null value for instances of type 
Pid and which is defined in the run-time library and available through the file 
scttypes.h, contains zero in both the global node number and the local Pid 
component. The global node number should be greater than zero in all Pid 
values except SDL_NULL.

Symbol table

The symbol table is a tree built up during the initialization phase in the exe-
cution of the generated program and contains information about the static 
structure of the system. The symbol table contains, among other things, 
nodes that represent signal types, active classes, connectors and operations. 
The C type that is used to represent for instance signals in the symbol table 
is given below.

typedef struct xSignalIdStruct *xSignalIdNode;
typedef struct xSignalIdStruct {
 /* components */
} xSignalIdRec;

It is the nodes that represent the signal types, for signals sent to and from the 
environment of the system, that are of major interest in connection with the 
environment functions. For each signal type there will be a symbol table 
node. That node may be referenced using the name ySigN_ followed by the 
signal name with prefix. Such references may be used in, for example, 
xOutEnv to find the signal type of the signal passed as parameter.

In some cases the symbol table nodes for ports in the top class are also of in-
terest to refer to. In a similar way as for signals such nodes may be referenced 
using the name yChaN_ followed by the port name with prefix.

Environment Functions
A system communicates with its environment by sending signals to the envi-
ronment and by receiving signals from the environment. As no information 
about the environment is given in the system, the C Code Generator cannot 
generate the actions that should be performed when, for instance, a signal is 
sent to the environment. Instead you have to provide a function that performs 
this mapping between a signal sent to the environment and the actions that 
then should be performed. Examples of such actions are writing a bit pattern 
on a port, sending information over a network to another computer and 
sending information to another OS task using some OS primitive.
1040 IBM Rational Tau User Guide June 2009



Environment Functions
You must provide the following functions to handle the environment of the 
system: 

• xInitEnv that is called during the startup of the application, to properly 
initialize the environment

• xCloseEnv that is called when the application terminates, in order to en-
sure that the environment is “closed” in appropriate way, such as closing 
files and sockets.

• xOutEnv that manages the signals sent from the system to the environ-
ment

• xInEnv that manages the signals sent to the system from the environ-
ment.

• xGlobalNodeNumber that handles issues that arise if you have multiple 
communicating systems. 

These functions are discussed more in detail in the section “Guidelines for 
Environment Functions” on page 1045. 

Function skeletons

There are two ways to create a skeleton for the environment functions:

• The normal method is to generate a skeleton by having the Application 
Builder generate the environment functions for you. An advantage with 
the generated environment functions is that the C Code Generator knows 
about the signal interface to be implemented in the environment func-
tions, and can therefore insert code or macros for all signals in the inter-
face. To calculate this information by yourself is not easy.

In a few simple cases you will obtain executable environment functions 
by just adjusting the macros in this generated file, but in the general case 
you should use it as a skeleton and augment it to fit your needs. Re-
member to save the file with another name so that it is not overwritten 
when code is generated next time.

• You work on a copy of the file sctenv.c from the directory:
.../sdlkernels/include 

This file also includes some trace features that may be used to trace the 
execution. This trace can, however, only be used if you adapt the source 
code for the run-time library (included in the C Code Generator) to com-
pile a new object library using the appropriate compiler macros.
June 2009 IBM Rational Tau User Guide 1041



Chapter 32: Environment Functions for C Applications
System interface header file

This section is valid both for the C Code Generator and the AgileC Code 
Generator. 

The system interface header file contains code for the objects that are de-
fined on the system level. Included are all type definitions and other external 
definitions that are needed in order to implement external C code. These ob-
ject definitions simplify the implementation of the environment functions. 
Therefore the system interface header file can also be viewed as the environ-
ment header file. 

The default name of the generated interface header file is 
<system_file_name>.ifc.

Contents of the system interface header file

The system interface header file has the following contents and structure:

• Macros for all constant attributes that are translated to macros.

• All type definitions generated from passive classes and syntype declara-
tions.

• External definitions of all constant attributes that are translated to vari-
ables.

• For each signal defined in the system diagram there will be an extern 
definition for the xSignalIdRec variable representing the signal.

• For each signal with parameters defined on the system level, there will 
be definitions of the types ySignalPar_SignalName and 
yPDP_SignalName, that is of the types used to represent a signal.

• For each remote operation (that can be sent to or from the environment), 
code is generated exactly as for the signals named 
pCALL_procedurename and pREPLY_procedurename.

• For each connector and port defined in the system diagram there will be 
extern definitions for the xChannelIdRec representing the connector.

• Together with these definitions, macros that simplify the translation of 
names to C names are also generated.

• Optionally, information about signal paths from the application to the en-
vironment. See “Deducing signal path to the environment” on page 1047. 
1042 IBM Rational Tau User Guide June 2009



Environment Functions
Names of UML objects in C

Due to differences in naming rules in UML and C, prefixes or suffixes are 
generated by the C Code Generator to make C identifiers unique. These pre-
fixes or suffixes, however, may change when you update your system and 
cannot be predicted. Therefore you should not use the prefixed object names 
in the environment functions. Instead macros, generated in the system inter-
face header file, assist you by mapping static names to the prefixed names. 
The system interface header file is regenerated each time you regenerate code 
for the system. It is not necessary to make any changes in the environment 
functions, as the interface names are static. 

A reference section to naming and prefixing conventions is available in sec-
tion “Names in Generated C Code” on page 1119 in Chapter 35, C Code 
Generator Reference.

Prefix

In the generated code for the system, except the .ifc file, all UML name are 
prefixed or suffixed with an incremental number to make the names unique 
in C. This, however, makes the C names impossible to determine and they 
might change between two code generations if for example a new definition 
is inserted. In the .ifc file the UML names have a predefined prefix ac-
cording to the table below:

where %n is replaced by the UML name of the entity and %s is replaced by 
the UML name of the data type.

These prefixes are controlled via the Code generation properties in the Prop-
erties Editor. 

In the .ifc file names for the parts in the system can be found. These names 
can be used as receiver, when sending signals in the xInEnv function.

UML entity C name

connectors cha_%n

constants con_%n

data types typ_%n

literals lit_%n_%s

signals sig_%n
June 2009 IBM Rational Tau User Guide 1043



Chapter 32: Environment Functions for C Applications
Example 345: Macro in the system interface header file ––––––––––––––––––––––

If a signal called Sig1 is defined in the system, the following macro is cre-
ated:

extern XCONST struct xSignalIdStruct ySigR_z5_Sig1;
#ifndef sig_Sig1
#define sig_Sig1 (&ySigR_z5_Sig1)
#endif

This macro allows you to refer to the xIdNode by using the static name Sig1 
rather than the prefixed name, ySigR_z5_Sig1.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Macros will ensure that static names are generated for the following types:

• Constant attributes in packages (both translated to macros and variables).

• Passive classes and syntype declarations. If the passive class is translated 
to an enumeration type, all the literals are available directly in C using 
their UML names.

• xSignalIdNode representing signals. (No ySigN_ prefix).

• xChannelIdNode representing connectors and ports. (Use prefix xIN_ or 
xOUT_ to access the incoming or outgoing direction of the connector).

• The yPDP_SignalName pointer type. This type may be referred to using 
the name yPDP_SignalName, where SignalName is the UML name.

Note
You must always generate the system interface header file before editing or 
generating the environment functions.

Signal number file
Note

This section is valid for the C Code Generator only. 

The signal number file is optionally generated by the C Code Generator when 
building the application (see “Advanced options” on page 971). It contains 
information about signal numbers (assigned by the C Code Generator) and 
the signal names these numbers originate from. How to take advantage of this 
feature is described and illustrated in subsection “Improving performance of 
xOutEnv when many signals” on page 1048.

The signal number file is named <basename>.hs
1044 IBM Rational Tau User Guide June 2009



Guidelines for Environment Functions
Signal parameter layout file
Note

This section is valid for the C Code Generator only. 

Guidelines for Environment Functions
The file containing the environment functions should have the following 
structure:

#include "scttypes.h"
#include "systemfilename.ifc"

void xInitEnv XPP((void))
{
}

void xCloseEnv XPP((void))
{
}

void xOutEnv (xSignalNode *S)
{
}

void xInEnv (SDL_Time Time_for_next_event)
{
}

int xGlobalNodeNumber XPP((void))
{
}

Functions xInitEnv and xCloseEnv

These functions handle initialization and termination of the environment. 

void xInitEnv ( void );

void xCloseEnv ( void );

In the implementation of these functions, you must place the appropriate 
code needed to initialize and terminate the software and the hardware.
June 2009 IBM Rational Tau User Guide 1045



Chapter 32: Environment Functions for C Applications
The function xInitEnv will be called during the start up of the program as 
first action, while the xCloseEnv will be called in the function SDL_Halt. 
Calling SDL_Halt is the appropriate way to terminate the program. The eas-
iest way to call SDL_Halt is to include the call as inline C code: 
[[SDL_Halt]] 

SDL_Halt is part of the run-time library and has the following definition:

void SDL_Halt ( void );

xInitEnv will be called before the system is initialized, which means that no 
references to the system are allowed in this function.

Function xOutEnv

Each time a signal is sent from the system to the environment, the function 
xOutEnv will be called. The function has the following prototype:

void xOutEnv ( xSignalNode *S );

The xOutEnv function will have the current signal as parameter, so you have 
all the information contained in the signal at your disposal when you imple-
ment the actions that should be performed. The signal contains the signal 
type, the sending and receiving instances and the parameters of the signal. 

The types used to represent signals and instance of active classes were pre-
sented earlier in this chapter, in sections “Types representing signals” on 
page 1035 and “Types representing instances of active classes” on page 
1039.

The parameter of xOutEnv is an address to a xSignalNode, that is, an ad-
dress to a pointer to a struct representing the signal. The reason for this is that 
the signal that is given as parameter to xOutEnv should be returned to the 
pool of available memory before return is made from the xOutEnv function. 
This is made by calling the function xReleaseSignal, which takes an ad-
dress to an xSignalNode as parameter, returns the signal to the pool of avail-
able memory, and assigns 0 to the xSignalNode parameter. Thus, there 
should be a call

xReleaseSignal(S);

before returning from xOutEnv. The xReleaseSignal function is defined as 
follows:

void xReleaseSignal ( xSignalNode *S );
1046 IBM Rational Tau User Guide June 2009



Guidelines for Environment Functions
In the function xOutEnv you may use the information in the signal that is 
passed as parameters to the function. First it is suitable to determine the type 
of the signal. This is best performed by if statements containing expressions 
of the following form, assuming the use of the system interface header file 
and that the signal has the name Sig1:

(*S)->NameNode == Sig1

Suitable expressions to reach the Receiver, the Sender, and the signal pa-
rameters are:

(*S)->Receiver
(*S)->Sender
((yPDP_Sig1)(*S)) -> Param1
((yPDP_Sig1)(*S)) -> Param2

(and so on)

Sender will always refer to the sending instance, while Receiver is either a 
reference to a specific instance of an active class in the environment, or has 
the value xEnv. xEnv is a Pid value that is used to represent the generic “en-
vironment active class” without specifying an explicit instance.

Receiver will refer to the “active class” xEnv if the Pid expression in an ad-
dressed signal sending refers to xEnv, or if the signal is sent without direct 
addressing and the environment is selected as receiver in the scan for re-
ceivers.

Remote operation calls to or from the environment should in the environment 
functions be handled by two signals, pCALL_procedurename and 
pREPLY_procedurename.

Deducing signal path to the environment

In some situations it is useful to know the path (outgoing port) from the ap-
plication for a given signal, when writing the xOutEnv function. By com-
piling the application with the compilation switch 
XPATH_INFO_IN_ENV_FUNC this information becomes available. 
Switching these kind of flags on is done by changing the make.opt file and 
setting the sctUSERDEFS flag correctly, see Library files.

The xOutEnv function will then have the prototype:

extern void xOutEnv (xSignalNode *, xChannelIdNode);
June 2009 IBM Rational Tau User Guide 1047



Chapter 32: Environment Functions for C Applications
Note
When using this feature, remember to update the xOutEnv function imple-
mentation according to this definition.

Information about outgoing path is found in the generated .ifc file. 

Example 346: Outgoing path in the generated system header file ––––––––––––––

#ifndef XOPTCHAN
extern XCONST struct xChannelIdStruct yChaR_c_0;
extern XCONST struct xChannelIdStruct yChaRR_c_0;
#define xIN_c (&yChaRR_c_0)
#define xOUT_c (&yChaR_c_0)
#endif

xIN_c and xOUT_c are macros that can be used to refer to the incoming and 
outgoing directions of the path (“c” in this case). In the function xOutEnv 
xOUT_c is the direction of interest in this case. To test if the signal to be 
treated has been conveyed to the environment through the path “c”, a test like 
the following can be used:

void xOutEnv(xSignalNode *SignalOut, xChannelIdNode Path)
{
  ...
  if (Path == xOUT_c) ...
  ...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Improving performance of xOutEnv when many signals

In the normal case signals are identified by pointers (of type 
xSignalIdNode). This means that finding the type of a signal in xOutEnv 
has to be performed using a sequence of "else if" C statements. If the 
xOutEnv function should treat a fairly large number of signals this will be-
come inefficient. By identifying signals by their numbers, a switch state-
ment can be used instead, which improves execution performance. 

To take advantage of the signal number feature, you have to perform two op-
erations:

1. Specify Set-Signal-Number in the Advanced options for the C Code 
Generator, which results into the creation of a Signal number file 

2. Compile the application with the compilation switch 
XUSE_SIGNAL_NUMBERS
1048 IBM Rational Tau User Guide June 2009



Guidelines for Environment Functions
The compilation switch will include the signal numbers into the 
xSignalIdStruct. This means that in xOutEnv a switch according to the 
example below can be used:

switch ((*SignalOut)->NameNode->SignalNumber) {
  case SN_signalname1 : ....
  case SN_signalname2 : ....
  ....
}

Guidelines for the xOutEnv function

You can write the xOutEnv function as you wish. The structure presented 
below may be seen as an example of how to design xOutEnv functions. You 
may also want to design the function so that it takes advantage of signal num-
bers rather than signal names, see “Improving performance of xOutEnv 
when many signals” on page 1048. 

Example 347: Structure of xOutEnv Function ––––––––––––––––––––––––––––––

void xOutEnv ( xSignalNode *S )
{
 if ( (*S)->NameNode == Sig1 ) {
  /* perform appropriate actions */
  xReleaseSignal(S);
  return;
 }
 if ( (*S)->NameNode == Sig2 ){
  /* perform appropriate actions */
  xReleaseSignal(S);
  return;
 }
 /* and so on */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Function xInEnv

The function xInEnv is used to make it possible to receive signals from the 
environment and to send them into the system. In a Bare integration this 
function is called repeatedly during the execution of the system. In a 
Threaded integration the xInEnv function is executed in a thread of its own, 
and should thus never return. During execution xInEnv should scan the en-
vironment to see if anything has occurred which should trigger a signal to be 
sent to an instance of an active class within the system.

void xInEnv (SDL_Time Time_for_next_event);
June 2009 IBM Rational Tau User Guide 1049



Chapter 32: Environment Functions for C Applications
To implement the sending of a signal into the system, two functions are avail-
able: xGetSignal, which is used to obtain a data area suitable to represent 
the signal, and SDL_Output, which sends the signal to the specified receiver. 
These functions will be described below.

The parameter Time_for_next_event is not meaningful in a Threaded in-
tegration, as the function is only called once. The function should contain an 
infinite loop:

  function xInEnv
  {
    while (1) {
      Wait_for_something_to_do;
      /* Handle different signals */
    }
  }

where “Wait_for_something_to_do” is some user defined statements that 
hang the execution of this thread until there is some signal to be sent. For ex-
ample xInEnv can wait on a semaphore. This semaphore is then posted in in-
terrupt routines or in other external code when a signal should be sent into 
the system.

In a bare integration the parameter Time_for_next_event will contain the 
time for the next event scheduled in the system. The parameter will be either 
of the following: 

• 0 or Now, which indicates that there is a transition (or a timer output) that 
can be executed immediately.

• Greater than Now, indicating that the next event is a timer output sched-
uled at the specified time.

• A very large number, indicating that there is no scheduled action in the 
system, that is, the system is waiting for an external stimuli. This large 
value can be found in the variable xSysD.xMaxTime.

You should scan the environment, perform the current signal sending, and re-
turn as fast as possible if Time has passed Time_for_next_event. 

If Time has not passed Time_for_next_event, you have a choice to either 
return from the xInEnv function at once and have repeated calls of xInEnv, 
or stay in the xInEnv until something triggers a signal (a signal sent to the 
system) or until Time has passed Time_for_next_event.
1050 IBM Rational Tau User Guide June 2009



Guidelines for Environment Functions
Note
Good practice during debugging of bare integrations is to return from the 
xInEnv function as fast as possible to ensure that it will behave properly. 
Otherwise, the keyboard polling, that is, typing <RETURN> in order to inter-
rupt the execution, will not work as expected. Returning as fast as possible 
when there is nothing to do introduces “busy waiting”, which is something 
that should be avoided in a resulting application. 

Function xGetSignal

The function xGetSignal, which is one of the service functions suitable to 
use when a signal should be sent, returns a pointer to a data area that repre-
sents a signal instance of the type specified by the first parameter.

xSignalNode xGetSignal
 ( xSignalIdNode SType,
   SDL_PId Receiver,
   SDL_PId Sender );

The components Receiver and Sender in the signal instance will also be 
given the values of the corresponding parameters.

• SType. This parameter should be a reference to the symbol table node 
that represents the current signal type. Using the system interface header 
file, such a symbol table node may be referenced using the signal name 
directly.

• Receiver. This parameter should either be a Pid value for an instance of 
an active class within the system, or the value xNotDefPId. The value 
xNotDefPId is used to indicate that the signal should be sent without di-
rect addressing, while if a Pid value is given, it is treated as a signal 
sending with direct addressing. Pid values for instances of active classes 
in a system cannot be calculated, and have to be captured from the infor-
mation (sender or parameter) carried by signals coming from the system.

• Sender. Sender should either be a Pid value representing an instance of 
an active class in the environment of the current system or the value 
xEnv. xEnv is a Pid value that refers to a generic “environment active 
class”, which is used to represent the general concept of system environ-
ment, without specifying an explicit instance in the environment.

Function SDL_Output

The run-time library function SDL_Output is called from within the PAD 
functions, to implement the sending of signals. 
June 2009 IBM Rational Tau User Guide 1051



Chapter 32: Environment Functions for C Applications
The function SDL_Output takes a reference to a signal instance and sends 
the signal after it has identified the receiver. 

When SDL_Output identifies the receiver of a signal to be an instance of an 
active class that is not part of the current system, SDL_Output will call the 
xOutEnv function.

void SDL_Output (
              xSignalNode  S
  xSigPrioPar(int          Prio),
              xIdNode      ViaList[] );

• S. This parameter should be a reference to a signal instance with all com-
ponents filled in.

• Prio. This parameter sets the priority of the signal where 0 is the highest 
and 255 the lowest. Use the xSigPrioPar macro to specify this param-
eter to ensure that your code will work without modifications even if you 
run a kernel configuration without signal priorities. 
xDefaultPrioSignal is defined to be the default signal priority. Please 
note that there should be no comma between the S and the Prio 
parameters when using the xSigPrioPar macro.

• ViaList. This parameter is used to specify if a VIA clause is or is not 
part of the signal sending statement. The value (xIdNode *)0 (a null 
pointer), is used to represent that no VIA clause is present. See 
Example 349 on page 1053.

This is sufficient information to be able to write the code to send a signal. 

Example 348: C code to send a signal from the environment ––––––––––––––––––

A signal S1, without parameters, should be sent from xEnv into the system 
without an explicit receiver. The code will then be:

SDL_Output(
xGetSignal(S1, xNotDefPId, xEnv)
xSigPrioPar(xDefaultPrioSignal),

  (xIdNode *)0 );

If S2, with two integer parameters, should be sent from xEnv to the instance 
referenced by the variable P, the code will be:

xSignalNode OutputSignal; /* local variable */
...
OutputSignal = xGetSignal(S2, P, xEnv);
((yPDP_S2)OutputSignal)->Param1 = 1;
((yPDP_S2)OutputSignal)->Param2 = 2;
SDL_Output(
1052 IBM Rational Tau User Guide June 2009



Guidelines for Environment Functions
OutputSignal xSigPrioPar(xDefaultPrioSignal), 
(xIdNode *)0 );

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

To introduce a via list in the signal sending takes a variable, which should be 
an array of xIdNode, contains references to the symbol table nodes repre-
senting the current connectors in the via list. A variable like this is hence 
needed:

ViaList xIdNode[N];

where N should be replaced by the length of the longest via list you want to 
represent plus one. The components in the variable should then be given ap-
propriate values, such that component 0 is a reference to the first connector 
(its symbol table node) in the via list, component 1 is a reference to the 
second connector, and so on. The last component with a reference to a con-
nector must be followed by a component containing a null pointer (the value 
(xIdNode)0). Components after the null pointer will not be referenced. 
Below is an example of how to create a via list of two connectors, C1 and C2.

Example 349: Via list of two connectors. –––––––––––––––––––––––––––––––––––

ViaList xIdNode[4]; 
/* longest via has length 3 */
...
/* this via has length 2 */
ViaList[0] = (xIdNode)xIN_C1; 
ViaList[1] = (xIdNode)xIN_C2;
ViaList[2] = (xIdNode)0;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The variable ViaList may then be used as a ViaList parameter in a subse-
quent call to SDL_Output

Guidelines for the xInEnv function

A xInEnv function will in principle consist of a number of if statements 
where the environment is investigated. When some information is found that 
means that a signal is to be sent to the system, then the appropriate code to 
send a signal (Example 348 on page 1052) should be executed. 

The example below shows an xInEnv function for a bare integration. In a 
Threaded execution model the infinite loop and the wait statement discussed 
above should be added.
June 2009 IBM Rational Tau User Guide 1053



Chapter 32: Environment Functions for C Applications
Example 350: Structure of xInEnv Function –––––––––––––––––––––––––––––––

void xInEnv (SDL_Time Time_for_next_event)
{
  xSignalNode S;

  if ( Sig1 should be sent to the system ) {
SDL_Output (xGetSignal(Sig1, xNotDefPId, xEnv) 
xSigPrioPar(xDefaultPrioSignal),
(xIdNode *)0 );

  }
  if ( Sig2 should be sent to the system ) {
    S = xGetSignal(Sig1, xNotDefPId, xEnv);
    ((xPDP_Sig2)S)->Param1 = 3;
    ((xPDP_Sig2)S)->Param2 = SDL_True;

SDL_Output (S xSigPrioPar(xDefaultPrioSignal), 
(xIdNode *)0 );

  }
  /* and so on */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This basic structure can be modified to suit your needs. The if statements 
could, for example, be substituted for while statements. The signal types 
might be sorted in some “priority order” and a return statement can be in-
troduced last in the if statements. This means that only one signal is sent 
during a xInEnv call, which reduces the latency.

Function xGlobalNodeNumber

You should also provide a function, xGlobalNodeNumber, with no parame-
ters, which returns an integer that is unique for each executing system.

int xGlobalNodeNumber ( void )

The returned integer should be greater than zero and should be unique among 
the communicating systems that constitutes an application. If the application 
consists of only one system, then this number is of minor interest although it 
still needs to be set. The global node number is used in Pid values to identify 
the node (OS task or processor) that the instance of active class belongs to. 
Pid values are thereby universally accessible and you may, for example, in a 
simple way make “Sender.Output” work between instances of active classes 
that are present in different systems.
1054 IBM Rational Tau User Guide June 2009



Guidelines for Environment Functions
When an application consisting of several communicating systems is de-
signed, you have to map the global node number to the current OS task or 
processor, in order to be able to transmit signals addressed to non-local in-
stances of Pid to the correct OS task or processor. This will be part of the 
xOutEnv function.

Functions xMainInit and xMainLoop

The generated code will contain two important types of functions, the initial-
ization functions and the PAD functions. The PAD functions implement the 
actions performed by the instances of active classes during state transitions. 
There will be one initialization function in each generated.c file. In the file 
that represents the system this function will have the name yInit. Each in-
stance in the system will be represented by a PAD function, which is called 
when an instance of the current instance set is to execute a transition. 

How to use the xMainInit(), and xMainLoop() functions within the 
main() function is best shown with an example.

Example 351: Start up, and endless loop –––––––––––––––––––––––––––––––––––

void main ( void )
{
 xMainInit();
 xMainLoop();
}

void xMainInit ( void )
{
  xInitEnv(); /* Init of internal data structures in the 
run-time library */
  yInit();
}

void xMainLoop ( void )
{
  while (1) {
    xInEnv(...);
    if ( Timer output is possible )
      SDL_OutputTimerSignal();
    else if ( transition is possible )
      Call appropriate PAD function;
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1055



Chapter 32: Environment Functions for C Applications
Stopping the execution

As discussed previously, the function xMainLoop contains an endless loop. 
The appropriate way to stop the execution of the program is to call the run-
time library function SDL_Halt. The call of this C function should normally 
be included in an appropriate action, using inline C code.

The SDL_Halt function has the following structure:

void SDL_Halt ( void )
{
  xCloseEnv();
  exit(0);
}

1056 IBM Rational Tau User Guide June 2009



33
C and AgileC Runtime Libraries

This chapter is a description of the implementation and interface to the run 
time libraries used by the C Code Generator and the AgileC Code Generator. 
The libraries are supplied in C source code. 

In this document are also discussed and explained how to create new li-
braries, from the default set that is delivered with the C Code Generator and 
the AgileC Code Generator.

Lastly is discussed how to adapt the libraries to comply with the require-
ments and conventions used by the C compiler that you will use to compile 
and link your applications.
June 2009 IBM Rational Tau User Guide 1057



Chapter 33: C and AgileC Runtime Libraries
Runtime Libraries

Run-Time library directory structure

The structure of files and directories used for the C Code Generator runtime 
libraries is depicted below. The root directory for this structure is named 
sdlkernels and it includes all the files that implement the run-time library 
that should be compiled and linked with the code generated by the C Code 
Generator.

sdlkernels

In the sdlkernels directory the file predef.sdl is found. It contains the 
definitions of predefined sorts and is used by the C Code Generator when 
checking the syntax and semantics of the system prior to generating C code.

A run-time kernel is defined by the source code in the include directory, with 
the options from one of the Runtime libraries applied. 

include

In the include directory the source code files for the run-time library and the 
Model Verifier are found. These files are listed and explained in “Included 
source and header files” on page 1068. 

Figure 240: Directory structure of the runtime libraries.

    include

source and 
header files for the 
runtime libraries

sdlkernels

predef.sdl

   appl_cl

comp.opt

make.opt / makeoptions

sccd.cfg

other library

comp.opt

make.opt/makeoptions

sccd.cfg
1058 IBM Rational Tau User Guide June 2009



Runtime Libraries
Runtime libraries

In parallel with the include directory there are a number of directories, each 
one containing the files comp.opt and makeoptions (or make.opt on 
Windows). By using the compile and link settings defined by these files, both 
the generated application code and the files contained in the include directory 
are compiled in such a way that the executable code is given the properties 
that are specific for the target application of your choice. 

• The comp.opt file determines the contents of the generated makefile and 
how “make” is called. 

•  The makeoptions / make.opt file describes the properties of the li-
brary, such as the compiler used, compiler options, linker options, and so 
on.

• The sccd.cfg file is a configuration file for the C Compiler Driver 
utility, which is used to make the generated C Code easier to read for you.

Name conventions for directories

The directories that contain the compiler and library properties follow a 
naming scheme to abbreviate a verbatim description of the properties of the 
generated code.

The syntax that is adopted for the naming scheme is: 

<"dbg" | "appl" | "applt"> || <compiler> || [_cpp]

• dbg: indicates that the result will be a Model Verifier suitable for debug-
ging your application on host

• appl: indicates that the result will become a bare application.

• applt: indicates that the result will be a threaded application.

• compiler: this abbreviation indicates which compiler and linker will be 
used.

• _cpp: this suffix indicates that the code is to be compiled in C++ com-
patible mode.

Example 352: Compiling an application for Windows ––––––––––––––––––––––––

The appl_cl directory in Figure 240 on page 1058, is an example of such a 
directory. 
June 2009 IBM Rational Tau User Guide 1059



Chapter 33: C and AgileC Runtime Libraries
By using the comp.opt and make.opt files in that directory, you will com-
pile and link an application for Windows.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

When building the application using the Application Builder, those abbrevi-
ations will instead be substituted by more explicit texts in the graphical user 
interface of the Properties Editor.

Supported libraries

Below is a table with libraries that are available in the installation, each one 
to be used together with any of the run-time and environment integration 
models Bare or Threaded. 

Note
The settings that are defined in the attributes for the stereotypes used for the 
build types C Code Generator and Model Verifier designate a directory 
with the corresponding library. 

Runtime libraries defined by attributes

The table below is a summary of all combinations for each of the attributes 
that define the settings for the build types C Code Generator and Model Ver-
ifier, and the resulting run-time library that will be used when compiling and 
linking the code. It can be noted that the support for OS integrations uses a 
deployment model described in the AgileC Code Generator. 

Build Type
Sup-
port 
C++

Target kind
Threading 
model

Resulting run-
time library

AgileC Code 
Generator

False Solaris Forte Bare agilec/agilec_
appl_cc

AgileC Code 
Generator

True Solaris Forte Bare agilec/agilec_
appl_cc_cpp

AgileC Code 
Generator

False Solaris Forte Threaded agilec/agilec_
applt_cc

AgileC Code 
Generator

True Solaris Forte Threaded agilec/agilec_
applt_cc_cpp
1060 IBM Rational Tau User Guide June 2009



Runtime Libraries
AgileC Code 
Generator

False Solaris gcc Bare agilec/agilec_
appl_gcc

AgileC Code 
Generator

True Solaris gcc Bare agilec/agilec_
appl_gcc_cpp

AgileC Code 
Generator

False Solaris gcc Threaded agilec/agilec_
applt_gcc

AgileC Code 
Generator

True Solaris gcc Threaded agilec/agilec_
applt_gcc_cpp

AgileC Code 
Generator

False Win32 Bare agilec/agilec_
appl_cl

AgileC Code 
Generator

True Win32 Bare agilec/agilec_
appl_cl_cpp

AgileC Code 
Generator

False Win32 Threaded agilec/agilec_
applt_cl

AgileC Code 
Generator

True Win32 Threaded agilec/agilec_
applt_cl_cpp

C Code Gen-
erator

False Solaris Forte Bare appl_cc

C Code Gen-
erator

True Solaris Forte Bare appl_cc_cpp

C Code Gen-
erator

False Solaris Forte Threaded applt_cc

C Code Gen-
erator

True Solaris Forte Threaded applt_cc_cpp

C Code Gen-
erator

False Solaris gcc Bare appl_gcc

C Code Gen-
erator

True Solaris gcc Bare appl_gcc_cpp

C Code Gen-
erator

False Solaris gcc Threaded applt_gcc

Build Type
Sup-
port 
C++

Target kind
Threading 
model

Resulting run-
time library
June 2009 IBM Rational Tau User Guide 1061



Chapter 33: C and AgileC Runtime Libraries
C Code Gen-
erator

True Solaris gcc Threaded applt_gcc_cpp

C Code Gen-
erator

False Win32 Bare appl_cl

C Code Gen-
erator

True Win32 Bare appl_cl_cpp

C Code Gen-
erator

False Win32 Threaded applt_cl

C Code Gen-
erator

True Win32 Threaded applt_cl_cpp

Model Veri-
fier

False Solaris Forte Bare dbg_cc

Model Veri-
fier

True Solaris Forte Bare dbg_cc_cpp

Model Veri-
fier

False Solaris gcc Bare dbg_gcc

Model Veri-
fier

True Solaris gcc Bare dbg_gcc_cpp

Model Veri-
fier

False Win32 Bare dbg_cl

Model Veri-
fier

True Win32 Bare dbg_cl_cpp

Model Veri-
fier

False Win32-gcc a Bare dbg_cyg

Model Veri-
fier

True Win32-gcc b Bare dbg_cyg_cpp

a. See restriction regarding use of Target kind with Model Verifier
b. See restriction regarding use of Target kind with Model Verifier

Build Type
Sup-
port 
C++

Target kind
Threading 
model

Resulting run-
time library
1062 IBM Rational Tau User Guide June 2009



Runtime Libraries
See also

Predefined Stereotypes and Attributes

Library files

This section describes the contents of the directories where the libraries are 
implemented. The following topics are covered:

• The file comp.opt

• The files makeoptions / make.opt

• The file sccd.cfg

• The makefile

• The make template file

comp.opt

This file determines the details of the generated makefiles, and the command 
issued to execute the makefile. A comp.opt file contains zero, one or more 
initial lines starting with a ‘#’. These lines are treated as comments. After that 
it contains five lines of essential data.

• Line 1: How to include the makeoptions (make.opt) file

• Line 2: Compile script

• Line 3: Link script

• Line 4: Command to run make

• Line 5: How to build a library (archive) for coders/decoders.

On each of these lines, % codes can be used to insert specific information.

On all five lines:

%n : newline
%t : tab
%d : target directory
%s : source directory
%k : kernel directory
%f : base name of generated executable (no path, no
     file extension). NOT on line 2 or 5.

On line 2, the compile script:

%c : c file in compile script
%C : c file in compile script, without extension
June 2009 IBM Rational Tau User Guide 1063



Chapter 33: C and AgileC Runtime Libraries
%o : resulting object file in compile script

On line 3, the link script:

%o : list of all object files in link script
%O : list of all object files in link script, with
     \ followed by newline between files
%e : executable file in link script

On line 4, the make command:

%m : name of generated makefile

On line 5, the archive command:

%o : list of object files, $(sctCODER_OBJS).
%a : the archive file, libstcoder$(sctLIBEXTENSION)

Example 353: comp.opt file for UNIX –––––––––––––––––––––––––––––––––––––

# makefile for unix make
include $(sctdir)/makeoptions
%t$(sctCC) $(sctCPPFLAGS) $(sctCCFLAGS) $(sctIFDEF) %c -
o %o
%t$(sctLD) $(sctLDFLAGS) %o -o %e
make -f %m sctdir=%k
%t$(sctAR) $(sctARFLAGS) %a %o

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

makeoptions / make.opt

This file has the following structure:

Example 354: make.opt on UNIX–––––––––––––––––––––––––––––––––––––––––

# #
sctLIBNAME     = Simulation
sctIFDEF       = -DSCTDEBCOM
sctEXTENSION   = _smd.sct
sctOEXTENSION  = _smd.o
sctLIBEXTENSION=  _smd.a
sctKERNEL      = $(sctdir)/../INCLUDE
sctCODERDIR    = $(sctdir)/../coder

#Compiling, linking
#Take advantage of the C Compiler Driver
sctSCCD =
sctCC          = $(sctSCCD) cc
sctCODERFLAGS  = -I$(sctCODERDIR)
sctCPPFLAGS    = -I. -I$(sctKERNEL) $(sctCODERFLAGS)
 $(sctCOMPFLAGS) $(sctUSERDEFS)
sctCCFLAGS     = -c -Xc
sctLD          = cc
1064 IBM Rational Tau User Guide June 2009



Runtime Libraries
sctLDFLAGS     =
sctAR          = ar
sctARFLAGS     = rcu

all : default

# below this point there are a large number of
# compilation rules for compiling the libraries
# The following names of importance are defined:

sctLINKKERNEL  = 
sctLINKKERNELDEP = 
sctLINKCODERLIB = 
sctLINKCODERLIBDEP = 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The information to the right of the equal signs should be seen as an example. 
The environment variables set in the makeoptions (make.opt) file should 
specify the following:

• sctLIBNAME. This is only used by the makefile to report what it is doing.

• sctIFDEF. This variable should specify what compilation switches, 
among those defined by the C Code Generator, that should be used. Usu-
ally there is one switch defining the library version.

• sctEXTENSION. This is used to determine the file extension of the exe-
cutable files.

• sctOEXTENSION. This is used to determine the file extension of the ob-
ject files.

• sctLIBEXTENSION. The extension of the archive or library.

• sctKERNEL. Directory of the run-time library source code.

• sctCODERDIR. The directory for the source code of the coders or de-
coders.

• sctCC. This defines the compiler to be used.

• sctCODERFLAGS. Compilation options needed to compile the coder or 
decoder files.

• sctCPPFLAGS. This variable should give the compilation flag necessary 
to specify where the C preprocessor can find the include files 
scttypes.h, sctlocal.h and sctpred.h

• sctCCFLAGS. This should specify other compiler flags that should be 
used, as for example -g (Sun cc) or -v (Borland bcc32) for debug infor-
mation, -O for optimization. 
June 2009 IBM Rational Tau User Guide 1065



Chapter 33: C and AgileC Runtime Libraries
• sctUSERDEFS. In make template files the sctUSERDEFS flag can be used 
for example to set extra include paths for the compilation. This variable 
is invoked with sctCPPFLAGS in the standard kernels. 

• sctLD. This defines the linker to be used.

• sctLDFLAGS. This should specify other flags that should be used in the 
link operation.

• sctAR. The archive application.

• sctARFLAGS. Flags to sctAR.

• sctLINKKERNEL. This variable should specify the .o files for the library 
source files. It will be used in the link command in the generated make-
file.

• sctLINKKERNELDEP. Used to implement the dependencies to recompile 
the kernel when it is needed.

• sctLINKCODERLIB. This variable should specify the .o files for the 
coder library source files. It will be used in the link command in the gen-
erated makefile.

• sctLINKCODERLIBDEP. Used to implement the dependencies to recom-
pile the coder library when it is needed.

sccd.cfg

This is the CCD Configuration File for the C Compiler Driver utility, which 
can be used to expand C macros and make the generated C code easier to read 
and suitable for debugging on C level. 

makefile

The generation and execution of the makefile is automatically handled by the 
C Code Generator and Application Builder. The content of the makefile is 
best shown by an example. 

Example 355: generated makefile on UNIX, for a system named “example” –––––

# makefile for System: example

sctAUTOCFGDEP =
sctCOMPFLAGS = -DXUSE_GENERIC_FUNC

include $(sctdir)/makeoptions

default: example$(sctEXTENSION)
1066 IBM Rational Tau User Guide June 2009



Runtime Libraries
example$(sctEXTENSION): \
  example$(sctOEXTENSION) \
  $(sctLINKKERNELDEP)
.$(sctLD) $(sctLDFLAGS) \

  example$(sctOEXTENSION) $(sctLINKKERNEL) \
  -o example$(sctEXTENSION)

example$(sctOEXTENSION): \
  example.c
.$(sctCC) $(sctCPPFLAGS) $(sctCCFLAGS) \

  $(sctIFDEF) example.c -o example$(sctOEXTENSION)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

When “making” such a generated makefile for your system, the following se-
quence of actions takes place:

3. The makeoptions (make.opt) file is included in the directory refer-
enced by the environment variable sctdir. 

4. “Make” will then use the variables sctIFDEF, sctLINKKERNEL, sctCC, 
sctCPPFLAGS, sctCCFLAGS, sctLD, and sctLDFLAGS to compile and 
link the application code generated by the C Code Generator (in this case 
example.c in Example 355 on page 1066)

5. In the code Generated by the C Code Generator, #include statements 
are provided to include the .c and .h files that are present in the include 
directory, at the suitable place in the generated code. These files, that 
among other implement the run-time kernel, will hence become automat-
ically compiled and linked with the application code. 

Note
To guarantee the congruency between the code that is generated for the 
system and the run-time kernel, the makeoptions (make.opt) file is used 
when generating the makefile compiling the C files included in the library 
and the generated application code. Non-congruency in this sense between 
the run-time library and the application code will make the result unpredict-
able!

make template file

A make template file is useful to easily have external code compiled and 
linked with the application code and run-time library. Such code could be the 
environment functions or external libraries. The make template file should 
follow the syntax adopted by the current “Make” used on your computer.

USERTARGET is a “hook” that is used to specify additional make targets that 
should be added to the makefile that is generated by the C Code Generator.
June 2009 IBM Rational Tau User Guide 1067



Chapter 33: C and AgileC Runtime Libraries
USERLIBRARIES is used to specify additional libraries that should be linked 
into the application. 

The use of the Make template file is controlled via the code generator stereo-
type properties of the Build Artifact.

Example 356: A make template file (using nmake) ––––––––––––––––––––––––––

Consider the environment functions in the files example_env.c and 
example_env.h 

The makefile to use as template would then look like this:

USERTARGET = C:\example\example_env$(sctOEXTENSION)
USERLIBRARIES = -lm

C:\example\example_env$(sctOEXTENSION): 
C:\example\example_env.c C:\example\example_env.h
.$(sctCC) @<<
.$(sctCPPFLAGS) $(sctCCFLAGS)
.$(sctIFDEF)
./FoC:\example\example_env$(sctOEXTENSION)
.C:\example\example_env.c

<<

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Included source and header files

The code and definitions for the runtime libraries used by the C Code Gen-
erator is available in a number of files. All of these files can be found in the 
directory ...\sdlkernels\include\ and their contents is briefly de-
scribed in the subsections below.

sctda.c

This file contains the functions that implement the command interpreter and 
command executor for the requests sent by the Model Verifier.

sctadacom.c

This file implements the communication layer used for the interaction be-
tween the Model Verifier and the application. It is uses TCP/IP sockets for 
this implementation.
1068 IBM Rational Tau User Guide June 2009



Runtime Libraries
sctadacom.h

This header file contains definitions used by sctadacom.c

sctdamsg.c

This file implements the message layer used for the interaction between the 
Model Verifier and the application. It is built on top of the communication 
layer, which is implemented in sctadacom.c

sctdamsg.h

This header file contains definitions used by sctdamsg.c

sctdamsgcode.h

This header file contains definitions used by sctdamsg.c

sctlocal.h

This file contains type definitions and extern declarations of variables and 
functions that are used only in the run-time kernel. This file is not included 
in the generated code.

sctos.c

In this file are placed functions that represent dependencies to hardware, op-
erating system and compilers. 

The functions required for an application to work on target are:

• A function to read the clock 

• A function to allocate memory. 

sctpred.c

The functions implementing the operations defined in the predefined data 
types can be found in this file. 
June 2009 IBM Rational Tau User Guide 1069



Chapter 33: C and AgileC Runtime Libraries
sctpred.h

This file contains type definitions and extern declarations handling the pre-
defined data types (except Pid, which is in scttypes.h). This file is in-
cluded in generated code via scttypes.h.

sctsdl.c

In this file the implementation of operations can be found, together with the 
functions used for scheduling. This file contains among others functions for:

• Handling and reporting dynamic errors

• Operations, such as signal sending, create, stop, nextstate, set, reset, to-
gether with help functions for these activities

• Initialization and the main loop (the scheduler).

scttypes.h

This file contains type definitions and extern declarations of variables and 
functions. This file is included by sctsdl.c, sctpred.c, sctutil.c, 
sctda.c, sctos.c, and by each C file generated by the C Code Generator. 
This file should normally be included in any user-written environment file to 
allow use of data types, operations and signal primitives. 

sctutil.c

This file contains basic read and write functions together with functions to 
handle reading and writing of values of abstract data types, including the pre-
defined data types. 

To move a generated C program plus the run-time library to a new target plat-
form (including a new compiler), the major changes are to be made in this 
file. You must also write a new section in scttypes.h to describe the prop-
erties of the new compiler.

Creating user-defined (customized) libraries

Users may want to create new libraries, which will allow to give the gener-
ated code customized properties at compile and link time. The process of cre-
ating a new library is not supported in the graphical framework. It involves 
1070 IBM Rational Tau User Guide June 2009



Runtime Libraries
using suitable tools available on the host computer (shell, text editor, make, 
compiler, linker...) and running the application to verify that the behavior is 
the expected one.

The process should be done in the following sequence. 

1. Start by copying the contents of one of the existing directories with sup-
ported libraries (appl_cl, applt_cl...), or any other library that you 
have created previously. You may want to start with a library which al-
ready has properties that are close to the intended effect, to reduce the 
amount of work in the next steps.

2. Next, modify the contents of the file comp.opt and verify that executing 
the file results in the expected results: 

– That the correct makeoptions / make.opt file is included

– That the correct compile script is used

– That the correct link script is used

– That the correct command to run make is used

– That coder libraries are correctly built.

3. Next, modify the contents of the file makeoptions / make.opt and 
modify the environment variables, C macros and compiler flags to ade-
quate values. 

– A reference to the C macros that are used when preprocessing the 
generated C code and the definitions in the include directory is 
available in Chapter 38, C Code Generator Macros.

– The section that defines the creation of coders and archives is usually 
not needed to modify.

4. Should you want, you may also want to customize the C Compiler Driver 
(optional). 

5. Build the application using the comp.opt and makeoptions / 
make.opt files, and test that it behaves as expected.

Note
If you create new versions of the library, make sure that the included files 
and the generated code are both compiled with the same compilation 
switches. If not, you will experience unexpected or undefined behavior in 
the compiled application!
June 2009 IBM Rational Tau User Guide 1071



Chapter 33: C and AgileC Runtime Libraries
Adaptation to Compilers
This section covers how to change the source code to adapt it to a new envi-
ronment. This could mean moving the code to new target hardware and OS, 
or using a new compiler.

There are two parts of the source code that might need changes:

• In scttypes.h there is a section defining the properties of different com-
pilers, where a new compiler can be added.

• In sctos.c the functions that depend on the operating system or hard-
ware are collected. These might need to be changed due to a new com-
piler, a new OS, or a new hardware.

Compiler definition section in scttypes.h

In scttypes.h the properties of the compiler is recognized by the compiler 
or computer dependent switches set by the compiler:

#if defined(__linux)
#define SCT_POSIX

#elif defined(__sun)
#define SCT_POSIX

#elif defined(__hpux)
#define SCT_POSIX

#elif defined(__CYGWIN__)
#define SCT_POSIX

#elif defined(QNX4_CC)
#define SCT_POSIX

#elif defined(__BORLANDC__)
#define SCT_WINDOWS

#elif defined(_MSC_VER)
#define SCT_WINDOWS

#else
#include "user_cc.h"

#endif
1072 IBM Rational Tau User Guide June 2009



Adaptation to Compilers
Basically this section distinguishes between UNIX-like/POSIX compilers 
and Windows compilers. In the case the compiler is not in the list above, you 
must configure it yourself by writing a file user_cc.h, which can be placed 
in the Target Directory.

The compilers above are:

After this compiler configuration section, a general configuration section fol-
lows:

#if defined(SCT_POSIX) || defined(SCT_WINDOWS)
#define XMULTIBYTE_SUPPORT
#endif

#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <stdarg.h>
#ifdef XREADANDWRITEF
#include <stdio.h>
#ifdef XMULTIBYTE_SUPPORT
#include <locale.h>
#endif
#endif

#ifndef GETINTRAND
#define GETINTRAND      rand()
#endif
#ifndef GETINTRAND_MAX
#define GETINTRAND_MAX  RAND_MAX
#endif

#ifndef xptrint
#if (ULONG_MAX != UINT_MAX)

Compiler Description

__linux gcc on Linux

__sun different compilers on SUN

__hpux different compilers on HP

__CYGWIN__ gcc on windows, for more information go to 
http://sources.redhat.com/cygwin/

QNX4_CC QNX

__BORLANDC__ Borland C/C++ compiler on Windows

_MSC_VER Microsoft Visual C/C++ compiler on Windows
June 2009 IBM Rational Tau User Guide 1073



Chapter 33: C and AgileC Runtime Libraries
#define xptrint         unsigned long
#define X_XPTRINT_LONG
#else
#define xptrint         unsigned
#endif
#endif

#ifndef xint32
#if (INT_MAX >= 2147483647)
#define xint32          int
#define X_XINT32_INT
#else
#define xint32          long int
#endif
#endif

First, the presence of multi-byte character support is set up. Then a number 
of standard include files are included, followed by setting up properties for 
random number generation. Last the two types, xptrint, which defines an 
unsigned int type with the same size as an address, and xint32, which 
defines a 32-bits int type, is configured.

Modifications in the file sctos.c

The following important functions are defined in sctos.c

extern void * xAlloc (xptrint Size);

extern void xFree (void **P);

extern void xHalt (void);

#ifdef XCLOCK
extern SDL_Time SDL_Clock (void);
#endif

#if defined(XCLOCK) && !defined(XENV)
extern void xSleepUntil (SDL_Time WakeUpTime);
#endif

#if defined(XPMCOMM) && !defined(XENV)
extern int xGlobalNodeNumber (void);
#endif

#if defined(XMONITOR) && !defined(XNOSELECT)
extern xbool xCheckForKeyboardInput (
  long xKeyboardTimeout);
#endif

Several of these functions have three different implementations, one for 
SCT_POSIX, one for SCT_WINDOWS and one for other cases. The other 
cases solution is “an empty implementation” that does not do anything. If the 
1074 IBM Rational Tau User Guide June 2009



Adaptation to Compilers
standard solutions in sctos.c do not fit the needs of a certain application, any 
of the functions above can be supplied by the user instead. By defining some 
of the macros, the corresponding function or functions are removed from 
sctos.o and have to be supplied by the user instead:

XUSER_ALLOC_FUNC
XUSER_FREE_FUNC
XUSER_HALT_FUNC
XUSER_CLOCK_FUNC
XUSER_SLEEP_FUNC
XUSER_KEYBOARD_FUNC

xAlloc

The function xAlloc is used to allocate dynamic memory and is used 
throughout the run-time library and in generated code. The function is given 
a size in bytes and should return a pointer to a data area of the requested size. 
All bytes in this data area are set to zero. The standard implementation of this 
function uses the C function calloc.

If you want to estimate the need for dynamic memory you may introduce 
statements in xAlloc to record the number of calls and also the total re-
quested size of dynamic memory. A few things should be noted.

• A program compiled to become a Model Verifier will require more dy-
namic memory than a program compiled to become an application, so es-
timates should be made while using the appropriate compilation 
switches. 

• A call of calloc will actually allocate more memory than is requested, 
in order to make it possible for the C run-time system to deallocate and 
reuse memory. The size of this additional memory is compiler depen-
dent.

• If you want to handle the case when no more memory is available at an 
allocation request you can implement that in xAlloc. In the standard im-
plementation for xAlloc a test if calloc returns 0 can be introduced, at 
which the program can print an appropriate message before terminating.

xFree

The function xFree is used to return memory to the list of free memory so it 
can be reused by subsequent calls of xAlloc. The standard implementation 
of this function uses the C function free. In very simple cases, no data types 
using dynamic memory are used and if no other use of dynamic data has been 
introduced by you, this function will not be used. 
June 2009 IBM Rational Tau User Guide 1075



Chapter 33: C and AgileC Runtime Libraries
The parameter of the xFree function is the address of the pointer to the allo-
cated memory.

Example 357 Using the xFree function –––––––––––––––––––––––––––––––––––

unsigned char *ptr;
ptr = xAlloc(100);
xFree (&ptr);      /* NOTE: Not xFree(ptr); */

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

xHalt

The function xHalt is used to exit from a program and is in the standard im-
plementation using the C function exit.

SDL_Clock

The function SDL_Clock returns the current time, read from a clock some-
where in the OS or hardware. The return value is of type SDL_Time. If an 
application does not require a connection with real time (for example if it is 
not using timers and should run as fast as possible), there is no need for a 
clock function. In such a case it is probably suitable to use simulated time by 
not defining the compilation switch, whereby SDL_Clock is never called and 
does not need to be implemented. An alternative is to let SDL_Clock always 
return the time value 0. 

A typical implementation in an embedded system is to have hardware gener-
ating interrupts at a predefined rate. At each such interrupt a variable con-
taining the current time is updated. This variable can then be read by 
SDL_Clock to return the current time.

Note
The variable must be protected from updates during the period of time that 
the SDL_Clock reads the clock variable. Calling the interrupt routine while 
the SDL_Clock reads the clock variable would likely cause a severe system 
malfunction.

SDL_Time

SDL_Time is a struct with two 32-bits integer components, representing sec-
onds and nanoseconds in the time value.

typedef struct {
  xint32  s;       /* for seconds */
1076 IBM Rational Tau User Guide June 2009



Adaptation to Compilers
  xint32  ns;      /* for nanoseconds */
} SDL_Time;

xint32 is implemented as a 32-bit int. The components s and ns represent 
the number of seconds and nanoseconds passed from some time in the past 
depending on the implementation of the clock function.

xSleep_Until

The function xSleep_Until is given a time value, of type SDL_Time and 
should suspend the executing until this time is reached. Then it should return.

This function is used only when real time is used (the switch XCLOCK is de-
fined) and when there are no environment functions (XENV is not defined). 
The xSleep_Until function is used to wait until the next event is scheduled 
when there is no environment that can generate events.

xGlobalNodeNumber

The function xGlobalNodeNumber is used to assign unique numbers to each 
of the system that should be part of a (larger) distributed application. If envi-
ronment functions are available for the system this function should be imple-
mented there. 

xCheckForKeyboardInput

The function xCheckForKeyboardInput is used to determine if there is a 
line typed on the keyboard (stdin) or not. If this is difficult to implement it 
can instead determine if there are any characters typed on the keyboard or 
not. This function is only used by the Model Verifier (when XMONITOR is de-
fined).

The xCheckForKeyboardInput function is used to implement the possi-
bility to interrupt the execution of state transitions by typing <Return> and 
to handle the polling of the environment when the program is waiting at the 
command prompt in the Model Verifier. 
June 2009 IBM Rational Tau User Guide 1077



Chapter 33: C and AgileC Runtime Libraries
1078 IBM Rational Tau User Guide June 2009



34
Dynamic Memory Management in 

C Code Generator 

This section describes how to allocate and de-allocate dynamic memory in 
the code produced by the C Code Generator. It explains how dynamic 
memory can be reused using de-allocation and avail lists and how to estimate 
the total need of dynamic memory for an application.

Note
The entities in the C Code Generator framework, and especially those that 
use memory allocation, mutexes, semaphores and other synchronization 
features (implicitly or explicitly) should not be used in interrupt routines, 
signal handlers or in any similar functions. Depending on the underlying 
operating system such use may corrupt the application. 
June 2009 IBM Rational Tau User Guide 1079



Chapter 34: Dynamic Memory Management in C Code Generator
Dynamic Memory Size Requirements
Dynamic memory is used for a number of objects in a run-time model for ap-
plications generated by the C Code Generator. These objects are:

• Instances of active classes

• Signal and timer instances

• Instances of operations in active classes

• Charstring, OctetString, BitString, and ObjectIdentifier at-
tributes 

• Attributes of String, Bag, general Array, and general PowerSet types.

• Attributes of other user-defined datatypes, where you have decided to use 
dynamic memory.

To help to estimate the need for memory for an application, information 
about the size of these instances and the number of created instances is 
needed. The size information given is true for generated applications, that is, 
applications that do not, for example, contain the Model Verifier command-
line interpreter. The type definitions given are stripped of components that 
will not be part of an application. 

The full definitions may be found in the file scttypes.h.

Active classes

Each instance of an active class is represented by two structures that will be 
allocated on the heap. In scttypes.h the type xLocalPIdRec is defined and 
in generated code yVDef_ProcessName structures are defined:

typedef struct {
   xPrsNode      PrsP;
}  xLocalPIdRec;

typedef struct {
   xPrsNode       Pre;
   xPrsNode       Suc;
   int            RestartAddress;
   xPrdNode       ActivePrd;
   void (*RestartPAD) (xPrsNode  VarP);
   xPrsNode       NextPrs;
   SDL_PId        Self;

xPrsIdNode     InstNameNode;
xPrsIdNode     TypeNameNode;
int            State;

   xSignalNode    Signal;
1080 IBM Rational Tau User Guide June 2009



Dynamic Memory Size Requirements
   xInputPortRec  InputPort;
   SDL_PId        Parent;
   SDL_PId        Offspring;
   int            BlockInstNumber;
   xSignalIdNode  pREPLY_Waited_For;
   xSignalNode    pREPLY_Signal;
/* parameters and attributes of active classes */
} yVDef_ProcessName;

To calculate the size of the structures above it is necessary to know more 
about the components in the structures. The types xPrsNode, xPrdNode, 
xSignalNode, xPrsIdNode, xStateIdNode, and xSignalIdNode are all 
pointers, while SDL_PId is a struct containing an int and a pointer. The 
xInputPortRec is a struct with two pointers and one int.

This means that it is possible to calculate the size of the xLocalPIdRec and 
the xPrsRec struct using the following formulas, if the compiler does not use 
any strange alignment rules:

The size of yVDef_ProcessName is the size of the xPrsRec plus the size of 
the attributes and parameters in the active class. Any overhead introduced by 
the C system should also be added. The size of the parameters of the state ma-
chine and its attributes is dependent on the declarations in the active class. 

For each instance set of an active class in the system the following number 
of structures of a different kind will be allocated:

• There will be one xLocalPIdRec for each instance created. These struc-
tures will not be reused, as they serve as identification of instances of ac-
tive classes that have existed.

• There will be as many yVDef_ProcessName structures as the maximum 
concurrently executing instances of the instance set of the active class 
(maximum number during the complete execution of the program).

The yVDef_ProcessName structures are reused by having an avail list. Such 
a struct is placed in the avail list when the instance of the active class it rep-
resents performs a stop action. There is one avail list for each type of active 
class. When an instance should be created, the run-time library first looks at 
the avail list and reuses an item from the list. Only if the avail list is empty 
new memory is allocated.

SizexLocalPIdRec Sizeaddress=

SizexPrsRec 15 Sizeaddress⋅ 7 Sizeint⋅+=
June 2009 IBM Rational Tau User Guide 1081



Chapter 34: Dynamic Memory Management in C Code Generator
Note
If the compilation switch XPRSOPT is defined then, xLocalPIdRec is reused 
together with the xPrsRec. xLocalPIdRec contains an additional int 
component.

Signals

Signals are handled in much the same way as active classes. A signal instance 
is represented by one struct:

typedef struct {
   xSignalNode   Pre;
   xSignalNode   Suc;
   int           Prio;
   SDL_PId       Receiver;
   SDL_PId       Sender;
   xIdNode       NameNode;

   /* Signal parameters */
} ySignalPar_SignalName;

This struct type contains one component for each signal parameter. The com-
ponent types will be the translated versions of the types of the parameters. 

This means that it is possible to calculate the size of a xSignalRec, which is 
the same as a struct for a signal without parameters, using the following for-
mula:

The size of a ySignalPar_SignalName struct is thus equal to the size of the 
xSignalRec plus the size of the parameters. 

For each signal type in the system the following number of data areas will be 
allocated:

• There will be as many ySignalPar_SignalName structures as the max-
imum number of signals (during the complete execution of the program) 
of the signal type that are sent but not yet received.

The ySignalPar_SignalName structures are reused by having an avail list, 
where such structures are placed when the signal instance they represent is 
received. The exact point where the signal instance is returned to the avail list 
is when the transition caused by the signal instance is ended by a nextstate or 
stop action. There is one avail list for each signal type. When a signal in-

SizexSignalRec 5 Sizeaddress 3 Sizeint⋅+⋅=
1082 IBM Rational Tau User Guide June 2009



Dynamic Memory Size Requirements
stance should be created, for example during a signal sending operation, the 
run-time library first looks at the avail list and reuses an item from this list. 
Only if the avail list is empty new memory is allocated.

Note
There is one common avail list for all signals without parameters.

Timers

The memory needed for timers can be calculated in the same way as for Sig-
nals, but taking into account that each timer also contains an additional 
SDL_Time component.

Operations in active classes

Active classes and operations in active classes have much in common in 
terms of memory allocation. An operation in an active class is, during the 
time it exists from call to return, represented by a struct; the 
yVDef_ProcedureName.

typedef struct {
   xPrdIdNode  NameNode;
   xPrdNode    StaticFather;
   xPrdNode    DynamicFather;
   int         RestartAddress;
   int (*RestartPRD) (xPrsNode  VarP);
   xSignalNode pREPLY_Signal;
   int         State;

   /* Formal parameters and attributes */
} yVDef_ProcedureName;

The struct type contains one component for each formal parameter or at-
tribute. The component types will be the translated version of the types of the 
parameters, except for an IN/OUT parameter which is represented as an ad-
dress. 

The size of the xPrdRec struct (which is the same as an operation without at-
tributes and formal parameters) can be calculated using the following for-
mula:

The size of a yVDef_ProcedureName struct is the size of the xPrdRec plus 
the size of the formal parameter and attributes defined in the operation. 

SizexPrdRec 5 Sizeaddress 2 Sizeint⋅+⋅=
June 2009 IBM Rational Tau User Guide 1083



Chapter 34: Dynamic Memory Management in C Code Generator
For each type of operation in the system the following number of data areas 
will be allocated:

• There will be as many yVDef_ProcedureName structures as the max-
imum number of concurrent calls (during the complete execution of the 
program) of the operation. Concurrent calls occur both when an opera-
tion calls itself recursively within one instance of an active class, and 
when several instances of the same active class calls the same operation 
during overlapping times.

The yVDef_ProcedureName struct is reused by having an avail list, where 
this struct is placed when the operation instance executes a return action. 
There is one avail list for each operation type. When an instance of an oper-
ation should be created, that is, at a call operation, the run-time library first 
looks at the avail list and reuses an item in the list. Only if the avail list is 
empty new memory is allocated.

Predefined data types

The predefined type Charstring is implemented as char * in C and thus re-
quires dynamic memory allocation. The predefined data types BitString, 
OctetString, and ObjectIdentifier are also implemented using dy-
namic memory.

The implementation of the sorts Charstring, BitString, OctetString, 
and ObjectIdentifier is both flexible in length and all memory can be re-
used.

The mechanism used to release unused memory is to call the xFree function 
in the file sctos.c, which uses the standard function free to release the 
memory.

Charstring, BitString, OctetString, and ObjectIdentifier are also 
handled correctly if they are part of structures or arrays. When, for example, 
a new value is given to a struct having a Charstring component, the old 
Charstring value will be released. For all structured types containing any 
of these types there will also be a Free function that is utilized to release all 
dynamic memory in the structured variable.
1084 IBM Rational Tau User Guide June 2009



Implementation of Memory Management
Implementation of Memory Management
The allocation and de-allocation of memory is handled by the functions 
xAlloc and xFree in the file sctos.c. The functions in this file are used for 
the adoption of the generated applications to the operating system or hard-
ware. In generated code and in the run-time library the functions xAlloc and 
xFree are used in each situation where memory is needed or can be released.

The sctos.c file which is described in detail in “Modifications in the file 
sctos.c” on page 1074 in Chapter 33, C and AgileC Runtime Libraries.

Functions for allocation and de-allocation

xAlloc
void* xAlloc(xptrint Size)

The function xAlloc receives as parameter a requested size in bytes and re-
turns the address to a data area of the requested size. All bytes in the data 
area are set to zero. 

xFree
void xFree(void** P)

The function xFree takes the address of a pointer and returns the data area 
referenced by the pointer to the pool of free memory. It also sets the pointer 
to zero. 

Implementation aspects

The xAlloc and xFree functions are usually implemented using some ver-
sion of the C standard functions for allocation (malloc, calloc) and de-al-
location (free). If the default implementation in sctos.c is not sufficient 
for your needs, other implementations can be supplied, as long as the inter-
face is fulfilled. 

Note
If you provide an alternative implementation, then make sure that your own 
xAlloc sets data to zero before returning the address to the data, and that 
xFree sets the pointer to zero before returning!
June 2009 IBM Rational Tau User Guide 1085



Chapter 34: Dynamic Memory Management in C Code Generator
Memory Fragmentation

Memory fragmentation is a phenomenon occurring when a program allocates 
and de-allocates data areas (of different sizes) in some “random fashion”. 
Then, small chunks of memory here and there are lost, since their sizes are 
too small to fit an allocation request. This can lead to a slowly increasing de-
mand for memory for the application.

To prevent memory fragmentation avail lists, which do not require de-allo-
cation of memory to be implemented, are used in almost all circumstances. 

De-allocation of memory is only applicable for data types, and is used for 
variables of the following types: 

• Charstring, 

• BitString, 

• OctetString, 

• ObjectIdentifier, 

• Types created by String (not #STRING) and Bag template

• Types created by Array template, if the index type is such that an array 
in C cannot be used. (General array)

• Types created by PowerSet template, if the component type has the same 
property as for the index type in general arrays.

This means that if attributes of the above mentioned types are not used, and 
you have not introduced the need for de-allocation of memory, no memory 
de-allocation will occur at all. In this case it is unnecessary to implement the 
xFree function.

Trace of memory needs

It is easy to trace the need for dynamic memory. As all memory allocation is 
carried out through the xAlloc function and this function is available in 
source code (in sctos.c), it is only necessary to introduce whatever count 
statements or printout statements that are appropriate.
1086 IBM Rational Tau User Guide June 2009



35
C Code Generator Reference

This chapter is a reference manual to the C Code Generator and describes the 
principles that govern the code generation from UML to C. Notably, the fol-
lowing is described:

• Operation principles

• Implementation of run-time semantics (time, scheduling, signalling...) 

• Translation of the predefined data types in UML

• Translation of IBM Rational Tau proprietary data type extensions to the 
predefined UML datatypes

• Passing of parameters to operations

• Generic functions on data types

• Names in generated code.
June 2009 IBM Rational Tau User Guide 1087



Chapter 35: C Code Generator Reference
C Code Generator Operation Principles
The C Code Generator is used by the build types C Code Generator and 
Model Verifier. 

See also

“Using Build Types” on page 841 in Chapter 26, Building and Code 
Generation Overview and Examples 

C Code Generator options and settings

The C Code Generator takes advantage of Using Build Artifacts for the set-
tings that are global to the application being built. An example of such a set-
ting is specifying the target and the run-time library to compile and link with 
the generated code.

The build type C Code Generator also allows you to apply options to indi-
vidual elements in the model, such as excluding model elements from a 
build, and solving naming and language related issues that arise when in-
cluding declarations and definitions of external C and C++ code. 

Launch of C Code Generator

Interactive mode

To launch the C Code Generator from the graphical user interface, the fol-
lowing sequence of actions should take place:

1. Create a Build Artifact that contains appropriate settings for the current 
build. 

– The stereotype «C Code Generator» contains the attributes that de-
fine the settings for the C Code Generator.

2. Apply a Build Root to the build artifact. A build root designates the top-
level active class in the model to build.

3. If needed, tag any element that should be excluded from the build, and 
apply suitable naming and language related attributes to the elements that 
are defined in external C or C++ code. 

– Use the stereotype «C Application» for this. 

4. Select the C Code Generator build type for the build artifact.
1088 IBM Rational Tau User Guide June 2009



C Code Generator Operation Principles
5. To generate the code: 

– Right click the build artifact, and select Build on the menu.

As a result of the actions above, the following operations take place without 
need for human intervention:

1. The part of the model that is specified as Build Root is transformed to an 
intermediate representation. The internal representation is expressed in 
an SDL-like syntax. 

– The elements that have the attribute Generate C code set to false are 
discarded.

– Including external declarations and subsequent naming issues is han-
dled by settings that are available in the «C Application» stereotype. 

2. The exported internal representation is checked by the C Code Generator 
to be semantically correct, before C code is generated. 

3. The C Code Generator generates C code

– Code generation is taking into account the settings specified for the 
build. 

– The code generation translation rules are described in main sections 
in this document.

4. The generated C code is written on files in the Target directory.

5. A makefile is created by the C Code Generator. This makefile ensures 
that the generated code and run-time library that has been specified in the 
build artifact are properly compiled and linked. External code can also be 
added to the compile and link scheme, by specifying a make template file 
in the build artifact.

– These settings are managed by the stereotype «C Code Generator»

6. The generated makefile is executed as the final step in the build.

Batch mode

The C Code Generator can be operated in batch (command-line) mode, 
obeying the same principles and with the same variety of options as for an 
interactive build. The only difference is that messages are written on stdout 
instead of on the output message area.

To launch the C Code Generator from the command line prompt, the 
taubatch command is used. 
June 2009 IBM Rational Tau User Guide 1089



Chapter 35: C Code Generator Reference
See also

“Supported SDL” on page 629 in Chapter 17, SDL Import

“Interactive Build Interface” on page 930 in Chapter 27, Building 
Applications Reference

“Batch Build Interface” on page 943 in Chapter 27, Building Applications 
Reference

Implementation of Run-Time Semantics

Time

An application generated by the C Code Generator can be executed in two 
modes with respect to the treatment of time:

• Simulated time 

• Real time.

Simulated time

Using simulated time, which is the most useful mode for simulation/debug-
ging sessions using the Model Verifier, means that the time in the simulation 
has no connection with the real time. Instead the discrete event simulation 
technique is used. This technique is based on the idea that the current value 
for the simulation time (Now) is equal to the time at which the currently ex-
ecuting event is scheduled. After one event is finished, the simulation time is 
increased to the time when the next event is scheduled and this event is 
started. Events are transitions in state machines, timer outputs, and signals 
sent to the system from the environment. 

As an example, the use of the discrete event simulation technique means that 
if the next event is a timer output scheduled one hour from now, and the next 
transition is allowed to execute, then the timer output will occur immedi-
ately. The simulation time will be increased by one hour, but you do not have 
to wait one hour.
1090 IBM Rational Tau User Guide June 2009



Implementation of Run-Time Semantics
Real time

If the Real-time option for Simulation kind is used, then there will be a con-
nection between the clock in the executing program and the real time. If you 
give a Go command in the example above, you would have to wait one hour 
until the timer output took place. To implement real time, a clock function 
provided by the operating system is used. 

If the next transition is a timer output scheduled in the future, (more than a 
second from now), the command Next Transition will run the simulation for 
one second and then pause. 

Scheduling

The behavior of the active classes in the system is implemented by state ma-
chines, which execute transitions that consist of actions like actions, deci-
sions, signal sending, calls of operations, etc. It is assumed that a transition 
takes no time and that a signal instance is immediately placed in the input 
port of the receiver when a signal sending operation occurs.

A transition is always executed without any preemption, unless you are de-
bugging the application and manually rearrange the ready queue (using an 
appropriate command provided by the Model Verifier) and then execute an-
other transition. The interrupted transition can afterwards be executed to its 
end.

UML does not in itself define an execution strategy so the selected strategy 
is therefore an allowed, but not the only, possible strategy for execution.

As a consequence of the execution strategy, the Model Verifier, which also 
obeys this execution strategy, is not directly suited for simulation of “timing 
effects”, that is, situations where the time or order of actions in different in-
stances of active classes is of vital importance. 

Example 358: Scheduling a hazardous situation –––––––––––––––––––––––––––––

Suppose an instance of an active class, say A, that sends two signal instances 
during the same transition, one to an instance of an active class, B, and one 
to an instance, C. During the corresponding transitions to B and C, a signal 
instance is sent to an instance of an active class, D.
June 2009 IBM Rational Tau User Guide 1091



Chapter 35: C Code Generator Reference
If the behavior of the application is dependent on the order in which the 
signal instances are received in the input port of D, this is a hazardous situa-
tion where the execution speed of the instances of active classes and any 
delay of signals will determine the behavior. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The ready queue

The ready queue contains all the instances of active classes that have re-
ceived a signal that can cause a transition, but have not yet completed that 
transition. The ready queue is ordered according to priority and the insert 
time. 

The priority of an active class is the priority of the signal that will cause its 
next transition. The ready queue is first sorted according to priority (higher 
signal priority value = lower priority) and then according to insert time. 

Ready queue priority

An instance of an active class will be inserted last among the instances with 
the same priority. An instance of an active class will never be inserted before 
the instance that is currently executing, as preemptive scheduling is not used.

• If an instance of an active class sends a signal to another instance, which 
immediately can receive the signal, the receiving instance will be in-
serted into the ready queue last among the instances of active classes with 
the same priority, but never before the currently executing instance.

• If the state machine that implements the behavior of an instance of an ac-
tive class is currently executing a nextstate, immediately can continue to 
execute another transition, then the instance will be inserted last into the 
ready queue among the instances with the same priority. This means that 
it can remain as first instance in the ready queue.

• If the state machine receiving a timer output immediately can execute a 
transition as response to the received signal, the instance will be inserted 
last. 
1092 IBM Rational Tau User Guide June 2009



Implementation of Run-Time Semantics
Public attributes

The translation scheme used by the C Code Generator for a public attribute 
is to make direct access to the memory area for the attribute. The address of 
the attribute is calculated by a utility function in the kernel and this address 
is then directly used to access or change the public attribute.

Note
This scheme does not work in a threaded application to access attributes in 
other threads. Inside a thread there are no problems. Either the underlying 
OS might prevent accesses of memory between threads, or there is a risk for 
accessing the memory at the same time from different threads which will 
cause problems. In a threaded application it is recommended that sharing a 
variable is performed using a set and a get operation. In that way the ac-
cesses and updates of the shared variable will be synchronized and update 
problems are prevented.

Guards and guards on triggered transitions

Guard and guard on triggered transition are additional concepts in UML. 
One model for these concepts could be to use repetitive signal sending, to 
have the expressions recalculated repeatedly. This model is however not suit-
able during simulation or debugging sessions, and definitely not acceptable 
in an application. Therefore it is used an implementation strategy closer to 
the described behavior of the concepts.

Implementation

First, distinguish between those guards and guards on triggered transitions 
that are dynamic and those that are static. 

• Static guards contain expressions with a given value, and do not provide 
any implementation problems or any execution overhead, except that the 
corresponding expressions have to be calculated at nextstate operations. 

• Dynamic guards contain expressions that can change their value when 
the corresponding state machine is waiting in the state. The expression 
contains a part that can change its value, even though the state machine 
does not execute any statements. an example of this is when using public 
attributes or Now in a guard expression. 
June 2009 IBM Rational Tau User Guide 1093



Chapter 35: C Code Generator Reference
Dynamic guards have to repeatedly be recalculated. The strategy selected for 
these expressions is to recalculate them after each transition or timer output 
performed by any state machine, and additionally also before the Model Ver-
ifier command line interpreter is entered within a transition. 

Each state machine waiting in a state containing a dynamic guard executes 
an implicit nextstate operation between each transition or timer output per-
formed by other state machines.

Constant attribute

A Constant or read-only attribute is implemented either as a C macro 
(#define) or as a C variable. 

• To be translated to a macro, the following must apply for the expression 
defining the value of the attribute:

– It must be of one of the predefined sorts (Integer, Real etc.).

– It may only contain literals and operations defined in the predefined 
sorts and other constant attributes that are possible to calculate when 
generating the code.

• All other constant attributes in packages are implemented as C variables 
given their values at program start up.

The reason for raising this question is because it is relevant to the implemen-
tation of Array and PowerSet. There are two different implementations for 
each of these concepts. 

• An array can either be translated to an array in C or to a linked list in C.

• A PowerSet can either be translated to a bit array or to a linked list. 

The translation method is selected by looking at the index type. If the index 
type is a syntype with one limited range, the array and bit array scheme are 
used, otherwise the linked list is used.

If a constant attribute that is translated to a C variable, is used in a range con-
dition of a syntype, and the syntype is used as an index sort in an array or 
PowerSet instantiation, then the linked list scheme is used to implement the 
array or PowerSet. The reason for this is that the length of the array cannot 
depend on a variable in C.
1094 IBM Rational Tau User Guide June 2009



Implementation of Run-Time Semantics
External constant attributes

External constant attributes can be used to parameterize a system and thereby 
also a generated program. The values that should be used for the external 
constant attributes can either be read by the generated program during start 
up, or included as macro definitions into the generated code. The C Code 
Generator can handle both these cases – it is not necessary to select which 
way should be used for each attribute until the program is compiled.

Using a C macro definition for specifying the value of attribute

To use a macro definition in C to specify the value of an attribute in package, 
perform the following steps:

1. Declare the attributes to be external, and write the corresponding macro 
definitions to a file.

Example 359: Macro definitions –––––––––––––––––––––––––––––––––––––––––

UML package declarations of external constant attributes:

const Integer extern attribute1;
const Real extern attribute2;

The attribute names are the UML names without any prefixes and with all 
characters that are not letters, digits or underscores removed.

#define attribute1 3
#define attribute2 3.14

It is up to the user to ensure that the defined values (3, 3.14) are compatible 
with the type (Integer, Real) of the attributes. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2. Select the package that the attribute(s) belong to. 

3. Open the properties editor and select C Application in the Filter drop-
down menu. If C Application is not present it should be activated with 
the Customize dialog, from the Add-Ins tab. 

4. Enter the name and path of the file with the macro definitions in the In-
clude File field. The path can be either an absolute path or a path relative 
to the Target Directory. 

Note
When an application is created, macro definitions should be used for all at-
tributes in packages, as the function for reading attribute values stored on 
file is not available.
June 2009 IBM Rational Tau User Guide 1095



Chapter 35: C Code Generator Reference
Reading values of attributes at program start up

The other way to supply values of external constant attributes in packages is 
to read the values at program start up. If there are any external constant at-
tributes that do not have a corresponding macro definition, it is possible to 
choose between supplying the values of the remaining attributes from the 
keyboard or to use a file containing the values.

When the application is started, the following prompt appears in the Model 
Verifier:

External file :

• Press <Return> in the Model Verifier Console to indicate that the values 
should be read from the terminal.

• Or type the name of a file that contains the values and press <Return>.

If you choose to read the values from the terminal, you will be prompted for 
each value. In the other case you should have created a file containing the at-
tribute names and their corresponding value according the following ex-
ample:

Example 360: Values at program startup ––––––––––––––––––––––––––––––––––

attribute1 value1
attribute2 value2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The attributes may be defined in any order.

Value returning operation call

In the C Code Generator, value returning operation calls (in datatypes, pas-
sive classes or active classes) are implemented by inserting an extra call just 
before the statement containing the value returning operation call. The result 
from the call is stored in an anonymous variable, which is then used in the 
expression.

Note
The value returning operation calls are transformed to ordinary calls, by 
adding a new IN/OUT parameter for the operation result, last in the call.
1096 IBM Rational Tau User Guide June 2009



Implementation of Run-Time Semantics
Arbitrary value operator (any)

There are two different applications of any. It is possible to write

• any in a decision

• any (SortName) within an expression.

Note
The any operator should be used only for simulation purpose (with the 
Model Verifier), not for applications generated by the C Code Generator!

any in decision

any in a decision should only be used for debugging and simulation purposes, 
and is implemented by a question giving you a possibility to select the path 
to follow. 

any (SortName) in expression

any (SortName) within an expression, is implemented using a random 
number generator to draw a random number of the given type.

Note
The operation call any(Sort) where Sort is a syntype is only implemented 
if the syntype contains at most one range condition which is of the form a:b, 
that is one limited range. 

See also

“Arbitrary value (any) expression” on page 356 in Chapter 8, UML 
Language Guide
June 2009 IBM Rational Tau User Guide 1097



Chapter 35: C Code Generator Reference
Translation of Data Types

General

Implementation of C definitions

The implementation for the C types and C macros supplied by the run-time 
library used by the C Code Generator for the predefined and IBM Rational 
Tau proprietary extensions to UML are found in the file sctpred.h, except 
for the Pid sort which is handled in the file scttypes.h.

In all examples in the following sub-sections, the prefixes, which are added 
by the C Code Generator to the names in C, are not shown. (These prefixes 
are added to make sure that no name conflicts occur in the generated pro-
gram. For more information about prefixes and suffixes

See also

“Names in Generated C Code” on page 1119 in Chapter 35, C Code 
Generator Reference.)

Initial values

Initial values will be assigned to all attributes which do not have an initial 
value specified in UML, such attributes will be set to 0 by using a memset to 
0.

Note
The C Code Generator does not permit naming of literals using name class 
literals or character strings.

CPtr

This template, as well as the templates Own and ORef, represent pointers 
with different properties. They are all translated to pointers in C.

CPtr has the following operations (from the definition): 

public <<External="true">> void SetValue( T); 
public <<External="true">> T GetValue(); 
template<type T1> public static <<External="true">> T1 GetValue(CPtr<T1>);
template <type T1>public static <<External="true">> CPtr<T1> GetAddress(T1 
entity); 
public <<External="true">> T '[]'(CPtr<T>, Integer);
public CPtr<T> '\+'(CPtr<T>, Integer);    
1098 IBM Rational Tau User Guide June 2009



Translation of Data Types
public CPtr<T> '\-'(CPtr<T>, Integer); 
public static <<External="true">> void free(CPtr<T>);

Supported only for CPtr<char> or char*: 

template<type T1> public static <<External="true">> CPtr<T1> malloc(Integer); 

Array

Instantiations of the array template are handled by the C Code Generator with 
the following restriction: The component and index sort may be any sorts that 
the C Code Generator can handle, but must not directly or indirectly refer to 
the array type itself (see also the section describing the handling of Struct.

If the index sort is a discrete sort, with one closed interval of value, then the 
UML array is translated to a struct containing an element which is an array 
in C. The discrete sorts are:

• Character

• Boolean 

• Octet

• Bit

• A sort that is considered as an enumeration type

• Syntype of any Integer, Character, Boolean, Octet, Bit or enumeration 
type. The subtypes may only have one range condition that specifies a 
closed interval of values.

If the index sort is not one of the sorts in the list above, a UML array is trans-
lated to a linked list. The list head contains the default value for all possible 
indexes, while the list elements contain value pairs, (index_value, 
component_value), for each index having a component value not equal to 
the default value.

Example 361: Array ––––––––––––––––––––––––––––––––––––––––––––––––––––

syntype MyInt= Integer constants( 1..10 );
  class Arr {
     Array <MyInt, Real> MyArray;
 }

is translated to:

typedef SDL_Integer MyInt;
typedef struct {
 SDL_Real A[10];
June 2009 IBM Rational Tau User Guide 1099



Chapter 35: C Code Generator Reference
} Arr;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Bag

The Bag template is similar to PowerSet. However, bags may contain several 
elements with the same value. A bag is translated to a linked list, with one 
element for each value that is a member of the bag. Each element contains 
the value and the number of occurrences of this value.

Charstring

The Charstring type is typically used to represent text strings. A Charstring 
is represented as a char* in C.

Note
For Charstring types, an extra character is inserted by the code generator 
at index 0. This character is used internally by the run-time system and 
should be disregarded from when addressing Charstring variables in C at 
application level. 

Choice

Choice is used to express a union with implicit tag.

Example 362: Choice ––––––––––––––––––––––––––––––––––––––––––––––––––

choice Str {
Integer a;

 Boolean b;
Real c;

}

is translated to:

typedef enum {a, b, c} StrPresent;
typedef struct {
  StrPresent Present;
  union {
    SDL_Integer a;
    SDL_Boolean b;
    SDL_Real c;
  } U;
} Str;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1100 IBM Rational Tau User Guide June 2009



Translation of Data Types
The Present component is automatically set by the C Code Generator when 
a component in the choice is given a value.

Note
During simulations and debugging sessions with the Model Verifier, it is 
tested at execution time that a component “is present” when an attempt is 
made to access it. A run-time error message is printed if this is not the case.

Enum

A sort containing a literal list, is seen as an enumeration type. See 
Example 363 on page 1101. Such a type is translated to int, together with a 
list of ‘defines’ where the literals are 0, 1, 2, and so on. 

Example 363: Enumeration type –––––––––––––––––––––––––––––––––––––––––

enum EnumType {Lit1, Lit2, Lit3}

is translated to:

typedef XENUM_TYPE EnumType;
#define Lit1 0
#define Lit2 1
#define Lit3 2

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The macro XENUM_TYPE is defined in the file sctpred.c as:

#ifndef XENUM_TYPE
#define XENUM_TYPE int
#endif

This means that all enum types will become int types, except if the macro 
XENUM_TYPE is redefined by the user (to unsigned char for example). An 
enum type with 256 or more values will always be of type int and will not 
be affected by the macro XENUM_TYPE.

ORef

This template, as well as the template Own, represent pointers with different 
properties. They are all translated to pointers in C.

Own

See ORef.
June 2009 IBM Rational Tau User Guide 1101



Chapter 35: C Code Generator Reference
PowerSet

Instantiations of PowerSet is handled by the C Code Generator with the fol-
lowing restriction: The component sort may be any sorts that the C Code 
Generator can handle, but must not directly or indirectly refer to the Pow-
erSet type itself.

There are two translation schemes for PowerSet. If the component sort ful-
fills the conditions for index sorts mentioned in “Array” on page 1099, an 
array of 32-bit integers is used. Each bit will be used to represent a certain 
element whether it is a member of the PowerSet or not. If this is not the case, 
a linked list of all elements that are members of the set, is used to represent 
the PowerSet. 

String

Instantiations of String are handled by the C Code Generator with the fol-
lowing restriction: The component sort may be any sort that the C Code Gen-
erator can handle, but must not directly or indirectly refer to the String type 
itself. 

Strings are translated to linked lists containing one element for each element 
in the string value. 

Struct

A passive class is translated to a struct in C, as can be seen in Example 364 
on page 1102.

Example 364: Struct –––––––––––––––––––––––––––––––––––––––––––––––––––

class Str {
Integer a;
Boolean b;
Real c;
}

is translated to:

typedef struct {
  SDL_Integer a;
  SDL_Boolean b;
  SDL_Real c;
} Str;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1102 IBM Rational Tau User Guide June 2009



Parameter Passing to Operations
The components of a struct may be of any sort that the C Code Generator can 
handle. A component may, however, not directly or indirectly refer to the 
struct sort itself. As an example the sort Str above may not have a compo-
nent of sort Str. In such a case the translation to a C struct would no longer 
be valid.

Syntype

A syntype can be defined for any sort that the C Code Generator can handle, 
giving a new name for the sort. Range conditions that restrict the allowed 
range of values are also allowed.

A syntype is translated to a type equal to the parent type using typedef. The 
check that a syntype attribute is only assigned legal values is implemented in 
a test function that is generated together with the type definition. An attempt 
to assign an illegal value to such an attribute is handled as a dynamic error in 
run-time. If the syntype is used as index sort in an array and the generated 
type in C would become an array, there will also be a test function that can 
be used to check that an index value is within its range in an array component 
selection.

Parameter Passing to Operations
For performance reasons the data types have been divided into two groups:

• Simple, small types that are passed as values

• Structured, larger types that are passed as references (addresses).

Types passed as values

The following types are passed as values (simple types):

• Integer

• Real

• Natural

• Boolean

• Character

• Time

• Duration
June 2009 IBM Rational Tau User Guide 1103



Chapter 35: C Code Generator Reference
• Pid

• Charstring

• Bit

• Octet

• IA5String

• NumericString

• PrintableString

• VisibleString

• NULL

• Enumeration types

• Instantiations of template Own, ORef.

Passed as values are also:

• Any syntype of a type in the list above

• Types that inherit a type in this list.

Types passed as addresses

The following types are passed as addresses (structured types):

• BitString

• OctetString

• ObjectIdentifier

• Struct types

• Choice types

• Instantiations of template PowerSet

• Instantiations of template Bag

• Instantiations of template Array

• Instantiations of template String.

Passed as addresses are also:

• Any syntype of a type in the list above

• Types that inherit a type in this list.
1104 IBM Rational Tau User Guide June 2009



Parameter Passing to Operations
Note
For types represented as pointers (Charstring, including any syntype of 
Charstring, Own, ORef), the pointers, not the addresses of the pointers, are 
passed as parameters.

Parameter passing

The parameter passing for operations implemented in C works as follows:

In parameters
• Passed as a value in C if the type is listed in “Types passed as values” on 

page 1103. This means that the parameter type in C is the same type as 
in UML.

• Passed as an address in C if the type is listed in “Types passed as ad-
dresses” on page 1104. This means that the C parameter is 
(UML_type *) if the type in UML is (UML_type).

In/Out parameters
• Parameters are always passed as addresses, i.e the C parameter is 

(UML_type *) if the type in UML is (UML_type).

Operation result

If the type of the result of the operation is listed in “Types passed as values” 
on page 1103, the C function result type will be the same as in UML.

If the result type is listed in “Types passed as addresses” on page 1104, two 
things are changed. 

• The C result type will be (UML_type *), i.e the result will be an address.

• An extra parameter is inserted last in the C function. This parameter is 
also of type (UML_type *) and is used as a location to store the result of 
the function. At a call of an operation, a “dummy” variable should be 
passed as the actual parameter. The C function can then use this to store 
the result of the operation and should return the variable again as result.

Example 365: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Consider a struct datatype, struct1.

class c {
int X;
June 2009 IBM Rational Tau User Guide 1105



Chapter 35: C Code Generator Reference
struct1 Y;
}

The C prototypes for these operations are:

SDL_Integer X (SDL_Integer, SDL_Integer *);
struct1 * Y (struct1 *, struct1 *, struct1 *);

The example implementations are:

SDL_Integer X
  (SDL_Integer Param1, SDL_Integer *Param2)
{
  *Param2 = *Param2+Param1;
  return *Param2;
}

struct1 * Y (struct1 *Param1,
             struct1 *Param2,
             struct1 *Result)
{
  /* implementation assuming struct1 to contain
     two integers */
  (*Param2).comp1 = (*Param2).comp1+(*Param1).comp1;
  (*Param2).comp2 = (*Param2).comp2+(*Param1).comp2;
  *Result = *Param2;
  return Result;
    /* always return the last, extra, parameter */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
As IN parameters are passed as addresses for structured types, changing 
such a parameter inside the operation might have undesired effects. An at-
tribute passed as an actual parameter is then also changed. If you want to 
change the formal parameter copy it first to a local attribute.

Generic Functions

Type info nodes

A generic function can perform a certain task for several different types. To 
be able to write generic functions, type-specific information for the types 
must be made available. This type of information could be, for instance, the 
size of the type, the component types for structured types and the component 
offsets. This information is provided by the Type Info Nodes.
1106 IBM Rational Tau User Guide June 2009



Generic Functions
A type info node is a struct that contains information that defines the type. 
Each type has a corresponding type info node. Each type info node contains 
two sections. 

• The first section contains a sequence of general components that is iden-
tical for all type info nodes. 

• The second section is an individual type-specific sequence of compo-
nents that defines each unique type. 

For a detailed reference to the contents of the type info nodes, see “Type def-
initions of type info nodes” on page 1180 in Chapter 37, C Code Generator 
Symbol Table.

Every passive class or syntype introduced in UML will be described by a 
type info node in the generated C code. For the predefined data types the fol-
lowing type info nodes can be found in sctpred.h and sctpred.c:

extern tSDLTypeInfo ySDL_SDL_Integer;
extern tSDLTypeInfo ySDL_SDL_Real;
extern tSDLTypeInfo ySDL_SDL_Natural;
extern tSDLTypeInfo ySDL_SDL_Boolean;
extern tSDLTypeInfo ySDL_SDL_Character;
extern tSDLTypeInfo ySDL_SDL_Time;
extern tSDLTypeInfo ySDL_SDL_Duration;
extern tSDLTypeInfo ySDL_SDL_PId;
extern tSDLTypeInfo ySDL_SDL_Charstring;
extern tSDLTypeInfo ySDL_SDL_Bit;
extern tSDLTypeInfo ySDL_SDL_Bit_String;
extern tSDLTypeInfo ySDL_SDL_Octet;
extern tSDLTypeInfo ySDL_SDL_Octet_String;
extern tSDLTypeInfo ySDL_SDL_IA5String;
extern tSDLTypeInfo ySDL_SDL_NumericString;
extern tSDLTypeInfo ySDL_SDL_PrintableString;
extern tSDLTypeInfo ySDL_SDL_VisibleString;
extern tSDLTypeInfo ySDL_SDL_Null;
extern tSDLGenListInfo ySDL_SDL_Object_Identifier;

For a user-defined type, the type info node will have the name

ySDL_#(TypeName)

Generic assignment functions

Each type in UML has access to an assignment macro yAssF_typename. 

Example 366: Type boolean and for a user-defined type A –––––––––––––––––––

#define yAssF_SDL_Boolean(V,E,A)  (V = E)
June 2009 IBM Rational Tau User Guide 1107



Chapter 35: C Code Generator Reference
#define yAssF_A(V,E,A)  yAss_A(&(V),E,A)
#define yAss_A(Addr,Expr,AssName) \  

(void)GenericAssignSort(Addr,Expr,AssName,
                            (tSDLTypeInfo *)&ySDL_A)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This macro is used in the generated code (and in the run-time library) at each 
location where an assignment should take place. The three macro parameters 
are:

• V: the variable on the left hand side

• E: the expression on the right hand side

• A: an integer giving the properties of the assignment.

This macro will either become an assignment statement in C or a call of an 
assignment function. An assignment statement will be used if assignment is 
allowed according to C for the current type and if it has the correct semantics 
comparing with assignment in UML.

If assignment is not possible to use, the assign macro will become a call to 
an assignment function. The basic generic assignment function can be found 
in sctpred.c and sctpred.h:

extern void * GenericAssignSort(void *, void *,
   int, tSDLTypeInfo *);

where:

• The first parameter is the address of the variable on the left hand side.

• The second parameter is the address of the expression on the right hand 
side.

• The third parameter is the properties of the assignment

• The fourth parameter is the type info node for the actual type.

GenericAssignSort returns the address passed as the first parameter. The 
GenericAssignSort function performs the following tasks:

• The old value on the left hand side variable is released, if that is specified 
in properties of the assignment and if the value contains any pointers.

• The value is copied from the expression to the variable. If possible this is 
performed by the function memcpy, otherwise special code depending on 
the kind of type is executed.

• The IsAssigned flags are set up for the variable according to the prop-
erties of the assignment.
1108 IBM Rational Tau User Guide June 2009



Generic Functions
Special treatment of Charstring and instantiations of the Own template has 
made it necessary to introduce specific wrapper functions that in their turn 
call GenericAssignSort for these types:

extern void xAss_SDL_Charstring (SDL_Charstring *,
   SDL_Charstring, int);
extern void * GenOwn_Assign (void *, void *, int,
   tSDLTypeInfo *);

A GenericAssignSort function must consider the following questions in 
order to handle the objects correctly.

• How should the object be copied?

• What is the status of the newly created object?

• What should be done with the old value referenced by the left hand side 
variable?

These topics will be discussed below.

Copy of objects

This operation is important to consider, since performing the wrong action 
will lead to memory leaks or access errors. Three different possibilities exist:

• AC: always copy the referenced object.

• AR: always copy the pointer, i.e reusing the referenced object.

• MR: copy pointer if the object is temporary or copy object if not tempo-
rary.

Status of new objects

This is a preparation for the next operation on this object so the correct deci-
sion can be made according to the first question. Two different possibilities 
exist:

• ASS: an object should become assigned if it is assigned to a variable and 
needs to be copied in future assignments, i.e corresponds to the values 
‘V’ and ‘L’ for the first character in a C string representing the Charstring 
sort. A typical case is a normal assignment statement.
June 2009 IBM Rational Tau User Guide 1109



Chapter 35: C Code Generator Reference
• TMP: an object should become temporary if it is not assigned to any per-
sistent variable and therefore should not be copied in subsequent assign-
ments, i.e corresponds to the value ‘T’ for the first character in a C string 
representing the Charstring sort. A typical case is a result value from an 
operation.

Old value

Normally free should be performed on the value, as otherwise there would be 
a memory leak. However, when initializing a variable, no free ought to be 
performed, as free might be called on a random address. Two different pos-
sibilities exists:

– FR: free old value.

– NF: do not free old value.

The third assignment property parameter in the GenericAssignSort func-
tion should be given a value according to the ideas given above, preferably 
using the macros indicated.

#define XASS_AC_ASS_FR  (int)25
#define XASS_MR_ASS_FR  (int)26
#define XASS_AR_ASS_FR  (int)28

#define XASS_AC_TMP_FR  (int)17
#define XASS_MR_TMP_FR  (int)18
#define XASS_AR_TMP_FR  (int)20

#define XASS_AC_ASS_NF  (int)9
#define XASS_MR_ASS_NF  (int)10
#define XASS_AR_ASS_NF  (int)12

#define XASS_AC_TMP_NF  (int)1
#define XASS_MR_TMP_NF  (int)2
#define XASS_AR_TMP_NF  (int)4

The macro names above are all of the form XASS_1_2_3, where the abbre-
viations placed at 1, 2, and 3 should be read:

• 1 = AC: always copy 

• 1 = MR: may reuse (take pointer if temporary object)

• 1 = AR: always reuse (take pointer)

• 2 = ASS: new object assigned to “variable”

• 2 = TMP: new object temporary

• 3 = FR: call free for old value referred to by variable
1110 IBM Rational Tau User Guide June 2009



Generic Functions
• 3 = NF: do not call free for old value

The distinction between all these assignment possibility is only of interest 
when handling types using or containing pointers.

Generic equal functions

Each type has access to an equal macro yEqF_typename and a not equal 
macro yNEqF_typename. Examples for type Boolean and for a user-defined 
type A:

#define yEqF_SDL_Boolean(E1,E2)   ((E1) == (E2))
#define yNEqF_SDL_Boolean(E1,E2)  ((E1) != (E2))

#define yEqF_z3_A(Expr1,Expr2)  yEq_z3_A(Expr1,Expr2)
#define yNEqF_z3_A(Expr1,Expr2)  ( ! yEq_z3_A(Expr1,Expr2) )
#define yEq_z3_A(Expr1,Expr2) \
  GenericEqualSort((void *)Expr1,(void *)Expr2, \
                   (tSDLTypeInfo *)&ySDL_z3_A)

These macros are used in the generated code (and in the kernel) at each loca-
tion where equality tests are needed. The parameters to the equal and not 
equal macro are the two expressions that should be tested.

If C equal or not equal are not possible to use, the equal macros will become 
calls to an equal function. The basic generic equal function can be found in 
sctpred.h and sctpred.h

extern SDL_Boolean GenericEqualSort(void *, void *,
   tSDLTypeInfo *);

where:

• The first two parameters are the addresses to the two expressions to be 
tested

• The third parameter is the type info node for the actual type.

Charstring and Own

Special treatment of Charstring and instantiations of the Own template has 
made it necessary to introduce specific wrapper functions that in turn calls 
GenericEqualSort for these types:

extern SDL_Boolean xEq_SDL_Charstring
   (SDL_Charstring, SDL_Charstring);
extern SDL_Boolean GenOwn_Equal (void *, void *,
    tSDLTypeInfo *);
June 2009 IBM Rational Tau User Guide 1111



Chapter 35: C Code Generator Reference
Generic free functions

Each type that is implemented as a pointer, or that contains a pointer that ref-
erences to memory that is automatically handled, has access to a corre-
sponding yFree_typename function or macro. In the generic function 
model, this is always a macro.

#define yFree_SDL_Charstring(P)  xFree_SDL_Charstring(P)
#define xFree_SDL_Charstring(P) \
   GenericFreeSort(P,(tSDLTypeInfo *)&ySDL_SDL_Charstring)

#define yFree_A(P) \
   GenericFreeSort(P,(tSDLTypeInfo *)&ySDL_A)

The yFree macro will always be translated to a call to the function 
GenericFreeSort.

extern void GenericFreeSort (void **, tSDLTypeInfo *);

This function takes the address of a variable and a type info node and releases 
the dynamic memory used by this value contained in the variable.

Generic make functions

There are four generic functions constructing values of structured types:

extern void * GenericMakeStruct (void *, tSDLTypeInfo *, ...);
extern void * GenericMakeChoice (void *, tSDLTypeInfo *,
   int, void *);
extern void * GenericMakeOwnRef (tSDLTypeInfo *, void *);
extern void * GenericMakeArray  (void *, tSDLTypeInfo *,
   void *);

GenericMakeStruct

The Make operation is available for the struct type, the ObjectIdentifier type 
and the instantiations of the templates String, PowerSet, and Bag.

• The void * parameter is the address of a variable where the result should 
be placed. This value is also returned.

• The tSDLTypeInfo * parameter is the address to the type info node for 
the type to be created.
1112 IBM Rational Tau User Guide June 2009



Generic Functions
• “...” denotes a list of addresses to the values for the components in the 
struct. All parameters must be passed as addresses (void *) regardless if 
the component type should be passed as an address or as a value. 

The only exceptions are the types represented as pointers themselves 
(Charstring, Own, ORef, and any syntype of these types), where the 
pointers are passed, not the addresses of the pointers. 

In case of an optional field or a field with an initializer, a ‘0’ or ‘1’ is 
passed to indicate if a value for the component is present or not. If ‘1’ is 
passed the value follows as next parameter. If ‘0’ is passed no value is 
present in the actual parameter list.

GenericMakeChoice

This function is used for choice types.

• The first void * parameter is the address of a variable where the result 
should be placed. This value is also returned.

• The tSDLTypeInfo * parameter is the address to the type info node for 
the type to be created.

• The int parameter decides which choice component that is present.

• The last void * parameter is the address of the value.

GenericMakeOwnRef

This function is used for instantiations of template Own.

• The tSDLTypeInfo * parameter is the address to the type info node for 
the type to be created.

• The void * parameter is the address to the value that should be assigned 
to the memory allocated by this function.

GenericMakeArray

This function is used for instantiations of the templates Array, CArray, and 
GArray.

• The first void * parameter is the address of a variable where the result 
should be placed. This value is also returned.

• The tSDLTypeInfo * parameter is the address to the type info node for 
the type to be created.
June 2009 IBM Rational Tau User Guide 1113



Chapter 35: C Code Generator Reference
• The last void * parameter is the address to the value that should be as-
signed to all components of the array.

Copy

An implicit copy operator has been inserted for every user-defined type. It 
takes a value and returns a copy of that value. For all types that are not Own 
pointers or contain Own pointers, this operator is meaningless as it just re-
turns the same value. For Own pointers or for structured values containing 
Own pointers, the copy function, however, copies the values referenced by 
the Own pointers.

The implicit copy operator is only implemented for user-defined types. For 
predefined data types the copy operator is not implemented as it is not mean-
ingful.

Generic Functions for Operations in 
Predefined Templates

The generic function for the operations in the predefined templates follow 
the general rules for operations with a few exceptions:

• A type info node is needed as a parameter, as the C function can handle 
all instantiations of a certain template.

• Parameters of template parameter types (component and index types for 
example) must in many cases be passed as addresses, as the properties of 
these types are not known.

General array
extern void * GenGArray_Extract (xGArray_Type *, void *,
   tSDLGArrayInfo *);
extern void * GenGArray_Modify  (xGArray_Type *, void *,
   tSDLGArrayInfo *);

• Parameter 1: The array

• Parameter 2: The index value passed as an address

• Parameter 3: The type info node

• Result: The address of the component.
1114 IBM Rational Tau User Guide June 2009



Generic Functions for Operations in Predefined Templates
PowerSet

Generic functions available for PowerSet with a simple component type. The 
PowerSet is represented a sequences of bits unsigned 
char[Appropriate_Length].

#define GenPow_Empty(SDLInfo,Result) \
   memset((void *)Result,0,(SDLInfo)->SortSize)
extern SDL_Boolean GenPow_In (int, xPowerset_Type *,
   tSDLPowersetInfo *);
extern void * GenPow_Incl (int, xPowerset_Type *,
   tSDLPowersetInfo *, xPowerset_Type *);
extern void * GenPow_Del (int, xPowerset_Type *,
   tSDLPowersetInfo *, xPowerset_Type *);
extern void GenPow_Incl2 (int, xPowerset_Type *,
   tSDLPowersetInfo *);
extern void GenPow_Del2 (int, xPowerset_Type *,
   tSDLPowersetInfo *);
extern SDL_Boolean GenPow_LT (xPowerset_Type *,
   xPowerset_Type *, tSDLPowersetInfo *);
extern SDL_Boolean GenPow_LE (xPowerset_Type *,
   xPowerset_Type *, tSDLPowersetInfo *);
extern void * GenPow_And (xPowerset_Type *, xPowerset_Type *,
   tSDLPowersetInfo *, xPowerset_Type *);
extern void * GenPow_Or (xPowerset_Type *, xPowerset_Type *,
   tSDLPowersetInfo *, xPowerset_Type *);
extern SDL_Integer GenPow_Length (xPowerset_Type *,
   tSDLPowersetInfo *);
extern int GenPow_Take (xPowerset_Type *, tSDLPowersetInfo *);
extern int GenPow_Take2 (xPowerset_Type *, SDL_Integer,
   tSDLPowersetInfo *);

• Parameter of type int in GenPow_In, GenPow_Incl, GenPow_Del, 
GenPow_Incl2, GenPow_Del2: A component value.

• Result of type int in GenPow_Take, GenPow_Take2: A component 
value.

• Parameters of type tSDLPowersetInfo *: The type info node.

• Parameters of type xPowerset_Type * after the type info node: The ad-
dress where the result should be stored. This address is returned by the 
function.

• Other xPowerset_Type * parameters: PowerSet in parameters.

Bag and general PowerSet

The following generic functions are available for Bag and PowerSet with 
complex component type. These types are represented as linked lists in C.

#define GenBag_Empty(SDLInfo,Result) \
   memset((void *)Result,0,(SDLInfo)->SortSize)
extern void * GenBag_Makebag (void *, tSDLGenListInfo *,
   xBag_Type *);
extern SDL_Boolean GenBag_In (void *, xBag_Type *,
   tSDLGenListInfo *);
June 2009 IBM Rational Tau User Guide 1115



Chapter 35: C Code Generator Reference
extern void * GenBag_Incl (void *, xBag_Type *,
   tSDLGenListInfo *, xBag_Type *);
extern void * GenBag_Del (void *, xBag_Type *,
   tSDLGenListInfo *, xBag_Type *);
extern void GenBag_Incl2 (void *, xBag_Type *,
   tSDLGenListInfo *);
extern void GenBag_Del2 (void *, xBag_Type *,
   tSDLGenListInfo *);
extern SDL_Boolean GenBag_LT (xBag_Type *, xBag_Type *,
   tSDLGenListInfo *);
extern SDL_Boolean GenBag_LE (xBag_Type *, xBag_Type *,
   tSDLGenListInfo *);
extern void * GenBag_And (xBag_Type *, xBag_Type *,
   tSDLGenListInfo *, xBag_Type *);
extern void * GenBag_Or(xBag_Type *, xBag_Type *,
   tSDLGenListInfo *, xBag_Type *);
extern SDL_Integer GenBag_Length (xBag_Type *,
   tSDLGenListInfo *);
extern void * GenBag_Take (xBag_Type *, tSDLGenListInfo *,
   void *);
extern void * GenBag_Take2 (xBag_Type *, SDL_Integer,
   tSDLGenListInfo *, void *);

• Parameter of type int in GenBag_Makebag, GenBag_In, 
GenBag_Incl, GenBag_Del, GenBag_Incl2, GenBag_Del2: The ad-
dress of the component value.

• Result of type int in GenBag_Take, GenBag_Take2: The address of the 
component value.

• Parameters of type tSDLGenListInfo *: The type info node.

• Parameters of type xBag_Type * after the type info node: The address 
where the result should be stored. This address is returned by the func-
tion.

• Parameters of type void * after the type info node: The address where 
the result should be stored. This address is returned by the function.

• Other xBag_Type * parameters: Bag/PowerSet in parameters.

String

The following generic functions are available for String instantiations. 
String is implemented as a linked list.

#define GenString_Emptystring(SDLInfo,Result) \
   memset((void *)Result,0,(SDLInfo)->SortSize)
extern void * GenString_MkString (void *, tSDLGenListInfo *,
   xString_Type *);
extern SDL_Integer GenString_Length (xString_Type *,
   tSDLGenListInfo *);
extern void * GenString_First (xString_Type *,
   tSDLGenListInfo *, void *);
extern void * GenString_Last (xString_Type *,
   tSDLGenListInfo *, void *);
extern void * GenString_Concat (xString_Type *,
   xString_Type *, tSDLGenListInfo *, xString_Type *);
1116 IBM Rational Tau User Guide June 2009



Generic Functions for Operations in Predefined Templates
extern void * GenString_SubString (xString_Type *,
   SDL_Integer, SDL_Integer, tSDLGenListInfo *,
   xString_Type *);
extern void GenString_Append (xString_Type *, void *,
   tSDLGenListInfo *);
extern void * GenString_Extract (xString_Type *, SDL_Integer,
   tSDLGenListInfo *);

• Parameter of type void * in GenString_MkString, 
GenString_Append: Address of component value.

• Parameter of type void * or xString_Type * after type info node: The 
address where the result should be stored. This address is returned by the 
function.

• Parameters of type tSDLGenListInfo *: The type info node.

• Other parameters: According to definition of parameters.

Limited string

Generic functions are available for limited strings. Limited strings are strings 
that use a maximum size of the string. These strings are implemented as an 
array in C.

#define GenLString_Emptystring(SDLInfo,Result) \
   memset((void *)Result,0,(SDLInfo)->SortSize)
extern void * GenLString_MkString (void *, tSDLLStringInfo *,
   xLString_Type *);
#define GenLString_Length(ST,SDLInfo) (ST)->Length
extern void * GenLString_First (xLString_Type *,
   tSDLLStringInfo *, void *);
extern void * GenLString_Last (xLString_Type *,
   tSDLLStringInfo *, void *);
extern void * GenLString_Concat (xLString_Type *,
   xLString_Type *, tSDLLStringInfo *, xLString_Type *);
extern void * GenLString_SubString (xLString_Type *,
   SDL_Integer, SDL_Integer, tSDLLStringInfo *,
   xLString_Type *);
extern void GenLString_Append (xLString_Type *, void *,
   tSDLLStringInfo *);
extern void * GenLString_Extract (xLString_Type *,
   SDL_Integer, tSDLLStringInfo *);

• Parameter of type void * in GenLString_MkString, 
GenString_Append: Address of component value.

• Parameter of type void * or xLString_Type * after type info node: 
The address where the result should be stored. This address is returned 
by the function.

• Parameters of type tSDLLStringInfo *: The type info node.

• Other parameters: According to definition of parameters.
June 2009 IBM Rational Tau User Guide 1117



Chapter 35: C Code Generator Reference
Optimizations

Removing unused operations

When implementing a system, you do not always use all available UML op-
erations. The C Code Generator removes the declarations of unused opera-
tions, thus minimizing the code size of the generated application. Unused op-
erations that are removed are:

• Operations in predefined data types, for example substring, concatenate, 
calculate length on Charstring, etc.

• Operations defined in the predefined templates String, Array, PowerSet, 
Bag

• Special operations (and help functions) like assign, equal, default, make, 
extract, modify, free.

The C Code Generator performs the following steps to optimize the code:

1. Every C function that implements an operation is surrounded by a 
#ifndef definition.

Example 367 The #ifndef definition ––––––––––––––––––––––––––––––––––––

#ifndef XNOUSE_AND_BIT_STRING
  /* function implementing the operation */
#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2. During the code generation, the usage of the operations in the transitions 

in state machines that implement active classes is recorded.

3. The dependencies between different operations are updated. For in-
stance, an equal operation for a struct type may depend on equal opera-
tions for all its component types.

4. For each operation that is found to be unused, a #define definition is 
generated that removes the code for that operation. All the defines are 
placed in a file called auto_cfg.h

Example 368 The #define command ––––––––––––––––––––––––––––––––––––––

#define XNOUSE_AND_BIT_STRING

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1118 IBM Rational Tau User Guide June 2009



Names in Generated C Code
Names in Generated C Code
This section is valid both for the C Code Generator and the AgileC Code 
Generator. 

Prefixes and suffixes in generated C names

When a UML name is translated to an identifier in C, a prefix or a suffix is 
normally added to the name given in UML. This prefix is used to prevent 
name conflicts in the generated code, as UML has other scope rules than C 
and also allows different objects defined in the same scope to have the same 
name, if the objects are of different entity classes. It is, for example, allowed 
in UML to have a sort, an attribute and an operation with the same name de-
fined in an active class. So the purpose of the prefix or suffix is to make each 
translated UML name to a unique name in the C program. 

It is recommended to use suffix as it makes the code more readable. A reason 
to use prefix instead is if the used compiler only looks at a limited number of 
characters when parsing the names of identifiers. This makes it necessary to 
have the unique part in the beginning of the name. 

Names in generated code using suffix

A generated name for a UML object contains three parts in the following 
order: 

1. The UML name stripped from characters not allowed in C identifiers

2. An underscore ‘_’

3. A sequence of characters that make the name unique. If the object is part 
of a package, the package name will appear in this sequence. 

Names in generated code using prefix

A generated name for a UML object contains four parts in the following 
order: 

1. The character ‘z’

2. A sequence of characters that make the name unique. If the object is part 
of a package, the package name will appear in this sequence. 

3. An underscore ‘_’

4. The UML name stripped from characters not allowed in C identifiers
June 2009 IBM Rational Tau User Guide 1119



Chapter 35: C Code Generator Reference
Sequence of characters

The sequence of characters that make the name unique is determined by the 
position of the declaration in the structure of declarations in the system:

• Each declaration on a level is given a number: 0, 1, 2,..., 9, a, b,..., z. 

• If the number of declaration on a level is greater than 36, the sequence is: 
00, 10, 20,..., 90, a0,..., z0, 01, 11, 21,..., 91, a1,..., z1,......, 0z, 1z, 2z,..., 
9z, az,..., zz.

• If the number of declarations is greater than 36 * 36 then three character 
sequences are used, and so on. 

The total sequence making a name unique is now constructed from the “dec-
laration numbers” for the unit and its parents, that is the units in which it is 
defined, starting from the “root”.

Example 369 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Given, say, a sort is defined as the 5th declaration in an inline active class 
with parts that in turn is the 12th declaration in the system. Then, the total 
sequence will be b4 (if not more than 36 declarations are present on any of 
the two levels). 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 370: Generated names in code –––––––––––––––––––––––––––––––––––

Examples of generated names:

There will also be other generated names using the prefixes. If, for example, 
a sort MySort is translated to za2c_MySort, then the equal function con-
nected to this type (if it exists) will be called yEq_za2c_MySort.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Name Position of the Declaration
Generated 
Name

S1 10th declaration in the system S1_9 or z9_S1

Var2 3rd declaration in the active class, which is the 
5th declaration in an inline active class with 
parts, which is the 15th declaration in system

Var2_e42 or 
ze42_Var2
1120 IBM Rational Tau User Guide June 2009



Names in Generated C Code
June 2009 IBM Rational Tau User Guide 1121



Chapter 35: C Code Generator Reference
1122 IBM Rational Tau User Guide June 2009



36
C Code Generator Run-Time 

Model

The run-time model governs the applications generated by the C Code Gen-
erator, and controls the scheduling, signalling and execution of instances of 
active classes in the application.

This chapter provides information helping you to understand the principles 
that control the run-time execution of the application code. Such information 
is useful, should you need to proceed with debugging of your applications on 
C level.

The chapter also describes the C data structures used for representing the var-
ious objects that exist in the system.
June 2009 IBM Rational Tau User Guide 1123



Chapter 36: C Code Generator Run-Time Model
Signals and Timers

Data structure representing signals and timers

A signal is represented by a struct type. The xSignalRec struct, defined in 
scttypes.h, is a struct containing general information about a signal except 
from the signal parameters. In scttypes.h the following information about 
signals can be found:

#ifdef XMSCE
#define GLOBALINSTID  int GlobalInstanceId;
#else
#define GLOBALINSTID
#endif

#if defined(XSIGPATH) && defined(XMSCE)
#define ENVCHANNEL  xChannelIdNode EnvChannel;
  /* Used if env split into connectord in Sequence 

Diagram trace */
#else
#define ENVCHANNEL
#endif

#ifdef XENV_CONFORM_2_3
#define XSIGNAL_VARP  void * VarP;
#else
#define XSIGNAL_VARP
#endif

define SIGNAL_VARS \
   xSignalNode   Pre; \
   xSignalNode   Suc; \
   int           Prio; \
   SDL_PId       Receiver; \
   SDL_PId       Sender; \
   xSignalIdNode NameNode; \
   GLOBALINSTID \
   ENVCHANNEL \
   XSIGNAL_VARP

typedef struct xSignalStruct  *xSignalNode;
typedef struct xSignalStruct {
   SIGNAL_VARS
}  xSignalRec;

The xSignalNode type is thus a pointer type which is used to refer to allo-
cated data areas of type xSignalRec. The components in the xSignalRec 
struct are used as follows:
1124 IBM Rational Tau User Guide June 2009



Signals and Timers
• Pre and Suc. These pointers are used to link a signal into the input port 
of the receiving instance. 

The input port is a double linked list of signals. Suc is also used to link a 
signal into the avail lists for the current signal type. This list can be found 
in the xSignalIdNode that represents this signal type. If the signal is in 
the avail list Pre is 0. 

• Prio The priority of the signal.

• Receiver is used to reference the receiver of the signal. It is either set in 
the signal sending statement, or calculated (signal sending without direct 
addressing).

• Sender is the Pid value of the sending instance of an active class.

• NameNode is a reference to the xSignalIdNode representing the signal 
type and thus defines the signal type of this signal instance.

• VarP is a pointer introduced via the macro XSIGNAL_VARP to ensure 
compatibility of signal with earlier versions of the C Code Generator. 
This component is not used in normal cases and should not be present.

• EnvChannel is used to identify the outgoing connector in Sequence dia-
gram trace.

• GlobalInstanceId is used in the Sequence diagram trace as a unique 
identification of the signal instance.

A signal without parameters is represented by a xSignalStruct, while for 
signals with parameters a struct type named 
ySignalPar_z_<package>_<number>_SignalName and a pointer type 
referencing this struct type (prefixed with yPDP_) are defined in the gener-
ated code. The struct type will start with the SIGNAL_VARS macro and then 
have one component for each signal parameter, in the same order as the 
signal parameters are defined. The components will be named Param1, 
Param2 and so on. 

Example 371: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

typedef struct {
    SIGNAL_VARS
    SDL_Integer  Param1;
    SDL_Boolean  Param2;
} ySignalPar_z_<package>_<number>_sig;
typedef ySignalPar_z_<package>_<number>_sig 
*yPDP_z_<package>_<number>_sig;
June 2009 IBM Rational Tau User Guide 1125



Chapter 36: C Code Generator Run-Time Model
These types would represent a signal sig(Integer, Boolean).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

As all signals start with the components defined in SIGNAL_VARS, it is pos-
sible to type cast a pointer to a signal, to the xSignalNode type, if only the 
components in SIGNAL_VARS are to be accessed.

Allocation of data areas for signals

In sctsdl.c there are two functions, xGetSignal and xReleaseSignal, 
where data areas for signals are handled:

xSignalNode xGetSignal(
  xSignalIdNode  SType,
  SDL_PId        Receiver,
  SDL_PId        Sender )

void xReleaseSignal( xSignalNode  *S )

xGetSignal takes a reference to the xSignalIdNode identifying the signal 
type and two Pid values (sending and receiving instances of active classes) 
and returns a signal instance. xGetSignal first looks in the avail list for the 
signal type (the component AvailSignalList in the SignalIdNode for the 
signal type) and reuses any available signal there. Only if the avail list is 
empty new memory is allocated. The component VarSize in the 
xSignalIdNode for the signal type provides the size information needed to 
correctly allocate the ySignalPar_SignalName even though the type is un-
known for the xGetSignal function.

The function xReleaseSignal takes the address of an xSignalNode pointer 
and returns the referenced signal to the avail list for the signal type. The 
xSignalNode pointer is then set to 0.

The function xGetSignal is used:

• In generated code (Output, TimerSet, TimerReset)

• In a number of places in the library:
SDL_Create

SDL_SimpleReset

SDL_Nextstate (to handle guards of triggered transitions)

The function xReleaseSignal is used by:

• SDL_Nextstate 

• SDL_Stop, in both cases to release the signal that initiated the transition.
1126 IBM Rational Tau User Guide June 2009



Signals and Timers
Detailed layout of signal parameters

Detailed layout information about signal parameters is made available on re-
quest, if Set-SDL-Coder is present in the C Code Generator Advanced op-
tions. The information is stored on two files generated by the C Code Gener-
ator: <basename>_cod.h and <basename>_cod.c These files should be 
present in the compile and link scheme. 

The <basename>_cod.c file contains struct definitions of types 
tSDLSignalInfoS and tSDLSignalParaInfoS that describe the structure 
of the signals. These types are defined in the run-time library file sctpred.h

Sending and receiving signals

In this subsection the signal handling operation is outlined. More details will 
be given in the section treating instances of active classes (“Send and receive 
of signals” on page 1140).

Signal instances are sent using the function SDL_Output. That function takes 
a signal instance and inserts it into the input port of the receiving instance. 

If the receiver is not already in the Ready queue (the queue containing the 
instance of active classes that can perform a transition, but which have not 
yet been scheduled to do so, and the current signal may cause an immediate 
transition, the instance is inserted into the ready queue. 

If the receiver is already in the ready queue or in a state where the current 
signal should be saved, the signal instance is just inserted into the input port. 

If the signal instance can neither cause a transition nor should be saved, it is 
immediately discarded (the data area for the signal instance is returned to the 
avail list).

The input port is scanned during nextstate operations, to find the next signal 
in the input port that can cause a transition. Signal instances may then be 
saved or discarded.

PAD function

There is no specific input function, instead this behavior is distributed both 
in the run-time library and in the generated code. The signal instance that 
should cause the next transition to be executed is removed from the input port 
in the main loop (the scheduler), immediately before the PAD function for 
the state machine is called. The PAD function is the C function where the 
June 2009 IBM Rational Tau User Guide 1127



Chapter 36: C Code Generator Run-Time Model
behavior of the state machine of an active class is implemented; this function 
is generated by the C Code Generator. The assignment of the signal parame-
ters to local variables is one of the first actions performed by the PAD func-
tion.

The signal instance that caused a transition is released and returned to the 
avail list in the nextstate or stop action that ends the current transition.

Signal number file

Many real time operating systems require that signals/messages are repre-
sented with an integer value. Each signal is assigned an integer value. The 
signal number file is named <basename>.hs

See also “Improving performance of xOutEnv when many signals” on page 
1048 for a guide how to use signal numbers.

Timers and operations on timers

Representation of timer

A timer with parameters is represented by a type definition, in exactly the 
same way as for a signal definition (“Data structure representing signals and 
timers” on page 1124). At run time, all timers that are set and that has not ex-
pired, are represented by a xTimerRec struct and a signal instance:

#define TIMER_VARS \
   xSignalNode   Pre; \
   xSignalNode   Suc; \
   int           Prio; \
   SDL_PId       Receiver; \
   SDL_PId       Sender; \
   xSignalIdNode NameNode; \
   GLOBALINSTID \
   ENVCHANNEL \
   SDL_Time      TimerTime;

typedef xTimerRec  *xTimerNode;

typedef struct xTimerStruct {
   TIMER_VARS
}  xTimerRec;
1128 IBM Rational Tau User Guide June 2009



Signals and Timers
The TIMER_VARS is and must be identical to the SIGNAL_VARS macro, except 
for the TimerTime component last in the macro. A timer with parameters 
have ySignalPar_timername and yPDP_timername types in generated 
code exactly as a signal (“Sending and receiving signals” on page 1127), ex-
cept that SIGNAL_VARS is replaced by TIMER_VARS.

Timer queue

During its lifetime, a timer has one of two different appearances. First it is a 
timer waiting for the timer time to expire. In that phase the timer is inserted 
in the xTimerQueue. When the timer time expires, the timer becomes a 
signal and is inserted in the input port of the receiver just like any other 
signal. As the typedef for xSignalRec and xTimerRec are identical, type 
casting between xTimerNode and xSignalNode types is possible.

When a timer is treated as a signal, the components in the xTimerRec are 
used in the same ways as for a xSignalRec. While the timer is in the timer 
queue, the components are used as follows:

• Pre and Suc are pointers used to link the xTimerRec into the timer queue 
of active timers

• TimerTime is the time given in the Set operation.

The timer queue is represented by the component xTimerQueue in the vari-
able xSysD: 

xTimerNode xTimerQueue;

The variable is initialized in the function xInitKernel in sctsdl.c. When 
xTimerQueue is initialized it refers to the queue head of the timer queue.

The queue head is an extra element in the timer queue that does not represent 
a timer, but is introduced as it simplifies the algorithms for queue handling. 
The TimerTime component in the queue head is set to a very large time value 
(xSysD.xMaxTime).

The timer queue is thus a double linked list with a list head and it is sorted 
according to the timer times, so that the timer with lowest time is at the first 
position.

The xTimerRec structures are allocated and reused in the same way as sig-
nals.
June 2009 IBM Rational Tau User Guide 1129



Chapter 36: C Code Generator Run-Time Model
Handling of timers

Timers are handled in:

• Timer definitions

• Timer outputs

• TimerSet and TimerReset operations.

The timer output is the event when the timer time has expired and the timer 
signal is sent. After that, a timer signal is treated as an ordinary signal. These 
operations are implemented as follows:

void SDL_Set(
  SDL_Time     T,
  xSignalNode  S )

This function, which represents the Set operation, takes the timer time and 
a signal instance as parameters. It first uses the signal instance to make an im-
plicit reset. It then updates the TimerTime component in S and inserts S into 
the timer queue at the correct position. 

The SDL_Set operation is used in generated code, together with 
xGetSignal, in much the same way as SDL_Output. First a signal instance 
is created (by xGetSignal), then timer parameters are assigned their values, 
and finally the Set operation is performed (by SDL_Set).

Two functions are used to represent TimerReset. SDL_SimpleReset is used 
for timers without parameters and SDL_Reset for timers with parameters.

void SDL_Reset( xSignalNode  *TimerS )

void SDL_SimpleReset(
  xPrsNode       P,
  xSignalIdNode  TimerId )

SDL_Reset uses the two functions xRemoveTimer and 
xRemoveTimerSignal to remove a timer in the timer queue and to remove 
a signal instance in the input port of the instance of an active class. It then 
releases the signal instance given as parameter. This signal is only used to 
carry the parameter values given in the TimerReset action. 

The function SDL_SimpleReset is implemented in the same way as 
SDL_Reset, except that it creates its own signal instance (without parame-
ters).
1130 IBM Rational Tau User Guide June 2009



Active Classes
At a TimerReset action the timer is removed from the timer queue and re-
turned to the avail list. A found signal instance (in the input port) is removed 
from the input port and returned to the avail list for the current signal type.

static void SDL_OutputTimerSignal( xTimerNode  T )

The SDL_OutputTimerSignal is called from the main loop when the timer 
time has expired for the timer first in the timer queue. The corresponding 
signal instance is then sent. 

SDL_OutputTimerSignal takes a pointer to an xTimerRec as parameter, re-
moves it from the timer queue and sends as an ordinary signal sending using 
the function SDL_Output.

It can be checked if a timer is active by using a call to the function 
SDL_Active. This function is used in the generated code to represent the op-
eration active.

SDL_Boolean SDL_Active (
  xSignalIdNode TimerId,
  xPrsNode      P )

Note
Only timers without parameters can be tested. This is a restriction in the C 
Code Generator.

There is one more place where timers are handled. When an instance of an 
active class instance performs a stop action, all timers in the timer queue con-
nected to this instance are removed. This is performed by calling the function 
xRemoveTimer with the first parameter equal to 0.

Active Classes

Data structure representing active classes

An instance of an active class is represented by two structures, an 
xLocalPIdRec and a struct containing both the general data for the active 
class and the local variables and formal parameters of the instance 
(yVDef_ProcessName). The reason for having both the xLocalPIdRec and 
the yVDef_ProcessName will be discussed under “Create and stop opera-
tions” on page 1137.

The corresponding type definitions, which can be found in scttypes.h, are:
June 2009 IBM Rational Tau User Guide 1131



Chapter 36: C Code Generator Run-Time Model
#ifdef XPRSSENDER
#define XPRSSENDERCOMP   SDL_PId  Sender;
#else
#define XPRSSENDERCOMP
#endif

#ifdef XTRACE
#define XTRACEDEFAULTCOMP   int Trace_Default;
#else
#define XTRACEDEFAULTCOMP
#endif

#ifdef XGRTRACE
#define XGRTRACECOMP   int GRTrace;
#else
#define XGRTRACECOMP
#endif

#ifdef XMSCE
#define XMSCETRACECOMP   int  MSCETrace;
#else
#define XMSCETRACECOMP
#endif

#if defined(XMONITOR) || defined(XTRACE)
#define XINTRANSCOMP   xbool InTransition;
#else
#define XINTRANSCOMP
#endif

#ifdef XMONITOR
#define XCALL_ADDR   int  CallAddress;
#else
#define XCALL_ADDR
#endif

#define PROCESS_VARS \
   xPrsNode       Pre; \
   xPrsNode       Suc; \
   int            RestartAddress; \
   xPrdNode       ActivePrd; \
   void (*RestartPAD) (xPrsNode  VarP); \
   XCALL_ADDR \
   xPrsNode       NextPrs; \
   SDL_PId        Self; \

xPrsIdNode     InstNameNode; \
xPrsIdNode     TypeNameNode; \

   int            State; \
   xSignalNode    Signal; \
   xInputPortRec  InputPort; \
   SDL_PId        Parent; \
   SDL_PId        Offspring; \
   int            BlockInstNumber; \
   XSIGTYPE       pREPLY_Waited_For; \
   xSignalNode    pREPLY_Signal; \
1132 IBM Rational Tau User Guide June 2009



Active Classes
   XPRSSENDERCOMP \
   XTRACEDEFAULTCOMP \
   XGRTRACECOMP \
   XMSCETRACECOMP \
   XINTRANSCOMP

typedef struct {
   xPrsNode      PrsP;
   int           InstNr;
   int           GlobalInstanceId;
}  xLocalPIdRec;

typedef xLocalPIdRec  *xLocalPIdNode;

typedef struct {
   int            GlobalNodeNr;
   xLocalPIdNode  LocalPId;
}  SDL_PId;

typedef struct xPrsStruct  *xPrsNode;

typedef struct xPrsStruct {
   PROCESS_VARS
} xPrsRec;

A Pid value is thus a struct containing two components:

• The global node number 

• A pointer to a xLocalPIdRec struct.

A xLocalPIdRec contains the following three components:

• PrsP of type xPrsNode. This component is a pointer to the xPrsRec 
struct that is part of the representation of the instance of an active class.

• InstNr of type int. This is the instance number of the current instance 
of an active class, which is used in the communication with the user in 
the Model Verifier and in dynamic error messages.

• GlobalInstanceId is used in Sequence diagram traces to have a unique 
identification of the instance of an active class.

A xPrsRec struct contains the following components described below. As 
each yVDef_ProcessName struct contains the PROCESS_VARS macro as first 
item, it is possible to cast pointer values between a pointer to xPrsRec and a 
pointer to a yVDef_ProcessName struct. 

• Pre and Suc of type xPrsNode. These components are used to link the 
instance of an active class in the ready queue (“Ready queue” on page 
1135).
June 2009 IBM Rational Tau User Guide 1133



Chapter 36: C Code Generator Run-Time Model
• RestartAddress of type int. This component is used to find the appro-
priate symbol to continue execute from.

• ActivePrd of type xPrdNode. This is a pointer to the xPrdRec that rep-
resents the currently executing operation called from this instance. The 
pointer is 0 if no operation is currently called.

• RestartPAD, which is a pointer to a function. This component refers to 
a PAD function that implements the state machine that realizes the dy-
namic behavior of an active class. RestartPAD is used to handle inherit-
ance between active classes.

• CallAddress of type int. This component contains the symbol number 
of the operation call currently executed by this active class.

• NextPrs of type xPrsNode. This component is used to link the instance 
of an active class either in the active list or in the avail list for this active 
class. The start of these two lists are the components ActivePrsList 
and AvailPrsList in the IdNode representing the current active class.

• Self of type SDL_PId. This is the Pid value of the current instance of an 
active class.

• InstNameNode and TypeNameNode of type xPrsIdNode. These are 
pointers to the PrsIdNode representing the instantiation and active class 
type of the current running instance.

• State of type int. This component contains the int value used to repre-
sent the current state of the instance of an active class.

• Signal of type xSignalNode. This is a pointer to a signal instance. The 
referenced signal is the signal that will cause the next transition by the 
current instance of an active class, or that caused the transition that is cur-
rently executed by the instance of an active class.

• InputPort of type xInputPortRec. This is the queue head in the double 
linked list that represents the input port of the instance of an active class. 
The signals are linked in this list using the Pre and Suc components in 
the xSignalRec struct.

• Parent of type SDL_PId. This is the Pid value of the parent instance of 
an active class. A “static” instance of an active class has parent equal to 
NULL. (Static means that the number of instances is fixed and all instances 
are created at start-up)

• Offspring of type SDL_PId. This is the Pid value of the latest created 
instance of an active class. An instance of an active class that has not cre-
ated any instances has offspring equal to NULL.
1134 IBM Rational Tau User Guide June 2009



Active Classes
• BlockInstNumber of type int. If the active class is part of an active 
class with its typed attribute defined as a composition, this component in-
dicates which of the instances that it belongs to.

• pREPLY_Waited_For of type xSignalIdNode. When an active class is 
waiting in the implicit state for the pREPLY signal in a “remote” proce-
dure call, this component is used to store the IdNode for the expected 
pREPLY signal.

• pREPLY_Signal of type xSignalNode. When an instance of an active 
class receives a pCALL signal, that is accepts an RPC, it immediately cre-
ates the return signal, the pREPLY signal. This component is used to refer 
to this pREPLY signal until it is sent.

• Sender of type SDL_PId. This component represents the concept Sender.

• Trace_Default of type int. This component contains the current value 
of the trace defined for the instance of an active class.

• GRTrace of type int. This component contains the current value of the 
graphical trace defined for the instance of an active class.

• MSCETrace of type int. This component contains the current Sequence 
diagram trace value for the instance of an active class.

• InTransition of type xbool. This component is true while the instance 
of an active class is executing a transition and it is false while the instance 
of an active class is waiting in a state. The Model Verifier user interface 
needs this information to be able to print out relevant information.

Ready queue

The ready queue is a double linked list with a head. It contains the instances 
of active classes that can execute an immediate transition, but which has not 
been allowed to complete that transition. Instance of active classes are in-
serted into the ready queue during signal sending operations and nextstate 
operations and are removed from the ready queue when they execute the 
nextstate or stop operation that ends the current transition. The head in the 
ready queue is an object that does not represent any instance, but is inserted 
only to simplify the queue operations. It is referenced by the xSysD compo-
nent:

  xPrsNode   xReadyQueue;

This component is initiated in the function xInitKernel and used 
throughout the run-time library to reference the ready queue.
June 2009 IBM Rational Tau User Guide 1135



Chapter 36: C Code Generator Run-Time Model
Scheduling of events is performed by the function xMainLoop, which is 
called from the main function after the initialization is performed.

void xMainLoop()

The strategy is to have all queues of interest (the ready queue, the timer 
queue, and the input ports) always sorted in the correct order. Sorting is thus 
performed when an object is inserted into a queue, which means that sched-
uling is a simple task: select the first object in the timer queue or in the ready 
queue and submit it for execution.

There are several versions of the body of the endless loop in the function 
xMainLoop, which are used for different combinations of compilation 
switches. When it comes to scheduling of transitions and timer outputs they 
all have the following outline:

while (1) {
  if ( xTimerQueue->Suc->TimerTime <= SDL_Now() )
    SDL_OutputTimerSignal( xTimerQueue->Suc );
  else if ( xReadyQueue->Suc != xReadyQueue) {
    xRemoveFromInputPort(xReadyQueue->Suc->Signal);
    xReadyQueue->Suc->Sender =
       xReadyQueue->Suc->Signal->Sender;
    (*xReadyQueue->Suc->RestartPAD)(xReadyQueue->Suc);
  }
}

or, in descriptive terms:

while (1) {
  if ( there is a timer that has expired )
    send the corresponding timer signal;
  else if ( there is an instance that can execute
            a transition ) {
    remove the signal causing the transition
      from input port;
    set up Sender in the instance to Sender of 
      the signal;
    execute the PAD function for the state machine;
  }
}

The different versions of the main loop handle different combinations of 
compilation switches. Other actions necessary in the main loop are depen-
dent of the compilation switches. Example of such actions are:

• Handling of the Model Verifier user interface

• Calling the xInEnv function

• Handling real time or simulated time
1136 IBM Rational Tau User Guide June 2009



Active Classes
• Delay execution up to the next scheduled event

• Handling guards or guards on triggered transitions that need to be recal-
culated.

Create and stop operations

An instance of an active class is, while it is active, represented by the two 
structures: 

• xLocalPIdRec

• The yVDef_ProcessName struct. 

These two structures are dynamically allocated. A Pid value is also a struct 
(not allocated) containing two components, GlobalNodeNr and LocalPId, 
where LocalPId is a pointer to the xLocalPIdRec. Figure 241 on page 1137 
shows how the xLocalPIdRec and the yVDef_ProcessName structures rep-
resenting an instance of an active class are connected.

When an instance of an active class performs a stop action, the memory used 
for the instance should be reclaimed and it should be possible to reuse in sub-
sequent create actions. After the stop action, old (invalid) Pid values might 
however be stored in attributes in other instances of active classes. 

Figure 241: A xLocalPIdRec and a yVDef_ProcessName representing an instance 
of an active class.

Pid value

PrsP
InstNr

....
NextPrs
Self:    GlobalNodeNr

....
           LocalPId
June 2009 IBM Rational Tau User Guide 1137



Chapter 36: C Code Generator Run-Time Model
If a signal is sent to such an old Pid value, that is, to a stopped instance of an 
active class, it should be possible to find and perform appropriate actions. If 
the complete representation of an instance of an active class instance is re-
used then this will not be possible. There must therefore remain some little 
piece of information and thus some memory for each instance of an active 
class that has ever existed. This is the purpose of the xLocalPIdRec. These 
structures will never be reused. Instead the following will happen when the 
instance of an active class performs a stop action.

• A new xLocalPIdRec is allocated and its PrsP references the 
yVDef_ProcessName (InstNr is 0). 

• The Self component in the yVDef_ProcessName is changed to refer-
ence this new xLocalPIdRec. 

• The old xLocalPIdRec still references the yVDef_ProcessName. 

• The yVDef_ProcessName is entered into the avail list for this active 
class. 

Figure 242: The memory structure after the instance of an active class has per-
formed a stop action

NextPrs
Self:    GlobalNodeNr

....
           LocalPId

PrsP
InstNr

PrsP
InstNr

Old Pid Value

New Pid Value
1138 IBM Rational Tau User Guide June 2009



Active Classes
To reuse the data area for an instance of an active class at a create operation 
it is only necessary to remove the yVDef_ProcessName from the avail list 
and update the InstNr component in the xLocalPIdRec referenced by 
Self.

Using this somewhat complicated structure to represent instances of active 
classes allows a simple test to see if a Pid value refers to an active or a 
stopped instance:

If P is a Pid variable then the following expression:

P.LocalPId == P.LocalPId->PrsP->Self.LocalPId

is true if the instance of an active class is active and false if it is stopped.

The basic behavior of the create and stop operations is performed by the 
functions SDL_Create and SDL_Stop.

void SDL_Create(
  xSignalNode  StartUpSig,
  xPrsIdNode   PrsId )

void SDL_Stop( xPrsNode  PrsP )

To create an instance of an active class, the following steps are performed in 
the generated code:

1. Call xGetSignal to obtain the start-up signal. 

2. Assign the parameters of the state machine to the start up signal parame-
ters.

3. Call SDL_Create with the start-up signal as parameter, together with the 
PrsIdNode representing the active class to be created.

In xGetProcess the instance of an active class is removed from the avail list 
of the instance set (the component AvailPrsList in the PrsIdNode repre-
senting the set of all instances of an active class), or if the avail list is empty 
new memory is allocated. 

The instance of an active class is linked into the list of active instances (the 
component ActivePrsList in the PrsIdNode representing the instance 
set). Both the avail list and the active list are single linked lists (without a 
head) using the component NextPrs in the yVDef_ProcessName struct as 
link.
June 2009 IBM Rational Tau User Guide 1139



Chapter 36: C Code Generator Run-Time Model
To have an equal treatment of the initial transition and other transitions, the 
start state is implemented as an ordinary state with the name “start state” It is 
represented by 0. To execute the initial transition a “startup” signal is sent to 
the active class. The start state can thus be seen as a state that receives the 
startup signal and saves all other signals. This implementation is completely 
transparent in the Model Verifier, where startup signals are never shown in 
any way.

Note
The actual values for formal parameters are passed in the startup signal.

Two IdNodes that are not part of the symbol table tree are created to repre-
sent a start state and a startup signal.

xStateIdNode   xStartStateId;
xSignalIdNode  xStartUpSignalId;

These xSysD components are initialized in the function xInitSymbolTable, 
which is part of sctsdl.c.

At a stop operation the function SDL_Stop is called. This function will re-
lease the signal that caused the current transition and all other signals in the 
input port. It will also remove all timers in the timer queue that are connected 
to this instance of an active class by calling xRemoveTimer with the first pa-
rameter equal to 0. It then removes the instance of an active class executing 
the stop operation from the ready queue and from the active list of the active 
class and returns the memory to the avail list of the current instance set.

Send and receive of signals

General principles

Three actions are performed in the generated code to send a signal. 

1. First xGetSignal is called to obtain a data area that represents the signal 
instance. 

2. Then the signal parameters are assigned their values.

3. Finally the function SDL_Output is called to actually send the signal.
1140 IBM Rational Tau User Guide June 2009



Active Classes
Detailed operation of SDL_Output

In the SDL_Output function a number of dynamic tests are first done to 
check if the receiver in a direct addressing situation is not NULL and not 
stopped and check if there is a path to the receiver. 

If the signal sending does not contain any direct addressing and the C Code 
Generator has not been able to calculate the receiver, the xFindReceiver 
function is called to calculate the receiver.

Next, in SDL_Output, signals to the environment are handled. Three cases 
can be identified here:

1. First, the environment function xOutEnv is called.

2. Then the signal is inserted into the input port of the instance of an active 
class representing the environment (xEnv). 

3. Finally, internal signals in the system are treated. Here three cases can be 
identified (how this is evaluated is described last in this subsection): 

• The signal can cause an immediate transition by the receiver.

• The signal should be saved.

• The signal should be immediately discarded. 

– If the signal can cause an immediate transition, the signal is inserted 
into the input port of the receiver, and the receiving instance of an ac-
tive class is inserted into the ready queue. 

– If the signal should be saved, the signal is just inserted into the input 
port of the receiver.

– If the signal should be discarded, the function xReleaseSignal is 
called to reuse the data area for the signal.

When a signal is identified to be the signal that should cause the next transi-
tion by the current instance of an active class (at a signal sending or Nextstate 
operation), the component Signal in the yVDef_ProcessName for the active 
class is set to refer to the signal. The signal is still part of the input port list. 

When the transition is to be executed, the signal is removed from the input 
port in the main loop immediately before the PAD function for the state ma-
chine is called.

First in the PAD function, the parameters of the signal are copied to the local 
variables according to the input statement. In the ending Nextstate or Stop 
operation of the transition the signal instance is returned to the avail list.
June 2009 IBM Rational Tau User Guide 1141



Chapter 36: C Code Generator Run-Time Model
Evaluating how to handle a received signal

There are two places in the run-time library where it is necessary to evaluate 
how to handle signals (receive, send, save, discard,...):

• At a signal sending operation to a currently idle instance of an active 
class.

• At a Nextstate operation, when the instance of an active class has signals 
in the input port.

This calculation is implemented in the run-time kernel function 
xFindInputAction.

typedef unsigned char xInputAction;
#define xDiscard         (xInputAction)0
#define xInput           (xInputAction)1
#define xSave            (xInputAction)2
#define xEnablCond       (xInputAction)3
#define xPrioInput       (xInputAction)4

static xInputAction xFindInputAction(
  xSignalNode  SignalId,
  xPrsNode     VarP,
  xbool        CheckPrioInput )

The parameters of this function are:

• SignalId, which is a pointer to a signal.

• VarP, which is a pointer to an instance of an active class.

The result of the function is the following:

• The function should return the action that should be performed for this 
signal (receive, save,...), taking all information about this instance of an 
active class into account, like inheritance between active classes, vir-
tual/redefined transitions and so on.

• If the function result is xInput or xPrioInput, then the RestartPAD 
and RestartAddr components in the VarP struct should be updated with 
information about where this signal can be found.

After this last update the correct transition can be started by the scheduler. 
By calling the function referenced by RestartPAD, the first action performed 
will be to switch RestartAddr and to start executing the signal receipt 
symbol.
1142 IBM Rational Tau User Guide June 2009



Active Classes
The algorithm to find the InputAction, the RestartAddr, and the 
RestartPAD is as follows: 

1. Let ProcessId become yVarP->NameNode and let StateId become 
ProcessId->StateList[yVarP->State].

2. In ProcessId->SignalSet find the index (Index) where 
SignalId->NameNode is found. If the signal is not found, this signal is 
not in the signal set of the active class, and the algorithm terminates re-
turning the result xDiscard.

3. StateId->SignalHandlArray[Index] gives the action to be per-
formed. If this value is xEnablCond, then the function 
StateId->EnablCond_Function is called. This function returns either 
xInput or xSave.

Figure 243: Data structure used to evaluate the xFindInputAction

xPrsNode

NameNode

State

VarP

xSignalNode

NameNode

SignalId

xPrsIdNode

StateList

SignalSet

PAD_Function

Super

xStateIdNode

SignalHandlArray
InputRef
EnablCond_Function

Super

List of pointers 
to 
xSignalIdNode
s in the sig-
nalset. Last 
item is 0.

List of pointers 
to xStateId-
Nodes for 
states in this 
active class

xSignalIdNode

xInput

xSave

xDiscard

xInput

xNotInSignalSet

2

0

0

4

0

June 2009 IBM Rational Tau User Guide 1143



Chapter 36: C Code Generator Run-Time Model
4. If the result from the previous test is xInput, the algorithm terminates re-
turning this value. yVarP->RestartAddr is also updated to 
StateId->InputRef[Index], while yVarP->RestartPAD is updated 
to ProcessId->PAD_Function.

– If the result from the previous test is xSave, the algorithm terminates 
returning this value.

– If the result from the previous test is xDiscard and 
ProcessId->Super equal to NULL, then the algorithm terminates re-
turning this value.

– If the result from the previous test is xDiscard and 
ProcessId->Super not equal to NULL, then this is an active class 
that inherits from another active class. It is then necessary to perform 
these tests again, with ProcessId assigned the value 
ProcessId->Super and StateId assigned the value 
StateId->Super.

Nextstate operations

The nextstate operation is implemented by the SDL_Nextstate function, 
where the following actions are performed:

1. The signal that caused the current transition (component Signal in the 
yVDef_ProcessName) is released and the state variable (component 
State in the yVDef_ProcessName) is updated to the new state.

2. Then the input port of the active class is scanned for a signal that can 
cause a transition. During the scan, signals might be saved or discarded 
until a signal receipt is found. 

3. If no signal that can cause a transition is found, a check is made if any 
continuous signal can cause a transition (“Guards and guards on trig-
gered transitions” on page 1145). The instance of an active class is there-
after removed from the ready queue. 

4. If any signal (or guard on a triggered transition) can cause a transition, 
the instance of an active class is re-inserted into the ready queue. If the 
new state contains any guard or guard on a triggered transition with an 
expression that might change its value during the time the instance of an 
active class is in the state, the instance is inserted into the check list 
1144 IBM Rational Tau User Guide June 2009



Active Classes
See also

“Guards and guards on triggered transitions” on page 1145 in Chapter 36, C 
Code Generator Run-Time Model

Decision and action operations

Decision and Action operations are implemented in generated code, except 
for the Trace-functions implemented in the sctutil.c and sctda.c files 
and for informal decisions and any decisions that use any of the support func-
tions in sctda.c. A decision is implemented as a C if-statement, while the 
assignments in an Action are implemented as assignments or function calls 
in C.

Compound statements

A compound statement without attribute declarations is translated to the se-
quence of action it contains, while a compound statement with attribute dec-
larations is translated in the same way as operations (without parameters). 

The new statement types in compound statements are translated according to 
the following rules:

• Conditional is translated to if in C

• Decisions in compound statements are translated as ordinary decisions.

• Loops, continue, and break are all translated using goto in C.

Guards and guards on triggered transitions

The expressions involved in guards or guards on triggered transitions are im-
plemented in generated code in functions called yCont_StateName and 
yEnab_StateName. These functions are generated for each state containing 
guards and guards on triggered transitions. The functions are referenced 
through the components ContSig_Function and EnablCond_Function in 
the StateIdNode for the state. These components are 0 if no corresponding 
functions are generated.

The EnablCond_Functions are called from the function 
xFindInputAction, which is called from SDL_Output and 
SDL_Nextstate. If the guard for the current signal is true then xInput is re-
turned else xSave is returned. This information is then used to determine 
how to handle the signal in this state.
June 2009 IBM Rational Tau User Guide 1145



Chapter 36: C Code Generator Run-Time Model
The ContSig_Functions are called from SDL_Nextstate, if the compo-
nent ContSig_Function is not 0 and no signal that can cause an immediate 
transition is found during the input port scan. A ContSig_Function has the 
following prototype:

void ContSig_Function_Name (
  void *, int *, xIdNode *, int *);

Where 

• The first parameter is the pointer to the yVDef_ProcessName,

• The remaining parameters are all out parameters: 

– The second parameter, if it has a value >= 0 indicates that parameters 
three and four are used

– The third is the IdNode for the active class or operation where the ac-
tual guard on triggered transition can be found 

– The fourth is the RestartAddress connected to this guard.

If an expression for a guard on triggered transition with value true is found, 
a signal instance representing the guard is created and inserted in the input 
port, and is thereafter treated as an ordinary signal. The signal type is contin-
uous signal and is represented by an xSignalIdNode (referenced by the vari-
able xContSigId).

The check list contains the instances of active classes that wait in a state 
where guards and guards on triggered transitions need to be repeatedly recal-
culated. 

An instance of an active class is inserted into the check list if:

• It enters a state containing guards or guards on triggered transitions.

• No signal or guard can cause an immediate transition.

• One or several of the expressions in the guards or guards on triggered 
transitions can change its value while the contained state machine is in 
the state (view, import, now,...)

The component StateProperties in the StateIdNode reflects if any such 
expression is present in the state.

The check list is represented by the xSysD component:

xPrsNode  xCheckList;
1146 IBM Rational Tau User Guide June 2009



Active Classes
The behavior of guards or guards on triggered transitions is modeled by let-
ting the instance of an active class repeatedly send signals to itself, thereby 
repeatedly entering the current state. In the implementation chosen here, 
nextstate operations are performed “behind the scene” for all instances of ac-
tive class in the check list directly after a call to a PAD function is completed, 
that is directly after a transition is ended and directly after a timer output. 
This is performed by calling the function xCheckCheckList in the main 
loop of the program.

Global attributes

For a global attribute there are two components in the yVDef_ProcessName 
struct. One for the current value of the attribute and one for the currently “ex-
ported” value of the attribute. For each global attribute there will also be a 
struct that can be linked into a list in the corresponding RemoteVarIdNode. 
This list is then used to find a suitable “exporter” of an attribute when refer-
ring to it in an “import” action.

The “import” action is more complicated. It involves mainly a call of the 
function xGetExportAddr:

void * xGetExportAddr (
  xRemoteVarIdNode RemoteVarNode,
  SDL_PId          P,
  xbool            IsDefP,
  xPrsNode         Importer )

• RemoteVarNode is a reference to the RemoteVarIdNode representing 
the remote attribute (implicit or explicit)

• P is the Pid expression given in the import action

• IsDef is 0 or 1 depending on if any Pid expression is given in the import 
action or not

• Importer is the importing instance of an active class. 

The xGetExportAddr will check the legality of the “import” action and will, 
if no Pid expression is given, calculate which active class it should be im-
ported from. 

If no errors are found, the function will return the address where the value of 
the attribute can be found. This address is then casted to the correct type (in 
generated code) and the value is obtained. If no active class possible to “im-
port” from is found, the address of an attribute containing only zeros is re-
turned by the xGetExportAddr function.
June 2009 IBM Rational Tau User Guide 1147



Chapter 36: C Code Generator Run-Time Model
Operations

Data structure representing operations

An operation in an active class is represented by a struct type. The xPrdRec 
struct defined in scttypes.h, is, a struct containing general information 
about an operation, while the parameters and attributes of the operation are 
defined in generated code in the same way as for active classes. (“Data struc-
ture representing active classes” on page 1131).

In scttypes.h the following types concerning operations can be found:

#define PROCEDURE_VARS \
   xPrdIdNode   NameNode; \
   xPrdNode     StaticFather; \
   xPrdNode     DynamicFather; \
   int          RestartAddress; \
   XCALL_ADDR \
   void (*RestartPAD) (xPrsNode  VarP); \
   xSignalNode  pREPLY_Signal; \
   int          State;

typedef struct xPrdStruct  *xPrdNode;

typedef struct xPrdStruct {
   PROCEDURE_VARS
}  xPrdRec;

In generated code yVDef_ProcedureName structures are defined according 
to the following:

typedef struct {
   PROCEDURE_VARS
   components for FPAR and DCL
}  yVDef_ProcedureName;

The components in the xPrdRec are used as follows:

• NameNode of type xPrdIdNode. This is a pointer to the IdNode repre-
senting the operation type.

• StaticFather of type xPrdNode. This is a pointer that represents the 
scope hierarchy of operations (and the active class at the top), which is 
used when an operation refers to non-local attributes. An example is 
shown in Figure 244 on page 1150. StaticFather == 0 means that the 
static father is the active class.
1148 IBM Rational Tau User Guide June 2009



Operations
• DynamicFather of type xPrdNode. This is a pointer that represents that 
this operation is called by the referenced operation. DynamicFather == 
0 means that this operation is called from the active class. This compo-
nent is also used to link the xPrdRec in the avail list for the operation 
type.

• RestartAddress of type int. This component is used to find the appro-
priate symbol to continue execution from.

• CallAddress of type int. This component contains the symbol number 
of the operation call performed from this operation (if any).

• RestartPRD is a pointer to an operation function. This component refers 
to the PRD function where to execute the next sequence of symbols. 
RestartPRD is used to handle inheritance between operations.

• pREPLY_Signal of type xSignalNode. When an instance of an active 
class receives a pCALL signal, that is accepts an RPC, it immediately 
creates the return signal, the pREPLY signal. This component is used to 
refer to this pREPLY signal until it is sent.

• State of type int. This is the value representing the current state of the 
operation.

Figure 244 on page 1150 presents an example of the structure of 
yVDef_ProcedureName after four nested operation calls. Operation Q is de-
clared in the active class, operation R and S in Q and T in S.
June 2009 IBM Rational Tau User Guide 1149



Chapter 36: C Code Generator Run-Time Model
PRD function

Operations are partly implemented using C functions and partly using the 
structure shown above. Each operation is represented by a PRD function, 
which is a C function that is called to execute actions defined in the opera-
tion. This function corresponds to the PAD function for state machines. The 
formal parameters and the attributes are however implemented using a struct 
defined in generated code. The operation stack for nested operation calls is 
implemented using the components StaticFather and DynamicFather, 
and does not use the C function stack.

Figure 244: Structure of yVDef_ProcedureName 
after four nested operation calls

Operation

NameNode
StaticFather
DynamicFather
RestartAddress
... Operation

NameNode
StaticFather
DynamicFather
RestartAddress

Operation
NameNode
StaticFather
DynamicFather
RestartAddress
...

Operation
NameNode
StaticFather
DynamicFather
RestartAddress
...

....
RestartAddress
....
ActivePrd
....

Declarations: Calls

Active class P P calls Q

Operation Q Q calls R

Operation R R calls S

Operation S S calls T

Q

R

S

T

0 (which represents
the instance of 

yVDef_ProcessName

...

an active class)
1150 IBM Rational Tau User Guide June 2009



Operations
Calling and returning from operations

Operation calls and operation returns are handled by three functions. 

• One function is handling the allocation of the data areas for operations:

xPrdNode  xGetPrd( xPrdIdNode  PrdId )

• Two functions are called from the generated code at an operation call and 
an operation return:

void xAddPrdCall(
  xPrdNode  R,
  xPrsNode  VarP,
  int       StaticFatherLevel,
  int       RestartAddress )

void xReleasePrd (xPrsNode  VarP)

An operation call is in C represented by the following steps:

1. Calling xGetPrd to obtain a data area for the operation.

2. Assigning operation parameters to the data area.

3. Calling xAddPrdCall to link the operation into the static and dynamic 
chains.

4. Calling the C function modeling the operation, that is the 
yProcedureName function.

The parameters to xAddPrdCall are as follows:

• R: This is a reference to the xPrdNode obtained from the call of xGetPrd.

• VarP: A reference to the yVDef_ProcessName, that is the data area for 
attributes and parameters of the active class (even if it is an operation that 
performed the operation call).

• StaticFatherLevel: This is the difference in declaration levels be-
tween the caller and the called operation. This information is used to set 
up the StaticFather component correctly. 

• RestartAddress: This is the symbol number of the symbol directly 
after the operation call. The symbol number is the switch case label gen-
erated for all symbols.

The xGetPrd returns a pointer to an xPrdRec, which can then be used to as-
sign the parameter values directly to the components in the data area repre-
senting the parameters and attributes of the operation. IN/OUT parameters 
are represented as addresses in this struct.
June 2009 IBM Rational Tau User Guide 1151



Chapter 36: C Code Generator Run-Time Model
An operation return is in generated code represented by calling the 
xReleasePrd followed by return 0, whereby the function representing the 
behavior of the operation is left.

The function representing the behavior of the operation is returned in two 
main situations: 

• When a Return is reached (the function returns 0) 

• When a Nextstate is reached (the function returns 1). 

If 0 is returned then the execution should continue with the next symbol after 
the operation call. If 1 is returned the execution of the instance of an active 
class should be terminated and the scheduler (main loop) should take control. 
This could mean that a number of nested operation calls should be termi-
nated.

To continue to execute at the correct symbol when an operation should be re-
sumed after a nextstate operation, the following code is introduced in the 
PAD function for state machines containing operation calls:

while ( yVarP->ActivePrd != (xPrdNode)0 )
  if ((*yVarP->ActivePrd->RestartPRD)(VarP))
    return;

This means that uncompleted operations are resumed one after one from the 
bottom of the operation stack, until all operations are completed or until one 
of them returns 1, that is executes a nextstate operation, at which the instance 
of an active class is left for the scheduler again.

Connectors

Finding the receiving instance of an active class

The ChannelIdNodes for connectors and ports are used in the functions 
xFindReceiver and xIsPath These two functions are called from 
SDL_Output to find the receiving instance of an active class when there is no 
direct addressing in the signal sending statement, respectively to check that 
there is a path to the receiver in the case of a direct addressing in the Signal 
Sending statement. 

In both cases the paths built up using the ToId components in the IdNodes 
for active classes, connectors are followed. Figure 245 on page 1154 shows 
the structure of these paths.
1152 IBM Rational Tau User Guide June 2009



Connectors
During the initialization of the system, the symbol table is built up. The part 
of the symbol table starting with the system will then have the structure out-
lined as in “Example of a small system and the resulting symbol table” on 
page 1154. As you can see in this example the declarations in the system are 
directly reflected by IdNodes.

Note
Each connector is represented by two IdNodes, one for each direction. This 
is also true for a unidirectional connector. In this case the signal set will be 
empty for the unused direction.
June 2009 IBM Rational Tau User Guide 1153



Chapter 36: C Code Generator Run-Time Model
Example of a small system and the resulting symbol 
table

.

Figure 245: The symbol table tree for the system.

Part 

“B1”

Part

“B2”

Signal
“S”

Signal
“T”

Connector
“C”

Connector
“C”

System
“S”

Active class
“P1”

Connector
“SR1”

Connector
“SR2”

Connector
“SR2”

Active class
“P2”

First

Suc Suc Suc Suc Suc

First

Suc Suc

Suc SucFirst

Connector
“SR1”

[S]

[T]

[S][T]

B1 B2

P2

[T]

[S]

P1

S

1154 IBM Rational Tau User Guide June 2009



Connectors
Each IdNode representing an active class, a connector will have a component 
ToId. A ToId component is an address to an array of references to IdNodes. 
The size of this array is dependent on the number of items this object is con-
nected to. An active class that has three outgoing signal routes will have a 
ToId array which can represent three pointers plus an ending 0 pointer.

In the example in Figure 245 on page 1154 there is no branching, so all ToId 
arrays will be of the size necessary for two pointers.

Figure 246 on page 1155 shows how the IdNodes for the instances of active 
classes, connectors are connected to form paths, using the components ToId. 
In this case only simple paths are found (one from P1, via SR1, C, SR2, to 
P2, and one in the reverse direction). The generalization of this structure to 
handle branches is straightforward.

Figure 246: The connection of ToId for the system.

Connector
Name: “C”
ToId

Connector
Name: “SR1”
ToId

Connector
Name: “C”
ToId

Connector
Name: “SR2”
ToId

Connector
Name: “SR2”
ToId

Active class
Name: “P2”
ToId

0 0

0

0

0

0

0

0

Active class
Name: “P1”
ToId

Connector
Name: “SR1”
ToId
June 2009 IBM Rational Tau User Guide 1155



Chapter 36: C Code Generator Run-Time Model
1156 IBM Rational Tau User Guide June 2009



37
C Code Generator Symbol Table

This chapter contains reference documentation about the symbol table cre-
ated by the C Code Generator. The symbol table is used for storing informa-
tion mainly about the static properties of the application, such as the structure 
in terms of parts, connectors and the valid input signal set for active classes. 
Some dynamic properties are also placed in the symbol table; for example the 
list of all active instances of active classes of an instance set.

The nodes in the symbol table are structures with components initialized in 
the declaration. During the initialization of the application, a tree is built up 
from these nodes.
June 2009 IBM Rational Tau User Guide 1157



Chapter 37: C Code Generator Symbol Table
Symbol Table Creation and Structure

Symbol table creation

The symbol table is a tree that is created in two steps:

1. Symbol table nodes are declared as structures with components initial-
ized in the declaration.

2. The yInit function updates some components in the nodes and builds a 
tree from the nodes.

Symbol table structure

The following names can be used to refer to the nodes that are always present 
in the table. These names are defined in scttypes.h.

xSymbolTableRoot
xEnvId
xSrtN_SDL_Bit
xSrtN_SDL_Bit_String
xSrtN_SDL_Boolean
xSrtN_SDL_Character
xSrtN_SDL_Charstring
xSrtN_SDL_Duration
xSrtN_SDL_IA5String
xSrtN_SDL_Integer
xSrtN_SDL_Natural
xSrtN_SDL_Null
xSrtN_SDL_NumericString
xSrtN_SDL_Object_Identifier
xSrtN_SDL_Octet
xSrtN_SDL_Octet_String
xSrtN_SDL_PId
xSrtN_SDL_PrintableString
xSrtN_SDL_Real
xSrtN_SDL_Time
xSrtN_SDL_VisibleString

xSymbolTableRoot is the root node in the symbol table tree. Below this 
node the system node is inserted. After the system node, there is a node rep-
resenting the environment of the system (xEnvId). Then there is one node for 
each package referenced from the system. This is true also for packages con-
taining the predefined data types. The nodes for the predefined data types, 
which are children to the node for the package Predefined, can be directly 
referenced by the names xSrtN_SDL_<type>, according to the list above.
1158 IBM Rational Tau User Guide June 2009



Symbol Table Creation and Structure
Symbol table nodes

Nodes in the symbol table are placed in the tree according to their place of 
declaration. A node that represents an item declared in a part is placed as a 
child node to that part node, and so on. The hierarchy in the symbol table tree 
will directly reflect the structure and declarations within the parts and active 
classes. 

The following node types will be present in the tree:

Node Type Description

xSystemEC Represents an instance of “root active class”, that is 
the system or the system instance.

xSystemTypeEC Represents a “root active class”.

xPackageEC Represents a package.

xBlockEC Represents parts.

xBlockTypeEC Represents active classes with parts.

xBlockSubstEC Represents a decomposition of a part and can be 
found as a child of a part node.

xProcessEC Represents active classes and instances of active 
classes. The “environment active class” node is 
placed after the system node and is used to repre-
sent the environment to the system.

xProcessTypeEC Represents an active class.

xProcedureEC Represents a procedure.

xOperatorEC Represents an operation in a datatype or passive 
class.

xCompoundStmtEC Represents a compound statement containing at-
tribute declarations.

xSignalEC
xTimerEC

Represents a signal or timer type.

xRPCSignalEC Represents the implicit signals (pCALL, pREPLY) 
used to implement calls of “remote” operations.
June 2009 IBM Rational Tau User Guide 1159



Chapter 37: C Code Generator Symbol Table
xSignalParEC There will be one signal parameter node (a child to 
a signal and timer), for each signal or timer param-
eter.

xStartUpSignalEC Represents a start-up signal, that is, the signal sent 
to a newly created instance of an active class con-
taining the actual parameters of the state machine 
implementing the behavior. A xStartUpSignalEC 
node is always placed directly after the node for its 
active class.

xSortEC
xSyntypeEC

Represents a newtype or a syntype.

Struct Component 
Node 
(xVariableEC)

A sort node representing a struct has one struct 
component node as child for each struct component 
in the sort definition.

xLiteralEC A sort node similar to an enum type has one literal 
node as child for each literal in the literal list.

xStateEC Represents a state and can be found as a child to 
nodes for active classes and operations in active 
classes.

xVariableEC 
xFormalParEC

Represents an attribute or a formal parameter to 
state machines and can be found as children to 
nodes for active classes and operations in active 
classes.

xChannelEC 
xSignalRouteEC
xGate

Represents a connector or a port. 

xRemoteVarEC Represents a definition of attribute in an interface.

xRemotePrdEC Represents a definition of an operation in an inter-
face.

xSyntVariableEC Represents implicit variables or components intro-
duced by the C Code Generator. 

xSynonymEC Represent attributes in package. Not used.

Node Type Description
1160 IBM Rational Tau User Guide June 2009



Symbol Table Creation and Structure
Naming in symbol table

The nodes (the struct variables) will be given names in the generated code 
according to the following:

Node references

In most cases it is of interest to refer to a symbol table node via a pointer. By 
taking the address of an attribute according to the table above, that is

& yPrsR_Process1

such a reference is obtained. To ensure future backward compatibility, 
macros according to the following example is also generated for several of 
the entity classes:

#define yPrsN_ProcessName  (&yPrsR_ProcessName)

Name in symbol table Used for

ySysR_SystemName System, system type, system instance

yPacR_PackageName Package

yBloR_BlockName Part, active class with part and instances of 
the active class

yPrsR_ProcessName Inline active class, active class, instance of 
an active class

yPrdR_ProcedureName Operation

ySigR_SignalName Signal, timer, startup signal, RPC signal

yChaR_ChannelName Connector, port

yStaR_StateName State

ySrtR_NewtypeName Newtype, syntype

yLitR_LiteralName Literal

yVarR_VariableName Attribute, formal parameter, signal param-
eter, struct component

yReVR_RemoteVariable Attribute in interface

yRePR_RemoteProcedure Operation in interface
June 2009 IBM Rational Tau User Guide 1161



Chapter 37: C Code Generator Symbol Table
Types Representing the Symbol Table Nodes

xIdNode type definitions in the symbol table

The following type definitions, defined in the file scttypes.h, are used in 
connection with the symbol table. 

typedef enum {
  xRemoteVarEC,
  xRemotePrdEC,
  xSignalrouteEC,
  xStateEC,
  xTimerEC,
  xFormalParEC,
  xLiteralEC,
  xVariableEC,
  xBlocksubstEC,
  xPackageEC,
  xProcedureEC,
  xOperatorEC,
  xProcessEC,
  xProcessTypeEC,
  xGateEC,
  xSignalEC,
  xSignalParEC,
  xStartUpSignalEC,
  xRPCSignalEC,
  xSortEC,
  xSyntypeEC,
  xSystemEC,
  xSystemTypeEC,
  xBlockEC,
  xBlockTypeEC,
  xChannelEC,
  xCompoundStmtEC,
  xSyntVariableEC
  xMonitorCommandEC
}   xEntityClassType;

typedef enum {
  xPredef, xUserdef, xEnum,
  xStruct, xArray, xGArray, xCArray,
  xOwn, xORef, xRef, xString,
  xPowerSet, xGPowerSet, xBag, xInherits, xSyntype,
  xUnionC, xChoice
}   xTypeOfSort;

typedef char  *xNameType;

typedef struct xIdStruct {
   xEntityClassType  EC;
1162 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
}  xIdRec;

                            /*BLOCKSUBSTRUCTURE*/
typedef struct xBlockSubstIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
}  xBlockSubstIdRec;

                                  /*LITERAL*/
typedef struct xLiteralIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   int               LiteralValue;
}  xLiteralIdRec;

                                  /*PACKAGE*/
typedef struct xPackageIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
#ifdef XIDNAMES
   xNameType         ModuleName;
#endif
}  xPackageIdRec;

                                  /*SYSTEM*/
typedef struct xSystemIdStruct {
June 2009 IBM Rational Tau User Guide 1163



Chapter 37: C Code Generator Symbol Table
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   xIdNode          *Contents;
   xPrdIdNode       *VirtPrdList;
   xSystemIdNode     Super;
#ifdef XTRACE
   int               Trace_Default;
#endif
#ifdef XGRTRACE
   int               GRTrace;
#endif
#ifdef XMSCE
   int               MSCETrace;
#endif
}  xSystemIdRec;

                       /*CHANNEL,SIGNALROUTE,GATE*/
#ifndef XOPTCHAN
typedef struct xChannelIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   xSignalIdNode    *SignalSet; /*Array*/
   xIdNode          *ToId;      /*Array*/
   xChannelIdNode    Reverse;
}  xChannelIdRec;   /* And xSignalRouteEC.*/
#endif

                                  /*BLOCK*/
typedef struct xBlockIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   xBlockIdNode      Super;
   xIdNode          *Contents;
   xPrdIdNode       *VirtPrdList;
1164 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
   xViewListRec     *ViewList;
   int               NumberOfInst;
#ifdef XTRACE
   int               Trace_Default;
#endif
#ifdef XGRTRACE
   int               GRTrace;
#endif
#ifdef XMSCE
   int               MSCETrace;
   int               GlobalInstanceId;
#endif
}  xBlockIdRec;

                                  /*PROCESS*/
typedef struct xPrsIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   xStateIdNode     *StateList;
   xSignalIdNode    *SignalSet;
#ifndef XOPTCHAN
   xIdNode          *ToId; /*Array*/
#endif
   int               MaxNoOfInst;
#ifdef XNRINST
   int               NextNr;
   int               NoOfStaticInst;
#endif
   xPrsNode         *ActivePrsList;
   xptrint           VarSize;
#if defined(XPRSPRIO) || defined(XSIGPRSPRIO) || \
    defined(XPRSSIGPRIO)
   int               Prio;
#endif
   xPrsNode         *AvailPrsList;
#ifdef XTRACE
   int               Trace_Default;
#endif
#ifdef XGRTRACE
   int               GRTrace;
#endif
#ifdef XBREAKBEFORE
   char   *(*GRrefFunc) (int, xSymbolType *);
   int               MaxSymbolNumber;
   int               SignalSetLength;
#endif
#ifdef XMSCE
   int               MSCETrace;
June 2009 IBM Rational Tau User Guide 1165



Chapter 37: C Code Generator Symbol Table
#endif
#ifdef XCOVERAGE
   long int         *CoverageArray;
   long int          NoOfStartTransitions;
   long int          MaxQueueLength;
#endif
   void            (*PAD_Function) (xPrsNode);
   void            (*Free_Vars) (void *);
   xPrsIdNode        Super;
   xPrdIdNode       *VirtPrdList;
   xBlockIdNode      InBlockInst;
#ifdef XBREAKBEFORE
   char             *RefToDefinition;
#endif
}  xPrsIdRec;

                                  /*PROCEDURE*/
typedef struct xPrdIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   xStateIdNode     *StateList;
   xSignalIdNode    *SignalSet; 
   xbool           (*Assoc_Function) (xPrsNode);
   void            (*Free_Vars) (void *);
   xptrint           VarSize;
   xPrdNode         *AvailPrdList;
#ifdef XBREAKBEFORE
   char           *(*GRrefFunc) (int, xSymbolType*);
   int               MaxSymbolNumber;
   int               SignalSetLength;
#endif
#ifdef XCOVERAGE
   long int         *CoverageArray;
#endif
   xPrdIdNode        Super;
   xPrdIdNode       *VirtPrdList;
}  xPrdIdRec;

typedef struct xRemotePrdIdStruct {
   xEntityClassType    EC;
#ifdef XSYMBTLINK
   xIdNode             First;
   xIdNode             Suc;
#endif
   xIdNode             Parent;
#ifdef XIDNAMES
   xNameType           Name;
1166 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
#endif
   xRemotePrdListNode  RemoteList;   
}  xRemotePrdIdRec;

                                /* SIGNAL, TIMER */
typedef struct xSignalIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   xptrint           VarSize;
   xSignalNode      *AvailSignalList;
   xbool           (*Equal_Timer) (void *, void *);
#ifdef XFREESIGNALFUNCS
   void            (*Free_Signal) (void *);
#endif
#ifdef XBREAKBEFORE
   char             *RefToDefinition;
#endif
#if defined(XSIGPRIO) || defined(XSIGPRSPRIO) || 
defined(XPRSSIGPRIO)
   int               Prio;
#endif
}  xSignalIdRec;  /* and xTimerEC, xStartUpSignalEC,
                     and xRPCSignalEC.*/

                                  /*STATE*/
typedef struct xStateIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   int               StateNumber;
   xInputAction     *SignalHandlArray;
   int              *InputRef;
   xInputAction    (*EnablCond_Function)
                          (XSIGTYPE, void *);
   void            (*ContSig_Function)
                  (void *, int *, xIdNode *, int *);
   int               StateProperties;
#ifdef XCOVERAGE
   long int         *CoverageArray;
#endif
   xStateIdNode      Super;
#ifdef XBREAKBEFORE
June 2009 IBM Rational Tau User Guide 1167



Chapter 37: C Code Generator Symbol Table
   char             *RefToDefinition;
#endif
}  xStateIdRec;

                                  /*SORT*/
typedef struct xSortIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
#ifdef XFREEFUNCS
   void            (*Free_Function) (void **);
#endif
#ifdef XTESTF
   xbool           (*Test_Function) (void *);
#endif
   xptrint           SortSize;
   xTypeOfSort       SortType;
   xSortIdNode       CompOrFatherSort;
   xSortIdNode       IndexSort;
   long int          LowestValue;
   long int          HighestValue;
   long int          yrecIndexOffset;
   long int          typeDataOffset;
}  xSortIdRec;

                                  /*VARIABLE,...*/
typedef struct xVarIdStruct {
   xEntityClassType  EC;
#ifdef XSYMBTLINK
   xIdNode           First;
   xIdNode           Suc;
#endif
   xIdNode           Parent;
#ifdef XIDNAMES
   xNameType         Name;
#endif
   xSortIdNode       SortNode;
   xptrint           Offset;
   xptrint           Offset2;
   int               IsAddress;
}  xVarIdRec;    /* And xFormalParEC and
                        xSignalParEC.*/

typedef struct xRemoteVarIdStruct {
   xEntityClassType     EC;
#ifdef XSYMBTLINK
   xIdNode              First;
   xIdNode              Suc;
1168 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
#endif
   xIdNode              Parent;
#ifdef XIDNAMES
   xNameType            Name;
#endif
   xptrint              SortSize;
   xRemoteVarListNode   RemoteList;
}  xRemoteVarIdRec;

Components common to all table nodes 

The type definitions define the contents in the symbol table nodes. Each 
xECIdStruct, where EC should be replaced by an appropriate string, have 
the first five components in common. These components are used to build the 
symbol table tree. To access these components, a pointer is needed to access 
any of the xIdECNode types. In the symbol table pointer types are defined for 
this purpose, accessing each of the xECIdStruct according to the following 
example:

typedef XCONST struct xIdStruct  *xIdNode;

The type xIdNode is used as such general type, for example when traversing 
the tree.

The five components present in all xIdNode are:

• EC of type xEntityClassType. This component is used to determine 
what sort of “object” the node represents. xEntityClassType is an 
enum type containing elements for all entity classes.

• First, Suc, and Parent of type xIdNode. These components are used to 
build the symbol table tree. First refers to the first child of the current 
node. Suc refers to the next brother, while Parent refers to the father 
node. Only Parent is needed in an application.

• Name of type xNameType, which is defined as char *. This component 
is used to represent the name of the current “object” as a character string. 
This component is not needed in an application, only in a Model Verifier.

Components specific to entity classes

Next in the table are present the components that depend on what entity class 
is to be represented. This section describes the non-common elements in the 
other xECIdStruct.
June 2009 IBM Rational Tau User Guide 1169



Chapter 37: C Code Generator Symbol Table
Package components
• ModuleName of type xNameType. If the package is generated from 

ASN.1, this component holds the name of the ASN.1 module as a char *

System (root active class) components
• Content of type xIdNode *. This component contains a list of all con-

nectors at the system level (the “root” active class in the model).

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual opera-
tions in active classes in this system instance.

• Super of type xSystemIdNode. This is a reference to the inherited 
system type. In a system this component in null. In a system instance it 
is a reference to the instantiated system type.

• Trace_Default of type int. This component contains the current trace 
value defined for the system.

• GRTrace of type int. This component contains the current graphical 
trace value defined for the system.

• MSCETrace of type int. This component contains the current Sequence 
diagram trace value defined for the system.

Connector and port components

For connectors and ports there are always two consecutive 
xChannelIdNodes in the symbol table, representing the two possible direc-
tions for a connector or port. The components are:

• SignalSet of type xIdNode *. This component represents the signal set 
of the connector in the current direction (a unidirectional connector has 
an empty signal set in the opposite direction). 

SignalSet is an array with components referring to the 
xSignalIdNodes that represent the signals in the signal set. The last 
component in the array is always a NULL pointer (the value 
(xSignalIdNode)0).

• ToId of type xIdNode *. This is an array of xIdNodes, where each 
array component is a pointer to a symbol table node representing an “ob-
ject” that this connector/port is connected to (connected to in the sense: 
objects that signals are sent forward to).

The objects that may be referenced in ToId are connectors, ports and ac-
tive classes. The last component in the array is always a NULL pointer (the 
value (xIdNode)0). 
1170 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
• Reverse of type xChannelIdNode. This is a reference to the symbol 
table node that represents the other direction of the same connector or 
port.

Parts and active classes with parts
• Super of type xBlockIdNode. In a part, this component is NULL. In an 

active class with a part, this component is a reference to the part it inherits 
from (NULL if no inheritance). In an instance of the active class, this is a 
reference to the active class that is instantiated.

• Contents of type xIdNode *. In an instantiation of an active class with 
parts, these components contains lists of:

– The instantiations of active classes in the part

– The connectors in the part

– The outgoing ports from the part

– The inline active classes in the part

– The ports defined in instantiations of active classes in the part.

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual opera-
tions in this instance of an active class.

• NumberOfInst of type int. This is the number of instances in an in-
stance set. The component is thus only relevant for an instance of an ac-
tive class with parts.

• Trace_Default of type int. This component contains the current value 
of the execution trace defined for the part.

• GRTrace of type int. This component contains the current value of the 
graphical trace defined for the part.

• MSCETrace of type int. This component contains the current Sequence 
diagram trace value defined for the part.

• GlobalInstanceId of type int. This component is used to store a 
unique id needed when performing Sequence diagram trace.

Active classes, inline active classes, instance components
• StateList of type xStateIdNode *. This is a list of references to the 

xStateIdNodes for this (inline) active class. Using the state value of an 
executing instance of an active class, this list can be used to find the cor-
responding xStateIdNode.
June 2009 IBM Rational Tau User Guide 1171



Chapter 37: C Code Generator Symbol Table
• SignalSet of type xIdNode *. This represents the valid input signal set 
of the active class. 

SignalSet is an array with components that refer to xSignalIdNodes 
that represents the signals and timers which are part of the signal set. The 
last component in the array is always a NULL pointer (the value 
(xSignalIdNode)0).

• ToId of type xIdNode *. This is an array of xIdNode, where each array 
component is a pointer to an IdNode representing an instance that this in-
stance of an active class is connected to, that is an “object” that signals 
are sent forward to.

The “objects” that may be referenced in ToId are connectors, ports, in-
stance of active classes. The last component in the array is always a NULL 
pointer (the value (xIdNode)0).

• MaxNoOfInst of type int. This represents the maximum number of con-
current instances of an active class that may exist according to the spec-
ification for the current active class. An infinite number of concurrent in-
stances of an active class is represented by -1.

• NextNo of type int. This is the instance number that will be assigned to 
the next instance that is created of this instance set.

• NoOfStaticInst of type int.This component contains the number of 
static instances that should be present at start up of the instance set of an 
active class. 

• ActivePrsList of type xPrsNode *. This is the address of a pointer to 
the first position in the single-linked list of active instances of the current 
active class.

The list is continued using the NextPrs component in the xPrsRec struct 
that is used to represent an instance of an active class. The order in the 
list is such that the first created of the active instances is last, and the 
latest created is first.

• VarSize of type xptrint. The size, in bytes, of the data area used to rep-
resent the active class (the struct: yVDef_ProcessName).

• Prio The priority of the signal.

• AvailPrsList of type xPrsNode. This is the address to the avail list 
pointer for instances of active classes that have stopped. The data area 
can later be reused in subsequent Create actions on this active class or in-
stantiation of it.

• Trace_Default of type int. This component contains the current value 
of the trace defined for the active class.
1172 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
• GRTrace of type int. This component contains the current value of the 
graphical trace defined for the active class.

• GRrefFunc, which is a pointer to a function that, given a symbol number 
(number assigned to a symbol in a state machine), will return a string 
containing the graphical reference to that symbol.

• MaxSymbolNumber of type int. This component is the number of sym-
bols contained in the current active class.

• SignalSetLength of type int. This component is the number of signals 
contained in the signal set of the current active class.

• MSCETrace of type int. This component contains the current Sequence 
diagram trace value defined for the active class.

• CoverageArray of type long int *. This component is used as an array 
over all symbols in the active class. Each time a symbol is executed the 
corresponding array component is increased by 1.

• NoOfStartTransitions of type long int. This component is used to 
count the number of times the start transition of the current active class 
is executed. This information is presented in the coverage tables.

• MaxQueueLength of type long int. This component is used to register 
the maximum input port length for any instance of the current active 
class. The information is presented in the coverage tables.

• PAD_Function, which is a pointer to a function. This pointer refers to the 
yPAD_ProcessName function for the current active class. This function 
is called when an instance of an active class of this type is to execute a 
transition. The PAD_Functions will be part of generated code, as they 
contain the actions defined in the state machine that implement the be-
havior.

• Free_Vars, which is a pointer to a function. This pointer refers to the 
yFree_ProcessName function for the current active class. This function 
is called when an instance of an active class performs a stop action to 
deallocate memory used by the local attributes in the active class.

• Super of type xPrsIdNode. In an inline active class this component is 
NULL. In an active class this component is a reference to the active class 
that it inherits from (NULL if no inheritance).

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual opera-
tions in the instantiation of the active class.

• InBlockInst of type xBlockIdNode. This component is a reference to 
the part (if any) that this active class is part of.
June 2009 IBM Rational Tau User Guide 1173



Chapter 37: C Code Generator Symbol Table
• RefToDefinition of type char *. This is a graphical reference to this 
active class. 

Operations, compound statement components

Compound statements containing attribute declarations are treated as opera-
tions. However, such objects can, for example, not contain states.

• StateList of type xStateIdNode *. This is a list of references to the 
xStateIdNodes for this inline active class or active class. Using the state 
value of an executing instance of an active class, this list can be used to 
find the corresponding xStateIdNode.

• SignalSet of type xIdNode *. This represents the valid input signal set 
of the inline active class or active class.

SignalSet is an array with components that refer to xSignalIdNodes 
that represent the signals and timers which are part of the signal set. The 
last component in the array is always a NULL pointer, that is the value 
(xSignalIdNode)0.

• Assoc_Function, which is a pointer to a function. This pointer refers to 
the yProcedureName function for the current procedure. This function 
is called when the procedure is called and will execute the appropriate ac-
tions. The yProcedureName functions will be part of the generated code 
as they contain the action defined in the procedure graphs.

• Free_Vars, which is a pointer to a function. This pointer refers to the 
yFree_ProcedureName function for the current procedure. This func-
tion is called when the procedure performs a return action to deallocate 
memory used by the local attributes in the procedure.

• VarSize of type xptrint. This is the size, in bytes, of the data area used 
to represent the procedure (struct yVDef_ProcedureName).

• AvailPrdList of type xPrdNode *. This is the address of the avail list 
pointer for the data areas used to represent procedure instances. At a re-
turn action the data area is placed in the avail list and can later be reused 
in subsequent calls of this procedure type.

• GRrefFunc, which is a pointer to a function that given a symbol number 
(number assigned to a procedure symbol) will return a string containing 
the graphical reference to that symbol.

• MaxSymbolNumber of type int. This component is the number of sym-
bols contained in the current procedure.
1174 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
• SignalSetLength of type int. This component is the number of signals 
contained in the signal set of the current procedure.

• CoverageArray of type long int. This component is used as an array 
over all symbols in the procedure. Each time a symbol is executed the 
corresponding array component is increased by 1.

• Super of type xPrdIdNode. This component is a reference to the proce-
dure that this procedure inherits from (NULL if no inheritance).

• VirtPrdList of type xPrdIdNode *. This is a list of all virtual opera-
tions in an operation in an active class.

Remote operation components
• RemoteList of type xRemotePrdListNode. This component is the start 

of a list of all active classes that “export” this operation. This list is a 
linked list of xRemotePrdListStructs, where each node contains a ref-
erence to the “exporting” active class.

Signal, timer, startup signal, and RPC signals components
• VarSize of type xptrint. This is the size, in bytes, of the data area used 

to represent the signal (the struct: ySignalPar_SignalName).

• AvailSignalList of type xSignalNode *. This is the address to the 
avail list pointer for signal instances of this signal type.

• Equal_Timer This is a pointer to a function. This pointer only refers to 
a function when this node is used to represent a timer with parameters. 

In this case the referenced function can be used to investigate if the pa-
rameters of two timers are equal or not, which is necessary at reset ac-
tions. The Equal_Timer functions will be part of generated code. These 
functions are called from the functions xRemoveTimer and 
xRemoveTimerSignal, both defined in sctsdl.c

• Free_Signal This function takes a signal reference and returns any dy-
namic data referenced from the signal parameters to the pool of available 
memory.

• RefToDefinition of type char *. This is a reference to the definition 
of the signal or timer.

• Prio The priority of the signal.

State components
• StateNumber of type int. The int value used to represent this state.
June 2009 IBM Rational Tau User Guide 1175



Chapter 37: C Code Generator Symbol Table
• SignalHandlArray of type xInputAction *. This component refers to 
an array of xInputAction, where xInputAction is an enum type with 
the possible values xDiscard, xInput, xSave, xEnablCond, 
xPrioInput.

The array will have the same number of components as the SignalSet 
array in the node representing the state machine in which this state is con-
tained. Each position in the SignalHandlArray represents the way the 
signal in the corresponding position in the SignalSet array in the state 
machine should be treated in this state. 

The last component in the SignalHandlArray is equal to xDiscard, 
which corresponds to the 0 value last in the SignalSet. 

If the SignalHandlArray contains the value xInput, xSave, or 
xDiscard at a given index, the way to handle the signal is obvious. If the 
SignalHandlArray contains the value xEnablCond, it is, however, nec-
essary to calculate the guard expression to know if the signal should re-
sult in a signal receipt or if it should be saved. This calculation is exactly 
the purpose of the EnablCond_Function described below.

• InputRef of type int *. This component is an array. If the 
SignalHandlArray contains xInput, xPrioInput, or xEnablCond at a 
certain index, this InputRef contains the symbol number for the corre-
sponding signal receipt symbol in the graph.

• EnablCond_Function is a function that returns xInputAction. If the 
state contains any guards, this pointer will refer to a function. Otherwise 
it refers to 0. An EnablCond_Function takes a reference to an 
xSignalIdNode (referring to a signal) and a reference to an instance of 
an active class and calculates the guard for receiving of the current signal 
in the current state of the given instance. 

The function returns either of the values xInput or xSave. The 
EnablCond_Functions will be part of the generated code, as they con-
tain guard expressions. These functions are called from the function 
xFindInputAction in the file sctsdl.c. xFindInputAction is used 
by the SDL_Output and SDL_Nextstate functions.

• ContSig_Function is a function returning int. If the state contains any 
guards on triggered transition, this pointer will refer to a function. Other-
wise it refers to 0.
1176 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
• StateProperties of type int. In this component the three least signif-
icant bits are used to indicate if any guard or guard on triggered transition 
expression in the state contains a reference to an object that might change 
its value even though the instance of an active class does not execute any 
actions.

• CoverageArray of type long int. This component is used as an array 
over the signal set (+1) of the active class. Each time an input operation 
is performed, the corresponding array component is increased by 1. The 
last component, at index equal to the length of the signal set, is used to 
record the number of guards on triggered transition that are received in 
the state. The information stored in this component is presented in the 
coverage table.

• Super of type xPrdIdNode. This component is a reference to the proce-
dure that this procedure inherits from (NULL if no inheritance).

• RefToDefinition of type char *. This holds a reference to the defini-
tion of the state (one of the symbols where this state is defined).

Sort and syntype components
• Free_Function This function pointer is non-0 for types represented 

using dynamic memory (Charstring, OctetString, Strings, Bag, for 
example). The Free_Functions are used to return dynamic memory to 
the pool of dynamic memory.

• Test_Function is a function returning xbool. It is non-0 for all types 
containing range conditions. The function pointers are used by the Model 
Verifier to check the validity of a value when assigning it to an attribute.

• SortSize of type xptrint. This component represents the size, in bytes, 
of an attribute of the current sort.
June 2009 IBM Rational Tau User Guide 1177



Chapter 37: C Code Generator Symbol Table
• SortType of type xTypeOfSort. This component indicates the type of 
sort. Possible values are: xPredef, xUserdef, xEnum, xStruct, 
xArray, xGArray, xCArray, xRef, xString, xPowerSet, xBag, 
xGPowerSet, xInherits, xSyntype, xUnionC, and xChoice. De-
pending on the value of SortType you also have the following compo-
nents:

If SortType is xArray, xGArray or xCArray

– CompOrFatherSort of type xSortIdNode. This is a pointer to the 
SortIdNode that represents the component sort.

– IndexSort of type xSortIdNode. This is a pointer to the 
SortIdNode that represents the index sort. In an xCArray the index 
sort in always Integer.

– In xGArray, LowestValue is used as the offset of Data in the 
xxx_ystruct. In xArray and xCArray it is 0.

– In xGArray, HighestValue is used as the size of the xxx_ystruct. 
In xArray it is 0. In xCArray it is the highest index, that is the Length 
- 1.

– In xGArray, yrecIndexOffset is used as the offset of Index in the 
xxx_ystruct. In xArray and xCArray it is 0.

– In xGArray, yrecDataOffset is used as the offset of Data in the 
type (that is the value representing the default value). In xArray and 
xCArray it is 0.

If SortType is xString, xGPowerSet or xBag

– CompOrFatherSort of type xSortIdNode. This is a pointer to the 
SortIdNode that represents the component sort.

– LowestValue is used as the offset of Data in the xxx_ystruct.

– HighestValue is used as the size of the xxx_ystruct.

SortType is xPowerSet, xRef, xOwn, xORef

– CompOrFatherSort of type xSortIdNode. This is a pointer to the 
SortIdNode that represents the component sort.

If SortType is xInherits

– CompOrFatherSort, of type xSortIdNode. This is a pointer to the 
SortIdNode that represents the inherited sort.
1178 IBM Rational Tau User Guide June 2009



Types Representing the Symbol Table Nodes
If SortType is xSyntype

– CompOrFatherSort, of type xSortIdNode. This is a pointer to the 
SortIdNode that represents the father sort (the newtype from which 
the syntype originates, even if it is a syntype of a syntype).

– IndexSort, of type xSortIdNode. This is a pointer to the 
SortIdNode that represents the father sort (the newtype or syntype 
from which the syntype originates).

– LowestValue, of type long int. If the syntype can be used as an 
index in an array (translated to a C array) then this value is the lowest 
value in the syntype range. Otherwise it is 0.

– HighestValue, of type long int. If the syntype can be used as an 
index in an array (translated to a C array) then this value is the highest 
value in the syntype range. Otherwise it is 0. The LowestValue and 
HighestValue are used by the Model Verifier when it handles arrays 
with this type as index type.

Attribute, formal parameter, signal parameter, and struct components
• SortNode of type xSortIdNode. This component is a pointer to the 

SortIdNode that represents the sort of this attribute or parameter.

• Offset of type xptrint. This component represents the offset, in bytes, 
within the struct that represents the attributes of the active class or oper-
ation, the signal parameter, or the struct. This is the relative place of this 
component within the struct.

• Offset2 of type xptrint. For a formal parameter of a state machine, 
this component represents the offset, in bytes, of a formal parameter in 
the StartUpSignal. For a global attribute in an active class this compo-
nent represents the offset, in bytes, of the “exported” value for this at-
tribute.

• IsAddress of type int. This component is only used for formal param-
eters of operations and is then used to indicate if the parameter is an IN 
parameter, an IN/OUT parameter, or a result attribute.

Attribute in interfaces 
• SortSize of type xptrint. This component is the size of the type of the 

global attributes.
June 2009 IBM Rational Tau User Guide 1179



Chapter 37: C Code Generator Symbol Table
• RemoteList of type xRemoteVarListNode. This component is the start 
of a list of all active classes that “export” this global attribute. This list is 
a linked list of xRemoteVarListStructs, where each node contains a 
reference to the “exporting” active class and the Offset where to find the 
“exported” value.

Type Info Nodes

General

Type info nodes are data structures that are mainly used at run-time by the 
Generic Functions providing generic implementations of operations in data 
types. 

The C type tSDLTypeInfo used for the type info nodes contains 
essentially the same information as the type xSortIdNode, the latter being a 
special case of the generic xIdNode used for SDL sorts only.

The type info nodes are used in most places in the generated code where 
xSortIdNode could have been used instead. 

Note
The type xSortIdNode is still used by the generated C code in some situa-
tions, and is therefore still maintained for backward compatibility. The type 
is candidate to become discontinued, and instead the tSDLTypeInfo type 
should be used.

See also

“xIdNode type definitions in the symbol table” on page 1162

Type definitions of type info nodes

The type definitions that describe the type info nodes are available in the 
sctpred.h file.

Each type info node is a struct that consists of:

• General components in type info nodes that are available for all type info 
nodes.

• Type specific type info node components that are specific for each type.
1180 IBM Rational Tau User Guide June 2009



Type Info Nodes
Type info node optimization

A type info node is a data structure that during run-time describes the prop-
erties of a data type. This information is needed for the implementation of the 
generic operators, like for example a function that can perform assignment 
for any data type.

Depending on the operations used for data types in the translated system, 
some of the type info nodes might not be needed. The purpose of this de-
scribed optimization is to remove such type info nodes.

The first step is to surround all type info nodes with #ifdef constructs ac-
cording to the example for the predefined type integer below.

#ifndef XTNOUSE_Integer
tSDLTypeInfo ySDL_SDL_Integer = {
  ....
  };
#endif

This means that the type info node for integer can be removed by defining 
XTNOUSE_Integer.

The names for the predefined data types in the #ifndef statements are:

#ifndef XTNOUSE_Integer
#ifndef XTNOUSE_Real
#ifndef XTNOUSE_Natural
#ifndef XTNOUSE_Boolean
#ifndef XTNOUSE_Character
#ifndef XTNOUSE_Time
#ifndef XTNOUSE_Duration
#ifndef XTNOUSE_Pid
#ifndef XTNOUSE_Charstring
#ifndef XTNOUSE_Bit
#ifndef XTNOUSE_Bit_string
#ifndef XTNOUSE_Octet
#ifndef XTNOUSE_Octet_string
#ifndef XTNOUSE_IA5String
#ifndef XTNOUSE_NumericString
#ifndef XTNOUSE_PrintableString
#ifndef XTNOUSE_VisibleString
#ifndef XTNOUSE_NULL
#ifndef XTNOUSE_Object_identifier
June 2009 IBM Rational Tau User Guide 1181



Chapter 37: C Code Generator Symbol Table
For user defined types the name is selected according to the following algo-
rithm.

1. If the type name is unique (case sensitive, as C is case    sensitive), that 
is there is only one data type in the system with    this name, then name 
in the #ifndef will be:

XTNOUSE_typename

2. If the type name is not unique but type name plus the name of the    scope 
where the type is defined is unique, the name in the    #ifndef will be: 

XTNOUSE_typename_scopename

3. In other cases the name in the #ifndef will be:

XTNOUSE_typename-with-prefix-or-suffix

Using only this part of the algorithm it is of course possible to manually write 
a header (.h) file with the suitable defines to remove the type info nodes that 
are not used. The compiler/linker can help finding unused data. 

However the code generator calculates the usage of type info nodes. This in-
formation will be stored in the file: 

auto_cfg.h 

The last section in this file will contain the defines for the usage of type info 
nodes. Below is an example.

Example 372: Defines for the usage of type info nodes –––––––––––––––––––––––

#ifdef XUSE_TYPEINFONODE_CFG
/* Type info node configuration */
#define XTNOUSE_Boolean
#define XTNOUSE_Character
#define XTNOUSE_Charstring
/* NOT #define XTNOUSE_Integer*/
....
....
/* NOT #define XTNOUSE_s*/
#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For every data type in the system there will be one line indicating if the type 
info node is used or not. Please note also that it is necessary to define 
XUSE_TYPEINFONODE_CFG at compilation, otherwise the automati-
cally computed type info node optimization will not be used. 
1182 IBM Rational Tau User Guide June 2009



Type Info Nodes
The file auto_cfg.h is automatically included and used by AgileC Code 
Generator. In C Code Generator the following code can be found in sct-
types.h: 

#ifdef USER_CONFIG
#include "uml_cfg.h"
#else /* auto_cfg.h is always included because it

 contains information about the usage
of 'long long' types */

#include "auto_cfg.h"
#endif

Most of configuration settings in auto_cfg.h are controlled by 
AUTOMATIC_CONFIG define. auto_cfg.h has got the following structure:

/* Program generated by <CCG name and version> */
/* CCG id define, for example: */
#define XSCT_CADVANCED
 
/* "auto_cfg.h" file generated for system <system name> 
*/
 
#ifndef XUSE_GENERIC_FUNC
#define XUSE_GENERIC_FUNC
#endif
 
/* automatic defined for long long type, for example */
 
#ifndef XNOUSE_LONG_LONG
#define XNOUSE_LONG_LONG
#endif
#ifndef XUSE_TYPEINFONODE_CFG
#define XTNOUSE_long_long_int
#define XTNOUSE_unsigned_long_long_int
#endif
 
#ifdef AUTOMATIC_CONFIG
 
/* all other configuration settings: */
 
#ifndef XNOUSE_AUTOMATIC_OPERATOR_CFG
/* Predefined operator configuration */
#endif
 
#ifdef XUSE_TYPEINFONODE_CFG
/* Type info node configuration */
#endif
 
#endif /*AUTOMATIC_CONFIG*/
June 2009 IBM Rational Tau User Guide 1183



Chapter 37: C Code Generator Symbol Table
So by defining USER_CONFIG and including auto_cfg.h in uml_cfg.h or 
by defining AUTOMATIC_CONFIG the computed optimizations will be avail-
able.

Predefined operator optimization is used by default for AUTOMATIC_CONFIG. 
Define XNOUSE_AUTOMATIC_OPERATOR_CFG to turn it off.

Type info node optimization will be applied only if in addition to 
AUTOMATIC_CONFIG XUSE_TYPEINFONODE_CFG is defined.

Sometimes the automatic computation on used type info nodes might fail. 
The most obvious case is usage inside inline C code. As the code generator 
does not parse such code, it has no chance to know of such usage. To cope 
with these situations the user has the possibility to tell the code generator that 
certain type info nodes are used, and thereby also the nodes that the particular 
node depends on. It is of course possible for a user to manually handle these 
situations be inserting proper #define and #undef after the type info node 
configuration. However this might prove difficult due to all the dependencies 
between type info nodes. 

A user can tell the code generator that certain type info nodes are used by 
specifying this in a file. The code generator will look for such a file according 
to the following: 

If the environment variable TAU_TYPEINFOCFG is defined, the value of this 
variable is treated as a file name (including path) and this file is read. If the 
code generator can not open this file it will produce an error. 

If the environment variable is not defined a file with the name 'typeinfo.cfg' 
is looked for. The code generator will look in the directory where the inter-
mediate (.pr) file is produced. If a 'typeinfo.cfg' file is found it is read. If no 
such file is found the code generator assumes that the user does not have a 
type info configuration file. 

The contents of the type info configuration file should be according to the 
following rules:

• Each type that should be registered as used should be mentioned on a line 
of its own, starting with the type name. 

• When several data types with the same name exist in the system the type 
name can be followed be the name of the scope that the data is defined in. 

• One or more spaces or tabs should separate the type name and the scope 
name.
1184 IBM Rational Tau User Guide June 2009



Type Info Nodes
Example 373: Type name and scope name –––––––––––––––––––––––––––––––––

typename1
typename2 scopename2
typename3

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The code generator will search for data types that match the criteria (name or 
name/scope) given above. The search will be case sensitive. The following 
rules then apply:

• The type info node in all data types that matches the criteria (type name 
or type name/scope name) will be registered as used.

• All type info nodes that the registered node depends on will also be reg-
istered as used.

• An error message will be given if no data type matches a criteria. 

If case sensitive search is used the predefined types should be given ac-
cording to the following table: 

Integer
Real
Natural
Boolean
Character
Time
Duration
Pid
Charstring
Bit
Bit_string
Octet
Octet_string
IA5String
NumericString
PrintableString
VisibleString
NULL
Object_identifier

The name of the scope for these types is Predefined

General components in type info nodes
Note

The components that are described in this section are available for all type 
info nodes, independent of the type they represent, and is not repeated for 
the type specific components.
June 2009 IBM Rational Tau User Guide 1185



Chapter 37: C Code Generator Symbol Table
/* --- General type information for types --- */

typedef T_CONST struct tSDLTypeInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
} tSDLTypeInfo;

• TypeClass: This component defines which type the info node describes. 
A list of available types and their corresponding values can be found in 
the enum type definition below:

typedef enum
{
  /* standard types*/
  type_SDL_Integer=128,
  type_SDL_Real=129,
  type_SDL_Natural=130,
  type_SDL_Boolean=131,
  type_SDL_Character=132,
  type_SDL_Time=133,
  type_SDL_Duration=134,
  type_SDL_Pid=135,
  type_SDL_Charstring=136,
  type_SDL_Bit=137,
  type_SDL_Bit_string=138,
  type_SDL_Octet=139,
  type_SDL_Octet_string=140,
  type_SDL_IA5String=141,
  type_SDL_NumericString=142,
  type_SDL_PrintableString=143,
  type_SDL_VisibleString=144,
  type_SDL_NULL=145,
  type_SDL_Object_identifier=146,

  /* standard ctypes */
  type_SDL_ShortInt=150,
  type_SDL_LongInt=151,
  type_SDL_UnsignedShortInt=152,
  type_SDL_UnsignedInt=153,
  type_SDL_UnsignedLongInt=154,
  type_SDL_Float=155,
  type_SDL_Charstar=156,
  type_SDL_Voidstar=157,
  type_SDL_Voidstarstar=158,
1186 IBM Rational Tau User Guide June 2009



Type Info Nodes
  /* user defined types */
  type_SDL_Syntype=170,
  type_SDL_Inherits=171,
  type_SDL_Enum=172,
  type_SDL_Struct=173,
  type_SDL_Union=174, /* Not used */
  type_SDL_UnionC=175,
  type_SDL_Choice=176,
  type_SDL_ChoicePresent=177,
  type_SDL_Powerset=178,
  type_SDL_GPowerset=179,
  type_SDL_Bag=180,
  type_SDL_String=181,
  type_SDL_LString=182,
  type_SDL_Array=183,
  type_SDL_Carray=184,
  type_SDL_GArray=185,
  type_SDL_Own=186,
  type_SDL_Oref=187,
  type_SDL_Ref=188,
  type_SDL_Userdef=189,
  type_SDL_EmptyType=190,

  /* signals */
  type_SDL_Signal=200,
  type_SDL_SignalId=201

} tSDLTypeClass;

• OpNeeds: This component contains four bits that give the properties of 
the type regarding assignment, equal test, free function, and initializa-
tion.

– The first bit indicates if the type is a pointer that needs to be automat-
ically freed. If the first bit is set, it is necessary to look for memory to 
be freed inside a value of this type.

– The second bit indicates if memcmp can be used to test if two values 
of this type are equal or not. If the bit is set, a special compare func-
tion needs to be supplied. 

– The third bit indicates if memcpy can be used to perform assign of this 
type. If the bit is set, a special assignment function needs to be sup-
plied. 

– The fourth bit indicates if this type needs to be initialized to anything 
else than 0.

The following macros can be used to test these properties:

#define NEEDSFREE(P) \
  (((tSDLTypeInfo *)(P))->OpNeeds & (unsigned char)1)
#define NEEDSEQUAL(P) \
June 2009 IBM Rational Tau User Guide 1187



Chapter 37: C Code Generator Symbol Table
  (((tSDLTypeInfo *)(P))->OpNeeds & (unsigned char)2)
#define NEEDSASSIGN(P) \
  (((tSDLTypeInfo *)(P))->OpNeeds & (unsigned char)4)
#define NEEDSINIT(P) \
  (((tSDLTypeInfo *)(P))->OpNeeds & (unsigned char)8)

• SortSize: This component defines the size of the type.

• OpFuncs: This is a pointer to a struct containing references to specific as-
sign, equal, free, read, and write functions. This component is only used 
in special cases. If assign, equal, free, read or write functions have been 
implemented using #ADT directives, information about this is stored in 
the OpFuncs field. The default value of the OpFuncs field is 0, but if you 
have provided any of these functions, the field will be a pointer to a 
tSDLFuncInfo struct. This struct will in turn refer to the provided func-
tions.

typedef struct tSDLFuncInfo {
  void *(*AssFunc) (void *, void *, int);
  SDL_Boolean (*EqFunc) (void *, void *);
  void (*FreeFunc) (void **);
#ifdef XREADANDWRITEF
  char *(*WriteFunc) (void *);
  int (*ReadFunc) (void *);
#endif
} tSDLFuncInfo;

• Name: This is the name of the type as a string literal.

• FatherScope: This is a pointer to the IdNode for the scope that the type 
is defined in.

• SortIdNode: This is a pointer to the xSortIdNode that describes the 
same type.

Type specific type info node components

The following section lists the components that defines the type info nodes. 
Only the type-specific components are explained. The general components 
are listed and explained in the section above.

Type info node components for enumeration types
typedef T_CONST struct {
  int             LiteralValue;
  char           *LiteralName;
} tSDLEnumLiteralInfo;

typedef T_CONST struct tSDLEnumInfoS {
  tSDLTypeClass   TypeClass;
1188 IBM Rational Tau User Guide June 2009



Type Info Nodes
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
#ifdef XREADANDWRITEF
  int             NoOfLiterals;
  tSDLEnumLiteralInfo *LiteralList;
#endif
} tSDLEnumInfo;

• NoOfLiterals: This is the number of literals in the enum type.

• LiteralList: This is a pointer to an array of tSDLEnumLiteralInfo 
elements. This list implements a translation table between enum values 
and literal names as strings

Syntype, type with inheritance, and Own, Oref instantiations
typedef T_CONST struct tSDLGenInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
  tSDLTypeInfo   *CompOrFatherSort;
} tSDLGenInfo;

• CompOrFatherSort: This is a reference to the type info node of the fa-
ther sort (syntype, inherits) or component sort (Own, ORef).

Type info node components for PowerSet (implemented as unsigned in 
[ ])

typedef T_CONST struct tSDLPowersetInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
June 2009 IBM Rational Tau User Guide 1189



Chapter 37: C Code Generator Symbol Table
#ifdef T_SDL_NAMES
  char           *Name;
#endif
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
  tSDLTypeInfo   *CompSort;
  int             Length;
  int             LowestValue;
} tSDLPowersetInfo;

• CompSort: Reference to the type info node of the component sort.

• Length: The number of possible values in the component sort.

• LowestValue: The value of the lowest value in the component sort.

Type info node components for struct
typedef int (*tGetFunc) (void *);
typedef void (*tAssFunc) (void *, int);

typedef T_CONST struct {
  xptrint     OffsetPresent; /* 0 if not optional */
  void       *DefaultValue;
} tSDLFieldOptInfo;

typedef T_CONST struct {
  tGetFunc        GetTag;
  tAssFunc        AssTag;
} tSDLFieldBitFInfo;

typedef T_CONST struct {
  tSDLTypeInfo   *CompSort;
#ifdef T_SDL_NAMES
  char           *Name;
#endif
  xptrint         Offset;     /* ~0 for bitfield */
  tSDLFieldOptInfo *ExtraInfo;
} tSDLFieldInfo;

typedef T_CONST struct tSDLStructInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
1190 IBM Rational Tau User Guide June 2009



Type Info Nodes
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
  tSDLFieldInfo  *Components;
  int             NumOfComponents;
} tSDLStructInfo;

• Components: An array of tSDLFieldInfo; one component in the array 
for each field of the struct.

• NumOfComponents: The number of fields in the struct.

• CompSort in tSDLFieldInfo: The reference to the type info node of the 
field sort.

• Name in tSDLFieldInfo: The name of the field as a string.

• Offset in tSDLFieldInfo: The offset of the field in the C struct that 
represents the UML struct. This component is ~0 for bit fields in UML 
(offsets cannot be calculated for bit fields).

• ExtraInfo in tSDLFieldInfo: The interpretation of this component de-
pends on the properties in the UML field.

– If Offset is ~0, the field is a bit field and ExtraInfo is a pointer to 
a tSDLFieldBitFInfo struct containing two functions to set and get 
the value of the bit field.

– If Offset is not ~0 and ExtraInfo != 0, the field is either optional 
or has a default value. ExtraInfo is a pointer to a 
tSDLFieldOptInfo struct containing the offset for the Present flag 
(0 if not optional) and a pointer to the default value (0 if no default 
value).

Type info node components for choice 
typedef T_CONST struct {
  tSDLTypeInfo        *CompSort;
#ifdef T_SDL_NAMES
  char                *Name;
#endif
} tSDLChoiceFieldInfo;

typedef T_CONST struct tSDLChoiceInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
June 2009 IBM Rational Tau User Guide 1191



Chapter 37: C Code Generator Symbol Table
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
  tSDLChoiceFieldInfo *Components;
  int                  NumOfComponents;
  xptrint              OffsetToUnion;
  xptrint              TagSortSize;
#ifdef XREADANDWRITEF
  tSDLTypeInfo        *TagSort;
#endif
} tSDLChoiceInfo;

• Components: An array of tSDLChoiceFieldInfo; one component in 
the array for each field in the choice.

• NumOfComponents: The number of fields in the choice.

• OffsetToUnion: The offset to where the union, within the representa-
tion of the choice, starts.

• TagSortSize: The size of the tag type.

• TagSort: A reference to the type info node of the tag sort.

Type info node components for array and CArray
typedef T_CONST struct tSDLArrayInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
  tSDLTypeInfo   *CompSort;
  int             Length;
#ifdef XREADANDWRITEF
  tSDLTypeInfo   *IndexSort;
  int             LowestValue;
#endif
} tSDLArrayInfo;

• CompSort: The reference to the type info node of the component sort.

• Length: The number of components in the array.

• IndexSort: The reference to the type info node of the index sort.

• LowestValue: The start value of the index range (as an int).
1192 IBM Rational Tau User Guide June 2009



Type Info Nodes
Type info node components for general arrays

A general array is an array that is represented as a linked list in C.

typedef T_CONST struct tSDLGArrayInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
  tSDLTypeInfo   *IndexSort;
  tSDLTypeInfo   *CompSort;
  xptrint         yrecSize;
  xptrint         yrecIndexOffset;
  xptrint         yrecDataOffset;
  xptrint         arrayDataOffset;
} tSDLGArrayInfo;

• IndexSort: The reference to the type info node of the index sort.

• CompSort: The reference to the type info node of the component sort.

• yrecSize: The size of the type SDLType_yrec.

• yrecIndexOffset: The offset of Index in type SDLType_yrec.

• yrecDataOffset: The offset of Data in type SDLType_yrec.

• arrayDataOffset: The offset of Data in type SDLType, where SDLType 
is the name in C of the translated array type.

Type info node components for general PowerSet, Bag, String and 
Objectidentifier

typedef T_CONST struct tSDLGenListInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
  tSDLTypeInfo   *CompSort;
June 2009 IBM Rational Tau User Guide 1193



Chapter 37: C Code Generator Symbol Table
  xptrint         yrecSize;
  xptrint         yrecDataOffset;
} tSDLGenListInfo;

• CompSort: The reference to the type info node of the component sort.

• yrecSize: The size of the type SDLType_yrec

• yrecDataOffset: The offset of Data in type SDLType_yrec

Type info node components for limited strings

A limited string is a string that is implemented as an array in C.

/* ------------------ LString ------------------- */
typedef T_CONST struct tSDLLStringInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SDL_NAMES
  char           *Name;
#endif
#ifdef XREADANDWRITEF
  xIdNode         FatherScope;
  xSortIdNode     SortIdNode;
#endif
  tSDLTypeInfo   *CompSort;
  int             MaxLength;
  xptrint         DataOffset;
} tSDLLStringInfo;

• CompSort: The reference to the type info node of the component sort.

• MaxLength: The maximum length of the string.

• DataOffset: The offset of Data in type SDLType, where SDLType is the 
name in C of the translated string type.

Type info node components for signal

A signal is treated in the same way as a struct.

typedef T_CONST struct {
  tSDLTypeInfo       *ParaSort;
  xptrint             Offset;
} tSDLSignalParaInfo;

typedef T_CONST struct tSDLSignalInfoS {
  tSDLTypeClass   TypeClass;
  unsigned char   OpNeeds;
  xptrint         SortSize;
1194 IBM Rational Tau User Guide June 2009



Type Info Nodes
  struct tSDLFuncInfo *OpFuncs;
  T_SDL_EXTRA_COMP
#ifdef T_SIGNAL_SDL_NAMES
  char           *Name;
#endif
  tSDLSignalParaInfo *Param;
  int             NoOfPara;
} tSDLSignalInfo;

• Param: An array with a component of the type tSDLSignalParaInfo for 
each signal parameter type. For each parameter, the parameter sort is 
given as a reference to the type info node and as the offset for the param-
eter value within the struct representing the signal.

• NoOfPara: The number of parameters in the signal.

Utility macros for type info nodes

The following utility macros can be used to configure the type info nodes, to 
adapt them to compilers or for instance adding or removing components. 
This should not be done for the normal application areas of the C Code Gen-
erator. 

#ifndef T_CONST
#define T_CONST const
#endif

#ifndef T_SDL_EXTRA_COMP
#define T_SDL_EXTRA_COMP
#define T_SDL_EXTRA_VALUE
#endif

#ifndef T_SDL_USERDEF_COMP
#define T_SDL_USERDEF_COMP
#endif

#if defined(XREADANDWRITEF) && !defined(T_SDL_NAMES)
#define T_SDL_NAMES
#endif

#ifdef T_SDL_NAMES
#define T_SDL_Names(P) , P
#else
#define T_SDL_Names(P)
#endif

#ifdef T_SIGNAL_SDL_NAMES
#define T_Signal_SDL_Names(P) , P
#else
#define T_Signal_SDL_Names(P)
#endif
June 2009 IBM Rational Tau User Guide 1195



Chapter 37: C Code Generator Symbol Table
#ifdef T_SDL_INFO
#define T_SDL_Info(P) , P
#else
#define T_SDL_Info(P)
#endif

#ifndef XNOUSE_OPFUNCS
#define T_SDL_OPFUNCS(P) , P
#else
#define T_SDL_OPFUNCS(P)
#endif

struct tSDLFuncInfo;
1196 IBM Rational Tau User Guide June 2009



38
C Code Generator Macros

This chapter contains a reference to all C preprocessor macros, which are 
used to decide the properties of the run-time library and the code generated 
by the C Code Generator. 
June 2009 IBM Rational Tau User Guide 1197



Chapter 38: C Code Generator Macros
General
This chapter is divided in a number of sections, each treating one major as-
pect of the generated code. Within each section the macros are enumerated 
in alphabetic order.

In the run-time library source and include files, and also in the generated C 
code, #define/#ifdef/#ifndef patterns are used to include or exclude 
parts of the code at compilation.

The macros that are used can be divided into three groups.

• Macros defining the properties of the selected library,

• Macros defining the implementation details of the properties, 

• Macros defining properties of the compiler. This group of macros is dis-
cussed in “Adaptation to Compilers” on page 1072 in Chapter 33, C and 
AgileC Runtime Libraries.

To fully understand the descriptions of some of the macros in this chapter, it 
is strongly recommended to know the basic data structures used, especially 
for the static structures, i.e. the xIdNodes. This information can be found in 
the section “C Code Generator Symbol Table” on page 1157. 

The information about the data types used for the dynamic structure and be-
havior of the application, that is instances, signals, timers, and so on, are also 
of interest. This can be found in the chapter “C Code Generator Run-Time 
Model” on page 1123.
1198 IBM Rational Tau User Guide June 2009



C Code Generator Macros
C Code Generator Macros
The following section contains a listing of the preprocessor macros used by 
the C Code Generator. 

Library version macros

SCTAPPLCLENV

This macro defines a library for applications.

SCTAPPLENV

This macro defines a library for applications without clock.

SCTDEB

This macro defines a stand-alone Model Verifier application for any environ-
ment.

SCTDEBCL

This macro defines a stand-alone Model Verifier application in real time, for 
any environment.

SCTDEBCLCOM

This macro defines a Model Verifier application in real time for host debug-
ging.

SCTDEBCLENV

This macro defines a stand-alone Model Verifier application, with real time 
properties and environment functions, for any environment. 

SCTDEBCLENVCOM

This macro defines a Model Verifier application in real time and with envi-
ronment functions, for any environment. 
June 2009 IBM Rational Tau User Guide 1199



Chapter 38: C Code Generator Macros
SCTDEBCOM 

This macro defines a Model Verifier application for host debugging. 

SCTOPT1APPLCLENV

This macro defines an application with minimal memory requirements, in 
which real numbers cannot be used. No information about connectors is gen-
erated.

SCTOPT2APPLCLENV

This macro defines an application with minimal memory requirements, in 
which real numbers cannot be used. Connector information is declared as 
const.

Compiler definition section macros

SCT_POSIX

This macro defines UNIX/POSIX like compilers/systems.

SCT_WINDOWS

This macro defines compilers on Windows.

Configuration macros

COMMENT(P)

This macro should be defined as:

 #define COMMENT(P)

The macro is used to insert comments in included C code.

GETINTRAND

This macro defines a random generation function, usually rand() or 
random()
1200 IBM Rational Tau User Guide June 2009



C Code Generator Macros
GETINTRAND_MAX

This macro defines the maximum integer value generated by function men-
tioned in GETINTRAND, usually RAND_MAX or 2147483647 (32-bit in-
tegers).

SCT_VERSION_4_4

This macro is defined in the generated code if the C Code Generator version 
4.4 was used.

XCAT(P1,P2)

This macro defines how to concatenate tokens P1 and P2. The options are:

#define XCAT(P1,P2) P1##P2

or

#define XCAT(P1,P2) P1/**/P2

or

#define XCAT(P1,P2) XCAT2(P1)P2
#define XCAT2(P2) P2

X_LONG_INT

The sort Integer is translated to int in C. To translate the Integer sort to 
long int instead, just define the macro X_LONG_INT.

XMULTIBYTE_SUPPORT

This macro should be defined if the compiler supports multi-byte characters.

XNOSELECT

This macro should be defined if there is no support for the select function 
found in UNIX operating systems. This is used to implement “user-defined 
interrupt” by pressing the return key while simulating.

XNO_VERSION_CHECK

If this macro is defined there will be no version check between the generated 
code and the scttypes.h file.
June 2009 IBM Rational Tau User Guide 1201



Chapter 38: C Code Generator Macros
XSCT_CBASIC

This macro is defined in the generated code if the Cbasic C Code Generator 
is used. This macro should never be defined when building an application. 

XSCT_CADVANCED

This macro is defined in the generated code if the C Code Generator is used. 
This macro should be defined. 

X_SCTTYPES_H

This macro is defined in scttypes.h and used to allow including the 
scttypes.h file multiple times without any problems.

X_XINT32_INT

Should be defined if xint32 is int.

X_XPTRINT_LONG

Should be defined if xptrint is unsigned long.

General properties macros

The property macros described in this section can be used to tailor libraries. 
If not stated otherwise for a certain property, all C code, variables, struct 
components, and so on, are either included or excluded using conditional 
compiling, depending on whether the property is used or not. 

This means, for example, that all code for the command-line interpreter used 
by the Model Verifier will be removed in an application, which makes the ap-
plication both smaller and faster.

The property macros are in principle independent, except for the relations 
given in the descriptions below, and it should be possible to use them in any 
combination unless such a combination introduces a conflict. 

The number of combinations is, however, so huge that it is hardly possible to 
even compile all combinations and test that they function to satisfaction. If 
you happen to form a combination that does not work, please send a complete 
model to IBM Rational Tau Support. so that the case can be addressed 
promptly.
1202 IBM Rational Tau User Guide June 2009

http://support.telelogic.com/en/tau/


C Code Generator Macros
XASSERT

This macro is used to detect and report user-defined assertions that are not 
valid.

XCALENDARCLOCK

This specifies that the clock function in sctos.c (not simulated time) should 
be used. Time is whatever the clock function returns.

XCLOCK

This specifies that the clock function in sctos.c (not simulated time) should 
be used. Time is zero at start up.

XCOVERAGE

This macro specifies to compile the application with code that computes and 
stores information about the current coverage of code. It should be used to-
gether with XMONITOR.

XCTRACE

This macro should be defined if you want to compile preserving the possi-
bility to report the current C line number during simulations. Defining this 
macro makes information available to the monitor about where in the source 
C code the execution is currently suspended. This facility, which is used to-
gether with the monitor, makes it possible to implement the Model Verifier 
command Show-C-Line-Number.

XEALL

This macro defines all the following: XASSERT, XECREATE, 
XECHOICE, XECSOP, XEDECISION, XEERROR, XEEXPORT, 
XEFIXOF, XEINDEX, XEINTDIV, XEOPTIONAL, XEOUTPUT, 
XEOWN, XERANGE, XEREALDIV, XEREF.

XECHOICE

Defining this macro detects and reports attempts to access non-active com-
ponents in choice variables.
June 2009 IBM Rational Tau User Guide 1203



Chapter 38: C Code Generator Macros
XECREATE

Defining this macro detects and reports if more static instances are created at 
start up, than the maximum number of concurrent instances.

XECSOP

Defining this macro detects and reports errors in ADT operations.

XEDECISION

Defining this macro detects and reports when there is no possible path out 
from a DecisionAction.

XEERROR

Defining this macro detects and reports the usage of the error term in an ex-
pression.

XEEXPORT

Defining this macro detects and reports errors in referring global data.

XEFIXOF

This macro will report overflow when a Real value is converted to an Integer 
value using the operation Fix.

XEINDEX

Defining this macro detects and reports index out of bound in arrays.

XEINTDIV

Defining this macro detects and reports integer division with zero.

XENV

If this compilation macro is defined the environment functions xInitEnv, 
xCloseEnv, xInEnv, and xOutEnv will be called at appropriate places.
1204 IBM Rational Tau User Guide June 2009



C Code Generator Macros
XEOPTIONAL

Defining this macro detects and reports attempts to access non-present op-
tional attributes in passive classes.

XEOUTPUT

Defining this macro detects and reports warnings in signal sending (mainly 
signal sending where a signal is immediately discarded).

XEOWN

Defining this macro detects and reports illegal usage of Own and ORef 
pointers.

XERANGE

This macro will report range errors when a value is assigned to an attribute 
of a sort containing range conditions.

XEREALDIV

Defining this macro detects and reports real division by zero.

XEREF

Defining this macro detects and reports attempts to de-reference null pointer.

XGRTRACE

This macro enables graphical trace back to source UML diagrams. This fea-
ture is used to implement graphical trace of simulations and debugging ses-
sions and Model Verifier commands like Show-Next-Symbol and Show-Pre-
vious-Symbol. It is possible to use graphical trace without the command-line 
interpreter in the same way as the ordinary trace (substitute Trace_Default 
with GRTrace). The graphical trace is however synchronized which means 
that the speed of the application is dramatically reduced. 

XMAIN_NAME

If this macro is defined, then the main ( ) function in sctsdl.c will be re-
named to the name given by the macro. Sometimes when integrating gener-
ated applications or simulations in larger environments, the main function 
June 2009 IBM Rational Tau User Guide 1205



Chapter 38: C Code Generator Macros
can be useful but cannot have the name main. This name can be changed to 
something else by defining the macro XMAIN_NAME. The main function can 
be found in the file sctsdl.c.

XMONITOR

Defining this macro will compile and link the Model Verifier command line 
interpreter into the application. This macro will implicitly set up a number of 
other macros as well.

XMSCE

Defining this macro, the code will compile with the graphical Sequence dia-
gram trace enabled.

XNOMAIN

If this macro is defined the main function in sctsdl.c will be removed. The 
functions main and xMainLoop are removed using conditional compiling. 
This feature is intended to be used when code generated from a system 
should be part of an already existing application, that is when the system im-
plements a new function in an existing environment. The following functions 
are available for you to implement scheduling of actions:

extern void xMainInit(
  void (*Init_System) (void)
#ifdef XCONNECTPM
 ,int argc,
  char *argv[]
#endif
  );

#ifdef XNOMAIN
extern void SDL_Execute (void);

extern int SDL_Transition_Prio (void);

extern void SDL_OutputTimer (void);

extern int SDL_Timer_Prio (void);

extern SDL_Time SDL_Timer_Time (void);
#endif

The behavior of these functions are as follows:

xMainInit: This function should be called to initialize the system before any 
other function in the run-time library is called. 
1206 IBM Rational Tau User Guide June 2009



C Code Generator Macros
SDL_Execute: This function will execute one transition by the instance of an 
active class first in the ready queue. Before calling this function it must be 
checked that there really is at least one instance of an active class in the ready 
queue. 

SDL_OutputTimer: This function will execute one timer output and may 
only be called if there is a timer ready to perform a timer output.

SDL_Timer_Time: This function returns the time given in the set statement 
for the first timer in the timer queue. If the timer queue is empty, the largest 
possible time value (xSysD.xMaxTime) is returned. Depending on how the 
system is integrated in an existing environment it might be possible to also 
use the monitor system. In that case the function xCheckMonitors should be 
called to execute monitor commands.

extern void xCheckMonitors (void);

To give some idea of how to use the functions discussed above, an example 
reflecting the way the internal scheduler in the run-time library works is 
given below:

Example 374 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  while (1) {
#ifdef XMONITOR
    xCheckMonitors();
#endif
    if ( SDL_Timer_Prio() >= 0 )
      SDL_OutputTimer();
    else if ( SDL_Transition_Prio() >= 0 )
      SDL_Execute();
  }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XSIGLOG

This facility makes it possible for you to implement your own log of the 
major events in the system. This macro is normally not defined. By defining 
this macro, each sending of a signal, that is each call of the function 
SDL_Output, will result in a call of the function xSignalLog. Each time a 
transition is started, the function xProcessLog will be called.

These functions have the following prototypes:

extern void xSignalLog
  (xSignalNode  Signal,
   int          NrOfReceivers,
June 2009 IBM Rational Tau User Guide 1207



Chapter 38: C Code Generator Macros
   xIdNode    * Path,
   int          PathLength);

extern void xProcessLog
  (xPrsNode P);

which are included in scttypes.h if XSIGLOG is defined.

Signal will be a pointer to the data area representing the signal instance. 

NrOfReceivers will indicate the success of the signal sending according to 
the following table:

The third parameter, Path, is an array of pointer to IdNodes, where Path[0] 
refers to the IdNode for the sending instance of an active class, Path[1] re-
fers to the first signal route (or channel) in the path between the sender and 
the receiver, and so on, until Path[PathLength] which refers to the IdNode 
for the receiving instance. 

The parameter P in the xProcessLog function will refer to the instance of an 
active class just about to start executing.

Numbers Of Re-
ceivers Output Statement Contents

-1: A direct addressing clause, but no path of channels 
and signal routes were found between the sender and 
the receiver.

0: No direct addressing clause, and no possible re-
ceivers were found in the search for receivers.

1: If the statement contains a direct addressing, a path of 
channels and signal routes is found between the 
sender and the receiver.

If the statement contains no direct addressing, exactly 
one possible receiver is found in the search for re-
ceivers.

The signal sending is successful. The only error situ-
ation that still might be present is if a signal sending 
with a direct addressing is directed to an instance of 
an active class that is stopped.
1208 IBM Rational Tau User Guide June 2009



C Code Generator Macros
The fourth parameter, PathLength, represents thus the number of compo-
nents in the Path array that are used to represent the path for the signal sent. 
If the signal is sent to or from the environment, either Path[0] or 
Path[PathLength] will refer to xEnvId, that is to the IdNode for the envi-
ronment “active class”.

In the implementation of the xSignalLog and xProcessLog functions 
which should be user-provided, you have full freedom to use the information 
provided by the parameters in any suitable way, except that it is not possible 
to change the contents of the signal instance. The functions are provided to 
make it possible for you to implement a simple log facility in environments 
where standard input/output is not provided, or where the monitor system is 
too slow or too large to fit. A suitable implementation can be found in the file 
sctenv.c 

XTENV

This is the same as XENV (it actually defines XENV), except that xInEnv 
should return a time value which is the next time it should be called (a value 
of type SDL_Time). The main loop will call xInEnv at the first possible oc-
casion after the specified time has expired, or when the system becomes idle 
(waiting for signals).

XTRACE

If this macro is defined, traces of the execution can be printed on standard 
output. This facility is normally used together with the Model Verifier, but 
could also be used without it. The file stdout must be available for printing. 

When the Model Verifier is not present, setting trace values must be per-
formed in included C code, as the user interface is not available. The trace 
components are called Trace_Default and can be found in IdNodes repre-
senting the various active classes defined in the system, and in the struct 
xPrsRec used to represent an instance of an active class. The values stored 
in these components are the values given by the Set-Trace command in the 
Model Verifier. When the value is unspecified it is represented by -1. 

When the Model Verifier is not present, all trace values will be undefined at 
startup, except for the system which has trace value 0. This means that no 
trace is active at start up.
June 2009 IBM Rational Tau User Guide 1209



Chapter 38: C Code Generator Macros
Example 375 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Suitable statements to set trace values in C code:

xSystemId->Trace_Default = value;
   /* System trace */
xPrsN_ProcessName->Trace_Default = value;
   /* Process type trace */ 
PId_Var.LocalPId->PrsP->NameNode->Trace_Default =
  value
   /* Process type trace */
PId_Var.LocalPId->PrsP->Trace_Default = value;
   /* Process instance trace */

PId_Var is assumed to be a variable of type Pid.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Code optimization macros

XAVL_TIMER_QUEUE

Defining this macro will change the data structure used for the timer queue 
from a sorted linked list to a AVL tree. Models using a large number of 
timers will get a performance gain since insertions and deletions scale loga-
rithmically with the number of timers in the avl tree instead of linearly as 
with the linked list.

XCONST

Defining this macro will allow the majority of the xIdNode structures to be 
made constant by defining XCONST as const. This is only possible in appli-
cations, not in Model Verifiers.

XCONST_COMP

This macro should normally be defined as const if XCONST is const. It is 
used to introduce const in the component declarations within the xIdNode 
structures.

Using the macros XCONST and XCONST_COMP most of the memory used 
for the IdStructs can be moved from RAM to ROM. This of course de-
pends on the compiler and its properties.

The following macro definitions can be inserted:
1210 IBM Rational Tau User Guide June 2009



C Code Generator Macros
#define XCONST const
#define XCONST_COMP const

This will introduce const in the declaration of most of the IdStructs. It is 
then left to the C compiler to handle const. 

The XCONST_COMP macro is used to introduce const on components within 
a struct definition. This is necessary for some compilers to accept const on 
the struct as such.

If const is successfully introduced, a lot of RAM memory will be saved, as 
the major part of the data area for IdStructs can be made const.

XNOCONTSIGFUNC

This macro is to be defined in order to exclude the functions that calculate 
the expressions in guards on triggered transitions. This also saves one func-
tion pointer in the xIdNode for the states. If this macro is defined, then 
guards on triggered transitions cannot be used.

XNOENABCONDFUNC

This macro is defined in order to exclude the functions that calculate the ex-
pressions in guards. This also saves one function pointer in the xIdNode for 
the states. If this macro is defined, then guards cannot be used.

XNOEQTIMERFUNC

This macro is defined in order to exclude the functions that compare the pa-
rameters of two timers. This also saves one function pointer in the xIdNode 
for the signals. If this macro is defined, then timers with parameters cannot 
be used.

XNOREMOTEVARIDNODE

This macro is defined in order not to include xIdNodes for definitions of at-
tributes in interfaces.

XNOSIGNALIDNODE

This macro is defined in order not to include xSignalIdNodes for signals 
and timers.
June 2009 IBM Rational Tau User Guide 1211



Chapter 38: C Code Generator Macros
XNOSTARTUPIDNODE

This macro is defined in order not to include xSignalIdNodes for startup 
signals.

XNOUSEOFEXPORT

By defining this macro you state that you are not going to use global at-
tributes.

Note
An attempt to refer to global data when XNOUSEOFEXPORT is defined 
will result in a compilation error, as the function xGetExportAddr is not 
defined. 

XNOUSEOFOBJECTIDENTIFIER

By defining this macro, the type ObjectIdentifier and all operations on 
that type are removed.

XNOUSEOFOCTETBITSTRING

By defining this macro, the types Bitstring, Octet, OctetString and all 
operations on these types are removed.

XNOUSEOFREAL

By defining this macro, the type real and all operations on real are removed. 
Defining this macro will remove all occurrences of C float and double 
types, and means for example that the type Real is no longer available. 

This macro is intended to be used in situations when it is important to save 
space, to ensure that the library functions for floating type operations are not 
loaded. It cannot handle situations when you include floating type operations 
in C code. Another consideration is if BasicCTypes.pr, or other ADTs, are 
included in the system. If so, it is required that types dependent on Real are 
removed from these packages.

XOPT

This macro will turn on full optimization (except XOPTCHAN), that is it will 
define the following macros:
1212 IBM Rational Tau User Guide June 2009



C Code Generator Macros
The XOPT macros should not be used together with the monitor.

XOPTCHAN

This macro can be used to remove all information about the paths of connec-
tors in the system. The following memory optimization will take place:

• The two ChannelIdNodes for each connector and port are removed.

• The ToId component in the xPrsIdNodes representing instances of ac-
tive classes is removed.

• A number of functions in the library (sctsdl.c) are no longer needed 
and are removed.

When the information about connectors and ports is not present the following 
types of calculations can no longer be performed.

1. To check if there is a path of connectors between the sender and the re-
ceiver in a signal sending statement with direct addressing. This is no 
problem as this is just an error test that probably will not be performed in 
an application.

2. To calculate the receiver in a signal sending without direct addressing, if 
the C Code Generator has not performed this calculation at code genera-
tion time. This is more serious, as it means that signal sending without 
direct addressing will be used. 

In an ordinary system, signal sending without direct addressing must be used 
to start up the communication between different parts of the system, as there 
is no other way to distribute the Pid values needed for signal sending with 
direct addressing.

This situation is solved if the C Code Generator can calculate the receiver. 
Otherwise the data type PIdList in the library of abstract data types is in-
tended to solve the situation. When this data type is used, global Pid literals 
may be introduced, implemented as constant attributes. These literals can 
then be used to utilize signal sending statements with direct addressing 
clauses from the very beginning. 

XOPTSIGPARA XOPTDCL

XOPTFPAR XOPTSTRUCT

XOPTLIT XOPTSORT
June 2009 IBM Rational Tau User Guide 1213



Chapter 38: C Code Generator Macros
Note
If this compilation macro is defined all signal sending must either be done 
with direct addressing an instance of an active class, or the receiver of the 
signal must be possible to calculate during code generation. If the 
XOPTCHAN macro is defined and signal sending without direct addressing 
clause is still used (which the C Code Generator cannot optimize), there 
will be a C compilation error saying that the name xNotDefPId is not de-
fined.

XOPTDCL

This macro is to be defined in order not to include xIdNodes for attributes. 
There will be a VarIdNode in the symbol table tree for each attribute de-
clared in active classes and in operations. These nodes are not used in an ap-
plication and may be removed by defining the macro XOPTDCL.

XOPTFPAR

This macro is to be defined in order not to include xIdNodes for parameters 
of state machines. There will be a VarIdNode in the symbol table tree for 
each formal parameter in active classes and in operations. These nodes are 
not used in an application and may be removed by defining the macro 
XOPTFPAR.

XOPTLIT

This macro is to be defined in order not to include xIdNodes for literals. For 
each literal in a passive class that will be translated to an enum type, there will 
be a LitIdNode representing the literal. These nodes will not be used in an 
application and may be removed by defining the macro XOPTLIT.

XOPTSIGPARA

This macro is to be defined in order not to include xIdNodes for signal pa-
rameters. In the symbol table tree, there will be one node for each parameter 
to a signal. These nodes are not necessary in an application and may be re-
moved by defining the macro XOPTSIGPARA.
1214 IBM Rational Tau User Guide June 2009



C Code Generator Macros
XOPTSORT

This macro is to be defined in order not to include xIdNodes for passive 
classes and any syntype. Each passive class and syntype will be represented 
by a SortIdNode. These nodes are not used in an application if all the other 
XOPT (XOPTSIGPARA, XOPTDCL, XOPTFPAR, XOPTSTRUCT, XOPTLIT) 

described above are defined.

XOPTSTRUCT

This macro is to be defined in order not to include xIdNodes for struct com-
ponents. For each component in an SDL struct there will be one VarIdNode 
defining the properties of this component. A VarIdNode is not used in an ap-
plication and can be removed by defining the macro XOPTSTRUCT.

XPATH_INFO_IN_ENV_FUNC

This compilation switch should be set if the signal path for a signal sent from 
the application to the environment should become available to the user. 

XPRSCOUNT, XPRSCOUNTHASH

Defining one of these macros optimizes the counting of the number of in-
stances of an active class. This is normally done before a new instance can 
be created, so this optimization gives a performance gain when dynamically 
creating a large number of instances. XPRSCOUNT keeps a linked list with pre-
calculated counts of instances, while XPRSCOUNTHASH further optimizes 
XPRSCOUNT by keeping the counts in a hashtable for even faster lookups.

XPRSHASH

Defining this macro will change the data structure tracking instances of an 
active class from a linked list to a hash table. The optimization is suitable for 
systems that use a very large number of active class instances.

Note
When having active class instances in a part with non-single multiplicity, 
this optimization will change the ordering of these instances in the part con-
tainer. When appending a new instance to it, or deleting an instance from it, 
the ordering of the container will probably change. Do not rely on the con-
tainer index to give you a specific instance. If you need this functionality, 
use a parallell container with class references.
June 2009 IBM Rational Tau User Guide 1215



Chapter 38: C Code Generator Macros
XPRSOPT

This macro, if defined, will optimize memory use for instances of active 
classes. All memory can be reused, but signal sending to a stopped instance, 
which memory has been reused by a new instance of an active class, cannot 
be detected. The new instance will in this case receive the signal.

The section “Create and stop operations” on page 1137 in Chapter 36, C 
Code Generator Run-Time Model describes how xLocalPIdRec structures 
are allocated for each created instance of an active class, and how these struc-
tures are used to represent instances even after they have performed stop ac-
tions. This method for handling xLocalPIdRecs is required to be able to de-
tect when a signal is sent to an instance of an active class that has performed 
a stop operation.

In an application that is going to run for a long period of time and that uses 
dynamically created instances, this way of handling xLocalPIdRecs will 
eventually lead to no memory being available.

By defining the macro XPRSOPT, the memory for the xLocalPIdRecs will be 
reused together the yVDef_ProcessName structures. This has two conse-
quences:

• The need for memory will not increase due to the use of dynamically cre-
ated and terminated instances (the memory need depends on the max-
imum number of concurrent instances of the active class).

• It will no longer be possible to always find the situation when a signal is 
sent to an instance that has performed a stop action.

More precisely, consider a situation where a Pid attribute, that refers to an in-
stance of an active class, performs a stop operation. After that a create oper-
ation is performed, on the same active class, where the same data area is re-
used. Then the Pid attribute will now refer to the new instance. 

This means, for example, that signals intended for the old instance will be 
sent to the new instance. It is still possible to detect signal sending to in-
stances in the avail list even if XPRSOPT is defined.
1216 IBM Rational Tau User Guide June 2009



C Code Generator Macros
XUSE_SIGNAL_NUMBERS

This compilation switch should be set when compiling an application where 
the environment function that implements signals to the environment is de-
signed to look up signals by their numbers (assigned by the C Code Gener-
ator) rather by their name. See “Improving performance of xOutEnv when 
many signals” on page 1048 for how to use this feature. 

Macros for definition of minor features

XBREAKBEFORE

This macro should be defined mainly if the MONITOR or GRTRACE 
macros are defined. It will make the functions and struct components for ref-
erences available and is also used to expand the macros

• XAT_FIRST_SYMBOL

• XBETWEEN_SYMBOLS

• XBETWEEN_SYMBOLS_PRD

• XBETWEEN_STMTS

• XBETWEEN_STMTS_PRD

• XAFTER_VALUE_RET_PRDCALL

• XAT_LAST_SYMBOL 

to suitable function calls. These functions are used to interrupt a transition 
between symbols during debugging.

XCASEAFTERPRDLABELS

The symbols just after an operation call have to be treated specially, as the 
symbol number (case label in C) for these symbols is used as the restart ad-
dress for the calling flow graph. Normally this macro should be defined. If 
calls of operations are transformed to proper C function calls, and Return is 
translated to a C return, and Nextstate in an operation is NOT translated to a 
C return (that is the active class will be “hanging” in the C function repre-
senting the operation) then it is not necessary to define 
XCASEAFTERPRDLABELS. This macro is related to the function of 
XCASELABELS. 
June 2009 IBM Rational Tau User Guide 1217



Chapter 38: C Code Generator Macros
XCASELABELS

The function implementing the behavior of a state machine or operation con-
tains one large C switch statement with a case label for each symbol. This 
switch is used to be able to restart the execution of a state machine or opera-
tion at any symbol. In an application, most of these labels can be removed 
(all except for those symbols that start a transition, that is start, triggered tran-
sition, guard on triggered transition). The macro XCASELABELS should be 
defined to introduce the case labels for all symbol. This means that 
XCASELABELS should be defined in a simulation, but not in an applica-
tion.

XCOUNTRESETS

This macro is used to count the number of timers that are removed at a reset 
operation. This information is used by the textual trace (XTRACE) to present 
this information, which is of interest at a stop action when more then one 
timer might be (implicitly) reset. XCOUNTRESETS should not be defined 
in an application.

XENVSIGNALLIMIT

If this macro is defined, only a limited number of signals will be stored in the 
input port of the environment function. This macro is defined to determine 
the number of signals sent to the environment that, during simulation, should 
be saved in the input port of the “environment active class”. Such signals can 
be inspected with the Model Verifier commands for listing of signals. This 
macro is only of interest in a simulation. The limit is equal to the value de-
fined for XENVSIGNALLIMIT and is normally set to 20.

XERRORSTATE

This macro is used to insert the data structure to represent an “error” state that 
can be used if no path is found out from a decision. This should normally be 
defined if XEDECISION is defined.

XFREESIGNALFUNCS

This macro is used to insert free functions for each signal, timer, or startup 
signal that contains a parameter of a type having a free function. These signal 
free functions can the be used to free allocated data within a signal. 
1218 IBM Rational Tau User Guide June 2009



C Code Generator Macros
XFREEVARS

This macro is used to insert free function calls for all attributes of a type with 
free function, just before the stop or return actions. This means that free ac-
tions are performed on the allocated data that is referred to from attributes, 
before the object ceases to exist. This macro should be defined.

XIDNAMES

This macro is used to determine if the name of an object should be stored in 
the xIdNode for the object. This character string is used for communication 
with the user, in for example the Model Verifier. Normally this macro should 
not be used in an application. 

It might also be useful for target debugging to define XIDNAMES, as it is 
then fairly easy to identify objects by just printing the name from the Model 
Verifier. This feature requires a few percent additional memory.

XNRINST

This macro should be defined if active class instance numbers (the number 
associated to an individual instance of an active class instance set) are to be 
maintained. XNRINST is normally only used in simulation applications such 
as the Model Verifier.

XOPERRORF

This macro is defined to include the function xSDLOpError in sctsdl.c. 
This function is used to print run-time errors in ADT operations.

XPRSSENDER

This macro is used to store the value of sender also in the xPrsNode. The 
normal place is in the latest received signal. This is only needed in a simula-
tion as sender might be accessed from the Model Verifier after the transition 
is completed and the signal has been returned to the pool of available 
memory.

XREADANDWRITEF

This macro is used to include the functions for basic Read and Write. This is 
needed mainly in simulations.
June 2009 IBM Rational Tau User Guide 1219



Chapter 38: C Code Generator Macros
XREMOVETIMERSIG

This macro is used to allow the removal of timers for not-executing Pid in-
stances. This is needed only in simulations to implement the Model Verifier 
commands to set and reset timers.

XSIGPATH

If this macro is defined then the functions xIsPath and xFindReceiver will 
return the path of connectors and ports from the sender to the receiver, as out 
parameters. This information can then be used in the Model Verifier, for ex-
ample, to produce signal logs. This macro should normally not be defined in 
an application.

XSYMBTLINK

The XSYMBTLINK macro is used to determine if a complete tree should be 
built from the xIdNodes. If XSYMBTLINK is defined then all xIdNodes 
contains a Parent, a Suc, and a First pointer. The value of the Parent 
pointer is generated directly into the xIdNodes. Suc and First, however, are 
calculated in the yInit function by calling the xInsertIdNode function. 
The Suc and First pointers are needed by the Model Verifier, but not in an 
application, that is XSYMBTLINK should be defined in a Model Verifier but 
not in an application.

XTESTF

This macro is used to include or remove test functions for syntype (or passive 
classes) with range conditions. The yTest function is used by the Model 
Verifier by to test index out of bounds in arrays and to test ranges. This 
means that XTESTF should be defined if the monitor is used or if 
XERANGE or XEINDEX is defined.

XTRACHANNELSTOENV

This macro is to define the redirection connectors to the environment. 

When using partitioning of an application, the number of connectors going 
to the environment is not known at code generation time. This means that the 
size of the data area used for the connections is not known. This situation is 
solved in two ways.
1220 IBM Rational Tau User Guide June 2009



C Code Generator Macros
Either the function handling redirections allocates more memory, which is 
the default, or you specify how many connectors that will be redirected 
(which could be difficult to compute, but will lead to less need of memory).

Example 376 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In the first case (allocation of more memory), the macros:

#define XTRACHANNELSTOENV  0
#define XTRACHANNELLIST
should be defined like above. This is the standard in scttypes.h. 

If you want to specify the number of connectors, then the macro should be 
defined in the following way

#define XTRACHANNELSTOENV  10
#define XTRACHANNELLIST    ,0,0,0,0,0,0,0,0,0,0

that is XTRACHANNELSTOENV should be the number of connectors (that is 10 
as in the example above), while XTRACHANNELLIST should be a list of that 
many zeros (a sequence of 10 zeros in this case).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XTRACHANNELLIST

This macro is related to the function of XTRACHANNELSTOENV.

Macros for static data, mainly xIdNode

XBLO_EXTRAS

All generated struct values for (possibly inline) active classes that contain 
parts contain this macro last in the struct. By defining this macro new com-
ponents can be inserted. The type xBlockIdStruct must be updated as well. 
Normally this macro should be empty.

Example 377 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XBLO_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1221



Chapter 38: C Code Generator Macros
XBLS_EXTRAS

All generated struct values for active classes that contain parts structures 
contain this macro last in the struct. By defining this macro new components 
can be inserted. The type xBlockSubstIdStruct must be updated as well. 
Normally this macro should be empty. 

Example 378 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XBLS_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XCOMMON_EXTRAS

All generated struct values for xIdNode structures contain this macro after 
the common components. This means that it is possible to insert new compo-
nents in all xIdNodes by defining this macro. Normally this macro should be 
empty. 

Example 379 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

To insert a new int component with value 0 the following definition can be 
used:

#define XCOMMON_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XLIT_EXTRAS

All generated struct values for literal structures contain this macro last in the 
struct. By defining this macro new components can be inserted. The type 
xLiteralIdStruct must be updated as well. Normally this macro should be 
empty. 

Example 380 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XLIT_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1222 IBM Rational Tau User Guide June 2009



C Code Generator Macros
XPAC_EXTRAS

All generated struct values for package structures contain this macro last in 
the struct. By defining this macro new components can be inserted. The type 
xPackageIdStruct must be updated as well. Normally this macro should be 
empty. 

Example 381 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XSYS_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XPRD_EXTRAS

All generated struct values for operation structures contain this macro last in 
the struct. By defining this macro new components can be inserted. The type 
xPrdIdStruct must be updated as well. Normally this macro should be 
empty. 

Example 382 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XSYS_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XPRS_EXTRAS
(PREFIX_PROC_NAME)

All generated struct values for active classes, instances of active classes and 
inline active classes structures contain this macro last in the struct. By de-
fining this macro new components can be inserted. The type xPrsIdStruct 
must be updated as well. 

Example 383 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XPRS_EXTRAS(PREFIX_PROC_NAME) \
   ,XCAT(PREFIX_PROC_NAME,_STACKSIZE)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XSIG_EXTRAS

All generated struct values for signal, timer and startup signal structures con-
tain this macro last in the struct. By defining this macro, new components can 
be inserted. The type xSignalIdStruct must be updated as well. 
June 2009 IBM Rational Tau User Guide 1223



Chapter 38: C Code Generator Macros
Normally this macro should be empty. 

Example 384 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XSIG_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XSPA_EXTRAS

All generated struct values for signal parameter structures contain this macro 
last in the struct. By defining this macro, new components can be inserted. 
The type xVarIdStruct must be updated as well.

Note
Attributes, parameters of state machines, signal parameters, and struct 
components are all handled in xVarIdStruct.

Normally this macro should be empty. 

Example 385 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XSPA_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XSRT_EXTRAS

All generated struct values for passive classes and syntype structures contain 
this macro last in the struct. By defining this macro new components can be 
inserted. The type xSortIdStruct must be updated as well. Normally this 
macro should be empty. 

Example 386 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XSRT_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XSTA_EXTRAS

All generated struct values for state structures contain this macro last in the 
struct. By defining this macro new components can be inserted. The type 
xStateIdStruct must be updated as well. Usually this macro should be 
empty. 
1224 IBM Rational Tau User Guide June 2009



C Code Generator Macros
Example 387 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XSTA_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XSYS_EXTRAS

All generated struct values for the system (the “root” active class and in-
stances of it), contain this macro. By defining this macro new components 
can be inserted, last in the structures. The type xSystemIdStruct must be 
updated as well. Normally this macro should be empty. 

Example 388 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XSYS_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XSYSTEMVARS

This macro gives the possibility to introduce global variables declared in the 
beginning of the C file containing the implementation of the “root” active 
class or main thread.

XSYSTEMVARS_H

If extern definitions are needed for the data declared in XSYSTEMVARS, 
this is the place to introduce it. These definitions will be present in the .h file 
for the main thread (if separate generation is used).

XVAR_EXTRAS

All generated struct values for attributes, parameters to state machines, and 
struct components contain this macro last in the struct. By defining this 
macro new components can be inserted. The type xVarIdStruct must be 
updated as well (signal parameters also use the type xVarIdStruct). Nor-
mally this macro should be empty. 

Example 389 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define XVAR_EXTRAS  ,0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1225



Chapter 38: C Code Generator Macros
Data in state machines and operations in active classes

PROCEDURE_VARS

This macro defines the struct components that are needed for each operation 
in active classes, such as state. 

PROCESS_VARS

This macro defines the struct components that are needed for each instance 
of a state machine. Examples: 

state, parent, offspring, self, sender, inputport

YGLOBALPRD_YVARP

This macro is used to declare the yVarP pointer, which points to the yVDef 
struct for the active class, in an operation defined outside of the active class. 
As a global operation never can access data that is local to an active class, it 
is suitable to let yVarP be a pointer to a struct only containing the compo-
nents defined in the macro PROCESS_VARS.

YPAD_TEMP_VARS

Local variables in the PAD function for a state machine. Example: temporary 
variables needed for signal sending, create actions.

YPAD_YSVARP

Declaration of the ySVarP pointer used to refer to the received signal. Nor-
mally ySVarP is void *.

YPAD_YVARP
(VDEF_TYPE)

This macro is used within a state machine. It should be expanded to a decla-
ration of yVarP, which is the pointer that is used to access attributes in the 
state machine. yVarP should be of type VDEF_TYPE *, where VDEF_TYPE is 
the type of the yVDef struct for the state machine. If the pointer to the yVDef 
struct is passed as parameter to the PAD function, yVarP can be assigned its 
correct value already in the declaration. 
1226 IBM Rational Tau User Guide June 2009



C Code Generator Macros
YPRD_TEMP_VARS

This macro defines local variables in the function implementing the behavior 
of an operation in an active class.

YPRD_YVARP
Parameters: (VDEF_TYPE)

This macro is used within an operation in an active class. It should be ex-
panded to a declaration of yVarP, which is the pointer that is used to access 
attributes in the active class. yVarP should be of type VDEF_TYPE *, where 
VDEF_TYPE is the type of the yVDef struct for the state machine. If the pointer 
to the yVDef struct is passed as parameter to the operation function, yVarP 
can be assigned its correct value already in the declaration.

Macros used within PAD functions

BEGIN_PAD
Parameters: (VDEF_TYPE)

BEGIN_PAD is a macro that can be used to insert code that is executed in 
the beginning of the PAD function. VDEF_TYPE is the yVDef type for the 
state machine.

BEGIN_START_TRANSITION
Parameters: (STARTUP_PAR_TYPE)

This macro can be used to introduce code that is executed at the beginning of 
the start transition. STARTUP_PAR_TYPE is the struct (prefixed with 
ySignalPar) for the startup signal for this state machine.

CALL_SUPER_PAD_START
Parameters: (PAD)

During the start transition of a state machine, all inherited PAD functions up 
to and including the PAD function containing the start symbol have to be 
called. The reason is to initialize all attributes defined in the state machine. 
This macro is used to perform a call to the inherited PAD function (the macro 
parameter PAD). Usually this macro is expanded to something like:

yVarP->RestartPAD = PAD; PAD(VarP);
June 2009 IBM Rational Tau User Guide 1227



Chapter 38: C Code Generator Macros
followed by either a return or a goto NewTransition depending on exe-
cution model.

CALL_SUPER_PRD_START
Parameters: (PRD, THISPRD)

This macro is used in the same way as CALL_SUPER_PAD_START but for 
the start transition in an operation in an active class. THISPRD is the executing 
function, while PRD is the inherited function.

LOOP_LABEL

The LOOP_LABEL macro should be used to form the loop from a nextstate 
operation to the next signal receipt operation necessary in the OS where OS 
tasks do not perform return at end of transition (which is the case for many 
OS). This macro is also suitable to handle free on received signals and the 
treatment of the save queue. In an OS where nextstate is implemented using 
a C return the LOOP_LABEL macro is usually empty.

LOOP_LABEL_PRD

This macro is similar to LOOP_LABEL, but is used in operations in active 
classes that contain states.

LOOP_LABEL_PRD_NOSTATE

This macro is similar to LOOP_LABEL but used in operations in active 
classes that do not contain states. This macro is usually expanded to nothing.

SDL_OFFSPRING

Should return the value of offspring.

SDL_PARENT

Should return the value of parent.

SDL_SELF

Should return the value of self.
1228 IBM Rational Tau User Guide June 2009



C Code Generator Macros
SDL_SENDER

Should return the value of sender.

XEND_PRD

This is a macro generated at the end of a function that represents the behavior 
of an operation in an active class. It does not have to be expanded to anything. 

To define it as:

return (xbool)0;

might remove a compiler warning that the end of a value returning function 
might be reached.

XPRSNODE

This macro should usually be expanded to the type xPrsNode.

XNAMENODE

This macro reaches the xPrsIdNode from a PAD function. Normally this is 
yVarP->NameNode.

XNAMENODE_PRD

This macro reaches the xPrdIdNode from a PRD function. Normally this is 
yPrdVarP->NameNode.

YPAD_FUNCTION
Parameters: (PAD)

This macro gives the function heading of the PAD function that is given as 
parameter.

YPAD_PROTOTYPE
Parameters: (PAD)

This macro gives the function prototype of the PAD function that is given as 
parameter. 
June 2009 IBM Rational Tau User Guide 1229



Chapter 38: C Code Generator Macros
YPRD_FUNCTION
Parameters: (PRD)

This macro gives the function heading of the PRD function that is given as 
parameter. 

YPRD_PROTOTYPE
Parameters: (PRD)

This macro gives the function prototype of the PRD function that is given as 
parameter. 

Macros for the yInit function

BEGIN_YINIT

This macro is placed in the beginning of the yInit function. It can be ex-
panded to variable declarations and initialization code.

XPROCESSDEF_C
Parameters: (PROC_NAME, PROC_NAME_STRING, 
PREFIX_PROC_NAME, PAD_FUNCTION, VDEF_TYPE)

This macro can be used to introduce code for each instance set of active 
classes. 

• PROC_NAME 

The name of the active class without prefix.

• PROC_NAME_STRING 
The name of the active class as a character string.

• PREFIX_PROC_NAME

The name of the active class with prefix.

• PAD_FUNCTION

The PAD function for this active class instance set.

• VDEF_TYPE

The yVDef struct for this active class.

XPROCESSDEF_H
Parameters: (PROC_NAME, PROC_NAME_STRING, 
PREFIX_PROC_NAME, PAD_FUNCTION, VDEF_TYPE)
1230 IBM Rational Tau User Guide June 2009



C Code Generator Macros
This macro can be used to introduce extern declaration (placed in the proper 
.h file) for each active class instance set. 

• PROC_NAME

The name of the active class without prefix.

• PROC_NAME_STRING

The name of the active class as a character string.

• PREFIX_PROC_NAME

The name of the active class with prefix.

• PAD_FUNCTION

The PAD function for this active class instance set.

• VDEF_TYPE

The yVDef struct for this active class.

xInsertIdNode

In the yInit function the function xInsertIdNode is called for each 
IdNode. In an application this is not necessary, and the macro 
xInsertIdNode can be defined as

#define xInsertIdNode(Node)

The function xInsertIdNode is needed if XSYMBTLINK, XCOVERAGE, 
or XMONITOR is defined.

YINIT_TEMP_VARS

This macro is placed in all yInit functions and can be expanded to local vari-
ables needed within the yInit function.

Implementation of signals and signal sending

ALLOC_SIGNAL

This macro is used together with ALLOC_SIGNAL_PAR.

ALLOC_SIGNAL_PAR
Parameters: (SIG_NAME, SIG_IDNODE, RECEIVER, SIG_PAR_TYPE)
June 2009 IBM Rational Tau User Guide 1231



Chapter 38: C Code Generator Macros
This macro, together with ALLOC_SIGNAL, is used to allocate a data area 
for a signal to be sent. ALLOC_SIGNAL is used if the signal has no param-
eters, while ALLOC_SIGNAL_PAR is used if the signal has parameters. 
The resulting data area should be referenced by the variable mentioned by the 
macro OUTSIGNAL_DATA_PTR.

• SIG_NAME

The name of the signal without prefix.

• SIG_IDNODE

The xSignalIdNode of the signal.

• RECEIVER

This is the receiver given in a direct addressing clause, or the calculated 
receiver. In a NO_TO signal sending, RECEIVER is xNotDefPId.

• SIG_PAR_TYPE

This is the type of the signal (prefixed with ySignalPar). If the signal 
has no parameters this macro parameter is XSIGNALHEADERTYPE.

INSIGNAL_NAME

This macro should be expanded to the identification of the currently received 
signal. It is used to distinguish between signals when several signals are enu-
merated in the same signal receipt symbol.

OUTSIGNAL_DATA_PTR

This should be the pointer referring to the signal data area while building the 
signal during a signal sending. It should be assigned its value in 
ALLOC_SIGNAL or ALLOC_SIGNAL_PAR, and will then be used during 
assignment of signal parameters and in the SDL_2OUTPUT macro.

SDL_2OUTPUT

This macro is related to SDL_ALT2OUTPUT_COMPUTED_TO.

SDL_2OUTPUT_NO_TO

This macro is related to SDL_ALT2OUTPUT_COMPUTED_TO.

SDL_2OUTPUT_COMPUTED_TO

This macro is related to SDL_ALT2OUTPUT_COMPUTED_TO.
1232 IBM Rational Tau User Guide June 2009



C Code Generator Macros
SDL_ALT2OUTPUT

This macro is related to SDL_ALT2OUTPUT_COMPUTED_TO.

SDL_ALT2OUTPUT_NO_TO

This macro is related to SDL_ALT2OUTPUT_COMPUTED_TO.

SDL_ALT2OUTPUT_COMPUTED_TO
Parameters: (PRIO, VIA, SIG_NAME, SIG_IDNODE, RECEIVER, 
SIG_PAR_SIZE, SIG_NAME_STRING)

The six macros named SDL_*OUTPUT* are used to send the signal created 
in ALLOC_SIGNAL or ALLOC_SIGNAL_PAR. The SDL_ALT versions 
of the macros are used if the directive /*#ALT*/ has been given in the signal 
sending. The version without suffix is used for a signal sending with direct 
addressing, while the suffix _COMPUTED_TO is used for a signal sending 
without a direct addressing but it is possible to compute the receiver during 
code generation time. The suffix _NO_TO indicates a signal sending without 
direct addressing, where the receiver cannot be calculated during code gen-
eration time. 

• PRIO

For future use.

• VIA

The via list given in the signal sending.

• SIG_NAME

The name of the signal without prefix

• SIG_IDNODE

The xSignalIdNode for the signal.

• RECEIVER

The receiver given (<SENDER>.<OUTPUT>), or calculated. In a 
NO_TO signal sending, RECEIVER is xNotDefPId.

• SIG_PAR_SIZE

The size of the struct (prefixed with ySignalPar) of the signal. If signal 
without parameters SIG_PAR_SIZE is 0.

• SIG_NAME_STRING

The name of the signal as a character string.
June 2009 IBM Rational Tau User Guide 1233



Chapter 38: C Code Generator Macros
SDL_THIS

In a signal sending when the receiver is THIS, the RECEIVER parameter in 
the ALLOC_SIGNAL and SDL_2OUTPUT macros will become 
SDL_THIS.

SIGCODE
Parameters: (P)

This macro makes it possible to store a signal code (signal number) in the 
xSignalIdNode for a signal. The macro parameter P is the signal name 
without prefix.

SIGNAL_ALLOC_ERROR

This macro is inserted after the ALLOC_SIGNAL macro and the assignment 
of parameter values to the signal. It can be used to test if the alloc was suc-
cessful or not.

SIGNAL_ALLOC_ERROR_END

This macro is inserted after the SDL_2OUTPUT macro.

SIGNAL_NAME
Parameters: (SIG_NAME, SIG_IDNODE)

This macro should be expanded to an identification of the signal given as pa-
rameter. Normally the identification is either the xSignalIdNode for the 
signal or an int value. If the id is an int value it is suitable to insert defines 
of type #define signal_name number.

• SIG_NAME

The name of the signal without parameters

• SIG_IDNODE

The xSignalIdNode for the signal.

SIGNAL_VARS

The struct components that are needed for each signal instance. Example of 
such components are: sender, receiver, signal type.
1234 IBM Rational Tau User Guide June 2009



C Code Generator Macros
TO_PROCESS
Parameters: (PROC_NAME, PROC_IDNODE)

This macro is used as RECEIVER in the ALLOC_SIGNAL and 
SDL_2OUTPUT macros if the signal is sent to an active class instance set.

• PROC_NAME

This is the name of the receiving active class without prefix.

• PROC_IDNODE

This is the xPrsIdNode of the receiving active class.

TRANSFER_SIGNAL

This macro is related to TRANSFER_SIGNAL_PAR, below.

TRANSFER_SIGNAL_PAR
Parameters: (SIG_NAME, SIG_IDNODE, RECEIVER, SIG_PAR_TYPE)

These macros are used as alternatives for the ALLOC_SIGNAL macros if 
the directive #TRANSFER is given in the signal sending.

• SIG_NAME

This is the name of the signal without prefix.

• SIG_IDNODE

This is the xSignalIdNode of the signal.

• RECEIVER

This is the receiver given in a direct addressing clause, or calculated. In 
a NO_TO signal sending, RECEIVER is xNotDefPId.

• SIG_PAR_TYPE

This is the type (prefixed with ySignalPar) of the signal. If the signal 
has no parameters this macro parameter is XSIGNALHEADERTYPE.

XNONE_SIGNAL

This is the representation of a none signal.

XSIGNALHEADERTYPE

This macro is used to indicate a struct (prefixed with ySignalPar) for a 
signal without parameters. Such a signal has no generated struct. It is suitable 
to let XSIGNALHEADERTYPE be the name of a struct just containing the 
components in SIGNAL_VARS.
June 2009 IBM Rational Tau User Guide 1235



Chapter 38: C Code Generator Macros
XSIGTYPE

Depending on the representation of the signal type that is used 
(xSignalIdNode or int), this macro should either be xSignalIdNode or 
int.

Implementation of call of remote operations

ALLOC_REPLY_SIGNAL

This macro is related to ALLOC_REPLY_SIGNAL_PRD_PAR.

ALLOC_REPLY_SIGNAL_PAR

This macro is related to ALLOC_REPLY_SIGNAL_PRD_PAR.

ALLOC_REPLY_SIGNAL_PRD

This macro is related to ALLOC_REPLY_SIGNAL_PRD_PAR.

ALLOC_REPLY_SIGNAL_PRD_PAR
Parameters: (SIG_NAME, SIG_IDNODE, RECEIVER, SIG_PAR_TYPE)

These macros are used to allocate the Reply signal in the signal exchange in 
an RPC. The suffix _PAR is used if the reply signal contains parameters. The 
suffix _PRD is used if the implicit RPC transition is part of an operation in 
an active class. 

• SIG_NAME

The reply signal name without prefix.

• SIG_IDNODE

The xSignalIdNode for the reply signal.

• RECEIVER

The receiver of the reply signal. The macros 
XRPC_SENDER_IN_ALLOC and 
XRPC_SENDER_IN_ALLOC_PRD are used as actual parameters. The 
suffix _PRD is used if the implicit RPC transition is part of an operation 
in an active class.
1236 IBM Rational Tau User Guide June 2009



C Code Generator Macros
• SIG_PAR_TYPE

The type for the reply signal (prefixed with ySignalPar). If the reply 
signal does not contain any parameters the macro name 
XSIGNALHEADERTYPE is generated as actual parameter.

REPLYSIGNAL_DATA_PTR

This macro is related to REPLYSIGNAL_DATA_PTR_PRD.

REPLYSIGNAL_DATA_PTR_PRD

This should be a reference to the data area for the reply signal that is allocated 
in the ALLOC_REPLY_SIGNAL macro. The suffix _PRD is used if the im-
plicit RPC transition is part of an operation in an active class.

SDL_RPCWAIT_NEXTSTATE

This macro is related to SDL_RPCWAIT_NEXTSTATE_PRD.

SDL_RPCWAIT_NEXTSTATE_PRD
Parameters: (PREPLY_IDNODE, PREPLY_NAME, RESTARTADDR)

These macros are used to implement the implicit nextstate operation in the 
caller of an RPC. The suffix _PRD is used if the implicit RPC transition is 
part of an operation in an active class. 

• PREPLY_IDNODE

The xSignalIdNode for the reply signal.

• PREPLY_NAME

The name without prefix for the reply signal.

• RESTARTADDR

The restart address (symbol number) for the implicit input of the reply 
signal.

SDL_2OUTPUT_RPC_CALL
Parameters: (PRIO, VIA, SIG_NAME, SIG_IDNODE, RECEIVER, 
SIG_PAR_SIZE, SIG_NAME_STRING)

This macro sends the call signal of an RPC. 

• PRIO

For future use.
June 2009 IBM Rational Tau User Guide 1237



Chapter 38: C Code Generator Macros
• VIA

The via list, which in this case always is (xIdNode *)0, that is no via list.

• SIG_NAME

The RPC call signal name without prefix.

• SIG_IDNODE

The xSignalIdNode for the RPC call signal.

• RECEIVER

The receiver of the call signal. This is either expressed as an ordinary di-
rect addressing expression, or, in case of no explicit receiver specified in 
the call using the macro, it becomes XGETEXPORTINGPRS.

• SIG_PAR_SIZE

The size of the struct (prefixed with ySignalPar) for the call signal. If 
the call signal has no parameters this parameter will be 0.

• SIG_NAME_STRING

The name of the RPC call signal as a character string.

SDL_2OUTPUT_RPC_REPLY

This macro is related to SDL_2OUTPUT_RPC_REPLY_PRD.

SDL_2OUTPUT_RPC_REPLY_PRD
Parameters: (PRIO, VIA, SIG_NAME, SIG_IDNODE, RECEIVER, 
SIG_PAR_SIZE, SIG_NAME_STRING)

These macros are used to send the RPC reply signal. The suffix _PRD is used 
if the implicit RPC transition is part of an operation in an active class. 

• PRIO

For future use.

• VIA

The via list, which in this case is always (xIdNode *)0, that is no via list.

• SIG_NAME

The RPC reply signal name without prefix.

• SIG_IDNODE

The xSignalIdNode for the RPC reply signal.

• RECEIVER

The receiver of the reply signal. This is expressed using the macros 
XRPC_SENDER_IN_OUTPUT or 
XRPC_SENDER_IN_OUTPUT_PRD.
1238 IBM Rational Tau User Guide June 2009



C Code Generator Macros
• SIG_PAR_SIZE

The size of the struct (prefixed with ySignalPar) for the reply signal. If 
the reply signal has no parameters this parameter will be 0.

• SIG_NAME_STRING

The name of the RPC reply signal as a character string.

XGETEXPORTINGPRS
Parameters: (REMOTENODE)

This macro should be expanded to an expression that, given the remote op-
eration in an active class as actual macro parameter (more precisely, the 
IdNode for the remote operation), returns one possible “provider” of this re-
mote operation. Usually this macro is expanded to a call of the library func-
tion xGetExportingPrs.

XRPC_REPLY_INPUT

This macro is related to XRPC_REPLY_INPUT_PRD.

XRPC_REPLY_INPUT_PRD

Macros that can be used for special processing needed to receive an RPC 
reply signal. The macros are usually expanded to nothing.

XRPC_SAVE_SENDER

This macro is related to XRPC_SAVE_SENDER_PRD.

XRPC_SAVE_SENDER_PRD

This macro can be used to save the sender of a received RPC call signal, for 
further use when the reply signal is to be sent. The suffix _PRD is used if the 
implicit RPC transition is part of an operation in an active class.

XRPC_SENDER_IN_ALLOC

This macro is related to XRPC_SENDER_IN_ALLOC_PRD.
June 2009 IBM Rational Tau User Guide 1239



Chapter 38: C Code Generator Macros
XRPC_SENDER_IN_ALLOC_PRD

This macro is used to obtain the receiver of the reply signal (from the sender 
of the call signal) in the ALLOC_REPLY_SIGNAL macros. The suffix 
_PRD is used if the implicit RPC transition is part of an operation in an active 
class.

XRPC_SENDER_IN_OUTPUT

This macro is related to XRPC_SENDER_IN_OUTPUT_PRD.

XRPC_SENDER_IN_OUTPUT_PRD

This macro is used to obtain the receiver of the reply signal (from the sender 
of the call signal) in the SDL_2OUTPUT_RPC_REPLY macros. The suffix 
_PRD is used if the implicit RPC transition is part of an operation in an active 
class.

XRPC_WAIT_STATE

The state number used for a RPC wait state. XRPC_WAIT_STATE is usu-
ally defined as -3.

Implementation of static and dynamic create and stop

ALLOC_STARTUP

This macro is related to ALLOC_STARTUP_PAR.

ALLOC_STARTUP_PAR
Parameters: (PROC_NAME, STARTUP_IDNODE, STARTUP_PAR_TYPE)

This macro allocates the data area for a startup signal and lets the pointer 
mentioned in the macro STARTUP_DATA_PTR refer to this data area. The 
suffix _PAR is used if the startup signal contains parameters. 

• PROC_NAME

The name without prefix for the created active class.

• STARTUP_IDNODE

The xSignalIdNode for the startup signal of the created active class.
1240 IBM Rational Tau User Guide June 2009



C Code Generator Macros
• STARTUP_PAR_TYPE

The type (prefixed with ySignalPar) for the startup signal of the created 
active class.

ALLOC_STARTUP_THIS

This macro allocates the data area for a startup signal and lets the pointer 
mentioned in the macro STARTUP_DATA_PTR refer to this data area. This 
macro is used in a create THIS operation.

INIT_PROCESS_TYPE
Parameters: (PROC_NAME, PREFIX_PROC_NAME, PROC_IDNODE, 
PROC_NAME_STRING, MAX_NO_OF_INST, STATIC_INST, 
VDEF_TYPE, PRIO, PAD_FUNCTION)

This macro will be called once for each active class instance set in the yInit 
function. It should be used to initiate common features for all instances of an 
active class instance set. 

• PROC_NAME

The name without prefix for the active class instance set.

• PREFIX_PROC_NAME

The name with prefix for the active class instance set.

• PROC_IDNODE

The xPrsIdNode for the active class instance set.

• PROC_NAME_STRING

The name as character string for the active class instance set.

• MAX_NO_OF_INST

The maximum number of instances of this active class instance set.

• STATIC_INST

The number of static instances of this active class instance set.

• VDEF_TYPE

The yVDef type for this active class instance set.

• PRIO

For future use.

• PAD_FUNCTION

the PAD for this active class instance set.

SDL_CREATE
Parameters: (PROC_NAME, PROC_IDNODE, PROC_NAME_STRING)
June 2009 IBM Rational Tau User Guide 1241



Chapter 38: C Code Generator Macros
This macro is used to create (a create action) an instance of an active class. 

• PROC_NAME

The name without prefix for the active class instance set.

• PROC_IDNODE

The xPrsIdNode for the active class instance set.

• PROC_NAME_STRING

The name as character string for the active class instance set.

SDL_CREATE_THIS

This macro is used to implement the creation of THIS.

SDL_STATIC_CREATE
Parameters: (PROC_NAME, PREFIX_PROC_NAME, PROC_IDNODE,
PROC_NAME_STRING, STARTUP_IDNODE, STARTUP_PAR_TYPE,
VDEF_TYPE, PRIO, PAD_FUNCTION, BLOCK_INST_NUMBER)

This macro is called in the yInit function once for each “static” active class 
instance that should be created of an active class instance set. 

• PROC_NAME

The name without prefix for the active class instance set.

• PREFIX_PROC_NAME

The name with prefix for the active class instance set.

• PROC_IDNODE

The xPrsIdNode for the active class instance set.

• PROC_NAME_STRING

The name as character string for the active class instance set.

• STARTUP_IDNODE

The xSignalIdNode for the startup signal for the active class instance 
set.

• STARTUP_PAR_TYPE

The type (prefixed with ySignalPar) for the startup signal for the active 
class instance set.

• VDEF_TYPE

The yVDef type for the active class instance set.

• PRIO

For future use.
1242 IBM Rational Tau User Guide June 2009



C Code Generator Macros
• PAD_FUNCTION

The PAD function for the active class instance set.

• BLOCK_INST_NUMBER

If this active class instance set is part if an active class instance set that 
contains a composition, then this macro is the instance number for the ac-
tive class instance set that it belongs to. Otherwise this macro parameter 
is 1.

SDL_STOP

This macro is used to implement the operation Stop on active classes. 

STARTUP_ALLOC_ERROR

This macro is inserted after the ALLOC_STARTUP macro and the assign-
ment of parameter values to the signal. It can be used to test if the alloc was 
successful or not.

STARTUP_ALLOC_ERROR_END

This macro is inserted after the SDL_CREATE macro.

STARTUP_DATA_PTR

This macro should be expanded to a temporary variable used to store a refer-
ence to the startup signal data area. It should be assigned in the 
ALLOC_STARTUP macro and will be used to assign the actual signal pa-
rameters (the formal parameter values) to the startup signal.

STARTUP_VARS

This macro can be used to insert additional general components in the startup 
signals. In all startup signal structures SIGNAL_VARS will be followed by 
STARTUP_VARS.

Implementation of timers, timer operations and now

ALLOC_TIMER_SIGNAL_PAR
Parameters: (TIMER_NAME, TIMER_IDNODE, TIMER_PAR_TYPE)

This macro allocates a data area for the timer signal with parameters. 
June 2009 IBM Rational Tau User Guide 1243



Chapter 38: C Code Generator Macros
• TIMER_NAME

The name without prefix of the timer.

• TIMER_IDNODE

The xSignalIdNode for the timer.

• TIMER_PAR_TYPE

The type (prefixed with ySignalPar) for the timer.

DEF_TIMER_VAR

This macro is related to DEF_TIMER_VAR_PARA.

DEF_TIMER_VAR_PARA
Parameters: (TIMER_VAR)

There will be one application of this macro in the yVDef type for the active 
class for each timer declaration the active class contains. These declarations 
can be used to introduce components (timer variables) in the yVDef struct to 
track timers. The parameter TIMER_VAR is a suitable name for such a vari-
able. The suffix _PARA is used if the timer has parameters.

INIT_TIMER_VAR

This macro is related to INIT_TIMER_VAR_PARA.

INIT_TIMER_VAR_PARA
Parameters: (TIMER_VAR)

This macro will be inserted in start transitions, during initialization of active 
class attributes. This makes it possible to initialize the timer variables that 
might be inserted in the DEF_TIMER_VAR macro. The parameter 
TIMER_VAR is the name for such a variable. The suffix _PARA is used if the 
timer has parameters.

INPUT_TIMER_VAR

This macro is related to INPUT_TIMER_VAR_PARA.

INPUT_TIMER_VAR_PARA
Parameters: (TIMER_VAR)
1244 IBM Rational Tau User Guide June 2009



C Code Generator Macros
This macro will be inserted when receiving a timer signal. This makes it pos-
sible to update the timer variables that might be inserted in the 
DEF_TIMER_VAR macro. The parameter TIMER_VAR is the name for such 
a variable. The suffix _PARA is used if the timer has parameters. 

Note
If a timer signal is received in an input * statement, no 
INPUT_TIMER_VAR will be present.

RELEASE_TIMER_VAR

This macro is related to RELEASE_TIMER_VAR_PARA.

RELEASE_TIMER_VAR_PARA
Parameters: (TIMER_VAR)

This macro will be inserted at a stop. This makes it possible to perform 
cleaning up of the timer variables that might be inserted in the 
DEF_TIMER_VAR macro. The parameter TIMER_VAR is the name for such 
a variable. The suffix _PARA is used if the timer has parameters.

SDL_ACTIVE
Parameters: (TIMER_NAME, TIMER_IDNODE, TIMER_VAR)

This macro is used to implement the operation Active on a timer. Active on 
timers with parameters is not implemented in the C Code Generator.

• TIMER_NAME

The name without prefix of the timer.

• TIMER_IDNODE

The xSignalIdNode for the timer.

• TIMER_VAR

The timer variable that might be inserted in the macro 
DEF_TIMER_VAR.

SDL_NOW

This is the implementation of Now.

SDL_RESET
Parameters: (TIMER_NAME, TIMER_IDNODE, TIMER_VAR,
TIMER_NAME_STRING)
June 2009 IBM Rational Tau User Guide 1245



Chapter 38: C Code Generator Macros
This macro is used to implement the operation Reset on a timer without pa-
rameters. 

• TIMER_NAME

The name without prefix of the timer.

• TIMER_IDNODE

The xSignalIdNode for the timer.

• TIMER_VAR

The timer variable that might be inserted in the macro 
DEF_TIMER_VAR.

• TIMER_NAME_STRING

The name of the timer as a character string.

SDL_RESET_WITH_PARA
Parameters: (EQ_FUNC, TIMER_VAR, TIMER_NAME_STRING)

This macro is used to implement the operation Reset on a timer with param-
eters. 

• EQ_FUNC

The name of the generated equal function that can test if two timer in-
stances are equal or not.

• TIMER_VAR

The timer variable that might be inserted in the macro 
DEF_TIMER_VAR.

• TIMER_NAME_STRING

The name of the timer as a character string.

SDL_SET
Parameters: (TIME_EXPR, TIMER_NAME, TIMER_IDNODE,
TIMER_VAR, TIMER_NAME_STRING)

This macro is related to SDL_SET_TICKS_WITH_PARA.

SDL_SET_WITH_PARA
Parameters: (TIME_EXPR, TIMER_NAME, TIMER_IDNODE,
TIMER_PAR_TYPE, EQ_FUNC, TIMER_VAR, TIMER_NAME_STRING)

This macro is related to SDL_SET_TICKS_WITH_PARA.
1246 IBM Rational Tau User Guide June 2009



C Code Generator Macros
SDL_SET_DUR
Parameters: (TIME_EXPR, DUR_EXPR, TIMER_NAME,
TIMER_IDNODE, TIMER_VAR, TIMER_NAME_STRING)

This macro is related to SDL_SET_TICKS_WITH_PARA.

SDL_SET_DUR_WITH_PARA
Parameters: (TIME_EXPR, DUR_EXPR, TIMER_NAME,
TIMER_IDNODE, TIMER_PAR_TYPE, EQ_FUNC, TIMER_VAR,
TIMER_NAME_STRING)

This macro is related to SDL_SET_TICKS_WITH_PARA.

SDL_SET_TICKS
Parameters: (TIME_EXPR, DUR_EXPR, TIMER_NAME,
TIMER_IDNODE, TIMER_VAR, TIMER_NAME_STRING)

This macro is related to SDL_SET_TICKS_WITH_PARA.

SDL_SET_TICKS_WITH_PARA
Parameters: (TIME_EXPR, DUR_EXPR, TIMER_NAME,
TIMER_IDNODE, TIMER_PAR_TYPE, EQ_FUNC, TIMER_VAR,
TIMER_NAME_STRING)

The macros with prefix SDL_SET are used to implement the operation Set 
on a timer. 

The suffix _WITH_PARA indicates the set of a timer with parameters. In this 
case the SDL_SET macro is preceded by a call of the macro 
ALLOC_TIMER_SIGNAL_PAR, plus the assignment of the timer parame-
ters. 

The suffix _DUR is used if the time value in the set operation is expressed 
as: (now + expression). In this case both the time value and the duration value 
(the expression above) is available as macro parameter. 

The suffix _TICKS is used if the time value in the set operation is expressed 
as: (now + TICKS(...) where TICKS is an operation returning a duration 
value. In this case, both the time and the duration values are available as 
macro parameters. 

• TIME_EXPR

The time expression.

• DUR_EXPR

The duration expression (only in _DUR and _TICKS).
June 2009 IBM Rational Tau User Guide 1247



Chapter 38: C Code Generator Macros
• TIMER_NAME

The timer name without prefix.

• TIMER_IDNODE

The xSignalIdNode for the timer.

• TIMER_PAR_TYPE

The struct for the timer (only in _WITH_PARA)

• EQ_FUNC

The function that can be used to test if two timers have the same param-
eter values (only in _WITH_PARA).

• TIMER_VAR

The name of the timer variable that might be introduced in the macro 
DEF_TIMER_VAR.

• TIMER_NAME_STRING

The name of the timer as a character string.

TIMER_DATA_PTR

This should be the pointer referring to the timer data area while building 
the timer. It should be assigned its value in 
ALLOC_TIMER_SIGNAL_PAR, and will then be used during assignment 
of signal parameters and in the SDL_SET macro

TIMER_SIGNAL_ALLOC_ERROR

This macro is inserted after the ALLOC_TIMER_SIGNAL_PAR macro and 
the assignment of parameter values to the timer. It can be used to test if the 
alloc was successful or not.

TIMER_SIGNAL_ALLOC_ERROR_END

This macro is inserted after the SDL_SET macro.

TIMER_VARS

The struct components that are needed for each timer instance. Example of 
such components are: sender, receiver, timer type.

Since timers are regarded as signals once they have been sent, 
TIMER_VARS has to be identical to SIGNAL_VARS, with the addition that 
new components may be added last in TIMER_VARS, after the components 
they have in common.
1248 IBM Rational Tau User Guide June 2009



C Code Generator Macros
XTIMERHEADERTYPE

This macro is used to indicate a struct for a timer without parameters. Such 
a timer has no generated struct with parameters. It is suitable to let 
XTIMERHEADERTYPE be the name of a struct just containing the compo-
nents in TIMER_VARS.

Implementation of call and return

ALLOC_PROCEDURE
Parameters: (PROC_NAME, PROC_IDNODE, VAR_SIZE)

This macro allocates a data area (yVDef) for the called operation in an active 
class. 

• PROC_NAME

The name of operation with prefix.

• PROC_IDNODE

The xPrdIdNode of the called operation.

• VAR_SIZE

The size of the yVDef struct for the operation.

ALLOC_THIS_PROCEDURE

This macro allocates a data area (yVDef) for an operation when call THIS is 
used.

ALLOC_VIRT_PROCEDURE
(PROC_IDNODE)

This macro allocates a data area (yVDef) for the called operation in an active 
class when calling a virtual operation. The PROC_IDNODE parameter is 
xPrdIdNode for the called operation.

CALL_PROCEDURE

This macro is related to CALL_PROCEDURE_IN_PRD.

CALL_PROCEDURE_IN_PRD
Parameters: (PROC_NAME, PROC_IDNODE, LEVELS, RESTARTADDR)
June 2009 IBM Rational Tau User Guide 1249



Chapter 38: C Code Generator Macros
This macro is used to implement a call operation in SDL. The yVDef struct 
has been allocated earlier (in ALLOC_PROCEDURE) and the actual param-
eters have been assigned to components in this struct. The suffix _IN_PRD 
indicates that the call of the operation is made in an operation in an active 
class. 

• PROC_NAME

The name of operation with prefix, which is the same as the name of the 
C function representing the behavior of the operation.

• PROC_IDNODE

The xPrdIdNode of the called operation.

• LEVELS

The scope level between the caller and the called operation.

• RESTARTADDR

This is the restart address for the symbol after the operation call.

CALL_PROCEDURE_STARTUP

This macro is related to CALL_PROCEDURE_STARTUP_SRV.

CALL_PROCEDURE_STARTUP_SRV

This macro is only of interest if the PAD functions are left via a return at the 
end of transitions. In that case any outstanding operation in an active class 
must be restarted when the state machine becomes “active” again.

CALL_THIS_PROCEDURE
Parameters: (RESTARTADDR)

This macro is used to implement a call on THIS operation. RESTARTADDR is 
the restart address for the symbol after the operation call.

CALL_VIRT_PROCEDURE

This macro is related to CALL_VIRT_PROCEDURE_IN_PRD.

CALL_VIRT_PROCEDURE_IN_PRD
Parameters: (PROC_IDNODE, LEVELS, RESTARTADDR)
1250 IBM Rational Tau User Guide June 2009



C Code Generator Macros
This macro is used to implement a call operation on a virtual operation. The 
yVDef struct has been allocated earlier (in ALLOC_VIRT_PROCEDURE) 
and the actual parameters have been assigned to components in this struct. 
The suffix _IN_PRD indicates that the operation call is made in an operation 
in an active class. 

• PROC_IDNODE

The xPrdIdNode of the called operation.

• LEVELS

The scope level between the caller and the called operation.

• RESTARTADDR

This is the restart address for the symbol after the operation call.

PROCEDURE_ALLOC_ERROR

This macro is inserted after the ALLOC_PROCEDURE macro and the as-
signment of parameter values to the operation parameters. It can be used to 
test if the alloc was successful or not.

PROCEDURE_ALLOC_ERROR_END

This macro is inserted after the CALL_PROCEDURE macro.

PROC_DATA_PTR

This macro should be expanded to a temporary variable used to store a refer-
ence to the operation data area. It should be assigned in the macro 
ALLOC_PROCEDURE and will be used to assign the actual operation pa-
rameters.

SDL_RETURN

The implementation of Return.

XNOPROCATSTARTUP

If this macro is defined then all the code discussed for the macro 
CALL_PROCEDURE_STARTUP (just above) is removed.
June 2009 IBM Rational Tau User Guide 1251



Chapter 38: C Code Generator Macros
Implementation of join

Join statements are normally implemented as goto in C, but in one case a 
more complex implementation is needed. This is when the label, mentioned 
in the join, is in a super type.

XJOIN_SUPER_PRS
Parameters: (RESTARTADDR,RESTARTPAD)

This macro is related to XJOIN_SUPER_SRV, below.

XJOIN_SUPER_PRD
Parameters: (RESTARTADDR,RESTARTPRD)

This macro is related to XJOIN_SUPER_SRV, below.

XJOIN_SUPER_SRV
Parameters: (RESTARTADDR,RESTARTSRV)

The macros with prefix XJOIN_SUPER_SRV represent join to super types 
of active classes and operations, in that order.

• RESTARTADDR

The restart address in the super type.

• RESTARTPAD, RESTARTPRD, RESTARTSRV

The PAD function for the super type.

Implementation of state and nextstate
Note

Implicit nextstate operations in RPC calls are treated in the RPC section.

ASTERISK_STATE

The state number for an asterisk state. ASTERISK_STATE is usually de-
fined as -1.

ERROR_STATE

The state number used for the error state. ERROR_STATE is usually defined 
as -2.
1252 IBM Rational Tau User Guide June 2009



C Code Generator Macros
START_STATE

The state number for the start state. START_STATE should be defined as 0.

START_STATE_PRD

The state number for the start state in an operation in an active class. 
START_STATE_PRD should be defined as 0.

SDL_NEXTSTATE
Parameters: (STATE_NAME, PREFIX_STATE_NAME, 
STATE_NAME_STRING)

Nextstate operation in a state machine of the given state. 

• STATE_NAME

The name without prefix of the state.

• PREFIX_STATE_NAME

The name with prefix for the state. This identifier is defined as a suitable 
state number in generated code and is usually used as the representation 
of the state.

• STATE_NAME_STRING

The name of the state as a character string.

SDL_DASH_NEXTSTATE

Dashed nextstate operation in a state machine. 

SDL_NEXTSTATE_PRD
Parameters: (STATE_NAME, PREFIX_STATE_NAME, 
STATE_NAME_STRING)

Nextstate operation (in operation in active class) of the given state. 

• STATE_NAME

The representation of the state.

• PREFIX_STATE_NAME

The name with prefix for the state. This identifier is defined as a suitable 
state number in generated code and is usually used as the representation 
of the state.

• STATE_NAME_STRING

The name of the state as a character string.
June 2009 IBM Rational Tau User Guide 1253



Chapter 38: C Code Generator Macros
SDL_DASH_NEXTSTATE_PRD

Dashed nextstate operation in an operation in active class.

Implementation of any decisions

An any decision (non-deterministic decision) with two paths are generated 
according to the following structure:

BEGIN_ANY_DECISION(2)
DEF_ANY_PATH(1, 2)
DEF_ANY_PATH(2, 0)
END_DEFS_ANY_PATH(2)
BEGIN_FIRST_ANY_PATH(1)
  statements
END_ANY_PATH
BEGIN_ANY_PATH(2)
  statements
END_ANY_PATH
END_ANY_DECISION

BEGIN_ANY_DECISION
Parameters: (NO_OF_PATHS)

Start of the any decision. NO_OF_PATHS is the number of paths in the deci-
sion.

BEGIN_ANY_PATH
Parameters: (PATH_NO)

A path (not the first) in the implementation part of the any decision. PATH_NO 
is the path number.

BEGIN_FIRST_ANY_PATH
Parameters: (PATH_NO)

The first possible path in the implementation part of the any decision. 
PATH_NO is the path number.

DEF_ANY_PATH
Parameters: (PATH_NO, SYMBOLNUMBER)

Definition of a path in the decision. 

• PATH_NO

The path number.
1254 IBM Rational Tau User Guide June 2009



C Code Generator Macros
• SYMBOLNUMBER

The symbol number for the first symbol in this path.

END_ANY_DECISION

The end of the any decision.

END_ANY_PATH

End of one of the paths in the implementation section.

END_DEFS_ANY_PATH
Parameters: (NO_OF_PATHS)

End of the definition part of the any decision. NO_OF_PATHS is the number of 
paths in the decision.

Implementation of informal decisions

The implementation of informal decisions is similar to any decisions.

BEGIN_FIRST_INFORMAL_PATH
Parameters: (PATH_NO)

The first possible path in implementation part of the informal decision. 
PATH_NO is the path number.

BEGIN_INFORMAL_DECISION
Parameters: (NO_OF_PATHS, QUESTION)

This is the start of the informal decision. 

• NO_OF_PATHS

The number of paths in the decision.

• QUESTION

The string constant that is printed.

BEGIN_INFORMAL_ELSE_PATH
Parameters: (PATH_NO)

The else path in implementation part of the informal decision. PATH_NO is the 
path number.
June 2009 IBM Rational Tau User Guide 1255



Chapter 38: C Code Generator Macros
BEGIN_INFORMAL_PATH
Parameters: (PATH_NO)

A path in implementation part of the informal decision. PATH_NO is the path 
number.

DEF_INFORMAL_PATH
Parameters: (PATH_NO, ANSWER, SYMBOLNUMBER)

Definition of a path in the informal decision.

• PATH_NO

The path number.

• ANSWER

The answer string.

• SYMBOLNUMBER

The symbol number for the first symbol in this path.

DEF_INFORMAL_ELSE_PATH
Parameters: (PATH_NO, SYMBOLNUMBER)

Definition of the else path in the informal decision. 

• PATH_NO

The path number.

• SYMBOLNUMBER

The symbol number for the first symbol in this path.

END_DEFS_INFORMAL_PATH
Parameters: (NO_OF_PATHS)

End of the definition part of the informal decision. NO_OF_PATHS is the 
number of paths in the decision.

END_INFORMAL_ELSE_PATH

End of the else paths in the implementation section.

END_INFORMAL_DECISION

The end of the informal decision.
1256 IBM Rational Tau User Guide June 2009



C Code Generator Macros
END_INFORMAL_PATH

End of one of the paths in the implementation section.

Macros for component selection tests

The macros in this section test the validity of for example a component se-
lection of a choice variable. Also tests for optional components in structures 
and for de-referencing of pointers is treated here.

XCHECK_CHOICE_USAGE
Parameters: (TAG, VALUE, NEQTAG, COMPNAME, CURR_VALUE, 
TYPEINFO)

This macro is related to XSET_CHOICE_TAG_FREE.

XSET_CHOICE_TAG
Parameters: (TAG, VALUE, ASSTAG, NEQTAG, COMPNAME, 
CURR_VALUE, TYPEINFO)

This macro is related to XSET_CHOICE_TAG_FREE.

XSET_CHOICE_TAG_FREE
Parameters: (TAG, VALUE, ASSTAG, NEQTAG, FREEFUNC, 
COMPNAME, CURR_VALUE, TYPEINFO)

The macros with prefix XSET_CHOICE are used to test and to set the im-
plicit tag in a choice variable. The XSET_CHOICE_TAG and 
XSET_CHOICE_TAG_FREE set the tag when some component of the 
choice is assigned a value. The FREE version of the macro is used if the 
choice contains some component that has a Free function. The 
XCHECK_CHOICE_USAGE is used to test if an accessed component is ac-
tive or not.

• TAG
The implicit tag component

• VALUE
The new or expected tag value

• ASSTAG
The assignment function for the tag type

• NEQTAG
The equal test function for the tag type
June 2009 IBM Rational Tau User Guide 1257



Chapter 38: C Code Generator Macros
• FREEFUNC
The Free function for the choice type

• COMPNAME
The name of the selected component as a char string

• CURR_VALUE
The current value of the tag type

• TYPEINFO
The type info node for the tag type.

XCHECK_OPTIONAL_USAGE
Parameters: (PRESENT_VAR, COMPNAME)

This macro is used to check that a selected optional component is present. 
The PRESENT_VAR parameter is the present variable for this component, 
while COMPNAME is the selected component’s name as a char string.

XCHECK_REF

This macro is related to XCHECK_OREF.

XCHECK_OWN

This macro is related to XCHECK_OREF.

XCHECK_OREF
Parameters: (VALUE, REF_TYPEINFO, REF_SORT)

These macros are used to implement a test that null pointers (using the Own 
or ORef template) are not de-referenced. These macros are inserted before 
each statement containing a Own/ORef pointer de-referencing. In case of an 
ORef pointer it is also checked that the ORef is valid, that is it refers to an 
object owned by the current active class.

• VALUE
This is the value of the pointer.

• REF_TYPEINFO
The type info node for the referenced sort.

• REF_SORT
The C type that corresponds to the referenced instantiation passive class.
1258 IBM Rational Tau User Guide June 2009



C Code Generator Macros
XCHECK_OREF2
Parameters: (VALUE)

Checks that an ORef pointer is a valid pointer, that is NULL, or that it refers 
to an object owned by the current active class.

Debug and simulation macros

XAFTER_VALUE_RET_PRDCALL
Parameters: (SYMB_NO)

This is a macro generated between the implementation of a value returning 
operation call (implicit call symbol), and the symbol containing the call to the 
value returning operation. 

SYMB_NO is the symbol number of the symbol containing the value returning 
operation call.

XAT_FIRST_SYMBOL
Parameters: (SYMB_NO)

This is a macro generated between a signal receipt or start symbol and the 
first symbol in the transition. SYMB_NO is the symbol number of the first 
symbol in the transition.

XAT_LAST_SYMBOL

A macro generated immediately before a nextstate or stop operation.

XBETWEEN_STMTS

Related to XBETWEEN_STMTS_PRD.

XBETWEEN_STMTS_PRD
Parameters: (SYMB_NO, C_LINE_NO)

A macro generated between statements in an action. The suffix _PRD indi-
cates that these statements are part of an operation in an active class. 

• SYMB_NO

The symbol number of the next statement.
June 2009 IBM Rational Tau User Guide 1259



Chapter 38: C Code Generator Macros
• C_LINE_NO

Line number in C of this statement.

XBETWEEN_SYMBOLS

Related to XBETWEEN_SYMBOLS_PRD.

XBETWEEN_SYMBOLS_PRD
Parameters: (SYMB_NO, C_LINE_NO)

A macro generated between symbols in a transition. The suffix _PRD indi-
cates that these symbols are part of an operation in an active class. 

• SYMB_NO

The symbol number of the next symbol.

• C_LINE_NO

The line number in the C code for this statement.

XDEBUG_LABEL
Parameters: (LABEL_NAME)

This macro gives the possibility to insert labels at the beginning of transi-
tions. Such labels can be useful during debugging. The LABEL_NAME param-
eter is a concatenation of the state name and the signal name. 

Example 390 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The ‘*’ that appears in the statements 

“STATE *;” 

“INPUT *;” 

will have the name ASTERISK appear instead.

state State1; input Sig1;
state State2; input *;
state *; input Sig2;

In the generated code for these statements the following macros will be 
found:

XDEBUG_LABEL(State1_Sig1)
XDEBUG_LABEL(State2_ASTERISK)
XDEBUG_LABEL(ASTERISK_Sig2)
1260 IBM Rational Tau User Guide June 2009



C Code Generator Macros
A suitable macro definition to introduce label would be:

#define XDEBUG_LABEL(L)  L: ;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XOS_TRACE_INPUT
Parameters: (SIG_NAME_STRING)

This macro is generated as input statements and can, for example, be used to 
generate trace information about received signals. The SIG_NAME_STRING 
parameter is the name of the signal.

YPRSNAME_VAR
Parameters: (PRS_NAME_STRING)

This macro is generated among the declarations of variables in the PAD 
function for an active class. It can, for example, be used to declare a C char 
* variable containing the name of the active class. Such a variable can be 
useful during debugging. The PRS_NAME_STRING parameter is the name of 
the active class as a character string.

YPRDNAME_VAR
Parameters: (PRD_NAME_STRING)

This macro is generated among the declarations of variables in the PRD func-
tion for an operation in an active class. It can, for example, be used to declare 
a char* variable containing the name of the operation. Such a variable can 
be useful during debugging. The PRD_NAME_STRING parameter is the name 
of the operation as a character string.

Utility macros to be inserted

The following sequence of macros should be inserted. Most of them concern 
removal of struct components (in IdNodes) that are not used due to the com-
bination of other switches used.

#define NIL 0
#define XXFREE xFree
#define XSYSD xSysD.

#ifdef XTESTF
#define xTestF(p)  , p
#else
#define xTestF(p)
June 2009 IBM Rational Tau User Guide 1261



Chapter 38: C Code Generator Macros
#endif

#ifdef XREADANDWRITEF
#define xRaWF(p)  , p
#else
#define xRaWF(p)
#endif

#ifdef XFREEFUNCS
#define xFreF(p)  , p
#else
#define xFreF(p)
#endif

#ifdef XFREESIGNALFUNCS
#define xFreS(p)  , p
#else
#define xFreS(p)
#endif

#define xAssF(p)
#define xEqF(p)

#ifdef XIDNAMES 
#define xIdNames(p)  , p
#else
#define xIdNames(p)
#endif

#ifndef XOPTCHAN
#define xOptChan(p)  , p
#else
#define xOptChan(p)
#endif

#ifdef XBREAKBEFORE
#define xBreakB(p)  , p
#else
#define xBreakB(p)
#endif

#ifdef XGRTRACE
#define xGRTrace(p)  , p
#else
#define xGRTrace(p)
#endif

#ifdef XMSCE
#define xMSCETrace(p)  , p
#else
#define xMSCETrace(p)
#endif
1262 IBM Rational Tau User Guide June 2009



C Code Generator Macros
#ifdef XTRACE
#define xTrace(p)  , p
#else
#define xTrace(p)
#endif

#ifdef XCOVERAGE
#define xCoverage(p)  , p
#else
#define xCoverage(p)
#endif

#ifdef XNRINST
#define xNrInst(p)  , p
#else
#define xNrInst(p)
#endif

#ifdef XSYMBTLINK
#define xSymbTLink(p1, p2) , p1, p2
#else
#define xSymbTLink(p1, p2)
#endif

#ifdef XCTRACE
#define xCTrace(p)  p,
#define xCTraceS(p)  p;
#else
#define xCTrace(p)
#define xCTraceS(p)
#endif

#if !defined(XPMCOMM) && !defined(XENV)
#define xGlobalNodeNumber() 1
#endif

#define xSizeOfPathStack 50

#ifndef xOffsetOf
#define xOffsetOf(type, field) \
        ((xptrint) &((type *) 0)->field)
#endif
#define xToLower(C) \
        ((C >= ‘A’ && C <= ‘Z’) ? \
        (char)((int)C - (int)’A’ + (int)’a’) : C)

#define xbool int
June 2009 IBM Rational Tau User Guide 1263



Chapter 38: C Code Generator Macros
MAX_READ_LENGTH

This macro controls the length of the char * buffers used to read values of 
sorts. If large data types are used, it is possible to redefine the sizes of the 
buffers from their default size (10000 bytes) to something more appropriate.

#ifndef MAX_READ_LENGTH
#define MAX_READ_LENGTH 5000
                      /* max length of input line */
#endif

SDL_NULL

A null value for the type Pid.

xNotDefPId

This is used as RECEIVER parameter in the SDL_2OUTPUT macros. The 
section “Implementation of signals and signal sending” on page 1231 contain 
examples of how this macro is used.

Macros for threaded integrations

The following macros are used for threaded integrations only. 

THREADED

Main macro for the threaded integration model defining the kernel specifics. 

THREADED_GLOBAL_VARS

Global variable defines.

THREADED_GLOBAL_INIT

Initialization of global variables like semaphores.

THREADED_THREAD_VARS

Definitions of thread variables.

THREADED_THREAD_INIT

Initialization of thread variables.
1264 IBM Rational Tau User Guide June 2009



C Code Generator Macros
THREADED_THREAD_BEGINNING

Waits for xInitSem to be released.

THREADED_LOCK_INPUTPORT

Protects the input queue by taking the semaphore.

THREADED_UNLOCK_INPUTPORT

Releases the semaphore for the input queue.

THREADED_WAIT_AND_UNLOCK_INPUTPORT

Wait for next message/signal to arrive or the next internal timer to expire.

THREADED_SIGNAL_AND_UNLOCK_INPUTPORT

Send a signal and release the semaphore for the input queue.

THREADED_LISTREAD_START

Protect global active and available lists with a semaphore before reading it.

THREADED_LISTWRITE_START

Protect global active and available lists with a semaphore before writing to it.

THREADED_LISTACCESS_END

Release the semaphore protecting a global active or available list.

THREADED_EXPORT_START

Protect access and actions on global data by taking a semaphore

THREADED_EXPORT_END

Release the semaphore after access and actions on global data.

THREADED_START_THREAD

Starts a new thread.
June 2009 IBM Rational Tau User Guide 1265



Chapter 38: C Code Generator Macros
THREADED_STOP_THREAD

Terminates a thread.

THREADED_AFTER_THREAD_START

Synchronizes the start-up of newly created threads. 
1266 IBM Rational Tau User Guide June 2009



39
AgileC Code Generator Reference

AgileC Code Generator is intended to be used to develop applications on em-
bedded systems. It is of course possible to use AgileC Code Generator for 
other types of applications as well, but its features are designed to use when 
developing embedded systems.

An application generated by AgileC Code Generator can be executed in two 
modes, Bare and Threaded.
June 2009 IBM Rational Tau User Guide 1267



Chapter 39: AgileC Code Generator Reference
File Structure
An application generated by the AgileC Code Generator consists and de-
pends on a number of files.

The generated code reflects the contents and behavior of the system de-
scribed by the UML model. This code consists of a number of .c and .h files 
that are put in the Target Directory (or, in some circumstances, in a subdirec-
tory to the target directory). 

In addition to the generated code, there is a number of files that supports the 
building of an application. These files, and how they should be managed is 
discussed in this section.

Essential files

Files found in target directory

Depending on the code generation options files, with the following suffixes 
and extensions, might be found in the same directory as the C files generated 
from the UML model are placed. 

• .m 

This is the makefile for compiling the set of files generated from the 
UML model.

• _env.tpm 

This is a template makefile to be used to include other .c files that should 
be compiled and become part of the executable. The AgileC Code Gen-
erator generates this template at the same time it generates a file with the 
environment functions. You can then modify the template and store it 
under a new name, so it does not get overwritten, and then specify that 
the modified file should be used during compilation.

• .ifc files 

These files contain all important declarations on the outermost system 
level. It is used to access objects in the generated C code from external 
code, for example in the file implementing the environment functions.
1268 IBM Rational Tau User Guide June 2009



File Structure
• _env.c 

This file contains templates for the environment functions. The environ-
ment functions are used to connect the UML model to its environment. 
In many cases the details in the environment functions are filled in by 
adding a user specified file containing a number of macro definitions. If 
that is the case, the _env.c file can be regenerated and still be valid. In 
more difficult cases the structure of the generated environment template 
does not fit and then the template should be copied to a new name and 
modified. In this case the _env.tpm file needs to be modified as well to 
compile the correct environment file.

• auto_cfg.h 

This is a scaling and configuration file generated by the AgileC Code 
Generator. It contains information about sizes and about what UML con-
structs are used. This information is used to determine the size of some 
data structures and to exclude data and code not needed for the applica-
tion.

• uml_cfg.h 

This is a configuration file generated by the Application Builder. It con-
tains information about the build options used when building the appli-
cation and generating code.

• .o / .obj

After compilation the Target Directory will also contain object files (.o 
or .obj in most cases) and an executable (.sct normally).

Files found in kernel directory

A number of files are found in the kernel directory, usually located at: 
installation_dir/sdlkernels/agilec/kernel

• uml_kern.c and uml_kern.h

These files are the basic implementation of the run-time kernel. The file 
uml_kern.h is included by all .c files.

• sctpred.c and sctpred.h

These files implement the support for predefined data types.
June 2009 IBM Rational Tau User Guide 1269



Chapter 39: AgileC Code Generator Reference
Files found in RTOS directory

In a subdirectory named RTOS to the kernel directory, all the supported 
RTOS (real-time operating system) integrations can be found, each integra-
tion in a subdirectory of its own. 

• rtapidef.h and rtapidef.c

Each integration contains two files, rtapidef.h and rtapidef.c. As of 
today, the following integrations are supported:

• POSIX pthreads integration in subdirectory POSIX

• Win32 integration in subdirectory Win32

There are two additional files that are important for building an executable. 
These files are comp.opt and makeoptions or make.opt. 

• comp.opt

When a Target Kind is selected for a Build Artifact, it is actually a di-
rectory that is selected. The AgileC Code Generator reads the comp.opt 
file in this directory and uses the information in this file to determine how 
to generate the “makefile”. 

comp.opt also contains templates for invoking the compiler, the linker 
and so on.

• makeoptions or make.opt 

This file contains information about compilation switches and how to 
compile the kernel. This file is included in the generated “makefile” for 
the system. The name of the file and the syntax for how to include, is de-
fined in the beginning of comp.opt

Include structure for C files

uml_kern.h

The top level for definitions is the uml_kern.h file. This file is included by 
all .c files and includes in turn a number of other .h files according to the 
list below.

This file includes:

• standard C header files like string.h, stdlib.h, limits.h etc.

• uml_cfg.h 
1270 IBM Rational Tau User Guide June 2009



File Structure
• auto_cfg.h 

• comphdef.h (compiler/hardware integration) 

• rtapidef.h (run-time API integration) 

• sctpred.h 

uml_kern.c

Include is also used for .c files. In this way the complete kernel will be com-
piled when the top element, uml_kern.c, is compiled.

• uml_kern.h 

• rtapidef.c (run-time API integration) if you select this

• sctpred.c 
June 2009 IBM Rational Tau User Guide 1271



Chapter 39: AgileC Code Generator Reference
Environment Functions

General

Virtually all real applications have some physical environment, let it be soft-
ware or hardware. The UML model describes on a high abstraction level the 
interaction the environment (sending or receiving signals or remote proce-
dure calls), but not what should really happen. A signal sent from the UML 
system should for example cause a hardware register to be set or a TCP/IP 
packet to be sent over Internet to ‘somewhere in the Internet world’. The im-
plementation of the interaction is provided in the environment functions. 

Separating the decision that an interaction should occur from its implemen-
tation simplifies the understanding of the overall behavior of the model. It is 
also easier to simulate or validate the model, as in such a situation it is nec-
essary to have full control over the environment. For example, it is usually 
not suitable to simulate on the target platform, which makes hardware unable 
to access.

The following environment functions are available for use:

extern void xInitEnv (void);
extern void xCloseEnv (void);
extern void xOutEnv (xSignal *);
extern void xInEnv (void);

• xInitEnv and xCloseEnv are used to initialize and close down the en-
vironment in a controlled way

• xOutEnv is called by the run-time kernel when a signal is sent from the 
system to the environment and should implement the actions needed 
when signals are sent from the system. 

• xInEnv provides the reverse support, i.e. to send a signal into the system 
due to events in the environment. The details depend somewhat on the 
situation and will be described below.

The usage of the environment functions is controlled in the Application 
Builder by specifying which environment function should be used. This re-
sults in the possible inclusion of the macro defines

#define USER_CFG_USE_xInitEnv
#define USER_CFG_USE_xCloseEnv
#define USER_CFG_USE_xOutEnv
#define USER_CFG_USE_xInEnv
1272 IBM Rational Tau User Guide June 2009



Environment Functions
in the file uml_cfg.h generated by the application builder.

xInitEnv

This function is to be used to initialize the environment. The function is 
called once during the initialization of the application (in function xInit in 
uml_kern.c).

xCloseEnv

This function can be used to close down the environment. The function is 
called once in the main function in uml_kern.c. 

Note
In an RTOS integration this might not be a suitable way to perform the 
closing of RTOS tasks – refer to the technical documentation of the RTOS 
how to properly close down OS threads.

xOutEnv

The xOutEnv function passes a pointer to a signal that is sent to the environ-
ment. It is called from the signal sending functions in uml_kern.c (xOutput 
and xOutputSimple). The function should perform whatever action that is 
necessary when the signal passed as parameter is sent to the environment. 

The function should free the memory of any signal parameters that is imple-
mented using pointers. The handling of the signal itself is, however, per-
formed by the calling functions. In the generated template for the xOutEnv 
function that is discussed below, the proper code for memory management is 
automatically inserted. An example of an xOutEnv is also shown in the sec-
tion on the template environment functions.

xInEnv

The xInEnv function is a way to handle signals that are sent from the envi-
ronment to the application. If it is a suitable way, or not, depends on the ac-
tual application and the integration mode. Independent of how and where sig-
nals to be sent into the system are handled, there are two functions in 
uml_kern.c that should be used:

extern xSignal *xGetSignal (xSignalId, int, xSignal **);
extern void xENVOutput (xSignal *, xuint8, SDL_Pid);
June 2009 IBM Rational Tau User Guide 1273



Chapter 39: AgileC Code Generator Reference
First, xGetSignal is used to get a pointer to a signal data area. Then the 
signal parameters should be assigned their values and last the signal is sent 
using the xENVOutput function. 

xGetSignal Parameters

• first parameter to xGetSignal: The signal identity (a number).

• second parameter to xGetSignal: The size of the data area for parame-
ters. If the system contains no signal, no timer, and no part with parame-
ters, then this parameter is not used at all.

• third parameter to xGetSignal: This is an optimization parameter that 
should always be 0.

xENVOutput Parameters

• first parameter to xENVOutput: Reference to the signal obtained by 
xGetSignal

• second parameter to xENVOutput: Signal priority for the signal. If signal 
priorities are not enabled, then this parameter is excluded.

• third parameter to xENVOutput: The receiver of the signal. 

More details on how to give these parameters can be found in the sections 
below.

Implementing signal sending to the application

There are three typical cases of how to implement signal sending into the ap-
plication. 

Sending not using xInEnv

In the first case the xInEnv function is not used. Consider the situation of a 
bare integration (no underlying RTOS). In that case it is possible to send sig-
nals directly in interrupt routines into the system, using the functions de-
scribed above. To protect the data structure for signals and signal queues it is 
then necessary to implement functions or macros to Disable and enable inter-
rupts. 
1274 IBM Rational Tau User Guide June 2009



Environment Functions
Sending using xInEnv in bare integration

Case two is also a bare integration (no underlying RTOS). However the sig-
nals are not sent directly in the interrupt routines. Instead the interrupt rou-
tines are just used to set up some global data structure to remember informa-
tion about external events. The xInEnv function is then used to actually send 
the signal. xInEnv will be repeatedly called from the scheduler (function 
xMainLoop in uml_kern.c) between each transition executed by the 
system. In each call the xInEnv function should check for external events 
and send the appropriate signal(s) into the system. xInEnv should the return 
as fast as possible to the scheduler. It is up to you to protect the data structure 
used to remember external event. The data structures in the AgileC Code 
Generator kernel need not to be protected in this case.

Send signals with xInEnv in a RTOS integration

Case three handles the situation of an RTOS integration. In that case it is suit-
able to run xInEnv in a thread of its own. In the predefined integrations the 
main thread runs xInEnv after it has created the other threads. The xInEnv 
function should in this case look something like:

while (1) {
  wait for an event;
  if (event corresponding to signal 1) {
    send signal 1;
  }
  if (event corresponding to signal 2) {
    send signal 2;
  }
  and so on;
}

The “wait for an event” should hang this thread when there is nothing to do. 
Otherwise this thread might run all the time. When something happens that 
should cause a signal to be sent to the application, the code where this has 
been detected should store information in some global data area (protected!) 
and execute code to restart the xInEnv function. In simple cases just a sema-
phore can be used to handle xInEnv.

A polling solution can be obtained in the structure above by just imple-
menting “wait for an event” as a sleep for an appropriate amount of time. 
During each turn the xInEnv will then check if some external event has oc-
curred and send the corresponding signal.
June 2009 IBM Rational Tau User Guide 1275



Chapter 39: AgileC Code Generator Reference
Note
If a polling solution for xInEnv is choosen it is important that the thread is 
suspended for a long enough time. The minimal time to wait depends on the 
pace in which injected signals can be consumed by the application. This in 
turn can depend on various things, such as the design of the model, which 
thread deployment that is used, or even on how threads are allocated on dif-
ferent hardware artifacts. In general you must make sure that signals are 
not injected in the application at a faster pace than they can be consumed. 
Otherwise the application will eventually run out of resources.

Interface header file (.ifc)

The .ifc file is a system interface header file containing information about 
entities defined inside the system. For such entities code is generated. Some 
of these definitions can be useful in external code, like for example the envi-
ronment functions. In the generated code for the system, except the .ifc file, 
all UML name are prefixed or suffixed to make the names unique in C. In the 
.ifc file the UML names have a predefined Prefix.

In the .ifc file names for the parts in the system can be found. These names 
can be used as receiver, when sending signals in the xInEnv function.

Generated environment functions

In the beginning of the systemname_env.c file the following statements 
can be found.

#include “uml_kern.h”
#ifdef XENV_INC
#include XENV_INC
#endif
#include “exenv.ifc”

By defining XENV_INC to a file name it is possible to include a user defined 
file. This macro is suitable to define in the uml_cfg.h file generated by the 
Application Builder. Use the possibility to include your own defines and in-
sert something like:

#define XENV_INC “my_defines.h”

In this way the skeletons for the generated environment functions can be 
filled in using macro definitions from the included file. The environment 
functions can then be regenerated without the risk of overwriting manually 
inserted or modified code.
1276 IBM Rational Tau User Guide June 2009



Environment Functions
xInitEnv and xCloseEnv structure

The xInitEnv and the xCloseEnv functions have the following structure:

extern void xInitEnv(void)
{
  /* Code to initialize the environment may be 

inserted here */
  XENV_INIT
}

extern void xCloseEnv(void)
{
  /* Code to bring down the environment in a controlled

manner may be inserted here. */
  XENV_CLOSE
}

where XENV_INIT and XENV_CLOSE are empty macros if you have not 
defined them earlier. These macros should be the sequence of statements and 
function calls needed at the initialization and termination. 

The function xInitEnv is surrounded by:

#ifdef USER_CFG_USE_xInitEnv
#endif

(similar for xCloseEnv as for xInEnv and xOutEnv discussed below) to 
compile the function only if you have specified that the function should be 
used. This is set in the uml_cfg.h file by the Application Builder.

xOutEnv structure

The generated xOutEnv function will have the following structure.

extern void xOutEnv(xSignal *SignalOut)
{
  OUT_START_CODE

  /* Signal s1 */
  #ifndef OUT_SIGNAL_sig_s1
    #define OUT_SIGNAL_sig_s1
  #endif
  if (SignalOut->Sid == sig_s1) {
    OUT_SIGNAL_sig_s1
    return;
  }

  /* Signal s2 */
  #ifndef OUT_SIGNAL_sig_s2
    #define OUT_SIGNAL_sig_s2(P1, P2)
  #endif
June 2009 IBM Rational Tau User Guide 1277



Chapter 39: AgileC Code Generator Reference
if (SignalOut->Sid == sig_s2) {
    OUT_SIGNAL_sig_s2(

((ySignalPar_sig_s2 *)SignalOut)->Param1,
      ((ySignalPar_sig_s2 *)SignalOut)->Param2)
    xFreeSignalPara(SignalOut);
    return;
  }
}

where OUT_START_CODE is an empty macro if you have not defined it. 
The code consists of a sequence of “if” statements, each handling one of the 
signal types that can be sent to the environment. For each signal the if expres-
sion tests the signal identity. 

When the correct if statement is found the statements defined by the macro 
OUT_SIGNAL_signalname is executed. This macro has one parameter for 
each signal parameter and is empty if you have not defined it. This means that 
the code will compile, but do nothing if the OUT_SIGNAL macros are not 
defined. The structure makes incremental development possible, that is to 
say that you can implement the treatment of a few signals and then start 
testing, without bothering about the code for all the other signals.

The code in the example above assumes that the name for signals used in the 
.ifc file is sig_%n, where %n is the signal name in UML. The 
xFreeSignalPara function call in the s2 section is necessary when any of 
the signal parameters is implemented using dynamic memory and a free op-
eration is needed for the parameter value. The data area for the signal itself 
is handled in uml_kern.c at the places where xOutEnv is called.

xInEnv structure

The generated xInEnv function has the following structure. The example 
below shows an example suitable in a bare integration.

extern void xInEnv (void)
{
  xSignal *SignalIn;
  IN_START_CODE

  /* Signal s1 */
  #ifdef IN_SIGNAL_sig_s1
    if (IN_SIGNAL_sig_s1) {
      SignalIn = xGetSignal(sig_s1, 0, 0);
      xENVOutput(SignalIn, IN_RECEIVER_s1);
    }
  #endif

/* Signal s2 */
1278 IBM Rational Tau User Guide June 2009



Environment Functions
  #ifdef IN_SIGNAL_sig_s2
    if (IN_SIGNAL_sig_s2) {
      SignalIn = xGetSignal(sig_s2,

sizeof(ySignalPar_sig_s2), 0);
      ((ySignalPar_sig_s2 *)SignalOut)->Param1 =

IN_PARA1_sig_s2;
      yAssF_s_7(

((ySignalPar_sig_s2 *)SignalOut)->Param2,
IN_PARA2_sig_s2,

        XASS_MR_ASS_NF);
      xENVOutput(SignalIn, IN_RECEIVER_s2);
    }
  #endif

  IN_END_CODE
}

where the macros IN_START_CODE and IN_END_CODE are empty if you 
have not defined them.

Each signal is treated in four steps.

• The enabling macro IN_SIGNAL_signalname. This is used in an if state-
ment to determine if an external event has occurred that should cause the 
signal to be sent into the system.

• The SignalIn variable is assigned a new signal data area.

• The signal parameters are filled in, if any. The value for each parameter 
should be defined using the appropriate macro IN_PARA1_signalname, 
IN_PARA2_signalname and so on.

• The signal is sent by calling xENVOutput. Here the receiver of the signal 
must be given by the macro IN_RECEIVER_signalname. The appro-
priate values can be found in the .ifc file looking for defines of type:

#define xPartNo_Partname  <integer number>

The structure above also enables incremental development as the complete 
section for a certain signal is removed if the enabling macro is not defined.

For a threaded application the structure is very similar. A loop is included in 
the function according to the following.

extern void xInEnv (void)
{
  xSignal *SignalIn;
  IN_START_CODE
  while (1) {
    IN_WAIT_FOR_ACTION
/* To avoid that the thread running xInEnv takes

all resources it should wait on for example a
semaphore until something occurs that should
June 2009 IBM Rational Tau User Guide 1279



Chapter 39: AgileC Code Generator Reference
cause a signal to be sent into the system */

    /* Here the code for the signals is placed in the
same way as in the previous example. */

  }

IN_END_CODE
}

Note
IN_WAIT_FOR_ACTION must be implemented according to the previous 
discussion.
1280 IBM Rational Tau User Guide June 2009



Compile and Link an Application
Compile and Link an Application

Essential files

The essential files used for compilation and linking of an AgileC Code Gen-
erator application are

• comp.opt: controlling syntax of different commands

• make.opt or makeoptions: Contains compiler flags and compilation of 
the kernel. This file is included by the generated makefile.

• systemname.m: This is the generated makefile for the application.

• systemname_env.tpm: This is the generated template makefile for files 
that are not under full control of the code generator. This file is generated 
if template environment functions are generated. 

comp.opt

The comp.opt file is used to control the complete build process. When you 
select a “Target Kind” in the Application Builder, this information is used to 
refer to a directory containing such a comp.opt file. The code generator will 
read this file during code generation time and will use the information ac-
cording to the following.

The comp.opt file consists of five important lines (plus lines counted as 
comments). The syntax for the file is described in “Library files” on page 
1063, where a more detailed description of the complete make process can 
also be found. Below an overview for AgileC Code Generator can be found. 

• Line 1: The syntax for including make.opt in the generated makefile for 
the application. The code generator copies this line at the start of the gen-
erated makefile.

• Line 2: Template for a compilation command. This is used by the code 
generator to generate proper compilation commands in the generated 
makefile.

• Line 3: Template for link command. This is used by the code generator 
to generate a link command in the generated makefile.

• Line 4: The command to be executed to start the make process. This 
should be a shell command that the code generator will execute after it 
has finished the code generation.

• Line 5: Template for building a library.
June 2009 IBM Rational Tau User Guide 1281



Chapter 39: AgileC Code Generator Reference
systemname.m

When the code generator has finished the process of generating code it will 
execute the command defined in compt.opt at line 4. This usually is some-
thing like:

make -f systemname.m sctdir=<a directory>

This will invoke the make facility with the generated makefile. 

makeoptions (make.opt)

In the beginning of the generated makefile is an include statement, including 
the file makeoptions (make.opt) can be found. The variable sctdir, 
passed to make at the command line, is used to point out the directory where 
to find makeoptions. 

The make program will process the makeoptions file, where it finds a 
number of settings for compiler, linker, and options for the compilation com-
mands for the kernel files. In the generated makefile it will then find the com-
pilation commands for the generated files and a command to link the object 
file to an executable.

system name_env.tpm

The template makefile mentioned above, is used to compile the files that are 
not directly under the control of the code generator. Such a file is generated 
if a file with template environment functions is generated. This file will have 
the name system name_env.tpm and handles compilation of the file with 
template environment functions. You can in the Application Builder specify 
what template makefile that should be used. This can either be the generated 
one (use the file name *), or a user defined file. The contents of the specified 
template makefile is copied last into the generated makefile.

Adopting a compiler

If you need to adopt e.g. a cross compiler, you should do that by creating a 
new directory where a comp.opt and a makeoptions (or make.opt) file are 
placed. The easiest way is usually to copy existing comp.opt and 
makeoptions (or make.opt) files and modify them. In the Application 
Builder the new directory is then selected as kernel.
1282 IBM Rational Tau User Guide June 2009



Integration with Compiler and Operating System
Integration with Compiler and Operating 
System

This section describes how to set up a compiler and target platform in order 
to get an application running. 

Integration with a new compiler

There are mainly two aspects when a new compiler should be used. Compiler 
name and switches, and what include files are needed.

Compiler name and switches

Specifying compiler name and suitable compiler switches are part of the 
build process. These topics are discussed in the previous section – see “Com-
pile and Link an Application” on page 1281.

Include files

The other major aspect is the include files needed for the kernel code and for 
the generated code, but also include files used for user specific code. If no 
integration is specified a default section including the .h file needed by the 
kernel and the generated code is used. This follows ISO C specifications on 
system include files. In this case the following is included (compare with the 
kernel file uml_kern.h)

#if defined(USER_CFG_COMPHDEF)

  #include "comphdef.h"

#else

  /* Use default (ISO-C) */
  #include <string.h>
  #include <stdlib.h>
  #include <limits.h>
  #include <stdarg.h>
  #ifdef CFG_ADD_STDIO
    #include <stdio.h>
  #endif

  #if defined(__cplusplus) && defined(_MSC_VER)
    #include <cstddef> /* C++ and Microsoft compiler */
  #else
    #include <stddef.h>
  #endif
June 2009 IBM Rational Tau User Guide 1283



Chapter 39: AgileC Code Generator Reference
#endif

That is if USER_CFG_COMPHDEF is not defined the include files given 
above is included. 

Note
stdio.h is only needed if printing is used.

If the compiler/run-time library with the compiler does not provide the func-
tions defined in string.h, the kernel (uml_kern.c) includes implementa-
tions of the function that is used from this file. The functions are:

memset, memcpy, strlen, strcpy, strncpy, and strcmp 

By inserting defines, according to the list below, in the uml_cfg.h file gen-
erated by the Application Builder, it is possible to use the kernel implemen-
tations of these functions:

#define USER_CFG_USE_memset
#define USER_CFG_USE_memcpy
#define USER_CFG_USE_strlen
#define USER_CFG_USE_strcpy
#define USER_CFG_USE_strncpy
#define USER_CFG_USE_strcmp

To customize the list of included system files (and possibly other .h files 
needed in your application), the macro USER_CFG_COMPHDEF should be 
defined. 

The define should be added in the Build Artifact in the Extra code / Head 
field. This will put the statement into the uml_cfg.h file.

#define USER_CFG_COMPHDEF

Another option, which is used in the predefined kernels is to include this def-
inition on the command line to the compiler using a -D option or something 
similar.

In this case the file comphdef.h will be included. It is then also necessary to 
adopt the build process, specifically the list of directories where the compiler 
looks for include file, so the compiler finds the correct comphdef.h. Usually 
this is performed by -I options to the compiler.
1284 IBM Rational Tau User Guide June 2009



Integration with Compiler and Operating System
Integration with the run-time system

There are a number of aspects that is important in the integration with the 
run-time system provided by the underlying hardware and software: 

• Clock function 

• Memory management for dynamic memory

• Protecting data by disabling/enabling interrupts (non threaded integra-
tion)

• Threaded integration with an RTOS.

Just as for the compiler integration you can enable your own integration by 
including a define of the macro USER_CFG_RTAPIDEF in uml_cfg.h (or 
as a compiler option):

#define USER_CFG_RTAPIDEF

In that case the file rtapidef.h will be included in uml_kern.h and 
rtapidef.c will be included in uml_kern.c. Appropriate options must be 
given to the compiler so it finds the correct rtapidef.* files.

If USER_CFG_RTAPIDEF is not defined then a standard integration is 
used. The algorithm used for this selection is:

if (threading is used)
  if (Microsoft or Borland compiler is used)
    Use a Win32 threaded integration
  else
    Use a POSIX pthreads integration
  endif
else
  Use a non-threaded integration
endif

Note
 POSIX pthreads integration and non-threaded integrations will likely 
work on most UNIX systems/compilers. This is however tested only on sup-
ported systems/compilers.

Clock function

To support the UML concept of timers, a clock function is necessary. The 
generated code and the kernel assumes that there is a clock function called 
xNow that returns the current time. Time values are represented by values of 
type SDL_Time. 
June 2009 IBM Rational Tau User Guide 1285



Chapter 39: AgileC Code Generator Reference
There are two standard implementations of the clock function, one for UNIX 
like systems and one for Windows. In Windows the standard function 
_ftime is used to read the system clock, while on UNIX like systems the 
standard function clock_gettime is used.

To implement a clock function you should include your own rtapidef.h 
and rtapidef.c files according to the details below. 

If timers are not used and the clock is not explicitly accessed in UML or C, 
there is no need for a clock implementation. Just include the macro defini-
tion:

#define xInitSystime()

in rtapidef.h.

If a clock implementation is needed then include the following prototypes in 
rtapidef.h:

extern void xInitSystime(void);
extern SDL_Time xNow (void);

If no initialization function is needed then the xInitSystime function can 
be replaced by the macro.

#define xInitSystime()

In the file rtapidef.c the implementation of these functions should be pro-
vided. The implementations will depend a lot on the support in software and 
hardware for the underlying architecture.

Memory management

In some cases dynamic memory is needed by a generated application. To 
support this an “alloc” and a “free” function must be provided. You have 
three possibilities:

• The first alternative is to use the built-in memory package. This option 
be specified in the Application Builder. In this case an array of bytes is 
defined and the memory in this array is used as dynamic memory. The 
algorithm used for the memory management is implemented in the kernel 
and is basically a best fit algorithm. The size of the array can, of course, 
be set by you. It is also possible to specify a minimum block size. In that 
case only blocks of size 2^n * min_block_size will be allocated. This 
may reduce the risk for memory fragmentation.
1286 IBM Rational Tau User Guide June 2009



Integration with Compiler and Operating System
• The second alternative is to rely on a calloc and a free function pro-
vided by the underlying layer. This is the default behavior. If calloc is 
not available a combination of malloc and memset can be used instead, 
by defining CFG_NO_CALLOC_AVAILABLE.

• The third alternative is to implement the memory management yourself. 
In that case the macro USER_CFG_USE_USER_MEMFUNC should be 
defined. It is assumed that you implement the functions:

extern void *xAlloc (unsigned int);
extern void xFree (void **);

in the file rtapidef.c. The prototypes are present in uml_kern.h so it is 
not necessary to insert them into rtapidef.h. 

Note
If the application does not use dynamic memory, there is no need to imple-
ment these functions.

The xAlloc function should allocate memory of the size given as parameter 
and return a reference to the memory. It is assumed that the memory is set to 
0 by the xAlloc function. Example:

void *xAlloc (unsigned int Size)
  {
    void * Ptr;
    Ptr = (void *)malloc(Size);
    if (Ptr)
      (void)memset(Ptr, 0, Size);
    return Ptr;
  }

The xFree function takes a pointer to a pointer to some memory to be re-
turned to the pool of free memory. The function should free the memory and 
set the pointer to 0. Example:

void xFree (void ** Ptr)
  {
    if (*Ptr) {
      free(*Ptr);
      *Ptr = (void *)0;
    }
  }

The xAlloc and xFree functions must be thread safe. The functions in the 
built-in a memory package are protected by a semaphore or by turning off 
and on interrupts. In case two, when using the OS calloc and free it is as-
sumed that these functions are thread safe. 
June 2009 IBM Rational Tau User Guide 1287



Chapter 39: AgileC Code Generator Reference
Disable and enable interrupts

In a non-threaded application where you want to be able to send signals into 
the system in interrupt routines, some important data structures for signals 
must be protected from simultaneous access. To achieve this it is necessary 
to disable interrupts while executing certain operations in the kernel.

To implement disabling and enabling of interrupts, you should in 
rtapidef.h define two macros with the structure given below.

#define XBEGIN_CRITICAL_PATH \
        UserCodeToDisableInterrupts;

#define XEND_CRITICAL_PATH \
        UserCodeToEnableInterrupts;

where UserCodeToDisableInterrupts and 
UserCodeToEnableInterrupts should be replaced by code performing 
these actions for the hardware and software platform that is used.

Threaded integrations

To implement a new integration it is recommended to use this manual to-
gether with the code for some existing integration(s). There are some major 
aspects that have to be handled to implement an integration with real-time 
operating system. 

• It is necessary to implement a clock function.

• There is need for a number of mutexes or binary semaphores to protect 
some shared data.

• Some startup code, for creating threads with relevant properties and syn-
chronizing them are needed.

• A thread must be able to suspend its execution when it is idle. It must then 
be possible to wake it up again when a signal is sent to a part in the thread.

To explain the details in these integration aspects the POSIX integration will 
be used as an example. Apart from the code mentioned below the 
rtapidef.h should include the necessary system include files to be able to 
access the concepts needed. 

Example 391: Includes in rtapidef.h for POSIX–––––––––––––––––––––––––––––

#include <pthread.h>
#include <sched.h>
1288 IBM Rational Tau User Guide June 2009



Integration with Compiler and Operating System
#include <semaphore.h>
#include <time.h>
#include <sys/time.h>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the RTOS has any requirements on the main() function, which might be 
the case, it is possible to rename the main() function included in 
uml_kern.c by defining XMAIN_NAME to for example:

#define XMAIN_NAME agilec_main

Then the user has to implement a proper main function that calls the 
agilec_main function. 

The clock function

The clock function should be implemented according to the description 
found in a previous section.

Protection of shared data

It is necessary to protect the list of available signals, the list of available 
timers, the list of free parts (for create actions), and, if the memory package 
is used, the memory used by the package.

For this four global mutexes or binary semaphores are needed. These vari-
ables should be defined extern in rtapidef.h and declared in 
rtapidef.c. The names of the variables should be the same as in the ex-
ample given below.

Example 392: In rtapidef.h: –––––––––––––––––––––––––––––––––––––––––––––

extern pthread_mutex_t xFreeSignalMutex;
extern pthread_mutex_t xFreeTimerMutex;
extern pthread_mutex_t xCreateMutex;
#ifdef USER_CFG_USE_MEMORY_PACK
  extern pthread_mutex_t xMemoryMutex;
#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 393: In rtapidef.c:

pthread_mutex_t xFreeSignalMutex;
pthread_mutex_t xFreeTimerMutex;
pthread_mutex_t xCreateMutex;
#ifdef USER_CFG_USE_MEMORY_PACK
  pthread_mutex_t xMemoryMutex;
June 2009 IBM Rational Tau User Guide 1289



Chapter 39: AgileC Code Generator Reference
#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

These four variables should be initialized during the startup of the applica-
tion to an unlocked state. The function xThreadInit is a proper place for 
this initialization.

Example 394: xThreadInit ––––––––––––––––––––––––––––––––––––––––––––––

void xThreadInit (void)
{
  (void)pthread_mutex_init(&xFreeSignalMutex, 0);
  (void)pthread_mutex_init(&xFreeTimerMutex, 0);
  (void)pthread_mutex_init(&xCreateMutex, 0);
  #ifdef USER_CFG_USE_MEMORY_PACK
    (void)pthread_mutex_init(&xMemoryMutex, 0);
  #endif
  ....
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The lock and unlock operation must also be implemented for mutexes or bi-
nary semaphores. The following two functions should be implemented.

Example 395: Functions for lock and unlock –––––––––––––––––––––––––––––––

In rtapidef.h:

extern void xThreadLock (pthread_mutex_t *);
extern void xThreadUnlock (pthread_mutex_t *);

In rtapidef.c:

void xThreadLock (pthread_mutex_t *M)
{
  (void)pthread_mutex_lock(M);
}

void xThreadUnlock (pthread_mutex_t *M)
{
  (void)pthread_mutex_unlock(M);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Startup phase - creating the threads

After some basic initialization the AgileC Code Generator kernel will start 
the specified threads in the main() function. 
1290 IBM Rational Tau User Guide June 2009



Integration with Compiler and Operating System
For each thread the functions xThreadInitOneThread and 
xThreadStartThread will be called, where xThreadInitOneThread 
should perform some thread specific initialization and 
xThreadStartThread should start the thread. Each thread should run the 
function xMainLoop declared in the kernel. This is performed by using a 
wrapper function, xThreadEntryFunc, which is defined in the integration 
and is the function that is actually started in the thread. 

After all the threads have been started the function xThreadGo is called in 
the function main(). Some more information on these functions are given 
below.

It is important that the started threads do not execute any UML transitions be-
fore all threads are created. Therefore the xThreadEntryFunc will as first 
action wait on a semaphore. The xThreadGo function will when all threads 
are created release this semaphore.

The global data structure xSysD is an array with components of type 
xSystemData, with one component per thread.  xSysD contains global infor-
mation about what is going on just now in the threads. Details about the in-
formation in xSysD can be found in the section “Overview of Important Data 
Structures” on page 1312. In the context of RTOS integrations two aspects 
are important. Each thread (the xMainLoop function) must know the address 
for the component in xSysD representing the thread. Each xSysD component 
contains a field of type xThreadVars, which should be defined in the RTOS 
integration.

Example: xThreadVars type in rtapidef.h

typedef struct {
  pthread_mutex_t SignalQueueMutex;
  pthread_cond_t  SignalQueueCond;
  pthread_t       ThreadId;
} xThreadVars;

where the two first fields will be discussed in the next section, and the 
ThreadId will be used during the startup phase to store the identity of the 
threads.

The code for the behavior described in this section should look something 
like the following example.

Example 396: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In rtapidef.h:
June 2009 IBM Rational Tau User Guide 1291



Chapter 39: AgileC Code Generator Reference
extern sem_t xInitSem;
#if !defined(USER_CFG_USE_xInEnv) && !defined(XENV)
  extern sem_t xMainThreadSem;
#endif

extern void xThreadInitOneThread (
struct _xSystemData *);

extern void xThreadStartThread (
struct _xSystemData *,
unsigned int, unsigned int,
unsigned int, unsigned int);

In rtapidef.c:

sem_t xInitSem;
#if !defined(USER_CFG_USE_xInEnv) && !defined(XENV)
sem_t xMainThreadSem;

#endif

void xThreadInit (void)
{
....
(void)sem_init(&xInitSem, 0, 0);

}

void xThreadInitOneThread(struct _xSystemData *xSysDP)
{
  (void)pthread_mutex_init(

&xSysDP->ThreadVars.SignalQueueMutex, 0);
  (void)pthread_cond_init(

&xSysDP->ThreadVars.SignalQueueCond, 0);
}

static void *xThreadEntryFunc (void *xSysDP)
{
  (void)sem_wait(&xInitSem);
  (void)sem_post(&xInitSem);
  xMainLoop((xSystemData *)xSysDP);
}

void xThreadStartThread(struct _xSystemData *xSysDP,
                        unsigned int StackSize,
                        unsigned int Prio,
                        unsigned int User1,
                        unsigned int User2)
{
  pthread_attr_t Attributes;
  ....
  (void)pthread_create(&xSysDP->ThreadVars.ThreadId,
                       &Attributes, xThreadEntryFunc,

(void *)xSysDP);
  ....
1292 IBM Rational Tau User Guide June 2009



Integration with Compiler and Operating System
}

void xThreadGo(void)
{
  (void)sem_post(&xInitSem);

  #if defined(USER_CFG_USE_xInEnv)
    xInEnv();  /* AgileC */
  #elif defined(XENV)
    xInEnv(xNow());  /* Cadvanced */
  #else
    (void)sem_init(&xMainThreadSem, 0, 0);
    (void)sem_wait(&xMainThreadSem);
  #endif
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The xInitSem semaphore is used for synchronization of the threads. It is ini-
tialized in the beginning of xThreadInit to 0, i.e. to a blocking state. After 
that the xThreadStartThread once for each thread that is to be started. The 
function pthread_create will call the function given as third parameter 
(xThreadEntryFunc) with the void * parameter given as fourth parameter 
(the xSysD pointer) as parameter. pthread_create will also store the iden-
tity of the thread in the variable passed as first parameter. The second param-
eter is the properties of the thread. This will be discussed later in this section.

If any of the threads get a chance to execute before all the threads are created, 
these threads will hang on the sem_wait call in xThreadEntryFunc, until 
the main thread calls xThreadGo that will post the semaphore xInitSem 
once. One of the threads waiting on this semaphore will then be able to exe-
cute and will immediately post the semaphore again. This will continue until 
all threads are free to execute.

After that all threads are running and depending on the OS and the applica-
tion properties, the main thread can perform different things. The recommen-
dation is to call the xInEnv function and let that function run in this thread. 
Another alternative is to hang the main thread on a semaphore, as shown 
above using the semaphore xMainThreadSem (if xInEnv is not used). In this 
case you can post the xMainThreadSem semaphore anywhere to restart the 
execution of the main thread.

When the main thread returns from the function xThreadStart, the program 
will continue to execute in the main() function and will perform a call to 
exit. The behavior of a threaded program when the main thread performs 
June 2009 IBM Rational Tau User Guide 1293



Chapter 39: AgileC Code Generator Reference
exit is OS dependent. In POSIX pthreads all threads are stopped at such an 
action. That is the reason why it is important to hang the main thread at the 
end of the xThreadStart function. 

Now to the properties of the threads. In most RTOS, properties like stack size 
and priority can be set for individual threads. Together with the definition of 
the Using Thread Artifacts, four integer values can be specified. 

• The first value is interpreted as the stack size.

• The second value is interpreted as the priority.

• The third and fourth values can be used for other properties, defined by 
the RTOS integration or defined by you. 

The currently predefined integrations only makes use of the first and second 
values. These values are passed as parameters to the xTreadStartThread 
function.

How the properties are set up in detail depend on the RTOS. Compare with 
the available integrations, in the function xThreadStartThread, for exam-
ples.

In rtapidef.h proper default values for the four xThreadData fields 
should be set up. These default values are used if no value is specified in the 
thread definition.

Example 397 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

#define DEFAULT_STACKSIZE     1024
#define DEFAULT_PRIO             0
#define DEFAULT_USER1            0
#define DEFAULT_USER2            0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Suspending and waking up threads

When a thread finds out that it has nothing more to do, at least just for the 
moment, it should suspend itself to make the processor available for other 
threads. The thread should then wake up again either when a timer has ex-
pired and needs to be handled, or when some other thread (including xInEnv) 
sends a signal that should be treated by the suspended thread.
1294 IBM Rational Tau User Guide June 2009



Integration with Compiler and Operating System
To implement these features one mutex (binary semaphore) is used together 
with some sort of conditional variable. You need the possibility to perform a 
condition wait, with or without a time-out. You also need a way to signal to 
a thread to wake up again. These two entities are needed for each thread and 
is therefore included in the xThreadVars struct mentioned earlier:

typedef struct {
  pthread_mutex_t SignalQueueMutex;
  pthread_cond_t  SignalQueueCond;
  pthread_t       ThreadId;
} xThreadVars;

The purpose of the SignalQueueMutex is to protect the signal queue where 
signals from the outside of the thread are inserted (ExternSignalQueue in 
the xSysD array). The SignalQueueCond should facilitate the conditional 
wait.

The SignalQueueMutex should be initialized in xThreadInitOneThread. 
If SignalQueueCond needs to be initialized it could be performed at the 
same place. 

Example 398 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

void xThreadInitOneThread(struct _xSystemData *xSysDP)
{
(void)pthread_mutex_init(&xSysDP->ThreadVars.SignalQueueMutex, 0);
(void)pthread_cond_init(&xSysDP->ThreadVars.SignalQueueCond, 0);

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The SignalQueueMutex is locked by using the function xThreadLock, dis-
cussed above. It is then unlocked in three different ways:

• xThreadUnlock (discussed above)

• xThreadWaitUnlock 

• xThreadSignalUnlock 

The xThreadWaitUnlock is called by the thread itself when it has come to 
the conclusion that it should suspend itself, while xThreadSignalUnlock is 
called by another thread that wants to wake up the current thread. Both func-
tions are passed the xSysD pointer for the thread that the operation should be 
performed on.
June 2009 IBM Rational Tau User Guide 1295



Chapter 39: AgileC Code Generator Reference
Example 399 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In rtapidef.h

extern void xThreadWaitUnlock (struct _xSystemData *);
extern void xThreadSignalUnlock (struct _xSystemData *);

In rtapidef.c:

void xThreadWaitUnlock (struct _xSystemData *xSysDP)
{
  #if defined(CFG_USED_TIMER) || defined(THREADED)
  #ifdef THREADED
      /* Cadvanced */
    if (xSysDP->xTimerQueue->Suc==xSysDP->xTimerQueue) { 
  #else
      /* AgileC */
    if (! xSysDP->TimerQueue) {
  #endif
      (void)pthread_cond_wait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex);

    } else {
      struct timespec timeout;
      #ifdef THREADED
          /* Cadvanced */
        timeout.tv_sec =

((xTimerNode)xSysDP->xTimerQueue->Suc)->
TimerTime.s;

        timeout.tv_nsec =
((xTimerNode)xSysDP->xTimerQueue->Suc)->
TimerTime.ns;

      #else
          /* AgileC */
        timeout.tv_sec = xSysDP->TimerQueue->Time.s;
        timeout.tv_nsec = xSysDP->TimerQueue->Time.ns;
      #endif
      (void)pthread_cond_timedwait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex,
&timeout);

      
    }
  #else
    (void)pthread_cond_wait(

&xSysDP->ThreadVars.SignalQueueCond,
&xSysDP->ThreadVars.SignalQueueMutex);

  #endif
  (void)pthread_mutex_unlock(

&xSysDP->ThreadVars.SignalQueueMutex);
}

void xThreadSignalUnlock (struct _xSystemData *xSysDP)
{
  (void)pthread_cond_signal(
1296 IBM Rational Tau User Guide June 2009



Integration with Compiler and Operating System
&xSysDP->ThreadVars.SignalQueueCond);
  (void)pthread_mutex_unlock(

&xSysDP->ThreadVars.SignalQueueMutex);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

At the time when xThreadWaitUnlock or xThreadSignalUnlock is called 
the SignalQueueMutex will be locked and must therefore be unlocked at the 
end of both functions.

In xThreadWaitUnlock the thread wants to suspend itself. If timers are used 
and there is a timer active in the timer queue, it should wait until the timer 
expires or until some other thread tells it to wake up. In POSIX pthreads the 
function pthread_cond_wait performs exactly this. If timers are not used 
or there is no timer active, the thread should be suspended until someone else 
wakes it up. In POSIX pthreads this can be achieved with the function 
pthread_cond_wait.

In xThreadSignalUnlock the thread given by the parameter should be 
waken up. Here the pthread function pthread_cond_signal can be used.

The integrations described here are also used when the C Code Generator is 
used to generate threaded applications. This adds a few requirements in the 
implementation of a threaded integration. First a function that can stop a 
thread is needed. 

In rtapidef.h:

#if defined(THREADED) || defined(CFG_USED_DYNAMIC_THREADS)
extern void xThreadStopThread(struct _xSystemData *);
#endif

In rtapidef.c:

#if defined(THREADED) || defined(CFG_USED_DYNAMIC_THREADS)
void xThreadStopThread(struct _xSystemData *xSysDP)
{
  pthread_mutex_destroy(&xSysDP->ThreadVars.SignalQueueMutex);
  pthread_cond_destroy(&xSysDP->ThreadVars.SignalQueueCond);
  pthread_exit(0);
}
#endif

THREADED is defined when using the C Code Generator but not when using 
the AgileC Code Generator. The xThreadStopThread function should clean 
up the thread specific semaphores and stop the thread. It is always the thread 
that should be stopped that will call this function to stop itself. 

Another difference is the way timers are accessed for the two code genera-
tors. This affects the details in the xThreadWaitUnlock function. 
June 2009 IBM Rational Tau User Guide 1297



Chapter 39: AgileC Code Generator Reference
In the case of the C Code Generator the RTOS integrations are accessed 
through a macro layer. The macros in this layer is used in the C Code Gener-
ator kernel files and in the generated code. 

Example 400: Defines in scttypes.h –––––––––––––––––––––––––––––––––––––––

The following defines are relevant (from scttypes.h):

#define THREADED_GLOBAL_VARS
#define THREADED_GLOBAL_INIT \
     xThreadInit();
#define THREADED_THREAD_VARS \
     xThreadVars ThreadVars;
#define THREADED_THREAD_INIT(SYSD) \
     xThreadInitOneThread(SYSD);
#define THREADED_THREAD_BEGINNING(SYSD)
#define THREADED_AFTER_THREAD_START \
     xThreadGo();
#define THREADED_START_THREAD(F, SYSD, STACKSIZE, PRIO, USER1, 
USER2) \
xThreadStartThread(SYSD, STACKSIZE, PRIO, USER1, USER2);
#define THREADED_STOP_THREAD(SYSD) \
     xThreadStopThread(SYSD);
#define THREADED_LOCK_INPUTPORT(SYSD) \
     xThreadLock(&SYSD->ThreadVars.SignalQueueMutex);
#define THREADED_UNLOCK_INPUTPORT(SYSD) \
     xThreadUnlock(&SYSD->ThreadVars.SignalQueueMutex);
#define THREADED_WAIT_AND_UNLOCK_INPUTPORT(SYSD) \
     xThreadWaitUnlock(SYSD);
#define THREADED_SIGNAL_AND_UNLOCK_INPUTPORT(SYSD) \
     xThreadSignalUnlock(SYSD);
#define THREADED_LISTREAD_START  xThreadLock(&xFreeSignalMutex);
#define THREADED_LISTWRITE_START xThreadLock(&xFreeSignalMutex);
#define THREADED_LISTACCESS_END  xThreadUnlock(&xFreeSignalMutex);
#define THREADED_EXPORT_START    xThreadLock(&xCreateMutex);
#define THREADED_EXPORT_END      xThreadUnlock(&xCreateMutex);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1298 IBM Rational Tau User Guide June 2009



MISRA coding rules
MISRA coding rules
The code in the AgileC Code Generator run-time kernel and code generated 
by the AgileC Code Generator is to a large extent compliant with the MISRA 
coding rules. 

AgileC Code Generator code complies with 121 of the total of 141 MISRA 
rule with some obvious UML restrictions (like if goto is not allowed in C, 
then goto should not be used in UML). With some more non-obvious restric-
tions the code from the AgileC Code Generator complies with an additional 
six rules. The AgileC Code Generator is not compliant with the remaining six 
required and eight advisory rules. 

To enable generation of MISRA compliant code the AgileC Code Generator 
option “Generate MISRA compliant code” should be checked. The “Name 
mangling” option in “Code generation properties” should also be set to 
Prefix (to assure that names are unique within the 31 first characters, rule 
5.1).

Enabling MISRA compliant code will change the some aspects of the gener-
ated code to make it MISRA compliant. The most significant is the way stop 
actions are translated. If there are several stop actions inside a diagram, the 
code with MISRA compliance is somewhat larger, as goto statements are not 
allowed.

Turning on MISRA compliance will also enable a number of MISRA checks, 
that will warn for problems in the UML model that could cause the generated 
C code to become non-compliant with some MISRA rule.

Obvious restrictions in UML

It is assumed that the user follows obvious restrictions in UML, for example 
if there is a restriction for a certain concept in C then the same restriction 
should be applied to similar concepts in UML. Some more examples:

• As goto is not allowed in C, the user should not introduce goto statements 
or joining flows (which is a graphical goto) in UML. Rule 14.4.

• As functions should have a single point of exit, the user should write op-
erations in UML in that way. Rule 14.7.

• The requirements on for loops in rule 13.4, 13.5, and 13.6 should be di-
rectly mapped to for loops in UML.
June 2009 IBM Rational Tau User Guide 1299



Chapter 39: AgileC Code Generator Reference
• An iteration should only contain at most one break. This rule should be 
followed in UML as well. Rule 14.6.

• Recursion is not allowed according to rule 16.2. This applies directly to 
UML operations.

• According to rule 18.4 unions should not be used. This implies that the 
counterpart in UML, “choice” should not be used.

As it is possible to include C code written by the user inside the generated 
code from the AgileC Code Generator, it is of course also assumed that such 
code does not violate any of the MISRA rules. The same is assumed for C 
code imported into the tool.

Non-obvious restrictions in UML

The table below list rules that are violated in a general AgileC Code Gener-
ator application. By not using some advanced data types the generated code 
can be made compliant with these rules:

Rule # Rule

11.1 Do not perform cast from a “function type” to another “func-
tion type”.

12.10 Do not use the comma operator

16.1 Do not use functions with variable number of arguments

16.2 Do not use recursion

18.4 Do not use unions

20.4 Do not use dynamic memory allocation

Rules that are violated in a general AgileC Code Generator application
1300 IBM Rational Tau User Guide June 2009



MISRA coding rules
It is possible for a generated application to become compliant by following 
the rules below:

1. Do not use the data types and templates mentioned below.

– Bit_string, Octet_string, Object_identifier

– String, Bag, Own, Ref

– array should only be used if the index type is a reasonable type for 
mapping to an Array in C (for example: enumeration types including 
character types and Boolean or a syntype with a limited range for 
the types just mentioned plus the integer types).

– Powerset should only be used with a component type matching the 
description for index types in Array discussed above.

2. All non-simple attributes in active and passive classes should be “part”, 
as otherwise references to objects are introduced.

3. Do not use multiplicity for attributes, except for attributes that are active 
classes. Instead use Array or CArray.

4. Do not use operations returning a passive class, Array, CArray, or 
Powerset. This includes the make operator. 

5. Do not use destructors for passive classes

Rule 20.4 (no dynamic memory allocation) puts two additional requirements 
on the configuration of AgileC:

6. 6. A maximum number of instances should always be specified for active 
classes.

7. 7. The user should set up the size of the signal data so all signal types fit. 
This is configuring USER_CFG_MSG_BORDER_LEN.

When it comes to rule 16.2 (No recursion) there are a few recursive functions 
in sctpred.h, but with the restrictions discussed above there will be no re-
cursive calls.

Violated rules 

The following section contains rules that are violated and the reason for non-
compliancy
June 2009 IBM Rational Tau User Guide 1301



Chapter 39: AgileC Code Generator Reference
Rule 14.7: A function shall have a single point of exit at the end of the 
function.

This coding standard has not been used during the development of the Ag-
ileC. There are pros and cons for such way of writing code. It simplifies code 
understanding to know that there is only one exit. However in many circum-
stances the control structure of the function will become more or even much 
more complex.

There is also one special case in the generated code where this rule is not re-
ally valid. Some functions in the generated code represent state machines. A 
state machine represents several different transitions, each with its own log-
ical end. This logical end is implemented as a return in the function.

Rule 15.2 An unconditional break shall terminate every non-empty 
switch clause.

The purpose of this rule is (probably) to avoid fall through between switch 
clauses. Fall through is not used in the AgileC Code Generator. As return is 
allowed inside functions, the following rule is instead used: 

An unconditional break or an unconditional return shall terminate 
every non-empty switch clause.

Rule 17.1 Pointer arithmetic shall only be applied to pointers that 
address an array or array element. 
Rule 17.4 Array indexing shall be the only allowed form of pointer 
arithmetic.

To efficiently handle attributes of active class and at the same time not use 
dynamic memory, these rules are violated at a number of places in the AgileC 
Code Generator kernel.

Rule 19.4 C macros shall only expand to a braced initializer, a constant, 
a parenthesized expression, a type qualifier, a storage class specifier, or 
a do-while-zero construct.

This rule is violated. There are also a number of situations where code opti-
mization is implemented using macros violating this rule. 
1302 IBM Rational Tau User Guide June 2009



MISRA coding rules
Rule 19.6 #undef shall not be used.

This is used in two situations in generated code. No simple solution to re-
move the undef statements has been found.

Non-supported advisory rules

The advisory rules that AgileC code is not compliant with are: 5.6, 5.7, 6.3, 
11.3, 11.4, 16.7, 19.1, 19.7.
June 2009 IBM Rational Tau User Guide 1303



Chapter 39: AgileC Code Generator Reference
Optimization and Configuration
Optimization and configuration is mainly performed in two .h files. These 
are auto_cfg.h and uml_cfg.h. The file auto_cfg.h is generated by the 
AgileC Code Generator, and contains the optimization and configuration that 
can be automatically computed given the system that code is generated for. 
The uml_cfg.h file is generated by the Application Builder from configura-
tion information provided by the user.

auto_cfg.h

The auto_cfg.h has the contents discussed below. The first section in the 
file is used to configure mainly the size of some arrays and the size (8, 16, or 
32 bits) needed to represent certain entities.

#define CFG_NUMBER_PARTS 2
#define CFG_MAX_INSTANCES 1
#define CFG_NUMBER_TIMERS 0
#define CFG_MAX_TIMER_INSTS 0
#define CFG_NUMBER_SIGNALS 4
#define CFG_NUMBER_THREADS 0
#define CFG_MAX_ACTIONS 2
#define CFG_MAX_STATES 1
#define CFG_MAX_STATE_INDEX_ENTRY 2

In the second section information is given about what concepts that are used 
in the system that code is generated for. For concepts that are used a #define 
is generated, while for concepts not used, a comment, saying the corre-
sponding macro is not defined, is generated. The information in this section 
is used to scale the code, to remove code and fields in data structures that is 
not needed.

#define CFG_USED_UNLIMITED_INSTANCES
#define CFG_USED_TIMER
#define CFG_USED_CREATE
#define CFG_USED_STOP
#define CFG_USED_SAVE
#define CFG_USED_STATE_STAR
#define CFG_USED_INPUT_SAVE_STAR
#define CFG_USED_GUARD
#define CFG_USED_SIGNAL_WITH_PARAMS
#define CFG_USED_TIMER_WITH_PARAMS
#define CFG_USED_SIGNAL_WITH_DYN_PARAMS
#define CFG_USED_SENDER
#define CFG_USED_OFFSPRING
#define CFG_USED_PARENT
#define CFG_USED_SELF
#define CFG_USED_PROCEDURE
1304 IBM Rational Tau User Guide June 2009



Optimization and Configuration
#define CFG_USED_RPC
#define CFG_USED_INITFUNC

The third section contains information about items in connection with data 
types, used to remove code in the file sctpred.c not needed by the gener-
ated application. The section contains a sequence of defines looking like the 
example below.

#define XNOUSE_"at-lot-of-things-about-data-types"

In rare cases the auto_cfg.h file might contain information that does not fit 
the application to be built. One such case is if the third section contains in-
formation that a certain function is not used, and therefore removed with if-
defs. The function is, however, used in user provided C code, in for example 
the environment functions. In such cases it is possible to override the infor-
mation in auto_cfg.h by including macro definitions last in uml_cfg.h.

Example: Assume the auto_cfg.h contains

  #define XNOUSE_LENGTH_CHARSTRING

which shows that the length function for character strings are not used. To 
override this the following code should be included in uml_cfg.h:

  #ifdef XNOUSE_LENGTH_CHARSTRING
    #undef XNOUSE_LENGTH_CHARSTRING
  #endif

uml_cfg.h

This file is generated by the Application Builder and contains information 
about the options that you have selected. In the Application Builder it is also 
possible to insert text written in a text field, in the uml_cfg.h. This feature 
can be used to insert macro definitions that can not be selected in the user in-
terface.

uml_cfg.h is, just as auto_cfg.h, a file that should contain defines that are 
used to build the AgileC Code Generator application with specified options. 
The file uml_cfg.h will include auto_cfg.h in the beginning of the file.

The features discussed below can be selected in the Application Builder user 
interface and will affect the contents of the uml_cfg.h file.
June 2009 IBM Rational Tau User Guide 1305



Chapter 39: AgileC Code Generator Reference
Process properties 
• #define USER_CFG_USE_NUMBER_FREE_INST <Integer> 

In case there are parts with no maximum number of instances, then 
memory will be dynamically allocated at startup for the number of initial 
instances plus the value given here. The value must be > 0. Default value 
is 5.

Signal properties 
• #define USER_CFG_MAX_SIGNAL_INSTS <Integer> 

This defines the length of the static signal queue. If dynamic signals are 
not used (compare with USER_CFG_NOUSE_DYNAMIC_SIGNALS), 
an error occurs if the signal queue is full at the same time as an attempt 
to send a signal is made.

• #define USER_CFG_NOUSE_DYNAMIC_SIGNALS 

Turn off usage of dynamic memory for signals. This feature should nor-
mally be turned off in smaller systems, where dynamic memory is not to 
be used. In that case it is important to set 
USER_CFG_MAX_SIGNAL_INSTS to an appropriate value.

• #define USER_CFG_SIGNALS_NEVER_DISCARDED 

Define to remove the code for freeing signal parameters in case a signal 
is discarded. Only applicable if signals with dynamic parameters are 
used. If XMK_USED_SIGNAL_WITH_DYN_PARAMS is defined in 
auto_cfg.h. If USER_CFG_SIGNALS_NEVER_DISCARDED is de-
fined and a signal with dynamic parameters is discarded there will be a 
memory leak.

• #define USER_CFG_USE_SIGNAL_PRIORITIES 

Use priorities on signals. This means that the signal queue is sorted first 
in priority order and then in arrival order (when same priority).

• #define USER_CFG_TIMER_PRIO <Integer> 

The priority assigned to all timer signals. Default is 50.

• #define USER_CFG_CREATE_PRIO <Integer> 

The priority assigned to all startup/create signals. Default is 50.

• #define USER_CFG_DEFAULT_PRIO <Integer> 

The priority assigned to all signals not having an explicit priority. Default 
is 50.
1306 IBM Rational Tau User Guide June 2009



Optimization and Configuration
• #define USER_CFG_MSG_BORDER_LEN <Integer> 

This defines the length of the data field for parameters within the signal. 
If the signal parameters do not fit into this memory dynamic memory al-
location is used. Default is 4 if signals with parameters is used 
(XMK_USED_SIGNAL_WITH_PARAMS is defined) and 0 if no sig-
nals have parameters. 

Timer properties 
• #define USER_CFG_MAX_TIMER_INSTS <Integer> 

Length of static timer queue. The default length is the computed value 
CFG_MAX_TIMER_INSTS from auto_cfg.h, which in case of timers 
without parameters is the maximum amount of possible active timers. In 
case of timers with parameters this value can, in extreme cases, be to 
small. Normally a value smaller than CFG_MAX_TIMER_INSTS might 
be used. If dynamic timers are not used (compare with 
USER_CFG_NOUSE_DYNAMIC_TIMERS), an error occurs if the 
timer queue is full at the same time as an attempt to set a timer is made.

• #define USER_CFG_NOUSE_DYNAMIC_TIMERS 

Turn off usage of dynamic memory for timers. This feature should nor-
mally be turned off in smaller systems, where dynamic memory is not to 
be used. In that case it is important to set 
USER_CFG_MAX_TIMER_INSTS to an appropriate value.

• #define USER_CFG_TIMER_SCALE <Integer> 

Scale all time-outs in set actions with this value. This can for example be 
used during early testing to delay short time-outs to become visible 
(making for example a 1 millisecond time-out take 1 s). The feature 
should not be used in a finalized application, as it will cause some speed 
overhead.

Dynamic memory allocation 
• #define USER_CFG_USE_MEMORY_PACK 

Define to use the memory management package provided in the library, 
instead of OS functions malloc, free. If this package is used 
USER_CFG_MEMORY_SIZE should also be set (if the default is not 
appropriate). Default is undefined.
June 2009 IBM Rational Tau User Guide 1307



Chapter 39: AgileC Code Generator Reference
• #define USER_CFG_USE_MEMORY_PACK <Integer> 

Define the number of bytes to be used by the memory package. To avoid 
unnecessary problems define this value as a multiple of 16. Default is 
8192 bytes.

• #define USER_CFG_MEMORY_MIN_BLOCKSIZE <Integer> 

Define the minimum size of the memory block. If defined only blocks of 
size: 2^N * USER_CFG_MEMORY_MIN_BLOCKSIZE, N>=0, are 
used. This value should be a multiple of 16. Default is undefined.

Error detection 
• #define USER_CFG_ERR_CHECK_BASIC 

Turn on checking of basic state machine properties:

– No more memory for signal sending or create

– No more memory to allocate the parameters of a signal

– No more memory for timer instance

– xOutEnv() is not present and signal is sent to the environment

– Signal is discarded

– Cannot create more instances as maximum limit reached

– Public attribute access error 

Default is undefined.

• #define USER_CFG_ERR_CHECK_INDEX 

Test that array index is in range. Default is undefined.

• #define USER_CFG_ERR_CHECK_RANGE 

Test that syntype values are in range. Default is undefined.

• #define USER_CFG_ERR_CHECK_PREDEF_O 

Test error situations in predefined operators. Default is undefined.

• #define USER_CFG_ERR_CHECK_DECISION 

Test that there is a path for the current decision value. Default is unde-
fined.

• #define USER_CFG_ERR_CHECK_NULL_PTR 

Test that pointers are not NULL before de-referencing. Default is unde-
fined.
1308 IBM Rational Tau User Guide June 2009



Optimization and Configuration
• #define USER_CFG_ERR_CHECK_MEMORY_PACK 

Test for error situations in the memory package. Default is undefined.

• #define USER_CFG_ERROR_MESS_STDOUT 

Define if error messages should be printed on sdtout. Default is unde-
fined.

• #define USER_CFG_ERROR_MESS_STDERR 

Define if error messages should be printed on stderr. Default is unde-
fined.

• #define USER_CFG_USE_ERR_MESS 

Define if error messages, not only error numbers, should be printed. De-
fault is undefined. 

• #define USER_CFG_WARN_ACTION 

If defined the user provided function:

  void xUserWarnAction (unsigned char WarningNumber);

is called in case of a warning. Default is undefined.

• #define USER_CFG_ERR_ACTION 

If defined the user provided function:

  void xUserErrAction (unsigned char WarningNumber);

is called in case of an error. Default is undefined.

Miscellaneous
• #define USER_CFG_USE_xInitEnv 

• #define USER_CFG_USE_xCloseEnv 

• #define USER_CFG_USE_xInEnv 

• #define USER_CFG_USE_xOutEnv 

Define the above to include calls of the corresponding environment func-
tion. Default is undefined.

• #define USER_CFG_ADD_STDIO 

Define if stdio.h should be included. This is automatically performed 
if any of USER_CFG_UML_TRACE_STDOUT, 
USER_CFG_ERROR_MESS_STDOUT, USER_CFG_ERROR_MESS_STDERR is 
defined. Default is undefined.
June 2009 IBM Rational Tau User Guide 1309



Chapter 39: AgileC Code Generator Reference
• #define USER_CFG_UML_TRACE_STDOUT 

Define if trace on UML level should be printed on stdout. Default is un-
defined.

Note
The user interface for selecting features for AgileC Code Generator also in-
cludes a possibility to have free text that is just copied to the uml_cfg.h 
file. This feature should be used to include other defines that can not be di-
rectly selected in the user interface. 

Selections in the Application Builder

There are some options in the Application Builder that is passed to the code 
generator and does not affect the uml_cfg.h file. The purpose is to be able 
to generate as readable code as possible, which is also the default. If certain 
features are needed, that will affect the readability, these features can be se-
lected individually. 

• Amount of Comments in generated code. 

In the code generated for state machines it is possible to select the amount 
of comments added to the code. Levels: 

– 1. Sparse: Only some comments used to identify transitions are in-
cluded.

– 2. Structure: As 1 plus a comment for each translated UML symbol.

– 3. Explanation: As 2 plus comments giving some explanations to the 
code.

• Include code for run-time tests in generated code.

This feature must be selected if any of the run-time tests 
USER_CFG_ERR_CHECK_INDEX, 
USER_CFG_ERR_CHECK_RANGE, 
USER_CFG_ERR_CHECK_DECISION, or 
USER_CFG_ERR_CHECK_NULL_PTR is selected.

• Include references to UML source in generated code as C comments. 

Such references can be used to navigate back to the UML source.

• Include code for textual execution trace in generated code. 

Selecting this feature will tell the code generator to include calls to trace 
functions in the generated code. This must be enabled if 
USER_CFG_UML_TRACE_STDOUT is enabled.
1310 IBM Rational Tau User Guide June 2009



Optimization and Configuration
• Name mangling prefix or suffix to UML names. 

As the name scopes in UML and C are not the same it is not possible to 
use the UML names directly in the generated C code. By default the code 
generator will add a suffix to the UML name and use that as an identifier 
in C, to make certain that the C identifier is unique. If you have used long 
UML names and at the same time the C compiler only looks at a limited 
number of characters to determine if two names are the same, name 
clashes might occur. By using prefixes instead of suffixes such situations 
can be avoided.

Some information about performance for different 
concepts

For small systems where performance is important there are some concepts 
that can cause performance problems. You may decide not to use these lan-
guage concepts to improve the performance of the generated application.

The first and most important is unlimited number of instances for a part. That 
is, no upper limit is given for the maximum concurrent instances of the part. 
If an upper limit is given the code generator uses this to declare a static array 
for the instance data for the instances of this part. If no upper limit is given 
dynamic memory must be allocated for a suitable number of instances and 
when this memory is not enough, a realloc must be performed. A realloc 
means allocation of a new larger data area and copying of all the data in the 
old area to the new area. This makes create operations on parts with no upper 
limit for number of instances unpredictable, sometimes they are fast, but in 
some cases they might be very slow.

The save concepts will introduce some inefficiency, as the saved signals will 
be accessed every now and then. The same goes for the guard concept, as that 
implicitly requires the save concept. However, if these concepts are really 
helpful to implement the behavior of the system, it is probably better to use 
them then to rewrite the system to avoid using the concepts, as that might be 
even more expensive.

The uml_cfh.h file setting USER_CFG_MSG_BORDER_LEN might 
mean a lot for the performance of signal sending with parameters. If the pa-
rameters do not fit into the signal data area, a new data area must be allocated 
and later freed again. This will reduce the execution speed. However setting 
USER_CFG_MSG_BORDER_LEN to a higher value will make all signals 
larger, meaning waste of memory.
June 2009 IBM Rational Tau User Guide 1311



Chapter 39: AgileC Code Generator Reference
Overview of Important Data Structures
All the important types discussed in this section are defined in uml_kern.h. 
Please have that file ready at hand while reading this section.

In generated code there is information about each part in the system. For each 
part a struct variable of type xPartTable is generated. Example:

xPartTable xPartData_p_01 = {
  (xInstanceData *)xInstData_p_01,
  sizeof(yVDef_p_01),
  1,
  1,
  (xIniFunc)yIni_p_01,
  (xTransFunc)yPAD_p_01,
  xTransitionData_p_01,
  xStateIndexData_p_01
#ifdef CFG_USED_GUARD
,  0
#endif
};

There is also in generated code an array containing the addresses to the 
xPartTable structs for all parts in the system. This global variable is used at 
many places to access information about parts. Example:

xPartTable *xPartData[] =
{
  &xPartData_p_01,
  &xPartData_q_02
};

Looking through the contents of the xPartTable struct, it contains the fol-
lowing components:
1312 IBM Rational Tau User Guide June 2009



Overview of Important Data Structures
Other important global data structures are the array of available signals and 
timers. These are

/* Signal array */
static xSignal xSignalArray[CFG_STATIC_SIGNAL_INSTS];

/* Pointer to first element in list of free signals */
static xSignal *xFreeSignalList;

/* Timer array */
static xTimer xTimerArray[CFG_STATIC_TIMER_INSTS];

/* Pointer to first element in list of free timers */
static xTimer *xFreeTimerList; 

These variables can be found in uml_kern.c and define one array of signals 
and array of timers, together with starting pointers for the lists of available 
signals and timers.

Component Description

InstanceData A pointer to an array with one element for each in-
stance of the part. These components are used to 
store instance specific values of different kinds, like 
state and local variable values.

DataLength The size of each array element mentioned for the 
previous component.

MaxInstances The maximum number of concurrent instances of 
this part.

InitialInstances The number of instances at system start up.

yIni_Function A reference to a function that initializes the at-
tributes of the active class.

yPAD_Function A reference to the function that implements the 
state machine for the part.

TransitionTable 
and 
StateIndexTable

Tables (arrays) used to determine how to handle a 
certain signal in a certain state.

GuardFunc A reference to a function that can compute guard 
expressions used in the state machine.

ThreadNumber The thread that this part belongs to. Only used in 
threaded integrations.
June 2009 IBM Rational Tau User Guide 1313



Chapter 39: AgileC Code Generator Reference
The last important global data structure is the xSystemData variable called 
xSysD. In a non-threaded application xSysD is a variable of type 
xSystemData, while in a threaded application xSysD is an array with com-
ponents of type xSystemData, with one component per thread.

xSysD contains global information about what is going on just now in the ap-
plication or thread. The following components can be found in xSysD.

Component Description

CurrentPid This is the Pid value for the currently executing 
instance in the application or thread.

CurrentSymbolNr This is the symbol number where the execution 
should start in the function implementing the 
state machine. The selection is performed by a 
switch in the beginning of the function.

CurrentData This is a pointer to the local variables for the ex-
ecuting instance. This reference goes to the ap-
propriate element in the InstanceData compo-
nent in the xPartTable for the part.

CurrentSignal This is a pointer to the signal that caused the cur-
rently execution transition.

SignalQueue This is a reference to the first signal in the global 
signal queue (global for application or thread). 
The signals in this queue are linked together in a 
linked list.

ExternSignalQueue This is a signal queue where signals coming from 
other threads or from the environment first are 
stored. At well defined points (between transi-
tions) signals are moved to the SignalQueue.

OutputSignal Variable used as temporary variable while 
sending a signal in generated code.

TimerQueue This is a reference to the first timer in the global 
timer queue (global for application or thread).

ThreadVars In a threaded application this is a struct con-
taining data about the thread itself. The contents 
depend on the integration.
1314 IBM Rational Tau User Guide June 2009



Overview of Important Data Structures
Some other data structures that are worth discussing in more detail are Pid 
values, and contents of signals and timers.

A Pid value is a reference to an executing instance. The Pid value consists of 
two parts, the part number (parts are numbered 0, 1..., which is used to index 
the global xPartData array) and the instance number (which is used to index 
the InstanceData array in the xPartTable for the part). The Pid type is an 
unsigned type of suitable size to contain these two values. 

A signal is defined by the type xSignal and contains the following compo-
nents.

A timer is defined by the type xTimer and contains the following compo-
nents.

Component  Description

Next Pointer used to link signals in lists.

Sid The identity of the signal (signal type)

Receiver The Pid value of the receiver.

Sender The Pid value of the sender.

SaveState Used to speed up handling of saved signals. 

Prio The signal priority, if you have set up to Use prior-
ities on signals.

ParPtr A pointer to the parameters of the signal. Refers ei-
ther to ParArea or to allocated memory.

ParArea This is the inline area for signal parameters used if 
the parameters fit into this area.

Component  Description

Next Pointer used to link timers in lists.

Sid The identity of the timer (timer type)

Owner Pid value for the owner of the timer

Time The time set for the timer.

TimerParValue Optional integer parameter for timers.
June 2009 IBM Rational Tau User Guide 1315



Chapter 39: AgileC Code Generator Reference
Translation of Passive Classes

Passive classes in UML are translated to data types and operations in C. The 
details for are the same for AgileC Code Generator as for the C Code Gener-
ator Reference. The section on Names in Generated C Code is also valid for 
AgileC Code Generator.

See also

“Restrictions in UML Support when Building C Applications” on page 949 
in Chapter 27, Building Applications Reference
1316 IBM Rational Tau User Guide June 2009



40
C Compiler Driver

The C Compiler Driver is a utility intended to simplify C debugging of gen-
erated C code. It can be invoked from the makefiles used by the Application 
Builder or “stand-alone” from the OS command line.
June 2009 IBM Rational Tau User Guide 1317



Chapter 40: C Compiler Driver
Application areas for CCD
The C Compiler Driver (CCD) is a utility that is intended to simplify C de-
bugging, by generating an intermediate C file placed in a user defined direc-
tory. This C file has all its C macros expanded and is optionally “beautified” 
(pretty-printed). For ease of use, CCD is used as a C compiler driver, which 
is called from the makefiles generated by the C Code Generator. CCD may 
also be used as a command line option when compiling the C code with a user 
command, should that be required.

The CCD utility is not a feature that is generally supported for all compilers. 
It should be noted that a premade CCD Configuration File is not part of the 
standard kernel files for most of the premade kernels. 

How to take advantage of CCD

The simplest way to introduce this facility for use in the UML tool set is to 
modify the makeoptions / make.opt file contained in the run-time li-
brary to be used. To enable this feature in a user-defined run-time library, the 
directory and file structure must be similar to the pre-defined one. 

The only modification that is required is to change the line

sctCC = cc 
/* or some other compiler executable name */

to

sctCC = sccd cc 
/* or some other compiler executable name */

It is necessary that the path variable is set to include the directory containing 
the IBM Rational Tau executable binaries, for example (Windows):

C:\Program Files\IBM\Rational\TAU\4.3\bin

Customizing CCD

To customize the behavior of CCD, modify the variables in the configuration 
file sccd_<your_compiler_type>.cfg How to do this is described in the 
section “CCD behavior” on page 1321.

CCD User Interface
The syntax for the CCD command line interface is:
1318 IBM Rational Tau User Guide June 2009



CCD User Interface
sccd [command] [option]

Compile a C file

To use CCD to compile a C file, the following command is used:

sccd <C compiler command line>

The C compiler command should be the command line used to compile a C 
file in the usual way: it should include the name of your C compiler, possibly 
compiler options, and finally the name of the C file.

Print configuration

To print the values of the variables in the configuration file sccd.cfg, the 
following command without any options should be used:

sccd

To print the variables with help information:

sccd -h

Return Codes

0: Success.

1: Return code after sccd prints “configuration and help”. 

2: No .c input file given.

3: Could not open InFile.c input file

4: Could not open InFile.i for write.

5: sccdMOVE or sccdOUTFILEREDIR needs to be defined.

6: Could not open InFile.i for read.

7: Could not open/create TmpDir/InFile.c
June 2009 IBM Rational Tau User Guide 1319



Chapter 40: C Compiler Driver
Actions Performed by CCD

CCD performs the following sequence of actions:

1. Execute an optional user defined command (sccdUSER_CMD1).

2. Create a sub-directory for temporary files and the pre-processed .c 
files.

3. Execute an optional second user-defined command (sccdUSER_CMD2).

4. Run a C preprocessor pass to expand all C macros.

5. Execute an optional third user-defined command (sccdUSER_CMD3).

6. Pretty print the file.

7. Optional clean-up of the sub-directory.

8. Optionally copy .hs files to the sub-directory.

9. Execute an optional fourth user-defined command (sccdUSER_CMD4). 
You should use this command if you wish to invoke the “indent” utility 
from CCD (see “C Beautifier” on page 1320 for more information).

10. Optionally compile, that is run the original command.

11. Optional clean-up of the sub-directory, but leave the pre-processed .c 
file(s) for debugging purposes.

C Beautifier

If you need a C beautifier to further format the C code generated by the C 
Code Generator, you may want to try the indent utility (courtesy of Joseph 
Arcaneaux).

The indent executable must be placed in your path.

In order to easily invoke indent from CCD, insert the following statement 
in sccdUSER_CMD4 in the appropriate sccd.cfg file(s), assuming no other 
changes have been made to the sccd.cfg file(s):

For UNIX compiler environments:

sccdUSER_CMD4 = "indent -kr -l70 -i2 %p/%d/%f.c"

For DOS-like compiler environments:

sccdUSER_CMD4 = "indent -kr -l70 -i2 %p\\%d\\%f.c"
1320 IBM Rational Tau User Guide June 2009



CCD Configuration File
This setup gives a .c source file formatted according to rules very much like 
the ones used in “The C Programming Language” by Kernighan & Ritchie. 
It will also try to force lines to be shorter than 70 characters and will use 2 
positions indentation in if/while/.. statements. 

Example 401 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A slightly more elaborate example for how to use indent:

sccdUSER_CMD4 = "indent -kr -l70 -br -nce -nlp -ci3 -i2 
%p/%d/%f.c"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

CCD Configuration File

CCD behavior

The behavior of CCD is defined using a number of variables, each starting 
with sccd_. The variables are defined in a configuration file, 
sccd_<your_compiler_type>.cfg.

• Select the configuration file that corresponds to your C compiler and 
copy this file as sccd.cfg. If run from within the UML tool set frame-
work, CCD uses $sctdir/sccd.cfg as the configuration file; other-
wise CCD searches for sccd.cfg in the current directory, $HOME 
(UNIX) and $SCCD.

Note
If sccd.cfg is not found, hard-coded defaults suitable for the GNU C 
compiler (gcc) are used.

CCD variables

Below are the variables that control the behavior of CCD. All characters in 
variable values are significant, including spaces.

sccdNAME
sccdNAME = "Default"

Compiler name as defined in scttypes.h
June 2009 IBM Rational Tau User Guide 1321



Chapter 40: C Compiler Driver
sccdINFILESUFFIX
sccdINFILESUFFIX = ".c"

The expected file name suffix of the In-file(s), Default ".c".

sccdCPP
sccdCPP = ""

The name of the C pre-processor. If this is left empty, CPP is used. Default 
is ""

sccdCPPFLAGS
sccdCPPFLAGS = ""

Enable CPP and do not remove comments. This is C compiler dependent. 
Default for gcc is "-P -E -C", and for cc "-C -P".

sccdMACROPREFIX
sccdMACROPREFIX = "-D"

CPP command-line define MACRO prefix. Default "-D".

sccdINCLUDE1
sccdINCLUDE1 = "-I"

CPP command-line include-path prefix. Default "-I"

sccdINCLUDE2
sccdINCLUDE2 = ""

Alternative CPP command-line include-path prefix. Default ""

sccdOUTFILEREDIR
sccdOUTFILEREDIR = "-o "

Character sequence to control CPP output file name. If empty, use 
sccdFMOVE instead.

sccdFMOVE
sccdFMOVE = ""

OS forced file move or copy command. Used instead of 
sccdOUTFILEREDIR. Default: ""
1322 IBM Rational Tau User Guide June 2009



CCD Configuration File
sccdDELETE
sccdDELETE = "rm -f"

OS forced delete file command. Default: "rm -f".

sccdCOPY
sccdCOPY = "cp"

OS normal copy command. Default: "cp".

sccdCOMPILE
sccdCOMPILE = "ON"

Controls whether the final compilation pass should be run or not. Values are: 
"OFF" and default is "ON".

sccdDEBUG
sccdDEBUG = "OFF"

Enable execution. Values are: "ON" and default is "OFF".

sccdPURGE
sccdPURGE = "ON"

Purge temporary files. Values are: "OFF" and default is "ON".

sccdUSE_HS
sccdUSE_HS = "OFF"

When set "ON", the .hs files are not included until the compilation pass. 
Values are: "ON" and default is "OFF".

sccdSILENT
sccdSILENT = "OFF"

Enable trace printout. Values are: "ON" and default is "OFF".

sccdTMPDIR
sccdTMPDIR = "sccdtmp"

Temporary directory for the pre-processing. Default is sccdtmp. Setting 
sccdTMPDIR to " " or "." in the configuration file suppresses temporary di-
rectory creation.
June 2009 IBM Rational Tau User Guide 1323



Chapter 40: C Compiler Driver
sccdUSER_CMD1, sccdUSER_CMD2, sccdUSER_CMD3, 
sccdUSER_CMD4

sccdUSER_CMD1 = ""
sccdUSER_CMD2 = ""
sccdUSER_CMD3 = ""
sccdUSER_CMD4 = ""

User-defined commands (“Actions Performed by CCD” on page 1320). The 
following pseudo variables can be used in all but the first one 
(sccdUSER_CMD1):

• %f expands to In-file name without extension.

• %p expands to In-file path.

• %d expands to the value of sccdTMPDIR.

Example 402 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

echo \"Pre-processed C-file = %p/%d/%f.c\"

To include ‘#’ in sccdUSER_CMDx and sccdTMPDIR, enter \#

To include ‘"’ in sccdUSER_CMDx and sccdTMPDIR, enter \"

To include ‘\’ in sccdUSER_CMDx and sccdTMPDIR, enter \\

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1324 IBM Rational Tau User Guide June 2009



UML and Java

The chapters listed under UML and Java describe how the UML tool set can 
be used for engineering Java code. 

The Java support and Eclipse integration in IBM Rational Tau are only sup-
ported for Windows operating systems. 
June 2009 IBM Rational Tau User Guide 1325



Chapter : 
1326 IBM Rational Tau User Guide June 2009



42
Java Support

This chapter describes how to use the Java support. It extends IBM Rational 
Tau with import of existing Java applications and Java roundtrip support, 
meaning code generation and reverse engineering. It includes features for 
compiling and executing Java code, generation of javadoc and JAR files 
among other things. 

It also adds the possibility to use Java syntax in text diagrams and text sym-
bols (in addition to UML), giving you a free choice of design language. You 
can switch back and forth between the two syntaxes at any time.

Existing Java files can easily be reused by importing them into a UML 
model, and it is also possible to generate Java from an existing UML model. 
June 2009 IBM Rational Tau User Guide 1327



Chapter 42: Java Support
Creating a Java Project
To create a Java project use the following procedure:

1. Choose the command File->New...

2. Choose UML for Java Code generation as the project type when cre-
ating the project. If you want to use the Eclipse IDE for working with 
generated Java code you should instead choose UML for Java Eclipse 
Project.

3. Choose the Java language dialect you want to use. This will have conse-
quences for what default libraries that are used, and a few similar things.

For details on how to create a project, see “Working with Projects” on page 
31 in Chapter 4, Introduction to IBM Rational Tau 4.3.

To activate the Java support for an existing project:

1. From the Tools menu select Customize.

2. Click the Add-Ins tab and check the JavaApplication add-in.

3. Click Close.

Note
When creating or loading a project with Java support activated, the entire 
Java Runtime Libraries are loaded as a library in IBM Rational Tau. Since 
this library is very big (in particular for later versions of the Java language) 
this may take several minutes. During loading of the libraries IBM Ra-
tional Tau will not respond to any user interaction.

Some features of the Java support uses the Java Software Development Kit 
which can be downloaded from the Sun web site.

http://java.sun.com/javase/

The Java View
The Java support includes a Java centric view of a model called Java View. 
It provides a different way of viewing elements compared to the Standard 
View, by only showing those model elements which exist natively in the Java 
language. UML specific constructs, such as signals and statemachines, are 
not shown when using the Java View.

If your model does not make use of UML specific constructs that are trans-
lated to Java code elements you might find the Java View convenient to use.
1328 IBM Rational Tau User Guide June 2009



The Java View
See also

“Model View” on page 15 in Chapter 4, Introduction to IBM Rational Tau 
4.3

Activating the Java View

To activate the Java View:

1. In the View menu, select Reconfigure Model View...

2. Select Java View in the dialog and click OK.

You can switch the Model View between the Standard View and the Java 
View at any time.

Working in the Java View

While in the Java View, you can only see and create Java related elements. 
Other elements are filtered out and need to be accessed in the Standard View.

The elements available in the Java view are the elements naturally available 
in the Java language:

• Java packages, Classes, Interfaces, Stereotypes (representing Annota-
tions), Attributes and Operations.

and the diagrams needed to completely define these elements:

• Class diagram and Text diagram.

In addition, artifacts representing Java files and the Java build artifact are 
also available in this view:

• Java File, JAR File and Java Build Artifact.

Some operations are most conveniently performed in the Java View, for ex-
ample creating a Java package, while some operations can equally well be 
performed in any view, for example importing Java source code. Some oper-
ations can only be performed in the Standard View. One example is ex-
porting a top level package. This is quite natural, since the package is not vis-
ible in the Java view if it is not a Java package, and a consequence of the 
export is that it becomes a Java package.
June 2009 IBM Rational Tau User Guide 1329



Chapter 42: Java Support
The Java View is split into two different top levels: Java Model and Java Li-
braries. The Java Model node corresponds to the Model node of the Standard 
View, showing elements of the user model. The Java Libraries node contains 
predefined Java libraries, such as the predefined data types and java.lang.

Differences between the Java View and the Standard View

The Java View is designed to naturally represent Java elements in a way 
close to the language and the file system, while the Standard View provides 
a UML-like way of showing elements. Sometimes these two views are fun-
damentally different. This is best explained by an example, the JAR File ar-
tifact.

In the model a JAR file is represented by the following elements:

• An artifact representing the physical JAR file

• The entities contained in the JAR

• Dependencies from the artifact to the entities of the file

The artifact and the entities contained in the JAR are located at the same level 
in the model. The dependencies are owned by the artifact. This is the UML 
way of specifying the contents of a file.

In the Java View the fact that the elements are contained in the JAR is em-
phasized. Therefore, the elements are displayed as if they were owned by the 
artifact. The entities in the JAR are not displayed at the same level as the ar-
tifact, but below the artifact instead. The dependencies are not displayed at 
all in the Java View. The differences can be seen in the table below:

Keep these differences in mind when switching between the Java View and 
the Standard View.

Standard View Java View

Artifact

Dependency to Element 1
Dependency to Element 2

Element 1
Element 2

JAR File artifact

Element 1
Element 2
1330 IBM Rational Tau User Guide June 2009



Java Build Artifact
Java Build Artifact
An artifact with the stereotype <<Java>> applied is referred to as a Java build 
artifact. It defines the scope and meaning of many commands performed 
when working with Java in IBM Rational Tau:

• It supplies commands in the ‘Java’ context menu which allows you to 
generate or compile Java code and to update the model with changes 
made in generated Java source files.

• It manifests one or many UML elements (using <<manifest>> dependen-
cies). This defines which elements of the UML model that are affected 
by the commands that are performed on the Java build artifact. Note that 
the build artifact commands apply also on elements that are indirectly 
manifested by the build artifact (i.e. elements that are directly or indi-
rectly owned by a manifested element).

• It stores options and settings in the form of tagged values for the 
<<Java>> stereotype. Typically these options affect the result of in-
voking the commands in the context menu. For example, the ‘Target Di-
rectory’ is stored on the Java build artifact, specifying the connection be-
tween the manifested elements in the UML model and their source code 
location in the file system.

See Build Artifact and Using Build Artifacts for more information about 
build artifacts in general.

Java Build Artifact Commands

The following commands are available in the ‘Java’ submenu of the context 
menu on a Java build artifact.

Generate

Use this command to generate Java source code for all elements that are man-
ifested by the Java build artifact. Only those UML elements that have been 
modified since the time of the last generation will be translated. If the model 
is unchanged no Java source files will be generated, and a “File is up-to-date” 
message is printed in the Build tab for each Java source file.

The Java menu contains a command Update source code which performs 
the Generate command on all Java build artifacts that are present in the 
model.
June 2009 IBM Rational Tau User Guide 1331



Chapter 42: Java Support
Generate (force)

This command works as Generate, but it will force all Java source files for 
the manifested elements to be generated, no matter if the corresponding 
UML elements actually have been modified or not. 

The Java menu contains a command Force update source code which per-
forms the Generate (force) command on all Java build artifacts that are 
present in the model.

Update 

Use this command to update the manifested elements with changes that have 
been made in the generated Java source files for these elements. This proce-
dure is sometimes called “roundtrip engineering”. Only Java files that have 
been modified since they were generated will be considered. If no files have 
been modified nothing will happen, and a “File is up-to-date” message is 
printed in the Build tab for each Java source file.

The Java menu contains a command Update model which performs the Up-
date command on all Java build artifacts that are present in the model.

Update (force)

This command works as Update, but it will force an update from all Java 
source files corresponding to manifested elements, no matter if these files 
have actually be modified or not.

The Java menu contains a command Force update model which performs 
the Update (force) command on all Java build artifacts that are present in the 
model.

Build 

Use this command to compile Java source files corresponding to the mani-
fested elements. The command will first perform the Generate command to 
make sure the Java source files are up-to-date with the model, before com-
piling them. See Compiling and Executing Java for more information about 
this command.
1332 IBM Rational Tau User Guide June 2009



Java Build Artifact
Java Build Artifact Settings

A Java build artifact stores a set of settings in the form of tagged values for 
the <<Java>> stereotype. To view and edit these settings follow these steps:

1. Select the Java build artifact in the Model View

2. In its context menu select Build Settings.

This will open the Properties Editor, which is used for viewing and editing 
the Java build artifact settings.

Some of the settings are common for all build artifacts. These are described 
in the chapter Using Build Artifacts. Settings specific to Java are described 
below.

Perform transformations

By default the Java code generator performs a number of transformations 
when translating from UML to Java. All supported UML constructs for 
which native Java constructs do not exist must be transformed to obtain a cor-
rect Java program. Technically what happens is that relevant parts of the user 
model are copied during code generation to a new temporary model in which 
transformations can take place without affecting the original design model. 

If you only use UML constructs in your model that have a native mapping to 
Java (for example classes, interfaces, packages etc.) you can make code gen-
eration somewhat faster by turning this setting off. Note, however, that doing 
so disables all kinds of transformations, not only those performed by the Java 
code generator itself. It also disables any custom transformations that might 
have been added by add-ins in order to customize generated Java code.

Classpath

Provides a way to manually override the Classpath variable used during com-
pilation and execution.

Automatic source generation

If this setting is turned on the Java source files will be automatically updated 
(regenerated) when the model is changed. The update will happen shortly 
after the editing action is finished. The default is that automatic source code 
generation is turned off.
June 2009 IBM Rational Tau User Guide 1333



Chapter 42: Java Support
Automatic model update

If this setting is turned on the model will be automatically updated when the 
Java source files change, e.g. when saving them in an external text editor. 
The default is that automatic model update is turned off.

Support roundtrip

If you don’t intend to make changes to generated Java source files that shall 
be propagated back to the model using the Update command, you can turn 
this option off. Then generated Java files will always be generated from 
scratch.

Benefits with using this option are that code generation becomes somewhat 
faster, and that the generated file may get a more consistent indentation 
layout.

Apply <<informal>> stereotype to imported methods

This option is by default on, and means that bodies of imported Java methods 
won’t be checked for correctness at the UML level.

Java Files
This section describes how to work with existing Java files by importing 
them into a UML model. It also describes how to generate Java files from an 
existing UML model.

Importing Existing Java Applications

To import an existing Java application into IBM Rational Tau do as follows:

1. Select the command File->Import

2. Select Import Java source code in the Import dialog and click OK

3. In the tree view that appear browse to the directory you want to import. 
You can select several directories to be imported at once.

4. In the same page you can also select a few options:

– The option Create diagrams will cause the importer to create a dia-
gram for each imported package. The diagram will show all classes 
contained in the package and their relationships. Text diagrams will 
also be created for operation bodies to show their contents.
1334 IBM Rational Tau User Guide June 2009



Java Files
5. Click Finish to complete the import wizard. One Java package will be 
created in the UML model corresponding to each directory you have 
specified.

The UML model corresponding to each specified directory will be stored in 
a separate file.

All Java files in the selected folder are parsed and inserted into the model. All 
folders in the selected folder are inserted as top level Java packages. Files in 
the selected folder itself are treated as being defined in the unnamed package 
and inserted there.

The import is recursive, so any sub folders are inserted as sub packages in the 
model. For details on the mapping between Java files and the model, see 
“Model to File Mapping” on page 1353.

A Java Build Artifact will be added for each imported folder. The path of the 
imported folder is stored as the ‘Target Directory’ of the Java build artifact.

Once the Java files have been imported the model and the source code are 
kept synchronized by using the Update model and Update source code 
commands in the Java menu. It is also possible to use the Update and Gen-
erate commands in the ‘Java’ context menu on the Java build artifact.

To edit the source code, double-click the Java File artifact representing the 
file, or use the Go to Source command on a model or presentation element. 
This will open the .java file in the built-in text editor.

Importing JAR Files

The contents of a JAR file can be imported into the model so the definitions 
of the JAR file can be referred in the model. Only the signatures of the defi-
nitions are imported, not the implementations.

To import an existing JAR file into IBM Rational Tau do as follows:

1. Select the command File->Import

2. Select Import JAR file in the Import dialog and click OK

3. Browse to the the JAR file you want to import and select it.

4. Click Open to complete the import wizard. One Java package will be cre-
ated in the UML model corresponding to each JAR file you have speci-
fied. Class diagrams will be generated in these packages to show im-
ported classes and their relationships.
June 2009 IBM Rational Tau User Guide 1335



Chapter 42: Java Support
The JAR file is parsed and inserted into the model. The structure of the re-
sulting model follows the contents of the JAR file, typically one top-level 
package is created, but the JAR file can contain several top level packages. 

Each package corresponding to a JAR file will be stored in a separate UML 
file, named after the JAR file.

In addition, a JAR File artifact is created to represent the .jar file. Depen-
dencies from the artifact to the imported packages are created.

The connection between a package and its JAR file is maintained by storing 
the path to the JAR file in a stereotype on the artifact.

Packages created by importing a JAR file are treated as a static library, and 
therefore they have a number of limitations compared to other root packages:

• They are not automatically synchronized with the JAR file. If the JAR 
file changes it has to be reimported manually.

• It is not possible to use the Update model and Update source code com-
mands on a JAR package.

To reimport a JAR file do as follows:

1. Select the JAR file artifact in the Model View.

2. Select Reimport JAR file in the context menu.

Generating Java from Existing Models

Java source files can be generated from a UML model, no matter how the 
model was originally created. Java files can be generated in the following 
ways:

• Exporting a package to Java source code

• Generating JAR files

• Generating javadoc

Exporting a package to Java source code

To export a package in the model into Java source code:

1. Activate the Standard View by selecting Reconfigure Model View... in 
the View menu and then selecting the Standard View.

2. Select a package in the model.
1336 IBM Rational Tau User Guide June 2009



Java Files
3. In the Java menu, select the Export sub menu and click Package...

4. Select the destination folder in the file system and click OK.

The entire contents of the package is generated into .java files and written 
to the file system according to the rules described in Model to File Mapping 
and Java Code Generator Reference. In addition one Java Build Artifact is 
added to the model for each exported top level Java package. It manifests the 
package and stores the folder path as target directory in the <<Java>> stereo-
type.

Once the Java files have been exported the model and the source code are 
kept synchronized by using the Update model and Update source code 
commands in the Java menu. It is also possible to use the Update and Gen-
erate commands in the ‘Java’ context menu on the Java build artifact.

To edit the source code, double-click the Java File artifact representing the 
file, or use the Go to source command on a model or presentation element. 
This will open the .java file in the built-in text editor.

The export command is available for the following packages:

1. Top level UML packages

2. Java packages

Case 1 is used when generating Java from a package for the first time. Case 
2 is used to move the generated Java files to a new location in the file system. 
As an alternative to using the export command for case 2 you can simply 
change the target directory value of the Java build artifact and select Force 
Generate in its context menu.

Generating JAR files

To generate a JAR file from a package in the model:

1. Select a package in the model.

2. In the Java menu, select the Generate sub menu and click JAR file...

3. Select the destination folder in the file system and click OK.

This will generate a JAR file in the destination folder with the same name as 
the package. The JAR file is generated from compiled classes and interfaces 
only, that is .class files in the folder connected to the package. Before gen-
June 2009 IBM Rational Tau User Guide 1337



Chapter 42: Java Support
erating a JAR file make sure to execute the Generate command followed by 
the Compile command on the Java Build Artifact. Make sure the compilation 
does not report any errors.

Generating javadoc

To generate javadoc from a package in the model:

1. Select a package in the model.

2. In the Java menu, select the Generate sub menu and click Javadoc...

3. Select the destination folder in the file system and click OK.

This will generate javadoc files for the selected package in the destination 
folder. The javadoc files are placed in a sub folder with the same name as the 
package appended with _doc. The index page is then displayed in the built-
in web browser.

Javadoc is generated from Java source files only, that is .java files in the 
folder connected to the package. Before generating javadoc, make sure to ex-
ecute the Generate command on the Java Build Artifact. Also note that the 
javadoc tool will not work on Java files that contain errors. You may use the 
Compile command on the Java build artifact to make sure the generated java 
code is correct before generating javadoc.

See Comments for more information about how to create Javadoc comments 
in the UML model.

Java Syntax
The default syntax in the UML tool set is referred to as U2, which is a textual 
UML syntax. The Java support extends the tool with Java syntax. This means 
that models can now be edited either in U2 or Java, it is up to you which 
syntax you would like to use. You can create new models in either U2 or Java 
and you can look at existing models in either U2 or Java. The languages are 
very similar, Java is basically a subset of U2, although there are some differ-
ences at the semantic level. Note that some constructs of U2 are not trans-
lated to Java; for details see Java Code Generator Reference.

Java syntax is available in:

• Text diagrams

• Text symbols (in class and package diagrams)
1338 IBM Rational Tau User Guide June 2009



Synchronizing Model and Source Code
Note that Java syntax is not used in state machine diagrams. The reason for 
that is that some U2 constructs, not present in the Java language, are com-
monly needed in state machine diagrams. Examples include constructs for 
sending signals and working with timers.

Java syntax can only be set at package level and is normally set on top level 
packages. When Java syntax is enabled for a package all text diagrams and 
text symbols contained in the package are using Java syntax. Java syntax is 
also hierarchically applied to all elements (including packages) owned by the 
package.

Java syntax has precedence over U2 syntax, and the higher level in the hier-
archy has higher priority than lower levels. This means that if Java syntax is 
enabled on a top level package everything contained in that package will use 
Java syntax.

Synchronizing Model and Source Code
The model and source are kept fully synchronized by updating the source 
code from the model or the model from the source code. Since the UML tool 
set is a true model-based tool it is chosen to treat the model and the source 
code as different things, the model being the most important one. The result 
is a slightly different behavior depending in which direction an update is 
made: model to code or code to model. It also depends on if automatic or 
manual update is used. The details are described in the following sections.

Automatic vs Manual Synchronization

The update of the model and source code can be done in two different fash-
ions, automatically when the source code / model is changed or manually 
using special update commands.

There are two settings that control the synchronization mode:

• Automatic roundtrip

• Automatic code generation

The details of these settings are described in the section Java Build Artifact 
Settings. The default is that the automatic roundtrip and synchronization are 
turned off.
June 2009 IBM Rational Tau User Guide 1339



Chapter 42: Java Support
Manually Updating Java Source Code

Java source code can in manual synchronization mode be updated (i.e. gen-
erated) from a model in two ways:

• For all Java build artifacts in the active project

• For one particular Java build artifact only

To generate Java source code for all Java build artifacts in the active project:

1. In the Java menu, select Update source code or use the keyboard 
shortcut CTRL + ALT + S

To generate Java source code for one particular Java build artifact only:

1. Select the Java build artifact in the Model View or in a diagram.

2. Right-click and select Generate in the ‘Java’ submenu.

When using the Update source code or Generate commands to generate 
Java source code only the Java files that are affected by changes made in the 
model will be generated. So, in most cases only a subset of the Java source 
code files will be regenerated. To force an update of all Java source code files 
choose the command Force update source code in the Java menu, or Force 
Generate in the Java build artifact context menu.

Java source code can be generated for a number of different UML model el-
ements, but not for all. See Java Code Generator Reference for more details 
on how UML elements are represented in Java. See also Model to File Map-
ping for information about how UML elements are mapped to generated files 
and folders in the file system.

The model and the file system is automatically kept synchronized, but the 
model has higher priority than the file system when generating source 
code. If there are any model elements that lack a representation in the file 
system, the corresponding file system elements are created automatically. 
For example if a new class has been added to the model since the last time 
source code was generated, the corresponding .java file is automatically 
created.

In addition, if there are any file system elements that lack a representation in 
the model, for example a folder that has no corresponding package in the 
model, this is detected and the file system elements can be deleted. Auto-
matic deletion of an element always prompts for user confirmation to avoid 
unintended loss of information. 
1340 IBM Rational Tau User Guide June 2009



Synchronizing Model and Source Code
Renaming and moving model elements

The connection between the model and the files and folders in the file system 
is maintained automatically when importing source code or exporting pack-
ages from a model as described in “Model to File Mapping” on page 1353. 
When entities are renamed or moved in the model the connection is not au-
tomatically maintained, however. Therefore, great care has to be taken when 
moving model elements representing files or folders to preserve the connec-
tion between them. This applies to packages, Java file artifacts and JAR file 
artifacts.

There is one exception to this rule: Top level packages that are renamed in 
the model. When updating the source code after renaming a top level 
package, the file system directory is renamed, and all sub packages and Java 
file artifacts in the model are updated to reflect the new location.

The correct way to correctly rename or move an element while preserving the 
file connection is outlined below:

1. Rename the model element, and if applicable the Java file artifact mani-
festing the element.

2. Update the path of the element to reflect the new name and location. For 
Java file artifacts this is done by editing the Path tagged value, while for 
top level packages it is done by editing the ‘Target Directory’ tagged 
value in the Java build artifact that manifests the package.

3. Move and/or rename the corresponding folders and files in the file 
system.

If any of these steps is performed incorrectly problems can appear during 
synchronization. For example, if the files in the file system are not moved, 
new files will be generated in the new location. These new files will not in-
clude non-Javadoc comments from the old files since they are not stored in 
the model (see Comments for more information).

Changing the location of generated Java files

To move all generated Java files of a Java package, re-export the package to 
the desired location, see Exporting a package to Java source code for details. 

Existing .java files are copied to the new location, and the paths of all Java 
file artifacts, as well as the ‘Target Directory’ of the Java build artifact, are 
automatically updated.
June 2009 IBM Rational Tau User Guide 1341



Chapter 42: Java Support
Changing the location of a single Java file is not recommended since it can 
violate the package versus file system correspondence enforced by the Java 
language. It can however be done by following the procedure described in 
Renaming and moving model elements above.

Changes to existing files

Existing files are only updated when needed, so files are only updated when 
changes have been made to the corresponding model element(s). The model 
changes are merged into the file preserving contents and formatting of the 
file to the greatest possible extent. 

To force source files to be regenerated from scratch you can turn off the Sup-
port roundtrip setting. This makes code generation somewhat faster, and may 
result in a more consistent indentation layout in the file, but should only be 
used if you do not intend to modify generated Java source files manually.

Manually Updating the Model from Java Source Code

The model can in manual synchronization mode be updated from source 
code in two ways:

• For all Java build artifacts in the active project

• For one particular Java build artifact only

To update all Java build artifacts in the active project from source code:

1. In the Java menu, select the Update model or use the keyboard shortcut 
CTRL + ALT + M

To update only one particular Java build artifact from source code:

1. Select the Java build artifact in the Model View or in a diagram.

2. Right-click and select Update in the ‘Java’ submenu.

Note that it is not the Java build artifact itself that will get changed when up-
dating the model from the source code, but rather the UML elements that are 
manifested by it.

When updating the model from source code, the file system is scanned and 
the model is updated from the file system elements using the mapping rules 
described in Model to File Mapping below. 
1342 IBM Rational Tau User Guide June 2009



Navigating to and from Generated Java Files
When using the Update model or Update commands to update the model 
based on Java source code only the Java files that have been changed since 
the last update of the model will be considered during the update. So, in most 
cases only a subset of the Java source code files will be used and only a subset 
of the model will be updated. To force an update based on all Java source 
code files whether they are modified or not choose the command Force up-
date model, or Force Update in the Java build artifact context menu.

The file system and the model are automatically kept synchronized, but the 
file system has higher priority than the model when updating source code 
from the file system. If there are any file system elements that lack a repre-
sentation in the model, the corresponding model elements are created auto-
matically. For example if a new .java file has been added to the file system 
since the last update was made, the corresponding UML elements are auto-
matically created in the model.

In addition, if there are any model elements that lack a representation in the 
file system, for example a package that has no corresponding folder in the file 
system, this is detected and the package is deleted from the model. Automatic 
deletion of an element always requires user confirmation to avoid unintended 
loss of information. 

Synchronized Target Directory

The target directory of a Java build artifact is synchronized when the Update 
or Update (force) command is performed on the build artifact. Synchroniza-
tion means that the contents of the folder and the model is kept identical.

When a new sub folder of a synchronized folder has been created in the file 
system, it is detected and it will be reversed and inserted into the model. Cor-
respondingly, when a package in the model mapped to a subvocally of a syn-
chronized folder is deleted you will be asked to delete the folder in the file 
system.

Navigating to and from Generated Java Files
Once Java code has been generated IBM Rational Tau keeps track of the 
source code location for elements in the model. This makes it possible to nav-
igate from the model to the code, and also from the code to the model.
June 2009 IBM Rational Tau User Guide 1343



Chapter 42: Java Support
To open a generated Java file you may double-click on the file artifact that 
represents it in the model. You may also use the Go to Source command that 
is available in the context menu of any generated definition, to navigate di-
rectly to the location (or locations - in some cases one UML definition can 
end up in multiple Java files) of that definition in the generated Java files.

When navigating to a generated Java file it will be opened in IBM Rational 
Tau’s built-in text editor.

It is also possible to navigate in the opposite direction, from the Java code 
that was generated, to the corresponding UML model entity. This is done by 
the Go to Source command that is available in the context menu of IBM Ra-
tional Tau’s built-in text editor.

Compiling and Executing Java
The Java support of IBM Rational Tau contains an Eclipse Integration which 
facilitates compiling and executing generated Java code using the Eclipse 
IDE. However, it is also possible to compile and execute Java code from IBM 
Rational Tau directly.

Compiling

To compile generated source code (.java files) into .class files:

1. Select a Java build artifact.

2. In the context menu select Compile in the ‘Java’ submenu.

This will perform the Generate command on the Java build artifact to make 
sure all Java files are up-to-date. Then the generated source files will be com-
piled into .class files. 

You can also use the Compile command in the Java menu in order to compile 
all generated Java files for all Java build artifacts in the active project.

If the compilation fails, for example due to a syntax error, the compilation 
errors are written to the Build output tab. You can navigate to the error by 
double-clicking the line containing file name followed by the line number. 
The file is then opened and the cursor is positioned on the line causing the 
error.
1344 IBM Rational Tau User Guide June 2009



Compiling and Executing Java
Errors can be resolved in the model or in the source code, but it is important 
to remember to synchronize the model and the source code when fixing an 
error.

The classpath used during compilation is calculated according to the descrip-
tion in “Classpath variable” on page 1345. Compilation is always performed 
with the source compiler option explicitly set to the choosen language ver-
sion (to enable asserts among other things).

Executing a class

To execute a class as a Java application:

1. Select the class you would like to execute.

2. In the Java menu, select Execute. 

This will execute the class as a Java application. The output of the execution 
will be displayed in the Script window. Executing a class requires that it has 
been successfully compiled and contains a main method. If the .java file ex-
ists but the .class file does not, the .java file is compiled automatically.

The classpath used during execution is calculated according to the descrip-
tion in the Classpath variable section. Execution is always performed with 
the esa option to enable asserts during execution. If you want to set other op-
tions to the Java VM, select the Execute with options... in the Java menu.

Executing a class as an applet

This command is the same as Executing a class but the class is wrapped into 
an applet which is then opened in a web browser. This command only works 
for classes in unnamed packages. It is intended to be used as a quick check 
of simple classes.

1. Select the class you would like to execute as an applet.

2. In the Java menu, select Execute applet.

This will create a file on the form <class name>.html instantiating the 
class as an applet.The html file will then be displayed in a web browser. 

Classpath variable

The classpath variable used when compiling and executing Java code is cal-
culated automatically, and no changes should normally be required. 
June 2009 IBM Rational Tau User Guide 1345



Chapter 42: Java Support
The directories of all Java packages and jar-files in the project are added to 
the classpath. In addition, all Synchronized Target Directory are added. Also, 
if the model uses constructs which imply a dependency to the Java Run-time 
Framework, a class path entry for that library (tor.jar) will also be added.

It is possible to override the classpath if the scheme above is not sufficient, 
for example if you want to include external libraries not represented in the 
model. To manually override the classpath:

1. Select the Java Model node (Model node in Standard View) in the 
Model View.

2. Right-click and select Properties...

3. In the Filter drop-down, select Java Settings.

4. Add entries to the Classpath list as desired.

Note
Manually overriding the classpath disables the automatic calculation of the 
classpath. Only the entries manually added to the list will be used. It is im-
portant to remember to update the classpath when new top level packages 
are created.

Execution Tracing
The execution of Java programs can be traced in IBM Rational Tau using se-
quence diagrams. This feature can be used for visualizing communication 
between Java objects, to detect incorrect program flows, and in general to ob-
tain an understanding of the run-time behavior of a Java program. Tracing is 
often combined with debugging in an IDE, such as Eclipse. By setting break-
points around interesting sections of code a trace can be obtained for visual-
izing what the program does in those parts of the code.

In order to produce an execution trace the Java program must be instru-
mented. This is done by loading a trace agent into the Java virtual machine. 
The agent collects information about what happens in the program by re-
sponding to events sent by the virtual machine. This information is then sent 
to IBM Rational Tau, where it is presented in UML diagrams.

The IBM Rational Tau module which produces the diagram from the trace 
events is called a tracer. It is possible to implement custom tracers in order 
to present the trace information in some other way, for example in another 
kind of diagram, or to filter the information in a different way.
1346 IBM Rational Tau User Guide June 2009



Execution Tracing
IBM Rational Tau ships with a standard tracer, the Instance Tracer, for pro-
ducing sequence diagrams where each Java class instance (object) is repre-
sented by its own lifeline, and where the interaction between instances in the 
form of method calls are visualized.

Hint
Since Java trace instrumentation is done without modifying the Java source 
code it is possible to trace the execution of any Java program, not only pro-
grams generated from IBM Rational Tau.

Start a New Trace Session

Perform the following steps in IBM Rational Tau to start a new trace session:

1. Select the command Java / New Trace Session...

2. In the dialog select which tracer to use for the trace session. 

3. The selected tracer will by default be enabled initially, meaning that as 
soon as the dialog is closed it is ready to receive trace events. If you want 
to wait a little with enabling the tracer (for example to give time for run-
ning the Java program up to a breakpoint of interest first) then uncheck 
the Enabled checkbox.

4. Press OK to close the dialog.

When the dialog is closed a new top-level “trace” package will be created in 
the model. It is by default called “JavaTrace”. You may change this name to 
better describe the trace session.

The settings made in the dialog are stored on the trace package. You can 
change these settings at any time by opening the Properties Editor on the 
trace package with the filter javaTrace selected. The most common reason 
for doing this is to enable or disable the trace session in order to filter the 
trace to only cover interesting parts of the program execution.

Instrumenting the Java Program

To make the Java program instrumented you need to add an option to the 
Java virtual machine:

-agentlib:JavaInstrument
June 2009 IBM Rational Tau User Guide 1347



Chapter 42: Java Support
This will tell the Java virtual machine to load the instrumentation agent 
JavaInstrument before running the Java program. Note that you also must 
have your environment variable PATH (LD_LIBRARY_PATH on Unix) set to in-
clude the IBM Rational Tau installation bin directory so that the Java virtual 
machine can find the JavaInstrument agent. Note that for Linux RedHat 5 
LD_LIBRARY_PATH must also contain the IBM Rational Tau installation 
bin/.rh5 directory, and this directory must be listed before the bin direc-
tory.

The JavaInstrument agent takes several options which may be specified after 
an equal sign. Options are separated by commas, and each option consists of 
a name-value pair separated by a colon. For example:

-agentlib:JavaInstrument=host:localhost,port:57000

Available options are described below.

Option ‘host’

This option specifies the name of the host computer where the IBM Rational 
Tau instance to trace to is running. The default value is “localhost” meaning 
that IBM Rational Tau should be running on the same machine as the Java 
program. You may use this option to send the trace to a IBM Rational Tau 
running on a different machine in the network.

Option ‘port’

This option specifies the web server port of the IBM Rational Tau instance 
to trace to. The default port number is 57000, but if you have (or have had) 
multiple instances of IBM Rational Tau running on the machine, you may 
need to use a different port number. To find out which port number a partic-
ular instance of IBM Rational Tau is using follow the instructions in How to 
Use the Tau Web Server.

Option ‘start_method’

By default instrumentation events start to be sent when the Java application 
reaches the main method. This option can be used for setting a different 
method to start the instrumentation in. Currently only the method name can 
be specified here; it is not possible to qualify the name or to specify a partic-
ular overload of a method.
1348 IBM Rational Tau User Guide June 2009



Execution Tracing
The ‘start_method’ option is useful for applications which consists of a com-
plex start-up phase, involving lots of calls to standard libraries. One example 
is applications with a user-interface. Typically it is uninteresting (and takes 
too long time) to trace what happens during this initialization phase. Tracing 
can then begin at the first method that gets called after the initialization phase 
is completed.

Example 403: Using the ‘start_method’ option to defer instrumentation start ––––

Consider the following Java program:

class MyClass {
public static void main( String[] args) {

MyDialog dlg = new MyDialog();
start();

}
}

Assuming that the MyDialog class is a Swing dialog, its instantiation will 
imply lots of calls to the Swing library. To avoid tracing these calls we use 
the ‘start_method’ option:

-agentlib:JavaInstrument=start_method:start

Tracing will now begin when the ‘start’ method is called, that is after the GUI 
has been initialized.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Option ‘skip’

This option specifies definitions that should not be instrumented. The value 
is a list of definitions using the same syntax as the Java import statement.

The default value of this option is “java.*;sun.*”, meaning that definitions in 
the ‘java’ and ‘sun’ packages will be excluded from tracing.

The ‘skip’ option allows you to reduce the generated trace to only involve 
those parts of the program you are interested in. For example, you may want 
to skip instrumenting all 3rd party libraries you are using.

Note that a call from method A to method B is only skipped from instrumen-
tation if both A and B are part of a definition listed in the ‘skip’ list. If only 
one of these methods is in the ‘skip’ list the call will be traced. This can for 
example be used to see which library calls your code performs, or which 3rd 
party components that call your code.
June 2009 IBM Rational Tau User Guide 1349



Chapter 42: Java Support
Example 404: Using the ‘skip’ option to filter a trace ––––––––––––––––––––––––

The following JavaInstrument option:

-agentlib:JavaInstrument=skip:javax.*;MyPkg.MyClass

will exclude all definitions in the package javax and also the class 
MyPkg.MyClass from tracing.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Setting instrumentation options when using Eclipse

Here are the steps to perform in the Eclipse IDE in order to make the instru-
mentation settings described above. The instructions are for Eclipse 3.3; 
other versions may have a slightly different user interface.

1. Right-click the Eclipse Java project you want to instrument. Select 
Debug As / Open Debug Dialog...

2. Make sure the Run configuration for the project is selected, or create a 
new Run configuration for the project.

3. In the Arguments tab enter the instrumentation option in the VM argu-
ments field. For example:
-agentlib:JavaInstrument=host:localhost,port:57000

4. In the Environment tab create a new variable PATH (LD_LIBRARY_PATH 
on Unix) and set its value to the IBM Rational Tau installation bin direc-
tory. For example, C:\Program Files\IBM\Rational\TAU\4.3\bin

5. Click Debug to close the dialog and start the debug session.

Of course you can do the same for a Run configuration in case you do not 
want to debug the Java program.

Instance Tracer

The Instance Tracer is a predefined tracer which visualizes application trace 
events as a UML sequence diagram. The diagram will contain one lifeline for 
each dynamic Java class instance that performs some actions during the trace 
session. The name of the lifeline is the address of the Java object. 

For classes that contain static methods an additional lifeline will be created, 
called static. It represents all static parts of the class.
1350 IBM Rational Tau User Guide June 2009



Execution Tracing
To improve trace performance certain low-level Java library objects are not 
traced. This includes objects for classes defined in the java and sun pack-
ages.

Called methods, including constructors, initializers etc. are visualized in the 
diagram as method calls. The creation of new Java objects is also visualized.

Example

Consider the Java program below:

package JavaTraceTest;
class C {
    public static void main( String[] args) {
        D d = new D();
        d.foo();
    }
}
class D {
    void foo() {
        return;
    }
}

The sequence diagram trace produced by the Instance Tracer for this program 
looks like shown in Figure 247 on page 1352. The diagram shows the fol-
lowing events in the Java program:

1. The static main method in class C is called. The object making this call is 
a low-level library object which is not traced to the diagram.

2. A new instance of class D is created. The instance is located at address 
0x1507fb2 in the Java virtual machine. The creation also implies the call 
of D’s constructor. The implementation of this constructor is auto-gener-
ated by the Java compiler.

3. Control is returned to C.main from D’s constructor.

4. A call to D.foo is made.

5. Control is returned to C.main from D.foo.

6. The main method is returned from.
June 2009 IBM Rational Tau User Guide 1351



Chapter 42: Java Support
Adding Custom Tracers

It is possible to add custom tracers in order to present the trace events re-
ceived from the Java virtual machine in a custom way. This is done by de-
fining a class that inherits from a JavaTracer class, and defining agent op-
erations in the class that overload appropriate virtual operations from 
JavaTracer. The agents get called when trace events are received from the 

Figure 247: Sequence diagram trace produced by the Instance Tracer
1352 IBM Rational Tau User Guide June 2009



Model to File Mapping
Java virtual machine. For more information about JavaTracer and its avail-
able operations see the package TTDJavaModelCodeSync::Tracing under 
the Libraries section of the model. There you can also find the definition 
of the InstanceTracer.

Model to File Mapping
This section describes the mapping rules between model and file system el-
ements. The table below is a brief summary.

Java file artifacts

A Java file artifact is used to represent each .java file, or more specifically 
each Java compilation unit. A Java file artifact is an artifact with the 
«javaFile» stereotype applied. The artifact has the same name as the .java 
file it represents.

The path to the file is stored in the “path” property of the javaFile stereotype 
(shown as “File name” in the Properties Editor). This path can be relative to 
the project or absolute. It is automatically set during import or export (using 
a relative path if possible). The mapping can be changed manually if desired, 
by editing the value in the Properties Editor.

Manifest dependencies from the artifact to model elements are used to 
specify what elements that should be written to the .java file when updating 
the source code. The manifested elements are written into the file as top level 
declarations. Manifest relations can be created, moved or deleted to control 
the contents of the file.

Import declarations in Java are defined per file, or compilation unit. They are 
stored in the artifact as import dependencies. Import dependencies can be 
created, moved or deleted to control which import declarations that are 

File system element Model element

.java file Java file artifact with manifest relations to 
the elements it represents, for example 
classes and interfaces.

.jar file JAR file artifact with dependencies to the el-
ements of the JAR.

folder Java package
June 2009 IBM Rational Tau User Guide 1353



Chapter 42: Java Support
written to the file. Note, however, that the Java code generator can automat-
ically compute which import declarations that are needed in a generated file 
based on which definitions that are referenced in the file. Therefore you only 
need to manually add import dependencies to a Java file artifact if you want 
to add additional import declarations (for example needed by inline target 
code that are informally represented in the model, and thus cannot be ana-
lyzed by the Java code generator).

In order for other elements in the UML package owning the artifact to see 
these import dependencies, the artifact is imported by the package that owns 
it. This makes all definitions imported by the artifact visible to the entire 
package.

Artifacts are automatically created and deleted when updating the source 
code or the model. 

Note
It is not recommended to create, move or delete these artifacts manually. 

Java packages

A Java package in the model is mapped to a folder in the file system. Nested 
packages are mapped to nested folders in the file system.

A Java package is a package with the «javaPackage» stereotype applied. 
The mapping between a Java package and its folder in the file system is con-
trolled by the target directory setting of the Java build artifact that manifests 
the package. This can be either an absolute or project relative path. If a Java 
package is not directly manifested by a Java build artifact, the folder path is 
computed by looking at the folder for the owning package. 

When importing existing Java files, the mapping is set up automatically and 
it should normally not require any changes. The mapping can however be 
changed at any time.

Unnamed package

An unnamed package is created automatically when needed. Typically when 
importing a .java file located directly in the folder selected during import. 

The unnamed package is called ‘default’ and has the stereotype unnamed-
Package applied.
1354 IBM Rational Tau User Guide June 2009



Java Runtime Libraries
No package declaration is generated when synchronizing elements in the un-
named package.

There can only be one unnamed package per project.

Note
Different Java environments and compilers treat unnamed packages in dif-
ferent ways and this may cause problems when compiling and executing. 
Therefore usage of unnamed packages should be avoided if possible.

JAR file artifacts

JAR files are represented with a JAR file artifact that has the same name as 
the .jar file. The artifact has dependencies to the elements of the JAR file.

JAR file artifacts are created automatically when importing a JAR file. Al-
though they can be created manually for design purposes, they can not be 
used to describe how to generate a JAR file.

Packages located in JAR files are Java packages with an additional stereo-
type, called «jarPackage» to indicate that they are located in a JAR.

JAR packages are considered to be static and are limited compared to other 
packages, see Importing JAR Files for details. For details on how to generate 
JAR files from the model see Generating JAR files.

Java Runtime Libraries
The most common standard Java runtime libraries are included in the Java 
support. The contents of these libraries is found in the Java Libraries node 
(Libraries when using the Standard View) in the Model View. The runtime 
libraries include the entire contents of the rt.jar file of the Java distribution. 

Loading of runtime libraries

By default, the runtime libraries are automatically loaded when loading a 
Java project. Since not all Java programs makes use of these run-time li-
braries, and because loading of these large libraries can take some time, it is 
possible to disable the automatic loading of them.

To avoid loading the rt.jar library during startup, change the Java Settings for 
the project by deselecting the Load rt.jar on startup check box.
June 2009 IBM Rational Tau User Guide 1355



Chapter 42: Java Support
Using the runtime libraries

Any of the elements in the runtime libraries can be used as ordinary UML 
elements with full binding and name completion, etc.

To use them in diagrams, just drag the element from the Model View to a 
diagram. To use them as types in symbols or in the textual syntax use the el-
ement names. The elements must be made visible in the scope in order to 
bind correctly, see Visibility of packages and elements below for details.

Visibility of packages and elements

As required by any Java implementation, the contents of the package 
java.lang is always accessible. Any other package has to be explicitly im-
ported or referred by a fully qualified name in order to bind. An example is 
given below in U2 syntax (entire packages can not be edited in Java syntax).

package P1 <<import>> dependency to java::io {
  class A {
    Integer i;
    FileWriter fw;
    java::util::Vector v;
  }
}

The type Integer of attribute i in the example above automatically binds to 
java::lang::Integer. The type FileWrite of fw attribute binds to 
java::io::FileWrite because package P1 imports the package 
java::io. The fully qualified name has to be used for Vector of attribute v 
since that package is not visible in this scope.

Note
Since Java file artifacts are used to represent .java files, only imports 
made by an artifact is written to the file it represents. Imports on UML 
packages or classes are not automatically transferred to all .java files gen-
erated from the package.

Tau Object Runtime library

In order to support translation of UML constructs that have no native repre-
sentation in the Java language, such as statemachines, signals etc., a Java li-
brary called Tau Object Runtime (TOR) is used. To a large extent this library 
is only used at Java source code level by code generated by the Java code 
1356 IBM Rational Tau User Guide June 2009



Java Modeling Utilities
generator, but there are some parts of the library which are useful to access 
also on the UML model level. Therefore TOR is loaded as a library (called 
‘tor’).

For more information about the TOR library see Java Run-time Framework.

Additional libraries

If there is a need for other Java libraries, such as the encryption support in 
jsse.jar this JAR file can be imported manually, see Importing JAR Files.

Java Modeling Utilities
IBM Rational Tau provides a few utilities which facilitate the modeling of 
Java programs in UML. Some of these utilities apply automatically when 
using the ordinary commands in IBM Rational Tau, while others manifest 
themselves as dedicated commands.

Active Class Generalization

When a Java class is made active, IBM Rational Tau automatically adds a 
generalization for it, so that it will inherit the TOR class DispatchableClass. 
This is done in order to provide UML level access to important methods of 
that class, such as ‘init’ and ‘start’.

If you make a Java class passive, the generalization to DispatchableClass will 
be automatically removed.

Generate Main Method

It is possible to automatically generate a main method for a Java class. To do 
this follow these steps:

1. Select the class in the Model View.

2. In the context menu perform the command Utilities - Generate Main 
Method. 

The main method is generated from information found in the Java Build Ar-
tifact that is used for building the selected class. For each non-nested active 
class that is directly or indirectly manifested by that build artifact, an instance 
will be created. The instances will be added to a Dispatcher, followed by calls 
to ‘init’ and ‘start’ on the instances. Finally ‘run’ is called on the dispatcher.
June 2009 IBM Rational Tau User Guide 1357



Chapter 42: Java Support
The generated main method will thus execute the top-level active class in-
stances as a single-threaded application. You can modify this default imple-
mentation in any way you like, for example using a ThreadedDispatcher to 
create a multi-threaded program.

Java Settings
Each Java project (or model) has a set of Java specific settings. Some of these 
settings are specific to a particular Java build artifact, and can have different 
values for different Java build artifacts. These settings are described in Java 
Build Artifact Settings. 

In this section we will describe the other kind of settings, those that are 
common for the entire model. These global settings are stored in the project 
file. To view or edit these settings do the following:

1. Select the Java Model node (Model node in Standard View) in the 
Model View.

2. Right-click and select Properties...

3. In the Filter drop-down, select Java Settings.

There are the following different settings:

• Language version

– This option controls which Java language version to use. Normally 
this option is set when creating the Java project using the New 
Wizard and is not changed after that. You may however need to 
change this option when upgrading your project to use a newer Java 
version. In that case you should reload the Java project afterwards to 
make sure the correct version of the Java libraries will be loaded.

• Load rt.jar on startup

– A flag specifying if the contents of the Java Runtime Libraries (rt.jar) 
should be loaded on startup or not. Disabling loading of rt.jar signif-
icantly improves the loading time, but references to elements in rt.jar 
will not be bound.

Known Restrictions
This section lists all known limitations and restrictions relevant for the Java 
support.
1358 IBM Rational Tau User Guide June 2009



Known Restrictions
Active code generators 

In order to generate code efficiently, it is recommended that each project 
limits the number of active code generators to one. For example if both the 
C++ Application Generator and the Java code generator are active in a 
project, the code generation may require longer time to complete and/or re-
quire larger memory resources.

Model binding in inner classes

Sometimes when using Java syntax, statements defining inner classes will 
not bind properly. The following example illustrates this. The parameter 
passed to the call of op1 in the example below will not bind.

abstract class classA {
  abstract void run();
}
class classB {
  public void op1(classA p1) {}
  public void op2() {
    op1( new classA() {
        void run() {
        }
      }
    );
  }
}

No Java syntax for UML packages

It is not possible to edit an entire UML package in the Java textual syntax. 
Although the package concepts of UML and Java are superficially very sim-
ilar they are different semantically. There is not a one-to-one mapping be-
tween packages in UML and in Java. UML packages can only be edited in 
U2 textual syntax.

Switching between Java and U2 syntax fails

Sometimes it is not possible to switch back and forth between Java and U2 
syntax. This happens when there is a syntax error in one of the syntaxes due 
to an unsupported or unmapped concept. If there is a syntax error it will not 
be possible to change the syntax to the other language.

If this happens, either fix the error or delete the text symbol or diagram and 
create a new one using the correct syntax to start with.
June 2009 IBM Rational Tau User Guide 1359



Chapter 42: Java Support
Using the Java EE 5 Addin
The purpose of the Java EE 5 addin is to simplify the design of Java Enter-
prise Edition 5 applications using Tau. The JEE5 addin provides the fol-
lowing features:

• A Java EE 5 UML profile that gives access to Java EE 5 concepts in the 
UML model.

• Utilities to facilitate Java EE 5 model design directly from context menus 
in UML diagrams.

The Java EE 5 addin documentation is structured into two parts:

• A simple introduction that step-by-step will take you through the design 
of a simple Java EE 5 enterprise component in Tau.

• A reference manual chapter that describes the commands and utilities 
available in the addin (see Java EE 5 Addin Reference Manual).

The Hello Example

As a simple example let’s consider creating a small Java EE model that will 
provide a greetings service to the world. We will start from scratch and end 
up with a complete Java EE component ready to be deployed on your appli-
cation server of choice.

Creating a Java EE 5 Project

The next step is to create a new java project. This can be done using the New 
wizard in Tau:

1. Select the File->New command and choose UML for Java Code Gen-
eration as the project type and 5 as the java version.

2. Give it a suitable name, in the rest of this document we will refer to it as 
“hello”.

3. Select the Location to a suitable directory.

The name of the directory must not contain spaces to make sure all utilities 
described below will work. In the rest of this introduction we will assume 
the location is C:\TauProjects\hello.

4. Accept the default options in the rest of the New wizard

You have now created a standard Java 5 EE project. 
1360 IBM Rational Tau User Guide June 2009



Using the Java EE 5 Addin
Activating the JavaEE5 addin
To use the Enterprise Edition concepts it is necessary to switch on the 
JavaEE5 addin:

1. Choose the command Tools->Customize.

2. Open the Add-ins tab.

3. Activate the JEE5 addin and click on the Close button.

You are now ready to create Java EE 5 models.

Creating an EJB Component Session Bean

There are several component kinds in the Java EE 5 framework; stateless and 
stateful session beans, message driven beans and persistent entities. In this 
example we will start by creating a stateless session bean. To do this we es-
sentially only need to do three things:

• define the business interface of the bean

• implement the business interface in a bean class

• package the bean in a JAR file

We will start by designing the component interface with its business methods 
and mark this as a remotely accessible bean interface by stereotyping it with 
the <<Remote>> stereotype:

• Start by creating a package to hold the EJB components called “ejb” in-
side the “hello” package.

• Double-click on the “ejb” package in the Model View and create a class 
diagram.

• Create a new interface in the diagram and call it “Hi”.

• Add an operation “greetings():String” to the interface

• Select the interface symbol, and choose “Apply <<Remote>>” from the 
context menu.

We now have completed the component interface definition and the next step 
is to create a stateless session bean that implements the interface:

• To get a kick-start in the implementation use the command “Create im-
plementation class” available in the context menu for the interface. This 
will create a class that contains the correct operation and that realizes the 
interface.
June 2009 IBM Rational Tau User Guide 1361



Chapter 42: Java Support
• To mark this as a stateless session bean, choose the command “Apply 
<<Stateless>>” from the context menu.

The next step is to provide the implementation of the greetings() operation. 
This can be done either in the UML model or by coding directly in the java 
file. In this example we’ll choose to edit the code directly. This is done as fol-
lows:

• To get java source code for the UML model select the “hello” package 
and choose the Java->Export package command.

• To edit the source code for the bean class, select the command Go to 
Source in the context menu of the “HiBean” class. This will open the 
java source code file in the built-in text editor.

• Fill in the implementation of the greetings method: public String greet-
ings(){ return "Hello!"; }

• Save the file to update the UML model. Use for example the Ctrl-S key-
board shortcut in the source code editor.

The design and implementation of the EJB component is now finished and 
what remains is to build and package it. In general this is easiest to do using 
a build tool like Ant or using a Java IDE like Eclipse, but in this simple ex-
ample we will use the standard java tools javac and jar, that are available in 
the Java EE 5 SDK. This SDK can be downloaded e.g. from 
http://java.sun.com/javaee/downloads/index.jsp. Tau contains some simple 
commands in the Java menu that wraps javac and jar and makes them avail-
able from inside the tool. To use them there is however a need to set up the 
classpath for the java compiler to include both the all jar files used in the 
model and the directories where the source code is generated. The classpath 
is stored as a property of the root of the UML model:

• Select the Java Model node in the Model view and choose the Proper-
ties… command from the context menu.

• In properties dialog choose Java Settings as the “Filter” to see the java 
related settings.

• Add a value to the Classpath property that includes the javax.jar file. This 
should be something like “;/Sun/SDK/lib/javaee.jar” Note that the cita-
tion markers should not be part of the value. Also note the initial semi-
colon.
1362 IBM Rational Tau User Guide June 2009

http://java.sun.com/javaee/downloads/index.jsp


Using the Java EE 5 Addin
If you use an external Java IDE to compile the program you will instead need 
to add the javaee.jar file to the compilation settings of the IDE. The exact 
steps to do this depend on the details of the IDE, but if you are using Eclipse 
this is done in the Libraries tab of the properties for the java project.

We’re now ready to start compiling the two java files using the javac com-
mand:

• Select the “hello” package in the Model View.

• Choose the command Java->Compile. This will compile all files con-
tained in this package.

The only remaining task is now to package the component into a jar file that 
can be deployed on an application server:

• Select the hello package and give the command Java->Generate->Jar 
file…

• When prompted: Select a suitable target directory.

• You can follow the progress of the jar command in the Script window. In 
our case this should show that the Hi.class and HiBean.class files are 
added to the jar file.

You now have a packaged component hello.jar that can be deployed on an 
application server. How to do this is specific for each application server but 
usually the application servers contain both a web based interface and a com-
mand line interface that can be used to deploy components. If you happen to 
be using the free Glassfish server the command line command to deploy our 
component would be “asadm deploy hello.jar”.

Creating Persistent Entities

The next step is to create a few persistent entities, i.e. classes that in the end 
will be stored on a database on the application server.

We will create two classes that will give some personal flavor to the hello 
service we’re implementing by storing favorite greeting phrases for each 
person. The UML design consists of two classes, Person and Phrase as in the 
following figure:

After creating this small model (create them in the same ejb package as 
where you created the Hi interface and the HiBean class) we will mark them 
as persistent entities. This is done as follows for each class:
June 2009 IBM Rational Tau User Guide 1363



Chapter 42: Java Support
• Select the class.

• Choose the command Apply <<Entity>> in the context menu. This will 
in addition to applying the correct stereotype also create a constructor 
that is mandatory for Java EE entity classes.

• Choose the command Create Get/Set operations. This will generate 
Java Bean compatible getters and setters that furthermore will be stereo-
typed according to the multiplicities and navigability of the attributes in 
the class.

The next step is to give each class a primary key. This is an attribute of the 
class that can be used to uniquely identify instances of the class.

• Select the name attribute in the Person class and choose the command 
Select as primary key. This will apply the stereotype <<Id> to the cor-
responding Get operation.

• Do the same for the “text” attribute of the Phrase class.

We now have two persistent entities in the model and the next step is to use 
these entities from the “hello” session bean. The idea is to add business 
methods to the bean to accomplish the following:

• It should be possible to add a new person with a favorite greeting phrase

• A new greetings method should be available that uses the personalized 
phrase.

To accomplish this do as follows:

• Add two operations to the Hi interface: greetings(name:String):String 
and addPerson(name:String,phrase:String)

• Select the interface and choose the command Push operations to class 
in the context menu.

• Open the source code editor for the HiBean class (for example by se-
lecting the class symbol and choosing the command Go to Source in the 
context menu).

• Modify the source code according to the following example. The italic 
text is the text that you have to insert. It contains three parts, a reference 
to an EntityManager and the implementations of the two new operations:

package hello.ejb;
@javax.ejb.Stateless public class HiBean implements Hi {
@javax.persistence.PersistenceContext
javax.persistence.EntityManager em;
public String greetings(){ return "Hello!"; }
1364 IBM Rational Tau User Guide June 2009



Using the Java EE 5 Addin
public String greetings( String name) {
Person p = em.find(Person.class,name);
if (p.getFavorite() != null) {
return p.getFavorite().getText();
} else {
return "Hello!";
}
}
public void addPerson( String name, String phrase) {
Person p = new Person();
p.setName(name);
Phrase ph = new Phrase();
ph.setText(phrase);
p.setFavorite(ph);
em.persist(p);
em.persist(ph);
}
}

Now we have completed the ejb part of the application and what remains is 
to build and package it. Do this in the same way as was described in section 
“Creating an EJB Component – Session Bean” above.

When deploying the new component to the application server you need to 
make sure that the application server contains a data base server and that the 
mapping from the Person and Phrase entities to tables in a data base is de-
fined. By default there is assumed to be one table per entity class, with the 
same name as the class, and one column per attribute, also with the same 
name as the attributes. Most application servers contain a utility to create the 
tables automatically based on the entity classes. In many cases this is done 
by giving a deployment descriptor in the jar file that you package the EJB in. 
The deployment descriptor relevant for entities is a file called persis-
tence.xml that is located in a directory called META-INF in the root of the 
jar file. Please consult your application server manuals for details.

Below is an example of what the persistence.jar file could look like if you are 
using the Glassfish application server. Notice the non-standard property 
“toplink.ddl-generation” that tells the application server to delete and rec-
reate all necessary tables in the database associated with the “__default” jdbc 
data source.

<?xml version="1.0" encoding="UTF-8"?>
<persistence 
xmlns="http://java.sun.com/xml/ns/persistence" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://java.sun.com/xml/ns/persisten
ce 
http://java.sun.com/xml/ns/persistence/persistence_1_0.x
sd" version="1.0">
June 2009 IBM Rational Tau User Guide 1365



Chapter 42: Java Support
<persistence-unit name="hello" transaction-type="JTA">
<jta-data-source>jdbc/__default</jta-data-source>
<jar-file>hello.jar</jar-file>
<properties>
<property name="toplink.ddl-generation"
value="drop-and-create-tables"/>
</properties>
</persistence-unit>
</persistence>

Java EE 5 Addin Reference Manual

Commands Available for Interfaces

The following commands are available in the context menu for interfaces, 
both when selecting an interface symbol in a diagram and when selecting an 
interface in the Model View.

Commands Available for Classes

The following commands are available in the context menu for classes, both 
when selecting a class symbol in a diagram and when selecting a class in the 
Model View.

Command Description

Apply <<Remote>> The interface will be marked as a remotely 
accessible bean interface by adding the ste-
reotype javax.ejb.Remote.

Apply <<Local>> The interface will be marked as a remotely 
accessible bean interface by adding the ste-
reotype javax.ejb.Local.

Create Implementation 
Class

A class will be generated that implements the 
interface. The class will realize the interface 
and will contain all the operations that were 
defined in the interface.
1366 IBM Rational Tau User Guide June 2009



Java EE 5 Addin Reference Manual
Command Description

Apply <<Stateless>> The class will be marked as a stateless ses-
sion bean by adding the stereotype 
javax.ejb.Stateless.

Apply <<Stateful>> The class will be marked as a stateful session 
bean by adding the stereotype 
javax.ejb.Stateful.

Apply <<Entity>> The class will be marked as a persistent en-
tity by adding the stereotype javax.persis-
tence.Entity. The class will also automati-
cally get a constructor generated to comply 
with the rules for persistent entities in Java 
EE 5.

Apply <<Mes-
sageDriven>>

The class will be marked as a message-
driven bean by adding the stereotype 
javax.ejb.MessageDriven.
June 2009 IBM Rational Tau User Guide 1367



Chapter 42: Java Support
Commands Available for Attributes

The following commands are available in the context menu for attributes, 
both when selecting an attribute in a class symbol in a diagram and when se-
lecting an attribute in the Model View.

Create Interface Class An interface will be generated that is realized 
by the class. The interface will contain all 
public operations defined in the class.

Create Get/Set Opera-
tions

Get/Set operations will be generated for all 
attributes in the class in a style compatible 
with the requirements for Java Beans.

If both the class that owns the attributes, and 
the type of the attributes, are persistent enti-
ties (i.e. marked by the <<Entity>> stereo-
type) there will also be generated annotations 
on the Get operations (one of OneToMany 
OneToOne ManyToOne ManyToMany de-
pending on the multiplicity and naviga-
bility).

Copy Operations from 
Interface

Operations in realized interfaces will be in-
serted in the class (if not already existing).

Command Description

Select as primary key The attribute is marked as a primary key of 
the class. This is accomplished by stereo-
typing the corresponding get operation by 
javax::persistence::id.

Create Get/Set Opera-
tions

Get/Set operations will be generated for the 
attribute in the class in a style compatible 
with the requirements for Java Beans.
1368 IBM Rational Tau User Guide June 2009



Java EE 5 Addin Reference Manual
Persistent Entity Utilities

The Java EE support for persistent entities (in addition to what has been de-
scribed above) consists mainly in generating the Java EE stereotypes for re-
lationships based on the multiplicities given in the UML model. Essentially 
this gives us a possibility to design the relationships using UML class dia-
grams and automatically generate the correct EJB annotations in the Java 
source code.

The generation of the multiplicity annotations is handled by the “Create 
Get/Set operations” command described above.

Stereotypes relevant for Java EE applications

There are many stereotypes loaded by the Java EE addin as part of the UML 
model of the javaee.jar java library. You can check the stereotypes by exam-
ining the javax package in the Library folder of the Model View. Most of the 
interesting stereotypes are found in the javax.ejb package. This includes the 
<<Stateless>> and <<Stateful>> stereotypes indicating different kinds of 
session beans and the <<Remote>> and <<Local>> stereotypes used to de-
fine different kinds of bean interfaces.

It might also be worthwhile to investigate the javax.persistence package that 
contains, among others, the stereotype <<Entity>>, used to mark a class as a 
persistent entity to be stored in a data base on the server. Some other useful 
stereotypes in this package include:

- <<Table>>: Used to specify the mapping between an entity and a database 
table.

- <<Column>>: Used to specify the name of a database table column for an 
attribute in an entity.
June 2009 IBM Rational Tau User Guide 1369



Chapter 42: Java Support
1370 IBM Rational Tau User Guide June 2009



43
Java Code Generator Reference

This chapter is a reference guide to the Java code generator. It describes how 
UML language constructs are translated to Java language constructs. It also 
describes how it is possible to customize the Java code that gets generated.
June 2009 IBM Rational Tau User Guide 1371



Chapter 43: Java Code Generator Reference
General
The Java code generator implements a mapping of UML language constructs 
to Java language constructs. Two different categories of UML language con-
structs can be identified in this process:

1. UML constructs which has a native representation in Java, for example a 
class or an interface.

2. UML constructs for which no native Java construct exists, for example a 
statemachine or a signal.

UML elements of the first category are translated by Java code generator by 
simply printing the Java Syntax for the UML element to the generated .java 
file. This can thus be done directly without the need to first transform the 
UML element in any way.

UML elements of the second category can, however, not be translated in such 
a simple manner. Instead the Java code generator needs to transform the 
UML element into one or many different UML elements belonging to cate-
gory 1 (and for which Java code thus can be directly generated). For example, 
a statemachine is transformed into a Java class that inherits from a certain li-
brary class, and has certain attributes and methods defined.

In order to perform such transformations transparently without modifying 
the original design model, the Java code generator copies relevant parts of the 
original model and performs required transformations on that copy. When 
code generation is completed the copy is thrown away.

Most of this document describes the translation rules from UML to Java 
which are implemented by these built-in transformations in the Java code 
generator. At the end of the chapter we also describe how you can implement 
your own custom transformations in addition to the built-in ones. This cus-
tomization mechanism enables you both to customize the default translation 
of supported UML constructs, as well as to implement a Java translation for 
any UML element not already supported by the Java code generator. For ex-
ample, it is possible to implement custom code generation for stereotyped 
UML elements, thus giving a code-level meaning to such stereotypes.

See also

Java Run-time Framework which describes the Java run-time library that is 
frequently used by generated Java code.
1372 IBM Rational Tau User Guide June 2009



General Translation Rules
Java to UML Translation

As described in Synchronizing Model and Source Code the Java support in 
IBM Rational Tau also supports translating Java source code to UML ele-
ments. This is what happens when you import existing Java code into IBM 
Rational Tau, or when updating the model with changes made in generated 
Java source files (also known as round-trip engineering).

The translation rules from Java to UML are in general the exact opposite of 
the translation rules from UML to Java. Note, however, that “code patterns” 
corresponding to transformed UML elements, for example a statemachine, 
will not be recognized in the Java to UML translation. This is obviously not 
an issue when importing legacy Java source code, since such code won’t con-
tain transformed UML constructs. However, when using round-trip engi-
neering to update the model with changes made in generated files you have 
to keep this in mind. In general round-trip is only supported for Java con-
structs that can be directly mapped to a corresponding UML construct.

Document Structure

The following chapters describe the subset of UML that can be translated to 
Java by the Java code generator. UML language constructs not mentioned 
here are not supported, and will be ignored during translation.

For each supported UML construct a translation rule is given. If there are ex-
ceptions to the rule, these are also mentioned. 

For most translation rules examples are given using textual UML and Java 
syntax. 

Note
The purpose of each example is only to illustrate the translation rule at 
hand, not to give a precise description of how the generated code will look 
like. Also note that examples for brevity reasons typically are fragmental 
and may omit important things such as error handling etc. Thus, be careful 
if you decide to copy/paste such example code for use in your model.

General Translation Rules
This chapter describes general translation rules that apply to many kinds of 
translated entities.
June 2009 IBM Rational Tau User Guide 1373



Chapter 43: Java Code Generator Reference
Name of Definitions

The name of a Java definition is the same as the name of the UML 
definition from which it is translated.

Note that no name mangling takes place in case the UML name is not a legal 
Java identifier (for example if it contains spaces, or is a Java reserved word). 
You must make sure that the names you use in UML are valid also in Java.

Also note that the <<ansiName>> stereotype which is supported by some 
IBM Rational Tau code generators is not supported by the Java code gener-
ator.

Type of Typed Definitions

The type reference of a typed definition (that is a definition that has a 
type, for example an attribute or a parameter) is translated to a 
corresponding type reference in Java.

Impact of aggregation kind 

The Java code generator does not consider which aggregation kind that is 
specified for the typed definition. No matter if the definition has reference, 
shared or part aggregation, the generated Java definition will be a reference.

However, in the case of a UML attribute of part type (the attribute has “com-
position” as aggregation kind), and where the attribute multiplicity specifies 
an initial number of instances, code will be generated that makes sure that 
when the containing class is instantiated, the specified number of initial in-
stance will also be created for the attribute.

Example 405: Translation of type reference and aggregation kind –––––––––––––

UML

class AC {}

class Class1 {
  AC 'ref';
  shared AC sh; 
  part AC prt;
}

Java
1374 IBM Rational Tau User Guide June 2009



General Translation Rules
class AC {}

class Class1 {
    AC ref;
    AC sh;
    AC prt = new AC();
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A more complete description of the translation of part attributes can be found 
in Class Composite Structure Initialization.

Predefined types

A reference to a predefined type is translated to a corresponding refer-
ence in Java, using the same name for the referenced type. This is the 
case both for references to Java and UML predefined types.

UML representations of Java built-in types, such as boolean and byte, are 
present in a library called TTDJavaPredefined. Usually these are the pre-
defined types you use in a model intended for Java code generation. 

If you decide to use the UML predefined types instead, for example Char-
string, you must provide a Java definition of that type yourself to be used by 
generated code. 

Example 406: Translation of references to predefined types–––––––––––––––––––

UML

class Class1 {
  boolean b;
  Charstring str;
}

Java

class Class1 {
    boolean b;
    Charstring str;
}

Note that unless you provide a Java implementation of the Charstring type 
you will get a compilation error on the definition of ‘str’.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1375



Chapter 43: Java Code Generator Reference
Collections and Multiplicity

Attributes (or associations) with Multiplicity > 1 (i.e. collections) can not be 
generated into Java directly since the concept is not supported by the Java 
language.

The mapping of this kind of attributes depends on if formal or informal mul-
tiplicity is used.

Informal multiplicity

If informal multiplicity is used (the property InformalMultiplicity is 
true for the attribute) then the multiplicity is ignored and the type of the 
attribute is translated literally to Java. 

So, if the type given is List<B> then this is what is mapped to Java indepen-
dent of the multiplicity given for the attribute. This is useful when there is a 
need to specify a collection type for the attribute that is different from the de-
fault container type, but the multiplicity is needed from an analysis point of 
view.

Formal multiplicity

If formal multiplicity is used the type of attributes with multiplicity > 1 
will be an implicit container type determined by the presence of an 
instance of the <<containerType>> stereotype. 

See The <<containerType>> stereotype for more information about how to 
control which default container type to use.

When a new Java project is created <<containerType>> is by default ap-
plied on the Model level. Which type it specifies depends on the Java dialect 
used:

• For Java 5 or later the default collection type is java.util.Vector<Any>, 
where Any refers to the type of the attribute.

• For Java 1.4 and earlier the default collection type is java.util.Vector.

Example 407: Default mapping of formal non-single multiplicity ––––––––––––––

UML

myAttribute : myType [*];
1376 IBM Rational Tau User Guide June 2009



General Translation Rules
Java 5 and later

Vector<myType> myAttribute;

Java 1.4 and earlier

Vector myAttribute;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Whenever the multiplicity is set to a value that requires a Vector, an import 
dependency to java.util.Vector is automatically added to the model. 
This ensures that the correct import statements are written to the source code.

If the element owning the attribute is manifested by a Java File artifact, the 
import will be added to that artifact, otherwise the import is added to the el-
ement itself.

Note
The import of java.util.Vector is only added when setting or changing 
the multiplicity to a value that requires it. If you generate Java code from an 
old model the imports have to be added manually. Note also that if you 
change the default container type you may have to add an import depen-
dency to the specified container type yourself to get the correct import state-
ments in generated code.

Visibility of Definitions

The visibility of a UML definition is translated to the same visibility for 
the corresponding Java definition.

Note
The default visibility for definitions is different in Java and UML. It is there-
fore recommended to always be explicit about the visibility in UML, and not 
leave it unspecified. See Visibility for more information about UML visi-
bility.

An exception to the above rule applies for member definitions of active 
classes and state machines. Regardless of the UML visibility of such mem-
bers, the corresponding Java members will have public visibility. This is nec-
essary since they may be accessed by state and statemachine classes corre-
sponding to composite states and inline state machines in the UML model. 
See Example 459 on page 1427 for an example.
June 2009 IBM Rational Tau User Guide 1377



Chapter 43: Java Code Generator Reference
Qualified Names

In UML a definition can be referenced either using a fully qualified name, or 
using a name with a relative qualifier.

Java does not support relative scope qualifiers. A name in Java must either 
be fully qualified or have no qualifier at all. In the latter case an import state-
ment for the used definition is required.

A fully qualified UML name is translated to a corresponding fully 
qualified name in Java.

By fully qualified in UML we include both qualifiers starting with the global 
scope qualifier (::), as well as qualifiers starting with a reference to a defini-
tion located in the global scope.

A UML name with a relative qualifier is translated to a simple name in 
Java without qualifier. The required import statement (type-import-on-
demand) is generated at the top of the file, if such an import statement 
doesn’t already exist there.

Note that the alternative approach to always generate fully qualified names 
in Java typically leads to poor code readability, and therefore is not used.

Example 408: Translation of qualified names–––––––––––––––––––––––––––––––

UML

// Relative qualifier to com.IBM 
Rational.tau.tor.DispatchableClass
class C : tor::DispatchableClass {
// Relative qualifier to java.util.concurrent.TimeUnit
public TimeUnit tu;

// Full qualifier to java.lang.Integer
private ::java::lang::Integer i;

}

Java

import com.IBM Rational.tau.tor.*;
import java.util.concurrent.*;

class C extends DispatchableClass {
public TimeUnit tu;
private java.lang.Integer i;

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1378 IBM Rational Tau User Guide June 2009



Package
Comments

Comments attached to UML definitions will be translated to Javadoc-
style comments (/** ... */). 

Note that Javadoc only allows comments for certain specific kinds of defini-
tions, for example classes and interfaces. If a comment is attached to another 
kind of definition in UML, it will not be translated to Java.

It is of course possible to add ordinary Java comments anywhere in the Java 
source files. But remember that only valid Javadoc comments will be syn-
chronized to the UML model. Others will only be present in the source files.

Example 409: Translation of comments––––––––––––––––––––––––––––––––––––

UML

class C comment "A JavaDoc comment" {}

Java

/**A JavaDoc comment*/
class C {
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Non-Name Based References

If a reference is not setup by name (but GUID or pointer) it is converted 
to a name-based reference. A minimal relative qualifier is added to the 
reference to make sure it binds to the same target as before.

This translation rule is currently applied to a limited set of references (those 
references that are typically edited using graphical syntax in the editors).

Package
A non-empty UML package is translated to a Java package.

If the UML package is not already stereotyped by the <<javaPackage>> ste-
reotype that stereotype will be applied to make it visible in the JavaView.
June 2009 IBM Rational Tau User Guide 1379



Chapter 43: Java Code Generator Reference
Note that an empty UML package is not translated to Java. However, a folder 
for the package will be created in the file system, but it will be empty as long 
as the UML package is empty.

Example 410: Translation of packages ––––––––––––––––––––––––––––––––––––

UML

package NJP {
  class Class1 {}  
}

package Empty {}

Java

package NJP;

class Class1 {

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Dependency
Dependencies are used in many ways in a UML model and are often to be 
interpreted as informal. However, there are certain specific usages of depen-
dencies that are visible in generated Java code. These usages of dependencies 
are described in this chapter. Dependencies that do not fall into the categories 
mentioned below are not translated to Java.

Import and Access Dependencies

All import and access dependencies in the UML model are not automatically 
mapped to import declarations in Java. 

Only import and access dependencies from an artifact representing a .java 
file are generated as import declarations in the corresponding file. Import de-
pendencies between other elements, for example from a package to another 
package are not generated into any .java file.
1380 IBM Rational Tau User Guide June 2009



Dependency
Access dependencies in UML are mapped to single-type-import 
declarations in Java. Import dependencies in UML are mapped to type-
import-on-demand statements in Java.

Example 411: Translation of access and import dependencies –––––––––––––––––

UML

<<access>> dependency to java::util::Vector

<<import>> dependency to java::util

Java

import java.util.Vector;

import java.util.*;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
Due to these mapping rules, to get syntactically correct Java, import depen-
dencies must be used when importing packages and access dependencies 
must be used when importing individual model elements.

Also note that it is the dependencies from the artifacts that are generated into 
java code. In most cases in UML import and access dependencies are used 
either between packages or classes. To simplify the handling of dependen-
cies during Java code generation the dependencies are copied from the 
package owning the artifact and from the class(es) manifested by the artifact 
into the artifact when updating the source code based on the model. So when 
generating Java code these dependencies will be generated into the source 
code. Note however that if import statements are deleted in the Java code the 
corresponding dependencies between classes/packages in the UML model 
will not be deleted. They have to be deleted manually in the UML model or 
the import statements will be regenerated the next time the source code is up-
dated from the model.

Note that in many cases the Java code generator is able to automatically gen-
erate necessary import statements. For example, import statements necessary 
in order to correctly handle relative UML qualifiers (see Qualified Names) 
will be automatically generated.
June 2009 IBM Rational Tau User Guide 1381



Chapter 43: Java Code Generator Reference
Class
A UML class is translated to a Java class.

If the class is marked as abstract, the Java class will be abstract. If the class 
is marked as finalized, the Java class will be declared to be final.

Example 412: Translation of classes ––––––––––––––––––––––––––––––––––––––

UML

public abstract class A {}

public finalized class B {}

public class C {}

Java

public abstract class A {}

public final class B {}

public class C {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Nested Class

A nested UML class (i.e. a class defined as a member of another class) is 
translated to a static nested Java class.

The semantics of a nested class in Java is not the same as a nested class in 
UML. In Java there are two kinds of nested classes; inner classes and static 
nested classes. A static nested class in Java has similar semantics as a nested 
class in UML.

A nested UML class stereotyped by <<innerClass>> is translated to an 
inner Java class.

Example 413: Translation of nested classes ––––––––––––––––––––––––––––––––

UML

class Outer 
{
    class Nested1 {}
1382 IBM Rational Tau User Guide June 2009



Class
    class <<innerClass>> Nested2 {}
}

Java

class Outer 
{
    static class Nested1 {}

    class Nested2 {}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Active Class

An active class which contains a constructor statemachine (a.k.a. a classifier 
behavior statemachine) is translated to a Java class which extends the TOR 
class DispatchableClass.

The generated class contains the following members:

An attribute “m_sm” typed by the statemachine class (which is the classifier 
behavior). 

• A redefinition of the method “init”, with an implementation that creates 
an instance of the statemachine class and stores it in the "m_sm" attribute. 
It also calls the inherited implementation. If the UML class already has 
an 'init' operation another one will not be generated. 

• A redefinition of the method “start”, with an implementation calls the in-
herited implementation in order to start the state machine of the Dis-
patchableClass class. The implementation also starts each active instance 
that is a part of the owning DispatchableClass instance. This means that 
when an instance of an active class is started, all contained instances will 
also be recursively started. If the UML class already has a “start” opera-
tion another one will not be generated.

• A redefinition of the method “receive”, with an implementation that just 
calls the inherited method.

• A redefinition of the method “getClassifierBehavior”, with an implemen-
tation that returns the “m_sm” attribute.

Example 414: Translation of an active class with a classifier behavior statemachine

UML
June 2009 IBM Rational Tau User Guide 1383



Chapter 43: Java Code Generator Reference
active class C 
{
    statemachine initialize {}
}

Java

public class C extends DispatchableClass
{    
    public void init()
    {
    m_sm = new C_initialize(this);
    super.init();
    }
    
    public void start()
    {
    super.start();
    }
    
    public boolean receive(Event e)
    {
    return super.receive(e);
    }
        
    public StateMachine getClassifierBehavior()
    {
    return m_sm;
    }

    C_initialize m_sm;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Interface
A UML interface is translated to a Java interface.

Example 415: Translation of interfaces––––––––––––––––––––––––––––––––––––

UML

public interface Ifc {}

Java

public interface Ifc {};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1384 IBM Rational Tau User Guide June 2009



Interface
Interfaces with Signals

If the UML interface contains one or many signals the Java interface will in-
herit from the EventReceiver interface of TOR. This expresses the (rather ob-
vious) requirement that a class that implements such an interface must be 
able to receive events. 

Example 416: Translation of interfaces containing signals ––––––––––––––––––––

UML

public interface Ifc {
public signal sig;

}

Java

public interface Ifc extends EventReceiver {
public static class sig2 extends Event {

public sig2() {}
public static boolean isTypeOf(Event e) {
return e instanceof sig2;

}
}

};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that a class that realizes an interface with signals in UML does not nec-
essarily have to contain a state machine. It is fully possible to use a class 
without a state machine, and just implement the EventReceiver::receive 
operation to define what should happen when the signal is received. Note, 
however, that the EventReceiver interface in Java also contains a few other 
methods which therefore must be provided an implementation. Usually the 
easiest way to implement these methods is to make the class active in UML, 
so that the corresponding Java class will inherit DispatchableClass which 
contains appropriate default implementations of these methods.
June 2009 IBM Rational Tau User Guide 1385



Chapter 43: Java Code Generator Reference
Stereotype
A UML stereotype which has the <<Metadata>> stereotype applied is 
translated to a Java annotation.

Java 5 and later supports annotations to be attached to certain kinds of defi-
nitions. In UML annotations are represented by means of stereotypes stereo-
typed by a <<Metadata>> stereotype. Other UML stereotypes which are not 
<<Metadata>> stereotypes are not translated to Java.

Example 417: Translation of stereotypes–––––––––––––––––––––––––––––––––––

UML

<<Metadata>> stereotype Stereo extends Definition [0 .. 
1] {}

<<Stereo>> class MyClass {}

Java

@interface Stereo {}

@Stereo class MyClass {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Annotation stereotypes that are inserted into the model by importing existing 
Java source code or JAR files will extend TTDMetamodel::Definition. This 
makes it possible to apply these stereotypes on all kinds of definitions.

Annotation stereotypes can also be created manually from the Java class di-
agram palette, or using the New menu in Model View. In this case you must 
add the extension to TTDMetamodel::Definition manually if you need to 
apply the stereotype to a definition in the model. To do this you have to work 
in Standard View as Extension is a UML concept not visible in the Java 
View. You can also add the extension easily by generating Java code, and 
then updating the model again from the generated file that contains the Java 
annotation.
1386 IBM Rational Tau User Guide June 2009



Attribute
Stereotype Attributes

Attributes in a stereotype are translated to annotation elements in Java 
if they are stereotyped by the <<AnnotationElement>> stereotype.

Default values of stereotype attributes are translated to corresponding default 
values for the annotation elements.

Example 418: Translation of stereotype attributes–––––––––––––––––––––––––––

UML

<<Metadata>> stereotype S extends Definition [0 .. 1] {

<<AnnotationElement>> int id;
<<AnnotationElement>> String desc = "[N/A]";

}

<<Stereo(.id = 14, desc = "foo".)>> class MyClass {}

Java

@interface S {
int id();
String desc() default "[N/A]"; 

}

@Stereo(id = 14, synopsis = "foo") class MyClass {

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Attribute
A non-constant UML attribute defined in a class is translated to a Java 
attribute in the corresponding Java class.

A constant UML attribute defined in a class or an interface is translated 
to a final Java attribute in the corresponding Java class.

The mapping of modifiers and default value is straight forward as shown in 
the example below:

Example 419: Translation of attributes ––––––––––––––––––––––––––––––––––––

UML
public class C {
June 2009 IBM Rational Tau User Guide 1387



Chapter 43: Java Code Generator Reference
public int x = 14;
public const int y = 15;

}

Java

public class C {
public int x = 14;
public final int y = 15;

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

An attribute defined in a stereotype is translated according to the rules de-
scribed in Stereotype Attributes.

Static Attribute

A static UML attribute is translated to a static Java attribute. If the 
UML attribute is a static constant, the Java attribute will be a “static 
final” attribute.

Example 420: Translation of static attributes–––––––––––––––––––––––––––––––

UML
public class C {
public static int x = 14;
public static const int y = 15;

}

Java

public class C {
public static int x = 14;
public static final int y = 15;

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Operation
A UML operation in a class or an interface is translated to a Java 
method in the corresponding Java class or interface.

A static UML operation in a class is translated to a static Java method 
in the corresponding Java class.

See Example 421 on page 1389 for an example.
1388 IBM Rational Tau User Guide June 2009



Operation
Operation Body

An operation body in UML is translated to a Java method body.

Note that in UML an operation body can either be inline defined (owned by 
the operation), or it can be stand-alone (referencing the operation). In Java all 
method bodies are inline defined.

Example 421: Translation of operation bodies ––––––––––––––––––––––––––––––

UML

class C {
  void foo(){ // Inline operation body
    return;
  }
  void bar();
static void z(); // No defined body

}
void C::bar(){ // Stand-alone operation body
  return;
}

Java

class C {
  void foo(){

return;
}

  void bar(){
return;

}

static void z() {}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that in case the UML operation has no operation body defined, a default 
empty body will be generated for the corresponding Java method.
June 2009 IBM Rational Tau User Guide 1389



Chapter 43: Java Code Generator Reference
Operation with Statemachine Implementation

An operation implemented by means of a statemachine implementation 
is translated to a Java method. 

It is required that such a statemachine implementation only contains a start 
transition and possibly local attribute definitions. It must not contain any 
states. The actions of the start transition will be translated to corresponding 
statements in the Java method.

Example 422: Translation of operations with statemachine implementations ––––

UML

class C {
public int m_op( int p1) statemachine {

    int i = 0;
    start {
        {
            {
                i = p1;
            }
        }
        return p1;
    }
}

}

Java

class C {
public int m_op( int p1) {
int i = 0;
{
i = p1;

}
return p1;

}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1390 IBM Rational Tau User Guide June 2009



Operation
Operation Parameters

A parameter to a UML operation is translated to a formal parameter of 
the Java method that is the translation of the operation.

The type of the first parameter with direction kind 'return' (there 
should at most be one) is translated to a return type for the method that 
is the translation of the operation. If there is no return parameter, a void 
method is generated.

Other UML direction kinds (such as inout or out) are not translated to Java.

Example 423: Translation of operation parameters ––––––––––––––––––––––––––

UML

int foo(int p1, in int p2, inout int p3, out int p4);
void bar();

Java

int foo(int p1, int p2, int p3, int p4);
void bar();

The general rules for typed entities (compare with Type of Typed Defini-
tions) apply also on the return parameter.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that parameter default values are not supported when generating Java, 
and will be ignored.

Parameter multiplicity

The impact of a multiplicity specified for a parameter is in general the same 
as for any definition (see Collections and Multiplicity). However, parameter 
multiplicity is also used to specify that a parameter is optional (0 is then in-
cluded in the specified multiplicity ranges).

Constructor

A UML constructor is translated to a Java constructor.

Note that a UML class operation called ‘initialize’ is a constructor.
June 2009 IBM Rational Tau User Guide 1391



Chapter 43: Java Code Generator Reference
Constructor initializer

A UML constructor initializer is translated to Java attribute 
assignments or calls of super in the Java constructor implementation.

Note that there are two alternative ways to initialize a base class in UML - by 
using the 'base' contextual keyword, or by referring to the name of the base 
class.

The order of the generated actions is:

1. Any call to super(). There may at most be one.

2. Assignments of attributes in the order in which these attributes are de-
fined in the class.

Example 424: Translation of constructor initializers–––––––––––––––––––––––––

UML
class D 
{
    public D(long) {}    
}

class C : D
{
    public C(boolean b) : m_c(true), m_b(b), base(5) {}
    
    private boolean m_b;
    private boolean m_c;
}

Java

class D 
{
  public D(long) {}
}

class C extends D
{
  public C(boolean b)
  {
    super(5);
    m_b = b;
    m_c = true;
  }

  private boolean m_b;
  private boolean m_c;
1392 IBM Rational Tau User Guide June 2009



Operation
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Destructor

A UML destructor is translated to an overload of the finalize method.

Note that a UML class operation called ‘finalize’ is a destructor.

Example 425: Translation of destructors–––––––––––––––––––––––––––––––––––

UML
class D 
{
    public ~D(){}
}

Java

class D 
{
@Override

  public finalize() {}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Abstract Operation

An abstract UML operation is translated to an abstract Java method.

The Java class that contains the abstract method will also be marked as ab-
stract.

Example 426: Translation of abstract operations ––––––––––––––––––––––––––––

UML

class S {
    abstract int f1();
}
class D : S {
    redefined int f1(); // Redefines S::f1
}

Java

abstract class S {
  abstract int f1();
June 2009 IBM Rational Tau User Guide 1393



Chapter 43: Java Code Generator Reference
};
class D extends S {
@Override
int f1() {}

};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Virtual, Redefined or Finalized Operation

A virtual UML operation is translated to an ordinary Java method.

This is because in Java all non-static operations are implicitly virtual.

A redefined UML operation is translated to a Java method annotated by 
@Override.

A finalized UML operation is translated to a final Java method.

Example 427: Translation of virtual, redefined and finalized operations ––––––––

UML

class S {
    int f1();
    virtual int f2();
    virtual int f3();
    virtual int f4();
}
class D : S {
    int f1(); // Hides S::f1
    virtual int f2(); // Hides S::f2
    redefined int f3(); // Redefines S::f3
    finalized int f4(); // Redefines S::f4
}

Java

class S {
  int f1();
int f2();
int f3();
int f4();

};
class D extends S {
  int f1();
int f2();
@Override
int f3();
@Override
final int f4();
1394 IBM Rational Tau User Guide June 2009



Operation
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Be careful to notice the difference in semantics between Java and UML. In 
the above example D::f1() is hiding the implementation of S::f1(). In 
Java D.f1() instead overloads S.f1(). To detect this subtle problem it is 
recommended, to compile the generated Java code with appropriate options, 
if available, so that missing use of the @Override annotation are reported.

Exception Specification

An exception specification (a 'throw' declaration) for a UML operation, 
is translated into an exception specification for the Java method that is 
the translation of the operation.

Note that while exception specifications are optional in UML, they are man-
datory in Java if the method calls other methods which may throw excep-
tions.

Example 428: Translation of exception specifications ––––––––––––––––––––––––

UML

void foo() throw Exc1, Exc2;

Java

void foo() throws Exc1, Exc2;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Synchronized Operations

A UML operation stereotyped by <<synchronized>> is translated to a 
synchronized Java method.

Example 429: Translation of synchronized operations––––––––––––––––––––––––

UML

class S {
<<synchronized>> void foo(){}

}

Java
June 2009 IBM Rational Tau User Guide 1395



Chapter 43: Java Code Generator Reference
class S {
synchronized void foo() {}

};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Main Operation

To obtain a ‘main’ method in the generated Java code, which is required to 
make the generated application executable by itself, a corresponding UML 
operation may be created in one of the classes. The UML operation should 
have the following signature for the generated Java method to become cor-
rect:

public static void main( Array<String> args);

To facilitate the procedure of generating a ‘main’ operation, IBM Rational 
Tau supports a command for generating such an operation:

1. Select a class in the Model View.

2. In the context menu select the command Utilities - Generate Main 
Method.

The implementation of the default ‘main’ method is generated according to 
the following rule: 

One instance is created for each active class that is manifested by the 
Build Artifact. Each instance is added to one single Dispatcher, and is 
then initialized and started. Finally the ‘run’ method is called on the 
Dispatcher. 

This means that the default ‘main’ method makes a fully synchronous 
(single-threaded) application. You can of course modify this default imple-
mentation in any way to become appropriate for your program.

Generalization
A generalization between two UML classes or interfaces is translated to 
an inheritance (extends) between the corresponding Java classes or 
interfaces.

Generalizations between operations are not translated.
1396 IBM Rational Tau User Guide June 2009



Association
Example 430: Translation of generalization ––––––––––––––––––––––––––––––––

UML

class S {
}
class D : S {
}

Java

class S {
};
class D extends S {
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Association
Unnamed uni-directional associations are represented as attributes in the 
UML model.                                                                                                                                  
The translation of such attributes thus follows the rules in Attribute.

Other associations are not supported when generating Java code.

Datatype
A UML datatype is mapped to a Java enumeration. Each literal is 
translated to an enum constant.

Datatype members such as constructors, attributes and operations, are trans-
lated to corresponding members in the Java enumeration.

Example 431: Translation of datatypes ––––––––––––––––––––––––––––––––––––

UML

public datatype Status {
literals OK = new Status(“All is OK!”);
literals PROBLEM = new Status(“Problem occurred!”);

private const String description;
private Status(String s) { 

this.description = s;
}

}

June 2009 IBM Rational Tau User Guide 1397



Chapter 43: Java Code Generator Reference
Java

public enum Status {
OK(“All is OK!”), PROBLEM(“Problem occurred!”);

private final String description;
private Status(String s) {
this.description = s;

}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that it is possible to invoke a constructor when initializing the value of 
an enum literal.

Expression
UML expressions are translated to Java by translating each part of the 
expression individually. Constant expressions are not evaluated during 
translation (although it would be possible in most cases).

The translation of most UML expression is straight-forward, as shown in the 
table below:

UML 
Expression Java Expression

UML 
Example Java Example

Parenthesis 
expression

Parenthesis expression (a+b) (a+b)

Unary ex-
pression

A unary expression, 
where the Java oper-
ator to use is decided 
by the specified UML 
operator.

not m_bOk
++var

!m_bOK
++var

Binary ex-
pression

A binary expression, 
where the Java oper-
ator to use is decided 
by the specified UML 
operator.

a + b a + b

This expres-
sion

'this' expression this this
1398 IBM Rational Tau User Guide June 2009



Expression
The translation of remaining expressions is described in the rest of this 
chapter.

Identifier

An identifier is translated in the same way as the name of the definition 
to which it is bound.

This rule applies both when the identifier is part of an expression and when 
it represents a reference (compare Name of Definitions).

The translation of identifiers which are references to predefined UML or Java 
types is described in Predefined types. References to other predefined UML 
definitions is described in Reference to non-type UML predefined definition.

Call expres-
sion

Call expression foo(3) foo(3)

Field ex-
pression

Member access expres-
sion

x.y x.y

Index ex-
pression

Subscripting operator 
('[]')

coll[4] coll[4]

Create ex-
pression

'new' operator new C(1,2) new C(1,2)

Conditional 
expression

Conditional expression b ? x1 : y1 b ? x1 : y1

Real value float literal float a = 
3.14;

float a = 
3.14;

Integer 
value

integer literal long a = 4; long a = 4;

Charstring 
value

string literal String s = 
"hola";

String s = 
"hola";

Character 
value

character literal char c = 
‘q’;

char c = ‘q’;

UML 
Expression

Java Expression UML 
Example

Java Example
June 2009 IBM Rational Tau User Guide 1399



Chapter 43: Java Code Generator Reference
Reference to base class

A reference to the base class (a.k.a. super class) of a UML class can be 
made in action code using the name of the base class in a qualifier. Such 
references will be transformed to Java references using the 'super' 
keyword as the qualifier.

The same translation rule applies if the base class is referenced through the 
use of a syntype.

Example 432: Translation of base class references–––––––––––––––––––––––––––

UML

class D 
{
    public void foo() {}
}

class C : D 
{
    syntype inherited = D;
    public void foo()
    {
      D::foo();
      inherited::foo();
    }
}

Java

class D {
    public void foo() {

    }
}

class C extends D {

    public void foo() {
        super.foo();
        super.foo();
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1400 IBM Rational Tau User Guide June 2009



Expression
Reference to non-type UML predefined definition

Usage of some UML predefined non-type definitions are translated in a spe-
cial way by the Java code generator. Translation of references to predefined 
UML types are described in Predefined types.

The table below lists predefined UML definitions that are supported by the 
Java code generator:

Example 433: Translation of UML predefined is and as ––––––––––––––––––––

UML

C var = new C();
if (is<D>(var))
{

D d = as<D>(var);
}

Java

C var = new C();
if (var instanceof D)
{

D d = (D)var;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Informal Expression

A UML informal expression is translated into a verbatim copy of the 
expression text in generated Java code.

Informal expressions can thus be used as a mechanism for generating Java 
code which otherwise cannot be generated from UML constructs by the Java 
code generator. It is also useful in situations when interfacing with legacy 
Java code which is not represented in the UML model.

Referenced UML Definition Java Translation

is instanceof

as Type cast operator
June 2009 IBM Rational Tau User Guide 1401



Chapter 43: Java Code Generator Reference
If the informal expression contains a reference to a UML definition, it is 
translated according to the ordinary rule for an Identifier before the expres-
sion is copied into the generated Java.

Example 434: Translation of information expressions––––––––––––––––––––––––

UML

RemoteClass x = new RemoteClass();
long ext = [[##(x).remoteMethod()]];

Java

RemoteClass x = new RemoteClass();
long ext = x.remoteMethod();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

TimerActive Expression

A UML TimerActive expression is translated to a call of the isActive 
method on the Java timer attribute corresponding to the timer that is 
referenced by the expression.

Example 435: Translation of TimerActive expressions –––––––––––––––––––––––

Checking the activeness of the timer defined in Example 454 on page 1418.

UML

boolean b = Clock.isActive();

Java

Boolean b = timer_Clock.isActive();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The only purpose of the actual arguments that may be used in the TimerAc-
tive Expression in UML is to identify which (possibly overloaded) version of 
a timer that shall be queried for its activeness. These actual arguments are 
thus not visible in the Java translation.

Now Expression

A UML Now expression is translated to a call of the static now method 
on the TOR Time class. 
1402 IBM Rational Tau User Guide June 2009



Template
The returned Time object is converted to a double value by calling the 
method to_double() on it. Thereby it can participate in any Java expression 
of type double.

See Example 451 on page 1415 for an example.

Template
A UML class or interface template is translated to a Java class or 
interface generic type.

A UML operation template is translated to a Java method with generic 
type arguments and/or return type.

Example 436: Translation of template definitions –––––––––––––––––––––––––––

UML

template <type T>
class C
{
T t;
public T get_t()
{

return t;
}

}

Java

class C<T> {
  T t;
  public T get_t()
{

return t;
}

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1403



Chapter 43: Java Code Generator Reference
Atleast Constraints

A UML Atleast constraint on a formal template parameter is translated 
to an upper bounded wildcard (extends) on the corresponding Java 
generic type parameter.

Note that it is not possible to represent Java wildcards with a lower bound 
(super) in UML.

Example 437: Translation of atleast constraints–––––––––––––––––––––––––––––

UML

class MyClass {}

template <type T atleast MyClass>
class C {}

Java

class MyClass {}

class C<T extends MyClass> {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
UML supports many more advanced usages of atleast constraints. These 
constructs have no correspondence in Java and are not translated.

Template Instantiation

An instantiation of a UML template is translated to a usage of the Java 
generic type that is the translation of the template.

If an actual template type parameter is an ordinary reference to a type, it is 
translated to a reference of the corresponding Java type.

Note
Generic type parameter wildcards used outside the definition of the param-
eter are not supported when generating Java code.

Example 438: Translation of template instantiations–––––––––––––––––––––––––

This example instantiates the template C from Example 436 on page 1403.

UML
1404 IBM Rational Tau User Guide June 2009



Action
C<MyClass> v1 = new C<MyClass>();
MyClass mc = v1.get_t();

Java

C<MyClass> v1 = new C<MyClass>();
MyClass mc = v1.get_t();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Action
A UML action is translated to a Java statement.

The translation of most UML actions is straight-forward, as shown in the 
table below:

The translation of other UML actions is described in the rest of this chapter.

Definition Action

A UML definition action where the associated definition is an Attribute 
is translated to a local variable definition in Java.

Example 439: Translation of definition actions––––––––––––––––––––––––––––––

UML

class C {
public void foo(){

UML Action Java Statement UML Example Java Example

Compound action compound state-
ment

{ 
v = v + 1;

}

{ 
v = v + 1;

}

Continue action continue state-
ment

continue; continue;

Break action break statement break; break;

If action if statement if (b) {
...}
else {

}

if (b) {
...}
else {

}

June 2009 IBM Rational Tau User Guide 1405



Chapter 43: Java Code Generator Reference
    integer v = 4;
}

}

Java

class C {
public void foo(){

    integer v = 4;
}

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the associated definition is not an Attribute, the definition action will not 
be translated. 

Expression Action

The translation of a UML expression action depends on what kind of expres-
sion that is associated with the action.

An expression action with an associated empty expression, is translated 
to an empty Java statement.

An expression action with an associated Informal Expression, is 
translated to a copy of the informal text.

An expression action with an associated Call expression, is translated by 
appending a semicolon (;) to the translation of the call expression.

An expression action with an associated Create expression, is translated 
by appending a semicolon (;) to the translation of the create expression.

Example 440: Translation of expression actions–––––––––––––––––––––––––––––

UML

void foo(){
    ;
    [[new C().doIt()]];
    open(true);
    new Integer();
}

Java

void foo(){
1406 IBM Rational Tau User Guide June 2009



Action
  ;
new C().doIt();
open(true);

  new Integer();
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Try Action

A UML Try action with an associated catch clause, is translated to a 
Java try statement with a catch clause.

Example 441: Translation of try and throw actions ––––––––––––––––––––––––––

UML

class C {
void foo(boolean b) throws InternalError {

if (b)
throw InternalError();

}

void bar() {
try {
foo(false);

}        
catch(InternalError e)
{}

}
}

Java

class C {
    void foo( boolean b) throws InternalError {
        if (b)
            throw InternalError();
    }
    void bar() {
        try
        {
            foo(false);
        }
        catch ( InternalError e)
        {

        }
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1407



Chapter 43: Java Code Generator Reference
Throw Action

A UML Throw action is translated to a Java throw statement.

See Example 441 on page 1407 for an example.

Loop Action

A UML Loop action is translated to a Java while statement, a do-while 
statement or a for statement.

These three statements are all variants of the same construct, and which state-
ment that will be used is determined by the syntax variant used in the UML 
model.

Example 442: Translation of loop actions ––––––––––––––––––––––––––––––––––

UML

int a = 0;
for (int i = 0; i < 10; i++) {
    a = a + 1;
}
while (a > 0)
    a = a - 1;
do {
    a = a + 1;
} while (a < 10);

Java

int a = 0;
for (int i = 0; i < 10; i++) {
    a = a + 1;
}
while (a > 0) 
  a = a - 1;
do {
a= a+ 1;
} while (a < 10);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The “foreach” variant of a for-statement introduced in Java 5 cannot be 
represented in a useful way in UML.
1408 IBM Rational Tau User Guide June 2009



Action
Stop Action

A UML Stop action is translated to a call of the “finish” method on the 
statemachine class that corresponds to the statemachine 
implementation in which the stop action is contained.

Example 443: Translation of stop actions ––––––––––––––––––––––––––––––––––

UML

stop;

Java

finish();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

NextState Action

Normal NextState action

A “normal” NextState action (i.e. a NextState action that explicitly 
specifies a state to enter) is translated to a call of the “enter” method on 
the Java state attribute that corresponds to the specified state.

A NextState action with a 'via' clause, specifying an entry connection 
point, is translated to a call of the “enter” method on the Java state 
attribute that corresponds to the specified state. 

The attribute that is the translation of the connection point is passed as argu-
ment in the call to “enter”.

Example 444: Translation of NextState actions––––––––––––––––––––––––––––––

UML

nextstate Idle;
nextstate Idle via Cin;

Java

m_s_Idle.enter();
m_s_Idle.enter(m_s_Idle.m_sm.Cin);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1409



Chapter 43: Java Code Generator Reference
History NextState action

A history NextState action is translated to a call of the “enterHistory” 
method on the TopRegion attribute of the Java statemachine class that 
corresponds to the UML implementation which contains the NextState 
action.

Example 445: Translation of history NextState actions–––––––––––––––––––––––

UML

nextstate -;

Java

theTopRegion.enterHistory();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Deep history NextState action

A deep history NextState action is translated to a call of the 
“enterHistory” method on the TopRegion attribute of the Java 
statemachine class that corresponds to the UML implementation which 
contains the NextState action. The “deepHistory” flag is set to true in the 
call.

Example 446: Translation of deep history NextState actions ––––––––––––––––––

UML

nextstate ^-;

Java

theTopRegion.enterHistory(true /* deepHistory */);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1410 IBM Rational Tau User Guide June 2009



Action
Signal Send Action

A signal send action is translated to a call of the TOR method 
Utilities.sendTo(), with a dynamically created signal instance as 
argument.

If the receiver of the signal is explicitly specified, the second argument in the 
call of Utilities.sendTo is a reference to the receiver. If the signal instead 
is sent via a port (so that the receiver is located at run-time using the port and 
connector structure) the second argument is a reference to the port.

Example 447: Translation of signal send actions ––––––––––––––––––––––––––––

UML

output c.Ping(“hello”); // Sending a signal directly to 
a receiver
output Pong() via MyPort; // Sending a signal via a port

Java

Utilities.sendTo(new Ping(“hello”), c);
Utilities.sendTo(new Pong(), m_owner.MyPort);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If a signal send action specifies the sending of more than one signal, there 
will be one “sendTo” call for each sent signal.
June 2009 IBM Rational Tau User Guide 1411



Chapter 43: Java Code Generator Reference
Decision Action

A UML decision action is translated to a either a Java switch-statement, 
with one case-branch for each decision answer, or an if-statement with 
one else-branch for each decision answer. In the latter case the if-
statement will be placed in an empty switch-statement if there are break 
statements inside.

Java switch statements are much more constrained than UML decision ac-
tions. Therefore a UML decision action can only be translated to a Java 
switch statement if the decision expression is a simple reference to an at-
tribute typed by either of the following

– a primitive data type (byte, short, char, int)

– a class wrapping the above primitive types (Byte, Short, Character, 
Integer)

– an enumerated type

It is also required that each decision answer expression is a simple value. In 
all other cases the decision action will be translated to a Java if-statement. 
The if-statement will have one branch for each decision answer.

If a generated Java if-statement contains break statements, the entire if-state-
ment is placed in the default branch of an empty switch statement (so that the 
break statements will break out from the switch).

Example 448: Translation of decision actions–––––––––––––––––––––––––––––––

The first decision action below will be translated to a Java switch-statement, 
the second to a Java if-statement, and the third will be translated to an if-
statement inside a switch-statement.

UML

int e1, e2;
int i = 0;

switch (e1) {
case 10 : {
i = 1;
break;

}

  case 11 : 
break;
1412 IBM Rational Tau User Guide June 2009



Action
  default : {
i = 3;

}

}

const int x = 5;
int v;
switch (v) {
  case x : {return;}
default : ; 

}

switch (e2 > 5) {

  case true: {
i = 1;
break;

}

  case false: {
i = 0;
break;

}
}

Java

int e1;
int e2;
int i = 0;
switch (e1) {
case 10:

i = 1;
break;

case 11:
break;

default:
i = 3;
break;

}

final int x = 5;
int v;
if (((v) == (x)))
{
return ;

}
else ;

switch (e2 > 5) {
default:
if (((e2 > 5) == (true)))
{

i = 1;
June 2009 IBM Rational Tau User Guide 1413



Chapter 43: Java Code Generator Reference
break;
}
else if (((e2 > 5) == (false)))
{
i = 0;
break;

}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Return Action

A Return action that is contained in a UML operation body is translated 
to a return statement in Java.

A Return action that is contained in a transition is translated to a call of 
the “finish” method on the TopRegion attribute which belongs to the 
Java statemachine class that is the translation of the UML state machine 
implementation that contains the transition.

Example 449: Return action within a transition–––––––––––––––––––––––––––––

UML

start {
    return;
}

Java

public void initialTransition( ) {
    theTopRegion.finish();
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the Return action specifies a connection point to return via, the 
attribute that is the translation of the connection point is passed as 
argument in the call of “finish”.

Example 450: Return via connection point ––––––––––––––––––––––––––––––––

Return action within a transition specifying an exit connection point.

UML

start {
    return Cout;
1414 IBM Rational Tau User Guide June 2009



Action
}

Java

void initialTransition( ) {
    theTopRegion.finish(Cout);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Timer Set Action

A Timer Set action is translated to a call of the “set” method on the Java 
timer attribute corresponding to the referenced timer.

The first argument in the call is the specified time-out expression. If no time-
out expression is specified there must be a default time-out expression spec-
ified in the timer definition, which then is used instead. The second argument 
in the call is a dynamically created instance of the Java timer class (a class 
which extends the TOR class TimerEvent). Actual timer parameters are 
translated to actual constructor parameters in the creation of this instance.

Example 451: Translation of Timer Set actions –––––––––––––––––––––––––––––

Setting the timer defined in Example 454 on page 1418.

UML

set Clock() = now + 4;
set Clock; // Using default timeout value (15)

Java

timer_Clock.set(new Time(Time.now().to_double() + 4), 
new C.Clock());
timer_Clock.set(new Time(Time.now().to_double() + 15), 
new C.Clock());

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Timer Reset Action

A Timer Reset action is translated to a call of the “reset” method on the 
Java timer attribute corresponding to the referenced timer.

Example 452: Translation of Timer Reset actions –––––––––––––––––––––––––––

Resetting the timer defined in Example 454 on page 1418.
June 2009 IBM Rational Tau User Guide 1415



Chapter 43: Java Code Generator Reference
UML

reset Clock();

Java

timer_Clock.reset();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The only purpose of the actual arguments that may be used in a Timer Reset 
action in UML is to identify which (possibly overloaded) version of a timer 
that shall be reset. These actual arguments are thus not visible in the Java 
translation.

Signal
A UML signal is translated to a Java class that inherits from the TOR 
class Event.

The class has a static “isTypeOf” method which checks if an event is dynam-
ically typed by the signal that corresponds to the class. The implementation 
of this method uses the Java instanceof operator.

The Java event class is placed in the Java scope that corresponds to the UML 
scope of the definition that owns the signal. If that scope is a Java class, the 
Java event class is a static nested class. If it instead is a Java package, it is an 
ordinary Java class. 

Signal Parameter

If a signal has parameters the Java event class gets a constructor with one pa-
rameter for each signal parameter. In addition there will be one public at-
tribute for each signal parameter. The name, type, multiplicity etc. of a con-
structor parameter and class attribute are all identical to the signal parameter 
for which they are generated.

If a signal parameter has no name the corresponding constructor parameter 
and class attribute will get the name "parX", where X is the zero-based index 
of the signal parameter.

Example 453: Translation of signals with parameters––––––––––––––––––––––––

UML
1416 IBM Rational Tau User Guide June 2009



Timer
class C 
{
    signal Ping (String, long i = 4);
}

Java

public class C 
{
    public static class Ping extends Event
    {
        public String par0;
        public long i = 4;

        public Ping(String par0, long i)
        {
            this.par0 = par0;
            this.i = i;
        }

        public Ping(String par0)
        {
            this.par0 = par0;
        }

        public static boolean isTypeOf(Event e)
        {

      return e instanceof Ping;
        }
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The name of a signal class is the translation of the name of the corresponding 
signal (compare Name of Definitions). However, since a signal is an event 
class there may be more than one signal in the same UML scope having the 
same name (overloading). If that is the case, all overloaded signals with the 
same name will have their names suffixed with the types of the signal param-
eters.

Timer
A UML timer is translated to a Java class that inherits from the TOR 
class TimerEvent. 

This is done in exactly the same way as when translating a Signal. In addition 
an attribute is generated in the Java class that is the translation of the UML 
definition that owns the timer. That attribute is called "timer_T", where T is 
June 2009 IBM Rational Tau User Guide 1417



Chapter 43: Java Code Generator Reference
the name of the timer, and it is typed by the TOR class TimerObject. It is also 
initialized to an instance of that class, passing this as constructor actual argu-
ment.

Example 454: Translation of timers–––––––––––––––––––––––––––––––––––––––

UML

class C 
{
    timer Clock() = 15;
}

Java

public class C 
{
    public TimerObject timer_Clock = new 
TimerObject(this);

    public static class Clock extends TimerEvent
    {

  public static boolean isTypeOf(Event e)
        {
            return e instanceof Clock;
        }
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The default timeout value (15 in Example 454 on page 1418) is not directly 
visible in the Java translation result. However, it is used in the translation 
of a Timer Set Action which do not specify a timeout value.

State Machine
There are three kinds of state machines in UML. 

1. Classifier behavior statemachine. This is a constructor statemachine 
(usually called “initialize”) owned by an active class.

2. Inline statemachine. This is a statemachine owned by a composite state.

3. Stand-alone statemachine. This is a statemachine which can be refer-
enced from one or many composite states.
1418 IBM Rational Tau User Guide June 2009



State Machine
The statemachine translation rules are partially dependent on the kind of 
statemachine. Such variations are marked in the text below by referring to the 
numbers in the above classification list.

A UML statemachine is translated to a Java class which extends the 
TOR class StateMachine. 

The name of the Java state machine class becomes (depending on the kind of 
statemachine):

1. “C_SM”, where C is the name of the owner class, and SM is the name of 
the state machine.

2. “C_S_SM”, where S is the name of the composite state, and C is the 
name of the statemachine class that is the translation of the statemachine 
implementation that contains the state. SM is the name of the statema-
chine.

3. “SM”, where SM is the name of the statemachine.

A Java statemachine class contains the following members:

• An attribute called “m_owner”. The type of this attribute depends on the 
kind of statemachine:

1. the Java class that is the translation of the owning active class.

2. the Java class that is the translation of the owning statemachine.

3. the TOR class DispatchableClass.

• In case of a statemachine of kind 2) or 3) an attribute “m_ownerState” is 
also generated. The type of this attribute is the owner state class (2) or the 
TOR class State (3).

• A constructor with an implementation that initializes the “m_owner” at-
tribute. If the class also has an “m_ownerState” attribute it is also initial-
ized.

• A “getDispatchableClass” method. The implementation of this method 
returns an expression which evaluates to the dispatchable class to which 
the statemachine belongs. This expression depends on the kind of state-
machine:

1. the “m_owner” attribute as a DispatchableClass.

2. “m_owner.getDispatchableClass()”

3. “m_owner”
June 2009 IBM Rational Tau User Guide 1419



Chapter 43: Java Code Generator Reference
• An attribute “theTopRegion” typed by the TOR class TopRegion. It is 
initialized to a new instance of TopRegion.

• A redefinition of the method “init”. The implementation of this method 
calls addRegion(theTopRegion).

Note
It is possible to use a simple state machine as the implementation of an ordi-
nary operation. If such a state machine implementation has no states, it will 
be translated as an ordinary operation body (the actions of the start transi-
tion will be put in the Operation Body.

Example 455: Translation of a classifier behavior statemachine (1) ––––––––––––

UML

active class C {
    statemachine initialize { 
       ... 
    }
}

Java

public class C_initialize extends StateMachine
{
    public TopRegion theTopRegion = new TopRegion(this);

    public C m_owner;
    
    public C_initialize(C owner)
    {
      m_owner = owner;
    }
    
    public void init()
    {
      addRegion(theTopRegion);    
    }
    
    public DispatchableClass getDispatchableClass()
    {
      return m_owner;
    }   
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 456: Translation of a composite state state machines (2 and 3) ––––––––

UML
1420 IBM Rational Tau User Guide June 2009



State Machine
active class C {
    statemachine initialize {
        state S1 : statemachine initialize {}; // 3)
        state S2 : SM {}; // 2)
    }    
}

statemachine SM {}

Java

public class C_initialize extends StateMachine
{
    // see Example 455 on page 1420 for the translation
}

public class C_S1_initialize extends StateMachine
{
    public TopRegion theTopRegion = new TopRegion(this);

    public C_initialize m_owner;
    public C_initialize.S1 m_ownerState;
    
    public C_S1_initialize(C_initialize owner, 
C_initialize.S1 ownerState)
    {
      m_owner = owner;
        m_ownerState = ownerState;
    }
    
    public void init()
    {
    addRegion(theTopRegion);    
    }
    
    public DispatchableClass getDispatchableClass()
    {
    return m_owner.getDispatchableClass();
    }   
}

public class SM extends StateMachine
{
    public TopRegion theTopRegion = new TopRegion(this);

    public DispatchableClass m_owner;
    public State m_ownerState;
    
    public SM(DispatchableClass owner, State ownerState)
    {
      m_owner = owner;
        m_ownerState = ownerState;
    }
    
    public void init()
June 2009 IBM Rational Tau User Guide 1421



Chapter 43: Java Code Generator Reference
    {
    addRegion(theTopRegion);    
    }
    
    public DispatchableClass getDispatchableClass()
    {
    return m_owner;
    }   
}

Note that the translation of the composite states are not shown in this ex-
ample. See instead Example 458 on page 1424.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Non-local definition access from a statemachine implementation

Often in UML a definition can be referenced from a statemachine implemen-
tation without use of qualifier. This is because from a given statemachine im-
plementation all definitions defined in enclosing scopes are directly acces-
sible. This includes

1. Local definitions (within the same statemachine implementation)

2. Definitions in containing state machines (in case the reference is made 
from an inline statemachine of a composite state)

3. Definitions in the containing active class

4. Global definitions

In Java, references of definitions of category 2 and 3 require an access prefix 
using one or many “m_owner” attribute references. If the reference is located 
in a context that will be translated to a Java state class, one extra “m_owner” 
is added to the qualifier (since the state class has an “m_owner” attribute re-
ferring to the owning statemachine class). See Triggered Transition for an 
example.

State

A UML state is translated to a Java class which extends the TOR class 
State. 

The state class is placed within the Java statemachine class as a static nested 
class. This avoids the need to do name mangling of state names (two state-
machine implementations may have states with the same name).
1422 IBM Rational Tau User Guide June 2009



State Machine
Each state class is instantiated in the “init” method of the state machine class. 
Each state object is stored in a dedicated attribute for the state. This attribute 
is called “m_s_S”, where S is the name of the state. It has protected visibility.

The Java state class has the following members:

• An attribute “m_owner” which is typed by the statemachine class that is 
the translation of the owning statemachine implementation.

• A constructor which initializes “m_owner”.

• An overload of the abstract method “execute”. It contains if-statements 
for all triggered transition originating from the state. This means that the 
state class contains the implementation of all Triggered Transitions orig-
inating from that state.

Example 457: Translation of states and start transitions––––––––––––––––––––––

UML

active class C {
    statemachine initialize {
        start {
            nextstate Idle;
        }
        state Idle;
    }
}

Java

public class C extends DispatchableClass { … }

public class C_initialize extends StateMachine
{
    // … see State Machine translation above …  
    
    public void initialTransition()
    {
      m_s_Idle.enter();
    }

    public void init()
    {
      // …
        m_s_Idle = new Idle(theTopRegion, this);
      m_s_Idle.init();
    }

    public static class Idle extends State 
    {        
        public C_initialize m_owner;
June 2009 IBM Rational Tau User Guide 1423



Chapter 43: Java Code Generator Reference
        public Idle(Region region, C_initialize owner)
        {
        super(region);
        m_owner = owner;
        }
        
        public Dispatchable.EventAction execute(Event e)
        {
        // … Transition if-statements … 
            // (see Triggered Transition below)

        return Dispatchable.EventAction.NoMatch;
        }        
    }

    protected Idle m_s_Idle;    
}

For brevity, the example has left out most things not related to the translation 
of the state.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Composite state

A state may contain or reference a state machine, in order to become a com-
posite state. A composite state is translated as an ordinary state, with the fol-
lowing additions:

• The state class gets an attribute “m_sm” typed by the statemachine class 
that is the translation of the referenced statemachine. It has public visi-
bility.

• Addition of an overloaded method “init” which initializes “m_sm” to a 
new instance of the statemachine class, and calls “init” on the created ob-
ject.

• Addition of an overloaded method “getStateMachine” which returns 
“m_sm”.

Example 458: Translation of composite states ––––––––––––––––––––––––––––––

UML

See Example 456 on page 1420.

Java

public static class S1 extends State 
1424 IBM Rational Tau User Guide June 2009



State Machine
{        
    public C_initialize m_owner;

    public S1(Region region, C_initialize owner)
    {
        super(region);
        m_owner = owner;
    }
    
    public C_S1_initialize m_sm;
    
    public void init()
    {
        m_sm = new C_S1_initialize(m_owner, this);
        m_sm.init();
    }

    public StateMachine getStateMachine()
    {
        return m_sm;
    }
}

public static class S2 extends State 
{        
    public C_initialize m_owner;

    public S2(Region region, C_initialize owner)
    {
        super(region);
        m_owner = owner;
    }
    
    public SM m_sm;
    
    public void init()
    {
        m_sm = new SM(m_owner.getDispatchableClass(), 
this);
        m_sm.init();
    }

    public StateMachine getStateMachine()
    {
        return m_sm;
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that a composite state which references a stand-alone statemachine (SM 
in the example) implements the “init” method slightly differently (it calls 
getDispatchableClass() on “m_owner” to get a reference on the dis-
patchable class).
June 2009 IBM Rational Tau User Guide 1425



Chapter 43: Java Code Generator Reference
Start Transition

A start transition is translated to a method “initialTransition” in the 
Java statemachine class that is the translation of the statemachine 
implementation in which the start transition is contained.

The implementation of “initialTransition” is the translation of the actions of 
the start transition. This translation follows exactly the same rules as for any 
other Action.

See Example 457 on page 1423 for an example of the translation of a start 
transition.

Triggered Transition

A triggered transition is translated to a protected method in the Java 
statemachine class that is the translation of the statemachine 
implementation in which the triggered transition is contained. 

The name of the transition method is:

1. if the transition has no guard and no asterisk trigger: 
trans_<StateNames>_<SignalClassNames>

2. otherwise: trans_<StateNames>_<SignalClassNames>_<GUID> 

<StateNames> are the names of all states in which the transition may be trig-
gered (separated by underscores), and <SignalClassNames> are the names of 
all event classes corresponding to signals that may trigger the transition. 
<GUID> is the GUID of the triggered transition.

For each triggered transition an if-statement is also generated in the “exe-
cute” method of each state class, corresponding to a state in which the tran-
sition may be triggered. This if-statement uses the “isTypeOf” method to test 
that the dynamic type of the received signal event matches the static event 
type specified in the trigger of the transition. If so, the following happens:

1. Actual arguments of the event, if any, are assigned to the referenced at-
tributes. In Java a cast from the generic Event type to the specific signal 
event type is needed in order to access the event parameters.

2. The current state is left by calling the “leave” method.

3. The transition method is called. 
1426 IBM Rational Tau User Guide June 2009



State Machine
4. Finally the “execute” method returns “Dispatchable.EventAction.Con-
sumed” to indicate that the event has been consumed.

Example 459: Translation of triggered transitions –––––––––––––––––––––––––––

UML

active class C {
    private long count;
    protected String strName;
    public C destination;

    statemachine initialize {
        String 'from';
        start {
            count = 0;
            ^ destination.sig(strName);
            nextstate Idle;
        }
    
        state Idle;
        for state Idle;
            input sig('from') {
                count = count + 1;
                ^ destination.sig('from');
                nextstate Idle;
            }
        }
    }
}

Java

public class C extends DispatchableClass 
{ 
    // … see Active Class translation above …  

    public long count;
    public String strName;
    public C destination;
}

public class C_initialize extends StateMachine
{
    // … see State Machine translation above …  
    
    protected String from;

    public void initialTransition()
    {
        m_owner.count = 0;
        sendTo(new sig(m_owner.strName), 
m_owner.destination);
      m_s_Idle.enter();
June 2009 IBM Rational Tau User Guide 1427



Chapter 43: Java Code Generator Reference
    }

    public void init()
    {
      // …
        m_s_Idle = new Idle(theTopRegion, this);
      m_s_Idle.init();
    }

    public static class Idle extends State 
    {        
        public C_initialize m_owner;

        public Idle(Region region, C_initialize owner)
        {
        super(region);
        m_owner = owner;
        }
        
        public Dispatchable.EventAction execute(Event e)
        {
        if (sig.isTypeOf(e))
            {
                m_owner.from = ((sig) e).sender;
                leave();
                m_owner.trans_Idle_sig(e);
                return 
Dispatchable.EventAction.Consumed; 
            }
        return Dispatchable.EventAction.NoMatch;
        }        
    }

    protected trans_Idle_sig(Event e)
    {
        m_owner.count = m_owner.count + 1;
        sendTo(new sig(from), m_owner.destination);
        m_s_Idle.enter();
    }

    protected Idle m_s_Idle;    
}

For brevity, the example has left out most things not related to the translation 
of the triggered transition.

Note in this example that the statemachine attribute “from” and the active 
class attributes “count”, “strName” and “destination” all get public visibility 
in Java (see Visibility of Definitions), although the UML visibilities are dif-
ferent.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1428 IBM Rational Tau User Guide June 2009



State Machine
The event that triggered a transition is available as a parameter of the gener-
ated “transition methods”. This parameter can be accessed from the actions 
of the UML transition by using target Java code.

Note
The actual arguments of a received signal are assigned to the variables ref-
erenced in the UML signal sending action. 

Multiple triggers

If a triggered transition has more than one trigger, the corresponding 
Java if-statement will use an expression that becomes true if any of the 
referenced events are received.

If the received signals have parameters the assignment of their actual values 
to attributes must be done within an if-statement that ensures that the actual 
event type matches the expected signal.

A special case of multiple triggers is “asterisk input”, which means that any 
signal can be received in a state. The Java translation of such a triggered tran-
sition is thus an if-statement which just checks that the event is not null.

Example 460: Translation of triggered transitions with multiple triggers ––––––––

UML

state Idle;
for state Idle;
input sig1(a), sig2(b) {
    nextstate Idle;
}
input * {
   stop;
}

Java

public static class Idle extends State 
{        
    // … see State translation above
   
    public Dispatchable.EventAction execute(Event e)
    {
        if (sig1.isTypeOf(e) || sig2.isTypeOf(e))
        {
            if (sig1.isTypeOf(e))
                m_owner.a = ((sig1) e).par0; // Assuming 
unnamed param.
June 2009 IBM Rational Tau User Guide 1429



Chapter 43: Java Code Generator Reference
            if (sig2.isTypeOf(e))
                m_owner.b = ((sig2) e).par0; // Assuming 
unnamed param.
            leave();
            m_owner.trans_Idle_sig1_sig2(e);
            return Dispatchable.EventAction.Consumed; 
        }
        if (e)
        {
            leave();
            
m_owner.trans_Idle__GEN_68y_42UVUZ_42PLLeZR70IzmiZ8I(e);
            return Dispatchable.EventAction.Consumed;
        }
        return Dispatchable.EventAction.NoMatch;
    }   

    protected trans_Idle_sig1_sig2(Event e)
    {
        m_s_Idle.enter();
    }    

    protected 
trans_Idle__GEN_68y_42UVUZ_42PLLeZR70IzmiZ8I(Event e)
    {
        finish();
    }     
}

The code that transfers actual signal arguments to state machine variables in 
this case will be placed inside an if-statement checking that the event types 
match.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note the naming of transition methods which is made up of all names of 
events which may trigger the transition. In the case of an asterisk input, the 
GUID of the transition is part of its name.

Guard

A guard on a triggered transition is translated to an additional 
expression in the if-statement for the transition in a state “execute” 
method. The expression must evaluate to true for the transition to be 
triggered.

If the transition only has a guard and no triggers, it should trigger without the 
reception of an event. Therefore, the if-statement for such a transition will 
check that the event is null and that the guard condition is fulfilled.
1430 IBM Rational Tau User Guide June 2009



State Machine
Example 461: Translation of transition guard conditions –––––––––––––––––––––

UML

state Idle;
for state Idle;
input sig1()[x == y] {...}  // Trigger and guard
[b == true] {...}           // Only a guard

Java

public static class Idle extends State 
{        
    // … see State translation above
   
    public Dispatchable.EventAction execute(Event e)
    {
        if (sig1.isTypeOf(e) && (x == y))
        {
            ...
        }
        if (e == null && (b == true))
        {
            ...
        }
        return Dispatchable.EventAction.NoMatch;
    }   
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Label Transition

A UML label transition is translated to a protected method in the Java 
statemachine class that is the translation of the statemachine 
implementation in which the label transition is contained.

The name of the transition method is "trans_L", where L is the name of the 
label of the label transition.

Example 462: Translation of label transitions–––––––––––––––––––––––––––––––

UML

statemachine initialize {
    Lbl:
    {
        count = 1;
    }
}

June 2009 IBM Rational Tau User Guide 1431



Chapter 43: Java Code Generator Reference
Java

public class C_initialize extends StateMachine
{
    // … see State Machine translation above …

    protected void trans_Lbl()
    {
        count = 1;
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Connection Point

A UML connection point is translated to an attribute in the Java class 
that is the translation of the statemachine in which the connection point 
is defined. 

The name of the attribute is the name of the connection point, and its type is

• the TOR class EntryPoint, if the connection point is an entry connection 
point.

• the TOR class ExitPoint, if the connection point is an exit connection 
point.

The attribute is initialized to a new instance of its type class.

An entry connection point is referenced from an entry point transition in the 
statemachine, and an exit connection point is referenced from an exit point 
transition in a composite state which refers to the statemachine. These tran-
sitions are translated to Java methods:

• entryPointTransitions(), in the class for the inner statemachine

• exitPointTransitions(), in the class for the outer statemachine

The implementations of these methods get a connection point as input pa-
rameter, and then uses one if-statement for each entry- or exit-point transi-
tion. Before calling the transition method (which is translated as usual, see 
Triggered Transition) in exitPointTransitions() the method “leave” is 
called on “theTopRegion” in order to leave the current state.

Example 463: Translation of connection points and entry/exit point transitions ––

UML
1432 IBM Rational Tau User Guide June 2009



State Machine
active class C : DispatchableClass {
    statemachine initialize {
    ...
        state Idle : statemachine initialize
            in Cin      // Entry connection point
            out Cout    // Exit connection point
        {
            start Cin {
                ...
            }

            start {
                ...
            }

            state WaitForSig;
            for state WaitForSig;
            input sig() {
                return Cout;
            }
        };

        for state Idle;
        [Cout] {
            count = 14;
            stop;
        }
    }
}

Java

public class C_initialize extends StateMachine
{
    public static class Idle extends State 
    { 
        public C_initialize_Idle_initialize m_sm;

        ... 
    }

    public Idle m_s_Idle;

    protected void trans_Idle_Cout() 
    {
        m_owner.count = 14;
        finish();
    }

    public void exitPointTransitions(ExitPoint ep) 
    {
        if (ep == m_s_Idle.m_sm.Cout) 
        {
            theTopRegion.leave();
            trans_Idle_Cout();
June 2009 IBM Rational Tau User Guide 1433



Chapter 43: Java Code Generator Reference
        }
    }
}

class C_initialize_Idle_initialize extends StateMachine
{
    EntryPoint Cin = new EntryPoint(this);
    ExitPoint Cout = new ExitPoint(this);

    protected void trans_Cin() 
    {
        ...
    }

    public void initialTransition() { … }

    public void entryPointTransitions(EntryPoint ep) 
    {
        if (ep == Cin) 
        {
            trans_Cin();
        }
    }

    Idle m_ownerState;

    public static class WaitForSig extends State { ... }
};

Details not related to the translation of the connection points have been 
omitted from the example.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that the names of the transitions that are triggered by connection points 
contain the name of the connection point instead of the name of a signal.
1434 IBM Rational Tau User Guide June 2009



Architecture
Architecture
The architecture (or internal structure) of a class is composed of the attributes 
of the class (parts), the ports of the class and the connectors that link them 
together. This section describes how these UML constructs are translated to 
Java code.

Port

A UML port is translated to one or two attributes typed by the TOR 
class Port. The attributes will be placed in the Java class that is the 
translation of the UML class which contains the port. 

The names of the created attributes are <portName>_in (generated for ports 
which realize at least one definition) and <portName> (generated for ports 
which require at least one definition), where <portName> is the name of the 
port. If the port does not require or realize any definition it will not be trans-
lated to Java.

The attributes are initialized to an instance of the Port class with information 
passed to the constructor about the DispatchableClass that owns the port, and 
whether the port is an 'in' or 'out' port.

Example 464: Translation of ports ––––––––––––––––––––––––––––––––––––––––

UML

active class C : DispatchableClass {
port p in with s1 out with s2;

}

Java

class C extends DispatchableClass {
Port p = new Port(this, Port.PortKind.OutPort);
Port p_in = new Port(this, Port.PortKind.InPort);

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1435



Chapter 43: Java Code Generator Reference
Connector

A UML connector is translated to an attribute of the containing class 
typed by the TOR class Connector. The name of the created attribute is 
the name of the Connector.

If the Connector has an empty name, a default name 'connector_N' is used. 
N is a number starting at 1 and incremented by one until the name of the Java 
attribute becomes unique in the containing class.

Code is also generated in the 'init' method of the containing class which calls 
the 'connect' method on the Connector attribute in order to connect the ports 
as specified by the Connector.

Example 465: Translation of connectors –––––––––––––––––––––––––––––––––––

UML

active class C : DispatchableClass {
port p in with s1 out with s2;

}

active class Container : tor::DispatchableClass
{
    part C a;
    part C b;
    connector to a.p to b.p;
}

Java

class C extends DispatchableClass {
Port p = new Port(this, Port.PortKind.OutPort);
Port p_in = new Port(this, Port.PortKind.InPort);

}

class Container extends DispatchableClass {
    public C a = new C();
    public C b = new C();

    public void init() {
        addToCurrentDispatcher(a);
        a.init();
        addToCurrentDispatcher(b);
        b.init();

c.connect(a.p, b.p_in);
    }
    public void start() {
        a.start();
        b.start();
1436 IBM Rational Tau User Guide June 2009



Architecture
        super.start();
    }

Connector = new Connector();
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Dynamic Collection Attribute Typed by Active Class

Class attributes with non-single multiplicity, where the initial number of in-
stances is lower than the maximum number of instances, are dynamic collec-
tion attributes. That is, the collection of instances stored in such an attribute 
at run-time is dynamic and may change during the execution of the Java ap-
plication.

For each dynamic collection attribute in UML that is typed by an active 
class, a public utility method is generated in the Java class that contains 
the corresponding Java attribute. 

The name of this utility method is <attributeName>_insert, where 
<attributeName> is the name of the attribute.

The purpose of this utility method is to 

1. insert a new instance of the active class into the attribute’s collection

2. add the new instance to the same dispatcher as is used by the owning 
class instance

3. initialize the new instance

4. connect the ports of the new instance to other ports based on defined con-
nectors

5. start the new instance (to allow its statemachine to begin execute)

The implementation of 1) above depends on the multiplicity of the attribute. 
If the attribute has single multiplicity (i.e. 0..1), this part of the method is just 
a plain assignment of the member attribute. If the multiplicity is > 1 this part 
of the method will call 'add' on the attribute in order to add the new instance 
last in the list. It is required that the collection type used for the attribute im-
plements the java.util.List interface so that the 'add' method can be 
called.

The implementation of 4) depends on whether or not connectors are con-
nected to the attribute. It also depends on the multiplicity of the other at-
tribute to which the connector is connected. If no connectors are connected 
June 2009 IBM Rational Tau User Guide 1437



Chapter 43: Java Code Generator Reference
to the attribute, this part of the method is empty. Otherwise the 'connect' 
method on the Connector attribute is called in order to connect the ports as 
specified by the Connector. In case of single target attribute multiplicity this 
is done by one single call of 'connect' per outgoing connector. In case of non-
single target attribute multiplicity there will be a for-loop generated for each 
outgoing connector in which 'connect' is called once for each instance in the 
target attribute of the connector. It is required that the collection type used 
for the target attribute implements the java.lang.Iterable interface so 
that the foreach Java construct can be used for iterating over the instances.

The generated utility methods are illustrated by the examples below. They 
assume the presence of two active classes D and E, each having a port called 
‘p’.

Example 466: ‘insert’ method generation (attributes with single multiplicity 
connected by a connector)–––––––––––––––––––––––––––––––––––––––––––––––

UML

active class C
{
  public D[0..1] p1;
  public E[0..1] p2;
  connector c from p1.p to p2.p with Sig;
}

Java

class C extends DispatchableClass
{
  Connector c = new Connector();

  public void p1_insert(D p)
  {
    p1 = p; // p1 has single multiplicity
    addToCurrentDispatcher(p);
    p.init();
    if (p2 != null)
      c.connect(p.p, p2.p_in); // p2 has single 
multiplicity
    p.start();
  }

  public void p2_insert(E p)
  {
    p2 = p; // p2 has single multiplicity
    addToCurrentDispatcher(p);
    p.init();
    if (p1 != null)
      c.connect(p1.p, p.p_in); // p1 has single 
1438 IBM Rational Tau User Guide June 2009



Architecture
multiplicity
    p.start();
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 467: ‘insert’ method generation (attributes with non-single multiplicity 
connected by a connector) –––––––––––––––––––––––––––––––––––––––––––––––

UML

active class C
{
  public D[*] p1;
  public E[*] p2;
  connector c from p1.p to p2.p with Sig;
}

Java

class C extends DispatchableClass
{
  Connector c = new Connector();

  public void p1_insert(D p)
  {
    p1.add(p); // p1 has non-single multiplicity
    addToCurrentDispatcher(p);
    p.init();
    for (E i : p2) // p2 has non-single multiplicity
    {
      c.connect(p.p, i.p_in);
    }
    p.start();
  }

  public void p2_insert(E p)
  {
    p2.add(p); // p2 has non-single multiplicity
    addToCurrentDispatcher(p);
    p.init();
    for (D i : p1) // p1 has non-single multiplicity
    {
      c.connect(i.p, p.p_in);
    }
    p.start();
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1439



Chapter 43: Java Code Generator Reference
Inserting an active instance into a dynamic collection attribute

In order to make use of the ‘insert’ utility method that is generated for a dy-
namic collection attribute the UML TOR library contains an operation 
tor::insert<Any>(Any). Calls to this operation are translated into calls of 
the corresponding utility method in generated Java code.

Example 468: Translation of calls to tor::insert –––––––––––––––––––––––––––––

UML

part Ping[*] p1;
…
// Insert a new instance of Ping into p1.
tor::insert<p1>(new Ping());

Java

…
p1_insert(new Ping());

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that if the call to tor::insert is not made by the class that owns the dy-
namic collection attribute, an access prefix will be generated in Java. The ac-
cess prefix is the same as would have been used in other references to the at-
tribute from that context. See Non-local definition access from a 
statemachine implementation for more information.

Class Composite Structure Initialization

When creating an instance of a class with an internal structure consisting of 
parts with a multiplicity that specifies an initial number of allocated in-
stances, these initial instances will be automatically

1. created 

2. added to the same dispatcher as is used by the containing class instance

3. initialized

4. connected to other attributes as specified by connectors in the containing 
class

5. started
1440 IBM Rational Tau User Guide June 2009



Architecture
Task 1) is taken care of by the generation of Java field initializers and a Java 
instance initializer block. Task 2 - 4) are taken care of by code generated into 
the 'init' method of the containing class. Task 5) is taken care of by code gen-
erated into the 'start' method of the containing class.

Note that if the containing class is not active, only task 1) is performed.

Example 469: Generation of code for initializing the composite structure of a class

UML

active class C
{
  part D[0..1] p1_single;
  part E[1] p2_single;
  part F[*]/4 p1_multi; 
  part G[8] p2_multi;

  connector c1 from p1_single.port1 with sig to 
p2_single.port2 with sig;
  connector c2 from p1_multi.port1 with sig to 
p2_multi.port2 with sig;
}

Java

class C extends DispatchableClass
{
  D p1_single;
  E p2_single = new E();
  java.util.Vector<F> p1_multi = new 
java.util.Vector<F>();
  java.util.Vector<G> p2_multi = new 
java.util.Vector<F>();

  {
    for (int i = 0; i < 4; i++)
      p1_multi.add(new F());

    for (int i = 0; i < 8; i++)
      p1_multi.add(new G());
  }

  public void init()
  {
    // Code related to statemachine initialization for C 
(if applicable)
    // (see Active Class)

    addToCurrentDispatcher(p1_single);
    addToCurrentDispatcher(p2_single);
    addToCurrentDispatcher(p1_multi); 
    addToCurrentDispatcher(p2_multi);
June 2009 IBM Rational Tau User Guide 1441



Chapter 43: Java Code Generator Reference
    
    p1_single.init();
    p2_single.init();
    init(p1_multi); // Using generic TOR method for 
multi-initialization
    init(p2_multi); // ----------------------"----------
----------------
    
    c1.connect(p1_single.port1, p2_single.port2_in);
    for (F i : p1_multi)
    {
      for (G i2 : p2_multi)
 {
      c2.connect(i.port1, i2.port2_in);
    }
    }

    super.init();
  }

  public void start()
  {
    p2_single.start();
    start(p1_multi);
    start(p2_multi);
    super.start();
  }

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that there are two ways in UML to specify that an attribute with non-
single multiplicity should have initial instances allocated.

• Specifying a fix constant value as multiplicity 

C[6] c; // 6 initial instances in c

• Specifying an initial count for the attribute

C[*]/6 c; // 6 initial instances in c

When translating UML to Java there is no difference between these two ways 
of specifying initial instances. That is, generated Java code does not ensure 
that a constraint on the maximum number of instances is fulfilled.
1442 IBM Rational Tau User Guide June 2009



Translation Customization
Translation Customization
The output of the Java code generator can be customized using agents. This 
gives the user a very precise control of the generated code. 

The generated code can be customized by adding arbitrary text at certain lo-
cations in the generated files. This makes it possible to generate additional 
code, comments etc. in conjunction with the ordinary code that gets gener-
ated.

It is also possible to implement custom transformations for model constructs 
which are not directly handled by the Java code generator, or to modify the 
default transformations made by the code generator.

All these customization possibilities are based on tool events and agents trig-
gered during code generation by these tool events. See Chapter 79, Agents 
for more information about these concepts.

Adding Text During Code Generation

During code generation it is possible to add arbitrary text 

– at the beginning or end of a generated file (see tool event JavaPrint-
File)

– just before or just after the generation of a Java definition (see tool 
event JavaPrintDefinition)

Example 470: Printing a custom header in generated Java files ––––––––––––––––

Assume we want to print a custom header in the form of a comment block, 
in all generated Java files. We can do this by defining an agent that triggers 
on the JavaPrintFile tool event on <<before processing>>. The implementa-
tion of the agent can for example be done using the Tcl script below:

proc PrintHeader { triggeredBy timing context server 
agentParameters } {
  upvar 1 $agentParameters ap
  set buffer [lindex $ap 0]
  u2::AddSourceBufferText $buffer "// This is a 
generated file! Do not edit!\\n"
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1443



Chapter 43: Java Code Generator Reference
Implementing Custom Transformations

The tool event Transformation can be used to implement custom transforma-
tions in order to generate Java code for model constructs for which no stan-
dard Java transformation is available. It can also be used as a means for cus-
tomizing the standard transformations.

Example 471: Implementing a custom Java transformation–––––––––––––––––––

Assume we want to support the singleton design pattern when generating 
Java code. At the model level we don’t want to expose the implementation 
of this design pattern, but instead we just want to stereotype classes with a 
<<singleton>> stereotype to express that they should be generated as sin-
gleton classes.

We can implement this transformation by defining an agent that triggers on 
the Transformation tool event on <<before processing>>. The implementa-
tion of the agent can for example be done using the Tcl script below:

proc CustomTransformation { triggeredBy timing context 
server agentParameters } {
  upvar 1 $agentParameters ap
  set messageList [lindex $ap 0]
  set roots [lindex $ap 2]
  set model [lindex $ap 3]
  foreach r $roots {
      if {($r != 0) && [u2::HasAppliedStereotype $r 
"singleton"]} {
          u2::AddMessage $messageList "Transforming 
singleton class" Information -subject $r        

          ## Add attribute
          set type [u2::GetValue $r "Name"]
          set att [u2::Parse $model "private static part 
$type m_inst;"] 
          u2::SetEntity $r "OwnedMember" $att
          
          ## Add private constructor
          set constructor [u2::Parse $model "private 
void $type ();"]
          u2::SetEntity $r "OwnedMember" $constructor
          
          ## Add instance method
          set method [u2::Parse $model "public static 
$type instance(){return m_inst;}"]
          u2::SetEntity $r "OwnedMember" $method
      }      
  }
}

1444 IBM Rational Tau User Guide June 2009



Translation Customization
Using this agent we have in effect implemented a new translation rule. Here 
is an example of what the result could look like:

UML

<<singleton>> class C{}

Java

public class C
{

private static C m_inst = new C();

private C() {}

    public static C instance()
    {
        return m_C;
    }
}

Note that since the agent gets triggered before the ordinary code generator 
transformations are performed it can use UML constructs in the transforma-
tion result. For example, the created attribute is a UML part, which will be 
transformed to an attribute with a ‘new’ initializer according to the transla-
tion rule described in Impact of aggregation kind.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1445



Chapter 43: Java Code Generator Reference
1446 IBM Rational Tau User Guide June 2009



44
Java Run-time Framework

This chapter describes the Java run-time framework, IBM Rational Tau Ob-
ject Run-time (TOR). The purpose and run-time semantics of all classes in 
the framework is described.
June 2009 IBM Rational Tau User Guide 1447



Chapter 44: Java Run-time Framework
Introduction
This chapter is a reference guide for IBM Rational Tau Object Run-time 
(TOR), an object-oriented UML run-time framework implemented in Java. 
TOR implements the run-time semantics of UML, both for structural and be-
havioral aspects.

TOR is implemented as a set of classes each providing a well specified ser-
vice. Some classes are used in the framework itself, while others are used by 
the code generated with the Java code generator to transform a model to ex-
ecutable Java code. 

Some of the classes are used when modeling; these “TOR Classes” are avail-
able as a TOR UML Model. 

The framework is delivered as a set of Java source files. The files are listed 
in the List of Files section.

Note
TOR also has a C++ implementation, which is used by code generated by 
the C++ Application Generator. The design of C++ TOR and Java TOR is 
very similar, which facilitates the creation of UML models that can target 
both the Java and the C++ platform. For more information about the C++ 
implementation of TOR see C++ Run-time Framework.

TOR Package

All definitions of TOR are made in a Java package called com.IBM 
Rational.tau.tor. There are also subpackages in this package where re-
lated classes are grouped.

TOR UML Model

Parts of TOR are available as a model library, called ‘tor’, that is loaded au-
tomatically when the Java code generator is activated. All types and classes 
that can be used in the user model is included in this model.

The classes of this model are described in the TOR Classes section.
1448 IBM Rational Tau User Guide June 2009



Introduction
Note
The TOR UML model used for Java code generation is the same one as is 
used for C++ code generation. However, some parts of that model are not 
necessary to use when targeting the Java TOR, and are therefore not sup-
ported by the Java code generator.

Building TOR

TOR is usually built automatically when using the Eclipse Integration for 
compiling and deploying Java code generated by IBM Rational Tau. Note 
that if the generated code does not depend on TOR constructs, TOR will not 
be built.

If you are building the generated Java code in some other way you can find 
the Java source files for TOR in the IBM Rational Tau installation at

addins\JavaApplication\Etc\TOR\com\IBM Rational\tau\tor

Note that you must use a Java SDK for Java 1.5 or later.

For convenience the source files have been prebuilt into a JAR file, tor.jar, 
located in the same folder.
June 2009 IBM Rational Tau User Guide 1449



Chapter 44: Java Run-time Framework
TOR Classes
This section contains an alphabetical list of the classes defined in TOR. The 
purpose and run-time semantics of each class is described. All classes are de-
clared in the TOR Package (or in one of its subpackages). 

• CompletedEvent

• Connector

• Dispatchable

• DispatchableClass

• Dispatcher

• DispatcherBehavior

• DispatcherData

• EntryPoint

• Event

• EventExecutor

• EventQueue

• EventReceiver

• ExitPoint

• InstanceManager

• InternalEvent

• Port

• Region

• RunInitialTransition

• State

• StateMachine

• Synthesized

• ThreadedDispatcher

• ThreadSafeEventQueue

• TimerEvent

• TimerObject

• TimerQueue

• TopRegion
1450 IBM Rational Tau User Guide June 2009



TOR Classes
CompletedEvent

An internal Event generated by the framework when a State is finished. It is 
passed to the state and processed instantly. It is used to trigger any transitions 
without a triggering event, also known as trigger free transitions.

There exists a null event which is used for transitions with guards only. In 
comparison, the CompletedEvent triggers transitions without guards, that is 
transitions with no events and no guards.

Connector

This class represents a UML connector. It will be instantiated once for each 
connector in the model. It contains a method ‘connect’ for connecting two 
ports by the connector. This enables the sending of events between the con-
nected ports.

Dispatchable

An abstract class representing an entity with the ability to both receive and 
execute events. The ability to receive events is represented by a realization 
of the EventReceiver interface, and the ability to execute events is repre-
sented by a realization of the EventExecutor interface.

A Dispatchable is associated with a Dispatcher and an EventQueue. When 
the dispatcher processes an Event from a queue, it asks the dispatchable to 
which the event is addressed to process the event. As a result, the Dispatch-
able returns a EventExecutor.EventAction indicating how the event is han-
dled. 

DispatchableClass

A dispatchable class represents a UML active class. It inherits Dispatchable 
to get the capability of receiving and executing events that are dispatched to 
it.

A dispatchable class may have an associated StateMachine, known as the 
classifier behavior statemachine.

Events sent to an instance of a dispatchable class are passed on to the State-
Machine of the instance.
June 2009 IBM Rational Tau User Guide 1451



Chapter 44: Java Run-time Framework
If a UML class is made active, an inheritance to DispatchableClass will 
be added automatically in the model. This makes it possible to access impor-
tant operations from DispatchableClass in the UML model.

Instantiation of dispatchable classes

When an instance of a dispatchable class is created, it does not automatically 
start the execution of its behavior. It must first be initialized, after which it 
can be started.

During initialization, the classifier behavior statemachine of the dispatchable 
class gets initialized and prepared for execution. The initialization is nor-
mally done automatically by the code generated with the Java code generator 
in the main method. To manually initialize a dispatchable class, call the init 
operation:

public void init();

Starting an instance starts its classifier behavior state machine by posting a 
request (RunInitialTransition) for executing the initial transition. Once 
started, it is ready to receive events. Starting is often performed automati-
cally by the code generated with the Java code generator in the main method. 
To manually start the statemachine call the start operation:

public void start();

Starting an already started instance has no effect.

Note
Beware that “start” is a reserved word in UML textual syntax. It is there-
fore necessary to write it with single quotation marks (‘start’) when refer-
ring to the method above.

Dispatcher

A dispatcher is associated with an EventQueue and is responsible for pro-
cessing Events placed in the queue. Events can be retrieved from the queue 
and processed one by one, or continuously as long as the queue is not empty.

A dispatcher is also associated with a TimerQueue where TimerObjects cor-
responding to currently active timers are located.

The code associating a dispatcher with a Dispatchable and then starting the 
dispatcher is normally generated automatically with the Java code generator 
in the main method, but it can also be done manually as described below.
1452 IBM Rational Tau User Guide June 2009



TOR Classes
To add a dispatchable to the dispatcher, call the add operation:

public void add(Dispatchable);

To remove a dispatchable from the dispatcher, call the remove operation:

public boolean remove(Dispatchable);

To start processing events from the event queue of the dispatcher, call the 
run operation. It retrieves events one by one from the event queue until the 
queue is empty, then it returns.

public void run();

To process events off the queue one by one, call the step operation. It re-
trieves and processes the next event in the queue.

public void step();

DispatcherBehavior

A class representing the behavior of a ThreadedDispatcher, realizing a thread 
which waits for events to arrive to the event queue and uses the dispatcher to 
execute them. DispatcherBehavior is defined as a static nested class of 
ThreadedDispatcher.

DispatcherData

A class containing the data needed by a ThreadedDispatcher (and defined as 
a static nested class of that class). The data is encapsulated in a Dispatcher-
Data in order to be safely accessible both by the thread that is launched by 
the ThreadedDispatcher and the calling thread.

EntryPoint

An entry point is a named pseudo state used to enter a Region of a composite 
State or a StateMachine. It provides a means to enter the composite state or 
sub-state machine without revealing anything about its internals, for example 
the actual target state.

When an entry point is reached, i.e. a transition with an entry point as its 
target has been executed, the region owning the entry point is entered, and 
then the outgoing transition of the entry point is executed.
June 2009 IBM Rational Tau User Guide 1453



Chapter 44: Java Run-time Framework
An entry point can have any number of incoming transitions, but only one 
outgoing transition.

Event

The Event class is used to represent types and occurrences of all kinds of 
events in a system, for example; signals, asynchronous operation calls and 
timer time-outs. Subclasses of Event specifies event types and instances of 
these classes represent event occurrences.

Every event has a receiver that is represented by an object id. The Instance-
Manager is responsible for mapping such an object id to a pointer to a Dis-
patchable that is the real receiver of an event instance. The receiver is set in-
ternally by the framework.

EventExecutor

This is an interface capturing the ability to execute events. The interface con-
tains the following method that must be implemented by classes that imple-
ment EventExecutor:

public EventAction execute(Event event);

Implementations of this method should return an appropriate literal of the 
EventExecutor.EventAction enumeration to indicate how the event was han-
dled by the EventExecutor.

Note that before an event can be executed, it must be received. Thus it is nor-
mally so that a class that implements the EventExecutor interface also imple-
ments the EventReceiver interface.

Note
It is important to make a distinction between receiving and executing an 
event. An event is received when it is delivered by the framework to the re-
ceiver. An event is executed when behavior that is associated with the re-
ception of the event is executed (typically a transition). Event reception must 
precede event execution, and there is typically some time interval between 
reception and execution.

EventExecutor.EventAction

An enumeration used to indicate how an event is handled by the receiver. The 
literals and their meaning are listed in the table below.
1454 IBM Rational Tau User Guide June 2009



TOR Classes
EventQueue

An event queue is a queue of Events, implemented in Java using a 
LinkedList.

The framework automatically handles everything related to event queues, i.e. 
insertion and removal of events.

EventReceiver

This is an interface capturing the ability to receive events. The interface con-
tains the following method that must be implemented by classes that imple-
ment EventReceiver:

public boolean receive(Event e);

Implementations of this method should return true if the event was received, 
and false otherwise.

EventReceiver is also available in the TOR UML profile as an interface. This 
makes it possible to declare your own event receivers. Events can be sent to 
such event receivers by means of the sendTo utility function. One common 
use for this is when there are passive classes that need to receive signals. By 
letting the classes inherit the EventReceiver interface, and implementing the 
receive function, this becomes possible.

For information about the difference between receiving and executing an 
event see the note in EventExecutor.

ExitPoint

An exit point is a named pseudo state used to leave a Region of a composite 
State or a StateMachine. It provides a means to leave the composite state or 
sub-state machine without knowing anything about the context in which it is 
instantiated, for example the target state of the outgoing transition.

Literal Description

NoMatch The event is not handled by the receiver.

Defer The event is saved by the receiver.

Consumed The event is consumed by the receiver.
June 2009 IBM Rational Tau User Guide 1455



Chapter 44: Java Run-time Framework
When an exit point is reached, i.e. a transition with an exit point as its target 
has been executed, the exited region (owning the exit point) is left, and then 
the outgoing transition of the exit point is executed.

An exit point can have any number of incoming transitions, but only one out-
going transition.

InstanceManager

This class is responsible for keeping maps between object ids and EventEx-
ecutors and EventReceivers. The maps are kept up-to-date when Dispatch-
ables are created and deleted (by the garbage collector). The main use for the 
instance manager is to have a symbolic representation (an object id) of an in-
stance, rather than a direct reference to the instance. This indirection is cru-
cial in a multi-threaded system where instances are created and deleted inde-
pendently from multiple threads. It is also necessary in a system that is 
distributed over multiple address spaces.

InternalEvent

This class is a common base class for all events that are sent internally by the 
TOR framework, i.e. all events that do not correspond directly to user-de-
fined events in the model.

Port

This class represents a UML port. It is instantiated in generated code once for 
each enabled direction of the UML port. That is, if signals may flow both in 
to and out from the port, two attributes typed by this class will be generated.

Each port maintains a list of other ports to which it has been connected by 
means of Connectors.

Region

The abstract Region class represents an orthogonal region of a State or a 
StateMachine. A region owns a set of states. A region keeps track of its cur-
rent and previous states. The current state is the currently active state of the 
region. The previous state is the state that was active the last time the region 
was left.

A region can be entered and left as the result of a transition.
1456 IBM Rational Tau User Guide June 2009



TOR Classes
Entering a region

A region can be entered in a number of different ways. The first time a region 
is entered, its initial transition is executed. Subsequently, when the region is 
entered, history information can be used to re-enter the previous state. A re-
gion can also be entered through an EntryPoint.

The current and previous states are updated whenever a state in the region is 
entered as a result of a transition.

Leaving a region

A region is left when a transition with a target state in a different region is 
triggered, or when a transition with an ExitPoint as its target is triggered.

The current and previous states are updated whenever a state in the region is 
left.

Finishing a region

A region is finished when a final state of the region is reached. Final states 
are not explicitly defined in the framework.

When a region is finished, trigger free transitions of the enclosing state(s) are 
evaluated.

RunInitialTransition

An internal event that is sent to a DispatchableClass when it is started. When 
this event is executed, the initial transition of the class will be executed.

RunInitialTransition is defined as a static nested class of TopRegion.

State

This is an abstract class that represents a state in a StateMachine. Generated 
classes corresponding to states in the user model inherit from this class.

A state is owned by a Region. A state can own a number of regions or a state 
machine, in which case it is referred to as a composite state.
June 2009 IBM Rational Tau User Guide 1457



Chapter 44: Java Run-time Framework
Transitions and event handling

A state has a set of incoming and outgoing transitions. Transitions are not 
represented by separate classes in the framework, instead they are repre-
sented by methods in the enclosing state machine.

When a state receives an event, it checks if there are any outgoing transitions 
triggered by the event. If there is a match and the guard expression is true, 
the transition is executed. Transitions are not ordered, the first matching one 
found by the framework will be executed.

If no match is found, the event is passed on to any parent of the state, i.e. an-
other state or a state machine.

Entering a state

A state is entered when a transition with the state as a target has been exe-
cuted. When a state is entered any entry actions of the state are executed. 
Then if the state is a composite state, any owned regions or state machine is 
also entered.

The current and previous state of the owning region is updated when a state 
is entered.

Leaving a state

A state is left when any of its outgoing transitions is triggered, or when any 
outgoing transition of a parent to the state is triggered. When a state is left 
any exit actions of the state are executed.

The current and previous state of the owning region is updated when a state 
is left.

StateMachine

This is an abstract class that represents a state machine and its implementa-
tion. Generated classes corresponding to state machines in the user model in-
herit from this class.

Note
A state machine as a list of top regions. Currently this list will always con-
tain exactly one TopRegion which is defined in the generated subclass of 
StateMachine.
1458 IBM Rational Tau User Guide June 2009



TOR Classes
A state machine can be associated with a DispatchableClass, as the classifier 
behavior of the class. An Event sent to the dispatchable class is passed on to 
the state machine and processed there.

A state machine can be owned by a State, in which case it is called a sub-state 
machine. Events sent to the state are passed on to the sub-state machine for 
processing.

Before a state machine is ready to process events it has to be initialized and 
started. This is done internally by the framework when the corresponding ac-
tions are preformed on the associated DispatchableClass or State.

Synthesized

This is an annotation used for marking definitions that are synthesized during 
Java code generation. Changes to synthesized definitions are not considered 
when updating the UML model from changes made to generated Java files.

The Synthesized annotation also makes generated code more readable, since 
it becomes clear which parts of generated Java files that have a direct corre-
spondance to UML model entities, and which parts that were added by the 
code generator.

ThreadedDispatcher

This class is a threaded version of a Dispatcher. ThreadedDispatcher realizes 
a thread which will dispatch events to all Dispatchables that are added to it. 
This allows for flexible thread deployment of a model. Some examples:

• One thread per active class instance
Each active class is then associated with exactly one ThreadedDis-
patcher. This can for example be modeled by letting each active class 
contain one ThreadedDispatcher as a part. In the constructor of the class, 
the newly created instance is added to the ThreadedDispatcher, and it is 
launched. The lifetime of the launched thread is tied to the lifetime of the 
ThreadedDispatcher, so when an instance of the active class is deleted, 
the thread will be ended.

• One thread per active class
This can for example be modeled by adding a static ThreadedDispatcher 
attribute to the class. In the constructor of the class, the newly created in-
stance is added to the ThreadedDispatcher.
June 2009 IBM Rational Tau User Guide 1459



Chapter 44: Java Run-time Framework
• One thread for an arbitrary set of instances
This can for example be modeled by adding an ThreadedDispatcher at-
tribute in a singleton static class, and then add the instances it shall dis-
patch to it.

A ThreadedDispatcher owns a DispatcherData which comprises all data that 
needs to be accessed by both the launched thread and the caller thread. For 
example, the dispatcher data contains a Dispatcher and a ThreadSafeEvent-
Queue. The encapsulation of the data in a DispatcherData instance ensures 
that the data can be accessed in a thread-safe manner.

The dispatcher and the event queue are automatically instantiated and asso-
ciated. The dispatcher will process events off the event queue in a thread-safe 
manner.

To start a ThreadedDispatcher call

public void launch();

To stop a ThreadedDispatcher call

public boolean endThread();

This method will end the ThreadedDispatcher as soon as possible, but 
without interrupting the behavior triggered by the currently executed event. 
The method is synchronous, i.e. it will wait until the behavior triggered by 
the current event has run to completion. There is also an overloaded version 
of this method that allows for specifying a timeout value, to avoid waiting too 
long for the thread to end. If the thread has not been ended after the specified 
time has elapsed, the method will return false.

ThreadSafeEventQueue

A thread-safe subclass of EventQueue used by ThreadedDispatcher. All op-
erations performed on the queue are synchronized and a Semaphore is used 
for waiting on new events to arrive to the queue.

TimerEvent

A timer event is a special kind of Event, representing a timer timeout event. 
It is associated with a TimerObject, on which timer actions such as set and 
reset can be performed.
1460 IBM Rational Tau User Guide June 2009



Utilities
TimerObject

A timer object represents the declaration of a timer in a Dispatchable. It pro-
vides methods for setting and resetting a timer and for querying a timer 
whether it is currently active or not. The implementation of these methods 
uses an associated TimerEvent and TimerQueue to realize the timer seman-
tics.

A timer object also holds the timeout time value when the timer is active.

TimerQueue

A timer queue is a priority queue of TimerObjects corresponding to timers 
that are currently active. The timer objects are ordered with regards to their 
timeout times.

Every Dispatcher has a timer queue in which timer objects corresponding to 
active timers of managed Dispatchables are administered.

TopRegion

A top region is a Region owned by a StateMachine. The owning state ma-
chine can be retrieved from a top region.

When a top region is finished the owning state machine is also finished if all 
its top regions are finished.

TopRegion is a subclass of Region.

Utilities
There are a number of utility methods that are frequently used internally by 
the TOR framework and by the generated Java code. They can also be used 
by the user since they are defined in the TOR UML library. All utilities are 
declared as static methods of an abstract class Utilities.

sendTo

A method used to send an Event to a receiver. The receiver can be specified 
as an EventReceiver:

public static boolean sendTo(Event e, EventReceiver r);
June 2009 IBM Rational Tau User Guide 1461



Chapter 44: Java Run-time Framework
There is also an overloaded version which allows the event to be sent to a 
port, so that the receiver does not need to be explicitly specified, but instead 
can be located at run-time using the connector structure:

public static boolean sendTo(Event e, Port p);

The event is sent to the receiver for processing. A boolean value is returned 
to indicate if the event was received by the receiver or if it was lost.

In either case, the responsibility of the event is passed on to the receiver and 
the event should not be accessed after passing it to the sendTo method.

setTimeUnit

A method used for setting the unit of time to be used by TOR. 

public static void setTimeUnit(double seconds);

The time unit is specified in seconds. For example, to specify a time unit of 
1 millisecond, call setTimeUnit(0.001).

Important!
At present the time unit is shared throughout the entire application. Do not 
change time unit from different threads and when timers already have been 
activated, to avoid unexpected results.
1462 IBM Rational Tau User Guide June 2009



Operating System Abstraction Layer
Operating System Abstraction Layer
TOR uses a separate abstraction layer to interface with functionality that tra-
ditionally is supplied by the underlying operating system, but which in the 
case of the Java platform is available in the form of Java library functionality. 
This section describes the classes defined in this layer.

All classes in the OS layer are defined in a package called os, which is a sub-
package contained in the TOR Package. The fully qualified name is therefore 
com.IBM Rational.tau.tor.os.

Some of the classes in the OS layer are available in the TOR UML Model. 
For example, it is often necessary to make use of the thread synchronization 
primitives of TOR, such as a semaphore.

Semaphore

A semaphore is used to access and wait for resources accessed by more than 
one thread. A semaphore can be retrieved and released. There are two ways 
of getting a semaphore, either wait until the semaphore is released so you can 
get it, or wait for a specified amount of time before moving on.

Time

This class is a representation of time (both absolute time and relative time du-
rations). The class contains various functions for getting the current time, 
adding and subtracting time values etc. The underlying Java representation 
is a Date object.

Thread

This is a subpackage of the com.IBM Rational.tau.tor.os package. It 
contains classes and utilities for working with multiple threads in a generated 
Java application.

Behaviour

A thread is represented by means of a Behaviour class which inherits from 
java.lang.Thread. The ThreadedDispatcher class uses a Behaviour sub-
class (DispatcherBehavior) in which the dispatcher is executed.
June 2009 IBM Rational Tau User Guide 1463



Chapter 44: Java Run-time Framework
Just like in the com.IBM Rational.tau.tor.os package there is a static 
Utilities class which contains thread related utilities.

suspend
public static void suspend(Time timeout);

Suspends the current thread until the specified point in time (N.B. ‘timeout’ 
is an absolute time value).

getCurrentThreadId
public static long getCurrentThreadId();

Returns the ID of the currently executing thread.
1464 IBM Rational Tau User Guide June 2009



List of Files
List of Files
This section describes the files of TOR delivered as a part of the IBM Ra-
tional Tau installation.

Java source files

The complete TOR source code is included in the IBM Rational Tau instal-
lation and can be found in the following folder in the installation directory:

addins\JavaApplication\Etc\TOR\com\IBM Rational\tau\tor

These files are used when building generated Java applications which depend 
on TOR. See Building TOR for more information about how to build TOR.

The table below lists all the files and the TOR declarations they contain.

File TOR declaration

CompletedEvent.java CompletedEvent

Connector.java Connector

Dispatchable.java Dispatchable

DispatchableClass.java DispatchableClass

Dispatcher.java Dispatcher

EntryPoint.java EntryPoint

Event.java Event

EventExecutor.java EventExecutor

EventQueue.java EventQueue

EventReceiver.java EventReceiver

ExitPoint.java ExitPoint

InstanceManager.java InstanceManager

InternalEvent.java InternalEvent

Port Port

Region.java Region

State.java State
June 2009 IBM Rational Tau User Guide 1465



Chapter 44: Java Run-time Framework
StateMachine.java StateMachine

Synthesized.java Synthesized

ThreadedDispatcher.java ThreadedDispatcher, DispatcherBe-
havior, DispatcherData

ThreadSafeEventQueue.java ThreadSafeEventQueue

TimerEvent.java TimerEvent

TimerObject.java TimerObject

TimerQueue.java TimerQueue

TopRegion.java TopRegion

Utilities.java sendTo, setTimeUnit

os/Semaphore.java Semaphore

os/Status.java Status enumeration used as return type 
of various OS-related methods.

os/Time.java Time

os/thread/Behaviour.java Behaviour

os/thread/Utilities.java suspend, getCurrentThreadId

File TOR declaration
1466 IBM Rational Tau User Guide June 2009



45
Eclipse Integration

The IBM Rational Tau Eclipse Integration extends the UML tool set with 
Java support and provides an integration to the Eclipse Java IDE. The inte-
gration consists of a number of commands added to the UML tool set and to 
Eclipse to facilitate seamless round-trip engineering for Java.

Eclipse projects can be created from existing UML projects and projects in 
Eclipse can be imported into UML. Once a project is present in both tools it 
is kept synchronized. The integration also facilitates navigation between the 
tools.

The integration is built on top of the available Java Support.
June 2009 IBM Rational Tau User Guide 1467



Chapter 45: Eclipse Integration
Installing the Eclipse Integration

Eclipse integration components

The Eclipse integration consists of two components:

• An add-in called EclipseIntegration

• An Eclipse plug-in called TauG2Integration

Both components have to be correctly installed in order for the integration to 
work properly. The EclipseIntegration add-in is automatically installed by 
the IBM Rational Tau installer, but the Eclipse plug-in is not.

Eclipse integration plug-in

To install the TauG2Integration plug-in into Eclipse:

1. Make sure that Eclipse is properly installed and not running.

2. Locate the plug-in installation file:

C:\Program 
Files\IBM\Rational\TAU\4.3\integrations\Eclipse
com.IBM Rational.taug2integration_4.3.0.jar

3. Copy the .jar file to the “plugins” folder of the Eclipse installation. 

4. The plug-in will be running the next time Eclipse is started.

Note
The EclipseIntegration and the JavaApplication Add-Ins are not designed 
to be used both at the same time. Some of the commands are identical, while 
some exist only in one of the addins. Finally, some commands have a 
slightly different implementation. To avoid confusion, only one of these add-
ins should be activated for any project.

Activating the integration in IBM Rational Tau

The EclipseIntegration add-in must be activated for every project you want 
to use the Eclipse integration in. To activate it:

1. From the Tools menu select Customize.

2. Click the Add-Ins tab and check the EclipseIntegration add-in.

3. Click OK.
1468 IBM Rational Tau User Guide June 2009



Working with Eclipse
Note
When activating the add-in, or loading a project with the add-in activated, 
the entire Java Runtime Libraries might be loaded as a profile (depending 
on the setting of the option Load rt.jar on startup. Since this profile is large 
this operation may take some time. When loading the profile IBM Rational 
Tau will not respond to any interaction.

Working with Eclipse

Workflow scenarios

The Eclipse integration is primarily intended to be used in two different sce-
narios, depending on if the starting point is java code or UML models:

• Starting with UML. You start by creating a UML model inside Eclipse 
using the Eclipse New wizard (compare section Create a UML project in 
Eclipse). The UML modeling constructs are used to do an analysis and 
design model. When you consider the design to be sufficiently stable you 
generate the corresponding Java code from this model and continue with 
the implementation keeping the Java code and UML model in synch. 
(compare section Create a Java project in Eclipse).

• Starting with Java. You have an existing Eclipse Java project (or create a 
new project) and you want to create a corresponding UML model to vi-
sualize and analyze the static structure of the application. This is done as 
described in section Create a project in IBM Rational Tau. When the 
UML model is created it will be kept in synch with the Java code as de-
scribed in section Model and Code Synchronization.

A variant of the first scenario is to not store the UML model inside the 
Eclipse workspace. This is also supported.

Create a UML project in Eclipse

To create a new UML project in Eclipse:

1. Select the File->New->Project command in Eclipse.

2. Select UML project (found in the IBM Rational Tau folder) as the project 
type and click “Next”

3. Select “Java Code Generation” or some other relevant kind of UML 
project in the second page of the wizard. 
June 2009 IBM Rational Tau User Guide 1469



Chapter 45: Eclipse Integration
4. The third page in the wizard gives you a possibility to change details of 
the project. In most cases the default values do not need to be changed.

– Select to add a UML file to the project

– Provide a name for the UML file

– Choose the location of the project

– Decide to create an empty top-level UML package

Ones the project is created you can start the editing of the UML model by 
double-clicking on the ttp file in the “Package Explorer”

Create a Java project in Eclipse

To generate Java code and a corresponding Eclipse project from an existing 
UML model:

1. Open the project in IBM Rational Tau and activate the EclipseIntegration 
add-in on the project. 

Note
When the Java Runtime Libraries are loaded this may take several minutes. 

2. From the Eclipse menu, select Create Eclipse Project. 

This generates Java code from the entire project, opens and connects to 
Eclipse, creates a corresponding Eclipse project and sets up up a link between 
the projects. The projects are now setup for seamless round-trip engineering. 
For details on the available Eclipse related commands, see “IBM Rational 
Tau to Eclipse” on page 1472.

Whenever you execute the Update Source Code command from the UML 
tool set, the Eclipse project is synchronized if Eclipse is running. The Syn-
chronize with Eclipse command updates the source code, but it also attempts 
to start Eclipse with the corresponding Eclipse project if Eclipse is not al-
ready running. See also section Model and Code Synchronization for more 
synchronization options.

The Locate in Eclipse command is used to navigate from a model element to 
the Java source code in Eclipse.
1470 IBM Rational Tau User Guide June 2009



Working with Eclipse
Create a project in IBM Rational Tau

To generate a UML model from your Java code in Eclipse:

1. Open the project in Eclipse and select the Package Explorer.

2. From the IBM Rational Tau menu, select Create Corresponding IBM 
Rational Tau Project. In the dialog that appears you can select the loca-
tion of the IBM Rational Tau project if needed (the default location is the 
project directory in the Eclipse workspace). You can also choose to au-
tomatically generate diagrams in the created UML.

The command will the open and connect to IBM Rational Tau, create a new 
empty project and reverse-engineer the Java source code into a UML model. 
It also sets up a link between the projects. 

The projects are now setup for seamless round-trip engineering. For details 
on the available IBM Rational Tau related commands, see “Eclipse to IBM 
Rational Tau” on page 1475. 

Note
The loading of the new IBM Rational Tau project may take several minutes 
since the Java Runtime Libraries are loaded into IBM Rational Tau.

To synchronize changes made in the Java code in Eclipse, use the Synchro-
nize with IBM Rational Tau command. All new classes and files are detected 
and added to the UML model and changes are merged into the model. See 
also section Model and Code Synchronization for more synchronization op-
tions.

The Locate in IBM Rational Tau command is used to navigate from the Java 
source code to the corresponding model element.

Model and Code Synchronization

The java source code and the UML model are kept synchronized. You can 
control when the synchronization is done by changing java settings for the 
UML model. See section Synchronizing Model and Source Code for more 
details.
June 2009 IBM Rational Tau User Guide 1471



Chapter 45: Eclipse Integration
IBM Rational Tau to Eclipse 

Communication

All commands communicating with Eclipse require that the location of the 
Eclipse executable has been stored by the EclipseIntegration addin. The first 
time any of the commands are executed you will be prompted to specify 
where the Eclipse executable is located. This information is then stored as 
Eclipse location in the Eclipse Options, and can be changed with the Change 
Eclipse directory command.

Note
When establishing the communication between IBM Rational Tau and 
Eclipse temporary files may need to be generated. On Unix it is therefore 
important that the TEMP environment variable has been set up.

Connecting to Eclipse

IBM Rational Tau communicates with Eclipse through a socket, and almost 
all commands require that the Eclipse executable is running. If Eclipse is not 
running, IBM Rational Tau automatically attempts to start Eclipse. If this 
fails a dialog is displayed after a time-out. You can then select to try to con-
nect again or abort the command.

Hint
If the connection fails, make sure that the TauG2Integration plug-in has 
been properly installed.

Commands in IBM Rational Tau

Importing JAR files

JAR files can be imported into the UML project. This is accomplished using 
the Import Wizard. See section Importing JAR Files for details.

Export

Java files can be generated from a UML model in the UML tool set, no matter 
how the model was created to begin with. Java files are generated when you 
export a package to Java source code. From the Eclipse menu select Export 
and point to Package in the submenu.
1472 IBM Rational Tau User Guide June 2009



IBM Rational Tau to Eclipse
Update Model

Once the Java files have been exported the model is kept synchronized by 
using the Update Model command. The Locate in Eclipse command is used 
to open the .java file in Eclipse if the project is connected to an Eclipse 
project.

The command will do an incremental update of the model based on changes 
in the java files.

Force Update Model

The command will update the model by re-reading all java files and updating 
the model correspondingly.

Update Source Code

Once the Java files have been exported the source code is kept synchronized 
by using the Update Source Code command. The Locate in Eclipse com-
mand is used to open the .java file in Eclipse if the project is connected to 
an Eclipse project. 

• Select Update Source Code from the Eclipse menu.

This updates the Java files for all Java packages in the model. 

Force Update Source Code

The command will update the source code by re-generating all java files.

Change Eclipse directory

IBM Rational Tau connects to Eclipse by launching the Eclipse executable. 
If the executable is moved or there are multiple installations of Eclipse, the 
wanted executable can be chosen here.

• Select Change Eclipse directory from the Eclipse menu.
June 2009 IBM Rational Tau User Guide 1473



Chapter 45: Eclipse Integration
Create Eclipse Project 

To create an Eclipse project from an existing UML model:

1. Select Create Eclipse Project from the Eclipse menu.

This starts up Eclipse and creates a project with the same name as the active 
project in IBM Rational Tau. The location is determined by the current 
Eclipse workspace location.

Java source code is generated for all packages in the active project. The de-
fault project source code location of Eclipse is used. (This is the same folder 
as the Eclipse project by default.) Java syntax is also enabled for all the pack-
ages.

The location of the source code is added to the list of Synchronized Target 
Directory. This ensures that changes made in the file system are automati-
cally reflected in the model when updating the model from source code.

Synchronize with Eclipse

To synchronize a project that has been exported to Eclipse, or created from 
Eclipse:

• Select Synchronize with Eclipse from the Eclipse menu.

This updates the Java files for all Java packages in the model and refreshes 
the corresponding Eclipse project. 

This command is only available if a connection exists between the IBM Ra-
tional Tau project and an Eclipse project. See Eclipse integration compo-
nents.

Locate in Eclipse

To locate a model element in the corresponding source code in Eclipse:

1. Select a single element in the Model View or in a diagram.

2. Select Locate in Eclipse from the Eclipse menu.

This selects the element in Eclipse. If the element is a package, the package 
is selected in the Package Explorer otherwise the corresponding Java source 
file is opened and the element is selected in the editor, as well as in the 
Package Explorer and in the Outline View.
1474 IBM Rational Tau User Guide June 2009



Eclipse to IBM Rational Tau
Use Java Syntax

The Java support extends the tool with Java Syntax when this selection is 
checked. 

Eclipse to IBM Rational Tau
All commands require that the IBM Rational Tau installation has been stored 
in the Eclipse workspace. The first time any of the commands are executed 
you will be prompted to specify where the IBM Rational Tau installation is 
located. This information is then stored in Eclipse, and you should not have 
to specify it again. If you need to change it for some reason, you can Set IBM 
Rational Tau Location.

Note

When establishing the communication between Eclipse and IBM Rational 
Tau temporary files may need to be generated. On Unix it is therefore impor-
tant that the TEMP environment variable has been set up.

Eclipse command list 

Set IBM Rational Tau Location 

To set or change the location of the IBM Rational Tau installation:

1. Select Set IBM Rational Tau Location... from the IBM Rational Tau 
menu.

2. Select the IBM Rational Tau installation folder, typically:

C:\Program Files\IBM\Rational\TAU\4.3

3. Click OK.

Create Corresponding IBM Rational Tau Project

To create a IBM Rational Tau project from a project in Eclipse:

1. Select Create corresponsing IBM Rational Tau Project... from the 
IBM Rational Tau menu.

2. Select a folder for the IBM Rational Tau project files.

3. Click OK.
June 2009 IBM Rational Tau User Guide 1475



Chapter 45: Eclipse Integration
A new project is created and loaded into IBM Rational Tau. One .u2 file is 
created and all source files in the Eclipse project are synchronized into the 
model.

The location of the source code is added to the list of Synchronized Target 
Directory in IBM Rational Tau. This ensures that changes made in the file 
system are automatically reflected in the model when updating the model 
from source code.

Synchronize with IBM Rational Tau

To synchronize a project that has been exported to IBM Rational Tau, or cre-
ated in IBM Rational Tau and then exported to Eclipse:

1. Select Synchronize with IBM Rational Tau from the IBM Rational 
Tau menu.

This updates the model corresponding to all Java files of the project. New 
packages, for example classes or Java files, added in Eclipse are added to the 
model. Changes to existing elements are detected and merged into the model. 
Deleted elements are deleted from the model.

For details on the file to model mapping, see “Synchronizing Model and 
Source Code” on page 1339. 

Locate in IBM Rational Tau

To locate a model element in IBM Rational Tau from Eclipse:

1. Select an element in the Package Explorer, the Outline View or in the 
Java editor.

2. Select Locate in IBM Rational Tau from the IBM Rational Tau menu.

This starts IBM Rational Tau and navigates to the corresponding model ele-
ment using the Model Navigator. If the model element has one and only one 
corresponding presentation element, the diagram containing this presenta-
tion element is displayed.
1476 IBM Rational Tau User Guide June 2009



Eclipse Options
Eclipse Options
Eclipse related options are saved in a textual format in a file called:

eclipseOptions.ini

located in the EclipseIntegration addin folder, typically found in:

C:\Program 
Files\IBM\Rational\TAU\4.3\addins\EclipseIntegration

This file is created on demand the first time an option is set by the integration. 
Each options is stored in key/value pairs separated with a ‘=’ character. Op-
tions are separated with new line characters. Example:

key1=value1
key2=value2

To change an option, open the file in a text editor and change the value. If the 
key does not yet exist, add a new line with both the key and the value.

Note
Always make a backup copy of the options file before editing it manually.

Currently there are two options:

• Eclipse location

• Platform options

Eclipse location

Specifies the location of the Eclipse executable. This option is set when 
Eclipse is launched from Tau for the first time.

It is stored under the key ExecutablePath and points to the executable file 
of Eclipse, typically:

ExecutablePath=C:\Program Files\eclipse\eclipse

Platform options

Specifies the platform options used when launching Eclipse. Normally no 
platform options are passed to Eclipse by the integration. If you wish to 
launch Eclipse with platform options, for example to use a different work-
space than the default, you have to set this option.

It is stored under the key PlatformOptions, for example:
June 2009 IBM Rational Tau User Guide 1477



Chapter 45: Eclipse Integration
PlatformOptions=-data c:/temp

The value is passed unchanged to Eclipse as platform options. The value 
should therefore be specified as when starting Eclipse manually.

Note
Forward slashes must be used in any paths specified in the PlatformOptions 
value.
1478 IBM Rational Tau User Guide June 2009



UML and C#

The chapters that are listed under UML and C# describe how to generate a 
C# application from a UML model, and how to import existing C# code into 
IBM Rational Tau. 

The C# support in IBM Rational Tau is only supported for Windows oper-
ating systems. 
June 2009 IBM Rational Tau User Guide 1479



Chapter : 
1480 IBM Rational Tau User Guide June 2009



47
C# support

This section describes how to use the C# support in IBM Rational Tau. It ex-
tends IBM Rational Tau with abilities to import an existing C# application 
into UML, and to generate a C# application from the UML model. It also 
contains support for keeping the model and code synchronized when any of 
these change.

It is assumed that a separate development environment is used for compiling, 
debugging and running the generated C# application. An integration with 
Microsoft Visual Studio is provided with the IBM Rational Tau installation 
as described in Visual Studio .NET Integration, but the general-purpose C# 
support described in this chapter can be used together with any C# develop-
ment environment.
June 2009 IBM Rational Tau User Guide 1481



Chapter 47: C# support
Using the C# Support

Creating a C# Project

A IBM Rational Tau C# project can either be created as a new project from 
scratch, or an existing IBM Rational Tau project can be turned into a C# 
project.

To create a new C# project use the following procedure:

1. Choose the command File->New...

2. Choose UML for C# Code Generation as the project type when cre-
ating the project

3. Complete the wizard using desired settings.

For details on how to create a project, see “Working with Projects” on page 
31 in Chapter 4, Introduction to IBM Rational Tau 4.3

To activate the C# support for an existing project do the following:

1. From the Tools menu select Customize.

2. Click the Add-Ins tab and check the CSharpApplication add-in.

3. Click Close.

Regardless of how the C# project was created you should now see some new 
C# Specific Libraries in the Model View under the Library node. There is 
also a new C# Menu added to the menu bar.

C# Specific Libraries

The following C# specific libraries are available in a C# project:

TTDCSharp

This library contains all stereotypes that are used with the C# support. 
Tagged values for these stereotypes constitute various options to the C# 
tools. The library also exposes an API to the C# related tool functionality by 
means of agents. These agents can be used from the public APIs in order to 
invoke C# related commands programmatically.
1482 IBM Rational Tau User Guide June 2009



Using the C# Support
TTDCSharpPredefined

This library contains a number of stereotypes that are used to represent C# 
specific language constructs that cannot be expressed in terms of standard 
UML constructs.

For example, in standard UML the concept of partial classes does not exist. 
A class must be fully defined in one and only one location. However, in C# 
a class may be defined partially in multiple locations using the partial key-
word. In order to represent partial types the TTDCSharpPredefined library 
contains a <<partial>> stereotype.

The library also contains UML representations of built-in C# types, such as 
string, int and bool.

TTDCSharpRuntime

This library is a UML representation of the Microsoft.NET main assembly 
known as ‘mscorlib’. It shows up as two library packages called “System” 
and “Microsoft”. It contains a number of fundamental definitions used exten-
sively in almost all C# programs, and is therefore available as a pre-imported 
library. All other assemblies that you want to use from your C# application 
should be imported by means of the .NET Assembly Importer to become 
available for use.

C# Menu

The C# menu contains commands that allow you to generate C# code from 
the UML model. The commands also help you keep the UML model and the 
generated C# code synchronized when one of these has been changed.

All commands in this menu operate globally on everything that is present in 
the user model (shown below the Model folder in the Model View). In order 
to apply any of these commands selectively use the corresponding command 
in the context menu of the selected element.

Update model

This command updates the UML model with changes made in generated C# 
files. This command is only meaningful if C# source files have already been 
generated for the model (see Generating C# Code for more information). 
Only files that have been changed since the last time they were generated 
from the model will be processed.
June 2009 IBM Rational Tau User Guide 1483



Chapter 47: C# support
Note that this command shall not be used to import existing C# code that has 
not been generated from the model. In order to import such code use the C# 
importer described in Importing Existing C# Code.

Force update model

This command is identical with Update model with the only difference that 
all generated C# source files will be processed, also those that have not been 
changed since the last time they were generated from the model. If changes 
have been made to C# files without modifying their timestamp the Update 
model command will not detect that these files have changed. In that case 
you can use the Force update model command instead.

Update source code

This command updates generated C# files with changes made in the UML 
model. If no C# files have been generated, they will be generated as de-
scribed in Generating C# Code. Only those files will be updated that need to 
be so based on changes that have been made in the model since the last time 
these files were updated or generated.

Force update source code

This command is identical with Update source code with the only difference 
that all C# source files will be updated or generated. This command is useful 
if changes have been made to UML model elements without modifying their 
timestamps. This can happen due to limitations in the model change detec-
tion mechanism used by IBM Rational Tau.

Generating C# Code
C# source code is generated from the UML model using the Update source 
code or Force update source code commands. These commands generate C# 
source files based on a model-to-file mapping specification. 
1484 IBM Rational Tau User Guide June 2009



Generating C# Code
Model-to-File Mapping

A model-to-file mapping specification specifies how to map model elements 
to C# source files. Such a specification consists of C# file artifacts (defining 
which C# files to generate) and <<manifest>> dependencies from these arti-
facts to definitions in the model (defining which definitions to generate into 
each file).

It is recommended to place the model-to-file mapping specification in a sep-
arate package in the model, and to save this package in its own file. Thereby 
you get a clear separation between the model itself, which defines the logics 
and behavior of the C# application, and the model-to-file mapping, which 
specifies which C# source files the application is made up of.

Following the above recommendation leads to a UML model with the fol-
lowing structure:

There may be any number of top-level model packages in the model. Each 
top-level model package corresponds to a C# software component, such as 
an assembly or executable. For each top-level model package there is one 
package containing the model-to-file mapping specification for that model 
package.

Note
During code generation the C# code generator adds information to the 
model-to-file mapping package. For example, it updates timestamps on the 
C# file artifacts and adds information that makes it possible to navigate be-
tween the model and the generated C# code. It is thus required that the 
model-to-file mapping package is writable. By saving the model-to-file map-
ping package in its own file code generation can be performed without mod-
ifying the file that contains the model package.

Figure 248: Structure of a UML model for C# code generation
June 2009 IBM Rational Tau User Guide 1485



Chapter 47: C# support
Default model-to-file mapping

If no user-defined model-to-file mapping exists the C# code generator will 
first generate a default model-to-file mapping prior to code generation. It will 
be placed in a separate package, next to the corresponding model package. 
The model-to-file mapping package is generated according to the following 
rules:

1. Each definition contained in a package, with the exception of delegates, 
are generated into its own C# file.

2. The name of a C# file is the fully qualified name of the definition it con-
tains.

3. Delegates are generated into the same C# file as the definition in which 
it is defined.

Example 472: Default model-to-file mapping –––––––––––––––––––––––––––––––

UML 

package P {
  class Class1 {
    void Operation1( long p1);
    delegate void Delegate1( long a);
  }
  enum DataType1 {
    Literal1
  }
}

C# (in file "P.Class1.cs")

namespace P {
  class Class1
  {
    void Operation1(long p1)
    {
    }

    delegate void Delegate1(long a);
  }
}

C# (in file "P.DataType1.cs")

namespace P {
  enum DataType1
  {
    Literal1
  }
1486 IBM Rational Tau User Guide June 2009



Generating C# Code
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If a partial model-to-file mapping exists, but more definitions have been 
added later on in the model, the existing model-to-file mapping package will 
be updated with a file mapping for the missing definitions.

Location of generated files

The model-to-file mapping also defines the location of generated files in the 
file system. By default the files will be generated in the same folder as the .u2 
file in which the corresponding UML definition is located.

To generate one particular file in a different location you may modify the 
path tagged value of the file artifact. 

To generate all files in a different location you may apply the stereotype 
<<cSharpCodePath>> (“C# code path“) and specify a folder in its path 
tagged value. This stereotype can either be applied on the model-to-file map-
ping package, or on the Model node. In the former case all relative paths of 
file artifacts contained in that model-to-file mapping package will then be in-
terpreted as relative to that path when generating the C# files. In the latter 
case the option applies to all model-to-file mapping packages, unless any of 
them has the <<cSharpCodePath>> applied.

Navigating to and from Generated C# Files

To open a generated C# file you may double-click on the file artifact that rep-
resents it in the model. You may also use the Goto Source command that is 
available in the context menu of any generated definition, to navigate directly 
to the location (or locations - in some cases one UML definition can end up 
in multiple C# files) of that definition in the generated C# files.

When navigating to a generated C# file it will be opened in IBM Rational 
Tau’s built-in text editor (or in Visual Studio if the Visual Studio Integration 
has been installed and activated).

It is also possible to navigate in the opposite direction, from the C# code that 
was generated, to the corresponding UML model entity. This is done by a 
specific command in the Visual Studio Integration, and by the Goto Source 
command that is available in the context menu of IBM Rational Tau’s built-
in text editor.
June 2009 IBM Rational Tau User Guide 1487



Chapter 47: C# support
Translation Rules

When generating C# code from a UML model, translation rules are used that 
define the mapping for each kind of UML entity to C# code. These transla-
tion rules are described in UML to C# Mapping. Note that certain UML en-
tities have no defined mapping to C#. Such entities can currently not be trans-
lated to C# and will be ignored by the C# code generator if encountered.

Compiling, Running and Debugging Generated C# 
Code

It is assumed that a separate development environment is used for compiling, 
running and debugging the generated C# application. Although any C# de-
velopment environment can be used, the C# support is primarily designed to 
be used with Microsoft Visual Studio. A special integration with this devel-
opment environment is available, which facilitates the deployment of gener-
ated C# code considerably (see the chapter about the Visual Studio Integra-
tion).

Importing Existing C# Code
This section describes how to import existing C# source code into a UML 
model. Note that if the C# code you want to import has been built as an as-
sembly, you may consider to import that assembly into IBM Rational Tau in-
stead of the source code. Doing so allows you to look at the imported C# 
module as a black box from your UML model, which can be visualized and 
accessed. See .NET Assembly Importer for more information. However, if 
the purpose of the import is to reverse engineer or analyze the complete C# 
module in UML, and you want to import also the implementation of C# 
methods, then you should use the C# code importer described in this section.

Using the C# Import Wizard

Existing C# code is imported into IBM Rational Tau using the C# Import 
Wizard. Follow these steps:

1. Select the Model node in the Model View and perform the command 
File->Import...

2. Select Import C# in the Import dialog and click OK.
1488 IBM Rational Tau User Guide June 2009



Importing Existing C# Code
3. Select whether you want to do the import based on a Visual Studio 
project (.csproj file) or if you want to specify individual C# files (or 
folders containing C# files). If you choose to import a Visual Studio 
project you also have to specify which project configuration to use, in 
case there are more than one in the project. All C# files that are included 
in the selected configuration will then be imported, with the settings 
specified in the .csproj file for that configuration.

4. On the next wizard page you can specify some additional options for the 
import:

– The option “Generate diagrams” will cause the importer to create a 
diagram for each imported C# file. The diagram will show all pack-
ages, classes, interfaces etc. contained in the file and their relation-
ships.

– The option “Import now” can be unselected if you want to specify ad-
ditional advanced options (such as preprocessor settings) before per-
forming the import. See Advanced Import Options for more informa-
tion.

5. Click “Finish” to complete the Import Wizard.

Advanced Import Options

The C# Import Wizard only allows you to set a limited number of common 
options to the C# importer. In order to specify more advanced options follow 
these steps:

1. Select the top-level import package that was created by the Import 
Wizard.

2. Open the Properties Editor and select the 
<<cSharpImportSpecification>> stereotype as filter. This stereo-
type will not be available if you made the import based on a Visual Studio 
project file. In that case all options for the import are taken from that 
project file.

3. When you have specified appropriate import options, perform the import 
by selecting the command Update Model that is available in the context 
menu on the import package.
June 2009 IBM Rational Tau User Guide 1489



Chapter 47: C# support
Result of C# Import

The result of the import is found under the top-level import package created 
by the Import Wizard. It will contain UML definitions corresponding to all 
C# definitions defined in the global namespace. The created package will be 
given the same name as the C# project file that was imported. If individual 
C# files were imported the package will be called 
ImportedDefinitions_X, where X is a number appended to make the name 
unique.

When translating C# code to UML a number of translation rules are used. 
These rules are the same that are used when Generating C# Code, but applied 
in reverse. See UML to C# Mapping for more information.

In addition to the import package the C# importer will also create a package 
that contains a model-to-file mapping specification. The purpose of this 
package is to allow the imported C# code to be regenerated using the C# code 
generator. The structure of the model-to-file package is therefore identical 
with the one used by the C# code generator (see Model-to-File Mapping).

Navigating to and from Imported C# Files

To open an imported C# file you may double-click on the file artifact that 
represents it in the model. You may also use the Goto Source command that 
is available in the context menu of any imported definition, to navigate di-
rectly to the location (or locations - in some cases one UML definition may 
originate from multiple C# files) of that definition in the imported C# files.

When navigating to an imported C# file it will be opened in IBM Rational 
Tau’s built-in text editor (or in Visual Studio if the Visual Studio Integration 
has been installed and activated).

It also is possible to navigate in the opposite direction, from the C# code that 
was imported, to the corresponding UML model entity. This is done by a spe-
cific command in the Visual Studio Integration, and by the Goto Source 
command that is available in the context menu of IBM Rational Tau’s built-
in text editor.
1490 IBM Rational Tau User Guide June 2009



Synchronizing Model and Source Code
Synchronizing Model and Source Code
When C# source code has been generated from the model, or when C# source 
code has been imported to the model, IBM Rational Tau keeps track of the 
relationship between the code and the model by means of the model-to-file 
mapping. Besides from providing full navigability from model to code and 
vice versa the model-to-file mapping also allows for synchronization be-
tween the model and the code in case either of these has been changed. 
Changes to a C# application can thus be made either in the UML model, or 
in the C# code.

Automatic vs. Manual Synchronization

The update of the model and source code can be done in two different ways; 
automatically when the source code or model is changed or manually using 
special update commands. 

Automatic Synchronization

By default automatic synchronization is turned on. If it has been turned off, 
it can be enabled by turning on one or both of the following options which 
control how the automatic synchronization is applied:

• Automatic model update

• Automatic source generation

The details of these settings are described in C# Settings.

Manual Synchronization

To manually update the C# source code to match what is in the model use the 
command Update source code or Force update source code.

To manually update the model to match what is in the C# source code use the 
command Update model or Force update model.

UML to C# Mapping
This section describes the mapping between the UML and C# languages. The 
mapping is presented in the form of translation rules from UML constructs 
to C# constructs. These rules are used when Generating C# Code. The rules 
June 2009 IBM Rational Tau User Guide 1491



Chapter 47: C# support
can also be applied in reverse in order to define a translation from C# con-
structs to UML constructs. Applied in that direction these rules are used 
when Importing Existing C# Code.

Being a modeling language UML is a more comprising language than C#. 
UML constructs that are not mentioned explicitly in the translation rules 
below will not be translated to C# when generating code.

General Translation Rules

This chapter describes general translation rules that apply to many kinds of 
translated entities.

Names of definitions

The name of a generated C# definition will be the same as the name of the 
corresponding UML definition.

Note that no name mangling takes place to guarantee that the generated C# 
name is a valid C# identifier. In particular your model should not contain

• UML definitions without names, such as operation parameters. 

• UML definitions with names that are C# keywords.

Predefined UML and C# types

Although some UML predefined types have a mapping to a corresponding 
C# type it is recommended to only use C# predefined types when modeling 
for C#. UML representations for C# predefined types can be found in the pro-
file TTDCSharpPredefined.

The TTDCSharpPredefined profile also contains UML representations of 
the C# array constructs. The SArray type represents a single-dimensional C# 
array, while the MArray type represents a multi-dimensional C# array. These 
types have operations corresponding to the operations that are available on 
C# arrays.

Example 473: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

class X {
  Charstring v;
  SArray<int> x;
1492 IBM Rational Tau User Guide June 2009



UML to C# Mapping
  MArray<int,2> y; 
}

C# 

class X
{
    string v;
    int[] x;
    int[,] y;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The representation of pointer types (pointers to unmanaged types) makes use 
of a subset of the TTDCppPredefined library, which is the library used for 
the representation of predefined C/C++ types. For example, this library con-
tains the ‘void*’ type and the CPtr template which are used for the represen-
tation of pointer types in C#. 

Comments

Model comments attached to UML definitions are translated to C# documen-
tation style comments (starting with triple slash (///) and enclosed in an XML 
tag). Note that the C# compiler only supports documentation style comments 
for certain kinds of definitions (refer to the C# compiler documentation for 
more information). Model comments present on other kinds of definitions 
will not be translated to C#.

The following XML tags are supported in the translation:

• <param>, for operation or delegate parameters

• <summary>, for other definitions

Ordinary annotation comments that are defined in UML textual syntax using 
/* */ or // are not translated to C#. However, if a model comment starts with 
// or /* it will be generated as an ordinary C# comment, and not as a docu-
mentation style comment.

Example 474: Translation of comments––––––––––––––––––––––––––––––––––––

The parameter ‘s’ below has a comment “Param comment” defined in the 
model (although not displayed in the textual syntax).

UML 

class X comment "//Class comment" {
  void foo(string s) comment "Summary comment";  
June 2009 IBM Rational Tau User Guide 1493



Chapter 47: C# support
}

C# 

//Class comment
class X
{
    ///<summary>
    ///Summary comment
    ///</summary>
    ///<param name="s">Param comment</param>
    void foo(string s) {}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Package

A package is translated to a namespace. 

If the package has the stereotype 
<<TTDCppPredefined::globalNamespace>> applied, it represents the 
global namespace of C#. No namespace will then be generated for it. 

Note
If this stereotype is applied on more than one Package in a model, it is your 
responsibility to make sure that names within all these packages are unique. 
It is therefore recommended to use at most one Package for representing the 
global namespace.

Example 475: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

package P {}

C# 

namespace P {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Class and Interface

A UML class is translated to a C# class. 

If the UML class is defined as abstract the C# class will also be abstract. If 
the UML class is defined as finalized the C# class will be declared as sealed.
1494 IBM Rational Tau User Guide June 2009



UML to C# Mapping
A UML interface is translated to a C# interface.

Example 476: Translation of classes and interfaces ––––––––––––––––––––––––––

UML 

class C {}
finalized class FinalImpl {}
interface Ifc {}

C# 

class C {}
sealed class FinalImpl {}
interface Ifc {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Inheritance

UML generalization relationships (inheritance or realization) is translated to 
C# inheritance (of class or interface).

Example 477: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

class C : BaseClass, Ifc1, Ifc2 {}

C# 

class C : BaseClass, Ifc1, Ifc2 {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Partial types

A UML class or interface (and also Datatype) may have the <<partial>> ste-
reotype applied. In that case the corresponding C# class, interface or struct 
will be defined with the partial keyword. This allows you to split its defini-
tion over multiple source files. The source files you want to use for each 
member of the class, interface or struct are specified in the Model-to-File 
Mapping using <<manifest>> dependencies from the C# file artifacts that 
represent the source files to the member definitions.
June 2009 IBM Rational Tau User Guide 1495



Chapter 47: C# support
Datatype

A datatype is translated to a C# enum if it contains at least one literal. If it 
does not contain any literals it is translated to a C# struct.

Example 478: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

datatype D1 {}
enum D2 { L1, L2 }

C# 

struct D1 {}
enum D2 { L1, L2 }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Stereotype

A stereotype that inherits the TTDCSharpPredfined::CSAttribute stereo-
type is translated to a class that inherits System.Attribute.

Example 479: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

public stereotype S : CSAttribute 
{}

C# 

public class S : System.Attribute
{}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Syntype

A syntype that is defined in a package or a class is translated to a C# “using 
alias” directive.

Example 480: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

syntype MyString = System::String;
1496 IBM Rational Tau User Guide June 2009



UML to C# Mapping
C# 

using MyString = System.String;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Dependency

An <<access>> dependency between two packages is translated to a using 
declaration in the namespace that is the translation of the package that owns 
the dependency.

Example 481: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

package P1 <<access>> dependency to P2 {

}
package P2 {

}

C# 

namespace P1
{
  using P2;
}

namespace P2 {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

An <<access>> dependency from a C# file artifact to a package is translated 
to a using declaration at the beginning of the corresponding C# file.

Operation

A UML operation is translated to a C# method. An operation body for the 
UML operation is translated to a corresponding C# method body. Note that 
if the UML operation has no specified body, an empty C# method body will 
be generated.

A derived operation called ‘[]’ with specified ‘get’ and/or ‘set’ accessors is 
translated to a C# indexer.
June 2009 IBM Rational Tau User Guide 1497



Chapter 47: C# support
Example 482: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

class X {
  void Operation1() { }
  public <<Derived="true">> string '[]'(int index) 
    get {return "First";}
    set {}
}

C# 

class X {
  void Operation1() { }
  public string this[int index]
  {
    get {return "First";}
    set {}
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Parameter

A UML parameter is translated to a C# parameter. The direction of the UML 
parameter is translated according to the following table:

Example 483 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

bool op(bool p1, in bool p2, inout bool p3, out bool 
p4);

C# 

bool op(bool p1, bool p2, ref bool p3, out bool p4) 
{}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML Direction C# Parameter Kind

in (or unspecified direction) ordinary parameter

inout ref parameter

out out parameter

operation return operation return
1498 IBM Rational Tau User Guide June 2009



UML to C# Mapping
Variable number of parameters

A UML parameter stereotyped by the <<ellipsis>> stereotype is translated to 
a C# parameter preceeded with the params keyword.

Example 484 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

void op( <<ellipsis>> SArray<int> a);

C# 

void op(params int[] a) 
{}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Virtual, redefined and finalized operations

A virtual operation is translated to a virtual method.

A redefined operation is translated to an override method.

A finalized operation is translated to a sealed method.

Example 485: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

virtual void op1();
redefined void op2();
finalized void op3();

C# 

virtual void op1() {}
override void op2() {}
sealed void op3() {}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Type conversion operators

An operation stereotyped by <<implicitTypeConvOperator>> is trans-
lated to an implicit C# type conversion operator.

An operation stereotyped by <<explicitTypeConvOperator>> is trans-
lated to an explicit C# type conversion operator.
June 2009 IBM Rational Tau User Guide 1499



Chapter 47: C# support
In both cases the return type of the operation designates the target type of the 
conversion operator.

Example 486: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

class C {
    static <<implicitTypeConvOperator>> int implicit(C 
x);
    static <<explicitTypeConvOperator>> bool explicit(C 
x);
}

C# 

class C
{
     public static implicit operator int(C x) {}
     public static explicit operator bool(C x) {}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Delegate

A UML delegate is translated to a C# delegate. Parameters of the delegate are 
translated in the same way as operation parameters (see Parameter).

Example 487 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

class B {
  delegate void Delegate1(bool p1,string p2);
}

C# 

class B
{
  delegate void Delegate1(bool p1, string p2);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Attribute

A non-derived UML attribute is translated to a C# field.
1500 IBM Rational Tau User Guide June 2009



UML to C# Mapping
A derived UML attribute with specified ‘get’ and/or ‘set’ accessors is trans-
lated to a C# property.

Example 488: Translation of UML attributes –––––––––––––––––––––––––––––––

UML 

class Class1 {
  string a;
  string / b
  get
  {
    return "foo";
  }
  set
  {
    a = value;
  };
}

C# 

class Class1
{
  string a;
  string b
  {
    get
    {
      return "foo";
    }
    set
    {
      a = value;
    }
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the UML attribute is typed by the Event type from 
TTDCSharpPredefined it is translated to a C# event.

Example 489: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

public delegate void D(object 'sender', EventArgs e);
public class SampleEventSource {
  public Event<D> SampleEvent;
}

C# 
June 2009 IBM Rational Tau User Guide 1501



Chapter 47: C# support
public delegate void D(object sender, EventArgs e);
public class SampleEventSource
{
  public event D SampleEvent;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Constant attribute

A constant UML attribute is translated to a C# constant.

Example 490: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

const long x = 4;

C# 

const long x = 4;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Attributes with non-single multiplicity

If a UML attribute has an informal non-single multiplicity it is translated to 
a C# field typed by the type that is the translation of the UML attribute type. 
The informal multiplicity is thus not present in the C# translation.

If the attribute instead has a formal multiplicity the <<containerType>> 
stereotype is used to specify which container type to use in the C# translation. 
See The <<containerType>> stereotype for more information.

When a new C# project is created <<containerType>> is by default applied 
on the Model level specifying System::Collections::Generic::List<Any> as 
the default container type to use.

Example 491: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In this example a1 and a3 has formal multiplicity while a2 has informal mul-
tiplicity. Both have non-single multiplicity. a3 is contained in a package 
which specifies a custom container type to use.

UML 

class X {
  B [*] a1;
  System::Collections::Generic::List<B> {[*]} a2;
1502 IBM Rational Tau User Guide June 2009



UML to C# Mapping
}
<<containerType (. Type = MyOwnContainerType .) >>
package P {
  class Y {
    B [*] a3;
  }
}

C# 

class X {
  System.Collections.Generic.List<B> a1;   
  System.Collections.Generic.List<B> a2;
}
namespace P {
  class Y {
    MyOwnContainerType a3;
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Association

Unnamed uni-directional associations are represented as attributes in the 
UML model. The translation of such attributes thus follows the rules in At-
tribute. 

Template

A UML template definition is translated to a corresponding C# definition 
with generic parameters. Constraints on UML template parameters are trans-
lated to corresponding constraints on the C# generic parameters.

Example 492: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

template <class T atleast B >
class Class1 {
  T a;
}

C# 

class Class1<T> where T : B
{
  T a;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1503



Chapter 47: C# support
Expression

Several UML expressions have a defined mapping to C# expressions. How-
ever, bear in mind that the type of a UML expression might be a predefined 
UML type while the type of a C# expression might be a predefined C# type. 
Predefined UML types are not always fully compatible with predefined C# 
types. A certain level of compatibility exists, namely that predefined C# 
types can be constructed from predefined UML types. However, the set of 
operators that are available on predefined types are not identical in the UML 
and C# languages. 

If you get semantic errors in your model caused by type incompatibilities be-
tween predefined types you can choose to use an informal UML expression. 
In such an informal expression a C# expression can be inlined, and that ex-
pression text will be copied to the generated C# file verbatim by the code 
generator. An informal UML expression is type compatible with all types, 
which means that you sometimes must use a type cast (or declare an interme-
diate attribute) to avoid ambiguities in calls to overloaded operations.

The translation of (non-informal) UML expressions are specified in the table 
below.

UML Expression C# Expression UML Example C# Example

parenthesis ex-
pression

parenthesis ex-
pression

(a + b) (a + b)

unary expression unary expression -a -a

this expression this expression this.x this.x

binary expression binary expression a = b a = b

index expression indexer access obj[10] obj[10]

create expression use of the new 
operator

new C() new C()

conditional ex-
pression

use of the condi-
tional (?:) oper-
ator

a ? b : c a ? b : c

real value double literal 3.14 3.14

integer value int literal 8 8
1504 IBM Rational Tau User Guide June 2009



UML to C# Mapping
The C# language contains more expressions than those listed in the above 
table. These are represented in UML as informal expressions.

Special call expressions

Calls of certain UML operations are translated in a special way.

charstring value string literal "Tau" "Tau"

call expression invocation ex-
pression

foo() foo()

field expression member access 
expression

a.b a.b

instance expres-
sion

attribute S(. .) [S()]

identifier simple name x x

base expression base base base

value expression value value value

list expression array initializer {1,2} {1,2}

delegate imple-
mentation expres-
sion

anonymous 
method expres-
sion

delegate() 
{return;}

delegate(){r
eturn;}

Called UML operation C# Expression UML Example C# Example

Predefined::cast cast expression cast<C>(x) (C) x

TTDCSharpPre-
defined::typeof 

use of typeof op-
erator

typeof(long) typeof(long)

Predefined::is use of is operator is<MyC>(x) x is MyC

UML Expression C# Expression UML Example C# Example
June 2009 IBM Rational Tau User Guide 1505



Chapter 47: C# support
Action

Several UML actions have a defined mapping to C# action code. However, 
bear in mind that the action semantics of the UML and C# languages are not 
identical, and that the C# code generator currently does not perform any 
transformations in order to adjust for the different semantics. Because of that 
it is often best to specify behavior of operations that are to be translated to C# 
using informal an UML action. In such an informal action C# code can be 
inlined, and that code will be copied to the generated C# file verbatim by the 
code generator.

The C# importer imports all C# action code as informal UML actions.

Example 493: Using informal UML action with inline C# code ––––––––––––––––

UML 

void hi() {
[[System.Console.WriteLine("Hi there!");]]
}

C# 

void hi()
{
System.Console.WriteLine("Hi there!");
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The translation of (non-informal) UML actions are specified in the table 
below. Examples of the translation rules are only specified where there is a 
difference between the UML and C# syntaxes, or when it is not obvious what 
kind of action that is referred to.

Predefined::as use of as operator as<MyC>(x) x as MyC

TTDCSharpPre-
defined::Default

default value ex-
pression

Default<C>() default(C)

TTDCppPre-
defined::GetValue

pointer member 
access

p.GetValue()
.x

p->x

Called UML operation C# Expression UML Example C# Example
1506 IBM Rational Tau User Guide June 2009



C# Settings
UML actions not mentioned in the above table will not be translated to C#. 

C# Settings
Each C# model has a set of C# specific settings stored in the project file. To 
view or edit these settings:

1. Select the Model node in the Model View.

2. Right-click and select Properties...

3. Click the Stereotypes... button in the Properties Editor and apply the 
<<C# Settings>> stereotype.

4. In the Filter drop-down, select C# Settings.

UML Action C# Statement UML Example C# Example

compound action compound state-
ment

continue action continue state-
ment

break action break statement

if action if statement

loop action for, while or do 
statement de-
pending on kind 
of loop action

expression action expression state-
ment

foo(3);
x = 10;

foo(3);
x = 10;

definition action declaration state-
ment

{
string s;
}

{
string s;
}

try action try statement

throw action throw statement

decision action switch statement

return action return statement

join action goto statement join L; goto L;
June 2009 IBM Rational Tau User Guide 1507



Chapter 47: C# support
The following settings are available:

• Automatic model update

– If this setting is turned on the model will automatically be updated 
when the C# source files change, e.g. when modifying and saving the 
files in an external text editor. The default is that the automatic model 
update is turned on.

• Automatic source generation

– If this setting is turned on the C# source files will automatically be 
updated when the model is changed. The update will happen a while 
after some model editing has been completed. The default is that the 
automatic source generation is turned on.

• Support roundtrip

– By default the support for roundtrip is turned on. You may turn it off 
if you don’t intend to make any changes to the generated C# files that 
should be propagated back to the model. In that case all C# source 
files will be completely regenerated each time code generation is per-
formed.
1508 IBM Rational Tau User Guide June 2009



48
Visual Studio Integration for C#

The integration between IBM Rational Tau and Visual Studio facilitates 
building and debugging a generated C# application. For more information 
refer to the documentation of the Visual Studio Integration.
June 2009 IBM Rational Tau User Guide 1509



Chapter 48: Visual Studio Integration for C#
1510 IBM Rational Tau User Guide June 2009



UML and C++

This chapters that are listed under UML and C++ describe how a UML 
project is turned into a C++ application. 
June 2009 IBM Rational Tau User Guide 1511



Chapter : 
1512 IBM Rational Tau User Guide June 2009



50
C++ Support in IBM Rational Tau

This section is an introduction to the C++ support in IBM Rational Tau and 
a guide for using the tool to manage various C++ usage scenarios. 

• Visualization of existing C++ code

• UML - C++ roundtrip engineering

• Application generation for advanced UML concepts

• Migration of existing C++ applications to IBM Rational Tau

• Using IBM Rational Tau managed C++ code in a C++ development en-
vironment

• Accessing C++ APIs from the IBM Rational Tau UML Environment.

• Tracing execution of IBM Rational Tau generated applications
June 2009 IBM Rational Tau User Guide 1513



Chapter 50: C++ Support in IBM Rational Tau
Overview

Key capabilities

The basic functionality of the C++ support in IBM Rational Tau is illustrated 
in Figure 249 on page 1514

The key capabilities are the roundtrip parse/unparse of C++ code and the 
model transformations. The roundtrip parse-unparse enables a one-to-one 
mapping between C++ syntax and certain concepts in a UML model. This is 
used to keep C++ files synchronized with a UML model. The model trans-
formations makes it possible to use more advanced UML concepts for which 
there is no one-to-one mapping to C++, for example the ability to generate 
C++ code from UML state machine definitions.

External C++ and roundtrip

IBM Rational Tau includes a general-purpose C/C++ Import that can be used 
to import C++ APIs to a UML model. The main difference between this and 
the roundtrip parse/unparse is the difference of focus: C/C++ Import is in-
tended to support the C++ language, including preprocessing directives and 
macros. The import will make some transformations during the import pro-
cess, for example an expansion of macros. The main focus of C/C++ Import 
is to make the APIs of C++ libraries available to UML developers. The 
roundtrip C++ parse/unparse functionality is focussed on preserving a tight 
synchronization of C++ code and the UML model. To accomplish this, a 
subset of C++ is defined for which a one-to-one mapping to C++ can be 
maintained. Only concepts within this subset can be used in the roundtrip 
parse/unparse.

Figure 249: C++ roundtrip
1514 IBM Rational Tau User Guide June 2009



Overview
Using C++ in IBM Rational Tau

There are several different scenarios in which these basic capabilities can be 
used:

• Visualization of existing C++ code

• UML - C++ roundtrip engineering C++ code

• Application generation for advanced UML concepts (for example based 
on UML state machines and composite structure definitions) 

In addition there are special cases that require some extra consideration:

• Migration of existing C++ applications to IBM Rational Tau 

• Using IBM Rational Tau managed C++ code in a C++ development en-
vironment 

• Accessing C++ APIs from the IBM Rational Tau UML Environment 

• Tracing execution of IBM Rational Tau generated applications
June 2009 IBM Rational Tau User Guide 1515



Chapter 50: C++ Support in IBM Rational Tau
C++ Usage Scenarios

Visualization of existing C++ code

This is an example of how IBM Rational Tau can assist a C++ developer. In 
this scenario C/C++ Import is used together with the built-in ability to pro-
vide an auto layout of diagrams that exist in IBM Rational Tau. 

Consider a set of C++ header files that contain a number of C++ class defi-
nitions. To visualize classes that are defined in header files:

• Use the Import Wizard to import the C++ files into a UML model (File 
menu, Import command). Select C/C++ and choose the files to import. 
In simple cases it is possible to directly import the file, resulting in a root 
level package named ImportedDefinitions with definitions from the im-
ported files.

• In some cases it is necessary to provide some extra information to the im-
port process, for example include paths. To do this you cancel the selec-
tion of the Import now choice in the wizard and change the settings for 
the import as described by the properties for the ImportedDefinitions 
package. You can then finalize the import by right-clicking the Import-
edDefinitions package and from the shortcut menu select the Import 
C/C++ menu choice.

• To visualize the imported classes in a diagram select what classes to dis-
play using the Show elements command that is available from the 
shortcut menu in the diagram, or use the Create Presentation dialog to 
create the element and the diagram. 

Navigation from model view to source code

The C++ Code Generator enables model to code navigation. If there exist 
header or implementation files as a result of code generation, navigating 
from a UML element to the corresponding lines in code is done by right-
clicking on it in the model view and choosing Go to source.

Note
With the Visual Studio integration, two-way navigation is at hand, you can 
also Locate in IBM Rational Tau from C++ source code.
1516 IBM Rational Tau User Guide June 2009



C++ Usage Scenarios
UML - C++ roundtrip engineering

The roundtrip features of IBM Rational Tau are described by the following 
example. The examples models a simple “Hello World...” style application 
using IBM Rational Tau. 

Creating the project

Create a new project in IBM Rational Tau, using the menu File -> New and 
by selecting the project type UML for C++ Code Generation in the project 
wizard. 

The next step is to create a simple UML model with a class “Hello” and one 
operation “PrintIt” as in Figure 250 on page 1517.

Generating C++ code

To generate C++ code choose the Generate Configuration command from 
the Build menu. When the Build Wizard prompts for input the only informa-
tion you need to specify is to select the package you just created as the Build 
Root. All elements within this package will be included in the generated C++ 
code. 

Figure 250: Class diagram example
June 2009 IBM Rational Tau User Guide 1517



Chapter 50: C++ Support in IBM Rational Tau
After the wizard is closed, C++ files corresponding to the UML model are 
generated. The generated files will be in a package “Result of C++ Code 
Generation”. The file mapping used by the code generator is to produce one 
header file and one source file for each class, thus there are now two files, 
Hello.h and Hello.cpp.

By double-clicking on the Hello.h file artifact in the model view, the text 
editor is opened on that file. You can now verify that the class definition is 
generated as expected:

#ifndef GEN_IzuOjIq0WdSL_45GMYmEjyT3hE
#define GEN_IzuOjIq0WdSL_45GMYmEjyT3hE
#include "torAnnotations.h"

namespace HelloWorld {
    class Hello {
        void PrintIt();
    };
}

#endif/*<GENERATED> GEN_IzuOjIq0WdSL_45GMYmEjyT3hE */

The generated header file contains the line:

#include "torAnnotations.h"

The torAnnotations.h file contains macros that are used when doing 
roundtrip on certain UML constructs, for example interfaces which other-
wise would be transformed to classes and not interfaces. The file is used to 
increase the precision in the mapping to UML. It is always generated to sup-
port for example that the user could manually add interfaces and push them 
into the model.

Applying changes to the generated C++ code

You can now modify the file and propagate the changes back to the UML 
model. 

Add an attribute to the class, say “i”.

#ifndef GEN_IzuOjIq0WdSL_45GMYmEjyT3hE
#define GEN_IzuOjIq0WdSL_45GMYmEjyT3hE
#include "torAnnotations.h"

namespace HelloWorld {
    class Hello {
        int i;
        void PrintIt();
    };
1518 IBM Rational Tau User Guide June 2009



C++ Usage Scenarios
}

#endif/*<GENERATED> GEN_IzuOjIq0WdSL_45GMYmEjyT3hE */

Propagating changes back to model

To propagate the changes back to the UML model:

Save the Hello.h file and select Update Configuration from the Build 
menu. 

In the Model View you can check that the class Hello now has the extra at-
tribute “i”.

Some aspects to be aware of when using the roundtrip features to maintain 
C++ code:

• Only a subset of C++ syntax can be used in roundtrip. This subset covers 
the most commonly used C++ language features. This subset is described 
in the C++ Textual Syntax.

• To use un-supported constructs, “user sections” can be created. See the 
section on Comments in the C++ Textual Syntax.

By default, the Update operation will only consider files that has changed 
since the most recent update or code generation. To bypass this and force an 
update use the corresponding Full Update operation.

Automatic model and code synchronization

In the scenarios described above manual commands were used for synchro-
nizing the model with the code and vice versa. It is also possible to do this 
synchronization automatically, so that each time the model is changed (and 
saved) the code will be regenerated, and each time a generated file is changed 
(and saved) the model will be updated. This feature is by default turned off, 
but it can be enabled by following these steps:

1. Select the build artifact in the Model View.

2. Choose Properties in the context menu.

3. Select 'C++ Application Generator' in the Filter list of the Properties Ed-
itor.

4. To enable automatic synchronization of the code, turn on the option Au-
tomatic code generation.
June 2009 IBM Rational Tau User Guide 1519

adds/cpp_textual_syntax.htm
adds/cpp_textual_syntax.htm


Chapter 50: C++ Support in IBM Rational Tau
5. To enable automatic synchronization of the model, turn on the option 
Automatic model update.

Note
If the option for automatic model update is enabled, the Support roundtrip 
option must also be enabled.

Application generation for advanced UML concepts

As mentioned earlier in this chapter, you can use the UML - C++ roundtrip 
engineering features of IBM Rational Tau to handle all common concepts 
like classes, operations, data type that have a one-to-one mapping between 
their UML and C++ representations. However if you want to use more ad-
vanced UML concepts you can benefit from the model transformations and 
the related run-time framework supplied as a part of the C++ support.

Model transformations

Some of these transformations are performed interactively in the model 
during editing. for example when a class is marked as Active. A class marked 
as Active will automatically inherit from “DispatchableClass” (part of the 
supplied run-time framework). Most transformations will however be per-
formed on a copy of the UML model during code generation and will not be 
visible in the UML model.

Run-time framework

The run-time framework is delivered both as a UML model that contains all 
aspects of the framework that are relevant from a UML point of view, as well 
as C++ source code. You can find the UML model in the Libraries section 
in the Model View under the heading tor (short form for IBM Rational Tau 
Object Run-Time). 
1520 IBM Rational Tau User Guide June 2009



C++ Usage Scenarios
Mark the Hello class from the previous example as Active. Add a signal 
“sig1” to the model (Figure 251 on page 1521) and add a state machine to the 
“Hello” class (Figure 252 on page 1521). 

Generating C++ code

When you generate code from this model, the transformations will create 
substantially more C++ code than in the roundtrip example earlier. Open the 
Hello.cpp file (e.g. by double-clicking on the corresponding file artifact in 
the Result of C++ Code Generation package) and have a look at the gener-
ated code. 

Figure 251: Signal definition in a class diagram. 

Figure 252: State machine example. 
June 2009 IBM Rational Tau User Guide 1521



Chapter 50: C++ Support in IBM Rational Tau
Some aspects worth noting in the file is the class Hello_initialize that is 
the C++ representation of the state machine and the function 
HelloWorld::Hello_initialize::trans_St1_sig1 that contains the 
C++ code corresponding to the transition in the simple state machine you cre-
ated.

To make the program complete you must implement the “PrintIt” operation. 
A main() function will be generated automatically. For a more complex case 
it is possible to write your own main() function. 

The “PrintIt” operation can be defined as follows:

void PrintIt() {
    std::cout << "Hello World\n";
}

An interesting aspect of this function is that it uses std::cout, available in 
UML by activating the CppStdLibrary add-in. This function is also avail-
able in C++ by including <iostream>. 

Access to external C++ headers from the model can be done in two ways:

• Import the API as described in section Accessing C++ APIs from the 
IBM Rational Tau UML Environment.

• Use the functions in target code statements (for example statements sur-
rounded by [[ ... ]]) that will not be checked by the UML environ-
ment. 

If you plan to make substantial use of an API the import method is preferable, 
but in simple situations the target code approach is often easier. When the in-
line code approach is used you must define the files to include during the 
make process, by defining an «include» dependency between UML arti-
facts that represent the files in the model. The include statements to im-
ported headers will be added automatically. 

In the current example you can do as shown in Figure 253 on page 1523
1522 IBM Rational Tau User Guide June 2009



C++ Usage Scenarios
You can now regenerate the code for the application. If you choose the com-
mand Build->Build Configuration to do this, you will also invoke compila-
tion and linking of the program. The end result is an executable, found in the 
Target Directory specified for the files generated by the C++ Application 
Generator.

If you have not specified the Target Directory, it will be in a directory named 
after the build artifact, located below the directory containing the project file. 
If you start the application from a console window you should now see the 
familiar “Hello World!” printed on the screen.

See also

Chapter 54, C++ Run-time Framework for more details about the run-time 
model. 

Chapter 52, C++ Application Generator Reference for a detailed description 
of the UML concepts that are supported at C++ code generation and their 
mapping to C++ constructs.

Accessing C++ APIs from the IBM Rational Tau UML 
Environment

It is common that IBM Rational Tau is used to develop some parts of an ap-
plication and other tools can be used for other parts. It is important to be able 
to access the definitions from all parts of the application also in the UML 
model, which is supported in IBM Rational Tau when using the C/C++ Im-
port. 

Figure 253:An «include» dependency example
June 2009 IBM Rational Tau User Guide 1523



Chapter 50: C++ Support in IBM Rational Tau
Using IBM Rational Tau managed C++ code in a C++ 
development environment

Using Visual Studio with IBM Rational Tau

IBM Rational Tau includes a Visual Studio Integration, containing support 
for creating Visual Studio projects directly from IBM Rational Tau, easy 
navigation from source code in Visual Studio to UML models and other fea-
tures. 

Note
The generated C++ code is not Visual Studio specific, any C++ compiler 
can be used with IBM Rational Tau.

Workflow

A possible workflow for using IBM Rational Tau together with a C++ devel-
opment environment could be:

• Perform the analysis phase of the application using UML in IBM Ra-
tional Tau (potentially also preceded by a requirements analysis using 
IBM Rational DOORS).

• Refine the analysis model to a design model in UML

• Generate C++ code from the model

• Include the IBM Rational Tau generated files in your preferred C++ de-
velopment environment

• Use the roundtrip features and/or the model transformation features to 
update the C++ files

• Use the make and debug features of the C++ development environment 
to finalize and deploy your application.

Migration of existing C++ applications to IBM Rational 
Tau

IBM Rational Tau includes support for the migration of an existing C++ ap-
plication to UML. This is based on using C/C++ Import to import the C++ 
files and then use the roundtrip facilities and code generator to regenerate 
new C++ files. 
1524 IBM Rational Tau User Guide June 2009



C++ Usage Scenarios
The header files of an external application can be imported. Both definitions 
and behaviour code that is present in the header files can be imported. It is 
currently not possible, in the general case, to import C++ implementation 
files.

How to import C++ files

Essentially the workflow is the following:

1. Use File->Import to start the Import Wizard.

2. Select the files you want to import.

3. Make sure to enable the Import action code and Generate artifacts op-
tions.

4. In simple cases you may now perform the import by leaving the Import 
now check box enabled and finish the wizard. Continue with step 7)
In case you need to set more import options than what can be done from 
the import wizard, disable the Import now check box and finish the 
wizard. This will cause a package called “ImportedDefinitions” to be cre-
ated on root level in your model.

5. (Optional) Open the property pages for the ImportedDefinitions package 
and uncheck the “Add source file references to enable navigation 
from the UML model to the C++ source” check box. Doing this means 
losing the possibility to navigate back to the original files, but there will 
be less confusion when you have regenerated new files based on the 
model. If you don’t perform this step there will, after code generation, be 
source references both to the original and the generated files.

6. Finish the import using the command Import C/C++ available in the 
shortcut menu for the ImportedDefinitions in the Model View.

7. You should now be able to find the definitions from the imported files in 
the ImportedDefinitions package that was created by the importer. In 
this package there are also file artifacts representing the imported files, 
and a build artifact to be used for regenerating the files with the C++ Ap-
plication Generator.

8. (Optional) Reorganize the imported definitions into various packages 
and manifest them on different files. 
June 2009 IBM Rational Tau User Guide 1525



Chapter 50: C++ Support in IBM Rational Tau
9. Use the Build->Generate command on the generated build artifact to re-
generate C++ from the files you imported. Note that by default the new 
files will be placed in a different directory than the original files. This can 
be changed by setting the Target Directory option of the build artifact. 
You may also want to set appropriate build settings, such as preprocessor 
directives, before performing the code generation.

Restrictions

There are some restrictions in the migration support. These restrictions may 
make it necessary to do modifications to the C++ code before importing it 
and impose changes that should be applied to the UML model before regen-
erating C++ code from it:

• Only header files can be imported. Importing implementation files some-
times work, but often leads to duplicate definitions in UML since dif-
ferent implementation files typically include the same header files. Using 
the importer option “Do not import definitions from included header 
files” may help to avoid this problem. In any case, if you attempt to im-
port implementation files, do it in a separate pass after the header files 
have been imported.

• The imported files go through a Preprocessor and it is the resulting pre-
processed C++ that is imported to UML. Macros, conditional compila-
tions and other preprocessor directives will not be traceable in the re-
sulting UML model.

• Comments from the C++ code are not imported for the same reason.

Tracing execution of IBM Rational Tau generated 
applications

When generating C++ code it is possible to add tracing functionality. This is 
called instrumenting the code and it generates lines that will produce meta 
data when the application is running. This data will either feed IBM Rational 
Tau with information needed to visualize the execution in a sequence dia-
gram, or it will be piped to a log file.

Workflow

1. Enable instrumentation in the build artifacts C++ Application Generator 
properties

2. Generate code.
1526 IBM Rational Tau User Guide June 2009



C++ Usage Scenarios
3. Activate the trace by adding lines to the code, preferably early in the main 
function. Example:

int main() {
    //<GENERATED> 
TOR_INSTRUMENTATION(TOR_GEN_Mxon1Vw89tiLYt_459WVk8GBGI);
    //</GENERATED>
tor::meta::EventManager* e = 
tor::meta::EventManager::GetInstance();
e->createNewHostTracer(); 
e->createNewLogFile("C:/log");

    //Your code...  
}

4. Build and run the application. Follow the execution in a IBM Rational 
Tau sequence diagram.

Note
Tracing functionality runs in its own thread. To cope with this, make sure 
that you are building a multi-threaded application.

5. Control the IBM Rational Tau Trace functionality at run-time with the 
Visual Studio integration. 

Note
Using the Visual Studio run-time control does not require any hand written 
code (step 3).

Instrumentation API

The instrumentation API is provided by a singleton object of the 
EventManager class. To access this object call:

tor::meta::EventManager* eventManager = 

tor::meta::EventManager::GetInstance();

For sequence diagram trace, create or delete host tracers:

eventManager->createNewHostTracer();
eventManager->deleteAllHostTracers();

Creating and deleting log files:

eventManager->createNewLogFile("C:/log");
eventManager->deleteAllLogFiles();

Enable and disable the instrumentation:

eventManager->setActive(true);
eventManager->setActive(false);
June 2009 IBM Rational Tau User Guide 1527



Chapter 50: C++ Support in IBM Rational Tau
Getting started with the C++ support
To get started with the C++ support there exists some C++ examples in the 
IBM Rational Tau installation. To start your development using one of these 
examples simply choose the Templates tab in the New Wizard (which is 
started using the File->New command). 

Among the templates are a number of C++ examples. These are identified by 
their respective name, as the example names are constructed to contain a 
prefix of language and code generator stereotype (Cpp for C++ Application 
Generator). Select the example of your choice and you have a running 
UML/C++ application that can be modified and extended to suit your needs.
1528 IBM Rational Tau User Guide June 2009



51
C++ Textual Syntax

The supported C++ textual syntax is defined for use with the round-trip fea-
ture of the C++ Application Generator. 

The Complete listing is only available in the on-line help file. 
June 2009 IBM Rational Tau User Guide 1529



Chapter 51: C++ Textual Syntax
1530 IBM Rational Tau User Guide June 2009



52
C++ Application Generator 

Reference

This chapter is a reference guide to the C++ Application Generator. 
June 2009 IBM Rational Tau User Guide 1531



Chapter 52: C++ Application Generator Reference
General
The C++ Application Generator provides services that are scheduled to in-
teract with the code generation, extends a copy of the original model when 
needed, parses the C++ files produced from a previous code generation pass 
in order to merge user written and code generated by the C++ Application 
Generator, builds the structure of the code and finally writes the code on files.

C++ Application Generator add-ins

In order to create models intended to generate code with the C++ Application 
Generator, the Add-Ins described below have to be enabled (from the Tools 
menu, select Customize). These add-ins are automatically enabled when cre-
ating a new “UML for C++ Code Generation” project, but have to be manu-
ally enabled otherwise.

CppGen

This add-in loads the profile TTDCppAppGen, which contains a UML speci-
fication of the C++ Application Generator in the form of model transforma-
tions and dependencies between these transformations. The profile also con-
tains stereotypes for describing the options to the code generator.

Normally you do not have to be concerned about this profile. It provides a 
means for the advanced user to customize the way the UML model is trans-
lated into C++ code.

CppTypes

This add-in loads the profile TTDCppPredefined, which contains UML rep-
resentations of the C++ fundamental types (such as int, bool, char etc.). 
In order to use fundamental C++ types in your model, you may refer to these 
types. The profile also contains stereotypes which are used to represent C++ 
constructs that cannot be natively expressed in UML. For example, there is a 
stereotype «inline» which can be applied to an operation to specify that it 
should be generated as an inline declared C++ function.
1532 IBM Rational Tau User Guide June 2009



General
Basic principle of the C++ Application Generator

The C++ Application Generator is based on the principle of generating code 
through model transformations followed by a pretty printing step (this is also 
referred to as unparsing). The purpose of the model transformations is to 
transform all non-trivial UML constructs into trivial constructs, which can be 
handled by the C++ unparser. The model transformations are performed “in-
place” rather than building new result models after each transformation.

Figure 254 Parts of the TTDCppPredefined profile
June 2009 IBM Rational Tau User Guide 1533



Chapter 52: C++ Application Generator Reference
The C++ Application Generator is started by the Application Builder as a 
separate executable according to the ordinary Application Builder proce-
dures. As input from Application Builder, the C++ Application Generator re-
ceives:

1. A «build» artifact. This artifact contains Tagged values for the usual 
Application Builder stereotypes (Target Directory etc.) as well as for the 
C++ Application Generator stereotype (containing all the Translation 
Options). 

2. A list of entities to build. These are either the entities selected by the user 
(“build selection”) or the entities manifested by the Build Artifact (“build 
artifact” or “Build Configuration”). The C++ Application Generator iter-
ates over these entities, and for each entity the corresponding «file» ar-
tifact (see “Model-to-File Mapping” on page 1534) is located. The re-
sulting set of «file» artifacts represents the set of target C++ files to 
generate (or update).

Document structure

The following chapters describe the subset of UML that can be translated to 
C++. UML language constructs not mentioned are ignored during transla-
tion.

For each supported UML construct a translation rule is given. If there are ex-
ceptions to the rule, these are also mentioned. 

Each supported UML construct can be classified as either trivial or non-
trivial. Trivial constructs can be directly mapped to C++ by the C++ Un-
parser, while non-trivial constructs first must be transformed into trivial con-
structs before the C++ Unparser can generate C++ for them. Round-tripping 
is supported for trivial constructs only.

For most translation rules examples are given using concrete UML and C++ 
syntax. The purpose of each example is only to illustrate the translation rule 
at hand, not to give a precise description of how the generated code will look 
like. 

Model-to-File Mapping
A UML model may contain a specification on how to map model elements 
to generated C++ files. Such a specification consists of artifacts representing 
the source files (both header and implementation files), and dependencies 
1534 IBM Rational Tau User Guide June 2009



Model-to-File Mapping
from such artifacts to model elements that are to be generated in those source 
files. The dependencies are stereotyped by the predefined 'manifest' or 'man-
ifest implementation' stereotypes, and the artifacts are stereotyped by a deri-
vate of the 'file' stereotype containing a 'path' attribute for specifying the 
name and location of the file. 

For clarity, the artifacts are presented in a folder of the containing package 
instead of intermixed with other model elements.

In the context of C++ code generation, two derivates of the 'file' stereotypes 
are considered:

cppHeaderFile

Represents a C++ header file

cppImplementationFile

Represents a C++ implementation file

Figure 255 File artifacts of interest for C++ translation
June 2009 IBM Rational Tau User Guide 1535



Chapter 52: C++ Application Generator Reference
When the model-to-file mapping has been explicitly specified by the 
user, using artifacts and stereotypes as described above, and the option 
to generate a default model-to-file mapping is not turned on, then the 
only source files that will be generated are those described in that 
mapping.

Each header file will contain all entities that have been specified as mani-
fested by that file. 

Each implementation file will contain all entities that have been specified as 
manifested by that file, and also the implementations of the entities that have 
been specified as manifested through a manifest implementation relationship 
by that file.

Example 494: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

<<cppHeaderFile (. path = "MyClass.h".)>> artifact 
MyClassHeader
<<manifest>> dependency to MyClass;
<<cppImplementationFile (. path = "MyClass.cpp".)>> 
artifact MyclassImpl <<'manifest implementation'>> 
dependency to MyClass;
class MyClass {
    int foo(){
        return 14;
    }
}

C++ (in file "MyClass.h")

class MyClass {
  int foo();
};

C++ (in file "MyClass.cpp")

#include "MyClass.h"
int MyClass::foo(){
  return 14;
}

Although MyClass::foo is “inline-defined” in UML, its C++ implementa-
tion will go into the implementation file and not into the header file. The 
«inline» stereotype can be used to specify that a function should be inline, 
in which case the implementation will be placed in the header file.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1536 IBM Rational Tau User Guide June 2009



Model-to-File Mapping
If an entity, that has been selected by the user to be built, is not specified to 
be manifested in a C++ header or implementation file, it will not be trans-
lated. However, for convenience the C++ Application Generator has an op-
tion to create a default model-to-file mapping. This option is on by default, 
so if you have made an explicit model-to-file mapping it is a good idea to turn 
this option off.

The default model-to-file mapping is generated according to the 
following:

1. A header file and an implementation file is generated for each package.

2. A header file and an implementation file is generated for each structured 
classifier (class, choice or interface) contained in a package.

3. A header file is generated for a stand-alone state machine (a state ma-
chine owned by a package). If it has a state machine implementation, an 
implementation file is also generated.

4. The name of a synthesized artifact in a default model-to-file mapping is 
the same as the name of the entity for which the file is generated 

Note
When an entity is already manifested in a file (directly, not indirectly 
through composition) the default model-to-file mapping will not create an-
other file mapping for that entity.

Entities in a model are then translated into these files according to the 
following:

1. An entity for which a header file artifact is produced is translated into that 
header file, by adding a «manifest» dependency from the header file ar-
tifact to the entity.

2. An entity for which an implementation file artifact is produced is trans-
lated into that implementation file, by adding a «manifest implementa-
tion>> dependency from the implementation file artifact to the entity.

3. Other entities are translated into the same file as their composition 
owners, that is to say that translation is recursive with regards to compo-
sition.
June 2009 IBM Rational Tau User Guide 1537



Chapter 52: C++ Application Generator Reference
The names of the generated files are typically specified explicitly by 
means of a tagged value for file::path. If it is unspecified (which for 
example is the case in a default model-to-file mapping), the name of the 
artifact that represents the file is used instead.

Example 495: Default model-to-file mapping –––––––––––––––––––––––––––––––

UML 

package test {
    class S {
        Integer Operation1() {
            return 5;
        }
    }
    Integer var;
    extern int var2;
}

C++ (in file "test.h")

namespace test {
  extern tor::Integer var;
  extern int var2;
};

C++ (in file "test.cpp")

#include "test.h"
namespace test {
  tor::Integer var;
};

C++ (in file "S.h")

namespace test {
  class S {
    tor::Integer Operation1();
  };
};

C++ (in file "S.cpp")

#include "S.h"
tor::Integer test::S::Operation1() {
  return 5;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1538 IBM Rational Tau User Guide June 2009



Model-to-File Mapping
Include protection

Each generated C++ header file is protected from multiple inclusions by 
generation of a conditional compilation macro.

The default name of the macro is a unique identifier, based on the GUID of 
the artifact representing the header file.

Example 496: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

class X {
}

C++ (in file "X.h")

#ifndef GEN_Wr5SkVKjOm5LrSHaaV45sx9V
#define GEN_Wr5SkVKjOm5LrSHaaV45sx9V
class X {
};
#endif //GEN_Wr5SkVKjOm5LrSHaaV45sx9V

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

It is possible to modify the format of the include protection by setting the 
properties “includeProtectionBegin” and “includeProtectionEnd” of the file 
artifact that represents the header file. In the Properties Editor these proper-
ties are presented as “Include Protection First String” and “Include Protec-
tion Last String” respectively. These properties can also be set on the build 
artifact and will then control the format of the include protection for all 
header files that are generated (except those that override this setting by 
having these properties explicitly specified).

The include protection properties are text strings that may contain the fol-
lowing codes for substitution:

Code Will be replaced by

%% A single ‘%’ character.
June 2009 IBM Rational Tau User Guide 1539



Chapter 52: C++ Application Generator Reference
The default values for the include protection properties are:

“#ifndef GEN_%g\n#define GEN_%g\n” for “includeProtectionBegin”

“#endif // GEN_%g” for“includeProtectionEnd”

Note
Don’t forget the trailing newline (\n) in the string specified for the property 
“includeProtectionBegin”. Without it the generated code will be appended 
to the #define which typically leads to compilation errors.

General Translation Rules
This chapter describes general translation rules that apply to many kinds of 
translated entities.

Name of definitions

The name of a C++ definition is the same as the name of the UML 
definition from which it is translated.

An exception occurs if the UML definition has an ANSI name specified (by 
means of the ansiName stereotype). Then the C++ definition will get that 
name instead.

If no ANSI name is specified, or an ANSI name is specified that in fact is 
not ANSI, the C++ name is adjusted to become ANSI.

If the C++ name to use (obtained from one of the translation rules above) is 
not a legal C++ identifier (because it is a keyword, or a name starting with a 
digit), it will be prefixed by a user-configurable prefix that by default is 

%f The base name of the file (the initial path removed) with any ‘.’ 
replaced with an underscore. E.g. “my/path/Xyzzy.h” is trans-
formed into “Xyzzy_h”.

%F As %f but any lowercase letters are converted to upper case. E.g. 
“my/path/Xyzzy.h” is transformed into “XYZZY_H”.

%g A string based on the GUID of the artifact that represents the 
header file.

Code Will be replaced by
1540 IBM Rational Tau User Guide June 2009



General Translation Rules
“Name_”. If it instead is illegal because it contains characters not allowed in 
a C++ identifier (for example a whitespace), each such character will be re-
placed with an ASCII string representation of the illegal character.

Example 497: Translation of names ––––––––––––––––––––––––––––––––––––––

UML

class volatile {
}
<<ansiName(.name = "XYZ".)>> class '1åäö' {
}
<<ansiName(.name = "1åäö".)>> class C {
}
<<ansiName(.name = "1par".)>> class D {
}
part D 'an attribute';

C++

class Name_volatile {
};
class XYZ {
};
class tau_003100e500e400f6_tau {
};
class Name_1par {
};
D an_32_attribute;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Type of typed definitions

Impact of aggregation kind 

The type reference of a typed definition (that is a definition that has a 
type, for example an attribute, parameter, or a syntype) is translated to 
a corresponding type reference in C++.

The rules are as follows:

A typed UML entity of reference or shared type (the typed entity has 
“reference” or “aggregation” as aggregation kind) is translated into a 
C++ definition with: 

• a C++ pointer type specifier, if the type of the entity is not a datatype (or 
a syntype of a datatype). 
June 2009 IBM Rational Tau User Guide 1541



Chapter 52: C++ Application Generator Reference
• no type specifier at all, if the type of the entity is a datatype (or a syntype 
of a datatype). 

A typed UML entity of part type (the typed entity has “composition” as 
aggregation kind) is translated to no type specifier at all in C++ (the 
definition gets “value” type). 

An exception to this rule applies if the Multiplicity of the part is optional or 
non-single (compare Combined impact of multiplicity and aggregation 
kind).

A UML entity typed by an instantiation of the 
TTDCppPredefined::CPtr template is translated into a C++ definition 
with one pointer type specifier for each (nested) instantiation of that 
template.

Example 498: Translation of type reference ––––––––––––––––––––––––––––––––

UML

class D {
    E a1;
    shared E a2;
    part E a3;
    CPtr<E> a4;
    CPtr<CPtr<E> > a5;
}

C++

class D {
  E* a1;
  E* a2;
  E a3;
  E* a4;
  E** a5;
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1542 IBM Rational Tau User Guide June 2009



General Translation Rules
Predefined types

References to UML predefined types are translated to references to C++ 
types according to the table below:

UML pre-
defined type C++ type Comment

Boolean tor::Boolean Defined as 'bool'.

Character tor::Character Defined as 'unsigned char' in 
ASCII compilation and as 
'wchar_t' in Unicode compilation.

Integer tor::Integer By default defined as 'int', but 
could optionally be defined as 
'long int', 'long long int', or 
as an Integer class depending on 
how big integral numbers it needs 
to represent.

Natural tor::Natural By default defined as 'unsigned 
int', but could optionally be de-
fined as 'unsigned long int', 
'unsigned long long int', or as 
a Natural class depending on how 
big integral numbers it needs to 
represent.

Real tor::Real By default defined as 'double', but 
could optionally be defined as 
'float', 'long double', 'long float', or 
as a Real class depending on how 
big real numbers (and with how 
big precision) it needs to represent.
June 2009 IBM Rational Tau User Guide 1543



Chapter 52: C++ Application Generator Reference
The target C++ types (tor::…) are defined in the TOR header torTypes.h.

All fundamental C++ types are available at UML level through the 
‘TTDCppPredefined’ profile package. Usages of these types are 
translated to the corresponding C++ fundamental type.

Example 499: Translation of predefined types ––––––––––––––––––––––––––––––

UML

Boolean b;
Any a;
TTDCppPredefined::float f;

C++

tor::Boolean b;
tor::Any a;
float f;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Charstring tor::Charstring Defined as a class that inherits the 
STL class std::string 
(wstring in Unicode configura-
tion), and which implements the 
standard collection interface (de-
scribed below).

String tor::Charstring String is just a syntype of Char-
string in UML.

String tor::String See Collections and impact of mul-
tiplicity.

UML pre-
defined type

C++ type Comment
1544 IBM Rational Tau User Guide June 2009



General Translation Rules
Collections and impact of multiplicity

The predefined UML collection type is the String type. References to it 
are translated to references to a ‘tor::String’ type, which is defined as 
a class that inherits a container class from the STL (std::vector by 
default). 

tor::String has an interface that corresponds closely to the interface of the 
predefined UML String type. The implementation of the interface calls func-
tions inherited from the base class container.

Example 500: Multiplicity ––––––––––––––––––––––––––––––––––––––––––––––

Entities with Multiplicity greater than 1 are translated in the same way as en-
tities typed by the String type. 

UML

Character str[*];
String<Integer> istr;
class C {
  C [10] lst;
  C [1, 5..10] lst2;
}

C++

tor::String<tor::Character> str;
tor::String<tor::Integer> istr;
class C {
  tor::String<C*> lst;
  tor::String<C*> lst2;
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The TTDCppPredefined package contains a CArray datatype, which cor-
responds directly to the built-in array construct of C/C++. It could be used 
as an alternative to String (for example for performance reasons).

Combined impact of multiplicity and aggregation kind

As described above, an attribute with “composite” aggregation kind (a part) 
is represented as a C++ value. Thus, the lifetime relationship between the 
part and its owner is automatically enforced by the C++ language (that is 
when an instance of the owning class is deleted, the part it owns will also be 
deleted). 
June 2009 IBM Rational Tau User Guide 1545



Chapter 52: C++ Application Generator Reference
However, this is only true if the part has single, non-optional Multiplicity 
(i.e. the multiplicity is exactly 1). In the case of non-single multiplicity, or 
optional multiplicity, the lifetime relationship is not automatically enforced 
by the C++ language. The C++ Application Generator thus generates addi-
tional code in this case to make sure the correct lifetime semantics is ob-
tained.

Note
The UML semantics of a part with non-single multiplicity is that it is the en-
tities that are contained in the collection (and not the collection itself) that 
should have a lifetime relationship with the owning instance

This is solved by the following translation rules:

A part with non-single multiplicity is translated to an attribute typed by 
the tor::String type, where the element type is a pointer to the 
translation of the attribute type. If the attribute is typed by a datatype 
(or a syntype of a datatype), the type translation is used as is, without 
adding a pointer specifier. The same thing will happen if the element 
type is an instantiation of the predefined Value template.

In addition, code is added to the destructor of the containing class. This code 
consists of one stack-allocated variable for each part. The variable is typed 
by tor::MultiDeleter, which is a class that deletes all elements of the 
String in its destructor. Thus it is guaranteed that when execution leaves the 
destructor, the elements of the String will be automatically deleted.

Note
The code for implementing a container with part semantics will not be 
added in case the multiplicity is specified to be informal (see Informal multi-
plicity and custom container types).

Example 501: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class C {
  part C [*] c_list;
  part String<C> c_list2;
}

C++

class C { 
  tor::String<C*> c_list;
1546 IBM Rational Tau User Guide June 2009



General Translation Rules
  tor::String<C*> c_list2;

~C() {
tor::MultiDeleter<C> deleter_c_list(c_list);
tor::MultiDeleter<C> deleter_c_list2(c_list2);

}
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A part with single optional multiplicity is translated to an attribute of 
pointer type. If the attribute is typed by a datatype (or a syntype of a 
datatype), the type translation is used as is, without adding a pointer 
specifier.

Code will also be added in the constructors of the owning class for initial-
izing the pointers to 0, and in the destructor to ensure that when it is deleted, 
pointers corresponding to parts with non-single multiplicity, will be deleted 
too. The destructor code is generated in a way similar as for parts with non-
single multiplicity. The only difference is that the destructor variable is typed 
by the class tor::SingleDeleter instead.

Example 502:––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class C {
  part D [0..1] opt_d;
}

C++

class C { 
  D* opt_d;

C() : opt_d(0) { }

  ~C() {
tor::SingleDeleter<D> deleter_opt_d(opt_d);

  }
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The table below summarizes the translation of attributes with different com-
binations of aggregation kind, type and multiplicity:
June 2009 IBM Rational Tau User Guide 1547



Chapter 52: C++ Application Generator Reference
Initial instances

If an attribute specifies an initial number of instances, code will be 
added in the constructors of the owning class which will create the initial 
instances according to the table below:

When no user-defined constructors exist, a default constructor will be cre-
ated. The same translation rule apply if the multiplicity specifies a closed 
range (with the special case where the lower bound and upper bounds are 
equal, that is to say that one single value is specified as multiplicity), even if 
an initial number of instances has not been specified.

Multi-
plicity

Part (typed by 
class)

Reference 
(typed by class) Typed by datatype

0..1 Pointer variable

Initialization to 0 in 
constructor
Delete in destructor

Pointer variable Value variable 

1 Value variable

*
0..n
n..m

where m, n > 1

Container of 
pointers variable
Delete of all con-
tainer elements in 
destructor

Container of 
pointers variable

Container of values 
variable

Multiplicity / 
Initial cardinality

Part 
(typed by class)

Reference
(typed by class)

Typed by 
datatype

0..1 / 1 Set the attribute 
to an initially 
created instance.

Set the attribute 
to NULL.

N/A

m..n / m

where m, n > 1

Insert m number 
of initially cre-
ated instances in 
the container.

Insert m number 
of NULLs in the 
container.

Insert m number 
of default lit-
erals of the 
datatype in the 
container.
1548 IBM Rational Tau User Guide June 2009



General Translation Rules
Example 503: Translation of initial instances –––––––––––––––––––––––––––––––

UML

class C {
  part D [0..1]/1 opt_d;
  part D [4]/2 d2;
  D [1] d3;
  D [8] d4;
  Integer [7] i1;
}

C++

class C { 
  D* opt_d;
  tor::String<D*> d2;
  D* d3;
  tor::String<D*> d4;
  tor::String<tor::Integer> i1;

  C() : opt_d(new D), d2(true), d3(0), d4(8), i1(7) {
    tor::initString<D>(d2, 2);
  }
  ~C() {
    if (opt_d)
      delete opt_d;
  }
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The constructor code for adding initial elements in the container will not be 
added in case the multiplicity is specified to be informal (see Informal multi-
plicity and custom container types for more information).

Informal multiplicity and custom container types

By specifying the Multiplicity of a structural feature as informal, it is pos-
sible to use a different container type than the default String container. 

If a structural feature has informal multiplicity the C++ Application 
Generator assumes it does not know the semantics of the specified con-
tainer type. Thus it will not generate code for initializing the container 
with an initial number of instances (if an initial number of instances has 
been specified). Nor will it generate code for deleting all instances of the 
container (if the container is a part).
June 2009 IBM Rational Tau User Guide 1549



Chapter 52: C++ Application Generator Reference
Example 504: Translation of an attribute with a custom container type–––––––––

UML

class A {
    public MyContainer<B> {[*]} m_b;
    public part MyContainer<B> {[*]} m_p / 2;
    public MyContainer<B> {[*]} m_r / 4;
}

C++

class A {
public:

MyContainer<B*> m_b;
MyContainer<B*> m_p;
MyContainer<B*> m_r;

};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
There is no constructor in A for initializing m_p with 2 initial instances of B 
and m_r with 4 NULL entries, and there is no destructor for deleting all in-
stances of m_p.

Comments

A Comment is translated to a C++ source code comment (formatted with 
the <MODEL> tag) placed just before the translation of the model 
element to which the comment is attached.

If more than one comment is attached to a model element, the corresponding 
C++ comments are separated by an empty line in the generated code.

Example 505: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

package P1 comment "This is package P1" comment "ver. 1" 
{
  class C {
      
    }  
}

C++

/*<MODEL> This is package P1 */
1550 IBM Rational Tau User Guide June 2009



General Translation Rules
/*<MODEL> ver. 1 */
namespace P1 {
  class C { ... };
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the translator option Support roundtrip is turned off, <MODEL> markers 
will not be printed.

External definition

An external Definition is translated to a corresponding C++ ‘extern’ 
declaration.

The meaning of ‘external’ is thus the same both in UML and C++. An entity 
has to be declared as external in a UML model, if the entity is used in the 
model, but defined outside it (for example in a library).

Example 506: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

DD extern var;

C++

extern DD var;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The C++ Application Generator will sometimes generate ‘extern’ C++ 
definitions although the corresponding UML definition is not marked as ex-
ternal. For example, a non-constant attribute will be translated to a C++ 
variable which will be declared as ‘extern’ in the header file where it is 
manifested. For more information see Attribute.

Non-name based references

If a reference is not setup by name (but GUID or pointer) it is converted 
to a name-based reference. A minimal relative qualifier is added to the 
reference to make sure it binds to the same target as before.

This translation rule is currently applied to a limited set of references (those 
references that are typically edited using graphical syntax in the editors).
June 2009 IBM Rational Tau User Guide 1551



Chapter 52: C++ Application Generator Reference
Markers for synthesized entities

All parts of a generated file which corresponds to entities that are 
synthesized during the UML to C++ translation are enclosed within 
<GENERATED> markers.

Example 507: Synthesized Entities––––––––––––––––––––––––––––––––––––––––

UML

class X {
  const Integer i = 14;
}

C++

class X {
  const tor::Integer i;
// <GENERATED>
  public:
  X() : i(14) { }
// </GENERATED>
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The <GENERATED> markers are intended as a help to indicate which parts 
of a file that have no direct equivalence in the UML model, but are synthe-
sized during the translation. Avoid changing code in these sections, except 
for modifying the code formatting or adding comments.

Note
For brevity reasons all markers are excluded from the examples in this doc-
ument.

If the translator option Support roundtrip is turned off, <GENERATED> 
markers will not be printed.
1552 IBM Rational Tau User Guide June 2009



Package
Package
A package is translated to a namespace.

If the package has the stereotype 
TTDCppPredefined::globalNamespace applied, it represents the global 
namespace of C++. No namespace will then be generated for it.

Note
If this stereotype is applied on more than one Package in a model, it is your 
responsibility to make sure that names within all these packages are unique. 
It is therefore recommended to use at most one Package for representing the 
global namespace.

Example 508: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

package P1 {
  class C {
      
    }  
}
<<globalNamespace>> package P2 {
    class C {
        
    }
}

C++

namespace P1 {
  class C {  };
};
class C { };

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Dependency
Dependencies are used in many ways in a UML model and are often to be 
interpreted as informal. However, there are certain specific usages of depen-
dencies that are visible in generated C++ code. These usages of dependencies 
are described in this chapter. Dependencies that do not fall into the categories 
mentioned below are not translated to C++.
June 2009 IBM Rational Tau User Guide 1553



Chapter 52: C++ Application Generator Reference
Include dependency

A dependency stereotyped by the predefined ‘include’ stereotype, where 
the supplier of the dependency is an artifact representing a file, is 
translated to a #include of that file.

If the client of the dependency is another artifact representing a file, the #in-
clude directive is generated at the beginning of that file. 

Example 509: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

<<cppHeaderfile (. path = "sif.h".)>> artifact 
SomeIncludeFile;

<<cppHeaderfile (. path = "..\..\include\generic.h".)>> 
artifact GenericTypes <<include>> dependency to 
SomeIncludeFile
<<manifest>> dependency to X;

class X {
}

<<cppHeaderfile (. path = "IRunnable_interface.h".)>> 
artifact IRun_ifc 
<<manifest>> dependency to IRunnable;

interface IRunnable <<include>> dependency to 
GenericTypes {
}

C++ (in file “..\..\include\generic.h”)

#include "sif.h"

class X {
};

C++ (in file “IRunnable_interface.h”)

#include "..\..\include\generic.h"
UML_INTERFACE IRunnable {
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

It is not necessary to manually specify dependencies for each required #in-
clude. The C++ Application Generator will automatically compute the min-
imal set of #includes needed by analyzing in which files definitions that are 
1554 IBM Rational Tau User Guide June 2009



Dependency
used from one compilation unit will be generated. However, the mechanism 
for specifying a #include dependency manually is needed in the following 
situations: 

1. When definitions from a header file is used in inline C++ code, since such 
code is not interpreted at UML level.

2. In order to include external source files in C++ implementations.

3. To specify the use of a precompiled header for a C++ implementation file

Example 510 on page 1555 shows how to specify the use of a precompiled 
header for an implementation file.

Example 510: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML 

<<cppHeaderfile (. path = "StdAfx.h", precompiled = true 
.)>> artifact PrecompiledHeader;

<<cppImplementationFile (. path = "foo.cpp" .)>> 
artifact foo_impl <<manifest>> dependency to foo,
<<include>> dependency to PrecompiledHeader;

bool foo(){
  return false;
}

C++ (in file “foo.cpp”)

#include "StdAfx.h"

bool foo(){
  return false;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1555



Chapter 52: C++ Application Generator Reference
Access dependency

A dependency stereotyped by the predefined «access» stereotype, where 
the supplier of the dependency is a package P (not stereotyped by the 
«‘global namespace’>> stereotype), is translated to a ‘using namespace 
N’, where N is the translation of P. If the supplier of the dependency is 
another kind of entity, a ‘using’ declaration is generated instead.

Example 511: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

package P1 <<access>> dependency to P2 
<<access>> dependency to P3::E {
  C var;
}

package P2 {
  class C { }
  class D { }
}

package P3 {
  class E { }
}

C++

namespace P1 {
  using namespace P2;
  using P3::E;

  C var;
};

namespace P2 {
  class C {};
  class D {};
};

namespace P3 {
  class E {};
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1556 IBM Rational Tau User Guide June 2009



Dependency
Import dependency

A dependency stereotyped by the predefined «import» stereotype, 
where the supplier of the dependency is a package (not stereotyped by 
the «‘global namespace’>> stereotype), is translated to a ‘using 
namespace’ for the namespace that corresponds to the supplier package.

Note
This means that the C++ Application Generator will treat import dependen-
cies exactly like access dependencies.

Example 512: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

package P1 <<import>> dependency to P2 {
}

C++

namespace P1 {
  using namespace P2;
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Friend dependency

A dependency stereotyped by the «friend» stereotype from 
TTDCppPredefined, where the client of the dependency is a Class or 
Choice, is translated to a friend declaration.

The friend declaration is placed in the C++ translation of the Class or Union.

Example 513: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class Class1 <<friend>> dependency to foo(Integer) {}
void foo( Integer);

C++

void foo(tor::Integer par0);
class Class1 {
    friend void ::foo(tor::Integer par0);
June 2009 IBM Rational Tau User Guide 1557



Chapter 52: C++ Application Generator Reference
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Structured Classifier
A Structured Classifier is translated according to the following rules:

A Class is translated to a class, or to a struct if it has the stereotype 
TTDCppPredefined::struct applied.

An Interface is translated to an abstract class, that is a class with all its 
member functions being pure virtual.

A choice is translated to a union.

Other kinds of structured classifiers are not translated.

Example 514: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class C { }
<<struct>> class S { }
interface I {
  int foo( char);
}
choice U1 {}

C++

class C { };
struct S {};
UML_INTERFACE I {
  int foo(char) = 0;
}
union U1 {};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML_INTERFACE is a macro defined in the TOR header torAnnotations.h. It 
is defined to class. If the translator option Support roundtrip is turned off, 
the class keyword is used instead of this macro.
1558 IBM Rational Tau User Guide June 2009



Attribute
Attribute
A non-constant attribute is translated according to the following rules. For 
constant attributes see Constant attribute.

An Attribute owned by a Structured Classifier is translated to a member 
variable of the class, struct or union that is the translation of the 
structured classifier.

An Attribute owned by a Package is translated to a variable scoped by 
the namespace that is the translation of the package.

Unless an attribute in a package is declared as “external” it will yield both a 
variable declaration (in the header file generated for the package) and a vari-
able definition (in the source file generated for the package), if the variable 
is manifested in a C++ implementation file that is. The variable declaration 
in the header file will always be external to allow the header file to be in-
cluded from several different compilation units without link errors.

Example 515: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML
package test {
    class S {
        Boolean m_b;
    }
    Integer var;
}

C++ (in file “test.h”)

namespace test {
  class S {
    tor::Boolean m_b;
  };
  extern tor::Integer var;
};

C++ (in file “test.cpp”)

tor::Integer test::var;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1559



Chapter 52: C++ Application Generator Reference
Attribute default value

The default value of a non-static Attribute owned by a Structured 
Classifier is translated to an initialization of the corresponding member 
variable in the initializer list of all constructors.

The default value of an Attribute owned by a Package, or a Static 
attribute, is translated to an initialization of the corresponding variable 
definition.

Example 516: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

package test {
    class S {
        Boolean m_b = true;
        public S() {
           // Some initialization
        }
    }
    Integer var = 14;
}

C++ (in file test.h)

namespace test {
external tor::Integer var;

};

C++ (in file test.cpp)

tor::Integer test::var = 14;

C++ (in file S.h)

namespace test {
  class S {
    tor::Boolean m_b;
    public:
    S();
  };
};

C++ (in file S.cpp)

test::S::S() : m_b(true) {
1560 IBM Rational Tau User Guide June 2009



Attribute
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
When an attribute of a structured classifier has a default value, but there 
are no constructors defined for the structured classifier, then an explicit pa-
rameter-less constructor with public visibility will be created for the C++ 
class, in order to specify the initialization of the member variable.

A default value specified for an attribute implies an Assignment, so the trans-
lation rule for assignments applies also in this case.

Attribute visibility

The visibility of an Attribute owned by a Structured Classifier is 
translated to a corresponding visibility for the corresponding member 
variable.

Public, protected and private visibility has the same semantics in UML and 
C++. However, UML has an additional visibility kind known as package vis-
ibility. 

In the C++ translation package visibility is translated as public visibility. 

If the visibility is unspecified in UML, it defaults to public or private visi-
bility (depending on the context). In the translation the visibility is explicitly 
specified anyway, if required by the rules of C++ (also in C++ the default vis-
ibility is dependent on context). For example, an attribute with unspecified 
visibility defined in a class will be private in C++.

A small difference between UML and C++ is that in UML the visibility is 
specified for every attribute while in C++ the visibility can be specified once 
for all the member variables that follows. Since the latter approach often is 
considered improving code readability, several consecutive attributes with 
the same visibility will only yield one “visibility declaration” for the corre-
sponding C++ member variables.

Example 517: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class S {
    public Boolean m_b;
    public Character m_c;
June 2009 IBM Rational Tau User Guide 1561



Chapter 52: C++ Application Generator Reference
    protected int m_i;
    private bool m_bo;
    package char m_ch;
}

C++

class S {
public:
  tor::Boolean m_b;
  tor::Character m_c;
protected:
  int m_i;
private:
  bool m_bo;
public:
  char m_ch;
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Static attribute

A static attribute owned by a Structured Classifier is translated to a 
corresponding static member variable.

Example 518: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class S {
    Boolean m_b1;
    static Boolean m_b2;
}

C++ (in S.h)

class S {
  tor::Boolean m_b1;
  static tor::Boolean m_b2;
};

C++ (in S.cpp)

tor::Boolean S::m_b2;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1562 IBM Rational Tau User Guide June 2009



Attribute
Constant attribute

A constant Attribute owned by a Structured Classifier is translated to a 
member constant.

A constant Attribute owned by a Package is translated to a non-member 
constant.

Note that contrary to a variable a C++ constant by default has internal 
linkage. To specify that a constant attribute shall be translated to a C++ con-
stant with external linkage, the ‘external’ property should be set to true on the 
UML attribute.

Example 519: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

<<globalNamespace>> package P {
class S {

    const Boolean m_b1 = true;
}
const double e = 2.78; // Internal constant
const Integer extern b = 6; // External constant

}

C++ (in header file)

class S {
  const tor::Boolean m_b1;
  S() : m_b1(true) {}
};
const double e = 2.78;
extern const tor::Integer b;

C++ (in implementation file)

const tor::Integer b = 6;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
This translation rule can be combined with the one for static attributes to 
yield a constant member in C++.
June 2009 IBM Rational Tau User Guide 1563



Chapter 52: C++ Application Generator Reference
Bitfield

An Attribute with the TTDCppPredefined::bitfield stereotype 
applied is translated to a bitfield.

Example 520: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

<<struct>> class S {
    int <<bitfield(. 2 .)>> m1;
    bool <<bitfield(. 1 .) m2;
}

C++

struct S {
  int m1 : 2;
  bool m2 : 1; 
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The size of the bitfield is specified as a tagged value.

Operation
An Operation owned by a Structured Classifier is translated to a 
member function of the class, struct or union that is the translation of 
the structured classifier.

An Operation owned by a Package is translated to a function scoped by 
the namespace that is the translation of the package.

Note
Constructors and destructors are special kinds of operations both in UML 
and C++. They are consequently translated according to the same rules as 
ordinary operations (a constructor called 'initialize' in UML will be called 
the same name as the owner class, struct or union according to the rules of 
C++).

Example 521: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

package test {
1564 IBM Rational Tau User Guide June 2009



Operation
    class S {
        int foo();
        S(bool); // Constructor
        initialize(); // Constructor
        finalize(); // Destructor
    }
    Integer open();
}

C++

namespace test {
  class S {
    int foo();
    S(bool);
    S();
    ~S();
  };
  tor::Integer open();
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Operation parameters

A Parameter to an Operation is translated to a formal parameter of the 
function that is the translation of the operation.

Parameters with direction kind 'in/out' or 'out' are translated to 
parameters of reference type.

The type of the first parameter with direction kind 'return' (there 
should at most be one) is translated to a return type for the function that 
is the translation of the operation. If there is no return parameter, a void 
function is generated.

Example 522: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

int foo(int p1, in int p2, inout int p3, out int p4);

C++

int foo(int p1, int p2, int& p3, int& p4);
June 2009 IBM Rational Tau User Guide 1565



Chapter 52: C++ Application Generator Reference
The general rules for typed entities (compare with “Type of typed defini-
tions” on page 1541) apply also on the return parameter.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Parameter default value

A default value for an Operation Parameter is translated to a 
corresponding default value for the function parameter that is the 
translation of the Parameter.

Note
When a parameter with a default value is a non-trailing parameter it is not 
possible to give the corresponding C++ parameter a default value, ac-
cording to the rules of C++. 

Example 523: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

int foo(int p1 = 4, int p2, int p3 = 5);
MyClass bar();
part MyClass func();

C++

int foo(int p1, int p2, int p3 = 5);
MyClass* bar();
MyClass func();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The default value may be any Expression.

A default value specified for a parameter implies an Assignment, so the 
translation rule for assignments applies also in this case.

Parameter multiplicity

The impact of a multiplicity specified for a parameter is in general the same 
as for any definition (see “Collections and impact of multiplicity” on page 
1545). However, parameter multiplicity is also used to specify that a param-
eter is optional (0 is then included in the specified multiplicity ranges).
1566 IBM Rational Tau User Guide June 2009



Operation
Note
When an optional parameter is a non-trailing parameter it is not possible to 
give the corresponding C++ parameter a default value, according to the 
rules of C++.

Example 524: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

void f(int p1[0..1], int p2, MyClass p3[0..1], MyClass 
p4[0..*]);

C++

void f(int p1, int p2, MyClass* p3 = 0,
       String<MyClass*>* p4 = 0);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Abstract operation

An abstract Operation owned by a Structured Classifier is translated to 
a pure virtual member function of the class, struct or union that is the 
translation of the structured classifier.

Other abstract operations are translated as ordinary operations.

Example 525: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class S {
    abstract int f1();
}
class D : S {
    redefined int f1(); // Redefines S::f1
}

C++

class S {
  virtual int f1() = 0;
};
class D : public S {
  virtual int f1();
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1567



Chapter 52: C++ Application Generator Reference
Virtual, redefined or finalized operation

A virtual, redefined or finalized Operation owned by a Structured 
Classifier is translated to a virtual member function of the class, struct 
or union that is the translation of the structured classifier.

The specification that an operation is redefined or finalized is thus not visible 
in the C++ translation. 

Example 526: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class S {
    int f1();
    virtual int f2();
    virtual int f3();
    virtual int f4();
}
class D : S {
    int f1(); // Hides S::f1
    virtual int f2(); // Hides S::f2
    redefined int f3(); // Redefines S::f3
    finalized int f4(); // Redefines S::f4
}

C++

class S {
  int f1();
  virtual int f2();
  virtual int f3();
  virtual int f4();
};
class D : public S {
  int f1();
  virtual int f2();
  virtual int f3();
  virtual int f4();
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1568 IBM Rational Tau User Guide June 2009



Operation
Exception specification

An exception specification (a 'throw' declaration) for an Operation, is 
translated into an exception specification for the function that is the 
translation of the operation.

Example 527: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

void foo() throw Exc1, Exc2;
void <<TTDCppPredefined::noException>> bar();

C++

void foo() throw (Exc1, Exc2);
void bar() throw ();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

As shown in Example 527 on page 1569 there is a special stereotype 
TTDCppPredefined::NoException which can be used to specify that an 
operation throws no exceptions at all.

Operation reference

An interface representing an operation reference is translated to a 
typedef of a function pointer type corresponding to the signature of the 
‘call’ operation of the interface.

Calls to the ‘call’ operation are translated into calls on the corresponding 
function pointer.

Example 528: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

<<operationReference>> interface IFoo {
Integer call(Boolean);

}

Integer foo(Boolean);

Integer main() {
IFoo i = operation foo(Boolean);
return i.call(true);

}

June 2009 IBM Rational Tau User Guide 1569



Chapter 52: C++ Application Generator Reference
C++

typedef tor::Integer (*IFoo)(tor::Boolean);
tor::Integer foo(Boolean);

tor::Integer main() {
IFoo i = foo;
return i(true);

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Generalization
A Generalization between two Structured Classifiers is translated to an 
inheritance between the classes, structs or unions that are the 
translation of the structured classifiers.

Note
For EventClasses (for example Signals) special translation rules for gen-
eralization apply. 

Generalizations between operations are not translated.

By default the inheritance will be public and non-virtual, but by applying the 
Stereotypes TTDCppPredefined::inheritanceVisibility and/or 
TTDCppPredefined::virtualInheritance it is possible to specify also 
private or protected inheritance and virtual inheritance. 

Example 529: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class S {
}
class D : S {
}

C++

class S {
};
class D : public S {
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1570 IBM Rational Tau User Guide June 2009



Association
Association
Unnamed uni-directional associations are represented as attributes in the 
UML model.                                                                                                                                  
The translation of such attributes thus follows the rules in Attribute.

Example 530: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class T {
    U b1;
}
class U {
    
}
association A {
    from T a2;
    from U a1;
    to a1;
    to a2;
}
association B {
    from T b2;
    to b1;
    to b2;
}

C++

class T {
  U* b1;
};
class U {
};
class A {
  T* a2;
  U* a1;
};
class B {
  T* b2;
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Syntype
A syntype is translated to a C++ type definition.

The data constraint of the syntype will not be translated to C++.
June 2009 IBM Rational Tau User Guide 1571



Chapter 52: C++ Application Generator Reference
Example 531: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

syntype X = Integer;

C++

typedef tor::Integer X;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Datatype
A datatype is mapped to a plain enum. This means that if the datatype has 
operations, these are not translated to C++.

Informal Definition
An informal definition is translated into a verbatim copy of the 
definition text.

If the informal definition contains a reference to a UML definition, it is trans-
lated according to the ordinary rule for an Identifier before the expression is 
copied into the generated C++.

Example 532: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

[[int status = reinterpret_cast<#(Integer)>(STATUS);]];

C++

/*<TARGET>*/
int status = reinterpret_cast<tor::Integer>(STATUS);
/*</TARGET>*/

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1572 IBM Rational Tau User Guide June 2009



Expression
Expression
UML Expressions are translated to C++ by translating each part of the 
expression individually. Constant expressions are not evaluated during 
translation (although it would be possible in most cases).

The translation of most UML expression is straight-forward, as shown in the 
table below:

UML 
Expression C++ Expression

UML 
Example C++ Example

Parenthesis 
expression

Parenthesis expression (a+b) (a+b)

Unary ex-
pression

A unary expression, 
where the C++ oper-
ator to use is decided 
by the specified UML 
operator (see “Refer-
ences to predefined 
UML definitions” on 
page 1575).

not m_bOk
++var

!m_bOK
++var

Binary ex-
pression

A binary expression, 
where the C++ oper-
ator to use is decided 
by the specified UML 
operator (see “Refer-
ences to predefined 
UML definitions” on 
page 1575).

This expres-
sion

'this' expression

Index ex-
pression

Subscripting operator 
('[]')

coll[4] coll[4]

Create ex-
pression

'new' operator new C(1,2) new C(1,2)
June 2009 IBM Rational Tau User Guide 1573



Chapter 52: C++ Application Generator Reference
The translation of remaining expressions is described in the rest of this 
chapter.

Identifier

An identifier is translated in the same way as the name of the definition 
to which it is bound.

This rule applies both when the identifier is part of an expression and when 
it represents a reference (compare Name of definitions).

Example 533: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

<<ansiName(.name = "XYZ".)>> class '1åäö' {
    public void g();
}
'1åäö' volatile = new '1åäö'();
void foo(){
    volatile.g();
}

C++

class XYZ {
};
XYZ* Name_volatile = new XYZ();
void foo(){
  Name_volatile->g();
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The translated identifier will contain scope qualifiers if the UML identifier 
has scope qualifiers. 

Conditional 
expression

Conditional expression b ? x1 : y1 b ? x1 : y1

Real value real literal Real a = 
3.14;

tor::Real a = 
3.14;

Integer 
value

integer literal Integer a = 
4;

tor::Integer a 
= 4;

UML 
Expression

C++ Expression UML 
Example

C++ Example
1574 IBM Rational Tau User Guide June 2009



Expression
Note
As a consequence of somewhat different scope rules, a scope qualifier is 
sometimes added in C++ although it would not be needed in UML. The op-
posite could also happen; if a package stereotyped by «globalNamespace» 
is referenced in the scope qualifier, that reference is removed. 

References to predefined UML definitions

An exception to the rule above applies when the identifier represents a 
reference to a predefined UML entity (an entity contained in the 
predefined package).

The reason is that the predefined package is not translated to C++. If the ref-
erenced definition is a type, the translation follows the rule in “Predefined 
Types”. If the referenced definition is an operation, the translation is made 
according to the table below.

Predefined UML 
operation

C++ operator

reinterpret_cast reinterpret_cast

ASSERT ASSERT
It is assumed that this function (or 
macro) is defined in a file included by 
the user.

Boolean::'=' operator=(tor::Boolean, tor::Boolean)

Boolean::not operator!(tor::Boolean)

Boolean::and
Boolean::'&&'

operator&&(tor::Boolean, tor::Boolean)

Boolean::or
Boolean::'||'

operator||(tor::Boolean, tor::Boolean)

Boolean::equal
Boolean::'=='

operator==(tor::Boolean, tor::Boolean)

Boolean::'!=' operator!=(tor::Boolean ,tor::Boolean)

Boolean::xor operator^(tor::Boolean, tor::Boolean)

Boolean::'=>' tor::implies(tor::Boolean, 
tor::Boolean)

Integer::'=' operator=(tor::Integer, tor::Integer)
June 2009 IBM Rational Tau User Guide 1575



Chapter 52: C++ Application Generator Reference
Integer::'-' operator-(tor::Integer)

Integer::'-' operator-(tor::Integer, tor::Integer)

Integer::'+' operator+(tor::Integer)

Integer::'+' operator+(tor::Integer, tor::Integer)

Integer::'++' operator++(tor::Integer)

Integer::'--' operator--(tor::Integer)

Integer::'*' operator*(tor::Integer, tor::Integer)

Integer::'/' operator/(tor::Integer, tor::Integer)

Integer::mod tor::mod(tor::Integer, tor::Integer)

Integer::rem operator%(tor::Integer, tor::Integer)

Integer::power tor::power(tor::Integer, tor::Integer)

Integer::equal
Integer::'=='

operator==(tor::Integer, tor::Integer)

Integer::'!=' operator!=(tor::Integer, tor::Integer)

Integer::'<' operator<(tor::Integer, tor::Integer)

Integer::'>' operator>(tor::Integer, tor::Integer)

Integer::'>=' operator>=(tor::Integer, tor::Integer)

Integer::'<=' operator<=(tor::Integer, tor::Integer)

Character::'=' operator=(char, char)

Character::'==' operator==(tor::Character, 
tor::Character)

Character::'!=' operator!=(tor::Character, 
tor::Character)

Character::'<' operator<(tor::Character, 
tor::Character)

Character::'>' operator>(tor::Character, 
tor::Character)

Character::'<=' operator<=(tor::Character, 
tor::Character)

Character::'>=' operator>=(tor::Character, 
tor::Character)

Predefined UML 
operation

C++ operator
1576 IBM Rational Tau User Guide June 2009



Expression
Note
The implementations of tor::is and tor::as are based on the C++ 
dynamic_cast operator. Thus it is required that ARG is a polymorphic 
type (i.e. has at least one virtual operation). There is currently no semantic 
check that will detect attempts to use these operations on non-polymorphic 
types. If your argument types are non-polymorphic you can always add an 
empty virtual operation in order to make them polymorphic

If the referenced definition is a constant, the translation is made according to 
the table below.

Real::'=' operator=(tor::Real)

Real::'-' operator-(tor::Real, tor::Real)

Real::'+' operator+(tor::Real, tor::Real)

Real::'*' operator*(tor::Real, tor::Real)

Real::'/' operator/(tor::Real, tor::Real)

Real::'==' operator==(tor::Real, tor::Real)

Real::'!=' operator!=(tor::Real, tor::Real)

Real::'<' operator<(tor::Real, tor::Real)

Real::'>' operator>(tor::Real, tor::Real)

Real::'<=' operator<=(tor::Real, tor::Real)

Real::'>=' operator>=(tor::Real, tor::Real)

is tor::is(ARG arg)

as tor::as(ARG arg)

Predefined UML 
operation

C++ operator
June 2009 IBM Rational Tau User Guide 1577



Chapter 52: C++ Application Generator Reference
Note
When the reference has a scope qualifier containing a reference to the Pre-
defined package explicitly (for example Predefined::Integer), that ref-
erence will be removed in the C++ transformation.

References to predefined C++ definitions

Another exception to the identifier translation rule above applies when 
the identifier represents a reference to a predefined C++ entity (an entity 
contained in the TTDCppPredefined package).

For most of the definitions in TTDCppPredefined the ordinary translation 
rule applies (since most have the same name as the corresponding built-in 
definitions in C++). 

The exceptional cases are some operations listed in the table below:

In addition to these operations, references to the CPtr and CArray templates 
are translated into C++ pointer and array type specifiers (compare with 
Example 533 on page 1574 and “Impact of aggregation kind” on page 1541).

Predefined UML 
constant C++ constant

Real 
PLUS_INFINITY

PLUS_INFINITY

It is assumed that this constant (or macro) is defined 
in a file included by the user.

Real 
MINUS_INFINITY

MINUS_INFINITY

It is assumed that this constant (or macro) is defined 
in a file included by the user.

TTDCppPre-
defined opera-
tion

C++ operator UML Example C++ Example

CPtr::'new[]
'

new[] operator CPtr<int> p =
CPtr<int>::'new[]'(
9);

int* p = 
new int[9];

CPtr::'delet
e[]'

delete[] 
operator

CPtr<int>::'delete[
]'(p);

delete p[];
1578 IBM Rational Tau User Guide June 2009



Expression
Note
When the reference has a scope qualifier containing a reference to the 
TTDCppPredefined package explicitly (for example 
TTDCppPredefined::int), that reference will be removed in the C++ 
transformation.

References to external C/C++ definitions

Yet another exception to the identifier translation rule applies when the 
identifier represents a reference to an external C/C++ entity (for 
example imported into the UML model by C/C++ Import), which has a 
different name in UML than in the target code.

Since UML can support any name for an identifier, the effect of this excep-
tion is only to remove the enclosing apostrophes if a name contains these.

Informal expression

An informal expression is translated into a verbatim copy of the 
expression text.

If the informal expression contains a reference to a UML definition, it is 
translated according to the ordinary rule for an Identifier before the expres-
sion is copied into the generated C++.

Example 534: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

int ptrSize = [[sizeof(void*)]];
int p2 = [[#(ptrSize) * 8 - 4]];

C++

int ptrSize = /*<TARGET>*/ sizeof(void*) /*</TARGET*>/;
int p2 = /*<TARGET>*/ ptrSize * 8 - 4 /*</TARGET*>/;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Call expression

A UML call expression is translated to a C++ function call.

The actual arguments in a call expression are in general any Expression. 
June 2009 IBM Rational Tau User Guide 1579



Chapter 52: C++ Application Generator Reference
Example 535: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

void f(int p2, int p3, MyClass p4[0..1]);
void foo(){
    f(4, 3, new MyClass());
}

C++

void f(int p2, int p3, 
       MyClass* p4 = 0);
void foo(){
  f(4, 3, new MyClass());
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

An operation call causes implicit assignments of actual arguments to formal 
operation parameters. The translation rule for an Assignment thus apply also 
in this case.

Field expression

A UML Field expression is translated to a call of the C++ member access 
operator '.' (if the operand type is a reference or value type in C++) or 
'->' (if the operand type is a pointer type in C++).

Assignment

An assignment is represented as a Binary expression and is translated as 
such. However, some additional translation rules apply for assignments, and 
these are described here.
1580 IBM Rational Tau User Guide June 2009



Expression
If the translation of the right-hand side of a UML assignment has value 
type in C++ while the translation of the left-hand side has pointer type 
in C++, the address-of operator (&) is applied on the right-hand side of 
the corresponding C++ assignment. Similarly, if the translation of the 
right-hand side of a UML assignment has pointer type in C++, while the 
translation of the left-hand side has value type in C++, the indirection 
operator (*) is applied on the right-hand side of the corresponding C++ 
assignment.

This translation rule makes sure that an assignment between a part and a ref-
erence (or vice versa) that is legal in UML also will be legal in C++.

Example 536: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

C c = new C();
part C cv;
cv = c;
C cref;
cref = cv;

C++

C* c = new C();
C cv;
cv = *c;
C* cref;
cref = &(cv);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This translation rule is applicable also on implicit assignments:

1. The assignment of a default value to an attribute or a parameter.

2. The assignment of an actual operation argument to a formal operation pa-
rameter in an operation call. This also applies for assignment of an actual 
constructor argument to a formal constructor parameter.

3. The assignment of a return value to an operation return parameter in a re-
turn action.
June 2009 IBM Rational Tau User Guide 1581



Chapter 52: C++ Application Generator Reference
Charstring and Character values

A Charstring or Character value is by default enclosed in the _T macro. 
This macro is defined in the TOR header “torTypes.h”, and expands to 
nothing in an ASCII configuration, and to L in a wide-character (e.g. 
Unicode) configuration. The purpose is thus to allow the generated code 
to be compiled in both ASCII and non-ASCII configurations.

There is a translation option Enable non-ASCII compilation that can be 
turned off (it is turned on by default) to avoid adding the _T macro around 
Charstring and character values. With this option turned off it is still possible 
to use multibyte strings using the wchar_t type.

Example 537: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

Charstring s = "zenith";
wchar_t[*] str = "angst";
Character c = 'x';
wchar_t cc = 'y';

C++

tor::Charstring s = tor::Charstring(_T("zenith"));
wchar_t str[] = L"angst";
tor::Character = _T('x');
wchar_t cc = L'y';

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

As seen in Example 537 on page 1582, a Charstring value is translated to a 
construction of a tor::Charstring object (possibly after enclosing it in the 
_T macro). The reason is that the type of a UML Charstring literal should be 
tor::Charstring and not const TCHAR* as would otherwise be the case.

Without the above translation rule usage of binary operators, where both the 
right-hand side and the left-hand side are typed by const TCHAR* in C++, 
would lead to application of the wrong operator. For example, comparison 
would be between the pointer values rather than between the contents of the 
UML Charstring variable values. The explicit construction of a 
tor::Charstring object for each UML Charstring literal solves this 
problem.
1582 IBM Rational Tau User Guide June 2009



Expression
TimerActive expression

A TimerActive expression is translated to a call of the isActive function 
on the timer variable corresponding to the timer that is referenced by 
the expression.

Example 538: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

timer T1 (Integer i);

void foo() {
  if (active(T1 (2))) {
    ...
  }
}

C++

class T1 : public virtual tor::TimerEvent {
public:
typedef tor::TimerEvent theTimerEvent;
tor::Integer i;

  T1(tor::Integer i) : i(i) {}

  static inline bool isTypeOf(tor::Event* e) {
    return tor::cast<T1*>(e) != 0;
  }

};

tor::TimerObject timer_T1(*this);

void foo() {
  if (timer_T1.isActive()) {
    ...
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The only purpose of the actual arguments that is used in the TimerActive 
Expression in UML is to identify which (possibly overloaded) version of a 
timer that shall be queried for its activeness. These actual arguments are 
thus not visible in the C++ translation.
June 2009 IBM Rational Tau User Guide 1583



Chapter 52: C++ Application Generator Reference
Template
A UML Structured Classifier Template is translated to a corresponding 
C++ class, struct or union template.

Example 539: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

template <class T, const int x >
class CSL
{
    T mv = x;
    T op1(int p1 = x);
}

C++

template <class T, int x >
class CSL {
  T mv;
  CSL() : mv(x) {}
  T op1(int p1 = x);
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A UML Operation Template is translated to a C++ function template.

Example 540: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

template <class T, T x > 
void foo(T p1 = x);

C++

template <class T, T x >
void foo(T p1 = x);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Inside a template definition the normal translation rules apply. However, 
when translating references to formal template parameters those translation 
rules that depend upon knowledge about properties of the corresponding ac-
tual template parameter in a template instantiation are disabled. This is be-
cause it is in general impossible to know, from the template definition, how 
the template will be instantiated. One example of such a translation rule that 
is disabled for references to formal template parameters is the rule to add a 
1584 IBM Rational Tau User Guide June 2009



Template
pointer declarator on UML references (see “Impact of aggregation kind” on 
page 1541). By specifying an Atleast constraint on a formal template param-
eter you can put a constraint on the corresponding actual template parameter, 
so that references to the formal template parameter can be translated in a 
more appropriate way. 

Template instantiation

An instantiation of a UML template is translated to an instantiation of 
the C++ template that is the translation of the UML template.

Actual template type parameters are ordinary references to types, so the rules 
in Impact of aggregation kind for adding pointer declarators apply also in this 
case. In order to pass a reference type as an actual template parameter by 
“value” rather than by reference, the predefined Value template can be used.

Example 541: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example instantiates the template CSL from Example 539 on page 1584.

UML

CSL<MyClass, 4> v1;
CSL<Value<MyClass>, 4> v2;

C++

CSL<MyClass*, 4> v1;
CSL<MyClass, 4> v2;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Another way to avoid the addition of a pointer declarator for an actual tem-
plate type parameter is to specify in the definition of the corresponding 
formal template parameter that it is a reference type. This is done by using an 
Atleast constraint.

Atleast constraint

If a formal template parameter has an ‘atleast T’ constraint, where T is 
a type, references to that parameter within the template definition will 
be treated like a reference to T.
June 2009 IBM Rational Tau User Guide 1585



Chapter 52: C++ Application Generator Reference
Example 542: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

By specifying ‘atleast Any’ on a formal template parameter the corre-
sponding actual template parameter is constrained to be a reference type. 
Thus the C++ Application Generator can translate a reference to such a 
formal template parameter as it would translate a reference to a reference 
type (i.e. to add a pointer declarator).

UML

template <type Type atleast Any>
class buffer {
    public Type [*] variable;
    public <<inline>> buffer(Natural n) {
        for (Natural i = 0; i < n; i++) {

Type t = new Type();
variable.append(t); 

}
    }
}

C++

template <class Type>
class buffer {
    public:

tor::String<Type *> variable;
    inline buffer(tor::Natural n) {
        for (tor::Natural i = 0; i < n; i++) {
            Type *t = new Type;
            variable.append(t);
        }
    }
};

Without the ‘atleast Any’ constraint on Type, no pointer declarator 
would have been added on references to Type within the template 
definition.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

An ‘atleast’ constraint may also have an impact on the translation of a Tem-
plate instantiation.

Note
UML has several more features in its template construct than the ones de-
scribed above. For example it is possible to specify a prototype for a tem-
plate argument. These constructs have no correspondence in C++ and are 
not translated.
1586 IBM Rational Tau User Guide June 2009



Action
Action
A UML action is translated to a C++ statement.

The translation of most UML actions is straight-forward, as shown in the 
table below:

If a Label is attached to an Action, it is translated to a C++ label just 
before the statement that is the translation of the action.

Example 543: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

void foo(){
    LABEL: Integer v;
    goto LABEL;
}

C++

void foo(){
  LABEL:
  tor::Integer v;
  goto LABEL;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML Action C++ Statement UML Example C++ Example

Delete action delete statement delete T; delete T;

Compound action compound state-
ment

{ 
v = v + 1;

}

{ 
v = v + 1;

}

Continue action continue state-
ment

Break action break statement

If action if statement
June 2009 IBM Rational Tau User Guide 1587



Chapter 52: C++ Application Generator Reference
Definition Action

A Definition Action where the associated definition is an Attribute is 
translated to a local variable definition.

Example 544: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

void foo(){
    Integer v = 4;
}

C++

void foo(){
  tor::Integer v = 4;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the associated definition is not an Attribute, the definition action will not 
be translated. The C++ Application Generator will yield a warning in this 
case:

Warning: Local definitions other than local variables 
are not supported. The local definition 'name' will not 
be translated to C++.

Expression Action

The translation of an Expression Action depends on what kind of expression 
that is associated with the action.
1588 IBM Rational Tau User Guide June 2009



Action
An Expression Action with an associated Empty Expression, is 
translated to an empty C++ statement.

An Expression Action with an associated Informal expression, is 
translated to a copy of the informal text.

An Expression Action with an associated Call expression, is translated 
by appending a semicolon (;) to the translation of the call expression.

An Expression Action with an associated Create Expression, is 
translated by appending a semicolon (;) to the translation of the create 
expression.

Example 545: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

void foo(){
    ;
    [[##ifdef _WIN32]];
    open(true);
    new Integer;
    [[##endif]];
}

C++

void foo(){
  ;
#ifdef _WIN32
  open(true);
  new tor::Integer;
#endif
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

As can be seen in Example 545 on page 1589 the normal rules for indentation 
are overruled for the case with an informal expression starting with '#' fol-
lowed by a character other than '(' (since the informal text then specifies a 
preprocessor directive).
June 2009 IBM Rational Tau User Guide 1589



Chapter 52: C++ Application Generator Reference
Try Action

A Try Action with an associated catch clause, is translated to a try 
statement with a catch clause.

Throw Action

A Throw Action is translated to a throw statement.

The expression of a Throw Action specifies which exception to throw. It can 
either

• specify a new exception to throw

• specify an already thrown-and-caught exception to “re-throw”. 

Example 546: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

void foo(){
    try {
        compute();
    }
    catch (tor::EMultiplicityOutOfRange e) {
        throw e;
    }
    catch (Any a) {
        throw a;
    }
    throw MyClass(14);
}

C++

void foo(){
  try {
    compute();
  }
  catch (tor::EMultiplicityOutOfRange e){
    throw e;
  }
  catch (...) {
    throw;
  }
  throw MyClass(14);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1590 IBM Rational Tau User Guide June 2009



Action
Loop Action

A Loop Action is translated to a while statement, a do-while statement 
or a for statement.

These three statements are all variants of the same construct, and which state-
ment that will be used is determined by the syntax variant used in the UML 
model. 

Example 547: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

Integer a = 0;
for (Integer i = 0; i < 10; i = i + 1) {
    a = a + 1;
}
while (a > 0)
    a = a - 1;
do {
    a = a + 1;
} while (a < 10);

C++

tor::Integer a = 0;
for (tor::Integer i = 0; i < 10; i = i + 1) {
    a = a + 1;
}
while (a > 0) 
  a = a - 1;
do {
a= a+ 1;
} while (a < 10);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Stop Action

A Stop Action is translated to a call of the “finish” function on the 
statemachine class that corresponds to the statemachine 
implementation in which the stop action is contained.

Example 548: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

stop;
June 2009 IBM Rational Tau User Guide 1591



Chapter 52: C++ Application Generator Reference
C++

finish();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

NextState Action

Normal NextState Action

A “normal” NextState Action (a nextstate action that specifies a state) is 
translated to a call of the “enter” function on the state variable 
corresponding to the state specified as the next state.

Example 549: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

nextstate idle;

C++

m_s_idle->enter();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the nextstate action specifies a 'via' entry connection point, the 
address of the member variable that is the translation of the entry 
connection point is passed as argument to the 'enter' call.

Example 550: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

nextstate idle via Cin;

C++

m_s_idle -> enter(&m_s_Idle->m_sm->Cin);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1592 IBM Rational Tau User Guide June 2009



Action
History NextState Action

A history NextState Action is translated to a call of the “enterHistory” 
function of the top region of the statemachine implementation that 
contains nextstate action.

Example 551: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

nextstate -;

C++

theTopRegion::enterHistory();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Deep History NextState Action

A deep history NextState Action is translated to a call of the 
“enterHistory” function of the top region of the statemachine 
implementation that contains the nextstate action, with the 
“deepHistory” flag set to true.

Example 552: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

nextstate ^-;

C++

theTopRegion::enterHistory(true /* deepHistory */);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Signal Sending Action

A Signal Sending Action is translated to a call of a “send” or “sendTo” 
function, with a dynamically created signal instance as argument.

The function “tor::sendTo” is used when the destination is explicitly spec-
ified (either as a DispatchableClass or as a Port). Otherwise the “send” 
function of the owner Dispatchable class is called, which will dispatch the 
signal according to the current architecture description.
June 2009 IBM Rational Tau User Guide 1593



Chapter 52: C++ Application Generator Reference
Example 553: Signal sending with and without explicit destination–––––––––––––

UML

output X.sig1;
output sig2(4);

C++

tor::sendTo(new sig1(), X);
m_owner->send(new sig2(4));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 554: Signal sending via port –––––––––––––––––––––––––––––––––––––

UML

   port port1 out with PingSignal;
...
   output PingSignal via port1;
...

C++

...
   sendTo( new PingSignal(), &(m_owner->port1) );
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If a signal sending action specifies the sending of more than one signal, there 
will be one “send” or “sendTo” call for each sent signal.

Decision Action

A Decision Action is translated to an if-statement, with one branch for 
each decision answer.

The reason for translating it to an if-statement instead of a switch-statement, 
is that switch-statements in C++ are much more constrained than UML De-
cision Actions.

Example 555: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

switch (e) {
  case <10 : {
     i = 1;
     break;
1594 IBM Rational Tau User Guide June 2009



Action
  }
  case >=10 : 
     break;
  default : {
     i = 3;
  }
}
switch (b < 8) {
  case true: {
    i = 1;
  }
  case false: {
    i = 0;
    break;
  }
}

C++

if (e < 10)
{
i = 1;
goto GEN_9AnS2IFnpu0Lxq66AVx4TFzV;

}
else if (e >= 10)
goto GEN_9AnS2IFnpu0Lxq66AVx4TFzV;

else
{
i = 3;

}
GEN_9AnS2IFnpu0Lxq66AVx4TFzV: 
if ((b < 8) == true)
{
i = 1;

}
else if ((b < 8) == false)
{
i = 0;
goto GEN_kpCCZVljYHVLaWD9DIlWN0DE;

}
GEN_kpCCZVljYHVLaWD9DIlWN0DE:;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Break actions within a ‘case’ clause are replaced with ‘goto’ statements 
which transfer control to the action that follows after the decision action. In 
case no action follows after the decision action an empty action is inserted 
which contains the label referenced by such ‘goto’ statements.

Note that the semantics for executing ‘case’ clauses is different in UML and 
C++. In C++ a trailing break statement must be used to prevent “falling 
through” into the next ‘case’ clause. In UML there is no semantics of “falling 
June 2009 IBM Rational Tau User Guide 1595



Chapter 52: C++ Application Generator Reference
through”, which means that it is not necessary to use a trailing break action 
for this purpose. However, it is still useful to use such a break action to break 
out from the case clause before reaching its last action.

Return Action

A Return Action that is contained in an OperationBody is translated to 
a return statement.

A Return Action that is contained in a transition is translated to a call of 
the “finish” function of the top region of the state machine 
implementation that contains the transition.

Example 556: Return action within a transition–––––––––––––––––––––––––––––

UML

start {
    return;
}

C++

void initialTransition( ) {
    theTopRegion::finish();
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the Return Action specifies a 'via' exit connection point, the address of 
the member variable that is the translation of the exit connection point, 
is passed as argument in the call of 'finish'.

Example 557: Return via connection point ––––––––––––––––––––––––––––––––

Return action within a transition specifying an exit connection point.

UML

start {
    return Cout;
}

C++

void initialTransition( ) {
    theTopRegion::finish(&Cout);
1596 IBM Rational Tau User Guide June 2009



Action
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Join Action

A Join Action is translated to a goto statement.

Compare with Example 543 on page 1587 for a simple example involving a 
join action.

An exception to the above rule applies if the join action is contained in a tran-
sition and references a label that is not defined within that same transition. 
Since different transitions are translated to different C++ functions, the de-
fault translation rule would translate such a join to a non-local goto, which is 
not legal C++. 

A Join Action that is contained in a transition, and which references a 
label defined in another transition, is translated into a call of the 
transition function that is the translation of the transition in which the 
label is contained. The call is followed by an immediate return 
statement.

Non-local joins will not be supported, unless the referenced label is the label 
of a label transition.

Example 558: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

void foo(Integer i) {
X:
  if (i == 1) {
    i = i + 1;
    join X;
  }
}

C++

void foo(tor::Integer i) {
X:
  if (i == 1) {
    i = i + 1;
    goto X;
  }
June 2009 IBM Rational Tau User Guide 1597



Chapter 52: C++ Application Generator Reference
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Timer Set Action

A Timer Set Action is translated to a call of the “set” function on the 
timer variable corresponding to the timer that is set.

The first argument in the call is the specified time-out expression. If no time-
out expression is specified in the Timer Set Action, there must be a default 
time-out expression specified in the timer definition which then is used in-
stead. The second argument in the call is a dynamically created instance of 
the tor::TimerEvent derivate class that is the translation of the timer defi-
nition. Actual timer parameters are translated to actual constructor parame-
ters in the creation of this instance.

Example 559: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

timer T1 (Integer i);
timer T2 () = 15;

void foo() {
  set T1 (5) = now + 12;
  set T2;
}

C++

class T1 : public virtual tor::TimerEvent {
public:
  tor::Integer i;
  T1(tor::Integer i) : i(i) {}

  static inline bool isTypeOf(tor::Event* e) {
    return tor::cast<T1*>(e) != 0;
  }
};

class T2 : public virtual tor::TimerEvent {
public:
  static inline bool isTypeOf(tor::Event* e) {
    return tor::cast<T2*>(e) != 0;
  }
};

tor::TimerObject timer_T1;
tor::TimerObject timer_T2;
1598 IBM Rational Tau User Guide June 2009



Action
void foo() {
timer_T1.set(tor::os::Time(tor::os::Time::now().to_dou

ble() + 12), new T1(5));
  
timer_T2.set(tor::os::Time(tor::os::Time::now().to_dou

ble() + 15, true), new T2());
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Timer Reset Action

A Timer Reset Action is translated to a call of the “reset” function on the 
timer variable corresponding to the timer that is reset.

Example 560: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

timer T1 (Integer i);

void foo() {
  reset T1 (2);
}

C++

class T1 : public virtual tor::TimerEvent {
public:
  tor::Integer i;
  T1(tor::Integer i) : i(i) {}

  static inline bool isTypeOf(tor::Event* e) {
    return tor::cast<T1*>(e) != 0;
  }
};

tor::TimerObject timer_T1;

void foo() {
  timer_T1.reset();
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The only purpose of the actual arguments that is used in the Timer Reset Ac-
tion in UML is to identify which (possibly overloaded) version of a timer 
that shall be reset. These actual arguments are thus not visible in the C++ 
translation.
June 2009 IBM Rational Tau User Guide 1599



Chapter 52: C++ Application Generator Reference
Internals
The Internals construct is not part of standard UML, but is an IBM Rational 
specific extension originally introduced for supporting convenient design of 
components. It has several similarities with the Bridge design pattern, but is 
not exactly the same. For C++ generation, Internals are ignored. The purpose 
of an Internals can be achieved by using the Bridge pattern in the UML de-
sign (which then of course is handled by the C++ Application Generator).

Operation Body
An operation body in UML is translated to a C++ function body.

Although an operation body is directly owned by its operation in UML, it 
will not be so in C++, since it is not usually desired to put an implementation 
in a header file (with the exception of inline operations).

Example 561: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class C {
  void foo(){
    return;
  }
  void bar();
  void <<inline>> inl() {
    return;
  }
}
void C::bar(){
  return;
}

C++ (in file C.h)

class C {
  void foo();
  void bar();
  inline void inl() {
    return;
  }
}

C++ (in file C.cpp)

void C::foo(){
  return;
1600 IBM Rational Tau User Guide June 2009



Signal
}
void C::bar(){
  return;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Signal
A Signal is translated to a C++ class that inherits from the run-time-
class tor::Event.

Example 562: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

signal sig_Ping;

C++

class sig_Ping : public virtual tor::Event {
  static inline bool isTypeOf(tor::Event* e) {
    return (tor::cast<sig_Ping*>(e) != 0);
  }
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The name of a signal class is the translation of the name of the corresponding 
signal (compare “Name of definitions” on page 1540). However, since a 
signal is an event class there may be more than one signal in the same UML 
scope having the same name (overloading). If that is the case, all overloaded 
signals with the same name will have their names suffixed with the types of 
the signal parameters. See Example 563 on page 1602.

Note
The static 'isTypeOf' function determines if an event is dynamically typed 
by the signal corresponding to the class. The implementation of this func-
tion is based on the tor::cast function (which by default uses 
dynamic_cast).
June 2009 IBM Rational Tau User Guide 1601



Chapter 52: C++ Application Generator Reference
Signal parameter

If a signal has parameters the class that is the translation of the signal 
gets a constructor with one parameter for each signal parameter. In 
addition there will be one public attribute for each signal parameter. 
The name, type, multiplicity etc. of a constructor parameter and class 
attribute are all identical to the signal parameter for which they were 
generated.

If a signal parameter has no name the corresponding constructor parameter 
and class attribute will get the name “parX”, where X is the zero-based index 
of the signal parameter.

Example 563: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

signal sig_Ping(Charstring, Boolean b, Integer i = 3);
signal sig_Pong(Integer k);
signal sig_Pong(Boolean b);

C++

class sig_Ping : public virtual tor::Event {
public:
  tor::Charstring par0;
  tor::Boolean b;
  tor::Integer i;
  sig_Ping(tor::Charstring par0, tor::Boolean b, 
tor::Integer i = 3) :
    par0 (par0), b (b), i (i) { }
};
class sig_Pong_Integer : public virtual tor::Event {
public:
  tor::Integer k;
  sig_Pong_Integer(tor::Integer k) :
    k (k) { }
};
class sig_Pong_Boolean : public virtual tor::Event {
public:
  tor::Boolean b;
  sig_Pong_Boolean(tor::Boolean k) :
    b (b) { }
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1602 IBM Rational Tau User Guide June 2009



Timer
Note
The initializer of the generated constructor will assign the value of each 
constructor parameter to the corresponding class attribute.

––––––––––––––––––––––––––––––––––––––––––––––

Timer
A Timer is translated to a C++ class that inherits from the run-time-class 
tor::TimerEvent. 

This is done in exactly the same way as when translating a Signal. However, 
in addition there will be a definition of a timer variable, typed by 
tor::TimerObject, in the translation of the definition that owns the Timer.

The name of the timer variable is the same as the name of the Timer, but a 
“timer_” prefix is added.

Example 564: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

timer T (Integer a) = 15;

C++

class T : public virtual tor::TimerEvent {
public:
  tor::Integer a;
  T(tor::Integer a) :
    a (a) { }

  static inline bool isTypeOf(tor::Event* e) {
    return tor::cast<T*>(e) != 0;
  }

};

tor::TimerObject timer_T;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The default timeout value (15 in Example 564 on page 1603) is not directly 
visible in the C++ translation result. However, it is used in the translation 
of a Timer Set Action which do not specify a timeout value.
June 2009 IBM Rational Tau User Guide 1603



Chapter 52: C++ Application Generator Reference
State Machine
A UML state machine is modeled as a special kind of operation, but is trans-
lated in a special way. 

The focus here is on the common case when the state machine is contained 
in a class (when it is the “classifier behavior”). However, a state machine 
may also be declared as a separate definition outside a class (for example in 
a package), or as an inline state machine of a composite state. Compare with 
“State machine for defining a composite state” on page 1616 for how such a 
state machine is translated.

In the UML model a clear distinction is made between a state machine (the 
signature) and a state machine implementation (the implementation). In the 
C++ translation this distinction is not so clear. In fact, almost all interesting 
properties of a state machine are parts of its implementation, so this chapter 
will also cover the translation of state machine implementations.

A UML state machine is translated to a C++ class that inherits from the 
run-time class “tor::StateMachine”, and the run-time class 
“tor::TopRegion”.

The name of a state machine class is “C_SM”, where C is the name of the 
owner class, and SM is the name of the state machine.

Note
It is possible to use a simple state machine as the implementation of an ordi-
nary operation. If such a state machine implementation has no states, it will 
be translated as an ordinary operation body (the actions of the start transi-
tion will be put in the Operation Body.

If a UML class contains at least one state machine that is a constructor, 
the corresponding C++ class will inherit from the run-time class 
“tor::DispatchableClass”.

A generated Dispatchable class contains the following members:

• A member variable “m_sm” typed by the state machine class (which is the 
classifier behavior).
1604 IBM Rational Tau User Guide June 2009



State Machine
• A redefinition of the virtual function 
“tor::DispatchableClass::init”, with an implementation that cre-
ates an instance of the state machine class and stores it in the “m_sm” 
member variable. It also calls the inherited implementation. 
If the UML class already has an ‘init’ operation another one will of 
course not be generated. The C++ Application Generator then assumes 
that the existing ‘init’ operation performs the initialization of the Dis-
patchable class in some custom way. 

Note
The ‘init’ function also is used for the purpose of Initialization of static 
structure. 

• A redefinition of the virtual function 
“tor::DispatchableClass::finish”, with an implementation that 
deletes the “m_sm” member variable. It also calls the inherited implemen-
tation. 
If the UML class already has an ‘finish’ operation another one will of 
course not be generated. The C++ Application Generator then assumes 
that the existing ‘finish’ operation performs the finalization of the Dis-
patchable class in some custom way.

• A redefinition of the virtual function 
“tor::DispatchableClass::start”, with an implementation calls 
the inherited implementation in order to start the state machine of the 
Dispatchable class. The implementation also starts each active instance 
that is a part of the owning Dispatchable class instance. This means that 
when an instance of an active class is started, all contained instances will 
also be recursively started.
If the UML class already has a ‘start’ operation another one will of 
course not be generated. The C++ Application Generator then assumes 
that the existing ‘start’ operation performs the starting of the state ma-
chine (and contained instances) in some custom way.

• A redefinition of the virtual function 
“tor::DispatchableClass::receive”, with an implementation that 
just calls the inherited function.

• A redefinition of the virtual function 
“tor::DispatchableClass::getClassifierBehavior”, with an 
implementation that returns the “m_sm” member variable.

• A typedef of “tor::DispatchableClass” which is called 
“theDispatchableClass”.
June 2009 IBM Rational Tau User Guide 1605



Chapter 52: C++ Application Generator Reference
• Friend declarations of the statemachine class and all state classes con-
tained in the statemachine class.

A generated statemachine class contains the following members:

• A member variable called “m_owner” typed by the corresponding Dis-
patchable class.

• A constructor. The implementation of this constructor initializes the 
“m_owner” member.

• A virtual destructor. The implementation of this destructor calls ‘finish’ 
to finalize the Dispatchable class before destruction.

• A “getDispatchableClass” function with an implementation that re-
turns the owner variable as a tor::DispatchableClass.

• Two type definitions for the inherited tor::StateMachine and 
tor::TopRegion. These type definitions are called 
“theStateMachine” and “theTopRegion”.

• A redefinition of the virtual function “tor::StateMachine::init”, 
with an implementation that calls the inherited function “addRegion” 
with “this” as argument.

• Friend declarations of all contained state classes.

Example 565: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

active class C {
    statemachine initialize { 
       ... 
    }
}

C++

class C : public virtual tor::DispatchableClass {
protected:
  typedef tor::DispatchableClass theDispatchableClass;
public:
C() : m_sm(NULL) {}
virtual ~C()
{
finish();

}
  virtual void init() {
    m_sm = new C_initialize(this);
    theDispatchableClass::init();
  }
1606 IBM Rational Tau User Guide June 2009



State Machine
virtual void finish() {
if (m_sm) {
delete m_sm;
m_sm = NULL;

}
}
virtual void start() {

theDispatchableClass::start();
}
virtual bool receive(tor::Event* e) {

return theDispatchableClass::receive(e);
}

  virtual tor::StateMachine* getClassifierBehavior {
    return m_sm;
  }
  friend class C_initialize;
C_initialize* m_sm;

};

class C_initialize : public virtual tor::StateMachine,
                     public tor::TopRegion {
public:
  typedef tor::StateMachine theStateMachine;
  typedef tor::TopRegion theTopRegion;
  C_initialize(C* owner) : m_owner(owner) {}
  virtual ~C_initialize() {}
  virtual void init() {
    theStateMachine::addRegion(this);
  }
  virtual tor::DispatchableClass* getDispatchableClass() 
{
    return m_owner;
  }
protected:
  C* m_owner;
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

State

A state is translated to a class. The name of the class is the translation of 
the state name (compare “Name of definitions” on page 1540), and the 
class inherits from the run-time class “tor::State”.

The state class contains the implementation of all Triggered transitions orig-
inating from that state.

The statemachine class will also get a member variable for each state, named 
“m_s_N”, where N is the translation of the state name. The prefix “m_s_” is 
short for member state.
June 2009 IBM Rational Tau User Guide 1607



Chapter 52: C++ Application Generator Reference
Each state class is instantiated in the “init” function of the state machine 
class, and each obtained state instance is stored in the corresponding member 
variable for the state. A corresponding delete statement for freeing the allo-
cated state is put in the destructor.

Friend declarations for the state class are added to both the 
statemachine class and the owner (Dispatchable) class.

This is done since the implementation of a state class may need to access pri-
vate data of the statemachine class or even the owner (Dispatchable) class 
(for example when transferring signal data to variables defined in the owner 
class or within the statemachine implementation). 

Example 566: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

active class C {
    statemachine initialize {
        start {
            {
            }
            nextstate Idle;
        }
        state Idle;
    }
}

C++

class C : public virtual tor::DispatchableClass {
public:
  friend class C_initialize;
  friend class Idle;
  ...
};

class C_initialize : public virtual tor::StateMachine, 
public tor::TopRegion {
public:
  ...

  virtual ~C_initialize() { 
    ...
    if (m_s_Idle)
      delete m_s_Idle;
  }

  virtual void init() {
    ...
     m_s_Idle = new Idle(this, this);
1608 IBM Rational Tau User Guide June 2009



State Machine
    m_s_Idle->init();
    ...
  }

  class Idle : public tor::State {
  public:
    Idle(tor::Region* region, C_Initialize* owner ) : 
      tor::State(region), 
      m_owner(owner) {}
    tor::Dispatchable::EventAction execute(tor::Event* 
e);
  protected:
    C_Initialize* m_owner;
  };

protected:
...
  Idle* m_s_Idle;
public:
  friend class Idle;
};

For brevity, the example has left out most things not related to the translation 
of the state.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A state may contain or reference a state machine, in order to become a com-
posite state. The translation of such a state is described in “State machine for 
defining a composite state” on page 1616.

Start transition

A start transition is translated to a function “initialTransition” in 
the statemachine class that is the translation of the statemachine 
implementation in which the start transition is contained.

The implementation of “initialTransition” is the translation of the ac-
tions of the start transition. This translation follows exactly the same rules as 
for any other Action.

Compare with “Triggered transition” on page 1610 for an example of trans-
lating a start transition.
June 2009 IBM Rational Tau User Guide 1609



Chapter 52: C++ Application Generator Reference
Triggered transition

A triggered transition is translated to a function in the statemachine 
class that is the translation of the statemachine implementation in 
which the triggered transition is contained. Also, it yields an if-statement 
in the 'execute' function of each state class, corresponding to a state in 
which the transition may be triggered.

The name of the “transition function” is

1. if the transition has no guard and no asterisk trigger: 

trans_<StateNames>_<SignalClassNames> 
2. otherwise: 

trans_<StateNames>_< SignalClassNames >_<GUID> 

<StateNames> are the names of all states in which the transition may be trig-
gered (separated by underscores), and <SignalClassNames> are the names 
of all classes corresponding to any Signal that may trigger the transition.

<GUID> is the GUID of the triggered transition.

The if-statement in the 'execute' functions uses the 'isTypeOf' function to 
test that the dynamic type of the signal receipt event matches the static event 
type specified in the trigger of the transition. If so the current state is left (by 
calling the 'leave' function) and the transition function is called. Finally the 
event is deleted and the 'execute' function returns 'Consumed' to indicate 
that the event has been consumed.

Example 567: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

statemachine initialize {
  Charstring 'from';
start {

    {
      {
        count = 0;
      }
    }
    ^ destination.sig(strName);
    nextstate Idle;
  }
  state Idle;
  for state Idle;
    input sig('from') {
      {
1610 IBM Rational Tau User Guide June 2009



State Machine
        {
          Charstring name = strName;
          count = count + 1;
        }
      }
      ^ destination.sig(strName);
      nextstate Idle;
    }
}

C++

class C_initialize : public virtual tor::StateMachine,
                     public tor::TopRegion {
    protected:
    C* m_owner;
    
    class Idle : public tor::State {
        protected:
        C_initialize* m_owner;
        public:
        Idle(tor::Region* region, C_initialize* owner ) 
        : tor::State(region), m_owner(owner){
        
        }        
        tor::Dispatchable::EventAction execute( 
tor::Event* e ) {
            if (sig::isTypeOf(e))
                {
                m_owner->from = tor::cast<sig*>(e)-
>sender;
                    {
                        leave();
                        m_owner->trans_Idle_sig(e);
                        delete e;
                        return 
tor::Dispatchable::Consumed;
                    }
                }
            return tor::Dispatchable::NoMatch;
        }
    };

    private:
tor::Charstring from;

    protected:
    Idle* m_s_Idle;
    public:
    virtual void initialTransition( ) {
        {
            {
                m_owner->count = 0;
            }
        }

tor::sendTo(new sig(m_owner->strName), m_owner-
June 2009 IBM Rational Tau User Guide 1611



Chapter 52: C++ Application Generator Reference
>destination);
      m_s_Idle->enter();
    }
    
    void trans_Idle_sig(tor::Event* theEvent) {
        {
            {
                tor::Charstring name = m_owner->strName;
                m_owner->count = m_owner->count + 1;
            }
        }
        m_s_Idle->enter();
    }    
};

For brevity, the example has left out most things not related to the translation 
of the triggered transition.

The event that triggered a transition is available as a parameter of the gener-
ated “transition functions”. This parameter is called theEvent and can be ac-
cessed from the actions of the transition by using target code.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
The actual arguments of a received signal are assigned to the variables ref-
erenced in the UML signal sending action. 

Multiple triggers

If a triggered transition has more than one trigger, the transition can be 
triggered by any of the events specified by these triggers.

Thus, the if-statement condition for the transition in the 'execute' function 
will be extended to check the event type against the event types of all trig-
gers, and becomes true if any of these matches.

Example 568: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

  state Idle;
  for state Idle;
    input sig('from'), sig2(x) {
      {
...
      }
      nextstate Idle;
    }
}

1612 IBM Rational Tau User Guide June 2009



State Machine
C++

class Idle : public tor::State {
    protected:
    C_initialize* m_owner;
    public:
    Idle(tor::Region* region, C_initialize* owner ) 
    : tor::State(region), m_owner(owner){
        
    }        
    tor::Dispatchable::EventAction execute( tor::Event* 
e ) {
        if (sig::isTypeOf(e) || sig2::isTypeOf(e)) {
            if (sig::isTypeOf(e)) {
                m_owner->from = tor::cast<sig*>(e)-
>sender;
            }
            if (sig2::isTypeOf(e)) {
                m_owner->x = tor::cast<sig2*>(e)->
            }
            leave();
            m_owner->trans_Idle_sig(e);             
            delete e;
            return tor::Dispatchable::Consumed;
        }
        return tor::Dispatchable::NoMatch;
    } 
};

The code that transfers actual signal arguments to state machine variables in 
this case will be placed inside an if-statement checking that the event types 
match.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A special case of multiple triggers, is the case of an asterisk (‘*’) representing 
a list of all possible signals to receive:

A triggered transition with an asterisk trigger ('*') is triggered by a 
received event of any kind. The if-statement condition for such a 
transition will thus just be a check that the event (e) is not NULL (the 
part of the condition that is derived from specified triggers).

The if-statement for an asterisk trigger is placed as the last if-statement in the 
execute function.

Example 569: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

...
June 2009 IBM Rational Tau User Guide 1613



Chapter 52: C++ Application Generator Reference
  for state Idle;
    input * {
...
    }
}

C++

class Idle : public tor::State {
...

tor::Dispatchable::EventAction execute(tor::Event* e 
) {

if (e)
{

...
}
return tor::Dispatchable::NoMatch;

}        
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Guard

A guard on a triggered transition is translated to an additional 
expression in the if-statement for the transition in an 'execute' function. 
The expression must evaluate to true for the transition to be triggered.

Example 570: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

...
  for state Idle;
    input sig('from') [myGuard == true]{
...
    }
}

C++

tor::Dispatchable::EventAction execute( tor::Event* e ) 
{
    if (sig::isTypeOf(e) && (myGuard == true))
        {
...
        }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1614 IBM Rational Tau User Guide June 2009



State Machine
If a transition only has a guard and no triggers, the transition should be trig-
gered as soon as the guard expression evaluates to true, without the reception 
of an event. Therefore the if-statement for the transition will in this case only 
check that the event variable ('e') is NULL, and that the guard expression is 
true.

Example 571: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

...
  for state Idle;
    [myGuard == (x > 14)]{
...
    }
}

C++

tor::Dispatchable::EventAction execute( tor::Event* e ) 
{
    if (!e && (x > 14))
        {
...
        }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Label transition

A label transition is translated to a function in the statemachine class 
that is the translation of the statemachine implementation in which the 
label transition is contained.

The name of the “transition function” is “trans_<LabelName>”, where 
<LabelName> is the name of the label of the label transition.

Example 572: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

statemachine initialize {
  L:
  {
    count = 1;
  }
  ...
}

June 2009 IBM Rational Tau User Guide 1615



Chapter 52: C++ Application Generator Reference
C++

class C_initialize : public virtual tor::StateMachine,
public tor::TopRegion {

  ...
  void trans_L() {
    count = 1;
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

State machine for defining a composite state

A state machine that is not defined as the “classifier behavior” of a class, can 
be used to define a sub-state machine of a composite state. Such a state ma-
chine can either be defined as a stand-alone state machine that can be refer-
enced independently from different composite states, or it can be defined as 
an inline sub-state machine of one particular composite state.

A “composite state” state machine is translated in the same way as a 
“classifier behavior” State Machine, with the following modifications:

1. There is no Dispatchable class to transform in this case.

2. The name of the state machine class is C_S_SM, if the state machine is 
the inline state machine of a composite state, or SM if the state machine 
is a stand-alone state machine. S is the name of the composite state, and 
C is the name of the state machine class that is the translation of the state 
machine implementation that contains that state. SM is the name of the 
state machine.

3. The “m_owner” attribute is typed by the class that is the translation of the 
owning statemachine (in the case of an inline statemachine), or by 
“tor::DispatchableClass” (in the case of a stand-alone statema-
chine).

4. A member attribute “m_ownerState” is added. Its type is the class that 
is the translation of the owning state (in the case of an inline statema-
chine), or by “tor::State” (in the case of a stand-alone statemachine).

5. The implementation of the “getDispatchableClass” function is mod-
ified for the case of an inline state machine. It will return 

"m_owner->getDispatchableClass()", 
in order to recursively get to the owner Dispatchable class.
1616 IBM Rational Tau User Guide June 2009



State Machine
The state class of a composite state will contain an “init” function which 
instantiates the sub-state machine class, and the obtained state machine in-
stance is stored in a member variable “m_sm” in the class of the composite 
state. A corresponding delete statement for freeing the allocated state ma-
chine is put in the destructor of the state class.

The “init” function of a state class is called in the “init” function of the 
state machine class for the state machine implementation that owns the state.

Example 573: Composite state with inline state machine –––––––––––––––––––––

UML

statemachine initialize {
...      
  state Idle : statemachine initialize {
  ...
  };
}

C++

class C_initialize_Idle_initialize : public virtual 
tor::StateMachine,
                                     public 
tor::TopRegion {

  class Idle : public tor::State {
      protected:
      C_initialize* m_owner;
      public:
      Idle(tor::Region* region, C_initialize* owner);
      tor::Dispatchable::EventAction execute(tor::Event* 
e);

      virtual void init() {
         m_sm = new 
C_initialize_Idle_initialize(m_owner, this);
         m_sm -> init();
      }

      C_initialize_Idle_initialize* m_sm;
      virtual tor::StateMachine* getStateMachine() {
        return m_sm;
      }
  };

...
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1617



Chapter 52: C++ Application Generator Reference
Example 574: Composite state with non-inline state machine –––––––––––––––––

UML

statemachine initialize {
...      
  state Idle : SM {
  ...
  };
}
statemachine SM {
...
}

C++

class Idle : public tor::State {
    protected:
    C_initialize* m_owner;
    public:
    Idle(tor::Region* region, C_initialize* owner);
    tor::Dispatchable::EventAction execute(tor::Event* 
e);

    virtual void init() {
       m_sm = new SM(m_owner->getDispatchableClass(), 
this);
       m_sm -> init();
    }

    SM* m_sm;
    virtual tor::StateMachine* getStateMachine() {
      return s_sm;
    }
};

class SM : public virtual tor::StateMachine,
           public tor::TopRegion {
...
}

This shows that the only difference between a composite state that has an in-
line state machine and a composite state that has a non-inline state machine 
is a small difference in the implementation of the “init” function.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1618 IBM Rational Tau User Guide June 2009



State Machine
Connection point

A connection point is translated to a member variable in the 
statemachine class that is the translation of the state machine in which 
the connection point is contained.

The name of the member variable is the translation of the connection point 
name. The type of a connection point is tor::EntryPoint for an entry con-
nection point, and tor::ExitPoint for an exit connection point.

The connection point member variables are initialized in the constructor of 
the state machine class.

Example 575: Connection point ––––––––––––––––––––––––––––––––––––––––––

UML

active class C : DispatchableClass {
    statemachine initialize {
...
        state Idle : statemachine initialize
        in Cin
        out Cout {
            start Cin {
...
            }
            start {
...
            }
            state WaitForSig;
            for state WaitForSig;
                input sig() {
                    return Cout;
                }
        };
        for state Idle;
            [Cout] {
                {
                    count = 14;
                }
                stop;
            }
    }
}

C++

class C_initialize : public virtual tor::StateMachine, 
                     public tor::TopRegion {
    public:
    void trans_Idle_Cout() {
June 2009 IBM Rational Tau User Guide 1619



Chapter 52: C++ Application Generator Reference
      m_owner->count = 14;
finish();

    }
    virtual void exitPointTransitions( tor::ExitPoint* 
ep) {
      if(ep == &m_s_Idle -> m_sm -> Cout) {

if (m_current)
m_current->leave();

        trans_Idle_Cout();
        return;
    }
    protected:
    Idle* m_s_Idle;
};
class C_initialize_Idle_initialize : public virtual 
tor::StateMachine,         
                                     public 
tor::TopRegion {
    friend class WaitForSig;
    
    public:
    void trans_Cin() {
    ...
    }
    virtual void entryPointTransitions( tor::EntryPoint* 
ep) {
      if (ep == &Cin) {
        trans_Cin();
        return;
      }
    }
    Idle* m_ownerState;
    public:
    tor::EntryPoint Cin;
    tor::ExitPoint Cout;
};

Note
Details not related to the translation of the connection points have been 
omitted from the example.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Architecture
The architecture (or internal structure) of a class is composed of the attributes 
of the class, the ports of the class and the connectors that link them together. 
This section describes how these concepts are translated to C++ code.
1620 IBM Rational Tau User Guide June 2009



Architecture
Attributes

For each attribute that is typed by an active class and has a multiplicity 
> 1 a protected utility method in the containing class is generated that 
automatically will add an instance to the attribute, add the instance to 
the same dispatcher as the owner, initialize the instance, connect it to 
appropriate other instances based on the surrounding connectors, and 
finally start it.

Example 576: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

active class Sys {
...
part Ping[*] p1;
...
part Pong[*] p2;
connector c1 from p1.pingP to p2.pingP;
...
}

C++

...
void Sys::p1_Insert( Ping * p ) {
.p1.append( p );
.addToCurrentDispatcher(p);
.p->init();
.for (int i = 1; i <= p2.length(); ++i) {

c1.connect(&(p->pingP), &(p2[i]->pongP));
.}
.p->start();

}
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

It is not supported to change the collection type used for the attribute that 
contains the active instance. It must be a type that implements the iteration 
operators used by the Insert operation.
June 2009 IBM Rational Tau User Guide 1621



Chapter 52: C++ Application Generator Reference
The calls of the predefined template operation tor::insert<Any 
p>(Any obj) is translated to a call to the appropriate utility method as 
defined in previous rule.

Example 577: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

   part Ping[*] p1;
...
   tor::insert<p1>( new Ping() );
...

C++

...
   this->p1_Insert( new Ping() );
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For each active class a protected utility method in the corresponding 
class is generated that automatically will disconnect it from all 
connectors it currently is connected to.

Example 578: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

active class Ping {
...
   port p1 out with PongSignal;
...
}

C++

...
void Ping::disconnect() {
      p1.disconnect();
}
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1622 IBM Rational Tau User Guide June 2009



Architecture
Connectors

Each connector is translated to an attribute of the containing class typed 
by tor::Connector. The name of the created attribute is the translation 
of the Connector name.

Example 579: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

...
  connector c1 from part1.port1 with sig1 to part2.port2 
with sig2;
...
    }
}

C++

...
  tor::Connector c1;
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The connectors are used as the basis for connecting ports and support a 
'connect' method that can connect two ports on different objects.

Note
Implicit connectors (connectors that are created based on matching uncon-
nected ports) are not supported.

Connectors can have constraints with respect to the transported signals/sup-
ported interfaces etc. associated with them. These constraints are checked 
statically by the tool but not enforced at run-time. In most cases the only con-
sequence is that the execution is faster, but it also implies that 'connector 
splitting' based on different subsets of supported signals will not work. If 
more than one connector is connected to a port the signal will always follow 
the first connector that is connected.

In general it is good to avoid run-time ambiguities of where to deliver a sent 
signal. If connectors are not relied upon for signal transportation (i.e. signals 
are sent to explicitly specified receivers) no ambiguities can arise. If connec-
tors are used, you may use a 'via <port>' clause to specify which outgoing 
port to use on the sender. This can reduce or eliminate the risk of ambiguities 
in case multiple outgoing ports exist. If a signal is output without specifying 
June 2009 IBM Rational Tau User Guide 1623



Chapter 52: C++ Application Generator Reference
an explicit receiver, nor an outgoing port, there must exist exactly one 
matching port and connector path to the receiver at run-time. Otherwise the 
signal will be lost (or delivered to an unexpected receiver).

Ports

Each port is translated to an attribute of the containing class typed by 
tor::Port for each communication direction supported by the port. 
The name of the created attribute is <portName>_in and <portName>, 
where <portName> is the translation of the Port name.

Example 580: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

...
  port p1 in with sig1 out with sig2;
...

C++

...
  tor::Port p1_in;
  tor::Port p1;
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For each port that is a behavior port there is code generated in the init 
method for the corresponding class that initializes the 
“targetBehavior” attribute of the port to true.

Example 581: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

active class Pong ... {
...
  bport p1 in with sig1 out with sig2;
...
}

C++

...
void Pong::init() {
    ...
    p1.targetBehavior = this;
1624 IBM Rational Tau User Guide June 2009



Architecture
    ...
}
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Initialization of static structure

When dynamically creating an instance of a class that contains static parts (as 
defined by their Multiplicity), instances of the parts will automatically be 
created and initialized. This is accomplished by generating code in the init 
method for the containing class.

For each attribute typed by an active class with a static multiplicity there 
is code generated in the init method that initializes the static instances.

Example 582: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

active class Top {
...
part Ping[1] ping;
part Pong[1] pong;
connector c1 from ping.port1 with sig1 to pong.port2 
with sig2
...
}

C++

...
class Top ... {
...
Ping ping;
Pong pong;
...
}
...
void Top::init() {
    m_sm = new Top_initialize(this);
    theDispatchableClass::init();

addToCurrentDispatcher(&ping);
    addToCurrentDispatcher(&pong);
    ping.init();
    pong.init();
    c1.connect(&(ping.pingP),&(pong.pongP));
}
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1625



Chapter 52: C++ Application Generator Reference
If the UML class already has an ‘init’ operation another one will of course 
not be generated. The C++ Application Generator then assumes that the ex-
isting ‘init’ operation performs the initialization of the Dispatchable class 
in some custom way. 

Note
The ‘init’ function also is used for the purpose of State Machine initializa-
tion. 

For each attribute typed by an active class with a defined initial 
cardinality there is code generated in the init method that initializes the 
initial instances.

Example 583: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

active class Top {
...
part Ping[*]/2 ping;
part Pong[*]/3 pong;
connector c1 from ping.port1 with sig1 to pong.port2 
with sig2
...
}

C++

...
class Top ... {
...
tor::String<Ping> ping;
tor::String<Pong> pong;
...
}
...
void Top::init() {
    m_sm = new Top_initialize(this);
    theDispatchableClass::init();

tor::addToDispatcher<Ping>(this, ping, 2);
    tor::addToDispatcher<Pong>(this, pong, 2);

tor::init(ping, 2);
tor::init(pong, 2);
for (int i2 = 1; i2 <= 2; i2++) {

      for (int i3 = 1; i3 <= 3; i3++) {
        c1.connect( &(ping[i2]->pingP), &(pong[i3]-
>pongP) );
      }
    }
1626 IBM Rational Tau User Guide June 2009



Architecture
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

tor::addToDispatcher, tor::init and tor::start are utility func-
tions of the TOR run-time library. They are used instead of for-loops to gain 
readability.

Note
Static initialization (with initial cardinality > 0 or a constant multiplicity > 
1) is only supported when the created class has a constructor without pa-
rameters.

Disconnecting an instance

When deleting an active instance with ports it will automatically be removed 
from the architecture, for example it will be disconnected from the connec-
tors that it is attached to. This is handled by the run-time framework.
June 2009 IBM Rational Tau User Guide 1627



Chapter 52: C++ Application Generator Reference
Package TTDCppPredefined 
The TTDCppPredefined package contains UML representations of C++ lan-
guage constructs and predefined types. It is used by both the C/C++ Import 
and the C++ Application Generator, but may of course be used by the user 
also when none of these tools are used.

Predefined types

The TTDCppPredefined package contains the following UML types repre-
senting predefined C++ types:

UML Type
Predefined 
UML Type C/C++ Fundamental Type

int Integer signed int,
int

unsigned int Integer unsigned int,
unsigned

long int Integer signed long int,
signed long,
long int,
long

unsigned long int Integer unsigned long int,
unsigned long

short int Integer signed short int,
signed short,
short int,
short

unsigned short int Integer unsigned short int,
unsigned short

long long int Integer signed long long int,
signed long long,
long long int,
long long

unsigned long long int Integer unsigned long long int,
unsigned long long

char Character char

signed char Character signed char

unsigned char Character unsigned char
1628 IBM Rational Tau User Guide June 2009



Package TTDCppPredefined
Stereotypes

The TTDCppPredefined package contains the following UML stereotypes 
representing C++ constructs that cannot directly be represented in plain 
UML:

'globalNamespace' extends Package

Specifies that no explicit namespace should be generated for the package. In-
stead the package represents the implicit global namespace of C++. 

'struct' extends Class

Specifies that the class should be translated into a struct instead of a class. 

'inheritanceVisibility' extends Generalization

Contains attributes for specifying that a generalization should be translated 
into inheritance that is non-public (private or protected)

'virtualInheritance' extends Generalization

Contains attributes for specifying that a generalization should be translated 
into virtual inheritance

'inline' extends Operation

Specifies that a function is declared as inline.

wchar_t Character wchar_t

float Real float

double Real double
long double

bool Boolean bool

UML Type Predefined 
UML Type

C/C++ Fundamental Type
June 2009 IBM Rational Tau User Guide 1629



Chapter 52: C++ Application Generator Reference
'bitfield' extends Attribute

Contains an integral attribute for specifying the number of bits to use for a 
bitfield.

'CppReference' extends StructuralFeature

Specifies that an attribute or parameter should be a C++ reference (&). This 
stereotype is mainly used for specifying that the return parameter of an oper-
ation should be mapped to a C++ function which returns a reference.

'auto' extends StructuralFeature

Specifies that an attribute or parameter should have the auto storage speci-
fier in C++.

'register' extends StructuralFeature

Specifies that an attribute or parameter should have the register storage 
specifier in C++.

'mutable' extends Attribute

Specifies that an attribute should be declared as mutable.

'volatile' extends StructuralFeature, Operation

Represents the C++ volatile specifier.

'explicit' extends Operation

Specifies that a constructor should be marked as explicit in C++.

'export' extends Signature

Specifies that a template definition should be marked as exported in C++ 
using the export keyword.

'friend' extends Dependency

This stereotype is used in the UML representation of a C++ friend declara-
tion. See Friend dependency for more information.
1630 IBM Rational Tau User Guide June 2009



Package TTDCppPredefined
'__declspec' extends Definition

Represents the __declspec keyword which are supported by some C/C++ 
compilers as an extension to the C/C++ language.

'manifest implementation' inherits manifest

This stereotype can be used instead of the ordinary 'manifest' stereotype to 
specify that a file artifact representing a C++ implementation file manifests 
all implementation aspects of the supplier definition. So instead of having to 
specify for each operation body of a class that they should be put in the same 
C++ implementation file, it is possible to specify that by just one depen-
dency, stereotyped by this stereotype, from the file artifact to the class.
June 2009 IBM Rational Tau User Guide 1631



Chapter 52: C++ Application Generator Reference
Translation Options
Options to the C++ Application Generator are represented as Tagged values 
for attributes of the <<C++ Application Generator>> stereotype contained in 
the C++ Application Generator profile package. The options are summarized 
in the sections below. For each option the corresponding stereotype attribute 
is specified.

Name mangling options

These options are related to name mangling which is performed by the code 
generator when a UML name cannot be used as is in the generated C++ code.

Name prefix
nameManglingOptions = NameManglingOptions (. namePrefix .) 
(string)

Specifies which prefix to give to definitions to make their name legal ac-
cording to C++ naming rules. Default is “Name_”.

Enable non-ASCII compilation
enableUnicode (boolean)

If set to true, all character and Charstring values will be enclosed in the _T 
macro, which makes it possible to compile the generated code in both ASCII 
and non-ASCII (e.g. Unicode) configurations.

Default model-to-file mapping options

These options are related to the default Model-to-File Mapping used by the 
code generator.

Use default model-to-file mapping
generateDefaultFileMapping (boolean)

If set to true, the C++ Application Generator will generate a UML specifica-
tion for the Model-to-File Mapping it will use by default.

Use precompiled header
fileMappingOptions = FileMappingOptions (. 
precompiledHeader .) (string)
1632 IBM Rational Tau User Guide June 2009



Translation Options
The specification of a precompiled header file to be used for all implementa-
tion files that are generated in the default model-to-file mapping.

Code formatting options

These options are related to how the generated code will be formatted.

Indentation
codeFormattingOptions = CodeFormattingOptions (. indentSize 
.) (natural)

The number of spaces to use for each indentation level.

Code organization options

These options are related to how the generated code will be organized.

Sorting of bodies
sortingOptions = CodeOrganizationOptions (. 
sortOperationBodies .) (SortOperationBodiesKind)

This option controls how to organize operation bodies in the generated code. 
They can either be sorted alphabetically, or according to the order of the cor-
responding operations in the model. In the latter case, synthesized bodies will 
be placed after other non-synthesized operation bodies. 

Note that this option does not affect inline operation bodies.

Grouping of members
sortingOptions = CodeOrganizationOptions (. sortMembers .) 
(SortMembersKind)

This option controls how to group member definitions. They can be grouped 
either by their order in the model, or by their visibility. When grouping ac-
cording to order in the model, synthesized members will be placed after other 
non-synthesized members. When grouping according to visibility public 
members will be generated before protected members which in turn will be 
generated before private members.

Group transition if-statements according to trigger definition scope
sortingOptions = CodeOrganizationOptions (. 
sortTransitionIfStatements .) (Boolean)
June 2009 IBM Rational Tau User Guide 1633



Chapter 52: C++ Application Generator Reference
If this option is enabled, transition if-statements will be grouped according to 
the scope where the transition trigger is defined. Scopes more local to the 
transition will be placed before more remote scopes.

Enable COM agents
enableCOMAgents (boolean)

When this option is turned on agents implemented as COM objects will be 
enabled during code generation. Since there is a performance overhead asso-
ciated with using COM, you should not turn this option on unless you are 
using COM agents for customizing the code generator.

Support roundtrip
supportRoundtrip (boolean)

If set to true, the generated files will contain a few annotations (comments 
and macros) which makes it possible to “roundtrip” changes in the files back 
to the UML model. This option could be turned off if you do not intend to 
make changes in the generated files. Benefits with doing so include improved 
code generator performance (existing files do not need to be analyzed and 
can simply be overwritten) and less annotations in the generated code.

Time unit
timeUnit (TimeUnit)

Specifies the unit of time to use in the generated application. Choose between 
the time units: seconds, milliseconds, microseconds and nanoseconds.To use 
another time unit or change time unit dynamically at run-time, see “setTime-
Unit” on page 1674.

Link with TOR
torLibrary (TORLibraryLinkKind)

Specifies how the generated code should be linked with the TOR library. The 
default is to link with TOR as a static library, but there is also the option of 
linking with TOR as a dynamic (shared) library. For more information on this 
topic, see Building TOR.

If the generated code does not depend on the TOR library, this setting is ig-
nored.
1634 IBM Rational Tau User Guide June 2009



Translation Options
Instrumentation Options

These options are related to instrumentation of the generated code.

Enable instrumentation
instrumentationOptions = InstrumentationOptions (. enable 
.) (boolean)

When this option is turned on the C++ Application Generator will generate 
instrumented code. This typically includes two extra files 
torInstrumentation.h and torInstrumentation.cpp and also some 
minor additions to other generated files. The purpose of the instrumentation 
is to make the generated application able to communicate what it is doing by 
means of sending events (known as “meta events” to distinguish them from 
the application-level events). These meta events can be written to a log file 
or sent to the host IBM Rational Tau IDE in order to produce a sequence di-
agram trace showing what is happening in the application. Instrumentation 
must also be enabled in order to perform UML level debugging.

Synchronous instrumentation events
instrumentationOptions = InstrumentationOptions (. 
syncMetaEvents .) (boolean)

When this option is turned on the processing of meta events (i.e. events 
telling what the application is doing) is synchronous. This can be useful for 
example if the generated application is debugged in an external debugger 
while producing a sequence diagram in a host IBM Rational Tau IDE. The 
diagram will then be updated incrementally while stepping though the de-
bugged application.

Debug options

These options are related to UML level debugging of a model that has been 
translated to C++ by the C++ Application Generator.

Executable for debug session
debugSettings = DebugOptions (. executable .) (string)

When starting a debug session from IBM Rational Tau using the Launch 
command on a build artifact, the application that was generated from the 
build artifact will by default be launched, and attached to for debugging. This 
June 2009 IBM Rational Tau User Guide 1635



Chapter 52: C++ Application Generator Reference
option allows you to specify another executable to launch instead. This can 
for example be useful if a dynamic (shared) library was generated from the 
build artifact, and another application is used as host for the library.

Command line arguments
debugSettings = DebugOptions (. commandLineArgs .) (string)

Allows you to specify command-line arguments for the executable that is 
launched when starting a debug session from IBM Rational Tau using the 
Launch command.

Host name
debugSettings = DebugOptions (. host .) (string)

Specifies the name of the TCP/IP host for a debug session that is started by 
attaching to an already running executable.

TCP/IP port
debugSettings = debugOptions (. port.) (natural)

Specifies the port number of the TCP/IP host for a debug session that is 
started by attaching to an already running executable.

Include protection options

These options control the format of the include protection that are generated 
for each header file. See Include protection for more information.

Include Protection First String
includeProtSettings = IncludeProtectionSettings (. 
includeProtectionBegin .) (string)

Controls the format of the beginning of the include protection (generated in 
the beginning of the header files).

Include Protection Last String
includeProtSettings = IncludeProtectionSettings (. 
includeProtectionEnd .) (string)

Controls the format of the end of the include protection (generated in the end 
of the header files).
1636 IBM Rational Tau User Guide June 2009



Translation Options
Automatic model update
autoUpdate (boolean)

If set to true, model updates will be performed automatically when IBM Ra-
tional Tau detects that a generated C++ source file has been modified (for ex-
ample saved in a text editor). Use of this option requires that the Support 
roundtrip option also is enabled.

Automatic code generation
autoGenerate (boolean)

If set to true, C++ code generation will be performed automatically when a 
modified UML model is saved.

Automatically add operation bodies for operations
autoGenerateOperationBodies (boolean)

This option controls if the C++ Application Generator should automatically 
add empty operation bodies for operations which have no body defined in the 
model.
June 2009 IBM Rational Tau User Guide 1637



Chapter 52: C++ Application Generator Reference
Translation Customization

The output of the C++ Application Generator can be customized using 
agents. This gives the user a very precise control of the generated code. 

The generated code can be customized in two different ways:

1. Adding arbitrary text at certain locations in the generated files. This 
makes it possible to generate additional code, comments or preprocessor 
directives in conjunction with the ordinary code that gets generated.

2. Replacing the generation of certain constructs of the C++ language by an 
arbitrary text. This makes it possible to represent non-C++ constructs, 
such as use of macro libraries, as UML entities, and to define how they 
shall be translated to C++.

This chapter describes these two ways of customing the C++ Application 
Generator. Both methods are based on the definition of customization agents 
(see Chapter 79, Agents for more information about agents).

Adding Text During Code Generation

This kind of customization is based on tool events and agents triggered 
during code generation by these tool events. The customization that is pos-
sible is to add arbitrary text 

– at the beginning or end of a generated file (see tool event Print C++ 
Source File)

– just before or just after the generation of a C++ definition (see tool 
event Print C++ Definition)

The example umlCppAgentCustomization contains an example of how to 
write a customization agent using the C++ API in order to respond to the 
Print C++ Definition tool event.

Replacing Text During Code Generation

This kind of customization is modeled using user-defined stereotypes. These 
user-defined stereotypes are specializations of a set of built-in stereotypes 
that indicate which C++ construct (grammar rule) that should be customized, 
1638 IBM Rational Tau User Guide June 2009



Translation Customization
e.g. Operation Heading, Operation Definition, Typedef and so on. The built-
in stereotypes that are to be specialized by the user all have definitions on the 
following form:

stereotype customCppGen<GRAMMAR RULE> extends 
TTDMetamodel::<METACLASS> [0 .. 1] {
    abstract void Unparse(out Charstring result);
}

<GRAMMAR RULE> is the name of the C++ grammar rule that can be cus-
tomized through that stereotype, and <METACLASS> is the UML meta 
class that corresponds to that grammar rule.

Since the “Unparse” operation is defined to be abstract in the base stereotype, 
the user-defined stereotype must implement this operation. This is done by 
adding an “Unparse” operation with the same signature to the user-defined 
stereotype, and to apply the <<agent>> stereotype on that operation in order 
to define an implementation to execute. That agent implementation is re-
sponsible for assigning a string value to the output parameter “result”. That 
string will then be printed by the C++ Application Generator instead of the 
text that normally is generated for that particular grammar rule.

Note
We recommend that translation customization is not used in connection with 
round-trip engineering. If you anyway intend to roundtrip files that have 
been generated with user-defined customization agents active, the code that 
is added by these agents should be enclosed within the <GENERATED> 
tagged comments so that they will be ignored during roundtrip.

Example 584

To illustrate these customization possibilities, let’s see an example from a 
special application of C++: System-C. System-C is a C++ based hardware 
modeling language intended both for performance analysis and hardware 
synthesis. Essentially it is a library of C++ classes and utilities that provide 
a mechanism for describing hardware in C++. A central concept in System C 
is a “Module”. This is a C++ class but in source code it is defined using a 
macro SC_MODULE. A small System-C module (defining a nand gate) 
might look like this:

SC_MODULE(nand){
sc_in<bool> A, B;
sc_out<bool> O;
}

June 2009 IBM Rational Tau User Guide 1639



Chapter 52: C++ Application Generator Reference
Even though this a standard C++ class it is defined using a macro. Since this 
macro usage replaces the usual C++ class definition the standard C++ code 
generation can not generate this code. However using the customization pos-
sibilities this can be arranged. 

What we want to achieve is that an end user simply defines a class in the 
UML model and stereotypes it with <<Module>> to indicate that it is a 
System-C module. When he runs the C++ code generator this should gen-
erate the SC_MODULE macro as in the example above instead of the usual 
class header.

To accomplish this we create a UML profile for System-C with a stereotype 
definition <<Module>>. To make this stereotype affect the C++ code gener-
ation we make it inherit from the built-in stereotype customCppGenClass-
Heading. Furthermore we add one operation called “Unparse” that is defined 
to be an agent that will override the standard C++ code generation. The im-
plementation of the agent can be done in various ways but in this case we 
choose a C++ implementation provided in a separate DLL. In textual syntax 
the definition of the <<Module>> stereotype looks like this:

stereotype Module : customCppGenClassHeading {
<<agent(.implKind = CPP, 
implementation="some/path/myLib#Module.dll".)>>
void Unparse(out Charstring result);
}

When the System-C profile is loaded the C++ code generator will call the 
Unparse agent instead of emitting code for a class heading whenever it finds 
a class that is tagged with the stereotype <<Module>>.

The dynamic library Module.dll that is referenced from the agent definition 
contains the implementation in C++ of a function that assigns a text string 
value for the “result” output parameter. This text string is then used instead 
of the normal class heading. In this case the agent can be defined as follows 
in the C++ source code:

AGENT_IMPL( Module )
{
    tstring strReturn = _T("SC_MODULE( ");
    tstring strName;
    pContext->GetValue( _T("Name"), strName );
    strReturn += strName;
    strReturn += _T( " )" );

    u2::AgentParameter* apReturn = agentParameters.front();
    apReturn->Set(strReturn);
}

1640 IBM Rational Tau User Guide June 2009



Translation Customization
Note the implicit parameter “pContext” that identifies the element that trig-
gers the agent execution, in this case the <<Module>> class. The text string 
that will be part of the generated code is returned using the “agentParame-
ters” out parameter.

Customization Points

This section defines the contexts where the output of the C++ code generator 
can be customized by replacing the text that normally would be emitted for 
that particular context. The definition of what parts of the C++ code that is 
replaced is done in terms of the supported C++ grammar. See Chapter 51, 
C++ Textual Syntax.

Namespace Heading

Name of stereotype: customCppGenNameSpaceHeading

Extends: Package

Grammar rule:

<namespace definition> ::=

            ‘namespace’ [ <identifier> ]  <braced declarations>

Replaced part: ‘namespace’ [ <identifier> ]

Namespace

Name of stereotype: customCppGenNameSpace

Extends: Package

Grammar rule:

<namespace definition> ::=

            ‘namespace’ [ <identifier> ]  <braced declarations>

Replaced part: Entire rule

Class Heading

Name of stereotype: customCppGenClassHeading

Extends: Class

Grammar rule:
June 2009 IBM Rational Tau User Guide 1641



Chapter 52: C++ Application Generator Reference
<class definition> ::=

            <class key> [ <identifier> ] [ <base clause> ] <class body> 

Replaced part: <class key> [ <identifier> ] [ <base clause> ] 

Class

Name of stereotype: customCppGenClass

Extends: Class

Grammar rule:

<class definition> ::=

            <class key> [ <identifier> ] [ <base clause> ] <class body> 

Replaced part: Entire rule

Interface Heading

Name of stereotype: customCppGenInterfaceHeading

Extends: Interface

Grammar rule:

<interface definition> ::=

'UML_INTERFACE' <identifier> [ <base clause> ] <interface body>

Replaced part: 'UML_INTERFACE' <identifier> [ <base clause> ]

Interface

Name of stereotype: customCppGenInterface

Extends: Interface

Grammar rule:

<interface definition> ::=

'UML_INTERFACE' <identifier> [ <base clause> ] <interface body>

Replaced part: Entire rule

TypeDef

Name of stereotype: customCppGenTypedef
1642 IBM Rational Tau User Guide June 2009



Translation Customization
Extends: Syntype

Grammar rule:

<typedef declaration> ::=

            ‘typedef’ <decl specifier seq> <declarator>  ‘;’

Replaced part: Entire rule

Attribute

Name of stereotype: customCppGenAttribute

Extends: Attribute

Grammar rule:

<member declaration> ::=

                        [ <decl specifier seq> ]  [ <member declarator> ] ‘;’

            |           <function definition> [ ‘;’ ]

            |           <using declaration>

            |           <template declaration>

            |           <friend declaration>

            |           <typedef declaration>

Replaced part: [ <decl specifier seq> ]  [ <member declarator> ] ‘;’

Enumeration Heading

Name of stereotype: customCppGenEnumerationHeading

Extends: Datatype

Grammar rule:

<enum definition> ::=

            ‘enum’ [ <identifier> ] <enumerator body>

Replaced part: ‘enum’ [ <identifier> ] 

Enumeration

Name of stereotype: customCppGenEnumeration
June 2009 IBM Rational Tau User Guide 1643



Chapter 52: C++ Application Generator Reference
Extends: Datatype

Grammar rule:

<enum definition> ::=

            ‘enum’ [ <identifier> ] <enumerator body>

Replaced part: Entire rule

Union Heading

Name of stereotype: customCppGenUnionHeading

Extends: Choice

Grammar rule:

<class definition> ::=

            <class key> [ <identifier> ] [ <base clause> ] <class body> 

Replaced part: <class key> [ <identifier> ] [ <base clause> ] 

Union

Name of stereotype: customCppGenUnion

Extends: Choice

Grammar rule:

<class definition> ::=

            <class key> [ <identifier> ] [ <base clause> ] <class body> 

Replaced part: Entire rule

Operation Definition Heading

Name of stereotype: customCppGenOperationHeading

Extends: Operation

Grammar rule:

<function definition> ::=

[ <simple decl specifier seq> ] [ <type specifier> ] <declarator> <function 
body>
1644 IBM Rational Tau User Guide June 2009



Translation Customization
|           '#if' <expression> [ <simple decl specifier seq> ] [ <type specifier> ] 

            <declarator> <function body> '#endif'

Replaced part: [ <simple decl specifier seq> ] [ <type specifier> ] <declar-
ator> 

Operation Definition

Name of stereotype: customCppGenOperation

Extends: Operation

Grammar rule:

<function definition> ::=

[ <simple decl specifier seq> ] [ <type specifier> ] <declarator> <function 
body>

|           '#if' <expression> [ <simple decl specifier seq> ] [ <type specifier> ] 

            <declarator> <function body> '#endif'

Replaced part: [ <simple decl specifier seq> ] [ <type specifier> ] <declar-
ator> <function body>

Operation Declaration Heading

Name of stereotype: customCppGenOperationDeclarationHeading

Extends: Operation

Grammar rule:

<function definition> ::=

[ <simple decl specifier seq> ] [ <type specifier> ] <declarator> <function 
body>

|           '#if' <expression> [ <simple decl specifier seq> ] [ <type specifier> ] 

            <declarator> <function body> '#endif'

Replaced part: [ <simple decl specifier seq> ] [ <type specifier> ] <declar-
ator> 

Operation Declaration 

Name of stereotype: customCppGenOperationDeclaration
June 2009 IBM Rational Tau User Guide 1645



Chapter 52: C++ Application Generator Reference
Extends: Operation

Grammar rule:

<function definition> ::=

[ <simple decl specifier seq> ] [ <type specifier> ] <declarator> <function 
body>

|           '#if' <expression> [ <simple decl specifier seq> ] [ <type specifier> ] 

            <declarator> <function body> '#endif'

Replaced part: [ <simple decl specifier seq> ] [ <type specifier> ] <declar-
ator> <function body>

Operation Body 

Name of stereotype: customCppGenOperationBody

Extends: Operation

Grammar rule:

<function body> ::=

[ <ctor initializer> ] <compound statement>

Replaced part: Entire rule

Generalization 

Name of stereotype: customCppGenGeneralization

Extends: Generalization

Grammar rule:

<base specifier> ::=

            [ <access to base> ] <identifier>

Replaced part: Entire rule
1646 IBM Rational Tau User Guide June 2009



Miscellaneous
Miscellaneous
Here is described some aspects of the UML to C++ translation which are not 
directly related to any UML construct, but rather have to do with the nature 
of the C++ language.

Order of declarations and forward declarations

The declarations that are generated into a C++ source file are ordered in the 
following way:

1. Definitions (including inline operation bodies)

2. Operation Bodies (non-inline)

If a definition depends on another definition within the same file, a forward 
declaration of the supplier definition is generated if required by the ordering 
between the reference and the definition. The forward declaration is placed 
as close as possible to the first referring entity. However, the scope rules of 
C++ must be followed, meaning that a forward declaration must be placed in 
the same scope as the corresponding definition. Furthermore, in the case of a 
member definition the access visibility (public, private etc.) must be the same 
for the forward declaration and the corresponding definition.

Example 585: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML

class C {
  public D x;
  class D {
  }
  E y;
}
class E {
}

C++

class E; // placed in global scope
class C {
public:
  class D; // public and placed in C
  D* x;
  class D {
  };
  E* y;
};
June 2009 IBM Rational Tau User Guide 1647



Chapter 52: C++ Application Generator Reference
class E {
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
When a definition A in scope S has an ordering dependency to another defi-
nition B in the same scope S, then A will be generated before B. This means 
that definitions within one scope will be sorted if required by their ordering 
dependencies. An ordering dependency is a reference which requires the 
full definition of the target (a forward declaration is not sufficient). Or-
dering dependencies are transitive, that is to say that if A has a dependency 
to B which has a dependency to C, then A also has a dependency to C.

Forward declarations are also generated in header files instead of 
#include:s whenever possible. By doing so the risk for circular include de-
pendencies between generated files is minimized.

Main function

Every C++ program must have a function called ‘main’ in the global scope, 
in order to define the entry point of the executable application. When gener-
ating a C++ application from a UML model there are three alternatives for 
how to get a ‘main’ function.

1. Specify an operation ‘main’ in the UML model and make sure it is placed 
in a «‘global namespace’>> package. Add a «‘manifest 
implementation’>> dependency in order to manifest the implementa-
tion of the operation in an implementation file. The implementation of 
the ‘main’ operation can be fully specified in UML, or contain fragments 
of target code if necessary.

2. Specify an operation ‘main’ in the UML model as above, but do not im-
plement it in UML. Instead write the implementation by hand in a sepa-
rate file which then is compiled and linked with the generated applica-
tion.

3. Do not specify ‘main’ at all in the UML model, but define it completely 
manually.

Note
When generating a library from the UML model it is of course not necessary 
to have a ‘main’ operation.
1648 IBM Rational Tau User Guide June 2009



Miscellaneous
Generating a default main operation in the UML model

IBM Rational Tau provides a command for adding an operation ‘main’ to the 
UML model which will be translated to a ‘main’ function by C++ Applica-
tion Generator. To invoke this command, do the following:

1. Select a package in the Model View. The package should be a <<global 
namespace>> package.

2. In the context menu select the command Utilities - Generate Main 
Function.

The implementation of the default ‘main’ function is generated according to 
the following rule: 

One instance is created for each active class that is manifested by the 
Build Artifact. Each instance is added to one single Dispatcher, and is 
then initialized and started. Finally the ‘run’ function is called on the 
Dispatcher. 

This means that the default ‘main’ function makes a fully synchronous 
(single-threaded) application. You can of course modify this default imple-
mentation in any way to become appropriate for your program.

Example 586: Generation of a default ‘main’ function –––––––––––––––––––––––

UML

C++

int main(int argc, char** argv) {
tor::Dispatcher* dispatcher = new tor::Dispatcher(new 

tor::EventQueue);
C* v1 = new C;
dispatcher -> add(v1);
v1 -> init();
v1 -> start();

Figure 256: Active class manifested by build artifact 

<<artifact,'C++ Application Generator'>>

BA <<manifest>>

 C
June 2009 IBM Rational Tau User Guide 1649



Chapter 52: C++ Application Generator Reference
dispatcher -> run();
return 0;

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that the model must contain a C++ build artifact which manifests the 
package in which the main operation is generated. If no C++ build artifact 
can be found an empty main operation will be generated (a warning will then 
be printed in the Messages tab).
1650 IBM Rational Tau User Guide June 2009



53
Environment of C++ Applications

This section describes techniques for how to interface an application (or part 
of an application) generated with the C++ Application Generator with the en-
vironment. Which technique to choose for a particular model depends on a 
number of things, such as the characteristics of the environment, the thread 
deployment used in the model, and personal taste of the designer. Therefore, 
the information presented here should not be seen as a complete listing of 
available alternatives, but more as guidelines for some common typical 
cases.
June 2009 IBM Rational Tau User Guide 1651



Chapter 53: Environment of C++ Applications
Introduction
A traditional definition of what constitutes the environment of an application 
usually includes all parts of the application that in some sense are considered 
external to the application’s main area of responsibility. The word “external” 
here is deliberately vague since it often is difficult to draw a sharp borderline 
between the application and its environment. There are many criteria for 
drawing such a borderline, for example:

– Hardware components vs. software components

– User interface components vs. other components

– Components developed in one technology vs. components developed 
in another technology

– Legacy components vs. newly developed components

In the context of this section the term environment will be used to mean such 
parts of an application that are not generated by the C++ Application Gener-
ator. Examples include handwritten software components, third-party li-
braries, or hardware components.

Modeling the Environment
It is often useful to include a representation of the environment in the UML 
model itself. Such a representation may consist of one or many UML defini-
tions (typically classes, attributes, actors, subjects etc.). Often this can be 
done already during system analysis or early design.
1652 IBM Rational Tau User Guide June 2009



Interfacing with the Environment
Interfacing with the Environment
When going into more detailed design the interfaces to components in the en-
vironment must be formalized. There are at least three ways of doing this:

• If an environment component is a C or C++ module, the C/C++ Import 
may be used to automatically create a detailed UML representation of its 
interfaces. Thereby it can be used directly from the UML model that is 
generated with the C++ Application Generator. 

• If an environment component is a hardware component it is often a good 
idea to add an interface adaptor for the component in the model. Such an 
interface adaptor is often modeled as a class-typed attribute, and is re-
sponsible for interacting with the hardware component. It also serves as 
an abstraction for the hardware component for the rest of the UML 
model.

Figure 257: Modeling the environment of an application reading from stdin and 
writing to stdout.
June 2009 IBM Rational Tau User Guide 1653



Chapter 53: Environment of C++ Applications
• If an environment component consists of external code (for example a 
graphical user interface) it may realize the tor::EventReceiver inter-
face which allows signals to be sent to it from the UML model. Of course, 
other custom interfaces may also be used for the purpose of plain func-
tion calls (in both directions). These interfaces should be included in the 
UML model, and will be generated to a C++ header by the C++ Applica-
tion Generator. This header is then included in the external code. If the 
external module needs to send signals back to the UML model it need to 
be linked with the TOR library.

In general the following mechanisms are useful when interfacing with com-
ponents in the environment:

1. The ability to access external C or C++ code from the model. This is 
made easy using the C/C++ Import tool, but also other ways exists, such 
as using inline target code ([[...]]). If the external code is developed in 
parallel with the model, it is also useful to generate the headers of ex-
ternal classes from IBM Rational Tau, and then manually create the im-
plementation files.

2. The ability to call operations through interfaces that are realized by an en-
vironment component. The interfaces could either be externally defined 
(should then be imported to UML) or defined within the UML model 
(should then be generated to C++).

Figure 258: Representing environment components with interface adaptors.
1654 IBM Rational Tau User Guide June 2009



Interfacing with the Environment
3. The ability to send signals to an external C++ class (using the 
tor::EventReceiver interface). The external class may either process 
the signal immediately (synchronous execution) or at a later time (asyn-
chronous execution).

4. The ability to send signals from external code to the model. This is done 
using the tor::sendTo utilities that are available in the 
torUtilities.h header of the C++ Run-time Framework. 

5. The ability to call operations and access data that are defined in UML 
from external code. This is done by simply including the relevant header 
files that have been generated from the model.

Multi-threaded Applications

If the model is deployed as a multi-threaded program it is important to under-
stand that operation calls or signals that are made from entities in the model 
may be performed by different threads. If the external component that is in-
terfaced with is not thread-safe by itself, an interface adaptor could be made 
for the component in the UML model, see Figure 258 on page 1654. This 
adaptor should typically be an instance of an active class that either is dis-
patched by its own thread or in one of the other threads in the model. In either 
case it will act as a “protector” against threading problems in the environ-
ment component, by “sequencing” all communication from the model to the 
external component.

An interface adaptor responsible for reading data from some resource often 
becomes blocking (to avoid a busy-wait for data to read). Such an interface 
adapter should typically be given its own thread of execution to avoid 
blocking other parts of the model while waiting for data to read from the ex-
ternal component.
June 2009 IBM Rational Tau User Guide 1655



Chapter 53: Environment of C++ Applications
1656 IBM Rational Tau User Guide June 2009



54
C++ Run-time Framework

This chapter describes the C++ run-time framework, IBM Rational Tau Ob-
ject Run-time (TOR). The purpose and run-time semantics of all classes in 
the framework is described.

See also

Chapter 52, C++ Application Generator Reference for details on how TOR 
is used by the code generated with the C++ Application Generator.
June 2009 IBM Rational Tau User Guide 1657



Chapter 54: C++ Run-time Framework
Introduction
This chapter is a reference guide for IBM Rational Tau Object Run-time 
(TOR), an object-oriented UML run-time framework implemented in C++. 
TOR implements the run-time semantics of UML, both for structural and be-
havioral aspects.

TOR is implemented as a set of classes each providing a well specified ser-
vice. Some classes are used in the framework itself, while others are used by 
the code generated with the C++ Application Generator to transform a model 
to executable C++ code. 

Some of the classes are used when modeling; these “TOR Classes” are avail-
able as a TOR UML Model. 

The framework is delivered as a set of header and source files. The files are 
listed in the List of Files section.

TOR namespace

All declarations of TOR are made in a namespace called tor. This facilitates 
the use of short and descriptive class names, like State, while avoiding con-
flicts with user defined classes. In addition it prevents having too many def-
initions in the global scope.

TOR UML Model

Parts of TOR are available as a model library, called ‘tor’, that is loaded au-
tomatically when the C++ Application Generator is activated. All types, 
classes, operations and functions that can be used in the user model is in-
cluded in this model.

The classes and operations of this model are described in the TOR Classes 
section.

Note
The entities in the TOR framework, and especially those that use memory 
allocation, mutexes, semaphores and other synchronization features (im-
plicitly or explicitly) should not be used in interrupt routines, signal han-
dlers or in any similar functions. Depending on the underlying operating 
system such use may corrupt the application. 
1658 IBM Rational Tau User Guide June 2009



Introduction
Building TOR

TOR is usually built automatically when building an application generated 
with the C++ Application Generator for the first time. If the generated appli-
cation does not depend on TOR definitions in a way that require it to be 
linked with TOR (for example, it may only use template definitions defined 
in header files) TOR will of course not be built.

The C++ Application Generator stereotype applied on a build artifact pro-
vides an option for controlling whether TOR should be built as a static library 
or as a dynamic (shared) library. The default is to build it as a static library. 
You should change this to build TOR as a dynamic (shared) library instead, 
if your application consists of multiple binaries that all depend on TOR. A 
typical situation is when your application consists of a number of dynamic 
(shared) libraries, or an executable together with a number of dynamic 
(shared) libraries. It is important to use dynamic linking in these cases since 
TOR is designed to only exist in one copy in an entire application. Having 
multiple copies of TOR in an application (which will be the case if more than 
one binary link statically with it) can lead to unexpected run-time problems 
related mainly to signals that are lost when sent between the different binary 
modules of the application.

When building TOR as a dynamic (shared) library the macro TOR_DLL will 
be defined when compiling the generated code and the TOR library itself. 
Any user-written code that is included in the application and which depends 
on TOR must also be compiled with that macro defined.

For more information about how to customize the way TOR is built see 
Building.

Initializing and Finalizing TOR

Before the TOR library can be used it must be initialized. Initialization takes 
place automatically when the library is loaded, either as part of starting an ex-
ecutable that links with TOR statically, or when loading TOR built as a dy-
namic (shared) library. 

When TOR shall not be used by the application anymore it should be final-
ized to release resources (for example threads and memory) that were taken 
during its initialization. Finalization of the library takes place automatically 
when the library is unloaded, either as part of exiting an executable that links 
with TOR statically, or when unloading TOR built as a dynamic (shared) li-
brary.
June 2009 IBM Rational Tau User Guide 1659



Chapter 54: C++ Run-time Framework
Sometimes the automatic initialization and finalization of TOR is not 
enough. For example, if an application only uses TOR in parts of its execu-
tion it could save resources (memory and threads) by explicitly finalizing 
TOR when it no longer needs it. Later it may initialize TOR explicitly when 
it again needs the library.

Explicit initialization and finalization of TOR is performed using the func-
tions initializeLibrary and finalizeLibrary.

Note
On some operating systems (for example Windows) a normal exit of a pro-
gram (for example by returning from the main function) leads to an implicit 
termination of all active threads before dynamically linked libraries are un-
loaded. Thus, if TOR is dynamically linked with an application running 
under such an operating system, it must be explicitly finalized by a call to fi-
nalizeLibrary before exiting the application. Otherwise the automatic final-
ization that takes place when TOR is unloaded will cause the program to 
hang since the threads that are used by TOR were prematurely terminated 
by the OS.

It is good practise to be explicit with the initialization and finalization of 
TOR although not always needed. For example, the call to initializeLibrary 
could be placed first in the main function, or in the constructor of some global 
object. In the same way the call to finalizeLibrary could be placed last in the 
main function, or in the destructor of some global object.

Important!
If TOR is explicitly finalized by a call to finalizeLibrary it is important that 
TOR is not used after that. One situation that is especially tricky is when the 
application has deployed the UML model onto multiple threads (using 
ThreadedDispatcher). All such threads must be finalized before TOR is fi-
nalized; otherwise there is a risk that these threads will access TOR after it 
has been finalized, which usually will lead to a crash. Hence, remember to 
delete all instances of ThreadedDispatcher before calling finalizeLibrary.
1660 IBM Rational Tau User Guide June 2009



TOR Classes
TOR Classes
This section contains an alphabetical list of the classes defined in TOR. The 
purpose and run-time semantics of each class is described. All classes are de-
clared in the TOR namespace. For OS related classes, see Operating System 
Abstraction Layer. For metadata related classes, see Meta-Data Representa-
tion.

• CompletedEvent

• Connector

• Dispatchable

• DispatchableClass

• Dispatcher

• DispatcherData

• EntryPoint

• Event

• EventExecutor

• EventQueue

• EventReceiver

• ExitPoint

• InstanceManager

• InternalEvent

• Port

• Region

• RunInitialTransition

• State

• StateMachine

• ThreadedDispatcher

• ThreadSafeEventQueue

• TimerEvent

• TimerObject

• TimerQueue

• TopRegion
June 2009 IBM Rational Tau User Guide 1661



Chapter 54: C++ Run-time Framework
CompletedEvent

An internal Event generated by the framework when a State is finished. It is 
passed to the state and processed instantly. It is used to trigger any transitions 
without a triggering event, also known as trigger free transitions.

There exists a null event which is used for transitions with guards only. In 
comparison, the CompletedEvent triggers transitions without guards, that is 
transitions with no events and no guards.

Connector

A connector represents a connection between two Ports. It is used for sending 
Events between the classes that own the ports. These classes are typically 
subclasses of DispatchableClass.

A connector can connect two ports. When connected, an event sent to one of 
the ports is passed on to the other port. To connect two ports use the connect 
operation:

void connect(Port* from, Port* to);

Connecting ports can also be managed using operations on the port itself.

Dispatchable

An abstract class representing an entity with the ability to both receive and 
execute events. The ability to receive events is represented by a realization 
of the EventReceiver interface, and the ability to execute events is repre-
sented by a realization of the EventExecutor interface.

A dispatchable is associated with a Dispatcher and an EventQueue. When the 
dispatcher processes an Event from a queue, it asks the dispatchable to which 
the event is addressed to process the event. As a result, the dispatchable re-
turns a Dispatchable::EventAction indicating how the event is handled. 

Dispatchable::EventAction

An enumeration used to indicate how an event is handled by the receiver. The 
literals and their meaning are listed in the table below.
1662 IBM Rational Tau User Guide June 2009



TOR Classes
DispatchableClass

A dispatchable class represents a UML active class. It inherits Dispatchable 
to get the capability of receiving an executing events that are dispatched to it.

Examples of dispatchable classes include classes with a State machine and/or 
internal structures, compare with “Architecture Modeling” on page 295 in 
Chapter 8, UML Language Guide.

Events sent to an instance of a dispatchable class are passed on to the State-
Machine of the instance.

If a class is made active, an inheritance to tor::DispatchableClass will 
be added automatically. The active property thus holds the information of the 
dispatchable class. 

Instantiation of dispatchable classes

When an instance of a dispatchable class is created, it does not automatically 
start the execution of its behavior. It must first be initialized, after which it 
can be started.

During initialization, any internal structure and the state machine is prepared 
for execution. The initialization is normally done automatically by the code 
generated with the C++ Application Generator. To manually initialize a dis-
patchable class, call the init operation:

virtual void init();

Starting an instance starts its state machine by posting a request (RunInitial-
Transition) for executing the initial transition. Once started, it is ready to re-
ceive events. Starting is often performed automatically by the code generated 
with the C++ Application Generator. For example, the generated main func-
tion will start the instances of manifested classes, and starting a container by 
default starts its contained elements too. However, to ensure maximum flex-

Literal Description

NoMatch The event is not handled by the receiver.

Defer The event is saved by the receiver.

Consumed The event is consumed by the receiver.
June 2009 IBM Rational Tau User Guide 1663



Chapter 54: C++ Run-time Framework
ibility all this can be customized. The start operation can be overloaded to 
provide a custom way of starting the instance, and starting can be done man-
ually at any time by calling the start operation:

virtual void start();

Starting an already started instance has no effect.

Note
Beware that “start” is a reserved word in UML textual syntax. It is there-
fore necessary to write it with single quotation marks (‘start’) when refer-
ring to the function above.

Dispatcher

A dispatcher is associated with an EventQueue and is responsible for pro-
cessing Events placed in the queue. Events can be retrieved from the queue 
and processed one by one, or continuously as long as the queue is not empty.

A dispatcher is also associated with a TimerQueue where TimerObjects cor-
responding to currently active timers are located.

The code associating a dispatcher with a Dispatchable and then starting the 
dispatcher is normally added by the code generated with the C++ Application 
Generator, but it can also be done manually as described below.

To add a dispatchable to the dispatcher, call the add operation:

void add(Dispatchable*);

To remove a dispatchable from the dispatcher, call the remove operation:

bool remove(Dispatchable*);

To start processing events from the event queue of the dispatcher, call the 
run operation. It retrieves events one by one from the event queue until the 
queue is empty, then it returns.

void run();

To process events off the queue one by one, call the step operation. It re-
trieves and processes the next event in the queue.

void step();
1664 IBM Rational Tau User Guide June 2009



TOR Classes
DispatcherData

A container class containing the data needed by a ThreadedDispatcher. The 
data is encapsulated in a DispatcherData in order to be safely accessible both 
by the thread that is launched by the ThreadedDispatcher and the calling 
thread.

EntryPoint

An entry point is a named pseudo state used to enter a Region of a composite 
State or a StateMachine. It provides a means to enter the composite state or 
sub-state machine without revealing anything about its internals, for example 
the actual target state.

When an entry point is reached, i.e. a transition with an entry point as its 
target has been executed, the region owning the entry point is entered, and 
then the outgoing transition of the entry point is executed.

An entry point can have any number of incoming transitions, but only one 
outgoing transition.

Event

The Event class is used to represent types and occurrences of all kind of 
events in a system, for example; signals, asynchronous operation calls and 
timer time-outs. Subclasses of Event specifies event types and instances of 
these classes represent event occurrences.

Every event has a receiver that is represented by an object id. The Instance-
Manager is responsible for mapping such an object id to a pointer to a Dis-
patchable that is the real receiver of an event instance. The receiver is set in-
ternally by the framework.

EventExecutor

This is an abstract class capturing the ability to execute events. The class con-
tains one pure virtual function that must be implemented by concrete imple-
mentations of EventExecutor:

virtual EventAction execute(Event* event) = 0;
June 2009 IBM Rational Tau User Guide 1665



Chapter 54: C++ Run-time Framework
Implementations of this function should return an appropriate literal of the 
Dispatchable::EventAction enumeration to indicate how the event was han-
dled by the EventExecutor.

Note that before an event can be executed, it must be received. Thus it is nor-
mally so that a class that implements the EventExecutor interface also imple-
ments the EventReceiver interface.

Note
It is important to make a distinction between receiving and executing an 
event. An event is received when it is delivered by the framework to the re-
ceiver. An event is executed when behavior that is associated with the re-
ception of the event is executed (typically a transition). Event reception must 
precede event execution, and there is typically some time interval between 
reception and execution.

EventQueue

An event queue is a queue of Events. Events placed in the queue are pro-
cessed by the Dispatcher associated with the queue. 

The framework automatically handles everything else related to event 
queues, i.e. insertion and removal of events.

EventReceiver

This is an abstract class capturing the ability to receive events. The class con-
tains one pure virtual function that must be implemented by concrete imple-
mentations of EventReceiver:

virtual bool receive(Event* e) = 0;

Implementations of this function should return true if the event was received, 
and false otherwise.

EventReceiver is also available in the TOR UML profile as an interface. This 
makes it possible to declare your own event receivers. Events can be sent to 
such event receivers by means of the sendTo utility function. One common 
use for this is when there are passive classes that need to receive signals. By 
letting the classes inherit the EventReceiver interface, and implementing the 
receive function, this becomes possible.

For information about the difference between receiving and executing an 
event see the note in EventExecutor.
1666 IBM Rational Tau User Guide June 2009



TOR Classes
ExitPoint

An exit point is a named pseudo state used to leave a Region of a composite 
State or a StateMachine. It provides a means to leave the composite state or 
sub-state machine without knowing anything about the context in which it is 
instantiated, for example the target state of the outgoing transition.

When an exit point is reached, i.e. a transition with an exit point as its target 
has been executed, the exited region (owning the exit point) is left, and then 
the outgoing transition of the exit point is executed.

An exit point can have any number of incoming transitions, but only one out-
going transition.

InstanceManager

This class is responsible for keeping a map between object ids and EventEx-
ecutors and EventReceivers. The map is kept up-to-date when event re-
ceivers and event executors are created and deleted. The main use for the in-
stance manager is to have a symbolic representation (an object id) of an 
instance, rather than a direct pointer to the instance. This indirection is cru-
cial in a multi-threaded system where instances are created and deleted inde-
pendently from multiple threads. It is also necessary in a system that is dis-
tributed over multiple address spaces.

InternalEvent

This class is a common base class for all events that are sent internally by the 
framework, i.e. all events that do not correspond directly to user-defined 
events in the model.

Port

A port represents a connection point through which a DispatchableClass can 
send and receive Events. 

A port is associated with a dispatchable class owning the port. This associa-
tion is normally set up automatically by the generated C++ code during ini-
tialization of the dispatchable class.
June 2009 IBM Rational Tau User Guide 1667



Chapter 54: C++ Run-time Framework
Connecting ports

To connect a port with another port using a Connector, call the attach op-
eration on one of the Ports:

void attach(Port * port, Connector * connector);

Sending and receiving events

When an event is sent to a port, it can be handled in two different ways:

1. If the port is connected to any other ports through a Connector, the event 
is sent to the first connected port found by the framework.

2. Otherwise, if the associated dispatchable class has a classifier behavior, 
i.e. StateMachine, the events is passed on to the state machine.

A boolean value is returned to indicate if the event is handled by the receiver 
or not. To send an event through a port, call the send operation:

bool send(Event * event, bool deleteEvent = true);

Region

Represents an orthogonal region of a State or a StateMachine. A region owns 
a set of states. A region keeps track of its current and previous states. The cur-
rent state is the currently active state of the region. The previous state is the 
state that was active the last time the region was left.

A region can be entered and left as the result of a transition.

Entering a region

A region can be entered in a number of different ways. The first time a region 
is entered, its initial transition is executed. Subsequently, when the region is 
entered, history information can be used to re-enter the previous state. A re-
gion can also be entered through an EntryPoint.

The current and previous states are updated whenever a state in the region is 
entered as a result of a transition.

Leaving a region

A region is left when a transition with a target state in a different region is 
triggered, or when a transition with an ExitPoint as its target is triggered.
1668 IBM Rational Tau User Guide June 2009



TOR Classes
The current and previous states are updated whenever a state in the region is 
left.

Finishing a region

A region is finished when a final state of the region is reached. Final states 
are not explicitly defined in the framework.

When a region is finished, trigger free transitions of the enclosing state(s) are 
evaluated.

RunInitialTransition

An internal event that is sent to a DispatchableClass when it is started. When 
this event is executed, the initial transition of the class will be executed.

State

Represents a state in a StateMachine. A state is owned by a Region. A state 
can own a number of regions or a state machine, in which case it is referred 
to as a composite state.

Transitions and event handling

A state has a set of incoming and outgoing transitions. Transitions are not 
represented by separate classes in the framework, instead they are repre-
sented by operations in the enclosing state machine.

When a state receives an event, it checks if there are any outgoing transitions 
triggered by the event. If there is a match and the guard expression is true, 
the transition is executed. Transitions are not ordered, the first matching one 
found by the framework will be executed.

If no match is found, the event is passed on to any parent of the state, i.e. an-
other state or a state machine.

Entering a state

A state is entered when a transition with the state as a target has been exe-
cuted. When a state is entered any entry actions of the state are executed. 
Then if the state is a composite state, any owned regions or state machine is 
also entered.
June 2009 IBM Rational Tau User Guide 1669



Chapter 54: C++ Run-time Framework
The current and previous state of the owning region is updated when a state 
is entered.

Leaving a state

A state is left when any of its outgoing transitions is triggered, or when any 
outgoing transition of a parent to the state is triggered. When a state is left 
any exit actions of the state are executed.

The current and previous state of the owning region is updated when a state 
is left.

StateMachine

Represents a state machine and its implementation.

Note
A StateMachine has exactly one TopRegion.

A state machine is associated with a DispatchableClass, as the classifier be-
havior of the class. An Event sent to the dispatchable class is passed on to the 
state machine and processed there.

A state machine can be owned by a State, in which case it is called a sub-state 
machine. Events sent to the state are passed on to the sub-state machine for 
processing.

Before a state machine is ready to process events it has to be initialized and 
started. This is done internally by the framework when the corresponding ac-
tions are preformed on the associated dispatchable class.

ThreadedDispatcher

This class, historically also known as DispatcherThread, is a threaded ver-
sion of a Dispatcher. ThreadedDispatcher realizes a thread which will dis-
patch events to all Dispatchables that are added to it. This allows for flexible 
thread deployment of a model. Some examples:
1670 IBM Rational Tau User Guide June 2009



TOR Classes
• One thread per active class instance
Each active class is then associated with exactly one ThreadedDis-
patcher. This can for example be modeled by letting each active class 
contain one ThreadedDispatcher as a part. In the constructor of the class, 
the newly created instance is added to the ThreadedDispatcher, and it is 
launched. The lifetime of the launched thread is tied to the lifetime of the 
ThreadedDispatcher, so when an instance of the active class is deleted, 
the thread will be ended.

• One thread per active class
This can for example be modeled by adding a static ThreadedDispatcher 
attribute to the class. In the constructor of the class, the newly created in-
stance is added to the ThreadedDispatcher.

• One thread for an arbitrary set of instances
This can for example be modeled by adding a package-scoped Threaded-
Dispatcher attribute, and then add the instances it shall dispatch to it.

A ThreadedDispatcher owns a DispatcherData which comprises all data that 
needs to be accessed by both the launched thread and the caller thread. For 
example, the dispatcher data contains a Dispatcher and a ThreadSafeEvent-
Queue. The encapsulation of the data in a DispatcherData instance ensures 
that the data can be accessed in a thread-safe manner.

The dispatcher and the event queue are automatically instantiated and asso-
ciated. The dispatcher will process events off the event queue in a thread-safe 
manner.

To start a ThreadedDispatcher call

void launch();

To stop a ThreadedDispatcher (will end the launched thread) simply delete 
it. The thread may also be ended explicitly by a call to

bool endThread();

This function will end the ThreadedDispatcher as soon as possible, but 
without interrupting the behavior triggered by the currently executed event. 
The function is synchronous, i.e. it will wait until the behavior triggered by 
the current event has run to completion. There is also an overloaded version 
of this function that allows for specifying a timeout value, to avoid waiting 
too long for the thread to end. If the thread has not been ended after the spec-
ified time has elapsed, the function will return false.
June 2009 IBM Rational Tau User Guide 1671



Chapter 54: C++ Run-time Framework
ThreadSafeEventQueue

A thread-safe subclass of EventQueue used by ThreadedDispatcher. All op-
erations performed on the queue is protected by a Mutex or a Semaphore.

TimerEvent

A timer event is a special kind of Event, representing a timer timeout event. 
It is associated with a TimerObject, on which timer actions such as set and 
reset can be performed.

TimerObject

A timer object represents the declaration of a timer in a Dispatchable. It pro-
vides functions for setting and resetting a timer and for querying a timer 
whether it is currently active or not. The implementation of these functions 
uses an associated TimerEvent and TimerQueue to realize the timer seman-
tics.

A timer object also holds the timeout time value when the timer is active.

TimerQueue

A timer queue is a priority queue of TimerObjects corresponding to timers 
that are currently active. The timer objects are ordered with regards to their 
timeout times.

Every Dispatcher has a timer queue in which timer objects corresponding to 
active timers of managed Dispatchables are administered.

TopRegion

A top region is a Region owned by a StateMachine. The owning state ma-
chine can be retrieved from a top region.

When a top region is finished the owning state machine is also finished if all 
its top regions are finished.

TopRegion is a subclass of Region.
1672 IBM Rational Tau User Guide June 2009



Utilities
Utilities
There are a number of utility functions that are frequently used internally by 
the framework and by the generated C++ code. They can also be used by the 
user in the TOR UML library. All utilities are declared in the TOR 
namespace.

sendTo

A function used to send an Event to a receiver. There are three overloaded 
versions of this function. They allow you to specify the receiver as an Even-
tReceiver, as an object id, or as a a Port.

bool sendTo(Event* e, EventReceiver* c);
bool sendTo(Event *event, InstanceManager::ObjectId 
receiverId);
bool sendTo(Event* e, Port* pp);

The event is sent to the receiver for processing. A boolean value is returned 
to indicate if the event was received by the receiver or if it was lost.

In either case, the responsibility of the event is passed on to the receiver and 
the event must not be accessed or deleted after passing it to the sendTo func-
tion.

The version with an EventReceiver or object id as the receiver should be used 
when the receiver is known. The Port version is used when sending events in 
internal structures when the receiver is not known to the sender. Only the port 
through which the event is sent needs to be known. Naturally, there is a small 
overhead associated with sending an event through a port rather than sending 
it to the receiver directly, so only use the Port version of sendTo when you 
must rely on the connector structure for conveying the event.

cast

A template function used for run-time type-checking of Events. Performs a 
dynamic cast on the event to see if it matches the template type.

template <class T> T cast(Event* e) {
return dynamic_cast<T>(e);

}

There are two versions of this function, one working on const declared event 
pointers and one on non-const pointers.
June 2009 IBM Rational Tau User Guide 1673



Chapter 54: C++ Run-time Framework
setTimeUnit

A function used for setting the unit of time to be used by TOR. 

void setTimeUnit(double seconds);

The time unit is specified in seconds. For example, to specify a time unit of 
1 millisecond, call tor::setTimeUnit(0.001).

The C++ Application Generator has an option for setting the Time unit to 
seconds, milliseconds, microseconds or nanoseconds. If you want to use a 
different time unit (for example minutes), or if you want to dynamically 
change the time unit at run-time, it is possible to call setTimeUnit.

Important!
At present the time unit is shared throughout the entire application. Do not 
change time unit from different threads and when timers already have been 
activated, to avoid unexpected results.

initializeModel

This is only available as an operation in the TOR UML library. The reason 
is that the implementation of this operation is generated by the C++ Applica-
tion Generator. Although it is not always mandatory from a functional point 
of view to call initializeModel in a UML model, it is a good idea to al-
ways do this anyway (for example in the beginning of the main operation, or 
in the constructor of a global object).

initializeLibrary

Performs an explicit initialization of the TOR library. Initialization is auto-
matically performed (see Initializing and Finalizing TOR for more informa-
tion), so this function is only needed if TOR has been explicitly finalized 
using finalizeLibrary, and should be initialized again.

Calling this function has no effect if TOR already is initialized.
1674 IBM Rational Tau User Guide June 2009



Predefined Types
finalizeLibrary

Performs an explicit finalization of the TOR library. Finalization is automat-
ically performed when terminating an application (see Initializing and Final-
izing TOR for more information). Sometimes it is however necessary, or de-
sirable, to finalize TOR explicitly at an earlier stage, and then this function 
should be used.

Calling this function has no effect if TOR already is finalized.

Predefined Types
A number of data types is defined in TOR to allow mapping from the Pre-
defined types in UML to C++ data types (Predefined). All types are declared 
in the TOR namespace.

Simple types

The table below describes the mapping of simple UML data types to C++ 
primitive types.

 

Operators

equal
Boolean equal(Integer i1, Integer i2)
Boolean equal(Natural n1, Natural n2)
Boolean equal(Boolean b1, Boolean b2)

UML Type C++ Type

Boolean bool

Character char (wchar_t in Unicode)

Integer int

Natural unsigned int

Real double

OperationReference void*
June 2009 IBM Rational Tau User Guide 1675



Chapter 54: C++ Run-time Framework
implies
Boolean implies(Boolean b1, Boolean b2)

mod
Integer mod(Integer i1, Integer i2)

power
Integer power(Integer base, Integer exponent)

is
template <class T, class ARG> Boolean is(ARG arg)

as
template <class T, class ARG> T as(ARG arg)

Any class

The Any type is mapped to an empty class called Any.

class Any {};

Charstring class

The Charstring type is mapped to a class with the same name based on the 
std::string or std::wstring (in Unicode) templates.

Containers
The general containers defined in the Predefined package in U2 Predefined 
are implemented in TOR. All containers are declared in the TOR namespace.

Note
Only the String container is supported.

String

The String container in TOR is a C++ implementation of the U2 container 
Predefined::String. 

String is defined as a template class based on std::vector.
1676 IBM Rational Tau User Guide June 2009



Containers
See also

“Collections and impact of multiplicity” on page 1545 in Chapter 52, C++ 
Application Generator Reference
June 2009 IBM Rational Tau User Guide 1677



Chapter 54: C++ Run-time Framework
Operating System Abstraction Layer
TOR uses a separate abstraction layer to interface with the underlying oper-
ating system. This section describes the classes defined in this layer.

All classes in the OS layer are defined in a namespace called os, which is a 
namespace contained in the TOR namespace tor. The fully qualified name 
is therefore tor::os.

Some of the classes in the OS layer are available in the TOR UML Model. 
For example, it is often necessary to make use of the thread synchronization 
primitives of TOR, such as mutex or semaphore.

Mutex

A mutex is used to lock resources accessed by more than one Thread. A 
mutex can be locked and unlocked. A status is returned when performing any 
of these operations to indicate if it is successful or not. Only the thread that 
locked a mutex can unlock it.

There is a convenient utility class called auto_lock, which can be used to 
synchronize a block of code in a compound statement. When constructed it 
locks the mutex, and when destructed it unlocks it. It is particularly useful 
when synchronizing a function with multiple exit paths (including functions 
that throw exceptions), since it otherwise is easy to forget to unlock the 
mutex in all ways the function may be returned from.

RWLock

A read/write lock used to access data in a thread-safe way. The lock can be 
configured to lock/unlock for read and lock/unlock for write independently. 
A typical way of using a read/write lock is to lock writing but allow many 
readers.

Semaphore

A semaphore used to access and wait for resources accessed by more than 
one Thread. A semaphore can be retrieved and released. There are two ways 
of getting a semaphore, either wait until the semaphore is released so you can 
get it, or wait for a specified amount of time before moving on.
1678 IBM Rational Tau User Guide June 2009



Operating System Abstraction Layer
Gate

A gate is a synchronization primitive that allows one Thread to control the 
execution of other threads. When a thread attempts to enter the gate, it will 
only succeed if the gate it unlocked. If it is locked it has to wait until another 
thread unlocks it. Only one thread may pass the gate simultaneously.

Thread

An OS thread. Represents a thread of execution at the OS level. Threads are 
normally created and launched automatically by the framework. See Thread-
edDispatcher for usages.

Time

OS representation of time (both absolute time and relative time durations). 
The class contains various functions for getting the current time, adding and 
subtracting time values etc.

Process

Representation of an OS process. The class contains functions for launching 
and killing processes and for retrieving their process id (PID).
June 2009 IBM Rational Tau User Guide 1679



Chapter 54: C++ Run-time Framework
Meta-Data Representation
TOR defines a number of classes that are used to describe meta-data about 
an application generated by the C++ Application Generator. The meta-data 
includes both information about the structure of the application (a “tree” of 
available definitions, their names and so forth), and information about what 
the application is doing (which operations are called, which signals are sent 
and so forth). The latter is known as “meta-events”. This section describes 
these meta-data classes.

All classes in the meta-data layer are defined in a namespace called meta, 
which is a namespace contained in the TOR namespace tor. The fully 
qualified name is therefore tor::meta.

Meta-data is only available in instrumented applications. The C++ Applica-
tion Generator has an option to Enable instrumentation. The effect of turning 
this option on is that some instrumentation is added to the generated source 
files. In addition the files torInstrumentation.h and 
torInstrumentation.cpp will be generated. These files contains defini-
tions that use the classes in the meta-data layer of TOR. The TOR library is 
compiled with the macro TOR_USE_INSTRUMENTATION set when 
building an instrumented application. This macro enables all definitions of 
the meta namespace.

Application

An application is an object that represents the entire application. There is al-
ways exactly one instance of this class in an application. Application inherits 
from Definition, and its name and GUID are taken from the Build Artifact 
that was used when generating the application.

Call

This Event is sent when an operation is called. It is sent from the context of 
the caller.

Called

This Event is sent when an operation is called. It is sent from the context of 
the called operation.
1680 IBM Rational Tau User Guide June 2009



Meta-Data Representation
Coder

Interface that must be realized by all coder classes. A coder encodes applica-
tion data to a CoderBuffer, and decodes a CoderBuffer to application data.

CoderBuffer

Interface to an abstract buffer that can be used by a Coder class in order to 
store the result of encoding data from the application.

Create

This Event is sent when a new instance of a type is created. It is sent from the 
context of the creator.

Definition

Represents a general definition in the application. For each definition its 
name and GUID is stored, in order to establish a relationship with the original 
UML definition from which the C++ definition was generated. A meta defi-
nition also has a link to an owning meta definition, representing the definition 
in which the C++ definition is defined. This results in a tree of meta defini-
tions that describes the structure of the application.

Delete

This Event is sent when an instance of a type is deleted. It is sent from the 
context of the deleter.

Event

This class is a common base class for all metaevents. Event is a subclass of 
InternalEvent. It defines a pure virtual encode operation which is imple-
mented by all subclasses that represent concrete metaevents. Communication 
between the application and an EventMedia takes place by sending appro-
priate Event instances that represents what is currently happening in the ap-
plication.
June 2009 IBM Rational Tau User Guide 1681



Chapter 54: C++ Run-time Framework
EventManager

Every instrumented application has one (and only one) instance of this class. 
It is an active class and executes in a thread of its own. It maintains a list of 
EventMedias and has functions to register and unregister these. The event 
manager can be either active or inactive. When active it responds to requests 
for “processing” meta-events (i.e. descriptions about what is currently hap-
pening in the application). The processing includes encoding the meta-event 
to a string and emitting that string to all currently registered EventMedias. 
The event manager also is responsible for holding a representation of the cur-
rent call stacks for each thread in the application.

Being an active class, the event manager has a statemachine. This statema-
chine represents the state the event manager is in. A special state is entered 
when the application reaches a breakpoint or is broken into by the IBM Ra-
tional Tau host debugger. In that state the event manager can handle all the 
various debug commands, such as Step and Go.

EventMedia

Interface to a media onto which encoded metaevents can be emitted. The 
term “media” is used here in a very general sense; an event media can be any 
object that takes an encoded metaevent and does something with it.

EventReceived

This Event is sent when an event of the application (i.e. not an InternalEvent) 
is received.

EventSent

This Event is sent when an event of the application (i.e. not an InternalEvent) 
is sent.

Exit

This Event is sent when the application is about to exit. It is used internally 
as a means for synchronizing with the EventMedias so that all metaevents 
that are pending will be processed before terminating the application.

LogFile

This EventMedia writes each encoded metaevent to a logfile.
1682 IBM Rational Tau User Guide June 2009



Meta-Data Representation
Operation

Represents an operation in the application. There are three kinds of opera-
tions; constructors, destructors and ordinary operations. Operation inherits 
from Definition.

Return

This Event is sent when an operation is returned from. It is sent from the con-
text of the called operation.

Returned

This Event is sent when an operation is returned from. It is sent from the con-
text of the operation to which the return is made.

StackContext

Representation of a stack frame. The stack frame belongs to a call stack, and 
there is one call stack for each thread in the application.

StringCoderBuffer

This class realizes the CoderBuffer interface. It simply stores the encoding 
result as a string member. This is the standard class that is used to store en-
coded data in a TOR application.

StructuralFeature

A structural feature represents an attribute or an operation parameter. It in-
herits from Definition.

TauHostDebuggerProxy

A proxy class representing the IBM Rational Tau host debugger in the TOR 
application. The EventManager uses this proxy for communicating with the 
IBM Rational Tau host debugger over a TCP/IP connection.

TauHostTracer

This EventMedia sends each encoded metaevent to a running IBM Rational 
Tau application. The IBM Rational Tau application will produce a trace in 
the form of a sequence diagram, showing what the application is doing.
June 2009 IBM Rational Tau User Guide 1683



Chapter 54: C++ Run-time Framework
U2P_Coder

This class realizes the Coder interface. It is a standard coder that uses a U2P 
(UML textual syntax) for representing the result of encoding.
1684 IBM Rational Tau User Guide June 2009



List of Files
List of Files
The following sections describes the files of TOR delivered as a part of the 
IBM Rational Tau installation.

Source and header files

The complete TOR source code is included in the IBM Rational Tau instal-
lation and can be found in the following folder in the installation directory:

addins\CppGen\Etc\TOR\CPP

These files are used when building C++ applications. 

The table below lists all the files and the TOR declarations they contain.

File TOR declaration

tor.h Common include file for including all 
files related to communication and 
state machines. Mainly intended for 
code generated by the C++ Application 
Generator.

torAnnotations.h A few macros used for the purpose of 
updating the model with code changes 
(a.k.a. round-tripping).

torChoice.h Representation of a UML choice.

torCoders.h

torCoders.cpp

Coder, U2P_Coder, CoderBuffer, 
StringCoderBuffer

torCommunication.h

torCommunication.cpp

Various classes used for TCP/IP com-
munication. Can be used when 
building a distributed application that 
communicates over TCP/IP.

torCompletedEvent.h CompletedEvent

torConnector.h
torConnector.cpp

Connector

torContainers.h String
June 2009 IBM Rational Tau User Guide 1685



Chapter 54: C++ Run-time Framework
torDispatchable.h
torDispatchable.cpp

Dispatchable, EventExecutor, Even-
tReceiver

torDispatchableClass.h
torDispatchableClass.cpp

DispatchableClass

torDispatcher.h
torDispatcher.cpp

Dispatcher

torDispatcherThread.h
torDispatcherThread.cpp

ThreadedDispatcher, DispatcherData

torEntryPoint.h EntryPoint

torEvent.h

torEvent.cpp

Event

torEventManager.h

torEventManager.cpp

EventManager

torEventManagerImpl.h

torEventManagerImpl.cpp

Generated statemachine implementa-
tion of the event manager.

torEventMedia.h

torEventMedia.cpp

EventMedia, LogFile, TauHostTracer

torEventQueue.h
torEventQueue.cpp

EventQueue

torExceptions.h Definition of exception types.

torExitPoint.h ExitPoint

torMeta.h Common include file for including all 
files related to meta-data.

torMetaData.h
torMetaData.cpp

Definition, StructuralFeature, Opera-
tion, Application

torMetaEvents.h
torMetaEvents.cpp

Event, Call, Called, Create, Delete, 
EventReceived, EventSent, Exit, Re-
turn, Returned

In addition there is one meta event for 
each debug command.

File TOR declaration
1686 IBM Rational Tau User Guide June 2009



List of Files
torMetaStackContext.h
torMetaStackContext.cpp

StackContext

torOperators.h equal, implies, mod, power and other 
functions representing UML operators.

torOs.h
torOs.cpp

Common include file for all OS ab-
straction layer files.

torOs_X.h
torOs_X.cpp

Implementations of Operating System 
Abstraction Layer. X represents oper-
ating system name.

There exist two files torOs_any.h and 
torOs_any.cpp that can be used as a 
template when doing an implementa-
tion of the OS abstraction layer for a 
new OS.

torOSRep.h
torOSRep.cpp

Switches between which actual OS 
files to use depending on how the 
TGTOS macro is set.

torPlatform.h Platform specific build settings for the 
TOR library. This file is included by all 
implementation files of the TOR li-
brary.

torPort.h
torPort.cpp

Port

torProcess.h
torProcess.cpp

Process

torRegion.h
torRegion.cpp

Region

torState.h
torState.cpp

State

torStateMachine.h
torStateMachine.cpp

StateMachine

torSync.h
torSync.cpp

Mutex, RWLock, Semaphore, Gate

File TOR declaration
June 2009 IBM Rational Tau User Guide 1687



Chapter 54: C++ Run-time Framework
torThread.h
torThread.cpp

Thread

torThreadSafeEventQueue.h
torThreadSafeEventQueue.cpp

ThreadSafeEventQueue

torTime.h
torTime.cpp

Time

torTimer.h
torTimer.cpp

TimerEvent, TimerObject, 
TimerQueue

torTopRegion.h
torTopRegion.cpp

TopRegion

torTypes.h Simple types, Any class, Charstring 
class

torUtilities.h
torUtilities.cpp

sendTo, cast, setTimeUnit, 
initializeModel

File TOR declaration
1688 IBM Rational Tau User Guide June 2009



TOR Integration guide
TOR Integration guide
This guide describes how to adapt the C++ run-time library to a new oper-
ating system.

Included in the installation are a few examples of integrations with operating 
systems. These should be used as a starting point.

OS Primitives

This section describes the “low-level” operating system primitives used by 
the C++ run-time library. Each of these primitives is abstracted by the library 
in order for the generated code to be independent of the underlying operating 
system.

The primitives are logically located in the namespace “tor::os”. In most 
cases each primitive is abstracted by a class that then uses an underlying rep-
resentation that implements the primitive in terms of the underlying oper-
ating system.

These “representations” are all located in the files named “torOs_xxx.h” 
and “tor_Os_xxx.cpp” (where “xxx” is the name of the operating system). 
The two files “torOs_user.h” and “torOs_user.cpp” are intended for 
user defined implementations of these representations. I.e. a “good start” for 
an integration to a new operating system is to copy one of the existing 
“torOs_xxx.cpp” and “torOs_xxx.h” to “torOs_user.cpp” and 
“torOs_user.h”, respectively and use that as a basis.

The file “torOsRep.h” includes one of the files named “torOs_xxx.h” de-
pending on the value of the preprocessor macro “TGTOS”. The macro can 
have one of the following values (defined in “torOsRep.h”):

name value description

OS_USER 0x0100 This is intended for user-defined integrations.

OS_WIN32 0x0200 This selects 32 bit versions of Microsoft Win-
dows operating system.

OS_LINUX 0x0300 This selects the generic Linux integration.

OS_SOLARIS 0x0400 This selects the Solaris integration.
June 2009 IBM Rational Tau User Guide 1689



Chapter 54: C++ Run-time Framework
If the macro “TGTOS” is not explicitly defined, a preprocessor construction 
in the file “torOsRep.h” selects one of the above values depending on the 
host operating system (i.e. on Linux the value OS_LINUX is selected).

Time

Time is abstracted in the class “tor::os::Time” and is implemented in the 
class “tor::os::TimeRep”. The time class is used for representing both 
“absolute times” (in terms of the operating system) and “relative times” (du-
rations). In the example integrations it has been chosen to coincide with the 
OS time representation that is used for timed-waiting on a semaphore and 
timed suspension of a thread. This prevents unnecessary conversion between 
a general representation and that of the operating system.

The class “TimeRep” must provide the following interface (the actual at-
tribute that holds the time value has been omitted):

class TimeRep {
public:
    TimeRep();
    TimeRep(long s, long ns);
    TimeRep(const TimeRep &a, const TimeRep &b);
    TimeRep(const TimeRep &a);          //  = a
    ~TimeRep();

    void norm();
    void zero();
    void setNow();

    void set(const TimeRep &x);
    void set(long s, long ns);
    void set(double d);

    void add(const TimeRep &x);
    void add(long s, long ns);

    void sub(const TimeRep &x);
    void sub(long s, long ns);
    void sub(const TimeRep &a, const TimeRep &b);

    int cmp(const TimeRep &x) const;

    double to_double() const;
    long to_ms() const;

    std::ostream &print(std::ostream &os) const; // 
optional
    
1690 IBM Rational Tau User Guide June 2009



TOR Integration guide
    static double setUnit(double u);

};

The default constructor “TimeRep()” must initialize the value to a logical 
zero so that:

TimeRep a, b; b.setNow(); a.add(b); if (a.cmp(b) == 0) { 
OK; }

The “zero()” operation must yield the same value.

The constructor “TimeRep(long s, long ns)” initializes the representa-
tion using the given second and nanosecond (10-9s) value. The operation 
“set(long s, long ns)” must set the value in the same way.

The constructor “TimeRep(const TimeRep &a, const TimeRep &b)” ini-
tializes the representation with the logical difference “a - b”. The operation 
“sub(const TimeRep &a, const TimeRep &b)” sets the same value.

The operation “norm()” is a helper function not normally used outside of the 
operations in the representation. It “normalizes” the value after the arithmetic 
operations.

The operation “setNow()” assigns the current time.

The operation “int cmp(const TimeRep &x) const” returns “-1” if the 
object itself is “less than” the object x, “0” if the two objects are “equal” and 
“+1” if the object itself is “greater than” the object x.

The conversions from and to “double” all use an internal unit multiplier 
which is set using the operation “setUnit()”.

The actual representation of time is implemented as a “struct timespec” 
in POSIX solutions and as a pair “long m_s, m_ns;” under Win32.

Mutex

The abstraction of a mutual exclusion lock is defined by the class 
“tor::os::Mutex” and is implemented in the class 
“tor::os::MutexRep”. The uses of “Mutex” requires only the most basic 
from a mutual exclusion lock; only unconditional lock and unlock is used.

The class “MutexRep” must following interface (the actual attribute that 
holds the mutual exclusion lock has been omitted):

class MutexRep  {
public:
June 2009 IBM Rational Tau User Guide 1691



Chapter 54: C++ Run-time Framework
  MutexRep();
  ~MutexRep();
  Status init(bool initialOwner);
  Status destroy();
  Status lock();
  Status unlock();
};

Note
The initialization and destruction of the mutual exclusion lock has been sep-
arated from the constructor and destructor, respectively (this is also re-
flected in the “Mutex” class).   This allows for global instances of mutual 
exclusion locks that can be re-initialized. If this is not necessary, the user 
may choose to implement the initialization and destruction in the con-
structor and destructor (“init()” and “destroy()” should then both be 
empty).

The “lock()” and “unlock()” operations are unconditional. They must return 
“StatusOK” or “StatusFAIL” depending on the success of the operation.

In the case of POSIX the attribute that holds the mutual exclusion lock is de-
fined as “pthread_mutex_t m_mutex” and under Win32 “HANDLE 
m_handle”. Under Win32 the handle is initialized using “CreateMutex()”.

Semaphore

The abstraction of a semaphore is defined by the class 
“tor::os::Semaphore” and is implemented in the class 
“tor::os::SemaphoreRep”. The uses of “Semaphore” require; uncondi-
tional lock and unlock as well as timed-lock (where the calling thread blocks 
on the semaphore using a time-out).

The class “SemaphoreRep” must following interface (the actual attribute that 
holds the semaphore has been omitted):

class SemaphoreRep {
public:
  SemaphoreRep();
  ~SemaphoreRep();

  Status init(unsigned int initialCount, unsigned int 
maxCount);
  Status destroy();

  Status put(unsigned int count);

  Status get();
  Status get(Time timeout);
};
1692 IBM Rational Tau User Guide June 2009



TOR Integration guide
Similarly to the mutual exclusion lock, the initialization and destruction of 
the mutual exclusion lock has been separated from the constructor and de-
structor, respectively. Note that the timeout in the “get(Time timeout)” 
operation is an absolute time.

The POSIX implementation uses three attributes to implement the sema-
phore:

pthread_mutex_t m_mutex; 
pthread_cond_t m_cond; 
unsigned m_count;

The Win32 solution uses a “HANDLE” initialized using 
“CreateSemaphore()”.

Thread

Threads are implemented using three operations in the namespace 
“tor::os::Thread”:

bool createThread(ThreadFunc func, void *arg);
void suspend(Time timeout);
unsigned long id();

The “createThread()” operation creates a new thread with the 
“ThreadFunc” as thread function with a single argument. In the POSIX case, 
the thread is created in a “detached state”.

The “suspend()” operation uses an absolute time. In the POSIX case this is 
implemented using “nanosleep()” and in Win32 using “Sleep()”.

The “id()” operation returns an id number that is unique for each thread.

Process

Processes are not used as such in “normal” integration and can be left out. In 
the case they are used the representation must provide the following:

class ProcessRep {
public:
    typedef Charstring::inherited string;
    ProcessRep();
    ~ProcessRep();
    bool launch(const string &cmd, const 
std::vector<string> &argv, const string &dir);
    bool terminate();
    PID getPID() const { return m_pid; }
}

June 2009 IBM Rational Tau User Guide 1693



Chapter 54: C++ Run-time Framework
The constructor and destructor are empty. The “launch()” operation launches 
an external process. The “terminate()” operation kills the external process 
and returns when the process has terminated.

Building

This section briefly describes the settings needed to use a user defined tool 
chain when building an application. The user should read the section on the 
Makefile Generator in connection with this section.

The starting point of this section is a model and an accompanying build arti-
fact that is used for building the system. We also assume that the changes de-
scribed in the previous section has been made and put in the two files 
“torOs_user.cpp” and “torOs_user.h”. The compiler, linker, make and 
other tools that are necessary for the build process must be available in the 
users path.

The first thing to do is to attach the stereotype named 
<<MakefileGenerator Settings>> to the build artifact this will allow us 
to change the behavior of the Makefile generator. The stereotype is defined 
in the addin “MakefileGen” and is activated from the Add-Ins tab. Apply the 
stereotype “MakefileGen::Makefile Generator Settings” to the build 
artifact (Note: there is a similar stereotype named “Makefile Generator”, 
without “Settings”, it should not be used in this case).

Change the settings of the stereotype so that “Target Kind” corresponds to 
the built-in settings that are closest to the users target system. If we now gen-
erate the code (by right-clicking on the build artifact and then selecting 
“Build (C++ Application Generator)->Generate” a Makefile will be gener-
ated (together with the C++ code). Most likely, the make variables used for 
the compiler etc. needs to be changed. This is done by adding entries in the 
“User Code” section of the “Makefile Generator Settings” stereotype on the 
build artifact. Each line in this section will override the built-in values if there 
is a corresponding make variable.

The preprocessor macro “TGTOS” must be defined to “OS_USER”; this is 
done by copying the current line that sets the preprocessor defines in the 
Makefile generated in the previous step. In the case that “Target Kind = 
Linux - g++” the line entered into the “User Code” section will look like:

DEFINES=$(TAUDEFINES) -D_REENTRANT -DTGTOS=OS_USER

and if “Target Kind = Win32 - cl” it looks like:
1694 IBM Rational Tau User Guide June 2009



TOR Integration guide
DEFINES=$(TAUDEFINES) /D "WIN32" /D "NDEBUG" 
$(SUBSYSDEF) /DTGTOS=OS_USER

In both cases this is one line.

Similarly, if the C++ compiler, compiler flags, linker, make program etc. 
needs to be changed, they must be entered in the “User Code” section.

The full list of make variables and settings for the Makefile generator is 
found in the section “Makefile Generator” on page 852.
June 2009 IBM Rational Tau User Guide 1695



Chapter 54: C++ Run-time Framework
1696 IBM Rational Tau User Guide June 2009



55
Debugging a C++ Application

The UML Debugger allows you to debug the behavior of your UML model 
and verify that the implementation is correct.

When you are building an instrumented application for the UML Debugger, 
you are performing similar instructions as you are when building an applica-
tion with the C++ Application Generator. This section lists the basic build 
functionality and it covers the basic usage of the UML Debugger.

See also

Chapter 11, Verifying an Application.
June 2009 IBM Rational Tau User Guide 1697



Chapter 55: Debugging a C++ Application
Overview of the UML Debugger
The UML Debugger allows you to debug the behavior of your UML model 
and to debug that the implementation is correct. Using the Application 
Builder, you generate instrumented C++ code from your model and you link 
it with a predefined run-time library which is customized for simulation pur-
poses. You can also use the UML Debugger if you are building an instru-
mented C++ library. To simulate the model means that you run the execut-
able program using various commands and breakpoints. You can run the 
simulation automatically or can manually step through transitions, etc.

You can control the UML Debugger from the user interface or you can 
switch to a Visual Studio debug session. If your application communicates 
with the environment, this behavior can be followed with a target C++ de-
bugger (Visual Studio), you use the UML Debugger for execution control 
and the Visual Studio debugger for inspecting/setting values, looking at 
threads and call stacks etc.

The execution of the session can be traced graphically in state chart dia-
grams, class diagrams and text diagrams. 

Generating an Instrumented Application
Note

You must have a C/C++ compiler installed to generate an executable UML 
Debugger application. 

The UML Debugger requires an instrumented application to be generated. 
An application is instrumented by 

1. adding additional instrumentation code when generating the application.

2. using an instrumented version of the TOR library which is linked with the 
application.

The instrumentation does not change the behavior of the generated applica-
tion, but allows the application to be controlled during execution by the UML 
Debugger.
1698 IBM Rational Tau User Guide June 2009



Running the UML Debugger
Build settings

For each executable that is to be generated there must be a Build Artifact. To 
generate an executable that can be debugged this artifact must have settings 
for instrumentation enabled. This is set in the Properties dialog for the C++ 
Application Generator stereotype (stereotype properties are switched with 
the Filter menu field). 

The following settings should be considered carefully and set to match your 
needs.

• Link with TOR

• Instrumentation Options

• Debug options

The instrumented application is generated by building the build artifact. For 
more information on how to do this see Building Using Build Artifact.

Note that if a build configuration is used for building multiple build artifacts 
at the same time (see Using Configurations for Build), at most one of those 
build artifacts should be a UML Debugger build artifact. The reason for this 
is that only one instance of the UML Debugger is allowed to execute at the 
same time.

See also

Chapter 27, Building Applications Reference

Running the UML Debugger
You can start the UML Debugger after a UML Debugger build is completed 
without errors. 

Figure 259: Options for instrumentation and debugging
June 2009 IBM Rational Tau User Guide 1699



Chapter 55: Debugging a C++ Application
Start the UML Debugger

You can either start the UML Debugger by attaching it to a running applica-
tion or by doing Launch, which will build and start a UML Debugger from a 
build artifact. Applicable commands on the Verify toolbar become active.

Attach to a running application

When attaching to an already running executable, it is required that this exe-
cutable was built with the same build artifact used in the model.

1. Start the application, for example using Visual Studio, or directly from 
the command prompt.

2. Attach the UML Debugger to the running application by selecting the 
command Attach to running executable in the Verify menu. The build 
artifact should be selected for this command to be available.

As part of the attach procedure IBM Rational Tau performs some non-ex-
haustive checks that the attached-to process is instrumented as an UML De-
bugger.

If IBM Rational Tau doesn’t detect a running debuggable application within 
5 seconds it will ask if you want to continue waiting, or if you want to abort 
the attach procedure.

Sometimes an application is difficult to attach to because it may terminate 
before you have had the time to attach to it from IBM Rational Tau. In such 
situations you may set an environment variable 
TTD_TOR_WAIT_FOR_ATTACH before starting the application. If this environ-
ment variable is set the application will wait before executing the first  state-
ment, which gives you time to attach to it from IBM Rational Tau.

There is also another environment variable which can be set: 
TTD_TOR_HOST_DBG. This variable can be set to a string on the form “host-
name#portnumber” to specify the TCP/IP settings to use for the debug ses-
sion. You only need to set this variable if you want to change the default 
TCP/IP host or port being used.
1700 IBM Rational Tau User Guide June 2009



Tracing the Execution
Launching after Building Using Build Artifact

This method is useful if you already have created a build artifact for a UML 
Debugger.

1. In the Model View, right-click the build artifact manifesting the UML 
Debugger to launch.

2. On the shortcut menu, select Build (C++ Application Generator), fol-
lowed by the menu choice Launch.

A UML Debugger is built and, if the build is successful, the newly built UML 
Debugger is launched.

Launching after Using Configurations for Build

This method is handy in case you want to build multiple build artifacts, of 
which one is a UML Debugger, and launch the newly built UML Debugger. 
One special application is when your configuration contains exactly one 
UML Debugger build artifact.

– In the project toolbar, click the button Execute Configuration. This 
orders a build of all build artifacts contained in the active configura-
tion and launches the newly built UML Debugger

Exit the UML Debugger

To exit the UML Debugger, you can proceed with either of following:

– On the Verify menu, select Stop. 

– Terminate the debugged application (for example by closing its con-
sole window).

Tracing the Execution
When you are running your UML Debugger, you can easily obtain trace in-
formation of the execution. This allows you to track each transition and event 
in your application. You can select between different tracing methods.

• UML model tracking

• Sequence diagram tracing via the Visual Studio Integration.
June 2009 IBM Rational Tau User Guide 1701



Chapter 55: Debugging a C++ Application
UML model tracking

This tracking method allows you to follow each action in your UML model. 
When the tracking starts, the diagram with the selected action opens. When 
the execution continues, the next action in the diagram is highlighted and so 
on.

A green triangle is inserted beside the symbol or the statement within a 
symbol that is about to be executed.

Sequence diagram tracing

Sequence diagram tracing is enabled via the Visual Studio Integration. The 
general workflow to do a trace is the following:

• Open your workspace with the project containing the application to trace. 

• Ensure that the code is generated with the Enable instrumentation option 
activated. 

• Create and open a Visual Studio project using the Visual Studio integra-
tion.

• Build and run a debug session in Visual Studio. 

• Set a breakpoint in the very beginning of the code. When the code halts 
on the breakpoint you activate the trace through the IBM Rational Tau 
Trace command (from the IBM Rational Tau toolbar). Select Sequence 
diagram visualization.

The trace should now start in the form of a sequence diagram in IBM Ra-
tional Tau. 

See also

Tracing execution of IBM Rational Tau generated applications for a way to 
obtain a sequence diagram trace without using the Visual Studio integration.
1702 IBM Rational Tau User Guide June 2009



Executing the Application
Executing the Application
There are several different commands available to control the execution of 
the application. Which commands that are available depends on the mode of 
the UML Debugger. There are two modes:

1. Run mode
This mode means that the application is currently running. Commands 
are available for setting and removing breakpoints, and for breaking the 
execution (to enter Break mode). See Commands available in Run mode 
and Breakpoint commands.

2. Break mode
This mode means that the application is currently not running, but is sus-
pended waiting for a debug command. Commands are available for set-
ting and removing breakpoints, and for running the application (to enter 
Run mode). See Commands available in Break mode and Breakpoint 
commands.

Commands available in Break mode

When the UML Debugger is in Break mode execution can be resumed by 
using one of the commands for controlling the execution (available in the 
Verify menu and toolbar). In addition Breakpoint commands can also be 
used.

Go

Resume execution of the application. It will run until a breakpoint is hit, or 
the Break Execution command is invoked, or the application terminates.

Step Over

Let the application execute the next action. If the action involves a call to an 
operation, do not step into its implementation (step over it instead).

Step Into

Let the application execute the next action. If the action involves a call to an 
operation, step into its implementation and break the execution on the first 
action of that implementation.
June 2009 IBM Rational Tau User Guide 1703



Chapter 55: Debugging a C++ Application
Step Out

Let the application execute until the currently executed operation implemen-
tation is returned from.

Run execution up to this point

This command is available in the context menu when clicking on an action 
in a diagram. The application will execute until it reaches the selected action.

Commands available in Run mode

When the UML Debugger is in Run mode you can break its execution by 
using one of the commands for breaking the execution (available in the 
Verify menu and toolbar). In addition Breakpoint commands can also be 
used.

Break Execution

The application will break its execution (and enter Break mode) as soon as 
possible.

Breakpoint commands

Breakpoints can be set to allow you to stop the execution at positions that are 
of interest.

Insert breakpoints

To insert a breakpoint:

1. Open the diagram that shows the action on which you want to insert the 
breakpoint.

2. Right-click on the symbol or in the text and select Insert/Remove 
Breakpoint from the shortcut menu. A red dot is added to the symbol 
frame or next to an action within a symbol frame to indicate that the 
breakpoint has been inserted.

You can also insert a breakpoint via commands in the Verify menu and from 
the Verify toolbar.
1704 IBM Rational Tau User Guide June 2009



Executing the Application
Precise positioning of breakpoints

Below there are some examples of how to set breakpoints to achieve the 
exact position you desire.

• Statement: To set a breakpoint to a specific statement, when an action 
symbol contains several statements, position the cursor on the statement. 
This also applies to setting breakpoints in text diagrams. 

• Nextstate: To insert a breakpoint on a nextstate action, insert it on the 
connector line going to the state symbol. 

• Action-symbols and lines (Output, Decision, Stop, Return, Flow-line to 
nextstate, History, Task, Junction-symbol representing a join): the break-
point is set on the corresponding action.

• Transition symbols and lines (Start, DecisionAnswer, Input, Junction-
symbol representing a label transition, Transition line, Connect transition 
(i.e. guard symbol after composite state)): the breakpoint is set on the 
compound action of the transition (i.e. the first action that will be exe-
cuted when the transition is taken)

• State (selected in text or in browser): the breakpoint is set on all nextstate 
actions referring to the state (i.e. it will hit whenever the state is entered)

• State-symbol: the breakpoint is set on all nextstate actions referring to 
any of the states that are included in the state symbol. It is not possible to 
set breakpoints on an asterisk state or a state with excluded states. 

• Operation-body (selected in text or in browser): the breakpoint is set on 
the compound action of the body (i.e. the first action that will be executed 
when the body is executed). 

• Operation (OperationSymbol, OperationLabel in Class-symbol, or se-
lected in text): the breakpoint is set on the compound action of its body. 
If the operation has no body (abstract operation or interface operation), 
the breakpoint will not be set in the debugged application.

• StateMachineImplementation (selected in the Model view): the break-
point is set on the first action of all start transitions
June 2009 IBM Rational Tau User Guide 1705



Chapter 55: Debugging a C++ Application
Remove breakpoints

To remove a breakpoint:

1. Open the diagram that shows the action having a breakpoint to be re-
moved.

2. Right-click on the symbol or in the text and select Insert/Remove 
Breakpoint from the shortcut menu.

List breakpoints

You can see all breakpoints currently being set under the Model Verifier Ses-
sion package in the Model View. By double-clicking these you navigate to 
the corresponding action.

Compiled breakpoints

Sometimes it is useful to insert a breakpoint as persistent within the model 
itself. Such a breakpoint is represented in the model as a call to the operation 
tor::debugBreak which is available in the tor library package. Whenever 
that call is executed the application will enter Break mode.

The insertion of a compiled breakpoint modifies the model, and thus requires 
the application to be recompiled.

Step into source

When you execute a stepwise execution of your application the selection can 
affect the outcome of a Transfer control to target debugger command.

When Transfer control to target debugger is pressed the code is checked 
for a current execution point, which exists if you are in a debug session that 
is stopped. If a source code reference for the current execution point exists 
this will be used (which is what would be expected). There are however en-
tities that do not have any explicit source code reference, which results in the 
command button not being enabled. For such a situation it is possible to make 
a selection in the code that is about to be executed and then this current se-
lection will be used as a reference for the Transfer control to target de-
bugger command. 
1706 IBM Rational Tau User Guide June 2009



Error Handling
Error Handling
Violations of the dynamic rules of UML cause dynamic errors during the ex-
ecution of a simulation. Examples include (but are not limited to) null refer-
ence access, out-of-range container manipulation, memory access errors, not 
catching thrown exceptions etc.

If a dynamic error occurs the debug session is terminated.
June 2009 IBM Rational Tau User Guide 1707



Chapter 55: Debugging a C++ Application
1708 IBM Rational Tau User Guide June 2009



56
Visual Studio Integration for C++

The integration between IBM Rational Tau and Visual Studio facilitates 
building and debugging a generated C++ application. For more information 
refer to the documentation of the Visual Studio Integration.
June 2009 IBM Rational Tau User Guide 1709



Chapter 56: Visual Studio Integration for C++
1710 IBM Rational Tau User Guide June 2009



UML and Requirements

The chapters listed under UML and Requirements describe how to model re-
quirements in UML and how to work with requirements defined in DOORS.
June 2009 IBM Rational Tau User Guide 1711



Chapter : 
1712 IBM Rational Tau User Guide June 2009



58
Modeling Requirements

This chapter describes how to model requirements in UML.
June 2009 IBM Rational Tau User Guide 1713



Chapter 58: Modeling Requirements
Getting started
To start modeling requirements in IBM Rational Tau:

• Start IBM Rational Tau and create a new project, or use an existing 
project

• Activate the Requirements add-in, see Activating the Requirements add-
in

• Optionally, switch to the Requirement View

• Create a Requirement Diagram and start modeling.

See also

“Working together with DOORS” on page 1723

“Importing requirements” on page 1724

“Working with links” on page 2441
1714 IBM Rational Tau User Guide June 2009



Requirements add-in
Requirements add-in
The Requirements add-in adds support for modeling requirements in IBM 
Rational Tau.

The main features of the add-in are:

• It implements the Requirements profile

• A requirement centric model view, the Requirement View.

• A requirement centric property view Requirement Property View

• A number of Requirement Reports

To activate the add-in, see Activating the Requirements add-in.

Activating the Requirements add-in

The requirements modeling feature is available as an add-in, which must be 
manually activated for every project you want to use it in. To activate the 
add-in:

1. In the Tools menu, select Customize.... 

2. Click the Add-Ins tab and check the Requirements add-in.

3. Click OK.

Requirement View

The Requirement View provides a requirements centric view over a model, 
focused on showing requirements and their relations.

To activate the Requirement View:

1. In the View menu, select Reconfigure Model View...

2. Select Requirement View in the dialog and click OK.

You can switch between the Standard View and the Requirement View at 
any time.

See also

“Model View” on page 15 in Chapter 4, Introduction to IBM Rational Tau 
4.3
June 2009 IBM Rational Tau User Guide 1715



Chapter 58: Modeling Requirements
“Default Model View” on page 2498 in Chapter 95, Dialog Help

Requirement Property View

The Requirement Property View provides a requirements centric view of the 
properties of an element. 

To activate the Requirement Property View:

1. Select an element and open the Properties Editor.

1. Click Options...

2. Change the property view to Requirement Property View

3. Click OK.

You can switch between the Standard Property View and the Requirement 
Property View at any time.

See also

“Properties Editor Options” on page 86 in Chapter 6, Working with Models

Requirement Reports

A number of reports are available for requirements and requirement 
relations.

The following reports lists requirements:

• Requirements Report

• Non-satisfied Requirements Report

• Non-verified Requirements Report

And the following report lists requirement relations:

• Requirement Relations report

Reports listing requirements are available as Basic reports or Detailed re-
ports.
1716 IBM Rational Tau User Guide June 2009



Requirements add-in
Basic reports

These reports are always available and lists all requirements meeting the cri-
teria in the selected element(s).

For each Requirement the following information is displayed:

• Name

• Id

• Text

• Heading

Detailed reports

When using the Requirement add-in together with DOORS Formal modules, 
detailed reports are available in addition to the Basic reports.

The detailed reports are only available for packages representing formal 
modules or single requirements in formal modules. The reason is that the set 
of attributes is potentially different for each module.

In addition to the three columns of the basic reports, the detailed versions has 
one column for each attribute column visible in the corresponding DOORS 
formal module as specified by the Attributes

Note
DXL Layout columns are not represented in IBM Rational Tau and there-
fore not present in the reports.

Requirements Report

Simply lists all requirements.

Non-satisfied Requirements Report

Lists all non-satisfied requirements in the selected element(s). A requirement 
is considered not satisfied when it has no incoming Satisfy relations.

Non-verified Requirements Report

Lists all non-verified requirements in the selected element(s). A requirement 
is considered not verified when it has no incoming Verify relations.
June 2009 IBM Rational Tau User Guide 1717



Chapter 58: Modeling Requirements
Requirement Relations report

Lists all requirement relations in the selected element(s). All Requirement re-
lations are considered.

For each relation the following information is displayed:

• The kind(s) of the relation

• The name of the source element

• The kind of the source element

• The name of the target element

• The kind of the target element
1718 IBM Rational Tau User Guide June 2009



Requirements profile
Requirements profile
The Requirements profile extends UML with concepts for modeling require-
ments. The Requirements profile is standardized in the OMG as a part of 
SysML.

Basics

The requirements profile defines a «requirement» stereotype representing 
a requirement, and a set of stereotypes for specifying relationships between 
requirements and other UML model elements. Together these concepts adds 
support for requirements specification and traceability.

It also introduces a new diagram type, the Requirements diagram for editing 
requirements and their relations.

All the concepts useful for requirements specification are listed and de-
scribed in the following sections. Most concepts are specified in the Require-
ments profile, but some in standard UML and some in the UML Testing Pro-
file. They are listed here for completeness.

Requirement

A «requirement» is a stereotyped Class representing a requirement. A re-
quirement has the following properties:

• Text - the text of the requirement

• Heading - the heading text of the requirement

• Id - the id of the requirement

Requirements can be nested to any depth to represent hierarchies of require-
ments.

Requirements easily can be created from the New menu in the Model View 
both when using Standard view and Requirements view. Additionally re-
quirements can be created in Requirements diagrams.
June 2009 IBM Rational Tau User Guide 1719



Chapter 58: Modeling Requirements
Visualizing requirements in diagrams

A requirement can be visualized in a Requirement Diagram. However, since 
a requirement is a stereotyped class, it is also possible to visualize it in other 
diagrams where classes can be visualized. This means that it is possible to vi-
sualize a requirement in most kinds of diagrams.

In most diagrams the easiest way to visualize a requirement is to drag it from 
the Model View and drop it on the diagram. However, in some diagrams 
dropping a class means something else than to visualize it. For example, in 
an Activity Diagram an object node typed by the dropped class will be cre-
ated, and in a Sequence Diagram a lifeline typed by the dropped class will be 
created. To be able to visualize requirements also in these kinds of diagrams, 
the Requirement profile contains a Diagram Generator called “Visualize Re-
quirement”. To use it, drag a requirement from the Model View to a diagram 
using the right mouse button. Select Visualize in Diagram - Visualize Re-
quirement in the context menu that appears to visualize the dropped require-
ment in the diagram.

Requirement relations

The profile specifies a set of requirement relations, all are stereotyped depen-
dencies. Each relation is described in its own section below. All requirement 
relations are Dependency links. For more information on how work with 
links, see Managing links.

Trace relation

A «trace» relationship is a standard UML concept used to track any kind of 
changes between model elements. It’s therefore also applicable to require-
ment traceability.

«trace» is not defined in the Requirements profile, but it is listed here since 
it is commonly used together with requirements.

Copy relation

A «copy» relationship between two requirements specifies that the text of 
the client requirement is a read-only copy of text of the supplier requirement.

The copy relationship is a kind of master/slave relationship intended to be 
used to specify requirements re-use.
1720 IBM Rational Tau User Guide June 2009



Requirements profile
Note
The text of the client is not automatically kept synchronized with the text of 
the supplier. This has to be done manually.

DeriveReqt relation

The «deriveReqt» relation is used to specify that a requirement (the client) 
has been derived from another requirement (the supplier). For example a 
system requirement in a SRD is typically derived from a user requirement in 
a URD.

Refine relation

The «refine» relationship is a standard UML concept used to specify that a 
model element (the client) refines another model element (the supplier).

«refine» is not defined in the Requirements profile, but it is listed here 
since it is commonly used together with requirements.

Satisfy relation

The «satisfy» relation is used to specify that a model element (the client) 
satisfies, or implements, a requirement (the supplier).

Verify relation

The «verify» relation is used to specify that a test case (the client) verifies, 
or tests, a requirement (the supplier).

Test Case

A test case is an operation specifying a test behavior for testing one or more 
model elements. Test cases are defined in the UML Testing Profile.

Note
Test cases are only available when the UML testing profile support is ac-
tive, see Activating the Testing Profile Support.

Requirement Diagram

A diagram for viewing and editing requirements and their relationships.
June 2009 IBM Rational Tau User Guide 1721



Chapter 58: Modeling Requirements
A requirement diagram can contain requirements, requirement relations and 
other related elements.

Only requirements, packages and requirement relations can be created using 
the toolbar. To show other kinds of element, drag them from the Model View 
to the diagram.

Note
Not all elements are shown in the Requirements View, so in order to drag 
them from the Model View to the diagram it might be necessary to switch 
view to for example the Standard View.

Note
To create a requirements diagram you must use the Requirements view. See 
Requirement View for details on how to switch to this view.
1722 IBM Rational Tau User Guide June 2009



59
Working together with DOORS

This chapter describes how to import requirements from DOORS and how to 
work with them in IBM Rational Tau. The main features are:

• Visualizing DOORS requirements in UML models

• Establishing links between requirements and UML model elements.

DOORS requirements are visualized in UML according to the SysML re-
quirements profiles. This profile is described in more detail in “Modeling Re-
quirements” on page 1713.

For information on how to represent UML models and elements in DOORS, 
see UML Elements in DOORS.
June 2009 IBM Rational Tau User Guide 1723



Chapter 59: Working together with DOORS
Importing requirements
Requirements are imported from DOORS using the DOORS Import Wizard.

To start the import wizard:

1. Select the Model node, or any other model element, in the Model View

2. Select File->Import...

3. Select Import from DOORS

4. Click OK

The DOORS Import Wizard is started. 

DOORS Import Wizard

The first thing the import wizard does is connecting to DOORS to present a 
tree-view of the DOORS database. If DOORS is not started it will be started, 
and you will be prompted to login.

Once connected, a tree-view representing the database is displayed, all 
projects, folders and formal modules are displayed. Each node in the tree-
view has a check-box in front of it indicating if it will be imported or not.

1. Select the formal module(s) you would like to import.

2. For each module, optionally change the Import Settings

3. Click Import >

The import process is started. A progress bar indicates the progress and mes-
sages are listed in a list. 

4. Click Finish to close the wizard 

For information on the result of the import, see Import result. For a list of 
supported modifications to imported requirements see Modifying imported 
requirements.

Import Settings

For each formal module, the following import settings can be specified:

• Baseline

Specifies the baseline to use during import. By default the latest version 
is used.
1724 IBM Rational Tau User Guide June 2009



Importing requirements
• View

Specifies the view to use during import. The “Standard View” is the de-
fault.

• File

Specifies the name of the .u2 file in which the imported formal module 
is stored. The default file name is the name of the formal module.

The baseline and view (and filters applied in the view) both affects the result 
of the import, see Import result for details.

Import result

The following section lists the elements created during an import of a formal 
module. The supported modifications to imported requirements are de-
scribed in Modifying imported requirements.

Formal module

A formal module is imported using the representation described in UML rep-
resentation of DOORS elements. The formal module package is inserted at 
the top level of the model, and placed in the file specified by the Import Set-
tings.

Objects

Each object is imported using the representation described in UML represen-
tation of DOORS elements.

Only objects that are visible in the View (specified by the Import Settings) 
used during import are imported.

Object attribute values are imported into an instance of the «requirementAt-
tribute» stereotype on the object. For details on the definition of the stereo-
type, see Attributes below.

Attributes

Attributes are imported using the representation described in UML represen-
tation of DOORS elements. The set of imported attributes is based on the col-
umns of the View (specified by the Import Settings) used during import.
June 2009 IBM Rational Tau User Guide 1725



Chapter 59: Working together with DOORS
The «requirementAttributes» stereotype is created and inserted into the 
formal module package.

Note 1
DXL Layout attributes are not imported in IBM Rational Tau.

Note 2
The «requirementAttributes» stereotype shall not be changed manu-
ally.

Links

Links are always imported as Trace relations. If desired the relation type can 
be changed manually in IBM Rational Tau at any time.

The target of a link is specified using a symbolic reference. If an element 
matching the symbolic reference is loaded, the link will be bound to that el-
ement, otherwise the symbolic link is kept. When importing new modules 
symbolic links are resolved if possible.

Modifying imported requirements

Imported requirements can be modified in IBM Rational Tau and the 
changes can be pushed back to DOORS, see Committing changes from IBM 
Rational Tau to DOORS.

In addition to changes within a formal module, the formal module package 
itself must not be changed or moved in the model. Moving a formal module 
to a different scope will make links unbound.
1726 IBM Rational Tau User Guide June 2009



UML representation of DOORS elements
UML representation of DOORS elements
This sections describes the UML representation of DOORS elements. It is 
compliant with the Requirements profile, but adds some extensions

Formal module

A DOORS formal module is represented as a package with the 
«formaModule» stereotype applied. The properties of a formal module are 
listed in the table below.

Note
The values of the formal module properties are set automatically during im-
port and synchronization and should not be changed manually.

The only value that can be changed is the Link Module.

Object

A DOORS object is represented using the standard Requirement representa-
tion.

The mapping between requirement properties and DOORS object attributes 
is described in the table below.

Property Description

Id The id of the corresponding formal module.

Baseline The baseline used when importing the module. An 
empty value indicates that the current version is 
used.

View The view used when importing the module. An 
empty value indicates that the standard view is 
used.

Link Module The full path to the link module used by the integra-
tion when committing links to DOORS. If this 
value is empty, the default link module is used.

Last Synchronized The date and time of the latest synchronization.
June 2009 IBM Rational Tau User Guide 1727



Chapter 59: Working together with DOORS
Note
The id of a requirement is set automatically during import and synchroniza-
tion and should not be changed manually.

Tables

Tables are represented in a structured way. The table itself and each row is 
represented by a place-holder element, and the cells are the actual require-
ment objects.

Table
Row1

Cell1
Cell2
Cell3

Row2
Cell4
Cell5
Cell6

A table element is represented as a class stereotyped «table», and a row is 
a class stereotyped «row».

Attributes

DOORS attributes are represented in UML using a stereotype called 
«requirementAttributes». Each Formal module contains a stereotype 
with this name representing the attributes available for objects in that 
module. This stereotype is created automatically during import of a formal 
module.

Instances of the «requirementAttributes» stereotype are applied to all 
objects within a formal module. These instances contain the actual attribute 
values.

Property DOORS Object Attribute

Name Object Identifier

Id Absolute Number

Text Object Text

Heading Object Heading
1728 IBM Rational Tau User Guide June 2009



UML representation of DOORS elements
Note 1
Changes made to a view in DOORS have to be saved before they can be im-
ported into IBM Rational Tau. For example if an attribute has been added. 
Always save the view before importing.

Note 2
The «requirementAttributes» stereotype is created automatically 
during import of a formal module and should not be changed manually. 

Link

A DOORS link is represented using the standard Requirement relations rep-
resentation, i.e. a stereotyped dependency, or Dependency link.
June 2009 IBM Rational Tau User Guide 1729



Chapter 59: Working together with DOORS
Locating an element in DOORS
To navigate from a UML model element to the corresponding DOORS ob-
ject:

1. Right-click the element in the Model View or in a diagram

2. Select Locate in DOORS from the context menu

This operation will start DOORS if it is not running and try to locate the ob-
ject. The view and baseline used during import is used to locate the object. If 
the view is no longer available or the object isn’t visible in the view, the stan-
dard view is used.

This command is available for; synchronized UML elements, packages rep-
resenting imported formal modules and for UML <<requirements>> 
classes representing imported requirements.

The command is also availble in the DOORS tool bar and in the Doors menu.
1730 IBM Rational Tau User Guide June 2009



Committing changes from IBM Rational Tau to DOORS
Committing changes from IBM Rational Tau to 
DOORS

It is possible to makes changes to formal modules that have been imported 
from DOORS. For a full list of supported changes, see Supported changes.

To commit changes made in Tau to the original formal module in DOORS:

1. Select the formal module in the Model View

2. Right-click and select Commit to DOORS.

The command is also available in the Doors menu and in the DOORS tool 
bar.

Note
When committing for the first time in a new Tau version, it is important that 
the instructions given in Migrating from earlier IBM Rational Tau versions 
is followed. Failing to do so will result in loss of data.

Note 2
The content of a formal module imported with a specific baseline can not be 
changed. It is only possible to create incoming links to such a module.

Supported changes

The following table lists the set of supported changes to UML elements that 
will be committed to DOORS.

Note
Be careful when editing formal modules. Not all of the non-supported 
changes are prohibited by the user interface. This is intentional to support 
less restricted requirement modeling when the DOORS integration isn’t 
used.
June 2009 IBM Rational Tau User Guide 1731



Chapter 59: Working together with DOORS
Changes not explicitly mentioned in the table are not supported. This in-
cludes for example:

• Creation or deletion of table rows

Element Supported changes Restrictions/Comments

Requirement Create, delete, move

Change of name and/or 
attribute values

The Id property should not be 
changed.

Requirements should not be moved 
between formal modules.

Requirements inside tables can’t be 
created, deleted or moved.

Requirements in tables can’t have 
child requirements.

Requirement 
relation (link)

Create, delete, move, 
change of target

The link module used by the integra-
tion to create links is specified as a 
property of the Formal module.

Requirement 
diagram

Any change is supported. -

Formal Module - The attribute definition (i.e. the 
«requirementAttributes» stereo-
type) must not be changed.

Moving or renaming an imported 
formal module will cause problems 
when updating the module from 
DOORS as described in “Updating 
from DOORS to IBM Rational Tau” 
on page 1734.

Table - The only supported changes to tables 
is changing the properties of the con-
tained requirements.

Row - The only supported changes to rows is 
changing the properties of the con-
tained requirements.
1732 IBM Rational Tau User Guide June 2009



Committing changes from IBM Rational Tau to DOORS
• Addition of requirements to table rows
June 2009 IBM Rational Tau User Guide 1733



Chapter 59: Working together with DOORS
Updating from DOORS to IBM Rational Tau
There are two ways to update formal modules in IBM Rational Tau with 
changes made in DOORS:

• Update with changes since last synchronization

• Full update

To update a formal module in IBM Rational Tau with changes made in 
DOORS:

1. Select the formal module in the Model View.

2. Right-click and select Update from DOORS or select 
Full Update from DOORS depending on the type of update that is 
needed.

Update with changes since last synchronization

The formal module will be updated with changes made to the formal module 
in DOORS since the last synchronization. This is an update optimized for 
performance, but the set of Supported changes is slightly limited.

Note 1
The content of a formal module imported with a specific baseline can not be 
changed. It is only possible to create incoming links to such a module.

Note 2
Objects that have been deleted in DOORS are always deleted in IBM Ra-
tional Tau even if they are visible in the view in DOORS. Deleted objects 
shall be synchronized to IBM Rational Tau before they are purged, other-
wise they will not be deleted from IBM Rational Tau.

Supported changes

The following changes in the DOORS module are supported:

• Creation and deletion of objects

• Move of objects

• Change of object attribute values

– Only attributes present during the import are updated

• Creation and deletion of links
1734 IBM Rational Tau User Guide June 2009



Updating from DOORS to IBM Rational Tau
No other changes are currently supported and can cause unexpected results 
during the update procedure. This includes (for example):

• Change of view definition

• Change and application of filters

• Change of attribute definitions

If such changes are needed, the module has to be updated using a Full update, 
or reimported, see Importing requirements.

Full update

The formal module is fully updated with all changes made in DOORS. After 
a full update, the module in IBM Rational Tau is fully synchronized with the 
DOORS version.

When to use the full update

A full update is needed when any of the following changes have been made 
in DOORS:

• The view definition has been changed

– For example by changing or adding attributes

• A filter has been changed or applied

• Objects have been deleted and purged without updating the formal 
module in IBM Rational Tau.
June 2009 IBM Rational Tau User Guide 1735



Chapter 59: Working together with DOORS
Changing the view or baseline
To change the view and/or baseline of an imported formal module:

1. Select the formal module in the Model View

2. Right-click and select Change View/Baseline...

3. In the dialog, select the view and baseline you want to use and click OK.

When changing the view and/or the baseline, a Full update of the module is 
performed.
1736 IBM Rational Tau User Guide June 2009



Creating Links
Creating Links
Links can be created in several different ways as described in Managing 
links. However, the DOORS integration adds another mechanism to create 
links: Drag’n’drop between requirements in DOORS and UML elements in 
Tau.

To create a link from a DOORS element to a UML element, drag a require-
ment from DOORS and drop it on an element in the Model View in Tau.The 
drop from DOORS will work if the target model element has DOORS repre-
sentation, i.e. it is imported from DOORS or it is exported to DOORS. Note 
that the link will automatically be created in DOORS only. To see the link in 
Tau the UML model must be updated from DOORS.

To create a link from a UML element to a DOORS requirement drag the 
UML element from the Model View to DOORS and drop it on a requirement. 
The result will be a <<trace>> dependency in the UML model.In this case it 
is not necessary for the UML element to have a DOORS representation. Note 
that no link is created in DOORS until the changes in the UML model has 
been manually committed to DOORS.
June 2009 IBM Rational Tau User Guide 1737



Chapter 59: Working together with DOORS
Exporting requirements to DOORS
The most commonly used scenario when creating DOORS formal modules 
is to create them in DOORS and then import them into Tau. However, in 
some situations it can be useful to start the definition of formal module in Tau 
instead. The mechanism to achieve this is described in this section. A 
package containing requirements can be exported to DOORS as a formal 
module. To export a package:

1. Select the item you want to be the root of your DOORS formal module 
in the Model View

2. Right-click on this item, select DOORS/Export Requirements from the 
context menu.

3. If DOORS is not already running, it will be started now. After providing 
your login information, you can proceed with the export.

4. The Export Module dialog allows setting the parameters for the surro-
gate DOORS module.

5. Choose the location in the DOORS database.

6. Optionally fill in Object identifiers data: start number and prefix; or use 
the default values.

7. Press OK.

A new formal module is created in DOORS. The name of the formal module 
is the same as the name of the exported package. The name cannot be 
changed.

All requirements in the package are exported as DOORS objects. All other 
elements in the package are ignored. The name of the exported requirement 
is ignored, and after the export it is replaced with the object identifier of the 
corresponding DOORS object.

Note 2
A package can only be exported once. If the Id property of the formal 
module is set, export is disabled.

Supported changes

Once a module has been exported, the same restrictions for changes as for 
imported modules apply. For a complete list, see Supported changes.
1738 IBM Rational Tau User Guide June 2009



Exporting requirements to DOORS
Adding requirement attributes

Requirement attributes can’t be specified or changed manually in IBM Ra-
tional Tau, so they will therefore not be exported. To add requirement at-
tributes and values to an exported module:

– Add the desired attributes and values in DOORS and save the view

– Switch to the new view in Tau, see Changing the view or baseline

This will update the module with the correct attribute definitions and values. 
From now on they can be used as in any imported module.

See also

Managing traceability
June 2009 IBM Rational Tau User Guide 1739



Chapter 59: Working together with DOORS
DOORS toolbar
It is possible to perform some of the previously described operations using 
the buttons of the DOORS toolbar in Tau:

• Start DOORS: This starts DOORS if it is not already started. After pro-
viding the login information, IBM Rational Tau will be connected to 
DOORS.

• Import a DOORS formal module: This will launch the DOORS Import 
Formal Module wizard.

• Locate an element in DOORS: This starts DOORS and selects a given 
object into DOORS.

• Export to DOORS: This will export the selected element (and contained 
elements) to DOORS.

• Update from DOORS: This will update the currently selected elements 
with changes in DOORS.

• Commit to DOORS: This command will commit all changes done to the 
selected exported/imported element to DOORS.
1740 IBM Rational Tau User Guide June 2009



Migrating from earlier IBM Rational Tau versions
Migrating from earlier IBM Rational Tau 
versions

In order to preserve information in IBM Rational Tau and DOORS when mi-
grating imported requirements between Tau versions, it is vital that the in-
structions below are followed.

Important!
If these instructions are not followed, information can be lost in IBM Ra-
tional Tau and/or DOORS. Since the integration automatically saves the 
data in both tools, there is no easy way to recover lost data, other than re-
verting to previously stored/baselined versions.

UML Requirements

This section applies when using the UML representation of requirements, 
potentially together with exported UML models (see Working with UML el-
ements in DOORS).

In the old Tau version:

• Execute Commit to DOORS... for all exported UML models (surrogate 
modules)

In the new Tau version:

• Execute Full Update from DOORS for all formal module packages.

• Execute Update Links from DOORS... for all exported UML models.

• Select File->Save All.

Requirements in .dim files

This section applies when using the old representation of requirements (.dim 
files) potentially together with exported UML models (see Working with 
UML elements in DOORS).

In the old Tau version:

• Execute Commit to DOORS... for all exported UML models (surrogate 
modules)

• Execute Commit Links to DOORS... for all imported formal modules
June 2009 IBM Rational Tau User Guide 1741



Chapter 59: Working together with DOORS
In the new Tau version:

• Remove the .dim files from the Tau project (and optionally delete the 
files from the file system)

• Reimport the formal modules using the new integration, see Importing 
requirements

• Execute Update Links from DOORS... for all surrogate modules

• Select File->Save All.

Note
Mixing the two different requirement representations, i.e. .dim files and 
UML models is not supported. Doing so can result in loss of data.

Surrogate modules exported using IBM Rational Tau 
3.1.1 or earlier versions

This section applies when using surrogate modules that were exported using 
IBM Rational Tau 3.1.1 and previous versions. In IBM Rational Tau 4.0 the 
scheme used for exporting modules has been simplified and the intermediate 
representation shown in the DOORS tab has been removed.

The consequence is that all exported modules must be re-exported to 
DOORS.

In the old IBM Rational Tau version:

• Execute Update Links from DOORS... for all exported UML models 
(surrogate modules) to make sure all links are available in the UML 
model.

In DOORS

• Remove (or rename) the surrogate module.

In the new IBM Rational Tau version:

• Remove the .dim files from the IBM Rational Tau project (and optionally 
delete the files from the file system)

• Re-export the formal modules using the new integration, see Working 
with UML elements in DOORS

• Execute Update Links from DOORS... for all surrogate modules

• Select File->Save All.
1742 IBM Rational Tau User Guide June 2009



Testing UML Models

This section describes the use of the Test Profile in IBM Rational Tau. 
June 2009 IBM Rational Tau User Guide 1743



Chapter : 
1744 IBM Rational Tau User Guide June 2009



61
UML Testing Profile

This section describes how to use the UML Testing Profile support to test 
UML models.

The UML Testing Profile is an extension to UML adding concepts for spec-
ifying tests.

The testing profile support facilitates testing of a wide variety of systems, but 
it is primarily intended for black-box testing of active classes. The key fea-
tures include support for test specification, execution and logging.

For a quick start read the following sections:

• Activating the Testing Profile Support

• Creating a test model

• Building and Running test applications
June 2009 IBM Rational Tau User Guide 1745



Chapter 61: UML Testing Profile
Activating the Testing Profile Support
The UML Testing Profile support is implemented as an add-in, and it must 
be manually activated for every project you want to use it with. To activate 
the add-in:

1. Select Customize from the Tools menu. 

2. Click the Add-Ins tab and check the TestingProfile add-in.

3. Click OK.
1746 IBM Rational Tau User Guide June 2009



UML Testing Profile
UML Testing Profile
The UML Testing Profile is a UML profile standardized by the OMG ex-
tending UML 2 with test modeling capabilities. It extends UML with test 
concepts like test cases, test components and verdict. 

The most important concepts of the testing profile is briefly described in the 
following sections. For more details on the testing profile read the profile 
specification that can be downloaded from OMG. 

The profile is implemented as a library called TTDTestingProfile loaded 
when the testing profile support is activated. It contains all definitions from 
the profile specification.

Definitions

Arbiter

Responsible for test arbitration, i.e. maintaining the verdict of a test case. 
Stores the current verdict of a test case and provides a way for the test com-
ponents to set and get the verdict. There is one arbiter in each Test context.

The Arbiter interface specifies two operations:

getVerdict() : Verdict

Returns the current test case verdict.

setVerdict(v : Verdict)

Sets the verdict of the current test case.

Scheduler

Controls test execution in a Test context. Manages Test components and ex-
ecution of test cases within the test context. There is one scheduler in each 
test context.

Test case

A stereotyped operation specifying test behavior. Specifies a set of stimuli 
sent to the SUT and the expected response. The Verdict is produced based on 
the correspondence between the actual response and the expected response.
June 2009 IBM Rational Tau User Guide 1747



Chapter 61: UML Testing Profile
Test context

A class acting as a grouping mechanism for test cases. Typically all tests for 
a given class are contained in the same test context. The test context owns a 
set of test cases, the Test components participating in the test cases and an 
Arbiter and a Scheduler.

The test configuration, i.e. the initial configuration of test components, the 
arbiter and the scheduler are also specified by the test context.

Test component

A class executing in Test case behavior. Communicates with the SUT ac-
cording to the test case behavior and reports the verdict to the Arbiter. 

Test objective

The objective of a Test case; an informal description of what the test is sup-
posed to test. A test objective is specified using a dependency from a Test 
context or Test case to the element they are supposed to test.

SUT

The System Under Test, SUT, is an instance of the system or class the tests 
are designed to test. Each Test context contains one SUT.

Verdict

A verdict is the result of a Test case, and can have four different values, listed 
in the following table: 

Verdict value Meaning

pass Test execution is successful and the SUT responded 
as specified by the Test case.

inconclusive Test execution can’t tell whether the SUT performs 
well or not.

fail Test execution fails because the SUT does not be-
have as specified by the test case.

error There’s an error in the test system, e.g. a test case 
hangs in an infinite loop.
1748 IBM Rational Tau User Guide June 2009



Creating a test model
Creating a test model
To create a test model to test a specific class, the following steps has to be 
performed:

1. Create a Test context with the desired class as an SUT. The easiest way 
to do this is to use the Create test context dialog, but it is also possible to 
create a test context manually.

2. Create a Test case in the test context. Test cases can be created in a 
number of different ways, see Creating a test case, and there is also an 
option in the Create test context dialog to automatically add an empty test 
case.

3. Now you should specify the test case behavior, see Specifying test case 
behavior, for the new test case. Sequence diagrams has to be used for test 
cases in the test context, but State machine diagrams can be used to 
specify test cases in the Test component.

4. Repeat steps 2-3 and add as many test cases you need to specify the tests.

More than one test context, each with a different set of test cases can be cre-
ated.

When the test model has been completed, a test application can be created 
and executed.

See also

“Building and Running test applications” on page 1764
June 2009 IBM Rational Tau User Guide 1749



Chapter 61: UML Testing Profile
Creating a test context
To create a test context, select an active class, right-click and select Create 
Test Context...

The Create test context dialog is opened, initialized with the active class as 
the type of the SUT.

Create test context dialog

This dialog is used to create a Test context. The different values entered into 
the dialog are listed in the table below.

After filling out all values and clicking OK, a test context is created using the 
information of the dialog.

Value Description

Owner The owner of the test context.

Name The name of the test context.

SUT Name The name of the SUT part of the test context.

SUT Type The type of the SUT part of the test context.

Test Component Name The name of the test component part of the test con-
text.

Test Component Type 
name

The type name of the test component of the test 
context.

Generate Test Configura-
tion

Indicates whether a test configuration diagram 
should be generated or not.

Generate Test Case Indicates whether an empty Test case should be 
generated or not.

Create Build Artifact Indicates if a build artifact manifesting the test con-
text should be created or not.

Save in new file Indicates if the test context should be saved in a 
new file or not.
1750 IBM Rational Tau User Guide June 2009



Creating a test context
A test context named ‘Name’ is created in ‘Owner’, and placed in the same 
file as the owner. If ‘Model’ is specified as the owner, the test context will be 
created as a root element in the model.

A Test objective dependency is added from the test context to the SUT Type.

A number of elements are created inside the test context, each described in 
more detail below:

• An SUT part

• A Test component part

• A number of Connectors

• A number of Dependencies

• A Test configuration diagram

• A Initial test case

In addition, if Create Build Artifact is checked, a build artifact manifesting 
the test context is automatically created. 

If Save in new file is checked, the test context (and the build artifact if cre-
ated) is saved in a new file as specified by a save file dialog.

SUT part

The SUT part is a composite attribute with the «SUT» stereotype with name 
and type as specified in the dialog.

Test component part

The test component part gets its name from the dialog, and a new active class 
is created, inside the test context, and set as the test component type. The 
«testComponent» stereotype is applied to the class.

The test component class has one port for each port in the SUT type. The Re-
alized interface and the Required interface of the ports are exchanged to fa-
cilitate communication between the SUT and the test component, i.e. real-
ized interfaces on an SUT port becomes required interfaces on the test 
component port, and vice versa.
June 2009 IBM Rational Tau User Guide 1751



Chapter 61: UML Testing Profile
Connectors

For each pair of ports of the SUT part and the test component part, a con-
nector is generated and connected to the ports.

Dependencies

To make sure that all definitions visible in the SUT type also are visible in 
the test context, import and/or access dependencies are automatically created 
from the test context to all needed definitions.

Test configuration diagram

Optionally, a Composite structure diagram describing the test configuration, 
can be created in the test context. The diagram contains two part symbols, 
one for the SUT and one for the test component. Each port of the SUT and 
test component is represented and the ports are connected with connectors. 

Initial test case

Optionally, a initial Test case can be created in the test context. The test case 
is an operation with the «testCase» stereotype applied. The test case con-
tains one sequence diagram with two lifelines, one for the SUT and one for 
the test component part. 
1752 IBM Rational Tau User Guide June 2009



Creating a test case
Creating a test case
A test case is an operation with the «testCase» stereotype applied. Test 
cases can only be owned by Test contexts or Test components. 

How to create a new empty test case is described in the following sections:

• Adding an empty test case to a test context

• Adding an empty test case to a test component

How to create a test case by reusing an existing sequence diagram is de-
scribed in the section Creating a test case from an existing diagram.

Adding an empty test case to a test context

To add a Test case to a test context, right-click the test context in the model 
view and select Create Test Case.

A new test case is added to the test context. The test case contains a sequence 
diagram with one lifeline for each part in the test context.

The test case behavior can now be specified manually by adding messages 
between the lifelines and/or references to other test cases and operations in 
the test context. For details, see “Sequence diagrams” on page 1756.

Adding an empty test case to a test component

To add a Test case to a test component, right-click the test component in the 
model view and select Create Test Case.

A new test case is added to the test component. The test case contains an 
empty state machine diagram.

The test case behavior can now be specified manually with State machine di-
agrams.

Creating a test case from an existing diagram

To create a Test case from an existing sequence diagram, for example a trace 
diagram from the Model Verifier, right-click the diagram in the Model View 
and select Add to Test Context.
June 2009 IBM Rational Tau User Guide 1753



Chapter 61: UML Testing Profile
This opens a sub menu with a list of all test contexts in the model. Click the 
test context the new test case should be created in. The Add to Test Context 
appears. The test case is created when clicking OK in the dialog.

Since the only supported elements in a test case sequence diagram are mes-
sages, timing constraints and reference symbols, only these elements will be 
copied to the test case diagram.

Add to Test Context 

The Add to Test Context dialog contains four list boxes that contain life-
lines, and buttons for moving lifelines between these list boxes. The purpose 
of the dialog is to group the lifelines into different categories to determine 
how they should be interpreted in the test case.

When the dialog is opened, the Lifelines list box to the left contains all the 
lifelines of the selected diagram. (Potentially one lifeline is preselected as an 
SUT lifeline.) Lifelines left in this list when closing the dialog are not copied 
into the new test case.

The SUT list box to the right contains the lifeline that should represent the 
SUT in the new test case. If any of the lifelines of the original diagram has a 
type that matches the type of the SUT in the selected test context, this lifeline 
will be present in the SUT list box instead of the Lifelines list box. There 
must be exactly one SUT lifeline in order to click OK and close the dialog.

The Test Component list box to the right contains lifelines that represents 
the test component in the test contexts. When creating the new diagram, the 
lifelines in this list box will be merged into a single lifeline representing the 
test component.

The Test case attribute list box to the right contains lifelines that each rep-
resent an attribute in the test case. Each of these lifelines will be copied into 
the Test case diagram. For each attribute lifeline that has a bound type, an at-
tribute of the same type is created in the test case. If present, the lifeline is 
bound to the attribute.

Messages between lifelines in the Test Component list and messages be-
tween lifelines in the Test case attribute list are not copied to the new dia-
gram.
1754 IBM Rational Tau User Guide June 2009



Creating a test case
When the lifelines have been moved to the desired list box, click OK to close 
the dialog. A new test case is created in the selected test context. It contains 
a sequence diagram derived from the original diagram, depending on the 
classification of the lifelines, as previously described.

The new diagram is automatically created, and the order of the messages and 
references follows the original diagram. The diagram is opened for editing 
after creation.
June 2009 IBM Rational Tau User Guide 1755



Chapter 61: UML Testing Profile
Specifying test case behavior
The behavior of a Test case can be specified in two different diagram types, 
sequence diagrams and state machine diagrams. Sequence diagrams are used 
for test cases owned by the Test context, and state machine diagrams for test 
cases owned by the Test component. A single test case can only be specified 
by one diagram type, i.e. if you specify a test case as a sequence diagram in 
the test context you cannot specify the same test case as a state machine in 
the test component.

Test cases specify the expected response from the SUT when sending 
stimuli to it. Therefore a test case is always considered to pass if the SUT 
behaves as specified by the test case. The Verdict pass is implicit and does 
not have to be specified in the test case. You only have to set the verdict in a 
test case if you want a different verdict than pass.

Specifying test cases using sequence diagrams is the most common way, and 
they are used for a wide variety of tests. State machine diagrams are used for 
lower level test cases, when the expressive power of sequence diagrams is 
not powerful enough. Typically you should only use a state machine diagram 
if you can not express the desired behavior in a sequence diagram. 

Test cases specified as sequence diagrams in the test context are transformed 
into state machines in the test component when creating the Intermediate test 
model, but test cases specified as state machine diagrams in the test compo-
nent are left untouched.

Sequence diagrams

A test case specified by a sequence diagram should contain at least two life-
lines: one for the SUT and one for the Test component. The test case behavior 
is specified as a set of interactions between these lifelines.

The following symbols can be used in a test case:

• Lifelines

• Message lines

• Action symbols (only on the test component lifeline)

• Reference symbols

• Time specification lines

Example 587 on page 1757 illustrates how to create a simple test case.
1756 IBM Rational Tau User Guide June 2009



Specifying test case behavior
Example 587: A simple test case ––––––––––––––––––––––––––––––––––––––––––

The test component sends the signal Ping with an integer parameter with the 
value 3 to the SUT. As a response the SUT sends the signal Pong with the 
same parameter value to the test component. 

The Pong signal with the parameter value 3 is the expected response from the 
SUT. In order for the test case to pass, this is the only acceptable response. If 
any other signal is received, or if the parameter value is different from 3, the 
test case will fail. 

You don’t have to set the verdict explicitly in this case. It is assumed that the 
test case will pass if the expected response is received, and fail otherwise.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 260: Simple test case example
June 2009 IBM Rational Tau User Guide 1757



Chapter 61: UML Testing Profile
Using action symbols

An action symbol can be used to execute low level actions in a test case. This 
is typically needed to test the value of a parameter or to set a verdict different 
from pass.

• To set the verdict explicitly, call the setVerdict operation and supply 
the desired verdict value.

• To test a condition, typically a parameter or variable value, use the 
assertTrue operation.

Action symbols can only be used on the test component lifeline since it is not 
possible to make any assumptions on the internal behavior of the SUT in a 
test case.

Example 588: Testing a condition ––––––––––––––––––––––––––––––––––––––––

Figure 261 on page 1758 illustrates how to use the assertTrue operation of 
ITTDArbiter to test the value of a parameter of a signal sent from the SUT to 
the test component. 

If the parameter value is 3, the verdict will be set to pass, otherwise it will 
be set to fail.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 261: Using the assertTrue operation to test a condition
1758 IBM Rational Tau User Guide June 2009



Specifying test case behavior
Referencing other test cases or operations

To reference a test case or operation from a test case, use a reference symbol 
in the sequence diagram and enter the name of the test case you want to refer 
to.

Use test cases if you also want to run them separately, and operations if you 
only want to run them as a part of other test cases.

Note
The referenced test case / operation must be owned by the same test context 
and have the same set of lifelines.

Specifying timing constraints

Timing constraints are used to express constraints on the expected time be-
tween sending and receiving a message. 

Timing constraints can only be used on the test component lifeline since it is 
not possible to make any assumptions on the SUT in a test case.

To specify a timing constraint, use a time specification line with both ends 
attached to the test component and enter the desired constraint in the text 
label. Three different kinds of constraints are supported:

• Within a given time value: < x, <= x

If the time between sending and receiving the message is less than x sec-
onds, the tests passes, otherwise it fails.

• After a given time value: > x, >= x

If the time between sending and receiving the message is larger than x 
seconds, the tests passes, otherwise it fails.

• Within a closed range of time values: {x..y}

If the time between sending and receiving the message is within the 
range, the test passes, otherwise it fails.

Constraints with a fixed absolute value, i.e. {== x} or {x}, are not sup-
ported, since they are not meaningful.

Example 589: Timing constraint––––––––––––––––––––––––––––––––––––––––––

This example illustrates how to use a timing constraint in a test case. The test 
component sends signal Ping to the SUT and expects the signal Pong back 
within 3 seconds. 
June 2009 IBM Rational Tau User Guide 1759



Chapter 61: UML Testing Profile
If signal Pong is received after more than 3 seconds, the test case will fail. If 
any other signal is received, or the parameter value is different from 3 it will 
fail no matter when the response is received.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Additional lifelines

In addition to the SUT and test component lifelines, additional lifelines rep-
resenting attributes in the test case may be used. This is only meaningful if 
the attribute is a reference to an instance of an active class. The type case is 
when the SUT passes a reference to an instance as a signal parameter and the 
test component wants to interact directly with that instance in addition to the 
SUT.

Note
Currently there can only be three kind of lifelines in a sequence diagram. 
The should be exactly one representing the SUT, one representing the test 
component and any number of lifelines representing attributes in the test 
case itself.

State machine diagrams

There are no requirements or restrictions on a test case specified using a state 
machine diagram. The test case is assumed to pass unless the verdict is ex-
plicitly set to a different value.

Figure 262: Timing constraint example
1760 IBM Rational Tau User Guide June 2009



Specifying test case behavior
To set the verdict explicitly, use an action box and call the setVerdict op-
eration. To test a condition, use the assertTrue operation.

Example 590: Test case specified using a state machine–––––––––––––––––––––––

This example shows how the test case in Figure 260 on page 1757 could be 
specified using a state machine. The owner of the test case in this case is the 
test component rather than the test context.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 263: Test case specified using a state machine
June 2009 IBM Rational Tau User Guide 1761



Chapter 61: UML Testing Profile
Test Framework
The testing profile implementation uses a test framework to implement the 
semantics specified by testing profile and to control test execution and log-
ging. The framework is defined in a library called TTDTestFramework.

TTDTestFramework contains implementations of the interfaces from the 
testing profile and some additional elements. The key concepts of the frame-
work are described below.

Interfaces

ITTDArbiter

An interface specializing the Arbiter interface. Two new operations are 
added:

assertTrue(b: Boolean)

A convenience operation for testing a condition and setting the verdict ac-
cordingly. The verdict is set to pass if the boolean expression b is true, and 
to fail if b is false.

getFinalVerdict() : Verdict

Returns the final verdict once a test case has been finished. Called by the 
Scheduler when finishing a test case.

ITTDScheduler

An interface similar to the Scheduler interface, but adjusted to fit the frame-
work. Defines two signals:

finishTestCase(ITTDTestComponent)

Used by test components to notify the scheduler when they have finished ex-
ecution of a test case.

reportNewTestComponent(ITTDTestComponent)

Used by test components to notify the scheduler of their existence.

ITTDTestComponent

A test component interface with one signal only:
1762 IBM Rational Tau User Guide June 2009



Test Framework
startTestCase(Charstring)

Tells the test component to start execution of a test case. Used by the sched-
uler.

Implementations

TTDArbiter

An implementation of the ITTDArbiter interface. Stores the overall verdict 
of a test case in an attribute.

TTDScheduler

An implementation of the ITTDScheduler interface. Drives test execution by 
retrieving a test case and executing it, keeping track of involved test compo-
nents.
June 2009 IBM Rational Tau User Guide 1763



Chapter 61: UML Testing Profile
Building and Running test applications
This section describes how to build and run a test application from a test con-
text.

Building a test application

To build a test application from a test context you need a Build Artifact man-
ifesting the test context. Normally the build artifact is automatically created 
by the Create test context dialog, but it is also possible to create one manu-
ally:

1. Right-click the Test context and select Test Generation -> New Arti-
fact.

A build artifact is created and the Test generation stereotype is applied.

2. If desired, change the default values of the Test generation stereotype.

3. Apply a code generator stereotype to determine what kind of test appli-
cation you would like to build. Currently only Model Verifier is sup-
ported.

To build the build artifact, use the Build command (Build Shortcut Menu). 

If the build is successful the result is a test application that can be fed to the 
Test Driver for execution. 

For information on how to execute the test application, see “Running a test 
application” on page 1769. The build step can often be skipped, since a build 
is performed automatically when running the test application if needed.

Test application build process 

During the build process, the original test model is translated into an Inter-
mediate test model from which code is generated and then the test application 
is built. The process is outlined in Figure 264 on page 1765.
1764 IBM Rational Tau User Guide June 2009



Building and Running test applications
The intermediate model is inserted into the project during build. For each 
build a new intermediate model is generated and the old one is thrown away. 
The intermediate model can however be saved and built separately. The in-
termediate model should not normally be changed, and if you make any 
changes to it, it is your responsibility to make sure the changes are compat-
ible with the test framework and that the model builds. 

Intermediate test model

A test model is translated into an intermediate test model during the build 
process. A number of transformations take place to turn the test model into 
an executable test model.

For example, the behavior of each Test case specified as a sequence diagram, 
as described in Sequence diagrams, needs to be translated into something the 
chosen code generator can generate code from.

The transformations also ensure that the test model interacts properly with 
the Test Framework.

Transformations

The table below lists all transformations performed during translation from a 
test model to an intermediate model.

Figure 264: Build process details
June 2009 IBM Rational Tau User Guide 1765



Chapter 61: UML Testing Profile
Message reception

A message received by a test component is translated to a state and a trig-
gered transition in the state machine corresponding to the test case. 

First the state machine will wait in a state until the given signal is received. 
The reception of any other signal is treated as an error (the operation will set 
the verdict to fail and will then return). If the specified signal is received the 
signal parameters are handled and after that the next action will be handled. 
Signal parameters are handled in either of two ways depending on the signal 
parameter expression. If the signal parameter is an attribute, then the value 
of the signal parameter is assigned to the attribute. If the signal parameter is 
anything else (a general expression), then the received signal parameter 
value is tested against this value. If the two values are not equal then this will 
be treated as an error (verdict will be set to fail and operation returns).

Test Model Intermediate model

Test Case Operation in the test component with the same 
name.

Test Case behavior
(Sequence diagram)

State machine in the corresponding operation in the 
test context. (No diagram)

Test case attributes Identical attributes in the corresponding state ma-
chine.

Message sent from 
test component

Signal Sending action with the same signal and pa-
rameters.

Message received 
by test component

See “Message reception” on page 1766.

Action symbol

(CompoundActionO
ccurrence)

A compound action with the same content.

Reference symbol

(InteractionOccu
rrence)

A call to the referenced signature, or more specifi-
cally an expression action with a call expression 
with the referenced signature and parameters.

Time specification 
line

See “Time specification line” on page 1767.
1766 IBM Rational Tau User Guide June 2009



Building and Running test applications
Example 591: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Reception of message: 

sig(a, 1);

in a sequence diagram is translated to (in u2p syntax): 

    ..... /* previous action */
    nextstate Wait;
  }
state Wait;
  input sig(a, tmp) {
    if (tmp != 1) {
      arbiter.setVerdict(fail);
      return;
    }
    ..... /* action following the signal reception */
  }
  input * {
    arbiter.setVerdict(fail);
    return;
  }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Time specification line

A time specification line is translated in different ways depending on the time 
specification value. All mappings share the usage of a timer to implement 
timing constraints.

Time < or <= time value

A time specification with a time that should be < or <= a specified time value 
is translated to a timer definition and a set action on the timer at the position 
of the beginning of the time specification.

At the endpoint of the time specification a reset action on the timer is in-
serted, as the timer should still be active at that point. If the timer signal is 
received in any state this is an error, as the timer has expired. So for all states 
(state *), the receiving of the timer signal is included, leading to a transition 
that sets the verdict to fail and a return from the operation.

Example 592: Time specification less than a specified value –––––––––––––––––––

Timer declaration:

timer t = 3;

Time specification start:

set(t);
June 2009 IBM Rational Tau User Guide 1767



Chapter 61: UML Testing Profile
Time specification end:

reset(t);

Error in all states:

state *;
  input t {
    arbiter.setVerdict(fail);
    return;
  }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Time > or >= time value

A time specification with a time that should be > or >= a specified time value 
is translated to a timer definition and a set action on the timer at the position 
of the beginning of the time specification.

At the endpoint of the time specification a test is made if the timer is still ac-
tive. If it is, this is treated as an error (verdict set to fail, followed by return 
from operation). If the timer signal is received in any state this is ok and the 
same state is reentered.

Example 593: Time specification greater than a specified value––––––––––––––––

Timer declaration:

timer t = time-value;

Time specification start:

set(t);

Time specification end:

if (active(t)) {
  arbiter.setVerdict(fail);
  return;
}

Figure 265: A time specification with < or <= a specified time value
1768 IBM Rational Tau User Guide June 2009



Building and Running test applications
For all states:

state *;
  input t {
    nextstate -;
  }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Time range

If a time range is given in a time specification, such a time specification is 
translated as one time specification with time greater than time value and one 
with time less than time value.

Running a test application

To run a test application, right-click the Build Artifact used to build it and 
select Run Tests from the Build menu. This will start execution of the test 
application and show the results in the built-in web browser.

The tests are executed using a generated Test input file, and the result is 
stored in a Test log file produced by the Test Driver during test execution.

Test applications can also be run outside of IBM Rational Tau in batch mode 
using the Test Driver executable. 

Figure 266: A time specification with > or >= a specified time value.
June 2009 IBM Rational Tau User Guide 1769



Chapter 61: UML Testing Profile
Run a test application in the Model Verifier

To run a test application in the Model Verifier, right-click the build artifact 
and select Launch from the Build menu. Test execution can now be con-
trolled manually.

1. Click Go and wait until prompted to enter a test case in the Model Veri-
fier Console window.

2. Enter the name of the test case you wish to run, enclosed in double-
quotes, e.g. “TestCase1” to run TestCase1.

The result of the test case is written to the Model Verifier output window.

Note
The Model Verifier has to be restarted to run a second test case.

Test execution results

When running a test application from IBM Rational Tau, the test execution 
result is written to a Test log file that is shown when execution is finished.
1770 IBM Rational Tau User Guide June 2009



Test Execution and Logging
Test Execution and Logging
This section explains how test are executed once a test application has been 
built. The architecture is depicted in Figure 267 on page 1771. 

An executable called the Test Driver is responsible for invoking the test ap-
plication to execute the test cases. The execution can be explained in the fol-
lowing steps:

1. The test driver reads the Test input file to decide which test cases to run.

2. It launches the test application which executes the test case.

3. When the Test case has been executed, the test application reports the 
verdict to the test driver.

4. The test driver writes the verdict to the Test log file.

5. Steps 1-4 are repeated once for each test case in the input file.

Each component in the test execution chain is described in detail in the fol-
lowing sections.

Test Driver

The Test Driver is an executable for driving a test application, i.e. sequen-
tially execute a number of test cases in a test application.

The test driver executable is called TestDriver and can be found in the bin 
folder of the installation.

TestDriver -type c testApplication inputFile [logFile]

Figure 267: Test execution architecture
June 2009 IBM Rational Tau User Guide 1771



Chapter 61: UML Testing Profile
The -type option is used to specify the type of the test application. Currently 
only c applications are supported, and c is the only applicable value.

The testApplication parameter specifies the full path to the generated test 
application.

The inputFile parameter specifies the full path to the Test input file that 
should be used during execution.

The optional logFile parameter specifies the full path to the Test log file 
that will be created by the test driver during execution. If no value is speci-
fied, the test log is written to standard output of the test driver context.

Test input file

The test input file is a file read by the test driver to specify which test cases 
it shall execute, in which order and possibly a timeout value.

The test input file is a text file in XML with the following format:

<testinput>
<testcase>
<name>testcaseName </name>
<timeout>timeout value </timeout>

</testcase>
...

</testinput>

Where testcaseName is the name of a Test case to be executed and timeout 
value is an integer value specifying a timeout (in milliseconds) after which 
the execution of the test case will be aborted if the final verdict hasn’t been 
produced. The timeout element is optional, and if it is not present, no timeout 
is applied.

When building a test model in IBM Rational Tau, a test input file is automat-
ically generated in the Target Directory of the test application. This input file 
contains all test cases of the test context each with the timeout specified in 
the Test generation stereotype.

To remove a test case or execute one test case more than once, or to change 
the timeout, the input file has to be manually changed.
1772 IBM Rational Tau User Guide June 2009



Test Execution and Logging
Test log file

The test log contains the result of a test run. All executed test cases are listed 
along with their verdict and some additional information to facilitate naviga-
tion from the log file to the model. The test log is created by the test driver 
during test execution in the location specified in the Test generation stereo-
type.

The test log is written in XML format and a XSL style-sheet is used to present 
the log file in a browser. The style-sheet file, called ttdTestLog.xsl is 
copied to the same location as the test log when the log file is created. To 
change the style sheet, simply replace the file with another file with the same 
name. If the style-sheet file exists when the log is created, it will not be over-
written.

To change the appearance of the test log, replace the style-sheet.

Test generation stereotype

The test generation stereotype is applied to a Build Artifact (in addition to a 
code generator specific stereotype to indicate that a test model should be built 
from a test context. 

The test generation stereotype has the following tagged values:

• Test Log

The full path to the log file. The default value is empty meaning that the 
log file will be created in the Target directory of the build artifact.

• Startup timer

An integer value specifying a timeout value for the initialization of the 
test framework and test component.

• Testcase timer

An integer value specifying a timeout value for the execution of a single 
test case. By default all test cases share the same timeout value. To use 
different values for individual test case, the Test input file has to be mod-
ified manually after code generation.

• Include Guids in input file

Enables navigation from the test case name in the test log to the diagram 
in Tau that represents the corresponding test case.
June 2009 IBM Rational Tau User Guide 1773



Chapter 61: UML Testing Profile
• Show intermediate model

Inserts the intermediate test model into the project and makes it visible.

The test generation stereotype can only be applied to build artifacts with a 
Test context as Build Root.
1774 IBM Rational Tau User Guide June 2009



Known Restrictions
Known Restrictions
This section summarizes the known restrictions of the testing profile support.

Build artifact types

The only supported build type is Model Verifier. It is used for all C code test 
applications, no matter if they are run interactively or in batch using the test 
driver.

Test case behavior

Only sequence diagrams and state machine diagram can be used to specify 
test behavior.

In addition test cases owned by a test context must be specified using se-
quence diagrams, and test cases owned by a test component must be specified 
using a state machine.

Test cases

Test cases can not have any parameters.

Test cases can contain at most one sequence diagram (if owned by a test con-
text)

Test case behavior - sequence diagram

A test case sequence diagram can only contain the following diagram ele-
ments:

• Lifeline symbol

• Action symbol

Action symbol can only be used on the test component lifeline

• Reference symbol

• Message line
June 2009 IBM Rational Tau User Guide 1775



Chapter 61: UML Testing Profile
• Time specification line

Both ends of a Time specification line must be attached to the test com-
ponent lifeline

Absolute time values are not supported for Time specification line, i.e. 
{== x} or {x} since they are not meaningful

• Comment Symbol

• Text Symbol

Test component

There can only be one test component per test context.

Testing profile

The following concepts from the testing profile are not supported for test 
generation and execution purposes:

• Defaults and default application

• Validation action, Log action, Finish action

• InteractionOperator

• Test log and Testlog application

• Test Data: Wild cards and coding rules

• Time zones

Timers

Timers can only be used in test cases specified using state machines.
1776 IBM Rational Tau User Guide June 2009



UML Modeling with DOORS

The chapters listed under this section describe how to work with UML 
models using Tau with DOORS.

• Storing models in DOORS

• UML Elements in DOORS

• Managing traceability
June 2009 IBM Rational Tau User Guide 1777



Chapter : 
1778 IBM Rational Tau User Guide June 2009



63
Storing models in DOORS

In addition to the file system, IBM Rational Tau projects and models can be 
stored in DOORS. This makes it possible to view, edit and share models 
using the existing DOORS infrastructure.

Models stored in DOORS can utilize all capabilities of IBM Rational Tau in-
cluding code generation and model verification.

This chapter describes how work with models stored in DOORS.

• Introduction to DOORS storage

• Working with projects in DOORS

• Working with models in DOORS

• Module vs object level

• Working with projects in IBM Rational Tau

• Working with models in IBM Rational Tau

• DOORS Storage Limitations

See also

“Working with UML elements in DOORS” on page 1798
June 2009 IBM Rational Tau User Guide 1779



Chapter 63: Storing models in DOORS
Introduction to DOORS storage
This section describes how projects and models are stored in DOORS. 

To understand how the information is organized in DOORS basic knowledge 
about IBM Rational Tau workspaces, projects and .u2 files is needed. The ba-
sics is explained in Project and model basics. For more information, see 
Working with Projects.

If you’re already familiar with these concepts you can skip directly to one of 
the following topics:

• Projects in DOORS

• Models in DOORS

• Default project

• File system

• Synchronization

• Storage vs synchronization

Project and model basics

A model is a set of related UML elements stored together. When stored in 
the file system a model is stored in a .u2 file. In order to load a model it must 
be contained in a project.

A project is a container holding references to one or more related models. 
When loading a project all models are loaded. In addition to model references 
a project also contains some settings. When stored in the file system a project 
is stored in a .ttp file. The name of a project is dervied from the file name.

Projects and UML models are typically shared between many users.

A workspace is a user specific container referencing a set of projects. Work-
spaces are typically not shared between users, although they can be.

See also

“Working with Projects” on page 31

“Working with Workspaces” on page 29
1780 IBM Rational Tau User Guide June 2009



Introduction to DOORS storage
Projects in DOORS

Each formal module in DOORS can contain one UML project.

Projects stored in DOORS work in the same way as projects stored in the file 
system. They can refer both models stored in DOORS and models stored in 
the file system. A formal module with a project can also contain models.

The name of a project stored in DOORS is derived from the module it’s 
stored in and can’t be manually assigned or changed.

Models in DOORS

Each formal module in DOORS can contain one or more UML models. 
Models can be created at module or object level. There can be one model at 
the module level and one or more models at the object level. Each model has 
a reference to a project, the Default project.

Default project

The default project of a module or object controls which project to load when 
opening IBM Rational Tau using the Open in IBM Rational Tau command 
or when double-clicking a diagram. The Set Default Project command al-
lows you to change the default project at any time, see Setting the default 
project of a model.

The default project is automatically set when creating a model or when 
adding it to a project for the first time. But since a model can be used in any 
number of projects it is possible to change the default project later.

File system

When working with projects and models stored in DOORS, there is still a 
need to store some files in the file system. For example: workspace files, user 
settings files for projects and diagrams and output from code generators.

Each project has a default output location to store these files. For each 
project, a folder with the project module id as a name is created in the IBM 
Rational Tau default project location. 

The full path is typically:

C:\Documents and Settings\User Name\My Documents\My Projects\Module Id
June 2009 IBM Rational Tau User Guide 1781



Chapter 63: Storing models in DOORS
The default project location can be changed in the Options dialog.

Synchronization

The content of a model, including diagram images, can be represented in a 
formal module by synchronizing the model with a module. For more infor-
mation see UML Elements in DOORS.

Storage vs synchronization

Projects and models can be stored in a formal module without displaying and 
synchronizing the UML elements with the objects. In other words, storage 
and synchronization are separated for full flexibility. Just because a formal 
module contains a model doesn’t mean it is a surrogate module.

Any UML model can be synchronized with a formal module in DOORS, re-
gardless where it is stored.
1782 IBM Rational Tau User Guide June 2009



Working with projects in DOORS
Working with projects in DOORS
This section describes how to work with projects in DOORS, and covers the 
following topics:

• Creating a project in DOORS

• Loading a project from DOORS

• Select UML Project dialog

See also

Working with models in DOORS

Creating a project in DOORS

To create a UML project:

• Create and/or open a formal module in exclusive edit mode.

There are no specific requirements on the module, so any module that 
doesn’t already contain a project can be used.

• Execute the Create UML Model command from the IBM Rational Tau 
menu in the formal module.

• In the Select UML Project dialog choose the Create new project option.

• Select the desired project type and click OK.

The project type affects the appearance of the model in the Model View 
and during synchronization.

• Set the desired Synchronization settings and click OK.

Loading a project from DOORS

A UML project can be loaded in two different ways, either explicitly by spec-
ifying a project, or implicitly by loading a model.

To load a UML project explicitly:

• Execute the Load UML Project... command from the Tau menu in the 
main explorer window. 

• Browse for the module containing the desired project and click OK.
June 2009 IBM Rational Tau User Guide 1783



Chapter 63: Storing models in DOORS
IBM Rational Tau is started and the project and all models it references are 
loaded.

The section Opening a model in Tau describes how a project is implicitly 
loaded by loading a model.

Select UML Project dialog

This dialog is used to select an existing project or create a new project. It is 
used by several different commands, for example Create UML Model... and 
Add UML Model to Project.

The dialog offers the following ways to specify a project:

• Create new project

Creates a new UML project using the IBM Rational Tau New Project 
wizard.

• Add to active Tau project

Adds the UML model to the currently active project in IBM Rational 
Tau.

• Add to existing project

Lets you browse for an existing project stored in DOORS and add the 
model to that project.

When used to add an existing model to a project the Use as default project 
checkbox is used to decide whether the selected project should be made the 
Default project of the model or not.

In order to create or change a project, the user must have module level write 
access to the module containing the project.
1784 IBM Rational Tau User Guide June 2009



Working with models in DOORS
Working with models in DOORS
This section describes how to work with UML models in DOORS.

• Creating a new model

• Opening a model in Tau

• Using a model in multiple projects

• Setting the default project of a model

• Splitting a model

• Deleting a model

See also

Module vs object level

Working with projects in DOORS

Creating a new model

A model can be created at two different levels, at module level and at object 
level. For more information, see Module vs object level.

Module level

To create a new model at module level:

1. Create and/or open a formal module in exclusive edit mode.

There are no specific requirements on the module, so any module that 
doesn’t already contain a model at the module level can be used.

2. Execute the Create UML Model in Module command from the IBM 
Rational Tau menu in the formal module.

3. Use the Select UML Project dialog to create or select a project for the 
new model.

The new model is by default synchronized using the default synchronization 
settings. For information on how to change them, see Changing synchroniza-
tion settings.

Object level
June 2009 IBM Rational Tau User Guide 1785



Chapter 63: Storing models in DOORS
To create a new model at object level:

1. Select an object in a formal module. Ensure that you have write access to 
the object.

2. Right-click and execute the Create UML Model in Object command 
from the context menu.

3. Use the Select UML Project dialog to create or select a project for the 
new model.

The new model is by default synchronized using the default synchronization 
settings. For information on how to change them, see Changing synchroniza-
tion settings.

Note
To create or modify a project in the same module as the object, write access 
at module level is needed. When adding a model to a project in the same 
module, make sure that exclusive edit mode is used.

Opening a model in Tau

There are several ways to open a UML model in IBM Rational Tau:

• From main explorer window use the Load UML Project... command in 
the IBM Rational Tau menu. See Loading a project from DOORS.

• In a formal module use the Open in Tau command in the IBM Rational 
Tau menu

• Double-click a diagram image

When opening a model in IBM Rational Tau, the Default project of the 
model is used to determine which project to load.

When the project and the models it references are loaded, the edit mode of 
the models in IBM Rational Tau is depending on the current edit mode of 
their corresponding modules in DOORS. If a module is open in read-only 
mode in DOORS the model will be read-only in IBM Rational Tau. To make 
a read-only model editable use the Make Editable command, see Making a 
read-only model editable for more information.

Using a model in multiple projects

A model can be contained in any number of projects at the same time.
1786 IBM Rational Tau User Guide June 2009



Working with models in DOORS
The Add UML Model to Project command is used to add an existing model 
to a project.

Module level

To add a module level model to a project:

1. Open the formal module containing the model.

Any edit mode can be used, but in order to make the new project the de-
fault project of the model write access is needed.

2. Execute the Add UML Model to Project command from the IBM Ra-
tional Tau menu in the formal module.

3. Use the Select UML Project dialog to create or select the project to which 
the model should be added.

Use the Use as default project checkbox to control if the new project 
should be the default project or not. The default project can be changed 
later, see Setting the default project of a model.

Object level

To add an object level model to a project:

1. Open the formal module and select the object containing the model.

Any edit mode can be used, but in order to make the new project the de-
fault project of the model write access to the object is needed.

2. Right-click and execute the Add UML Model to Project command from 
the context menu.

3. Use the Select UML Project dialog to create or select the project to which 
the model should be added.

Use the Use as default project checkbox to control if the new project 
should be the default project or not. The default project can be changed 
later, see Setting the default project of a model.

Note
To create or modify a project in the same module as the model, write access 
at module level is needed. When adding a model to a project in the same 
module, make sure that exclusive edit mode is used.

Setting the default project of a model

To set the Default project of a model:
June 2009 IBM Rational Tau User Guide 1787



Chapter 63: Storing models in DOORS
Module level

1. Open the formal module containing the model in exclusive edit mode.

2. Execute the Set Default Project command from the IBM Rational Tau 
menu.

3. Browse for the desired project and click OK.

Object level

1. Open the formal module containing the model in exclusive or shareable 
edit mode.

2. Make sure the object containing the model is locked.

3. Right-click the object and execute the Set Default Project command 
from the context menu.

4. Browse for the desired project and click OK.

Splitting a model

An existing model can be split into two models. This is useful when different 
users need to work on different parts of a model at the same time. The model 
can then be split and used in different editable sections and/or different 
projects.

To split an existing model right-click the object that should become the top-
level element in the new model and execute the Split UML Model... com-
mand from the context menu.

This is what happens when splitting a model:

1. The default project of the original model is loaded

2. A new model is created and inserted into the project. The synchronization 
settings for the new model is the same as for the original model

3. The UML elements representing the object and its children are moved to 
the new file

4. The project and the models are saved

When both models are loaded together the model hierarchy is intact, i.e. the 
UML element that was split into a new model is still compositionally owned 
by the original element.

The new model can be used in a different project that doesn’t contain the 
original model. In this case the model will appear at the top-level.
1788 IBM Rational Tau User Guide June 2009



Working with models in DOORS
Note
If the original model is referenced from more than one project, the new 
model will not be added automatically to these projects. To add new model 
to these projects use the Add Model to Project command, see Using a model 
in multiple projects.

Deleting a model

To delete all UML models and all related attributes from a formal module: 

• Open the formal module in exclusive edit mode

• Execute the Disable Tau command from the IBM Rational Tau menu

This command deletes all UML models stored in the module including all re-
lated attributes and views. Objects representing UML elements are not de-
leted.

Note
Deleting a model does not automatically remove it from the projects it’s ref-
erenced from. The model needs to be manually removed.
June 2009 IBM Rational Tau User Guide 1789



Chapter 63: Storing models in DOORS
Module vs object level
Information in DOORS can be stored at two different levels, module and ob-
ject. Models can be stored at both levels. This makes it possible to structure 
models in a flexible way to match any formal module structure.

A single formal module can contain multiple models, one at the module level 
and one for each object. There’s no tight connection between editable sec-
tions and models stored at the object level. Models can be stored at the object 
level even if a module doesn’t contain any sections.

The model structure should be set up to match the formal module and the way 
users work with it. The most common scenarios are:

• Module used in exclusive edit mode only

Create one project in the module containing a single model at the module 
level.

The model can be referenced from other models by adding it to other 
projects, see Using a model in multiple projects. 

If only a part of the model needs to be referenced from another project it 
is good practice to split that art into a separate model. In that way the size 
of the model loaded in the other project is reduced and performance is 
improved. For information on how to split a model, see Splitting a model.

• Module with editable sections - non-hierarchical model

Create one project in the module containing one model for each editable 
section. The result is a set of related models that can use and reference 
elements in each other.

When a user works on a section in shareable edit mode and loads the 
project all models are loaded in read-only mode except the model in the 
locked section which will be editable.

In this way all the models can use elements from the other models, and 
the edit mode when loading the project reflects the edit mode in DOORS.

• Module with editable sections - hierarchical model

Create one project in the module containing one model at the module 
level. Split the model at each section, see Splitting a model. The result is 
one hierarchical model stored in several places.

When a user works on a section in shareable edit mode and loads the 
project the model is loaded in read-only mode except the branch stored 
in the locked section which will be editable.
1790 IBM Rational Tau User Guide June 2009



Working with projects in IBM Rational Tau
Working with projects in IBM Rational Tau
This section describes how to work with DOORS stored projects in IBM Ra-
tional Tau.

• Creating a project in Tau

• Loading a project from DOORS

For more information on how to work with projects in IBM Rational Tau, see 
“Working with Projects” on page 31.

See also

Working with models in IBM Rational Tau

Creating a project in Tau

To create a new UML project stored in DOORS:

• Execute the File/New... command to open the New wizard. Make sure 
the Project tab is active

• Select the desired project type

• Specify that the project should be stored in DOORS by clicking the 
DOORS radio button

• Specify the project module. There are two different scenarios:

Creating a new module

Enter the name of the module in the Name edit box. Browse for a 
DOORS project or folder to create the module in by clicking the ... 
button. Select a project or folder and click OK. The path to the selected 
element is inserted in the Location edit box. The path can also be entered 
manually.

Using an existing module

Browse for a DOORS module to store the UML project in by clicking the 
... button. Select a module and click OK. The Name and Location edit 
boxes are updated according to the selected module. The values can also 
be entered manually.

• Click OK
June 2009 IBM Rational Tau User Guide 1791



Chapter 63: Storing models in DOORS
• Enable the Create model checkbox to create a model in the project

Specify the model location in the same way as the project location. Set 
the desired Synchronization settings.

• Click Finish

Loading a project from DOORS

To load a project stored in DOORS:

• Execute the Open DOORS Project... command from the file menu

This commands starts DOORS if it’s not already running, and you’ll be 
prompted to login.

• Browse for the module containing the project and click OK.

The project and all the models it references are loaded. If any models in the 
project are synchronized with DOORS and have the Update/Commit on 
Open/Save setting is enabled, they’ll be updated from DOORS automati-
cally.
1792 IBM Rational Tau User Guide June 2009



Working with models in IBM Rational Tau
Working with models in IBM Rational Tau
This section describes how to work with DOORS stored models in IBM Ra-
tional Tau.

• Loading a model from DOORS

• Saving a model in DOORS

• Making a read-only model editable

Loading a model from DOORS

To load an existing model from DOORS and insert it into an existing project:

• Execute the Insert models from DOORS... command from the DOORS 
menu

• Select the formal module(s) containing the model(s) you would like to 
import

• Click Import followed by Finish

The models are inserted into the project. This command is the equivalent of 
Insert Files... for models stored in files.

Note
If using this feature in a DOORS stored project please note that the Default 
project of the models is not changed.

Saving a model in DOORS

To save an existing model in DOORS:

• Right-click the desired model element in the Model View and select 
Save in DOORS...

• Select the module in which the model should be stored and click OK

This command can be used to store a full model or a part of an existing 
model. The model is just stored in DOORS it’s not synchronized. To syn-
chronize the model use the Synchronization... command, see Setting up a 
UML model for synchronization.

Note
This operation currently only supports storing a model at the module level.
June 2009 IBM Rational Tau User Guide 1793



Chapter 63: Storing models in DOORS
Making a read-only model editable

To make a read-only model editable execute the Make Editable command 
from the context menu in the Model View or in a diagram.

This command changes the edit mode in DOORS so that the model can be 
edited and saved. If the model is stored at the module level the edit mode is 
set to exclusive edit. If the model is stored at the object level and contained 
in an editable section, shareable edit mode is used.
1794 IBM Rational Tau User Guide June 2009



DOORS Storage Limitations
DOORS Storage Limitations
There are some known limitations when using projects and/or models stored 
in DOORS.

Supported code generators, importers, exporters and 
addins

Not all IBM Rational Tau tools can be used together with DOORS stored 
projects and/or models. The following tools are supported:

• C/C++ code generators

• Java code generator

• C# code generator

• Model Verifier

• Activity Simulation

• Model Explorer

• Model Browser

Tools not listed above are not guaranteed to work as expected.

Partitions

It’s not possible to use the DOORS GUI to work with partitions including 
modules containing UML projects and/or models. The storage mechanism 
relies on system attributes that are not included when adding a module to a 
partition.

Partitions can be used, but DXL scripts are needed to create and manage the 
partitions. Make sure to include all attributes (including system attributes) to 
all partition modules containing UML projects/models.
June 2009 IBM Rational Tau User Guide 1795



Chapter 63: Storing models in DOORS
1796 IBM Rational Tau User Guide June 2009



64
UML Elements in DOORS

The content of a UML model can be represented as objects and images in a 
formal module. This is done by synchronizing a model with a module. 
Models created in DOORS are by default always synchronized.

Traditionally modules with UML elements are called surrogate modules, and 
models that are synchronized with a formal module are called exported 
models.

The following topics are covered:

• Working with UML elements in DOORS

• Synchronization in DOORS

• Synchronization in IBM Rational Tau

• Synchronization settings

• Analyst View

• Attributes

• Links

• Filters

See also

“Storing models in DOORS” on page 1779

“Storage vs synchronization” on page 1782
June 2009 IBM Rational Tau User Guide 1797



Chapter 64: UML Elements in DOORS
Working with UML elements in DOORS
This sections describes how to work with UML elements in DOORS and 
how to propagate DOORS attribute values to the model.

The following sections contain information on how UML information is rep-
resented in DOORS objects and vice versa:

• DOORS representation of a UML element

• UML representation of DOORS attributes

The following sections deals with manipulation of UML elements:

• Creating a UML element

• Deleting a UML element

• Moving a UML element

• Changing the name of a UML element

• Editing a UML element in Tau

• Creating a Use Case

• Copy & Paste

The following sections describe how to propagate the values of DOORS at-
tributes to the model and show them in diagrams:

• Showing Object Text in a diagram

• Showing attributes in a diagram

See also

“Working with models in DOORS” on page 1785

“Working with projects in DOORS” on page 1783

“Synchronization in DOORS” on page 1805

DOORS representation of a UML element

A UML element is represented by an object. A couple of attributes are used 
to store UML specific information:

• UML Kind

• UML Name
1798 IBM Rational Tau User Guide June 2009



Working with UML elements in DOORS
• UML Location

For diagrams, an additional object is created to hold the diagram image of the 
diagram. (If the Show diagram images setting is enabled.) Image files are 
stored in the Windows metafile (.wmf) format.

UML representation of DOORS attributes

The values of all text-based attributes can be propagated to the model and 
displayed in diagrams. DXL Layout attributes cannot be propagated to the 
model.

Object Text

The value of the Object Text attribute is by default propagated between 
DOORS and IBM Rational Tau during synchronization. The value is stored 
as a special comment in the model, with the heading Object Text. 

For information on how to display, hide or remove the comment, see 
Showing Object Text in a diagram

Synchronization of the object text is controlled using the UML Comment 
Symbol attribute and can be turned on and off at any time.

Other attributes

The value of any text-based attribute can be propagated between DOORS 
and IBM Rational Tau during synchronization, see Showing attributes in a 
diagram.

Attribute values are stored in a special comment in the model, with the 
heading Attributes. The comment body contains the attribute names and 
values using the following syntax:

attribute name : attribute value

Attributes with empty values are not included.

Creating a UML element

To create a new UML element in a formal module:

Using the Analyst View

• Create an ordinary object and give it a suitable name
June 2009 IBM Rational Tau User Guide 1799



Chapter 64: UML Elements in DOORS
• Select the element type in the Analysis Type column

Some element types can’t be contained in other element types. If an il-
legal element type is selected, an error message is displayed.

Using any view

• Right-click an object (or the canvas if the module is empty) and highlight 
Insert UML in the context menu

• Select the element type and location and click OK

• Name the element

The model will be updated the next time it is synchronized in IBM Rational 
Tau. To synchronize explicitly execute the Commit to Tau command.

Deleting a UML element

To delete a UML element just delete the object representing it. The model 
will be updated the next time it is synchronized in IBM Rational Tau. To syn-
chronize explicitly execute the Commit to Tau command.

Moving a UML element

To move a UML element just move the object in DOORS.

Important!
An object should only be moved within the same model and/or, if editable 
sections are used, only within the editable section. If an object is moved 
within another model or section synchronization may fail, and the object 
can be deleted.

When moving an element that has not yet been committed to IBM Rational 
Tau, the element must be in a valid position hierarchically. If an element is 
moved to an illegal position a small red exclamation mark is displayed on top 
of the icon in the Analyst View, and the element will not be synchronized.

Changing the name of a UML element

The name of a model element is the same as the Object Heading of the object. 
To change the name in the model change the Object Heading to the desired 
value. The model will be updated the next time it is loaded and synchronized 
in IBM Rational Tau. To synchronize explicitly execute the Commit to Tau 
command.
1800 IBM Rational Tau User Guide June 2009



Working with UML elements in DOORS
Editing a UML element in Tau 

To edit a UML element in IBM Rational Tau:

• Right-click the object and select Open in IBM Rational Tau

To edit a diagram in IBM Rational Tau:

• Double-click the diagram image

Both these commands loads the model containing the elements by loading 
the default project of the model. For more information, see Default project.

Creating a Use Case

This command is used to elaborate a requirement by creating a use case in a 
module with a UML model and then link the use case to the original require-
ment. See also Creating a UML element.

To create a use case:

• Selected the requirement object

• Right-click and select the Create UML Use Case command.

A wizard is launched to specify the use case details through the following 
steps:

• UML Model specifies the model in which the use case will be created.

• Context specifies the UML element in which the use case will be cre-
ated. All valid elements in the model are listed. 

• Details specifies information about the use case.

The name of the use case is specified by typing a name in the edit box, or 
by selecting an attribute in the “Base for text:” drop-down and clicking 
the “Set base” button. The name is then changed to the requirements 
value of the selected attribute.

Descriptions and constraints can also be entered as part of the detailed in-
formation. 

Once all information has been provided and Finish is clicked the use case is 
created in the specified model, a link from the use case to the requirement is 
created, and finally the model is committed to IBM Rational Tau.
June 2009 IBM Rational Tau User Guide 1801



Chapter 64: UML Elements in DOORS
Copy & Paste

Copying and pasting objects representing UML elements in a formal module 
is not recommended and can produce unexpected results.

Not all model information is stored in an object, and it’s not always possible 
to relate the copy with the original element. This means that the copy will not 
be a full copy when synchronized with IBM Rational Tau. The only informa-
tion that is consistently transferred is the name and the type.

This means that when copying a diagram for example, the actual content of 
the diagram is lost, i.e. all symbols. After synchronization with Tau, the dia-
gram image will be empty.

The recommended way to copy & paste UML elements is to load the model 
in IBM Rational Tau and copy & paste the elements in the Model View and 
then commit the model to DOORS. This produces proper copies of the orig-
inal elements.

Showing Object Text in a diagram

The value of the Object Text attribute of an object is by default stored in the 
model during synchronization. It can be displayed and edited in IBM Ra-
tional Tau.

To display Object Text in a diagram:

• Open the model in IBM Rational Tau

• Open a diagram and select the desired symbol

• Right-click and select Show/Hide->Show Comments

To remove a comment symbol:

Select the symbol and click Delete. The comment will not be deleted from 
the model, just from the diagram. It can be displayed again repeating the pro-
cedure described above.

To edit Object Text in IBM Rational Tau:

• Make sure the Object Text is displayed in a comment symbol as de-
scribed above

• Edit the text, keeping the heading Object Text unchanged

To add Object Text to an object in IBM Rational Tau:
1802 IBM Rational Tau User Guide June 2009



Working with UML elements in DOORS
• Make sure there’s a symbol representing the correct object

• Create a comment symbol and attach it to the other symbol

• Enter Object Text as the first line in the comment symbol

• Enter the desired object text on the following lines

During synchronization, the text will be inserted as object text in the corre-
sponding DOORS object.

See also

“Showing attributes in a diagram” on page 1803

Showing attributes in a diagram

The values of DOORS attributes can be synchronized with the model and 
displayed in diagrams.

To show the attribute values of an object in a diagram:

• Select the desired object

• Execute the Select Attributes to Show in Tau command from the IBM 
Rational Tau menu

• Select the attributes you would like to see

• Right-click the object and select Open in Tau

• Select the symbol representing the object

• Right-click the symbol and select Show/Hide->Show Comments

• Click the Commit to DOORS button in the DOORS toolbar to commit 
update the diagram in the formal module.

A comment symbol is created and attached to the symbol. The comment has 
a heading named Attributes, followed by the attribute names and values in 
the following syntax:

attribute name : attribute value

Attributes with empty values are not included.

To remove the comment symbol just select the symbol and click Delete. The 
comment will not be deleted from the model, just from the diagram. It can be 
displayed again repeating the procedure described above.
June 2009 IBM Rational Tau User Guide 1803



Chapter 64: UML Elements in DOORS
See also

“Showing Object Text in a diagram” on page 1802
1804 IBM Rational Tau User Guide June 2009



Synchronization in DOORS
Synchronization in DOORS
This section describes how to synchronize formal modules containing UML 
elements with their models.

• Committing changes to the model

• Updating a module with model changes

Committing changes to the model

To commit changes made in a formal module to the model:

Module level

• Execute the Commit to Tau command in the Tau menu

Object level

• Select the object containing the model

• Execute the Commit to Tau command in the Tau menu

Important!
If the model is loaded in IBM Rational Tau and have been changed changes 
made in IBM Rational Tau are lost when committing changes from DOORS. 
Changes should only be made in one tool at a time.

Note
If the Update/Commit on Open/Save setting is enabled the changes made in 
the formal module are automatically committed when opening the model in 
IBM Rational Tau.

See also

“Module vs object level” on page 1790

Updating a module with model changes

To commit changes made in a formal module to the model:

Module level

• Execute the Update from Tau command in the Tau menu

Object level
June 2009 IBM Rational Tau User Guide 1805



Chapter 64: UML Elements in DOORS
• Select the object containing the model

• Execute the Update from Tau command in the Tau menu

The formal module is updated with model changes according to the current 
Synchronization settings.

Important!
If an object representing a UML element has been changed in the formal 
module these changes can be lost when updating from IBM Rational Tau. 
Changes should only be made in one tool at a time.

Note
If the Update/Commit on Open/Save setting is enabled the changes made to 
the model in IBM Rational Tau are automatically committed to DOORS 
when saving the module.

See also

“Module vs object level” on page 1790
1806 IBM Rational Tau User Guide June 2009



Synchronization in IBM Rational Tau
Synchronization in IBM Rational Tau
This section describes how to work with synchronized models in IBM Ra-
tional Tau.

See Setting up a UML model for synchronization for information on how to 
start synchronizing a model with DOORS.

For information on how to propagate changes between IBM Rational Tau 
and DOORS, see:

• Committing model changes to DOORS

• Updating a model with changes made in DOORS

The following sections describe how to customize the way a model is syn-
chronized:

• Disabling synchronization of a model

• Disabling synchronization of a single element

• Enabling synchronization of a single element

• Showing or removing a diagram image in DOORS

• Changing synchronization settings

Setting up a UML model for synchronization

To synchronize a UML model, or parts of a model, with a formal module:

1. Select the desired element in the Model View

2. Right-click and select Synchronization... from the DOORS sub menu

3. Check the Enable synchronization with DOORS check box

4. Select a Location to synchronize with by clicking the ... button.

5. Set the desired Synchronization settings

6. Click OK

The selected element is synchronized with the formal module using the spec-
ified synchronization settings. The result is a hierarchy of synchronized ele-
ments with the selected element as the root element. The Metamodel used for 
synchronization controls which elements that are synchronized.

Synchronized elements are marked in the Model View with a small DOORS 
icon.
June 2009 IBM Rational Tau User Guide 1807



Chapter 64: UML Elements in DOORS
Note
It is not possible to synchronize elements that are already part of a synchro-
nized hierarchy, i.e. direct or indirect children of a synchronized element.

Committing model changes to DOORS

To commit model changes to DOORS:

• Right-click the top-level synchronized element in the Model View

• Execute the Commit to DOORS command from the DOORS sub menu.

The model changes are committed to DOORS according to the current Syn-
chronization settings.

Important!
If a model element has been changed in DOORS after the model was loaded 
in IBM Rational Tau, these changes may be overwritten.

Note
If the Update/Commit on Open/Save setting is enabled the model is auto-
matically committed when saving the model.

Updating a model with changes made in DOORS

To update the model with changes made in DOORS:

• Right-click the top-level synchronized element in the Model View

• Execute the Update from DOORS command from the DOORS sub 
menu.

The model is updated with changes made in DOORS.

Important!
If a model element has been changed in IBM Rational Tau after the model 
was loaded, these changes may be overwritten.

Note
If the Update/Commit on Open/Save setting is enabled the model is auto-
matically updated when loading the model.
1808 IBM Rational Tau User Guide June 2009



Synchronization in IBM Rational Tau
Disabling synchronization of a model

To disable synchronization (previously called unexport) of a synchronized 
model, or parts of a model:

1. Select the element in the Model View

2. Right-click and select Synchronization... from the DOORS sub menu

3. Uncheck the Enable synchronization with DOORS check box

4. Click OK

The model and the formal module are disconnected and synchronization of 
data is disabled. This command does not remove the UML data from the 
formal module.

For information on how to disable synchronization of a single element in a 
model, see Disabling synchronization of a single element.

Disabling synchronization of a single element

To disable synchronization of a single element (including its children):

1. Select the element in the Model View

2. Right-click and select Disable synchronization from the DOORS sub 
menu

The element and all its children are excluded when synchronizing the model. 
If the element is already present in DOORS, it will be deleted. The model has 
to be committed to DOORS to apply the change.

Enabling synchronization of a single element

To enable synchronization of a single element:

1. Select the element in the Model View

2. Right-click and select Enable synchronization from the DOORS sub 
menu

The element will be included the next time the model is committed to 
DOORS.

This command is available for elements that have been explicitly disabled 
from synchronization, see Disabling synchronization of a single element, and 
elements in diagrams.
June 2009 IBM Rational Tau User Guide 1809



Chapter 64: UML Elements in DOORS
Showing or removing a diagram image in DOORS

To show or hide the diagram image of a diagram in a formal module:

• Right-click the diagram in the Model View, or right-click the canvas in 
the diagram editor

• Toggle the value of the Show diagram image in DOORS entry

If enabled the diagram image will be shown in the formal module after the 
next synchronization. If disabled the diagram image will be removed from 
the formal module if present.

This command is used to control synchronization of individual diagrams. To 
change the default for the model use the Show diagram images synchroniza-
tion setting. 

Changing synchronization settings

To change the synchronization settings of a synchronized model:

1. Select the top-level synchronized element in the Model View

2. Right-click and select Synchronization... from the DOORS sub menu

3. Set the desired Synchronization settings

4. Click OK
1810 IBM Rational Tau User Guide June 2009



Synchronization settings
Synchronization settings
The way data is synchronized between IBM Rational Tau and DOORS can 
be controlled in several different ways using different synchronization set-
tings.

The synchronization settings can be set in the New Project wizard when cre-
ating a new model stored in DOORS and changed for exported elements by 
using the Synchronization... command in the context menu in the Model 
View.

Location

The DOORS module or object that the model is synchronized against. 
Changing the location on an already synchronized model is equivalent to dis-
abling synchronization and then enabling it again with a different location.

Metamodel

The metamodel that is used for synchronization. The synchronization is fully 
metamodel-based, only elements visible in the chosen metamodel are syn-
chronized. Any metamodel can be used for synchronization including user-
defined ones. For more information about metamodels, see “Metamodel” on 
page 382.

Direction

Controls in which direction synchronization of data between the tools is al-
lowed. The direction can be controlled separately for model elements/objects 
and for links.

The following values are available:

• None

No model data is synchronized between the tools.

• Commit

Model changes are pushed from IBM Rational Tau to DOORS. 
Model changes made in DOORS are lost during the operation.
June 2009 IBM Rational Tau User Guide 1811



Chapter 64: UML Elements in DOORS
• Update

Model changes are pushed from DOORS to IBM Rational Tau. 
Model changes made in IBM Rational Tau are lost during the opera-
tion.

• Update and Commit

Model changes can be pushed in both directions, but only in one di-
rection at a time. Changes made in the other tool are lost during an 
Update or Commit operation.

Show diagram images

If enabled, diagram images are created and inserted in the formal module 
during a Commit operation. See also Show frame symbol.

Show frame symbol

This setting controls if the frame symbol should be included in diagram im-
ages synchronized to DOORS or not. When the frame symbol is disabled the 
diagrams images are cleaner and smaller.

Show top-level element

If enabled, the exported top-level UML element is represented as a separate 
object in DOORS. 

Update/Commit on Open/Save

If enabled data is automatically synchronized when opening and saving a 
model. When the model is loaded it’s updated with changes made in DOORS 
and when saved any changes are committed to DOORS.
1812 IBM Rational Tau User Guide June 2009



Analyst View
Analyst View
The Analyst View is a view designed to be used when working with UML 
elements in DOORS. When a model is created in DOORS, the view is cre-
ated automatically.

The view defines two columns in addition to the standard Object Heading 
column:

• Analysis Type

• UML Element Icon

Analysis Type

The Analysis Type column contains the value of the UML Kind attribute and 
is used to set and change the type of a UML element. See Creating a UML 
element for more information.

UML Element Icon

This nameless column displays an icon representing the UML element. The 
icon is changed according to the value of the UML Kind attribute.

This column is also used to indicate when an element has been moved to an 
invalid position. When a non-synchronized object is moved to an invalid lo-
cation, a small red exclamation mark is displayed on top of the UML icon. 
This marker indicates that the object is out of context, and it will not be syn-
chronized.
June 2009 IBM Rational Tau User Guide 1813



Chapter 64: UML Elements in DOORS
Attributes
A number of DOORS attributes are used to store UML related information 
in objects. The most important attributes are:

• UML Kind

• UML Name

• UML Location

• UML Comment Symbol

In addition to the ones listed above, there are a number of attributes used by 
the integration that should not be modified directly by the user. Changing any 
attribute not listed above manually may lead to loss of information and is not 
supported.

UML Kind

The UML Kind attribute stores the type of the element. The set of potential 
types is determined by the Metamodel used for synchronization.

For some element types, for example for symbols in diagrams, the value 
Other is used.

The value of the UML Kind attribute can not be changed once the model has 
been synchronized with IBM Rational Tau.

UML Name

The UML name of the element. This attribute is present for informational 
purpose only and should not be changed.

UML Location

The name of the owner of the element. This attribute is present for informa-
tional purpose only and should not be changed.

UML Comment Symbol

This attribute is used to control if the object text of an object shall be syn-
chronized with a comment in the model or not.
1814 IBM Rational Tau User Guide June 2009



Attributes
If the value is True (the default) the object text is propagated between the 
tools. If the value is False, it isn’t. The value can be changed at any time.

Note
If the comment representing the object text is deleted in IBM Rational Tau, 
the object text in DOORS will not be deleted. the originating DOORS Ob-
ject Text. Instead the tool will set the attribute to False indicating that it 
will not be propagated anymore.
June 2009 IBM Rational Tau User Guide 1815



Chapter 64: UML Elements in DOORS
Links
This section describes how to work with links in DOORS and IBM Rational 
Tau.

• Working with links in DOORS

• Working with links in IBM Rational Tau

• Link modules and link sets

Working with links in DOORS

The standard link operations are used to work with links in DOORS also for 
modules that contain UML models. The integration adds a couple of useful 
commands in addition to the standard operations.

Drag and drop in IBM Rational Tau

To create a link from a DOORS element to a UML element, drag a require-
ment from DOORS and drop it on an element in the Model View in IBM Ra-
tional Tau.

The drop from DOORS will work if the target model element has DOORS 
representation, i.e. it is imported from DOORS or it is synchronized with 
DOORS. 

Note
The link is automatically created in DOORS only. To see the link in IBM 
Rational Tau the UML model must be updated from DOORS.

Link Requirement to Selected Item in IBM Rational Tau

Creates a link from the currently selected UML element in IBM Rational Tau 
to the currently selected object in DOORS.

Open Linked UML Element in IBM Rational Tau

A convenient way to open a model in IBM Rational Tau from a requirement 
linked to a UML element.

If in-links exist from multiple UML elements then a dialog will be displayed 
allowing a specific selection to be made.
1816 IBM Rational Tau User Guide June 2009



Links
Working with links in IBM Rational Tau

The standard link operations are used to work with links in IBM Rational Tau 
as described in Managing links. Links can also be created by using drag and 
drop from IBM Rational Tau to DOORS.

Links are synchronized with DOORS when synchronizing the rest of the 
model, see Synchronization in IBM Rational Tau and Link modules and link 
sets.

Drag and drop in DOORS

To create a link from a UML element to a DOORS requirement drag the 
UML element from the Model View to DOORS and drop it on a requirement. 
The result will be a <<trace>> dependency in the UML model. 

The operation is allowed for all elements, even if the source element is not 
represented in DOORS.

Note
The link is created in IBM Rational Tau only. If the source element is repre-
sented in DOORS the link will not be created in DOORS until the model is 
committed from IBM Rational Tau.

Link modules and link sets

When a link is created in IBM Rational Tau and then committed to DOORS, 
the link is created in the default link module and link set as specified in the 
corresponding DOORS module. 

This makes it possible to have full control of link creation by specifying the 
desired link modules and link sets in DOORS.

If a default link module or link set is not defined, a new one is automatically 
created.
June 2009 IBM Rational Tau User Guide 1817



Chapter 64: UML Elements in DOORS
Filters
To manage traceability between requirements and UML elements a number 
of filters are provided.

To apply one of the filters:

• Open a formal module

• Execute the desired filter command from the Tau/Filter menu

Identify Design Elements Not Justified by Requirements

This filter is available in modules containing UML elements, and identifies 
all UML elements that are not linked to requirements.

Identify Design Elements by UML Kind

This filter is available in modules containing UML elements, and provides 
filtering on elements of a specific kind.

When executed a list of UML kinds is presented and a set of kinds can be se-
lected. The module is then filtered to display only elements of these kinds.

Identify Requirements Not Addressed by Design Elements

This filter is used to identify all requirements that are not linked to any UML 
model element.

The filter also shows the ancestors of the selected objects. This is done in 
order to preserve the heading hierarchy and provide context for each require-
ment.
1818 IBM Rational Tau User Guide June 2009



65
Managing traceability

This section describes how to work with both IBM Rational Tau and DOORS 
to establish and maintain traceability between UML models and require-
ments.

Three main workflows can be identified:

• Traceability in IBM Rational Tau

• Traceability in DOORS

• Traceability in IBM Rational Tau and DOORS

The last workflow is the most advanced, but also the most common one.
June 2009 IBM Rational Tau User Guide 1819



Chapter 65: Managing traceability
Traceability in IBM Rational Tau
This workflow is primarily intended for analysts, architects, designers and 
developers that have a specified set of DOORS requirements to work with, 
but they don’t necessarily need to look at the requirements in DOORS. 
Maybe they don’t even have regular access to the DOORS database.

The important thing for this kind of user is that it is possible to establish and 
maintain traceability from model to requirements. The traceability informa-
tion is not propagated to DOORS in any way.

The following steps are needed to set up this workflow:

• Import the requirements into IBM Rational Tau as described in Im-
porting requirements

Once this is done, Dependency links are created between the model elements 
and the imported requirements to establish traceability.

Requirement Reports and diagram generators (see Generate Diagram) are 
used for traceability analysis. The Generate dependency view ... diagram 
generators are useful for creating graphical traceability diagrams.

If the requirements change in DOORS, they are updated as described in Up-
dating from DOORS to IBM Rational Tau.

If there’s a need to change requirements or adding links between require-
ments in IBM Rational Tau, it can be done and the changes committed to 
DOORS as described in Committing changes from IBM Rational Tau to 
DOORS.

This workflow does not support:

• Off-the-shelf advanced traceability analysis

While Tau has the advantage of graphical traceability analysis it lacks 
some of the advanced traceability features found in DOORS.

• DOORS representation of links from/to/between model elements.

Since the model is not present in DOORS there’s no way to import these 
links into DOORS as standard links. (It is possible to use external links 
in DOORS to create links from requirements to model elements though. 
The integration never creates such links.)

• DOORS representation of UML models
1820 IBM Rational Tau User Guide June 2009



Traceability in DOORS
Traceability in DOORS
This workflow is primarily intended for requirement engineers, analysts and 
architects that have a specified set of DOORS requirements and need to 
verify that they have been properly addressed by the UML model(s) in IBM 
Rational Tau. They don’t necessarily need to work with the model in IBM 
Rational Tau. Maybe they don’t even have regular access to the IBM Ra-
tional Tau models.

The important thing for this kind of user is to be able to verify that all require-
ments have been properly addressed by the UML model by using DOORS 
links and traceability analysis.

The following steps are needed to set up this workflow:

• Synchronize the IBM Rational Tau model with DOORS as described in 
Setting up a UML model for synchronization

Once this is done, DOORS links are created between the requirements and 
the surrogate model elements to establish traceability. Note that links be-
tween imported model elements will be present in DOORS.

The traceability tools in DOORS are used for traceability analysis.

If the model(s) change in IBM Rational Tau, they are committed to DOORS 
again using the Commit to DOORS... command as described in Committing 
model changes to DOORS.

This workflow does not support:

• Graphical visualization of requirements and traceability analysis in UML 
diagrams

Since the requirements and the links are not present in IBM Rational Tau, 
the diagram generators can’t be used.

• Changes to the UML model in DOORS

The UML model can’t be changed in DOORS, a combination of IBM Ra-
tional Tau and DOORS is needed for this
June 2009 IBM Rational Tau User Guide 1821



Chapter 65: Managing traceability
Traceability in IBM Rational Tau and DOORS
This workflow is a combination of the two previously described workflows, 
Traceability in IBM Rational Tau and Traceability in DOORS. It is primarily 
intended for architects and designers that need to work with both require-
ments and UML models and regularly use both IBM Rational Tau and 
DOORS.

This type of user needs to perform traceability analysis both in IBM Rational 
Tau and in DOORS, and needs to be able to synchronize the information in 
both directions.

The following steps are needed to set up this workflow:

• Import the requirements into IBM Rational Tau as described in Im-
porting requirements

• Synchronize the IBM Rational Tau model with DOORS as described in 
Setting up a UML model for synchronization

Once this is done, changes can be made in either IBM Rational Tau or 
DOORS and then be synchronized to the other tool.

Note
Changes should only be made in one tool before synchronizing. If changes 
have been made in both tools, they can be discarded during synchroniza-
tion.

Working in Tau

Dependency links are created between the model elements and the imported 
requirements to establish traceability.

Requirement Reports and diagram generators (see Generate Diagram) are 
used for traceability analysis. The Generate dependency view ... diagram 
generators are useful for creating graphical traceability diagrams.

If the requirements change in DOORS, they are updated as described in Up-
dating from DOORS to IBM Rational Tau.

If there’s a need to change requirements or adding links between require-
ments in IBM Rational Tau, it can be done and the changes committed to 
DOORS as described in Committing model changes to DOORS.
1822 IBM Rational Tau User Guide June 2009



Traceability in IBM Rational Tau and DOORS
Working in DOORS

DOORS links are created between the requirements and the surrogate model 
elements to establish traceability. Note that links between imported model el-
ements will be present in DOORS.

The traceability tools in DOORS are used for traceability analysis.

If the model(s) change in IBM Rational Tau, they are committed to DOORS 
again using the Commit to DOORS... command as described in Committing 
model changes to DOORS.

Keeping consistency between Tau and DOORS

To ensure that the requirements and the models are kept up to date and con-
sistent, a simple procedure is used.

Important!
Never change the same piece of information in both tools without synchro-
nizing between the changes.

As an example, if a link is deleted in DOORS, but not in IBM Rational Tau, 
it will be reinserted into DOORS when the Tau model is committed.

To synchronize changes made in DOORS into IBM Rational Tau:

• In the Model View tab, execute Update from DOORS for all imported 
formal modules and synchronized UML elements.

To synchronize changes made in IBM Rational Tau into DOORS:

• In the Model View tab, execute Commit to DOORS for all imported 
formal modules and synchronized UML elements.
June 2009 IBM Rational Tau User Guide 1823



Chapter 65: Managing traceability
1824 IBM Rational Tau User Guide June 2009



UML Modeling with System 
Architect

The chapters listed under this section describe how to work with UML 
models using Tau with System Architect.
June 2009 IBM Rational Tau User Guide 1825



Chapter : 
1826 IBM Rational Tau User Guide June 2009



67
Using Tau with System Architect

This chapter describes how to work with UML models using IBM Rational 
Tau with System Architect.

System Architect is a modelling tool capable of supporting many different 
notations, including UML 2. One key feature of System Architect is that it is 
a repository based tool, that enables encyclopedias (the System Architect 
term for models) to be stored on a server and accessed over a network from 
either a web browser based client application or the standard System Archi-
tect client application.

The UML 2 models you create in System Architect are fully compatible with 
Tau. You can create UML 2 models with System Architect, store them in 
System Architect encyclopedias on a network server, then open the models 
in Tau, modify them, and save the changes back to the System Architect en-
cyclopedia.

It is also possible to create and store models locally in Tau, move these 
models into System Architect encyclopedias, and then open them in System 
Architect. Models created in System Architect repositories can also be 
copied to the local file system.

The key feature in Tau that makes this possible is the possibility to associate 
a System Architect encyclopedia with a Tau project. When an encyclopedia 
is associated with a project, all UML 2 elements in the encyclopedia will be 
part of the Tau project as if they had been created in Tau. The way this works 
is that whenever a Tau project with an associated System Architect encyclo-
June 2009 IBM Rational Tau User Guide 1827



Chapter 67: Using Tau with System Architect
pedia is loaded into Tau, then System Architect will automatically be started 
and the corresponding encyclopedia opened. If System Architect is already 
running it will load the encyclopedia into the running instance of System Ar-
chitect.
1828 IBM Rational Tau User Guide June 2009



Associating an Encyclopedia with a UML Model
Associating an Encyclopedia with a UML 
Model

The System Architect integration is implemented as an addin to Tau, so be-
fore the integration can be used, you must enable the addin as follows: 

1. Select the command Tools->Customize

2. Select the Addins tab

3. Locate and select the System Architect Integration addin

4. Close the dialog

When the addin is activated an encyclopedia can be associated with a UML 
project using the command Associate System Architect Encyclopedia. This 
command is available in the Model View in Tau for all nodes representing 
the root of the UML model. If the Standard View is used, then this is the node 
called Model.

If System Architect has been manually started and has an encyclopedia 
loaded when the Associate System Architect Encyclopedia command in in-
voked, then this encyclopedia also be loaded into the Tau model.

If System Architect has not been manually started, then it will be started and 
the user will have to open a suitable encyclopedia.

If System Architect is started but has no encyclopedia open, then an error 
message will be given to give the user a possibility to open an encyclopedia.

It is only possible to associate one encyclopedia with a Tau project. If an en-
cyclopedia has already been associated with a project, the menu choice will 
not be available.

The UML elements that are stored in encyclopedias are handled differently 
compared to elements stored locally on files from several different points of 
view. The main difference is that they are not immediately loaded into the 
project when the project is opened. Instead the elements are loaded as 
needed. See section “Incremental Loading of Elements” on page 1832 for 
more details.

Another difference is that there are special mechanisms to ensure that mul-
tiple users do not access the same elements or diagrams. This is described in 
the section “Creating, Editing and Saving UML Elements” on page 1833.
June 2009 IBM Rational Tau User Guide 1829



Chapter 67: Using Tau with System Architect
The association to an encyclopedia can be removed as described in“Re-
moving the Association with an Encyclopedia” on page 1831

When creating a new UML project it is possible to automatically associate a 
System Architect encyclopedia with the project. See also “System Architect 
Storage and New Wizards” on page 1834.
1830 IBM Rational Tau User Guide June 2009



Removing the Association with an Encyclopedia
Removing the Association with an 
Encyclopedia

The command Remove System Architect encyclopedia association is used to 
remove the association to an encyclopedia. The command is available in the 
Model View in Tau for nodes representing the root of the UML model. If the 
Standard View is used, then this is the node called Model.

When selecting this command the association will be removed and all model 
elements that were stored in the encyclopedia will be removed from the 
model.

The model elements will however not be deleted in the encyclopedia only re-
moved from the Tau project. So if the encyclopedia once more is associated 
with the project the elements will reappear.
June 2009 IBM Rational Tau User Guide 1831



Chapter 67: Using Tau with System Architect
Incremental Loading of Elements
For performance reasons the model elements stored in an encyclopedia are 
not all loaded when associating an encyclopedia with a Tau project or when 
opening a Tau project that has an associated encyclopedia.

Instead elements are only loaded at three situations:

• Elements are loaded when the containing model element is expanded in 
the Model View

• Elements are loaded when a diagram is opened in an editor

• Elements are loaded when giving the command Load all child elements

When expanding the Model View only the elements that become visible as 
direct children of the expanded node will be loaded.

When opening an editor all elements that are visible in the diagram will be 
loaded.

The command Load all child elements is available on nodes in the Model 
View that represent elements stored in System Architect encyclopedias. The 
result of this command is that all child elements, both contained directly in-
side the selected element or indirectly by any number of intermediate ele-
ments will be loaded.

When an element has been loaded it will remain loaded even if the Model 
View nodes are collapsed again or the editor window is closed.

Note that due to this incremental loading scheme the model loaded in the tool 
usually is incomplete. The implication of this is that semantic tools like the 
checker, report generation tools and code generation tools may give error 
messages due to the fact that elements may be missing in the loaded part of 
the model. It is thus recommended to always use the command Load all child 
elements to load complete parts of the model before using these kinds of se-
mantic tools.
1832 IBM Rational Tau User Guide June 2009



Creating, Editing and Saving UML Elements
Creating, Editing and Saving UML Elements
Since System Architect encyclopedias can simultaneously be accessed by 
more than one user there is a scheme based on locking elements used when-
ever modifying the model in order to ensure the consistency of the encyclo-
pedia.

The key principles that guide the updating of the encyclopedia based on 
changes in the UML model in the Tau client application are the following:

• All elements created in Tau will immediately be created also in the ency-
clopedia.

• All modifications to the model elements using the graphical editors, 
property pages and model view in Tau will be immediately propagated to 
the encyclopedia. If the element is locked by another user the modifica-
tion will fail with an error message.

• All elements that are modified in Tau using any other mechanism, like 
for example using scripts, will be modified in the encyclopedia when the 
model is saved in Tau.

• All elements that are deleted in Tau will be deleted in the encyclopedia 
when the model is saved in Tau.

• Diagrams are locked when they are opened in Tau and unlocked when the 
diagram is closed. Changing the graphical properties of the symbols in 
diagrams will not lock or change the referenced model elements.

• When entering text edit mode for a text label in a diagram the text is first 
refreshed from the encyclopedia, then the referenced model elements are 
locked.

• When exiting text edit model for a text label in a diagram the encyclo-
pedia is updated with the changes and the referenced model elements are 
unlocked.

From the point of view of someone accessing an encyclopedia there are sev-
eral consequences of this:

• It may in some situations not be possible to save some of the modifica-
tions done to the model since someone else may have locked modified 
elements. The work around for this is to save it again later.

• Changes done to the elements in the encyclopedia for elements that are 
loaded in Tau are not propagated to Tau immediately. The consequence 
is that changes done in Tau may override changes done by other users.
June 2009 IBM Rational Tau User Guide 1833



Chapter 67: Using Tau with System Architect
System Architect Storage and New Wizards
For the wizards used to create new UML projects a convenience option 
called “Associate with System Architect encyclopedia” is available in one of 
the wizard pages. If this option is selected the currently open System Archi-
tect encyclopedia will be associated with the newly created project and the 
elements from the encyclopedia loaded into Tau. The System Architect inte-
gration addin will also automatically be activated.

If System Architect is not started with a loaded encyclopedia, it will be 
started to give the user a possibility to select a suitable encyclopedia.
1834 IBM Rational Tau User Guide June 2009



Specifying Encyclopedia Storage for Root Elements
Specifying Encyclopedia Storage for Root 
Elements

It is possible to use the command Save in System Architect Encyclopedia to 
specify that a model root element should be stored in the encyclopedia in-
stead of in a local file.

Note
Only model root elements can be specified to be stored in an encyclopedia.

Note
It is not possible to move an element from the encyclopedia to a local file 
using for example the Save in new file command. To move an element from 
the encyclopedia to a local file, use copy/paste instead.
June 2009 IBM Rational Tau User Guide 1835



Chapter 67: Using Tau with System Architect
Moving Information from System Architect to 
Tau

In many situations it is useful to move information from System Architect to 
Tau, like the common case is when an analysis model stored in the System 
Architect encyclopedia should be used as the basis of an implementation ac-
tivity.

To accomplish this workflow the most convient functionality to use is the 
regular copy and paste functionality in Tau:

1. Select the element stored in System Architect that should be moved out 
from the encyclopedia.

2. Give the command “Load All Child Elements” to ensure that all elements 
are available in Tau

3. Copy the element

4. Paste the element at a suitable location in the model.

When planning to implement an analysis model from System Architect in 
Tau it is often useful to keep traceability from the implemenation model to 
the analysis model. This can be simplified by using the automatic traceability 
creation available in Tau. To accomplish this do as follows:

1. Select the element stored in System Architect that should be used as basis 
for the implementation.

2. Give the command “Load All Child Elements” to ensure that all elements 
are available in Tau.

3. Drag the element using the right mouse button from the source position 
to the suitable target location for the copy.

4. Choose the “Copy with Traceability” alternative in the pop-up menu

The result will be a copy where all definitions in the copy will include a 
<<trace>> dependency to the corresponding element in the original.

See also “Copy with Traceability” on page 134.
1836 IBM Rational Tau User Guide June 2009



Known Restrictions
Known Restrictions

Unnamed elements

Elements in Tau are allowed to have an empty name. In System Architect en-
cyclopedias this is not allowed. To still support unnamed elements they will 
in System Architect be given a name based on the metaclass and a number. 
So when an element that has an empty name in Tau is stored in a System Ar-
chitect encyclopedia it will appear in the System Architect browser and prop-
erty pages as if it had a name based on the metaclass of the element.

Undo/Redo

Undo and Redo will not work for elements that have been stored in a System 
Architect encyclopedia.

Restrictions on Model Root Elements in Encyclopedias

Only packages are supported as root elements (elements on the top level of 
the model hierarchy) in encyclopedias. If other root elements are created, 
they will not be loaded into Tau when opening a project with an associated 
encyclopedia. The elements will however be visible from System Architect 
and the recommended work around is to move the element into a package 
using System Architect.

Profiles and Model Libraries

The only profiles and model libraries available in System Architect are the 
predefined package and the TtdPredefinedStereotypes. The consequence is 
that stereotypes that are used which are defined in some other profile will not 
be available if the model is opened in System Architect. As an example: As-
sume that a stereotype defined in another profile is used in a model. If this 
model is opened in System Architect the result will be that the stereotype in-
stances are not shown in the diagrams.
June 2009 IBM Rational Tau User Guide 1837



Chapter 67: Using Tau with System Architect
Accessing Diagrams from both System Architect and 
Tau

It is possible to open a diagram both from the System Architect user interface 
and the Tau user interface at the same time. Note however if the same user 
on the same machine opens a diagram twice, the fact that a diagram is locked 
does not prohibit the second access to the diagram to be succesful for 
read/write. The consequence is that the diagram can at the same time be mod-
ified both from the Tau and the System Architect diagram editors. When the 
diagram is saved there will be no merging of the diagram. The version of the 
diagram that is changed last will overwrite any previously saved changes to 
the diagram.

The recommendation is thus to only do modifications of the diagram using 
one user interface at a time and do frequent saves and updates if both user 
interfaces are used at the same time.
1838 IBM Rational Tau User Guide June 2009



UML and Web Services

The following chapters describe how to model web services using the Web 
Services Description Language (WSDL) in UML and how to import and ex-
port web service description files.

The features support WSDL version 1.1.

In addition to the features described in the below chapters, it is also possible 
to simulate web services using the Model Verifier. This capability is de-
scribed in Web Service Simulation.
June 2009 IBM Rational Tau User Guide 1839



Chapter : 
1840 IBM Rational Tau User Guide June 2009



69
Web Services Support

This chapter describes how to use the support for web services in IBM Ra-
tional Tau. This includes features such as modeling web services in UML and 
to generate WSDL from such UML models. It is also possible to import ex-
isting WSDL documents into a UML model.
June 2009 IBM Rational Tau User Guide 1841



Chapter 69: Web Services Support
Modeling Web Services in UML
Web services can be represented in a UML model at two different levels of 
abstraction:

1. WSDL centric representation. In this kind of model WSDL constructs 
are represented by stereotyped UML entities. A WSDL Profile is pro-
vided which contains all stereotypes needed for representing all possible 
WSDL constructs. 

2. UML centric representation. In this kind of model standard UML con-
structs are used, which can be translated into WSDL constructs by a 
WSDL generator. WSDL specific stereotypes are only used for WSDL 
constructs which do not have a corresponding UML construct.

Which web service representation to choose depends on the purpose of the 
modeling. For modelers which prefer the WSDL terminology rather than the 
UML terminology when modeling a web service, the WSDL centric repre-
sentation is usually the best. However, if the web service not only shall be 
specified in the model, but also be implemented by generating code (Java, C# 
etc.) from the model, then the UML centric representation is more useful. 
The UML centric representation is usually also much more compact than the 
more verbose WSDL centric representation.

Note
Although both the WSDL centric and the UML centric representation can be 
used when generating WSDL documents from a model, IBM Rational Tau 
currently only supports the WSDL centric representation when importing 
existing WSDL files into a model. It is, however, possible to obtain a UML 
centric representation of an existing web service by using the support for 
simulation of web services. See Web Service Simulation for more informa-
tion.
1842 IBM Rational Tau User Guide June 2009



Creating a WSDL Project
Creating a WSDL Project
Regardless of whether you prefer to use a WSDL or UML centric represen-
tation of web services in your model, you should start by creating a WSDL 
project:

1. Choose the command File->New...

2. Create a new UML for WSDL Modeling project. If you intend to import 
existing WSDL documents for simulating web services, make sure the 
“Support simulation of web services” checkbox is marked. Simulation of 
web services is described in Web Service Simulation.

You can also activate the WSDL support for an existing project:

1. From the Tools menu select Customize.

2. Click the Add-Ins tab and check the WSDL add-in. You may also want 
to check the XSDFramework add-in if you plan to work with XSD to-
gether with WSDL.

3. Click Close.

WSDL Add-in

The main features of the WSDL add-in are:

• A WSDL Profile for annotating UML models with WSDL information. 
This is mainly used when working with a WSDL centric web service 
model.

• A WSDL centric model view, the WSDL View.

• A WSDL generator which can generate WSDL documents from UML 
models. The UML model that is input to the code generator can either be 
at the abstraction of WSDL (WSDL centric representation), or it can be 
a standard UML model (UML centric representation). Since the WSDL 
and UML centric representation are quite different there are actually two 
different WSDL generators. They are used in slightly different ways as 
described in Generating WSDL.

• A WSDL importer which can generate a UML model of a web service. 
The resulting model will use the WSDL centric representation of the web 
service.
June 2009 IBM Rational Tau User Guide 1843



Chapter 69: Web Services Support
Note
Activating the WSDL add-in loads the WSDL profile and view, but also the 
XSD profile and view since XML schemas can be embedded in WSDL speci-
fications.
1844 IBM Rational Tau User Guide June 2009



WSDL View
WSDL View
The WSDL view provides a WSDL centric view of a model. In this view only 
WSDL elements are shown, and only WSDL elements can be created. When 
using the New... command in the Model View context menu, the WSDL 
view enforces a correct WSDL structure to be created.

The WSDL view is designed to be used when working with a WSDL centric 
model representation of web services in IBM Rational Tau.

To activate the WSDL view:

1. In the View menu, select Reconfigure Model View...

2. Select WSDL View in the dialog and click OK.

You can switch between the Standard View and the WSDL View at any time.

Note
Not all UML elements are visible in the WSDL View. To see all elements 
switch to the Standard View.

See also

“Model View” on page 15 in Chapter 4, Introduction to IBM Rational Tau 
4.3

“Default Model View” on page 2498 in Chapter 95, Dialog Help
June 2009 IBM Rational Tau User Guide 1845



Chapter 69: Web Services Support
WSDL Profile
The WSDL profile extends UML with concepts for modeling web services 
as defined by WSDL. The profile contains WSDL specific stereotypes, and 
is mainly used when working with a WSDL centric web service model.

The WSDL profile package is called ‘wsdl’ and can be found in the Li-
braries section of the model.

More details about the contents of the WSDL profile can be found in WSDL 
Profile Contents.
1846 IBM Rational Tau User Guide June 2009



Generating WSDL
Generating WSDL
A IBM Rational Tau web service model can be translated into a WSDL file 
using a WSDL generator. How to perform WSDL generation depends on 
whether the model uses a WSDL or UML centric representation of the web 
service.

Note
If the model contains multiple web services it is possible to use a WSDL cen-
tric representation for some, and a UML centric representation for others. 
However, it is not recommended to mix these representations for a single 
web service.

WSDL Generation from WSDL Centric Models

To generate WSDL from a WSDL centric model follow these steps:

1. In the context menu of a WSDL package, select Generate WSDL...

2. Select a folder where to place the generated WSDL file. Click Save.

Step 2 is only necessary the first time you generate WSDL for the package. 
The path to the generated WSDL file is stored in a WSDL file artifact that 
will be generated next to the WSDL package. Use the Properties Editor if you 
want to change this path later. You can also delete the WSDL file artifact and 
invoke the Generate WSDL... command again in order to generate the 
WSDL file to another location.

The rules for transating a WSDL centric model to WSDL files are the reverse 
of the translation rules described in WSDL/XSD Importer Reference. Note 
that UML entities must be annotated by the stereotypes described in these 
translation rules in order to obtain the expected WSDL.

WSDL Generation from UML Centric Models

To generate WSDL from a UML centric model follow these steps:

1. In the Model View select an interface or a package that contains inter-
faces.

2. In the context menu select WSDL Generator->New Artifact. This will 
create a new WSDL build artifact manifesting the selected element.

3. In the context menu of the WSDL build artifact select Build (WSDL 
Generator)->Generate.
June 2009 IBM Rational Tau User Guide 1847



Chapter 69: Web Services Support
Step 1 and 2 is only necessary the first time you generate WSDL for the 
package or interface in order to obtain a WSDL build artifact. Regeneration 
of the WSDL file is made by performing step 3 again.

The rules for translating a UML centric model to WSDL files are described 
in WSDL Generator Reference.
1848 IBM Rational Tau User Guide June 2009



Importing WSDL
Importing WSDL
The WSDL/XSD Importer is used for importing WSDL definitions (and/or 
XSD) into a Tau model. After the import the web services described by im-
ported WSDL files may be further developed in Tau, and then generated to 
WSDL files again (see WSDL Generation from WSDL Centric Models).

The initial import is done using the WSDL/XSD Import Wizard and re-im-
port can later be perfomed by using the context menus on WSDL and XSD 
file artifacts.

WSDL/XSD Import Wizard

To import WSDL definitions or an XSD schema into IBM Rational Tau:

1. Select a package or the “Model” node.

2. Start the Import Wizard by selecting File/Import...

3. Select Import WSDL/XSD and click OK

First step of the WSDL/XSD import wizard

The first step of the import process is to specify the kind of XML files to im-
port and if diagram generation should take place. 

Figure 268: The first step of the WSDL/XSD import wizard
June 2009 IBM Rational Tau User Guide 1849



Chapter 69: Web Services Support
If you want to import XSD files you select the Import XML Schema option 
and if you would like to import WSDL files you select Import WSDL spec-
ification instead. 

If you would like to have diagrams showing the imported elements, select the 
Generate diagrams option. 

If you decide to import WSDL you can also set some importer options for 
generating additional information into the model. These options are used 
when simulating web services; see Calling a Web Service from UML for 
more information about these options.

To complete the first step of the wizard press Next.

Second step of the WSDL/XSD import wizard

The purpose of the second step is to determine the files to be imported. The 
set of files is listed in the the dialog and can be changed by means of the but-
tons Add Files..., Remove and Clear. 

• Pressing the Add Files… button invokes the standard dialog for opening 
files. Multiple selection is allowed. The files selected in the dialog are 
added to the file list.

• Pressing the Remove button removes the files currently selected from the 
list.

• Pressing the Clear button removes all entries from the list.

It is also possible to import from a URL rather than a file. To do this press 
the Add URL button and enter the URL where to get the WSDL/XSD file 
from.
1850 IBM Rational Tau User Guide June 2009



Importing WSDL
Note
If you access the web through a proxy server you may need to set appro-
priate Proxy settings to be able to import from an URL..

Pressing Finish will import the selected files and/or URLs.

Result of import

If the Model node in the Model View was selected before the import, the im-
porter will create one u2 file per imported WSDL/XSD file, add it to the 
project and store all imported definitions from that WSDL/XSD file into that 
u2 file. If a package was selected before the import, the imported definitions 
will be created inside that selected package and stored in the same u2 file as 
the package.

For each file that was added in the import wizard, there will be one file arti-
fact generated. For each WSDL file there will be an artifact with the stereo-
type <<WSDL file>> and for each XSD file there will be an artifact with the 
stereotype <<XSD file>>. These stereotypes have a tagged value set to point 
to the corresponding file in the file system.

Figure 269: The second step of the WSDL/XSD Import Wizard
June 2009 IBM Rational Tau User Guide 1851



Chapter 69: Web Services Support
For each file there will also be one package generated. It contains the im-
ported WSDL or XSD definitions. Each artifact has a <<manifest>> depen-
dency to one package.

Re-import

Once import of WSDL or XSD has taken place it is possible to re-import the 
content of the files. This is done by right clicking a WSDL or XSD artifact 
and select Import WSDL... or Import XSD... respectively. This command 
will remove all imported elements and redo the import.

Note
Re-importing WSDL or XSD will remove all the content in the imported 
package, so diagrams or other UML entities that has been added after the 
first import will be deleted.
1852 IBM Rational Tau User Guide June 2009



70
WSDL Generator Reference

This chapter is a reference guide to the WSDL generator which translates an 
unannotated UML model (UML centric web service representation) to 
WSDL. It describes how UML constructs are translated to WSDL constructs.
June 2009 IBM Rational Tau User Guide 1853



Chapter 70: WSDL Generator Reference
General
The WSDL generator implements a mapping of UML constructs to WSDL 
constructs. The translation rules have been designed to use standard UML 
constructs, without stereotype annotations, to an as large extent as possible. 
Only when a certain WSDL construct has no corresponding UML construct 
it is necessary to apply stereotypes to the UML elements.

WSDL Build Artifact

The WSDL generator is integrated with the Application Builder. To define 
which parts of the model to translate to WSDL, and to specify Translation 
Options, a WSDL build artifact is used. 

The WSDL build artifact is recognized by its applied <<WSDL Generator>> 
stereotype. See WSDL Generation from UML Centric Models to learn how 
a WSDL build artifact can be created in the model.

WSDL is generated by performing the Generate command on the build ar-
tifact. Which WSDL files that are then generated depends on the kind of el-
ement that is manifested by the build artifact:

1. An interface. The WSDL file artifact that manifests the interface will be 
generated.

2. A package. All WSDL file artifacts manifesting interfaces contained in 
the package will be generated.

Default Model-to-File Mapping

If no WSDL files are found when performing the Generate command on the 
build artifact, the WSDL generator will create WSDL file artifacts according 
to a default model-to-file mapping. For each manifested interface (direct 
manifestation, or indirect by the manifestation of a containing package) a 
WSDL file artifact will be created manifesting the interface. The name of the 
file artifact is the same as the name of the interface.

The WSDL generator also supplies an explicit command Generate File 
Mapping which can be used to generate file artifacts according to the default 
model-to-file mapping rules, without actually generating the WSDL files. 
This can be useful if additional information needs to be added to the file ar-
tifacts prior to WSDL generation, for example xsd:import or xsd:include 
dependencies (see Dependency). 
1854 IBM Rational Tau User Guide June 2009



Interface
Document Structure

The following chapters describe the subset of UML that can be translated to 
WSDL by the WSDL generator. UML constructs not mentioned here are not 
supported, and will be ignored during translation.

For each supported UML construct a translation rule is given. If there are ex-
ceptions to the rule, these are also mentioned. 

For most translation rules examples are given using textual UML and WSDL 
syntax. 

Note
The purpose of each example is only to illustrate the translation rule at 
hand, not to give a precise description of how the generated WSDL will look 
like. Also note that examples for brevity reasons typically are fragmental. 
Omitted sections of UML or WSDL are marked with triple dots (...).

Interface
A UML interface is translated to a <service> element and a 
<portType> element within the WSDL file. 

The name of the WSDL service and the port type is the name of the UML 
interface. The same name is also used for the containing <definitions> el-
ement.

Example 594: Translation of interfaces ––––––––––––––––––––––––––––––––––––

UML

interface MyWebService {}

WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MyWebService" ...> 
<wsdl:portType name="MyWebService">
</wsdl:portType>
<wsdl:service name="MyWebService">
</wsdl:service>

</wsdl:definitions>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 1855



Chapter 70: WSDL Generator Reference
Comment
A UML comment attached to an element that has a specified mapping to 
WSDL is translated to a <documentation> tag on the resulting WSDL 
element. 

If the UML element has multiple representations in the WSDL file (as is the 
case for an Interface for example) the <documentation> tag is only placed 
on one of them (for an interface, it is placed on the <service> element).

Example 595: Translation of comments –––––––––––––––––––––––––––––––––––

UML

interface MyWebService comment "My first webservice" {}

WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="MyWebService" ...> 
<wsdl:portType name="MyWebService">
</wsdl:portType>
<wsdl:service name="MyWebService">
<wsdl:documentation>

My first webservice
</wsdl:documentation>

</wsdl:service>
</wsdl:definitions>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Dependency
An <<xsd::import>> or <<xsd::include>> dependency from a WSDL 
file artifact to another file artifact or package is translated to an 
<import> specification in the WSDL file. 

If a ‘namespace’ tagged value is specified in the <<xsd::import>> stereo-
type instance it is mapped to a corresponding ‘namespace’ value of the 
<import> element.

This use of dependencies provides a means to include other files (typically 
WSDL or XSD files) into the generated WSDL file.
1856 IBM Rational Tau User Guide June 2009



Operation
Example 596: Translation of dependencies from WSDL file artifacts –––––––––––

UML

<<wsdlFile(.path = "MyInterface.wsdl".)>> artifact 
'MyInterface.wsdl' 
<<xsd::import(.namespace = "ns".)>> dependency to 
Artifact2 {}

<<xsdFile(.path = "C:\\x.xsd".)>> artifact Artifact2 {}

WSDL

<wsdl:types>
<xsd:schema ...>

<xsd:import namespace="ns" location="C:\x.xsd"/>
</xsd:schema>

</wsdl:types>

Note that since the imported file is an XSD file the generated <xsd:import> 
will be placed in the <xsd:schema> tag.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Operation
A UML operation contained in an interface is translated to a WSDL 
<operation> within the <portType> element of the WSDL document. 

The name of the WSDL operation is the name of the UML operation.

See Example 597 on page 1858 for an example.

Parameter

Each UML operation is also mapped to one or two WSDL <message> 
elements in the WSDL document. 

The details of this mapping depend on the kinds of parameters the operation 
has.

In case the UML operation has no parameters that can carry data back to the 
caller (that is no 'return', 'in/out' or 'out' parameters) there will just be one 
WSDL message generated. Otherwise there will be two WSDL messages 
generated. The name of the first WSDL message is the name of the UML op-
June 2009 IBM Rational Tau User Guide 1857



Chapter 70: WSDL Generator Reference
eration with the suffix “Request” appended. The name of the second WSDL 
message is the name of the UML operation with the suffix “Response” ap-
pended.

In each message a WSDL <part> declaration is made for each parameter 
that carries data in the direction represented by the message. That is, in the 
first message (“Request”) there will be one WSDL part for each 'in' and 
'in/out' parameter of the UML operation. In the second message (“Re-
sponse”) there will be one WSDL part for each 'in/out', 'out' or 'return' param-
eter of the UML operation.

The name of each WSDL part is the name of the corresponding UML param-
eter. If the UML parameter has no name, the WSDL part gets the name 
“par_<index>”, where <index> is an index to make the part name unique. 
For an unnamed 'return' parameter the name “result” is used instead.

If an auto generated part name (“result” or “par_<index>”) conflicts with the 
name of another part in the message, the index is incremented by one until a 
unique name is obtained (“result_<index>” or “par_<index+1>”).

Each WSDL part also gets a type (or element) reference which is the transla-
tion of the type of the UML parameter. See Type for more information.

Example 597: Translation of operations with and without parameters––––––––––

UML

interface MyWebService {
void Do();
void DoParam( Boolean);
Charstring GetOne();
Integer GetTwo(out Charstring p1);
Integer GetInOut(inout Charstring result);

}

WSDL

...
<wsdl:message name="DoRequest"/>
<wsdl:message name="DoParamRequest">
<wsdl:part name="par_0" type="xsd:boolean"/>

</wsdl:message>
<wsdl:message name="GetOneRequest"/>
<wsdl:message name="GetOneResponse">
<wsdl:part name="par_0" type="xsd:string"/>

</wsdl:message>
<wsdl:message name="GetTwoRequest"/>
<wsdl:message name="GetTwoResponse">
<wsdl:part name="p1" type="xsd:string"/>
1858 IBM Rational Tau User Guide June 2009



Operation
<wsdl:part name="par_0" type="xsd:integer"/>
</wsdl:message>
<wsdl:message name="GetInOutRequest">
<wsdl:part name="result" type="xsd:string"/>

</wsdl:message>
<wsdl:message name="GetInOutResponse">
<wsdl:part name="result" type="xsd:string"/>
<wsdl:part name="par_0" type="xsd:integer"/>

</wsdl:message>
<wsdl:portType name="MyWebService">
<wsdl:operation name="Do">

<wsdl:input message="tns:DoRequest"/>
</wsdl:operation>
<wsdl:operation name="DoParam">

<wsdl:input message="tns:DoParamRequest"/>
</wsdl:operation>
<wsdl:operation name="GetOne">

<wsdl:input message="tns:GetOneRequest"/>
<wsdl:output message="tns:GetOneResponse"/>

</wsdl:operation>
<wsdl:operation name="GetTwo">

<wsdl:input message="tns:GetTwoRequest"/>
<wsdl:output message="tns:GetTwoResponse"/>

</wsdl:operation>
<wsdl:operation name="GetInOut">

<wsdl:input message="tns:GetInOutRequest"/>
<wsdl:output message="tns:GetInOutResponse"/>

</wsdl:operation>
</wsdl:portType>
...

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Overloaded Operations

To be able to uniquely identify an operation from a set of overloaded opera-
tions (which all have the same name) the <input> and <output> elements 
of such a WSDL operation will contain a 'name' attribute. The value of this 
attribute is composed by the name of the operation followed by an index.

WSDL messages generated for overloaded operations also get the same 
index as suffix to make the message names unique.

Example 598: Translation of overloaded operations –––––––––––––––––––––––––

UML

interface MyWebService {
void foo(Integer);
void foo(Boolean);

}

June 2009 IBM Rational Tau User Guide 1859



Chapter 70: WSDL Generator Reference
WSDL

<wsdl:message name="foo_1Request">
<wsdl:part name="par_1" type="xsd:integer"/>

</wsdl:message>
<wsdl:message name="foo_2Request">
<wsdl:part name="par_1" type="xsd:boolean"/>

</wsdl:message>
<wsdl:portType name="MyWebService">
<wsdl:operation name="foo">
<wsdl:input name="foo_1" 

message="tns:foo_1Request"/>
</wsdl:operation>
<wsdl:operation name="foo">
<wsdl:input name="foo_2" 

message="tns:foo_2Request"/>
</wsdl:operation>

</wsdl:portType>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Signal
A UML signal contained in an interface is translated to a WSDL 
<operation> within the <portType> element of the WSDL document. 

The name of the WSDL operation is the name of the UML signal.

When the signal only contains 'in' parameters (which is the normal case) it is 
thus an alternative to using an operation for modeling a one-way WSDL op-
eration. However, it can also be used to model a WSDL request-response op-
eration if it is given 'out' or 'inout' parameters. A signal may not have a return 
parameter.

The translation rules for signal parameters are the same as for operation pa-
rameters (see Parameter).

Example 599: Translation of signals ––––––––––––––––––––––––––––––––––––––

UML

interface MyWebService {
signal Call(Charstring, Boolean);

}

WSDL

<wsdl:message name="CallRequest">
<wsdl:part name="par_1" type="xsd:string"/>
<wsdl:part name="par_2" type="xsd:boolean"/>
1860 IBM Rational Tau User Guide June 2009



Attribute
</wsdl:message>
<wsdl:portType name="MyWebService">
<wsdl:operation name="Call">

<wsdl:input message="tns:CallRequest"/>
</wsdl:operation>

</wsdl:portType>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Attribute
A UML attribute contained in an interface is translated to a WSDL 
message with one part corresponding to the attribute. 

The name of both the message and the part is the name of the attribute. The 
WSDL part gets a type (or element) reference which is the translation of the 
type of the UML parameter. See Type for more information.

Example 600: Translation of attributes ––––––––––––––––––––––––––––––––––––

UML

interface MyWebService {
Integer sessionId;
UserData nameAndPassword;

}

WSDL

<wsdl:message name="sessionId">
<wsdl:part name="sessionId" type="xsd:integer"/>

</wsdl:message>
<wsdl:message name="nameAndPassword">
<wsdl:part name="nameAndPassword" 

element="tns:UserData"/>
</wsdl:message>
<wsdl:portType name="MyWebService"/>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The WSDL messages generated for interface attributes can for example be 
referenced in a SOAP binding using the <soap:header> tag (see soap-
Header::part). SOAP headers are typically used for transmitting additional 
data with a SOAP request than what is carried by the parameters of the called 
operation. They are often used for data that is common to many of the oper-
ations in a web service, such as user authentication information or session 
token data. In UML you can set-up the value of such data by assigning values 
June 2009 IBM Rational Tau User Guide 1861



Chapter 70: WSDL Generator Reference
to the interface attributes. These values will then be transmitted whenever an 
operation is called (provided the appropriate SOAP binding has been defined 
of course).

Exception
A UML exception specification for an interface operation is translated 
to a <fault> element for the corresponding WSDL operation. 

A WSDL message is also generated which contains one single part, named 
“data”, whose type is the WSDL translation of the exception type (see Type). 

The name of the WSDL fault is “exception_<index>”, where <index> is an 
index to make the name unique within the operation. The name of the mes-
sage is “<opName>Exception_<index>”, where <opName> is the name of 
the operation.

Example 601: Translation of exception specifications for operations –––––––––––

UML

interface MyWebService {
void DoSomething() throw Integer, // Predefined type

ErrorInfo; // User-defined 
type
}

WSDL

<wsdl:message name="DoSomethingRequest"/>
<wsdl:message name="DoSomethingException_0">
<wsdl:part name="data" type="xsd:integer"/>

</wsdl:message>
<wsdl:message name="DoSomethingException_1">
<wsdl:part name="data" element="tns:UserData"/>

</wsdl:message>
<wsdl:portType name="MyWebService">
<wsdl:operation name="DoSomething">
<wsdl:input message="tns:DoSomethingRequest"/>
<wsdl:fault name="exception_0" 

message="tns:DoSomethingException_0"/>
<wsdl:fault name="exception_1" 

message="tns:DoSomethingException_1"/>
</wsdl:operation>

</wsdl:portType>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1862 IBM Rational Tau User Guide June 2009



Type
Type
UML types used as the type of interface operation parameters, interface at-
tributes and exception types, are translated to XSD types included in the 
WSDL document in the <types> section. Predefined UML types are directly 
mapped to built-in XSD types according to the table in XS Profile Contents.

Note that tags representing typed elements in WSDL use an attribute called 
“type” if the type is an XSD simpleType or complexType, while the attribute 
is called “element” if the type is an XSD element.

If the WSDL file artifact has an <<xsd::import>> dependency to an XSD 
file artifact or package the WSDL generator assumes that the imported XSD 
file contains all type definitions used in the WSDL document. It will then not 
generate XSD types in the <types> section automatically. However, if no 
XSD file is manually imported, a <types> section will be generated. It will 
contain all types that are used within the WSDL document (types of interface 
attributes, operation parameters, operation exception types etc.). It will also 
contain all types used by such types, recursively, until a closed type system 
is obtained.

See also the translator option Generate XSD File which makes it possible to 
tell the WSDL code generator to generate all XSD types in a separate file and 
import it.

Binding Artifact
A UML artifact stereotyped by a binding stereotype and with a 
dependency to an interface manifested by a WSDL file artifact, is 
translated to a <binding> element in the WSDL document. The 
dependency is translated to a <port> element in the WSDL service. 

The dependency should be stereotyped by an address stereotype specifying 
the location of the WSDL port described by the dependency.

The name of the WSDL binding is the name of the artifact. The name of the 
WSDL port is the name of the artifact with the suffix “Port” appended. The 
port refers to the binding which in turn refers to the portType.

Note
The only binding currently supported is the SOAP binding. See Non-SOAP 
Bindings for more information about this limitation.
June 2009 IBM Rational Tau User Guide 1863



Chapter 70: WSDL Generator Reference
Default Binding

The WSDL generator supports the generation of a default binding (a SOAP 
binding) when generating WSDL for an interface for which no binding arti-
fact has been specified. The generated binding artifact uses default values for 
all properties, except the <soap:adress> ‘location’ which must be specified 
explicitly. To specify the location of a web service use the Property Editor on 
the <<soapAddress>> dependency.

Example 602: Generation of a default SOAP binding for a web service –––––––––

UML

interface MyWebService {}

<<soapBinding>> artifact MyWebServiceSOAPBinding 
<<soapAddress>> dependency to MyWebService {}

WSDL

<wsdl:portType name="MyWebService">
</wsdl:portType>
<wsdl:binding name="MyWebServiceSOAPBinding" 
type="tns:MyWebService">
<soap:binding style="document" 

transport="http://schemas.xmlsoap.org/soap/http"/>
</wsdl:binding>
<wsdl:service name="MyWebService">
<wsdl:port name="MyWebServiceSOAPBindingPort" 

binding="tns:MyWebServiceSOAPBinding">
<soap:address/>

</wsdl:port>
</wsdl:service>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

To change some of the binding properties from their default values use the 
Property Editor on the <<soapBinding>> artifact.

The available properties of the <<soapBinding>> and <<soapAddress>> 
stereotypes are described in SOAP Binding Properties.

Common Binding

It is possible to use a common binding for multiple web services. This is 
specified by letting the supplier of the dependency from the binding artifact 
be a package instead of an interface. All interfaces contained in that package 
will use the same binding.
1864 IBM Rational Tau User Guide June 2009



Binding Artifact
.

Name variable

It is possible to use a ${NAME} variable in the ‘location’ tagged value of the 
<<soapAddress>>. This variable expands to the name of the web service in-
terface. For example, http://www.IBM Rational.com/${NAME}?WSDL

Although use of this variable is mostly useful when specifying a common 
binding for multiple web services, it can also be used on per-interface bind-
ings. Then the location URI does not need to be updated if the interface is 
renamed.

SOAP Binding Properties

The following properties can be set to define a SOAP binding. They are de-
fined as attribute of the <<soapBinding>> stereotype, and on classes used 
as the type of such attributes.

soapBinding::style

This property specifies the default style for each operation of the binding. El-
igible values for the property is document and rpc. The default value is 
document. The style for a particular operation can be overridden by setting 
the value of the soapOperation::style property.

soapBinding::transport

This property specifies the transport which the SOAP binding corresponds 
to. The default value specifies the HTTP binding of the SOAP specification 
(http://schemas.xmlsoap.org/soap/http).

Figure 270: Specifying a common binding for multiple web services

 
 

WebServices

<<artifact,soapBinding>>

MySOAPBinding
<<soapAddress>><<soapAddress>>
June 2009 IBM Rational Tau User Guide 1865



Chapter 70: WSDL Generator Reference
soapBinding::action

This property specifies the default SOAP action for each operation of the 
binding. A common pattern is that this URI consists of a common part fol-
lowed by the name of the operation. The WSDL generator therefore supports 
use of the variable ${NAME} which expands to the name of the operation.

The action for a particular operation can be specified by setting the value of 
the soapOperation::action property.

soapBinding::operationBinding

This property allows you to customize the binding for a particular operation. 
The value of the property is a list of soapOperation instances, each of 
which specifies an operation in the interface of the binding, and properties 
for the binding of that operation.

soapOperation::operation

This property specifies one of the operations in the interface of the binding. 
The other properties in soapOperation specify binding properties for that 
operation.

soapOperation::style

This property specifies the style for the binding of a particular operation. El-
igible values are document and rpc. If the value is unspecified it defaults to 
the value of soapBinding::style. If that value also is unspecified, the default 
style is document.

soapOperation::action

This property specifies the SOAP action for a particular operation. Its value 
should be a valid URI.

soapOperation::input

This property specifies binding information related to the <input> element of 
the SOAP binding for a particular operation. Its value is an soapInput in-
stance.
1866 IBM Rational Tau User Guide June 2009



Binding Artifact
soapOperation::output

This property specifies binding information related to the <output> element 
of the SOAP binding for a particular operation. Its value is an soapOutput 
instance.

soapOperation::fault

This property specifies binding information related to the <fault> element of 
the SOAP binding for a particular operation. Its value is a soapFault in-
stance.

soapInput::body

This property specifies how the message parts appear inside the SOAP body 
element of a SOAP operation input. Its value is a soapBody instance.

soapInput::header

This property allows the specification of data that is to be transmitted inside 
the header element of the SOAP envelope of a SOAP operation input. Its 
value is a soapHeader instance.

soapOutput::body

This property specifies how the message parts appear inside the SOAP body 
element of a SOAP operation output. Its value is a soapBody instance.

soapOutput::header

This property allows the specification of data that is to be transmitted inside 
the header element of the SOAP envelope of a SOAP operation output. Its 
value is a soapHeader instance.

soapBody::parts

The value of this property is a list of names referring to parts within a WSDL 
input or output message. It defines which parts that appear within the SOAP 
body portion of the message. The default value for this property is an empty 
list, which means that all parts defined by the message will be included.
June 2009 IBM Rational Tau User Guide 1867



Chapter 70: WSDL Generator Reference
soapBody::use

This property specifies whether the parts of an input or output message are 
encoded or not when transmitted. Eligible values for this property are 
encoded (parts are encoded) or literal (parts are not encoded). It is man-
datory to specify a value for this property - if it is omitted it defaults to 
literal.

soapBody::encodingStyle

The value of this property is used if soapBody::use specifies that message 
parts are encoded. It specifies which rules that are used for the encoding. Its 
value is a list of URIs.

soapBody::namespace

The value of this property is used if soapBody::use specifies that message 
parts are encoded. It should be a valid URI and will be passed as input to the 
specified encoding.

soapHeader::isFault

This property specifies whether the containing soapHeader instance shall be 
translated to a <soap:header> or <soap:headerfault> element within the 
generated binding. The default value for this property is false.

Note that <soap:headerfault> elements are nested within the preceding 
<soap:header> element. If a soapHeader instance with isFault specified 
to true has no preceding soapHeader instance with isFault specified to 
false in the list, it will be ignored by the WSDL generator.

soapHeader::part

The value for this property should be the name of an attribute of the binding 
interface, or the name of a parameter for the operation for which the SOAP 
header is specified. Its value is mapped according to the following rules:

• If an interface attribute is specified, the <soap:header> (or 
<soap:headerfeault>) element gets its ‘message’ attribute set to the 
name of the WSDL message that corresponds to the attribute. The ‘part’ 
attribute is set to the name of the (one and only) WSDL part of that mes-
sage.
1868 IBM Rational Tau User Guide June 2009



Binding Artifact
• If an operation parameter is specified, the <soap:header> (or 
<soap:headerfeault>) element gets its ‘message’ field set to the name 
of the WSDL message that contains the part that corresponds to the pa-
rameter. The ‘part’ attribute is set to the name of that part.

soapHeader::use

The value of this property is used in the same way as the value of soap-
Body::use, but for the SOAP header.

soapHeader::encodingStyle

The value of this property is used in the same way as the value of soap-
Body::encodingStyle, but for the SOAP header.

soapHeader::namespace

The value of this property is used in the same way as the value of soap-
Body::namespace, but for the SOAP header.

soapFault::name

This property specifies a WSDL fault for an operation. See Exception for 
more information about the naming of WSDL faults corresponding to excep-
tions in UML. If no value is specified for this property it defaults to 
“exception_0”, which is the name of the WSDL fault generated for the first 
exception specified for the UML operation.

soapFault::use

The value of this property is used in the same way as the value of soap-
Body::use, but for the SOAP fault.

soapFault::encodingStyle

The value of this property is used in the same way as the value of soap-
Body::encodingStyle, but for the SOAP fault.

soapFault::namespace

The value of this property is used in the same way as the value of soap-
Body::namespace, but for the SOAP fault.
June 2009 IBM Rational Tau User Guide 1869



Chapter 70: WSDL Generator Reference
Limitations
WSDL documents generated by the WSDL generator complies with the 
WSDL 1.1 standard. Deviations and limitations from the standard are listed 
below.

Transmission Primitives

Only the one-way and request-response transmission primitives are sup-
ported. The remaining two (solicit-response and notification) are not sup-
ported. They are not frequently used in many web service specifications, and 
the WSDL standard does not specify a binding for these transmission primi-
tives.

Non-SOAP Bindings

Only the SOAP binding is supported. Other bindings from the WSDL stan-
dard, such as HTTP POST/GET and MIME bindings, are not supported.
1870 IBM Rational Tau User Guide June 2009



Translation Options
Translation Options
Translation options are represented by means of tagged values on the WSDL 
build artifact. They can be set using the Properties Editor.

Target Namespace

This is a string option specifying which target namespace to use for the gen-
erated WSDL document. The value of this option should be a URN, and it 
will be placed in the <definitions> element of the generated WSDL docu-
ment.

If this option is unspecified the target namespace will default to the name of 
the build artifact.

Generate Parameter Order

This is a boolean option. If enabled the “parameterOrder” attribute will be 
generated on WSDL operations. The value of this attribute is a space sepa-
rated list of parameters of the operation, in the order as they are defined in 
UML. The ‘return’ parameter is ignored.

Example 603: Parameter order generation –––––––––––––––––––––––––––––––––

UML

interface MyWebService {
Boolean Op(inout Real a, Integer b, out Charstring c);

}

WSDL

<wsdl:message name="OpRequest">
<wsdl:part name="a" type="xsd:double"/>
<wsdl:part name="b" type="xsd:integer"/>

</wsdl:message>
<wsdl:message name="OpResponse">
<wsdl:part name="a" type="xsd:double"/>
<wsdl:part name="c" type="xsd:string"/>
<wsdl:part name="result" type="xsd:boolean"/>

</wsdl:message>
<wsdl:portType name="MyWebService">
<wsdl:operation name="Op" parameterOrder="a b c">

<wsdl:input message="tns:Op_0Request"/>
<wsdl:output message="tns:Op_0Response"/>

</wsdl:operation>
June 2009 IBM Rational Tau User Guide 1871



Chapter 70: WSDL Generator Reference
</wsdl:portType>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Generate XSD File

This is a boolean option which controls how the WSDL generator should 
handle types used in the WSDL definition, for the case when the WSDL file 
artifact does not have an <<xsd::import>> dependency to an XSD file ar-
tifact or package. If such a dependency exists the WSDL generator assumes 
the user has manually specified the XSD types in the imported file, and the 
value of this option is then ignored (see Dependency).

Without <<xsd::import>> dependencies present the WSDL code generator 
will translate all types that are used within the WSDL document (types of in-
terface attributes, operation parameters, operation exception types etc.). This 
includes indirectly used types. If this option is false the result of this transla-
tion is included in the WSDL document in the <types> section. However, if 
the option is true the WSDL generator will generate the types into an XSD 
file placed next to the generated WSDL file. An <import> element is then 
added to import the generated XSD file into the WSDL document.
1872 IBM Rational Tau User Guide June 2009



71
WSDL/XSD Importer Reference

This chapter is a reference guide to the WSDL importer which translates 
WSDL files to an annotated UML model (WSDL centric web service repre-
sentation). It also covers the translation of XSD files to UML.
June 2009 IBM Rational Tau User Guide 1873



Chapter 71: WSDL/XSD Importer Reference
WSDL to UML Mapping Rules
To understand this document fully the following information sources are 
needed:

• The XSD and XS Profiles

• The WSDL Profile

• The SOAP Profile

• The SOAPENC Profile

• The XSD to UML Mapping Rules

• The XML namespace mapping rules

WSDL Profile Contents

The WSDL profile contains a set of stereotypes used to annotate a UML 
model with WSDL information. When importing a WSDL file, the resulting 
UML model is always explicitly annotated.

The stereotypes of the WSDL profile are listed in the table below.

Stereotype Extends Description

<<documentat
ion>>

Comment Represents wsdl:documentation

<<message>> Class Represents wsdl:message

<<part>> Attribute Represents wsdl:part

<<portType>> Interface Represents wsdl:portType

<<input>> Parameter Represents wsdl:input

<<output>> Parameter Represents wsdl:output

<<fault>> Parameter Represents wsdl:fault

<<binding>> Interface Represents wsdl:binding

<<service>> Class Represents wsdl:service

<<wsdlPackag
e>>

Package Represents wsdl:definitions
1874 IBM Rational Tau User Guide June 2009



WSDL to UML Mapping Rules
Mapping Rules

This chapter contains the actual mapping rules. It is organized by the dif-
ferent WSDL elements.

Overview

<<wsdlImport
>>

Dependency Represents wsdl:import

<<extensibil
ityElement>>

Entity A base stereotype for all WSDL exten-
sibiliy elements.

Any stereotypes specifying exten-
sions, for example SOAP encoding, 
should be derived from this stereotype.

<<wsdlDiagra
m>>

ClassDiagram

<<elementRef
erence>>

Dependency see mapping of wsdl:part for details

<<parameterO
rder>>

Operation see mapping of wsdl:operation for 
details

WSDL UML

<definition> Package with stereotype <<wsdlPackage>>

<import> Dependency with stereotype <<wsdlImport>>

<documentation> Comment with stereotype <<documentation>>

<type> Package with stereotype <<schema>>.

<message> Class with stereotype <<message>>

<part> Attribute with stereotype <<part>>

<portType> Interface with stereotype <<portType>>

<operation> Operation with stereotype <<operation>>

Stereotype Extends Description
June 2009 IBM Rational Tau User Guide 1875



Chapter 71: WSDL/XSD Importer Reference
Each WSDL element may have XML namespace declarations. These decla-
ration are mapped to the stereotype <<xmlNamespace>> according to rules 
described in the chapter [XML Namepsace Mapping Rules].

extensibility elements

WSDL elements can have extensibility elements representing a specific tech-
nology (e.g. SOAP, HTTP, etc). WSDL Importer keeps these elements either 
in specific stereotypes (for SOAP) or in the special stereotype 
<<extensibilityElement>>. 

The stereotype instance representing extensibility element is owned by UML 
element which represents WSDL element owning this extensibility element.

Possible locations of the extensibility elements are defined in the WSDL 
specification[http://www.w3.org/TR/wsdl#A3].

definitions
<wsdl:definitions name="nmtoken"? 
targetNamespace="uri"?>

This is a root level of WSDL specification. It is mapped to a Package with 
stereotype <<wsdlPackage>>. 

The attribute name is mapped to the Name of the Package. If the attribute name 
is omitted, then imported Package will have the same name as value of the 
targetNamespace attribute.

The attribute targetNamespace is mapped to the targetNamespace 
tagged value of the stereotype <<wsdlPackage>>.

<input> Parameter with stereotype <<input>>

<output> Parameter with stereotype <<output>>

<fault> Parameter with stereotype <<fault>>

<binding> Interface with stereotype <<binding>>

<service> Class with stereotype <<service>>

<port> Port with stereotype <<port>>

WSDL UML
1876 IBM Rational Tau User Guide June 2009



WSDL to UML Mapping Rules
Example 604 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:definitions 
targetNamespace="http://interpressfact.net/webservices/"
>

UML:

<<wsdlPackage(. targetNamespace = 
http://interpressfact.net/webservices/ .)>> 
package ‘http://interpressfact.net/webservices/’ 
{
...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

import
<import namespace="uri" location="uri"/>

The import element is mapped to a Dependency with stereotype 
<<wsdlImport>>. 

The attribute namespace is mapped to the namespace tagged value of the 
<<wsdlImport>> stereotype.

The attribute location is mapped to the location tagged value of the 
<<wsdlImport>> stereotype.

WSDL Importer attempts to automatically resolve location of the referenced 
document and import it. If this operation is successfull, the Supplier of the 
dependency will be set to the package that corresponds to the imported doc-
ument. If WSDL Importer cannot automatically resolve location of the refer-
enced document, the the Supplier of the dependency will be empty.

Example 605 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

UML:

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

documentation
<wsdl:documentation .... /> ?
June 2009 IBM Rational Tau User Guide 1877



Chapter 71: WSDL/XSD Importer Reference
Documentation is mapped to a Comment with <<documentation>> stereo-
type owned by a UML representation of the enclosing element.

Example 606 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<documentation>This is a comment</documentation>

UML:

<<wsdl::documenation>> comment "This is a comment"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

types

An XSD schema defined in a WSDL file is mapped to a schema package 
withing WSDL package. See the XSD to UML Mapping chapter for details.

message
<wsdl:message name="nmtoken">

The message element is mapped to a Class with stereotype <<message>>.

The attribute name is mapped to the Name of the Class.

Example 607 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:message name="getJokeSoapIn">
...
</wsdl:message>

UML:

<<message>> class getJokeSoapIn {
...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

part
<part name="nmtoken" element="qname"? type="qname"?/>

The part element is mapped to an Attribute with stereotype <<part>>.

The attribute name is mapped to the Name of the Attribute.
1878 IBM Rational Tau User Guide June 2009



WSDL to UML Mapping Rules
The attribute type is mapped to the Type of the Attribute. 

The attribute element is mapped to a Dependency with stereotype 
<<elementReference>> owned by the Attribute. The Supplier of the De-
pendency will be set to UML representation of the XSD <element>. 

Example 608 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:part name="City" type="s:string"/>
<wsdl:part name="parameters" element="tns:getJoke"/>

UML:

<<'part'>> xs::string City;
<<'part'>> '' parameters <<elementReference>> dependency 
to 'http://interpressfact.net/webservices/'::getJoke;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

portType
<wsdl:portType name="nmtoken">

The portType element is mapped to an Interface with stereotype 
<<portType>>.

The Name of the Interface is set to <name>PortType where the <name> is a 
value of the attribute name. The original name is kept in the stereotype 
<<originalName>>.

Example 609 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:portType name="getJokeSoap">
....
</wsdl:portType>

UML:

<<portType, originalName(.name = "getJokeSoap".)>> 
interface getJokeSoapPortType { 
... 
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

operation
<wsdl:operation name="nmtoken" 
June 2009 IBM Rational Tau User Guide 1879



Chapter 71: WSDL/XSD Importer Reference
parameterOrder="nmtokens"?>

The operation element is mapped to an Operation.

The attribute name is mapped to the Name of the Operation.

The attribute parameterOrder is mapped to the stereotype 
<<parameterOrder>>. The value of this attribute is mapped to the value of 
the attribute order of the stereotype <<parameterOrder>>.

Example 610 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:operation name="getJoke">
...
</wsdl:operation>

UML:

void getJoke(...) {
...
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

input
<wsdl:input name="nmtoken"? message="qname">

The input element is mapped to a Parameter with the stereotype 
<<input>>. 

The direction of the Parameter is set to in.

The attribute name is mapped to the Name of the Parameter. 

If the attribute name was omitted, the Name of the Parameter is set to 
‘<wsdl:input>’ and the stereotype <<originalName>> with empty name 
is applied to the Parameter.

The attribute message is mapped to the Type of the Parameter.

Example 611 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:input message="getJokeSoapIn"/>

UML:
1880 IBM Rational Tau User Guide June 2009



WSDL to UML Mapping Rules
void getJoke(
<<'input', originalName(.name = "".)>> in getJokeSoapIn 
'<wsdl:input>' 
....
)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

output
<wsdl:output name="nmtoken"? message="qname">

The output element is mapped to a Parameter with the stereotype 
<<output>>. 

The direction of the Parameter is set to out.

The attribute name is mapped to the Name of the Parameter. 

If the attribute name was omitted, the Name of the Parameter is set to 
‘<wsdl:output>’ and the stereotype <<originalName>> with empty 
name is applied to the Parameter.

The attribute message is mapped to the Type of the Parameter.

Example 612 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:output message="getJokeSoapOut"/>

UML:

void getJoke(
<<'output', originalName(.name = "".)>> 
outgetJokeSoapOut '<wsdl:output>' 
....
)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

fault
<wsdl:fault name="nmtoken" message="qname">

The output element is mapped to a Parameter with the stereotype 
<<output>>. 

The direction of the Parameter is set to out.

The attribute name is mapped to the Name of the Parameter. 
June 2009 IBM Rational Tau User Guide 1881



Chapter 71: WSDL/XSD Importer Reference
The attribute message is mapped to the Type of the Parameter.

Example 613 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:fault name="getJokeFault" 
message="getJokeSoapFault"/>

UML:

void getJoke(
<<'fault', originalName(.name = "".)>> out 
getJokeSoapFault getJokeFault
....

)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

binding
<wsdl:binding name="nmtoken" type="qname"> *
    <-- extensibility element (1) --> *
    <wsdl:operation name="nmtoken"> *
       <-- extensibility element (2) --> *
       <wsdl:input name="nmtoken"? > ?
           <-- extensibility element (3) --> 
       </wsdl:input>
       <wsdl:output name="nmtoken"? > ?
           <-- extensibility element (4) --> *
       </wsdl:output>
       <wsdl:fault name="nmtoken"> *
           <-- extensibility element (5) --> *
       </wsdl:fault>
    </wsdl:operation>
</wsdl:binding>

The binding element is mapped to an Interface with the stereotype 
<<binding>>.

The Name of the Interface is set to <binding name>Binding where the 
<binding name> is a value of the attribute name. The original name of the 
binding is saved in the <<originalName>> stereotype.

The attriibute type is mapped to a Generalization. The Parent of the 
Generalization is set to the Interface which corresponds to UML rep-
resentation of the type.

The operation element in the binding is mapped to an Operation. The at-
tribute name is mapped to the Name of the Operation.
1882 IBM Rational Tau User Guide June 2009



WSDL to UML Mapping Rules
The input element in the operation element is mapped to a Parameter 
with the same properties as corresponding parameter from the portType op-
eration.

The output element in the operation element is mapped to a Parameter 
with the same properties as corresponding parameter from the portType op-
eration.

The fault element in the operation element is mapped to a Parameter 
with the same properties as corresponding parameter from the portType op-
eration.

Example 614 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:binding name="getJokeSoap" type="tns:getJokeSoap">
...
</wsdl:binding>

UML:

<<binding, originalName(.name = "getJokeSoap".)>> 
interface getJokeSoapBinding : getJokeSoapPortType{
....
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

service
<wsdl:service name="nmtoken">

The service element is mapped to a Class with the stereotype 
<<service>>.

The attribute name is mapped to the Name of the Class.

Example 615 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:service name="getJoke">
...
</wsdl:service>

UML:

<<service>> class getJoke {
...
June 2009 IBM Rational Tau User Guide 1883



Chapter 71: WSDL/XSD Importer Reference
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

port
<wsdl:port name="nmtoken" binding="qname">

The port element is mapped to a Port.

The attribute name is mapped to the Name of the Port.

The attribute binding is mapped to the Realized attribute of the Port.

Example 616 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

WSDL:

<wsdl:port name="getJokeSoap" binding="getJokeSoap">
...
</wsdl:port>

UML:

port getJokeSoap in with getJokeSoap;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

SOAP 1.1 Mapping Rules

WSDL includes a binding for SOAP 1.1 as part of the specification. This 
chapter describes mapping rules for SOAP 1.1 extensibility elements.

SOAP Profile Overview

The SOAP profile contains a set of types and stereotypes used to represent 
SOAP 1.1 elements when importing WSDL document.

Stereotypes of the SOAP profile:

Stereotype Extends Description

<<binding>> Interface Represents soap:binding

<<operation>
>

Operation Represents soap:operation

<<body>> Parameter Represents soap:body
1884 IBM Rational Tau User Guide June 2009



WSDL to UML Mapping Rules
Types of the SOAP profile:

soap:address
<wsdl:port>
<soap:address location="uri"/> 
</wsdl:port>

The soap:address element extends the wsdl:port. It is mapped to the ste-
reotype <<soap::address>>.

The attributes of the soap:address are mapped to the attributes of the ste-
reotype according to the table:

soap:binding
<wsdl:binding>
<soap:binding style="rpc|document" transport="uri">
...

<<header>> Parameter Represents soap:header

<<fault>> Parameter Represents soap:fault

<<address>> Port Represents soap:address

Type Description

enum UseKind Specify encoding rules for parts, headers, etc

enum StyleKind Specify operation style

address attribute stereotype attribute

location location : xs::anyURI

Stereotype Extends Description
June 2009 IBM Rational Tau User Guide 1885



Chapter 71: WSDL/XSD Importer Reference
</wsdl:binding>

The soap:binding element extends the wsdl:binding. It is mapped to the 
stereotype <<soap::binding>>.

The attributes of the soap:binding are mapped to the attributes of the ste-
reotype according to the table:

soap:operation
<wsdl:binding>
    <wsdl:operation>
       <soap:operation soapAction="uri"? 
style="rpc|document"?>?
    </wsdl:operation>
</wsdl:binding>

The soap:operation element extends the wsdl:operation element. It is 
mapped to the stereotype <<soap::operation>>.

The attributes of the soap:operation are mapped to the attributes of the 
stereotype according to the table:

soap:body

<wsdl:binding>
        <wsdl:operation>
           <wsdl:input>
               <soap:body parts="nmtokens"? 

binding attribute stereotype attribute

style style : StyleKind

transport transport : xs::anyURI

operation attribute stereotype attribute

soapAction soapAction : xs::anyUri [0..1]

style style : StyleKind [0..1]
1886 IBM Rational Tau User Guide June 2009



WSDL to UML Mapping Rules
use="literal|encoded"?
                          encodingStyle="uri-list"? 
namespace="uri"?>
           </wsdl:input>
           <wsdl:output>
               <soap:body parts="nmtokens"? 
use="literal|encoded"?
                          encodingStyle="uri-list"? 
namespace="uri"?>
           </wsdl:output>
        </wsdl:operation>
</wsdl:binding>

The soap:body element extends the wsdl:input or wsdl:output ele-
ments. It is mapped to the stereotype <<soap::body>>.

The attributes of the soap:body are mapped to the attributes of the stereo-
type according to the table:

soap:fault

<wsdl:binding>
        <wsdl:operation>
          <wsdl:fault>*
            <soap:fault name="nmtoken" 
use="literal|encoded"
                              encodingStyle="uri-list"? 
namespace="uri"?>
            </wsdl:fault>
        </wsdl:operation>
</wsdl:binding>

The soap:fault element extends the wsdl:fault element. It is mapped to 
the stereotype <<soap::fault>>.

The attributes of the soap:fault are mapped to the attributes of the stereo-
type according to the table:

body attribute stereotype attribute

parts parts : xs::NMTOKEN [*]

use use : UseKind

encodingStyle encodingStyle : xs::anyUri[*]

namespace namespace : xs::anyUri [0..1]
June 2009 IBM Rational Tau User Guide 1887



Chapter 71: WSDL/XSD Importer Reference
soap:header

<wsdl:binding>
        <wsdl:operation>
           <wsdl:input>
             <soap:header message="qname" part="nmtoken" 
use="literal|encoded"
                          encodingStyle="uri-list"? 
namespace="uri"?>*
               <soap:headerfault message="qname" 
part="nmtoken" use="literal|encoded"
                                 encodingStyle="uri-
list"? namespace="uri"?/>*
             </soap:header>                                
           </wsdl:input>
           <wsdl:output>
               <soap:header message="qname" 
part="nmtoken" use="literal|encoded"
                            encodingStyle="uri-list"? 
namespace="uri"?>*
                 <soap:headerfault message="qname" 
part="nmtoken" use="literal|encoded"
                                   encodingStyle="uri-
list"? namespace="uri"?/>*
               </soap:header>                                
           </wsdl:output>
</wsdl:operation>

The soap:header element extends wsdl:input or wsdl:output elements. 
It is mapped to the stereotype <<soap::header>>.

The attributes of the soap:header are mapped to the attributes of the stereo-
type according to the table:

fault attribute stereotype attribute

name name : xs::NMTOKEN

use use : UseKind

encodingStyle encodingStyle : xs::anyUri[*]

namespace namespace : xs::anyUri [0..1]
1888 IBM Rational Tau User Guide June 2009



WSDL to UML Mapping Rules
The soap:headerfault element is mapped to the instance of the class 
soap::headerfault. This instance is set as value of the faults attribute of 
the stereotype <<soap::header>>. The attributes of the soap:headerfault 
are mapped to the attributes of the class soap::headerfault according to the 
table:

header attribute stereotype attribute

message message : xs::QName

part part : xs:NMTOKENS

use use : UseKind

encodingStyle encodingStyle : xs::anyURI [*]

namespace namespace : xs::anyURI [0..1]

headerfault at-
tribute class attribute

namespace namespace : xs::anyURI [0..1]

use use : UseKind

part part : xs::NMTOKEN

encodingStyle encodingStyle : xs:anyURI [*]

name name : xs:QName
June 2009 IBM Rational Tau User Guide 1889



Chapter 71: WSDL/XSD Importer Reference
XSD to UML Mapping Rules

XSD Profile Contents

The XSD profile contains a set of stereotypes and helper types used to anno-
tate a UML model with XML Schema information. When importing a XSD 
file, the resulting UML model shall always be explicitly annotated.

For each XML Schema entity there is the stereotype in the XSD Profile with 
the same name.

Stereotype Description

<<any>> Represents xsd:any

<<key>> Represents xsd:key

<<unique>> Represents xsd:unique

<<selector>> Represents xsd:selector

<<keyref>> Represents xsd:keyref

<<field>> Represents xsd:field

<<notation>> Represents xsd:notation

<<appInfo>> Represents xsd:appInfo

<<documentation>
>

Represents xsd:documentation

<<simpleType>> Represents xsd:simpleType

<<restriction>> Represents xsd:restriction

<<list>> Represents xsd:list

<<union>> Represents xsd:union

<<include>> Represents xsd:include

<<import>> Represents xsd:import

<<simpleContent>
>

Represents xsd:simpleContent
1890 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
XS Profile Contents

The XS profile contains a set of types representing XML Schema Datatypes.

<<complexContent
>>

Represents xsd:complexContent

<<all>> Represents xsd:all

<<choice>> Represents xsd:choice

<<sequence>> Represents xsd:sequence

<<extension>> Represents xsd:extension

XSD type UML type

anyType datatype anyType

anySimpleType datatype anySimpleType : anyType

duration datatype duration : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

dataTime datatype dateTime : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

time datatype time : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

date datatype date : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

gYearMonth datatype gYearMonth : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

Stereotype Description
June 2009 IBM Rational Tau User Guide 1891



Chapter 71: WSDL/XSD Importer Reference
gYear datatype gYear : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

gMonthDay datatype gMonthDay : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

gDay datatype gDay : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

gMonth datatype gMonth : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

boolean datatype boolean : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Boolean

base64Binary datatype base64Binary : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Integer

hexBinary datatype hexBinary : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Integer

• from the Predefined::Charstring

float datatype float : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Real

double datatype double : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Real

XSD type UML type
1892 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
anyURI datatype anyURI : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

QName datatype QName : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

NOTATION datatype NOTATION : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

string datatype string : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Charstring

normalizedString datatype normalizedString: string

implicit conversions and assignment operators:

• from the Predefined::Charstring

decimal datatype decimal : anySimpleType

implicit conversions and assignment operators:

• from the Predefined::Real

integer datatype integer : decimal

implicit conversions and assignment operators:

• from the Predefined::Integer

token datatype token : normalizedString

implicit conversions and assignment operators:

• from the Predefined::Charstring

nonPositiveInteg
er

datatype nonPositiveInteger : integer

implicit conversions and assignment operators:

• from the Predefined::Integer

long datatype long : integer

implicit conversions and assignment operators:

• from the Predefined::Integer

XSD type UML type
June 2009 IBM Rational Tau User Guide 1893



Chapter 71: WSDL/XSD Importer Reference
nonNegativeInteg
er

datatype nonNegativeInteger : integer

implicit conversions and assignment operators:

• from the Predefined::Integer

language datatype language : token

implicit conversions and assignment operators:

• from the Predefined::Charstring

Name datatype Name : token

implicit conversions and assignment operators:

• from the Predefined::Charstring

NMTOKEN datatype NMTOKEN : token

implicit conversions and assignment operators:

• from the Predefined::Charstring

negativeInteger datatype negativeInteger : 
nonPositiveInteger

implicit conversions and assignment operators:

• from the Predefined::Integer

int datatype int : long

implicit conversions and assignment operators:

• from the Predefined::Integer

unsignedLong datatype unsignedLong : 
nonNegativeInteger

implicit conversions and assignment operators:

• from the Predefined::Integer

positiveInteger datatype positiveInteger : 
nonNegativeInteger

implicit conversions and assignment operators:

• from the Predefined::Integer

NCName datatype NCName : Name

implicit conversions and assignment operators:

• from the Predefined::Charstring

NMTOKENS datatype NMTOKENS

XSD type UML type
1894 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
short datatype short : int

implicit conversions and assignment operators:

• from the Predefined::Integer

unsignedInt datatype unsignedInt : unsignedLong

implicit conversions and assignment operators:

• from the Predefined::Integer

ID datatype ID : NCName

implicit conversions and assignment operators:

• from the Predefined::Charstring

IDREF datatype IDREF : NCName

implicit conversions and assignment operators:

• from the Predefined::Charstring

ENTITY datatype ENTITY : NCName

implicit conversions and assignment operators:

• from the Predefined::Charstring

byte datatype byte : short

implicit conversions and assignment operators:

• from the Predefined::Integer

unsignedShort datatype unsignedShort : unsignedInt

implicit conversions and assignment operators:

• from the Predefined::Integer

IDREFS datatype IDREFS

ENTITIES datatype ENTITIES

unsignedByte datatype unsignedByte : unsignedShort

implicit conversions and assignment operators:

• from the Predefined::Integer

XSD type UML type
June 2009 IBM Rational Tau User Guide 1895



Chapter 71: WSDL/XSD Importer Reference
SOAPENC Profile Overview

The SOAPENC profile contains a set of types representing SOAP 1.1-spe-
cific encoding information. Most of these types extends types from the XS 
profile.

Mapping rules

Overview

XSD UML

<xsd:attribute> attribute with the stereotype <<attirbute>>

<xsd:attributeGr
oup>

attribute or class with the stereotype 
<<attirbuteGroup>>

<xsd:complexType
>

class with the stereotype <<complexType>>

<xsd:complexCont
ent>

class with the stereotype <<complexContent>>

<xsd:documentati
on>

comment with the stereotype <<documentation>>

<xsd:appinfo> comment with the stereotype <<appinfo>>

<xsd:element> attribute with the stereotype <<element>>

<xsd:schema> package with the stereotype <<schema>>

<xsd:simpleConte
nt>

class with the stereotype <<simpleContent>>

<xsd:sequence> class with the stereotype <<sequence>>

<xsd:key> informal contstraint with the stereotype <<key>>

<xsd:keyref> informal constraint with the stereotype 
<<keyref>>

<xsd:unique> informal constraint with the stereotype 
<<unique>>

<xsd:selector> informal constraint with the stereotype 
<<selector>>
1896 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
Importing non-schema elements

When importing XSD document all non-schema elements are ignored.

Importing non-schema attributes

A non-scheme attribute on a XSD entity is mapped to the stereotype 
<<xmlAttribute>> from the TTDXmlFramework profile.

The name of the attribute is mapped to the attribute name of the stereotype 
<<xmlAttribute>>.

<xsd:field> informal constraint with the stereotype <<field>>

<xsd:group> attribute or class with the stereotype <<group>>

<xsd:all> class with the stereotype <<all>>

<xsd:any> attribute with the stereotype <<any>>

<xsd:anyAttribut
e>

attribute with the stereotype <<anyAttribute>>

<xsd:choice> class with the stereotype <<choice>>

<xsd:import> dependency with the stereotype <<import>>

<xsd:include> dependency with the stereotype <<include>>

<xsd:redefine> package with the stereotype <<redefine>>

<xsd:simpleType> data type with the stereotype <<simpleType>>

<xsd:list> data type with the stereotype <<list>>

<xsd:union> data type with the stereotype <<union>>

<xsd:annotation> stereotype <<annotation>> or artifact with the 
stereotype <<annotation>>

<xsd:extension> generalization with the stereotype <<extension>>

<xsd:restriction
>

generalization with the stereotype 
<<restriction>>

<xsd:notation> artifact with the stereotype <notation>

XSD UML
June 2009 IBM Rational Tau User Guide 1897



Chapter 71: WSDL/XSD Importer Reference
The value of the attribute is mapped to the attribute value of the stereotype 
<<xmlAttribute>>.

ID attribute

The id attribute on XSD entities is mapped to the stereotype 
<<xmlAttribute>>.

attribute declaration
<xsd:attribute
  default = string
  fixed = string
  form = (qualified | unqualified)
  id = ID
  name = NCName
  ref = QName
  type = QName
  use = (optional | prohibited | required) : optional
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, simpleType?)
</xsd:attribute>

The xsd:attribute element is mapped to an Attribute with the stereotype 
<<attribute>>.

The name of the element xsd:attribute is mapped to the Name of the 
Attribute.

The type of the element xsd:attribute is mapped to the Type of the 
Attribute.

The ref of the element xsd:attribute is mapped to a Dependency with 
the stereotype <<ref>>. The value of the ref is mapped to the Supplier of 
the Dependency.

The Type of the Attribute is set to Predefined::ExternalObject if the 
ref is present, but the type is not specified.

The other attributes of the xsd:attribute are mapped to the attributes of 
the stereotype <<attribute>> according to the table:
1898 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
If xsd:attribute contained a xsd:simpleType, the UML element corre-
sponded to the xsd:simpleType is inserted in the InlineType of the 
Attribute.

element declaration
<xsd:element
  abstract = boolean : false
  block = (#all | List of (extension | restriction | 
substitution))
  default = string
  final = (#all | List of (extension | restriction))
  fixed = string
  form = (qualified | unqualified)
  id = ID
  maxOccurs = (nonNegativeInteger | unbounded)  : 1
  minOccurs = nonNegativeInteger : 1
  name = NCName
  nillable = boolean : false
  ref = QName
  substitutionGroup = QName
  type = QName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, ((simpleType | complexType)?, 
(unique | key | keyref)*))
</xsd:element>

The xsd:element element is mapped to an Attribute with the stereotype 
<<element>>.

The name of the element xsd:element is mapped to the Name of the 
Attribute.

The type of the element xsd:element is mapped to the Type of the 
Attribute.

XSD UML

default default : Charstring [0..1]

form form : FormKind [0..1]

use use : UseKind [0..1]

fixed fixed : Charstring [0..1]
June 2009 IBM Rational Tau User Guide 1899



Chapter 71: WSDL/XSD Importer Reference
The ref attribute of the element xsd:element is mapped to a Dependency 
with the stereotype <<ref>>. The value of the ref is mapped to the 
Supplier of the Dependency. If the type attribute is not present, the Type 
of the Attribute is set to Predefined::ExternalObject.

The abstract attribute of the element xsd:element is mapped to the 
Abstract property of the Attribute.

The other attributes of the element xsd:element are mapped to the attributes 
of the stereotype <<element>> according to the table:

If the Content of the xsd:element is a simpleType or a complexType, the 
corresponding UML element is inserted in the InlineType of the 
Attribute.

If the Content of the xsd:element is a unique, key or keyref, the cor-
responding UML element is inserted in the Constraints of the Attribute.

complex type
<xsd:complexType
  abstract = boolean : false
  block = (#all | List of (extension | restriction))
  final = (#all | List of (extension | restriction))
  id = ID
  mixed = boolean : false
  name = NCName
  {any attributes with non-schema namespace . . .}>

XSD UML

block block : BlockKind [*]

default default : xs::string [0..1]

final final : FinalKind [*]

fixed fixed : xs:string [0..1]

form form : FormKind [0..1]

maxOccurs maxOccurs : MaxOccurence

minOccurs minOccurs : xs:nonNegativeInteger [0..1]

substitutionGrou
p

substitutionGroup : xs::QName [0..1]

nillable nillable : xs::boolean [0..1]
1900 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
  Content: (annotation?, (simpleContent | complexContent 
| ((group | all | choice | sequence)?, ((attribute | 
attributeGroup)*, anyAttribute?))))
</xsd:complexType>

The xsd:complexType element is mapped to a Class with the stereotype 
<<complexType>>.

The attribute name is mapped to the Name of the Class.

The other attributes of the element xsd:complexType are mapped to the at-
tributes of the stereotype <<complexType>> according to the table:

The UML representation of the Content of the xsd:complexType is in-
serted in the OwnedMember of the Class.

simple content
<xsd:simpleContent
  id = ID
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (restriction | extension))
</xsd:simpleContent>

The xsd:simpleContent element is mapped to a Class with the stereotype 
<<simpleConent>>.

The Name of the Class is set to "<simpleContent.

simple content : restriction
<xsd:restriction
  base = QName
  id = ID
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (simpleType?, (minExclusive | 
minInclusive | maxExclusive | maxInclusive | totalDigits 
| fractionDigits | length | minLength | maxLength | 

XSD UML

block block : BlockKind [0..1]

final final : FinalKind [0..1]

mixed mixed : xs::boolean
June 2009 IBM Rational Tau User Guide 1901



Chapter 71: WSDL/XSD Importer Reference
enumeration | whiteSpace | pattern)*)?, ((attribute | 
attributeGroup)*, anyAttribute?))
</xsd:restriction>

The xsd:restriction element is mapped to a Generalization with the 
stereotype <<restriction>>.

The attribute base is mapped to the Parent of the Generalization.

If the Content of the xsd:restriction is a simpleType, attribute, 
attributeGroup or anyAttribute, the corresponding UML element is 
inserted in the OwnedMember of the UML element representing parent ele-
ment of the xsd:restriction. In other case the Content of the 
xsd:restriction is mapped to the attributes of the stereotype 
<<restriction>> according to the table:

simple content : extension
<xsd:extension
  base = QName
  id = ID
  {any attributes with non-schema namespace . . .}>

Content Stereotype attribute

minExclusive minExclusive : anySimpleTypeRestriction

minInclusive minInclusive : anySimpleTypeRestriction

maxInclusive maxInclusive : anySimpleTypeRestriction

maxExclusive maxExclusive : anySimpleTypeRestriction

totalDigits totalDigits : positiveIntegerRestriction

fractionDigits fractionDigits : 
nonNegativeIntegerRestriction

length length : nonNegativeIntegerRestriction

minLength minLength : 
nonNegativeIntegerRestriction

maxLength maxLength : 
nonNegativeIntegerRestriction

enumeration enumeration : Charstring [0..*]

whiteSpace whiteSpace : whiteSpaceRestriction

pattern pattern : stringRestriction
1902 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
  Content: (annotation?, ((attribute | attributeGroup)*, 
anyAttribute?))
</xsd:extension>

The xsd:extension element is mapped to a Generalization with the ste-
reotype <<extension>>.

The attribute base is mapped to the Parent of the Generalization.

The UML element representing Content of the xsd:extension is inserted 
in the OwnedMember of the UML element representing parent element of the 
xsd:extension.

simple content : attrbute group
<xsd:attributeGroup
  id = ID
  ref = QName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?)
</xsd:attributeGroup>

The xsd:attributeGroup element is mapped to an Attribute with the 
stereotype <<attributeGroup>>. 

The Name of the Attribute is set to "<attributeGroup>".

The value of the ref attribute is set as Type of the Attribute. A 
Dependency with the stereotype <<ref>> is created in the Attribute. The 
Supplier of the Dependency is set to the value of the ref attribute.

simple content: anyAttribute
<xsd:anyAttribute
  id = ID
  namespace = ((##any | ##other) | List of (anyURI | 
(##targetNamespace | ##local)) )  : ##any
  processContents = (lax | skip | strict) : strict
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?)
</xsd:anyAttribute>

The xsd:anyAttribute element is mapped to an Attribute with the ste-
reotype <<anyAttribute>>.

The Name of the Atttribute is set to "<anyAttribute>".

The attributes of the xsd:anyAttribute are mapped to attributes of the ste-
reotype <<anyAttribute>> according to the table:
June 2009 IBM Rational Tau User Guide 1903



Chapter 71: WSDL/XSD Importer Reference
complex content
<xsd:complexContent
  id = ID
  mixed = boolean
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (restriction | extension))
</xsd:complexContent>

The xsd:complexContent is mapped to a Class with the stereotype 
<<complexContent>>.

The Name of the Class is set to "<complexContent>".

The attributes of the xsd:complexContent are mapped to the attributes of 
the stereotype <<complexContent>> according to the table:

complex content:restriction
<xsd:restriction
  base = QName
  id = ID
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (group | all | choice | 
sequence)?, ((attribute | attributeGroup)*, 
anyAttribute?))
</xsd:restriction>

The xsd:restriction element is mapped to a Generalization with the 
stereotype <<restriction>>.

The base attribute is mapped to the Parent of the Generalization.

XSD UML

namespace namespace : namespaceSpecification

processContents processContents : ProcessKind [0..1]

XSD UML

mixed mixed : xs::boolean [0..1]
1904 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
UML representation of the Content of the xsd:restriction is inserted in 
the OwnedMember of UML representation of the parent element.

complex content: extension
<xsd:extension
  base = QName
  id = ID
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, ((group | all | choice | 
sequence)?, ((attribute | attributeGroup)*, 
anyAttribute?)))
</xsd:extension>

The xsd:extension element is mapped to a Generalization with the ste-
reotype <<extension>>.

The base attribute is mapped to the Parent of the Generalization.

UML representation of the Content of the xsd:extension is inserted in the 
OwnedMember of UML representation of the parent element.

attribute group definition
<xsd:attributeGroup
  id = ID
  name = NCName
  ref = QName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, ((attribute | attributeGroup)*, 
anyAttribute?))
</xsd:attributeGroup>

If the xsd:attributeGroup element has the ref attribute, it is mapped to 
an Attribute with the stereotype <<attributeGroup>>. The attribute 
name is mapped to the Name of the Attribute. The value of the attribute ref 
is mapped to the Type of the Attribute. A Dependency with the stereotype 
<<ref>> is insertd in the Attribute. The Supplier of the Dependency is set 
to the value of the ref attribute.

If the xsd::attributeGroup element does not have the ref attribute, it is 
mapped to a Class with the stereotype <<attributeGroup>>. The attribute 
name is mapped to the Name of the Class. UML representation of the 
Content of the xsd:attributeGroup is inserted in the OwnedMember of 
UML representation of the parent element.

model group definition
<xsd:group
June 2009 IBM Rational Tau User Guide 1905



Chapter 71: WSDL/XSD Importer Reference
  id = ID
  maxOccurs = (nonNegativeInteger | unbounded)  : 1
  minOccurs = nonNegativeInteger : 1
  name = NCName
  ref = QName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (all | choice | sequence)?)
</xsd:group>

If the xsd:group element has the ref attribute, it is mapped to an 
Attribute with the stereotype <<group>>. The attribute name is mapped to 
the Name of the Attribute. The value of the attribute ref is mapped to the 
Type of the Attribute. A Dependency with the stereotype <<ref>> is in-
sertd in the Attribute. The Supplier of the Dependency is set to the value 
of the ref attribute.

If the xsd::group element does not have the ref attribute, it is mapped to a 
Class with the stereotype <<group>>. The attribute name is mapped to the 
Name of the Class. UML representation of the Content of the xsd:group is 
inserted in the OwnedMember of UML representation of the parent element.

Other attributes of the xsd:group element are mapped to the attributes of the 
stereotype <<group>> according to the table:

model group schema component: all
<xsd:all
  id = ID
  maxOccurs = 1 : 1
  minOccurs = (0 | 1) : 1
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, element*)
</xsd:all>

The xsd:all element is mapped to a Class with the stereotype <<all>>.

The Name of the Class is set to "<all>".

The UML representation of the Content of the xsd:all is inserted in the 
OwnedMember of the Class.

XSD UML

maxOccurs maxOccurs : MaxOccurence

minOccurs minOccurs : xs::nonNegativeInteger 
[0..1]
1906 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
The attributes of the xsd:all are mapped to the attributes of the stereotype 
<<all>> according to the table:

model group schema component: choice

<xsd:choice
  id = ID
  maxOccurs = (nonNegativeInteger | unbounded)  : 1
  minOccurs = nonNegativeInteger : 1
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (element | group | choice | 
sequence | any)*)
</xsd:choice>

The xsd:choice element is mapped to a Class with the stereotype 
<<choice>>.

The Name of the Class is set to "<choice>".

The UML representation of the Content of the xsd:choice is inserted in the 
OwnedMember of the Class.

The attributes of the xsd:all are mapped to the attributes of the stereotype 
<<choice>> according to the table:

model group schema component: sequence

<xsd:sequence
  id = ID
  maxOccurs = (nonNegativeInteger | unbounded)  : 1
  minOccurs = nonNegativeInteger : 1
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (element | group | choice | 

XSD UML

maxOccurs maxOccurs : MaxOccurence

minOccurs minOccurs : xs::nonNegativeInteger 
[0..1]

XSD UML

maxOccurs maxOccurs : MaxOccurence

minOccurs minOccurs : xs::nonNegativeInteger 
[0..1]
June 2009 IBM Rational Tau User Guide 1907



Chapter 71: WSDL/XSD Importer Reference
sequence | any)*)
</xsd:sequence>

The xsd:sequence element is mapped to a Class with the stereotype 
<<sequence>>.

The Name of the Class is set to "<sequence>".

The UML representation of the Content of the xsd:sequence is inserted in 
the OwnedMember of the Class.

The attributes of the xsd:sequence are mapped to the attributes of the ste-
reotype <<sequence>> according to the table:

wildcard schema component : any
<xsd:any
  id = ID
  maxOccurs = (nonNegativeInteger | unbounded)  : 1
  minOccurs = nonNegativeInteger : 1
  namespace = ((##any | ##other) | List of (anyURI | 
(##targetNamespace | ##local)) )  : ##any
  processContents = (lax | skip | strict) : strict
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?)
</xsd:any>

The xsd:any element is mapped to an Attribute with the stereotype 
<<any>>.

The Name of the Attribute is set to "<any>".

The attributes of the xsd:any are mapped to the attributes of the stereotype 
<<any>> according to the table:

XSD UML

maxOccurs maxOccurs : MaxOccurence

minOccurs minOccurs : xs::nonNegativeInteger 
[0..1]
1908 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
identity-constraint definition schema component:unique
<xsd:unique
  id = ID
  name = NCName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (selector, field+))
</xsd:unique>

The xsd:unique element is mapped to an InformalConstraint with the 
stereotype <<unique>>.

The attributes of the xsd:unique element are mapped to the attributes of the 
stereotype <<unique>> according to the table:

identity-constraint definition schema component:key
<xsd:key
  id = ID
  name = NCName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (selector, field+))
</xsd:key>

The xsd:key element is mapped to an InformalConstraint with the ste-
reotype <<key>>.

The attributes of the xsd:key element are mapped to the attributes of the ste-
reotype <<key>> according to the table:

XSD UML

maxOccurs maxOccurs : MaxOccurence

minOccurs minOccurs : xs::nonNegativeInteger 
[0..1]

namespace namespace : NamespaceSpecification 
[0..1]

processContents processContents : ProcessKind [0..1]

XSD UML

name name : xs::NCName
June 2009 IBM Rational Tau User Guide 1909



Chapter 71: WSDL/XSD Importer Reference
identity-constraint definition schema component:keyref
<keyref
  id = ID
  name = NCName
  refer = QName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (selector, field+))
</keyref>

The xsd:keyref element is mapped to an InformalConstraint with the 
stereotype <<keyref>>.

The attributes of the xsd:keyref element are mapped to the attributes of the 
stereotype <<keyref>> according to the table:

identity-constraint definition schema component:selector
<xsd:selector
  id = ID
  xpath = a subset of XPath expression
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?)
</xsd:selector>

The xsd:selector element is mapped to an InformalConstraint with 
the stereotype <<selector>>.

The attributes of the xsd:selector element are mapped to the attributes of 
the stereotype <<selector>> according to the table:

XSD UML

name name : xs::NCName

XSD UML

name name : xs::NCName

refer refer : xs::QName
1910 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
identity-constraint definition schema component:field
<xsd:field
  id = ID
  xpath = a subset of XPath expression
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?)
</xsd:field>

The xsd:field element is mapped to an InformalConstraint with the 
stereotype <<field>>.

The attributes of the xsd:field element are mapped to the attributes of the 
stereotype <<field>> according to the table:

notation declaration
<xsd:notation
  id = ID
  name = NCName
  public = token
  system = anyURI
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?)
</xsd:notation>

The xsd:notation element is mapped to an Artifact with the stereotype 
<<notation>>.

The name of the xsd:notation is mapped to the Name of the Artifact.

Other attributes of the xsd:notation are mapped to the attributes of the ste-
reotype <<notation>> according to the table:

XSD UML

xpath name : xs::string

XSD UML

xpath name : xs::string
June 2009 IBM Rational Tau User Guide 1911



Chapter 71: WSDL/XSD Importer Reference
annotation
<xsd:annotation
  id = ID
  {any attributes with non-schema namespace . . .}>
  Content: (appinfo | documentation)*
</xsd:annotation>

If the xsd:annotation is defined in the xsd:schema or in the 
xsd:redefine, it is mapped to an Artifact with the stereotype 
<<annotation>>.

In other cases, the xsd:annotation is mapped to the stereotype 
<<annotation>> which is applied to the UML element representing parent 
element of the xsd:annotation

annotation : appinfo
<xsd:appinfo
  source = anyURI
  {any attributes with non-schema namespace . . .}>
  Content: ({any})*
</xsd:appinfo>

The xsd:appinfo element is mapped to a Comment with the stereotype 
<<appinfo>>.

The attributes of the xsd:appinfo are mapped to the attributes of the stereo-
type <<appinfo>> according to the table:

The Content of the xsd:appinfo is mapped to the Text of the Comment.

annotation : documentation
<xsd:documentation
  source = anyURI

XSD UML

public public : xs::token [0..1]

system system : xs::anyURI [0..1]

XSD UML

source source : xs::anyURI [0..1]
1912 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
  xml:lang = language
  {any attributes with non-schema namespace . . .}>
  Content: ({any})*
</xsd:documentation>

The xsd:documentation element is mapped to a Comment with the stereo-
type <<documentation>>.

The attributes of the xsd:documentation are mapped to the attributes of the 
stereotype <<documentation>> according to the table:

The Content of the xsd:documentation is mapped to the Text of the 
Comment.

simple type definition
<xsd:simpleType
  final = (#all | List of (list | union | restriction))
  id = ID
  name = NCName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (restriction | list | union))
</xsd:simpleType>

The xsd:simpleType element is mapped to a DataType with the stereotype 
<<simpleType>>.

The name of the xsd:simpleType is mapped to the Name of the DataType.

The attributes of the xsd:simpleType are mapped to the attributes of the 
stereotype <<simpleType>> according to the table:

simple type : restriction
<xsd:restriction
  base = QName

XSD UML

source source : xs::anyURI [0..1]

xml:lang 'xml:lang' : xs::language [0..1]

XSD UML

final final : FinalKind
June 2009 IBM Rational Tau User Guide 1913



Chapter 71: WSDL/XSD Importer Reference
  id = ID
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, (simpleType?, (minExclusive | 
minInclusive | maxExclusive | maxInclusive | totalDigits 
| fractionDigits | length | minLength | maxLength | 
enumeration | whiteSpace | pattern)*))
</xsd:restriction>

The xsd:restriction element is mapped to a Generalization with the 
stereotype <<restriction>>.

The attribute base is mapped to the Parent of the Generalization.

If the Content of the xsd:restriction is a simpleType, the corre-
sponding UML element is inserted in the OwnedMember of the UML element 
representing parent element of the xsd:restriction. In other case the 
Content of the xsd:restriction is mapped to the attributes of the stereo-
type <<restriction>> according to the table:

simple type : list
<xsd:list

Content Stereotype attribute

minExclusive minExclusive : anySimpleTypeRestriction

minInclusive minInclusive : anySimpleTypeRestriction

maxInclusive maxInclusive : anySimpleTypeRestriction

maxExclusive maxExclusive : anySimpleTypeRestriction

totalDigits totalDigits : positiveIntegerRestriction

fractionDigits fractionDigits : 
nonNegativeIntegerRestriction

length length : nonNegativeIntegerRestriction

minLength minLength : 
nonNegativeIntegerRestriction

maxLength maxLength : 
nonNegativeIntegerRestriction

enumeration enumeration : Charstring [0..*]

whiteSpace whiteSpace : whiteSpaceRestriction

pattern pattern : stringRestriction
1914 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
  id = ID
  itemType = QName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, simpleType?)
</xsd:list>

The xsd:list element is mapped to a DataType with the stereotype 
<<list>>.

The Name of the DataType is set to "<list>".

The attributes of the xsd:list are mapped to the attributes of the stereo-
type <<list>> according to the table:

simple type : union
<xsd:union
  id = ID
  memberTypes = List of QName
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?, simpleType*)
</xsd:union>

The xsd:union is mapped to a DataType with the stereotype <<union>>.

The Name of the DataType is set to "<union>".

The attributes of the xsd:union are mapped to the attributes of the stereo-
type <<union>> according to the table:

schema
<xsd:schema
  attributeFormDefault = (qualified | unqualified) : 
unqualified
  blockDefault = (#all | List of (extension | 
restriction | substitution))  : ''
  elementFormDefault = (qualified | unqualified) : 

XSD UML

itemType itemType : xs::QName

XSD UML

memberTypes memberTypes : xs::QName [*]
June 2009 IBM Rational Tau User Guide 1915



Chapter 71: WSDL/XSD Importer Reference
unqualified
  finalDefault = (#all | List of (extension | 
restriction | list | union))  : ''
  id = ID
  targetNamespace = anyURI
  version = token
  xml:lang = language
  {any attributes with non-schema namespace . . .}>
  Content: ((include | import | redefine | annotation)*, 
(((simpleType | complexType | group | attributeGroup) | 
element | attribute | notation), annotation*)*)
</xsd:schema>

The xsd:schema element is mapped to a Package with the stereotype 
<<schema>>.

The targetNamespace attribute is mapped to the Name of the Package. If 
the targetNamespace is omitted, the Name of the Package is set to 
"<schema>".

The other attributes of the xsd:schema element are mapped to the attributes 
of the stereotype <<schema>> according to the table:

include element
<xsd:include
  id = ID
  schemaLocation = anyURI
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?)
</xsd:include>

The xsd:include element is mapped to a Dependency with the stereotype 
<<include>>.

XSD UML

attributeFormDef
ault

attributeFormDefault : FormKind

blockDefault blockDefault : BlockKind [0..1]

elementFormDefau
lt

elementFormDefault : FormKind

finalDefault finalDefault : FinalKind [0..1]

version version : xs::token [0..1]

xml:lang 'xml:lang' : xsd::language [0..1]
1916 IBM Rational Tau User Guide June 2009



XSD to UML Mapping Rules
The attributes of the xsd:include are mapped to the attributes of the stereo-
type <<include>> according to the table:

redefine element
<xsd:redefine
  id = ID
  schemaLocation = anyURI
  {any attributes with non-schema namespace . . .}>
  Content: (annotation | (simpleType | complexType | 
group | attributeGroup))*
</xsd:redefine>

The xsd:redefine element is mapped to a Package with the stereotype 
<<redefine>>.

The Name of the Package is set to "<redefine>".

The attributes of the xsd:redefine are mapped to the attributes of the ste-
reotype <<redefine>> according to the table:

import element
<xsd:import
  id = ID
  namespace = anyURI
  schemaLocation = anyURI
  {any attributes with non-schema namespace . . .}>
  Content: (annotation?)
</xsd:import>

The xsd:import element is mapped to a Dependency with the stereotype 
<<import>>.

The attributes of the xsd:import are mapped to the attributes of the stereo-
type <<import>> according to the table:

XSD UML

schemaLocation schemaLocation : xs::anyUri

XSD UML

schemaLocation schemaLocation : xs::anyUri
June 2009 IBM Rational Tau User Guide 1917



Chapter 71: WSDL/XSD Importer Reference
Postprocessing

In order to reduce the number of levels in the imported UML model, the XSD 
Importer performs postprocessing when import of the XSD document is 
completed. During the postprocessing the XSD Importer merges some ele-
ments in the imported UML model. 

The following merge rules are applied recursively (until merge is not pos-
sible) to the built model:

• A Class with the stereotype <<complexType>> is merged with a nested 
Class with the stereotype <<comlexContent>>.

• A Class with the stereotype <<complexType>> is merged with a nested 
Class with the stereotype <<simpleContent>>.

• A Class with the stereotype <<complexType>> is merged with a nested 
Class with the stereotype <<all>>.

• A Class with the stereotype <<complexType>> is merged with a nested 
Class with the stereotype <<sequence>>.

• A Class with the stereotype <<complexType>> is merged with a nested 
Class with the stereotype <<choice>>.

The merge between two elements E1 and E2 (E1 owns E2) is possible if and 
only if:

• Both elements E1 and E2 do not have the <<xmlNamespace>> stereotype.

• Both elements E1 and E2 do not have the <<xmlAttribute>> stereotype.

• If element E1 has any of the stereotypes <<sequence>>,<<all>> or 
<<choice>> and element E2 has any of these stereotype then merge is 
not possible.

• Both elements E1 and E2 do not have comments.

XSD UML

schemaLocation schemaLocation : xs::anyUri [0..1]

namespace namespace : xs::anyUri [0..1]
1918 IBM Rational Tau User Guide June 2009



XML Namespace Mapping Rules
XML Namespace Mapping Rules
Elements and attributes in a XML document may be placed in a XML 
namespace using the mechanisms described in the related specification 
[http://www.w3.org/TR/REC-xml-names/]. 

The Tau XML Framework supports XML namespace declarations by means 
of the special stereotype <<xmlNamespace>> which is defined in the profile 
TTDXmlFramework.

The stereotype <<xmlNamespace>> has the following attribute:

declarations : xmlNamespaceDecl[*]

The type xmlNamespaceDecl is defined as follows:

class xmlNamespaceDecl
{

public Charstring name;
public Charstring [0..1] prefix;

}

The instance of xmlNamespaceDecl with empty defines default namespace.

The XML namespace declarations on a XML element are mapped to one in-
stance of the stereotype <<xmlNamespace>> according to the following rule:

XML:

<element 
xmlns:prefix1="ns1" 
xmlns:prefix2="ns2" 
... 
xmlns="default ns"/>

UML:

<<<xmlNamespace (. declarations = 
{ 
xmlNamespaceDecl (. name = "ns1", prefix = "prefix1" .),
xmlNamespaceDecl (. name = "ns2", prefix = "prefix2" .),
...
xmlNamespaceDecl (. name = "ns1" .)
}
.)>>
June 2009 IBM Rational Tau User Guide 1919



Chapter 71: WSDL/XSD Importer Reference
1920 IBM Rational Tau User Guide June 2009



XML Schema Modeling with UML

The chapters listed under XML Schema Modeling with UML describe how 
to model XML Schemas using UML and how to import and export schema 
(XSD) files.
June 2009 IBM Rational Tau User Guide 1921



Chapter : 
1922 IBM Rational Tau User Guide June 2009



73
Modeling XML Schemas

This chapter describes how to model XML Schema in UML.
June 2009 IBM Rational Tau User Guide 1923



Chapter 73: Modeling XML Schemas
Getting started
To start modeling a XML schema in IBM Rational Tau:

• Start IBM Rational Tau and create a new “UML for XSD Modeling” 
project

• Create a XML Schema Diagram in the schema and start modeling.

To generate a XSD file from the schema model:

• Right-click the schema and select Generate XSD...

• Select a folder, enter a file name and click Save

See also

“XMLFramework add-in” on page 1925

“XSD view” on page 1926

“XSD profile” on page 1927

“Importing XSD Files” on page 1927

“Generating XSD Files” on page 1927
1924 IBM Rational Tau User Guide June 2009



XMLFramework add-in
XMLFramework add-in
The XMLFramework add-in adds support for modeling XML schemas in 
IBM Rational Tau.

The main features of the add-in are:

• A XSD profile for annotating UML models with XSD information

• A XSD centric model view, the XSD view.

To activate the add-in, see Activating the XMLFramework add-in.

Activating the XMLFramework add-in

To activate the XMLFramework add-in:

1. In the Tools menu, select Customize.... 

2. Click the Add-Ins tab and check the XMLFramework add-in.

3. Click OK.
June 2009 IBM Rational Tau User Guide 1925



Chapter 73: Modeling XML Schemas
XSD view
The XSD View provides a XSD centric view over a model. In this view only 
XSD elements are shown, and only XSD elements can be created. 

When using the New... command in the Model View context menu, the view 
enforces a correct XSD structure.

To activate the XSD View:

1. In the View menu, select Reconfigure Model View...

2. Select XSD View in the dialog and click OK.

You can switch between the Standard View and the XSD View at any time.

Note
Not all UML elements are visible in the XSD View. To see all elements 
switch to the Standard View.

See also

“Model View” on page 15 in Chapter 4, Introduction to IBM Rational Tau 
4.3

“Default Model View” on page 2498 in Chapter 95, Dialog Help
1926 IBM Rational Tau User Guide June 2009



XSD profile
XSD profile
The XSD profile extends UML with concepts for modeling XML schemas.

The xs package in the profile contains all primitive types from the XML 
Schema specification.

Importing XSD Files

For information on how to import and existing XSD file, see WSDL/XSD 
Importer Reference.

Generating XSD Files

For information on how to generate XSD files from the model, see 
WSDL/XSD Importer Reference.

Note
XSD files can be generated from any UML package. If the content is not an-
notated with XSD information from the XSD profile, a default mapping will 
be used.
June 2009 IBM Rational Tau User Guide 1927



Chapter 73: Generating XSD Files
1928 IBM Rational Tau User Guide June 2009



Exploring UML Models

The chapters listed under this section describes how to use the Tau Explorer.
June 2009 IBM Rational Tau User Guide 1929



Chapter : 
1930 IBM Rational Tau User Guide June 2009



75
The Tau Explorer

This chapter is a reference to the Explorer user interface and a reference for 
the terminology used when exploring a system.

Note
The Tau Explorer is available on Windows only. The user must have admin-
istrator privileges on Windows Vista in order to unblock the ports used for 
communicating with the explorer gui.
June 2009 IBM Rational Tau User Guide 1931



Chapter 75: The Tau Explorer
Exploring an Application

Underlying Principles and Terms

The Tau Explorer is based on a technique called state space exploration, 
which is a well-known technique for automatic analysis of distributed sys-
tems. All state space exploration tools for UML are based on the idea of an 
automatic generation of the reachable state space for the UML systems.

Behavior Trees

The Tau Explorer operates on structures known as behavior trees or reach-
ability graphs. A behavior tree is a tree structure that represents the behavior 
of a UML system.

The nodes of the tree represent UML system states. A system state is defined 
by:

• The active class instances that are active

• The variable values of these active classes

• The UML control flow state of the active class instances

• The local state of any called operations (with local variables etc.)

• Signals (with parameters) that are present in the queues of the system

• Active timers

• Etc.

The edges between the nodes in the tree represent atomic UML events that 
transfers the UML system from one system state to another. Therefore, the 
edges are also called behavior tree transitions. They can be individual UML 
statements like tasks, inputs, outputs, etc. but also complete UML transitions, 
depending on how the Explorer is configured. 

The size and structure of the behavior tree can thus vary and is determined 
by a number of Explorer options. These options affect the number of system 
states generated for a UML transition, and the number of possible behavior 
tree transitions from a state in the tree.
1932 IBM Rational Tau User Guide June 2009



Exploring an Application
State Space Explorations

The set of all system states represented by the behavior tree is called the state 
space of the system. By moving around in the behavior tree, the behavior of 
the UML system can be explored and the system states reached can be exam-
ined. This is known as state space exploration, and it can be performed both 
manually and automatically.

Note
The “children” of a node in the behavior tree are not generated until a state 
space exploration actually reaches that node, i.e., the tree is not a static 
structure generated when an explorer is started.

For each system state reached during state space exploration, a number of 
rules are checked to detect errors or possible problems in the UML system. 
If a rule is violated, a report is generated to the user. By investigating the re-
port and the system state where it was generated, the cause of the error can 
be determined.

States and Paths

The original start state of the system is called the system start state. It is the 
system state where the static active class instances have been created but 
their initial start transitions have not been executed.

The current state is the system state that currently is under investigation. It 
is changed when manually navigating in the behavior tree, or when going to 
the system state where a report has been generated. Initially, it is set to the 
system start state.

The current root of the behavior tree can be any system state. A number of 
Explorer commands and features use it as a starting point of operation. Ini-
tially, it is set up to the system start state, also known as the original root of 
the behavior tree. If it is redefined, it is not possible to reach a state above the 
current root in the behavior tree without resetting it back to the original root.

A path between two states in the behavior tree can be denoted by a sequence 
of integers, each one indicating which transition was used to get between two 
states in the path. The current path is a path that is set up when manually nav-
igating in the behavior tree, or when going to the system state where a report 
has been generated. When set up, it is the path between the current root and 
the current state. The current path is changed when the Explorer moves to a 
June 2009 IBM Rational Tau User Guide 1933



Chapter 75: The Tau Explorer
state that is not part of the current path, e.g. when manually navigating to a 
system state outside of the current path. However, moving up and down 
along the current path does not change it.

Performing Automatic State Space Explorations

This section describes how to perform an automatic state space exploration 
and how to examine the results. 

In the Explorer, three types of automatic state space explorations can be used, 
implemented as different algorithms:

• Bit state exploration, an efficient algorithm for reasonably large UML 
systems.

• Random walk, a simple algorithm that can be used for very large UML 
systems.

• Exhaustive exploration, an algorithm suited only for small UML sys-
tems.

The characteristics of these algorithms are further described in the sections 
describing their respective options views: Bit State Options View, Random 
Walk Options View and Exhaustive Options View. They have the following 
in common:

• They start from the current system state, which means that you may have 
to navigate to a suitable start state before the exploration is started.

• They explore the state space down to a certain depth from the start state, 
to avoid exploring an infinite state space forever.

The performance and results of a state space exploration are also highly de-
pendent on how the state space is configured. This is further described in sec-
tion State Space Options View.

Rules Checked During Exploration

During state space exploration, a number of rules are checked to detect errors 
or possible problems in the UML system. If a rule is satisfied, a report is gen-
erated to the user.

The rules are used to find design errors, typically caused by unexpected be-
haviors of the UML system. Often the errors are caused by events happening 
at the same time in different parts of the system, for example when a signal 
1934 IBM Rational Tau User Guide June 2009



Exploring an Application
is received from the environment of the system at the same time as a timer 
expires. So-called signal races are often part of the error situations that are 
found.

Apart from the predefined rules, an additional rule can be defined by the user 
to check for other properties of the system. See Define-Rule for more infor-
mation.

Interpreting Exploration Statistics

The different exploration algorithms print somewhat different statistics. The 
important statistics to note are the following:

• No of reports: x

The number of error situations found.

• Truncated paths: x

The number of times the exploration reached the maximum search depth. 
The execution path is at that stage truncated and the exploration con-
tinues in another state. If this value is greater than 0, parts of the state 
space have not been explored. However, this is a normal situation for 
UML systems with infinite state spaces.

• Collision risk: x

For bit state explorations, the risk (in percent) for collisions in a hash 
table used to represent the generated system states (see Bit State Options 
View). This value should be very small, 0-1%; otherwise, the size of the 
hash table may have to be increased. If collisions occur, some execution 
paths may be truncated by mistake.

• Current depth: x

The search depth reached at the moment the exploration was finished or 
stopped. If this value is -1, the exploration finished by itself. If the depth 
is greater than 0, the exploration was stopped. In this case, it may be con-
tinued from this depth.

• Symbol coverage: x

The percentage of the UML symbols in the system that have been 
reached during the exploration. If this value is less than 100, parts of the 
system have not been explored.

Generating and Starting an Explorer

This section describes how to build and run a Model Explorer application.
June 2009 IBM Rational Tau User Guide 1935



Chapter 75: The Tau Explorer
Important!
You must have a C/C++ compiler installed to generate an executable Model 
Explorer application. The compiler also needs to be in your PATH.

Creating a Build Artifact

To activate the Model Explorer, make sure that the ModelExplorer checkbox 
is checked in Tools -> Customize -> Add-ins.

In order to build a Model Explorer application a Build Artifact has to be cre-
ated by right clicking in the Model View and selecting Model Explorer -> 
New Artifact in the context menu. A new build artifact will be created. Right 
click on it and choose Select build root... to set which model element that 
should be the build root for this build.

Another option is to right click on the desired build root in the Model View 
and select Model Explorer -> New Artifact.

Building and Launching the Explorer application

Right clicking on the build artifact and selecting Build (Model Explorer) 
opens a sub-menu with the following options: Check, Generate, Make, Build, 
Launch and Clean. To build, just select the Build command.

Customizing the Build Artifact

The following properties can be set in the Model Explorer build artifact:

• Target Directory, specifies where to put the files generated by the Model 
Explorer.

• Error Limit. If the number of errors associated with a build exceeds this 
limit, the build is aborted.

• Target Kind, specifies what compiler to use for the generated files.

• Make-Template File, instructs the make tool to include a user created 
template file.

• Supress C Level warnings, filters out warnings from the c compiler and 
linker.

• Generate reference package. If set, the generated files will be added to the 
model in a package named “Result of C generation”.

• TCP/IP Port, which port Tau will use for the communication with the ex-
plorer application.
1936 IBM Rational Tau User Guide June 2009



Exploring an Application
• Launch Console. If set, a read-only console window will be opened 
echoing the commands sent from the Explorer UI and the responses from 
the Explorer application.

• Additional Preprocessor Defines, specifies additional compilation 
switches that should be specified using the syntax of compiler command 
line, for example, -DUSERDEF1.

Note
To remove a property from the build artifact you need to select Delete Value 
from the context menu since an empty property can be valid in many cases. 
A yellow input field signals that the property is not set.

The Explorer User Interface

The Explorer User Interface (Explorer UI) is opened when the command 
Launch on the Explorer build artifact is issued, or by selecting the menu com-
mand Show Model Explorer, found in the View menu in Tau.

Note
It is not possible to open the Explorer UI from the file system, it must be 
opened by Tau.

Explorer states

When the Explorer UI is open it will automatically detect the state of the Ex-
plorer executable and will all the time keep track on its state.The Explorer UI 
can be in four different states:

• Explorer is not running. The Explorer UI is disabled and gray.

• Explorer is starting up. This is indicated by a blinking Tau icon.

• Explorer is ready and is waiting for a command. The Explorer UI is en-
abled and has a standard Tau icon.

• Explorer is executing a command. This is indicated by a rotating Tau 
icon and the Explorer UI is disabled. In this state it is only possible to 
send commands from the Explorer command prompt or select the Break 
and Exit options.

Explorer Views

The Explorer UI is based on a set of views, accessable via the menu:

• Explore View
June 2009 IBM Rational Tau User Guide 1937



Chapter 75: The Tau Explorer
• Navigator View

• Reports View

• Test Values View

• General Options View

• Bit State Options View

• Report Options View

• State Space Options View

• Random Walk Options View

• Exhaustive Options View

• Tree Search Options View

Explorer command prompt

In all views you are able to send commands to the Explorer through the Ex-
plorer command prompt. The command prompt is found under the menu. 
Enter a command and press enter (or click the Send Command button) to send 
a command to the Explorer. Typically the result from the command is to be 
found in the Log Window.

Log Window

All information sent to and received from the Explorer executable is shown 
in the output tab Model Explorer in Tau.

Explore View

In this view there is a sub menu with four different explorations:

• Bit State, see the command Bit-State-Exploration.

• Random Walk, see the command Random-Walk.

• Exhaustive, see the command Exhaustive-Exploration.

• Tree Search, see the command Tree-Search.

When selecting one of these options, the corresponding Explorer command 
is sent asynchronously via Tau to the Explorer executable.
1938 IBM Rational Tau User Guide June 2009



Exploring an Application
Navigator View

The Explorer provides the possibility to interactively walk around in the be-
havior tree of a UML system. This is also known as manually navigating in 
the state space.

The Navigator is intExplorerended to be used in three different situations:

1. When learning how a state space exploration tool like the Explorer 
works, the Navigator is a convenient tool for interactively investigating 
the behavior tree of a UML system.

2. When using automatic state space exploration, there is sometimes a need 
to start the exploration from a different starting point than the system start 
state of the UML system. In this case, the Navigator can be used to walk 
to a suitable system state, from which the automatic exploration can be 
started.

3. When investigating a report generated during automatic exploration, the 
Navigator can be used to check the alternative behaviors that are possible 
on the path to the reported situation.

Moving up in the behaviour tree

To move one level up in the behavior tree, select the link describing the pre-
vious state, found right under the Up Transition heading. If the Explorer ex-
ecutable is already in the first node in the behaviour tree, there is no link 
available and the text No up node is shown. The Explorer UI will now send 
the Up 1 command to the Explorer UI. When this is done, the Navigator 
View will send several commands to investigate what the new up state will 
be and what available next states are available.

Moving down in the behaviour tree

To move down in the behaviour tree, select one of the links under the Down 
Transition heading. If there are no more states from the current state, the list 
of down transitions will be empty. When selecting one of the down transi-
tions, the Explorer UI will send the command Next x, where x is the index in 
the list of available down transitions corresponding to the selected link. 
When this is done, the Navigator View will send several commands to inves-
tigate what the new up state will be and what available next states are avail-
able.

Locate in Model
June 2009 IBM Rational Tau User Guide 1939



Chapter 75: The Tau Explorer
When selecting the Locate in Model option, the Explorer UI will present a 
list of elements in the output tab Explorer System State. Each element is a 
part of the current state space. When clicking on the elements in that list, the 
corresponding element is located. Typically a diagram will be opened and the 
specified element will be selected.

It is of course possible to navigate in the state space using the command 
prompt. There are several commands available for this, see Alphabetical List 
of Commands.

Open Sequence Diagram Trace

When selecting the Open Sequence Diagram Trace a new tab will open in 
Tau with a Sequence Diagram displaying the events that led to the current lo-
cation in the state space. This is usually very helpful when trying to under-
stand the events that led up to a report being generated. A Sequence Diagram 
can also be launched with the command Generate-SQD-Trace.

Note
Sending commands via the command prompt will not refresh the Explorer 
UI, so using textual navigation commands while in the Navigator View will 
make the state in the Navigator View obsolete. Therefore it is highly recom-
mended to refresh the Explorer UI before taking a transition in the Navi-
gator View after issuing textual commands. The easiest way to do this is to 
click on the Navigate option in the menu. This is valid for all views (no 
views are updated after sending a command to the Explorer executable) but 
most obvious in the Navigator view.

Reports View

After running explorations the reports View will show a list of found prob-
lems in your UML model. Clicking on one of the reports will make the Ex-
plorer executable go to the state where this problem occured, and then the 
Explorer UI will show the Navigator View. This will enable debugging of the 
specific problem. If no reports are found by the Explorer executable, this 
view will be empty. Each report will have a Show Trace option that opens a 
new tab with a Sequence Diagram displaying the events that led up to that 
report.

Test Values View

This view will show defined test values and makes it possible to delete them 
or add new test values. There are three types of test values:
1940 IBM Rational Tau User Guide June 2009



Exploring an Application
• Signals

• Values

• Parameters

When the Test Values View is selected, the Explorer UI sends a set of com-
mands to check what test values that are defined. This is also done after 
adding or deleting test values. The defined test values are then listed in the 
Signal Definitions, Test Values and Parameter Test Values lists. For more in-
formation on test values, see Defining Signals from the Environment.

Adding a signal test value

If a signal doesn’t have any parameters, you add a signal by adding the signal 
name in the Add Signal section. If the signal has parameters you need to also 
add values for each parameter using space as separator. Example:

Coffee true 1

Adding a value test value

To add a value, add the value in the first text field and its type in the second 
field in the Add Value section.

Adding a parameter test value

To add a parameter test value for a certain signal, add the signal name in the 
third text field, the parameter number in the second test field and value for 
the parameter in the first text field. Example:

Value: 

true 2

Parameter: 
June 2009 IBM Rational Tau User Guide 1941



Chapter 75: The Tau Explorer
1

Signal: 

Coffee

Deleting test values

To delete a test value, select the Remove link next to the defined test value.

To delete all test values of a certain type, select the Remove All link next to 
the heading for that type.

General Options View

Selecting the Options menu will show this view. It is the first of all the op-
tions views. It will also be shown if the General sub menu option is selected.

In the General Options View it is possible to issue the following options:

• Set Advanced

• Set options to default

• Reset all options

• Show all options

Set Advanced

Set Advanced will send the following commands to the Explorer executable:

Define-Scheduling All
Define-Priorities 1 1 1 1 1
Define-Max-Input-Port-Length 2
Define-Report-Log MaxQueuelength Off

The reasoning behind these settings are: 

• The scheduling should be set to All, since we in this case are looking for 
signal races and a characteristic property of signal race conditions is that 
they are depending on the ordering of internal events. 

• The priorities should be set to 1 for all types of events. 

• To reduce the size of the state space, the maximum queue length should 
be set to a very small number. The reason is that when the environment 
is allowed to send signals to the system at any time, the queues that can 
receive signals from the environment will grow very rapidly. 
1942 IBM Rational Tau User Guide June 2009



Exploring an Application
• Since a lot of maximum queue length reports will be generated with these 
options, the report log for this report should be set to Off. Note also that 
the report action for this report should be Prune (which is the default).

Set options to default

See the command Default-Options. 

Before this command is sent, the Explorer UI will show a confirmation di-
alog. This makes it possible to abort the command.

Reset all options

See the command Reset.

Before this command is sent, the Explorer UI will show a confirmation di-
alog. This makes it possible to abort the command.

Show all options

See the command Show-Options.

Bit State Options View

Bit state exploration is an efficient automatic state space exploration algo-
rithm for reasonably large UML systems. It performs a depth-first search 
through the state space and uses a bit array to store the states that has been 
traversed during the search.

Every time a new system state is generated during the search, two hash 
values are computed from the system state. The bit array is checked: 

• If both of the positions indicated by the hash values are already set, the 
state is considered to have been previously visited. The search of this par-
ticular path in the state space is pruned, and the search backs up to a pre-
vious system state and continues elsewhere. 

• If both of the positions are not set, the state is a new state that has not been 
previously visited. Both position in the bit array are then set and the 
search continues with the successor states. 

In the Bit State Options View it is possible to set the following options:

• Iteration Step

• Search Depth

• Hash size
June 2009 IBM Rational Tau User Guide 1943



Chapter 75: The Tau Explorer
Iteration Step

Default value is 0, i.e. the feature is not activated.

See also the command Define-Bit-State-Iteration-Step.

Search Depth

The search depth is the maximum depth the Explorer will explore a particular 
execution path in the state space. When this depth is reached, the search is 
truncated and the search backs up to a previous system state. 

Default value is 100.

See the command Define-Bit-State-Depth.

Hash size

The size of the bit array used as hash table is an important factor defining the 
behavior of the bit state exploration. The reason is that each time a new state 
is checked by comparing its hash values with previous hash values there is a 
risk for collision. The bigger the hash table is, the smaller the collision risk is. 

Default value is 1,000,000 (bytes)

See also the command Define-Bit-State-Hash-Table-Size.

Report Options View

For each report type, you can define the action performed when the report is 
found and whether it should be reported to the user. 

Report Action

The report action determines what action should be performed when a report 
situation is encountered while performing state space exploration. There are 
three possibilities: 

• Continue: The search continues past the reported situation as if it never 
happened. 

• Prune: The search is pruned and depending on the algorithm some appro-
priate action is taken. For example, when using bit state exploration, the 
search will back up one state and continue with the next alternative tran-
sition, as if max search depth was reached and the search truncated. 

• Abort: The search is aborted and the command prompt displayed. 
1944 IBM Rational Tau User Guide June 2009



Exploring an Application
The default value is Prune for all report types.

See also the commands Define-Report-Continue, Define-Report-Prune and 
Define-Report-Abort.

Note
For some report types, like Deadlock, the Continue choice is impossible. 

Report Log

The report log setting defines whether the report should be recorded in the 
list of generated reports. If the report log is set to Off for a particular report 
type, these reports will never show up in the report list. However, the report 
action still is performed, even though the report is not logged. 

The default value is On for all report types.

See also the commands Define-Report-Log.

State Space Options View

The structure and size of the state space that can be generated for any given 
UML system can be modified in a number of ways using the state space op-
tions. The default values are defined to make the state space as small as pos-
sible to make the Explorer immediately useful for as many applications as 
possible. This, however, also means that the search performed by the Ex-
plorer is fairly scarce compared to what is possible. Some error situations 
may thus be overlooked during the search if they only occur in a part of the 
state space that never is reached. 

In the State Space Options View it is possible to set the following options:

• Symbol Time

• Maximum State Size

• Timer Progress

• Maximum Instances

• Transition Length

• Input Port Length

• Event Priorities

• Scheduling

• Transition
June 2009 IBM Rational Tau User Guide 1945



Chapter 75: The Tau Explorer
Symbol Time

A common simplification made in the analysis of UML systems is to con-
sider the time it takes to execute a symbol, e.g. an action or output, to be zero. 
This time is of course never zero in a real system, but in many cases the time 
is very small compared to the timer durations in the system, and can be ne-
glected when analyzing the system. 

Consider for example a situation where an active class sets a timer with a du-
ration 5 and then executes something that may take a long time, e.g. a long 
loop, and then sets a timer with duration 1. If symbol time is assumed to be 
zero, the second timer will always expire first. If considered to be non-zero, 
any one of the timers can potentially expire first.

The Explorer allows the user to choose whether to assume that the execution 
time for UML symbols is Zero or Undefined using this option.

Default value for this option is Zero.

See also the command Define-Symbol-Time.

Maximum State Size

When the Explorer is exploring the state space, an internal buffer is used to 
store the system states. The size of this buffer defines the maximum size of 
the system states that the Explorer can handle.

Default value is 100000 (bytes).

See also the command Define-Max-State-Size.

Timer Progress

One test that can be made with the Explorer is to look for non-progress loops, 
i.e. loops in the state space without any progress being made. The intention 
with this test is to look for situations where the UML system is busy doing 
internal communication but to an outside observer looks dead. 

This option defines if the expiration of a timer is considered as progress when 
performing non-progress loop checking

Default value is On.

See also the command Define-Timer-Progress.

Maximum Instances
1946 IBM Rational Tau User Guide June 2009



Exploring an Application
To avoid infinite chains of create actions in the state space, the Explorer uses 
a maximum number of allowed active class instances for any type. If this 
number is exceeded during state space exploration, a "Create" report is gen-
erated.

Default value is 100.

See also the command Define-Max-Instance.

Transition Length

To make it possible to detect infinite loops within a transition in the state 
space, the maximum number of UML symbols allowed to be executed in one 
transition is defined. If this number is exceeded during state space explora-
tion, a "MaxTransLen" report is generated.

Default value is 1000.

See also the command Define-Max-Transition-Length.

Input Port Length

The length of the input port queues is not infinite in the Explorer, since in 
practice it is likely to be a design error if the queues grow forever. If the 
length of a queue exceeds the defined max length during state space explora-
tion, a "MaxQueuelength" report is generated. 

Default value is 3.

See also the command Define-Max-Input-Port-Length.

Event Priorities

The events that are represented in a behavior tree can be divided into five 
classes: 

• Internal events: Events local to the active classes in the system, e.g., 
tasks, decisions, inputs, outputs. 

• Input from the Envionment: Reception of signals from the environment. 
The signal is put in the input port of an active class instance or on a con-
nector queue. 

• Timeout events: Expiration of UML timers. The timer signal is put in the 
input port of an active class instance.

• Connector outputs: A signal is removed from a connector queue and put 
into another connector queue or the input port of an active class’ instance. 
June 2009 IBM Rational Tau User Guide 1947



Chapter 75: The Tau Explorer
• Spontaneous transitions: A transition in an active class caused by input 
of none.

To each of these event classes a priority of 1, 2, 3, 4 or 5 is assigned. These 
priorities are used during state space exploration to determine which transi-
tions should be generated from each system state. The events with priority 1 
are first considered. Only if no events with priority 1 are possible in the cur-
rent state, the events with priority 2 are considered. Only if no events with 
priority 1 or 2 are possible in the current state are events with priority 3 con-
sidered, etc. 

Note
Note that also the setting of the symbol time option will have an impact on 
the events that can be executed in each system state; see section Symbol 
Time.

The two most common ways of assigning priorities to event classes are: 

• All event classes are assigned priority 1. 

• Internal events and channel outputs are assigned priority 1, and external, 
timeout and spontaneous transition events are assigned priority 2 (the de-
fault). 

The first alternative represents the situation where no assumptions can be 
made about the time scale for the different types of events. The second alter-
native represents a situation where the internal delays are very short com-
pared to the timeout durations and execution speed of the environment. 

Default priority for Spontaeous Transitions is 2.

Default priority for Connector Output is 1.

Default priority for Timeout Events is 2.

Default priority for Input from ENV is 2.

Default priority for Internal Events is 1.

See also the command Define-Priorities.

Scheduling

The scheduling algorithm defines which of the class instances in a system 
state will be allowed to execute. There are two possible alternatives: 
1948 IBM Rational Tau User Guide June 2009



Exploring an Application
• All of the active class instances in the ready queue are allowed to execute 
(the value "All" in the command) 

• Only the first active class instance in the ready queue is allowed to exe-
cute (the value "First" in the command). 

Default value is First.

See also the command Define-Scheduling.

Transition

There are two alternatives possible for the type of a behavior tree transition 
during state space exploration: 

It can be equal to a complete UML class graph transition (the value "UML" 
in the command) 

It can be a part of such an UML transition (the value "Symbol-Sequence" in 
the command). 

If it is equal to a UML class graph transition, whenever such a transition is 
started, it is completed before anything else is allowed to happen. This im-
plies that all active class instances in all system states in the behavior tree will 
always be in an UML class graph state. 

If it is only a part of an UML process graph transition, a transition in the be-
havior tree is considered to be a sequence of events that are local to the active 
class instance, followed by a non-local event. Examples of local events are 
tasks and decisions; examples of non-local events are creates and inputs/out-
puts of signals from/to other class instances.

Default value is UML.

See also the command Define-Transition.

Random Walk Options View

Random walk is an automatic state space exploration algorithm that can be 
useful for very large UML systems. It performs a depth-first search through 
the state space by selecting transitions to execute at random. 
June 2009 IBM Rational Tau User Guide 1949



Chapter 75: The Tau Explorer
When the maximum search depth is reached during such a "random walk," 
the search is restarted from the original state again and a new random walk 
is performed. However, there is no mechanism to avoid that already explored 
paths are explored once more, i.e. a system state may be visited a large 
number of times. 

In the Random Walk Options View it is possible to set the following options:

• Search Depth

• Repititions

Search Depth

The search depth determines how many transitions will be executed before 
the search is pruned and restarted from the beginning again. 

Default value is 100.

See also the command Define-Random-Walk-Depth.

Repititions

The number of times the random walk search will be repeated from the start 
state before the exploration is finished. 

Default value is 100.

See also the command Define-Random-Walk-Repetitions.

Exhaustive Options View

Exhaustive exploration is an automatic state space exploration algorithm in-
tended for small UML systems where the requirements on correctness are 
very high. 

The algorithm is a depth-first search through the state space similar to the bit 
state search, but there is no collision risk involved. The reason is that all tra-
versed system states are stored in primary memory, so it is always possible 
to determine whether a newly generated system state has already been visited 
during the search. 

The drawback with the algorithm is that very much primary memory is 
needed to be able to store all traversed states. This limits the complexity of 
the UML systems the algorithm is applicable to. 

Search Depth
1950 IBM Rational Tau User Guide June 2009



Exploring an Application
The search depth is the maximum depth the Explorer will explore a particular 
execution path in the state space. When this depth is reached, the search is 
truncated and the search backs up to a previous system state. 

Default value is 100.

See also the command Define-Exhaustive-Depth.

Tree Search Options View

Tree search exploration is an automatic state space exploration algorithm 
where all possible combinations of actions are executed.

Search Depth

The search depth is the maximum depth the Explorer will explore a particular 
execution path in the state space. When this depth is reached, the search is 
truncated and the search backs up to a previous system state. 

Default value is 100.

See also the command Define-Tree-Search-Depth.
June 2009 IBM Rational Tau User Guide 1951



Chapter 75: The Tau Explorer
Guidelines for Model Exploration

Exploring a UML Model

This section describes how to use the automatic state space exploration facil-
ities in the Explorer to look for inconsistencies and design errors in a UML 
model. The idea is to test the robustness of the application, the responses to 
unexpected situations. Essentially the exploration is an attempt to answer 
questions like:

• What happens if a user does not press the buttons in the order assumed 
by the designer?

• What happens if the scheduling algorithm of the operating system that 
supports the application is changed?

• What happens if the environment happens to send an input to the system 
at the same time as a timer expires?

...and all other questions the designer never ever would imagine.

It is assumed that the UML system is of moderate size and complexity; tech-
niques for exploring large UML systems are described in Exploring Large 
Systems.

Using a Default Exploration

When you use the Explorer for finding errors in a new UML system for the 
first time, you are advised to start a bit state exploration using the default op-
tions.

To explore a system opened in the Explorer:

1. If you already have executed commands for the opened Explorer, you 
should reset the Explorer. Enter the command Reset, or click the Reset 
button on the top right of the Explorer UI.

2. You should also make sure you use the default state space and explora-
tion options. Enter the command Default-Options, or click the Set op-
tions to default option in the Options View.

3. Start a bit state exploration by clicking Bit State in the Explore View. Let 
the exploration run for at least 5-10 minutes.

4. When the exploration is finished, it will print some statistics in the Model 
Explorer output window. Note the Symbol Coverage value.
1952 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
5. Go to the Report View to see if any reports were created. When you click 
on a report you will navigate to that node in the behaviour tree. You can 
use any of the introspection commands (List-Active-Class, List-Input-
Port, Examine-Variable, etc.) to get more information on the specific 
state or use the tracing and viewing facilities to examine the report. The 
best start is usually to select the option Show Trace to launch a Sequence 
Diagram displaying the events that led up to the report. This can also be 
done by the command Generate-SQD-Trace.

6. If you find errors in the system, you may decide to correct them immedi-
ately. In that case, generate a new Explorer for the corrected system and 
rerun the exploration, as described above. Otherwise, you should check 
if the exploration is to be considered finished (see below).

Determining if the Exploration is Finished

When all reports have been checked and the found errors possibly have been 
corrected, the next question arises: When are we finished exploring the 
system? To answer this question, look at these aspects:

• What was the symbol coverage reported in the statistics after the auto-
matic exploration?

• Did the exploration finish by itself or was it stopped by the user?

The following possibilities now exist:

1. The symbol coverage is 100% and the exploration finished by itself.

All symbols have been executed and furthermore most orderings of the pos-
sible actions have been tested. In this case it is probably not worthwhile con-
tinuing the exploration; you may consider it finished.

However, not all orderings of possible actions have been tested, since the 
search may have been truncated, collisions may have occurred in the hash 
table, and more orderings are possible by configuring the state space explo-
ration differently. If you want, you can change the Explorer options and start 
a new exploration.

2. The symbol coverage is 100% but the exploration was manually stopped.

In this case, it may still be worthwhile to continue the exploration until it fin-
ishes by itself. More reports may be generated, as there are still orderings of 
the possible actions that have not been executed.

3. The symbol coverage was less than 100%.
June 2009 IBM Rational Tau User Guide 1953



Chapter 75: The Tau Explorer
Parts of the system have never been reached during the exploration. In this 
case, the exploration cannot be considered finished, even if the exploration 
finished by itself. The reasons and possible solutions for low symbol cov-
erage are discussed next.

Handling Low Symbol Coverage

If the symbol coverage after an exploration is 100%, all parts of the system 
have been executed at least once. If the symbol coverage is less than 100%, 
the possible reasons why parts of the state space have not been reached are 
listed below. 

• The exploration was manually stopped before all symbols were reached.

In this simple case, you should continue the exploration until it finishes by 
itself.

• The test values were inappropriate.

Test values are used to define the set of possible signals from the environ-
ment. The automatically generated test values may not suit all UML systems. 
This may for example cause the execution to never execute one branch of a 
decision statement. To overcome this problem, redefine the test values for 
the appropriate signal parameter. For more information on test values, see 
Defining Signals from the Environment.

• The exploration was pruned after a report.

In most cases the Explorer will prune the exploration of a particular path as 
soon as a report has been found, i.e., the exploration will not continue be-
neath the state in question. If you have examined such a report and has de-
cided not to do anything about it, the Explorer will still prune the search when 
it finds the report the next time. To overcome this problem, change the report 
action for this particular report type from prune to continue in the Options 
View under the Report sub view.

• Some parts of the system are, in fact, unreachable.

If some parts of the UML system are not reachable at all, it may be an indi-
cation that there is a design error in the system.

• There are problems with timer expirations.
1954 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
The Explorer is by default configured in a way that tries to reduce the size of 
the state space. It will always try to execute internal actions (e.g. tasks, deci-
sions, internal input and outputs) before any timers are allowed to expire. The 
assumption is that the system will always execute fast enough to ensure that 
no timers will expire (the timers may of course expire when waiting for input 
from the environment).

• The search depth was too small.

The default search depth is 100. This may not be enough for some systems, 
e.g. a system with a very long initialization phase. In some cases, it is pos-
sible to overcome this problem simply by increasing the search depth for that 
exploration method under the Options View.

• The state space is too big.

Many UML systems of reasonable complexity quite simply have state spaces 
that are too big; it is not possible to explore the entire state space in one ex-
ploration. Characteristic for this situation is a low symbol coverage, trun-
cated paths, and either manually stopped exploration or a high (>10%) colli-
sion risk. This situation is discussed in Exploring Large Systems.

Using Advanced Exploration

The default options for the state space exploration, in particular the options 
that define the structure of the state space, are optimized to give good results 
for a first exploration of a system. They are intended first of all to test for in-
ternal inconsistencies in the UML system and to get a good coverage. This 
assumes a reasonably “nice” environment, i.e., the environment only sends 
signals when nothing can happen internally in the system.

This has the benefit of reducing the size of the state space while still pre-
serving a good coverage. The drawback is that some error situations are 
never detected. One particular class of errors that never will be detected using 
the default options can be characterized as signal races caused by signals sent 
from the environment, or timer expirations that happen at the same time. An 
example is a situation where a communication protocol ends up in an incon-
sistent system state when two connect requests are sent to the different access 
points at the same time.

To detect these types of errors it is necessary to change the options and per-
form a second set of explorations for the UML system. The suitable settings 
of the options are called advanced options. When using these values for the 
options, the state space will get very large for most UML systems. It is thus 
June 2009 IBM Rational Tau User Guide 1955



Chapter 75: The Tau Explorer
usually not possible to get a complete coverage of the state space, even if 
some of the techniques described in Exploring Large Systems have been 
used. To anyway be able to get good results, the best strategy is to use the 
random walk algorithm when exploring the state space. See Using Random 
Walk Exploration for more information.

To set advanced options, click the Set Advanced button in the Options View.

Exploring Large Systems

This section discusses various techniques that are useful when designing and 
exploring large UML systems. A large system is, in this context, a system 
that has a state space that is too large to be completely explored using one 
automatic state space exploration. The techniques are pragmatic and in-
tended to give a reasonable chance of finding any errors even though the 
complete state space is not searched.

The following techniques are discussed:

• Decomposed Exploration

• More Efficient Bit-State Exploration

• Reducing the State Space Size

• Using Random Walk Exploration

• Incremental Exploration

Decomposed Exploration

The idea when using decomposed explorations is to use a number of reason-
ably small explorations instead of one big exploration. Quite often the be-
havior of an UML system can be divided into a number of “phases” or “fea-
tures.” The idea is to explore each of these phases or features separately. The 
benefit with this approach is that it is a lot easier to explore the different 
phases separately than trying to explore the combination of all phases. The 
drawback is that errors that are caused by an interaction between different 
phases or features are not found. However, for large UML systems it is some-
times the only possible method that at least can give a complete symbol cov-
erage.

The process of finding which and how many partial explorations that are nec-
essary is a combination of an iterative process and a planning issue where the 
possible features and phases that can be subject to a partial exploration are 
1956 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
identified. If an incremental design process is used it is often possible to use 
the different iterations to guide the choice of partial explorations; compare 
with Incremental Exploration.

A common strategy used to find the needed partial explorations is essentially 
the following:

1. Start an exploration from the system start state.

2. Check all reports and correct the errors in the system. Generate a new Ex-
plorer and make another exploration.

3. When all found reports have been fixed, check the symbol coverage. If 
the coverage is 100%, the exploration is finished; otherwise, continue 
with the next step.

4. Go to a suitable system state and start a new exploration from there.

5. Repeat the process until the symbol coverage is 100%.

There are two issues with this strategy:

• Where to start each partial exploration.

• How to limit each partial exploration.

Where to Start a Partial Exploration

The problem of identifying where to start a new exploration is of course 
system dependent and requires knowledge of the UML system. It is usually 
very helpful to inspect the Sequence Diagrams for the available reports to 
help identify a good starting place, use the Generate-SQD-Trace command 
or the Show Trace option in the Reports View. Once a system state has been 
chosen the next issue is how to get there in the Explorer. There are a number 
of possible ways to do this:

• Using the Navigator View

Use the buttons in the Navigator View to navigate to the target state. Ad-
ditionally, the command Command-Log-On can be used to save the nav-
igation to a file. Close the log with Command-Log-Off. The saved com-
mands can be loaded using the command Include-File.

• Using Path commands

When in a target state, use the command Print-Path to get a path from the 
root to the current state. At a later stage you can use the command Goto-
Path followed by the path printed earlier.
June 2009 IBM Rational Tau User Guide 1957



Chapter 75: The Tau Explorer
• Using user-defined rules

Create a user rule that describes the state and other conditions for the 
target stat, see Managing User-Defined Rules and User-Defined Rules. 
Use an exploration to get a report for this state. You can then use the path 
or MSC techniques described above.

Note
If you make changes to your model, path commands and MSC-trace files 
may become invalid and have to be re-done.

How to Limit a Partial Exploration

The next problem is to limit each partial exploration to the intended part of 
the state space. There exists a number of factors which can be used to influ-
ence the extent of an exploration:

• The search depth

• The signals from the environment

• User-defined rules

The search depth is the simplest limiting factor to use. By reducing the search 
depth, e.g. to 10 or 20, the size of the exploration will of course be consider-
ably reduced compared to the default depth of 100.

By changing the list of signals that can be sent from the environment it is pos-
sible to control which parts of the system that will be exercised by an explo-
ration. For example, if we are interested in testing the data transfer phase of 
a connection-oriented protocol specification, a good strategy would be the 
following: 

• Go to a system state where the connection is established.

• Define the signals from environment to be only the signals relevant for 
the data transfer, and start the exploration. For a description of how to de-
fine and remove signals from the list of signals that can be sent from the 
environment, see Defining Signals from the Environment.

User-defined rules also give a possibility to limit the extent of an exploration. 
Define a rule that matches the system states where the exploration should be 
pruned and check that the report action for user-defined rules is to prune the 
search. For example, the rule

state(initiator:1)=idle
1958 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
would prune the exploration whenever the initiator process entered the state 
Idle. User-defined rules are described in Managing User-Defined Rules and 
User-Defined Rules.

More Efficient Bit-State Exploration

The bit-state search uses a hash value based algorithm to store the state space 
that is traversed. Unfortunately the computation of hash values from a system 
state is an expensive operation and most of the execution time in a bit-state 
search is spent calculating hash values. The execution time for the hash algo-
rithm is in most situations proportional to the size of each system state. The 
max and min system state size used by the hash algorithm is included in the 
statistics printed after each bit state search and should be checked if the 
search is slow. See Bit-State-Exploration.

If the size of a system state is big (> 10,000 bytes) the bit state execution of 
the Explorer will be fairly slow. In these cases it might be worthwhile to try 
to optimize the performance by reducing the state size that the Explorer uses 
when computing hash values. This can be done by informing the Explorer to 
skip a number of variables when computing hash values. The Explorer in-
cludes a command Define-Variable-Mode that is intended for this purpose. 
For example the command:

define-variable-mode monitor subscrTab skip

will make the Explorer skip all subscrTab variables in monitor in in-
stances of the monitor class.

A typical example of where this feature is useful is if the system includes a 
big array (or other big data structure) that is initialized at the start up of the 
system and that after the initialization is known to be constant in the part of 
the state space that is explored. The correct way to take advantage of this in 
the Explorer is to:

1. Go to a system state where the array is initialized, see Where to Start a 
Partial Exploration.

2. Redefine the root to the current state, see Define-Root.

3. Change the mode of the table variable to “Skip”.

4. Start the bit-state exploration.

Using this strategy it is possible to considerably increase the performance of 
the Explorer.
June 2009 IBM Rational Tau User Guide 1959



Chapter 75: The Tau Explorer
Another situation where the variable mode can be changed to “Skip” is when 
there are variables in the system that is known not to have any influence on 
the dynamic behavior of the system.

Reducing the State Space Size

There is a number of ways to reduce the state space that is necessary to ex-
plore by using knowledge and assumptions about the UML system. Usually 
this is based on the fact that the state space of an UML system contains var-
ious “sub state spaces” that are equivalent except for some detail, which is 
not very interesting for the purpose of the exploration. Some examples of 
such details are:

• The value of local variables

• The number of active class instances

• The size of large data structures

• Variables that do not influence the dynamic behavior

Local Variable Values

An example of the way local variable values influence the size of the state 
space is the following: Consider a situation where an active class contains an 
integer variable that counts the number of times a particular signal comes 
from the environment, and then replies with this number when requested to 
do so from the environment. It is obviously not especially interesting to try 
to investigate the behavior of the UML system for all possible values of this 
local variable. Instead a reasonable set of values should be selected and the 
state space exploration guided by this selection.

A user-defined rule, see Managing User-Defined Rules, provides an efficient 
means to reduce the size of the state space by putting restrictions on variable 
values. In the example above a reasonable restriction might be that we only 
would like to check what happens the first three times the variable is in-
creased. A rule that expresses this is:

proc:1->var<4;

Once this rule is defined and the report action for user-defined rule violation 
is set to Prune (which is the default), only the interesting parts of the state 
space are explored.

Number of Active Class Instances
1960 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
Another issue is the number of class instances that are used for each class 
type. If the number is large and all of them do the same thing, for example by 
modeling different connections in a connection oriented protocol, it is prob-
ably not very useful to try to explore the combination of all instances. In-
stead, it is better to restrict the number of instances allowed in the explora-
tion. This can be achieved with the command Define-Max-Instance. If 
preferred, it is also possible to use a user-defined rule to achieve the same re-
sult.

Size of Large Data Structures

A third area where the Explorer performance is reduced is when large data 
structures, e.g. arrays, are used in the UML system. A large data structure has 
two unfavorable effects on a state space exploration:

• The size of the reachable state space increases extremely rapidly as the 
size of the data structure increases.

• The efficiency of the bit state algorithm is decreased as the size of system 
states increase. Essentially the time to compute a new system state is 
linear to the size of the system states.

A good idea in this context is to, whenever possible, try to reduce the size of 
any large data structures in the UML system before performing exploration. 
Another possibility is to skip the variable when computing hash values as de-
scribed in More Efficient Bit-State Exploration.

Variables Not Influencing the Dynamic Behavior

In many situations an UML system contains a number of variables that does 
not have any impact on the dynamic behavior of the system. Essentially all 
variables that does not (directly or indirectly) have any influence on the path 
taken through a decision or the expression used when computing the receiver 
of a signal in output will not influence the dynamic behavior of the system.

These variables can safely be ignored when performing a state space search. 
This can be accomplished by instructing the Explorer to skip these variables 
using the Define-Variable-Mode command. This will in many cases drasti-
cally reduce the size of the state space that the Explorer needs to search and 
is an efficient way to improve the performance of the Explorer.

Note that implicit variables like Sender/Parent/Offspring are also considered 
as variables in this respect. In particular Sender can be of interest to skip if it 
is not used, since it may change value every time a signal is received.
June 2009 IBM Rational Tau User Guide 1961



Chapter 75: The Tau Explorer
As an example, if Sender is not used in a class ‘p’ the following command 
will make the Explorer ignore the Sender implicit variable when comparing 
two system states:

define-variable-mode p Sender skip

Using Random Walk Exploration

In some situations it is not possible to use the more elaborated techniques de-
scribed in this section to cope with the problem of exploring large UML sys-
tems. The time and resources available for the exploration may simply be too 
limited. A possible strategy to use when exploring very large UML systems 
is to use the random walk exploration strategy instead of the bit state algo-
rithm.

The reason is that the random walk algorithm gives a possibility to get a par-
tial exploration of the state space that is randomly chosen. Furthermore, the 
symbol coverage of the exploration is determined only by how long the ex-
ploration is allowed to run. The drawback with the algorithm is that if it is 
allowed to run for a long time, so that significant parts of the state space al-
ready have been covered, there is no mechanism to avoid that already ex-
plored paths are explored once more.

Incremental Exploration

A common way to develop large UML specifications and designs in practice 
is to use an incremental development strategy. First a base functionality is 
implemented and then various features are added in an incremental fashion. 
When this type of development process is used, a good way to plan the ex-
ploration of the system is to let the different increments define the state space 
explorations that should be performed.

First a number of state space explorations are executed with different start 
states, and perhaps different test values. Together these explorations should 
give a good coverage of the UML system representing the base functionality.

For each increment that is added, a number of additional explorations is per-
formed that will cover the new features in the UML system.

It is also probably worthwhile to define command scripts that automatically 
can execute the various explorations that should be run to achieve a good pro-
cess graph coverage. This makes it possible to run all of the various explora-
tions in an straight-forward way for each new increment that is added to the 
system.
1962 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
Defining Signals from the Environment

A problem common to all state space exploration techniques is related to the 
treatment of the environment of the UML system under analysis. As an ex-
ample, consider the situation during state space exploration where a signal 
with an integer parameter can be received from the environment. Since there 
is an infinite number of integer values, there will be an infinite number of 
successors of the current system state: one where the parameter value is 0, 
one where the parameter value is 1, etc.

This is obviously a situation that is not acceptable when performing state 
space exploration. The Tau Explorer allows two different strategies to avoid 
situations like this:

1. Create a closed system by specifying the environment of the system 
using UML. This will solve the problem but introduces a new one; it is 
necessary to create an UML model of the environment.

2. Specify the signals that can be sent from the environment to the system. 
This is a simple way to avoid the problem. By enumerating the signals 
with their parameters that the environment can send, a finite branching is 
guaranteed at each system state in the state space.

The second strategy is the most common and the test value feature of the Ex-
plorer is designed to make it easy to define the signals from the environment.

Test Values

When the Explorer is started a list of signals is automatically computed that 
will be used as the possible signals from the environment during state space 
exploration. The signal list is generated based on the concept of test values. 
Test values can be defined for data types and for signal parameters. When 
generating the signal list the Explorer checks for each signal that can come 
from the environment which test values are defined for its parameters (or for 
the parameter data types). It then generates one signal instance for each com-
bination of test values for the parameters.

Each time the Explorer is in a state where input from the environment is pos-
sible during state space exploration, the list of signals defined by the test 
values is consulted.

The default test values for the simple data types are:
June 2009 IBM Rational Tau User Guide 1963



Chapter 75: The Tau Explorer
For other data types, test values are determined according to the following:

• Enumerated types: All values in the type

• Subranges of the predefined data types: All values in the range

• Classes and other structured datatypes: All combinations of the test 
values of the individual fields

• Arrays: All combinations of the test values of the component type.

• Reference types: NULL + pointers to the test values for whatever the ref-
erence points to.

Test Values Restrictions and Options

Two restrictions are posed on the computed test values:

• If the number of test values for a data type or signal parameter exceeds a 
maximum number, randomly chosen test values will be generated.

Data Type Default Test Values

Integer -55, 0, 55

Boolean true, false

Real -55, 0, 55

Natural 0, 55

Character ‘a’

Charstring “test”

Duration 0

Time 0

PId Environment PId

Bit 0, 1

Octet 00, FF

Bit_string ’01’B

Octet_string ’00FF’H
1964 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
• If the number of signal instances for a particular signal type exceeds a 
maximum number, randomly chosen signal instances will be generated 
for this signal type.

Two commands exist for setting options related to the above restrictions:

• To define the maximum number of test values for any data type or signal 
parameter, enter the command Define-Max-Test-Values, followed by the 
number of test values. The default is 10.

• To define the maximum number of signal instances for any signal type, 
enter the command Define-Max-Signal-Definitions, followed by the 
number of signal instances. The default is 10.

Note
These options affect the state space; see Reducing the State Space Size.

Defining and Listing Test Values

The default test values are defined to be useful for a large number of appli-
cations, but they sometimes need to be modified. In some cases there are un-
necessarily many test values and to enhance the performance of the state 
space exploration some test values can be cleared. In other cases the auto-
matic test value generation cannot handle some of the data types used, so the 
test values must be manually defined.

Changing the test values are therefore only needed if you would like to fine-
tune the behavior of the Explorer, or if the signals from the environment have 
parameters that are of a user-defined or unusual data type.

Note
Changing test values affects the state space; see Reducing the State Space 
Size.

Test values can be defined and cleared on three “levels”: on data types, on 
individual signal parameters, and on signal instances. When test values are 
defined or cleared, the list of signals from the environment is regenerated. 
You are recommended to define test values either on data types and indi-
vidual signal parameters, or on signal instances; do not combine both these 
methods.

The monitor commands concerning test values are available in the Test 
Values View in the Explorer UI.

Test Values for Data Types
June 2009 IBM Rational Tau User Guide 1965



Chapter 75: The Tau Explorer
The following commands operate on the test values for a data type.

• To define a new test value for a sort, use the command Define-Test-
Value, or the Add Value form in the Explorer UI.

• To list the new test values defined for all types, enter the command List-
Test-Values, or look at the Test Value section in the Test Value View.

• To clear all test values for a type, enter the command Clear-Test-Values, 
or click the Remove All button. As parameter, you either specify the type, 
or ‘-’ which means all types.

Test Values for Signal Parameters

The following commands operate on the test values for individual parameters 
to a signal.

• To define a new test value for a signal parameter, enter the command 
Define-Parameter-Test-Value, or use the Add Parameter form. The pa-
rameters are the signal, the ordinal number of the signal parameter, and 
the value. Example:

Define-Parameter-Test-Value Score 1 -5

• To list the new test values defined for all signal parameters, enter the 
command List-Parameter-Test-Values, or look at the Signal Definitions 
section in the Test Value.

• To clear all test values for a signal parameter, enter the command Clear-
Parameter-Test-Values, or click the Remove All button. As parameter, 
you specify the signal and the ordinal number of the signal parameter. 
You may use ‘-’ for the parameter number, which means all signal pa-
rameters, or just ‘-’ for the signal, which means all signal parameters for 
all signals.

Test Values for Signal Instances

The following commands operate on the test values for a specific signal in-
stance.

• To define a new set of test values for a signal instance, enter the com-
mand Define-Signal, or click the Add Signal button. The parameters are 
the signal and an optional set of values for the parameters. Multiple 
Define-Signal commands may be used to define several signal instances 
of the same signal type, but with different values. Example:

Define-Signal Test 10 'hello' true
Define-Signal Test -5 'bye'
1966 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
Note
The signals defined using this command are cleared when the signal list is 
regenerated, e.g. if a test value is defined for a sort or a signal parameter.

• To list all currently defined signal instances, enter the command List-
Signal-Definitions, or look at the Parameter Test Values section in the 
Test Values .

• To clear all test values for a signal type, enter the command Clear-Signal-
Definitions, or click the Remove All button. As parameter, you specify 
the signal, or ‘-’ which means all signals.

Saving Test Values

The current set of test values can be saved on file and later be recreated by 
reading in the file again. The file will contain commands that recreates the 
saved set of test values and discards any other test values.

To save the test values, enter the command Save-Test-Values, followed by a 
file name. To read in the saved test values again, enter the command Include-
File, followed by the file name.

Exploring Systems with External C/C++ Code

Tau allows the usage of external C/C++ code together with an UML system 
and this is also true for the Explorer. In many cases it is possible to directly 
use the Explorer on a system that uses external C/C++ code. However, due 
to the special requirements of state space exploration, some restrictions must 
hold for the external C/C++ code, and some modifications may have to be 
done to the external code to make it functions properly with the Explorer.

To be able to perform a state space exploration it must be possible for the Ex-
plorer to make a complete copy of a system state, including all data structures 
that are implemented directly in C/C++ code. The Explorer must also be able 
to modify each copy of a system state separately. This has some implications:

• variables defined in C/C++ code cannot be handled by the Explorer,

• C/C++ unions may not contain pointers, data types implemented by 
pointers (like the UML types String and Bag) or active class references, 
and

If there are variables in C/C++ code, this will not be detected by the Explorer. 
It may appear as if the Explorer works, but the variables defined in C/C++ 
code will not be copied when the Explorer copies a system state. When the 
June 2009 IBM Rational Tau User Guide 1967



Chapter 75: The Tau Explorer
value of a variable is changed by an action performed in one system state, this 
value will change the value for all system states that the Explorer currently 
handles. This implies e.g. that when the Explorer backtracks during an auto-
matic exploration to test more possible successors of a particular system 
state, the values of variables defined in C/C++ may be different from the 
values they had the previous time the system state was visited and the state 
space exploration will not be correct.

In order to be able to copy a system state, the Explorer must have exact in-
formation about the sort of all data areas in the system to be able to copy e.g. 
pointer-based data structures correctly. One consequence of this is that the 
Explorer cannot support the C/C++ union type if the union may contain 
pointer-based types, since the Explorer cannot know the current type of the 
union and thus cannot deduce whether to treat the union as a pointer or not. 
References to active classes are also treated specially in the Explorer and can 
also not be part of a C/C++ union.

When using dynamic memory allocation in extern C/C++ code some special 
additions are needed for the Explorer to work properly. This is needed since 
the Explorer keeps a list of all dynamically allocated data areas as part of 
each system state. If an external C/C++ function allocates memory, the Ex-
plorer must be informed about the data area that was allocated, and the same 
holds when a C/C++ function releases memory. This is accomplished by 
calling two functions from the C/C++ code:

extern void UserMalloc (void *data);
extern void UserFree (void *data);

UserMalloc should be called when a data area has been allocated, and 
UserFree should be called immediately before the data area is released. Both 
functions should have a pointer to the data area as parameter.

The purpose of UserMalloc is to insert a new element into the list of dynam-
ically allocated data areas that is maintained by the Explorer. Note that there 
is no need to tell the Explorer what type of data was allocated or its size. This 
is handled automatically by the Explorer simply by finding the UML entity 
(e.g. a variable) that points at the data area and assuming that the type and 
size given by this entity is correct. If no UML entity can be found that points 
to the data area, this is considered to be an error and a Explorer report is gen-
erated.

The purpose of the UserFree function is to inform the Explorer that a data 
area has been released, and thus should be removed from the list of dynami-
cally allocated data areas.
1968 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
There exists a special macro XVALIDATOR_LIB that can be used to check 
external C/C++ files if the code is compiled together with the Explorer 
kernel. It is thus possible to only include the calls to UserMalloc/UserFree 
when the code is compiled together with the Explorer using this macro, as in 
the following example:

...
v = malloc( 10 );
#ifdef XVALIDATOR_LIB
UserMalloc( (void *)v );
#endif 

Using User-Defined Rules

In the Explorer, you may define a user-defined rule to be used during state 
space exploration to check for properties of the encountered system states. If 
a system state is found for which the user-defined rule is true, a report will 
be generated. Note that only one user-defined rule may be defined at a time.

Different Usages

There are three different situations in which a user-defined rule is useful:

• To verify properties of the UML system.

A user-defined rule describes properties of system states. By using an auto-
matic state space exploration, it is thus possible to verify the existence of 
system states that satisfy the specified properties. If the state space is small 
enough to allow a complete exploration it is also possible to verify that the 
state space does not contain any system state with the specified property.

• To search for specific system states.

A user-defined rule makes it possible to go to a specific system state in the 
state space without the need to use the navigating commands of the Explorer 
monitor. By describing the desired state with a rule and using an automatic 
state space exploration, you can go directly to the report that satisfied the 
rule. In this case, the report action for the user-defined rule report should be 
set to Abort.

• To reduce the state space to be explored.

For many UML systems, the state space can be very large or even infinite, 
which makes it difficult to perform a state space exploration effectively. 
However, in many cases the state space contains large subspaces that for 
June 2009 IBM Rational Tau User Guide 1969



Chapter 75: The Tau Explorer
some reason are not interesting to explore. For instance, they may be equiv-
alent to other parts of the state space except for the value of one particular 
variable. In such cases, a user-defined rule can be used to restrict the explo-
ration by defining system states that are considered to be uninteresting. When 
such a state is encountered, the exploration is truncated and continued in an-
other node.

Examples of Rules

An example of a rule that checks a system property is:

exists P:Proc | P->var=12;

which is true for all system states where there exists an active class of type 
“Proc” with an attribute “var” that is equal to 12.

A simple example of a rule that searches for a system state is:

state(initiator:1)=disconnected;

which is true for all system states where the active class instance 
“initiator:1” is in the state “disconnected”. 

A more complex example of such a rule is:

state(Game:1)=Winning and sitype(signal(Game:1))=Probe

which is true for all system states where the state of the active class instance 
“Game:1” is equal to “Winning” and the type of signal to be consumed by 
the same active class instance is “Probe”.

An example of a rule that reduces the state space is:

(Game:1->Count > 2) or (Game:1->Count < -2)

which is true for all system states where the absolute value of the variable 
“Count” in the process instance “Game:1” is greater than 2.

For a full description of the features and syntax of user-defined rules, see 
User-Defined Rules.

Managing User-Defined Rules

To define the user-defined rule enter the command Define-Rule, followed by 
the definition of the rule.

To clear the user-defined rule, enter the command Clear-Rule.
1970 IBM Rational Tau User Guide June 2009



Guidelines for Model Exploration
To print the definition of the current user-defined rule, enter the command 
Print-Rule.

To evaluate the user-defined rule in the current system state, i.e. to check 
whether the rule is satisfied, enter the command Evaluate-Rule. 

Using Assertions

The Explorer library gives the user a possibility to define his own run-time 
errors or assertions. An assertion is a test that is performed at run-time, for 
example to check that the value of a specific variable is within the expected 
range. Assertions are described by introducing an expression which calls the 
the C function xAssertError. See the following example.

Example 617: Using Assertions ––––––––––––––––––––––––––––––––––––––

[[if (#(I) < #(K))
    xAssertError("I is less than K");
]]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In the Tau Explorer, the assertions are checked during state space explora-
tion. Whenever xAssertError is called during the execution of a transi-
tion, a report is generated. The advantage of using this way to define asser-
tions, as opposed to using user-defined rules, is that in-line assertions are 
computed much more efficiently by the Explorer than the user-defined rules.

The xAssertError function, which has the following prototype:

extern void xAssertError ( char *Descr )

takes a string describing the assertion as parameter and will produce an UML 
run-time error similar to the normal run-time errors. The function is only 
available if the compilation switch XASSERT is defined. For the standard li-
braries this is true for all libraries except the Application Library.
June 2009 IBM Rational Tau User Guide 1971



Chapter 75: The Tau Explorer
Model Explorer Reference
This section provides an alphabetical listing of all available commands in the 
Explorer. All input to the Explorer is case insensitive.

Alphabetical List of Commands

? (Interactive Context Sensitive Help)
Parameters:
(None)

The Explorer will respond to a ‘?’ (question mark) by giving a list of all al-
lowed values at the current position, or by a type name, when it is not suitable 
to enumerate the values. After the presentation of the list, the input can be 
continued.

? (Command Execution)
Parameters:
<Command name>

Executes the Explorer command given as a parameter. This is a convenience 
function for the Explorer UI. Entering ‘?’ as parameter gives a list of all pos-
sible command names.

Assign-Value 
Parameters: 
[ ‘(’ <PId value> ‘)’ ]
<Variable name> <Optional component selection>
<New value>

The new value is assigned to the specified variable in the class instance, or 
operation given by the current scope.

After the command is given, the root of the behavior tree is set to the current 
system state.

It is, in a similar way as for the command Examine-Variable, possible to 
handle components in structured variables (classes, strings and arrays) by ap-
pending the class’ attribute name or a valid array index before the value to be 
assigned. Nested classes and arrays can be handled by entering a list of index 
values and class attribute names.
1972 IBM Rational Tau User Guide June 2009



Model Explorer Reference
If a instance identifier is given within parenthesis, the scope is temporarily 
changed to this  instance instead.

Bit-State-Exploration
Parameters:
(None)

Starts an automatic state space exploration from the current system state 
using the bit state space algorithm. When the exploration is started, the fol-
lowing information is printed:

• Search depth: The maximum search depth of the exploration. This can be 
set with the command Define-Bit-State-Depth. 

• Hash table size: The size of the hash table used during bit state explora-
tion. This can be set with the command Define-Bit-State-Hash-Table-
Size.

The exploration will continue until either the complete state space to the de-
fined depth is explored or the Break command is sent. The system is then re-
turned to the state it was in before the exploration was started. 

If a bit state exploration already has been started, but has been stopped, this 
command asks if the exploration should continue from where it was stopped, 
or restart from the beginning again.

A status message is printed for every 20,000 transitions that are executed.

When the exploration is finished or stopped, the Report View is by default 
opened. The following statistics are also printed:

• No of reports: The number of reported situations that may be listed with 
the List-Reports command.

• Generated states: The total number of system states generated.

• Truncated paths: The number of times the exploration reached the max-
imum depth, causing the current execution path to be truncated.

• Unique system states: The number of generated system states that are not 
duplicated anywhere in the behavior tree.

• Size of hash table: The size of the hash table in bits and bytes.

• No of bits set in hash table: The number of bits actually used to represent 
the generated state space.
June 2009 IBM Rational Tau User Guide 1973



Chapter 75: The Tau Explorer
• Collision risk: The risk, in percent, of a collision occurring in the hash 
table for two different system states. This would cause an incorrect trun-
cation of an execution path in a newly generated state.

• Max depth: The maximum number of levels in the behavior tree that have 
been reached during the exploration.

• Current depth: The level of the behavior tree reached at the moment when 
the exploration was stopped. If it is -1, the exploration was completed, 
i.e., the complete behavior tree down to the specified depth was explored. 
If it is > 0, the exploration may be continued from this level by issuing 
the command again.

• Min state size: The smallest number of bytes used to store a system state 
when computing hash values.

• Max state size: The largest number of bytes used to store a system state 
when computing hash values.

• Symbol coverage: The percentage of the symbols in the process graphs 
that have been executed at least once.

Bottom
Parameters:
(None)

Go down in the behavior tree to the end of the current path.

Cd 
Parameters:
<Directory>

Change the current working directory to the specified directory.

Connector-Disable
Parameters:
<connector> | ‘-’

Disables all test values defined for all signals using the given connector. ‘-’ 
means all connectors. Use Connector-Enable to start using them again. See 
also Signal-Disable. Test values for a signal are only used if both the signal 
and the connector that transports the signal are enabled. By default, all sig-
nals and connectors are enabled.
1974 IBM Rational Tau User Guide June 2009



Model Explorer Reference
Connector-Enable
Parameters:
<connector> | ‘-’

Enables all test values defined for all signals using the given connector. ‘-’ 
means all connectors. See also Signal-Enable. Test values for a signal are 
only used if both the signal and the connector that transports the signal are 
enabled. By default, all signals and connectors are enabled.

Clear-Coverage-Table
Parameters:
(None)

Clears the test coverage information. 

Clear-Parameter-Test-Values
Parameters:
( <Signal> | ‘-’ ) ( <Parameter number> | ‘-’ ) 
( <Value> | ‘-’ )

The test value described by the value parameter is cleared for the signal pa-
rameter given as the parameter to the command. If the specified value param-
eter is ‘-’, clears all test values for the signal parameter given as the parameter 
to the command. If ‘-’ is given instead of the parameter number then the test 
values for all parameters of the signal are cleared. If ‘-’ is given instead of the 
signal name then all test values for all parameters to all signals are cleared.

Regenerates the set of signals that can be sent from the environment during 
state space exploration.

Clear-Reports
Parameters:
(None)

Delete the current reports from the latest state space exploration.

Clear-Rule
Parameters:
(None)

The currently defined rule is deleted.
June 2009 IBM Rational Tau User Guide 1975



Chapter 75: The Tau Explorer
Clear-Signal-Definitions
Parameters:
<Signal> | ‘-’

Clears all currently defined test values for the signal given by the parameter. 
If ‘-’ is given, the test values for all signals are cleared.

Note
The signals cleared by this command may be regenerated if any of the com-
mands for defining test values for sorts or parameters are used.

Clear-Test-Values
Parameters:
( <Sort> | ‘-’ ) ( <Value> | ‘-’ )

Clears all test values for the sort given as parameter. If the specified sort pa-
rameter is ‘-’, all test values for all sorts will be cleared. If the value param-
eter is ‘-’, all test values for the specified sort will be cleared.

Regenerates the set of signals that can be sent from the environment during 
state space exploration.

Command-Log-Off
Parameters:
(None)

The command log facility is turned off; see the command Command-Log-On 
for details.

Command-Log-On
Parameters:
<Optional file name>

The command enables logging of all the commands given in the Explorer. 
The first time the command is entered a file name for the log file has to be 
given as parameter. After that any further Command-Log-On commands, 
without a file name, will append more information to the previous log file, 
while a Command-Log-On command with a file name will close the old log 
file and start using a new file with the specified name. 

Initially the command log facility is turned off. It can be turned off explicitly 
by using the command Command-Log-Off.
1976 IBM Rational Tau User Guide June 2009



Model Explorer Reference
The generated log file is directly possible to use as a file in the command 
Include-File. It will, however, contain exactly the commands given in the 
session, even those that were not executed due to command errors. The con-
cluding Command-Log-Off command will also be part of the log file.

Continue-Until-Branch
Parameters:
<Optional node number>

First go to the system state node which is the child with the specified number 
to the current system state. Same as the Next command. Then go down as 
long as there is only one child, i.e. a branch is found.

Continue-Up-Until-Branch
Parameters:
(None)

Go up in the behavior tree as long as there is only one child, i.e. a branch is 
found.

Default-Options
Parameters:
(None)

Resets all options in the Explorer to their default values and clears all reports. 
It also sets the current state to the current root. Compare with the command 
Reset.

Define-Bit-State-Depth
Parameters:
<Depth>

The parameter is the maximum depth of bit state exploration, i.e., the number 
of levels to be reached in the behavior tree. If this level is reached during the 
exploration, the current path is truncated and the exploration continues in an-
other node of the behavior tree. The default value is 100.

Define-Bit-State-Hash-Table-Size
Parameters:
<Size in bytes>

Sets the size of the hash table used to represent the generated state space 
during bit state exploration. The default value is 1,000,000 bytes.
June 2009 IBM Rational Tau User Guide 1977



Chapter 75: The Tau Explorer
Define-Bit-State-Iteration-Step
Parameters:
<Step>

The Bit-State-Exploration algorithm includes a feature to automatically 
make a number of explorations with an increased depth for each exploration. 
The iteration continues until the search depth is greater than the maximum 
depth search as defined by Define-Bit-State-Depth command or one explo-
ration terminates without any truncations.

This command activates the feature and defines how much the depth is in-
creased for each iteration. If <Step> is set to 0 the iterative exploration is de-
activated, otherwise <Step> defines how much the maximum depth is in-
creased for each exploration.

The default value is 0, i.e. the feature is not activated.

Define-Connector-Queue
Parameters:
<connector name> ( “On” | “Off” )

Adds or removes a queue for the specified connector. If a queue is added for 
a connector, it implies that when a signal is sent that is transported on this 
connector, it will be put into the queue associated with the connector. By de-
fault no connectors have queues.

Define-Exhaustive-Depth
Parameters:
<Depth>

The parameter defines the depth of the search when performing exhaustive 
exploration. The default value is 100.

Define-Integer-Output-Mode
Parameters:
“dec” | “hex” | “oct”

Defines whether integer values are printed in decimal, hexadecimal or octal 
format. In hexadecimal format the output is preceded with “0x”, in octal 
format the output is preceded with ‘0’ (a zero).
1978 IBM Rational Tau User Guide June 2009



Model Explorer Reference
On input: if the format is set to hexadecimal or octal, the string determines 
the base as follows: After an optional leading sign a leading zero indicates 
octal conversion, and a leading “0x” hexadecimal conversion. Otherwise, 
decimal conversion is used.

The default is “dec”, and no input conversion is performed.

Define-Max-Input-Port-Length
Parameters:
<Number>

The maximum length of the input port queues is defined. If this length is ex-
ceeded during state space exploration, a report is generated. The default 
value is 3.

Define-Max-Instance
Parameters:
<Number>

Defines the maximum number of instances allowed for any particular pro-
cess type. If this number is exceeded during state space exploration, a report 
is generated. The default value is 100.

Define-Max-Signal-Definitions
Parameters:
<No of signals>

This command defines the maximum no of signals that will be added to the 
list of signals from the environment for any particular signal. The default 
value is 10.

Define-Max-State-Size
Parameters:
<Size in bytes>

Sets the size of an internal array used to store each system state when com-
puting the hash value for the system state. The default size is 100,000 bytes.

Define-Max-Test-Values
Parameters:
<No of text values>
June 2009 IBM Rational Tau User Guide 1979



Chapter 75: The Tau Explorer
This command defines the maximum no of test values that will be generated 
for a particular data type or signal parameter. The default value is 10.

Define-Max-Transition-Length
Parameters:
<Number>

The maximum number of UML symbols allowed to be executed during the 
performance of a behavior tree transition is defined. If this number is ex-
ceeded during state space exploration, a report is generated. The default 
value is 1,000.

Define-Parameter-Test-Value
Parameters:
<Signal> <Parameter number> <Value>

The parameter test value described by the command parameters is added to 
the current set of test values. The list of signals that can be sent from the en-
vironment is regenerated based on the new set of test values.

Define-Priorities
Parameters:
<Internal events> <Input from ENV> <Timeout events> 
<Connector output> <Spontaneous transitions>

Defines the priorities for the different event classes. The priorities can be set 
individually to 1, 2, 3, 4 or 5. For more information about event classes and 
priorities, see State Space Options View.

The default priorities are:

• Internal events: 1

• Input from ENV: 2

• Timeout events: 2

• Connector outputs: 1

• Spontaneous transitions: 2

Note that the priorities of events processed in the Explorer also is affected by 
the command Define-Symbol-Time.
1980 IBM Rational Tau User Guide June 2009



Model Explorer Reference
Define-Random-Walk-Depth
Parameters:
<Depth>

The parameter defines the depth of the search when performing random walk 
exploration. The default value is 100.

Define-Random-Walk-Repetitions
Parameters:
<No of repetitions>

The parameter defines the number of times the search is performed from the 
start state when performing random walk exploration. The default is 100.

Define-Report-Abort
Parameters:
<Report type> | ‘-’

Defines that the state space exploration will be aborted whenever a report of 
the specified type is generated.

The available report types are listed with the command Show-Options. They 
are also described in Go up the specified number of levels in the behavior 
tree. Up 1 goes to the parent state of the current system state. Up will stop at 
the root of the behavior tree (the start state) if the parameter is too large.. If 
the parameter is specified as ‘-’, all report types will be defined in the same 
way.

Define-Report-Continue
Parameters:
<Report type> | ‘-’

Defines that a state space exploration will continue past a state where a report 
of the specified type is generated. With this definition, the exploration of the 
behavior tree is not affected by a report being generated.

The available report types are listed with the command Show-Options. They 
are also described in Go up the specified number of levels in the behavior 
tree. Up 1 goes to the parent state of the current system state. Up will stop at 
the root of the behavior tree (the start state) if the parameter is too large.. If 
the parameter is specified as ‘-’, all report types will be defined in the same 
way.
June 2009 IBM Rational Tau User Guide 1981



Chapter 75: The Tau Explorer
Define-Report-Log
Parameters:
<Report type> ( “Off” | “One” | “All” )

Defines how many reports of a specified type will be stored in the list of 
found reports when they are encountered during state space exploration. De-
fault for all report types is “One”.

If “Off” is specified for a report type, reports of this type will not be stored, 
which implies for example that they will not be listed by the List-Reports 
command. However, the reports will be generated and the appropriate action 
taken as specified by the commands Define-Report-Abort, Define-Report-
Continue and Define-Report-Prune.

If “One” is specified only one occurrence of each reported situation is stored.

If “All” is specified then all occurrences of a reported situation that have dif-
ferent execution paths is stored in the list.

The available report types are listed with the command Show-Options. If the 
parameter is specified as ‘-’, all report types will be defined in the same way.

Define-Report-Prune
Parameters:
<Report type> | ‘-’

Defines that a state space exploration will not continue past a state where a 
report of the specified type is generated. Thus, the part of the behavior tree 
beneath the state will not be explored. Instead, the exploration will continue 
in the siblings or parents of the state. This is also known as “pruning” the be-
havior tree at the state. This is the default behavior for all report types. 

The available report types are listed with the command Show-Options. If the 
parameter is specified as ‘-’, all report types will be defined in the same way.

Define-Root
Parameters:
“Original” | “Current”

Defines the root of the behavior tree to be either the current system state or 
the original start state of the UML system.
1982 IBM Rational Tau User Guide June 2009



Model Explorer Reference
Note
When the root is redefined, all paths, e.g. MSC traces or report paths, will 
start in the new root, not in the original start state.

Define-Rule
Parameters:
<User-defined rule>

A new rule is defined that will be checked during state space exploration. 

Define-Scheduling
Parameters:
“All” | “First”

Defines which active class instances in the ready queue are allowed to exe-
cute at each state. The parameter defines the scheduling as follows:

• All

All active class instances in the ready queue are allowed to execute at 
each state. 

• First

Only the first active class instance in the ready queue is allowed to exe-
cute at each state. 

The default is “First”.

Define-Signal
Parameters:
<Signal> <Optional parameter values>

A signal that is to be sent to the UML system from the environment is de-
fined. The signal is defined by its name and optionally the values of its pa-
rameters. Multiple Define-Signal commands may be used to define the same 
signal, but with different values for the parameters.

Note
The signals defined by this command will be destroyed if the signals are re-
generated, i.e., if any of the commands defining test values for sorts or 
signal parameters are used.
June 2009 IBM Rational Tau User Guide 1983



Chapter 75: The Tau Explorer
Define-Spontaneous-Transition-Progress
Parameters:
“On” | “Off”

Defines whether a spontaneous transition (input none) is considered as 
progress when performing non-progress loop check. Default is that sponta-
neous transition is considered to be progress, i.e. “On”.

Define-Symbol-Time
Parameters:
“Zero” | “Undefined”

The time it takes to execute one symbol, e.g. an input, task or decision, in an 
UML active class is defined either to be zero or undefined. If it is set to zero, 
it is assumed that all actions performed by active class instances take are in-
finitely fast compared to the timer values that are used in the system. If the 
symbol time is set to undefined, no assumption is made about how long time 
it takes for active classes to execute symbols. Consider for example a situa-
tion where an active class sets a timer with a duration 5 and then executes 
something that may take a long time, e.g. a long loop, and the sets a timer 
with duration 1. If symbol time is set to zero then the second timer will al-
ways expire first. If symbol timer is set to undefined then both timers can po-
tentially expire first.

Note that when symbol time is set to zero, no timer will expire if an internal 
action is possible, even if internal and timer events have the same priority as 
set by the command Define-Priorities.

The default value of the symbol time options is “Zero”.

Define-Test-Value
Parameters:
<Sort> <Value>

The test value described by the parameters is added to the current set of test 
values. The list of signals that can be sent from the environment is regener-
ated based on the new set of test values.

Note
When regenerating the set of signals, all signals that have been manually 
defined using the Define-Signal command will be lost.
1984 IBM Rational Tau User Guide June 2009



Model Explorer Reference
Define-Timer-Progress
Parameters:
“On” | “Off”

Defines if the expiration of a timer is considered as progress when per-
forming non-progress loop check. Default is that timer expiration is consid-
ered to be progress, i.e. “On”.

Define-Transition
Parameters:
“UML” | “Symbol-Sequence”

Defines the semantics and length of the transitions in the behavior tree. The 
parameter defines the transitions as follows:

• UML

The behavior tree transitions correspond to complete UML statemachine 
graph transitions. 

• Symbol-Sequence

The behavior tree transitions correspond to the longest sequence of UML 
symbols that can be executed without any interaction with other active 
class instances. 

The default is “UML”.

Define-Tree-Search-Depth
Parameters:
<Depth>

Defines the maximum search depth for tree search.

The default value is 100.

Define-Variable-Mode
Parameters:
<Active class> [ <Variable name> | “Parent” | 
“Offspring” | “Sender” ] 
[ “Compare” | “Skip” ]

This command defines how a specific variable is treated when comparing 
two system states during state space exploration. If the value for a variable is 
“Compare”, this variable will be taken into account when comparing two 
system states. If the value is “Skip”, this variable will not be taken into ac-
June 2009 IBM Rational Tau User Guide 1985



Chapter 75: The Tau Explorer
count, i.e. if the only difference between two system states is that values of 
variables in “Skip” mode differs, then the system states will be considered 
equal.

The purpose of the “Skip” mode for variables is to optimize the state space 
search. There are two different situations where this command can be used:

• All variables that are known to be constant during an exploration can be 
declared “Skip”.

• All variables that will not have an effect on the dynamic behavior of the 
system, i.e. that will not affect the path through a decision or the expres-
sion in an “output to”, can be declared “Skip”.

The benefit with constant variables in “Skip” mode is that the Explorer       
will ignore these variables when computing hash values. This can for large 
data structures like arrays mean that the performance of the Explorer can be 
considerably improved.

Detailed-Exa-Var
Parameters:
(None)

When printing data structures containing components with default value, 
these values are explicitly printed after this command is given.

Down
Parameters:
<Number of levels>

Go down the specified number of levels in the behavior tree, each time se-
lecting the child of the current system state that is part of the current path. If 
the parameter is too large, Down will stop at the end of the current path.

Evaluate-Rule
Parameters:
(None)

The currently defined rule is evaluated with respect to the current system 
state. The command prints whether or not the rule is satisfied.

Examine-Connector-Signal
Parameters:
<connector name> <Entry number>
1986 IBM Rational Tau User Guide June 2009



Model Explorer Reference
The parameters of the signal instance at the position equal to the entry 
number in the queue of the specified connector are printed. The entry number 
is the number associated with the signal instance when the command List-
Connector-Queue is used.

Examine-PId
Parameters:
(None)

Information about the active class instance given by the current scope is 
printed (see the Set-Scope command for an explanation of scope). This infor-
mation contains the current values of Parent, Offspring, Sender and a list of 
all currently active operation calls made by the active class instance. The list 
starts with the latest operation call and ends with the active class instance it-
self.

Examine-Signal-Instance
Parameters:
<Entry number>

The parameters of the signal instance at the specified position in the input 
port of the active class instance given by the current scope are printed (see 
the Set-Scope command for an explanation of scope). The entry number is 
the number associated with the signal instance when the command List-
Input-Port is used.

Examine-Timer-Instance
Parameters:
<Entry number>

The parameters of the specified timer instance are printed. The entry number 
is the number associated with the timer when the List-Timer command is 
used.

Examine-Variable
Parameters:
[ ‘(’ <PId value> ‘)’ ]
<Optional variable name>
<Optional component selection>

The value of the specified variable or formal parameter in the current scope 
is printed (see the Set-Scope command for an explanation of scope). Variable 
names may be abbreviated. If no variable name is given, all variable and 
June 2009 IBM Rational Tau User Guide 1987



Chapter 75: The Tau Explorer
formal parameter values of the active class instance given by the current 
scope are printed. Sender, Offspring, and Parent may also be examined in this 
way. Their names, however, may not be abbreviated and they are not in-
cluded in the list of all variables.

Note
If a variable is exported, both its current value and its exported value are 
printed.

It is possible to examine only the value of an attribute of a class, or a compo-
nent of a string or array variable, by appending the class’ attribute name or a 
valid array index value as an additional parameter. The selection can handle 
classes and arrays within classes and arrays to any depth by giving a list com-
ponent selection parameters. Syntax with ‘!’ and “( )” as well as just spaces, 
can be used to separate the names and the index values.

It is also possible to print a range of an array by giving “FromIndex : To-
Index” after an array name. Note that the space before the ‘:’ is required if 
FromIndex is a name (enumeration literal), and that no further component se-
lection is possible after a range specification.

To see the possible components that are available in the variable, the variable 
name must be appended by a space and a ‘?’ on input. A list of components 
or a type name is then given, after which the input can be continued. After a 
component name, it is possible to append a ‘?’ again to list possible sub com-
ponents.

If a PId is given within parenthesis, the scope is temporarily changed to this 
active class instance instead.

Exhaustive-Exploration
Parameters:
(None)

Starts an automatic state space exploration from the current system state, 
where the entire generated state space is stored in primary memory. This is 
only recommended for UML systems with small state spaces. 

The exploration will continue until either the complete state space to the de-
fined depth is explored, <Return> is pressed from the command prompt, or 
the Break command is sent. The system is then returned to its initial system 
state. The maximum depth of the exploration can be set with the command 
Define-Exhaustive-Depth. 
1988 IBM Rational Tau User Guide June 2009



Model Explorer Reference
If an exhaustive exploration already has been started, but has been stopped, 
this command asks if the exploration should continue from where it was 
stopped, or restart from the beginning again.

A status message is printed every 50,000 states that are generated. When the 
exploration is finished or stopped, the same information as for a bit state ex-
ploration is printed.

Exit
Parameters:
(None)

The executing Explorer is terminated. If the command is abbreviated, the Ex-
plorer asks for confirmation. If any of the Explorer options have been 
changed, the Explorer will ask if the changed options should be saved. If so, 
the changed options are saved in a file .valinit (on UNIX), or va-
linit.com (in Windows), in the directory from where the Explorer execut-
able was started. This file is automatically loaded the next time a Explorer is 
started from the same directory, thus restoring the previously saved options.

This is the same command as Quit.

Generate-SQD-Trace

Launch a Sequence Diagram displaying the events that led to the current lo-
cation in the state space from the root.

Goto-Path
Parameters:
<Path>

Go to the system state specified by the path. For details about paths, see the 
command Print-Path. 

Goto-Report
Parameters:
<Report number>

Go to the state in the behavior tree where the report with the corresponding 
number has been found. The last behavior tree transition that was executed 
before the reported situation is printed, with the same information as for a full 
June 2009 IBM Rational Tau User Guide 1989



Chapter 75: The Tau Explorer
trace during simulation. The report number is the number associated with the 
report when the command List-Reports is used. If only one report exists, the 
report number is optional.

Help
Parameters:
<Optional command name>

Issuing the Help command without a parameter will print all the available 
commands. If a command name is given as parameter, this command will be 
explained.

Include-File
Parameters:
<File name>

This command provides the possibility to execute a sequence of Explorer 
commands stored in a text file. The Include-File facility can be useful for in-
cluding, for example, an initialization sequence or a complete test case. It is 
allowed to use Include-File in an included sequence of commands; up to five 
nested levels of include files can be handled.

List-Connector-Queue
Parameters:
<connector name>

A list of all signal instances in the specified connector queue is printed. For 
each signal instance an entry number, the signal type, and the sending pro-
cess instance is given. The entry number can be used in the command 
Examine-Connector-Signal.

List-Input-Port
Parameters:
[ ‘(’ <PId value> ‘)’ ]

A list of all signal instances in the input port of the active class instance given 
by the current scope is printed (see the Set-Scope command for an explana-
tion of scope). For each signal instance an entry number, the signal type, and 
the sending active class instance is given. A ‘*’ before the entry number in-
dicates that the corresponding signal instance is the signal instance that will 
be consumed in the next transition performed by the active class instance. 
The entry number can be used in the command Examine-Signal-Instance.
1990 IBM Rational Tau User Guide June 2009



Model Explorer Reference
If a PId is given within parenthesis information about this active class in-
stance is printed instead.

List-Next
Parameters:
(None)

A list of the possible behavior tree transitions that can follow from the current 
system state is printed.

Note
The number of possible transitions depends on the selected state space op-
tions.

List-Parameter-Test-Values
Parameters:
(None)

Lists all currently defined test values for signal parameters.

List-Active-Class
Parameters:
<Optional active class name>

A list of all active class instances with the specified active class name is 
printed. If no active class name is specified all active class instances in the 
system are listed. The list will contain the same details as described for the 
List-Ready-Queue command.

List-Ready-Queue
Parameters:
(None)

A list of active class instances in the ready queue is printed. For more infor-
mation, see the Model Verifier command List-Ready-Queue.

List-Reports
Parameters:
(None)

All situations that have been reported during state space exploration are 
printed. For each report, the error or warning message describing the situa-
tion is printed, together with the depth in the behavior tree where it first oc-
June 2009 IBM Rational Tau User Guide 1991



Chapter 75: The Tau Explorer
curred. Only one occurrence of each reported situation is printed; the one 
with the shortest path from the root of the behavior tree. The report numbers 
printed can be used in the command Goto-Report.

List-Signal-Definitions
Parameters:
(None)

A list of all currently defined signals is printed. 

List-Test-Values
Parameters:
(None)

Lists all test values that currently are defined.

List-Timer
Parameters:
(None)

A list of all currently active timers is printed. For each timer, its corre-
sponding process instance and associated time is given. An entry number will 
also be part of the list, which can be used in the command Examine-Timer-
Instance.

Load-Signal-Definitions
Parameters:
<File name>

A command file with Define-Signal commands is loaded and the signals are 
defined. This command exists for backward compatibility reasons only.

Log-Off
Parameters:
(None)

The command Log-Off turns off the interaction log facility, which is de-
scribed in the command Log-On.

Log-On
Parameters:
<Optional file name>
1992 IBM Rational Tau User Guide June 2009



Model Explorer Reference
The command Log-On takes an optional file name as a parameter and en-
ables logging of all the interaction between the Explorer and the user that is 
visible on the screen. The first time the command is entered, a file name for 
the log file has to be given as parameter. After that any further Log-On com-
mands, without a file name, will append more information to the previous log 
file, while a Log-On with a file name will close the old log file and start using 
a new file with the specified file name. 

Initially the interaction log facility is turned off. It can be turned off explicitly 
by using the command Log-Off.

Merge-Report-File
Parameters:
<File name>

An existing report file is opened and the reports in it are added to the current 
reports. 

New-Report-File
Parameters:
<File name>

A new report file for report storage is created. The current reports are deleted. 

Next
Parameters:
<Transition number>

Go to a system state in the next level of the behavior tree, i.e. a child to the 
current system state. The parameter is the transition number given by the 
List-Next command.

Open-Report-File
Parameters:
<File name>

An existing report file is opened and the reports in it are loaded. The current 
reports are deleted. 

Print-Evaluated-Rule
Parameters:
(None)
June 2009 IBM Rational Tau User Guide 1993



Chapter 75: The Tau Explorer
The currently defined rule is printed with the values obtained from the last 
evaluation of the rule. The printed information is in the form of a so-called 
parse tree, and may require some knowledge of such structures to be inter-
preted correctly.

Print-File
Parameters:
<File name>

The content of the named text file is displayed on the screen. 

Print-Path
Parameters:
(None)

The path to the current system state is printed. A path is a sequence of integer 
numbers, terminated with a 0, describing how to get to the current system 
state. The first number indicates what transition to select from the root, the 
second number what transition to choose from this state, etc. To go to the 
state specified by a path, use the command Goto-Path.

Print-Report-File-Name
Parameters:
(None)

The name of the current report file is printed. 

Print-Rule
Parameters:
(None)

The currently defined rule is printed.

Print-Trace
Parameters:
<Number of levels>

The textual trace leading to the current system state is printed. The same in-
formation as for a full trace during simulation is printed for each behavior 
tree transition. The parameter determines how many levels up the trace 
should start. For example, Print-Trace 10 will print the ten last transitions.
1994 IBM Rational Tau User Guide June 2009



Model Explorer Reference
Quit
Parameters:
(None)

The executing Explorer is terminated. If the command is abbreviated, the Ex-
plorer asks for confirmation. If any of the Explorer options have been 
changed, the Explorer will ask if the changed options should be saved. If so, 
the changed options are saved in the file .valinit (on UNIX), or va-
linit.com (in Windows), in the directory from where the Explorer execut-
able was started. This file is automatically loaded the next time a Explorer is 
started from the same directory, thus restoring the previously saved options.

This is the same command as Exit.

Random-Down
Parameters:
<Number of levels>

Go down the specified number of levels in the behavior tree, each time se-
lecting a random child of the current system state.

Random-Walk
Parameters:
(None)

This command will perform an automatic exploration of the state space from 
the current system state. Random walk is based on the idea that if more than 
one transition is possible in a particular system state, one of them will be 
chosen at random. When the exploration is started, the following information 
is printed:

• Search depth: The maximum depth to walk down. This can be set with 
the command Define-Random-Walk-Depth. 

• Repetitions: The number of random walks to perform from the start state. 
This can be set with the command Define-Random-Walk-Repetitions.

The exploration will continue until either it is finished, <Return> is pressed 
from the command prompt, or the Break command is sent. The system is then 
returned to the state it was in before the exploration was started. 

When the exploration is finished or stopped, a few statistics are printed; see 
the command Bit-State-Exploration for an explanation of these.
June 2009 IBM Rational Tau User Guide 1995



Chapter 75: The Tau Explorer
Reset
Parameters:
(None)

Resets the state of the Explorer to its initial state. This command resets all 
options and test values in the Explorer to their initial values and clears all re-
ports and user-defined rules. It also sets the current state and the current root 
to the original start system state.

This command reads the .valinit (on UNIX), or valinit.com (in Win-
dows), file (see the command Exit). It is equivalent to closing the Explorer 
and starting it again. Compare with the command Default-Options.

Save-As-Report-File
Parameters:
<File name>

The current reports are saved in a new file. The name of the current report 
file is set to the new file. 

Save-Coverage-Table
Parameters:
<File name>

Test coverage information is saved in the specified file. The test coverage 
table consists of two parts, a Profiling Information section, and a Coverage 
Table Details section. This is the same type of file as generated by the Sim-
ulator; for more detailed information about the file, see the Model Verifier 
Print-Coverage-Table command.

Save-Options
Parameters:
<File name>

Creates a Explorer command file with the name given as parameter. The file 
contains commands defining the options of the Explorer. If this file is loaded 
(using the command Include-File) the options will be restored to their saved 
values.

Save-State-Space
Parameters:
<File name>
1996 IBM Rational Tau User Guide June 2009



Model Explorer Reference
A Labelled Transition System (LTS) representing the generated state space 
is saved to a file.

Note
It is necessary to have executed an Exhaustive-Exploration command before 
the state space can be saved on a file.

Save-Test-Values
Parameters:
<File name>

A command file is generated containing Explorer commands that, if loaded 
with the Include-File command, will recreate the current test value defini-
tions.

Scope
Parameters:
(None)

This command prints the current scope. See the command Set-Scope for a de-
scription of scope.

Scope-Down
Parameters:
<Optional service name>

Moves the scope one step down in the operation call stack. See also the com-
mands Stack, Set-Scope and Scope-Up.

Scope-Up
Parameters:
(None)

Moves the scope one step up in the operation call stack. See also the com-
mands Set-Scope, Stack and Scope-Down.

Set-Application-All
Parameters:
(None)
June 2009 IBM Rational Tau User Guide 1997



Chapter 75: The Tau Explorer
The state space options of the Explorer are set to perform state space explo-
ration according to the semantics of an application generated by the UML 
Code Generator. No assumptions are made about the performance of the 
UML system compared to timeout values or the performance of the environ-
ment.

This command sets the exploration mode factors by executing the following 
commands:

Define-Transition UML
Define-Scheduling First
Define-Priorities 1 1 1 1 1

Set-Application-Internal
Parameters:
(None)

The state space options of the Explorer are set to perform state space explo-
ration according to the semantics of an application generated by the C Code 
Generator. The assumption is made that the time it takes for the UML system 
to perform internal actions is very small compared to timeout values and the 
response time of the environment. 

This command sets the exploration mode factors by executing the following 
commands:

Define-Transition UML
Define-Scheduling First
Define-Priorities 1 2 2 1 2

Set-Scope
Parameters:
<PId value> <Optional service name>

This command sets the scope to the specified active class, at the bottom op-
eration call. A scope is a reference to an active class instance and possibly a 
reference to an operation instance called from this process. The scope is used 
for a number of other commands for examining the local properties of an ac-
tive class instance. The scope is automatically set to the process that executed 
in the transition leading to the current system state. 

See also the commands Scope, Stack, Scope-Down and Scope-Up.
1998 IBM Rational Tau User Guide June 2009



Model Explorer Reference
Set-Specification-All
Parameters:
(None)

The state space options of the Explorer are set so that no assumptions are 
made about the performance of the UML system compared to timeout values, 
or the performance of the environment. 

This command sets the exploration mode factors by executing the following 
commands:

Define-Transition Symbol-Sequence
Define-Scheduling All
Define-Priorities 1 1 1 1 1

Set-Specification-Internal
Parameters:
(None)

The state space options of the Explorer are set so the assumption is made that 
the time it takes for the UML system to perform internal actions is very small 
compared to timeout values and the response time of the environment. 

This command sets the exploration mode factors by executing the following 
commands:

Define-Transition Symbol-Sequence
Define-Scheduling All
Define-Priorities 1 2 2 1 2

Show-Mode
Parameters:
(None)

This command displays a summary of the current execution mode and some 
other information about the current state of the Tau Explorer.

Show-Options
Parameters:
(None)

The values of all options defined for the Explorer are printed, including the 
report action defined for each report type.
June 2009 IBM Rational Tau User Guide 1999



Chapter 75: The Tau Explorer
Show-Versions
Parameters:
(None)

The versions of the C Code Compiler and the runtime kernel that generated 
the currently executing program are presented.

Signal-Disable
Parameters:
<Signal> | ‘-’

Disables all test values defined for the given signal. ‘-’ means all signals. Use 
Signal-Enable to start using them again. See also Connector-Disable. Test 
values for a signal are only used if both the signal and the connector that 
transports the signal are enabled. By default, all signals and connectors are 
enabled.

Signal-Enable
Parameters:
<Signal> | ‘-’

Enables all test values defined for the given signal. ‘-’ means all signals. See 
also Connector-Enable. Test values for a signal are only used if both the 
signal and the connector that transports the signal are enabled. By default, all 
signals and connectors are enabled.

Signal-Reset
Parameters:
<Signal> | ‘-’

Removes all existing test values for the given signal, and defines a default set 
of test values instead, using the current test value settings for data types and 
signal parameters. ‘-’ means all signals.

Stack
Parameters:
(None)

The operation call stack for the class instance defined by the scope is printed. 
For each entry in the stack, the type of instance (operation/process), the in-
stance name and the current state is printed. See also the commands Set-
Scope, Scope-Down and Scope-Up.
2000 IBM Rational Tau User Guide June 2009



Model Explorer Reference
Top
Parameters:
(None)

Go up in the behavior tree to the start of the current path (the root system 
state).

Tree-Search
Parameters:
(None)

Performs a tree search of the state space from the current system state. A tree 
search is an exploration where all possible combinations of actions are exe-
cuted. The tree that is explored is exactly the same tree that can manually be 
inspected using the Navigator feature (or manual exploration using the Next 
/ List-Next commands).

The depth of the tree search is bounded and is defined by the Define-Tree-
Search-Depth command. The default depth is 100.

The command can be aborted by the user by sending the Break command.

Tree-Walk
Parameters:
<Timeout> <Coverage>

Performs an automatic exploration of the state space starting from the current 
system state. In contrast to Random-Walk, Tree-Walk is based on a deter-
ministic algorithm that performs a sequence of tree searches with increasing 
depth starting at various states in the reachability graph. Tree Walk combines 
the advantages of both the depth-first and breadth-first search strategy - it is 
able to visit states located deep in the reachability graph and to find a short 
path to a particular state at the same time. Tree Walk is guided by a symbol 
coverage heuristic. Therefore it is particularly suitable for automatic test case 
generation.

Computation stops if either time exceeds <Timeout> (specified in minutes) 
or the targeted coverage (specified in percent) is reached. Alternatively, the 
exploration can be stopped at any time by sending the Break command.

Tree Walk creates a number of “TreeWalk” reports.
June 2009 IBM Rational Tau User Guide 2001



Chapter 75: The Tau Explorer
Up
Parameters:
<Number of levels>

Go up the specified number of levels in the behavior tree. Up 1 goes to the 
parent state of the current system state. Up will stop at the root of the be-
havior tree (the start state) if the parameter is too large. 

User-Defined Rules

User-defined rules are used during state space exploration to check for prop-
erties of the system states encountered. If a system state is found for which a 
user-defined rule is true, this will be listed among the other reports when 
giving the List-Reports command. During an exploration more that one user-
defined rule report can be generated. There will be one report for each value 
assignment that can be made to a rule. The value assignments are the values 
printed by the Print-Evaluated-Rule command.

A rule essentially gives the possibility to define predicates that describe 
properties of one particular system state. A rule consists of a predicate (as de-
scribed below) followed by a semicolon (`;'). In a rule, all identifiers and re-
served words can be abbreviated as long as they are unique.

Note
Only one rule can be used at any moment. If more than one rule is needed, 
reformulate the rules as one rule, using the boolean operators described 
below.

Predicates

The following types of predicates exist:

• Quantifiers over active class instances and signals in input ports.

• Boolean operator predicates such as "and", "not" and "or".

• Relational operator predicates such as "=" and ">".

Parenthesis are allowed to group predicates.

Quantifiers

The quantifiers listed below are used to define rule variables denoting active 
class instances or signals. The rule variables can be used in active class or 
signal functions described later in this section. 
2002 IBM Rational Tau User Guide June 2009



Model Explorer Reference
exists <RULE VARIABLE> [: <ACTIVE CLASS TYPE>] 
[ | <PREDICATE>]

This predicate is true if there exists an active class instance (of the specified 
type) for which the specified predicate is true. Both the active class type and 
the predicate can be excluded. If the active class type is excluded all active 
class instances are checked. If the predicate is excluded it is considered to be 
true.

all <RULE VARIABLE> [ : <ACTIVE CLASS TYPE>] 
[ | <PREDICATE>]

This predicate is true for all active class instances (of the specified type) for 
which the specified predicate is true. Both the active class type and the pred-
icate can be excluded. If the active class type is excluded all active class in-
stances are checked. If the predicate is excluded it is considered to be true. 

siexists <RULE VARIABLE> [ : <SIGNAL TYPE>] 
[ - <ACTIVE CLASS INSTANCE>] [ | <PREDICATE>]

This predicate is true if there exists a signal (of the specified type) in the input 
port of the specified active class for which the specified predicate is true. If 
no signal type is specified, all signals are considered. If no active class in-
stance is specified the input ports of all active class instances are considered. 
If no predicate is specified it is considered to be true. The specified active 
class can be either a rule variable that has previously been defined in an exists 
or all predicate, or a active class instance identifier (<ACTIVE CLASS 
TYPE>:<INSTANCE NO>).

siall <RULE VARIABLE> [ : <SIGNAL TYPE>] 
[ - <ACTIVE CLASS INSTANCE>] [ | <PREDICATE>]

This predicate is true for all signals (of the specified type) in the input port of 
the specified active class for which the specified predicate is true. If no signal 
type is specified all signals are considered. If no active class is specified the 
input ports of all active class instances are considered. If no predicate is spec-
ified it is considered to be true. The specified active class can be either a rule 
variable that has previously been defined in an exists or all predicate, or a ac-
tive class instance identifier (<ACTIVE CLASS TYPE>:<INSTANCE 
NO>). 

Boolean Operator Predicates 

The following boolean operators are included (with the conventional inter-
pretation): 

not <PREDICATE>
June 2009 IBM Rational Tau User Guide 2003



Chapter 75: The Tau Explorer
<PREDICATE> and <PREDICATE>
<PREDICATE> or <PREDICATE>

The operators are listed in priority order, but the priority can be changed by 
using parenthesis. 

Relational Operator Predicates 

The following relational operator predicates exist: 

<EXPRESSION> = <EXPRESSION>
<EXPRESSION> != <EXPRESSION>
<EXPRESSION> < <EXPRESSION>
<EXPRESSION> > <EXPRESSION>
<EXPRESSION> <= <EXPRESSION>
<EXPRESSION> >= <EXPRESSION>

The interpretation of these predicates is conventional. The operators are only 
applicable to data types for which they are defined. 

Expressions 

The expressions that are possible to use in relational operator predicates are 
of the following categories: 

• Active class functions: Extract values from active class instances. 

• Signal functions: Extract values from signals. 

• Global functions: Examine global aspects of the system state. 

• UML literals: Conventional UML constant values. 

Active Class Functions 

Most of the active class functions must have a class instance as a parameter. 
This class instance can be either a rule variable that has previously been de-
fined in an exists or all predicate, a class instance identifier (<ACTIVE 
CLASS TYPE>:<INSTANCE NO>), or a function that returns a class in-
stance, e.g. sender or from. 

state( <ACTIVE CLASS INSTANCE> )

Returns the current state of the class instance. 

type( <ACTIVE CLASS INSTANCE> )

Returns the type of the class instance. 

iplen( <ACTIVE CLASS INSTANCE> )
2004 IBM Rational Tau User Guide June 2009



Model Explorer Reference
Returns the length of the input port queue of the class instance. 

sender( <ACTIVE CLASS INSTANCE> )

Returns the value of the imperative operator sender (a class instance) for the 
active class instance. 

parent( <ACTIVE CLASS INSTANCE> )

Returns the value of the imperative operator parent (a class instance) for the 
active class instance.

offspring( <ACTIVE CLASS INSTANCE> )

Returns the value of the imperative operator offspring (a class instance) for 
the active class instance. 

self( <ACTIVE CLASS INSTANCE> )

Returns the value of the imperative operator self (a class instance) for the ac-
tive class instance.

signal( <ACTIVE CLASS INSTANCE> )

Returns the signal that is to be consumed if the active class instance is in a 
UML state. Otherwise, if the active class instance is in the middle of an tran-
sition, it returns the signal that was consumed in the last input statement. 

<ACTIVE CLASS INSTANCE> -> <VARIABLE NAME>

Returns the value of the specified variable. If <ACTIVE CLASS IN-
STANCE> is a previously defined rule variable, the exists or all predicate 
that defined the rule variable must also include a active class type specifica-
tion. 

<RULE VARIABLE>

Returns the active class instance value of <RULE VARIABLE>, which must 
be a rule variable bound to an active class instance in an exists or all predi-
cate. 

Signal Functions 

Most of the signal functions must have a signal as a parameter. This signal 
can be either a rule variable that has previously been defined in an siexists or 
siall predicate, or a function that returns a signal, e.g. signal. 

sitype( <SIGNAL> )
June 2009 IBM Rational Tau User Guide 2005



Chapter 75: The Tau Explorer
Returns the type of the signal. 

to( <SIGNAL> )

Returns the active class instance value of the receiver of the signal. 

from( <SIGNAL> )

Gives the active class instance value of the sender of the signal. 

<RULE VARIABLE> -> <PARAMETER NUMBER>

Returns the value of the specified signal parameter. The siexists or siall pred-
icate that defined the rule variable must also include a signal type specifica-
tion. 

<RULE VARIABLE>

Returns the signal value of <RULE VARIABLE>, which must be a rule vari-
able bound to a signal in a siexists or siall predicate. 

Global Functions 
maxlen( )

Gives the length of the longest input port queue in the system. 

instno( [<PROCESS TYPE>] )

Returns the number of instances of type <PROCESS TYPE>. If <PROCESS 
TYPE> is excluded the total number of active class instances is returned. 

depth( )

Gives the depth of the current system state in the behavior tree/state space. 

UML Literals 

<STATE ID>

The name of an UML state. 

<ACTIVE CLASS TYPE>

The name of an active class type. 

<ACTIVE CLASS INSTANCE>

A active class instance identifier of the format <ACTIVE CLASS 
TYPE>:<INSTANCE NO>, e.g. Initiator:1. 

<SIGNAL TYPE>
2006 IBM Rational Tau User Guide June 2009



Model Explorer Reference
The name of a signal type. 

null

UML null active class instance value 

env

Returns the value of the active class instance for the environment, the sender 
of all signals sent from the environment of the UML system. 

<INTEGER LITERAL>
true
false
<REAL LITERAL>
<CHARACTER LITERAL>
<CHARSTRING LITERAL>
June 2009 IBM Rational Tau User Guide 2007



Chapter 75: The Tau Explorer
2008 IBM Rational Tau User Guide June 2009



Customizing IBM Rational Tau

The chapters that are listed under Customizing IBM Rational Tau describe 
how to develop and add new features into IBM Rational Tau. 
June 2009 IBM Rational Tau User Guide 2009



Chapter : 
2010 IBM Rational Tau User Guide June 2009



77
Customizing IBM Rational Tau

This chapter provides an introduction to the possibilities of customizing IBM 
Rational Tau. It describes how to: 

• Extend the user interface

• Start IBM Rational Tau from the command-line

• Extend the information contents of UML models using profiles

• Access and modify the contents of UML models using a programmable 
interface (public APIs in various technologies)

• Write and use Tcl Add-Ins

• Extend the semantic checker with custom semantic checks

• Define custom code generators and other tools integrated with the Appli-
cation Builder

• Define custom importers integrated with the Import Wizard

• Define custom extension modules integrated with the File/Folder Im-
porter
June 2009 IBM Rational Tau User Guide 2011



Chapter 77: Customizing IBM Rational Tau
Introduction
IBM Rational Tau provides many possibilities for extending the function-
ality of its standard features. This ranges from simple extensions of the user 
interface to complete changes of the information stored in the UML models 
and the way it is presented to a user. The purpose of this chapter is to give an 
introduction to these possibilities.

Tcl API

If you prefer a scripting solution the preferred scripting language is Tcl. You 
can implement a customized addition by adding scripts or programs that use 
the Tcl API of IBM Rational Tau to modify the behavior of the tool.

COM API

If you prefer a COM-enabled language (such as Visual Basic, VB Script, Jav-
aScript, C# etc.) IBM Rational Tau provides a COM API. The COM API is 
also a good choice when accessing IBM Rational Tau from common Win-
dows applications whose scripting support often uses the COM-enabled lan-
guage Visual Basic for Applications.

C++ API

If you prefer a compiled language IBM Rational Tau provides a C++ API 
that is beneficial for complex applications where performance and cross-
platform support is critical. 

Agents

Reusable functionality for customization tasks can be implemented as 
Agents, which in turn can be implemented using any of the above mentioned 
APIs. Agents let you define commonly useful behavior in the UML model, 
and can be used in a uniform way regardless of the technology chosen for 
their implementation. Agents thus act as a bridge between the different APIs 
and enable functionality implemented with one API to call functionality im-
plemented with another API.

Agents are also used extensively by IBM Rational Tau for the customization 
of many features (such as queries, diagram generators, property editor cus-
tomization, code generator customization etc.)
2012 IBM Rational Tau User Guide June 2009



Introduction
Object model

When you use a programmable API to access or modify the contents of a 
UML model it is important to distinguish between the following concepts:

• The Object Model

• UML Metamodels

• UML Profiles

The Object Model is the built-in representation of the information manipu-
lated in the UML tool set and stored in UML (.u2) files. The Object Model 
is composed of approximately 200 classes and numerous attributes and asso-
ciations. When you use Tcl scripts or a program based on the COM or C++ 
API certain API functions require you to know and understand the details of 
this object model, since these API functions operate directly on the Object 
Model classes and their features.

Contact IBM Rational Tau Support for more information about the Object 
Model. 

Metamodel

A Metamodel is a UML package stereotyped by «metamodel». A metamodel 
will provide a view on the information stored in the UML models. In practise 
the used metamodel will determine what an end user will see in the Model 
View, the Property Pages and in the Model Navigator. If you want to develop 
an advanced customized addition for a specific application domain you 
might find it useful to create a new view using a new metamodel. When 
doing this, studying an existing metamodel, such as TTDMetamodel, is of 
great help.

Profiles

A Profile is a UML package stereotyped by «profile». The profile mecha-
nism will give you a convenient way to:

• Attach extra information to various UML model elements.

• Introduce new concepts to be used in the application modeling.

• Introduce new symbols that can be used in the graphical editors.
June 2009 IBM Rational Tau User Guide 2013

http://support.telelogic.com/en/tau/



Chapter 77: Customizing IBM Rational Tau
When you design profiles they must always be based on a specific meta-
model. Most often the TTDMetamodel that is provided in the installation is 
your best choice so you do not need to create a new metamodel when you 
want to add extra information to an element in the UML model.

The relationship between the Object Model, metamodels and profiles is illus-
trated in Figure 271 on page 2014.

Profiles define extensions to the information stored in UML models. Profiles 
are defined based on metamodels. Metamodels provide a view of the under-
lying repository and are defined in terms of the built-in Object Model.

Add-ins

One more concept is important to understand when designing a customized 
addition. This is the concept of Add-Ins. You will use an add-in as a con-
tainer where you will put your profiles, metamodels, Tcl scripts, COM- or 
C++-based applications and other files that you want to include in a custom-
ized addition. This makes the add-in concept crucial when extending the 
built-in functionality and most of this chapter will be centered around dif-
ferent things that can be included in Add-Ins.

The IBM Rational Enterprise Architect for DoDAF is an add-in that is deliv-
ered separately with templates and help information. 

SysMLis an add-in that is delivered inside IBM Rational Tau. 

Figure 271
2014 IBM Rational Tau User Guide June 2009



Introduction
Stereotypes and attributes

A number of profiles are available in UML packages that are supplied with 
IBM Rational Tau. These packages are located in the model beneath the node 
named Library. 

By applying stereotypes from these profiles, and providing values for the at-
tributes they contain, the settings that controls various tool features can be 
changed. One example out of many is the attributes that control the code gen-
eration settings, model-to file mapping scheme and adoption of the conven-
tions used by the host computer, operating system, make and compiler. 

Launch from command line

Launching IBM Rational Tau with a Tcl script as argument

IBM Rational Tau can be started from the command-line with a Tcl script as 
argument. In addition, parameters can be passed to the script. When IBM Ra-
tional Tau is started it will run the provided script.

Example 618: Start IBM Rational Tau from the command-line ––––––––––––––––

Windows

VCS.EXE -Script u2merge.tcl forceVersion1 
reviewDifferencesAlways suppressSetupNever false 
C:/work/version1/project.ttp C:/work/version1/project.ttp 
C:/work/version2/project.ttp [C:/work/ancestor/project.ttp 
[C:/work/version2ancestor/project.ttp]]

UNIX

tau -script u2merge.tcl forceVersion1 
reviewDifferencesAlways suppressSetupNever false 
/home/user/version1/project.ttp 
/home/user/version1/project.ttp 
/home/user/version2/project.ttp 
[/home/user/ancestor/project.ttp 
[/home/user/version2ancestor/project.ttp]]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This will start IBM Rational Tau with the u2merge.tcl script. The parameters 
following the script’s name are then passed to the script.

For an example of how to parse the parameters in Tcl, please refer to:

$TAU_INSTALLATION/etc/u2merge.tcl.
June 2009 IBM Rational Tau User Guide 2015



Chapter 77: Customizing IBM Rational Tau
Note
The –Script option must be the last option on the command-line and cannot 
be mixed with the following feature – loading a *.ttw or *.ttp file. The script 
itself must do the loading using the Tcl API.

Launching IBM Rational Tau with a Workspace (*.ttw) or Project 
(*.ttp)

IBM Rational Tau can be started with a specified Workspace or Project.

Example 619: Start IBM Rational Tau with a Project––––––––––––––––––––––––

Windows

VCS.EXE c:\MyProject\Version1\MyProject.ttp

UNIX

tau /home/me/MyProject/Version1/MyProject.ttp

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Suppressing the splash screen

To suppress the IBM Rational Tau splash screen on Windows:

VCS.EXE -SuppressSplashScreen

To suppress the IBM Rational Tau splash screen on UNIX: 

tau -SuppressSplashScreen

Note
The described command-line parameters are case-insensitive.
2016 IBM Rational Tau User Guide June 2009



Add-Ins
Add-Ins

Application areas for add-ins

Add-ins provide the basic mechanism that you can use to package an own-
developed set of features. There are a number of built-in add-ins in IBM Ra-
tional Tau that are used to enable features required to support e.g. generation 
of application code.

Activating add-ins

Add-ins are activated and de-activated from the Add-ins tab, which is found 
in the Tools menu, select Customize.

The built-in add-ins are found in the ‘addins’ subdirectory of the installation 
directory, typically:

<installation path>/addins/

Each add-in is placed in its own subdirectory with the following contents:

• An ‘<addin name>.mod’ file

• A subdirectory called bin containing the executable files or shared li-
braries that are part of the add-in.

• A subdirectory called ‘Script’ containing Tcl script files

• A subdirectory called ‘Etc’ containing other files, often UML models 
with profile definitions.

The ‘<addin name>.mod’ file defines various properties of the add-in and 
also lists the other files that are contained in the add-in.

User add-ins are located in the user specific directory:

$HOME/IBM Rational/IBM Rational Tau 2/addins

The directory structure for user add-ins is the same as for built-in add-ins.

New add-ins are placed in the user add-ins directory. When you Create a new 
addin module through IBM Rational Tau this directory is created if it does 
not already exist.

User defined add-ins can be stored in locations defined by the environment 
variableTAU_USER_ADDINS_DIR. When this variable is set new add-ins will 
be stored in this location. 
June 2009 IBM Rational Tau User Guide 2017



Chapter 77: Customizing IBM Rational Tau
%TAU_USER_ADDINS_DIR%/addins

Add-ins can also be placed in the following locations available for add-ins 
shared by a group of users.

Team add-ins are located in the default directory:

$HOME/IBM Rational/Shared/TeamAddins

The team add-ins location can be overridden with the environment variable 
TAU_TEAM_ADDINS_DIR to this location.

%TAU_TEAM_ADDINS_DIR%/

Company add-ins are located in the default directory:

$HOME/IBM Rational/Shared/CompanyAddins

The company add-ins location can be overridden with the environment vari-
able TAU_COMPANY_ADDINS_DIR to this location.

%TAU_COMPANY_ADDINS_DIR%/

The predefined URN mappings u2useraddins, u2teamaddins and 
u2companyaddins exists. They are directed to the add-in directories and 
supports both the cases when the environment variables are set and when 
they are not. These URN mappings can not be overridden.

Contents and structure of an add-in

In the example below is discussed the contents of an add-in. You can create 
your own add-ins, by creating the necessary file set and placing it in the add-
ins directory. 

Create a new addin module

To set-up an add-in through IBM Rational Tau you go to the Tools menu, se-
lect Customize, then point to the Add-ins tab. Click Create and the “Create 
a new addin module” dialog will open. Entering values in the different tabs 
will result in a .mod file for your add-in. 

Example 620: A module file for an add-in ‘MyAddin’ –––––––––––––––––––––––

An example of a .mod file for an add-in ‘MyAddin’ is the following:

[MyAddin]
"scope"="PROJECT"
"version"="1.0"
2018 IBM Rational Tau User Guide June 2009



Add-Ins
"longname"="My Addin"
"description"="Gives an example of a .mod file."
"product"="u2"
[MyAddin/Bin]
"listBin"=""
[MyAddin/Script]
"listScript"="MyAddinScript.tcl"
[MyAddin/Etc]
"listEtc"="MyAddinProfile.u2"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
• In Example 620 on page 2018 the string “MyAddin” corresponds to the 

Identifier field in the “Create a new addin module” dialog. This is the 
string that will be shown in the Add-ins tab to check if the add-in is acti-
vated. 

• The "scope" property defines when the add-in is loaded. 

– If the value is "PROJECT" the add-in is only loaded when a project is 
loaded. 

– If the value is "GENERAL" the add-in is loaded even if IBM Rational 
Tau is started without any project.

• "version", "longname" and "description" are used in various dia-
logs to give a user information about the add-in. "longname" corre-
sponds to the Name field in the "Create a new addin module" dialog. 
The text in "description" is shown in the dialog where a user can 
switch on/off different add-ins. 

• "product" specifies what tool the add-in is intended for. Add-ins in-
tended for UML projects should for compatibility reasons use the value 
"u2" as product. If "scope" is set to "GENERAL", "product" should be 
set to "". When editing the value through the "Create a new addin 
module" dialog, the choice IBM Rational Tau will set product to "u2". 

• The "listBin" property is usually not necessary in a customized addi-
tion, you can leave this empty. The “listBin” property corresponds to 
the files listed in the Binaries tab.

• The "listScript" property corresponds to the files listed in the Scripts 
tab. The Tcl scripts mentioned in this list will be executed when a user 
switches on the add-in. You must enter the names of all Tcl scripts that 
you want automatically invoked here. 

• The “listEtc” property corresponds to the files listed in the Other files 
tab. The “listEtc” is used for *.u2 files which are to be loaded when 
loading a project which has the add-in selected. The referenced .u2 files 
will be loaded as libraries, and their contents thus appear under the Li-
brary folder in the Model View.
June 2009 IBM Rational Tau User Guide 2019



Chapter 77: Customizing IBM Rational Tau
Once you have placed your .mod file in the appropriate subdirectory, your 
add-in will show up in the list of available add-ins found in the Customize 
dialog Add-Ins tab.

Note
To insert multiple file names when you edit the .mod file with a text editor, 
the names must be separated by semicolons.

Add-in Tcl script execution

Every Add-in that wants to add functionality to IBM Rational Tau (i.e. not 
just load a UML library or profile) must have a Tcl script which will be exe-
cuted when the Add-in is activated in IBM Rational Tau. Although all Add-
in functionality can be implemented in Tcl using the Tcl API, it is also pos-
sible to do some part of the implementation using the COM API or the C++ 
API and then invoke this functionality from the Tcl script using the Tcl com-
mand u2::InvokeAgent.

When the Add-in is deactivated in IBM Rational Tau a Tcl procedure called 
BeforeUnload will be executed if present. This procedure can be used to 
perform finalization tasks, such as unloading libraries or profiles that were 
loaded when the Add-in was activated.
2020 IBM Rational Tau User Guide June 2009



Customizing the User Interface
Customizing the User Interface

General

The simplest way to extend the user interface of IBM Rational Tau is to use 
Add-Ins with Tcl scripts.

Writing the add-in

The following shows how to extend “MyAddin”, discussed in section “Add-
Ins” on page 2017, with a simple script. The script adds a menu called My-
Menu with one menu entry MyCommand that upon invocation displays a 
message box. 

Create a Tcl file called MyAddinScript.tcl in the script subdirectory of 
your add-in. Then copy and paste the following text to MyAddin-
Script.tcl:

std::Output "MyAddin loading ... "

package require commands
package require dialogs

proc OnMyCommand {cmd} {
  std::MessageDialog -name "My message dialog" -message 
"This is my message!"
}

proc OnTrue {e} {
  return 1
}

proc Init {} {
std::AddCommand -variable cmdMyCommand -name "My 

command" -statusmessage "My command status msg" -tooltip 
"My tooltip" -imagefile "" -OnActivateCommand 
OnMyCommand -OnEnableCommand OnTrue
std::AddMenu -variable MyMenu -commands { cmdMyCommand 

} -path { &MyMenu } -position {after &Tools} 
}

Init

std::Output "Done.\n";
June 2009 IBM Rational Tau User Guide 2021



Chapter 77: Customizing IBM Rational Tau
Loading the add-in

If you activate the add-in through the “Tools->Customize” dialog, an extra 
menu will show up. Select the “My Command” entry in this menu and a 
message box with the specified text will pop up. 

Note
Remember to load a UML project before activating the add-in, since the 
add-in was defined with “PROJECT” scope!

See also

“User Interface Add-in Specific Commands” on page 2244 in Chapter 81, 
Tcl API

“General Purpose Commands” on page 2218 in Chapter 81, Tcl API.
2022 IBM Rational Tau User Guide June 2009



Profiles
Profiles

Application areas for profiles

Profiles are used to extend the UML language and can:

• Add more information to existing UML concepts. 

• Introduce new concepts used together with the built-in UML concepts. 

• Introduce new graphical symbols used together with the built-in symbols 
in the UML diagrams.

• Introduce customized behavior to IBM Rational Tau in the form of 
Agents.

A profile is defined in UML as a «profile» stereotyped package. To create a 
profile you thus create a usual package and then apply the predefined «pro-
file» stereotype to the package. Inside the «profile» package stereotypes are 
used to define the new concepts and the attributes of stereotypes are used to 
define extra information to be stored in the UML models.

Note
All top-level definitions placed in a profile are visible without qualification 
from all places in the user model. This is because when a profile is loaded a 
top-level <<access>> dependency is automatically added for it.

Creating a profile

The following section shows how to define a profile that adds two pieces of 
information to each class in the UML models:

• The author of the class (a character string), and

• The creation date of the class (also a character string).

To define this profile you only need to do the following:

1. Create a «profile» package. Put the package in a separate file. This is not 
strictly needed but it simplifies the application of the profile.

2. Add a class diagram to the «profile» package.

3. Create a new stereotype in the diagram. Call it for example “ClassInfo”.
June 2009 IBM Rational Tau User Guide 2023



Chapter 77: Customizing IBM Rational Tau
4. In the Model View: Open the TTDMetamodel package that you can find 
beneath the Library node. Find the class called “Class” in TTDMeta-
model and drag it into the class diagram, next to the “ClassInfo” stereo-
type you created above. Notice that “Class” is stereotyped as a «meta-
class», more about this later.

5. Define two attributes on “ClassInfo”: “Author” and “CreatedDate”, both 
typed as Charstring.

6. Create an extension line from “ClassInfo” stereotype to the “Class” class.

7. Add “1” in the text field association with the extension line.

8. Done! The result should look like in Figure 272 on page 2024

You have now created a profile that when applied will extend all classes in a 
model with information about author and creation date. From a user’s point 
of view the author and creation date will appear as two entries in a 
‘ClassInfo’ page among the other property pages for his classes.

Testing the profile

To test the profile create another class in your diagram and open the Property 
pages for the class. You should now find your newly created class containing 
the author and creation date fields in the ClassInfo property page.

Figure 272
2024 IBM Rational Tau User Guide June 2009



Profiles
Deploying the profile for use

The next part of the profile design is to make it possible for other users to 
benefit from your new profile. The recommended way to do this is to use the 
add-in mechanism. To accomplish this you need to do three things:

• Add the profile in the Etc subdirectory in an add-in

• Add a LoadLibrary command in one of the Tcl scripts that are part of 
the add-in. Remember that the Tcl script must be mentioned in the 
"listScript" property.

• Mention the file containing the profile in the .mod file of the add-in. This 
is strictly speaking not necessary, but is recommended for compatibility 
with future versions of the tool.

Assuming that the profile is stored in a file called “MyAddinProfile.u2” in 
the MyAddin/Etc directory the following code can be added to a Tcl script 
in the add-in to load the profile:

set ProfilePath [std::GetUserAddinsDirectory]/MyAddin/Etc/MyAddinProfile.u2
std::Output "Loading MyAddinProfile.\n"
u2::LoadLibrary $ProfilePath

As an alternative to using a Tcl script for loading your profile, you may use 
the “listEtc” field of the .mod file to specify which .u2 files to load.

You can also add a “urn” reference to a .mod file:

[MyAddin/Etc]
"listEtc"="urn:u2useraddins:MyAddin/Etc/MyAddinProfile.u2"

Note
If a profile is separated into several .u2 files, make sure that only one file is 
created for the top level of the profile. Also, mention the files in a hierar-
chical order in the .mod file.

More about profiles

When the add-in is switched on you will find your new profile among the 
other in the Library node in the Model View.

This is a simple example of how to use a profile to add more information to 
existing UML classes. It is also possible to use a stereotype as a classification 
means to refine the semantics of a general UML concept. For example con-
sider to introduce a new concept into UML, “Documentation artifact”, and 
make it possible to mark an artifact as a documentation artifact. To do this 
you define a profile as above, but call the stereotype “Documentation” and 
June 2009 IBM Rational Tau User Guide 2025



Chapter 77: Customizing IBM Rational Tau
make it extend the “Artifact” Metaclass from TTDMetamodel, instead of the 
“Class” metaclass. Furthermore write “0..1” instead of “1” on the extension 
line. The result should look like in Figure 273 on page 2026.

It is also possible to define a special icon that can be used in diagrams to show 
«Document» artifacts. To accomplish this you need to apply the predefined 
stereotype TTDStereotypeDetails::icon to the «Document» stereotype that 
you created. When you have done this you can define the path to a file con-
taining a bitmap that will be used for all «Document» icons in the Icon prop-
erty page for the «Document» stereotype. The path name given in the “Icon 
File” property is an absolute path, but you can also use $INSTALLPATH to 
refer to the installation directory.

When you have done this a user can show your bitmap instead of the usual 
artifact symbol in the diagrams, by switching on ‘Icon Mode” in the shortcut 
menu for artifact symbols stereotyped by «Document».

For advanced users it is also possible to customize how the stereotype at-
tributes are shown in the Property pages, essentially defining the editing con-
trols used to display and edit the values. The details on how to accomplish 
this is defined in a built-in Profile, the TTDExtensionManagement Profile 
profile. This profile defines a number of stereotypes that can be applied to 
stereotype definitions in «profile» packages. You can find out more about 

Figure 273:
2026 IBM Rational Tau User Guide June 2009



Profiles
these possibilities by investigating the TTDExtensionManagement profile 
itself. It is available in the installation. Just open any UML model and you 
will find it in the Library node.

See also

“Customizing the Properties Editor” on page 94

“Metamodel” on page 382
June 2009 IBM Rational Tau User Guide 2027



Chapter 77: Customizing IBM Rational Tau
Model Access

Application areas for model access

The Add-Ins discussed in this section have only changed the appearance of 
the tool, either by adding menus and dialogs or by introducing stereotypes 
and graphical icons. However, no real new functionality has been added. 
Typically useful features will require access to the currently loaded model, 
either a read-only access or read-write access to modify the model. After all, 
IBM Rational Tau is a modeling tool and the purpose of the environment is 
to create UML models of various kinds.

Adding model access functionality

IBM Rational Tau provides APIs to add new functionality that can access the 
model loaded in the tool. These APIs are available both through scripting 
(Tcl API and COM API) and from compiled code (C++ API and COM API). 
The decision of which to use is a trade-off between the development effort 
required and of the execution performance required. Scripting can be benefi-
cial during prototype work and when writing small extensions that are exe-
cuted interactively and that does not require too extensive computations. 
Some examples are simple report generators and small transformation 
scripts. When the application is more advanced a compiled tool coded using 
the C++ API or the COM API is more suitable. In particular since the perfor-
mance will be substantially better, but also because of the usually better de-
bugging possibilities. A code generator that produces code in a programming 
language based on a UML model is a typical example.

Using the Tcl API

The following illustrates how to use the Tcl API, by further extending the 
script in MyAddin. The objective is to change the command in the “MyAddin” 
menu to compute some metrics on how the Author attribute for classes is 
used. More precisely, count the number of classes in the loaded module and 
check how many of them has an Author defined.

The following Tcl script will accomplish this:

set NoOfClasses 0
set NoOfAuthorClasses 0

proc CheckClass {e} {
global NoOfClasses
2028 IBM Rational Tau User Guide June 2009



Model Access
global NoOfAuthorClasses

if { [u2::IsKindOf $e Class] } {
set NoOfClasses [expr $NoOfClasses + 1]
set Author [u2::GetTaggedValue $e "ClassInfo (. Author .)"]
if {$Author != 0} {

set NoOfAuthorClasses [expr $NoOfAuthorClasses + 1]
}

}
}
proc OnMyCommand {cmd} {
   global $std::activeproject
   global NoOfClasses
   global NoOfAuthorClasses
   set ActiveModel [std::GetModels -kind U2 -project 
$std::activeproject]
   u2::MetaVisit $ActiveModel CheckClass
   set str "The model contains $NoOfClasses classes, of which 
$NoOfAuthorClasses have an author."
   std::MessageDialog -name "Author report" -message $str
 }

If you replace the OnMyCommand procedure in the MyAddinScript.tcl from 
section “Customizing the User Interface” on page 2021 with the code above, 
then the metrics dialog will pop up if a user selects the “My command” al-
ternative in the “My Menu” menu.

The main Tcl commands used in the script are the u2::MetaVisit com-
mand to simply traverse the model, and the u2::GetTaggedValue to extract 
the Author of the classes you find. 
June 2009 IBM Rational Tau User Guide 2029



Chapter 77: Customizing IBM Rational Tau
Adding Semantic Checks

Application areas for semantic checks

When defining Add-Ins like code generators there is a special kind of exten-
sion that is particularly useful: to define specific semantic checks that are 
performed together with the built-in semantic checks when the user orders a 
Build or Check command from the Build menu or the tool-bar. 

One particularly useful application for this feature is to check that the infor-
mation specified in profiles is used correctly. 

Example 621: Checking the Author attribute is given a value –––––––––––––––––

The code below shows how to test if the Author attribute has been given a 
value for all classes in the current model. This is checked by adding the fol-
lowing Tcl code to the MyAddinScript.tcl script introduced in the pre-
vious sections:

proc SemCheckClass {e} {
set Author [u2::GetTaggedValue $e  "ClassInfo (. 

Author .)"]
if {$Author == 0} {
u2::SemMessage werror "No Author" $e

}
}

u2::CreateSemGroup "/" "MyChecks"

u2::CreateSemRule "/MyChecks" "CheckAuthor" Class 30 
"SemCheckClass"

This script adds a new group of semantic checks called “MyChecks” and then 
adds a rule “CheckAuthor” to this group. The actual semantic check is per-
formed by the procedure SemCheckClass that automatically will be called 
for all classes in the model.

Note
When the add-in gets deactivated, it is important to delete semantic rules 
and/or groups that were added upon add-in activation. Failure to do so will 
make the semantic checker attempt to call your Tcl script when it no longer 
is available. This can lead to a crash. Use the BeforeUnload procedure to 
delete added rules and/or groups:

proc BeforeUnload {} {
u2::DeleteSemEntity "/" "MyChecks"
2030 IBM Rational Tau User Guide June 2009



Adding Semantic Checks
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

It is also possible to introduce new semantic checks using Agents which 
trigger on Semantic checker events. This makes it possible to implement the 
checks not only using Tcl scripts, but also using the C++ API or the COM 
API.

See also

“Semantic Checker Commands” on page 2265 in Chapter 81, Tcl API. 
June 2009 IBM Rational Tau User Guide 2031



Chapter 77: Customizing IBM Rational Tau
Adding Code Generators

General

A code generator is divided into several components:

• A profile package that defines a build stereotype.

• The actual code generator, commonly in the form of an executable or 
agents.

• Additional run-time libraries to be used with the generated code.

In most cases these are all bundled into an Add-in.

Build Stereotype

This section contains an example of a fictional C# code generator that defines 
two build operations.

The build stereotype «C#» inherits the predefined «build» stereotype and de-
fines the attribute "Verbose" (which when enabled causes the code generator 
to emit additional messages).  «C#» also defines the two build operations; 
“Generate” which generates C# code from the model and “Debug” that con-
nects to an external debugger. 

Figure 274:
2032 IBM Rational Tau User Guide June 2009



Adding Code Generators
A build artifact that is stereotyped by the «C#» stereotype will show the two 
choices “Generate” and “Debug” in the context menu if the user right-clicks 
on it.

The operation "‘C#’::Generate" is stereotyped by «bopABW». This specifies 
that when the operation is selected in the build artifact context menu an exe-
cutable ("ABWGen.exe") will be launched using the command line argu-
ment "-a’C#Profile’::GenerateAgent".

The operation "‘C#’::Debug" is stereotyped using «bopAgent» and has a de-
pendency to the agent "DebugAgent". This specifies that when the operation 
is selected, the IBM Rational Tau agent is invoked.

ABWGen

The executable ABWGen is used to execute agents in an external process. It 
is intended to be used in conjunction with build operations defined using the 
stereotype «bopABW».

Note
Since ABWGen runs in an external process the agents it invokes are non-in-
teractive agents. Agents implemented in TCL can therefore not be used with 
ABWGen.

Syntax
ABWGen [options] [input-file]

input-file
If input-file is given, that is used for reading the build parameters instead 
of stdin. This argument is mainly intended to be used in debugging.

options
-v

Enables verbose mode. Additional messages are printed.

-p<profile-file-name>
Name of a u2 file to load as a library. This library can contain agents.

-E<event-guid>
Event to emit. This is a tool event which can trigger one or many 
agents.

-e<event-name>
Event to emit. The event is specified using a fully qualified name. 
This is a tool event which can trigger one or many agents.
June 2009 IBM Rational Tau User Guide 2033



Chapter 77: Customizing IBM Rational Tau
-A<agent-guid>
Agent to call. 

-a<agent-name>
Agent to call. The agent is specified using a fully qualified name.

Except for ‘-v’, each option can be used any number of times.

If no event or agent is specified the default event with the GUID 
"@TTDAB@Generate" is used.

Execution

The program executes the agents and events in the following order:

1. Agent parameters are formed: 

error list : u2::ITtdMessageList
selection : u2::ITtdEntity[*]

The agent context is always the build artifact.

The error list can be used by invoked agents to report messages to the 
Build tab. 
The selection list corresponds to elements that are selected in the Model 
View when invoking the build operation.

2. “Before processing” is called for each event given using the "-e" and "-
E" options in the order they appear on the command line.

3. Each of the agents listed using the "-a" and "-A" options is called in the 
order they appear on the command line.

4. “After processing“ is called for each event given using the "-e" and "-E" 
options in the reversed order they appear on the command line.

See also

“Agent Invocation Triggered by a Tool Event” on page 2057
2034 IBM Rational Tau User Guide June 2009



Adding Importers
Adding Importers
An importer is a utility which creates a UML model (or parts of a model) 
based on some other source of information, which typically is external to 
IBM Rational Tau. Importers are used for different purposes, for example

• to analyze or visualize information using UML models and diagrams

• to import external software interfaces, to be able to access them from 
IBM Rational Tau

• to migrate source code or models developed in different tools and lan-
guages to IBM Rational Tau

The user-interface in IBM Rational Tau through which importers are run is 
called the Import Wizard. It consists of a set of dialogs which allow you se-
lect which importer to run, to specify various options for the selected im-
porter, and finally to perform the actual import. 

To open the Import Wizard:

1. Select an entity in the Model View. Some importers may use the selected 
entity as the model context where new model elements are created. 
Others may always create new elements at a predetermined location in 
the model.

2. From the File menu select Import....

IBM Rational Tau ships with a set of built-in importers which support im-
porting UML models from a wide variety of sources. Depending on which 
add-ins that are activated different importers will be available in the Import 
Wizard.

Creating a New Importer

You can define your own custom importer, integrated with the Import 
Wizard, by defining a class which realizes the ImportWizard interface.
June 2009 IBM Rational Tau User Guide 2035



Chapter 77: Customizing IBM Rational Tau
This interface is defined in the TTDImporters profile. In that profile you can 
also find those classes realizing this interface which correspond to the built-
in importers in IBM Rational Tau.

The steps for creating a new importer are:

1. Create a class which realizes the ImportWizard interface. You typically 
place the class in a separate package and save it in a separate file, which 
can be loaded as a library using an add-in (see Creating a profile for more 
information).

2. Give the class a descriptive name. The name you choose will appear in 
the list of importers in the Import Wizard.

3. You may apply the <<icon>> stereotype on the class in order to specify 
an icon for the importer. The icon will appear in the list of importers in 
the Import Wizard.

4. Give the class a comment which describes what it does. The comment 
text will be displayed when selecting the importer in the Import Wizard.

5. Implement the ImportWizard interface, by defining the operations Run 
and CanBeApplied as Agents in your class. See Run and CanBeApplied 
below for more information about these operations.

CanBeApplied

The model context of this agent is the context of the importer, i.e. the entity 
that has been selected when starting the Import Wizard. If no entity was se-
lected, the context will be the top-level model node.

The agent should assign a boolean value to the ‘result’ out parameter which 
tells the Import Wizard whether or not the importer can be run. If it can be 
run, it should set the parameter to ‘true’, otherwise to ‘false’.

Figure 275 The ImportWizard interface

<<interface>>
ImportWizard

Run( messages:ITtdMessageList[0..1])
CanBeApplied(outresult:Boolean)
2036 IBM Rational Tau User Guide June 2009



Adding Importers
CanBeApplied makes it possible to implement a dynamic condition for when 
an importer can be used or not. For example, the importer may require a par-
ticular kind of context element to be selected, or it may require the presence 
of certain libraries.

Run

The model context of this agent is the context of the importer, i.e. the entity 
that has been selected when starting the Import Wizard. If no entity was se-
lected, the context will be the top-level model node.

This agent is responsible for implementing the user interface of the importer. 
It will be called when the importer is selected, and OK is pressed in the Im-
port Wizard. The agent can either open a GUI (for example a dialog) inside 
IBM Rational Tau, or it can launch an external program which provides the 
user interface.

If the agent needs to report any messages while the user is working with the 
GUI it can use the ‘messages’ parameter, if provided. However, often it is 
better to report such messages directly in the GUI.

Import

Some importer classes define an Import agent which performs the actual im-
port operation. Parameters to this agent then correspond to importer options. 
Note that Import is not part of the ImportWizard interface, since different 
importers have different options.

If you choose to define an Import agent for your importer class the imple-
mentation of the Run agent typically uses it when performing the import 
from the user interface.

One benefit from exposing the import operation as a separate agent, instead 
of embedding it inside Run, is that the importer can be programmatically ac-
cessed from the APIs (using the InvokeAgent API method).

An Example

As an example of how to add a custom importer let’s create a simple direc-
tory importer using the Tcl API. This importer is a simplified version of the 
built-in File/Folder Importer.
June 2009 IBM Rational Tau User Guide 2037



Chapter 77: Customizing IBM Rational Tau
First we add a class that realizes the ImportWizard interface, and we give it 
a name and a comment. We define the operations Run, CanBeApplied and 
Import in the class, and turn them into Tcl agents by selecting the command 
Utilities - Turn into Tcl agent in the context menu of each operation.

The result should look something like this:

We continue by implementing the CanBeApplied agent. This simple im-
porter shall always be available so we just set the ‘result’ out parameter to 
true:

[[
proc CanBeApplied { triggeredBy timing context server 
agentParameters } {
  upvar 1 $agentParameters ap
  lset ap 0 1
}
]]

Note that ‘result’ is the first (and only) agent parameter (at index 0) and true 
is represented as 1 in Tcl.

Now we are ready to open the Import Wizard to make sure we will find our 
new importer in the list of available importers.

Figure 276 Definition of a custom importer

<<interface>>

::TTDImporters::ImportWizard

Run ( messages : ITtdMessageList [0 .. 1])
CanBeApplied (out result : Boolean)

 

'Import Directory'

<<agent(.implKind = TCL.)>> Run (messages : ITtdMessageList [0 .. 1])
<<agent(.implKind = TCL.)>> CanBeApplied (out result : Boolean)
<<agent(.implKind = TCL.)>> Import ( dir : Charstring)

  

//
Imports the contents 
of a file system 
directory as UML 
artifacts

 

2038 IBM Rational Tau User Guide June 2009



Adding Importers
As we can see we get a default icon for our importer. We could change this 
by applying the <<icon>> stereotype if we want to.

If we try to run our importer now nothing will happen. That is because we 
did not yet implement the Run agent. Let’s do that now:

[[
proc Run { triggeredBy timing context server 
agentParameters } {
  upvar 1 $agentParameters ap
  set dir [std::DirectoryDialog]
  set model [u2::GetModel $context]
  set importAgent [u2::FindByName $model "'Import 
Directory'::Import"]
  set p [list $dir]
  u2::InvokeAgent $model $importAgent $model p
}
]]

As you can see the Run agent, which implements the GUI of our importer, 
just opens a standard dialog (using Model Commands) which allows the user 
to select a directory in the file system. It then invokes the Import agent 

Figure 277 Import wizard including a custom importer
June 2009 IBM Rational Tau User Guide 2039



Chapter 77: Customizing IBM Rational Tau
passing the selected directory path as an agent parameter. Note that we have 
assumed that our class ‘Import Directory’ is placed in a <<profile>> 
package, so that it is accessible without including the name of the package in 
the qualifier passed to u2::FindByName. See the note in Application areas 
for profiles for more information about profile packages, and their impact on 
the accessibility of contained definitions. 

As an alternative we could have used u2::FindByGuid for finding the Import 
agent.

Now, the only thing that remains is to write the implementation of the 
Import agent:

[[
proc Import { triggeredBy timing context server 
agentParameters } {
  upvar 1 $agentParameters ap
  set dir [lindex $ap 0]
  set model [u2::GetModel $context]
  set pkg [u2::Create $model "Package"]
  u2::SetValue $pkg "Name" $dir
  set files [glob -directory $dir "*.*"]
  foreach f $files {
    set a [u2::Create $pkg "Artifact"]
    regsub -all {\\} $f {/} path
    u2::SetValue $a "Name" $path
    set ie [u2::Parse $model "file (. path = 
\"$path\".)" -parseAs Expression]  
    u2::SetEntity $a "StereotypeInstance" $ie
  }
}
]]

As you can see the Import agent creates a top-level package and sets its 
name to the selected directory. It then reads the contents of that directory on 
the file system using the Tcl glob command. For each file that is found a cor-
responding file artifact is created. Note that we must substitute backslashes 
in the path to make sure u2::Parse receives a text in valid U2 syntax.

Now we can test our new importer by opening the Import Wizard, selecting 
the ‘Import Directory’ importer, and browse for a directory on the file 
system. Here is an example of what the resulting model could look like:
2040 IBM Rational Tau User Guide June 2009



Adding Importers
We can open the files in the IBM Rational Tau text editor by double clicking 
on the file artifacts.

XML Based Importers

A common kind of importers are those that read XML files as input. In order 
to facilitate the implementation of such custom XML based importers, IBM 
Rational Tau has a small XML framework which among other things sup-
ports parsing XML into a UML representation. See Importing XML Docu-
ments for more information.

Importers Generating Diagrams

Often an importer provides the possibility to visualize imported elements in 
UML diagrams. If you want to support this with your custom importer you 
should do it by means of invoking diagram generators. See Generate Dia-
gram to learn more about diagram generators.

A number of built-in diagram generators are defined in the TTDDiagramA-
gents library. They can be used from an importer in order to generate dia-
grams. See Invoking Diagram Generators Programmatically for more details.

Figure 278 Result from importing a directory containing 3 text files
June 2009 IBM Rational Tau User Guide 2041



Chapter 77: Customizing IBM Rational Tau
Adding Diagram Generators
It is possible to create your own diagram generators in order to generate 
custom diagrams. Diagram generators are implemented by means of Agents 
which use the IBM Rational Tau APIs for creating the diagram.

To create a new diagram generator:

1. Select an element of the kind that you want to generate a diagram for. An 
element of the selected kind will be passed as the context entity for your 
diagram generator agent.

2. Select Create new diagram generator... in the Generate Diagram con-
text menu.

3. In the dialog specify a name and description of the new diagram gener-
ator, as well as a location in the model where it shall be stored. It can be 
a good idea to put all diagram generators in a common place, for example 
in a profile package stored in a separate .u2 file. Thereby you can include 
and use your saved diagram generators in multiple projects.

4. If you want to use the Tcl API for implementing your diagram generator 
agent, check the Generate Tcl stub implementation checkbox.

5. Press OK to create the diagram generator.

A diagram generator is represented in the model as an ordinary agent with 
the <<diagramGenerator>> stereotype applied.

When you have created a diagram generator in the model, it immediately be-
comes available in the list of diagram generators applicable on entities of the 
selected kind. If you want your diagram generator to apply for more kinds of 
entities, you should create additional <<agent command>> dependencies for 
the new diagram generator agent. By editing these <<agent command>> ste-
reotype instances in the Properties Editor it is also possible to specify default 
values for Diagram Generation Parameters.See Agent Commands for more 
information about the <<agent command>> stereotype.

Standard Diagram Generator Parameters

In addition to the custom diagram generator parameters which you may de-
fine (using ordinary agent parameters) the diagram generator framework will 
pass some standard parameters which must be correctly handled by the dia-
gram generator agent. In total, a diagram generator receives the following pa-
rameters when invoked:
2042 IBM Rational Tau User Guide June 2009



Adding Diagram Generators
1) inout diagram : ITtdEntity

2) inout synthesizedEntities : ITtdEntity[*]

3...N) <custom diagram generator specific parameters>

If the ‘diagram’ parameter is NULL the diagram generator agent is respon-
sible for creating a new diagram. It can place it wherever it likes, but a 
common choice is to place it below the context element. Note that ‘diagram’ 
is an inout parameter, which means that the agent must set it up to refer to the 
newly created diagram before returning control to the framework.

If the ‘diagram’ parameter is not NULL it will refer to an already generated 
diagram. The diagram generator agent is then responsible for regenerating 
that diagram. The diagram will already be empty (that is taken care of by the 
framework) which simplifies the implementation of the diagram generator 
agent.

The ‘synthesizedEntities’ parameter is a list of entities which may be created 
by the diagram generator, in addition to the generated diagram. This allows 
a diagram generator to visualize information which, at the time of invocation, 
doesn’t exist explicitly in the model. For example, a diagram generator may 
compute certain relationships between model entities, and represent these as 
dependencies in the model. By adding the dependencies to the ‘synthesize-
dEntities’ list the framework can keep track of such synthesized entities. 
When a diagram generator agent is invoked in order to regenerate a previ-
ously generated diagram ‘synthesizedEntities’ will contain the entities which 
were created when generating the diagram. They can thus be deleted by the 
agent, before computing the new information and regenerating the diagram.

A diagram generator which will synthesize additional entities should set the 
boolean attribute ‘synthesizesAdditionalEntities’ in the <<diagramGener-
ator>> stereotype to true.

Implementing a Diagram Generator Agent

A diagram generator agent may use any mechanism available in the IBM Ra-
tional Tau APIs for creating and populating the diagram. However, since cer-
tain typical tasks are common for many diagram generators, and some of 
these tasks are non-trivial to implement, IBM Rational Tau provides a dedi-
cated library with utility agents which can be used by a diagram generator 
agent implementation.
June 2009 IBM Rational Tau User Guide 2043



Chapter 77: Customizing IBM Rational Tau
The library is called TTDDiagramAgents and contains utility agents which 
among other things facilitates

• Adding symbols and lines to a class diagram.

• Adding symbols and lines to a sequence diagram.

• Setting an appropriate default size on symbols.

• Automatically route lines in a diagram to make them look nice.

• Automatically layout symbols in a diagram according to different layout 
algorithms.

For more detailed information about these agents see their documentation in 
the diagrams available in the TTDDiagramAgents library.

Typical implementation steps

A typical diagram generator agent performs the following steps in its imple-
mentation:

1. Create a new diagram of an appropriate kind somewhere in the model. 
This step is skipped in the case of regeneration of an existing diagram.

2. Collect information to visualize in the diagram. This can for example be 
done by executing Queries. If the information to visualize is not explic-
itly represented in the model the agent may compute the information and 
represent it by means of model entities, for example dependencies.

3. Use utility agents of the TTDDiagramAgents library to populate the di-
agram with symbols and lines, to compute appropriate sizes on the sym-
bols, to route lines and to layout symbols.

Example

The IBM Rational Tau installation contains an example of a few custom di-
agram generators implemented in Tcl. To open this example select File - 
New - Samples and choose umlAgentCallGraph.

Invoking Diagram Generators Programmatically

A diagram generator can be invoked programmatically, but should not be di-
rectly invoked using the InvokeAgent API method. Instead you should use 
the agent DiagramGeneratorFramework which is the entry point for ac-
cessing the diagram generator framework functionality.
2044 IBM Rational Tau User Guide June 2009



Adding Diagram Generators
Example 622: Invoking a diagram generator programmatically –––––––––––––––

The following Tcl script invokes the InheritanceView diagram generator in 
order to generate an inheritance diagram for the selected element (which for 
example can be a class):

set curProject [std::GetActiveProject]
set model [std::GetModels -kind U2 -project $curProject]
set a [u2::FindByGuid $model 
"@TTDDiagramAgents@DiagramGeneratorFramework"]
set dg [u2::FindByGuid $model 
"@TTDDiagramAgents@InheritanceView"]
set p [list $dg "false"]
u2::InvokeAgent $model $a [std::GetSelection] p

The first parameter to the DiagramGeneratorFramework agent is the diagram 
generator agent to invoke. The second parameter is the parameters to pass to 
the diagram generator.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that the second parameter to the DiagramGeneratorFramework agent 
specifies the diagram generator parameters encoded as a comma-separated 
list of expressions. The expressions must match the corresponding formal di-
agram generator parameters as described by the table below:

There is also an agent for regenerating a diagram, called DiagramRegener-
ationFramework. It takes the diagram to regenerate as model context, and 
expects no parameters.

Example 623: Regenerating a diagram programmatically ––––––––––––––––––––

Regenerating the diagram generated in Example 622 on page 2045 (as-
suming that the generated diagram is selected).

set a [u2::FindByGuid $model 
"@TTDDiagramAgents@DiagramRegenerationFramework"]

Expression Parameter Type

Identifier true or false Boolean

String literal Charstring

Integer literal Integer

Guid expression, guid(“<guid>”) ITtdEntity (the model entity with 
the specified GUID)
June 2009 IBM Rational Tau User Guide 2045



Chapter 77: Customizing IBM Rational Tau
u2::InvokeAgent $model $a [std::GetSelection] 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Adding Extension Modules for the File/Folder 
Importer

The File/Folder Importer is a tool for importing files and/or folders to get a 
model representation of them in IBM Rational Tau. When performing the 
import it is possible to specify an extension module which can further pro-
cess imported files/folders in order to augment the model with additional in-
formation. For example, an extension module can analyze imported files and 
create dependencies between the corresponding file artifacts in order to illus-
trate some logical dependency between the files.

You can define your own custom extension module, integrated with the 
File/Folder Importer, by defining a class which inherits the 
ExtensionModule class located in the Import Files/Folders importer 
class. You find this class in the TTDImporters profile.

As can be seen in the diagram the ExtensionModule class defines some vir-
tual agent operations. These agents implement the default behaviour of the 
File/Folder importer. By overriding some or all of these operations by de-
fining agents in the new class, you can customize this behaviour. See Rede-
finable Agents for more information.

Figure 279 Classes and stereotypes related to the File/Folder Importer

 

 

Import Files/Folders

Import ( messages : ITtdMessageList [0 .. 1])

<<interface>>

::TTDImporters::ImportWizard

Run ( messages : ITtdMessageList [0 .. 1])
CanBeApplied (out result : Boolean)

  

<<stereotype>>

::FileFolderImporter::Import Files/Folders::Options

importPath : Charstring[*]

 

::FileFolderImporter::Import Files/Folders::ExtensionModule

virtual + <<agent>> OnImportCompleted()
virtual + <<agent>> OnImportFile(path : Charstring, out entity : ITtdEntity)
virtual + <<agent>> OnImportFolder(path : Charstring, out entity : ITtdEntity)

<<metaclass,browserNode>>

::TTDMetamodel::Package

0..10..1
2046 IBM Rational Tau User Guide June 2009



Adding Extension Modules for the File/Folder Importer
Extension Module Options

If your custom extension module needs options these are defined by defining 
a stereotype which inherits the Options class. In order to specify which Op-
tion substereotype that belongs to a particular ExtensionModule subclass a 
dependency is used. The dependency goes from the ExtensionModule sub-
class to the Option substereotype.

One option is common for all extension modules; the list of paths to 
files/folders to import. This corresponds precisely to the paths entered in The 
First Step of the File/Folder Import Wizard.

Redefinable Agents

The following agent operations are available for implementation in order for 
an extension module to customize the behaviour of the File/Folder importer.

OnImportFile

Called when the File/Folder Importer has found a file to import.

Model context: The entity into which the importer will place the representa-
tion of the file.

Parameter ‘path’ (in): Path to the file.

Parameter ‘entity’ (out): Representation of the file, inserted in the model 
context if possible. This parameter can be set to NULL in order to skip im-
porting this particular file.

The default implementation creates a file artifact for the file, and inserts it 
into the context, which by default is a package (either the top-level package 
created by the importer, or a package representing a folder). 

An extension module can implement this agent to use a custom representa-
tion of the file in the model. It can also call the inherited OnImportFile 
agent operation if it wants to reuse parts of the default file representation.

OnImportFolder

Called when the File/Folder Importer has found a folder to import.

Model context: The entity into which the importer will place the representa-
tion of the folder.
June 2009 IBM Rational Tau User Guide 2047



Chapter 77: Customizing IBM Rational Tau
Parameter 'path' (in): Path to the folder.

Parameter 'entity' (out): Representation of the folder, inserted in the model 
context if possible. This parameter can be set to NULL in order to skip im-
porting this particular folder.

The default implementation creates a package for the folder, and inserts it 
into the context, which by default is a package (either the top-level package 
created by the importer, or a package representing a folder).

An extension module can implement this agent to use a custom representa-
tion of the folder in the model. It can also call the inherited OnImportFolder 
agent operation if it wants to reuse parts of the default folder representation.

OnImportCompleted

Called when the File/Folder Importer has completed the import of all speci-
fied files and folders.

Model context: The top-level package created by the importer. 

The default implementation does nothing.

An extension module can implement this agent in order to perform analysis 
of imported files or folders. For example, it may add dependencies between 
file artifacts to represent some kind of relationship between the corre-
sponding files.

An Example

As an example of how to add a custom extension module for the File/Folder 
importer let’s change the default representation of text files to use a class in-
stead of a file artifact. The contents of the text file will be attached as a com-
ment on the class. For this extension module we will use the Tcl API in order 
to implement a redefined behaviour of the OnImportFile agent.

But before writing any code, we start by defining the extension module class. 
For the sake of the example, we also add an option stereotype with one 
boolean option addComments controlling if the text of the file should be at-
tached as a comment on the class. Note the dependency from the 
Commentizer class to the CommentizerOptions stereotype. This depen-
dency relates the extension module with its options.
2048 IBM Rational Tau User Guide June 2009



Adding Extension Modules for the File/Folder Importer
If we now open the File/Folder Import Wizard we will see our Commentizer 
extension module in the last wizard page. We can also press the Options... 
button to set the addComments option.

Figure 280 Example extension module class and options stereotype

::TTDImporters::'Import Files/Folders'::ExtensionModule

Commentizer

virtual + <<agent(.implKind = TCL.)>> OnImportFile ( path : Charstring, out entity : ITtdEntity)

 
 
 

<<stereotype>>

::TTDImporters::'Import Files/Folders'::Options

<<stereotype>>

CommentizerOptions

addComments : Boolean

 
 
 

  
June 2009 IBM Rational Tau User Guide 2049



Chapter 77: Customizing IBM Rational Tau
Now we are ready to implement the OnImportFile agent. We use the fol-
lowing Tcl script:

proc OnImportFile { triggeredBy timing context server 
agentParameters } {
  upvar 1 $agentParameters ap

  set path [lindex $ap 0]
  set entity [lindex $ap 1]
 
  if {[file extension $path] != ".txt"} {
    ## Only import text files
    return   
  }
 
  set cls [u2::Create $context "Class"]
  u2::SetValue $cls "Name" $path
  
  lset ap 1 $cls 
  
  ## Find Commentizer options 
  set model [u2::GetModel $context]
  set e $context
  while {[u2::GetOwner $e] != $model} {

Figure 281 Second import wizard page customized
2050 IBM Rational Tau User Guide June 2009



Adding Extension Modules for the File/Folder Importer
    set e [u2::GetOwner $e]
  }
  set ac [u2::GetTaggedValue $e 
"CommentizerOptions(.addComments.)"]
  if {$ac != 0} {
    if {[u2::Unparse $ac] == "true"} {
      ## Read file contents into a comment
      set fp [open $path r]
      set contents [read $fp]
      close $fp
      set comment [u2::Create $cls "Comment"]
      u2::SetValue $comment "Text" $contents
    }
  } 
}

The script first extracts the agent parameters and checks if the ‘path’ speci-
fies a text file. If not, nothing more is done for this file.

If it is a text file a class is created in the context to represent it. Also, the ‘en-
tity’ out parameter is set-up to the created class.

The rest of the script just reads the ‘addComments’ tagged value from the im-
port package. If it is set to true the contents of the file is read into a comment 
attached to the class.
June 2009 IBM Rational Tau User Guide 2051



Chapter 77: Customizing IBM Rational Tau
2052 IBM Rational Tau User Guide June 2009



78
Predefined Stereotypes and 

Attributes

This section contains a reference to the available stereotypes and attributes, 
listed in alphabetic order. 

In this section there is a list containing the model information from the pre-
defined profile libraries. 

The Complete listing is only available in the on-line help file. 
June 2009 IBM Rational Tau User Guide 2053



Chapter 78: Predefined Stereotypes and Attributes
2054 IBM Rational Tau User Guide June 2009



79
Agents

This chapter explains the concept of an agent, and describes how agents may 
be used in order to customize different parts of IBM Rational Tau.

An agent is an executable module (a piece of code) that can be hooked into 
IBM Rational Tau, in order to add new functionality, or customize the ex-
isting tool behavior. An agent is defined in UML as an operation, but its im-
plementation is provided in another implementation language, typically 
using one of the IBM Rational Tau public APIs (COM, C++ or Tcl). 

In the UML definition of an agent, it is also possible to specify when it shall 
be invoked. This is done by specifying a dependency from the agent opera-
tion to a tool event. A tool event represents an event that may occur within 
the IBM Rational Tau application. When an event occur within IBM Rational 
Tau for which there is a corresponding tool event defined, the tool event is 
said to be triggered. When a tool event is triggered all agents that have de-
pendencies to it will also be invoked.

It is also possible to manually invoke an agent using the IBM Rational Tau 
APIs. This can for example be useful in order to invoke an agent from an add-
in and is actually a bridge between the two main techniques for customizing 
IBM Rational Tau, Add-Ins and agents. This means that an Add-In does not 
have to be completely implemented as a TCL script, but can use agents im-
plemented in another language. Some benefits with such an approach can for 
example be improved performance, better means for debugging the Add-In, 
reuse of software written in another language etc.
June 2009 IBM Rational Tau User Guide 2055



Chapter 79: Agents
When an agent gets invoked it gets a model context as an in-parameter from 
the caller. The model context is typically a model entity that the agent shall 
process in one way or another. The meaning of “process” here is very loose 
- it can mean anything from performing customized semantic checks, to pro-
ducing some reports for external use, or modifying the entity. However, in 
all cases the agent performs its work from the context of the provided model 
entity; hence the name model context.

In addition to the model context, an agent may obtain any number of addi-
tional actual parameters from the caller. This is true both when the agent is 
invoked because a tool event was triggered, and when it is explicitly invoked 
from the APIs. These parameters can be used as in/out parameters and thus 
allow the agent to pass information back to the caller.

Note
An agent always is a client of the IBM Rational Tau APIs. Everything that is 
applicable for API clients in general is also applicable for agents. For ex-
ample, the term interactive agent, refers to an interactive API client, i.e. a 
client that executes in the same memory space as the IBM Rational IBM Ra-
tional Tau IDE. An example of a non-interactive agent is an agent that runs 
in the memory space of another IBM Rational Tau application, such as a 
batch code generator executable.

Defining an Agent
The first step when creating an agent is to define it in UML. This is as simple 
as creating an operation somewhere in the model, giving it a good name, and 
applying the «agent» stereotype from the TTDAgent profile (a built-in library 
that is available in all UML models). It does not matter where the agent op-
eration is created, but it is common to place it in a separate package, which 
could be a profile package.

Figure 282 on page 2057 shows the definition of an agent called CheckClass-
Name. This agent intends to add some additional semantic checks con-
cerning valid names for a class.
2056 IBM Rational Tau User Guide June 2009



Defining an Agent
Agent Invocation Triggered by a Tool Event

The next step is to think about how and when the agent shall be invoked. The 
most common is that an agent is invoked when a tool event is triggered.

Just like an agent, a tool event is represented as an operation in UML, but 
with the «‘tool event’>> stereotype applied instead. The TTDAgent profile 
contains all available Tool Events. To specify that an agent shall be invoked 
every time a certain tool event is triggered, you must create a dependency 
from the agent to the tool event. The dependency should be stereotyped by 
one of the following stereotypes from the TTDAgent profile:

• «‘before processing’>>
Specifies that the agent shall be invoked before the default processing of 
the tool event.

• «‘after processing’>>
Specifies that the agent shall be invoked after the default processing of 
the tool event.

Example 624: Custom semantic check agents –––––––––––––––––––––––––––––––

Consider the addition of two custom semantic checks to be applied on all 
classes. The first check is to be done before all standard checks of the class 
are performed, and the second check is to be done after all standard checks 
have been performed. Define two agents like Figure 283 on page 2058.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 282: Definition of an agent
June 2009 IBM Rational Tau User Guide 2057



Chapter 79: Agents
It is also possible to specify that an agent shall be invoked whenever some 
other agent is invoked. This is done in exactly the same way as in 
Example 624 on page 2057, with the only difference being that the supplier 
of the dependency is another agent instead of a tool event. This makes it pos-
sible to create entire “invocation trees” where the triggering of a single tool 
event may cause several agents to be invoked. The order of invocation is al-
ways specified by means of dependencies stereotyped with the <<‘before 
processing’>> and <<‘after processing’>> stereotypes. Note the following 
about such dependencies:

1. If two agents A and B both have the same kind of ordering dependency 
to a tool event T, it is undefined whether A will be invoked before or after 
B when T is triggered. This is true even if there is an ordering depen-
dency between A and B.

2. Do not specify circular dependencies, leading to loops in the invocation 
order. If a loop is detected when an agent A is about to be invoked, the 
agent framework will refuse to invoke A and will instead continue with 
the next agent in the invocation order.

Figure 284 on page 2059 illustrates these points. 

Figure 283: Definition of an agent
2058 IBM Rational Tau User Guide June 2009



Implementing an Agent
When the AutoCheck tool event is triggered the agents will be invoked in this 
order: E D A B C D A E. Or, since the order of invocation between A and B 
is undefined, B E D A C D A E. The dependency between A and E is ignored 
since it causes a loop in the invocation order.

Programmatic Agent Invocation from the APIs

Instead of specifying the invocation of agents statically using ordering de-
pendencies it is possible to invoke an agent programmatically from one of the 
IBM Rational Tau APIs (COM, C++ or Tcl). The API method to use is 
InvokeAgent, and it lets you invoke a specified agent on a specified model 
context, providing any number of actual agent parameters.

Note
Ordering dependencies have no meaning when invoking an agent explicitly 
from the APIs. That is, only one agent will be invoked for each call to 
InvokeAgent.

Implementing an Agent
Before an agent can be used it has to have an implementation defining what 
it shall do when it gets invoked. An agent can currently be implemented in 
C++ (using the C++ API), in a COM/.NET enabled language (using the 

Figure 284: Ordering dependency
June 2009 IBM Rational Tau User Guide 2059



Chapter 79: Agents
COM API), in Tcl (using the Tcl API), or as a Query expression. Tagged 
values in the «agent» stereotype instance specifies how an agent is imple-
mented and where to find its implementation.

The Implementation Kind is one of the following:

• COM object or .NET assembly
Select this if you want to implement the agent using the COM API. 

• Exported C++ function
Select this if you want to implement the agent using the C++ API.

• TCL
Select this if you want to implement the agent using the Tcl API.

• Query expression
Select this if you want to implement the agent as a query expression. This 
is only applicable if the agent you implement is a query (see Queries for 
more information about queries).

• Internal
Reserved for internal use.

The Implementation is a string specifying where to find the implementation 
of the agent. What to write in this field depends on the selected implementa-
tion kind.

• For COM/.NET, the implementation string should specify the program-
matic id of the COM/.NET object to invoke. 

• For C++, the implementation string should be on the form: 

Figure 285: Tagged values in the «agent» stereotype
2060 IBM Rational Tau User Guide June 2009



Implementing an Agent
<path>#<function>
<path> is the path to the dynamic link library or shared object that con-
tains the implementation. The path may either be absolute or relative. In 
the latter case it will be interpreted against the PATH (on Windows) or 
LD_LIBRARY_PATH (on Unix) environment variables. The path may 
also contain URNs. If the library cannot be loaded, and a relative path is 
used, a second attempt to load the library is made, where the relative path 
is interpreted against the location of the U2 file where the agent is de-
fined. If the file path does not include a file suffix, a default one will be 
assumed (.dll on Windows and .so on Unix). For Unix a default prefix 
“lib” will also be added in that case.
<function> is the name of the C++ function to call.

• For Tcl, the implementation string should be on the form:

<path>#<procedure>
<path> is the path to the Tcl script file that contains the implementation. 
The path may either be absolute or relative. In the latter case it will be 
interpreted against the location of the U2 file where the agent is defined. 
The path may also contain URNs.
<procedure> is the name of the Tcl procedure, within the specified file, 
that should be called.

It is also possible to leave the implementation string unspecified. In that 
case the Tcl script shall be placed as an informal implementation in an 
operation body for the agent. This allows the agent implementation to be 
stored inside the UML model, which besides from sometimes being more 
convenient than referring an external file, also is somewhat more effi-
cient. Note that in this case the Tcl procedure to call must have the same 
name as the agent.

• For Query expression, the implementation string should specify a file 
containing the query expression. The file may be specified with either an 
absolute or relative path. In the latter case it will be interpreted against 
the location of the U2 file where the agent is defined. The path may also 
contain URNs.

It is also possible to leave the implementation string unspecified. In that 
case the query expression shall be placed as an informal implementation 
in an operation body for the agent. This allows the agent implementation 
to be stored inside the UML model, which besides from sometimes being 
more convenient than referring an external file, also is somewhat more 
efficient.
June 2009 IBM Rational Tau User Guide 2061



Chapter 79: Agents
General guidelines for agent implementations

When writing the implementation of an agent, there are a few guidelines that 
should be followed regardless of implementation language (except when 
using query expressions, which are not a general purpose programming lan-
guage):

1. Begin the implementation with tests to see if all conditions are fulfilled 
for the agent to execute. If any condition is not fulfilled return immedi-
ately. This is particularly important for interactive agents that are in-
voked when “low-level” tool events are triggered. Such agents are typi-
cally invoked very frequently, and in order not to decrease the 
performance of IBM Rational Tau too much, it is important that the agent 
does not perform unnecessary work.

2. Avoid intrusive error reporting, such as popping up dialog boxes, unless 
the agent is interactive. The recommended way of reporting errors that 
occur in the agent is to use the ITtdModelAccess::WriteMessage 
method, which will print the error message in a way that is appropriate 
for the environment in which the agent executes.

3. An agent may spawn threads for performing tasks asynchronously, but be 
careful. It is not safe to access the model from multiple threads simulta-
neously.

See also

“Implementation using the COM API” on page 2062

“Implementation using the C++ API” on page 2064

“Implementation using the Tcl API” on page 2065

“Implementation using Query Expressions” on page 2067

Implementation using the COM API

The COM API contains an interface called ITtdAgent. This is a callback-
interface that all agents must implement. It contains one method Execute, 
which will be called by IBM Rational Tau when the agent shall be invoked. 

Build and deploy the COM object, and give it a good programmatic id. This 
id is used as the “implementation” tagged value of the ‘agent’ stereotype that 
is applied on the agent definition. When IBM Rational Tau wants to invoke 
the COM agent, it will attempt to create an instance of the COM object that 
2062 IBM Rational Tau User Guide June 2009



Implementing an Agent
has the specified id. If that succeeds it then does a QueryInterface for the 
ITtdAgent interface on the object. And if that also succeeds, the Execute 
method will be called.

Example 625: A COM agent –––––––––––––––––––––––––––––––––––––––––––––

The skeleton C++ code generated by the Visual Studio ATL COM wizard for 
a COM object implementing the ITtdAgent interface will look similar to 
this:

class ATL_NO_VTABLE CMyCOMAgent : 
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CMyCOMAgent, &CLSID_MyCOMAgent>, 

public ITtdAgent {
public:
DECLARE_REGISTRY_RESOURCEID(IDR_MYCOMAGENT)
DECLARE_PROTECT_FINAL_CONSTRUCT()
BEGIN_COM_MAP(CMyCOMAgent)

COM_INTERFACE_ENTRY(ITtdAgent)
END_COM_MAP()
virtual HRESULT __stdcall raw_Execute (
ITtdEntity* pTriggedBy,
VARIANT bBeforeProcessing,
ITtdEntity* pModel, 
IUnknown* pServer,
SAFEARRAY ** eventProperties ) {

// Implementation...
}
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Instead of implementing the agent with a COM object, it is also possible to 
use a .NET assembly that is configured for COM interoperability.

Example 626: A C# agent –––––––––––––––––––––––––––––––––––––––––––––––

Here is a sample C# implementation of an agent which appends a prefix 
“Class_” to the name of its model context (a class):

using System;
using U2ModelAccessTypeLib;

namespace CSharpAgent
{
  public class C : ITtdAgent
  {
    public void Execute(ITtdEntity triggeredBy, 
                        object beforeProcessing,
                        ITtdEntity entity, 
                        object server,
June 2009 IBM Rational Tau User Guide 2063



Chapter 79: Agents
                        System.Array eventProperties) 
    {
      if (entity.IsKindOf("Class")) 
      {

string s = "Class_";
entity.SetValue("Name", s + 

entity.GetValue("Name", 0), 0);
      }
    }
  }
}

The programmatic id to use as the “Implementation” tagged value will in this 
case be CSharpAgent.C (i.e. the qualified name of the C# class that imple-
ments the agent).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Implementation using the C++ API

The C++ API contains a header file called U2Agent.h. In this header file you 
can find the following macro definitions:

#define AGENT_PARAMETERS const u2::ITtdEntity* 
pTriggeredBy, u2::EventTiming timing, u2::ITtdEntity* 
pContext, u2::IUnknown* pServer, u2::AgentParameters& 
agentParameters, u2dll::Cu2Changer& changer
#define AGENT_SIGNATURE(name) void 
name(AGENT_PARAMETERS)

#ifdef _MSC_VER 
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT 
#endif

// Use this macro to define the implementation of an 
agent as an exported function.
#define AGENT_IMPL(name) extern "C" DLLEXPORT 
AGENT_SIGNATURE(name)

The AGENT_IMPL macro can be used for a compact definition of an agent im-
plementation in C++. As can be seen above it will expand to an exported 
function with C linkage. 

Example 627 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The C++ implementation of a simple agent that adds a default prefix to the 
name on a newly created definition can look like this:
2064 IBM Rational Tau User Guide June 2009



Implementing an Agent
AGENT_IMPL(SetNameForMemberAttribute) {
if (!pContext->IsKindOf(_T("Definition")))
return; // Not a definition - return immediately!

tstring strName;
pContext->GetValue(_T("Name"), strName);
tstring strNewName(_T("MYPREFIX_"));
strNewName += strName;
pContext->SetValue(_T("Name"), strNewName, 0, changer);

}

It is assumed that the agent is invoked when the ‘Create Entity’ tool event is 
triggered (on <<‘after processing’>>).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
If you are implementing the agent on the Windows platform, you should link 
it with the run-time libraries of Visual Studio 2005 SP1. The run-time li-
braries that come with other versions of Visual Studio are not compatible 
with the run-time libraries used by IBM Rational Tau. Using a mix of run-
time libraries can cause memory operations to fail, and lead to insta-
bility.For the same reason it is important to use the Release version of the 
run-time libraries, and not the Debug version. See “Debug C++ agents in 
Visual Studio” on page 2311 in Chapter 82, C++ API for more information 
on how to debug an agent.

Implementation using the Tcl API

Before implementing an agent using Tcl, note that the IBM Rational Tau Tcl 
interpreter is only available in the IDE process (vcs.exe). This means that 
only interactive agents can be implemented by means of the Tcl API.

The most convenient way to implement a Tcl agent is to follow these steps:

• Create a UML operation that defines the agent. Give it a name and define 
its parameters if any.

• Select the operation in the Model View, and bring up the context menu. 
Select Utilities - Turn into Tcl agent. This command will turn the oper-
ation into an agent implemented by a skeleton Tcl script.

The Tcl procedure that is specified as implementation for an agent must have 
the following signature:

proc <name> { triggeredBy timing context server agentParameters }
June 2009 IBM Rational Tau User Guide 2065



Chapter 79: Agents
Note that if the Tcl script is put as an inline informal implementation of the 
agent in the UML model <name> must be identical with the name of the 
agent.

The parameters to the procedure corresponds directly to the parameters of the 
ITtdAgent interface. However, note the following about the Tcl represen-
tation of these parameters:

• The server parameter is not applicable and will always be NULL (0). 
This is because Tcl agents always are interactive agents - instead of using 
the server parameter for interacting with the IBM Rational Tau IDE, the 
entire Tcl API can directly be used.

• The agentParameters parameter is a Tcl list of strings representing the 
agent parameters. These strings are encoded according to the rules de-
scribed in the documentation of the Tcl command u2::InvokeAgent (see 
Model Commands). Note also that this is an in/out parameter which 
means that you have to use the upvar command to access it inside the 
procedure.

Example 628: A simple Tcl agent –––––––––––––––––––––––––––––––––––––––––

The Tcl implementation of a simple agent that toggles the activeness of a 
class is shown below. The agent returns an agent parameter that is false (0) 
if the class was made passive, and true (1) if the class was made active.

proc MyAgent { triggeredBy timing context server 
agentParameters } { 

upvar 1 $agentParameters ap

  if {[u2::IsKindOf $context "Class"]} {

    set isActive [u2::GetValue $context "isActive"]

    if {$isActive == false} {

      u2::SetValue $context "isActive" true

      set ap [list 1]

    } else {

      u2::SetValue $context "isActive" false

      set ap [list 0]

    }

  }

 

2066 IBM Rational Tau User Guide June 2009



Implementing an Agent
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
If the Tcl script contains “global” code outside the specified Tcl procedure, 
that code will execute before the Tcl procedure is called.

Example 629: Implementing a query agent using Tcl–––––––––––––––––––––––––

This example shows how to add query result entities to the result list, which 
always is the first agent parameter. The agent will add the model (Session) 
of its model context, followed by the model context itself.

proc MyQueryAgent { triggeredBy timing context server 
agentParameters } { 

  upvar 1 $agentParameters ap

  set model [u2::GetEntity $context Session]

  set ap [lreplace $ap 0 0 [list $model $context] ]

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Implementation using Query Expressions

Query expressions are not a general purpose programming language. There-
fore, they should only be used for implementing agents that are queries.

The most convenient way to implement an agent by means of a query expres-
sion is to use the Save button in the Query dialog. See Saving a query expres-
sion as a new query for more information. But of course it is also possible to 
create a query expression agent manually and enter the query expression ei-
ther in an external file, or as an informal implementation of the agent. The 
syntax of the query expression is the same as is used in the query dialog.

Example 630: Implementing a query agent using a query expression –––––––––––

Assuming we have a predicate agent MyPredicateAgent (i.e. an agent re-
turning true or false based on some condition for its model context), the fol-
lowing query expression can be used as the implementation of a query agent 
that will find all entities in the model rooted at its model context for which 
the predicate is fulfilled:
June 2009 IBM Rational Tau User Guide 2067



Chapter 79: Agents
GetAllEntities().select(MyPredicateAgent())

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
If an agent is implemented by means of a query expression it cannot have 
formal parameters.

Agent Parameters
Agents are defined as operations in UML so it is natural to allow agents to 
have formal parameters just like any operation. However, since the call of 
such an agent operation is a late-bound call (i.e. it is not resolved until at run-
time) the use of agent parameters become much more flexible than the use of 
parameters with ordinary operations. The price for this flexibility is that 
checks for the expected number and type of agent parameters has to be per-
formed by the called agent.

In general an agent can take any number of actual parameters. Each param-
eter must have one of the following types:

The table also shows which types that are used in the C++ and COM APIs to 
represent a particular agent parameter type. The Tcl mapping of these types 
are described in “Model Commands” on page 2251 in Chapter 81, Tcl API.

The declaration of an agent in UML should include the specification of 
which parameters it has, and the type of these parameters. Although this in-
formation is currently not used by the agent framework when an agent is in-
voked, it is valuable information in order to document the agent and make it 
easier to use by clients.

Type C++ Type COM Type

Text string tstring BSTR

General (unknown) interface 
on object

u2::IUnknown IUnknown

List of unknown interfaces std::list<u2::ITtdEn
tity*>

ITtdEntities

Integer long long

Boolean bool VARIANT_BOOL

Untyped pointer void* N/A
2068 IBM Rational Tau User Guide June 2009



Tool Events
The implementation of an agent that expects actual parameters should be 
written in such a way that error cases are handled. The agent must not assume 
a particular number of actual parameters, nor may it make assumptions about 
the parameter types. The example below shows a typical implementation of 
a C++ agent that expects two actual parameters; the first one of boolean type 
and the second one of string type.

Example 631 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

AGENT_IMPL(MyAgent) {

if (agentParameters.size() != 2) {
// Error: Too few or too many actual parameters!
return;

}

bool par1;
tstring par2;
try {
par1 = agentParameters.front()->GetBoolean();
par2 = agentParameters.back()->GetString();

}
catch (u2::AgentParameter::ETypeMismatch) {
// Error: Wrong parameter type!
return;

}

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Tool Events
This section lists all available tool events that can invoke user-defined agents 
when they are triggered. The UML definition of these tool events can be 
found in the TTDAgent profile unless otherwise stated.

For each tool event it is described

• when it is triggered in IBM Rational Tau.

• whether it is meaningful to use both ‘before processing’ and ‘after pro-
cessing’ ordering dependencies for the tool event (for some tool events 
only one of these is meaningful).

• actual parameters that are passed with the tool event and how to use them.

The tool events are categorized according to the functionality or feature in 
IBM Rational Tau that triggers them.
June 2009 IBM Rational Tau User Guide 2069



Chapter 79: Agents
Note
Some add-ins may define additional tool events not described here. Such 
tool events are typically internally used by the add-in implementation. In 
case they are intended to be used in customizations of the functionality pro-
vided by the add-in, their documentation can be found in the profile where 
they are defined.

Semantic checker events

AutoCheck

This event is sent from the IBM Rational Tau IDE when an entity is automat-
ically checked by the semantic checker. The purpose of the event is to allow 
performing custom semantic checks during auto check.

Note
The AutoCheck event is sent when IBM Rational Tau is idle, on entities that 
were recently modified. Agents that trigger on this event should therefore 
restrict themselves to only reading from the model. If changes are made to 
the model these will not be possible to undo.

Agents that trigger on 'before processing' will be invoked before all built-in 
checks of the entity are performed. Agents that trigger 'after processing' will 
be invoked after all built-in checks of the entity have been performed.

Timing: 

1. ‘before processing’

2. The semantic checker performs all standard checks on the entity

3. ‘after processing’

Model context: 

The model entity to check.

Parameters: 

[in] messageList: ITtdMessageList

Message list where check messages can be reported.
2070 IBM Rational Tau User Guide June 2009



Tool Events
Check

This event is sent when an entity is checked for correctness by the semantic 
checker. This happens in the IBM Rational Tau IDE when selecting the com-
mands “Check” and “Check All”, and also in the IBM Rational Tau code 
generators before generating code. The purpose of the event is to allow 
custom semantic checks to be performed.

Agents that trigger on 'before processing' will be invoked before all built-in 
checks of the entity are performed. Agents that trigger 'after processing' will 
be invoked after all built-in checks of the entity have been performed.

Timing: 

1. ‘before processing’

2. The semantic checker performs all standard checks on the entity

3. ‘after processing’

Model context: 

The model entity to check.

Parameters: 

[in] messageList: ITtdMessageList

Message list where check messages can be reported

Application builder events

AB AutoSave

This event is sent by the IBM Rational Tau IDE when the Application 
Builder performs an automatic save of the model before starting to build it. 

Agents that trigger on 'before processing' will be invoked before the model 
is saved. Any changes made by such agents will thus be present in the model 
that is loaded by the code generator that performs the build. This can be used 
to make changes in the model that shall affect code generation, and still be 
present in the model that is loaded in the IDE.

Agents that trigger 'after processing' will be invoked after the model has been 
saved. Changes made by such agents will thus not be seen by the code gen-
erator that performs the build. Therefore, the ‘after processing’ of this event 
is mostly useful for performing tasks that do not change the model.
June 2009 IBM Rational Tau User Guide 2071



Chapter 79: Agents
Timing: 

1. ‘before processing’

2. Application Builder saves the model that is about to be built.

3. ‘after processing’

Model context: 

The Build Artifact that is being built.

Parameters: 

[in] entity1: ITtdEntity
[in] entity2: ITtdEntity
...
[in] entityN: ITtdEntity

There is one input parameter for each entity that is about to be built by the 
Application Builder. If the Build Artifact is selected to be built, these are the 
entities that are manifested by the build artifact. If the build is started by se-
lecting some other entities, these entities will be passed instead.

Insert cross reference file

This event is sent by the IBM Rational Tau IDE when the Application 
Builder detects that a code generator (or more generally, an Application 
Builder client) has generated a “cross reference” file. Such a file contains a 
UML representation of all files that were generated by the code generator and 
a mapping between entities of the original UML model to positions within 
these generated files. Both the C and the C++ code generators produce cross 
reference files on a common format.

The UML representation of a cross reference file is a package containing a 
list of file artifacts, representing generated files. Each file artifact has a list of 
<<filePosition>> stereotype instances to represent those positions within 
the generated file that corresponds to translated UML entities.

The Application Builder will insert the generated cross reference file into the 
UML model, in order to facilitate navigation from the model to generated 
code and vice versa as well as other related features.

Timing: 

1. Application Builder detects a generated “cross reference” file.

2. ‘before processing’
2072 IBM Rational Tau User Guide June 2009



Tool Events
3. Application Builder loads the generated “cross reference” file into the 
model.

4. ‘after processing’

Model context: 

The Build Artifact that has been built.

Parameters: 

[in] fileName : Charstring

This is the name of the cross reference file.

[in] messageList : ITtdMessageList

This is the message list of the Application Builder. Messages added to this 
list will be printed in the Build tab.

[in] resultPackage : ITtdEntity

(only on ‘after processing’)
This is the package that results from loading the cross reference file.

AB Client File Response

This event is a more general version of the “Insert cross reference file” event. 
It is sent by the IBM Rational Tau IDE when the Application Builder detects 
that a code generator (or more generally, an Application Builder client) has 
generated a general “response file” (i.e. a file for which the Application 
Builder performs no default action). The purpose of the event is to allow an 
Application Builder client to communicate information from the code gener-
ator to the IBM Rational Tau IDE.

Since there is no default task that is performed when this event is triggered, 
there is no difference between triggering on ‘before processing’ or ‘after pro-
cessing’.

Timing: 

1. Application Builder detects a generated “response file”.

2. ‘before processing’

3. ‘after processing’

Model context: 
June 2009 IBM Rational Tau User Guide 2073



Chapter 79: Agents
The Build Artifact that has been built.

Parameters: 

[in] fileName : Charstring

This is the name of the response file.

[in] messageList : ITtdMessageList

This is the message list of the Application Builder. Messages added to this 
list will be printed in the Build tab.

Process BuildArtifact

This event is sent by an Application Builder code generator when it processes 
a Build Artifact. The event will thus be sent exactly once for each time the 
code generator is launched. The purpose of the event on ‘before processing’ 
is to be able to perform pre-translation transformations of the generated 
model. On ‘after processing’ the event can be used as a trigger for generating 
additional code that is not generated by the standard code generator.

Timing: 

1. ‘before processing’

2. The code generator generates code for the build artifact.

3. ‘after processing’

Model context: 

The build artifact to generate code for.

Parameters: 

[in] messageList : ITtdMessageList

This is the message list used by the code generator to report translation mes-
sages. Messages added to this list will be printed in the Build tab if the code 
generation is started from the IBM Rational Tau IDE. If the code generation 
is started from the IBM Rational TauBatch executable, the messages will be 
printed to stdout.
2074 IBM Rational Tau User Guide June 2009



Tool Events
Editor events

OpenDiagram

This event is sent by the IBM Rational Tau IDE when a diagram (of any kind) 
is opened, or activated. The purpose of the event is, among other things, to 
support integrations with other tools that may need to be invoked when a di-
agram is opened.

Timing: 

1. ‘before processing’

2. The diagram becomes visible in the editor.

3. ‘after processing’

Model context: 

The diagram being opened.

Parameters: 

No parameters.

InsertDiagramElement

This event is sent by the IBM Rational Tau IDE when a diagram element 
(symbol or line) has been inserted in a diagram. Diagram elements can be in-
serted in many ways for example by placing new symbols from the tool bar, 
or pasting symbols or lines from the clipboard. The purpose of the event is to 
be able to customize newly added diagram elements, for example modifying 
their size or position, or to automatically add additional diagram elements.

Note
This event is only triggered on <<after processing>>, that is when the dia-
gram already has been added to the diagram.

Timing: 

1. The diagram element is inserted to the diagram.

2. ‘after processing’

Model context: 

The inserted diagram element.
June 2009 IBM Rational Tau User Guide 2075



Chapter 79: Agents
Parameters: 

No parameters.

Model interaction events

Change Entity Property

The ‘Change Entity Property’ event is sent by the IBM Rational Tau IDE 
when a property (i.e. a metafeature value) of a model entity is changed. The 
event is sent when changing the value of all metafeatures, except owner and 
composition links. The purpose of the event is, among other things, to sup-
port transformations to take place already when some property of an entity is 
changed.

Note
The event will not be sent when a property is changed as a consequence of 
doing an undo or redo. This simplifies the implementation of agents that 
trigger on this event considerably. Any changes that are performed by such 
an agent will automatically be part of the same undo/redo step. To trigger 
on modifications that takes place on Undo / Redo, see the Entity Modified 
event.

Timing: 

1. ‘before processing’

2. The value of the entity is changed.

3. ‘after processing’

Model context: 

The entity that is modified.

Parameters: 

[in] metaFeatureName : Charstring

The name of the metafeature that is modified. 

[in] value : Charstring

A string encoded value. On ‘before processing’ this is the new value that is 
about to be set, and on ‘after processing’ this is the old value, as it looked be-
fore the change took place. 
2076 IBM Rational Tau User Guide June 2009



Tool Events
The table shown for “GetValue” on page 2119 in Chapter 80, COM API pro-
vides more information on how values are string encoded.

If the metafeature is of metaclass type, the new value may be a pointer to an 
entity. In this case the value parameter will have the type ITtdEntity instead

Entity Modified

This event is sent by the IBM Rational Tau IDE when an entity in the model 
is modified, also when the modification takes place as part of an Undo or 
Redo operation. The purpose of the event is to provide a means for general 
model change detection, and to allow agents to update custom views of the 
model.

Note
Since this event is sent also when an entity is modified during Undo / Redo it 
is not recommended for agents that trigger on this event to modify the model 
in any way. Triggered agents should restrict themselves to updating views 
of the model.

Timing: 

1. The entity gets modified.

2. ‘before processing’

3. If the entity is saved in a file (resource) that file gets marked as modified.

4. The entity is scheduled for semantic checks (AutoCheck).

5. ‘after processing’

Model context: 

The modified entity.

Parameters: 

No parameters.

Create Entity

This event is sent by the IBM Rational Tau IDE when a new entity is created 
in the model. The purpose of the event is, among other things, to support ad-
ditional entities to be created automatically when an entity is created.
June 2009 IBM Rational Tau User Guide 2077



Chapter 79: Agents
Timing: 

1. ‘before processing’

2. The entity is created, and inserted into the model.

3. ‘after processing’

Model context: 

On ‘before processing’ the model context is the entity that will be the owner 
of the new entity. On ‘after processing’ the model context is the newly cre-
ated entity.

Parameters: 

[in] metaClassName : Charstring

(only on ‘before processing’)

The name of the metaclass of the entity that is about to be created.

Move Entity

This event is sent by the IBM Rational Tau IDE when an entity is moved in 
the model. The purpose of the event is, among other things, to redefine the 
default 'move' semantics.

Note
If the moved entity contains other entities, these will of course also be 
moved. However, the ‘Move Entity’ event will only be sent for the top entity.

Timing: 

1. ‘before processing’

2. If the defaultProcessing flag is true the entity is moved. Otherwise 
nothing happens.

3. ‘after processing’

Model context: 

The entity that is moved.

Parameters: 

[in] target : ITtdEntity
2078 IBM Rational Tau User Guide June 2009



Tool Events
The target entity to which the entity is moved (i.e. the new owner of the 
moved entity).

[in/out] defaultProcessing : Boolean

(only on ‘before processing’)
This flag is set to true by IBM Rational Tau in the call to the agent. If the 
agent does not change it (i.e. it is still true after the call), the move will be 
performed in the usual way. Agents that redefine the meaning of a move op-
eration should thus set this flag to false before returning.

Editor events

AutoLayout

This event is sent by the IBM Rational Tau IDE when the “Automatic 
Layout” command is selected in an editor. The purpose of the event is to cus-
tomize, or override completely, the default autolayout behavior.

Timing: 

1. ‘before processing’

2. If the defaultProcessing flag is true the autolayout will be performed 
according to the default algorithm. Otherwise nothing happens.

3. ‘after processing’

Model context: 

The diagram that contains the diagram elements that are being processed.

Parameters: 

[in/out] defaultProcessing : Boolean

(only on ‘before processing’)

This flag is set to true by IBM Rational Tau in the call to the agent. If the 
agent does not change it (i.e. it is still true after the call), the autolayout will 
be performed in the usual way. Agents that redefine the autolayout algorithm 
should thus set this flag to false before returning.

[in] entity1 : ITtdEntity
[in] entity2 : ITtdEntity
...
[in] entityN : ITtdEntity
June 2009 IBM Rational Tau User Guide 2079



Chapter 79: Agents
These are the diagram elements that are being processed.

Storage Events

LoadModel

This event is sent by the IBM Rational Tau IDE when a new model is loaded 
(by loading a project file). The purpose of the event is to be able to perform 
some tasks just before or just after a new model has been loaded into IBM 
Rational Tau.

Timing: 

1. An empty model is created.

2. ‘before processing’

3. The project file is loaded, and the result is inserted into the model. The 
model will also be bound.

4. ‘after processing’

Model context: 

The model (ITtdModel).

Parameters: 

[in] messageList : ITtdMessageList

This is the message list that are used by IBM Rational Tau when loading a 
model. Messages added to this list will be printed in the Messages tab.

LoadResource

This event is sent by the IBM Rational Tau IDE when a resource (typically a 
.u2 file) is loaded into the model. The purpose of the event is to be able to 
perform some tasks just before or just after a resource has been loaded into 
IBM Rational Tau.

Timing: 

1. ‘before processing’

2. The resource is loaded, and the result is inserted into the model.

3. ‘after processing’
2080 IBM Rational Tau User Guide June 2009



Tool Events
Model context: 

On ‘before processing’ the model context is the model (ITtdModel) into 
which the result of the load shall be inserted. On ‘after processing’ the model 
context is the resource (ITtdResource) that has been loaded.

Parameters: 

[in] path : Charstring

The path (or, more generally, the URI) of the resource that is loaded.

[in] messageList : ITtdMessageList

This is the message list that are used by IBM Rational Tau when loading a 
model. Messages added to this list will be printed in the Messages tab.

SaveResource

This event is sent by the IBM Rational Tau IDE when a resource (typically a 
.u2 file) is saved. The purpose of the event is to be able to perform some 
tasks just before or just after a resource has been saved.

Timing: 

1. ‘before processing’

2. The resource is saved.

3. ‘after processing’

Model context: 

The resource (ITtdResource) that is saved.

Parameters: 

No parameters.

C++ Application Generator Events

Print C++ Source File

This event is sent by the C++ Application Generator when it prints the con-
tents of a generated C++ source file. The purpose of the event is to be able to 
print a custom header or footer to the generated file.
June 2009 IBM Rational Tau User Guide 2081



Chapter 79: Agents
Timing: 

1. ‘before processing’

2. The default contents of the source file is printed.

3. ‘after processing’

Model context: 

The file artifact that represents the generated source file in the model. This is 
a file artifact of the model-to-file mapping (which could have been automat-
ically created by the code generator).

Parameters: 

[in] sourceBuffer : ITtdSourceBuffer

This is a representation of the generated file. The source buffer object can be 
used in order to add text to the generated file.

Print C++ Definition

This event is sent by the C++ Application Generator when it prints a C++ 
definition to a generated C++ source file. The purpose of the event is to be 
able to print something just before or just after the definition.

Timing: 

1. ‘before processing’

2. The C++ definition is printed to the generated file.

3. ‘after processing’

Model context: 

The C++ definition that is printed. The C++ definition is represented by an 
ITtdEntity of metaclass Definition.

Parameters: 

[in] sourceBuffer : ITtdSourceBuffer

This is a representation of the generated file. The source buffer object can be 
used in order to add text to the generated file.
2082 IBM Rational Tau User Guide June 2009



Tool Events
Entity File Position

This event is sent by the C++ Application Generator when it is printing the 
generated files. The purpose of the event is to notify interested agents to the 
file positions that the generated entities were printed. A file position consists 
of the name of a generated file (full path), and a line and column within that 
file. The event is sent when printing the following entities:

• Definitions
The event is sent when the name of the definition is printed.

• Operation bodies
The event is sent when the opening curly bracket ({) is printed.

• Statements (actions)
The event is sent when the semicolon (;) that terminates the statement is 
printed.

This event is used internally by the C++ Application Generator as the imple-
mentation of the “Goto source” menu item. It can also be of interest for an 
agent that wishes to produce some kind of database, index or report of the 
generated files, and their contents.

Timing: 

1. ‘before processing’

2. ‘after processing’

3. The generated file is written.

Model context: 

The entity that is printed.

Parameters: 

[in] path: Charstring

The full path of the generated file into which the model context entity is 
about to be printed.

[in] line : Natural

The line number where the entity is printed.

[in] column : Natural

The column number where the entity is printed.
June 2009 IBM Rational Tau User Guide 2083



Chapter 79: Agents
Java Code Generator Events

The tool events for the Java code generator can be found in the library 
TTDJavaModelCodeSync, in the package Java tool events.

JavaPrintFile

This event is sent by the Java code generator when it prints the contents of a 
generated Java source file. The purpose of the event is to be able to print a 
custom header or footer to the generated file.

Timing: 

1. ‘before processing’

2. The default contents of the source file is printed.

3. ‘after processing’

Model context: 

The file artifact that represents the generated source file in the model. This is 
a file artifact of the model-to-file mapping (which could have been automat-
ically created by the code generator).

Parameters: 

[in] sourceBuffer : ITtdSourceBuffer

This is a representation of the generated file. The source buffer object can be 
used in order to add text to the generated file.

See Example 718 on page 2272 for an example of an agent triggering on this 
event.

JavaPrintDefinition

This event is sent by the Java code generator when it prints a Java definition 
to a generated Java source file. The purpose of the event is to be able to print 
something just before or just after the definition.

Timing: 

1. ‘before processing’

2. The Java definition is printed to the generated file.

3. ‘after processing’
2084 IBM Rational Tau User Guide June 2009



Tool Events
Model context: 

The Java definition that is printed. The Java definition is represented by an 
ITtdEntity of metaclass Definition.

Parameters: 

[in] sourceBuffer : ITtdSourceBuffer

This is a representation of the generated file. The source buffer object can be 
used in order to add text to the generated file.

Transformation

This event represents the step during Java code generation where UML con-
structs are transformed into Java constructs. 

Agents that trigger on <<before processing>> on this event can implement 
custom transformations of UML constructs for which no standard transfor-
mation to Java is available. For example, a definition can have a special ste-
reotype applied with a domain specific meaning when generating code. An 
agent can find definitions with that stereotype applied and replace them with 
other model constructs for which standard transformations to Java exist.

Agents that trigger on <<after processing>> on this event can examine the 
result of performing the standard transformations, and modify the resulting 
model in any way it likes. This is a means for customizing the default trans-
lation rules from UML to Java.

The Transformation tool event is triggered once for each generated Java 
source file.

Timing: 

1. ‘before processing’

2. UML definitions manifested in a Java file artifact are transformed

3. ‘after processing’

Model context: 

A copy of the Java file artifact which represents the Java source file that is 
generated.

Parameters: 

[in] messages : ITtdMessageList
June 2009 IBM Rational Tau User Guide 2085



Chapter 79: Agents
This is the message list used by the Java code generator. You can use 
AddMessage to report messages to that list, such as warnings or errors.

[in] buildartifact : ITtdEntity

This is the Java build artifact used.

[in] roots : ITtdEntities

These are copies of the entities that are manifested by the Java file artifact 
and which will be transformed to Java. Note that since they are copies of the 
original manifested entities an agent can change them freely without modi-
fying the original model. The GUIDs of the entities are, however, the same 
as the original entities, which makes it possible to find the original entities by 
using FindByGuid on the ‘originalModel’ parameter. It is typical that an 
agent reads information from the original entity and writes information on 
the copied entity.

[in] originalModel : ITtdModel

This is the original model. It should be used as the context when finding the 
original entities to transform. An agent should not change anything in this 
model. If it does, these changes will show up in the original model.

Model Verifier Events

ModelVerifierTextTrace

This event is sent by the IBM Rational Tau IDE when the Model Verifier is 
about to trace a text message in its console window. It can be used to com-
municate information from a generated C application to the IBM Rational 
Tau IDE through the Model Verifier.

Timing: 

1. ‘before processing’

2. If the shouldPrint flag is true the text is traced in the console window. 
Otherwise nothing happens.

3. ‘after processing’

Model context: 

The top-level entity of the model that is being verified with the Model Veri-
fier.

Parameters: 
2086 IBM Rational Tau User Guide June 2009



Agent Commands
[in/out] text : Charstring

The text message to print in the console window. An agent that wants to 
change the text to print (only possible on ‘before processing’) should modify 
this parameter.

[in/out] shouldPrint : Boolean

(only on ‘before processing’)
This flag is set to true by IBM Rational Tau in the call to the agent. If the 
agent does not change it (i.e. it is still true after the call), the string in the text 
parameter will be printed in the console window. If the flag is set to false by 
the agent, the text will not be printed.

Agent Commands
An agent command makes it possible to invoke a IBM Rational Tau agent 
from the IBM Rational Tau user interface. This mechanism makes it easy to 
invoke common agents that are frequently used. You may define your own 
agent commands in order to enable invocation of your own agents from the 
IBM Rational Tau user interface.

Defining an Agent Command

An agent command is defined by following these steps:

• Create a dependency from the agent to the metaclass in TTDMetaModel 
that represents the kind of model context expected by the agent. For ex-
ample, an agent that expects a class as model context should have a de-
pendency to the TTDMetaModel::Class metaclass. If an agent can 
handle more than one kind of model context, multiple dependencies can 
be created.
June 2009 IBM Rational Tau User Guide 2087



Chapter 79: Agents
• Apply the stereotype <<agent command>> on the dependency. Tagged 
values for this stereotype let you control how the agent command will ap-
pear in the IBM Rational Tau user interface:

– Target specifies where in the user interface the command will ap-
pear. Currently it is only possible to bind the command to the context 
menu.

– Parameters specifies actual values for the agent parameters, if any. 
The values are specified using textual UML expression syntax. For 
example, an agent that expects a string and a boolean parameter can 
have the following actual values: "hello", true

– Name specifies the name of the command in the user interface. If the 
name is unspecified the name of the agent will be used as the name 
of the command.

• You may create a comment on the dependency. This comment describes 
the agent command and will appear as status bar, or tool tip text in the 
user interface.

• You may apply the <<icon>> stereotype to specify a 16x16 icon for the 
agent command. This icon will appear in the context menu.

Using an Agent Command

As soon as you have defined your agent command you can try using it by 
right-clicking on an element in the Model View that is of the correct kind. 
Agent commands will appear in the context menu according to the following 
rules:

• If the agent is a query, the agent command will appear in the Queries 
submenu. When invoked the result of the query will be presented in the 
Search Result tab, and navigation can be done from that tab as usual.

• For other kinds of agents, the agent command will appear in the Utilities 
submenu.

These submenus will only appear in the context menu if at least one agent 
command is available for the selected entity.
2088 IBM Rational Tau User Guide June 2009



Utility Agents
Utility Agents
IBM Rational Tau provides numerous utility agents of different kinds ex-
posing important tool functionality to clients. These agents are defined in the 
libraries some of which are always available, and some of which are loaded 
when an add-in is activated. The documentation of these agents can also be 
found in these libraries in the model.

In order to use any of these utility agents (for example when implementing 
another agent) you should use the InvokeAgent API method. Some of the 
utility agents are also defined to be Agent Commands, which make it pos-
sible to use the from the IBM Rational Tau user interface directly.
June 2009 IBM Rational Tau User Guide 2089



Chapter 79: Agents
2090 IBM Rational Tau User Guide June 2009



80
COM API

This chapter is the reference documentation of the IBM Rational Tau COM 
API. Available COM objects and their interfaces are described, as well as the 
methods and properties of these interfaces.

Intended readers are developers of client applications that use the COM API 
to access a UML model and/or functionality in the IBM Rational Tau IDE. 
These client applications could be everything from small interactive Add-Ins 
to full fledged code generators or import applications. A basic knowledge of 
COM and C++ is assumed throughout this chapter.

The use of the COM API is only supported for the Windows platforms. 
June 2009 IBM Rational Tau User Guide 2091



Chapter 80: COM API
Introduction
The COM API gives full access to a UML model. It consists of a set of inter-
faces, each with a number of methods. Some of these methods will only ex-
tract information from the model (read API) while others can be used to 
modify it (write API). It is also possible to build a new model from scratch, 
and then save it to one or many files.

The COM API also gives access to certain parts of the Tau IDE. This part of 
the API can for example be used to automate usage of Tau from all environ-
ments and technologies supporting COM.

The COM API is can be used by clients running in their own memory space. 
Such clients are refered to as non-interactive clients since they work on their 
own private copy of a model, and the information exchange with other appli-
cations is therefore typically at file level. However, the COM API can also 
be used by interactive clients, for example clients that access the model 
loaded by a running application. This can for example be used to develop an 
add-in module that accesses the model interactively.

This chapter describes all COM interfaces and their methods. In general there 
is at least one client usage example for each method. These examples are 
given in C++, and most of them make use of ATL (Active Template Library) 
to be as compact as possible.

Note
It should be straight-forward to translate the examples to another COM en-
abled language, such as C# or Visual Basic.

The main purpose of the examples is to explain how to use a certain API 
method. Therefore the examples typically omit error handling (or rather as-
sumes there is an exception handler that deals with them), and are also not 
always self contained. 

Note
For brevity reasons, the type library namespace is also omitted in all refer-
ences to interfaces, smart pointers etc. For example it is assumed that there 
is a ‘using’ clause making the definitions of that namespace accessible 
without qualifier). 
2092 IBM Rational Tau User Guide June 2009



Introduction
Interface overview

The COM API consists of several interfaces each of which provides a set of 
related functionality. The interfaces are used both by interactive and non-in-
teractive clients. 

All interfaces are dual, that is they can be used both from clients that support 
early binding (C/C++, Java etc.) and from clients that only support late 
binding (script clients). 

There are two main kinds of interfaces in the API:

– Model interfaces

– Utility interfaces

The model interfaces are implemented by classes representing metaclasses in 
the implementation of the UML Metamodel. Some of the methods in these 
interfaces hence require knowledge of the metamodel in order to be useful. 

The utility interfaces are all other interfaces. They serve as representations 
for various parts of the Tau toolset that are exposed in the COM API.

Accessing the API

The way the COM API is accessed depends on whether the client is interac-
tive or non-interactive. 
June 2009 IBM Rational Tau User Guide 2093



Chapter 80: COM API

T
c

T
A

Accessing the API from non-interactive clients

A non-interactive client accesses the COM API by creating an instance of 
one of the COM classes that are provided by the API. There are two different 
COM classes available as shown in the table below:

The programmatic IDs of the COM classes listed in the above table are the 
version independent ones. There is also a version dependent ID which can be 
used in case there are more than one version of Tau installed on the machine. 

Note
Using a version independent ID on a machine with multiple versions of Tau 
installed will cause the Tau application that was installed the latest to be 
used.

This binary files which contain the COM classes also contain the COM API 
type libraries.

Another category of non-interactive API clients are Agents that execute in 
another IBM Rational Tau executable than the IBM Rational Tau IDE 
(VCS.EXE). An agent typically does not need to access the COM API by cre-
ating an instance of a COM class. Instead it receives a pointer to an entity 
within an already loaded model on which it shall operate. It also obtains a 
server interface which provides services for the agent that are relevant in the 
executable where it is running. For example, an agent running in the C++ Ap-
plication Generator obtains the ITtdCppAppGenServer interface which of-
fers some code generation related services to the agent.

COM class Prog ID Binary loca-
tion

Description

TD_ModelA
cess

IBM 
Rational.TauDeve
loperModelAPI

U2EXTU.DLL Instantiate this COM class to ac-
cess a UML model. This COM 
class implement the ITtdMod-
elAccess interface.

TD_Studio
ccess

IBM 
Rational.TauDeve
loperStudioAPI

VCS.EXE Instantiate this COM class to ac-
cess features in the Tau IDE 
(sometimes refered to as Studio). 
This COM class implements the 
ITtdStudioAccess interface.
2094 IBM Rational Tau User Guide June 2009



Introduction
Accessing the API from interactive clients

An interactive COM API client must implement either the ITtdAgent inter-
face (it then becomes an agent) or the ITtdInteractiveClient interface. The 
former of these interfaces is recommended since it allows the client to be in-
voked from all other APIs (C++, COM and Tcl), and it also has the advantage 
of being able to pass actual arguments to the client. See Agents for more in-
formation about agents.

The ITtdInteractiveClient interface is only provided for backwards compati-
bility with clients that were developed before the introduction of the ITtd-
Agent interface. The ITtdInteractiveClient interface contains a method 
OnExecute which will be called by the IBM Rational Tau application when 
the interactive client shall be executed. The first argument of the OnExecute 
method is a pointer to an ITtdInteractiveServer interface. This interface rep-
resents the Tau application which acts as the server for the interactive client. 
The second argument of the OnExecute method is an ITtdEntities collection 
of entities. The client can use the COM API on the entities in that collection.

An interactive COM client can be used to implement an Add-In module in a 
more efficient way than using a Tcl script. However, it is currently not pos-
sible to develop the entire Add-In using only a COM client; IBM Rational 
Tau requires at least a minimal Tcl script to execute. This script can use the 
Tcl API command u2::InvokeAgent (or the older and less general 
std::ExecuteCOMClient) in order to transfer execution to the COM client. 

It is sometimes difficult to decide what part of an Add-In to develop in Tcl 
and what part to let a COM client handle. The following guidelines could be 
useful when making this decision:

• Use Tcl to hook-up with the user interface of IBM Rational Tau, for ex-
ample to add new menus. There is currently no COM API available for 
doing this.

• If the Add-In requires a more sophisticated user interface than a simple 
dialog, implement it in the COM client. 

• If the COM client is developed in a compiled language (for example 
C++) and runs in the same process as IBM Rational Tau, its performance 
will be much better than the performance of a corresponding Tcl script.

• Sometimes the COM client must communicate back to IBM Rational 
Tau during its execution. Examples include writing in an output tab, dis-
playing a diagram etc. This can be done by using the ITtdInterac-
tiveServer::InterpretTclScript method.
June 2009 IBM Rational Tau User Guide 2095



Chapter 80: COM API
Client restrictions

Although the COM API imposes few restrictions on its clients, there are 
some important things for a client application to be aware of.

Bare only

The COM server does not support simultaneous access of the API from mul-
tiple threads. Interactive clients will be executed in the main thread of the 
IBM Rational Tau application.

Unicode strings only

Strings passed into, or obtained as result from, the methods of the COM API 
are typed by the BSTR type. BSTR strings are wide (double-byte) Unicode 
strings on 32-bit Windows platforms. If the COM client does not use Uni-
code, it must convert strings to Unicode before passing them to the API. In 
the same way the client must convert the output strings from Unicode to the 
string encoding used by the client.
2096 IBM Rational Tau User Guide June 2009



ITtdModelAccess
ITtdModelAccess
The ITtdModelAccess interface is the default interface of the 
TTD_ModelAccess COM class, and is obtained when creating an instance of 
that class. Contrary to many of the other interfaces of the API, the ITtdMod-
elAccess interface does not correspond directly to a Metaclass of the Meta-
model, but is rather used as the entry point of the entire API for all non-inter-
active clients. Interactive clients normally do not need to use this interface.

ITtdModelAccess contains the following methods:

LoadProject

Loads a IBM Rational Tau project (extension ttp) into the memory of the 
client application, or creates a new model.

Parameters

A string specifying the project file to load. If no such file exists, a new 
model will be created. If strProjectPath is a relative path, it will be 
interpreted as relative to the current working directory of the client ap-
plication.

LoadProject Loads a project (.ttp) into the memory of the client 
application. Can also be used for creating a new 
model from scratch.

LoadFile Loads a model file (.u2) into the memory of the 
client application. Can also be used for creating a 
new model from scratch.

WriteMessage Writes a message in the environment of the COM 
client.

GetLicense Requests a run-time license to be taken.

HRESULT LoadProject(
[in] BSTR strProjectPath,
[out, retval] ITtdModel** ppModel);

[in] strProjectPath
June 2009 IBM Rational Tau User Guide 2097



Chapter 80: COM API
A pointer to the loaded or created model.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The LoadProject method is typically the first method which a non-interac-
tive client calls. It is possible to load or create models for more than one 
project file by calling LoadProject many times. However, be very careful 
if the same project is loaded more than once. A change in one of the resulting 
models could overwrite an unsaved change in the other model. 

The LoadProject method makes an implicit call to ITtdEntity::Bind after 
the model has been loaded or created, in order to guarantee that all links and 
references of the model can be navigated directly when the method returns.

Example 632 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows how to load a project stored in the project file 
MyModel.ttp, and to create a new model for a non-existing project file 
NewModel.ttp. 

ITtdModelPtr pITtdModel, pITtdNewModel;
pITtdModel = pITtdModelAccess->LoadProject(_T("MyModel.ttp"));
pITtdNewModel = pITtdModelAccess->LoadProject(_T("NewModel.ttp"));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

[out, retval] ppModel

Return value Meaning

S_OK The model of the specified project file is success-
fully loaded or created. 

E_FAIL The model of the specified project file could not be 
loaded or created. This typically happens if a re-
quired IBM Rational Tau license could not be 
found, or if there is not enough memory to perform 
the operation. Use the information provided in the 
COM error object for more details.
2098 IBM Rational Tau User Guide June 2009



ITtdModelAccess
See also

“LoadFile” on page 2099

LoadFile

Loads a UML model data file (extension u2) into the memory of the client 
application. A new model will be created, containing the representation of 
the contents of the file. If the specified file does not exist, a new model will 
be created.

Parameters

A string specifying the file to load. If this file could not be loaded (for 
example because it does not exist), a new model will be created. If 
strFilePath is a relative path, it will be interpreted as relative to the 
current working directory of the client application.

Indicates whether the model fragment contained in the file should be 
loaded as a profile library or not. This parameter is optional and will de-
fault to false if omitted.

A pointer to the loaded or created model.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT LoadFile(
[in] BSTR strFileName,
[in, optional] profile
[out, retval] ITtdModel** ppModel);

[in] strFileName

[in, 
optional]

profile

[out, retval] ppModel
June 2009 IBM Rational Tau User Guide 2099



Chapter 80: COM API
Comments

The LoadFile method is an alternative to LoadProject, that can be used to 
load a model stored in one single file. Similar to LoadProject it can also be 
used for creating new models. Every call to LoadFile will create a new 
model representation, which can be accessed through the returned ITtdModel 
interface pointer.

The model that is returned from LoadFile will contain a Resource repre-
senting the file that is loaded (or attempted to be loaded). This Resource can 
later on be used in order to save changes made in the model to the corre-
sponding file. 

The LoadFile method makes an implicit call to ITtdEntity::Bind after the 
model has been loaded or created, in order to guarantee that all links and ref-
erences of the model can be navigated directly when the method returns.

Example 633 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows how to load a file MyModel.u2.

ITtdModelPtr pITtdModel;
pITtdModel = pITtdModelAccess->LoadFile("MyModel.u2");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“LoadProject” on page 2097, 

“Bind” on page 2156

“ITtdResource” on page 2172

Return value Meaning

S_OK The file is successfully loaded.

E_OUTOFMEMORY Not enough memory to create the model repre-
senting the contents of the loaded file.

E_FAIL The loading of the file failed, for one reason or an-
other. Use the information provided in the COM 
error object for more details.
2100 IBM Rational Tau User Guide June 2009



ITtdModelAccess
WriteMessage

Writes a message to be displayed in the environment of the COM client.

Parameters

The message string. It may contain traditional escape sequences for for-
matting, such as \n.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

WriteMessage can be used by a COM client to write a message in the envi-
ronment in which the client is executing. For an interactive COM client, the 
message will be printed in the Messages tab, whereas for a non-interactive 
COM client, the message will be printed on stdout.

Example 634 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

pITtdModelAccess->WriteMessage(_T("COM client running!\n"));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

HRESULT WriteMessage(
[in] BSTR strMessage);

[in] strMessage

Return value Meaning

S_OK The message was successfully written to the envi-
ronment. 

E_FAIL Failed to write the message. Use the information 
provided in the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2101



Chapter 80: COM API
GetLicense

Requests a run-time license to be taken. This function is intended to be used 
by API clients that require a license to be used.

Parameters

The name of the license feature that shall be taken.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

GetLicense can be used by a COM client which shall have some or all of its 
functionality available only if one or many license features are available. It 
can for example be used when developing commercial Add-ins using the 
COM API for IBM Rational Tau.

ITtdModel
The ITtdModel interface is implemented by the Session class of the Meta-
model, which represents the top-level entity of a UML model.

The ITtdModel interface contains methods that do not need a specific model 
entity context for their execution. Typically these methods operate on the 
model as a whole, rather than on a particular entity. 

HRESULT GetLicense(
[in] BSTR strFeature);

[in] strFeature

Return value Meaning

S_OK The license was successfully obtained. 

E_FAIL Failed to obtain the license. Use the information 
provided in the COM error object for more details.
2102 IBM Rational Tau User Guide June 2009



ITtdModel
Note
Since a Session also is an Entity, a QueryInterface from ITtdModel to 
ITtdEntity will always succeed.

ITtdModel contains the following methods:

FindByGuid

Finds the entity with the specified GUID.

Parameters

A string containing a GUID.

FindByGuid Finds the entity with the specified GUID.

New Creates a new model entity. An ITtdEntity interface 
pointer on the created entity is returned..

Parse Parses a piece of concrete textual UML syntax 
(U2P) and returns the resulting entities upon suc-
cess.

XMLDecode Decodes a model fragment encoded as XML and 
returns the resulting entities upon success..

Save Saves the model by saving all resources it contains.

CreateResource Creates a new resource in the model. This is the first 
step in order to save some part of the model in a new 
file.

LoadFile Loads a UML data file (a .u2 file) into a model.

InvokeAgent Invokes an agent on a specified model context.

HRESULT FindByGuid(
[in] BSTR strGuid,
[out, retval] ITtdEntity** ppEntity);

[in] strGuid

[out, retval] ppEntity
June 2009 IBM Rational Tau User Guide 2103



Chapter 80: COM API
The entity with the specified GUID, or NULL if no such entity exists in 
the model.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The FindByGuid method can be used to obtain an ITtdEntity pointer on an 
entity that has a known GUID. Since an entity’s GUID remains the same 
during the entire lifetime of an entity,  FindByGuid is the appropriate method 
for locating an entity regardless of its current position in the model.

If the model does not contain an entity with the specified GUID, ppEntity 
will point to NULL after the call.

Example 635 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following lines show how to use the FindByGuid method in order to ac-
cess the predefined Boolean datatype:

ITtdModelPtr pITtdModel;
pITtdModel = pITtdModelAccess->LoadProject("MyModel.ttp");
ITtdEntityPtr pEntity;
pEntity = pITtdModel->FindByGuid("@Predefined@Boolean"); 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“GUID” on page 74

New

Creates a new model entity. An ITtdEntity interface pointer on the created 
entity is returned.

Return value Meaning

S_OK Success.

E_FAIL Failure due to an internal error.
2104 IBM Rational Tau User Guide June 2009



ITtdModel
Parameters

The name of a Metaclass in the Metamodel. The string should specify 
an existing metaclass, spelled with the correct case. If an incorrect meta-
class is specified the method will fail.

The created entity.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The New method creates an instance of the specified Metaclass, which must 
exist and be non-abstract. 

Note
It is the responsibility of the client to take care of the returned entity. It 
should either be inserted into the model, or deleted, to avoid a memory leak. 

HRESULT New(
[in] BSTR strMetaClass,
[out, retval] ITtdEntity** ppEntity);

[in] strMetaClass

[out, retval] ppEntity

Return value Meaning

S_OK Success.

E_OUTOFMEMORY Too little memory available to allocate the new en-
tity.

E_FAIL The creation failed. Use the information provided 
in the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2105



Chapter 80: COM API
Example 636 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to create a Package as a top-level model entity 
using New, followed by an insertion of the created entity using 
ITtdEntity::SetEntity:

ITtdModelPtr pITtdModel;
ITtdEntityPtr pSession = pITtdModel;
pITtdModel = pITtdModelAccess->LoadProject("MyModel.ttp");
ITtdEntityPtr pPackage;
pPackage = pITtdModel->New("Package");
pPackage->SetEntity("Namespace", pSession);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Create” on page 2147

Parse

Parses a piece of concrete textual UML syntax (U2P) and returns the re-
sulting entities upon success.

Parameters

A string containing a piece of U2P syntax.

A hint to the parser how it should attempt to parse the provided string. 
The string should specify one of the metaclasses Definition, Expression, 
or Action. The default is to try to parse as Definition.

The entities resulting from a successful parse.

HRESULT Parse(
[in] BSTR strConcreteSyntax,
[in, optional] VARIANT parseAs,
[out, retval] ITtdEntities** ppEntities);

[in] strConcreteSyntax

[in, 
optional]

parseAs

[out, retval] ppEntities
2106 IBM Rational Tau User Guide June 2009



ITtdModel
Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing: 

Comments

The Parse method is useful for creating model fragments from textual 
syntax descriptions. This is often more convenient than creating the entities 
one by one (using ITtdModel::New or ITtdEntity::Create) and con-
necting them (using ITtdEntity::SetEntity). Also it requires much less 
Metamodel knowledge, since the parser takes care of creating the model. 

Note
It is the responsibility of the client to take care of the returned entities. They 
should either be inserted into the model, or deleted, to avoid a memory leak. 

Example 637 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to create a Class with an Attribute in the Package 
created in Example 636 on page 2106 using the Parse method. The parser is 
told to parse the provided string as a Definition, which is the default be-
havior.

ITtdEntitiesPtr pParseResult;
pParseResult = pITtdModel->Parse("class C { public Integer a; };");
ITtdEntityPtr pClass;
pClass = pParseResult->GetItem(1);
pPackage->SetEntity("OwnedMember", pClass);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Unparse” on page 2139

Return value Meaning

S_OK Success.

E_FAIL The parse failed. Use the information provided in 
the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2107



Chapter 80: COM API
XMLDecode

Decodes a model fragment encoded as XML and returns the resulting entities 
upon success.

Parameters

A string containing a model fragment encoded in XML.

The entities resulting from a successful XML decoding.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing: 

Comments

The XMLDecode method can be used to create a model fragment from an 
XML encoding. The XML encoding is typically obtained as the result of 
calling ITtdEntity::XMLEncode, but could also be obtained by other 
means, for example by reading the content of a .u2 file. 

Note
It is the responsibility of the client to take care of the returned entities. They 
should either be inserted into the model, or deleted, to avoid a memory leak. 

HRESULT XMLDecode(
[in] BSTR strXMLEncoding,
[out, retval] ITtdEntities** ppEntities);

[in] strXMLEncoding

[out, retval] ppEntities

Return value Meaning

S_OK Success.

E_FAIL The decoding failed. Use the information provided 
in the COM error object for more details.
2108 IBM Rational Tau User Guide June 2009



ITtdModel
Example 638 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to encode the Package created in Example 636 on 
page 2106 as XML using the ITtdEntity::XMLEncode method, and then 
how to decode that XML back to a Package using XMLDecode:

CComBSTR bstrXMLEncoding((TCHAR*) pPackage->XMLEncode());
ITtdEntitiesPtr pRoots;
pRoots = pITtdModel->XMLDecode((BSTR) bstrXMLEncoding);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Save

Saves the model by saving all resources it contains.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use the Save method to save all changes that have been made to the model. 
This method is really nothing more than a convenience method, since the 
same thing can be done by iterating over all resources in the model, and 
calling ITtdResource::Save on each of them.

An example of how to use the Save method is in Example 639 on page 2110.

CreateResource

Creates a new resource in the model. This is the first step in order to save 
some part of the model in a new file.

HRESULT Save();

Return value Meaning

S_OK The model was successfully saved.

E_FAIL At least one resource in the model could not be 
saved. Use the information provided in the COM 
error object for more details.
June 2009 IBM Rational Tau User Guide 2109



Chapter 80: COM API
Parameters

The name of the file for the resource.

The created resource.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The CreateResource method is the recommended way to create a new re-
source in the model. Another way is to use the more general (but in this case 
less appropriate) ITtdEntity::Create with the Resource Metaclass as ar-
gument. The drawback with that approach is that it will display a modal di-
alog prompting for the resource filename. This is not always the wanted be-
havior, since the client may have obtained the filename already by some 
other means.

Example 639 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses CreateResource to save the Package created in 
Example 636 on page 2106 in a file of its own:

HRESULT CreateResource(
[in] BSTR strFileName,
[out, retval] ITtdResource** ppResource);

[in] strFileName

[out, retval] ppResource

Return value Meaning

S_OK The resource was successfully created.

E_OUTOFMEMORY Too little memory available to allocate the new re-
source.

E_FAIL Failure due to an internal error.
2110 IBM Rational Tau User Guide June 2009



ITtdModel
ITtdEntityPtr pResource;
pResource = pITtdModel->CreateResource("D:\\temp\\COMtest.u2");

// Insert the created package pPackage as a root of pResource
pResource->SetEntity("Root", pPackage);
pITtdModel->Save(); // Saves all resources in the model

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

LoadFile

Loads a UML data file (a .u2 file) into a model.

Parameters

A string specifying the file to load. If this file could not be loaded (for 
example because it does not exist), the error code E_FAIL is returned. 
If strFilePath is a relative path, it will be interpreted as relative to the 
current working directory of the client application.

Indicates whether the model fragment contained in the file should be 
treated as a profile library or not. This parameter is optional and will de-
fault to false if omitted.

A pointer to the resource of the loaded file. If profile above is true, this 
pointer will be set to NULL.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT LoadFile(
[in] BSTR strFileName,
[in, optional] VARIANT profile,
[out, retval] ITtdResource** ppResource);

[in] strFileName

[in, 
optional]

profile

[out, retval] ppResource
June 2009 IBM Rational Tau User Guide 2111



Chapter 80: COM API
Comments

The LoadFile method can be used to load additional model fragments, 
stored in single files, into a model. A common usage of this method is when 
a profile stored in a separate file, and used by the model in question, needs to 
be loaded. However, also regular model segments can be loaded. Use the ar-
gument profile to control whether the model fragment to load should be 
treated as a profile library or not.

LoadFile returns a Resource representing the file that was loaded. This Re-
source can later on be used in order to save changes made in the model to the 
corresponding file.

The LoadFile method makes an implicit call to ITtdEntity::Bind after the 
file has been loaded, in order to guarantee that all links and references of the 
model can be navigated directly when the method returns.

Example 640 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows how to load a project and a profile definition, 
stored in the project file MyProj.ttp and file MyProfile.u2 respectively. 
Note that the profile in this case will be loaded as an ordinary U2 file (i.e. it 
will not be loaded into the Libraries section of the model).

ITtdModelPtr pITtdModel;
ITtdResourcePtr pITtdResource;
pITtdModel = pITtdModelAccess->LoadProject(_T("MyProj.ttp"));
pITtdResource = pITtdModel->LoadFile(_T("MyProfile.u2"));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“LoadProject” on page 2097 

Return value Meaning

S_OK The file is successfully loaded.

E_OUTOFMEMORY Not enough memory to create the resource repre-
senting the contents of the loaded file.

E_FAIL The loading of the file failed, for one reason or an-
other. Use the information provided in the COM 
error object for more details.
2112 IBM Rational Tau User Guide June 2009



ITtdModel
“ITtdResource” on page 2172 

InvokeAgent

Invokes an agent on a specified model context. 

Parameters

The definition of the agent to invoke.

The entity that is the model context of the agent invocation. The agent 
will perform its work in the context of this entity.

An optional list (safe array) of actual agent parameters.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT InvokeAgent(
[in] ITtdEntity* agent,
[in] ITtdEntity* modelContext,
[in, out, optional] VARIANT* agentParameters);

[in] agent

[in] modelContext

[in, out, 
optional]

agentParameters

Return value Meaning

S_OK The agent is successfully invoked.

E_FAIL The agent could not be invoked, for one reason or 
another. Use the information provided in the COM 
error object for more details.
June 2009 IBM Rational Tau User Guide 2113



Chapter 80: COM API
Comments

The InvokeAgent method can be used to invoke an agent programmatically 
as an alternative to specifying statically how it shall be invoked by means of 
ordering dependencies to tool events. The method has many similarities with 
the ExecuteCOMClient Tcl command, but is more general since the invoked 
agent does not need to be implemented in COM. 

If the invoked agent expects actual arguments, these should be specified as a 
safe array of variants. The variants may have the following types:

• A COM interface pointer (IUnknown). Either ITtdEntity or 
ITtdEntities must be obtainable from the passed interface.

• A string (BSTR)

• An integer (long)

• A boolean (VARIANT_BOOL)

The agent parameters list is an in/out parameter. Thus it is possible for the 
agent to modify the agent parameters in order to pass information back to the 
caller. The caller should not assume anything about the actual parameters 
after the agent has been invoked. The agent may have changed both the 
number of actual arguments, and their types.

Example 641 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows how to execute an agent whose definition has 
a known GUID. The model context is any entity from the model. No actual 
arguments are passed to the agent.

ITtdEntityPtr pAgent;
pAgent = pITtdModel->FindByGuid(_T("MyAgentGuid"));
pITtdModel->InvokeAgent(pAgent, pModelContext);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Agents” on page 2055 in Chapter 79, Agents

ITtdAgent::Execute

ITtdEntity
The ITtdEntity interface is implemented by the Entity class of the Meta-
model, which represents a general entity of a UML model.
2114 IBM Rational Tau User Guide June 2009



ITtdEntity
The ITtdEntity interface contains methods that need a specific model entity 
context for their execution. Typically these methods operate on the entity on 
which they are called.

Method Description

ApplyStereotype Instantiates the given stereotype and applies it on an 
entity.

Bind Binds all references in a model fragment, or a single 
reference of an entity.

Clone Creates a clone of an entity.

Create Creates a new entity in the context of an entity, that 
is adds a new direct or indirect child to an entity.

CreateInstance Creates an instance of a Signature.

Delete Deletes an entity from the model.

FindByName Performs a name-lookup from the context of an en-
tity to find another entity by its (qualified) name.

GetContainerMetaFeat
ure

Returns the name of the metafeature in which an en-
tity is contained.

GetDescriptiveName Returns a description of an entity.

GetEntities Returns the value of a metafeature for an entity as a 
collection of entities.

GetEntity Returns the value of a metafeature for an entity as 
an entity.

GetMetaClassName Returns the name of the entity’s Metaclass.

GetModel Returns the model to which an entity belongs.

GetOwner Returns the composition owner of an entity.

GetReference Returns the identifier of a metafeature representing 
a reference.

GetReferringEntities Returns a collection of entities that refer to an entity 
through a particular metafeature (or through any 
metafeature).

ITtdEntitiy methods
June 2009 IBM Rational Tau User Guide 2115



Chapter 80: COM API
GetTaggedValue Returns the specified property (tagged value) of an 
element. Can also be used to obtain an arbitrary 
value from an instance representation.

GetValue Returns the value of a metafeature for an entity as a 
string.

HasAppliedStereotype Determines if a certain stereotype is applied on an 
element.

IsKindOf Determines if an entity is of a particular metaclass 
kind.

MetaVisit Traverses a model fragment and calls a method in a 
callback interface for each entity it contains.

MetaVisitEx Extended version of MetaVisit which allows the 
traversal to include references.

Move Moves an entity from its current location in the 
model to another owner.

Replace Replaces an entity with another entity.

SetEntity Sets the value of a metafeature for an entity as an 
entity.

SetTaggedValue Sets a property (tagged value) on an element. Can 
also be used to set an arbitrary value of an instance 
representation.

SetValue Sets the value of a metafeature for an entity as a 
string.

UnlinkFromOwner Unlinks an entity from it current owner in the 
model.

Unparse Unparse of an entity into a concrete syntax repre-
sentation.

XMLEncode Encodes an entity into an XML representation.

Method Description

ITtdEntitiy methods
2116 IBM Rational Tau User Guide June 2009



ITtdEntity
ApplyStereotype

Instantiates the given stereotype and applies it on an entity. The qualifier in 
the reference to the stereotype is calculated based on the referenceKind 
(see below). If pInsertElement is given the stereotype is logically instan-
tiated on the host entity, but physically instantiated on the pInsertElement. 
In this case the stereotype instance will point to the host entity. In this way, 
stereotype instances may be “applied” to an entity but not modify the entity 
itself.

Parameters

The stereotype to instantiate on the entity.

The qualifier in the reference to the stereotype is calculated based on the 
referenceKind.

HRESULT ApplyStereotype(
[in] ITtdEntity* stereotype, 
[in] TtdReferenceKind referenceKind, 
[in, optional] VARIANT insertElement, 
[out, retval] ITtdEntity** result);

[in] stereotype

[in] referenceKind
June 2009 IBM Rational Tau User Guide 2117



Chapter 80: COM API
For Tcl users, there is a shorter version of the referenceKind values. 
These shorter values must be used with the Tcl API. The following table 
lists the values used in the Tcl API.

Note
The value minimalQualifier is recommended for most uses.

TtdReferenceKind Description

TTD_RK_GUID The reference will only contain a GUID 
reference.

TTD_RK_NO_QUALIFIER The reference will not be qualified. That 
is, it will only contain the name of the ste-
reotype.

TTD_RK_FULL_QUALIFIER The reference will contain a full qualifier.

TTD_RK_MINIMAL_QUALIFIER The reference will contain the minimum 
qualifier needed to reference the stereo-
type. This option may at most return the 
same qualifier as 
TTD_RK_RELATIVE_QUALIFIER. Note: 
the presence of 
<<access>>/<<import>> dependen-
cies may make it shorter.

TTD_RK_RELATIVE_QUALIFIER The reference will be a relative qualifier 
to the stereotype. If there are no common 
upper scopes of the stereotype and the 
host entity, a full qualifier is calculated, 
otherwise a shorter qualifier starting from 
the nearest common scope is calculated.

COM Tcl

TTD_RK_GUID GUID

TTD_RK_NO_QUALIFIER noQualifier

TTD_RK_FULL_QUALIFIER fullQualifier

TTD_RK_MINIMAL_QUALIFIER minimalQualifier

TTD_RK_RELATIVE_QUALIFIER relativeQualifier
2118 IBM Rational Tau User Guide June 2009



ITtdEntity
If insertElement is given, the stereotype is logically instantiated on 
the host entity, but physically instantiated on the insertElement. In 
this case the stereotype instance will point to the host entity. In this way, 
stereotype instances may be “applied” to an entity but not modify the 
entity itself. This technique is known as “stereotype injection”.

The instantiated stereotype (i.e a stereotype instance).

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

GetValue

Returns the value of a metafeature for the entity on which the method is 
called. The value is represented as a string.

Parameters

A string specifying the metafeature from which the value shall be ex-
tracted. The string should specify an existing metafeature for the entity 
on which the method is called, spelled with the correct case. If an incor-
rect metafeature is specified the method will fail.

[in, 
optional]

insertElement

[out, retval] result

Return value Meaning

S_OK Success.

E_FAIL Failure due to an internal error.

HRESULT GetValue(
[in] BSTR strMetaFeature,
[in, optional] VARIANT index,
[out, retval] BSTR* strValue);

[in] strMetaFeature
June 2009 IBM Rational Tau User Guide 2119



Chapter 80: COM API
The index of the metafeature from which the value shall be extracted. 
Indexes start at 1 and the index 0 can be used to specify the last index 
of the metafeature. If this optional parameter is omitted it will default to 
0. If an index is specified it must be within a valid range, otherwise the 
method will fail.

The obtained value represented as a string. Details on the format of the 
string can be found in the table in the Comments section.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The GetValue method can be used on all metafeatures of an entity that can 
have their values encoded as a string. This is the case for all metafeatures ex-
cept derived features of Metaclass type, owner links and composition links. 

The format of the string returned by GetValue depends on the type of the 
specified metafeature. The table below shows the different possibilities. 

[in, 
optional]

index

[out, retval] strValue

Return value Meaning

S_OK Success.

E_FAIL The specified value could not be obtained for one 
reason or another. Use the information provided in 
the COM error object for more details.
2120 IBM Rational Tau User Guide June 2009



ITtdEntity
Metafeature type String encoding Example

Enumeration 
(datatype with lit-
erals)

The name of the 
literal

"true"
"VkVirtual"

Charstring or 
identifier 
(CeIdent)

The string or 
identifier

"MyClass"

Numeric type (In-
teger, Real, Nat-
ural etc.)

The numeric 
value as a string

"14"
"217.5"

GUID (CeGuid) The GUID "63Lkm3hRE7K*uRE"

Position or size 
type (SPoint or 
SSize)

The X and Y co-
ordinates sepa-
rated with a 
space

"1240 1380"

List of positions 
(PointVector)

The encoding of 
each position 
separated with a 
space

"1940 1020 1940 1120"
June 2009 IBM Rational Tau User Guide 2121



Chapter 80: COM API
Example 642 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example uses the GetValue method in order to access the 
name of the predefined Boolean datatype:

ITtdModelPtr pITtdModel;
pITtdModel = pITtdModelAccess->LoadProject("MyModel.ttp");
ITtdEntityPtr pEntity;
pEntity = pITtdModel->FindByGuid("@Predefined@Boolean"); 
CComBSTR bstrName((TCHAR*) pEntity->GetValue("Name"));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“GetEntity” on page 2123, 

“GetTaggedValue” on page 2133

“Metamodel Classes” on page 387.

Metaclass If the metafeature 
has no assigned 
value: 
an empty string

""

If the metafeature 
is set up by 
GUID or directly 
by pointer:
the string "uid:" 
followed by the 
GUID of the 
target entity.

"uid:63Lkm3hRE7K*uRE"

If the metafeature 
is set up by name:
the string "ref:" 
followed by the 
name of the 
target entity (pos-
sibly qualified).

"ref:MyClass::MyAttr"

Metafeature type String encoding Example
2122 IBM Rational Tau User Guide June 2009



ITtdEntity
GetEntity

Returns the value of a metafeature for the entity on which the method is 
called. The value is represented as an ITtdEntity pointer.

Parameters

A string specifying the metafeature from which the value shall be ex-
tracted. The string should specify an existing metafeature for the entity 
on which the method is called, spelled with the correct case. If an incor-
rect metafeature is specified the method will fail.

The index of the metafeature from which the value shall be extracted. 
Indexes start at 1 and the index 0 can be used to specify the last index 
of the metafeature. If this optional parameter is omitted it will default to 
0. If an index is specified it must be within a valid range, otherwise the 
method will fail.

The obtained value represented as an ITtdEntity pointer. If no value ex-
ists, this pointer will be NULL.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT GetEntity(
[in] BSTR strMetaFeature,
[in, optional] VARIANT index,
[out, retval] ITtdEntity** ppEntity);

[in] strMetaFeature

[in, 
optional]

index

[out, retval] ppEntity
June 2009 IBM Rational Tau User Guide 2123



Chapter 80: COM API
Comments

The GetEntity method can be used on all metafeatures of an entity that have 
Metaclass type. For these metafeatures this method is often more convenient 
to use than GetValue since the obtained ITtdEntity pointer can be used di-
rectly in subsequent method calls. However, if the entity pointer obtained 
from GetEntity is NULL, it could be interesting to make a corresponding 
call to GetValue in order to know if this means that the metafeature could be 
bound at a later point in time, or if no value has ever been given to the 
metafeature. In the latter case GetValue would return an empty string, while 
in the former case the returned string would be the encoded metafeature 
value, although the metafeature is (currently) unbound.

Note
If the metafeature represents a reference in the Metamodel, GetReference 
could be a better alternative than GetValue.

Example 643 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example uses the GetEntity method in order to access the 
type of an attribute pointed to by pAttribute. If its type metafeature is 
bound to a Definition, the name of that Definition is extracted:

ITtdEntityPtr pType;
pType = pAttribute->GetEntity("Type");
if (pType != 0 && pType->IsKindOf("Definition"))
CComBSTR bstrName((TCHAR*) pType->GetValue("Name"));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“GetValue” on page 2119, 

“GetEntities” on page 2125, 

“GetReference” on page 2126

Return value Meaning

S_OK Success.

E_FAIL The specified value could not be obtained for one 
reason or another. Use the information provided in 
the COM error object for more details.
2124 IBM Rational Tau User Guide June 2009



ITtdEntity
GetEntities

Returns the value of a metafeature for the entity on which the method is 
called. The value is represented as a collection of entities, that is as an 
ITtdEntities pointer.

Parameters

A string specifying the metafeature from which the value shall be ex-
tracted. The string should specify an existing metafeature for the entity 
on which the method is called, spelled with the correct case. If an incor-
rect metafeature is specified the method will fail.

A pointer to an ITtdEntities collection containing the entities being the 
value of the metafeature.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The GetEntities method can be used on all metafeatures of an entity that 
have Metaclass type. It is often a more convenient alternative to making sev-
eral consecutive calls to GetEntity with different indexes, in order to obtain 

HRESULT GetEntities(
[in] BSTR strMetaFeature,
[out, retval] ITtdEntities** ppEntities);

[in] strMetaFeature

[out, retval] ppEntities

Return value Meaning

S_OK Success.

E_FAIL The specified value could not be obtained for one 
reason or another. Use the information provided in 
the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2125



Chapter 80: COM API
all entities of a metafeature with non-single multiplicity. However, it can also 
be used on metafeatures with single multiplicity, in which case the obtained 
collection only will contain one or zero entities.

The returned collection may include NULL pointers, if the metafeature is un-
bound at the corresponding index. Use GetValue or GetReference to find out 
more information about such unbound metafeatures.

Example 644 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example uses the GetEntities method in order to access the 
classes (and other signatures) contained in a package pointed to by 
pPackage:

ITtdEntitiesPtr pSignatures;
pSignatures = pPackage->GetEntities("Signature");
long lCount = pSignatures->Count;
ITtdEntityPtr pSignature;
// N.B. Index are 1-based
for (int i = 1; i <= lCount; i++){
pSignature = pSignatures->GetItem(i);
// Do something with pSignature...

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“GetEntity” on page 2123

GetReference

Returns the reference of a metafeature for the entity on which the method is 
called. The metafeature should represent a (non-derived) reference in the 
Metamodel.

Parameters

HRESULT GetReference(
[in] BSTR strMetaFeature,
[in, optional] VARIANT index,
[out, retval] ITtdEntity** ppEntity);

[in] strMetaFeature
2126 IBM Rational Tau User Guide June 2009



ITtdEntity
A string specifying the metafeature from which the reference shall be 
extracted. The string should specify an existing metafeature for the en-
tity on which the method is called, spelled with the correct case, and the 
metafeature should represent a (non-derived) reference in the meta-
model. If an incorrect metafeature is specified the method will fail.

The index of the metafeature from which the reference shall be ex-
tracted. Indexes start at 1 and the index 0 can be used to specify the last 
index of the metafeature. If this optional parameter is omitted it will de-
fault to 0. If an index is specified it must be within a valid range, other-
wise the method will fail.

An ITtdEntity pointer to the obtained reference. The reference is repre-
sented by an identifier (an instance of the Ident Metaclass). If no ref-
erence exists, this pointer will be NULL. This happens when the refer-
ence is not set up by identifier (but by GUID or by pointer), or when it 
has never been set up at all.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The GetReference method can be used on all metafeatures that represent 
non-derived references in the Metamodel. This is the case for all metafea-
tures of metaclass type, except owner and composition links. 

[in, 
optional]

index

[out, retval] ppEntity

Return value Meaning

S_OK Success.

E_FAIL The reference could not be obtained for one reason 
or another. Use the information provided in the 
COM error object for more details.
June 2009 IBM Rational Tau User Guide 2127



Chapter 80: COM API
The returned reference is represented as an identifier in the model. This iden-
tifier has a name, and possibly also additional information that is needed in 
order to bind it (for example a scope qualifier).

Since a reference can be fairly complex in the general case, GetReference 
is often a better alternative than GetValue for metafeatures that represent 
references. The reason is that the result is a model representation of the iden-
tifier, rather than a string representation.

Example 645 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example uses the GetReference method in order to access 
the reference of the type metafeature of an attribute pointed to by 
pAttribute. The returned reference is then unparsed, using the Unparse 
method.

ITtdEntityPtr pRef;
pRef = pAttribute->GetReference("Type");
if (pRef != NULL){

CComBSTR bstrText((TCHAR*) pRef->Unparse());
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“GetValue” on page 2119

GetOwner

Returns the composition owner of the entity on which the method is called.

Parameters

A pointer to the entity that is the direct owner of the entity on which the 
method is called, or NULL if the entity has no owner.

HRESULT GetOwner(
[out, retval] ITtdEntity** ppEntity);

[out, retval] ppEntity
2128 IBM Rational Tau User Guide June 2009



ITtdEntity
Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

GetOwner is the recommended method to use in order to find the owner of 
an entity. An alternative technique for finding the owner is to call GetEntity 
for the owner metafeature. However, if an entity has more than one owner 
metafeature, it is easier to call GetOwner than to make one GetEntity call 
for each owner metafeature. 

Example 646 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how GetOwner can be used to find the Session of an en-
tity pointed to by pEntity. Remember that the Session is the outermost en-
tity of a model:

ITtdEntityPtr pOwner = pEntity;
ITtdEntityPtr pSession;
while (pOwner != 0){

pSession = pOwner;
pOwner = pOwner->GetOwner();

}
// pSession now points at the Session of pEntity (provided pEntity
// is part of the model of course)

It should be noted that a much easier way to get to the Session, is to use Ge-
tEntity on the derived metafeature “Session” available on all entities, or to 
use GetModel.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“GetEntity” on page 2123

GetMetaClassName

Returns the name of the Metaclass of the entity on which the method is 
called.

Return value Meaning

S_OK Success.
June 2009 IBM Rational Tau User Guide 2129



Chapter 80: COM API
Parameters

The name of the entity’s metaclass.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

GetMetaClassName is useful for finding out what kind of entity an ITtdEn-
tity pointer is referring to. Often it is enough to use IsKindOf to find out if 
an entity is of a particular metaclass kind, but sometimes it is needed to find 
out the precise metaclass of an entity.

Example 647 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example illustrates the difference in how GetMetaClassName and 
IsKindOf can be used to distinguish what kind of entity an ITtdEntity 
pointer is pointing to:

CComBSTR bstrMetaClass((TCHAR*) pEntity->GetMetaClassName());
if (bstrMetaClass == "Operation"){
// Will only get here if pEntity’s metaclass is Operation,
// that is  not if pEntity is a StateMachine

}
if (pEntity->IsKindOf("Operation")){
// Will get here if pEntity is an Operation (including 
// StateMachine since the StateMachine metaclass inherits
// the Operation metaclass)

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

HRESULT GetMetaClassName(
[out, retval] BSTR* strName);

[out, retval] strName

Return value Meaning

S_OK Success.
2130 IBM Rational Tau User Guide June 2009



ITtdEntity
See also

“IsKindOf” on page 2138

GetReferringEntities

This is the same function as GetReferingEntities. The spelling of the 
function as GetReferingEntities is deprecated, and is present in the API 
to ensure backward compatibility.

Returns a collection of entities that refer to the entity on which the method is 
called, through a particular metafeature.

Parameters

A string specifying the metafeature through which the entity is refer-
enced. This is a metafeature on the referring entity, not on the entity on 
which the method is called (which is the referred-to entity). The string 
should specify an existing metafeature spelled with the correct case. If 
an incorrect metafeature is specified, an empty collection will be the re-
sult.

The string may be empty to find all referring entities, regardless of 
through which metafeature they refer to the entity.

A pointer to an ITtdEntities collection containing the entities that refer 
to the entity through the specified metafeature.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT GetReferringEntities(
[in] BSTR strMetaFeature,
[out, retval] ITtdEntities** ppEntities);

[in] strMetaFeature

[out, retval] ppEntities
June 2009 IBM Rational Tau User Guide 2131



Chapter 80: COM API
Comments

The purpose of the GetReferringEntities method is to find so called re-
verse references. When a reference corresponding to a certain metafeature in 
the model is bound, there will also be a reverse reference established from 
the referred-to entity to the referring entity. The GetReferringEntities 
gives access to the target entities of these reverse references, that is the refer-
ring entities. 

Figure 286 on page 2132 illustrates the concept of a reverse reference. It 
shows an Attribute typed by a Class. To navigate from the Attribute to its 
type, use the GetEntity method for the “type” metafeature. However, to nav-
igate from the type to the Attribute, GetReferringEntities must be used 
instead.

Example 648 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example uses the GetReferringEntities method in order 
to find all entities typed by the predefined Boolean type:

ITtdModelPtr pITtdModel;
pITtdModel = pITtdModelAccess->LoadProject("MyModel.ttp");
ITtdEntityPtr pEntity;
pEntity = pITtdModel->FindByGuid("@Predefined@Boolean"); 

ITtdEntitiesPtr pReferringEntities;
pReferringEntities = pEntity->GetReferringEntities("Type");
// pReferringEntities now contains all entities typed by Boolean

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Return value Meaning

S_OK Success.

Figure 286: A reverse reference

Attribute C lass

type

reverse reference of type
2132 IBM Rational Tau User Guide June 2009



ITtdEntity
GetTaggedValue

Returns a property (tagged value) of an element, or in general any value from 
an instance representation.

Parameters

A string containing a selector pattern that specifies which (tagged) 
value to retrieve. The format of this pattern is described below.

Indicates whether identifiers in the selector pattern should be inter-
preted as GUIDs rather than as ordinary names. This parameter is op-
tional and will default to false if omitted.

The (tagged) value selected by the selector pattern, or NULL if no such 
value exists (either because the specified value does not exist, or that the 
selector pattern is not well-formed). The value is an Expression.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT GetTaggedValue(
[in] BSTR strSelector,
[in, optional] VARIANT interpretIdentsAsGuids,
[out, retval] ITtdEntity** ppValue);

[in] strSelector

[in, 
optional]

interpretIdentsAsGuids

[out, retval] ppValue

Return value Meaning

S_OK Success.

E_FAIL Failure due to an internal error.
June 2009 IBM Rational Tau User Guide 2133



Chapter 80: COM API
Comments

GetTaggedValue is a convenience method for extracting properties (tagged 
values) from an element. Since properties are represented as ordinary values 
in the model, the method can also be used on any instance, represented in the 
model with the InstanceExpr Metaclass. 

If the entity on which the method is called is not an InstanceExpr nor an 
entity that can have stereotypes applied, NULL will be returned.

Of course, properties can be extracted just by using the GetEntity method 
(and by knowing exactly how values are represented in the model). However, 
GetTaggedValue offers several benefits to that approach:

• Patterns can select values at any depth in the “tree of values” represented 
by an InstanceExpr.

• One call to GetTaggedValue can replace several calls to GetEntity, 
making the client code much more compact and readable.

• Patterns support Signature inheritance, that is it is possible to match in-
stances of several inherited Signatures using a pattern that specify a 
common parent Signature.

• If the selected value is missing in the InstanceExpr, but the corre-
sponding Attribute has a default value, that value will be returned.

• The method also handles values from stereotypes that are automatically 
applied due to the presence of an non-optional extension for a matching 
metaclass.

• Some special cases in the model representation of values are taken care 
of by the GetTaggedValue implementation, relieving the client from 
having to take these into consideration.

The parameter interpretIdentsAsGuids should be used to avoid the risk that 
a pattern selects a property (tagged value) in the wrong stereotype instance. 
It is typically useful for a client that extracts properties for stereotypes in a 
profile package which the client is responsible for. If the client knows the 
GUID of the stereotype it wants to access properties from, it can use a se-
lector pattern with GUIDs rather than plain names. Example 649 on page 
2135 shows an example.
2134 IBM Rational Tau User Guide June 2009



ITtdEntity
The syntax of the selector pattern is the textual UML syntax (U2P) for in-
stance expressions, but restricted so that only identifiers, instance expres-
sions, and assignments are allowed. Also, there must be at most one assign-
ment in each instance expression. The result is a pattern that specifies a path 
down through the “tree of values”, selecting the value at the end of the path.

Figure 287 on page 2135 shows how a pattern selects the property (tagged 
value) of Y::i in an instance of some stereotype X.

Example 649: Usages of GetTaggedValue.––––––––––––––––––––––––––––––––––

The model shown in Figure 288 on page 2135 is used. 

Assume there is an element pointed to by pElement. The following lines will 
extract the SignedNote::author property of that element:

ITtdEntityPtr pTaggedValue;
pTaggedValue = pElement->GetTaggedValue("SignedNote (. author .)");

Figure 287: Selector pattern example

Figure 288: Stereotypes describing notes

X

a=3 b = Y

i = true j = false

X(. b = Y(. i .) .)

Note
<<stereotype>>

text : Charstring

SignedNote
<<stereotype>>

author : Charstring = "Anonymous"

UnsignedNote
<<stereotype>>

id : Integer

  

  
June 2009 IBM Rational Tau User Guide 2135



Chapter 80: COM API
Since SignedNote::author has a default value (“Anonymous”), 
pTaggedValue above will point to a CharstringValue although no explicit 
value is provided for the author attribute in the SignedNote instance.

In the following code the pattern “Note (. text .)” is used to extract the 
tagged value “text” on both SignedNotes and UnsignedNotes:

ITtdEntityPtr pTaggedValue;
pTaggedValue = pElement->GetTaggedValue("Note (. text .)");

The following lines contain a simple pattern for determining if the Unsign-
edNote stereotype is applied on the element:

ITtdEntityPtr pTaggedValue;
pTaggedValue = pElement->GetTaggedValue("UnsignedNote (. .)");

If UnsignedNote is applied on the element, pTaggedValue will point to the 
InstanceExpr representing the stereotype instance. If not, it will be NULL. 
However, please read the note below concerning the HasAppliedStereotype 
method which is the best method to use for testing if a certain stereotype is 
applied.

If the GUID of the UnsignedNote stereotype is known to be 
@UnsignedNote, the interpretIdentsAsGuids parameter can be used to avoid 
getting an instance of another stereotype with the same name. The GUID has 
to be within apostrophes to make the pattern syntactically correct. If Unsign-
edNote is applied on the element, it is then possible to make another call to 
GetTaggedValue on the returned stereotype instance. In that call the pattern 
does not need to contain GUIDs since you now know that you are working 
with the correct InstanceExpr.

ITtdEntityPtr pTagValue;
pTagValue = pElement->GetTaggedValue("‘@UnsignedNote’ (. .)", true 
/*idents as GUIDs*/);
if (pTaggedValue != NULL){
ITtdEntityPtr pIdValue;
pIdValue = pTagValue->GetTaggedValue("UnsignedNote (. id .)");

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2136 IBM Rational Tau User Guide June 2009



ITtdEntity
Note
Although a selector pattern on the form “X (. .)” can be used to test if a 
stereotype X is applied on an entity, it is better to use HasAppliedStereotype 
for this purpose. The reason is that a stereotype that is automatically ap-
plied (due to a non-optional extension on a matching metaclass) will not be 
instantiated until at least one of its attributes get a tagged value that differs 
from the default value of the attribute.GetTaggedValue thus has no stereo-
type instance to return for the particular case. However, when used with a 
selector pattern that selects a tagged value, GetTaggedValue will also con-
sider such automatically applied stereotypes.

See also

“GetEntity” on page 2123, 

“SetTaggedValue” on page 2144, 

“HasAppliedStereotype” on page 2137

HasAppliedStereotype

Determines if an element has a certain stereotype applied or not.

Parameters

A string specifying which stereotype to look for among the applied ste-
reotypes of the entity. If guid is false this string should be the name of 
the stereotype. Otherwise it should be the GUID of the stereotype.

Indicates whether strStereotype should be interpreted as the GUID 
rather than as the name of the stereotype to look for. This parameter is 
optional and will default to false if omitted.

HRESULT HasAppliedStereotype(
[in] BSTR strStereotype,
[in, optional] VARIANT guid,
[out, retval] VARIANT_BOOL* result);

[in] strStereotype

[in, 
optional]

guid
June 2009 IBM Rational Tau User Guide 2137



Chapter 80: COM API
True if the specified stereotype is applied on the element. False other-
wise.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

HasStereotypeApplied is the recommended method for checking for ap-
plied stereotypes on an entity. It will consider both explicitly applied stereo-
types, and stereotypes that are automatically applied due to non-optional ex-
tensions from a metaclass that matches the metaclass of the entity

See also

“GetTaggedValue” on page 2133

IsKindOf

Determines if the entity on which the method is called is of a particular Meta-
class kind.

Parameters

[out, retval] result

Return value Meaning

S_OK Success.

E_FAIL Failure due to an internal error.

HRESULT IsKindOf(
[in] BSTR strMetaClass,
[out, retval] VARIANT_BOOL* isKindOf);

[in] strMetaClass
2138 IBM Rational Tau User Guide June 2009



ITtdEntity
The name of a metaclass in the Metamodel.

True if the entity on which the method is called is of the specified meta-
class kind, false otherwise.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The IsKindOf method returns true if one of the following conditions are 
true:

1. The entity’s metaclass is the metaclass specified in the strMetaClass pa-
rameter.

2. The entity’s metaclass inherits the metaclass (directly or indirectly) spec-
ified in the strMetaClass parameter.

Note the difference with the GetMetaClassName method which can be used 
to check if only the first of these conditions apply. Example 647 on page 
2130 shows an example using IsKindOf.

See also

“GetMetaClassName” on page 2129

Unparse

Unparse of the entity on which the method is called into a concrete syntax 
representation.

[out, retval] isKindOf

Return value Meaning

S_OK Success.

E_FAIL Failure due to an internal error.
June 2009 IBM Rational Tau User Guide 2139



Chapter 80: COM API
Parameters

The concrete syntax representation of the entity on which the method is 
called.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The Unparse method can unparse most models and model fragments. In par-
ticular it can unparse all model entities obtained from calling Parse. There 
are, however, some kinds of entities that cannot be unparsed on their own 
since they require a model context in order to be unambiguously unparsed. If 
Unparse is called on such an entity, it will fail.

Example 650 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to unparse the Class created using Parse in 
Example 637 on page 2107:

CComBSTR bstrText((TCHAR*) pClass->Unparse());
// bstrText will become "class C { public Integer a; };" (perhaps
// formatted slightly differently)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Parse” on page 2106

HRESULT Unparse(
[out, retval] BSTR* strConcreteSyntax);

[out, retval] strConcreteSyntax

Return value Meaning

S_OK Success.

E_FAIL Unparse failed. Use the information provided in the 
COM error object for more details.
2140 IBM Rational Tau User Guide June 2009



ITtdEntity
SetValue

Sets the value of a metafeature for the entity on which the method is called. 
The value is represented as a string.

Parameters

A string specifying the metafeature which should have its value set. The 
string should specify an existing metafeature for the entity on which the 
method is called, spelled with the correct case. If an incorrect metafea-
ture is specified the method will fail.

The value to set, represented as a string. The format of the string is de-
scribed in the documentation of the GetValue method.

The index of the metafeature which should have its value set. The value 
will be inserted before the value that is currently at that index. Indexes 
start at 1 and the index 0 can be used to specify the last index of the 
metafeature. If this optional parameter is omitted it will default to 0. If 
the index is outside a valid range, the value will be inserted at the last 
position in the metafeature.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT SetValue(
[in] BSTR strMetaFeature,
[in] BSTR strValue,
[in, optional] VARIANT index);

[in] strMetaFeature

[in] strValue

[in, 
optional]

index
June 2009 IBM Rational Tau User Guide 2141



Chapter 80: COM API
Comments

The SetValue method can be used on all writable metafeatures of an entity 
that can have their values encoded as a string. This is the case for all metafea-
tures except derived features (which are read-only), owner links and compo-
sition links.

The format of the string is described in the documentation of the GetValue 
method. 

Example 651 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to create an Attribute in the context of pClass and 
then give it the name “CreatedAttribute” using the SetValue method:

ITtdEntityPtr pCreatedEntity;
pCreatedEntity = pClass->Create(_T("Attribute"));
if (pCreatedEntity){

pCreatedEntity->SetValue("Name", "CreatedAttribute");
}

A slightly more advanced use of SetValue is to set up a reference in the 
model by an identifier. In the example below this is done for the type of the 
attribute created above. In order to have the reference bound, so that GetEn-
tity can be used to navigate to the type of the created attribute, call the Bind 
method on the attribute.

pCreatedEntity->SetValue("Type", "ref:Integer");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“SetEntity” on page 2143, 

“GetValue” on page 2119, 

“GetEntity” on page 2123

Return value Meaning

S_OK Success.

E_FAIL The value could not be set for one reason or an-
other. Use the information provided in the COM 
error object for more details.
2142 IBM Rational Tau User Guide June 2009



ITtdEntity
SetEntity

Sets the value of a metafeature for the entity on which the method is called. 
The value is represented as an entity.

Parameters

A string specifying the metafeature which should have its value set. The 
string should specify an existing metafeature for the entity on which the 
method is called, spelled with the correct case. If an incorrect metafea-
ture is specified the method will fail.

The value to set, represented as an ITtdEntity pointer. If pEntity is 
NULL, the value of the specified metafeature will be reset.

The index of the metafeature which should have its value set. The entity 
will be inserted before the entity that is currently at that index. Indexes 
start at 1 and the index 0 can be used to specify the last index of the 
metafeature. If this optional parameter is omitted it will default to 0. If 
the index is outside a valid range, the entity will be inserted at the last 
position in the metafeature.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT SetEntity(
[in] BSTR strMetaFeature,
[in] ITtdEntity* pEntity,
[in, optional] VARIANT nPos);

[in] strMetaFeature

[in] pEntity

[in, 
optional]

nPos
June 2009 IBM Rational Tau User Guide 2143



Chapter 80: COM API
Comments

The SetEntity method can be used on all writable (non-derived) metafea-
tures of an entity that have Metaclass type. If the specified metafeature is a 
reference, SetEntity will set it by pointer to refer to the given entity. In 
order to set a reference by identifier or by GUID, use SetValue instead. 

Example 652 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows how to set up a reference by pointer, using the 
SetEntity method. Compare it with Example 651 on page 2142 where the 
same reference is set up by identifier instead:

// First find the Integer datatype using FindByGuid
ITtdEntityPtr pType;
pType = pITtdModel->FindByGuid("@Predefined@Integer");
pCreatedEntity->SetEntity("Type", pType);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“SetValue” on page 2141

“GetValue” on page 2119

“GetEntity” on page 2123

SetTaggedValue

Sets a property (tagged value) of an element, or in general any value in an 
instance representation.

Return value Meaning

S_OK Success.

E_FAIL The value could not be set for one reason or an-
other. Use the information provided in the COM 
error object for more details.

HRESULT SetTaggedValue(
[in] BSTR strSelector,
[in] BSTR strValue,
[in, optional] VARIANT overwrite /* = true */);
2144 IBM Rational Tau User Guide June 2009



ITtdEntity
Parameters

A string containing a selector pattern that specifies which (tagged) 
value to set. The format of this pattern is described in the documentation 
of the GetTaggedValue method. If the pattern is ill-formed, or does not 
match, the method will fail.

The value to set, encoded as a string. This string should be a valid ex-
pression. It will be parsed by the expression parser and the resulting ex-
pression will be inserted in the “tree of values” at the position deter-
mined by the selector pattern. If this value string cannot be parsed as an 
expression, the method will fail.

If this parameter is true, the new value will overwrite any existing 
values selected by the selector pattern. This parameter is by default true 
since it typically is not desired to have more than one property (tagged 
value) for a particular attribute.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

[in] strSelector

[in] strValue

[in, 
optional]

overwrite

Return value Meaning

S_OK Success.

E_FAIL The property (tagged value) could not be set for one 
reason or another. Use the information provided in 
the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2145



Chapter 80: COM API
Comments

SetTaggedValue can be called on all elements which can have stereotypes 
applied, or it can be called on an instance expression (metaclass Instance-
Expr). If it is called on an element, the property (tagged value) will be set in 
the first applied stereotype instance, available on the element, for which the 
selector pattern matches. If it is called on an instance expression, the property 
(tagged value) will be set in that instance expression (provided that the se-
lector pattern matches it of course).

In order to be able to overwrite one or many existing values (using the 
overwrite parameter) the instance expression that the selector pattern is 
matched against must be bound to the Signature of which it is an instance. 
Use the Bind method to make sure it is properly bound.

Note
When SetTaggedValue overwrites existing values (using the overwrite pa-
rameter), the previous values will be deleted. Any pointers on these deleted 
values will thus be invalid afterwards and should not be used. Compare 
with the Delete method for how to handle deleted entities in the client code.

Example 653 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses SetTaggedValue to set a property (tagged value) on a 
Class created in the context of a Package pointed to by pPackage. The ste-
reotype used is the SignedNote stereotype from Example 649 on page 2135. 
Before a property (tagged value) can be set, the stereotype must be applied 
(here using the CreateInstance method followed by a SetEntity call).

ITtdEntityPtr pClass;
pClass = pPackage->Create("Class");

ITtdEntityPtr pStereotypeInstance;
// Assuming that pStereotype points to the SignedNote stereotype...
pStereotypeInstance->CreateInstance(pStereotype);
pClass->SetEntity("StereotypeInstance", pStereotypeInstance);

pClass->SetTaggedValue("SignedNote (. author .)", "\"Elvis\"");

You must quote the property (tagged value) to set to make it a legal Char-
string expression. If the quotes were omitted it would have been interpreted 
as an identifier.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2146 IBM Rational Tau User Guide June 2009



ITtdEntity
See also

GetTaggedValue

Create

Creates a new entity in the context of the entity on which the method is 
called. This means that a new (direct or indirect) child will be added to the 
entity.

Parameters

The name of a Metaclass in the Metamodel. The string should specify 
an existing metaclass, spelled with the correct case. If an incorrect meta-
class is specified the method will fail.

Specifies whether created presentation elements should have a model 
representation built automatically. This optional parameter is by default 
true. It could be useful to set this parameter to false if the created pre-
sentation element should be set up to reference an existing model ele-
ment rather than a new one.

A string specifying the metafeature in which the new entity should be 
created. This parameter is optional, and need only be given when it is 
ambiguous where to insert the created entity. In most cases an entity of 
the specified metaclass can only fit into one particular metafeature, and 
then this parameter is ignored. If the parameter is given, it should 

HRESULT Create(
[in] BSTR strMetaClass,
[in, optional] VARIANT buildModelForPresentations,
[in, optional] VARIANT strMetaFeature,
[out, retval] ITtdEntity** ppCreatedEntity);

[in] strMetaClass

[in, 
optional]

buildModelForPresentations

[in, 
optional]

strMetaFeature
June 2009 IBM Rational Tau User Guide 2147



Chapter 80: COM API
specify an existing metafeature for the entity on which the method is 
called, spelled with the correct case. If an incorrect metafeature is spec-
ified the method will fail.

The created entity.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Create is the recommended method for creating an entity as a direct or indi-
rect child of the entity on which the method is called. It is similar to 
ITtdModel::New, but has a few benefits which usually makes it the better 
choice of the two:

• It will create the new entity and link it to the model as one atomic opera-
tion, thereby reducing the risk of orphan entities.

• It provides several creation “shortcuts”, that is it often allows an entity to 
be created although it cannot be inserted as a direct child of the entity on 
which the method is called. Create will then automatically create the in-
termediate entities required in order to insert the new entity. Compare 
with how the “New” menu works in the Model View of the tool.

• Model representations for created presentation elements will be built au-
tomatically (unless the buildModelForPresentations parameter is set to 
false).

[out, retval] ppCreatedEntity

Return value Meaning

S_OK Success.

E_FAIL The creation failed. Use the information provided 
in the COM error object for more details.
2148 IBM Rational Tau User Guide June 2009



ITtdEntity
Example 654 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to use Create in order to create a package in the 
top-level model entity (the Session). Compare with Example 636 on page 
2106 which does the same, using the less sophisticated ITtdModel::New 
method.

ITtdModelPtr pITtdModel;
pITtdModel = pITtdModelAccess->LoadProject("MyModel.ttp");
ITtdEntityPtr pSession = pITtdModel;
ITtdEntityPtr pPackage;
pPackage = pSession->Create("Package");

Now you can continue with creating a sequence diagram in the package. This 
is possible although the model does not allow a sequence diagram to be in-
serted as a direct child of a package. Create will automatically create a use 
case in the Package, an Interaction in the use case, and Interaction Implemen-
tation in the Interaction, and finally the sequence diagram in that Interaction 
Implementation.

ITtdEntityPtr pSQDiagram;
pSQDiagram = pPackage->Create("SequenceDiagram");

In the calls to Create above no metafeature has to be specified, since it is 
unambiguous where to create the entity. But in the example below, where the 
left and right operand shall be created in a binary expression pointed to by 
pBinaryExpr, a metafeature must be specified since there are two possible 
metafeatures of a BinaryExpr where an Expression could fit (namely LeftOp-
erand and RightOperand):

// Create an assignment expression: myVar = 4
ITtdEntityPtr pIdentifier;
ITtdEntityPtr pValue;
pIdentifier = pBinaryExpr->Create("Ident", "LeftOperand");
pValue = pBinaryExpr->Create("IntegerValue", "RightOperand");
pIdentifier->SetValue("Name", "myVar");
pValue->SetValue("Value", "4");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“New” on page 2104

CreateInstance

Creates an instance of the entity on which the method is called. That entity 
should thus be a Signature that is possible to instantiate.
June 2009 IBM Rational Tau User Guide 2149



Chapter 80: COM API
Parameters

The created instance.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

CreateInstance implements the UML semantics of creating an instance of 
a Signature. The instance is represented in the model with the InstanceExpr 
Metaclass. 

Note
It is the responsibility of the client to take care of the returned instance. It 
should either be inserted into the model, or deleted, to avoid a memory leak. 

Example 655 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Although CreateInstance can be called on any Signature, a particular case 
is when it is called on a Stereotype in order to apply it to an element. This 
example shows how to apply the predefined stereotype “usecase” on an op-
eration pointed to by pOperation:

ITtdEntityPtr pStereotype;
pStereotype = pITtdModel->FindByGuid("@Predefined@usecase");
ITtdEntityPtr pInstance;
pInstance = pStereotype->CreateInstance();
pOperation->SetEntity("StereotypeInstance", pInstance);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

HRESULT CreateInstance(
[out, retval] ITtdEntity** ppInstance);

[out, retval] ppInstance

Return value Meaning

S_OK Success.

E_FAIL The creation failed. Use the information provided 
in the COM error object for more details.
2150 IBM Rational Tau User Guide June 2009



ITtdEntity
Delete

Deletes the entity on which the method is called.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use Delete to remove an entity from the model, and delete the memory it 
occupies. If the entity owns other entities (directly or indirectly) these entities 
will also be deleted according to the semantics of the composition relation-
ship. 

Note
Be careful so that pointers on deleted entities are not used after the deletion, 
as they then will be invalid. 

Example 656 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Delete to delete the Package created in Example 654 on 
page 2149. Detach is called on the smart pointer after the deletion, in order 
to detach it from its interface pointer, which will be invalid after the deletion. 
pPackage can then be assigned to a new entity.

pPackage->Delete();
pPackage->Detach(); // Important since the pointer is invalid!

Detach() is part of the Microsoft API for handling C++ smart pointer 
classes (_com_ptr_t::Detach).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

HRESULT Delete();

Return value Meaning

S_OK Success.

E_FAIL Failure due to an internal error.
June 2009 IBM Rational Tau User Guide 2151



Chapter 80: COM API
XMLEncode

Encodes the entity on which the method is called into an XML representa-
tion.

Parameters

A string containing the XML encoding of the entity on which the 
method is called.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

XMLEncode is typically used together with ITtdModel::XMLDecode. To-
gether these methods provide a means for serializing model fragments to and 
from a string representation. Example 638 on page 2109 shows an example 
of how to use XMLEncode.

See also

ITtdModel::XMLDecode

HRESULT XMLEncode(
[out, retval] BSTR* strXMLEncoding);

[out, retval] strXMLEncoding

Return value Meaning

S_OK Success.

E_FAIL The encoding to XML failed. Use the information 
provided in the COM error object for more details.
2152 IBM Rational Tau User Guide June 2009



ITtdEntity
MetaVisit

Performs a traversal of the model fragment that is rooted at the entity on 
which the method is called. For each entity that is encountered during this 
traversal, including the entity on which the method is called, methods are 
called through a callback interface. These callbacks thus allow the caller to 
do something for all or some of the visited entities.

Parameters

A pointer to the interface through which the callbacks will be performed 
during the model traversal. If this parameter is NULL the method will 
fail.

A flag controlling whether library packages and the predefined package 
shall be traversed. If this optional parameter is omitted, it will default to 
false, meaning that such packages will not be traversed. The reason why 
library packages and the predefined package by default is not traversed 
is that it improves performance (in particular if the method is called 
from a script client).

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT MetaVisit(
[in] ITtdMetaVisitCallback* pMetaVisitCallback,
[in, optional] VARIANT visitAll /* false */);

[in] pMetaVisitCallback

[in, 
optional]

visitAll
June 2009 IBM Rational Tau User Guide 2153



Chapter 80: COM API
Comments

MetaVisit is a convenient method for traversing a model, or a subset of a 
model, that does not require any knowledge of the UML Metamodel. All di-
rect and indirect composition children of an entity will be traversed, no 
matter in which metafeatures they reside. 

By implementing the callback interface ITtdMetaVisitCallback, a client can 
do whatever it wants when an entity is visited. The MetaVisit method can 
thus be used for a great variety of purposes.

Example 657 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to use MetaVisit in order to find all definitions in 
a loaded model.

ITtdModelPtr pITtdModel;
pITtdModel = pITtdModelAccess->LoadProject("MyModel.ttp");
ITtdEntityPtr pSession = pITtdModel;
pSession->MetaVisit(pCallbackHandler);

pCallbackHandler is here assumed to point to a class that implements the 
ITtdMetaVisitCallback interface. For example, assume that the purpose of 
the traversal is to print the names of all definitions in the model. pCallback-
Handler could then point to an instance of the class below:

class CDefinitionPrinter : public ITtdMetaVisitCallback {
public:    

virtual HRESULT __stdcall raw_OnVisitedEntity (ITtdEntity* 
pVisitedEntity){

if (pVisitedEntity->IsKindOf(_T("Definition"))){
CComBSTR bstrValue((TCHAR*) pVisitedEntity-

>GetValue("Name"));
}
return S_OK;

}

virtual HRESULT __stdcall raw_OnAfterVisitedEntity (ITtdEntity* 
pVisitedEntity){

return S_OK;
}

Return value Meaning

S_OK Success.

E_FAIL Failure due to an internal error.

E_POINTER Invalid pointer argument. The 
pMetaVisitCallback pointer must not be NULL.
2154 IBM Rational Tau User Guide June 2009



ITtdEntity
virtual HRESULT STDMETHODCALLTYPE QueryInterface(REFIID iid, void 
** ppvObject){

*ppvObject = NULL;
if (iid == __uuidof(ITtdMetaVisitCallback)) {

*ppvObject = static_cast<ITtdMetaVisitCallback*>(this);
AddRef();
return S_OK;

}
return E_FAIL;

    }

virtual ULONG STDMETHODCALLTYPE AddRef(){return 0;}; // No ref 
counting

virtual ULONG STDMETHODCALLTYPE Release(){return 0;}; // No ref 
counting
};

The ITtdMetaVisitCallback interface has one method called 
OnVisitedEntity, which is called for each visited entity. The visited entity 
is passed in as a parameter to that method. The class above also has to imple-
ment the IUnknown interface, since ITtdMetaVisitCallback inherits 
IUnknown (like all other COM interfaces).

There is also a second callback method called OnAfterVisitedEntity. It 
is also called once for each visited entity, but contrary to OnVisitedEntity 
it is called when the composition children of the entity already has been vis-
ited. It thus allows the caller to do something on the “back recursion” of the 
model traversal.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“New” on page 2104 

“OnVisitedEntity” on page 2187

“OnAfterVisitedEntity” on page 2188

MetaVisitEx

This is an extended version of the MetaVisit method which allows the model 
traversal to include also reference representations. 
June 2009 IBM Rational Tau User Guide 2155



Chapter 80: COM API
Parameters

MetaVisitEx adds one optional parameter to the MetaVisit signature:

A flag controlling whether references should be traversed or not. If this 
optional parameter is omitted, it will default to false, meaning that the 
model for references will not be traversed.

Return value

See MetaVisit.

Bind

Attempts to bind all references in the model fragment that is rooted at the en-
tity on which the method is called. The method can also be used for binding 
only one particular reference on that entity.

Parameters

If this optional parameter is given, it should be a string specifying the 
metafeature which should be bound. The string should specify an ex-
isting metafeature for the entity on which the method is called, spelled 
with the correct case. If an incorrect metafeature is specified the method 
will fail.

HRESULT MetaVisitEx(
[in] ITtdMetaVisitCallback* pMetaVisitCallback,
[in, optional] VARIANT visitAll /* false */);
[in, optional] VARIANT visitRefs /* false */);

[in, 
optional]

visitRefs

HRESULT Bind(
[in, optional] VARIANT strMetaFeature);

[in, 
optional]

strMetaFeature
2156 IBM Rational Tau User Guide June 2009



ITtdEntity
Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use Bind to attempt to bind all references in a model. There is an implicit 
call to Bind from LoadProject and LoadFile, to guarantee that a newly loaded 
model can be navigated on all its links and references. 

A common case when Bind should be called, is when a reference has been 
set up by name or GUID using the SetValue method. In that case the 
metafeature could be passed as parameter to the Bind method in order to only 
bind that particular metafeature. 

Example 658 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows how to load a file MyModel.u2 using the 
LoadFile method.

ITtdModelPtr pITtdModel;
pITtdModel = pITtdModelAccess->LoadFile("MyModel.u2");

Since LoadFile calls Bind implicitly when the model has been loaded, all 
links and references that could be bound will be bound, and could thus be 
navigated using the GetEntity or GetEntities methods.

Create a package in pITtdSession and create an attribute in that package. The 
type of the attribute is set up by name to the predefined datatype Integer, and 
Bind is then called on the attribute’s Type metafeature in order to be able to 
navigate to the type using the GetEntity method.

ITtdEntityPtr pPackage, pAttribute;
pPackage = pITtdSession->Create(_T("Package"));
pAttribute = pPackage->Create(_T("Attribute"));
pAttribute->SetValue("Type", "ref:Integer");
pAttribute->Bind("Type");

ITtdEntityPtr pIntegerDatatype;

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2157



Chapter 80: COM API
pIntegerDatatype = pAttribute->GetEntity("Type");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Clone

Creates a clone of the entity. By default the clone will be unbound and have 
new unique GUIDs (i.e. the copy of the entity itself and the copy of all con-
tained entities will get new unique GUIDs). 

Parameters

If this optional parameter is given, it should be a boolean specifying 
whether bindings of the original entity should be preserved in the clone. 
By default bindings will not be preserved.

If this optional parameter is given, it should be a boolean specifying whether 
GUIDs of the original entity (and its children) should be preserved in the 
clone. By default GUIDs will not be preserved.

The resulting clone.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT Clone(
[in, optional] VARIANT preserveBindings, 
[in, optional] VARIANT preserveGuids, 
[out, retval] ITtdEntity** result);

[in, 
optional]

preserveBindings

[in, 
optional]

preserveGuids

[out, retval] result
2158 IBM Rational Tau User Guide June 2009



ITtdEntity
Comments

Use Clone to create an identical copy of an entity. A “deep” cloning is per-
formed, i.e. the clone will contain copies of all children of the original entity 
recursively.

Important!
Be careful when cloning an entity without changing GUIDs. Such a clone 
should not be inserted into the same model as the original entity, or GUID 
conflicts will arise. If a model with GUID conflicts is saved, it might not be 
possible to load again.

In order to be able to preserve bindings of the clone, the original entity must 
belong to a model (i.e. GetModel called on the original entity must not return 
NULL).

Note

It is the responsibility of the client to take care of the returned entity. It 
should either be inserted into the model, or deleted, to avoid a memory leak.

Move

Moves the entity from its current location in the model into the context of a 
new owner.

Parameters

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.

HRESULT Move(
[in] ITtdEntity* newOwner, 
[in, optional] VARIANT metafeature, 
[in, optional] VARIANT index);

[in] newOwner
June 2009 IBM Rational Tau User Guide 2159



Chapter 80: COM API
The new owner into which the entity shall be moved.

The metafeature of the new owner into which the entity shall be moved. 
This parameter is optional, and need only be given when it is ambiguous 
where to move the entity. In most cases the moved entity can only fit 
into one particular metafeature, and then this parameter is ignored. If the 
parameter is given, it should specify an existing metafeature for the 
newOwner entity on which the method is called, spelled with the correct 
case. If an incorrect metafeature is specified the method will fail.

This optional parameter can be used to specify the position at which to 
insert the moved entity in a target metafeature that has non-single mul-
tiplicity.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use Move to move an entity from one owner to another, without loosing its 
identify (its GUID). If the entity is orphan (does not have an owner) it is 
better to use SetEntity for inserting it into a model.

See also

“SetEntity” on page 2143 

[in, 
optional]

metafeature

[in, 
optional]

index

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
2160 IBM Rational Tau User Guide June 2009



ITtdEntity
GetModel

Returns the model to which the entity belongs.

Parameters

The model to which the entity belongs, or NULL if the entity does not 
belong to a model.

Return value

The method always succeeds (i.e. returns S_OK).

Comments

Use GetModel to obtain an ITtdModel interface on the top-level entity in the 
model to which an entity belongs.This method is often the most convenient 
way to get an ITtdModel interface from the context of an ITtdEntity inter-
face.

UnlinkFromOwner

Unlinks the entity from its current owner in the model.

Return value

The method always succeeds (i.e. returns S_OK).

Comments

Use UnlinkFromOwner to unlink an entity from its current owner in the 
model. After the call the entity will be orphan, i.e. a call to GetOwner or Get-
Model will both return NULL.

HRESULT GetModel(
[out, retval] ITtdModel** result);

[out, retval] result

HRESULT UnlinkFromOwner();
June 2009 IBM Rational Tau User Guide 2161



Chapter 80: COM API
Note

The entity will not be deleted, so it is the responsibility of the client to take 
care of it after the call. It should either be inserted into the model again, or 
deleted, to avoid a memory leak.

See also

“Delete” on page 2151

“Move” on page 2159

Replace

Replaces an entity with another entity. The original entity will not be deleted.

Parameters

The entity which shall replace the entity on which the method is called. 
If the replacement entity cannot be inserted where the original entity is, 
the method will fail.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT Replace(
[in] ITtdEntity* replacementEntity);

[in] replacementEntity

Return value Meaning

S_OK The entity was successfully replaced.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
2162 IBM Rational Tau User Guide June 2009



ITtdEntity
Comments

Use Replace to replace an entity with another entity. The replacement entity 
will be inserted at exactly the same position in the model as the entity on 
which the method is called.

Note

The original entity will not be deleted, so it is the responsibility of the client 
to take care of it after the call. It should either be inserted into the model 
again, or deleted, to avoid a memory leak.

Note

If the entity on which the method is called is an identifier representing a ref-
erence it will be replaced with a clone of replacementEntity, rather than 
replacementEntity itself. In that case it is the responsibility of the client to 
take care of the replacement entity itself after the call.

GetContainerMetaFeature

Obtains the name of the metafeature in which the entity is contained.

Parameters

The name of the container metafeature. This string will be empty if the 
entity is orphan.

Return value

The method always succeeds (i.e. returns S_OK).

Comments

Use GetContainerMetaFeature to find out the name of the metafeature in 
which an entity is contained. This metafeature name can then be used in calls 
to for example SetEntity, GetEntity or GetEntities.

HRESULT GetContainerMetaFeature(
[out, retval] BSTR* result);

[out, retval] result
June 2009 IBM Rational Tau User Guide 2163



Chapter 80: COM API
FindByName

Performs a name-lookup from the context of the entity on which the method 
is called, in order to find an entity with a certain name (possibly qualified).

Parameters

The name of the entity to find. The name may be qualified. It should be 
a valid UML identifier.

The found entity, or NULL is no matching entity was found.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use FindByName to find a definition by the name through which it is refer-
rable from the context of the entity on which the method is called. This is an 
alternative to using FindByGuid for finding an entity in the model, whose 
name rather than GUID is known.

See also

“FindByGuid” on page 2103 

HRESULT FindByName(
[in] BSTR strName, 
[out, retval] ITtdEntity* result);

[in] strName

[out, retval] result

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
2164 IBM Rational Tau User Guide June 2009



ITtdEntities
GetDescriptiveName

Obtains a textual description of an entity.

Parameters

The textual description of the entity.

Return value

The method always succeeds (i.e. returns S_OK).

Comments

Use GetDescriptiveName to get a string describing the entity on which the 
method is called. The description includes the Metaclass of the entity, its 
name (full signature for event classes) and its location in the model.

ITtdEntities
The ITtdEntities interface represents a collection of entities. The interface 
specifies a collection that can be both read and written, although a client in 
most cases only has to read from the collection (that is traverse and access 
the entities of the collection). There is no specific Metaclass in the UML 
Metamodel corresponding to the ITtdEntities interface.

The methods of the ITtdEntities interface is the usual methods available on a 
read/write COM collection interface:

HRESULT GetDescriptiveName(
[out, retval] BSTR* result);

[out, retval] result

_NewEnum Returns an enumeration interface pointer for the 
collection, to allow iteration over the contained en-
tities.

Item Returns the entity at the specified index in the col-
lection.
June 2009 IBM Rational Tau User Guide 2165



Chapter 80: COM API
_NewEnum

Returns an enumeration interface pointer for the entity collection on which 
the method is called. The enumeration interface is the standard Automation 
enumeration interface, and it can be used to step through the entities in the 
collection.

_NewEnum is defined as a read-only property.

Parameters

A pointer to an enumeration interface for the collection. 

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Using the _NewEnum method is one way to iterate over the entities in an 
ITtdEntities collection. The other way is to loop over the indexes of the col-
lection and to call the Item method to get the entity at a certain index. 
_NewEnum is typically the more efficient alternative.

Count Returns the number of entities in the collection.

Add Adds an entity to the collection.

Remove Removes an entity from the collection.

HRESULT _NewEnum(
[out, retval] IUnknown** ppUnk);

[out, retval] ppUnk

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
2166 IBM Rational Tau User Guide June 2009



ITtdEntities
Example 659 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows how to iterate over the attributes in a class 
(pointed to by pClass) using the _NewEnum method:

ITtdEntitiesPtr pAttributes = pClass->GetEntities(_T("Attribute"));
// Iterate through the collection using the enumerator...
// Get the VARIANT enumerator from the collection
IEnumVARIANTPtr spEnum = pAttributes->Get_NewEnum();
// nBatchSize is the number of items requested in each call to 
IEnumVARIANT::Next. 
// The actual number of items returned may not equal nBatchSize.
const ULONG nBatchSize = 5;
// nReturned will store the number of items returned by a call to 
// IEnumVARIANT::Next
ULONG nReturned = 0;
// arrVariant is the array used to hold the returned items
VARIANT arrVariant[nBatchSize] = {0};

HRESULT hr = E_UNEXPECTED;
do {

hr = spEnum->Next(nBatchSize, &arrVariant[0], &nReturned);
if (FAILED(hr))

return hr;
                        

ITtdEntityPtr pAttribute;
for (ULONG i = 0; i < nReturned; ++i){

_variant_t vt(arrVariant[i]);
pAttribute = vt;
if (pAttribute){

// Do something with pAttribute
}
::VariantClear(&arrVariant[i]);

} 
} while (hr != S_FALSE); // S_FALSE indicates end of collection

_NewEnum is defined as a read-only property of the ITtdEntities interface, and 
is thus called using the prefix “Get”.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

Item

Item

Returns the entity at the specified index in the entity collection on which the 
method is called.

Item is defined as a read-only property.

HRESULT Item(
[in] long Index, 
[out, retval] ITtdEntity** ppEntity);
June 2009 IBM Rational Tau User Guide 2167



Chapter 80: COM API
Parameters

The index of the collection where to extract an entity. Index should be 
a valid index between 1 (the first entity in the collection) and the result 
from calling Count (the number of entities in the collection).

The entity at the specified index in the collection, or NULL if no such 
entity exists.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use the Item method to access an arbitrary entity in an ITtdEntities collec-
tion. Item can also be used to iterate over the entities in the collection, but 
this is typically less efficient than using an enumeration interface obtained 
from the _NewEnum method. 

Example 660 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows how to iterate over the attributes in a class 
(pointed to by pClass) using the Item method. Using the _NewEnum method 
instead is described in Example 659 on page 2167.

ITtdEntitiesPtr pAttributes = pClass->GetEntities(_T("Attribute"));
// Iterate through the collection using the Item method...

long lCount = 0;
lCount = pAttributes->Count;

ITtdEntityPtr pAttribute;

[in] Index

[out, retval] ppEntity

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
2168 IBM Rational Tau User Guide June 2009



ITtdEntities
// N.B. Index are 1-based
for (long i = 1; i <= lCount; i++){

pAttribute = pAttributes->GetItem(i);
if (pParameter != 0){

// Do something with pAttribute
}

}

Item is defined as a read-only property of the ITtdEntities interface, and is 
thus called using the prefix “Get”.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“_NewEnum” on page 2166

“Count” on page 2169

Count

Returns the number of entities in the entity collection on which the method 
is called.

Count is defined as a read-only property.

Parameters

The number of entities in the collection.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT Count(
[out, retval] long* pVal);

[out, retval] pVal
June 2009 IBM Rational Tau User Guide 2169



Chapter 80: COM API
Comments

Use the Count method to determine the number of entities in an ITtdEntities 
collection. All items in the collection are counted, including NULL pointers. 
Example 660 on page 2168 has an example of how to use Count.

Add

Adds an entity to the entity collection on which the method is called.

Parameters

The entity that is to be added to the collection. 

An index specifying where in the collection the entity shall be inserted. 
Indexes start at 1 and the index 0 can be used to specify that the entity 
shall be added to the end of the collection. If this optional parameter is 
omitted it will default to 0. If an index is specified it must be within a 
valid range, otherwise the method will fail.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.

HRESULT Add(
[in] ITtdEntity* pEntity, 
[in, optional] VARIANT nIndex);

[in] pEntity

[in, 
optional]

nIndex
2170 IBM Rational Tau User Guide June 2009



ITtdEntities
Comments

Use the Add method to add an entity to an ITtdEntities collection. An ITtdEn-
tities collection may include NULL pointers, and may also contain the same 
entity more than once.

Example 661 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example uses GetEntities to obtain a collection of entities. The 
first entity of the collection is then added once more to the end of the collec-
tion. Finally the Remove method is used to remove all occurrences of that en-
tity in the collection.

ITtdEntitiesPtr pAttributes = pClass->GetEntities(_T("Attribute"));
ITtdEntityPtr pEntity = pAttributes->GetItem(1);
pAttributes->Add(pEntity); // Add once more last in collection
pAttributes->Remove(pEntity); // Removes all occurrences of pEntity

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Remove

Removes all occurrences of an entity from the entity collection on which the 
method is called.

Parameters

The entity that is to be removed from the collection. This parameter 
must not be NULL.

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.

HRESULT Remove(
[in] ITtdEntity* pEntity);

[in] pEntity
June 2009 IBM Rational Tau User Guide 2171



Chapter 80: COM API
Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use the Remove method to remove all occurrences of an entity from an 
ITtdEntities collection. Example 661 on page 2171 contains an example on 
usage of the Remove method.

ITtdResource
The ITtdResource interface is implemented by the Resource class of the 
Metamodel, which represents a resource where a UML model could be per-
sistently stored. Typically a Resource corresponds to a .u2 file.

Note
Since a Resource also is an Entity, a QueryInterface from ITtdResource to 
ITtdEntity will always succeed.

ITtdResource contains the following methods:

Save

Saves the model entities that are associated with the resource on which the 
method is called. For the common case when the resource represents a .u2 
file, this means that the file will be saved.

Return value Meaning

S_OK Success.

E_POINTER A NULL pointer is given as the pEntity parameter.

Save Saves the model entities associated with the re-
source (typically saves the corresponding .u2 file).

HRESULT Save();
2172 IBM Rational Tau User Guide June 2009



ITtdPresentationElement
Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use the Save method to save the entities associated with a resource (that is 
its roots) in the resource. If the entire model shall be saved, it is more conve-
nient to call ITtdModel::Save.

Example 662 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Save to save the Package created in Example 636 on page 
2106 in a file of its own:

ITtdEntityPtr pResource;
pResource = pITtdModel->CreateResource("D:\\temp\\COMtest.u2");

// Insert the created package pPackage as a root of pResource
pResource->SetEntity("Root", pPackage);

pITtdResource->Save(); // Saves all resources in the model

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Save” on page 2109

ITtdPresentationElement
The ITtdPresentationElement interface is implemented by the Presenta-
tionElement class of the Metamodel. A presentation element is an element 
with a graphical appearance, for example a diagram, symbol or a line.

Return value Meaning

S_OK The entities associated with the resource were suc-
cessfully saved in the resource.

E_FAIL An error occurred while saving. This happens for 
example when the file of the resource is read-only, 
or when there is not enough space on the disk. Use 
the information provided in the COM error object 
for more details.
June 2009 IBM Rational Tau User Guide 2173



Chapter 80: COM API
Note
Since a PresentationElement also is an Entity, a QueryInterface from ITtd-
PresentationElement to ITtdEntity will always succeed.

ITtdPresentationElement contains the following methods:

GenerateEMF

Generates an EMF file (Enhanced Meta File) for the graphical appearance of 
a presentation element. This is a deprecated function. Use GenerateEMFEx 
instead. The presentation element will have the same appearance in this EMF 
file as when shown in the tool’s editors.

Parameters

The file name of the EMF file to generate. If strFileName is a relative 
path, it will be interpreted as relative to the current working directory of 
the client application.

GenerateEMF Generates an EMF file (Enhanced Meta File) for a 
presentation element. (deprecated)

GenerateEMFEx Generates an EMF file (Enhanced Meta File) for a 
presentation element with support for scaling the 
image.

GenerateImage Generates an image file for a presentation element.

HRESULT GenerateEMF(
[in] BSTR strFileName,
[in, optional] VARIANT maxWidth,
[in, optional] VARIANT maxHeight,
[in, optional] VARIANT optimizeForVectorGraphics,
[in, optional] VARIANT includeFrame);

[in] strFileName

[in, 
optional]

maxWidth

[in, 
optional]

maxHeight
2174 IBM Rational Tau User Guide June 2009



ITtdPresentationElement
These optional parameters can be used to specify the maximum size of 
the generated image. The image will be scaled to fit into the specified 
size. If the parameters are omitted, the generated image will be the same 
size as shown in the tool’s editors. The unit of the height and width 
numbers is 1/10:th of a millimeter. These parameters are currently only 
considered if the presentation element on which the method is called is 
a diagram.

If this optional parameter is set to true, the EMF generation will be op-
timized for vector graphics. The default behavior is to not do this opti-
mization. This parameter is currently only considered if the presentation 
element on which the method is called is a diagram. This parameter is 
considered deprecated and exists for backward compatibility purposes.

This optional parameter specifies whether the frame symbol of a dia-
gram should be included in the EMF generation or not. By default it will 
be included. This parameter is only considered if the presentation ele-
ment on which the method is called is a diagram. 

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

[in, 
optional]

optimizeForVectorGraphics

[in, 
optional]

includeFrame

Return value Meaning

S_OK The EMF file was successfully generated.

E_FAIL An error occurred. This happens for example when 
the EMF file cannot be saved at the specified loca-
tion, or if a required IBM Rational Tau license 
could not be obtained. Use the information pro-
vided in the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2175



Chapter 80: COM API
Comments

The GenerateEMF method can for example be used by clients that produce 
reports from a UML model, as a means for visualizing presentation elements. 
It works on all kinds of presentation elements, and if the presentation element 
contains other presentation element (as is the case with for example a dia-
gram), the EMF file will include these contained presentation elements as 
well.

GenerateEMFEx

Generates an EMF file (Enhanced Meta File) for the graphical appearance of 
a presentation element. The presentation element will have the same appear-
ance in this EMF file as when shown in the tool’s editors. This is the recom-
mended method to call in order to generate an EMF file for a presentation el-
ement.

Parameters

The file name of the EMF file(s) to generate. If strFileName is a rela-
tive path, it will be interpreted as relative to the current working direc-
tory of the client application.

These optional parameters can be used to specify the maximum size of 
the generated image. The image will be scaled to fit into the specified 
size if no specific scaleFactor is given. If the parameters are omitted, the 
generated image will be the same size as shown in the editors. The unit 

HRESULT GenerateEMFEx(
[in] BSTR strFileName,
[in, optional] VARIANT maxWidth,
[in, optional] VARIANT maxHeight,
[in, optional] VARIANT optimizeForVectorGraphics,
[in, optional] VARIANT includeFrame);
[in, optional] VARIANT scaleFactor);

[in] strFileName

[in, 
optional]

maxWidth

[in, 
optional]

maxHeight
2176 IBM Rational Tau User Guide June 2009



ITtdPresentationElement
of the height and width numbers is 1/10:th of a millimeter. These pa-
rameters are currently only considered if the presentation element on 
which the method is called is a diagram.

If this optional parameter is set to true, the EMF generation will be op-
timized for vector graphics. The default behavior is to not do this opti-
mization. This parameter is currently only considered if the presentation 
element on which the method is called is a diagram. This parameter is 
considered deprecated and exists for backward compatibility purposes.

This optional parameter specifies whether the frame symbol of a dia-
gram should be included in the EMF generation or not. By default it will 
be included. This parameter is currently only considered if the presen-
tation element on which the method is called is a diagram. 

If this optional parameter is given the original diagram is scaled before 
generating any images. The scale factor should be given as an integer 
and is interpreted as percent of the original diagram size. If both the 
scaleFactor and maxWidth/maxHeight are given as arguments then 
more than one image may be generated as a result of the operation. If 
the scaleFactor parameter is given then the name of the generated 
files is the same as the strFileName parameter but with a number 
added before the file extension.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

[in, 
optional]

optimizeForVectorGraphics

[in, 
optional]

includeFrame

[in, 
optional]

scaleFactor
June 2009 IBM Rational Tau User Guide 2177



Chapter 80: COM API
Comments

The GenerateEMFEx method can for example be used by clients that produce 
reports from a UML model, as a means for visualizing presentation elements. 
It works on all kinds of presentation elements, and if the presentation element 
contains other presentation element (as is the case with for example a dia-
gram), the EMF file will include these contained presentation elements as 
well.

Example 663 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows the GenerateEMFEx method can be used to create an 
EMF file for each diagram in a package pointed to by pPackage:

ITtdEntitiesPtr pDiagrams;
pDiagrams = pPackage->GetEntities(_T("Diagram"));

long lCount = pDiagrams->Count;

ITtdPresentationElementPtr pDiagram;
// N.B. Index is 1-based
for (long i = 1; i <= lCount; i++){
pDiagram = pDiagrams->GetItem(i);
if (pDiagram != 0){

// A diagram is also an entity...
ITtdEntityPtr pE = pDiagram; // ... so this is OK!
pDiagram->GenerateEMFEx(pE->GetValue(_T("Name")));

}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

GenerateImage

Generates an image file of a specified kind for the graphical appearance of a 
presentation element. The presentation element will have the same appear-
ance in this image file as when shown in the tool’s editors.

Return value Meaning

S_OK The EMF file was successfully generated.

E_FAIL An error occurred. This happens for example when 
the EMF file cannot be saved at the specified loca-
tion, or if a required IBM Rational Tau license 
could not be obtained. Use the information pro-
vided in the COM error object for more details.
2178 IBM Rational Tau User Guide June 2009



ITtdPresentationElement
Parameters

The kind of image file to generate. Valid values for this parameter are shown 
in the table below:

The file name of the image file to generate. If strFileName is a relative 
path, it will be interpreted as relative to the current working directory of 
the client application.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT GenerateImage(
[in] ImageKind imgKind,
[in] BSTR strFileName);

[in] imgKind

ImageKind Description

IK_JPEG Generate a JPEG image file.

IK_BMP Generate a BMP image file.

IK_GIF Generate a GIF image file.

IK_TIFF Generate a TIFF image file.

IK_TARGA Generate a TGA (Targa) image file.

IK_DIB Generate a device independent bitmap 
file.

IK_PCX Generate a PCX image file.

[in] strFileName
June 2009 IBM Rational Tau User Guide 2179



Chapter 80: COM API
Comments

The GenerateImage method can for example be used by clients that produce 
reports from a UML model, as a means for visualizing presentation elements. 
It works on all kinds of presentation elements, and if the presentation element 
contains other presentation element (as is the case with for example a dia-
gram), the image file will include these contained presentation elements as 
well.

ITtdSymbol
The ITtdSymbol interface is implemented by the Symbol class of the Meta-
model. A symbol is a presentation element whose graphical appearance oc-
cupies a two-dimensional region in a diagram. It has thus both a size and a 
position.

Note
Since a Symbol also is a PresentationElement and an Entity, a QueryInter-
face from ITtdSymbol to ITtdPresentationElement or ITtdEntity will always 
succeed.

ITtdSymbol contains the following methods:

Return value Meaning

S_OK The image file was successfully generated.

E_FAIL An error occurred. This happens for example when 
the image file cannot be saved at the specified loca-
tion, or if a required IBM Rational Tau license 
could not be obtained. Use the information pro-
vided in the COM error object for more details.

SetSize Sets the size of the symbol.

SetPosition Sets the position of the symbol.
2180 IBM Rational Tau User Guide June 2009



ITtdSymbol
SetSize

Sets the size of a symbol. This is the recommended method for changing the 
size of a symbol.

Parameters

The width of the symbol. The unit of this number is 1/10:th of a milli-
meter. It should be a positive number.

The height of the symbol. The unit of this number is 1/10:th of a milli-
meter. It should be a positive number.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

For many symbols the SetSize method simply acts as a wrapper for setting 
a new size using ITtdEntity::SetValue on the “size” metafeature. However, 
for some symbols the size has a semantic significance. Resizing such a 
symbol can thus lead to some modifications in the object model. It could also 
be the case that the resizing of one symbol should trigger another symbol to 

HRESULT SetSize(
[in] long width,
[in] long height);

[in] width

[in] height

Return value Meaning

S_OK The symbol was successfully resized.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2181



Chapter 80: COM API
be resized. These “side-effects” of a symbol resize will only happen if 
SetSize is used. That is the reason why it is the recommended method for 
changing the size of a symbol.

In order to read the size of a symbol use ITtdEntity::GetValue on the “size” 
metafeature.

SetPosition

Sets the position of a symbol. This is the recommended method for changing 
the position of a symbol.

Parameters

The horizontal position of the symbol. The unit of this number is 1/10:th 
of a millimeter. It should be a positive number.

The vertical position of the symbol. The unit of this number is 1/10:th 
of a millimeter. It should be a positive number.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT SetPosition(
[in] long x,
[in] long y);

[in] x

[in] y

Return value Meaning

S_OK The symbol was successfully repositioned.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
2182 IBM Rational Tau User Guide June 2009



ITtdExpression
Comments

For many symbols the SetPosition method simply acts as a wrapper for 
setting a new position using ITtdEntity::SetValue on the “position” metafea-
ture. However, for some symbols the position has a semantic significance. 
Repositioning such a symbol can thus lead to some modifications in the ob-
ject model. It could also be the case that when one symbol is moved, some 
other symbols should be moved to. These “side-effects” of a symbol reposi-
tioning will only happen if SetPosition is used. That is the reason why it 
is the recommended method for changing the position of a symbol.

The position of a symbol is defined as the coordinate of the upper left corner 
of its bounding rectangle.

In order to read the position of a symbol use ITtdEntity::GetValue on the 
“position” metafeature.

ITtdExpression
The ITtdExpression interface is implemented by the Expression class of the 
Metamodel. Expressions may appear at various places in a model.

Note
Since an Expression also is an Entity, a QueryInterface from ITtdExpres-
sion to ITtdEntity will always succeed.

ITtdExpression contains the following methods:

GetType

Computes and returns the type of the expression. If the type cannot be com-
puted (for example because the expression contains unbound references) 
NULL is returned.

GetType Computes the type of the expression.

EvaluateConstant
IntegralExpressi
on

Evaluates the integral value of a constant expres-
sion.

GetInstanceChild
Expression

Finds a child expression of an instance.
June 2009 IBM Rational Tau User Guide 2183



Chapter 80: COM API
Parameters

The type of the expression.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use GetType to find out the type of an expression. All expressions have a 
type, but it is not guaranteed that the type is a definition located in the model 
(i.e. GetModel may return NULL when called on the returned entity). This 
happens when the type is implicitly defined, and in those cases the returned 
entity will be a temporary entity representing the type. Make sure not to store 
any pointers or delete such a temporary object.

EvaluateConstantIntegralExpression

Evaluates the value of an expression, which is expected to be a constant in-
tegral expression.

Parameters

HRESULT GetType(
[out, retval] ITtdEntity** result);

[out, retval] result

Return value Meaning

S_OK Success.

E_FAIL Failure due to an internal error.

HRESULT EvaluateConstantIntegralExpression(
[out, retval] long* value);

[out, retval] value
2184 IBM Rational Tau User Guide June 2009



ITtdExpression
The evaluation of the expression as an integer.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use EvaluateConstantIntegralExpression to find out the constant in-
teger number to which to expression evaluates. This method is useful for cli-
ents that operate on expressions, and want to be independent on how the ex-
pression is structured (only its value is interesting).

GetInstanceChildExpression

Obtains the right-hand side of an assignment contained in an instance, where 
the left-hand side of the assignment is a certain identifier.

Parameters

The name of the identifier which the left-hand side of the assignment 
must match. This name must be a valid identifier, and may include a 
qualifier.

Return value Meaning

S_OK The expression was successfully evaluated.

E_FAIL An error occurred. This happens for example when 
the expression cannot be evaluated because it con-
tains unbound identifiers. Use the information pro-
vided in the COM error object for more details.

HRESULT GetInstanceChildExpression(
[in] BSTR strName,
[out, retval] ITtdExpression** result);

[in] strName

[out, retval] result
June 2009 IBM Rational Tau User Guide 2185



Chapter 80: COM API
The matching child expression.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Use GetInstanceChildExpression on an instance expression (for ex-
ample a stereotype instance) to obtain the right-hand side of a contained as-
signment, where the left-hand side of the assignment is an identifier 
matching strName (which thus should be a valid identifier).

If no matching child expression is found, NULL is returned.

Although GetInstanceChildExpression can be used to extract tagged 
values from a stereotype instance, be aware that it doesn’t cover all cases 
supported by GetTaggedValue.

ITtdMetaVisitCallback
The ITtdMetaVisitCallback interface is a callback interface that clients using 
the ITtdEntity::MetaVisit method must implement.

ITtdMetaVisitCallback contains the following methods:

Return value Meaning

S_OK Success.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.

OnVisitedEntity Called for each entity that is visited during the 
model traversal.

OnAfterVisitedEn
tity

As above, but the call is made after all composition 
children of the entity already have been visited.
2186 IBM Rational Tau User Guide June 2009



ITtdMetaVisitCallback
OnVisitedEntity

Called by the ITtdEntity::MetaVisit implementation when an entity is en-
countered (visited) during the traversal of a model. 

Parameters

The entity currently being visited during the model traversal.

Return value

The value returned by OnVisitedEntity is used by the MetaVisit imple-
mentation to determine how to proceed with the traversal. The returned 
HRESULT should be one of the following:

HRESULT OnVisitedEntity(
[in] ITtdEntity* pVisitedEntity);

[in] pVisitedEntity

Return value Meaning

S_OK Entity successfully visited. Proceed with the tra-
versal of its composition children.

S_FALSE Entity successfully visited, but do not traverse its 
composition children. This return value can be used 
to skip the traversal of parts of the model that are of 
no interest for the client.

E_FAIL Abort the model traversal. This return value can for 
example be used when MetaVisit is used for 
finding a particular entity. If pVisitedEntity 
turns out to be the entity that is looked for, 
OnVisitedEntity could return E_FAIL to effec-
tively abort the traversal.

any other return 
value

Will be treated as E_FAIL, but will also cause the 
MetaVisit call to fail (that is return E_FAIL). This 
can be used when an error occurs while visiting 
pVisitedEntity that should be propagated to the 
calling client code.
June 2009 IBM Rational Tau User Guide 2187



Chapter 80: COM API
Comments

The OnVisitedEntity callback method is called for all visited entities, in-
cluding the entity on which the MetaVisit method is called. The client should 
do whatever it likes to do with the visited entity, and then return a return 
value according to the table above to specify how to proceed with the model 
traversal.

In Example 657 on page 2154 there is an example of how to use 
OnVisitedEntity for implementing a Metamodel driven traversal of a 
model.

OnAfterVisitedEntity

Called by the ITtdEntity::MetaVisit implementation when an entity is en-
countered (visited) during the traversal of a model. The call is made when all 
composition children of the entity already have been visited.

Parameters

The entity currently being visited during the model traversal.

Return value

The value returned by OnAfterVisitedEntity is used by the MetaVisit 
implementation to determine how to proceed with the traversal. The returned 
HRESULT should be one of the following:

HRESULT OnAfterVisitedEntity(
[in] ITtdEntity* pVisitedEntity);

[in] pVisitedEntity
2188 IBM Rational Tau User Guide June 2009



ITtdInteractiveClient
Comments

The OnAfterVisitedEntity callback method is called for all visited enti-
ties, including the entity on which the MetaVisit method is called. The call 
takes place when all (direct and indirect) composition children of the entity 
already has been visited, and is thus a means to do something on the “back 
recursion” of the model traversal. The client should do whatever it likes to do 
with the visited entity, and then return a return value according to the table 
above to specify how to proceed with the model traversal.

In Example 657 on page 2154 there is an example of how to use 
OnAfterVisitedEntity for implementing a Metamodel driven traversal of 
a model.

ITtdInteractiveClient
The ITtdInteractiveClient interface is an interface that all interactive COM 
clients of the COM API must implement (except for agents which instead 
must implement ITtdAgent). An interactive client is a client that is invoked 
by the IBM Rational Tau application, and that may access a model loaded in 
that application. ITtdInteractiveClient defines the interface through which 
IBM Rational Tau communicates with the client.

ITtdInteractiveClient contains the following methods:

Return value Meaning

S_OK Entity successfully visited. Proceed with the tra-
versal.

E_FAIL Abort the model traversal. This return value can for 
example be used when MetaVisit is used for 
finding a particular entity. If pVisitedEntity 
turns out to be the entity that is looked for, 
OnAfterVisitedEntity could return E_FAIL to 
effectively abort the traversal.

any other return 
value

Will be treated as E_FAIL, but will also cause the 
MetaVisit call to fail (that is return E_FAIL). This 
can be used when an error occurs while visiting 
pVisitedEntity that should be propagated to the 
calling client code.
June 2009 IBM Rational Tau User Guide 2189



Chapter 80: COM API
OnExecute

This method is called on the client, when IBM Rational Tau is ready to let it 
execute. 

Parameters

A pointer to a server object implementing the ITtdInteractiveServer in-
terface. The client may communicate with the server, the IBM Rational 
Tau application, through that interface.

A collection of entities that is provided to the client by the server. These 
entities constitute the context on which the client can start working.

Return value

The HRESULT value returned by OnExecute should be one of the fol-
lowing:

Comments

The OnExecute method is called synchronously by IBM Rational Tau to let 
the interactive client execute. The client should perform all its actions in the 
implementation of this method.

OnExecute Called by IBM Rational Tau when the client shall 
start to execute.

HRESULT OnExecute(
[in] ITtdInteractiveServer* pServer,
[in] ITtdEntities* pEntities);

[in] pServer

[in] pEntities

Return value Meaning

S_OK The client completed its execution successfully.

E_FAIL An error occurred in the client during its execution.
2190 IBM Rational Tau User Guide June 2009



ITtdInteractiveServer
In order to make IBM Rational Tau call the method on the client, a Tcl com-
mand called std::ExecuteCOMClient is used:

This Tcl command can for example be part of the Tcl script specified for a 
IBM Rational Tau add-in module. If the OnExecute method fails, the Tcl 
command will also fail. 

Note
The ITtdInteractiveClient interface is only provided for backwards compati-
bility with clients that were developed before the introduction of the ITtd-
Agent interface. New API clients should use the ITtdAgent interface since it 
allows the client to be invoked from all APIs (C++, COM and Tcl), and it 
also has the advantage of being able to pass actual arguments to the client. 
See Agents for more information about agents.

ITtdInteractiveServer
The ITtdInteractiveServer interface is implemented by the IBM Rational Tau 
module that launches an interactive client. It defines the interface through 
which the client communicates with IBM Rational Tau during its execution.

Note
It is possible to obtain the ITtdModelAccess interface from the ITtdInterac-
tiveServer interface. This can be useful for interactive COM clients that 
wants to utilize the methods provided by that interface.

ITtdInteractiveServer contains the following methods:

CreateEntityCollection

Creates an empty collection of entities, and returns it to the caller.

CreateEntityColle
ction

Creates an empty collection of entities.

InterpretTclScrip
t

Interprets a Tcl script on the server.

HRESULT CreateEntityCollection(
[out, retval] ITtdEntities** pEntityCollection);
June 2009 IBM Rational Tau User Guide 2191



Chapter 80: COM API
Parameters

The created empty collection of entities.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

CreateEntityCollection is a helper method that can be used by the client 
in order to get a container for entities. The client can use this container inter-
nally, or it can use it to be able to call other methods of the ITtdInterac-
tiveServer interface that requires an ITtdEntities collection as argument.

The created collection should not be deleted by the client. It will delete itself 
when no one holds a reference to it anymore (i.e. when the last user calls 
Release on it).

Example 664 on page 2194 contains an example of how to use 
CreateEntityCollection.

InterpretTclScript

Interprets a Tcl script on the server, and returns the result to the caller. This 
method is a means for an interactive client to communicate with the server. 

[out, retval] pEntityCollection

Return value Meaning

S_OK Entity collection successfully created.

E_OUTOFMEMORY Failed to create a new collection due to insufficient 
memory.

HRESULT InterpretTclScript(
[in] BSTR strScript,
[in, optional] VARIANT pEntities,
[out, retval] BSTR* strResult);
2192 IBM Rational Tau User Guide June 2009



ITtdInteractiveServer
Parameters

A string containing the Tcl script to interpret. The string may contain 
“substitution markers” that will be substituted with the Tcl ids of the 
corresponding entities in the pEntities collection.

An ITtdEntities collection of entities that are arguments to the Tcl script 
in strScript. This parameter is optional and need only be given when 
the Tcl script contains “substitution markers”.

The result of interpretation of the Tcl script.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

Currently InterpretTclScript is the only means for an interactive client 
to communicate with IBM Rational Tau during its execution. Although it 
could feel a bit awkward to use a Tcl script, rather than calling COM 
methods, it gives the client access to the entire Tcl API supported by IBM 
Rational Tau.

[in] strScript

[in, 
optional]

pEntities

[out, retval] strResult

Return value Meaning

S_OK The script is successfully interpreted.

E_FAIL An error occurred during argument substitution or 
script interpretation. Use the information provided 
in the COM error object for more details.
June 2009 IBM Rational Tau User Guide 2193



Chapter 80: COM API
The Tcl script may include “substitution markers” on the form #n, where n 
is an index of an entity in the entity collection. The server will preprocess the 
script to replace all markers with the Tcl id of the corresponding entity in the 
provided entity collection. As usual, indexes start at 1.

Example 664 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example demonstrates how an interactive client may communicate with 
the server using the InterpretTclScript method. The code below is part 
of the client’s OnExecute method, and pServer is the ITtdInteractiveServer 
interface pointer which the client obtains as argument in that method.

// First create an empty collection of entities that are arguments
// to the Tcl script.
ITtdEntitiesPtr pEntities = pServer->CreateEntityCollection();

// Add an entity to the collection
pEntities->Add(pEntity);

// Specify the Tcl script using a substitution marker for the first
// entity of the collection
CComBSTR strScript(_T("output #1"));

// Interpret the Tcl script and save the result in strResult
CComBSTR strResult((BSTR) pServer->InterpretTclScript((BSTR) 
strScript, pEntities));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ITtdSourceBuffer
The ITtdSourceBuffer interface represents a buffer of text (typically source 
code) used primarily during code generation as a representation of a gener-
ated file. It can for example be used by agents of the C++ Application Gen-
erator that wish to add some additional text to a generated file.

ITtdSourceBuffer contains the following methods:

AddText

Adds a piece of text to the source buffer.

AddText Add some text to the source buffer.

HRESULT AddText(
[in] BSTR text);
2194 IBM Rational Tau User Guide June 2009



ITtdMessageList
Parameters

The text string to add to the source buffer.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The AddText method will write a piece of text to the source buffer. Source 
buffers are written sequentially, and the text will be added at the current po-
sition in the source buffer.

A typical use of this method occurs when a code generator agent wants to 
write additional text to a generated file. The file is represented as a source 
buffer which is filled by the code generator. The agent may listen for certain 
tool events that are sent by the code generator when certain entities are 
printed to the buffer. Additional text can thus be added to the source buffer 
just before or just after the printing of such an entity.

ITtdMessageList
The ITtdMessageList interface represents a list of messages. Such a list is for 
example used when reporting errors from semantic analysis or code genera-
tion, and the interface may be used by agents in order to add custom mes-
sages based on for example a custom semantic check.

ITtdMessageList contains the following methods:

[in] text

Return value Meaning

S_OK The text is successfully added to the source buffer.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.

AddMessage Add a new message to the message list.
June 2009 IBM Rational Tau User Guide 2195



Chapter 80: COM API
AddMessage

Adds a new message to the end of the message list.

Parameters

The text of the message to add.

The severity of the message. The following literals are possible:

– MS_INFORMATION
Use this for information messages.

– MS_WARNING
Use this for warning messages.

– MS_ERROR
Use this for error messages.

– MS_FATAL
Use this for fatal error messages (errors that are unrecoverable).

This parameter is an optional subject entity attached with the message. 
Subject entities are located to when a message is located (double-
clicked) in the IBM Rational Tau IDE.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

HRESULT AddMessage(
[in] BSTR text, 
[in] MessageSeverity severity, 
[in, optional] VARIANT subject);

[in] text

[in] severity

[in, optional] subject
2196 IBM Rational Tau User Guide June 2009



ITtdAgent
Comments

The AddMessage method will add a new message to the end of the message 
list.

A typical use of this method occurs when a code generator or semantic 
checker agent wants to report a message in the Check or Build tab. The agent 
will then receive the ITtdMessageList interface from the code generator or 
semantic checker (which triggers the tool event that the agent has registered 
for).

ITtdAgent
The ITtdAgent interface is used when implementing Agents using the COM 
API. A COM object that is the implementation of an agent must implement 
the ITtdAgent interface.

ITtdAgent contains the following methods:

Execute

This method is called on the agent, when IBM Rational Tau is ready to let it 
execute. 

Return value Meaning

S_OK The message is successfully added to the message 
list.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.

Execute Called by IBM Rational Tau when the agent is in-
voked.

HRESULT Execute(
[in] ITtdEntity* triggeredBy, 
[in] VARIANT beforeProcessing, 
[in] ITtdEntity* modelContext, 
[in] IUnknown* server, 
[in, out] SAFEARRAY(VARIANT)* agentParameters);
June 2009 IBM Rational Tau User Guide 2197



Chapter 80: COM API
Parameters

A pointer to the UML definition of an operation that caused the agent to 
be triggered. The operation is either a tool event or an agent definition. 
The agent can need this information if it may be invoked by more than 
one tool event or agent. If the agent is invoked programmatically (using 
InvokeAgent) this parameter will be NULL.

This parameter will be true if the agent is invoked through an ordering 
dependency stereotyped by the ‘before processing’ stereotype, other-
wise it will be false. An agent can need this information if it can be trig-
gered through more than one ordering dependency. This parameter is 
not applicable if the agent is invoked programmatically (using In-
vokeAgent).

The entity that is the model context for the agent invocation.

A pointer to a server object through which the agent may communicate 
with the IBM Rational Tau application that invoked it. An interactive 
agent receives a server object that implements the ITtdInteractiveServer 
interface. For a non-interactive agent the server object may realize an-
other interface, which provides services that are relevant for that partic-
ular application. See for example ITtdCppAppGenServer which pro-
vides services for agents running in the C++ Application Generator 
executable.

For all kinds of agents the ITtdModelAccess interface can also be ob-
tained from this parameter.

[in] triggeredBy

[in] beforeProcessing

[in] modelContext

[in] server

[in, out] agentParameters
2198 IBM Rational Tau User Guide June 2009



ITtdCppAppGenServer
This parameter is a list (safe array) of Agent Parameters that are carried 
by the Tool Events that triggered the invocation of the agent (directly or 
indirectly). Which parameters that are passed depend on the tool event, 
and sometimes even on the ordering dependency that is involved in the 
invocation. 

If the agent is invoked programmatically (using InvokeAgent) this list 
will contain the actual arguments that was passed to the agent by the 
caller. 

The agent may modify the parameter list in order to communicate infor-
mation back to the caller. 

Return value

The HRESULT value returned by Execute should be one of the following:

Comments

The Execute method is called synchronously by IBM Rational Tau to let the 
agent execute. The agent should perform all its actions in the implementation 
of this method.

Example 625 on page 2063 contains an example on how to realize the 
ITtdAgent interface and implement the Execute method.

ITtdCppAppGenServer
The ITtdCppAppGen interface is implemented by the C++ Application Gen-
erator. It is used when customizing C++ code generation using Agents im-
plemented as COM objects. The agent can obtain this interface from the 
server parameter in the call to its Execute method.

Return value Meaning

S_OK The agent completed its execution successfully.

E_FAIL An error occurred in the agent during its execution. 
In the case of an interactive agent an error message 
will be printed in the Message tab. For non-interac-
tive agents the error message is typically printed on 
the stderr.
June 2009 IBM Rational Tau User Guide 2199



Chapter 80: COM API
ITtdCppAppGenServer contains the following methods:

ScheduleForDeletion

If an agent wants to delete an entity, this is the method to use. The C++ Ap-
plication Generator will immediately unlink the entity to be deleted from the 
model, so it will not be seen by the code generator afterwards. However, the 
entity is not actually deleted until the code generator finds it appropriate to 
do so. 

Parameters

The entity to be deleted.

Return value

The HRESULT value returned by ScheduleForDeletion is one of the fol-
lowing:

Comments

It is important that the agent uses ScheduleForDeletion, and not the Delete 
method. The latter method will immediately delete the entity, which might 
give the C++ Application Generator, or other active customization agents 
problems. For example, they may have stored pointers to the deleted entity 
that would become invalid.

ScheduleForDeletion Use this method to delete an entity in the model.

HRESULT ScheduleForDeletion(
[in] ITtdEntity* entity);

[in] entity

Return value Meaning

S_OK The entity was successfully scheduled for deletion.

E_FAIL An error occurred. Use the information provided in 
the COM error object for more details.
2200 IBM Rational Tau User Guide June 2009



ITtdStudioAccess
ITtdStudioAccess
The ITtdStudioAccess interface is the default interface of the 
TTD_StudioAccess COM class, and is obtained when creating an instance of 
that class. It is the main entry point for accessing functionality in the IBM Ra-
tional Tau IDE that are not specific to UML modelling.

ITtdStudioAccess contains the following methods:

OpenWorkspace

Opens a IBM Rational Tau workspace file (extension ttw). All projects con-
tained in the workspace will be loaded.

Parameters

OpenWorkspace Open a workspace (.ttw file)

NewWorkspace Create a new workspace

OpenProject Open a project (.ttp file)

GetWorkspace Get a reference to the currently loaded workspace.

InterpretTclScri
pt

Interpret a Tcl script.

GetApplicationNa
me

Get the full name of the running IBM Rational Tau 
application.

GetApplicationPI
D

Get the PID (process ID) of the running IBM Ra-
tional Tau application.

GetApplicationVe
rsion

Get the version of the running IBM Rational Tau 
application.

GetApplicationUs
erName

Get the name of the user of the running IBM Ra-
tional Tau application.

HRESULT OpenWorkspace(
[in] BSTR strPath,
[out, retval] ITtdWorkspace** workspace);

[in] strPath
June 2009 IBM Rational Tau User Guide 2201



Chapter 80: COM API
A string specifying the workspace file to load. If the string specifies a 
relative path, it will be interpreted as relative to the current working di-
rectory (typically the installation bin directory of IBM Rational Tau). 
The string may contain URN references.

A pointer to the loaded workspace.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The OpenWorkspace method opens an existing workspace by reading a IBM 
Rational Tau workspace file (.ttw). This method is equivalent of opening the 
workspace using the File - Open Workspace menu.

NewWorkspace

Create a new IBM Rational Tau workspace and associate it with a workspace 
file (extension ttw).

Parameters

[out, retval] workspace

Return value Meaning

S_OK The workspace was successfully opened.

E_FAIL Failed to open the specified workspace. Use the in-
formation provided in the COM error object for 
more details.

HRESULT NewWorkspace(
[in] BSTR strPath,
[out, retval] ITtdWorkspace** workspace);

[in] strPath
2202 IBM Rational Tau User Guide June 2009



ITtdStudioAccess
A string specifying where to save the workspace file of the workspace. 
If the string specifies a relative path, it will be interpreted as relative to 
the current working directory (typically the installation bin directory of 
IBM Rational Tau).

A pointer to the new workspace.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The NewWorkspace method creates a new workspace and saves it in the 
specified workspace file (.ttw). If an existing workspace was open it will first 
be closed. This method is equivalent of creating a new blank workspace 
using the File - New menu.

OpenProject

Opens a IBM Rational Tau project file (extension ttp). The model associ-
ated with the project will be loaded.

Parameters

[out, retval] workspace

Return value Meaning

S_OK The workspace was successfully created.

E_FAIL Failed to create the specified workspace. Use the in-
formation provided in the COM error object for 
more details.

HRESULT OpenProject(
[in] BSTR strPath,
[out, retval] ITtdProject** project);

[in] strPath
June 2009 IBM Rational Tau User Guide 2203



Chapter 80: COM API
A string specifying the project file to load. If the string specifies a rela-
tive path, it will be interpreted as relative to the current working direc-
tory (typically the installation bin directory of IBM Rational Tau). The 
string may contain URN references.

A pointer to the loaded project.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The OpenProject method opens an existing project by reading a IBM Ra-
tional Tau project file (.ttp). This method is equivalent of opening the project 
using the File - Open menu.

The opened project will be inserted into the current workspace. If there is no 
workspace available, the method will fail. Use GetWorkspace to check if a 
workspace is available.

Note
The opened project will also be set as active as a side-effect of calling this 
method.

GetWorkspace

Returns the current workspace.

[out, retval] project

Return value Meaning

S_OK The project was successfully opened.

E_FAIL Failed to open the specified project. Use the infor-
mation provided in the COM error object for more 
details.

HRESULT GetWorkspace(
[out, retval] ITtdWorkspace** workspace);
2204 IBM Rational Tau User Guide June 2009



ITtdStudioAccess
Parameters

A pointer to the current workspace, or NULL if no workspace is open.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The GetWorkspace method returns the workspace that is currently open in 
IBM Rational Tau. It can also be used for checking if a workspace is cur-
rently available, since it returns NULL in case no workspace is available.

InterpretTclScript

Interpret a Tcl script in IBM Rational Tau.

Parameters

A string containing a Tcl script to interpret.

The result of interpretation of the Tcl script.

[out, retval] workspace

Return value Meaning

S_OK The workspace was successfully obtained.

E_FAIL Failed to access the workspace. Use the information 
provided in the COM error object for more details.

HRESULT InterpretTclScript(
[in] BSTR strScript,
[out, retval] BSTR* result);

[in] strScript

[out, retval] result
June 2009 IBM Rational Tau User Guide 2205



Chapter 80: COM API
Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The ÍnterpretTclScript method allows any Tcl script to be interpreted by 
IBM Rational Tau. Which Tcl commands that are available for use in the 
script depends on what is loaded in IBM Rational Tau. As a general rule all 
Tcl commands prefixed with std are always available, while those that are 
prefixed with u2 only are available when a UML model is loaded.

GetApplicationName

Returns the IBM Rational Tau application product name.

Parameters

The application product name.

Return value

This method always succeeds (i.e. returns S_OK).

Return value Meaning

S_OK The script was successfully interpreted.

E_FAIL An error occurred while interpreting the script. Use 
the information provided in the COM error object 
for more details.

HRESULT GetApplicationName(
[out, retval] BSTR* name);

[out, retval] name
2206 IBM Rational Tau User Guide June 2009



ITtdStudioAccess
Comments

The GetApplicationName method returns a string which is the product 
name of the running IBM Rational Tau application. Different IBM Rational 
Tau products support different features, and this method is thus a means for 
a client to know which IBM Rational Tau features it can utilize.

GetApplicationPID

Returns the PID (process id) of the IBM Rational Tau application.

Parameters

The PID (process id) of the IBM Rational Tau application.

Return value

This method always succeeds (i.e. returns S_OK).

Comments

The GetApplicationPID method returns the PID (process id) of the run-
ning IBM Rational Tau application. This method can for example be useful 
when there are multiple instances of IBM Rational Tau running on a ma-
chine, and a client wants to communicate with one particular of these in-
stances. The PID returned by this method is then a means for distinguishing 
the different IBM Rational Tau instances.

GetApplicationVersion

Returns the version of the IBM Rational Tau application.

HRESULT GetApplicationPID(
[out, retval] BSTR* pid);

[out, retval] pid

HRESULT GetApplicationVersion(
[out, retval] BSTR* version);
June 2009 IBM Rational Tau User Guide 2207



Chapter 80: COM API
Parameters

The version of the IBM Rational Tau application.

Return value

This method always succeeds (i.e. returns S_OK).

Comments

The GetApplicationVersion method returns the version number (as a 
string) of the running IBM Rational Tau application. Different IBM Rational 
Tau versions support different features, and this method is thus a means for 
a client to know which IBM Rational Tau features it can utilize.

GetApplicationUserName

Returns the name of the user that is running the IBM Rational Tau applica-
tion.

Parameters

The user name for the user who is running the IBM Rational Tau appli-
cation.

Return value

This method always succeeds (i.e. returns S_OK).

Comments

The GetApplicationUserName method returns the user name of the user 
who is running the IBM Rational Tau application. This method can for ex-
ample be useful when there are multiple instances of IBM Rational Tau run-

[out, retval] version

HRESULT GetApplicationUserName(
[out, retval] BSTR* name);

[out, retval] name
2208 IBM Rational Tau User Guide June 2009



ITtdWorkspace
ning on a machine with more than one user logged onto it. Using this method 
a client can know if a certain IBM Rational Tau application instance runs 
under the same user as the client, or under some other user.

ITtdWorkspace
The ITtdWorkspace interface represents a IBM Rational Tau workspace. It 
contains methods that operate on a workspace.

ITtdWorkspace contains the following methods:

GetPath

Returns the full path of the workspace file where this workspace is stored.

Parameters

The workspace path.

Return value

This method always succeeds (i.e. returns S_OK).

Comments

The GetPath method returns the full path of the workspace, i.e. the path of 
the workspace file.

GetPath Get the path of a workspace.

GetProject Get a project contained in a workspace.

GetActiveProject Get the active project in a workspace.

SetActiveProject Set the active project in a workspace.

HRESULT GetPath(
[out, retval] BSTR* path);

[out, retval] path
June 2009 IBM Rational Tau User Guide 2209



Chapter 80: COM API
GetProject

Returns a project with a specified path that is contained in this workspace.

Parameters

The project file path to search for.

The found project with the specified path.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The GetProject searches the workspace for a contained project which is 
stored in a project file with a specified path. Note that project path compari-
sons are done by just comparing the project file paths of the workspace with 
strPath, without normalizing the paths or expanding URNs.

GetActiveProject

Returns the currently active project of the workspace.

HRESULT GetProject(
[in] BSTR strPath,
[out, retval] ITtdProject** project);

[in] strPath

[out, retval] project

Return value Meaning

S_OK A matching project was found.

E_FAIL No matching project was found. Use the informa-
tion provided in the COM error object for more de-
tails.
2210 IBM Rational Tau User Guide June 2009



ITtdWorkspace
Parameters

The active project.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

A IBM Rational Tau workspace contains one or more projects of which one 
is always active. GetActiveProject returns a reference to the active 
project.

SetActiveProject

Sets a project as active in this workspace.

Parameters

The project to set as active in the workspace.

HRESULT GetActiveProject(
[out, retval] ITtdProject** project);

[out, retval] project

Return value Meaning

S_OK Success.

E_FAIL No active project was found. Use the information 
provided in the COM error object for more details.

HRESULT SetActiveProject(
[in] ITtdProject* project);

[in] project
June 2009 IBM Rational Tau User Guide 2211



Chapter 80: COM API
Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

The SetActiveProject sets a project of a workspace as active. A work-
space can at most have one active project, so the previously active project 
will thus not be active anymore after the call.

ITtdProject
The ITtdProject interface represents a IBM Rational Tau project. It contains 
methods that operate on a project.

ITtdProject contains the following methods:

GetPath

Returns the full path of the project file where this project is stored.

Parameters

Return value Meaning

S_OK The project was successfully set as active.

E_FAIL Failed to set the project as active. Use the informa-
tion provided in the COM error object for more de-
tails.

GetPath Get the path of a project.

GetName Get the name of a project.

GetModel Get the UML model of a project.

HRESULT GetPath(
[out, retval] BSTR* path);
2212 IBM Rational Tau User Guide June 2009



ITtdProject
The project path.

Return value

This method always succeeds (i.e. returns S_OK).

Comments

The GetPath method returns the full path of the project, i.e. the path of the 
project file.

GetName

Returns the name of this project.

Parameters

The project name.

Return value

This method always succeeds (i.e. returns S_OK).

Comments

The GetName method returns the name of the project. This is usually the 
name of the project file without path.

GetModel

Returns the UML model of this project.

[out, retval] path

HRESULT GetName(
[out, retval] BSTR* name);

[out, retval] name
June 2009 IBM Rational Tau User Guide 2213



Chapter 80: COM API
Parameters

The model of the project.

Return value

The return value obtained from the returned HRESULT is one of the fol-
lowing:

Comments

GetModel returns a reference to the model of the project. This method acts 
as a bridge between the TTD_StudioAccess COM class and the 
TTD_ModelAccess COM class. The type libraries for these COM classes are 
separated, and the model parameter is therefore typed by IDispatch. How-
ever, by using QueryInterface on the returned pointer you may obtain an 
ITtdModel pointer from it.

HRESULT GetModel(
[out, retval] IDispatch** model);

[out, retval] model

Return value Meaning

S_OK The model of the project was successfully obtained.

E_FAIL No model could be obtained for the project. Use the 
information provided in the COM error object for 
more details.
2214 IBM Rational Tau User Guide June 2009



81
Tcl API

This chapter is the reference documentation for the IBM Rational Tau Tcl 
API. Available Tcl commands and how to use them are described.

Intended readers are developers of client applications that use the Tcl API for 
accessing the UML model or for adding dialogs and menus to IBM Rational 
Tau. Client applications could be everything from small interactive Add-Ins 
to full fledged code generators or import applications. A basic knowledge of 
Tcl is assumed throughout this chapter.
June 2009 IBM Rational Tau User Guide 2215



Chapter 81: Tcl API
Introduction
The Tcl API is divided into the following groups of commands:

• The General Purpose Commands provide functionary like accessing the 
current selection, loading documents and producing output to report 
panes.

• The User Interface Add-in Specific Commands make it possible to add 
menus, dialogs, toolbars and to define the actions that will be performed 
upon invocation. The user interface commands are only available from 
Tcl scripts executed via Add-Ins.

• The Model Commands provide a number of operations applicable on the 
currently loaded UML model.

• The Entity Commands provide read and write access to the details of the 
currently loaded UML model. These commands thus makes it possible to 
write scripts that changes a model in an interactive fashion.

• The Resource Commands provide the necessary commands to save a 
model in a physical storage unit, most commonly a file in the file system.

• The Presentation Element Commands provide functionality to create a 
representation of the presentation elements like diagrams in a picture 
format similar to what is shown on the screen.

• The Library Handling Commands provide functionality for loading and 
unloading UML libraries.

• The Semantic Checker Commands provide means for constructing and 
adding user-defined semantic checks to the semantic checker.

• The Utility Interface Commands provide miscellaneous functionality 
corresponding to functions in interfaces of the public IBM Rational Tau 
APIs, which are not covered by any other group of commands.

Mapping of COM to Tcl commands

The COM API and the Tcl API are very similar for the following sections:

• Model Commands

• Entity Commands

• Resource Commands

• Presentation Element Commands

• Symbol Commands
2216 IBM Rational Tau User Guide June 2009



Introduction
• Expression Commands

In general the Tcl commands in these sections have the same names as the 
COM methods, with an additional prefix denoting that they are part of the 
‘u2’ Tcl namespace. The command arguments are also very similar in Tcl, 
except from a mandatory extra argument and a different handling of optional 
arguments. To begin with, the extra argument is always stated first when 
calling a model command. This argument corresponds to the object that the 
COM method operates on. The first Tcl argument for all commands in this 
section is thus a reference to a model. When it comes to the optional COM 
parameters, these are in Tcl stated as options according to the following 
syntax:

Here, parameter is the name of the COM parameter and value is the param-
eter value. The kind of value to use, for example string, integer or boolean, 
is sometimes indicated by the first character in the parameter name. It could 
also sometimes be apparent from the name of the value. 

It could also be worth pointing out that a shortcut exists for boolean options 
which value is to be set to true. In this case, stating the option is enough and 
the accompanying value can be left out. The following two examples of set-
ting a boolean option to true are thus identical:

Compare with the respective COM command documentation for more de-
tails on arguments and options.

Hint
To find out the synopsis of a Tcl command corresponding to a COM 
method, invoke the command u2::<COM method name>. This will print a 
message describing how the command should be used.

Error handling is also different in Tcl compared to COM. In the COM case, 
all methods return an error value, while the Tcl commands throw an excep-
tion if an error is encountered. This implies that return values described in the 
COM API documentation does not apply to the corresponding Tcl com-
mands. Instead, the return value for a Tcl command is shown as a parameter 
of kind ‘retval’ in the COM API.

-parameter value

-bOverwrite true
-bOverwrite
June 2009 IBM Rational Tau User Guide 2217



Chapter 81: Tcl API
Example 665: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Mapping a COM method to a Tcl command is usually straight forward. For 
example, consider the FindByGuid command that is defined as follows in the 
COM API documentation:

The corresponding Tcl command looks as follows:

This command returns a reference to a model, taking two parameters, a 
model reference, modelRef, and a string containing a GUID, guid. It could be 
called as follows:

set myObj [u2::FindByGuid $model "@Predefined@integer"]

To make sure that any errors during the execution are handled properly, the 
call can also be included in a catch clause:

if [catch {
set myObj [u2::FindByGuid $model "@Predefined@integer"]
} ret] {
std::Output "Error during execution of Tcl 
script\n$ret\n"
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

General Purpose Commands
The general purpose part contains the following commands:

HRESULT FindByGuid(
[in] BSTR strGuid,
[out, retval] ITtdEntity** ppEntity);

u2::FindByGuid modelRef guid

Command Description

std::BrowserReport Adds a new object called <childobject> in 
the tree.

std::BrowserReportInit Activates a tree tab inside the Browser 
view. If needed the tab is created.

std::Button
2218 IBM Rational Tau User Guide June 2009



General Purpose Commands
std::ComboBox

std::Dialog Creates a dialog box and immediately 
builds and displays it.

std::DirectoryDialog Display directory selection dialog.

std::ExecuteCOMClient Invoke interactive COM client.

std::FileOpenDialog Display a file selection dialog.

std::FileSaveDialog Display a file save dialog.

std::Frame show-window Hide, Show IBM Rational Tau frame 
window

std::GetActiveProject Get active project in current workspace.

std::GetInstallationDirectory Get path to IBM Rational Tau installation 
directory.

std::GetKind Get a string identifying the general kind of 
a Tcl object.

std::GetModels Get list of loaded models.

std::GetProject Get list of projects.

std::GetProjectPath Returns the absolute path to the given 
project.

std::GetSelection Get list of currently selected entities.

std::GetUserAddinsDirectory Get path to user Add-Ins directory.

std::GetUserDirectory Get path to user information directory.

std::GetWebServerPort Get the TCP/IP port currently used by the 
Tau Web Server.

std::HtmlReport Open html file.

std::IsModified Check if project is modified.

std::Label

std::Locate This function locates an object described 
by <locatestring>. This string must be un-
derstood by a DataServer.

std::MessageDialog Display a modal message dialog.
June 2009 IBM Rational Tau User Guide 2219



Chapter 81: Tcl API
std::BrowserReport 

Synopsis

Description

Adds a new object called <childobject> in the tree.

If -expanded is present and if the object has children, then the node will be 
expanded, otherwise it will be collapsed.

If <parentobject> is present the node is created as a child of the node cor-
responding to <parentobject>.

If -userdata is present, then <userdata> will be associated to this node on 
the tree.

Example 666: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::BrowserReportInit MyBrowser
std::BrowserReport -expanded [std::GetActiveProject] 

std::OpenDocument Open document.

std::Output Print message in Tcl output tab.

std::OutputTab Clears the content of an output tab or acti-
vates an output tab.

std::Report This command is used for adding new 
lines in a report tab.

std::Quit Equivalent to the “close window” button.

std::ReportInit This command is used to create a new re-
port tab in the output window.

std::SaveAll Save workspace or project.

std::TextReport Open a file and locate a position.

std::View The std::View command allows you to 
control the windows canvas area.

std::BrowserReport [-expanded] [-userdata <userdata>] <childobject> 
[<parentobject>] 
2220 IBM Rational Tau User Guide June 2009



General Purpose Commands
[std::GetSelection]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

std::BrowserReportInit

Synopsis

Description

Activates a tree tab inside the Browser view. If needed the tab is created. 

If <iconfile> is present, then the icon will be used as the tab image.

If -keep is present then the content of the tab (if any) is kept, otherwise the 
tab is reset.

If the -cb <filename> is present, then the associated TCL script file will be 
evaluated when a double click on a tree object occurs and the 
OnDoubleClick proc of this TCL script will be called with double-clicked 
object as parameter.

Example 667: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::BrowserReportInit MyBrowser
std::BrowserReport -expanded [std::GetActiveProject] 
[std::GetSelection]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

std::Button 

Synopsis

Example 668: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Button -variable B1 -name "Cancel" -parent $parentWnd 
-x 20 -y 90 -w 60 -h 25 -command OnCancel
$B1 -name "New Name" -x 40 -y 90 -w 100 -h 25

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::BrowserReportInit <tabname> [<iconfile>] [-keep] [-cb 
<filename>] 

std::Button [-name <buttoncaption>] [-command <commandproc>]
June 2009 IBM Rational Tau User Guide 2221



Chapter 81: Tcl API
std::ComboBox

Synopsis

Description
• -stringlist <list>: list of items of the combo box control.

• -edit <editstate>: sets the editing capacity of the combo control. The 
parameter editstate is a Boolean. The value "true" indicates it is possible 
for the user to edit the text of the combo, and "false" that it is not possible. 
The default value is "false".

• -sort <sortstate>: the parameter sortstate is a boolean. The value 
"true" indicates that the list displayed in the combo is sorted.

• -selected <item>: sets the selected item.

• -selchangecmd <selchgproc>: sets the name of the command to call 
when the selection changes in the combo control. The command selchg-
proc has one parameter which is the new selected string.

• -editchangecmd <editchgproc>: sets the name of the command to 
call when the user changes the text in the edit box of the combo control. 
The command editchgproc has one parameter which is the text of the edit 
box.

Example 669: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std ::ComboBox -variable C1 -name "" -parent $parentWnd -x 
130 -y 55 -w 70 -h 150 
$C1 -stringlist {one two three}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Dialog 

Synopsis

std::ComboBox [-stringlist <list>][-edit <editstate>][-sort 
<sortstate>][-selected <item>][-selchangecmd <selchgproc>][-
editchangecmd <editchgproc>] 

std::Dialog -variable <dialogvar> -name <dialogname> -w 
<dialogwidth> -h <dialogheight> -onbuilddialog <dialogbuildproc> -
oninitdialog <dialoginitproc> -onclosedialog <dialogcloseproc> -
closecmddialog <dialogclosecmd> 
2222 IBM Rational Tau User Guide June 2009



General Purpose Commands
Description

Creates a dialog box and immediately builds and displays it.

The description of the dialog box is done in the dialogbuildproc com-
mand. The dialog box is modal.

Example 670: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Dialog  -variable "MyDialogBox" -name "Projects" -w 
450 -h 300 -onbuilddialog OnBuildDialog -oninitdialog 
OnInitDialog -onclosedialog OnCloseDialog -
closecmddialog CloseDialog

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
• -variable <dialogvar>: sets the variable containing the dialog box.

• -name <dialogname>: sets the title of the dialog box.

• -w <dialogidth>: sets the width of the dialog box. The dialog box is 
always created on the center of the screen..

• -h <dialogheight>: sets the height of the dialog box.

• -onbuilddialog <dialogbuildproc>: specifies the TCL command 
called when the dialog box is built. You can create here the controls of 
the window. The dialog box has to be built each time it is displayed.

Example 671: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

proc OnBuildDialog {adrDialog} {
std::Label -name "Quality Model:" -parent $parentWnd -x 

10 -y 25 -w 70 -h 25
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
• -oninitdialog <dialoginitproc>: specifies the TCL command 

called when the dialog box is about to be displayed. You can initialize 
here the data displayed in the dialog box.

Example 672: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

proc OnInitDialog {adrDialog} {
std ::Output  "Dialog initialization\n"

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
• -onclosedialog <dialogcloseproc>: specifies the TCL command 

called when the dialog box is about to be closed.
June 2009 IBM Rational Tau User Guide 2223



Chapter 81: Tcl API
Example 673: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

proc OnCloseDialog {parentWnd} {
    return 1
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
• -closecmddialog <dialogclosecmd>: defines a new command in the 

TCL environment which can be called in order to close the dialog box 
programmatically.

std::DirectoryDialog

Display directory selection dialog.

Synopsis

Description

This command displays a directory selection dialog allowing the user to 
browse and select a directory. Optionally, directory can be used to set the ini-
tial directory to be selected in the dialog. The default value is the current di-
rectory.

The return value is the path of the selected directory, or 0 if the user cancels 
the operation.

Example 674: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example displays a directory selection dialog, initially set to C:\Temp, 
and stores the resulting selection in a variable.

package require dialogs

set dirPath [std::DirectoryDialog -fromdir "C:\\Temp"]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::ExecuteCOMClient

Invoke interactive COM client.

package require dialogs

std::DirectoryDialog ?-fromdir directory?
2224 IBM Rational Tau User Guide June 2009



General Purpose Commands
Synopsis

Description

This command is used for calling an interactive COM client that implements 
the interface ITtdInteractiveClient. The command takes two argu-
ments, COMAddinProgId and one or more entityRefs, representing the pro-
grammatic id of the COM client and the model entities passed to it respec-
tively.

Example 675 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A COM client, with id “IBM Rational Tau.CodeGen”, operating on the ac-
tive project in the current workspace, is called as follows:

set project [std::GetActiveProject]
set session [std::GetModels -kind U2 -project $project]
std::ExecuteCOMClient "IBM Rational Tau.CodeGen"  
$session

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

COM API

std::FileOpenDialog

Display a file selection dialog.

Synopsis

Description

This command displays a file selection dialog that allows the user to browse 
and select a file. Optionally, the visibility argument controls what files are 
visible in the dialog, using a string as follows:

• text|pattern| 
Text is the text to be displayed, while pattern controls the actual filtering.

std::ExecuteCOMClient COMAddInProgId entityRef ?entityRef ...?

std::FileOpenDialog ?-filter visibility?
June 2009 IBM Rational Tau User Guide 2225



Chapter 81: Tcl API
The return value is the path of the selected file, or 0 if the user cancels the 
operation.

Example 676: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A file selection dialog

set res [std::FileOpenDialog -filter "Text Files 
(*.txt)|*.txt|"]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::FileSaveDialog

Display a file save dialog.

Synopsis

Description

This command opens a file save dialog that allows the user to browse and 
specify a file. Three optional arguments are accepted. Filename sets the de-
fault name of the file, while extension sets the default extension of the file, 
that is to say that the extension to use unless specified by the user. Filter 
specifies which file filter to use in the dialog. The filter string should be on 
the following format:

• text|pattern| 
Text is the text to be displayed, while pattern controls the actual filtering.

The return value is the path of the specified file, or 0 if the user cancels the 
operation.

If the specified file already exists, the user is prompted to confirm the re-
placement.

Example 677: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example illustrates how to display a file save dialog, with initial settings 
of the filename and file extension, and how to capture the users choice in a 
variable.

set res [std::FileSaveDialog -filename "myTextfile" -

std::FileSaveDialog ?-filename filename? ?-fileext extension? ?-
filter filter?
2226 IBM Rational Tau User Guide June 2009



General Purpose Commands
fileext "txt"]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Frame show-window

Hide, Show IBM Rational Tau frame window

Synopsis

Description

std::Frame show-window can take any of the following values:

• hide   Hides this window and passes activation to another window. 

• minimize   Minimizes the window and activates the top-level window in 
the system's list. 

• restore   Activates and displays the window. If the window is minimized 
or maximized, Windows restores it to its original size and position. 

• show   Activates the window and displays it in its current size and posi-
tion. 

• showmaximized   Activates the window and displays it as a maximized 
window. 

• showminimized   Activates the window and displays it as an icon. 

• showminnoactive   Displays the window as an icon. The window that 
is currently active remains active. 

• showna   Displays the window in its current state. The window that is cur-
rently active remains active. 

• shownoactivate   Displays the window in its most recent size and po-
sition. The window that is currently active remains active. 

• shownormal   Activates and displays the window. If the window is min-
imized or maximized, Windows restores it to its original size and posi-
tion. 

Example 678: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Frame show-window minimize

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Frame show-window show-window-value 
June 2009 IBM Rational Tau User Guide 2227



Chapter 81: Tcl API
std::GetActiveProject

Get active project in current workspace.

Synopsis

Description

A IBM Rational Tau workspace contains one or more projects of which one 
is always active. This command returns a reference to the active project.

Example 679 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to store a reference to the currently active project 
in a variable.

set curProj [std::GetActiveProject]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::GetInstallationDirectory

Get path to IBM Rational Tau installation directory.

Synopsis

Description

This command returns a character string containing the path to the directory 
where IBM Rational Tau is installed.

Example 680: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following code shows how to combine the IBM Rational Tau installation 
directory with the path to the addins subdirectory, using the Tcl built-in 
command ‘file’.

set installDir [std::GetInstallationDirectory]
set addinsDir [file join $installDir addins]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::GetActiveProject

std::GetInstallationDirectory
2228 IBM Rational Tau User Guide June 2009



General Purpose Commands
std::GetKind

Get a string identifying the general kind of a Tcl object.

Synopsis

Description

This command returns a string which identifies the overall classification of a 
Tcl object. It is mainly used in conditions to make sure that only objects of a 
certain kind are passed to a Tcl command which only supports input objects 
of that kind. Currently there are two different identifiers that may be returned 
by GetKind:

• U2 
The object is a UML model entity. This is the kind of most objects visible 
in the Model View.

• project
The object is a “project model” entity. This is the kind of most objects 
visible in the File View.

Example 681: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following code prints the kind of the node that is selected in the work-
space window (Model View or File View):

output \n[std::GetKind [std::GetSelection] ]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::GetLocaleDirectory

Synopsis

Description

The std::GetLocaleDirectory command returns the absolute path to the 
installation directory in which locale specific DLLs and files are stored.

std::GetKind object

std::GetLocaleDirectory 
June 2009 IBM Rational Tau User Guide 2229



Chapter 81: Tcl API
Example 682: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

If the current locale is Japanese (“jp”) then std::GetLocaleDirectory will re-
turn the concatenation of the absolute path to the IBM Rational Tau installa-
tion and “/locale/jp”.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::GetModels

Get list of loaded models.

Synopsis

Description

This command returns a list of loaded models. If no arguments are specified, 
all models in the current workspace are returned, independent of their respec-
tive kind.

The optional argument modelkind can be used to restrict the output to only 
contain models of a certain kind. Currently supported values are:

• U2 
Only UML models are returned.

The optional parameter projRef is used to restrict the output to only contain 
models from the project in question.

Example 683: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Get all models from all projects in the workspace:

set allModels [std::GetModels]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 684: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Get all UML models from all projects in the workspace:

set umlModels [std::GetModels -kind U2]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::GetModels ?-kind modelKind? ?-project projRef?
2230 IBM Rational Tau User Guide June 2009



General Purpose Commands
Example 685: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Get the UML model from the active project in the workspace:

set curProject [std::GetActiveProject]
set model [std::GetModels -kind U2 -project $curProject]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::GetProject

Get list of projects.

Synopsis

Description

This command returns a list of projects. If no argument is given, a list con-
taining references to all projects in the current workspace is returned.

The optional argument entityRef is used when a reference to the project that 
contains a specific entity is of interest.

Example 686: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to call procedure “ProcessIt” on all projects in 
the current workspace.

set allProjs [std::GetProject]

foreach p $allProjs {
ProcessIt $p

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 687: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This shows how to get the project that contains an entity:

set thisProj [std::GetProject $anEntity]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::GetProject ?entityRef?
June 2009 IBM Rational Tau User Guide 2231



Chapter 81: Tcl API
std::GetProjectPath

Synopsis

Description

Returns the absolute path to the given project.

Example 688: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

# first select a project node in the FileView
set selection [std::GetSelection]  
set pathname [std::GetProjectPath $selection]

if { $selection != "" } {
std::Output "This is the selected project's path: 
$pathname\n";
} else {

std::Output "A non-project node is selected.\n";
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

std::GetSelection

Get list of currently selected entities.

Description

This command returns a list containing references to all entities currently se-
lected.

Example 689: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to call the procedure “ProcessIt” on all selected 
elements.

set sel [std::GetSelection]

foreach s $sel {
ProcessIt $s

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::GetProjectPath <projectRef> 
2232 IBM Rational Tau User Guide June 2009



General Purpose Commands
std::GetUserAddinsDirectory 

Get path to user Add-Ins directory.

Synopsis

Description

This command returns a character string containing the path to the directory 
used for storing user Add-Ins. 

The default location on Windows:

c:\Documents and Settings\<username>\Application Data\IBM 
Rational\<Tau_version>\addins

For the default location on UNIX the $HOME variable is used and then “IBM 
Rational” is appended. From there on the path will be the same. 

The environment variable TAU_USER_ADDINS_DIR can be set to change the 
default location. 

std::GetTeamAddinsDirectory 

Get path to team Add-Ins directory.

Synopsis

Description

This command returns a character string containing the path to the directory 
used for storing user Add-Ins. 

The default location on Windows:

c:\Documents and Settings\<username>\Application Data\IBM 
Rational\Shared\TeamAddins

For the default location on UNIX the $HOME variable is used and then “IBM 
Rational” is appended. From there on the path will be the same. 

std::GetUserAddinsDirectory

std::GetTeamAddinsDirectory
June 2009 IBM Rational Tau User Guide 2233



Chapter 81: Tcl API
The environment variable TAU_TEAM_ADDINS_DIR can be set to change the 
default location. 

std::GetCompanyAddinsDirectory 

Get path to company Add-Ins directory.

Synopsis

Description

This command returns a character string containing the path to the directory 
used for storing user Add-Ins. 

The default location on Windows:

c:\Documents and Settings\<username>\Application Data\IBM 
Rational\Shared\CompanyAddins

For the default location on UNIX the $HOME variable is used and then “IBM 
Rational” is appended. From there on the path will be the same. 

The environment variable TAU_COMPANY_ADDINS_DIR can be set to change 
the default location. 

std::GetUserDirectory 

Get path to user information directory.

Synopsis

Description

This command returns a character string containing the path to the directory 
used for storing user information. For example:

c:\Documents and Settings\<username>\Application Data\IBM 
Rational\<IBM Rational Tau Version>

std::GetCompanyAddinsDirectory

std::GetUserDirectory 
2234 IBM Rational Tau User Guide June 2009



General Purpose Commands
std::GetWebServerPort

Get the TCP/IP port currently used by the Tau Web Server.

Synopsis

Description

This command returns the TCP/IP port number that is currently used by the 
Tau Web Server. It is typically used for constructing an URL which is later 
passed to the std::HtmlReport command. For example:

Example 690: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

set url 
"http://localhost:[std::GetWebServerPort]/file/index.htm
l"
std::HtmlReport $url

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::HtmlReport

Open html file.

Synopsis

Description

This command loads and displays a html file in IBM Rational Tau. The url 
argument is a string containing the URL in question.

Example 691: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Displaying the IBM Rational home page on the IBM Rational Tau desktop is 
done like this:

std::GetWebServerPort 

std::HtmlReport url
June 2009 IBM Rational Tau User Guide 2235



Chapter 81: Tcl API
std::HtmlReport "www.IBM Rational.com"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 692: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Displaying a html file on the IBM Rational Tau desktop is done like this:

std::HtmlReport "C:\\test.htm"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::IsModified

Check if project is modified.

Synopsis

Description

This command checks if a project, specified with a project reference projRef, 
is modified or not. It returns 0 if not modified and 1 otherwise.

Example 693: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example saves the workspace in case the active project is modified.

if { [std::IsModified $std::activeproject] } {
std::SaveAll

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Label 

Synopsis

Description

-name <staticname>: sets the caption of the static control.

std::IsModified projRef

std::Label [-name <staticname>]
2236 IBM Rational Tau User Guide June 2009



General Purpose Commands
Example 694: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Label -name "Quality Model:" -parent $parentWnd -x 10 
-y 25 -w 70 -h 25

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Locate

Synopsis

Description

This function locates an object described by <locatestring>. This string 
must be understood by a DataServer.

std::MessageDialog

Display a modal message dialog.

Synopsis

Description

This command displays a modal message dialog with a title set to caption and 
a message text equal to message. The two following arguments, style and 
icon, control the button configuration and what icon to display in the dialog. 
All arguments are optional.

The return value mirrors the button pressed by the user when leaving the di-
alog. Possible return values are 1 for ok, 2 for cancel, 4 for retry, 6 for yes 
and finally 7 for no.

Style can take on any of the following values:

• ok 
An OK button is provided. This is the default behavior.

• okcancel 
An OK button and a cancel button is provided.

std::Locate <locatestring>

std::MessageDialog ?-name caption? ?-message message? ?-style style? 
?-icon icon?
June 2009 IBM Rational Tau User Guide 2237



Chapter 81: Tcl API
• retrycancel 
A retry button and a cancel button is provided.

• yesno 
A yes button and a no button is provided.

• yesnocancel 
A yes button, a no button and a cancel button is provided.

Icon can take on any of the following values:

• stop 
A stop icon is provided.

• question 
A question icon is provided.

• warning 
A warning icon is provided.

• information 
An information icon is provided. This is the default behavior.

Example 695: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example pops up a question dialog and stores the users an-
swer, yes (6), no (7) or cancel (2), in a variable.

set res [std::MessageDialog -name "IBM Rational IBM 
Rational Tau" -message "Save changes?" -style 
yesnocancel -icon question]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::OpenDocument

Open document.

Synopsis

std::OpenDocument filename
2238 IBM Rational Tau User Guide June 2009



General Purpose Commands
Description

This command opens a document, specified with the argument filename, in 
IBM Rational Tau. The most common use of the command is for loading a 
IBM Rational Tau workspace (a .ttw file) or IBM Rational Tau project (a 
.ttp file), but it can also be used to load and display for example plain text 
documents. The file extension controls the result of a load.

If the stated file can not be opened, a Tcl error will be generated.

Example 696: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A IBM Rational Tau workspace is opened like this:

std::OpenDocument "C:\\Work\\MyProjects.ttw"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Output

Print message in Tcl output tab.

Synopsis

Description

The Output command prints a message in the Tcl output tab of the Output 
window.

Example 697: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example prints the string “Hello World” followed by a new line in the 
Tcl output tab.

std::Output "Hello World\n"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Output <text> 
June 2009 IBM Rational Tau User Guide 2239



Chapter 81: Tcl API
std::OutputTab

Synopsis

Description

Clears the content of an output tab or activates an output tab.

Example 698: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

set selection [std::GetSelection]
std::ReportInit MyTab -ident mt MyFirst 100 0 MySecond 200 0
std::Report $selection -ident mt "This is the second column."
std::OutputTab clear -ident mt

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

std::Report

Synopsis

Description

This command is used for adding new lines in a report tab.

The <sourceobject> will be used to fill the first column (icon + text) auto-
matically.

The <string> values are labels, used to fill the remaining columns.

Example 699: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

set selection [std::GetSelection]
std::ReportInit MyTab -ident mt MyFirst 100 0 MySecond 200 0
std::Report $selection -ident mt "This is the second column."

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

std::Quit

Equivalent to the “close window” button.

std::OutputTab clear [clear [-ident <tabident> | <tabname>] | 
activate [-ident <tabident>] | <tabname>]

std::Report <sourceobject> [-ident <tabident>] [<string>]* 
2240 IBM Rational Tau User Guide June 2009



General Purpose Commands
Synopsis

Description

The std::Quit command posts a “close” message to the main window of 
IBM Rational Tau. This is equivalent to clicking the “close window” button 
on the upper right-hand side of the main window.

Example 700: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::Quit

Note
This does not guarantee exit. There can be some files still open that need to 
be saved, in which case IBM Rational Tau will pop-up a “Do you want to 
save?” message box.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

std::ReportInit

Synopsis

Description

This command is used to create a new report tab in the output window.

If the -check is used, a check box is displayed before each result line. These 
check boxes allow a more powerful navigation: only the checked lines will 
be selected when navigating with the F4 key, others are ignored.

If the -cb <filename> is present, then the associated Tcl script file will be 
evaluated when a double click on a line object occurs and the 
OnDoubleClick proc of this TCL script will be called with the double-
clicked object as parameter.

std::Quit 

std::ReportInit <tabname> [-ident <tabident>] [-check] [-cb 
<filename>] [<columnlabel> <columnwidth> <columnalignment>]+ 
June 2009 IBM Rational Tau User Guide 2241



Chapter 81: Tcl API
For each <columnlabel> <columnwidth> <columnalignment> item, a 
new column is created with the corresponding label, width and alignment. 
An alignment of 0 means left align and an alignment of 1 means right. For 
sorting, columns right aligned are considered as number and columns left 
aligned are considered as text.

Example 701: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

set selection [std::GetSelection]
std::ReportInit MyTab -ident mt MyFirst 100 0 MySecond 200 0
std::Report $selection -ident mt "This is the second column."

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::SaveAll

Save workspace or project.

Synopsis

Description

This command saves the entire content of a workspace. Optionally, in case 
the filePath of a loaded project is specified, the entire content of the project 
is saved.

Example 702: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The complete workspace is saved like this:

std::SaveAll

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::TextReport

Open a file and locate a position. 

Synopsis

std::SaveAll ?filePath?

std::TextReport <filename> [<line>] [<column>] 
2242 IBM Rational Tau User Guide June 2009



General Purpose Commands
Description

This command opens the file <filename>, and locates (puts the position of 
the cursor) to a <line> if specified, and to a <column> if specified. A line 
can be specified without specifying any column.

Example 703: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::TextReport [std::GetLocaleDirectory]/java.ini 5 0 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

std::View

Controls the desktop area.

Synopsis

Description

The std::View command allows you to control the windows canvas area.

• maximize - maximizes the specified view.

• restore - restores minimized view to its previous size.

• minimize - minimizes the specified view.

• close - closes the specified view.

• coordinates - returns the coordinates of the specified view.

• activate - activates the specified view or the “next” view.

• getactive - returns a handle to the active view to be used in the above 
options.

• count - returns the number of open views.

Example 704: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

set activeview [std::View getactive]
std::View minimize $activeview

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

std::View [maximize | restore | minimize | close | coordinates] 
[<view>] 
activate [<view>|next]
getactive
count
June 2009 IBM Rational Tau User Guide 2243



Chapter 81: Tcl API
User Interface Add-in Specific Commands
The following commands are used by Tcl scripts run by add-ins in order to 
customize the user interface of IBM Rational Tau, typically extending it to 
provide a user interface for an add-in.

Usage of the commands in this section requires loading of the commands 
package into the Tcl interpreter as follows:

The user interface add-in specific customization commands are only avail-
able from Tcl scripts executed via Add-Ins. They are not available in Tcl 
scripts outside add-ins, for example in Tcl agents or when running a stand-
alone Tcl script.

std::AddCommand

Add new command.

Synopsis

Command Description

std::AddCommand Add new command.

std::AddContextMenu Add shortcut menu.

std::AddMenu Add menu.

std::AddToolbar Add toolbar.

std::Declare Separate definition and use.

package require commands

package require commands

std::AddCommand -variable var -name name -statusmessage message 
-tooltip tooltip -accelerator accelerator -imagefile imagefile 
-onactivatecommand activateproc ?-onenablecommand enableproc? 
?-oncheckcommand checkproc?
2244 IBM Rational Tau User Guide June 2009



User Interface Add-in Specific Commands
Description

This command defines a new command, identified by var, allowing it to be 
called from a menu and/or a toolbar. A command needs to be defined before 
any call to for example std::AddMenu or std::AddToolbar is done.

The text to display for the command in a menu, in the IBM Rational Tau 
status bar and in a tool tip, are specified by arguments name, message, and 
tooltip, respectively. An accelerator, or shortcut key, for the command is de-
fined by the argument accelerator, using a string that contains a combination 
of “Ctrl+”, “Shift+” and/or “Alt+”, followed by a character (in upper case re-
gardless if Shift is part of the accelerator command). In addition, an image to 
display in a toolbar can be specified by a path to a bitmap file, relative to the 
IBM Rational Tau bin directory, using the argument imagefile.

Activateproc is the name of the procedure to call when the command is in-
voked. Optionally, a name of procedure controlling whether the commands 
menu item or toolbar button should be displayed or not can be specified vith 
the enableproc argument. Similarly, checkproc controls whether the menu 
item or toolbar button is ticked or not. These three procedures must all accept 
one argument, which at run-time will be assigned the name of the command. 
In addition enableproc and checkproc must both return a boolean value (a 
numeric value, where 0 is false and anything else is true, or a string value 
such as true or yes for true and false or no for false).

Example 705: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The following example shows a command definition making use of all pos-
sible arguments.

package require commands

proc OnTest { cmd } {
std::Output "OnTest was called\n"

}

proc OnEnableTest { cmd } {
return 1

}

proc OnCheckTest { cmd } {
return 0

}

std::AddCommand -variable cmdTst -name "Test" -
statusmessage "To test a command" -tooltip "Test 
command" -accelerator "Ctrl+Shift+Z" -imagefile 
June 2009 IBM Rational Tau User Guide 2245



Chapter 81: Tcl API
"../addins/Tst/etc/Tst.bmp" -onactivatecommand OnTest -
onenablecommand OnEnableTest -oncheckcommand OnCheckTest

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“std::Declare” on page 2249

“std::AddContextMenu” on page 2246

“Additional tasks” on page 2491 in Chapter 95, Dialog Help for managing 
command syntax.

std::AddContextMenu

Add shortcut menu.

Synopsis

Description

This command adds a shortcut menu identified by the menuvar argument. 
The commands argument is a list of command identifiers representing the 
commands to present in the shortcut menu, in their order of appearance. To 
insert a separator between two menu items, use the command name “sepa-
rator”. The procedure controlling whether the shortcut menu should be dis-
played or not is specified with the enableproc argument. This procedure has 
one argument; the identity of the window from where the shortcut menu is 
called, for example “view”, “output tab” or “browser tab”, and returns a 
boolean value.

Example 706: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The example below shows how to add a shortcut menu that is displayed in 
case it is invoked from the File View.

package require commands

proc OnMenuEnable { ident } {
if { $ident == "FILEVIEW" } {

package require commands

std::AddContextMenu -variable menuvar -commands commands 
-onenablemenu enableproc
2246 IBM Rational Tau User Guide June 2009



User Interface Add-in Specific Commands
return 1
} else {

return 0
}

}

std::AddContextMenu -variable cmTest -commands { cmdTst 
} -onenablemenu OnMenuEnable

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“std::AddCommand” on page 2244

“std::Declare” on page 2249

“Additional tasks” on page 2491 in Chapter 95, Dialog Help for managing 
command syntax.

std::AddMenu

Add menu.

Synopsis

Description

This command adds a menu identified with the argument menuvar. The 
commands argument is a list of command identifiers representing the com-
mands to present in the menu, in their order of appearance. To insert a sepa-
rator between two menu items, use the command name “separator”. The po-
sition of the menu is controlled with the argument path, which is a list of 
strings, starting with a menu name. Non-existing elements in the path are cre-
ated automatically.

An optional argument, pos, can be used to control the positioning of the 
menu. Pos can take any of the following forms:

• after menu 
The new menu item will be inserted after menu, which is a sibling menu 
item identifier.

package require commands

std::AddMenu -variable menuvar -commands commands -path path 
?-position pos?
June 2009 IBM Rational Tau User Guide 2247



Chapter 81: Tcl API
• first 
The new menu item will be inserted as the first child of its parent.

• last 
The new menu item will be inserted as the last child of its parent.

Example 707: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The example below shows how to add a separator and a menu item, for an 
added command called cmdTest, last in the Tools menu.

package require commands

std::AddMenu -variable mTest1 -commands { separator 
cmdTst } -path { &Tools } -position last

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 708: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Another example illustrates how to make a command accessible via a sub-
menu item in the Tools menu.

std::AddMenu -variable mTest2 -commands { cmdTst } -path 
{ &Tools Test }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“std::AddCommand” on page 2244

“std::Declare” on page 2249

std::AddToolbar

Add toolbar.

Synopsis

package require commands

std::AddToolbar -variable tbvar -commands commands
2248 IBM Rational Tau User Guide June 2009



User Interface Add-in Specific Commands
Description

This command adds a toolbar identified with the argument tbvar. The 
commands argument is a list of command identifiers representing the com-
mands to present in the toolbar, in their order of appearance. To insert a sep-
arator between two toolbar buttons, use the command name “separator”.

Example 709: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A toolbar with a button associated with the command cmdTest is added like 
this:

package require commands

std::AddToolbar -variable tbTest -commands { cmdTst }

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“std::AddCommand” on page 2244

“std::Declare” on page 2249

std::Declare

Separate definition and use.

Synopsis

Description

This command allows definition and use of for example a command to be 
separated from each other. In this way, a definition can be done in the begin-
ning of a file, or in another file, while being used elsewhere.

The option argument can take on any of the following values:

• addcommand args 
A command will be declared, with args representing the arguments used 
for std::AddCommand.

package require commands

std::Declare option
June 2009 IBM Rational Tau User Guide 2249



Chapter 81: Tcl API
• addcontextmenu args 
A command will be declared, with args representing the arguments used 
for std::AddContextMenu.

• addmenu args 
A command will be declared, with args representing the arguments used 
for std::AddMenu.

• addtoolbar args 
A command will be declared, with args representing the arguments used 
for std::AddToolbar.

Example 710: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

An example of how to separate a command definition and its use looks like 
this:

package require commands

std::Declare addcommand -variable cmdTst -name "Test" -
statusmessage "For testing" -tooltip "Test command" -
accelerator "CTRL+SHIFT+Z" -imagefile "" -
onactivatecommand OnTest

proc OnTest { cmd } {
std::Output "OnTest was called\n"
}

proc Init{} {
std::AddCommand cmdTst

std::AddMenu -variable mTest -commands { separator 
cmdTst } -path { &Tools } -position last
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“std::AddCommand” on page 2244

“std::AddContextMenu” on page 2246

“std::AddMenu” on page 2247

“std::AddToolbar” on page 2248
2250 IBM Rational Tau User Guide June 2009



Model Commands
Model Commands
The majority of the Tcl commands available for model access are the same 
as the corresponding COM API methods, found in the ITtdModel section.

Example 711: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The mapping of optional COM parameters to Tcl options is illustrated with 
the following COM model access command:

The corresponding Tcl command looks as follows:

This command returns a reference to a model fragment. Two parameters, a 
model reference, ITtdModel, and a string containing a textual description, 
strConcreteSyntax need to be given. Optionally, value, can be used as a hint 
for the parser on how it should attempt to parse the provided string. It could 
be called as follows:

set expr [u2::Parse $model "x = 10" -parseAs 

u2::FindByGuid Finds the entity with the specified GUID.

u2::New Creates a new entity.

u2::Parse Parses a string with U2P syntax and returns the re-
sulting entities.

u2::XMLDecode Decodes a piece of model encoded as XML and re-
turns the resulting entities.

u2::Save Saves the model.

u2::CreateResource Creates a new resource (a file) in the model.

u2::LoadFile Loads a UML model file (.u2) into the model.

u2::InvokeAgent Invokes an agent programmatically on a specified 
model context.

HRESULT Parse(
[in] BSTR strConcreteSyntax,
[in, optional] VARIANT parseAs,
[out, retval] ITtdEntities** ppEntities);

u2::Parse ITtdModel strConcreteSyntax ?-parseAs value?
June 2009 IBM Rational Tau User Guide 2251



Chapter 81: Tcl API
"Expression"]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The Tcl command InvokeAgent is a bit special since the corresponding 
COM method uses an in/out parameter to pass agent parameters to and from 
the invoked agent:

This means that instead of passing a Tcl string for this parameter you should 
pass a Tcl variable holding a list of agent parameters. The strings of this list 
will be interpreted by the called agent as values of certain types, according to 
the following rules (in priority order):

1. A Tcl id string representing an object realizing the ITtdEntity interface 
will be interpreted as an entity.

2. The strings “0” and “1” will be interpreted as the boolean values false 
and true respectively.

3. Any numeric string will be interpreted as an integer value.
To disambiguate the integers 0 and 1 from the boolean values false and 
true, you may use the strings “00” and “01” instead.

4. A string that is a well-formed Tcl list with all elements being objects re-
alizing the ITtdEntity interface, will be interpreted as a list of entities.
To disambiguate an ITtdEntity object from a list of ITtdEntity objects 
(the Tcl representation for these are identical) you may add an extra “0” 
to the list. These extra “0”:s will not be translated to NULL pointers of 
type ITtdEntity, but they are allowed in order to be able to specify lists 
containing exactly one object.

5. If none of the above rules apply, the string will be interpreted as a plain 
string.

Example 712: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how to call an agent referenced by $agent on a model 
context referenced by $modelContext. The agent will receive 5 actual argu-
ments, of the following types:

1. The boolean value true

2. The integer value 2

3. The entity referenced by $entity

4. A list of entities containing the entity referenced by $entity

u2::InvokeAgent ITtdModel agent modelContext ?in/out <list>?
2252 IBM Rational Tau User Guide June 2009



Model Commands
5. The string “hello”.

After the agent has been invoked the resulting parameter list is printed.

set p [lappend p 1 2 $entity [list $entity 0] "hello"]
u2::InvokeAgent $model $agent $modelContext p
output "$p\n"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Mapping of COM to Tcl commands” on page 2216 

u2::SelectMetaModel

Select which metamodel to be active.

Synopsis

Description

This command makes it possible to control which metamodel to be active in 
a model. It corresponds to the View - Reconfigure Model View menu com-
mand. See Reconfigure ModelView for more information.

The argument to the command should be a reference to a package with the 
<<metamodel>> stereotype applied.

Example 713: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Setting TTDDiagramView as active metamodel in the first model found in 
the current workspace.

set model [lindex [std::GetModels -kind U2] 0]
set mm [u2::FindByName $model "TTDDiagramView"]
u2::SelectMetaModel $mm

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

u2::SelectMetaModel metaModelPackage
June 2009 IBM Rational Tau User Guide 2253



Chapter 81: Tcl API
Entity Commands
Tcl commands for entity access are the same as the corresponding methods 
available in the COM API methods, found in the ITtdEntity section. The first 
Tcl argument for all entity access commands is a reference to a model entity.

u2::ApplyStereotype Instantiates the given stereotype and applies it on an 
entity.

u2::Bind Binds all references in a model fragment, or a single 
reference of an entity.

u2::Clone Creates a clone of an entity.

u2::Create Creates a new entity in the context of an entity, that 
is adds a new direct or indirect child to an entity.

u2::CreateInstance Creates an instance of a Signature.

u2::Delete Deletes an entity from the model.

u2::FindByName Performs a name-lookup from the context of an en-
tity to find another entity by its (qualified) name.

u2::GetContainer-
MetaFeature

Returns the name of the metafeature in which an en-
tity is contained.

u2::GetDescriptive-
Name

Returns a description of an entity.

u2::GetEntities Returns the value of a metafeature for an entity as a 
collection of entities.

u2::GetEntity Returns the value of a metafeature for an entity as 
an entity.

u2::GetMetaClass-
Name

Returns the name of the entity’s Metaclass.

u2::GetModel Returns the model to which an entity belongs.

u2::GetOwner Returns the composition owner of an entity.

u2::GetReference Returns the identifier of a metafeature representing 
a reference.

u2::GetReferringEnti-
ties

Returns a collection of entities that refer to an entity 
through a particular metafeature.
2254 IBM Rational Tau User Guide June 2009



Entity Commands
u2::GetTaggedValue Returns the specified property (tagged value) of an 
element. Can also be used to obtain an arbitrary 
value from an instance representation.

u2::GetValue Returns the value of a metafeature for an entity as a 
string.

u2::HasAppliedStereo-
type

Determines if an entity has a certain stereotype ap-
plied.

u2::IsKindOf Determines if an entity is of a particular Metaclass 
kind.

u2::MetaVisit

Note: This command 
corresponds to the 
COM method 
MetaVisitEx.

Traverses a model fragment and calls a method in a 
callback interface for each entity it contains.

See Example 714 on page 2256 for an example on 
how to use this command.

u2::Move Moves an entity from its current location in the 
model to another owner.

u2::Replace Replaces an entity with another entity.

u2::SetEntity Sets the value of a metafeature for an entity as an 
entity.

u2::SetTaggedValue Sets a property (tagged value) on an element. Can 
also be used to set an arbitrary value of an instance 
representation.

u2::SetValue Sets the value of a metafeature for an entity as a 
string.

u2::UnlinkFromOwner Unlinks an entity from it current owner in the 
model.

u2::Unparse Unparse of an entity into a concrete syntax repre-
sentation.

u2::XMLEncode Encodes an entity into an XML representation.
June 2009 IBM Rational Tau User Guide 2255



Chapter 81: Tcl API
The Tcl usage for one of the entity access commands, MetaVisit, differs 
slightly from COM. Instead of specifying the callback function with a pointer 
to an interface, the Tcl command accepts a procedure. The example below 
shows this in practice.

Example 714: Traverse of model entities–––––––––––––––––––––––––––––––––––

This is how all model entities in all currently loaded models are traversed. 
For each model entity visited, a check is done to see whether the element in 
question is a Definition. If so, an output message is generated.

proc PrintDef { def } {
if { [u2::IsKindOf $def "Definition"] } {
set name [u2::GetValue $def "Name"]
std::Output "Found def: $name\n"

}
}

u2::MetaVisit [std::GetModels -kind U2] PrintDef

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

See also

“Mapping of COM to Tcl commands” on page 2216 

Resource Commands
A resource represents the physical storage unit where a model is stored, typ-
ically a text file with the extension ‘.u2’. Tcl commands for resource han-
dling are the same as the corresponding methods available in the COM API 
methods, found in the ITtdResource section. The first Tcl argument for all re-
source handling commands is thus a reference to a resource.

Note

Since a Resource also is an Entity, all Entity Commands are also available 
for resources.
2256 IBM Rational Tau User Guide June 2009



Presentation Element Commands
See also

“Mapping of COM to Tcl commands” on page 2216 

Presentation Element Commands
A presentation element is an element with a graphical appearance, for ex-
ample a diagram, symbol or a line. Tcl presentation element commands are 
the same as the corresponding methods available in the COM API methods, 
found in the ITtdPresentationElement section. The first Tcl argument for all 
presentation element commands is thus a reference to a presentation element.

Note

Since a Presentation Element also is an Entity, all Entity Commands are also 
available for presentation elements.

u2::GenerateEMF

This command generates an EMF file (Enhanced Meta File) for the graphical 
appearance of a presentation element. This is a deprecated function. Use 
u2::GenerateEMFEx instead. 

Command Description

u2::SaveResource

Note: This com-
mand corresponds to 
the COM method 
Save.

Saves the model entities associated with the re-
source (typically saves the corresponding .u2 file).

u2::GenerateEMF Generates an EMF file (Enhanced Meta File) for a 
presentation element (deprecated). 

u2::GenerateEMFEx Generates an EMF file (Enhanced Meta File) for a 
presentation element with support for scaling. 

u2::GenerateImage Generates an image file for a presentation element.
June 2009 IBM Rational Tau User Guide 2257



Chapter 81: Tcl API
Synopsis

Description

The presentation element will have the same appearance in this EMF file as 
when shown in the tool’s editors.

Parameters

The strFileName argument is the file name of the EMF file to generate. If 
strFileName is a relative path, it will be interpreted as relative to the current 
working directory of the client application.

Another four optional arguments are accepted. 

The maxWidth and maxHeight parameters can be used to specify the max-
imum size of the generated image. The image will be scaled to fit into the 
specified size. If the parameters are omitted, the generated image will be the 
same size as shown in the tool’s editors. The unit of the height and width 
numbers is 1/10:th of a millimeter. These parameters are currently only con-
sidered if the presentation element on which the method is called is a dia-
gram.

If optimizeForVectorGraphics is set to true, the EMF generation will be 
optimized for vector graphics. The default behavior is to not do this optimi-
zation. This parameter is considered deprecated and exists for backward 
compatibility purposes.

The parameter includeFrame specifies whether the frame symbol of a dia-
gram should be included in the EMF generation or not. By default it will be 
included. This parameter is currently only considered if the presentation ele-
ment on which the method is called is a diagram. 

Return value

The command does not return a value.

u2::GenerateEMF ITtdPresentationElement strFileName ?-maxWidth 
<Integer>? ?-maxHeight <Integer>? ?-optimizeForVectorGraphics 
<Boolean>? ?-includeFrame <Boolean>?
2258 IBM Rational Tau User Guide June 2009



Presentation Element Commands
u2::GenerateEMFEx

This command generates an EMF file (Enhanced Meta File) for the graphical 
appearance of a presentation element. This is the recommended command to 
use in order to generate an EMF file for a presentation element.

Synopsis

Description

The presentation element will have the same appearance in this EMF file as 
when shown in the tool’s editors.

Parameters

The strFileName argument is the file name of the EMF file to generate. If 
strFileName is a relative path, it will be interpreted as relative to the current 
working directory of the client application.

Another four optional arguments are accepted. 

The maxWidth and maxHeight parameters can be used to specify the max-
imum size of the generated image. The image will be scaled to fit into the 
specified size. The image will be scaled to fit into the specified size if no spe-
cific scaleFactor is given. If the parameters are omitted, the generated 
image will be the same size as shown in the tool’s editors. The unit of the 
height and width numbers is 1/10:th of a millimeter. These parameters are 
currently only considered if the presentation element on which the method is 
called is a diagram.

If optimizeForVectorGraphics is set to true, the EMF generation will be 
optimized for vector graphics. The default behavior is to not do this optimi-
zation. This parameter is considered deprecated and exists for backward 
compatibility purposes.

The parameter includeFrame specifies whether the frame symbol of a dia-
gram should be included in the EMF generation or not. By default it will be 
included. This parameter is currently only considered if the presentation ele-
ment on which the method is called is a diagram. 

u2::GenerateEMFEx ITtdPresentationElement strFileName ?-maxWidth 
<Integer>? ?-maxHeight <Integer>? ?-optimizeForVectorGraphics 
<Boolean>? ?-includeFrame <Boolean>? ?-scaleFactor <Integer>?
June 2009 IBM Rational Tau User Guide 2259



Chapter 81: Tcl API
If the optional parameter scaleFactor is given the original diagram is 
scaled before generating any images. The scale factor should be given as an 
integer and is interpreted as percent of the original diagram size. If both the 
scaleFactor and maxWidth/maxHeight are given as arguments then more 
than one image may be generated as a result of the operation. If the 
scaleFactor parameter is given then the name of the generated files is the 
same as the strFileName parameter but with a number added before the file 
extension.

Return value

The command does not return a value. 

u2::GenerateImage

This command generates an image file of a specified kind for the graphical 
appearance of a presentation element. The presentation element will have the 
same appearance in this image file as when shown in the tool’s editors.

Synopsis

Description

The presentation element will have the same appearance in this image file as 
when shown in the tool’s editors. 

Parameters

The imgKind parameter specifies which kind of image file to generate. The 
table below lists valid values for this parameter.

u2::GenerateImage ITtdPresentationElement imgKind strFileName

imgKind value Description

JPEG Generate a JPEG image file.

BMP Generate a BMP image file.

GIF Generate a GIF image file.

TIFF Generate a TIFF image file.
2260 IBM Rational Tau User Guide June 2009



Symbol Commands
The strFileName argument is the file name of the image file to generate. If 
strFileName is a relative path, it will be interpreted as relative to the current 
working directory of the client application.

Return value

The command does not return a value. 

See also

“Mapping of COM to Tcl commands” on page 2216 

Symbol Commands
A symbol is a presentation element with a two-dimensional graphical appear-
ance. Tcl commands for working with symbols are the same as the corre-
sponding methods available in the COM API methods, found in the 
ITtdSymbol section. The first Tcl argument for all symbol handling com-
mands is thus a reference to a symbol.

Note

Since a Symbol also is a PresentationElement and an Entity, all Presentation 
Element Commands and all Entity Commands are also available for sym-
bols.

TARGA Generate a TGA (Targa) image file.

DIB Generate a device independent bitmap 
file.

PCX Generate a PCX image file.

Command Description

u2::SetSize Sets the size of the symbol.

u2::SetPosition Sets the position of the symbol.

imgKind value Description
June 2009 IBM Rational Tau User Guide 2261



Chapter 81: Tcl API
See also

“Mapping of COM to Tcl commands” on page 2216 

Expression Commands
Expressions may appear at various places in a model. Tcl commands for 
working with expressions are the same as the corresponding methods avail-
able in the COM API methods, found in the ITtdExpression section. The first 
Tcl argument for all symbol handling commands is thus a reference to an ex-
pression.

Note

Since an Expression also is an Entity, all Entity Commands are also avail-
able for expressions.

See also

“Mapping of COM to Tcl commands” on page 2216 

Library Handling Commands
The library handling part contains the following commands:

Command Description

u2::GetType Computes the type of the expression.

u2::EvaluateCon-
stantIntegralExpres-
sion

Evaluates the integral value of a constant expres-
sion.

u2::GetInstance-
ChildExpression

Finds a child expression of an instance.

Command Description

u2::LoadLibrary Load UML Library.
2262 IBM Rational Tau User Guide June 2009



Library Handling Commands
See also

“LoadFile” on page 2099

u2::LoadLibrary

Load UML Library.

Synopsis

Description

This command loads a UML library into IBM Rational Tau. The library is 
specified with the argument filename, which is a string specifying the path to 
a .u2 file containing a UML library.

See also

“u2::UnloadLibrary” on page 2263.

u2::UnloadLibrary

Unload UML library.

Synopsis

Description

This command unloads a loaded UML library. The library is specified with 
the argument packageRef, which must contain a reference to a UML library 
package.

u2::UnloadLibrary Unload UML library.

u2::LoadProfile Load UML profile.

u2::UnloadProfile Unload UML profile.

u2::LoadLibrary filename

u2::UnloadLibrary packageRef ?-deleteDependencies?
June 2009 IBM Rational Tau User Guide 2263



Chapter 81: Tcl API
If the -deleteDependencies option is given top-level dependencies to the 
library package will also be removed. This can be useful if the unloaded li-
brary is a profile, since top-level <<access>> dependencies then have been 
added automatically when loading it. However, note that all top-level depen-
dencies referring to the package will be deleted, even those added manually 
by the user.

Example 715: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A loaded library can be unloaded in a special procedure, BeforeUnload, 
which is called upon an add-in deactivation. A library needs to be unloaded 
once for each loaded model as follows:

proc BeforeUnload { } {
set models [std::GetModels -kind U2]

foreach model $models {
set profile [u2::FindByGuid $model "@MyProfile"]
u2::UnloadLibrary $profile

}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

u2::LoadProfile

Load UML profile.

Synopsis

Description

Use LoadLibrary instead. LoadProfile is a deprecated function and will 
be removed in future versions.

This command loads a UML profile into IBM Rational Tau. The profile is 
specified with the argument filename, which is a string specifying the path to 
a .u2 file containing a UML profile.

See also

“u2::UnloadProfile” on page 2265.

u2::LoadProfile filename
2264 IBM Rational Tau User Guide June 2009



Semantic Checker Commands
u2::UnloadProfile

Unload UML profile.

Synopsis

Description

Use UnLoadLibrary instead. UnLoadProfile is a deprecated function and 
will be removed in future versions.

This command unloads a loaded UML profile. The profile is specified with 
the argument packageRef, which must contain a reference to a UML profile 
package.

Example 716: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A loaded profile can be unloaded in a special procedure, BeforeUnload, 
which is called upon an add-in deactivation. A profile needs to be unloaded 
once for each loaded model as follows:

proc BeforeUnload { } {
set models [std::GetModels -kind U2]

foreach model $models {
set profile [u2::FindByGuid $model "@MyProfile"]
u2::UnloadProfile $profile

}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Semantic Checker Commands
The semantic checker commands provides a possibility to add user defined 
UML semantic checks to the set of built-in semantic checks. A typical sce-
nario is to add semantic checks that tests constraints defined in a UML li-
brary.

The following semantic checker commands are provided:

u2::UnloadProfile packageRef
June 2009 IBM Rational Tau User Guide 2265



Chapter 81: Tcl API
u2::Check

Check model semantically.

Synopsis

Description

This command performs a complete semantic check of a hierarchy of model 
elements, specified with the entityRef argument which must be a reference to 
a model or entity.

Example 717: –––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The example shows how to perform a check on all currently loaded models.

set models [std::GetModels]

foreach m $models {
u2::Check $m

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Command Description

u2::Check Check model semantically.

u2::CreateSemGroup Creates a new semantic checker group.

u2::CreateSemRule Create new semantic checker rule.

u2::DeleteSemEntity Delete semantic checker group or rule.

u2::EnableSemEntity Enables or disables a semantic entity.

u2::GetSemEntities Returns names of entities in a group.

u2::IsSemEntityEnabled Returns the status of a semantic entity.

u2::IsSemGroup Check if entity is a semantic group.

u2::QuickCheck Check model semantically.

u2::SemMessage Report semantic checker error.

u2::Check entityRef
2266 IBM Rational Tau User Guide June 2009



Semantic Checker Commands
u2::CreateSemGroup

Creates a new semantic checker group.

Synopsis

Description

This command creates a new semantic checker group with a name specified 
by the name argument. 

The path argument is a string that defines the groups location in the semantic 
checker group hierarchy. The string must start with a ‘/’, denoting the root 
group, followed by any number of potential parent groups, all separated by 
‘/’. If a parent group in the path does not exist, a Tcl error will be generated. 
No error will be reported if the group already exists. 

“u2::CreateSemRule” on page 2267

u2::CreateSemRule

Create new semantic checker rule.

Synopsis

Description

This command defines a new semantic checker rule, using the argument path 
to specify the location of the new rule in the semantic checker group hier-
archy and name to set the name of the rule. 

The metaclass argument determines that the new rule would be invoked only 
on entities of that Metaclass.

The priority sets the priority of the rule compared with other rules

The script argument is the name of a Tcl script to call when rule is executed. 
A Tcl id of the model entity is appended at the end of script, so, it is recom-
mended that the script has a return parameter. If script removes the model en-

u2::CreateSemGroup path name

u2::CreateSemRule path name metaclass priority script
June 2009 IBM Rational Tau User Guide 2267



Chapter 81: Tcl API
tity on which it is invoked in the process of transformation, it should return 
either the value ‘1’ or ‘true’. This allows the semantic analysis not to call 
other rules on this entity. Failure to return ‘1’ or ‘true’ after deletion of the 
model entity may cause the program to malfunction.

u2::DeleteSemEntity

Delete semantic checker group or rule.

Synopsis

Description

This command deletes a semantic checker group, called name, located in the 
semantic checker group hierarchy as specified by path. Predefined rules 
cannot be deleted with this command. 

u2::EnableSemEntity

Enables or disables a semantic entity.

Synopsis

Description

The path argument is a string that defines the entity location in the semantic 
checker group hierarchy. 

Status is a string argument which sets the desired status of an entity:

• enabled 

• disabled

u2::GetSemEntities

Returns names of entities in a group.

u2::DeleteSemEntity path name

u2::EnableSemEntity path status
2268 IBM Rational Tau User Guide June 2009



Semantic Checker Commands
Synopsis

Description

The command GetSemEntities returns a list consisting of names of the se-
mantic sub-entities in a given group.

The path argument is a UNIX style path to the semantic group. For example, 
the path to the root group is ‘/’, to ‘UML’ group (which lies in root group) is 
‘/UML’. 

As a consequence of such naming convention, names of semantic entities 
cannot contain a slash ('/'), because it would be considered to be a path de-
limiter. There exists no possible escape character for the slash character, the 
semantic checker will always treat a slash as a separator. 

u2::IsSemEntityEnabled

Returns the status of a semantic entity.

Synopsis

Description

Returns the status of a semantic entity specified by path.

The path argument is a string that defines the entity location in the semantic 
checker group hierarchy. 

status is a string which is the status of an entity:

• enabled 

• disabled

u2::IsSemGroup

Check if entity is a semantic group.

u2::GetSemEntities path 

u2::IsSemEntityEnabled path 
June 2009 IBM Rational Tau User Guide 2269



Chapter 81: Tcl API
Synopsis

Description

Returns true or false, depending on if semantic entity specified by path is se-
mantic group (true) or not (false). 

The path argument is a string that defines the entity location in the semantic 
checker group hierarchy. 

u2::QuickCheck

Check model semantically.

Synopsis

Description

This command performs a complete semantic check of a hierarchy of model 
elements, specified with the entityRef argument which must be a reference to 
a model or entity. A standard error list (the same as in u2::Check) is used. 
This command performs a subset of semantic checks, and only operates on 
the entity it is invoked on (any composition children will not be checked).

u2::SemMessage

Report semantic checker error.

Synopsis

Description

This command puts an error message into the error list used by Semantic An-
alyzer. This function should be used to report errors, warnings and informa-
tion messages during checking, otherwise the semantic analysis will not stop 
after an error which is generated by a user-defined check.

u2::IsSemGroup path 

u2::QuickCheck entityRef 

u2::SemMessage severity message entityId 
2270 IBM Rational Tau User Guide June 2009



Utility Interface Commands
severity is a string with the following possible values: 

• error 
An error message is reported.

• fatal 
A fatal error message is reported.

• information 

• warning 
A warning message is reported.

message is a string with the message which would be reported to the error 
list. 

entityId is an optional reference to a model element to which the message is 
related. 

See also

“u2::CreateSemRule” on page 2267

Utility Interface Commands
The C++ and COM APIs of IBM Rational Tau are, in contrast to the Tcl API, 
based on a set of interfaces. The majority of these interfaces are implemented 
by meta classes of the IBM Rational Tau meta model (model interfaces), 
which means that functions in these interfaces have a corresponding Tcl 
command in one of the above mentioned group of commands. However, 
there are some API interfaces which are not implemented by any meta class 
(utility interfaces), but by other objects in the IBM Rational Tau IDE. To be 
able to access such functionality from Tcl there exists Tcl commands corre-
sponding to the functions in such interfaces. 

Tcl commands corresponding to functions in utility interfaces are described 
in this section.

Command Description

u2::AddSourceBufferText Add text to a buffer of (source code) text.

u2::AddMessage Add a message to a message list
June 2009 IBM Rational Tau User Guide 2271



Chapter 81: Tcl API
u2::AddSourceBufferText

Add text to a buffer of (source code) text.

This command corresponds to the API function AddText of the ITtdSource-
Buffer interface.

Synopsis

Description

This command adds a piece of text to a buffer of text. Typically this buffer 
represents a file of source code currently being generated by a code gener-
ator.

The ITtdSourceBuffer reference is obtained as a parameter of an agent trig-
gered by an interactive tool event.

Example 718: Generating a header for a Java file –––––––––––––––––––––––––––

Below is a sample implementation of a Tcl agent which may trigger on the 
JavaPrintFile tool event.

proc AddJavaHeader { triggeredBy timing context server 
agentParameters } {
  upvar 1 $agentParameters ap
u2::AddSourceBufferText [lindex $ap 0] "This is a 

generated file! Do not edit!"
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

u2::AddMessage

Add a message to a message list

This command corresponds to the API function AddMessage of the ITtd-
MessageList interface.

u2::AddSourceBufferText ITtdSourceBuffer text
2272 IBM Rational Tau User Guide June 2009



Utility Interface Commands
Synopsis

Description

This command adds a message to a message list. Message lists are typically 
obtained as an agent parameter, and can for example represent messages pro-
duced during semantic checking or code generation.

The severity parameter should be one of the following strings

• information
Specifies that the message is an information message.

• warning
Specifies that the message is a warning.

• error
Specifies that the message is an error.

• fatal
Specifies that the message is a fatal error.

By using the -subject switch it is possible to attach a model entity as subject 
for the message. A message which has a subject entity can be double-clicked 
in an output tab in order to navigate to the entity.

Example 719: Implementing a custom semantic check in Tcl ––––––––––––––––––

Below is a sample implementation of a Tcl agent which may trigger on the 
Check tool event.

proc MyTclCheck { triggeredBy timing context server 
agentParameters } {
  upvar 1 $agentParameters ap
  if {[u2::IsKindOf $context "Class"] } {
    if {[u2::GetEntity $context "Destructor"] == 0 } {
      u2::AddMessage [lindex $ap 0] "A class should have 
a destructor." "warning" -subject $context
    }
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

u2::AddMessage ITtdMessageList text severity ?-subject ITtdEntity?
June 2009 IBM Rational Tau User Guide 2273



Chapter 81: Tcl API
2274 IBM Rational Tau User Guide June 2009



82
C++ API

This chapter is the reference documentation of the IBM Rational Tau C++ 
API. From a functional point of view the C++API is very similar to the IBM 
Rational Tau COM API, so in many places the documentation for the COM 
API will be referenced.

Intended readers are developers of client applications that use the C++ API 
to access a UML model. These client applications could be everything from 
small interactive Add-Ins to full fledged code generators or import applica-
tions. A basic knowledge of C++ is assumed throughout this chapter.
June 2009 IBM Rational Tau User Guide 2275



Chapter 82: C++ API
Introduction
The C++ API consists of a set of interfaces (abstract C++ classes), each with 
a number of member functions. The design of the API is very similar to the 
design of the COM API - in fact the COM API is implemented in terms of 
the C++ API. 

A client of the C++ API may execute in different environments. The be-
havior of some API functions will depend on the execution environment of 
the client code. For example, if the client executes in the IDE (a so called in-
teractive client), those API functions that modify the model will use an im-
plementation that is appropriate for interactive use (undo/redo capabilities 
etc.). Another example is a client that executes in a batch application (a so 
called non-interactive client), for which some parts of the API will be inac-
cessible (those parts that have to do with the IDE).

Accessing the API
A client that wants to use the C++ API should include the file 
U2ModelAccess.h. This file can be found in the installation at 
/include/ToolAPI. The client should also link with corresponding libraries 
that are provided in the IBM Rational Tau installation. For more detailed in-
formation about the platform specific steps that are required for setting up a 
client to use the C++ API, see “C++ API Set-up” on page 2308.

Once the client has been properly set-up for API usage, the API may be ac-
cessed. The way to access the API depends on whether the client is interac-
tive or non-interactive. 

Accessing the API from non-interactive clients

A non-interactive client accesses the C++ API by calling the 
u2::GetModelAccess function. This function returns a pointer to a sin-
gleton object that implements the u2::ITtdModelAccess interface. See 
“ITtdModelAccess” on page 2280 for more information about this interface.

Note
It is important to initialize the API before starting to use it from a non-inter-
active client. This is done by calling u2::InitializeModelAccess. 
After the last API call the API should also be finalized, by a call to 
u2::FinalizeModelAccess. It is allowed to repeat initialization and fi-
nalization as long as the calls are balanced.
2276 IBM Rational Tau User Guide June 2009



Accessing the API
Example 720 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Initializing the API, obtaining a pointer on the u2::ITtdModelAccess in-
terface, and finalizing the API afterwards:

u2::InitializeModelAccess();
u2::ITtdModelAccess* pMA = u2::GetModelAccess();
u2::FinalizeModelAccess();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Accessing the API from interactive clients

Interactive clients of the C++ API are typically Agents that receive a pointer 
on an u2::ITtdEntity interface representing the context of these agents. 
This pointer can be used as the starting point for accessing the model from 
that context. Thus it is not always necessary for an interactive client to access 
the API through the u2::ITtdModelAccess interface. However, the 
u2::GetModelAccess function is of course available also for interactive cli-
ents, and the object it returns will then be suited for use in an interactive ex-
ecution environment.

API initialization and finalization is not necessary for an interactive client.

An interactive C++ client can be used to implement an Add-In module in a 
more efficient way than using a Tcl script. However, it is currently not pos-
sible to develop the entire Add-In using only a C++ client; IBM Rational Tau 
requires at least a minimal Tcl script to execute. This script can use the Tcl 
API command InvokeAgent in order to transfer execution to an agent im-
plemented in C++. 

See also

“Accessing the API from interactive clients” on page 2095 for guidelines of 
how to decide which Add-in functionality that is best implemented in Tcl and 
C++ respectively.

Important! 
An interactive C++ client runs in the same memory space as the Tau appli-
cation. If it crashes, the Tau application will also crash. Make sure you 
have saved all changes before running an C++ agent under development.
June 2009 IBM Rational Tau User Guide 2277



Chapter 82: C++ API
Changer object

All API functions that modify the model take a ‘changer’ argument typed by 
a class called Cu2Changer (defined in the u2dll namespace). The purpose 
of this class is to be able to make model modifications in a way that works 
well both in an interactive environment (where the changes must be “logged” 
in order to allow undo and redo) and in a non-interactive environment (where 
changes can be done immediately without logging). The definition of 
Cu2Changer is not published in the API (only a forward declaration is 
present), and the reason for this is that the client code shall not use this class 
explicitly. All ‘changer’ arguments can be left unspecified and then defaults 
to a changer object that will perform the change immediately, without log-
ging. An interactive client (such as an agent) receives a Cu2Changer object 
when invoked from the IBM Rational Tau IDE, and in order to make a model 
change that is possible to undo and redo, that changer object should be used 
when calling the C++ API functions.

Interface casting

The mechanism for dynamically casting a pointer from one interface to an-
other is based on a virtual function called QueryInterface. This function is 
defined in the u2::IUnknown interface, and is available in all interfaces 
since they all inherit from u2::IUnknown. 

Note
The C++ API has borrowed both the design and terminology of interface 
casting from COM, hence the names QueryInterface and IUnknown. Con-
trary to the COM IUnkown interface, u2::IUnknown does not use reference 
counting, i.e. there is no need to call AddRef or Release on interface 
pointers

The C++ API provides a convenient utility template function u2::cast 
which facilitates interface casting with the familiar C++ cast syntax and se-
mantics.

Example 721 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Dynamic casting between interfaces using u2::cast.

u2::ITtdModelAccess* pMA = u2::GetModelAccess();
u2::ITtdModel* pModel = pMA->LoadFile(_T("x.u2"));
u2::ITtdEntity* pEntity = u2::cast<u2::ITtdEntity>(pModel);
if (pEntity) {
  // Casting succeeded! you may safely use pEntity here!
2278 IBM Rational Tau User Guide June 2009



Accessing the API
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
Do not attempt to do interface casting by using the standard dynamic_cast 
operator, as the Tau object model does not contain standard C++ run-time 
type information (RTTI). 

Handling API Errors

The C++ API reports all errors by throwing an u2::APIError exception. 
Client code should be prepared for errors by catching this exception. A tex-
tual description of the error can be obtained by using the 
u2::GetAPIErrorMessage function. 

Example 722 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

A typical catch clause for handling C++ API errors could look like this:

try {
  // access the C++ API
}
catch (u2::APIError e) {
  cout << "Error while using the IBM Rational Tau Developer C++ 
API:" << endl;
  wcout << u2::GetAPIErrorMessage(e) << endl;
}

On Unix use cout instead of wcout since GetAPIErrorMessage there re-
turns a narrow (single-byte) string.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Client restrictions

The C++ API imposes few restrictions on its clients. However, please keep 
in mind the following when designing the API client:

Bare only

The API does not support safe simultaneous access of the model from mul-
tiple threads. Interactive clients will be executed in the main thread of the 
IBM Rational Tau application.
June 2009 IBM Rational Tau User Guide 2279



Chapter 82: C++ API
Consistent string encoding

Strings passed into, or obtained as result from, C++ API functions are typed 
by the tstring type. This type is a wide (double-byte) Unicode string on 
Windows platforms, and a narrow (single-byte) ANSI string on Unix plat-
forms. The API client is responsible for performing any string conversions 
that might be necessary on input or output strings.

API Interfaces and Functions
All interfaces of the C++ API are placed in the u2 namespace. This section 
lists all API interfaces and functions and gives a short description of each. 
Some examples of typical use are provided. Note, however, that the exam-
ples only serve as an illustration of how to use a particular API function or 
interface, and are not always complete. In particular the recommended error 
handling (see “Handling API Errors” on page 2279) is usually omitted from 
the examples for brevity reasons.

The names of the C++ interfaces and their member functions are the same as 
the corresponding interfaces and methods of the COM API. To get more de-
tailed documentation or examples of a C++ API item, please refer to the cor-
responding item of the COM API documentation.

Many of the interfaces are implemented by classes representing metaclasses 
in the implementation of the UML Metamodel. Some of the methods in the 
C++ API require knowledge of the metamodel in order to be useful. 

Note
In this context a “C++ interface” means an abstract class, i.e. a class with 
all its member functions being pure virtual

ITtdModelAccess

The ITtdModelAccess interface contains functions that do not operate di-
rectly on the model. Use it from a non-interactive client to get access to a 
UML model by loading it from files (project file or .u2 file), or create a new 
model from scratch. An interactive client may also use this interface to access 
certain parts of the IBM Rational Tau IDE.

See “Accessing the API” on page 2276 to learn how to obtain the 
ITtdModelAccess interface from the client application.
2280 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
The COM API documentation contains a more detailed description of 
ITtdModelAccess. 

LoadProject
virtual u2::ITtdModel* 
LoadProject(const tstring& strProject,
  bool bBind = true,
  ITtdMessageList* pMessages = 0) 
throw(u2::APIError) = 0;

Loads the project stored in the specified project file (or URI). If the project 
file does not exist, or some other error occurs while loading the project, an 
APIError exception will be thrown. If strProject is a relative path, it will 
be interpreted as relative to the current working directory of the client appli-
cation.

By default the model will be bound after loading, but this can be suppressed 
by setting bBind to false.

If a message list is passed to the function all messages that are produced 
during loading and binding will be added to that list. A message list can be 
obtained by calling GetMessageList.

Note
If LoadProject is used from an interactive agent, the implementation uses 
the COM API LoadProject implementation. This for example means that the 
parameters ‘bBind’ and ‘pMessages’ have no effect and that no exception 
will be thrown in error situations (instead a new model will be created).

Example 723 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Loading a project from a non-interactive client:

u2::ITtdModelAccess* pMA = u2::GetModelAccess();
u2::ITtdModel* pModel = pMA->LoadProject(_T("x.ttp"));

Loading a project and using a message list for printing load and bind mes-
sages:

u2::ITtdMessageList* pMessages = pMA->GetMessageList();
u2::ITtdModel* pModel = pMA->LoadProject(_T("y.ttp"), true /* bBind 
*/, pMessages);
tstring strErrors;
pMessages->GetDescription(strErrors, _T("\n"));
pMA->WriteMessage(strErrors);
delete pMessages;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 2281



Chapter 82: C++ API
LoadFile
virtual u2::ITtdModel* 
LoadFile(const tstring& strFile,
bool bLibrary = false) 

throw(u2::APIError) = 0;

Loads the specified .u2 file (or URI). If the file does not exist, or some error 
occurs while loading it, an APIError exception will be thrown. If strFile is 
a relative path, it will be interpreted as relative to the current working direc-
tory of the client application. If bLibrary is true, the file will be loaded as a 
library.

See Example 721 on page 2278 for an example of how to use LoadFile.

CreateModel
virtual u2::ITtdModel* 
CreateModel() 
throw(u2::APIError) = 0;

Creates a new empty model. If a new model cannot be created (for example 
due to a memory or license problem), an APIError exception will be thrown.

The created empty model can be used as a starting-point for creating a whole 
new UML model. The example below shows the creation of a simple model 
containing one package with one class. It also shows how to save the new 
model afterwards.

Example 724 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Creating a new model and saving it to a .u2 file:

u2::ITtdModel* pModel = pModelAccess->CreateModel();
u2::ITtdEntity* pModelRoot = u2::cast<u2::ITtdEntity>(pModel);
u2::ITtdEntity* pPackage = pModelRoot->Create(_T("Package"), false, 
_T("OwnedMember"));
u2::ITtdEntity* pClass = pPackage->Create(_T("Class"));
u2::ITtdResource* pResource;
pResource = pModel->CreateResource(_T("test.u2"));
// Insert the created package pPackage as a root of pResource
u2::cast<u2::ITtdEntity>(pResource)->SetEntity(_T("Root"), 
pPackage);
pModel->Save(); // Saves all resources in the model

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

GetActiveProject
virtual ITtdModel* 
GetActiveProject() 
throw(u2::APIError) = 0;
2282 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
Returns the model of the currently active project in the open workspace. This 
function shall only be used from interactive API clients. If it is used from a 
non-interactive client an APIError will be thrown.

GetProjectItem
virtual ITtdModel* 
GetProjectItem(long index) 
throw(u2::APIError) = 0;

Returns the model of the project with the specified index in the open work-
space. This function shall only be used from interactive API clients. If it is 
used from a non-interactive client an APIError will be thrown.

GetProjectCount
virtual long
GetProjectCount() 
throw(u2::APIError) = 0;

Returns the number of projects in the open workspace. This function shall 
only be used from interactive API clients. If it is used from a non-interactive 
client an APIError will be thrown.

WriteMessage
virtual void 
WriteMessage(const tstring& strMessage) 
throw(u2::APIError) = 0;

Writes a message to the default message area (typically to stdout in a batch 
environment, or to the Messages tab in the IDE).

See Example 723 on page 2281 for an example of how to use 
WriteMessage.

GetMessageList
virtual ITtdMessageList* 
GetMessageList() = 0;

Creates and returns a new message list. This message list can be used as input 
to functions that support reporting of messages into an ITtdMessageList. If 
no message list can be created, NULL is returned.

It is the responsibility of the caller to delete the message list when it will not 
use it anymore. 
June 2009 IBM Rational Tau User Guide 2283



Chapter 82: C++ API
See Example 723 on page 2281 for an example of how to use 
GetMessageList.

GetDefaultMessageList
virtual ITtdMessageList* 
GetDefaultMessageList() = 0;

Returns a default message list appropriate for using in the current execution 
environment. For example, in the context of a code generator the returned 
message list is mapped to the build log of the code generator.

The returned message list belongs to IBM Rational Tau and should not be de-
leted by the caller.

GetLicense
virtual void 
GetLicense(const tstring& strFeature)
throw (u2::APIError) = 0;

Requests a run-time license for a licensed feature with the specified name. If 
successul the license is taken. If not, an APIError exception will be thrown.

This function is intended to be used by API clients that require a license to 
be used.

ITtdModel

The ITtdModel interface is implemented by the Session class of the Meta-
model, which represents the top-level entity of a UML model.

The ITtdModel interface contains methods that do not need a specific model 
entity context for their execution. Typically these methods operate on the 
model as a whole, rather than on a particular entity. 

Note
Since a Session also is an Entity, a cast from ITtdModel to ITtdEntity will 
always succeed.

The COM API documentation contains a more detailed description of ITtd-
Model. 

FindByGuid
virtual u2::ITtdEntity* 
FindByGuid(const tstring& strGuid) const 
2284 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
throw(u2::APIError) = 0;

Returns the entity in the model with the specified GUID, or NULL if no such 
entity exists.

The COM API documentation contains a more detailed description of Find-
ByGuid. 

New
virtual u2::ITtdEntity* 
New(const tstring& strMetaClass) const 
throw(u2::APIError) = 0;

Creates a new instance of the specified Metaclass. If a metaclass with the 
specified name does not exist, or the operation fails for some other reason, an 
APIError exception is thrown.

The COM API documentation contains a more detailed description of New. 

Parse
virtual void 
Parse(const tstring& strConcreteSyntax, 
std::list<u2::ITtdEntity*>& listEntities,
const tstring& strParseAs = _T("Definition")) const

throw(u2::APIError) = 0;

Parses the specified piece of concrete textual UML syntax. The optional 
trailing parameter strParseAs specifies the grammar to use when parsing. 
By default, the Definition grammar will be used, i.e. the text should then 
specify one or many definitions. Other supported grammars are Expression 
and Action. In case a non-existing grammar is specified or the text contains 
syntax errors, an APIError exception will be thrown. The result built by the 
parser will be inserted into the list.

The COM API documentation contains a more detailed description of Parse. 

XMLDecode
virtual void 
XMLDecode(const tstring& strXMLEncoding,
std::list<u2::ITtdEntity*>& listEntities) const 

throw(u2::APIError) = 0;

Decodes the XML encoded string into a list of model entities. If the decoding 
fails (e.g. because of a syntax error in the XML) an APIError will be thrown.
June 2009 IBM Rational Tau User Guide 2285



Chapter 82: C++ API
The COM API documentation contains a more detailed description of XML-
Decode. 

Save
virtual void 
Save() const 
throw(u2::APIError) = 0;

Saves the model into its resources. If the model does not contain any re-
sources, nothing will happen.

If the model cannot be saved an APIError exception will be thrown.

The COM API documentation contains a more detailed description of Save. 

CreateResource
virtual u2::ITtdResource* 
CreateResource(const tstring& strFile, 
u2dll::Cu2Changer& changer = u2dll::defaultChanger)

throw(u2::APIError) = 0;

Creates a new resource for the model. The resource will be a file with the 
specified file name. If the creation fails an APIError will be thrown. The 
model modification is performed using the changer.

See Example 724 on page 2282 for an example of using CreateResource.

The COM API documentation contains a more detailed description of Creat-
eResource. 

LoadFile
virtual u2::ITtdResource* 
LoadFile(const tstring& strFile, 
bool bLibrary = false) 

throw(u2::APIError) = 0;

Loads the specified file into the model. A resource representing the file will 
be created and returned. If bLibrary is true, the file will be loaded as a li-
brary. In cases of error (e.g. load errors) an APIError will be thrown.

The COM API documentation contains a more detailed description of Load-
File. 

InvokeAgent
virtual void 
InvokeAgent(u2::ITtdEntity* pAgent, 
2286 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
u2::ITtdEntity* pModelContext,
u2::AgentParameters& agentParameters) const 

throw(u2::APIError) = 0;

Invokes the specified agent on the specified model context.

The AgentParameters type is a list of Agent Parameters, representing ac-
tual arguments passed to the invoked agent. For information on how to use 
the AgentParameters type see the file U2Agent.h (found in the IBM Ra-
tional Tau installation at /include/ToolAPI).

Example 725 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Invoking an agent, passing a string and a boolean value as actual arguments. 
We assume here that pAgent is a pointer to the agent to be invoked, and 
pContext is a pointer to the entity that is the model context of the agent in-
vocation.

u2::AgentParameters params; // Always allocate on caller’s stack
params.push_back(u2::AgentParameter::Create(_T(“Hello!”)));
params.push_back(u2::AgentParameter::Create(true));

u2::ITtdModel* pModel = pAgent->GetModel();
pModel->InvokeAgent(pAgent, pContext, params);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that the invoked agent may be implemented in another language than 
C++. Conversion of the C++ representation of an agent parameter into the 
representation used in the technology with which the agent is implemented, 
is taken care of by the agent framework. However, this conversion will only 
work correctly if you follow the instructions on how to use the 
AgentParameters type (once again, see  U2Agent.h).

If the invoked agent has in/out or out parameters, the values for these pa-
rameters shall be obtained after the call to InvokeAgent by iterating over the 
agent parameter list and using one of the Get-functions that are available on 
the u2::AgentParameter type.

Example 726 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Assuming that the second parameter (boolean) of the agent invoked in 
Example 725 on page 2287 is an in/out parameter, this is how the resulting 
value for this parameter is obtained after the call to InvokeAgent:

if (params.size() == 2) // An agent should not (but could) add or 
remove parameters to the agent parameter list
{
  try
  {
June 2009 IBM Rational Tau User Guide 2287



Chapter 82: C++ API
    bool result = params.back()->GetBoolean();
  }
  catch (u2::AgentParameter::ETypeMismatch)
  {
    // An agent should not (but could) change the type of an agent 
parameter. 
    // Add appropriate error handling here!
  }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The COM API documentation contains a more detailed description of In-
vokeAgent. 

ITtdEntity

The ITtdEntity interface is implemented by the Entity class of the Meta-
model, which represents a general entity of a UML model.

The ITtdEntity interface contains methods that need a specific model entity 
context for their execution. Typically these methods operate on the entity on 
which they are called.

ApplyStereotype
virtual u2::ITtdEntity*
ApplyStereotype(u2::ITtdEntity* pStereotype, 
  u2::TtdReferenceKind referenceKind =  
TTD_RK_MINIMAL_QUALIFIER,
  u2::ITtdEntity* pInsertElement = 0,
  u2dll::Cu2Changer& changer = u2dll::defaultChanger) 
throw(u2::APIError) =0;

Instantiates the given stereotype and applies it on the entity (referred to as the 
host entity). The qualifier in the reference to the stereotype is calculated 
based on the referenceKind, see table below for a description of possible 
values for u2::TtdReferenceKind. If pInsertElement is given the ste-
reotype is logically instantiated on the host entity, but physically placed on 
the pInsertElement. In that case the stereotype instance will point to the 
host entity. In this way, stereotype instances may be “applied” to an entity 
without modifying the entity itself. This technique is known as “stereotype 
injection”.

The model modification is performed using the changer.

If the application of the stereotype fails an APIError exception is thrown.
2288 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
GetValue
virtual void 
GetValue(const tstring& strMetaFeature, 
tstring& strValue, 
u2dll::eposition index = E_POSITION_END) const

throw(u2::APIError) = 0;

Gets the value of the specified metafeature for the entity. If no metafeature 
has the specified name, an APIError exception will be thrown. The value is 
encoded as a string. Use it for metafeatures with single or multiple multi-
plicity. In the case of multiple multiplicity use the index to specify which 
value to get. 

The GetValue function can be used on all metafeatures of an entity that can 
have their values encoded as a string. This is the case for all metafeatures ex-
cept derived features of Metaclass type, owner links and composition links. 

u2::TtdReferenceKind Description

TTD_RK_GUID The reference will only contain a GUID 
reference.

TTD_RK_NO_QUALIFIER The reference will not be qualified. That 
is, it will only contain the name of the 
stereotype.

TTD_RK_FULL_QUALIFIER The reference will contain a full quali-
fier.

TTD_RK_MINIMAL_QUALIFIER The reference will contain the minimum 
qualifier needed to reference the stereo-
type. This option may at most return the 
same qualifier as relativeQualifier. 
The presence of 
<<access>>/<<import>> dependen-
cies may make it shorter.

TTD_RK_RELATIVE_QUALIFIER The reference will be a relative qualifier 
to the stereotype. If there are no common 
upper scopes of the stereotype and the 
host entity, a full qualifier is calculated, 
otherwise a shorter qualifier starting 
from the nearest common scope is calcu-
lated.
June 2009 IBM Rational Tau User Guide 2289



Chapter 82: C++ API
Note
index is an index starting at 1, and E_POSITION_END (==0) always speci-
fies the last entity.

Example 727 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Using GetValue to retrieve the name of a definition:

if (pEntity->IsKindOf(_T("Definition"))) {
tstring name;
pEntity->GetValue(_T("Name"), name);

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The COM API documentation contains a more detailed description of 
GetValue. 

GetEntity
virtual u2::ITtdEntity* 
GetEntity(const tstring& strMetaFeature, 
u2dll::eposition index = E_POSITION_END) const

throw(u2::APIError) = 0;

Gets the value of the specified metafeature as an ITtdEntity pointer. Use it 
for metafeatures of Metaclass type that have either single or multiple multi-
plicity. In the case of multiple multiplicity use the index to specify which en-
tity to get. If no metafeature has the specified name, an APIError exception 
will be thrown. 

Note
If the metafeature is unbound, pValue will be NULL. You may then want to 
use the GetValue function to get the value as a string representation in-
stead, or GetReference to obtain the model representation of the unbound 
reference.

Note
index is an index starting at 1, and E_POSITION_END (==0) always speci-
fies the last entity.

The COM API documentation contains a more detailed description of Ge-
tEntity. 

GetEntities
virtual void 
GetEntities(const tstring& strMetaFeature, 
std::list<u2::ITtdEntity*>& listEntities) const
2290 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
throw(u2::APIError) = 0;

Gets the value of the specified metafeature as a list of entities. Use it for 
metafeatures of Metaclass type that have either single or multiple multi-
plicity. In the case of single multiplicity the result list will contain one or zero 
entities. If no metafeature has the specified name, an APIError exception will 
be thrown.

The COM API documentation contains a more detailed description of Ge-
tEntities. 

GetReference
virtual u2::ITtdEntity* 
GetReference(const tstring& strMetaFeature, 
u2dll::eposition index = E_POSITION_END) const

throw(u2::APIError) = 0;

Returns the identifier representation of a metafeature reference. In the case 
of a metafeature with multiple multiplicity use the index to specify which ref-
erence to get. If no metafeature has the specified name, an APIError excep-
tion will be thrown.

Note
index is an index starting at 1, and E_POSITION_END (==0) always speci-
fies the last entity.

The COM API documentation contains a more detailed description of Ge-
tReference. 

GetOwner
virtual u2::ITtdEntity* 
GetOwner)() const = 0;

Returns the composition owner of the entity. If the entity has no owner 
NULL is returned.

The COM API documentation contains a more detailed description of Ge-
tOwner. 

GetMetaClassName
virtual void 
GetMetaClassName(tstring& strMetaClassName) const = 0;

Finds the name of the entity's Metaclass and puts it in strMetaClassName.
June 2009 IBM Rational Tau User Guide 2291



Chapter 82: C++ API
The COM API documentation contains a more detailed description of Get-
MetaClassName. 

GetReferingEntities
virtual void 
GetReferingEntities(const tstring& strMetaFeature, 
std::list<u2::ITtdEntity*>& listReferee) const = 0; 

Finds out what entities that refer to the entity through the specified metafea-
ture. A pointer to these referring entities will be put in the result list.

strMetaFeature may be an empty string in order to find all refering entities 
regardless of through which metafeature they refer to the entity.

The COM API documentation contains a more detailed description of Ge-
tReferringEntities. 

GetTaggedValue
virtual u2::ITtdEntity* 
GetTaggedValue(const tstring& strSelector,
bool bIdentsAreGuids = false) const 

throw(u2::APIError) = 0;

Returns the expression representing the tagged value selected by the selector 
pattern. The entity should be either an extendable element (in which case the 
tagged value is looked for among the applied stereotype instances of the ex-
tendable element) or an instance expression (in which case the tagged value 
is looked for in that particular instance only). 

A selector pattern specifies the path from the entity to the tagged value using 
the textual UML syntax of an instance expression. The function will check 
that the pattern matches both the instance tree (by structure) and the corre-
sponding signatures (by name or GUID). If bIdentsAreGuids is true, iden-
tifiers of the pattern will be interpreted as GUIDs. Otherwise they will be in-
terpreted as names. If no tagged value is selected by the selector pattern, 
NULL is returned.

Some selector pattern examples: 

"T1 (. .)"   

will return the first instance of the applied T1 stereotype

"T1 (. x .)" 

will return the tagged value of the attribute x in the T1 stereotype
2292 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
"T1 (. a1 = T2 (. a2 .) .)" 

will return the value of a2 in a T2 instance being the value of T1.a1.

Note
Although a selector pattern on the form “X (. .)” can be used to test if a 
stereotype X is applied on an entity, it is better to use HasAppliedStereotype 
for this purpose. The reason is that a stereotype that is automatically ap-
plied (due to a non-optional extension on a matching metaclass) will not be 
instantiated until at least one of its attributes get a tagged value that differs 
from the default value of the attribute.GetTaggedValue thus has no stereo-
type instance to return for that particular case. However, when used with a 
selector pattern that selects a tagged value, GetTaggedValue will also con-
sider such automatically applied stereotypes.

The COM API documentation contains a more detailed description of Get-
TaggedValue. 

HasAppliedStereotype
virtual bool 
HasAppliedStereotype(const tstring& strStereotype, 
bool bGuid = false) const = 0;

Determines if the entity has a certain stereotype applied. The stereotype can 
be specified either by name or by guid. In the latter case bGuid should be set 
to true. This is the recommended function for checking for applied stereo-
types on an entity. It will consider both explicitly applied stereotypes, and 
stereotypes that are automatically applied due to non-optional extensions 
from a metaclass that matches the metaclass of the entity.

IsKindOf
virtual bool 
IsKindOf(const tstring& strMetaClass) const = 0;

Returns true if the entity is of the specified Metaclass, false otherwise.

See Example 727 on page 2290 for an example of how to use IsKindOf.

The COM API documentation contains a more detailed description of Is-
KindOf. 

Unparse
virtual void 
Unparse(tstring& strText) const 
throw(u2::APIError) = 0;
June 2009 IBM Rational Tau User Guide 2293



Chapter 82: C++ API
Un-parses the entity into strText using textual UML syntax. The following 
kinds of entities can be unparsed: Definitions, Actions, Expressions. An at-
tempt to unparse another kind of entity will yield an APIError.

The COM API documentation contains a more detailed description of Un-
parse. 

SetValue
virtual void 
SetValue(const tstring& strMetaFeature,
const tstring& strValue,
u2dll::eposition index = E_POSITION_END,
u2dll::Cu2Changer& changer = u2dll::defaultChanger) 

throw(u2::APIError) = 0;

Sets the value of a metafeature. The value is encoded as a string.

The SetValue function can be used on all writable metafeatures of an entity 
that can have their values encoded as a string. This is the case for all metafea-
tures except derived features (which are read-only), owner links and compo-
sition links.

If the metafeature has non-single multiplicity, the index argument can be 
used to insert the value before the value at the specified position.

If an error occurs (e.g. because of a non-existing metafeature) an APIError 
exception is thrown.

The COM API documentation contains a more detailed description of Set-
Value. 

SetEntity
virtual void 
SetEntity(const tstring& strMetaFeature,
u2::ITtdEntity* pValue,
u2dll::eposition index = E_POSITION_END,
u2dll::Cu2Changer& changer = u2dll::defaultChanger) 

throw(u2::APIError) = 0;

Sets the value of a metafeature. The value is an entity pointer. Use it for all 
writable metafeatures of Metaclass type. If the metafeature has non-single 
multiplicity, the index argument can be used to insert the entity before the 
value at the specified position.
2294 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
Note
If pValue is NULL, the metafeature will be made unbound. However this 
does not apply for owner links. To unset an owner link, i.e. to unlink an en-
tity from its composition owner, use UnlinkFromOwner.

If an error occurs (e.g. because of a non-existing metafeature) an APIError 
exception is thrown.

The COM API documentation contains a more detailed description of SetEn-
tity. 

SetTaggedValue
virtual void 
SetTaggedValue(const tstring& strSelector,
const tstring& strValue,
bool bOverwrite = true,
u2dll::Cu2Changer& changer = u2dll::defaultChanger) 

throw(u2::APIError) = 0;

Sets the tagged value of the attribute selected by the selector pattern. See Get-
TaggedValue for the format of this pattern. The entity can either be an ele-
ment with applied stereotypes or any instance expression. In the latter case 
the pattern is matched against the instance expression, while in the former 
case the first matching applied stereotype instance will be used.

By default an existing value for the selected attribute will be overwritten, but 
if bOverwrite is false this will not be the case. 

Note
In order to be able to overwrite an existing value for the specified attribute, 
the instance expression must be bound to the Signature of which it is an in-
stance. If that is not the case, an APIError exception will be thrown.

After the new value has been set all references in the entity is attempted to be 
bound, so that the set value can be accessed by GetTaggedValue directly 
after the call to this function.

The model modification is performed using the changer.

The COM API documentation contains a more detailed description of Set-
TaggedValue. 

Create
virtual u2::ITtdEntity* 
Create(const tstring& strMetaClass,
June 2009 IBM Rational Tau User Guide 2295



Chapter 82: C++ API
bool bBuildModelForPresentations = true,
const tstring& strMetaFeature = _T(""),
u2dll::Cu2Changer& changer = u2dll::defaultChanger) 

throw(u2::APIError) = 0;

Creates an entity of the specified metaclass as a child of this entity. In the 
IDE execution environment this function is identical to Create of the COM 
API. Otherwise it will just attempt to create an instance of the specified meta-
class and insert it as an immediate child of the entity in the specified metafea-
ture. Model elements for presentation elements will not be automatically cre-
ated in that case.

The metafeature can be left unspecified (an empty string) as long as the entity 
only contains one metafeature that can contain the created entity.

The model modification is performed using the changer.

The COM API documentation contains a more detailed description of 
Create. 

CreateInstance
virtual u2::ITtdEntity* 
CreateInstance() const 
throw(u2::APIError) = 0;

Call this function on entities that are signatures that can be instantiated, to 
create an instance of the signature. A common use for this function is to 
create an instance of a stereotype in order to apply the stereotype on an ele-
ment. In case the creation fails an APIError exception will be thrown.

The COM API documentation contains a more detailed description of Cre-
ateInstance. 

Delete
virtual void 
Delete(u2dll::Cu2Changer& changer = 
u2dll::defaultChanger) = 0;

Deletes the entity. The model modification is performed using the changer.

The COM API documentation contains a more detailed description of De-
lete. 

XMLEncode
virtual void 
XMLEncode(tstring& strXMLEncoding) const 
2296 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
throw(u2::APIError) = 0; 

Puts the XML encoding of the entity in strXMLEncoding. If an error occurs, 
an APIError will be thrown.

The COM API documentation contains a more detailed description of XM-
LEncode. 

MetaVisit
virtual void 
MetaVisit(u2::ITtdMetaVisitCallback* pCallback,
bool bVisitAll = false,
bool bVisitRefs = false) const 

throw(u2::APIError) = 0; 

Performs a Metamodel driven traversal of the model rooted at the entity. If 
visitAll is false libraries and the predefined package will be excluded from 
the traversal. If visitRefs is false, the identifier representations of refer-
ences will be excluded from the traversal.

For each visited entity, the OnVisitedEntity function will be called on the 
pCallback object. This function is called for an entity when the model tra-
versal reaches that entity, but before its contained entities have been visited. 
When all contained entities have been visited, the OnAfterVisitedEntity 
function will be called on the pCallback object. This allows actions to be 
performed on the “back recursion” of the traversal.

Example 728 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how the MetaVisit function can be used in order to 
print the name of all definitions in a model:

class DefinitionFinder : public u2::ITtdMetaVisitCallback {
public:

virtual bool OnVisitedEntity(u2::ITtdEntity* pEntity) {
  if (pEntity->IsKindOf(_T("Definition"))) {

  tstring name;
  pEntity->GetValue(_T("Name"), name);
  std::wcout << name << std::endl;

   }
  return true;
}

 
  virtual void OnAfterVisitedEntity(u2::ITtdEntity* pEntity) {}

};

void foo() {
u2::ITtdEntity* pEntity = u2::cast<u2::ITtdEntity>(pModel);
DefinitionFinder finder;
pEntity->MetaVisit(&finder);
June 2009 IBM Rational Tau User Guide 2297



Chapter 82: C++ API
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The method in the COM API that corresponds to the MetaVisit function is 
called MetaVisitEx, whereas the COM method MetaVisit is a slightly more 
limited version of the same functionality.

Bind
virtual void 
Bind(const tstring& strMetaFeature = _T("")) 
throw(u2::APIError) = 0;

Attempts to bind the specified metafeature on the entity (or all metafeatures 
if strMetaFeature is empty). If a non-existing metafeature is specified, an 
APIError exception will be thrown.

The COM API documentation contains a more detailed description of Bind. 

Locate
virtual void 
Locate() const 
throw(u2::APIError) = 0;

Locates the entity in the ModelView and/or diagrams. The effect in the IDE 
will be that the entity is shown in the model view (if possible) and in the di-
agrams (if a presentation for the entity exists in a diagram, that is). If this 
function is used when the IDE is not available, an APIError exception will 
be thrown.

Clone
virtual u2::ITtdEntity* 
Clone(bool bPreserveBindings = false,
bool bPreserveGuids = false) const 

throw(u2::APIError) = 0;

Creates a clone of the entity. By default the clone will be unbound and have 
new unique GUIDs (i.e. the copy of the entity itself and the copy of all con-
tained entities will get new unique GUIDs). The optional arguments can be 
used to create a clone that has the same bindings as the original entity, and/or 
has the same GUIDs as the original entity.
2298 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
Important!
Be careful when cloning an entity without changing GUIDs. Such a clone 
should not be inserted into the same model as the original entity, or GUID 
conflicts will arise. If a model with GUID conflicts is saved, it might not be 
possible to load again.

In order to be able to preserve bindings of the clone, the original entity must 
belong to a model (i.e. GetModel called on the original entity must not return 
NULL).

If the cloning fails for one reason or another an APIError exception will be 
thrown.

Move
virtual void 
Move(u2::ITtdEntity* pNewOwner,
const tstring& strMetaFeature = _T(""),
eposition index = E_POSITION_END,
u2dll::Cu2Changer& changer = u2dll::defaultChanger) 

throw(u2::APIError) = 0;

Moves the entity from its current location in the model into the context of 
pNewOwner. If the entity would fit in more than one metafeature of the new 
owner, strMetaFeature must be specified to disambiguate. The index ar-
gument may be specified to control the position where to move the entity 
when the target metafeature has non-single multiplicity.

The model modification is performed using the changer.

If the move fails an APIError exception will be thrown.

GetModel
virtual u2::ITtdModel* 
GetModel() const = 0;

Returns the model to which the entity belongs. If the entity does not belong 
to a model NULL is returned. This function is often the most convenient way 
to get an ITtdModel interface from the context of an ITtdEntity interface.

UnlinkFromOwner
virtual void
UnlinkFromOwner(u2dll::Cu2Changer& changer = 
u2dll::defaultChanger) const = 0;
June 2009 IBM Rational Tau User Guide 2299



Chapter 82: C++ API
Unlinks the entity from its current owner. The entity will not be deleted, and 
can for example be inserted in another place in the model, or in another 
model.

The model modification is performed using the changer.

Replace
virtual void
Replace(u2::ITtdEntity* pReplacementEntity,
  u2dll::Cu2Changer& changer = u2dll::defaultChanger) 
const 
throw(u2::APIError) = 0;

Replaces the entity with another entity, without deleting the original entity. 
If the replacement is not possible to perform, an APIError exception will be 
thrown.

The model modification is performed using the changer.

Note
If the entity is an identifier representing a reference it will be replaced with 
a clone of pReplacementEntity, rather than pReplacementEntity itself.

GetContainerMetaFeature
virtual void
GetContainerMetaFeature(tstring& strMetaFeature,
  u2dll::eposition& index) const = 0;

Sets strMetaFeature to the name of the metafeature in which the entity is 
contained. If the entity is orphan an empty string is used. index will be setup 
to the position within the metafeature where the entity is located.

FindByName
virtual u2::ITtdEntity*
FindByName(const tstring& strName) const = 0;

Finds an entity by a name (possibly qualified) from the context of the entity. 
strName should be a valid identifier.

If no entity is found, NULL is returned.

GetDescriptiveName
virtual void
GetDescriptiveName(tstring& strDescription) const = 0;
2300 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
Sets strDescription to a descriptive name of the entity. The description 
includes the Metaclass of the entity, its name (full signature for event classes) 
and its location in the model.

ITtdResource

The ITtdResource interface is implemented by the Resource class of the 
Metamodel, which represents a resource where a UML model could be per-
sistently stored. Typically a Resource corresponds to a .u2 file.

Note
Since a Resource also is an Entity, a cast from ITtdResource to ITtdEntity 
will always succeed.

Save
virtual void 
Save() const 
throw(u2::APIError) = 0;

Saves the model entities that are associated with the resource on which the 
method is called. For the common case when the resource represents a .u2 
file, this means that the file will be saved.

The COM API documentation contains a more detailed description of Save. 

ITtdPresentationElement

The ITtdPresentationElement interface is implemented by the Presenta-
tionElement class of the Metamodel. A presentation element is an element 
with a graphical appearance, for example a symbol, line or diagram.

Note
Since a PresentationElement also is an Entity, a cast from ITtdPresenta-
tionElement to ITtdEntity will always succeed.

GenerateEMF
virtual void 
GenerateEMF(const tstring& strFileName,
long maxWidth = 0,
long maxHeight = 0,
bool bOptimizeForVectorGraphics = false,
bool bIncludeFrame = false) const 

throw(u2::APIError) = 0;
June 2009 IBM Rational Tau User Guide 2301



Chapter 82: C++ API
Generates an EMF file (Enhanced Meta File) for the graphical appearance of 
a presentation element. This is a deprecated function. Use GenerateEMFEx 
instead.The presentation element will have the same appearance in this EMF 
file as when shown in the Tau editors.

The COM API documentation contains a more detailed description of Gen-
erateEMF. 

GenerateEMFEx
virtual void 
GenerateEMFEx(const tstring& strFileName,
long maxWidth = 0,
long maxHeight = 0,
bool includeFrame = false) 
long scaleFactor = 0) const

throw(u2::APIError) = 0;

Generates an EMF file (Enhanced Meta File) for the graphical appearance of 
a presentation element. The presentation element will have the same appear-
ance in this EMF file as when shown in the tool’s editors.

Note
GenerateEMF and GenerateEMFEx are only available in the interactive 
execution environment. An attempt to call these functions from another exe-
cution environment will yield an APIError exception.

The COM API documentation contains a more detailed description of Gen-
erateEMFEx. 

GenerateImage
virtual void 
GenerateImage(ImageKind nKind,
  const tstring& strFileName) const
throw(u2::APIError) = 0;

Generates an image file from the graphical appearance of a presentation ele-
ment. The presentation element will have the same appearance in this image 
file as when shown in the tool’s editors.

Valid values in the ImageKind enumeration, and their meaning, are listed in 
the table below:
2302 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
ITtdSymbol

The ITtdSymbol interface is implemented by the Symbol class of the Meta-
model. A symbol is a presentation element with a two-dimensional graphical 
appearance.

Note
Since a Symbol also is a PresentationElement and an Entity, a cast from 
ITtdSymbol to ITtdPresentationElement or ITtdEntity will always succeed.

SetSize
virtual void 
SetSize(unsigned long width,
unsigned long height,

  u2dll::Cu2Changer& changer = u2dll::defaultChanger) = 
0;

Sets the size of the symbol. The unit of the width and height is 1/10:th of a 
millimeter. In a non-interactive execution environment SetSize will just up-
date the value of the ‘size’ metafeature for the symbol. In the interactive ex-
ecution environment, however, SetSize can also perform additional model 
changes related to the resize. This could for example happen if the symbol 
size has a semantic significance. It is therefore recommended to always use 
SetSize in order to set the size of a symbol.

The model modification is performed using the changer.

u2::ImageKind Description

IK_JPEG Generate a JPEG image file.

IK_BMP Generate a BMP image file.

IK_GIF Generate a GIF image file.

IK_TIFF Generate a TIFF image file.

IK_TARGA Generate a TGA (Targa) image file.

IK_DIB Generate a device independent bitmap 
file.

IK_PCX Generate a PCX image file.
June 2009 IBM Rational Tau User Guide 2303



Chapter 82: C++ API
SetPosition
virtual void 
SetPosition(long x,
long y,

u2dll::Cu2Changer& changer = u2dll::defaultChanger) = 0;

Sets the position of the symbol. The unit of the x and y parameters is 1/10:th 
of a millimeter. In a non-interactive execution environment SetPosition will 
just update the value of the ‘position’ metafeature for the symbol. In the in-
teractive execution environment, however, SetPosition can also perform ad-
ditional model changes related to the repositioning. This could for example 
happen if the symbol position has a semantic significance. It is therefore rec-
ommended to always use SetPosition in order to set the position of a symbol.

The model modification is performed using the changer.

ITtdExpression

The ITtdExpression interface is implemented by the Expression class of the 
Metamodel. It represents an expression in the model.

Note
Since an Expression also is an Entity, a cast from ITtdExpression to ITtdEn-
tity will always succeed.

GetType
virtual u2::ITtdEntity*
GetType() const = 0;

Computes and returns the type of the expression. If the type cannot be com-
puted (for example because the expression contains unbound references) 
NULL is returned.

Note
The returned entity is not guaranteed to be part of the model. In some cases 
the type is not explicitly defined in the model, and in that case a temporary 
entity which represents the type will be returned. Be careful not to delete 
such a temporary entity.

EvaluateConstantIntegralExpression
virtual long
EvaluateConstantIntegralExpression() const 
throw (u2::APIError) = 0;
2304 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
Evaluates the value of the expression, which is expected to be a constant in-
tegral expression. If it is not, or the evaluation fails for some other reason, an 
APIError exception will be thrown.

GetInstanceChildExpression
virtual u2::ITtdExpression*
GetInstanceChildExpression(const tstring& strName) const
throw(u2::APIError) = 0;

Use this function on an instance expression (for example a stereotype in-
stance) to obtain the right-hand side of a contained assignment, where the 
left-hand side of the assignment is an identifier matching strName (which 
thus should be a valid identifier).

If no matching child expression is found, NULL is returned.

In case of an erroneous usage an APIError exception will be thrown.

ITtdMetaVisitCallback

The ITtdMetaVisitCallback interface is a callback interface that clients using 
the MetaVisit function must implement.

OnVisitedEntity
virtual bool 
OnVisitedEntity(u2::ITtdEntity* pEntity) = 0;

Called when using MetaVisit to traverse a model. pEntity is the currently 
visited entity in the model. This function is called before visiting the compo-
sition children of pEntity. If false is returned traversal will not continue 
with the composition children of pEntity. 

OnAfterVisitedEntity
virtual void 
OnAfterVisitedEntity(u2::ITtdEntity* pEntity) = 0;

Called when using MetaVisit to traverse a model. pEntity is the currently 
visited entity in the model. This function is called after the composition chil-
dren of pEntity have been visited, and can thus be used in order to perform 
actions on the “back recursion” of the model traversal.
June 2009 IBM Rational Tau User Guide 2305



Chapter 82: C++ API
ITtdSourceBuffer

The ITtdSourceBuffer interface represents a buffer of text (typically source 
code) used primarily during code generation as a representation of a gener-
ated file. It can for example be used by agents of the C++ Application Gen-
erator that wish to add some additional text to a generated file.

AddText
virtual void 
AddText(const tstring& strText) 
throw(u2::APIError) = 0;

Writes the specified text to the source buffer

The COM API documentation contains a more detailed description of 
AddText. 

ITtdMessageList

The ITtdMessageList interface represents a list of messages. Such a list is for 
example used when reporting errors from semantic analysis or code genera-
tion, and the interface may be used by agents in order to add custom mes-
sages based on for example a custom semantic check.

AddMessage
virtual void 
AddMessage(const tstring& strMessage, 
MessageSeverity severity, 
u2::ITtdEntity* pSubject = 0) 

throw(u2::APIError) = 0;

Adds a new message to the list with the specified severity and, optionally, a 
subject entity. The subject entity will be associated with the message. In an 
interactive execution environment the subject entity can be located from the 
message.

The MessageSeverity enumeration is defined like this:

enum MessageSeverity {
MS_INFORMATION, 
MS_WARNING, 
MS_ERROR, 
MS_FATAL

};
2306 IBM Rational Tau User Guide June 2009



API Interfaces and Functions
The COM API documentation contains a more detailed description of Ad-
dMessage. 

GetDescription
virtual void 
GetDescription(tstring& strErrorMessage,
  const tstring& strSeparator) const = 0;

Writes to the strErrorMessage string a description of all messages in the 
message list. The messages are separated with the specified separator string.

GetCount
virtual unsigned int
GetCount(MessageSeverity severity) const = 0;

Returns the number of messages with a severity that is equal to severity.

ITtdInteractiveServer

The ITtdInteractiveServer interface represents the IBM Rational Tau IDE as 
seen as a server for an interactive API client. It defines the interface through 
which an interactive client communicates with IBM Rational Tau during its 
execution.

InterpretTclScript
virtual void 
InterpretTclScript(const tstring& strScript,
std::list<u2::ITtdEntity*>& entities,
tstring& strResult) 

throw(u2::APIError) = 0;

Interprets a Tcl script on the server, and returns the result to the caller. This 
function is a means for an interactive client to communicate with the IDE. 
The entire Tcl API is available.

The COM API documentation contains a more detailed description of Inter-
pretTclScript. 
June 2009 IBM Rational Tau User Guide 2307



Chapter 82: C++ API
ITtdCppAppGenServer

The ITtdCppAppGenServer interface represents the IBM Rational Tau C++ 
Application Generator as seen as a server for a non-interactive API client. It 
defines the interface through which an agent communicates with the code 
generator during its execution. The agent obtains this interface as the ‘server’ 
argument when the agent gets invoked.

ScheduleForDeletion
virtual void 
ScheduleForDeletion(u2::ITtdEntity* pEntity)
throw(APIError) = 0;

Unlinks the entity immediately from the model, and schedules it for deletion. 
The entity will be deleted when considered appropriate by the C++ Applica-
tion Generator.

The COM API documentation contains a more detailed description of Sched-
uleForDeletion.

C++ API Set-up
This chapter attempts to guide you through the process of setting up a client 
application for using the C++ API. As this process to a large extent is plat-
form dependent, a separate description is provided for Unix and Windows 
platforms.

Windows clients

Perform the following steps for setting-up a Visual Studio project for using 
the IBM Rational Tau C++ API:

1. Add the include\ToolAPI directory of the IBM Rational Tau installa-
tion to the project’s list of include paths. If you do not do this, you will 
have to use appropriate relative paths in your include directives of the 
API headers.

2. Add a #include "U2ModelAccess.h" to the implementation files from 
which you want to access the API.

3. Set-up the project to link with the libraries U2DLLU.lib and SBL10U.lib 
which can be found in the IBM Rational Tau installation at lib\win32-
vc.
2308 IBM Rational Tau User Guide June 2009



C++ API Set-up
4. Set-up the project to use the “Multi-threaded DLL” run-time library.

5. Make sure your client uses wide (Unicode) strings. If you want to use 
single-byte strings in your application you must perform the necessary 
conversions, since the API will expect wide character (Unicode) strings. 
To specify the use of Unicode strings, set the macros UNICODE and 
_UNICODE.

6. Make sure your PATH environment variable includes the IBM Rational 
Tau installation bin directory. This step is not necessary if you are 
building an interactive API client (e.g. an agent).

See also

“Debug C++ agents in Visual Studio” on page 2311 in Chapter 82, C++ API

Unix clients

Perform the following steps for creating a makefile for a Unix application 
that shall use the IBM Rational Tau C++ API:

1. Add the include/ToolAPI directory of the IBM Rational Tau installa-
tion to the list of preprocessor include paths. If you do not do this, you 
will have to use appropriate relative paths in your include directives of 
the API headers.

2. Add a #include "U2ModelAccess.h" to the implementation files from 
which you want to access the API.

3. Link with the libraries u2dll.lib and sbl10.lib which can be found 
in the IBM Rational Tau installation in the lib directory. There is one 
subfolder with a library built for each supported compiler and platform. 
Make sure to choose the correct one.

4. Compile with CC on Solaris and g++ on Linux. Specify the use of a 
multi-threaded run-time library using the flag -mt on Solaris or 
- D_REENTRANT on Linux.

5. Make sure your client uses narrow (ASCII) strings. If you want to use 
multi-byte strings in your application you must perform the necessary 
conversions, since the API will expect narrow character (ASCII) strings.
June 2009 IBM Rational Tau User Guide 2309



Chapter 82: C++ API
6. Make sure your LD_LIBRARY_PATH environment variable includes the 
IBM Rational Tau installation bin directory. This step is not necessary if 
you are building an interactive API client (e.g. an agent).
Note that for Linux RedHat 5 LD_LIBRARY_PATH must also contain the 
IBM Rational Tau installation bin/.rh5 directory, and this directory 
must be listed before the bin directory.
2310 IBM Rational Tau User Guide June 2009



Debug C++ agents in Visual Studio
Debug C++ agents in Visual Studio
This article describes how to successfully debug C++ agents, or in general 
any client of the IBM Rational Tau C++ API, using Visual Studio 2005.

Setting up an appropriate debug configuration

The first thing to note is that by default a program built in Debug configura-
tion with Visual Studio will use a debug version of the C run-time library. 
For an agent DLL, which should use the multi threaded DLL version of the 
run-time library, this means that the MSVCR8D library will be used. How-
ever, since all IBM Rational Tau binaries are delivered as built in Release 
configuration, they will use the non-debug version of this library (called 
MSVCR8). Thus, if you attempt to run a Debug-built agent inside a IBM Ra-
tional Tau binary (such as VCS.EXE) you will most likely run into problems 
caused by having both the Debug and Release versions of the run-time li-
brary in memory at the same time. Memory that is allocated in the agent DLL 
and de-allocated in IBM Rational Tau, or vice versa, will yield debug asser-
tions and could also crash the application.

The solution to this problem is to always build an agent DLL in the Release 
configuration. This ensures consistency in the use of the run-time library. 
However, since Debug information is by default turned off in a Release con-
figuration, you have to turn on Debug information manually in order to be 
able to debug such an agent. To do that, follow the steps below:

• Start from a Release configuration, either by modifying the default Re-
lease configuration, or by creating a new configuration based on the set-
tings in the default Release configuration. The latter is done using the 
Build -> Configuration Manager command in Visual Studio.

• Open the project property pages and select the C/C++ folder (category 
General). Set “Debug Information Format” to “Program Database”. Then 
disable all optimization (in category Optimization). 

• Then select the Linker folder (category Debugging). Set the option “Gen-
erate Debug Info” to Yes.

• Finally, in the Debugging page set the appropriate IBM Rational Tau bi-
nary (for example VCS.EXE) from the IBM Rational Tau installation as 
the executable (command) for the debug session. Also specify the IBM 
Rational Tau installation directory as working directory.
June 2009 IBM Rational Tau User Guide 2311



Chapter 82: C++ API
• Now you may build the agent DLL, set breakpoints in its implementa-
tion, and start a debug session. When IBM Rational Tau is started and the 
agent gets invoked, the breakpoint will be reached and debugging can be 
done.

Debugging utilities

There are a few built-in utility functions in the IBM Rational Tau libraries 
that can be very useful when debugging a C++ agent, or a client of the C++ 
API in general. These utility functions are not declared in any of the API 
header files that are part of the IBM Rational Tau installation, but by de-
claring their function prototypes in the agent implementation file, they can 
be accessed. They can also be called from within the debugger.

All debug utility functions are defined as exported from the DLL in which 
they are implemented. For information on how to call these functions from 
the Visual Studio debugger, see U2ViewModel below. The principle is the 
same for the other functions.

The table below summarizes the debug utilities that are available, which IBM 
Rational Tau DLL they are located in, and the namespace in which they are 
defined:

Note that the U2DLL DLL is available both for interactive and non-interac-
tive agents, while the U2EXT DLL only is available for interactive agents.

U2ViewModel
namespace u2dll {
void U2ViewModel(const void* pEntity);

}

This function dumps the model rooted at pEntity into a temporary XML file. 
It is useful for examining the contents of any model fragment. If Internet Ex-
plorer (iexplore.exe) is in the path, it will also be launched to show the XML 

Function Namespace DLL

U2ViewModel u2dll u2dllu.dll

DbgInterpretTclScript u2ext u2extu.dll
2312 IBM Rational Tau User Guide June 2009



Debug C++ agents in Visual Studio
file. Otherwise the generated file can be opened from where it is generated in 
the user’s directory for temporary files. pEntity should be the address of an 
object realizing the u2::ITtdEntity interface.

To call this function from the debugger, open the Command Window (in 
“immediate” mode) or the Quick Watch window and make the call to 
U2ViewModel as shown below. Note that the argument must be specified as 
an address (as displayed in the Watch window):

{,,u2dllu} u2dll::U2ViewModel((void*) 0x12ea4d24)

To call the function from the agent implementation, put this declaration in the 
beginning of the agent implementation file: 

namespace u2dll {
    __declspec(dllimport) 
    void U2ViewModel(const void* pEntity);
}

Now you may call U2ViewModel on any ITtdEntity pointer in your agent 
implementation.

Hint
The Visual Studio debugger sometimes refuses to call functions that are lo-
cated in DLL:s for which no debug symbols can be found. If you encounter 
this problem, here is a workaround:
Add a declaration of the function you want to call in your agent implemen-
tation file as shown for U2ViewModel above. Then create a local wrapper 
function which calls that function:

void U2ViewModelWrapper(const void* pEntity) {

u2dll::U2ViewModel(pEntity);

}

Rebuild the agent. Now you may call U2ViewModelWrapper directly from 
the debugger:

U2ViewModelWrapper((void*) <address>)

DbgInterpretTclScript
namespace u2ext {
char* DbgInterpretTclScript(char* arg);

}

June 2009 IBM Rational Tau User Guide 2313



Chapter 82: C++ API
This function gives access to the entire IBM Rational Tau Tcl API, which can 
be used for debugging the agent. In particular it is useful for navigating and 
exploring the model in the debugged application. The input argument of the 
function should be a Tcl script, and the return value will be the result of in-
terpreting the script with the IBM Rational Tau Tcl interpreter.

The Tcl script string may refer to model entities in the debugged application. 
To form such a reference enclose the address of the entity as displayed by the 
Visual Studio debugger within # marks.

Example 729: Using DbgInterpretTclScript from the Visual Studio debugger

Open the Command Windows of Visual Studio and enter “immediate” mode 
(type the command ‘immed’).

To find the owner of an entity with address 0x0f958720:

{,,u2extu} u2ext::DbgInterpretTclScript("u2::GetOwner 
#0x0f958720#")

A result on the following form will be printed:

0x0d5bcd58 "i.66.f891eb0"

The first address in the result is uninteresting, it is just the internal address of 
the string. The quoted string is the result of executing the Tcl script. When 
the result is a Tcl object Id, as in this case, it can easily be converted to an 
address of the debugged program by simply stripping the prefix from the ad-
dress. Hence, the Tcl object id in this example corresponds to the address 
0x0f891eb0. This address can then be used as input to other calls of debug 
utility functions.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Since the Tcl API is implemented in the interactive IBM Rational Tau IDE 
this function can only be accessed from interactive agents.
2314 IBM Rational Tau User Guide June 2009



83
Java API

This chapter is the reference documentation of the IBM Rational Tau Java 
API, which enables access of a IBM Rational Tau model from a Java pro-
gram.

Intended readers are developers of client applications that use the Java API 
to access a UML model. A basic knowledge of Java is assumed throughout 
this chapter.
June 2009 IBM Rational Tau User Guide 2315



Chapter 83: Java API
Introduction
The Java API consists of a set of interfaces, each with a number of methods. 
The design of the API is very similar to the design of the C++ API. In fact 
the Java API is implemented in terms of the C++ API using the Java Native 
Interface (JNI).

A client of the Java API is a Java program which executes inside a Java Vir-
tual Machine (JVM). This means that it is only possible to build non-interac-
tive clients using the Java API. An interactive client, such as an agent, cannot 
be implemented in Java.

Java version

To use the Java API the client program needs to run inside a JVM for Java 5 
or later.

Accessing the API
A client that wants to use the Java API should place the tauaccess.jar in 
its classpath. This JAR file can be found in the IBM Rational Tau installation 
at /lib/Java. The client must also set-up the environment variable PATH 
(LD_LIBRARY_PATH on Unix) so that it includes the IBM Rational Tau instal-
lation bin directory. Note that for Linux RedHat 5 LD_LIBRARY_PATH must 
also contain the IBM Rational Tau installation bin/.rh5 directory, and this 
directory must be listed before the bin directory.

Execution Environments

Usually a Java API client loads or creates a UML model inside the JVM 
where it executes. The client is said to execute in a non-interactive environ-
ment because the IBM Rational Tau IDE is not involved. 

The starting point for accessing the API from a non-interactive client is the 
method TauModelAPI.getModelAccess(). This method returns a refer-
ence to a singleton object that implements the ITtdModelAccess interface.

However, by using Tau Access it is also possible to run a Java API client in 
an interactive execution environment where the implementation of the Java 
API operates on a running instance of IBM Rational Tau, where the IDE is 
available. 
2316 IBM Rational Tau User Guide June 2009



Accessing the API
The starting point for accessing the API from an interactive client is through 
interfaces provided by the Tau Access API. See Tau Access for more infor-
mation. 

In most cases there is no functional difference of the Java API when used in 
an interactive vs. non-interactive execution environment. However, the fol-
lowing differences apply:

• API methods that modify the model will be undoable in an interactive ex-
ecution environment (i.e. Undo/Redo can be used to undo/redo the ac-
tions performed by the API methods). In a non-interactive execution en-
vironment model modifications are not undoable.

• Some API methods have parameters that are specific for a particular ex-
ecution environment. The value of such parameters in the other execution 
environment will be ignored.

• Some API methods can only be used in a particular execution environ-
ment - typically because their implementation rely on features of the IBM 
Rational Tau IDE. 

• Some API methods work slightly differently in different execution envi-
ronments. Typically they may be more complete in their support in an in-
teractive execution environment since features of the IBM Rational Tau 
IDE then are available.

API Initialization and Finalization

It is important to initialize the API before starting to use it. This is done by 
calling TauModelAPI.initializeModelAccess(). 
After the last API call the API should also be finalized, by a call to 
TauModelAPI.finalizeModelAccess(). It is allowed to repeat initializa-
tion and finalization as long as the calls are balanced.

Example 730 API initialization and finalization –––––––––––––––––––––––––––––

Initializing the Java API, obtaining a reference to the ITtdModelAccess in-
terface, and finalizing the API afterwards:

TauModelAPI.intializeModelAccess();
ITtdModelAccess ma = TauModelAPI.getModelAccess();
TauModelAPI.finalizeModelAccess();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 2317



Chapter 83: Java API
Interface Casting

One interface can be casted to another interface dynamically using the usual 
Java cast operator. If the cast is successful, meaning that the object which im-
plements the source interface also implements the target interface, the result 
of the cast is a reference typed by the target interface. However, if the cast 
fails a java.lang.ClassCastException will be thrown. Make sure to 
catch this exception unless you are certain that the object at hand implements 
the target interface.

Example 731 Interface casting–––––––––––––––––––––––––––––––––––––––––––

Dynamic casting between interfaces using the Java cast operator.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.loadProject("x.u2", true, new MessageList());
ITtdEntity e = (ITtdEntity) model; // A model is an entity
try
{
ITtdSymbol s = (ITtdSymbol) model.findByGuid("abc123");

}
catch (ClassCastException err)
{
// Error handling here

}

The cast from ITtdModel to ITtdEntity will always succeed (because the 
model node is also an entity). Therefore we don’t need to catch any exception 
from that cast. However, the cast from ITtdEntity to ITtdSymbol will not 
always succeed (not all entities are symbols). Hence we should be prepared 
for a ClassCastException in this case.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

It is also possible to use the Java instanceof operator to test whether an ob-
ject implements a certain interface.

Handling API Errors

The Java API reports all errors by throwing an APIError exception. Client 
code should be prepared for errors by catching this exception. The exception 
class is defined like this:

package com.IBM Rational.tau;

// Common exception class describing an error occurring 
while using the Tau APIs.
public class APIError extends Throwable
{

2318 IBM Rational Tau User Guide June 2009



Accessing the API
public APIError(String msg)
{

super(msg);
}

}

All methods inherited from the Throwable class can be used on APIError. 
In particular the textual description of the error is obtained by calling 
getMessage().

Example 732 Catching APIError exceptions––––––––––––––––––––––––––––––––

A typical catch clause for handling Java API errors could look like this:

try {
  // access the Java API
}
catch (APIError err)
{

String s = err.getMessage();
System.out.println("Error while using the IBM Rational Tau Java 

API: " + s);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Memory Management

Java programmers tend not to think much about memory management due to 
the presence of garbage collection in Java. However, it’s important to under-
stand that the Java garbage collector will only manage Java objects. Objects 
that are created in the IBM Rational Tau object model are not Java objects, 
although they implement a Java interface. Therefore such objects should be 
manually deleted when they are no longer used, to avoid memory leaks. Use 
ITtdEntity::delete to delete an entity from the model.

In practise, however, a UML model that is created or loaded through the Java 
API often lives throughout the entire lifetime of the Java application, and 
hence memory management becomes no concern.

Client restrictions

The Java API imposes few restrictions on its clients. However, please keep 
in mind the following when designing the API client:
June 2009 IBM Rational Tau User Guide 2319



Chapter 83: Java API
Bare only

The API does not support safe simultaneous access of the model from mul-
tiple threads.

API Interfaces and Methods
All interfaces of the Java API are placed in the package com.IBM 
Rational.tau. This section lists all API interfaces and methods and gives a 
short description of each. Some examples of typical use are provided. Note, 
however, that the examples only serve as an illustration of how to use a par-
ticular API method or interface, and are not always complete. In particular 
the recommended error handling (see Handling API Errors) is usually 
omitted from the examples for brevity reasons.

The names of the Java interfaces and their methods are the same as the cor-
responding interfaces and methods of the COM and C++ APIs. However, 
note that by convention Java method names start with a lowercase letter.

Many of the interfaces are implemented by classes representing metaclasses 
in the implementation of the UML Metamodel. Some of the methods in the 
Java API require knowledge of the metamodel in order to be useful. 

ITtdModelAccess

The ITtdModelAccess interface contains methods that do not operate di-
rectly on the model. Use it to get access to a UML model from a non-inter-
active API client by loading it from files (project file or .u2 file), or create a 
new model from scratch. 

See Accessing the API to learn how to obtain the ITtdModelAccess inter-
face from the client application.

loadProject
ITtdModel loadProject(String strProject, boolean bind, 
ITtdMessageList messages) throws APIError;

Loads the project stored in the specified project file (or URI). If the project 
file does not exist, or some other error occurs while loading the project, an 
APIError exception will be thrown. If strProject is a relative path, it will 
be interpreted as relative to the current working directory of the client appli-
cation.
2320 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
If the bind parameter is set to true, the model will be bound after it has been 
loaded. Set it to false to suppress this binding.

If a message list is passed to the function all messages that are produced 
during loading and binding will be added to that list. A message list can be 
obtained by defining a class which implements the ITtdMessageList inter-
face. In case load messages are not of interest you may pass null for this pa-
rameter.

Example 733 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example loads a model from a IBM Rational Tau project file, without 
binding the loaded model. All messages are ignored.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.loadProject("x.ttp", false, null);

This example loads a project and uses a message list for printing load and 
bind messages:

public class Test
{

public static class MessageList implements ITtdMessageList
{

public void addMessage(String text, MessageSeverity severity, 
ITtdEntity subject)

{
System.out.println(text);
if (subject != null)

System.out.println(subject.getMetaClassName());
}

}

public static void main(String[] args) throws APIError
{

TauModelAPI.intializeModelAccess();
ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.loadProject("x.ttp", true, new 

MessageList());
TauModelAPI.finalizeModelAccess();

}
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

loadFile
ITtdModel loadFile(String strFile, boolean library) 
throws APIError;

Loads the specified .u2 file (or URI). If the file does not exist, or some error 
occurs while loading it, an APIError exception will be thrown. If strFile 
is a relative path, it will be interpreted as relative to the current working di-
June 2009 IBM Rational Tau User Guide 2321



Chapter 83: Java API
rectory of the client application. If library is true, the file will be loaded as 
a library. In that case the file should contain a package, which then will be 
placed in the Libraries section of the model.

Example 734 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example loads a model from a IBM Rational Tau .u2 file as a library. 
It then prints the name of all library packages in the model. The last package 
printed will be the package contained in the loaded .u2 file.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.loadFile("x.u2", true);
ITtdEntity entityModel = (ITtdEntity) model;
List<ITtdEntity> lst = entityModel.getEntities("Library");
for (ITtdEntity e : lst)
{
System.out.println(e.getValue("Name", 0));

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note that ITtdModelAccess::loadFile() loads the file into a new model. 
In order to load a .u2 file into an existing model use 
ITtdModel::loadFile().

createModel
ITtdModel createModel() throws APIError;

Creates a new empty model. If a new model cannot be created (for example 
due to a memory or license problem), an APIError exception will be thrown.

The created empty model can be used as a starting-point for creating a whole 
new UML model. The example below shows the creation of a simple model 
containing one package with one class. It also shows how to save the new 
model afterwards.

Example 735 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a new model, containing a package with a class, and 
saves it to a .u2 file.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity modelRoot = (ITtdEntity) model;
ITtdEntity pkg = modelRoot.create("Package", false, "OwnedMember");
ITtdEntity cls = pkg.create("Class", false, "");
ITtdResource resource = model.createResource("C:\\temp\\test.u2");
// Insert the created package pkg as a root of the resource
((ITtdEntity) resource).setEntity("Root", pkg, 0);
model.save(); // Saves all resources in the model

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2322 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
writeMessage
void writeMessage(String message);

Writes a message to the default message area (typically to stdout in a non-
interactive execution environment, or to the Message tab in an interactive ex-
ecution environment).

Example 736 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ma.writeMessage("Hello from Java!");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ITtdModel

The ITtdModel interface is implemented by the Session class of the Meta-
model, which represents the top-level entity of a UML model.

The ITtdModel interface contains methods that do not need a specific model 
entity context for their execution. Typically these methods operate on the 
model as a whole, rather than on a particular entity. 

Note
Since a Session also is an Entity, a cast from ITtdModel to ITtdEntity 
will always succeed.

findByGuid
ITtdEntity findByGuid(String strGuid);

Returns the entity in the model with the specified GUID, or null if no such 
entity exists.

Example 737 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a new model, and then locates the predefined Integer 
datatype by its GUID.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity integerType = model.findByGuid("@Predefined@Integer");
ma.writeMessage("Integer is a " + integerType.getMetaClassName());

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

New
ITtdEntity New(String strMetaClass) throws APIError;
June 2009 IBM Rational Tau User Guide 2323



Chapter 83: Java API
Creates a new instance of the specified Metaclass. If a metaclass with the 
specified name does not exist, or the method fails for some other reason, an 
APIError exception is thrown.

Note
It is the responsibility of the client to take care of the returned entity. It 
should either be inserted into the model, or deleted, to avoid a memory leak. 
See Memory Management for more information.

The New method is intended to be used for low-level creation of object model 
entities, for example to create temporary model fragments which are not in-
serted into a model. Do not use New to build up a complete model - use 
ITtdEntity::create instead.

Example 738 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a new temporary package and sets up its name. It then 
prints its textual (unparsed) representation. Finally the package is deleted.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity pkg = model.New("Package");
pkg.setValue("Name", "MyPackage", 0);
ma.writeMessage(pkg.unparse());
pkg.delete();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

parse
List<ITtdEntity> parse(String strConcreteSyntax, String 
parseAs) throws APIError;

Parses the specified piece of concrete textual UML syntax. The parameter 
parseAs specifies the grammar to use when parsing, i.e. which kind of enti-
ties that should be defined in the text. Supported grammars are Definition, 
Expression and Action. In case a non-supported grammar is specified or the 
text contains syntax errors, an APIError exception will be thrown. The re-
sult built by the parser will be inserted into the returned list.

Note
It is the responsibility of the client to take care of the returned entities. They 
should either be inserted into the model, or deleted, to avoid a memory leak. 
See Memory Management for more information.
2324 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
Example 739 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates two classes by parsing their textual definitions. The 
names of the classes are then printed. Finally the classes are deleted.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
List<ITtdEntity> lst = model.parse("class C1 {} class C2 {}", 
"Definition");
for (ITtdEntity e : lst)
{

System.out.println(e.getValue("Name", 0));
e.delete();

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

XMLDecode
List<ITtdEntity> XMLDecode(String strXMLEncoding) throws 
APIError;

Decodes the U2 XML encoded string into a list of model entities. If the de-
coding fails (e.g. because of a syntax error in the XML) an APIError will be 
thrown.

Note
It is the responsibility of the client to take care of the returned entities. They 
should either be inserted into the model, or deleted, to avoid a memory leak. 
See Memory Management for more information.

Example 740 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a model with one class. It then encodes the class as an 
XML string using ITtdEntity::XMLEncode. Then it calls XMLDecode to 
obtain the class again, and prints its metaclass name. The new class is in ef-
fect a clone of the original class. Note that ITtdEntity::clone is an easier 
way to clone a model entity.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity pkg = ((ITtdEntity) model).create("Class", false, "");
String xml = pkg.XMLEncode();
List<ITtdEntity> lst = model.XMLDecode(xml);
for (ITtdEntity e : lst)
{

System.out.println(e.getMetaClassName());
e.delete();

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 2325



Chapter 83: Java API
save
void save() throws APIError;

Saves the model into its resources. If the model does not contain any re-
sources, nothing will happen.

If the model cannot be saved an APIError exception will be thrown.

See Example 735 on page 2322 for an example of using save to save a 
model.

createResource
ITtdResource createResource(String strFileName) throws 
APIError;

Creates a new resource for the model. The resource will be a file with the 
specified file name. If the creation fails an APIError will be thrown.

See Example 735 on page 2322 for an example of using createResource to 
create a new resource in a model.

loadFile
ITtdResource loadFile(String strFileName, boolean 
profile) throws APIError;

Loads the specified file into the model. A resource representing the file will 
be created and returned. If profile is true, the file will be loaded as a library. 
In cases of error (e.g. load errors) an APIError will be thrown.

Example 741 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a model and loads an existing file into it. It then obtains 
the last resource from the model (the one created by loadFile), and prints 
its URI.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
model.loadFile("x.u2", false);
ITtdEntity resource = ((ITtdEntity) model).getEntity("Resource", 
0);
String uri = resource.getValue("uri", 0);
System.out.println(uri);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

invokeAgent
void invokeAgent(ITtdEntity agent, ITtdEntity 
modelContext, List<Object> agentParameters) throws 
2326 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
APIError;

Invokes the specified agent on the specified model context.

The agentParameters type is a list of Agent Parameters, representing ac-
tual arguments passed to the invoked agent. An agent parameter is in Java 
represented as an Object instance.

If the agent cannot be invoked, or the invoked agent signals an error, an 
APIError exception will be thrown.

Example 742 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example invokes the predefined query agent 
GetGeneralizationChildren in order to find all definitions that inherit 
from the predefined Collection type. The agent takes two parameters; a list 
of resulting definitions and a boolean specifying whether also indirect gener-
alization children should be returned.

Note that the first parameter is an in/out parameter. See the note below for 
how to deal with such parameters.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity collection = model.findByGuid("@Predefined@Collection");
ITtdEntity query = 
model.findByGuid("@TTDQuery@GetGeneralizationChildren");

LinkedList<Object> agentParameters = new LinkedList<Object>();
agentParameters.add(new LinkedList<Object>());
agentParameters.add(true);

model.invokeAgent(query, collection, agentParameters);

List<Object> lst = (List<Object>) agentParameters.element();

for (Object obj : lst)
{

if (obj instanceof IUnknown)
{

ITtdEntity entity = (ITtdEntity) obj;
System.out.println(entity.getValue("Name" ,0) + " is a 

Collection!");
}

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
If the invoked agent has in/out or out parameters, the values for these pa-
rameters shall be obtained after the call to InvokeAgent by iterating over 
the agent parameter list. After the agent invocation it is not safe to access a 
local reference to such a parameter that has been obtained prior to the 
agent invocation.
June 2009 IBM Rational Tau User Guide 2327



Chapter 83: Java API
The table below shows the mapping of agent parameter types to Java types:

ITtdEntity

The ITtdEntity interface is implemented by the Entity class of the Meta-
model, which represents a general entity of a UML model.

The ITtdEntity interface contains methods that need a specific model en-
tity context for their execution. Typically these methods operate on the entity 
on which they are called.

applyStereotype
ITtdEntity applyStereotype(ITtdEntity stereotypeToApply, 
TtdReferenceKind referenceKind, ITtdEntity insertElement) 
throws APIError;

Instantiates the given stereotype and applies it on the entity (referred to as the 
host entity). The qualifier, if any, in the reference to the stereotype is calcu-
lated based on the referenceKind, see table below for a description of pos-
sible values. If insertElement is given the stereotype is logically instanti-
ated on the host entity, but physically placed on the insertElement. In that 
case the stereotype instance will point to the host entity. In this way, stereo-
type instances may be “applied” to an entity without modifying the entity it-
self. This technique is known as “stereotype injection”.

If the application of the stereotype fails an APIError exception is thrown.

Agent parameter type (UML) Java type

Charstring String

Integer Integer

Boolean Boolean

Reference to interface (for 
example u2::ITtdEntity)

com.IBM Rational.tau.IUnknown

u2::ITtdEntity [*] List<ITtdEntity>
2328 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
Usually TTD_RK_MINIMAL_QUALIFIER is the recommended value to use, be-
cause it gives the same behavior as when the stereotype is applied using the 
IBM Rational Tau user interface.

Example 743 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a model with an actor inside. An actor is represented by 
an attribute stereotyped by the predefined <<actor>> stereotype. To verify 
that the operation was successful, the unparsed representation of the actor is 
printed.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity a = ((ITtdEntity) model).create("Attribute", false, "");
a.setValue("Name", "MyActor", 0);
ITtdEntity actorStereotype = model.findByGuid("@Predefined@actor");
a.applyStereotype(actorStereotype, 

TtdReferenceKind Description

TTD_RK_GUID The reference will only contain a GUID 
reference.

TTD_RK_NO_QUALIFIER The reference will not be qualified. That 
is, it will only contain the name of the 
stereotype.

TTD_RK_FULL_QUALIFIER The reference will contain a full quali-
fier.

TTD_RK_MINIMAL_QUALIFIER The reference will contain the minimum 
qualifier needed to reference the stereo-
type. This option may at most return the 
same qualifier as 
TTD_RK_RELATIVE_QUALIFIER would. 
The presence of <<access>> or 
<<import>> dependencies may make it 
shorter.

TTD_RK_RELATIVE_QUALIFIER The reference will be a relative qualifier 
to the stereotype. If there are no common 
upper scopes of the stereotype and the 
host entity, a full qualifier is calculated, 
otherwise a shorter qualifier starting 
from the nearest common scope is calcu-
lated.
June 2009 IBM Rational Tau User Guide 2329



Chapter 83: Java API
TtdReferenceKind.TTD_RK_MINIMAL_QUALIFIER, null);
System.out.println(a.unparse());

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getValue
String getValue(String strMetaFeature, int index) throws 
APIError;

Gets the value of the specified metafeature for the entity. If no metafeature 
has the specified name, an APIError exception will be thrown. The value is 
encoded as a string. Use it for metafeatures with single or multiple multi-
plicity. In the case of multiple multiplicity use the index to specify which 
value to get. 

The getValue method can be used on all metafeatures of an entity that can 
have their values encoded as a string. This is the case for all metafeatures ex-
cept derived features of Metaclass type, owner links and composition links. 
If such a metafeature is specified an APIError exception will be thrown.

Note
index is an index starting at 1, and 0 specifies the last entity in the metafea-
ture collection.

Example 744 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Using getValue to retrieve some information about the predefined 
PLUS_INFINITY attribute:

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity def = model.findByGuid("@Predefined@PLUS_INFINITY");
String name = def.getValue("Name", 0);
boolean isConst = def.getValue("changeability", 
0).equals("CkFrozen");
String type = def.getValue("type", 0);
System.out.println(name + " is a " + (isConst ? "constant" : "non-
constant") + " attribute of type " + type);

Running this example will print the output:

PLUS_INFINITY is a constant attribute of type ref:Real

Note the format of the text encoded value of a metafeature that is a reference 
(like ‘type’ above). The name of the target definition will be prefixed ac-
cording to the rules described in “GetValue” on page 2119 in Chapter 80, 
COM API.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2330 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
getEntity
ITtdEntity getEntity(String strMetaFeature, int index) 
throws APIError;

Gets the value of the specified metafeature as an ITtdEntity reference. Use 
it for metafeatures of Metaclass type that have either single or multiple mul-
tiplicity. In the case of multiple multiplicity use the index to specify which 
entity to get. If no metafeature has the specified name, an APIError excep-
tion will be thrown. 

Note
If the metafeature is unbound, the return value will be null. You may then 
want to use the getValue method to get the value as a string representation 
instead, or getReference to obtain the model representation of the unbound 
reference.

Note
index is an index starting at 1, and 0 specifies the last entity in the metafea-
ture collection.

Example 745 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Using getEntity to retrieve the type of the predefined PLUS_INFINITY at-
tribute:

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity def = model.findByGuid("@Predefined@PLUS_INFINITY");
ITtdEntity type = def.getEntity("type", 0);
if (type != null)

System.out.println("The type of PLUS_INFINITY is " + 
type.getValue("Name", 0));

Running this example on a bound model will print the output:

The type of PLUS_INFINITY is Real

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getEntities
List<ITtdEntity> getEntities(String strMetaFeature) 
throws APIError;

Gets the value of the specified metafeature as a list of entities. Use it for 
metafeatures of Metaclass type that have either single or multiple multi-
plicity. In the case of single multiplicity the result list will contain one or zero 
entities. If no metafeature has the specified name, an APIError exception 
will be thrown.
June 2009 IBM Rational Tau User Guide 2331



Chapter 83: Java API
See Example 734 on page 2322 for an example of using getEntities to ob-
tain the list of libraries in a model.

getReference
ITtdEntity getReference(String strMetaFeature, int 
index) throws APIError;

Returns the identifier representation of a metafeature reference. In the case 
of a metafeature with multiple multiplicity use the index to specify which ref-
erence to get. If no metafeature has the specified name, or the metafeature is 
not a reference, an APIError exception will be thrown.

Note
index is an index starting at 1, and 0 specifies the last entity in the metafea-
ture collection.

Example 746 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example constructs an attribute with a type reference that is not just a 
simple name. The model representation of the type reference is obtained by 
calling getReference, and its unparsed representation is printed.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
List<ITtdEntity> lst = model.parse("Predefined::String<MyClass> 
my_var;", "Definition");
for (ITtdEntity e : lst)
{
ITtdEntity typeRef = e.getReference("Type", 0);
System.out.println("The type of 'my_var' is " + 

typeRef.unparse());
e.delete();

}

Running this example prints the output:

The type of 'my_var' is Predefined::String<MyClass>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getOwner
ITtdEntity getOwner();

Returns the composition owner of the entity. If the entity has no owner null 
is returned.

Example 747 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example locates the equal operation of the predefined Integer type. It 
then prints the composition owners of that operation.
2332 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity e = 
model.findByGuid("@Predefined@Integer@equal@Boolean@Integer@Integer
");
do
{

if (e.isKindOf("Definition"))
System.out.println(e.getValue("Name", 0));

else
System.out.println(e.getMetaClassName());

e = e.getOwner();
}
while (e != null);

Running this example prints the output:

equal
Integer
Predefined
Session

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getMetaClassName
String getMetaClassName();

Returns the name of the entity's Metaclass.

See Example 747 on page 2332 for an example of using 
getMetaClassName.

getReferingEntities
List<ITtdEntity> getReferingEntities(String 
strMetaFeature);

Returns the entities that refer to the entity through the specified metafeature. 
strMetaFeature may be an empty string in order to find all referring enti-
ties regardless of through which metafeature they refer to the entity.

Example 748 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example locates the predefined Boolean type, and examines the number 
of entities that refer to this type, either as their type or in another way.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity integer = model.findByGuid("@Predefined@Boolean");
List<ITtdEntity> r1 = integer.getReferingEntities("Type");
List<ITtdEntity> r2 = integer.getReferingEntities("");
System.out.println("There are " + r1.size() + " type references to 
Boolean.");
System.out.println("There are " + (r2.size() - r1.size()) + " other 
June 2009 IBM Rational Tau User Guide 2333



Chapter 83: Java API
references to Boolean.");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getTaggedValue
ITtdEntity getTaggedValue(String strSelector, boolean 
interpretIdentsAsGuids) throws APIError;

Returns the expression representing the tagged value selected by the selector 
pattern. The entity should be either an extendable element (in which case the 
tagged value is looked for among the applied stereotype instances of the ex-
tendable element) or an instance expression (in which case the tagged value 
is looked for in that particular instance only). 

A selector pattern specifies the path from the entity to the tagged value using 
the textual UML syntax of an instance expression. The function will check 
that the pattern matches both the instance tree (by structure) and the corre-
sponding signatures (by name or GUID). If interpretIdentsAsGuids is 
true, identifiers of the pattern will be interpreted as GUIDs. Otherwise they 
will be interpreted as names. If no tagged value is selected by the selector pat-
tern, null is returned.

Some selector pattern examples: 

"T1 (. .)"   

will return the first instance of the applied T1 stereotype

"T1 (. x .)" 

will return the tagged value of the attribute x in the T1 stereotype

"T1 (. a1 = T2 (. a2 .) .)" 

will return the value of a2 in a T2 instance being the value of T1.a1.

Note
Although a selector pattern on the form “X (. .)” can be used to test if a 
stereotype X is applied on an entity, it is better to use hasAppliedStereotype 
for this purpose. The reason is that a stereotype that is automatically ap-
plied (due to a non-optional extension on a matching metaclass) will not be 
instantiated until at least one of its attributes gets a tagged value that differs 
from the default value of the attribute.getTaggedValue thus has no stereo-
type instance to return for that particular case. However, when used with a 
selector pattern that selects a tagged value, getTaggedValue will also con-
sider such automatically applied stereotypes.
2334 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
Example 749 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example locates the TTDMetamodel representation of the Model meta-
class. It then uses getTaggedValue to extract the ‘base’ tagged value of the 
<<metaclass>> stereotype.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity e = ((ITtdEntity) 
model).findByName("TTDMetamodel::Model");
ITtdEntity taggedValue = e.getTaggedValue("metaclass (. 'base' .)", 
false);
System.out.println("Model's base metaclass is " + 
taggedValue.unparse()); 

Running this example prints the output:

Model's base metaclass is "Session"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

hasAppliedStereotype
boolean hasAppliedStereotype(String strStereotype, 
boolean guid);

Determines if the entity has a certain stereotype applied. The stereotype can 
be specified either by name or by GUID. In the latter case guid should be set 
to true. 

This is the recommended method for checking for applied stereotypes on an 
entity. It will consider both explicitly applied stereotypes, and stereotypes 
that are automatically applied due to non-optional extensions from a meta-
class that matches the metaclass of the entity.

Example 750 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example prints the names of all libraries in a model, and whether the li-
brary is an ordinary library or a profile library. Profile libraries have the 
<<profile>> stereotype applied.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
List<ITtdEntity> lst = ((ITtdEntity) model).getEntities("Library");
for (ITtdEntity e : lst)
{

System.out.print(e.getValue("Name", 0) + " is ");
if (e.hasAppliedStereotype("@Predefined@profile", true))

System.out.println("a profile library");
else

System.out.println("an ordinary library");
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 2335



Chapter 83: Java API
isKindOf
boolean isKindOf(String strMetaClass);

Returns true if the entity is of the specified Metaclass, false otherwise.

isKindOf returns true also if the entity’s metaclass inherits from the speci-
fied metaclass. To perform an exact match use getMetaClassName.

Example 751 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a new StateMachine entity. A StateMachine is a special 
kind of Operation.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity sm = model.New("StateMachine");
if (sm.isKindOf("StateMachine"))
System.out.println("sm is a StateMachine");

if (sm.isKindOf("Operation"))
System.out.println("sm is an Operation");

String metaclass = sm.getMetaClassName();
System.out.println("Exact metaclass is " + metaclass);

Running this example prints the output:

sm is a StateMachine
sm is an Operation
Exact metaclass is StateMachine

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

unparse
String unparse() throws APIError;

Returns the unparsed representation of the entity using textual UML syntax. 
The following kinds of entities can be unparsed: 

• Definitions

• Actions

• Expressions

An attempt to unparse another kind of entity will yield an APIError. The text 
returned by unparse can later be passed to ITtdModel::parse in order to 
build the corresponding model entities from the syntax again.

See Example 746 on page 2332, Example 749 on page 2335 or Example 752 
on page 2337 for an example of using unparse.
2336 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
setValue
void setValue(String strMetaFeature, String strValue, 
int index) throws APIError;

Sets the value of a metafeature. The value is encoded as a string.

The setValue method can be used on all writable metafeatures of an entity 
that can have their values encoded as a string. This is the case for all metafea-
tures except derived features (which are read-only), owner links and compo-
sition links.

If the metafeature has non-single multiplicity, the index parameter can be 
used to insert the value before the value at the specified position.

Note
index is an index starting at 1, and 0 specifies the last entity in the metafea-
ture collection.

If an error occurs (e.g. because of a non-existing metafeature) an APIError 
exception is thrown.

Example 752 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates an attribute in a model, and sets up the name and type 
of the attribute using setValue:

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity attribute = ((ITtdEntity) model).create("Attribute", 
false, "");
attribute.setValue("Name", "a", 0);
attribute.setValue("Type", "ref:Integer", 0);
System.out.println(attribute.unparse());

Running this example will print the output:

Integer a;

Note the format of the text encoded value of a metafeature that is a reference 
(like ‘Type’ above). The name of the target definition will be prefixed ac-
cording to the rules described in “GetValue” on page 2119 in Chapter 80, 
COM API.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Important!
Calling setValue on a reference metafeature implicitly deletes the entity 
that represents the reference (obtained by getReference). See Example 757 
on page 2342 for more information.
June 2009 IBM Rational Tau User Guide 2337



Chapter 83: Java API
setEntity
void setEntity(String strMetaFeature, ITtdEntity entity, 
int index) throws APIError;

Sets the value of a metafeature. The value is an entity reference. Use it for all 
writable metafeatures of Metaclass type. If the metafeature has non-single 
multiplicity, the index argument can be used to insert the entity before the 
value at the specified position.

Note
index is an index starting at 1, and 0 specifies the last entity in the metafea-
ture collection.

Note
If entity is null, the metafeature will be made unbound. However this 
does not apply for owner links. To unset an owner link, i.e. to unlink an en-
tity from its composition owner, use unlinkFromOwner.

If an error occurs (e.g. because of a non-existing metafeature) an APIError 
exception is thrown.

Example 753 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a class from its textual syntax, and inserts the class into 
a model using setEntity. 

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity cls = model.parse("class C {}", "Definition").get(0);
((ITtdEntity) model).setEntity("OwnedMember", cls, 0);
if (cls.getOwner() == (ITtdEntity) model)
System.out.println("Class successfully inserted in model!");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Important!

Calling setEntity on a reference metafeature implicitly deletes the entity 
that represents the reference (obtained by getReference). See Example 757 
on page 2342 for more information.

setTaggedValue
void setTaggedValue(String strSelector, String strValue, 
boolean overwrite) throws APIError;
2338 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
Sets the tagged value of the attribute selected by the selector pattern. See get-
TaggedValue for the format of this pattern. The entity can either be an ele-
ment with applied stereotypes or any instance expression. In the latter case 
the pattern is matched against the instance expression, while in the former 
case the first matching applied stereotype instance will be used.

Usually you want an existing value for the selected attribute to be over-
written, but if overwrite is false this will not be the case. 

Note
In order to be able to overwrite an existing value for the specified attribute, 
the instance expression must be bound to the Signature of which it is an in-
stance. If that is not the case, an APIError exception will be thrown. Use 
bind to make sure the instance expression is bound before calling 
setTaggedValue.

After the new value has been set all references in the entity is attempted to be 
bound, so that the set value can be accessed by getTaggedValue directly after 
the call to this method.

strValue must be a valid UML expression, and the type of this expression 
should match the type of the attribute for which the tagged value is set. For 
example, if the attribute is typed by Charstring, strValue should be a 
string literal.

Example 754 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a package in a new model. It then applies the <<icon>> 
stereotype on the package. Finally setTaggedValue is used to set the ‘Icon-
File’ tagged value.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity iconStereotype = ((ITtdEntity) 
model).findByName("TTDStereotypeDetails::icon");
ITtdEntity pkg = ((ITtdEntity) model).create("Package", false, 
"OwnedMember");
pkg.applyStereotype(iconStereotype, 
TtdReferenceKind.TTD_RK_MINIMAL_QUALIFIER, null);
pkg.bind("");
pkg.setTaggedValue("icon (. IconFile .)", 
"\"C:\\\\pics\\\\x.jpg\"", true);
System.out.println(pkg.unparse());

Running this example will print the output:

<<icon(.IconFile = "C:\\pics\\x.jpg".)>> package '' {

}

June 2009 IBM Rational Tau User Guide 2339



Chapter 83: Java API
Note that since IconFile is a Charstring attribute, the tagged value must 
be enclosed in double quotes, and contained backslashes must be escaped.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

create
ITtdEntity create(String strMetaClass, boolean 
buildModelForPresentations, String strMetaFeature) 
throws APIError;

Creates an entity of the specified metaclass as an immediate child of this en-
tity. The created entity will be inserted in the specified metafeature. The 
metafeature can be left unspecified (an empty string) as long as the entity 
only contains one metafeature that can contain the created entity.

Note
The parameter buildModelForPresentations is only used in an interac-
tive execution environment. It can then be set to true in order to automati-
cally create the semantic entity behind a created presentation element (such 
as a symbol or a line). For example if creating a ClassSymbol, the corre-
sponding Class would be automatically created.

Example 755 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a package with a class diagram in a new model.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity pkg = ((ITtdEntity) model).create("Package", false, 
"OwnedMember");
ITtdEntity diagram = pkg.create("ClassDiagram", false, "");

Note that there are two metafeatures at the top model level where packages 
can be created: “Library” (for library packages) and “OwnedMember” for or-
dinary packages. Therefore we must specify the name of the metafeature in 
the first call to create above. 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

createInstance
ITtdEntity createInstance() throws APIError;

Call this method on entities that are signatures that can be instantiated, to 
create an instance of the signature. One use for this method is to create an in-
stance of a stereotype in order to apply the stereotype on an element (how-
ever, applyStereotype is the easiest way to achieve this). Another use is for 
creating instance models. 
2340 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
In case the creation fails an APIError exception will be thrown.

Note
It is the responsibility of the client to take care of the returned entity. It 
should either be inserted into the model, or deleted, to avoid a memory leak. 
See Memory Management for more information.

createInstance implements the UML semantics of signature instantiation. 
If the signature contains parts with an initial cardinality these will also be in-
stantiated recursively.

Example 756 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example locates the predefined <<cppHeaderFile>> stereotype, and 
creates an instance of it. The unparsed representation of that instance is then 
printed.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity stereotype = 
model.findByGuid("@TTDFileModel@cppHeaderFile");
ITtdEntity instance = stereotype.createInstance();
System.out.println(instance.unparse());

Running this example will print the output:

cppHeaderFile (.includeProtSettings = IncludeProtectionSettings 
(..).)

<<cppHeaderFile>> has an attribute ‘includeProtSettings’ which is a part 
with multiplicity 1. Hence, when <<cppHeaderFile>> is instantiated a con-
tained instance of IncludeProtectionSettings will be created too.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

delete
void delete();

Deletes the entity. Memory allocated by the entity will be freed. 

Note that the Java garbage collector only can manage the memory allocated 
by the JVM. Model entities must be deleted, when they no longer are needed, 
by calling delete (see Memory Management).

Important!
Do not access a reference to an entity after it has been deleted! Doing so 
usually leads to an access error and program crash.
June 2009 IBM Rational Tau User Guide 2341



Chapter 83: Java API
In most cases it is not difficult to comply with the above rule, since deleting 
an entity is an explicit operation. However, there is one situation when use of 
other API methods will implicitly delete an entity. This happens when setting 
a value of a reference metafeature using setValue or setEntity as shown in the 
example below.

Example 757 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates an attribute typed by Integer. The entity representing 
the type reference is then obtained by calling getReference. Then the at-
tribute is retyped to Boolean using setEntity. This call will implicitly delete 
the Integer reference entity. Hence, the program must be careful not to ac-
cess this entity afterwards.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity attribute = model.parse("Integer a;", 
"Definition").get(0);
ITtdEntity typeRef = attribute.getReference("Type", 0);
attribute.setEntity("Type", 
model.findByGuid("@Predefined@Boolean"), 0);
// System.out.println(typeRef.unparse()); <--- ERROR! typeRef is 
deleted!

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For an example of using an explicit call of delete, see Example 739 on page 
2325.

XMLEncode
String XMLEncode() throws APIError;

Returns the XML encoding of the entity. If an error occurs, an APIError ex-
ception will be thrown.

See Example 740 on page 2325 for an example of how to use XMLEncode.

metaVisit
void metaVisit(ITtdMetaVisitCallback callbackInterface, 
boolean visitAll) throws APIError;

Performs a Metamodel driven traversal of the model rooted at the entity. If 
visitAll is false libraries and the predefined package will be excluded from 
the traversal.

For each visited entity, the onVisitedEntity method will be called on the 
callbackInterface object. This method is called for an entity when the 
model traversal reaches that entity, but before its contained entities have been 
2342 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
visited. When all contained entities have been visited, the onAfterVisitedEn-
tity method will be called on the callbackInterface object. This allows 
actions to be performed on the “back recursion” of the traversal.

Example 758 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example shows how the MetaVisit method can be used in order to 
print the name of all definitions in a model. First a class implementing the 
callback interface is defined:

public class DefinitionFinder implements ITtdMetaVisitCallback
{

public boolean onVisitedEntity(ITtdEntity visitedEntity)
{

if (visitedEntity.isKindOf("Definition"))
{

try 
{

System.out.println(visitedEntity.getValue("Name", 0));
}
catch (APIError e) {}

}
return true;

}

public void onAfterVisitedEntity(ITtdEntity visitedEntity)
{
}

MetaVisit can now be called on the model like this:

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
((ITtdEntity) model).metaVisit(new DefinitionFinder(), true);

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For more information about the callback interface used with MetaVisit, see 
ITtdMetaVisitCallback.

bind
void bind(String strMetaFeature) throws APIError;

Attempts to bind the specified metafeature on the entity (or all metafeatures 
if strMetaFeature is empty). If a non-existing metafeature is specified, an 
APIError exception will be thrown.

Example 759 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates an attribute typed by Integer. The type reference of the 
attribute is accessed before and after calling bind on the type reference.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
June 2009 IBM Rational Tau User Guide 2343



Chapter 83: Java API
ITtdModel model = ma.createModel();
ITtdEntity attribute = ((ITtdEntity) model).create("Attribute", 
false, "");
attribute.setValue("Type", "ref:Integer", 0);
ITtdEntity type = attribute.getEntity("Type", 0);
System.out.println("type is " + ((type == null) ? "null" : 
type.getValue("Name", 0)));
attribute.bind("Type");
type = attribute.getEntity("Type", 0);
System.out.println("type is " + ((type == null) ? "null" : 
type.getValue("Name", 0)));

Running this example will print the output:

type is null
type is Integer

As can be seen the type reference is not bound to the Integer definition until 
after bind has been called.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

locate
void locate() throws APIError;

This method is only available in an interactive execution environment.

The method locates visually the entity in the ModelView and/or diagrams. 
The effect in the IDE will be that the entity is shown in the model view (if 
possible) and in the diagrams (if a presentation for the entity exists in a dia-
gram, that is). 

If this method is used when the IDE is not available (in a non-interactive ex-
ecution environment), an APIError exception will be thrown.

Example 760 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example locates the predefined Boolean type.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity b = model.findByGuid("@Predefined@Boolean");
b.locate();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

clone
ITtdEntity clone(boolean preserveBindings, boolean 
preserveGuids) throws APIError;

Creates a clone of the entity. 
2344 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
The recommended value for both the parameters is false. This means that 
the clone will be unbound and have new unique GUIDs (i.e. the copy of the 
entity itself and the copy of all contained entities will get new unique 
GUIDs). 

If preserveBindings is set to true, the clone will have the same bindings 
as the original entity. In order to be able to preserve bindings of the clone, the 
original entity must belong to a model (i.e. getModel called on the original 
entity must not return null).

If preserveGuids is set to true, the clone will have the same GUID as the 
original entity.

Important!
Be careful when cloning an entity without changing GUIDs. Such a clone 
should not be inserted into the same model as the original entity, or GUID 
conflicts will arise. If a model with GUID conflicts is saved, it might not be 
possible to load again.

If the cloning fails for one reason or another an APIError exception will be 
thrown.

Note
It is the responsibility of the client to take care of the returned entity. It 
should either be inserted into the model, or deleted, to avoid a memory leak. 
See Memory Management for more information.

Example 761 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates an expression by parsing textual UML syntax. The re-
sulting expression is then cloned and unparsed. Finally it is deleted to avoid 
a memory leak.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity expr = model.parse("1+x*(3+z)", "Expression").get(0);
ITtdEntity clone = expr.clone(false, false);
System.out.println(clone.unparse());
clone.delete();

Running this example will print the output:

1 + x * (3 + z)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

move
void move(ITtdEntity newOwner, String metafeature, int 
June 2009 IBM Rational Tau User Guide 2345



Chapter 83: Java API
index) throws APIError;

Moves the entity from its current location in the model into the context of 
newOwner. If the entity would fit in more than one metafeature of the new 
owner, metaFeature must be specified to disambiguate. The index argu-
ment may be specified to control the position where to move the entity when 
the target metafeature has non-single multiplicity.

If the move fails an APIError exception will be thrown.

Example 762 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a new package “MyPackage” in a model. The package 
is created as an ordinary package (located in the “OwnedMember” composi-
tion). Then the package is moved into the “Library” composition of the 
model. It is inserted there as the 3rd library package. Finally the names of all 
library packages of the model are printed.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdEntity model = (ITtdEntity) ma.createModel();
ITtdEntity pkg = model.create("Package", false, "OwnedMember");
pkg.setValue("Name", "MyPackage", 0);
pkg.move(model, "Library", 3);
List<ITtdEntity> lst = model.getEntities("Library");
for (ITtdEntity e : lst)
{
System.out.println(e.getValue("Name", 0));

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getModel
ITtdModel getModel();

Returns the model to which the entity belongs. If the entity does not belong 
to a model null is returned. This method is often the most convenient way 
to get an ITtdModel interface from the context of an ITtdEntity interface. 
It is particularly useful when the API client works with more than one model 
simultaneously.

Example 763 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example gets the last library in a created model, and calls getModel to 
make sure it belongs to the same model that was created (which it of course 
will do).

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdEntity model = (ITtdEntity) ma.createModel();
ITtdEntity library = model.getEntity("Library", 0);
if (model == library.getModel())
2346 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
System.out.println(library.getValue("Name", 0));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

unlinkFromOwner
void unlinkFromOwner();

Unlinks the entity from its current owner. The entity will not be deleted, and 
can for example be inserted in another place in the model, or in another 
model.

Example 764 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates two models. In the first model a class is created. Then 
unlinkFromOwner is called to unlink the class from the first model, and 
setEntity is called to insert it in the second model instead.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdEntity m1 = (ITtdEntity) ma.createModel();
ITtdEntity m2 = (ITtdEntity) ma.createModel();
ITtdEntity cls = m1.create("Class", false, "");
cls.unlinkFromOwner();
m2.setEntity("OwnedMember", cls, 0);
System.out.println(m1.getEntities("OwnedMember").size());
System.out.println(m2.getEntities("OwnedMember").size());

Running this example will print the output:

0
1

Note that the move method can be used to move an entity in one single step.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

replace
void replace(ITtdEntity replacementEntity) throws 
APIError;

Replaces the entity with another entity, without deleting the original entity. 
If the replacement is not possible to perform, an APIError exception will be 
thrown.

Note
If the entity is an identifier representing a reference it will be replaced with 
a clone of replacementEntity, rather than replacementEntity itself.
June 2009 IBM Rational Tau User Guide 2347



Chapter 83: Java API
Example 765 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a model with a class. It then replaces the class with an 
interface. The original class is deleted to avoid a memory leak.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel m = ma.createModel();
ITtdEntity cls = ((ITtdEntity) m).create("Class", false, "");
cls.replace(m.New("Interface"));
cls.delete();
ITtdEntity i = ((ITtdEntity) m).getEntity("OwnedMember", 0);
System.out.println(i.getMetaClassName());

Running this example will print the output:

Interface

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getContainerMetaFeature
String getContainerMetaFeature();

Returns the name of the metafeature in which the entity is contained. If the 
entity is orphan an empty string is returned.

Example 766 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a model with an operation. It then prints the names of 
the container metafeatures for different parts of the operation definition.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel m = ma.createModel();
ITtdEntity op = m.parse("void foo(Integer p1 = 3);", 
"Definition").get(0);

class P implements ITtdMetaVisitCallback 
{
public boolean onVisitedEntity(ITtdEntity visitedEntity)
{

System.out.println(visitedEntity.getMetaClassName() + " is 
contained in metafeature " + 
visitedEntity.getContainerMetaFeature());

return true;
}

public void onAfterVisitedEntity(ITtdEntity visitedEntity) { }
};

op.metaVisit(new P(), true);

Running this example will print the output:

Operation is contained in metafeature 
Parameter is contained in metafeature Parameter
IntegerValue is contained in metafeature DefaultValue

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2348 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
findByName
ITtdEntity findByName(String strName);

Finds an entity by a name (possibly qualified) from the context of the entity. 
strName should be a valid UML identifier.

If no entity is found, null is returned.

For examples of using findByName, see Example 749 on page 2335 and 
Example 754 on page 2339.

getDescriptiveName
String getDescriptiveName();

Returns a descriptive name of the entity. The description includes the Meta-
class of the entity, its name (full signature for event classes) and its location 
in the model.

Example 767 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example locates the predefined Real type, and prints its descriptive 
name:

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel m = ma.createModel();
ITtdEntity real = m.findByGuid("@Predefined@Real");
System.out.println(real.getDescriptiveName());

Running this example will print the output:

DataType 'Real' in Predefined

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ITtdResource

The ITtdResource interface is implemented by the Resource class of the 
Metamodel, which represents a resource where a UML model could be per-
sistently stored. Typically a Resource corresponds to a .u2 file.

Note
Since a Resource also is an Entity, a cast from ITtdResource to 
ITtdEntity will always succeed.

save
void save() throws APIError;
June 2009 IBM Rational Tau User Guide 2349



Chapter 83: Java API
Saves the model entities that are associated with the resource on which the 
method is called. For the common case when the resource represents a .u2 
file, this means that the file will be saved.

If the resource cannot be saved an APIError exception will be thrown.

Example 768 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a new model, containing a package with an interface, 
and saves it to a .u2 file.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity modelRoot = (ITtdEntity) model;
ITtdEntity pkg = modelRoot.create("Package", false, "OwnedMember");
ITtdEntity cls = pkg.create("Interface", false, "");
ITtdResource resource = model.createResource("C:\\temp\\test.u2");
// Insert the created package pkg as a root of the resource
((ITtdEntity) resource).setEntity("Root", pkg, 0);
resource.save();

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ITtdPresentationElement

The ITtdPresentationElement interface is implemented by the Presenta-
tionElement class of the Metamodel. A presentation element is an element 
with a graphical appearance, for example a symbol, line or diagram.

Note
Since a PresentationElement also is an Entity, a cast from 
ITtdPresentationElement to ITtdEntity will always succeed.

generateEMF
void generateEMF(String strFileName, int maxWidth, int 
maxHeight, boolean optimizeForVectorGraphics, boolean 
includeFrame) throws APIError;

Generates an EMF file (Enhanced Meta File) for the graphical appearance of 
a presentation element. The presentation element will have the same appear-
ance in this EMF file as when shown in the IBM Rational Tau editors.

Note
This is a deprecated function. Use generateEMFEx instead.
2350 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
Note

generateEMF is only available in the interactive execution environment. An 
attempt to call it from another execution environment will yield an APIError 
exception.

generateEMFEx
void generateEMFEx(String strFileName, int maxWidth, int 
maxHeight, boolean includeFrame, int scaleFactor) throws 
APIError;

Generates an EMF file (Enhanced Meta File) for the graphical appearance of 
a presentation element. The presentation element will have the same appear-
ance in this EMF file as when shown in the IBM Rational Tau editors.

Note

generateEMFEx is only available in the interactive execution environment. 
An attempt to call it from another execution environment will yield an 
APIError exception.

Example 769 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example executes a query to find all diagrams in a model. It then gener-
ates an EMF file for the first diagram found. A JPG file is also generated 
using generateImage.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity query = 
model.findByGuid("@TTDQuery@ExecuteQueryExpression");
LinkedList<Object> agentParameters = new LinkedList<Object>();
agentParameters.add(new LinkedList<Object>());
agentParameters.add("GetAllEntities().select(IsKindOf(\"Diagram\"))
");
model.invokeAgent(query, (ITtdEntity) model, agentParameters);
List<Object> lst = (List<Object>) agentParameters.element();
if (lst.size() > 0)
{

ITtdPresentationElement pe = (ITtdPresentationElement) 
lst.get(0);

pe.generateEMFEx("C:\\temp\\d.emf", 0, 0, true, 0);
pe.generateImage(ImageKind.IK_JPEG, "C:\\temp\\d.jpg");

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

generateImage
void generateImage(ImageKind imgKind, String 
strFileName) throws APIError;
June 2009 IBM Rational Tau User Guide 2351



Chapter 83: Java API
Generates an image file from the graphical appearance of a presentation ele-
ment. The presentation element will have the same appearance in this image 
file as when shown in the IBM Rational Tau editors.

Valid values in the ImageKind enumeration, and their meaning, are listed in 
the table below:

For an example of how to use generateImage see Example 769 on page 
2351.

ITtdSymbol

The ITtdSymbol interface is implemented by the Symbol class of the Meta-
model. A symbol is a presentation element with a two-dimensional graphical 
appearance.

Note
Since a Symbol also is a PresentationElement and an Entity, a cast from 
ITtdSymbol to ITtdPresentationElement or ITtdEntity will always 
succeed.

setSize
void setSize(int width, int height);

Sets the size of the symbol. The unit of the width and height is 1/10:th of a 
millimeter. In a non-interactive execution environment setSize will just up-
date the value of the ‘size’ metafeature for the symbol. In the interactive ex-
ecution environment, however, setSize can also perform additional model 

ImageKind Description

IK_JPEG Generate a JPEG image file.

IK_BMP Generate a BMP image file.

IK_GIF Generate a GIF image file.

IK_TIFF Generate a TIFF image file.

IK_TARGA Generate a TGA (Targa) image file.

IK_DIB Generate a device independent bitmap 
file.

IK_PCX Generate a PCX image file.
2352 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
changes related to the resize. This could for example happen if the symbol 
size has a semantic significance. It is therefore recommended to always use 
setSize in order to set the size of a symbol.

For an example of how to use setSize see Example 770 on page 2353.

setPosition
void setPosition(int x, int y);

Sets the position of the symbol. The unit of the x and y parameters is 1/10:th 
of a millimeter. In a non-interactive execution environment setPosition 
will just update the value of the ‘position’ metafeature for the symbol. In the 
interactive execution environment, however, setPosition can also perform 
additional model changes related to the repositioning. This could for ex-
ample happen if the symbol position has a semantic significance. It is there-
fore recommended to always use setPosition in order to set the position of 
a symbol.

Example 770 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a new model with a class diagram containing a class 
symbol. It then sets the size and position of this symbol.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdEntity model = (ITtdEntity) ma.createModel();
ITtdEntity diagram = model.create("ClassDiagram", false, "");
ITtdSymbol symbol = (ITtdSymbol) diagram.create("ClassSymbol", 
true, "");
symbol.setSize(400, 200);
symbol.setPosition(350, 200);
System.out.println(((ITtdEntity) symbol).XMLEncode());

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ITtdExpression

The ITtdExpression interface is implemented by the Expression class of 
the Metamodel. It represents an expression in the model.

Note
Since an Expression also is an Entity, a cast from ITtdExpression to 
ITtdEntity will always succeed.

getType
ITtdEntity getType();
June 2009 IBM Rational Tau User Guide 2353



Chapter 83: Java API
Computes and returns the type of the expression. If the type cannot be com-
puted (for example because the expression contains unbound references, or 
because the expression is not part of a model) null is returned.

Note
The returned entity is not guaranteed to be part of the model. In some cases 
the type is not explicitly defined in the model, and in that case a temporary 
entity which represents the type will be returned. Be careful not to delete 
such a temporary entity. getModel can be used to determine if the returned 
entity is part of the model.

Example 771 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates some expressions by parsing textual UML syntax. Each 
expression is inserted as the default value of an attribute in the model. Then 
its type is computed and printed.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity attribute = ((ITtdEntity) model).create("Attribute", 
false, "");

class ParseAndPrintType 
{
ParseAndPrintType(ITtdEntity attribute, String s) throws APIError
{

ITtdModel model = attribute.getModel();
ITtdExpression e = (ITtdExpression) model.parse(s, 

"Expression").get(0);
attribute.setEntity("DefaultValue", (ITtdEntity) e, 0);
ITtdEntity type = e.getType();
if (type != null)

System.out.println("The type of " + s + " is " + 
type.getValue("Name", 0));
}

}

new ParseAndPrintType(attribute, "1+2+3");
new ParseAndPrintType(attribute, "2.4 * -2.78");
new ParseAndPrintType(attribute, "true and false");

Running this example will print the output:

The type of 1+2+3 is Integer
The type of 2.4 * -2.78 is Real
The type of true and false is Boolean

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

evaluateConstantIntegralExpression
int evaluateConstantIntegralExpression() throws 
APIError;
2354 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
Evaluates the value of the expression, which is expected to be a constant in-
tegral expression. If it is not, or the evaluation fails for some other reason, an 
APIError exception will be thrown.

Example 772 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates an integral expression by parsing textual UML syntax. 
The expression is then evaluated and the result is printed.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdExpression e = (ITtdExpression) model.parse("95-8*2", 
"Expression").get(0);
int res = e.evaluateConstantIntegralExpression();
System.out.println(((ITtdEntity) e).unparse() + " = " + res);

Running this example will print the output:

95 - 8 * 2 = 79

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getInstanceChildExpression
ITtdExpression getInstanceChildExpression(String 
strName) throws APIError;

Use this method on an instance expression (for example a stereotype in-
stance, or the instance expression of a named instance) to obtain the right-
hand side of a contained assignment, where the left-hand side of the assign-
ment is an identifier matching strName (which thus should be a valid iden-
tifier).

If no matching child expression is found, null is returned.

In case of an erroneous usage an APIError exception will be thrown.

Example 773 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example creates a named instance by parsing textual UML syntax. The 
values of its slots (which are special kinds of assignments) are printed.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity inst = model.parse("value x : C (. a = 12, b = true, 
BASE::c = \"Hello\" .);", "Definition").get(0);
ITtdExpression e = (ITtdExpression) inst.getEntity("Instance", 0);
ITtdExpression s1 = e.getInstanceChildExpression("a");
ITtdExpression s2 = e.getInstanceChildExpression("b");
ITtdExpression s3 = e.getInstanceChildExpression("BASE::c");
System.out.println(inst.getMetaClassName() + " slot values are:");
System.out.println(((ITtdEntity) s1).unparse());
System.out.println(((ITtdEntity) s2).unparse());
System.out.println(((ITtdEntity) s3).unparse());
June 2009 IBM Rational Tau User Guide 2355



Chapter 83: Java API
Running this example will print the output:

NamedInstance slot values are:
12
true
"Hello"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ITtdMetaVisitCallback

The ITtdMetaVisitCallback interface is a callback interface that clients 
using the metaVisit method must implement.

onVisitedEntity
boolean onVisitedEntity(ITtdEntity visitedEntity);

Called when using metaVisit to traverse a model. visitedEntity is the cur-
rently visited entity in the model. This method is called before visiting the 
composition children of visitedEntity. If false is returned traversal will 
not continue with the composition children of visitedEntity. 

See Example 758 on page 2343 for an example of how to use 
onVisitedEntity.

onAfterVisitedEntity
void onAfterVisitedEntity(ITtdEntity visitedEntity);

Called when using metaVisit to traverse a model. visitedEntity is the cur-
rently visited entity in the model. This function is called after the composi-
tion children of visitedEntity have been visited, and can thus be used in 
order to perform actions on the “back recursion” of the model traversal.

Example 774 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example traverses a parsed expression and prints some logging before 
and after each entity of the expression is visited.

ITtdModelAccess ma = TauModelAPI.getModelAccess();
ITtdModel model = ma.createModel();
ITtdEntity e = model.parse("1 + x", "Expression").get(0);

class P implements ITtdMetaVisitCallback 
{
public boolean onVisitedEntity(ITtdEntity visitedEntity)
{

System.out.println("Before visiting " + 
visitedEntity.getMetaClassName());

return true;
}

2356 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
public void onAfterVisitedEntity(ITtdEntity visitedEntity) 
{ 

System.out.println("After visiting " + 
visitedEntity.getMetaClassName());

}
};

e.metaVisit(new P(), true);

The expression has the following representation in the model:

Running this example will therefore print the output:

Before visiting BinaryExpr
Before visiting Ident
After visiting Ident
Before visiting IntegerValue
After visiting IntegerValue
After visiting BinaryExpr

Note that the order in which the composition children is determined by their 
order in the IBM Rational Tau metamodel. For example, from the above 
output we can conclude that the right hand side expression is defined before 
the left hand side expression of a binary expression.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

ITtdMessageList

The ITtdMessageList interface represents a list of messages. It is used as 
a callback interface in API methods which may produce messages, for ex-
ample loadProject.

addMessage
void addMessage(String text, MessageSeverity severity, 
ITtdEntity subject) throws APIError;

Figure 289: Model representation of expression 1 + x

: BinaryExpr

'operation' = "+"

right : Ident

name = "x"

left : IntegerValue

valueString = "1"
June 2009 IBM Rational Tau User Guide 2357



Chapter 83: Java API
Adds a new message to the list with the specified severity and, optionally, a 
subject entity. The subject entity will be associated with the message. In an 
interactive execution environment the subject entity can be located from the 
message.

Valid values in the MessageSeverity enumeration, and their meaning, are 
listed in the table below:

See Example 733 on page 2321 for an example of using addMessage.

ITtdStudioAccess

The ITtdStudioAccess interface is the entry point for accessing function-
ality of the IBM Rational Tau IDE which is not specific to UML modeling.

Note
The ITtdStudioAccess interface is of no use in a non-interactive execu-
tion environment, since the IBM Rational Tau IDE is then not available. It 
can only be used when using Tau Access to access a running instance of 
IBM Rational Tau.

See Tau Access for information about how to obtain the ITtdStudioAccess 
interface.

openWorkspace
ITtdWorkspace openWorkspace(String path) throws 
APIError;

Opens a IBM Rational Tau workspace file (.ttw file) in the IBM Rational 
Tau IDE. All projects contained in the workspace will be loaded. If an ex-
isting workspace is open in the IBM Rational Tau IDE it will first be closed. 

This method is the equivalent of opening a workspace using the File - Open 
workspace menu.

MessageSeverity Description

MS_INFORMATION The message is an information message.

MS_WARNING The message is a warning message.

MS_ERROR The message is an error message.

MS_FATAL The message is a fatal error message.
2358 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
path is the path to the workspace to open. If it is a relative path, it will be 
interpreted as relative to the current working directory of IBM Rational Tau 
(which is typically the bin directory of the IBM Rational Tau installation).

If the workspace cannot be opened, an APIError exception will be thrown.

Example 775 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. The workspace C:\MyWorkspace.ttw is then 
loaded in that IBM Rational Tau instance.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
ITtdWorkspace wksp = sa.openWorkspace("C:\\MyWorkspace.ttw");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

newWorkspace
ITtdWorkspace newWorkspace(String path) throws APIError;

Creates a new IBM Rational Tau workspace and associates it with a work-
space file (.ttw file). If an existing workspace is open in the IBM Rational 
Tau IDE it will first be closed. 

This method is the equivalent of creating a new blank workspace using the 
File - New menu.

path is the path where to save the workspace file. If it is a relative path, it 
will be interpreted as relative to the current working directory of IBM Ra-
tional Tau (which is typically the bin directory of the IBM Rational Tau in-
stallation).

If the workspace cannot be created or the workspace file cannot be saved in 
the specified location, an APIError exception will be thrown.

Example 776 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. A new workspace is then created in that IBM 
Rational Tau instance.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
ITtdWorkspace wksp = sa.newWorkspace("C:\\temp\\NewWksp.ttw");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 2359



Chapter 83: Java API
openProject
ITtdProject openProject(String path) throws APIError;

Opens a IBM Rational Tau project file (.ttp file). The model associated 
with the project, if any, will be loaded.

This method is the equivalent of opening a project using the File - Open 
menu.

path is the path to the project to open. If it is a relative path, it will be inter-
preted as relative to the current working directory of IBM Rational Tau 
(which is typically the bin directory of the IBM Rational Tau installation). 
The string may contain URNs.

If the project cannot be opened, an APIError exception will be thrown.

Example 777 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. The project C:\MyWorkspace.ttp is then 
loaded in that IBM Rational Tau instance.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
ITtdProject prj = sa.openProject("C:\\MyProject.ttp");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getWorkspace
ITtdWorkspace getWorkspace();

Returns the workspace that is currently open in the IBM Rational Tau IDE. 
In case no workspace is open null is returned.

Example 778 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. The path of the workspace currently open in 
that IBM Rational Tau instance is printed.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
ITtdWorkspace currentWksp = sa.getWorkspace();
if (currentWksp != null)
System.out.println("Current workspace is " + 

currentWksp.getPath());

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2360 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
interpretTclScript
String interpretTclScript(String script) throws 
APIError;

Interprets a Tcl script in IBM Rational Tau. Which Tcl commands that are 
available for use in the script depends on what is loaded in IBM Rational Tau. 
As a general rule all Tcl commands prefixed with std are always available, 
while those that are prefixed with u2 only are available when a UML model 
is loaded.

The result of the script interpretation is returned as a string.

In case of Tcl script interpretation errors, an APIError exception will be 
thrown.

Example 779 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. Tcl commands are executed to pop up a couple 
of message dialogs.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
String res = sa.interpretTclScript("std::MessageDialog -message 
\"Cool, eh?\" -style yesno -icon question");
if (res.equals("6")) // Yes

sa.interpretTclScript("std::MessageDialog -message \"I 
agree!\"");
else if (res.equals("7")) // No

sa.interpretTclScript("std::MessageDialog -message \"I 
disagree!\"");

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Refer to the Tcl API documentation for information about available Tcl com-
mands.

getApplicationName
String getApplicationName();

Returns the IBM Rational Tau application product name. Different IBM Ra-
tional Tau products support different features, and this method is thus a 
means for a client to know which IBM Rational Tau features it can utilize.
June 2009 IBM Rational Tau User Guide 2361



Chapter 83: Java API
Example 780 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. It then prints the name of the Tau application, 
as well as its PID, its version information and the name of the user running 
that Tau instance.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
System.out.println("Application name: " + sa.getApplicationName());
System.out.println("PID: " + sa.getApplicationPID());
System.out.println("Version: " + sa.getApplicationVersion());
System.out.println("User: " + sa.getApplicationUserName());

The output from running this example could for example be:

Application name: IBM Rational Tau
PID: 147260
Version: 4.1
User: mmo

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getApplicationPID
String getApplicationName();

Returns the process id (PID) of the IBM Rational Tau instance. This method 
can for example be useful when there are multiple instances of IBM Rational 
Tau running on a machine, and a client wants to communicate with one par-
ticular of these instances. The PID returned by this method is then a means 
for distinguishing the different IBM Rational Tau instances.

See Example 780 on page 2362 for an example of using 
getApplicationPID.

getApplicationVersion
String getApplicationVersion();

Returns the version number of the IBM Rational Tau instance as a string. 
Different IBM Rational Tau versions support different features, and this 
method is thus a means for a client to know which IBM Rational Tau features 
it can utilize.

See Example 780 on page 2362 for an example of using 
getApplicationVersion.

getApplicationUserName
String getApplicationUserName();
2362 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
Returns the name of the user (login name) who is running the IBM Rational 
Tau instance. This method can for example be useful when there are multiple 
instances of IBM Rational Tau running on a machine with more than one user 
logged onto it. Using this method a client can know if a certain IBM Rational 
Tau application instance runs under the same user as the client, or under 
some other user.

See Example 780 on page 2362 for an example of using 
getApplicationUserName.

ITtdWorkspace

The ITtdWorkspace interface represents a IBM Rational Tau workspace. It 
contains methods which operate on that workspace.

Note
The ITtdWorkspace interface is of no use in a non-interactive execution 
environment, since the IBM Rational Tau IDE is then not available. It can 
only be used when using Tau Access to access a running instance of IBM 
Rational Tau.

getPath
String getPath();

Returns the full path of the workspace file where the workspace is stored.

See Example 778 on page 2360 for an example of using getPath.

getProject
ITtdProject getProject(String path);

Returns a project with the specified path which is contained in the work-
space. If no matching project is found, null is returned.

Note
When searching for a matching project, paths are not normalized, nor are 
contained URNs expanded. A project will only be found if its path matches 
the argument exactly.
June 2009 IBM Rational Tau User Guide 2363



Chapter 83: Java API
Example 781 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. The current workspace in that IBM Rational 
Tau instance is searched for a project stored at C:\temp\JAPI.ttp. If such 
a project is found it is made the active project of the workspace. Finally it is 
verified that the found project now is the active project.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
ITtdWorkspace wksp = sa.getWorkspace();
ITtdProject prj = wksp.getProject("C:\\temp\\JAPI.ttp");
if (prj != null)
{
wksp.setActiveProject(prj);
if (wksp.getActiveProject() == prj)

System.out.println(prj.getName() + " is now the active 
project!");
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getActiveProject
ITtdProject getActiveProject();

Returns the currently active project of the workspace. If no project is active, 
null is returned. This can only happen in case of an empty workspace.

See Example 781 on page 2364 for an example of using 
getActiveProject.

setActiveProject
void setActiveProject(ITtdProject project);

Sets a project as the active project of the workspace. There can be at most one 
active project in a workspace, so if another project was active previously, it 
will no longer be active after the call to setActiveProject.

See Example 781 on page 2364 for an example of using 
setActiveProject.

ITtdProject

The ITtdProject interface represents a IBM Rational Tau project. It con-
tains methods which operate on that project.
2364 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
Note
The ITtdProject interface is of no use in a non-interactive execution envi-
ronment, since the IBM Rational Tau IDE is then not available. It can only 
be used when using Tau Access to access a running instance of IBM Ra-
tional Tau.

getPath
String getPath();

Returns the full path of the project file where the project is stored.

Example 782 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. The active project in that IBM Rational Tau 
instance is found, and its name and path are printed.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
ITtdWorkspace wksp = sa.getWorkspace();
ITtdProject prj = wksp.getActiveProject();
if (prj != null)
{

System.out.println("Active project is " + prj.getName());
System.out.println("Stored at " + prj.getPath());

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

getName
String getName();

Returns the name of the project. This is usually the name of the project file 
without path.

See Example 782 on page 2365 for an example of using getName.

getModel
IUnknown getModel();

Returns the UML model of the project. If the project has no UML model, 
null is returned.

The interface type IUnknown is a common super interface for all interfaces 
of the Java API. It is used here instead of ITtdModel to accommodate for 
non-UML projects. It can be casted to ITtdModel.
June 2009 IBM Rational Tau User Guide 2365



Chapter 83: Java API
Example 783 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example uses Tau Access to attach to an instance of IBM Rational Tau 
running on the local machine. The active project in that IBM Rational Tau 
instance is found, and its model is located. The names of the top-level defi-
nitions in that model are then printed.

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
ITtdWorkspace wksp = sa.getWorkspace();
ITtdProject prj = wksp.getActiveProject();
if (prj == null)
return;

ITtdModel model = (ITtdModel) prj.getModel();
if (model == null)
return;

List<ITtdEntity> defs = ((ITtdEntity) 
model).getEntities("OwnedMember");
for (ITtdEntity d : defs) 
System.out.println(d.getValue("Name", 0));

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2366 IBM Rational Tau User Guide June 2009



84
Tau Access

This chapter describes Tau Access which is a run-time API for IBM Rational 
Tau. This API allows clients to programmatically attach to a running instance 
of IBM Rational Tau, whether that instance runs locally on the same machine 
as the client program, or remotely on another machine in the same network. 
Once a client has attached to IBM Rational Tau it can access its features 
through the standard C++ and Java APIs.

Intended readers are developers of client applications that want to integrate 
or interact with IBM Rational Tau in one way or another. A basic knowledge 
of either Java or C++ is assumed throughout this chapter.

See also

“Java API” on page 2315 in Chapter 83, Java API

“C++ API” on page 2275 in Chapter 82, C++ API
June 2009 IBM Rational Tau User Guide 2367



Chapter 84: Tau Access
Introduction
Tau Access provides an entry point to the IBM Rational Tau C++ and Java 
APIs from a client application external to IBM Rational Tau. Similar capa-
bilities are provided by the COM API, but while the COM API is specific for 
the Windows platform, Tau Access works on both Windows and Unix plat-
forms.

Implementation Principle

The implementation of Tau Access makes use of the Tau Web Server and the 
Tcl API. When the client calls a method in the C++ or Java APIs, Tau Access 
translates this into one or many Tcl commands. These commands are then 
sent to the remote IBM Rational Tau instance through an HTTP request 
which will be processed by the web server of that IBM Rational Tau instance. 
The Tcl commands are synchronously processed in the main thread of the re-
mote IBM Rational Tau instance. Finally, when execution is completed, the 
Tcl script result is passed back to Tau Access in the HTTP response. Tau Ac-
cess then translates the response back to a piece of Java or C++ data which 
is made available to the client program.

Many API methods return objects identified by interface references. Such 
objects are represented by proxy objects in the client application. The fol-
lowing information is stored in each proxy object:

• The instance of IBM Rational Tau where the real object resides. The IBM 
Rational Tau instance is identified by the host name of the computer 
where it runs, and the port used by its web server.

• The remote address of the real object. This is represented by its Tcl iden-
tifier.

• Run-time type information about the object. This is an optimization to 
avoid having the client ask IBM Rational Tau for this information when-
ever the client needs to know about the object kind.

The Tau Access Java API is built on-top of the Tau Access C++ API through 
the use of JNI (Java Native Interface). 

The picture below illustrates the run-time situation when a Java client uses 
Tau Access to get a reference to the currently loaded workspace of IBM Ra-
tional Tau. ‘wksp’ is a Java object, while ‘proxy’ and ‘object’ are C++ ob-
jects. 
2368 IBM Rational Tau User Guide June 2009



Using Tau Access
Calls of methods on ‘wksp’ are forwarded to ‘proxy’ and then finally, via 
HTTP, to ‘object’. Upon method return data flows in the opposite direction.

Using Tau Access
A client program that wants to use Tau Access should perform the following 
steps (depending on whether Java or C++ is used):

Java clients

1. Place the tauaccess.jar in the classpath. This JAR file can be found in 
the IBM Rational Tau installation at /lib/Java. 

2. Set-up the environment variable PATH (LD_LIBRARY_PATH on Unix) so 
that it includes the IBM Rational Tau installation bin directory. 
Note that for Linux RedHat 5 LD_LIBRARY_PATH must also contain the 
IBM Rational Tau installation bin/.rh5 directory, and this directory 
must be listed before the bin directory.

Figure 290: Run-time objects when using Tau Access for accessing a workspace

<<executionEnvironment>>

Client
<<executionEnvironment>>

Tau

wksp : ITtdWorkspace

proxy : ITtdWorkspace
host = "localhost"
'port' = 57000
id = "i.0.0152ce2"

object : ITtdWorkspace

address = "0x0152ce2"

<<HTTP>><<HTTP>>
June 2009 IBM Rational Tau User Guide 2369



Chapter 84: Tau Access
C++ clients

1. Include the header file TauAccess.h found in the IBM Rational Tau in-
stallation at include/ToolAPI. You may also want to include 
StudioAccessInterfaces.h and U2ModelAccess.h depending on 
which parts of the C++ API you intend to use.

2. Link with the libraries TauAccessU.lib and SBL10U.lib found in the 
Tau installation at lib/<platform>, where <platform> depends on the 
target platform (Windows / Solaris / Linux). If you have included 
StudioAccessInterfaces.h you should also link with StudioU.lib, 
and if you have included U2ModelAccess.h you should link with 
U2DLLU.lib.

3. Set-up the environment variable PATH (LD_LIBRARY_PATH on Unix) so 
that it includes the IBM Rational Tau installation bin directory.
Note that for Linux RedHat 5 LD_LIBRARY_PATH must also contain the 
IBM Rational Tau installation bin/.rh5 directory, and this directory 
must be listed before the bin directory.

4. Perform the additional standard steps for using the C++ API as described 
in C++ API Set-up. 

Note that the C++ API Debugging utilities are not available when using Tau 
Access.

A client using Tau Access is categorized as an interactive client, although it 
runs outside of the IBM Rational Tau executable. This is because the IBM 
Rational Tau IDE always is available in the IBM Rational Tau instance the 
client is connected to. 

Like with the IBM Rational Tau Java API, Tau Access Java definitions are 
defined in the com.IBM Rational.tau package.

Like with the IBM Rational Tau C++ API, Tau Access C++ definitions are 
defined in the u2 namespace.

API Entry Point

The entry point of using Tau Access is the ITtdTauAccess interface. This 
interface is obtained in the following way:

Java clients

ITtdTauAccess tauAccess = TauAccess.getTauAccess();
2370 IBM Rational Tau User Guide June 2009



Using Tau Access
C++ clients

u2::ITtdTauAccess* pTauAccess = u2::GetTauAccess();

Object Lifetime Management

A C++ client of Tau Access must be explicit about when it no longer intends 
to use an interface it has obtained from the API. It does this by calling the 
function DecRef() on the interface when it no longer will use it. Internally 
Tau Access uses reference counting to know when a proxy object can be de-
leted from the memory of the client application. As a general rule the refer-
ence count for an object is incremented by the API function which returns a 
new interface to the client. It does this by calling the function IncRef() on 
the interface. The client is then responsible for calling DecRef() on the in-
terface when it no longer needs to use it. It should also call IncRef() for 
every new reference it makes to the interface.

C++ clients that pass around interface pointers in non-trivial ways may con-
sider using smart pointers for managing the reference count of the interface 
pointers. One smart pointer implementation that may be used is the Ptr tem-
plate which is defined in the file TauAPICommon.h.

Note
Usually when using the IBM Rational Tau C++ API it is not necessary to 
call the IncRef() and DefRef() functions to maintain a correct reference 
count on objects. This is because IBM Rational Tau then manages the life-
time of the underlying objects. However, when using Tau Access calls of 
these functions are mandatory to prevent memory leaks.

A Java client of Tau Access does not need to bother about object lifetime 
management since Java has a garbage collector. Tau Access will automati-
cally call DecRef() on an interface when it is finalized by the garbage col-
lector. Hence both the Java and the C++ proxy objects are deleted automati-
cally in this case.

Interface Casting

Interface casting when using Tau Access works in the same way as in tradi-
tional use of the C++ or Java APIs. See Interface Casting (Java) and Interface 
casting (C++) for more information.
June 2009 IBM Rational Tau User Guide 2371



Chapter 84: Tau Access
Note that Tau Access keeps run-time type information in the proxy objects 
to allow interface casting on the client side without requiring communication 
with IBM Rational Tau.

Handling API Errors

Both the IBM Rational Tau Java and C++ APIs use an APIError exception 
for signalling errors that may occur when using the API. There is no differ-
ence when accessing these APIs through Tau Access. However, the client ap-
plication should be prepared to handle APIError exceptions even for API 
methods which normally would never throw this exception. The reason is 
that with Tau Access there are always error situations that can arise from un-
derlying HTTP or network problems regardless of the usual API-level errors.

Example

The example below shows how to use Tau Access for Java and C++ respec-
tively, in order to attach to an instance of IBM Rational Tau running on the 
local machine (on port 57000). The active project in that IBM Rational Tau 
instance is found, and its model is located. The names of the top-level defi-
nitions in the model are then printed.

Example 784 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Java

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = 
ta.getTauApplicationAtNetworkLocation("localhost", 57000);
ITtdWorkspace wksp = sa.getWorkspace();
ITtdProject prj = wksp.getActiveProject();
if (prj == null)
return;

ITtdModel model = (ITtdModel) prj.getModel();
if (model == null)
return;

List<ITtdEntity> defs = ((ITtdEntity) 
model).getEntities("OwnedMember");
for (ITtdEntity d : defs) 
System.out.println(d.getValue("Name", 0));

C++

using namespace u2;

ITtdTauAccess* pTA = GetTauAccess();
Ptr<ITtdStudioAccess> pSA(pTA-
>GetTauApplicationAtNetworkLocation(_T("localhost"), 57000));
Ptr<ITtdWorkspace> pWksp(pSA->GetWorkspace());
2372 IBM Rational Tau User Guide June 2009



Using Tau Access
Ptr<ITtdProject> pPrj(pWksp->GetActiveProject());
if (!pPrj)

return;

Ptr<ITtdModel> pModel(cast<ITtdModel>(pPrj->GetModel()));
if (!pModel)

return;

std::list<ITtdEntity*> lst;
Ptr<ITtdEntity> pModelEntity(cast<ITtdEntity>(pModel.get()));
pModelEntity->GetEntities(_T("OwnedMember"), lst);
for (std::list<ITtdEntity*>::const_iterator it = lst.begin(); it != 
lst.end(); it++)
{

Ptr<ITtdEntity> pDef(*it);
tstring strName;
pDef->GetValue(_T("Name"), strName);
std::wcout << strName.c_str() << std::endl;

}

Note the use of the Ptr smart pointer to avoid explicit calls to the IncRef() 
and DecRef() functions.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Other API Differences

This section lists some further differences when using the IBM Rational Tau 
Java and C++ APIs through Tau Access, as compared to when using these 
APIs otherwise.

No callback interfaces

Tau Access does not support callback interfaces, such as for example 
ITtdMetaVisitCallback or ITtdMessageList. This is a consequence of 
the underlying HTTP protocol where all requests are initiated by the client 
and processed by the server (IBM Rational Tau). It is not possible for the 
server (IBM Rational Tau) to initiate a request to be processed by the client, 
as would have been required to support callback interfaces.

The workaround to this limitation is to define an agent which runs inside 
IBM Rational Tau, and which can be called by the Tau Access client. The 
agent can then make use of the callback interface and propagate necessary in-
formation to the client afterwards.

See Agents for more information about agents.
June 2009 IBM Rational Tau User Guide 2373



Chapter 84: Tau Access
Main thread serialization

All requests received by IBM Rational Tau from Tau Access clients will be 
serialized into the main execution thread. Therefore, if the main thread is 
blocked (for example because IBM Rational Tau is busy with performing 
some time consuming blocking operation) all Tau Access client requests will 
be hanging, waiting for IBM Rational Tau to be ready to process them.

Performance issues

Naturally the nature of sending API requests over HTTP between different 
applications imply some overhead, especially if the applications are running 
on different machines in a network. If performance becomes an issue for a 
Tau Access client one way to address the problem could be to refactor parts 
of the client implementation into an agent which is run inside IBM Rational 
Tau instead. Accessing the IBM Rational Tau API from an agent is signifi-
cantly faster than doing the same access through Tau Access. Note, however, 
that currently an agent cannot be implemented in Java. Instead C++ is usually 
the best implementation choice for such agents.

See Agents for more information about agents.

API Interfaces and Methods
This section describes the API interfaces and methods which are specific to 
Tau Access, and which are not covered by the general API documentation. 
See API Interfaces and Methods (Java) and API Interfaces and Functions 
(C++) for the documentation of the other parts of these APIs.

ITtdTauAccess

The ITtdTauAccess interface contains methods for accessing a running 
IBM Rational Tau application, or to start a new instance of IBM Rational 
Tau.

See API Entry Point to learn how to obtain the ITtdTauAccess interface 
from the client application.

GetRunningTauApplications

Java

List<ITtdStudioAccess> getRunningTauApplications() 
2374 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
throws APIError;

C++

virtual void 
GetRunningTauApplications(std::list<ITtdStudioAccess*>& 
instances) throw (u2::APIError) = 0;

Obtains a list of all IBM Rational Tau applications that are running on the 
local machine. Each IBM Rational Tau application is represented by an 
ITtdStudioAccess interface. IBM Rational Tau applications older than 
version 4.1 will not be part of the list.

If an error occurs while accessing the IBM Rational Tau applications, an 
APIError exception will be thrown.

Example 785 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example prints the name and version of the IBM Rational Tau applica-
tions running on the local machine.

Java

ITtdTauAccess ta = TauAccess.getTauAccess();
List<ITtdStudioAccess> apps = ta.getRunningTauApplications();
for (ITtdStudioAccess tau : apps)
{

System.out.println(tau.getApplicationName() + " (" + 
tau.getApplicationVersion() + ")");
}

C++

using namespace u2;

ITtdTauAccess* pTA = GetTauAccess();
std::list<ITtdStudioAccess*> apps;
pTA->GetRunningTauApplications(apps);
for (std::list<ITtdStudioAccess*>::const_iterator it = 
apps.begin(); it != apps.end(); it++)
{

Ptr<ITtdStudioAccess> tau(*it, true);
tstring strName, strVersion;
tau->GetApplicationName(strName);
tau->GetApplicationVersion(strVersion);

std::wcout << strName << _T(" (") << strVersion << _T(" )") << 
std::endl;        
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

StartNewTauApplication

Java
June 2009 IBM Rational Tau User Guide 2375



Chapter 84: Tau Access
ITtdStudioAccess startNewTauApplication() throws 
APIError;

C++

virtual ITtdStudioAccess* StartNewTauApplication() throw 
(u2::APIError) = 0;

Starts a new instance of IBM Rational Tau on the local machine. An 
ITtdStudioAccess interface representing the launched IBM Rational Tau 
instance is returned.

In case multiple versions of IBM Rational Tau are installed on the machine, 
the version which matches the used Tau Access libraries will be launched. 
This means that a Tau Access client built against the libraries of one partic-
ular IBM Rational Tau version can only launch instances of that particular 
IBM Rational Tau version.

In case the launch fails, an APIError exception will be thrown.

Example 786 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This example launches a new instance of IBM Rational Tau on the local ma-
chine. It then prints the PID of the launched IBM Rational Tau application.

Java

ITtdTauAccess ta = TauAccess.getTauAccess();
ITtdStudioAccess sa = ta.startNewTauApplication();
System.out.println(sa.getApplicationPID());

C++

using namespace u2;

ITtdTauAccess* pTA = GetTauAccess();
Ptr<ITtdStudioAccess> pSA(pTA->StartNewTauApplication());
tstring strPID;
pSA->GetApplicationPID(strPID);
std::wcout << strPID << std::endl;

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

GetTauApplicationWithPID

Java

ITtdStudioAccess getTauApplicationWithPID(int pid);

C++

virtual ITtdStudioAccess* GetTauApplicationWithPID(PID 
2376 IBM Rational Tau User Guide June 2009



API Interfaces and Methods
pid) = 0;

Returns an ITtdStudioAccess interface representing a IBM Rational Tau 
application with the specified process ID running on the local machine. If no 
such IBM Rational Tau application exists null is returned.

Only IBM Rational Tau applications with version 4.1 or later can be found 
by this method.

GetTauApplicationAtNetworkLocation

Java

ITtdStudioAccess 
getTauApplicationAtNetworkLocation(String host, int 
port);

C++

virtual ITtdStudioAccess* 
GetTauApplicationAtNetworkLocation(const tstring& host, 
unsigned int port) = 0;

Returns an ITtdStudioAccess interface representing a IBM Rational Tau 
application running on the specified host, with a web server using the speci-
fied port. If no such IBM Rational Tau application exists, null is returned.

Only IBM Rational Tau applications with version 4.1 or later can be found 
by this method.

See Example 784 on page 2372 for an example of using this method.
June 2009 IBM Rational Tau User Guide 2377



Chapter 84: Tau Access
2378 IBM Rational Tau User Guide June 2009



85
XML Framework Library

This chapter describes the TTDXMLFramework library, which is a frame-
work for working with general XML documents in UML. The library con-
tains a number of agents that are useful when importing XML to UML, or 
when generating XML from UML. These agents can be used as utilities when 
creating custom XML-based importers or exporters in IBM Rational Tau.
June 2009 IBM Rational Tau User Guide 2379



Chapter 85: XML Framework Library
Activating the XMLFramework Addin
The TTDXMLFramework library is loaded by activating an add-in. Follow 
these steps:

1. In the Tools menu, select Customize.... 

2. Click the Add-Ins tab and check the XMLFramework add-in.

3. Click OK.

As a result you should now see the TTDXMLFramework package loaded as 
a library.

Importing XML Documents
The agent ParseXMLFromFile can be used to import an XML document into 
a UML representation. The agent has the following parameters:

– file : Charstring

XML file to import.

– out model : ITtdEntity

Created UML representation of the XML document.

– messages : ITtdMessageList[0..1]

Optional message list where messages (errors, warnings etc.) are re-
ported. If this parameter is omitted messages will be printed to the 
Messages tab (if the agent executes in an interactive execution envi-
ronment) or to stdout (if the agent is non-interactive).

The model context of this agent should be the model (ITtdModel) where the 
created UML representation of the XML document should be inserted.

Example 787: Importing an XML document –––––––––––––––––––––––––––––––

This Tcl script imports an XML file x.xml:

set curProject [std::GetActiveProject]

set model [std::GetModels -kind U2 -project $curProject]

set agent [u2::FindByGuid $model 
"@TTDXMLFramework@ParseXMLFromFile"]

set p [lappend p "x.xml" 0]
2380 IBM Rational Tau User Guide June 2009



Importing XML Documents
u2::InvokeAgent $model $agent $model p

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The model representation of the XML document consists of a package which 
contains one single attribute ‘contents’. The default value of this attribute is 
a list of expressions representing the top-level entities in the XML document. 
These top-level expressions then in turn contain other expressions repre-
senting nested XML entities.

Example 788: Unparsing the UML representation of an XML document ––––––––

Add the following lines to the script in Example 787 on page 2380:

set pkg [lindex $p 1]

output "[u2::Unparse $pkg]\n"

Assuming the file x.xml looks like this:

<HTML>

<HEAD><TITLE>The Title</TITLE>

</HEAD>

<BODY>

<H3>A Simple First Page</H3>

</BODY>

</HTML>

The following printout is obtained in the Script tab:

package '' {

    XML::Entity contents = {HTML (."\n", HEAD (.TITLE (."The 
Title".), "\n".), "\n", BODY (."\n", H3 (."A Simple First 
Page".), "\n".), "\n".)};

}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

For more details about how different XML constructs are represented in 
UML see UML Representation of XML.
June 2009 IBM Rational Tau User Guide 2381



Chapter 85: XML Framework Library
Exporting XML Documents
The agent WriteXMLToFile can be used to export a UML representation of 
XML into an XML file. The agent has the following parameters:

– file : Charstring

Name of XML file to write to.

– messages : ITtdMessageList[0..1]

Optional message list where messages (errors, warnings etc.) are re-
ported. If this parameter is omitted messages will be printed to the 
Messages tab (if the agent executes in an interactive execution envi-
ronment) or to stdout (if the agent is non-interactive).

The model context of this agent should be a UML representation of the XML 
document to write to the file. It should be a top-level instance expression.

Example 789: Exporting XML from a UML representation–––––––––––––––––––

Add the following lines to the script in Example 787 on page 2380:

set pkg [lindex $p 1]

set a [u2::GetEntity $pkg "OwnedMember"]

set l [u2::GetEntity $a "DefaultValue"]

set instance [u2::GetEntity $l "Expression"]

set agent [u2::FindByGuid $model 
"@TTDXMLFramework@WriteXMLToFile"]

set p2 [lappend p2 "y.xml"]

u2::InvokeAgent $model $agent $ I p2

The generated file y.xml should now be identical to the original file x.xml, 
except for the use of insignificant whitespace characters which may differ.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UML Representation of XML
An XML document is represented in UML using expressions. The top-level 
XML entities are represented with a list expression, with one contained ex-
pression for each top-level XML entity.
2382 IBM Rational Tau User Guide June 2009



UML Representation of XML
Supported XML constructs, and their representation as expressions in UML, 
are described below.

Tag

An XML tag is represented by means of a UML instance expression. The 
name of the tag corresponds to the name of the UML class for the instance 
expression.

The nesting of tags inside other tags corresponds to the nesting of UML in-
stance expressions.

Example 790: Representation of XML tags–––––––––––––––––––––––––––––––––

XML:

<HTML>

<HEAD>

</HEAD>

</HTML>

UML:

HTML (. HEAD (. .) .)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Attribute

An XML attribute is represented by an assignment, i.e. a binary expression 
with ‘=’ as operator. The left hand side of the assignment is an identifier cor-
responding to the attribute name, and the right hand side is a character string 
value corresponding to the value of the attribute.

The assignment is inserted in the instance expression corresponding to the 
container tag.

Example 791: Representation of XML attributes ––––––––––––––––––––––––––––

XML:

<A HREF="foo" onClick="testSub"></A>

UML:
June 2009 IBM Rational Tau User Guide 2383



Chapter 85: XML Framework Library
A (. HREF = "foo", onClick = "testSub" .)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Text Node

An XML text node is represented by a character string value which contains 
the text of the text node. 

The string value is inserted in the instance expression corresponding to the 
container tag.

Example 792: Representation of XML text nodes –––––––––––––––––––––––––––

XML:

<A HREF="foo">LinkText</A>

UML:

A (. HREF = "foo", "LinkText" .)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Processing Instruction

Not supported. An initial processing instruction

<?xml version="1.0" encoding="UTF-8"?>

will currently always be added when generating XML documents.

Comment

An XML comment is represented by a parenthesis expression where the con-
tained expression is a character string value which contains the text of the 
comment node.

The parenthesis expression is inserted in the instance expression corre-
sponding to the container tag.

Example 793: Representation of XML comments –––––––––––––––––––––––––––

XML:

<HTML>

<!--
2384 IBM Rational Tau User Guide June 2009



UML Representation of XML
This is a comment!

-->

</HTML>

UML:

HTML (. ("This is a comment") .)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 2385



Chapter 85: XML Framework Library
2386 IBM Rational Tau User Guide June 2009



86
Tau Web Server

IBM Rational Tau contains a web server which enables HTTP clients, such 
as web browsers, to access tool functionality. This chapter describes the 
URLs which the IBM Rational Tau Web Server recognizes, and how they 
can be used from web pages in different ways.
June 2009 IBM Rational Tau User Guide 2387



Chapter 86: Tau Web Server
Purpose of the Tau Web Server
The IBM Rational Tau Web Server serves the following main purposes.

• It provides a means for accessing IBM Rational Tau (and the UML model 
hosted by IBM Rational Tau) remotely over a network. Although this is 
also possible on Windows using the COM API (DCOM), it is a more 
standard, platform-neutral way to use HTTP.

• It makes it possible to use HTML pages as the GUI of a IBM Rational 
Tau add-in. The HTML pages can be opened inside IBM Rational Tau 
using the std::HtmlReport Tcl command.

• It makes it possible to integrate IBM Rational Tau with other tools, using 
HTTP as the communication protocol to interchange information be-
tween the tools.

Configuring the Tau Web Server
The IBM Rational Tau Web Server is contained in the main IBM Rational 
Tau executable called vcs.exe. When this application is launched the web 
server is automatically started, and set-up to listen for incoming HTTP re-
quests. By default the web server will try to use the TCP/IP port 57000, but 
if there is already another instance of IBM Rational Tau running on the ma-
chine it will increment the port number by one until it finds an available port 
to use. If no available port is found an error message will be printed in the 
Message tab. 

To change the port number used by the IBM Rational Tau Web Server 
do the following:

1. Open the Option dialog box (Tools - Options...)

2. Make sure the “Show advanced option page” checkbox is checked.

3. In the Advanced option page select the Studio server, and browse to 
Studio - Settings - WebServer.

4. The options PortRangeBegin and PortRangeEnd define the range of 
TCP/IP ports which the IBM Rational Tau Web Server will use. Make 
sure that these ports are available on your machine, and that the range is 
big enough to accomodate the maximum number of IBM Rational Tau 
instances that will be running simultaneously on the machine.
2388 IBM Rational Tau User Guide June 2009



How to Use the Tau Web Server
It is also possible to specify which port to use when starting IBM Rational 
Tau. This is done by means of the -port command line option. For example:

vcs.exe -port 57123

If the specified port is not available (typically because another IBM Rational 
Tau instance is using it) a warning message will be printed, and the usual pro-
cedure for finding an available port takes place.

How to Use the Tau Web Server
When IBM Rational Tau is running you can check that the web server is 
properly configured and ready to be used by entering the following URL in 
a web browser:

http://localhost:57000/

You should see the main web page of the IBM Rational Tau Web Server that 
confirms that the web server is running. It will also list which Web Request 
Handlers that are currently registerred.

If you have changed which port number to use, or have more than one in-
stance of IBM Rational Tau running you should use another port number. If 
you are unsure about which port the web server is using, you can find out by 
following these steps:

1. Open a new temporary Tcl file (File - New... - File - Tcl file)

2. Type the command std::Output "[std::GetWebServerPort]"

3. Execute the command (Tools - Execute Script). The web server port will 
be printed in the Script tab.

In the examples below we assume that the IBM Rational Tau web server uses 
port 57000.

URL Syntax

The general syntax of a URL for the IBM Rational Tau Web Server is

http://localhost:<port>/<handler>/<data>?<parameters>

Here, <port> is the TCP/IP port used by the web server, <handler> is the 
name of a web request handler, and <data> is a string of data intended for 
that request handler. <parameters> are ordinary HTTP request parameters, 
that is a list of name-value pairs separated by ampersands (&).
June 2009 IBM Rational Tau User Guide 2389



Chapter 86: Tau Web Server
See Web Request Handlers for more information about the different web re-
quest handlers that are available, and what they can be used for.

Naturally, you can access the web server of an instance of IBM Rational Tau 
that is running on a remote machine by replacing “localhost” with the name 
or IP number of that machine.

Delaying Web Requests

By default the list of name-value pairs in <parameters> is made available 
to the selected web request handler. However, there is one special parameter 
which is interpreted by the web server itself:

_invocationDelay=<delay>

If this parameter is used the web server will delay the processing of that par-
ticular web request with the specified number of milliseconds. For example, 
a <delay> of 1000 will cause the request to be delayed with 1 second. De-
laying web requests is useful when accessing the web server asynchronously 
(for example from a web page using AJAX). See Example 799 on page 2395.

Web Request Handlers

The main web page of the IBM Rational Tau Web Server shows a table of 
web request handlers which are currently registerred. Each handler has a 
name and a description about the URL syntax it supports. Depending on the 
state of IBM Rational Tau, different request handlers may be available.

The available web request handlers are described below.

File

The ‘file’ web request handler makes it possible to retrieve data stored in a 
file on the file system. The data is typically HTML, or some other form of 
XML, but in general it can be any textual data.

The URL syntax for the ‘file’ web request handler is:

file/<filename>

<filename> is a path to the file that contains the data to retrieve. The path 
may contain IBM Rational Tau URNs.
2390 IBM Rational Tau User Guide June 2009



How to Use the Tau Web Server
Example 794: Using the ‘file’ web request handler–––––––––––––––––––––––––––

To open an HTML file index.html, located relative to the IBM Rational 
Tau user-addins directory you may use an URL similar to the following:

http://localhost:57000/file/urn:u2useraddins:MyAddin/etc/in
dex.html

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The ‘file’ web request handler is always available.

Agent

The ‘agent’ web request handler makes it possible to invoke an agent in IBM 
Rational Tau. The agent will be invoked in the model of the currently active 
project.

The URL syntax for the ‘agent’ web request handler is:

agent/<agent id>(<agent parameters>)

<agent id> identifies which agent to invoke. It may either be the GUID of 
the agent, or its fully qualified name. <agent parameters> are actual pa-
rameters that shall be passed when invoking the agent. Note that the text after 
the ‘/’ must be a valid U2 call expression. This means that U2 identifiers in 
this part of the URL may need to be enclosed in single quotes in order to 
comply with U2 syntax rules.

You may use any U2 expression as an actual argument to the invoked agent, 
provided it is a supported agent parameter expression (see Agent Parame-
ters). In addition you may refer to HTTP request parameters by preceeding 
the name of the parameter with a ‘$’ sign. There are also some special param-
eters which can be used in order to pass other information from the HTTP 
request to the invoked agent. These special parameters are on the form

$context::<variable>

where <variable> is one of the following:
June 2009 IBM Rational Tau User Guide 2391



Chapter 86: Tau Web Server
Example 795: Using the ‘agent’ web request handler ––––––––––––––––––––––––

This URL will invoke an agent with the GUID ‘@MyAgent’. Note that the 
GUID must be enclosed in single quotes since it contains the ‘@’ character.

Variable Description

response This is an out parameter which represents the re-
sponse of the web request. The agent may assign 
a string to this parameter, which will be used as 
the resulting response text that is returned to the 
web client.

user_agent Expands to the value of the HTTP server variable 
HTTP_USER_AGENT.

method Expands to the value of the HTTP server variable 
REQUEST_METHOD.

accept Expands to the value of the HTTP server variable 
HTTP_ACCEPT.

accept_encoding Expands to the value of the HTTP server variable 
HTTP_ACCEPT_ENCODING.

status This is an out parameter which represents the 
HTTP status code of the web request. The agent 
may assign an integer to this parameter, which 
should be a valid HTTP status code. For example, 
the status code 404 is used to denote the error 
“Not Found”.

The default status code is 200, which means that 
the HTTP request was successful.

content_type This is an out parameter which represents the 
HTTP server variable 
HTTP_CONTENT_TYPE. The agent should set 
a content type string to this parameter to indicate 
how the ‘response’ data should be treated by the 
web client. For example, if the response data is a 
HTML string the content type “text/html” should 
be used.

The default content type is “text/plain”.
2392 IBM Rational Tau User Guide June 2009



How to Use the Tau Web Server
http://localhost:57000/agent/’@MyAgent’()

This URL will invoke an agent A located in a package P. The agent gets one 
string parameter as input which is the ‘response’ parameter. It can use it for 
returning for example some HTML data to the web client.

http://localhost:57000/agent/::P::A(‘$context::response’)

This URL will invoke an agent with the GUID ‘@MyAgent’. The agent re-
ceives three actual parameters; the integer value 14, the boolean literal ‘false’ 
and finally the string value of the HTTP request parameter called ‘$par’, 
which is “SomeValue”.

http://localhost:57000/agent/’@MyGuid’(14, false, 
‘$par’)?par=SomeValue

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The ‘agent’ web request handler is available when there is at least one project 
with a UML model loaded in IBM Rational Tau.

Tcl

The ‘tcl’ web request handler makes it possible to interpret a Tcl script in 
IBM Rational Tau. 

The URL syntax for the ‘tcl’ web request handler is:

tcl/<script>

<script> is the Tcl script to interpret. The result of interpreting the script 
will be set as the response text of the HTTP request.

Example 796: Using the ‘tcl’ web request handler –––––––––––––––––––––––––––

This URL will interpret a Tcl script for getting the version of IBM Rational 
Tau:

http://localhost:57000/tcl/std::GetApplicationVersion

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The ‘tcl’ web request handler is always available. However, keep in mind 
that not all Tcl commands are available at all times. In general, commands 
prefixed with ‘std::’ are always available, while commands prefixed with 
‘u2::’ only are available when at least one project with a UML model is 
loaded in IBM Rational Tau.
June 2009 IBM Rational Tau User Guide 2393



Chapter 86: Tau Web Server
Variable

The ‘variable’ web request handler is a simple mechanism for storing data in 
the web server which will be persistent across multiple HTTP requests. By 
using such variables the behaviour of one HTTP request can depend not only 
on its current input data, but also on the previously made HTTP requests.

The URL syntax for setting the value of a web server variable is:

variable/set <variable name> <variable value>

If <variable value> is an empty string the variable will be unset.

The URL syntax for getting the value of a web server variable is:

variable/get <variable name>

The response text will be set to the value of the variable. If <variable 
name> is an empty string the response text will be the list of all defined vari-
ables with their current values.

Example 797: Using the ‘variable’ web request handler ––––––––––––––––––––––

This URL will set the variable ‘logged_in’ to the value “true”:

http://localhost:57000/variable/set logged_in true

Afterwards we can get the value of the variable with this URL:

http://localhost:57000/variable/get logged_in

The response will be true.

We can also get the values of all variables with this URL:

http://localhost:57000/variable/get

The response will be logged_in=true.

Finally we can unset the variable using this URL:

http://localhost:57000/variable/set logged_in

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

The ‘variable’ web request handler is always available.

Examples
Here we present some examples on using the IBM Rational Tau Web Server.
2394 IBM Rational Tau User Guide June 2009



Examples
Example 798: An agent generating an HTML page ––––––––––––––––––––––––––

Assume we have defined an agent ‘GeneratePage’ in IBM Rational Tau 
(placed in global scope) which is implemented by the following Tcl script:

proc GeneratePage { triggeredBy timing context server 
agentParameters } {

upvar 1 $agentParameters ap
set p “<html><head><h1>Page generated by 
agent!</h1></head></html>”
set ap [lreplace $ap 0 0 $p ]

}

Then let us create an HTML file ‘MyPage.html’ with a simple form:

<html>
<head>
<body>
<form action="/agent/::GeneratePage(‘$context::response’)" 
method="get">
<input type="submit" class="button" name="pressme" 
value="Press Me"/> 
</form>
</body>
</html>

Note that we can use a relative ‘action’ URL if we open the HTML file by 
typing the following URL in a web browser:

http://localhost:57000/file/C:\MyPages\MyPage.html

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Example 799: Using delayed web requests from an AJAX web page ––––––––––––

By using delayed web requests from web pages using asynchroneous JavaS-
cript (AJAX) it is possible to dynamically update an HTML page based on 
changes that takes place in IBM Rational Tau. Let’s start by defining an 
agent ‘GetSelection’ which returns the list of entities currently selected in the 
IBM Rational Tau Model View browser:

proc GetSelection { triggeredBy timing context server 
agentParameters } {

upvar 1 $agentParameters ap
set response [lindex $ap 0]
set sel [std::GetSelection]
set c 0
foreach s $sel {
if {$c != 0} {
set response “$response, “

}
incr c
if {[std::GetKind $s] != “U2” || $s == 0} {
June 2009 IBM Rational Tau User Guide 2395



Chapter 86: Tau Web Server
set r “(Non-U2 entity)”
} else {
set r [u2::GetMetaClassName $s]

}
set response “$response$r”

}
if {$response == ““} {
set response “Nothing is selected!”

}
set ap [lreplace $ap 0 0 $response ]

}

As you can see, this agent formats a string with information about which kind 
of entities that are currently selected. Note that the response string is not an 
HTML string. It’s not even XML, but a plain text string. 

Now let’s define an HTML page ‘GetSelection.html’ with some JavaScript 
which invokes the ‘GetSelection’ agent at regular intervals (1 second) and 
prints the result string to the page.

<head>
<title>Ajax Selection Observer Agent</title>
<body>
<h1>Ajax Selection Observer</h1>
<script type="text/javascript">
/* Create a new XMLHttpRequest object to talk to the Web 
server */
var xmlHttp = false;
/*@cc_on @*/
/*@if (@_jscript_version >= 5)
try {
xmlHttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {
try {
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (e2) {
xmlHttp = false;
}

}
@end @*/
if (!xmlHttp && typeof XMLHttpRequest != 'undefined') {
xmlHttp = new XMLHttpRequest();

} 
function callServer() {
// Build the URL to connect to
var url = 

"/agent/::GetSelection('$context::response')?_invocationDel
ay=1000";
// Open a connection to the server
xmlHttp.open("GET", url, true);
// Setup a function for the server to run when it's done
xmlHttp.onreadystatechange = updatePage;
// Send the request
xmlHttp.send(null);
2396 IBM Rational Tau User Guide June 2009



Limitations
}
function updatePage() {

if (xmlHttp.readyState == 4) {
var response = xmlHttp.responseText;
var resNode = document.getElementById("sel");
if (resNode != null)
resNode.innerHTML = response;

callServer();
}

}
callServer();
</script>
Selected elements in Tau:<b><p id="sel"></p></b>
</body>
</html>

When this page is loaded the JavaScript function ‘callServer’ is called. It 
builds the URL for invoking the GetSelection agent and sets up the ‘up-
datePage’ function to be called when the agent has been invoked. This hap-
pens after 1 second, because we use the _invocationDelay parameter with 
a value of 1000 milliseconds. When we obtain the result we locate the DOM 
element with ID ‘sel’ and sets its inner HTML to the response string returned 
by the agent. Then we immediately call ‘callServer’ again, in order to 
schedule a new request. As an effect, when the selection is changed in IBM 
Rational Tau the web page will be updated with information about the cur-
rent selection within 1 second.

Note that since the used URL is relative we must open the page using an ab-
solute URL like this:

http://localhost:57000/file/C:\MyPages\GetSelection.html

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Limitations
The IBM Rational Tau Web Server has the following known limitations.

POST protocol not supported

The web server only supports the HTTP GET protocol.
June 2009 IBM Rational Tau User Guide 2397



Chapter 86: Tau Web Server
2398 IBM Rational Tau User Guide June 2009



Common Reference

The reference chapters listed in this section describe functionality that is 
valid for all types of IBM Rational Tau projects.
June 2009 IBM Rational Tau User Guide 2399



Chapter : 
2400 IBM Rational Tau User Guide June 2009



88
Useful Shortcut Keys

This section lists useful shortcut keys that you can use. Access keys can be 
used in the same way as other standard applications.

(UNIX) This only applies to Exceed users: If you use a non-American key-
board, you must map the ALT button correctly in order to use the access 
keys.

To map the ALT button:

1. Click the Start button, point to Programs, point to Exceed and click 
xconfig.

2. In the dialog that opens, double-click Input. The Input dialog opens.

3. In the Alt key field, select To X or Right To Window, Left To X. 

4. Close the dialog.

Note
UNIX: Some short-cut sequences (such as ALT-X, CTRL-H) may be inter-
cepted by the X11 window manager and can cause other actions to be taken 
than those described in this manual. In most cases it is possible to configure 
the X11 window manager not to intercept specific short-cut sequences. 
Please refer to the documentation on your window manager for further in-
formation regarding short-cuts.
June 2009 IBM Rational Tau User Guide 2401



Chapter 88: Useful Shortcut Keys
Workspace Operations

Project Operations

File Operations

Keyboard shortcut Description

CTRL + N
Then CTRL + TAB 
to Workspaces tab

Create a new workspace

CTRL + O Open an existing workspace.

MINUS SIGN (-) on 
the numeric keypad

Contracts the tree of a selected entity.

MULTIPLICA-
TION SIGN (*) on 
the numeric keypad

Expands the model tree one level below the selec-
tion. Can be used repeatedly to expand deeper. 

PLUS SIGN (+) on 
the numeric keypad 

Expands the selection.

ALT + 4 Reconfigure Model View, selection of model filter 

Keyboard shortcut Description

CTRL + N
Then CTRL + TAB 
to Project tab

Create a new project

CTRL + O Open project.

Keyboard shortcut Description

CTRL + N Create a new file

CTRL + O Open a file

CTRL + P Print the active document

CTRL + S Save active document
2402 IBM Rational Tau User Guide June 2009



Navigate in Files
Navigate in Files

Highlight Text

Keyboard shortcut Description

CTRL + DOWN 
ARROW

Scroll down a few rows at a time, without moving 
the insertion point

CTRL + END Move insertion point to end of file

CTRL + SHIFT + G Opens the Go to line number dialog

CTRL + HOME Move insertion point to beginning of file

CTRL + LEFT 
ARROW

Step left one word at a time

CTRL + M Open Navigator tab in Output window

CTRL + RIGHT 
ARROW

Step right one word at a time

CTRL + UP 
ARROW

Scroll up a few rows at a time, without moving the 
insertion point

END Move insertion point to end of line

HOME Move insertion point to beginning of line

Keyboard shortcut Description

CTRL + SHIFT + 
END

Highlight text to the end of the file

CTRL + SHIFT + 
HOME

Highlight text to the beginning of the file

CTRL + SHIFT + 
LEFT ARROW

Highlight one word at a time to the left

CTRL + SHIFT + 
RIGHT ARROW

Highlight one word at a time to the right

SHIFT + DOWN 
ARROW

Highlight one row downwards
June 2009 IBM Rational Tau User Guide 2403



Chapter 88: Useful Shortcut Keys
Edit Text

SHIFT + END Highlight to the end of the line

SHIFT + HOME Highlight to the beginning of the line

SHIFT + LEFT 
ARROW

Highlight one character at a time to the left

SHIFT + RIGHT 
ARROW

Highlight one character at a time to the right

SHIFT + UP 
ARROW

Highlight one row upwards

Keyboard shortcut Description

CTRL + A Select all

CTRL + C Copy

CTRL + F Find in active file

CTRL + H Replace

CTRL + SPACEBAR

SHIFT + SPACEBAR

Name completion, if a definition is found that 
matches the current name up to the cursor position. 
If there are multiple matches a Name completion 
scroll menu will open.

CTRL + V Paste

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

F1 Help with textual syntax on current selection.

SHIFT + F8 Restores text from model, discarding comments or 
user added formatting.

Keyboard shortcut Description
2404 IBM Rational Tau User Guide June 2009



Editor Shortcuts
Editor Shortcuts

SHIFT + arrow keys Extends the current text selection. Requires that 
text is selected

SHIFT + END Selects text from cursor position to end of text row.

SHIFT + HOME Selects text from start of text row to cursor position.

Keyboard shortcut Description

Arrow key Selects the symbol in the direction of the arrow, re-
quires current selection

CTRL + <click when 
placing symbols in di-
agram>

Allows you to place a number of symbols of the 
same type. Requires that you first select a symbol 
from the symbol toolbar.

CTRL + <click when 
placing symbols in 
state machine flow>

Allows you to insert a symbol in the flow. Requires 
that you first select the preceding symbol or flow-
line in the flow.

CTRL + <click word 
in diagram>

Navigates to definition. If no diagrams contain the 
definition, the Model Navigator opens.

CTRL + <double-click 
with a symbol selected 
in state machine flow>

Selects the entire flow from the selected symbol 
and downward. Selection will be done on branched 
flows (multiple signals, decision etc.).

CTRL + <Rotate the 
wheel button>

Scroll the diagram horizontally (requires an Intelli-
Mouse pointing device)

CTRL + ALT + END Diagram navigation, go down in diagram scope

CTRL + ALT + Page 
Down

CTRL + ALT + TAB

Diagram navigation, navigate to next diagram in di-
agram scope

CTRL + Arrow key Moves the selected symbol 5 grid steps in the direc-
tion of the arrow.

Keyboard shortcut Description
June 2009 IBM Rational Tau User Guide 2405



Chapter 88: Useful Shortcut Keys
CTRL + DELETE Delete from Model, deletes the presentation ele-
ment and its corresponding model element. If other 
presentation elements are connected to this model 
element, they will also be deleted.

CTRL + DIVISION 
SIGN (/) on the nu-
meric keypad

Hide all operations. (Valid for signature symbols: 
class, timer, signal, interface, operation, state ma-
chine, datatype, enumeration...)

CTRL + F3 Jumps to the next presentation element of the same 
model element

CTRL + SHIFT + F3 Jumps to the previous presentation element of the 
same model element

CTRL + MINUS 
SIGN (-) on the nu-
meric keypad

Hide all attributes, parameters. (Valid for signature 
symbols: class, timer, signal, interface, operation, 
state machine, datatype, enumeration...)

CTRL + MULTIPLI-
CATION SIGN (*) on 
the numeric keypad

Show operations. (Valid for signature symbols: 
class, timer, signal, interface, operation, state ma-
chine, datatype, enumeration...)

CTRL + PLUS SIGN 
(+) on the numeric 
keypad

Show attributes, parameters. (Valid for signature 
symbols: class, timer, signal, interface, operation, 
state machine, datatype, enumeration...) 

CTRL + SHIFT + 
<click symbol in 
toolbar>

Interaction overview and Activity diagram: Ap-
pend a symbol and toggle orientation. Symbol posi-
tion will be in the currently not selected orientation. 
(Append requires that a symbol is selected.)

CTRL + SHIFT + 
Arrow key

Moves the selected symbol 1 grid step in the direc-
tion of the arrow.

CTRL + SHIFT + M Open Create Presentation dialog

CTRL + TAB Switches to the next open diagrams

CTRL + U Update Model (requires Active Modeler add-in)

CTRL+ALT + HOME Diagram navigation, go up in diagram scope

Keyboard shortcut Description
2406 IBM Rational Tau User Guide June 2009



Editor Shortcuts
CTRL + ALT + Page 
Up

CTRL + ALT + 
SHIFT + TAB

Diagram navigation, navigate to previous diagram 
in diagram scope

ESC, DELETE

<Right-click canvas>

Aborts line creation

F2 Enters the edit mode on a selected symbol

F4 Moves to the next selection in the Output window

SHIFT + <click 
symbol in toolbar>

Create and append a symbol in the diagram. Sym-
bols that cannot be auto-created appear dimmed. 
(Append requires that a symbol is selected.)

SHIFT + Arrow key Selects the symbol in the direction of the arrow and 
adds it to the selection. (requires current selection)

SHIFT + F4 Moves to the previous selection in the Output 
window

ALT + UP ARROW Moves a selected node up in the Model View.

ALT + DOWN 
ARROW

Moves a selected node down in the Model View.

SHIFT + ENTER Shows the model element of the selected diagram 
element in the Model View.

F8 Check the current selection.

CTRL + F8 Do a check of the entire model.

SHIFT + SPACEBAR Auto creation. All elements that can be auto created 
on the current selection will be displayed. See Auto 
placement.

CTRL + SPACEBAR Auto insertion. All elements that can be auto in-
serted after the current selection will be displayed. 
See Auto placement.

CTRL + R Route selected lines and assign new endpoints.

Keyboard shortcut Description
June 2009 IBM Rational Tau User Guide 2407



Chapter 88: Useful Shortcut Keys
Compare and Merge 

Application Builder Shortcuts

Keyboard shortcut Description

ALT + EQUAL SIGN 
(=) 

Compare selection

ALT + PLUS SIGN 
(+) on the numeric 
keypad

Merge selection

CTRL + ALT + LEFT 
ARROW

Select version 1 only on selected differences.

CTRL + ALT + 
RIGHT ARROW

Select version 2 only on selected differences.

CTRL + ALT + UP 
ARROW

Select ancestor version only on selected differ-
ences.

CTRL + ALT + 
DOWN

Select both versions on selected differences.

Keyboard shortcut Description

CTRL + SCROLL 
LOCK

Stops the build process

F5 Launch the current configuration

SHIFT + F7 Generate current configuration

F7 Build the current configuration

SHIFT + F5 Stops the execution

CTRL + F7 Update configuration
2408 IBM Rational Tau User Guide June 2009



Model Verifier Shortcuts
Model Verifier Shortcuts

Window Navigation

Keyboard shortcut Description

ALT + PAUSE Break 

ALT + F10 Step local 

CTRL + SHIFT + F5 Restart the debug session from the beginning

F5 Go 

F9 Inserts/removes a selected breakpoint

F10 Step over 

F11 Step into 

SHIFT + F10 Next transition 

SHIFT + F11 Step out

Keyboard shortcut Description

ALT + 1 Toggle full screen mode

CTRL + F2 Toggles definition at cursor position as Bookmark 
in the Model Navigator

CTRL + F4 Close the active window

CTRL + SHIFT + 
TAB

CTRL + SHIFT + F6

Navigate to the previous window

CTRL + TAB

CTRL + F6

Navigate to the next window

SHIFT + F2 Displays Model Navigator with context of defini-
tion at cursor position.
June 2009 IBM Rational Tau User Guide 2409



Chapter 88: Useful Shortcut Keys
Properties editor

Show/Hide Windows and Dialogs

Zoom/Pan

Keyboard shortcut Description

ALT + ENTER Display Properties editor 

CTRL + 
BACKSPACE

Go to owner, change scope in model tree to the 
owner of the current selection

CTRL + ALT + C Switch to Control view

CTRL + ALT + T Switch to Text view

Keyboard shortcut Description

ALT + 0 Show/ hide workspace window

ALT + 2 Show/ hide Output window

ALT + ENTER Display Properties editor 

CTRL + Q Open Query dialog on selection

F1 Display Help

Keyboard shortcut Description

<Rotate the wheel 
button>

Scroll the diagram vertically (requires an IntelliM-
ouse pointing device)

<Double-click middle 
mouse button>

Zoom to 100%

SHIFT + <double-
click middle mouse 
button>

Zoom to fit editor window

SHIFT + <rotate wheel 
button>

Zoom in or zoom out depending on the rotate direc-
tion.The zoom in point will be where the mouse 
pointer is located
2410 IBM Rational Tau User Guide June 2009



Zoom/Pan
CTRL + SHIFT + 
<Rotate the wheel 
button>

When a single line is selected the diagram will be 
scrolled along the line until one of the endpoints are 
centered in view (requires an IntelliMouse pointing 
device)

MINUS SIGN (-) on 
the numeric keypad

Zoom out 25% (This works when a diagram is ac-
tive and not in text edit mode for any element)

PLUS SIGN (+) on the 
numeric keypad

Zoom in 25% (This works when a diagram is active 
and not in text edit mode for any element)

LESS-THAN SIGN 
(<)

When a single line is selected the diagram will be 
scrolled to the source endpoint of the line.

GREATER-THAN 
SIGN (>)

When a single line is selected the diagram will be 
scrolled to the destination endpoint of the line.

Keyboard shortcut Description
June 2009 IBM Rational Tau User Guide 2411



Chapter 88: Useful Shortcut Keys
2412 IBM Rational Tau User Guide June 2009



89
Setting Up the Tool Environment

This section mainly provides information how to integrate IBM Rational Tau 
with different tools. 

Programming tools import:

• Import from UML

• Import from SDL

• Import from XMI

Configuration management tools:

• IBM Rational Synergy

• IBM Rational ClearCase

Directory service:

• IBM Rational Directory Server (RDS)
June 2009 IBM Rational Tau User Guide 2413



Chapter 89: Setting Up the Tool Environment
Import Wizard
IBM Rational Tau supports a number of different possibilities to import 
model data from other formats than the proprietary IBM Rational Tau model 
information. 

The import scheme is started from the Import command in the File menu. 
This will launch the Import Wizard. The basic steps for an import is:

• Select the origin (C/C++, SDL, XMI)

• Add the source files to import from

The import will result in a new package in the current model containing ele-
ments and diagrams (when applicable) based on the source file information. 

See also

“C/C++ Import” on page 541 in Chapter 15, C/C++ Import

“XMI import” on page 742 in Chapter 20, UML 1.x Import

“SDL Import” on page 625 in Chapter 17, SDL Import
2414 IBM Rational Tau User Guide June 2009



Configuration Management
Configuration Management
IBM Rational Tau supports integration schemes with configuration manage-
ment tools. 

• A tight Integration with Synergy that provides many of the features from 
this tool directly from the IBM Rational Tau user interface. 

• An integration scheme based on the Microsoft Source Control Integra-
tion Interface. This means that as long as the source control system that 
you use support the Microsoft Source Control Integration Interface it 
should work with IBM Rational Tau. There is currently support for Inte-
gration with IBM Rational ClearCase which is regularly verified to work 
using Microsoft Source Control Integration Interface.

• A utility to start Tau Compare and Merge operations on u2 file versions 
selected directly in the configuration management tool.

Source control provider

The General tab of Tools->Options contains the Source control provider 
drop down that enables the user to select source control scheme. IBM Ra-
tional Tau must be restarted for this to take effect.

See also

“Source control information” on page 2415

“Multiple configuration management tools” on page 2429

“Source control commands” on page 2430

Source control information

The status of the files in the configuration management tool is displayed by 
different icons in the File View. The following icons apply:

• blue check mark

This icon indicates that the file or folder is checked out.
June 2009 IBM Rational Tau User Guide 2415



Chapter 89: Setting Up the Tool Environment
• orange check mark 

This icon is used for folders that are partially checked out. It indicates 
that in the folder there are files that are checked in and files that are 
checked out or that the folder contains files that are not added to source 
control.

• red x 

This icon indicates that the file or folder is checked in.

• no icon 

If no icon is available the file or folder is not added to the configuration 
management tool data base.

The status can also be viewed in the property page of a file.

Synergy Integration

Integration with Synergy

This section describes how to integrate Synergy with IBM Rational Tau. For 
further details see the Synergy user documentation.

When using the Synergy integration two extra tool bars, dealing with Syn-
ergy Tasks and Objects, and one extra menu (called Synergy) are available. 
The tool bars and menu provide access to Synergy functionality from inside 
the IBM Rational Tau user interface using the commands listed below.

The integration also offers a set of predefined IBM Rational Tau file type 
definitions in Synergy. 

Project handling
• Open Managed Project

• Migrate Project

• Project History 

• Project Properties

• Project Merge

• Synchronize Project 

• Update Project 
2416 IBM Rational Tau User Guide June 2009



Synergy Integration
Task handling
• Create Task 

• Set Task 

• Complete Task 

• Task Properties 

• Current Task Box 

Object handling
• Create Object 

• Object Properties 

• Object History 

• Check Out Object 

• Check In Object 

• Undo Check Out Object 

Version handling
• Refresh Status 

IBM Rational Tau file type definitions

Two predefined file definitions are available. They define the IBM Rational 
Tau project and model file types in Synergy. The two files

• tau_project.xml

• tau_model.xml

in the directory “integrations/SYNERGYCM” contain the definitions for 
IBM Rational Tau project files (.ttp) and IBM Rational Tau model files (.u2).

The definitions should be applied by the Synergy type manager to the rele-
vant data bases.

Further description on how to apply the type definitions can be found in the 
Synergy help on the typedef command.
June 2009 IBM Rational Tau User Guide 2417



Chapter 89: Setting Up the Tool Environment
Install Synergy integration

Windows

Note
It is necessary to install the Synergy integration via a separate installer be-
fore it is possible to activate the integration.

The source control system that will be used is specified in a system registry. 
When Synergy is installed, this source control system registry key should be 
set automatically. However, if you have more than one configuration man-
agement tool installed locally, you may have to edit this value manually. The 
only additional steps that are needed before starting to use Synergy are the 
following:

1. Start IBM Rational Tau.

2. On the Tools menu, click Options. 

3. In the General tab, select Synergy Integration in the Source control 
provider choice. 

4. Click OK. 

The next time you start IBM Rational Tau you will be prompted to Log in to 
Synergy. In addition to this a new menu, Synergy, will be available together 
with two new toolbars as described in the previous section. There will also 
be a Synergy tab in the Output window. 

See also

“Multiple configuration management tools” on page 2429

Log in to Synergy

When Synergy is used as the source control system and the Source control 
provider option is set to Synergy integration, you will be prompted to log in 
to a Synergy server each time you start IBM Rational Tau. The login dialog 
contains the following fields:

1. User identity: The user identity you use in Synergy

2. Password: Your password to Synergy

3. Database path: The path on the Synergy server where the database is lo-
cated.
2418 IBM Rational Tau User Guide June 2009



Synergy Integration
4. Engine host: The name of the computer where the Synergy server is lo-
cated.

5. Synergy home: The path on the local machine to your Synergy work-
space.

If you cancel the login dialog (or have not set the Source control provider op-
tion) you can not log in to the Synergy server without restarting IBM Ra-
tional Tau.

Cancelling the login also disables the IBM Rational Tau Synergy integration.

Note
If no Synergy functionality is used during a period of time, the connection to 
the Synergy server is temporarily shut down to save resources. The connec-
tion is automatically reestablished when it is needed.

Synergy project handling

Opening an existing Synergy project

It is possible to access a UML project stored in a Synergy database directly 
from IBM Rational Tau. This is accomplished using the command Open 
Managed Project in the Synergy menu. 

An alternative way to open a project that already is part of the local Synergy 
workspace is to use the standard Open command, browse to your local Syn-
ergy workspace and select one of the UML projects located here.

Note
IBM Rational Tau only considers IBM Rational Tau projects (.ttp file) with 
the same name as the Synergy project name as managed projects. If a Syn-
ergy project contains more than one IBM Rational Tau project you must 
open that using the File->Open menu and browse.

Note
The workspace file (.ttw) is not managed by Synergy. 

Creating a new Synergy project

It is possible to create a new UML project and store this on a Synergy project. 
This is done simply by: 

• Creating a project using the File->New command. 
June 2009 IBM Rational Tau User Guide 2419



Chapter 89: Setting Up the Tool Environment
• In the wizard choose the Synergy Project tab. This will show a list of the 
available project types.

• Select one of the project types. Fill in the name of the project. 

• Fill in the release. 

• Fill in project kind info as “For Purpose”.

• Click OK. 

The wizard that opens will let you specify more details of the project. When 
finished you will get a new project. A Synergy task will automatically be cre-
ated called “Creating project <name of project>”. When you have created an 
initial version of the model and completed the task the model will be stored 
in the Synergy repository.

Automatic Task Handling

The Synergy integration contains a feature that will automate the handling of 
Synergy tasks. When you try to do an operation that requires a task, for ex-
ample check out an object, the task creation dialog will be displayed. In this 
dialog you can define the task name and also cancel the operation.

Synergy project commands 

All commands in this section operates on the currently active project in IBM 
Rational Tau.

Multiple selection is possible and commands applied will affect the selected 
files.

Open Managed Project 

This command will display a dialog that lists the managed projects on the 
Synergy server. When selecting one of the Synergy projects IBM Rational 
Tau will automatically load any UML project that is found in the Synergy 
project and that has the same name as the Synergy project. If an existing 
workspace already exists in IBM Rational Tau the project will be added to 
this workspace. If no workspace exists a new one will be created.

When the command is finished you will have the files comprising the UML 
project available in your local Synergy work area and the model will be 
loaded in IBM Rational Tau. If the Synergy project already is available in 
2420 IBM Rational Tau User Guide June 2009



Synergy Integration
your local work area this is the project that will be opened. If the project is 
not available the files in the project will automatically be copied from the 
Synergy server to your local work area.

Note
If the project is in a static state (e.g. integrate or released), the “Open Man-
aged Project” operation will copy the project even if the project is available 
in the users work area. To open a project in a static state, the File->Open or 
File->Open Workspace must be used.

Migrate Project

The Migrate Project command will migrate the current project to Synergy. 
A copy of each file (and directory structure) the IBM Rational Tau project is 
comprised of will be created in Synergy.

Note
The old project will still be loaded. 

When you choose the command a dialog will pop up where you can specify 
the Synergy project that will contain the UML files. The command will then 
perform the following actions:

1. Create a Synergy task called “Migrating <project name> to Synergy”

2. Create the Synergy project

3. Move all files in the UML project into the Synergy database.

4. Complete the task

Note
The name of the Synergy project will by default be that of the IBM Rational 
Tau project. In cases where this clashes with an existing Synergy project, 
the user is asked for a new project name. The name of the IBM Rational Tau 
project will be renamed accordingly.

Project History

This command will show a graph describing the configuration management 
history of the Synergy project that contains the current project. The details of 
the graph are defined by the Synergy version you currently are using.
June 2009 IBM Rational Tau User Guide 2421



Chapter 89: Setting Up the Tool Environment
Project Properties

This Project Properties command will show a dialog describing the config-
uration management properties of the current Synergy project. The details of 
the dialog are defined by the Synergy version you currently are using. 

Project Merge

When performing parallel development it is often necessary to merge models 
that have been modified by several different developers. When using Syn-
ergy the most common way of working is the following:

The project (UML project in this case) is developed based on a specific re-
lease.

At regular intervals (like for example after successful builds) a baseline ver-
sion is created that contains all files used in the project.

Each developer has his own development project version in Synergy that is 
based on the baselined version of the project and in addition contains his/her 
recent changes.

A special project version is used for integration testing. This is also based on 
the baselined version of the project but is set up to contain the new version 
of all files that have been checked in since the last baseline.

The recommended strategy for merging is that all developers always do a 
merge where they get all changes from the integration project version before 
they check in their own changes.

To do this merge in IBM Rational Tau it is necessary to have access to the 
baseline project version and the integration project version.This is specified 
the following way:

• Choose the Project Merge command.

• In the dialog that appears, choose the project version to merge with and 
the common ancestor(s). In this dialog you can also choose the current 
task or create a task specific for the merge operation. Click Ok to con-
tinue.

• The Review differences dialog appears with Ancestor and Version 2 pre-
selected.
2422 IBM Rational Tau User Guide June 2009



Synergy Integration
• Perform the merge as usual. After the merge is performed and all con-
flicts resolved you can complete the task and thus check in all modified 
files

The history links of all files that have been modified by the merge will auto-
matically be updated to reflect the merge that was done.

Synchronize Project

The Synchronize Project command will synchronize your local Synergy 
workspace with the corresponding workspace on the Synergy server.

Update Project

The Update Project command will cause the resources in the current project 
to be updated with the latest versions from the Synergy server.

Synergy task commands 

Create Task

The Create Task command will pop up a dialog that makes it possible to 
create a new Synergy task. The dialog will prompt for the name of the new 
task.

Set Task 

The Set Task command will pop up a dialog that allows you to select be-
tween the Synergy tasks that are available for you.

Complete Task

If you select the Complete Task command the current task will be marked 
as completed in Synergy. This implies that all objects modified for this task 
automatically will be checked in.

Task Properties

The Task Properties command will show the properties of the current Syn-
ergy task in a modal dialog. The actual dialog that is shown is defined by the 
Synergy version you are running.
June 2009 IBM Rational Tau User Guide 2423



Chapter 89: Setting Up the Tool Environment
Current Task Box

The Current Task box in the tool bar will show the currently selected task. 
It will also in the pull-down menu make available the Synergy tasks that you 
recently have used and allow you to select a new task among these.

Synergy object commands 

Multiple selection is possible and commands applied will affect the selected 
files if possible. For example Check in will check in the Synergy objects cor-
responding to all selected elements. If the corresponding object was not 
checked out it is of course not checked in either.

Note
Object commands performed in a diagram will affect the file holding the di-
agram.

Create Object

If you choose the Create Object command the resource that contains the 
currently selected UML object will be inserted into the Synergy project that 
contains the current UML project. 

Only objects in the project directory or managed subdirectories in the project 
directory can be added to Synergy. 

Object Properties

This Object Properties command will show a dialog describing the config-
uration management properties of the resource that contains the currently se-
lected UML object. The details of the dialog are defined by the Synergy ver-
sion you currently are using. 

Object History

This command will show a graph describing the configuration management 
history of the resource that contains the currently selected UML object. The 
details of the graph are defined by the Synergy version you currently are 
using.
2424 IBM Rational Tau User Guide June 2009



Synergy Integration
Check Out Object

If you choose the Check Out Object command the resource that contains the 
currently selected UML object will be checked out from the Synergy server. 
This implies that it will be available for editing and (depending on its Syn-
ergy status) may be locked and thus not available for editing by other users. 

Check In Object

If you choose the Check In Object command the resource that contains the 
currently selected UML object will be stored on the Synergy server. This also 
implies that it will not be available for editing until it is checked out again. 

Undo Check Out Object

If you choose the Undo Check Out Object command the resource that con-
tains the currently selected UML object will be reverted to the latest version 
available on the Synergy server. This implies that it will not be available for 
editing until it is checked out again. 

Note
This command removes the checked out version of the object.If the checked 
out version is the initial version of an object the object is removed.

Synergy version handling commands 

Refresh Status

The command updates the Synergy status of each object for the active 
project. This is needed if the status has changed outside of IBM Rational Tau, 
for example directly in the Synergy user interface.

Merge UML Projects using Synergy

When performing parallel development it is often necessary to merge models 
that have been modified by several different developers. When using Syn-
ergy the most common way of working is the following:

The project (UML project in this case) is developed based on a specific re-
lease.
June 2009 IBM Rational Tau User Guide 2425



Chapter 89: Setting Up the Tool Environment
At regular intervals (like for example after successful builds) a baseline ver-
sion is created that contains all files used in the project.

Each developer has his own development project version in Synergy that is 
based on the baselined version of the project and in addition contains his/her 
recent changes.

A special project version is used for integration testing. This is also based on 
the baselined version of the project but is set up to contain the new version 
of all files that have been checked in since the last baseline.

The recommended strategy for merging is that all developers always do a 
merge where they get all changes from the integration project version before 
they check in their own changes.

To do this merge in IBM Rational Tau it is necessary to have access to the 
baseline project version and the integration project version. The simplest 
way to achieve this is that all developers have local work areas corresponding 
to these project versions. An alternative approach is that all developers share 
common network directories where the integration and baseline projects are 
stored.

Once you have access to your own project version, the baseline version and 
the integration version the merge is done the following way:

• Choose the command Tools->Merge

• In the merge dialog specify the baseline version of the project as the An-
cestor and the integration version of the project as Version 2. Note that 
it is the .ttp files that should be selected to do a project merge.

• Perform the merge as usual. After the merge is performed and all con-
flicts resolved you can complete the task and thus check in all modified 
files

The history links of all files that have been modified by the merge will auto-
matically be updated to reflect the merge that was done.

See also

“Merge versions” on page 141 in Chapter 6, Working with Models

“Configuration Management” on page 2415

“Multiple configuration management tools” on page 2429
2426 IBM Rational Tau User Guide June 2009



Generic Source Code Control Integration
Generic Source Code Control Integration

Integration with IBM Rational ClearCase

This section describes how to integrate Rational ClearCase with IBM Ra-
tional Tau. For further details see the Rational ClearCase user documenta-
tion.

The integration uses the Microsoft Source Control Interface and the com-
mands that are supported for ClearCase are the same as described in section 
“Source control commands” on page 2430.

Install IBM Rational ClearCase integration

Windows

The source control system that will be used is specified in a system registry 
When ClearCase is installed, this source control system registry key should 
be set automatically. However, if you have more than one configuration 
management tool installed locally, you may have to edit this value manually. 

1. Start IBM Rational Tau.

2. On the Tools menu, click Options. 

3. In the general tab, select Generic Source Control (SCC) in the Source 
control provider choice.

4. Click OK. 

The next time you start IBM Rational Tau, a new menu, Source Control, will 
be available from the Project menu. A new toolbar is also added as well.
June 2009 IBM Rational Tau User Guide 2427



Chapter 89: Setting Up the Tool Environment
UNIX

You need to set the register keys and the environment variables. You should 
be logged on with your normal user identity. If you run on a network with 
multiple UNIX versions available you have to make a set-up for each UNIX 
version.

1. Make sure that the ClearCase PATH environment variable is set cor-
rectly.

2. To set the register keys, run the script:

<installationsdir>/bin/setreg_ClearCase 

You only have to run the script the first time you will access ClearCase. 

3. To set the environment variables, run the script:

source <installationsdir>bin/setenv_ClearCase 

If you do not update your login file with this path, you need to re-run it 
each time you login.

4. Start IBM Rational Tau.

5. On the Tools menu, click Options. 

6. In the general tab, select Generic Source Control (SCC) in the Source 
control provider choice.

7. Click OK. 

The next time you start IBM Rational Tau, a new menu, Source Control, will 
be available from the Project menu. A new toolbar is also added as well.

Note
Before you can use the source control commands, the files in your project 
must be located in a ClearCase view. See the IBM Rational ClearCase doc-
umentation for further instructions.

See also

“Configuration Management” on page 2415

“Multiple configuration management tools” on page 2429

IBM Rational ClearCase user documentation
2428 IBM Rational Tau User Guide June 2009



Generic Source Code Control Integration
Multiple configuration management tools

Windows

If you have more than one Configuration Management (CM) tool installed, 
you must select which CM tool that you will use. This is determined by the 
value of the registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider]

If you want to change provider, you must change the value of this registry 
key.

The providers that you have installed are listed as values for the registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\Inst
alledSCCProviders]

Example 800: Registry key settings –––––––––––––––––––––––––––––––––––––––

Microsoft SourceSafe:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider]
"ProviderRegKey"="Software\Microsoft\SourceSafe\ccm"

IBM Rational ClearCase:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider]
"ProviderRegKey"="Software\Atria\ClearCase"

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

UNIX

If you have more than one Configuration Management (CM) tool installed, 
you must select which CM tool that you will use. 

You need to set the register keys and the environment variables. You should 
be logged on with your normal user identity. 

1. To change the register keys, run the script for your configuration man-
agement tool:

ClearCase: <installationsdir>/bin/setreg_ClearCase 

You only need to run the script the first time you will access your CM 
tool.
June 2009 IBM Rational Tau User Guide 2429



Chapter 89: Setting Up the Tool Environment
2. To change the environment variables, run the script for your configura-
tion management tool:

ClearCase:
source <installationsdir>bin/setenv_ClearCase 

If you previously have updated your login file with one of the paths 
above, just edit that file.

Source control commands

The basic commands and functions of your CM tool is available in a separate 
Source Control menu which is available in the Project menu. The commands 
are also available via the source control toolbar.

For a number of commands, a file dialog opens where you can select which 
files that the command should apply to. Depending on the command and the 
file or folder you selected before the command is issued, the listed files in the 
dialog may vary. For instance if you select the check out command on a 
folder, only files that are still checked in are listed in the dialog.

Note
The following commands are defined in the Microsoft SCC Interface docu-
mentation. All commands may not be available for your configuration man-
agement tool and the functionality of the commands may vary. Your config-
uration tool may also add commands and toolbar buttons that are unique 
for that configuration management tool. They are not listed here.

Get latest version

This command retrieves the latest copy of the file from the source control 
server and copies it to your computer. It is still read-only. If you are working 
in on a project with more than one team member, update your local copies 
frequently to incorporate changes made by others.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Get Latest 
Version. The file selection dialog opens.

3. Select the files you want to update and press OK.
2430 IBM Rational Tau User Guide June 2009



Generic Source Code Control Integration
Check out

This command retrieves the latest version of a file or folder from the source 
control server and reserves the file or folder for you. The file is copied to your 
computer and the status changes from read-only to read/write. Unless you 
allow multiple check outs, the file is locked on your source control server.

Use CTRL + ENTER for line breaks in the comment field. 

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Check Out. 
The file selection dialog opens.

3. Select the files you want to check out and press OK.

Note
The file or folder will only be automatically updated to its latest version be-
fore check out if the option “Automatically update files” is enabled. If this 
option is disabled you must yourself update the file or folder before check 
out. Some CM systems may also allow you to check out a file from a version 
other than the latest (for example to create a branched version).

Check in

This command copies your local version to the source control server as the 
latest version of the item. The status of the item changes from read/write to 
read-only. It is now possible for other users to check out the file. If you have 
not made any changes to the item you should undo the check out rather than 
check in the item.

Use CTRL + ENTER for line breaks in the comment field. 

1. Make sure that you have saved your files.

2. Click the file or folder in the File View.

3. On the Project menu, point to Source Control and click Check In. The 
file selection dialog opens.

4. Select the files you want to check in and press OK.

Elements that are checked in and therefore not editable are marked with a 
Gray bar between the element symbol and the element name. The bar does 
not relate to if the file that the element belongs to is writable, it is an internal 
flag only.
June 2009 IBM Rational Tau User Guide 2431



Chapter 89: Setting Up the Tool Environment
Undo check out

This command returns the item to the source control server. No changes are 
saved. This is the command you should use if you have not made any changes 
to a file that you have checked out.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Undo Check 
Out. The file selection dialog opens.

3. Select the files you want to undo the check out and press OK.

Add to source control

This command adds the item to the source control server.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Add to source 
Control. The file selection dialog opens.

3. Select the files you want to add and press OK.

Note
If you selected to add the project file, all files in the project will be listed in 
the file selection dialog. 

Note
The underlying source control provider may impose restrictions on the files 
added to source control that can cause the “Add to source control” opera-
tion to fail. Common restrictions relate for example to the file location, file 
names and user privileges. Refer to the documentation of your source con-
trol provider for detailed information.

Remove from source control

This command allows you to remove files and folders from the source con-
trol server. You cannot remove entire projects or solutions with this com-
mand. See your source control documentation for further instructions.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Remove from 
source Control. The file selection dialog opens.

3. Select the files you want to remove and press OK.
2432 IBM Rational Tau User Guide June 2009



Generic Source Code Control Integration
Show history

A configuration management tool keeps a record for all versions of items that 
you have added to the source control server. This command allows you to list 
the history record for one file at a time.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Show History.

Show differences

This command allows you to show the differences between your local copy 
of an item and the latest version on the source control server. This command 
can only be applied to one file at a time.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Show Differ-
ences.

Source control properties

This command displays the properties of the selected item. The dialog that 
opens is tool dependent.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Source Control 
Properties. Your configuration management tool displays the properties 
of the item.

Refresh status

This command updates the status of the selected items from your configura-
tion management tool. This is a useful command if you have done operations 
on the files directly in your configuration management tool. If you refresh the 
project file, (*.ttp), that status of all files in the project will be refreshed.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Refresh Status.
June 2009 IBM Rational Tau User Guide 2433



Chapter 89: Setting Up the Tool Environment
Execute CM tool

This command invokes the Configuration Management (CM) tool that is 
connected to IBM Rational Tau. The CM tool that is connected is dependent 
on the settings of the registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider]

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Source Con-
trol.

Import module

This command allows you to find files that are stored on your source control 
server but are not part of the project you are working with. The files that you 
find are added to your local computer and inserted in your project.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Import from 
Source Control.

Note
Import from Source Control is not used with ClearCase. 

Compare and Merge from a Source Code 
Control tool

This section describes how to launch IBM Rational Tau for compare and 
merge operations on versions of an u2 file selected in the version browser of 
a Source Code Control tool. 

Detailed setup instructions are provided for Synergy and IBM Rational 
ClearCase.

Note
There is only support for compare and merge operations on u2 files.

Setup Synergy

To be able to launch IBM Rational Tau from Synergy you need to:
2434 IBM Rational Tau User Guide June 2009



Compare and Merge from a Source Code Control tool
• Install the file type definition for IBM Rational Tau u2 files see IBM Ra-
tional Tau file type definitions.

• Setup compare and merge operations for your Synergy client.

• And if you already use Synergy for source control of IBM Rational Tau 
u2 files you may want to; change existing elements to the new object type 
if you haven’t used the enclosed definitions when creating the objects.

Setup compare and merge operations

The compare and merge tool are set by default in the ccm.properties file lo-
cated in the etc directory of your client installation for Windows and in 
.ccm.user.properties file in your home directory for UNIX.

• Windows
windows.tool.compare.tau_model  = "c:\\Program Files\\IBM 
Rational\\TAU\4.3\\bin\u2fileutility.exe" xcompare "%file2" 
"%file1"
windows.tool.merge.tau_model  = "c:\\Program Files\\IBM 
Rational\\TAU\4.3\\bin\\u2fileutility.exe" xmerge -base "%ancestor" 
-out "%outfile" "%file2" "%file1"

• UNIX
unix.tool.compare.tau_model  = .../bin/u2fileutility xcompare 
%file2 %file1
unix.tool.merge.tau_model  = .../bin/u2fileutility xmerge -base 
%ancestor -out %outfile %file2 %file1

Path can be excluded if the bin directory is in your path.

Note
Synergy requires double back slash separators on Windows.

Change existing elements to the new object type

If you already have IBM Rational Tau u2 files stored in Synergy you need to 
change the object type on these files. This is done with the change_type com-
mand, please see Synergy documentation for further information.

Change the object type on any u2 files already stored in the database using 
the command:

ccm change_type file_spec -type tau_model

Setup IBM Rational ClearCase

To be able to launch IBM Rational Tau from ClearCase you need to:
June 2009 IBM Rational Tau User Guide 2435



Chapter 89: Setting Up the Tool Environment
• Configure the ClearCase type manager.

• Create a new element type

• Optionally, setup ClearCase magic files for the new element type

• And if you already use ClearCase for source control of IBM Rational Tau 
u2 files you may want to; change existing elements to the new element 
type

Configure the ClearCase type manager

In ClearCase type managers are setup through a map file in the ClearCase 
client installation. Please see ‘cleartool man type_manager’ for further infor-
mation.

To install on Windows add the following lines to the end of the map file (lo-
cated in the directory lib\mgrs\map in the ClearCase home directory):

u2_manager construct_version ..\..\bin\zmgr.exe
u2_manager create_branch ..\..\bin\zmgr.exe
u2_manager create_element ..\..\bin\zmgr.exe
u2_manager create_version ..\..\bin\zmgr.exe
u2_manager delete_branches_versions..\..\bin\zmgr.exe
u2_manager xcompare C:\Program 
Files\IBM Rational\TAU\4.3\bin\U2FileUtility.exe
u2_manager xmerge C:\Program 
Files\IBM Rational\TAU\4.3\bin\U2FileUtility.exe
u2_manager get_cont_info ..\..\bin\zmgr.exe

To install on UNIX do as follows:

• Move to lib\mgrs in the ClearCase home directory

• Copy the z_whole_copy directory to u2_manager preserving the 
links, e.g. use tar to copy the directory

• Move to u2_manager

• Remove links named compare, xcompare, merge and xmerge

• Create new symbolic links to xcompare and xmerge in the Tau bin di-
rectory

Create a new element type

ClearCase creates new element types using the mkeltype command, please 
see 'cleartool man mkeltype' for further information.

To create a new element type for IBM Rational Tau u2 files do as follows:

• Move to the VOB you want to create the new element type for
2436 IBM Rational Tau User Guide June 2009



Compare and Merge from a Source Code Control tool
• Create the new element type with the command

cleartool mkeltype -supertype file -manager u2_manager 
tau_model

where tau_model is the name for the new type.

Note: You can use the -global flag to update several VOBs in one operation.

Setup ClearCase magic files for the new element type

When a new element is created with mkelem, the option -eltype can be used 
to specify what type the element should be. With the use of magic files new 
elements get the correct element type automatically (without the use of 
-eltype). Please see 'cleartool man cc.magic' for further information.

Add the following line to the default.magic file (<clearcase home 
dir>\config\magic\default.magic)

tau_model text_file : -name “*.[uU]2”;

Note: The line must be inserted above the lines

# catch-all, if nothing else matches
compressed_file : -name "*" ;

Change existing elements to the new element type

If you already have IBM Rational Tau u2 files stored in ClearCase you need 
to change the element type on these files. This is done with the chtype com-
mand, please see 'cleartool man chtype' for further information.

Change the element type on any u2 files already stored in the VOB using the 
command:

cleartool chtype -force tau_model <file>

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
June 2009 IBM Rational Tau User Guide 2437



Chapter 89: Setting Up the Tool Environment
Directory Server
Tau supports registering a Tau project as a facility in IBM Rational Directory 
Server (RDS).

By having a Tau project registered as a RDS facility the following features 
are made available:

• Support for External relationships. Relationships can be created between 
elements between other tools integrated with RDS. Tau will be available 
for relationships created from other tools integrated with RDS.

• Projects are made available to be displayed in IBM Rational Team 
WebTop.

Publishing a Tau project

Publishing of a project can be done via the Link menu by selecting Options. 
Options for setting up the connection to RDS are available in the External re-
lationship property page.

Note
If a workspace contain multiple projects, the current selection will deter-
mine which project will be published.

The property page have fields for entering the RDS server host and port. 
Make sure these values are set up before publishing a project.

Once the RDS information is set up press the Publish Project... button and 
a new dialog is displayed.

The information added to this dialog is the information that will be available 
for RDS to locate a Tau facility. The Published project name setting is the 
name of which the facility will be known. The Tau server host and port will 
be where other tools will try to access Tau from.

By default, the name of the project is used as the name of the facility. Tau 
server port is by default set up to the port of the currently running instance of 
Tau.

The Server mode command line switch field display the command line 
switches that can be used to start up Tau in a headless mode on the correct 
port once the project is published.
2438 IBM Rational Tau User Guide June 2009



Directory Server
It is possible to store the published project information in the project file by 
checking the Store RDS connection information in project file, making it 
available to all users once they have the same project file. Alternatively, each 
user can enter the RDS server information and the published name of the 
project themselves. The information would then be stored in a local .u2x file 
not part of the project.

Synchronizing external relationships

When a project has changed on the Tau servers file system, a synchronization 
command is available to make sure that RDS is notified of any changes on 
elements having an external relationship associated with them. Typically an 
element can be deleted from the project making the external relationship ob-
solete.

Synchronization can be done via the Link menu by selecting Options and 
then selecting the External Relationship property page. Pressing the Syn-
chronize External Relationships button will synchronize the external rela-
tionships.
June 2009 IBM Rational Tau User Guide 2439



Chapter 89: Setting Up the Tool Environment
2440 IBM Rational Tau User Guide June 2009



90
Working with links

This chapter describes how to work with links in IBM Rational Tau. A link 
is a relation between two elements. Links can be created between any kind 
of elements, for example between two model elements, between a model el-
ement and a requirement in DOORS or from a model element to an external 
web page.

There are three different kinds of links:

• Hyperlink

• Dependency link

• External relationship

The Managing links section describes how to create, delete and navigate 
links.
June 2009 IBM Rational Tau User Guide 2441



Chapter 90: Working with links
Hyperlink
A hyperlink relates two elements using a standard Uniform Resource Loca-
tion (URL), just like a link on a web page. The target of the link can therefore 
be anything that can be identified by a URL, for example a diagram, a file in 
the file system or a web page.

The format of a IBM Rational Tau URL is:

tlog://<project_path>:plugin_ident:string_ident

It consists of the following parts:

• <project_path> is the windows path of the project containing the ob-
ject.

• plugin_ident is the IBM Rational Tau internal identification of the 
IBM Rational Tau add-in which owns the object.

• String ident is a string representing the object for a given project of a 
given plug in.

Example 801

This example illustrates a URL obtained from a class in a typical UML 
model:

tlog://<C:\MyModels\LinksProj\LinksProj.ttp>:u2:iOepWITH4FFLCghYEIWspKrL

The project is called LinksProj and it contains a class called Class1. The u2 
part of the URL identifies the class as a UML element. The class itself is rep-
resented by its GUID, iOepWITH4FFLCghYEIWspKrL.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Visualization

Outgoing hyperlinks are indicated by a blue underline on the element name, 
whether it appears in the workspace window or in a diagram.

Incoming hyperlinks are indicated by a small blue triangle next to the name 
of the element in the workspace window, and in addition by a dashed blue 
underline in diagrams.
2442 IBM Rational Tau User Guide June 2009



Hyperlink
Navigating hyperlinks

Navigating hyperlinks within Tau

Hyperlinks can be navigated in diagrams by holding down Ctrl and clicking 
the text with the dashed blue underline.

Navigating hyperlinks in external applications

When navigating a URL in an external application, for example a web 
browser, the expected behavior is to start Tau, load the model containing the 
element and locate it. Due to technical limitations this is not possible on all 
platforms.

Missing targets

Depending on the set of currently loaded project(s) in your workspace, the 
target of a link can be missing.

If a missing target refers to a IBM Rational Tau element, an error message is 
issued when navigation fails.

Note
The link source can not be missing, as the source is the carrier of the link in-
formation.

Creating hyperlinks into a Tau model

Each element in IBM Rational Tau has a unique URL and can be linked to 
from an external source, such as a web page.

To obtain the URL from an element:

• Select the element in the workspace window or in a diagram

• Right-click and select Copy URL from the context menu

• Paste the URL text in the desired application
June 2009 IBM Rational Tau User Guide 2443



Chapter 90: Working with links
Dependency link
A dependency link is relates two elements using a UML Dependency. It can 
be used to relate any UML elements. The main advantage of a dependency 
link is that it is represented using plain UML and can be created, edited, de-
leted and visualized in diagrams.

Note
All dependencies are not considered to be dependency links. Only depen-
dencies with certain stereotypes are. These are described in Requirement 
relations. It is possible to create any dependency using the link commands, 
but they will not have link indicators or be present in the Links dialog unless 
they are requirement relations.

A dependency link can refer to its source and/or target in two different ways: 
normal or symbolic.

In the normal case, the client and supplier of the dependency simply refers to 
the source and target elements. The reference can be set up using names (po-
tentially qualified) or GUIDs. 

In the symbolic case, the dependency is annotated with additional informa-
tion consisting of symbolic references (URLs) to the source and target. The 
client and/or supplier in this case refers to a predefined element called 
ExternalObject. The symbolic references makes it possible to use depen-
dency links to/from any UML element and to external elements, for example 
a requirement in DOORS.

Visualization

Outgoing dependency links are indicated by a small purple triangle next to 
the name of the element in the workspace window and on symbols.

Incoming dependency links are indicated by a small orange triangle next to 
the name of the element in the workspace window and on symbols.

See also

Requirement relations
2444 IBM Rational Tau User Guide June 2009



External relationship
External relationship
An external relationship is a formal connection between an element in a Tau 
project and an object outside Tau - the external object. This definition is not 
meant to exclude the possibility that these "external objects" could not also 
be in the same Tau project.

An external relationship is bi-directional. 

Visualization

Outgoing external relationships are indicated by a small purple triangle next 
to the name of the element in the workspace window and on symbols.

Incoming external relationships are indicated by a small orange triangle next 
to the name of the element in the workspace window and on symbols.
June 2009 IBM Rational Tau User Guide 2445



Chapter 90: Working with links
Managing links
Links can be created, edited and deleted in several different ways by using 
the Links menu, the Links toolbar the Links dialog or the Link sub-menu in 
the context menu. The Link commands section contains a list of all available 
commands.

Dependency links can also be edited directly in the UML model.

When working with DOORS dependency links can also be created using 
drag’n’drop between elements in Tau and elements in DOORS. Compare 
section Creating Links.

Creating links

Links can be created in several different ways. Using drag & drop is usually 
the most convenient way, but if there are multiple targets, or the target is not 
yet located, manual link creation has to be used. 

Creating a link using the toolbar

To create a link using the Links toolbar:

• Select the correct link type from the Current link kind list in the Links 
toolbar.

• Select the source element(s)

• Click Start Link in the Links toolbar, or use the shortcut Ctrl+K.

This makes the selected element(s) become active link sources, and they 
will be remembered until the link is created or until they are cleared.

If the link is a Hyperlink, the Insert Hyperlink dialog is opened to allow 
specification of external hyperlinks.

• Select the target element(s)

• Click Make link from start in the Links toolbar, or use the shortcut 
Ctrl+L.

Links are now created from the selected source element(s) to the selected 
target element(s).

If the link type is Dependency link, the Stereotypes dialog is displayed once 
for each link to allow specification of the link type. The previous choice in 
the Stereotypes dialog is remembered during a IBM Rational Tau session.
2446 IBM Rational Tau User Guide June 2009



Managing links
Note
If the By default, make hyperlink to a workspace element option is enabled 
the Insert Hyperlink dialog is not displayed during link creation.

Creating a link using drag & drop

To create a link using drag & drop:

• Select the correct link type from the Current link kind list in the Links 
toolbar.

• Select the source element(s)

• Press the right mouse button and drag the element onto the target ele-
ment.

• Release the mouse button. Select Link from the context menu.

Note
In some views drag and drop using the left mouse button has no semantic 
meaning. In these views links can also be created using left button drag and 
drop. The context menu is not need in this case. The tabs in the Output 
Window are examples of such views.

Creating links in diagrams

Dependency links can be drawn in diagrams since they’re represented by de-
pendencies. To create a dependency link in a diagram:

• Select the link source and use the appropriate line handle to create a de-
pendency link

• If desired or needed apply a stereotype to the dependency to make it a de-
pendency link. A list of dependency link types can be found in the Re-
quirement relations section.

Creating multiple links from the same source

The source element(s) of a link can be locked to create many links from the 
same element(s) without having to reselect it each time.

To lock the link source element(s):

• Select the correct link type from the Current link kind list in the Links 
toolbar.

• Select the source element(s)
June 2009 IBM Rational Tau User Guide 2447



Chapter 90: Working with links
• Click Start Many Links in the Links toolbar

This makes the selected element(s) become active link sources, and they will 
be remembered until they are cleared by clicking Clear start links.

To create a link from the source element(s) to one or more target elements:

• Select the target element(s) and click Make link from start, or use the 
shortcut Ctrl+L.

This can be repeated any number of times to create links to many different 
targets from the same source. To clear the source element(s), click Clear 
start links.

Automatic link creation

There is a special mode for link creation called Automatic link creation. 
This mode allows you to automatically create links from a pre-selected 
source to all modified elements.

When this mode is active a link will be created as soon as an element is mod-
ified. The source is the pre-selected source element, and the target is the mod-
ified element.

To activate the automatic link creation mode:

• Enable the option Automatically create links between modified objects 
and active link end

• Select the link source(s) and click Start Many Links

To de-activate the automatic link creation mode:

• Click Clear start links

Deleting links

To delete one or more links from a given element:

• Select the element that is the source or target of the link

• Click Edit links in the Links toolbar

• Select the correct link type from the Active link drop-down list

• Set the Direction to Outgoing or Incoming depending on if you se-
lected the target element or the source element.
2448 IBM Rational Tau User Guide June 2009



Managing links
• Select the target element in the list dialog and click Delete

Links can also be deleted by using the Links context menu or the Links menu 
in the main menu bar.

If the link is a dependency link the link can be deleted directly from the 
model. In the model view just select the dependency representing the link and 
hit the Del/Delete key. If the dependency is visualized in a diagram, select 
the line and execute the Delete from Model command.

Navigating a link

To navigate a link in the workspace window or in a diagram:

• Right-click the link indicator symbol

• Select the correct link type from the context menu

• Select the link target element or URL

The result of navigating a link is different depending on the link type and the 
installed integrations. The default behavior is to select the element in the 
workspace window, and if possible also highlight it in a diagram. Some inte-
grations may launch an external application to show the target.

See also

Navigating hyperlinks

Link commands

This section contains a full list of the commands available on links. Note that 
add-ins and integrations may add additional commands. The commands can 
be accessed from the Links menu, the Links toolbar, the Links dialog or the 
Links sub-menu in the context menu.

Start Link (CTRL+K)

Starts creation of a link and specify a link source. See Creating links.

Start Many Links 

Starts creation of many links and specify the link sources. See Creating links.
June 2009 IBM Rational Tau User Guide 2449



Chapter 90: Working with links
Make Link from Start (CTRL+L)

Ends link creation and specifies the link target(s). See Creating links.

Copy URL

Copies the hyperlink URL of the selected element as text to the clipboard. 
The text can be pasted and used in any application supporting URLs to nav-
igate to the element.

Display Outgoing Links 

This command will produce a list in the link tab of the Output window of the 
links going out from the selected entity. 

Display Incoming Links 

This command will produce a list in the link tab of the Output window of the 
links coming in to the selected entity. 

Edit Links

Allows manipulation of both in- and outgoing links of the selected element. 
See Links dialog.

Link Options

View and/or edit the link options. See Link options, Hyperlink options and 
External relationship options.

Links menu

The Links menu is a part of the main menu in Tau, and contains most link 
commands.

Links toolbar

The Links toolbar contains most link commands and is often the most con-
venient way to manipulate links. 

The most important use of the link toolbar is to set the link kind using the 
Current link kind control.
2450 IBM Rational Tau User Guide June 2009



Managing links
Current link kind

Specifies the link kind used during link creation. The correct kind must be 
selected before specifying the link source(s).

Available link kinds are:

• Hyperlink

• Dependency link

• External relationship

Note
The list of available link kinds depends on the platform and the installed in-
tegrations.

Links dialog

The links dialog can be used to view or delete the in- and outgoing links of 
the selected elements. Its primary purpose is to delete links.

To show the Links dialog:

• Select the element§

• Click Edit links in the Links toolbar.

The Links dialog shows all the objects connected with a selected object. An 
object that is not loaded into IBM Rational Tau is referred to by its URL in-
stead of its name. 

The Active link drop-down list controls which type of links that are shown. 
only one type can be active.

The Direction radio-buttons controls if outgoing or incoming links are dis-
played.

The Delete button deletes the selected link(s).

Insert Hyperlink dialog

This dialog allows you to search for a target for a link. The following is 
present in the dialog. 

• Link to: text field allowing a selection if the link is external (web page 
or file) or within the elements of the current workspace. 
June 2009 IBM Rational Tau User Guide 2451



Chapter 90: Working with links
• Text to display will be visible through the link output tab or the Links 
dialog, in the name column. 

• Unique Resource Location of the hyperlink target: text field allowing 
you to specify a web page location directly.

• List for selection of recently used files, web pages and links, with radio 
buttons for Recent files, Browsed pages and Inserted links to be dis-
played in the field. 

Link options

IBM Rational Tau offers you the possibility to customize link creation be-
havior. You can change link options via the Tools menu by selecting Options 
or clicking on the Display Link Options toolbar button.

Active link end is an active target, not an active source

If this option is disabled, then when you use automatic creation of links, you 
will create links from your active link end to the other models.

If this option is enabled, then you will create links to your active link end 
from the other models.

Automatically create links between modified objects and active link end

If this option is enabled, then when you select an active link end, all your 
modifications will be linked to this link end.

Show link indicators

If this option is enabled, IBM Rational Tau will show the link markers.

Use requirement as target when creating links by drag-and-drop

This option affects the link direction when creating links using drag-and-
drop.

When this option is enabled (default), links will be created form the model 
element to the requirement when you drag-and-drop a requirement to a 
model element as this is normally the desired direction. 
2452 IBM Rational Tau User Guide June 2009



Managing links
Hyperlink options

IBM Rational Tau offers you the possibility to customize link creation be-
havior via the Tools menu by selecting Options or clicking on the Display 
Link Options toolbar button.

By default, make hyperlink to a workspace element

When the Insert Hyperlink dialog is started this option controls the start set-
ting of the Link to text field.

When checked, the application allows you to select the target of your hyper-
link within your workspace. Otherwise, you are prompted to specify another 
type of target, such as an existing file or a web page.

External relationship options

Options related to the external relationship link type can be accessed via the 
Tools or Link menu by selecting Options or clicking on the Display Link Op-
tions toolbar button. 

Enable External Relationship support

Check this option to enable external relationship support.

RDS server information

To be able to use the external relationship link type, it is necessary to set up 
a connection to an IBM Rational Directory Server (RDS).

Enter the name of the published Tau project in the Published project name 
field. This name is typically stored in the project file or distributed by a Tau 
server administrator.

The Host and Port fields should hold the RDS server location.

RDS server administration

The administration of a RDS server is typically done by the administrator of 
the Tau server.
June 2009 IBM Rational Tau User Guide 2453



Chapter 90: Working with links
See also

“Directory Server” on page 2438
2454 IBM Rational Tau User Guide June 2009



91
Visual Studio Integration

The IBM Rational Tau Visual Studio Integration provides an integration to 
the Microsoft Visual Studio 2008 IDE. The integration consists of a number 
of commands added to both IBM Rational Tau and Visual Studio in order to 
facilitate features such as seamless two-way navigation between UML 
models and generated code.

Visual Studio projects can be created from existing UML projects, and pop-
ulated with generated source files.

The Visual Studio Integration works both for the C++ and C# languages. 
Most functionality is the same regardless of which of these languages that is 
used. Functionality that is specific to a certain language is explicitly marked 
in this document.
June 2009 IBM Rational Tau User Guide 2455



Chapter 91: Visual Studio Integration
Installing the Integration
The Visual Studio integration consists of two add-ins:

• A IBM Rational Tau add-in called MSVS8Integration

• A Visual Studio add-in called TAUG2IntegrationAddin

These add-ins have to be correctly activated in order for the integration to 
work properly. 

Activate the Visual Studio add-in

To activate the TauG2IntegrationAddin in Visual Studio it must first be 
installed:

1. Make sure that Visual Studio is properly installed and not running.

2. Install the add-in from your Start Menu; point to All Programs, select 
IBM Rational, IBM Rational Lifecycle Solution Tools, IBM Rational 
IBM Rational Tau 4.3, Install Microsoft Visual Studio 2008 integra-
tion. Alternatively, execute the specific Setup.exe for the add-in typi-
cally located in:

C:\Program Files\IBM\Rational\TAU\4.3\integrations\MSVS8
3. Follow the instructions of the setup program.

The add-in will be automatically activated the next time Visual Studio is 
started. You can see that the add-in is activated by the presence of a IBM Ra-
tional Tau menu in Visual Studio.

Note
Commands connected to Visual Studio menu controls are stored in the envi-
ronment and not in the add-in. In order to install new versions or recover 
from a corrupt command environment, do the following:
1) Uninstall the TAUG2IntegrationAddin via Add/Remove programs.
2) Execute devenv /setup from the Visual Studio command prompt.
3) Reinstall the TAUG2IntegrationAddin.
2456 IBM Rational Tau User Guide June 2009



Using Visual Studio with IBM Rational Tau
Activate the IBM Rational Tau add-in

The MSVS8Integration add-in must be activated for every project that you 
want to use with Visual Studio. To activate the Visual Studio support:

1. Select Customize from the Tools menu. 

2. Click the Add-Ins tab and check the MSVS8Integration add-in.

3. Click Close.

You can see that the add-in is activated by the presence of a Visual Studio 
menu in IBM Rational Tau.

The MSVS8Integration add-in can also be activated automatically when 
creating a new IBM Rational Tau project for C++ or C# code generation, by 
checking the “Enable MS Visual Studio Integration” checkbox in the New 
Project wizard.

Using Visual Studio with IBM Rational Tau

Connecting IBM Rational Tau and Visual Studio

In general you may have more than one instance of both IBM Rational Tau 
and Visual Studio running on your machine. Most integration commands re-
quire that a connection is established between one particular instance of IBM 
Rational Tau and one particular instance of Visual Studio. The connection 
procedure takes place automatically the first time you invoke such an inte-
gration command from either IBM Rational Tau or Visual Studio.

If the other tool has not been started yet it will be started automatically so that 
a connection can take place.

If at least one instance of the other tool is running a dialog will pop-up to let 
you decide which instance of the tool you want to connect to. In this dialog 
you also have the possibility to connect to a new instance of the tool.

If the connection should fail, make sure that the integration has been properly 
installed according to the instructions in Installing the Integration.

Workflow

The IBM Rational Tau Visual Studio Integration enables the following work-
flow for both C++ and C# application development:
June 2009 IBM Rational Tau User Guide 2457



Chapter 91: Visual Studio Integration
• You develop a UML model in IBM Rational Tau intended for C++ or C# 
code generation. After source code has been generated from the model 
the integration lets you create a corresponding Visual Studio project. 
This project can then be built and debugged in Visual Studio.

• Once a Visual Studio project has been created you can work with the ap-
plication in either IBM Rational Tau or Visual Studio or in a combination 
of these environments. Changes you make to the model are generated to 
the code by the IBM Rational Tau C++ or C# code generator, and 
changes you make to the code can be propagated to the model using the 
model update (roundtrip) mechanism of IBM Rational Tau.

• Navigation commands in both IBM Rational Tau and Visual Studio 
make it possible to navigate between the C++ or C# source code and the 
UML model in both directions.

The integration also provides certain commands that help you when debug-
ging the generated application in Visual Studio. For example, it is possible to 
trace the execution in IBM Rational Tau automatically during debugging.

For C++ the tracing can be done in a IBM Rational Tau UML sequence di-
agram. It is also possible to switch to the Visual Studio debugger when the 
application has stopped at a breakpoint in the IBM Rational Tau UML de-
bugger. During debugging navigation to the model can also be automated.

The UML model you develop with IBM Rational Tau does not have to be 
created from scratch. It is common that parts of the C++ or C# application 
consists of legacy code that should be reused. You can import such code into 
IBM Rational Tau to use it from the UML model. You can then choose to 
either regenerate the code using the C++ or C# code generator, or leave the 
code as is and just access it from the UML model.

The navigation features of the Visual Studio integration will work both for 
code that has been imported to IBM Rational Tau or generated from IBM Ra-
tional Tau. 

See also

C/C++ Import

Importing Existing C# Code
2458 IBM Rational Tau User Guide June 2009



Integration Commands
Integration Commands

IBM Rational Tau Commands

Create/Update Visual Studio project

This command is used both for creating a new Visual Studio project from an 
existing UML model, and for updating an existing Visual Studio project with 
changes in the UML model.

To create a new Visual Studio project from an existing UML model:

1. Generate C++ or C# code for the model (or from part of the model).

2. Select an entity in the Model View that is part of the model you have gen-
erated code for.

3. Select Create/Update Visual Studio C++/C# Project from the Visual 
Studio menu.

The kind of project that is created is different for C++ and C#:

• For C++ a project for building a console application will be created. 

• For C# Visual Studio will ask you to specify which kind of project you 
want to create. Select a project kind that is appropriate for the application 
you are developing. You may also decide if the project shall be inserted 
in a new solution, or added to the currently open solution.

The new Visual Studio project will then be populated with all generated 
C++/C# files in the model. Appropriate project settings will also be set-up for 
the created project.

Important!
Visual Studio has an option Projects and Solutions - General - Save new 
projects when created. This option must be enabled for this command to 
work. With this option disabled the created project will not be saved to disk 
which means IBM Rational Tau does not know where it is located.

You should not mix C# and C++ development in the same IBM Rational Tau 
model. Use separate IBM Rational Tau projects for the C# and C++ parts of 
the application.
June 2009 IBM Rational Tau User Guide 2459



Chapter 91: Visual Studio Integration
Note
The Visual Studio C# project wizard you choose may create files you do not 
need. You should delete these files from the project. For example, if your 
model contains a class with a static Main operation, you should delete the 
file generated by the wizard that contains the corresponding C# Main 
method.

The next time you invoke the Create/Update Visual Studio C++/C# 
Project command the project will only be updated to reflect any changes 
made in the model, such as adding new source files. Note, however, that files 
will never be removed from the project, even if those files are no longer gen-
erated from the model. You have to decide manually which files to remove 
from the project.

Open Visual Studio project

This command locates the Visual Studio project to which the IBM Rational 
Tau model is connected. It can be useful if the Visual Studio solution con-
tains several projects, or if you have multiple instances of Visual Studio run-
ning.

Locate an element 

When C#/C++ code has been generated for a model it is possible to navigate 
to the source code location in Visual Studio for a selected model element.

For C# this command is called Locate in Visual Studio project.

For C++ elements often end up in two files, a header file and an implemen-
tation file. There are therefore two separate commands; Locate in header 
file and Locate in implementation file.

When an element has been located in a source file, that file will be opened in 
Visual Studio and the cursor will be positioned at the location of the element 
within the file.

Another way to navigate to generated C#/C++ source is to use the Go to 
source command in the context menu for a selected element in the Model 
View. That command is enabled if the selected element has at least one rep-
resentation in the generated code. Normally the source file is opened in the 
IBM Rational Tau text editor, but when the Visual Studio integration is en-
abled it will instead open the file in Visual Studio.
2460 IBM Rational Tau User Guide June 2009



Integration Commands
Transfer control to target debugger

This command is available for C++ only.

When debugging a generated C++ application with IBM Rational Tau using 
the UML debugger, control can be transferred to the Visual Studio debugger 
when the IBM Rational Tau debugger is in break mode. This command is 
available in the form of a tool button in the IBM Rational Tau Model Verifier 
toolbar. 

Control is transferred to the Visual Studio debugger by setting a breakpoint 
on the next executable statement in the generated code, and then issuing a 
Run command in the IBM Rational Tau debugger.

Visual Studio Commands

Locate in IBM Rational Tau

This command can be used in order to navigate to an element in the IBM Ra-
tional Tau model from a generated C#/C++ source file that is open in Visual 
Studio.

1. Select an element in the Visual Studio code editor by placing the cursor 
on it.

2. Select Locate in IBM Rational Tau from the IBM Rational Tau menu 
or tool button.

When the element has been located in the model, it will be selected in IBM 
Rational Tau’s Model View. If it has a presentation element in a diagram that 
diagram will also be opened.

It is possible to automate the navigation to IBM Rational Tau when debug-
ging the generated application, so that when hitting a breakpoint or issuing a 
debugger execution control command (such as Step or Run To Cursor), a rel-
evant model element will be located in IBM Rational Tau. In order to use this 
mode, turn on Autolocate in Visual Studio. 
June 2009 IBM Rational Tau User Guide 2461



Chapter 91: Visual Studio Integration
Connection Status

This command can be used to show which instance of IBM Rational Tau the 
Visual Studio add-in is connected to. If no connection has been established 
yet, the dialog can be used to set-up such a connection. See Connecting IBM 
Rational Tau and Visual Studio for more information about the connection 
between IBM Rational Tau and Visual Studio.

Create/Update Tau Project

Use this command to update the IBM Rational Tau project with changes 
made in C#/C++ source code.

Note
This command currently only supports model update for existing files. If 
new files have been added to the Visual Studio project these has to be im-
ported in the IBM Rational Tau model as usual.

Autolocate

When Autolocate is enabled, every time the Visual Studio debugger enters 
break mode (after hitting a breakpoint or stopping after a debugger execution 
control command such as Step or Run To Cursor) IBM Rational Tau will 
highlight the model element which corresponds to the current position in the 
C#/C++ source code.

The Autolocate mode works best if the screen area is sufficiently large so that 
the IBM Rational Tau and Visual Studio applications can be placed side by 
side.

IBM Rational Tau Trace

This command is available for C++ only.

The IBM Rational Tau Trace command allows the execution of a generated 
C++ application to be traced. Tracing can be done either to a log file, or to a 
IBM Rational Tau sequence diagram. The latter requires that IBM Rational 
Tau is running during tracing. If you decide to trace to a log file you may later 
visualize that file as a IBM Rational Tau sequence diagram using the Import 
- Import Trace command in IBM Rational Tau.
2462 IBM Rational Tau User Guide June 2009



Integration Commands
Trace functionality requires that instrumentation is enabled for the build ar-
tifact before generating C++ code from IBM Rational Tau. See Enable in-
strumentation for more information on how to generate an instrumented C++ 
application.

To activate tracing:

1. From the IBM Rational Tau menu select IBM Rational Tau Trace.

2. Select if you want to trace in the form of a log file or a sequence diagram.

Note
Since the trace functionality is embedded in the generated executable, and 
not in the Visual Studio environment, changes to the trace settings can only 
be done during debugging sessions. Changes must thus be made when the 
execution is in break mode.
June 2009 IBM Rational Tau User Guide 2463



Chapter 91: Visual Studio Integration
2464 IBM Rational Tau User Guide June 2009



92
Printing

This chapter describes different ways of printing a diagram and how to 
change print settings.
June 2009 IBM Rational Tau User Guide 2465



Chapter 92: Printing
Adding and Removing Printers (UNIX)
The MainWin Control Panel allows you to make your printers available in 
the IBM Rational Tau print dialog.

To open the MainWin Control Panel:

• From the terminal window, type:
<installation directory>/bin/mwcontrol 

The control panel opens.

To add a printer:

1. When the control panel is open, click Printers. The Printer window 
opens.

2. Click Add New Printer and follow the instructions in the add printer 
wizard that opens.

3. When you have completed the wizard, close the printer dialog and the 
Control Panel.

4. Restart IBM Rational Tau.

To remove a printer:

1. When the control panel is open, click Printers. The Printer window 
opens.

2. Right-click the printer you want to remove and click Delete.

3. Close the printer dialog and the Control Panel.

4. Restart IBM Rational Tau.
2466 IBM Rational Tau User Guide June 2009



Printing Diagrams
Printing Diagrams
There are several ways of printing diagrams. You can print single diagrams 
from:

• The diagram itself.

• The Model View.

• The Print Manager.

• The diagram preview window.

You can print multiple diagrams from:

• The Model View.

• The Print Manager.

Note
Using a white/transparent background for an Icon image may result in a 
black background when printing. This is related to a Windows postscript 
driver PS level 2. Changing to PS level 1 may remove the situation. Using a 
colored background or frame will also prevent this.

Adding and setting up printers (UNIX only)

The procedure how to add and set up printers for use from IBM Rational Tau 
on UNIX hosts is done with the MainWin Control Panel, described in detail 
in the Installation Guide. 

Print settings

To change print settings:

1. On the File menu, select Print Setup.

2. In the Print Setup dialog, select printer, paper size and other properties 
allowed for the selected printer. The paper size and orientation will be 
used to determine the default diagram size in the editors. 
June 2009 IBM Rational Tau User Guide 2467



Chapter 92: Printing
3. Click OK.

1. Print files

To print a file:

1. Open the file that you want to print, and place the cursor somewhere in 
the text.

2. On the File menu, click Print or click the print icon in the toolbar.

3. In the Print dialog, change settings according to your preferences.

4. Click OK.

Select diagrams to be printed

All diagrams in your model are available in the Model View. The Print Man-
ager allows you to select which diagrams to print. To open the Print Manager, 
click Print Manager, on the File menu.

The diagrams that are included in the container that is active in the Model 
View, are listed in the Print Manager. Use the Track Selection button if you 
want to change container in the Model View. If the button is not pressed in, 
the contents in the Print Manager is locked to the first selection you made.

You can also decide which type of diagrams you want to print by checking 
or clearing the diagram type check boxes in the Filter area.

You can calculate the number of pages to print by clicking Pages in the Print 
window.

Figure 291: Track selection button, when not selected
2468 IBM Rational Tau User Guide June 2009



Printing Diagrams
Preview of diagrams

To get a preview of a diagram:

1. Select the diagram in the Model View.

2. Select Print Preview on the File menu. A preview of the diagram is dis-
played.

– You can scroll to other diagrams by using the Next Page and Pre-
vious Page buttons.

Print a single diagram

To print a single diagram from the diagram itself:

1. Open the diagram.

2. Select Print on the File menu. The standard print dialog is displayed.

To print a single diagram from the Model View:

1. Select the diagram in the Model View.

2. Right-click the diagram and select Print. The standard print dialog is dis-
played.

To print a single diagram from the Print window in the Print Manager:

1. Select the diagram in the Model View. The diagram icon is displayed in 
the Selection area.

2. Click the Print button. The standard print dialog is displayed.

To print a single diagram from the preview window:

• Select Print. The standard print dialog is displayed

Print multiple diagrams

To print multiple diagrams from the Model View:

1. Select the diagrams in the Model View.

2. Select Print Manager on the File menu. The Print window is displayed.

3. Click the Print button or select Print Preview on the File menu and then 
Print. The standard print dialog is displayed.
June 2009 IBM Rational Tau User Guide 2469



Chapter 92: Printing
You can print diagrams of the same type(s) at the same time if you use the 
Print window and the Filter functionality. 

To print multiple diagrams from the Print window:

1. Select Print Manager on the File menu. The Print window is displayed.

2. In the Model View, select the diagram(s) you want to print. The diagrams 
and page numbers for the diagram type(s) you selected are displayed in 
the Selection area.

3. Click the Print button or select Print Preview on the File menu and then 
Print. The standard print dialog is displayed.
2470 IBM Rational Tau User Guide June 2009



93
Model Browser

This section describes how to generate a navigable HTML view of a model 
or selected part(s) of a model.

HTML generation is performed by an add-in called ModelBrowser.

HTML generation can be performed interactively, see Generating HTML or 
from the command line, see Command line usage.
June 2009 IBM Rational Tau User Guide 2471



Chapter 93: Model Browser
Generating HTML
To generate a HTML view of a model:

• Make sure the ModelBrowser add-in is activated

• In the model view, select the element(s) you want to include in the report

• From the Tools menu select Generate HTML.

A HTML view is generated and displayed in the built-in web browser. For 
details, see HTML View. The section Output describes the structure of the 
files generated by the Model Browser.

Note
For large models it can take a long time to generate the HTML view, and 
IBM Rational Tau is not responsive during this process.

Activating the ModelBrowser add-in

To activate the support for HTML generation:

1. From the Tools menu select Customize.

2. Click the Add-Ins tab and check the ModelBrowser add-in.

3. Click OK.
2472 IBM Rational Tau User Guide June 2009



HTML View
HTML View
This section describes the appearance and contents of a HTML view.

Contents

The HTML view contains the following information:

• A Tree-view corresponding to the Model View

• A set of Properties for each included element

• A set of Diagrams

The main page of the HTML view displays the information in three frames.

Note
The contents of a HTML view is predefined and is not customizable. It does 
not reflect the active metamodel.

Tree-view

The tree-view is a standard tree-view of the model. Each node in the tree rep-
resents a UML model element.

Figure 292: HTML view appearance.

Tree-view
frame

Diagram frame

Property frame
June 2009 IBM Rational Tau User Guide 2473



Chapter 93: Model Browser
Clicking a node in the tree view displays the properties of the element in the 
property frame. If the element is a diagram, the corresponding diagram is dis-
played in the diagram frame.

Collapsing and expanding nodes does change the contents of any other 
frame.

Properties

The properties of an element is displayed in the property frame. The available 
set of properties for each element depends on its metaclass.

References to other elements included in the HTML view are navigable.

Note
Each element has a unique set of properties defined by the ModelBrowser 
addin. The set of properties of an element is not customizable and doesn’t 
neccessarily match the set of properties displayed in IBM Rational Tau.

Diagrams

Diagram images are generated as jpeg files. Symbols in some diagrams are 
clickable if the corresponding model element is included in the report. When 
clicking a symbol in a diagram, the properties of the model element is opened 
in the property frame.
2474 IBM Rational Tau User Guide June 2009



Output
Output
This section describes the structure and content of the generated files.

File and folder structure

The Model Browser generates a set of files and folders to present the model 
in HTML. A folder called html is created in the same location as the project 
file and all generated files are contained within the html folder.

The following file structure is created:

html
images
index.html
intro.html
navigation.html

ElementGuid1
iElementGuid1.html
...
iElementGuidN.html
dDiagramGuid1.html
dDiagramGuid1.jpg
...
dDiagramGuidN.html
dDiagramGuidN.jpg

...
ElementGuidN

The main page is index.html. intro.html is the main content for the di-
agram frame, and navigation.html is the main content for the tree-view 
frame.

The images folder contains a set of images for the tree-view and the main 
html pages.

The bulk of the model information is distributed into separate folders 
(ElementGuidN), one for the model and one for each package. By default, 
the folders are given the same name as the GUID of the element it represents. 
The Naming schemes section describes the naming scheme in more detail.

Within each folder there’s a set of files describing the elements contained in 
the element represented by the folder. Each element has a file describing its 
properties in the property frame (iElementGuidN.html). Diagrams have 
two additional files for presenting the image in the diagram frame 
(dDiagramGuidN.html, DiagramGuid1.jpg).
June 2009 IBM Rational Tau User Guide 2475



Chapter 93: Model Browser
Naming schemes

By default, GUIDs are used in file and folder names when generating HTML, 
but it is possible to change the naming scheme. The following naming 
schemes are available:

– Guid-based

– Guid-based with mangling

– Simple

See Changing naming scheme for information on how to change the naming 
scheme.

Guid-based

This is the default naming scheme. Element GUIDs are used in folder names 
and file names. This results in persistent file and folder names, that doesn’t 
change if the model is changed, for example by adding new elements. This 
is an important property when publishing the output online and/or use it for 
reviews. The drawback iof this approach is that the folder and file names are 
somewhat long. Use the Simple scheme if shorter names are required.

With this scheme the GUIDs are not mangled, and this may cause problems 
on a Windows platform, although the risk is minimal. GUIDs can differ only 
by case in IBM Rational Tau, but Windows doesn’t allow file or folder 
names different only in case. Models containing elements with GUIDs dif-
ferent only in case must be using a different naming scheme. Use Guid-based 
with mangling if persistence is important, Simple otherwise.

Guid-based with mangling

This scheme is the same as Guid-based, but GUIDs are mangled to avoid 
problems with GUIDs different only by case. This scheme is safe for all 
models, but the file and folder names are very long, which can cause prob-
lems on Windows platforms.

This scheme is kept for backwards compatibility, since it was the original 
scheme, but the Guid-based or Simple schemes are recommended.

Simple

This scheme uses plain numbers instead of GUIDs in the file and folder 
names. This results in short and readable names.
2476 IBM Rational Tau User Guide June 2009



Output
The resulting names are not persistent. If a new element is inserted in the 
middle of the model, and the HTML is regenerated, the numbers of all ele-
ments following the new one are changed. Use one of the Guid-based or 
Guid-based with mangling schemes if persistent names are important.

Changing naming scheme

To change the naming scheme for a specific model:

– Right-click the Model node in the Model View. (If it is not visible in 
the current view, switch to the Standard View)

– Apply TTDModelBrowser::ModelBrowserSettings stereotype

– Select one of the available naming schemes
June 2009 IBM Rational Tau User Guide 2477



Chapter 93: Model Browser
Command line usage
A HTML report can be generated from the command line by passing a script 
to vcs.exe according to the following syntax:

vcs -script <etc-path>/HtmlReport.tcl <project-file>

where:

vcs 

The Tau executable in the bin folder of the installation

<etc-path> 

A full or relative path to the etc folder of the Tau installation

<project-file>

A full or relative path to a project file

The resulting folder is placed in the same folder as the project file.

Example 802

This example shows how to generate a HTML report for a project called 
MyProject located in C:/MyModels/MyProject.ttp.

First open a command window and make sure your current folder is the bin 
folder of the Tau installation.

Then execute the following command line:

vcs -script ../etc/HtmlReport.tcl C:/MyModels/MyProject.ttp

A HTML report is generated for the project and placed in the same location 
as the project file.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Note
When using the command line mode a report is generated for the entire 
project. To generate reports for parts of a project or model use the interac-
tive mode.
2478 IBM Rational Tau User Guide June 2009



94
Internationalization Support

This section describes the internationalization support in IBM Rational Tau. 
The main focus of this document is Chinese, Japanese and Korean (CJK) lan-
guage handling.

Supported environments

This section describes specific information for Internationalization support 
of system environments. The information not described in this section is 
common through all languages. Please refer to the installation guide for gen-
eral information.

Supported platforms

The internationalization support in IBM Rational Tau is available for Win-
dows XP. It is assumed that you use a local version of Windows and set the 
locale to use your local language.

Configuration Management

IBM Rational Tau does not support CJK environments beyond limitations of 
each configuration management tool for CJK support.
June 2009 IBM Rational Tau User Guide 2479



Chapter 94: Internationalization Support
IME (Input Method Editor)

Default IMEs bundled in Windows are supported. Using supported IME, you 
can enter your local characters inline.

Font settings

By selecting the correct font for your language, your language is displayed 
correctly.

1. Select Tools and then Options from the IBM Rational Tau menu bar.

2. Select Format tab.

3. Choose Category and specify font type

– Dialog fixed : the font type setting for dialogs using a fixed width 
font.

– Developer diagram symbol font: the font type setting for other sym-
bols and diagrams.

– Report Windows: the font type setting for tabs in the Output 
window.

– Output Windows: the font type setting for Message, Model Verifier 
and Script tabs in the Output window.

– Tcl Files: the font type setting for Tcl and text files opened in IBM 
Rational Tau.

– C/C++ Header/Source: the font type setting for C/C++ header and 
source files opened in IBM Rational Tau.

Note
The instructions presented below should be performed before you start to 
create elements in your diagrams.

There is also fonts settings for diagrams elements.

1. Select Tools and then Options from the Tau menu bar.

2. Select Font settings tab.

3. Specify font types. See “Font settings” on page 2496.

Note
You can also change the font style and size for each element from the Dia-
gram element properties toolbar.
2480 IBM Rational Tau User Guide June 2009



Modeling with CJK characters

IBM Rational Tau supports modeling with CJK characters. You can use CJK 
characters for 

• names of all elements

• comments 

• Charstring literals. 

You can type CJK characters in the same way as English characters. No spe-
cial operation is needed to draw models with CJK characters.

Code generation with CJK characters

Element names in the model are used as names of identifiers in generated 
C/C++ files. However, in C/C++ grammar, CJK characters are illegal for 
identifier names. So, IBM Rational Tau have a mechanism to provide legal 
names for C/C++ code and it can be done in two ways.

Automatic UTF-16 naming

If CJK characters are used in an element name, IBM Rational Tau provides 
the legal name in generated C/C++ code. The provided legal name consists 
of a UTF-16 big endian encoded hexadecimal string that is prefixed by tau_ 
and suffixed by _tau

Example 803: UTF-16 encoded name––––––––––––––––––––––––––––––––––––––

MALMÖ is encoded as 

tau_004D0041004C004D00D6_tau 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Using ansiName stereotype

If you want to use CJK characters for element names and you want to specify 
legal name for generated C/++ code, you can use the stereotype ansiName.

1. From the Tools menu select Customize. Go to the Add-Ins tab.

2. Check the Internationalization add-in to load ansiName stereotype in 
the current project. (You need to activate it per project.)

3. Enter the element name in the diagram with CJK characters.
June 2009 IBM Rational Tau User Guide 2481



Chapter 94: Internationalization Support
4. In the Model View, right-click the element for which you want to specify 
a legal name.

5. On the shortcut menu, click Properties.

6. From the Filter box, select ansiName.

7. Type the legal name for the code generation in the name field.

When you specify a legal name by ansiName, the specified name is used for 
C/C++ code. 

All UML definitions may be given an alternative name, for the purpose of C 
or C++ code generation, by means of the ansiName stereotype.

Names of files and folders used by build tool chain

Names of class symbols and package symbols

The names of class symbols and package symbols are used as generated file 
and folder names. If CJK characters are used in symbol names, the encoding 
mechanism described in “Code generation with CJK characters” on page 
2481 is applied to name the generated folders and files. If you want to specify 
the file and folder names, then use ansiName stereotypes as in “Using ansi-
Name stereotype” on page 2481.

Comments

Comments will not be presented in generated C/C++ files. This applies to 
both CJK characters, English characters and any other language.

Encode type of files used by build tools

The encode type of the files that are processed by the build tool chain (such 
as the files holding the intermediate format and the generated C/C++ files) 
are encoded using the system locale encoding. For example, on Japanese 
Windows, the generated files will be encoded using SHIFT-JIS, so that Mi-
crosoft Visual C++ can handle and compile the files. 

Therefore, you need to set correct locale for your language to generate files 
with the correct encoding.

1. Open the Windows Control panel

2. Open the Regional Settings dialog and select the General tab.

3. Make sure that the selected locale is the correct one.
2482 IBM Rational Tau User Guide June 2009



Handling textual files

Textual files can be opened inside IBM Rational Tau. IBM Rational Tau sup-
ports local ANSI encoding and UTF-8 for the textual file. When existing tex-
tual files are opened in IBM Rational Tau, IBM Rational Tau saves the files 
in the original encoding. When the textual file is created in IBM Rational 
Tau, the file will be saved in UTF-8 by default. You can select encode type 
from the Save as dialog.

Restrictions
• Single byte Japanese Katakana and Japanese characters defined between 

0x80 and 0xFF in Shift-JIS are not supported.

• CJK characters are not supported for Project names.

• Using CJK names for messages and message text parameters may result 
in displaying UTF-16 big endian encoded names instead of original CJK 
names, when tracing a Model Verifier in Sequence diagrams. In order to 
find out the original names, decoding must take place in an external ap-
plication that supports displaying UTF-16 encoded characters. 

See also

“Automatic UTF-16 naming” on page 2481.
June 2009 IBM Rational Tau User Guide 2483



Chapter 94: Internationalization Support
2484 IBM Rational Tau User Guide June 2009



95
Dialog Help

This section lists the help texts that are displayed when you click the help 
button in dialogs.
June 2009 IBM Rational Tau User Guide 2485



Chapter 95: Dialog Help
The New Wizard

Files tab

This dialog provides the possibility to add new files to your design.

• When adding a file you must specify a file name and a location.

• The file can be added to an existing project. The project must be opened 
in the File View in order for you to add the file to it.

• The new file is opened in the Desktop.

Projects tab

This dialog provides the possibility to add a new project.

When you add a project, you specify how the project will be used. Depending 
on your choice, different add-ins will be loaded at start-up, for example:

UML for AgileC Code Generation
The AgileCApplication, ModelVerifier and RTUtilities add-ins are loaded. 

UML for C Code Generation
The CApplication, ModelVerifier and RTUtilities add-ins are loaded.

UML for C++ Code Generation
The CppAppGen and CppTypes add-ins are loaded.

UML for Model Verification
The ModelVerifier and RTUtilities add-ins are loaded.

UML for Modeling
No add-ins are loaded.

Should you later want to change the default add-ins in your project, you can 
do so using the Add-ins tab (Tools menu, select Customize). 

• When adding a project you must specify a project name and a location.

• The project can be included in the current workspace, or a new work-
space can be created for the project.
2486 IBM Rational Tau User Guide June 2009



The New Wizard
See also

“Working with Projects” on page 31 in Chapter 4, Introduction to IBM 
Rational Tau 4.3

“Add-ins tab” on page 2491

UML Projects - page 2

This dialog displays a suggested file directory and a suggested name for the 
file holding the model.

• You can change or confirm the suggestions.

• As an option, an empty package can be added.

UML Projects - page 3

This dialog displays the name of the project and the name of the related file.

• You can confirm the names by clicking the Finish button or enable 
changes by clicking the Back button.

• The new project appears in the Workspace window.

Workspaces

This dialog provides the possibility to add a new workspace.

• When adding a workspace you must specify a workspace name and a lo-
cation.

• The new workspace is loaded in the Workspace window.

See also

“Working with Workspaces” on page 29 in Chapter 4, Introduction to IBM 
Rational Tau 4.3
June 2009 IBM Rational Tau User Guide 2487



Chapter 95: Dialog Help
Customize

Commands tab

This tab lists the default menus with toolbar buttons, commands and menus 
that you can add to a toolbar or menu. It allows you to move, delete or add 
buttons to your toolbars.

1. In the Categories box, click the toolbar name that you want to customize.

2. In the Buttons area, drag the item from the dialog on to the toolbar. Click 
the item first to receive information about the specific item.

3. To remove an item from a toolbar, drag the item from the toolbar on to 
the dialog.

To add a button to a toolbar:

1. Make sure that the toolbar you want to change is displayed.

2. In the Categories box, the available toolbar buttons or items are grouped. 
Select the category where the toolbar button or item you want to add is 
located.

3. Click a button or item to receive information about its functionality.

4. Drag the button or item from the Buttons area to the toolbar in the user 
interface.

To delete a button from a toolbar:

1. Make sure that the toolbar you want to change is displayed.

2. Drag the button or item off the toolbar.

When you delete a default button from a toolbar, the button is still available 
in the Customize dialog box. However, when you delete a toolbar button with 
a custom appearance, its appearance is permanently lost, although the com-
mand is still available (Customize dialog box, Commands tab).

Hint
To save a toolbar button with a custom appearance for later use, create a 
toolbar for storing unused buttons, move the button to this storage toolbar, 
and then hide the storage toolbar.
2488 IBM Rational Tau User Guide June 2009



Customize
Toolbars tab

This tab lists standard and custom toolbars.

Select or clear the check boxes to display or hide the toolbars. Each toolbar 
appears either in the default location or in the last location that it is moved to. 
The menu bar cannot be hidden.

Show Tooltips
Click the check box to enable tooltips to be displayed when the cursor moves 
over a button or field in the toolbars.

Large Buttons
Click the check box to display larger sized buttons in the toolbars.

Create a new toolbar:

1. Click New.

2. In the dialog that opens, type the name of the toolbar. The new toolbar 
appears in the toolbar area of the interface.

3. From the Commands tab, select the items that you want to add to the 
toolbar.

Restore the default toolbar settings:

1. Click the toolbar in the list.

2. Click Reset.

A user-created toolbar cannot be restored.

Delete a user-created toolbar:

1. Click the toolbar in the list.

2. Click Delete.

A default toolbar cannot be deleted.

Rename a user-created toolbar:

1. Click the toolbar in the list.

2. In the Toolbar Name field, type a new name for the toolbar.

3. Click the toolbar again to save the change.
June 2009 IBM Rational Tau User Guide 2489



Chapter 95: Dialog Help
Create New Toolbar

Type the name of the new custom toolbar. You can use upper or lower case 
letters, but each name must be unique regardless of case. The name must be 
unique from other toolbars. If you want to change this name later, you can 
edit the name in the Toolbar Name box on the Toolbars tab.

Windows layouts

This tab allows you to customize the appearance of the Windows layout. You 
can save toolbar positions, visibility and location of docked windows.

Save a new layout:

1. Click the New button.

2. Type a name for your layout.

3. Close the window.

To restore a new layout:

1. Click the layout you want to restore.

2. Click Restore.

To delete a layout:

1. Click the layout you want to delete.

2. Click the Delete button.

Tools tab

This tab allows you to add commands in the Tools menu. These commands 
can be associated with any program that runs on your operating system. The 
information is saved in a file named Tools.dat in the directory:

C:\Documents and Settings\<user>\Application Data\IBM 
Rational\Shared

Add a command to the Tools menu:

1. Click the New (Insert) button. A blank line, indicated by an empty rect-
angle, appears in the Menu Contents box.

2. Type the name of the command as it will appear in the Tools menu. Press 
ENTER to save the name.
2490 IBM Rational Tau User Guide June 2009



Customize
3. In the Command field, type the path to the program. You can also use 
the browse button to locate the program.

4. In the Arguments text box, browse or type any arguments to be passed 
to the program. Use the drop-down arrow next to the Arguments text box 
to display a menu of arguments.

5. In the Initial directory box, browse or type the file directory where the 
command will be located.

6. If the program is a console program, for instance the Windows command 
prompt, you can select to have it run in the Output window. Just select 
the Use Output Window check box.

7. Select the Prompt for Arguments check box, if you want to be able to 
change argument each time you want to use the command.

8. Select the Use OEM format check box, if you want to the application’s 
output to be in OEM format.

9. Click OK. The command appears in the Tools menu.

Additional tasks

• To insert the command in a submenu, separate the menu name and the 
name with a backslash ‘\’. For instance, the command Notepad in an ed-
itor menu should be typed editor\Notepad.

• To insert an access key, type an ampersand ‘&’ before the selected letter 
in the name.

• Move commands up and down in the menu by using the Move Up and 
Move Down buttons.

• To change the name of the command, double-click it and type a new 
name.

Delete a command in the Tools menu:

1. Click the command in the list.

2. Click the Delete button.

Add-ins tab

Add-ins are used to extend the tool functionality. From the Add-ins tab you 
can load a selection of predefined add-ins. 
June 2009 IBM Rational Tau User Guide 2491



Chapter 95: Dialog Help
The different add-ins are optimized for different build situations. This means 
that you often do not have to change any build settings. When you click an 
add-in, you will see its usage in the description field.

• To load or unload add-ins, select or clear the check boxes. Close the di-
alog.

• You can modify the available add-ins. Click the add-in and click Modify. 
The dialog that opens allows you to customize the add-in according to 
your needs.

• You can also create your own add-ins by clicking Create. The dialog that 
opens allows you to configure the add-in according to your needs. 

See also

“Contents and structure of an add-in” on page 2018 in Chapter 77, 
Customizing IBM Rational Tau 

Options

General

This tab allows you to set general options:

Display status bar
Allows you to show or hide the status bar that is available at the bottom of 
the IBM Rational Tau user interface.

Show output window when receiving content
When the Output window is closed, information that is normally listed in the 
different tabs is not displayed. However, when selecting this option, the 
output window will open automatically when new information is listed, for 
instance after a manual check.

Track selection in the Print Manager
The Print Manager by default tracks the active selection in the Model View. 
This option can be turned off to disable this tracking.

Show advanced option page 
Select this option to display an additional tab with all options listed in a tree 
structure. Some advanced option can only be set from this additional tab.
2492 IBM Rational Tau User Guide June 2009



Options
Tabbed documents
Select this option to open documents in a single window as tabs.

Show welcome page at startup
This option controls whether or not the welcome page should be opened 
when starting the tool. This option can also be set from the welcome page it-
self. If you turn this option off you can open the welcome page manually 
from the Help menu.

Source control provider
If you have a source control system installed, you can use this option to en-
able using it from IBM Rational Tau. Doing so will enable a source control 
menu and toolbar for interaction with your source control system. For more 
information see Configuration Management.

Automatically update files
This option can be used if Generic Source Control is selected as source con-
trol provider. If the option is enabled files will be automatically updated from 
the CM system before attempting to do a check out.

Disable external program launch for these types of file
In this field you can specify the extension of files, that IBM Rational Tau 
should attempt to open instead of the external application which otherwise is 
associated with that file extension. For instance, if you add the *.txt exten-
sion, text files will be opened in the IBM Rational Tau text editor instead of 
in your external text editor application.

Select the default help context
If there are many IBM Rational tools installed, you can choose which help 
file to use as default by selecting the file in this list.

URN Map
Use the URN Map (Universal Resource Name) to define shorthand names 
for file storage locations. For example: 

home:C:\MyHomeDir;work:C:\MyWorkDir 

Here “home” is shorthand for C:\MyHomeDir and “work” is shorthand for 
C:\MyWorkDir. Each user may define URNs for his/her environment. These 
are used by some components for referring to files, bitmaps and other re-
sources.

There are five predefined names, “u2”, “u2user”, “u2useraddins”, 
“u2teamaddins” and “u2companyaddins”.
June 2009 IBM Rational Tau User Guide 2493



Chapter 95: Dialog Help
• u2 maps to the IBM Rational Tau installation directory

• u2user maps to the user directory

• u2useraddins maps to where user add-ins are located

• u2teamaddins maps to where the team add-ins are located

• u2companyaddins maps to where the company add-ins are located

Example 804: URN file references (usages of URNs) ––––––––––––––––––––––––

Using the name/directory mappings defined above a URN file reference of:

urn:home:mybitmap.bmp

would expand to:

C:\MyHomeDir\mybitmap.bmp

The reference: 

 urn:u2:etc\TTDMetamodel.u2 

might translate to 

C:\Program Files\IBM\Rational\TAU\4.3\etc\TTDMetamodel.u2 

if the installation directory is:

C:\Program Files\IBM\Rational\TAU\4.3

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

These URNs can for example be used in referring to add-in etc files, images 
in icon references and for encoding hypertext references. 

Save

This tab allows you to set save options in IBM Rational Tau.

Save before running tools
Select this option to automatically save any unsaved work before an external 
tool is launched.

Prompt before saving files and projects 
Select this option to be prompted for saving when modified files and projects 
exist when an editor is closed.
2494 IBM Rational Tau User Guide June 2009



Options
Automatic reload of externally modified files 
You will by default receive an information message and be prompted to re-
load an externally modified file. Select this option to avoid this prompting, 
in order to automatically reload a file that has been modified in another tool 
than IBM Rational Tau. 

Save project’s add-in state in all the loaded projects
This option will let any loaded add-ins become activated for all projects cur-
rently loaded. 

Auto-backup
Select the Activate check box to allow automatic saves of your model in pre-
determined intervals. Enter the desired number of minutes between the saves, 
either by typing the number or by clicking the up and down buttons.

Workspace

This tab allows you to set general options for the workspace that you have 
opened. 

Reload last workspace at startup
Select this option to open the workspace that you were working in the last 
time IBM Rational Tau was running.

Warn on project file status change
Select this option to receive a warning if the status of the project file you are 
working in has been changed to read-only. This will protect you from poten-
tially loosing unsaved work.

Projects default location
When you create new projects, you will receive a suggestion where the 
project file will be stored. In this text field, type a path, or browse to a folder, 
where the new projects will be stored.

Format

This tab allows you to format the appearance of text and colors in windows 
and files.

When you have selected a category, you can select: 

• Font and Size of the text in the file or window.
June 2009 IBM Rational Tau User Guide 2495



Chapter 95: Dialog Help
• Background color and text color for the selected Category. By default, 
system colors defined in the control panel are used. Clear the Automatic 
check boxes to select text and background colors.

Font settings

This tab allows you to customize the default fonts used when creating a new 
diagram.

Diagram font settings
These font settings determine the default text appearance of the generic dia-
gram element in a created diagram.

Fixed font settings
These font settings determine the default text appearance of symbols that 
have texts which are better displayed using a fixed width font. An example 
of a symbol that uses this font setting is the Text symbol. If the Enabled 
check box is checked, any created symbol of this kind will have the fixed font 
settings applied on it.

Label font settings
These font settings determine the default text appearance of text labels that 
are not the main label of a diagram element. An example of this is the At-
tribute and Operation labels in a Class symbol. If the Enabled check box is 
checked, any created label element will have the label font settings applied 
on it.

Links

This tab allows you to customize link creation behavior.

Reverse creation
If this option is on, links will be created in the opposite direction from how 
they were applied.

Automatically create links between modified objects and active link end
If this option is on, then when you select an active link end, all your modifi-
cations will be linked to this link end.

Show link indicators
If this option is on, IBM Rational Tau will show the link markers.
2496 IBM Rational Tau User Guide June 2009



Options
Use requirement as target when creating links by drag and drop
Links can be created using drag and drop. If this option is on when doing this 
on a requirement the target of the link will be the requirement. If the option 
is off the requirement will instead be the source of the link.

UML Basic Editing

This tab allows you to set basic preferences for the diagram editors, the prop-
erties editor and the Model View.

Diagram Editors

Show grid 
Select this option to make a grid visible in the editors. This option is global, 
which means that the grid will be available in all diagrams. To show or hide 
the grid for a single diagram, right-click the open diagram and click Show 
Grid.

Show page breaks
Select this option to display the bounds of each page when the diagram is 
printed. This option is global, which means that the page break indicators 
will be available in all diagrams. To show or hide the page break indicator 
grid for a single diagram, right-click the open diagram and click Show Page 
Bounds.

Delete model element when deleting last symbol/line
When this option is selected, a model element is automatically deleted when 
its last presentation element (symbol or line) has been deleted. When de-se-
lected all model elements without presentations must be manually deleted, if 
so is desired.

Show dialog when deleting last reference symbol/line for a model ele-
ment
When this option is selected, a warning is displayed when a model element 
is about to be deleted as a result of using the “Delete model element when 
deleting the last symbol/line” option.

Remember scroll and zoom
When this option is selected, IBM Rational Tau will remember zoom level 
and scroll position of open diagrams between different sessions of using the 
tool. This information is saved in a file named 
projectname_DiagramSettings.u2x. Removing this file does not affect 
the model. 
June 2009 IBM Rational Tau User Guide 2497



Chapter 95: Dialog Help
Show stereotypes on attribute and operation labels
If this option is enabled, stereotypes applied on attributes and operations will 
be displayed in the attribute and operation labels of class-like symbols (class 
symbol, interface symbol etc.).

Default Model View Filters

In this area, you decide what objects that will be displayed by default in the 
Model View of the workspace window. These settings are global. If you want 
to change the settings for a specific project, use the View - Model View Fil-
ters menu.

Sort definitions
If this option is enabled, the order of definitions shown in the Model View 
will be sorted on their names in a lexicographical order (‘A’ to ‘Z’, ‘a’ to ‘z’, 
etc.).

Default Model View 

This drop down list allows you to switch from the standard view of the Work-
space window. This setting is global. If you want to change the view for a 
specific project, use the View - Reconfigure Model View menu.

Default Property View 

This drop down list allows you to specify which property view to use in the 
Properties Editor by default. This option affects all new Properties Editors 
that are opened. To switch property view of an already opened Property Ed-
itor, press the Options... button in that particular Property Editor.

Default Property Filter 

This drop down list allows you to specify which filter to use in the Properties 
Editor by default. This option affects all new Properties Editors that are 
opened. To switch filter of an already opened Property Editor, press the Op-
tions... button in that particular Property Editor.
2498 IBM Rational Tau User Guide June 2009



Options
Default Class Symbol Appearance

These settings will affect the initial appearance of class-like symbols (class 
symbol, interface symbol etc.) when they are drawn in editors. This affects 
both newly created symbols and symbols that you drag from the Model View 
to a diagram.

Collapsed
Show only the top compartment of the symbol.

Show attributes
All existing attributes will be shown, if the symbol is not collapsed.

Show operations
All existing operations will be shown, if the symbol is not collapsed.

Show ports
All existing ports will be shown.

Show stereotype compartment
All applied stereotypes will be shown in a stereotype compartment.

Show constraint compartment
All constraints will be shown in a constraint compartment.

UML Advanced Editing

This tab allows you to set advanced preferences for the diagram editors and 
the Model View.

Text

Indent level 
If the Automatic indention option is selected, this option defines the number 
of indent spaces that are inserted after the characters ‘{’ and ‘)’. It also spec-
ifies the number of positions between tab stops.

Color highlighting in text 
When this option is selected, semantic and syntactic highlights are displayed. 
The highlighting syntax is described in “Text Highlighting” on page 76 in 
Chapter 6, Working with Models.
June 2009 IBM Rational Tau User Guide 2499



Chapter 95: Dialog Help
Pointing the mouse at a highlighted name indicates the current status of the 
text in a tool tip, and in particular diagnose the situation in some way. For 
instance: “This reference is currently not bound, see Autocheck log for de-
tails”.

Syntax error highlighting in text
When this option is selected, syntactic errors are displayed in different colors 
indicating the type of situation. The highlighting syntax is described in “Text 
Highlighting” on page 76 in Chapter 6, Working with Models.

Pointing the mouse at a syntax error marker will show more information 
about the syntax error in a tool tip.

Automatic indention 
When this option is enabled, indentation spaces are automatically inserted on 
lines following a ‘{’ or ‘)’. The number of spaces to be inserted is specified 
in the Indent level option.

Automatic matching of left parentheses and quotes (([“‘)
Automatically adds closing parenthesis or quote signs immediately after 
opening parenthesis or quote.

Disable model update while editing
When this option is set, the model is updated only when you choose to leave 
text edit mode, for example when you make a new selection outside the 
label/text symbol. The text will not be merged into the model until you leave 
the edit mode, irrespective of for how long you are editing the text. 

Sequence diagrams

Message separation 
Determines the vertical distance (in millimeters) between messages.

Lifeline separation 
Determines the horizontal distance (in millimeters) between lifelines.

Dock sequence diagram trace window 
Determines if the sequence diagram trace window should open as a docked 
window or not. This option is enabled by default.
2500 IBM Rational Tau User Guide June 2009



Options
Activity diagrams

Autocreate
Determines the default Flow orientation in Activity diagrams. This option 
controls how autocreated symbols in an Activity diagram get positioned.

Symbol appearance

Default symbol color
Determines the default color of symbols in diagrams. To change the color, 
click the color field and select a new color from the palette or choose a 
custom color.

Port symbol arrows
Displays arrows inside the port symbols to indicate the enabled communica-
tion flow. Directions are shown with reference to the port location on a ver-
tical or horizontal border line. 

Diagram tooltips

Show symbol and line tooltips
Enables tooltips for symbols and lines. The tooltips provide various kinds of 
information about the model presented by a symbols or line, for example 
comments and error messages.

Show edit mode tooltips
Enables tooltips during editing.

Name completion

Display name completion window after typing ‘.’ or ‘::’ 
This option controls if the name completion window should be opened when 
you type a member access (.) or qualifier (::) delimiter. The name comple-
tion window will then provide you with the names of possible definitions that 
can be referred to from the current textual context. 

Automatic update of name-based references

When moving definitions in Model View
If this option is enabled all references to a definition will be updated when 
the definition is moved to a new location in the Model View. This option is 
June 2009 IBM Rational Tau User Guide 2501



Chapter 95: Dialog Help
by default enabled, but can be disabled if you prefer to update the references 
yourself (or if they should not be updated, but instead bind to another defini-
tion with the same name as the moved one).

UML Editing Line Styles

Options in this tab control the default line shapes used for different line types 
in the editors. There is one option for each available UML line kind. The 
values have the following meaning:

Auto-routed (assign endpoints) 
Line vertices are automatically positioned to avoid obstacles and will try to 
keep line orthogonal. Endpoints are automatically assigned.

Auto-routed (keep endpoints) 
Line vertices are automatically positioned to avoid obstacles and will try to 
keep line orthogonal.

Bezier 
Will give the line a curved layout. When the line is selected two control 
points are displayed which can be used to shape the curve.

Orthogonal
The line is always kept orthogonal and line vertices and segments can be 
moved. Vertices can be added and removed from the line.

Non-orthogonal
Line vertices can be moved, added and removed without restrictions.

Note
To change the layout for a single line, right-click the line and select between 
the different line styles. The current line style has an active radio button.

UML Checking

This tab allows you to enable different types of checks performed during 
manual and automatic checks.

AutoCheck

These options control which checks that should be performed automatically 
while editing the model.
2502 IBM Rational Tau User Guide June 2009



Options
Check diagrams 
Enables the reporting of syntactical errors in the diagrams.

Enable simple semantic checks 
Enables certain simple semantic checks, which can help you find problems 
in the edited model quickly.

Show binding errors 
Reports identifiers that cannot be resolved.

Check

Enable checking of diagrams 
When enabled, syntactical errors in diagrams are reported. Other errors 
where the presentation is inconsistent with the model will also be reported.

Rebind references

If this option is turned on (default), IBM Rational Tau will attempt to rebind 
references in the model automatically during editing of the model. Rebinding 
takes place when necessary in order to ensure that all bindings are accurate 
and up-to-date at any time while editing. Turn this option off if you want to 
postpone rebinding until the Check All command is used on the model. 
Doing so may improve the tool performance significantly when editing large 
models.

Hyperlink

This tab allows you to change hyperlink behavior.

By default, make hyperlinks to a workspace element 
When this option is enabled, IBM Rational Tau allows you to select the target 
of your hyperlink within your workspace. Otherwise, you are prompted to 
specify another type of target, such as an existing file or a web page.

Compare/Merge

This tab allows you to change options for Compare/Merge.

External text compare/merge

The default values for these options are compatible with the textual com-
pare/merge tool of Synergy CM if installed.
June 2009 IBM Rational Tau User Guide 2503



Chapter 95: Dialog Help
External text compare/merge tool path

Path to the external text compare/merge tool that can be used from the Re-
view Differences dialog.

Command line switches

Depending on the compare/merge usecase, the external compare/merge tool 
will be called with the corresponding command line switches.

Save review information

Save differences list image generation

These options specify the width and height (in pixels) of the generated im-
ages.

Save stereotype instances and comments as unparsed text

If this option is enabled, comments and stereotype instances with no graph-
ical representation are added as text in the generated XML file.

Advanced

The Advanced tab allows you to change the values for all available options 
using a tree control. The tree consists of option categories with the actual op-
tion as leafs. Here you will find both the options that are available in the other 
option tabs, as well as some advanced options that are only available in this 
tab. Expand the tree control to find the option which you want to change. To 
change the option value, select the value and click F2.

Some of the advanced options are documented below.

Web server

Studio - Settings - WebServer

The options PortRangeBegin and PortRangeEnd define the range of 
TCP/IP ports used by the Tau Web Server. You may need to change these 
options if the default port numbers are not available for use on your machine.

Proxy settings

U2 - Options - ProxySettings
2504 IBM Rational Tau User Guide June 2009



Editor Shortcut
The options Host, Password and User can be set if you access the web 
through an HTTP proxy server. They will be used whenever IBM Rational 
Tau accesses information from an URL, for example when importing a 
WSDL file from an URL. The syntax of the host option is 
<address>:<port>.

Editor Shortcut

Show Elements

This dialog provides the possibility to add multiple elements to a diagram 
with a selection of symbols from your existing model.

• Elements are selected by checking the check box in the element list.

• The element list contains the elements of the current set scope.

• The Set Scope button is used to add elements from any scope in your 
model to the element list. 

When this dialog is entered as a result of an operation where an element is 
initially selected this element will be pre-checked in the list.

• The new diagram is opened in the Desktop.

Models

Reconfigure ModelView

Select the browser model that you want to use. There are two predefined 
browser views. The browser view “Standard View”, gives a comprehensive 
view of the loaded model including design detail. This view is intended for 
design-oriented users.

The other browser view “Diagram View” gives a simplified view of the 
loaded model. This view is intended for analysis-oriented users.

See also

“Metamodel” on page 382 in Chapter 8, UML Language Guide 
June 2009 IBM Rational Tau User Guide 2505



Chapter 95: Dialog Help
Other

Select Stereotypes

Select the stereotypes that you want to apply to the element. Click each line 
to see a description of the each stereotype. The number of applicable stereo-
types varies depending on the selected element.

See also

“Stereotype” on page 383 in Chapter 8, UML Language Guide 

Select artifact root

Select the class that you want to use as your Build Root. 

See also

“Artifact” on page 368 in Chapter 8, UML Language Guide 

Model Verifier

Console Windows

Model Verifier Console Window

Message Windows

Message Window

Restart

Restart: Click to restart the execution after that the Break button has been 
clicked

Stop Model Verifier

Stop: Click to stop the execution and to shut down the Model Verifier
2506 IBM Rational Tau User Guide June 2009



Model Verifier
June 2009 IBM Rational Tau User Guide 2507



Chapter 95: Dialog Help
2508 IBM Rational Tau User Guide June 2009



96
Additional Resources

This section list documents that are not part of the help file, but that may help 
you to extend your knowledge about IBM Rational Tau. Links to useful web 
resources are also provided.
June 2009 IBM Rational Tau User Guide 2509



Chapter 96: Additional Resources
Links

Contacting IBM Rational Software Support

If the self-help resources have not provided a resolution to your problem, you 
can contact IBM® Rational® Software Support for assistance in resolving 
product issues.

Prerequisites

To submit your problem to IBM Rational Software Support, you must have 
an active Passport Advantage® software maintenance agreement. Passport 
Advantage is the IBM comprehensive software licensing and software main-
tenance (product upgrades and technical support) offering. You can enroll 
online in Passport Advantage from lhttp://www.ibm.com/soft-
ware/lotus/passportadvantage/howtoenroll.htm

• To learn more about Passport Advantage, visit the Passport Advantage 
FAQs at http://www.ibm.com/software/lotus/passportadvan-
tage/brochures_faqs_quickguides.html.

• For further assistance, contact your IBM representative.

• To submit your problem online (from the IBM Web site) to IBM Rational 
Software Support, you must additionally:

• Be a registered user on the IBM Rational Software Support Web site. For 
details about registering, go to http://www.ibm.com/software/support/.

• Be listed as an authorized caller in the service request tool.
2510 IBM Rational Tau User Guide June 2009

http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/


Links
Submitting problems

To submit your problem to IBM Rational Software Support:

1. Determine the business impact of your problem. When you report a 
problem to IBM, you are asked to supply a severity level. Therefore, you 
need to understand and assess the business impact of the problem that 
you are reporting.

Use the following table to determine the severity level 

Severity Description

1 The problem has a critical business impact: 
You are unable to use the program, resulting in 
a critical impact on operations. This condition 
requires an immediate solution.

2 This problem has a significant business impact: 
The program is usable, but it is severely lim-
ited.

3 The problem has some business impact: The 
program is usable, but less significant features 
(not critical to operations) are unavailable.

4 The problem has minimal business impact: The 
problem causes little impact on operations or a 
reasonable circumvention to the problem was 
implemented
June 2009 IBM Rational Tau User Guide 2511



Chapter 96: Additional Resources
2. Describe your problem and gather background information, When de-
scribing a problem to IBM, be as specific as possible. Include all relevant 
background information so that IBM Rational Software Support special-
ists can help you solve the problem efficiently. To save time, know the 
answers to these questions:

– What software versions were you running when the problem oc-
curred?

To determine the exact product name and version, use the option appli-
cable to you: 

– Start the IBM Installation Manager and select File > View Installed 
Packages. Expand a package group and select a package to see the 
package name and version number. 

Start your product, and click Help > About to see the offering name and 
version number. 

– What is your operating system and version number (including any 
service packs or patches)? 

– Do you have logs, traces, and messages that are related to the 
problem symptoms? 

– Can you recreate the problem? If so, what steps do you perform to 
recreate the problem? 

– Did you make any changes to the system? For example, did you make 
changes to the hardware, operating system, networking software, or 
other system components? 

– Are you currently using a workaround for the problem? If so, be pre-
pared to describe the workaround when you report the problem.
2512 IBM Rational Tau User Guide June 2009



Links
3. Submit your problem to IBM Rational Software Support. You can submit 
your problem to IBM Rational Software Support in the following ways:

– Online: Go to the IBM Rational Software Support Web site at 
https://www.ibm.com/software/rational/support/ and in the Rational 
support task navigator, click Open Service Request. Select the elec-
tronic problem reporting tool, and open a Problem Management 
Record (PMR), describing the problem accurately in your own 
words.

– For more information about opening a service request, go to 
http://www.ibm.com/software/support/help.html

– You can also open an online service request using the IBM Support 
Assistant. For more information, go to http://www.ibm.com/soft-
ware/support/isa/faq.html.

– By phone: For the phone number to call in your country or region, go 
to the IBM directory of worldwide contacts at 
http://www.ibm.com/planetwide/ and click the name of your country 
or geographic region. 

– Through your IBM Representative: If you cannot access IBM Ra-
tional Software Support online or by phone, contact your IBM Rep-
resentative. If necessary, your IBM Representative can open a service 
request for you. You can find complete contact information for each 
country at http://www.ibm.com/planetwide/.

If the problem you submit is for a software defect or for missing or inaccurate 
documentation, IBM Rational Software Support creates an Authorized Pro-
gram Analysis Report (APAR). The APAR describes the problem in detail. 
Whenever possible, IBM Rational Software Support provides a workaround 
that you can implement until the APAR is resolved and a fix is delivered. 
IBM publishes resolved APARs on the IBM Rational Software Support Web 
site daily, so that other users who experience the same problem can benefit 
from the same resolution.

UML documents
• Java Tutorial

This tutorial teaches you the basics of working with the Tau product in a 
Java coding environment, and introduces the concepts of requirements 
analysis and project implementation.

The tutorial is available in your installation in:

locale/en/tutorialjava.pdf 
June 2009 IBM Rational Tau User Guide 2513

https://www.ibm.com/software/rational/support/
https://www.ibm.com/software/rational/support/
http://www.ibm.com/software/support/help.html
http://www.ibm.com/software/support/help.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/


Chapter 96: Additional Resources
• UML Tutorial

This basic tutorial goes through the design of a UML model. It covers the 
various type of diagrams and how to use IBM Rational Tau to check and 
verify the model.

The tutorial is available in your installation in: 

locale/en/coffmach.pdf
• UML Quick reference guide

This document contains common graphical and textual constructs in 
UML.

The guide is available in your installation in: 

locale/en/quickref.pdf

Other links

Borland C/C++

C/C++ dialect supported by the Borland builder. 
http://www.borland.com/cbuilder 

Cygwin 

For information about the contents of various Cygwin versions, see: 
http://www.cygwin.com 

GNU C/C++

C/C++ dialect supported by the GNU Compiler Collection. 
http://www.gnu.org/software/gcc 

ITU-T

Formerly CCITT
http://www.itu.int/

Macrovision

For more information about FLEXnet or Macrovision, please see:
http://www.macrovision.com
2514 IBM Rational Tau User Guide June 2009

http://www.cygwin.com
http://www.gnu.org/software/gcc/
http://www.itu.int/
http://www.macrovision.com
http://www.borland.com/cbuilder/index.html


Links
Microsoft Visual C/C++

C/C++ dialect supported by Microsoft Visual C++: 
http://msdn.microsoft.com/visualc

MISRA

The code generated by the AgileC Code Generator is to a large extent com-
pliant with the MISRA coding rules described in the document “MISRA-
C:2004 Guidelines for the use of the C language in critical systems” from Oc-
tober 2004. Please see: 

http://www.misra.org.uk 

OCL

For more information about OCL (Object Constraint Language), see:
http://www.omg.org 

OMG

For more information about Object Management Group (OMG), see:
http://www.omg.org 

PDF

PDF files are opened and read with Adobe Acrobat Reader:
www.adobe.com 

Tcl

For detailed information refer to the Tcl Developer Site
http://tcl.activestate.com/ 

TTCN-3

The TTCN-3 standard can be downloaded from
http://www.etsi.org 

XML

For information about Extensible Markup Language (XML), see:
http://www.w3.org/XML 
June 2009 IBM Rational Tau User Guide 2515

http://www.omg.org
http://www.misra.org.uk
http://www.omg.org
http://tcl.activestate.com/
http://www.adobe.com
http://www.etsi.org
http://www.w3.org/XML
http://msdn.microsoft.com/visualc/


Chapter 96: Additional Resources
2516 IBM Rational Tau User Guide June 2009



Index

Symbols
#, inline C/C++ 873
#, inline code 358
#, private 170
_NewEnum 2166
«» 180

Numerics
2-way merge 136
3-way merge 137
4-way merge 138

A
Abbreviated, compare and merge 152
absolute

path 847
time line 233

abstract
class, UML 264

access 254
dependencies 1386

Acrobat Reader 2515
action 346

C Code Generator 1145
action, UML sequence diagram 236
action, UML state machine 338
Actions 314

Compare option 141
activate

project 35
activation

method call 244
active class 272

behavior 159
June 2009 IBM Rational Tau User Guide 2517



Chapter : 
C Code Generator, data structure 1131
C Code Generator, dynamic memory 1080
symbol table 1171

Active Modeler
add-in 187
composite structure diagram 303
sequence diagram 245
use case diagram 218

active project 31
active timer 358
activity diagram

operations 303
actor 216

symbol 219
Add

Stereotype Instance Compartment 266
add 2170

C++ class 1453, 1664
class in diagram 261
file to projects 34
folder to project 35
printers (UNIX) 2466
projects to workspace 30
semantic checks 2030
source control 2432
stereotype 183
symbol 173
symbol in activity flow 179
toolbar button 24

Add artifact to active configuration 936
AddCommand 2244
AddContextMenu 2246
add-ins 2017

activating 2017
Active Modeler 187
AgileCApplication 2486
CApplication 2486
contents of 2018
CppAppGen 1532
CppImport 548
CppStdLibrary 613
CppTypes 1532
customize 2492
EclipseIntegration 1468
IMGen 875
Internationalization 2481
ModelVerifier 2486
2518 IBM Rational Tau User Guide June 2009



OGSDLImport 631
Requirements 1715
RTUtilities 360, 362
SDL96Import 631
tab 2017
tab, build type 842
tab, Customize 2491
TauG2IntegrationAddin 2456
user defined 2017
XMIExport 762
XMIImport 742

AddMenu 2247
AddToolbar 2248, 2253
ADT

directive 665
advanced

options 26, 2504
agent 2055
aggregation 376

association 373
kind, association 374
kind, attribute 268

AgileC Code Generator 1267
clock function 1285
compiler integration 1283
configuration 1304
configuration file 1269
dynamic memory 1307
environment functions 1272
error detection 1308
integrations 1270
interface header file 1276
interrupts 1288
make template 1268
makefile 1268
memory management 1286
optimization 1304
passive class 1316
restrictions 949, 954
run-time kernel 1269
run-time system integration 1285
scaling 1269
shared data 1289
signal 1306
stereotype 960
threaded integrations 1288
timer 1307
June 2009 IBM Rational Tau User Guide 2519



Chapter : 
All
Show Elements 175

All Properties, Properties Editor 85
ALLOC_PROCEDURE 1249
ALLOC_REPLY_SIGNAL 1236
ALLOC_REPLY_SIGNAL_PAR 1236
ALLOC_REPLY_SIGNAL_PRD 1236
ALLOC_REPLY_SIGNAL_PRD_PAR 1236
ALLOC_SIGNAL 1231
ALLOC_SIGNAL_PAR 1231
ALLOC_STARTUP 1240
ALLOC_STARTUP_PAR 1240
ALLOC_STARTUP_THIS 1241
ALLOC_THIS_PROCEDURE 1249
ALLOC_TIMER_SIGNAL_PAR 1243
ALLOC_VIRT_PROCEDURE 1249
allocation

C Code Generator 1085
data areas for signals 1126

alt
inline frame 240

alternative syntax 207
ancestor

version 1 (4-way) 139
version 2 (4-way) compare 140
version 2 (4-way) merge 143

anonymous union 587
ansiName 2481
any, UML 356

C Code Generator 1097
decision, C Code Generator 1254
decision, simulation 1097
expression 356
sortname in expression 1097

API
C++ 2275, 2315
COM 2091
Tcl 2215

appearance 247
append

symbol in activity flow 179
application

bare 878
building 831
C++ 1694
examples 922
generation 870
2520 IBM Rational Tau User Guide June 2009



threaded 878
ApplyStereotype 2117
arbiter 1747
architecture 46
architecture diagram. See composite structure diagram
architecture modeling 295
arguments

C++ import 565
default, C++ import 568

arrange windows 19
array 501, 1114

C Code Generator 1099
type specifier 557

artifact
build 831
example 928
file 937
Java files 1353
thread 938
UML 368

assert
inline frame 241

Assertions, using (Explorer) 1971
assignment 346
Assign-Value Explorer command) 1972
association

navigable 267
relationships 373
use case modeling 217

ASTERISK_STATE 1252
attribute 266

build index file 944
class 263
compartment 274
constant 1094
DOORS 1728
formal parameter 1179
GUID C/C++ import 550
in generated code 1094
interfaces 1179
multiplicity 1502
signal parameter 1179
struct components 1179

attributes
public, C Code Generator 1093

auto
placement, in diagram 174
June 2009 IBM Rational Tau User Guide 2521



Chapter : 
Auto create files 75
auto_cfg.h 1304
autocheck 79

Output window 18
Automatic layout 171
Auto-routed (keep endpoints) 191
Autosize 177
autosize

diagram 168
symbols 177

axioms 693

B
backward compatibility 465
Bag 1100
bag

generic functions 1115
value 502

bare 878
application 878
COM API limitation 2096
COM API restrictions 2279, 2320

basic models 159
batch

build interface 943
C Code Generator 1089
interface for Tau 943
mode 1089

beautifier 1320
BEGIN_ANY_DECISION 1254
BEGIN_ANY_PATH 1254
BEGIN_FIRST_ANY_PATH 1254
BEGIN_FIRST_INFORMAL_PATH 1255
BEGIN_INFORMAL_DECISION 1255
BEGIN_INFORMAL_ELSE_PATH 1255
BEGIN_INFORMAL_PATH 1256
BEGIN_PAD 1227
BEGIN_START_TRANSITION 1227
BEGIN_YINIT 1230
behavior 159

modeling 326
behavior port 301

example 163
port 275

Behavior tree 1932
behavioral elements

collaborations 746
2522 IBM Rational Tau User Guide June 2009



common behavior 746
state machines 746
use cases 746

bi-direct 299
line edit 193

Bind
COM API 2156

bind
Java inner classes 1359
model element 74

Bit 499
Bit-State-Exploration Explorer command) 1973
BitString 499
block

instance 636
SDL import 637
substructure 638
type 634

bmp 184
bookmark

help file 64
Borland

C/C++ 2514
Bottom Explorer command) 1974
break

inline frame 241
breakpoint

insert 452
insert UML Debugger 1704
list 453
list UML Debugger 1706
list, save 468
remove 453
remove UML Debugger 1706

browse page 2452
build

application 829
application, AC 1281
applications reference 929
artifact 831, 930
configuration 932
configuration, example 927
index file 943
menu 939
Output window 19
root 840
selection 441
June 2009 IBM Rational Tau User Guide 2523



Chapter : 
settings 933
shortcut menu 942
stereotype 970
target name 846
tool bar 938
type 932
wizard 936
wizard dialog 936

build root 932
build type

Build Wizard 936
C Code Generator 1088
C/C++ import 614
run-time libraries 1060

C
C application

stereotype 977
C Application Customization

stereotype 979
C build types

restrictions 949
C code 1035
C Code Generator 1088

action 1145
active class, data structure 1131
active class, symbol table 1171
attribute 1179
batch mode 1089
C definitions 1098
compilers, adaptation to 1072
connector, port 1170
connector, run-time 1152
create 1137
decision 1145
environment functions 1040
formal parameter 1179
global attributes 1147
guard, implementation 1093
guard, run-time 1145
inline active class 1171
memory allocation and de-allocation 1080
nextstate 1144
operation call 1151
operation return 1151
package 1170
PAD function 1127
2524 IBM Rational Tau User Guide June 2009



PAD function, environment 1055
part 1171
port 1170
PRD function 1150
ready queue 1092
remote operation 1175
reserved words 955
restrictions 949
root active class 1170
signal receipt 1127
signal, allocation of data 1126
signal, code components 1175
signal, data structure 1124
signal, output 1127
signal, send 1140
signal, send and receive 1140
signals and timers 1124
SignalSet 1170
sort 1177
startup signal 1175
state 1175
stereotype 971
stop 1137
struct 1179
symbol table types 1162
syntype 1103
syntype, code components 1177
timer components 1175
timer data structure 1124
timer operations 1128

C code generator 872
C compiler driver

CCD 1318
configuration 1321

C compilers and C/C++ import 613
C definitions 1098

C Code Generator 1098
C name

AgileC Code Generator 961
C Code Generator 978
prefix in ifc file 1043

C only 981
C++

Code Generator Reference 1371, 1531, 1853
textual syntax 1529

C++ API 2275, 2315
C++ Application Generator 1534
June 2009 IBM Rational Tau User Guide 2525



Chapter : 
restrictions 956, 958
stereotype 979

C++ Code Generator
TTDCppAppGen 1532
TTDCppPredefined 1532

C++ header file
stereotype 980

C++ implementation file
stereotype 980

C/C++
dialect 982
Fundamental Type 552

C/C++ import 541
build types 614

restrictions 616
C/C++ import, mapping

cast expression 585
class 586
class template 604
constant 582
constructor 588
default template arguments 607
destructor 589
enumerated type 560
friend 596
function template 607
fundamental types 552
inheritance 596
Macro 611
member 589
pointer 553
reference type 553
rules 543
sizeof expression 585
struct 586
typedef 560
UML 552
union 586
variable 581
volatile 609

C/C++ import, properties
forward declaration 599
Function 562
GUID assigned 549
incomplete type 602
names 551
Overloaded operator 604
2526 IBM Rational Tau User Guide June 2009



rules for C compilers 613
scope unit 579

call
macro implementation 1249
operation, C Code Generator 1096, 1151
remote operations 1236

CALL_PROCEDURE 1249
CALL_PROCEDURE_IN_PRD 1249
CALL_PROCEDURE_STARTUP 1250
CALL_PROCEDURE_STARTUP_SRV 1250
CALL_SUPER_PAD_START 1227
CALL_SUPER_PRD_START 1228
CALL_THIS_PROCEDURE 1250
CALL_VIRT_PROCEDURE 1250
CALL_VIRT_PROCEDURE_IN_PRD 1250
capture

minidump 418
cardinality 270
cascade 19
case sensitivity

SDL import 688
UML 205

cast expressions
C/C++ import restrictions 619

CCD 1318
behavior 1321
configuration file 1321
user Interface 1318
variables 1321

Cd (Explorer command) 1974
cfg 1321
change

element values 459
options 26

Change Eclipse directory 1473
channel

SDL import 647
substructure 691

characters
unique names 1120

Charstring
C Code Generator 1100
C Code Generator equal function 1111

Check
Output window 18

check 2266, 2272
complete model 80
June 2009 IBM Rational Tau User Guide 2527



Chapter : 
part of a model 81
Check in

configuration management 2431
Check out

configuration management 2431
Choice

C Code Generator 1100
choice 501

UML 287
CIF 629
CJK characters 2481
class 260

abstract 264
C/C++ import, mapping 586
C/C++ import, scope 580
components 265
CPtr 906
external 265
file extension 1337
heading examples 263
hide attributes 189
modeling 258
new 347
show attributes 189
signature 390
this 347
UML 260
without tag 587

class diagram 259
classifier

metaclass 387
ClearCase 2427
Clear-Coverage-Table (Explorer command) 1975
Clear-Parameter-Test-Values (Explorer command) 1975
Clear-Reports (Explorer command) 1975
Clear-Rule (Explorer command) 1975
Clear-Signal-Definitions (Explorer command) 1976
Clear-Test-Values (Explorer command) 1976
client restrictions, COM API 2096, 2279, 2319
clock function

AgileC Code Generator 1285
C Code Generator 1076

close
file 36
window 20
workspace 30

Close, Review differences 152
2528 IBM Rational Tau User Guide June 2009



closed systems 162
CM tool

execute 2434
integration 2415

code 703
code architecture 58
code coverage tab 464
code generation

CJK characters 2481
mapping 1088
properties, AgileC Code Generator 960
properties, C Code Generator 972

code generator output 944
code optimization macros 1210
Collapsed

symbol command 177
color

palette 76
Properties Editor values 91
UML syntax 77

column
Create Presentation 112
diagram type 112, 119
item 112, 119
Model Navigator 118
Source reference 1004
type 112, 119

Column of Remarks 181
COM API 2091
command line

html generation 2478
command line mode 943
Command-Log-Off (Explorer command) 1976
Command-Log-On (Explorer command) 1976
commands

customize 2488
commands tab 2488
comment

Column of Remarks 181
comment symbol 380, 381

reference in diagram 181
syntax errors 697

Comment, Properties Editor 85
common ancestor

(3-way) 139, 142
communication 646
comp.opt
June 2009 IBM Rational Tau User Guide 2529



Chapter : 
AgileC Code Generator 1281
C Code Generator 1063

compare 135
command line 144
shortcut keys 2408
versions 135
zoom ruler 149

Compartment text fields 189
compilation macros, C Code Generator 1197
compile 973

c file 1319
Java 1344

compiler 1073
adaptation 1072
scttypes.h 1072
section macros 1200
support 545

completion 80
complex

parameter values 455
component 265

entity classes 1169
selection tests 1257

components
table nodes 1169
type info nodes 1185

composite difference 153
composite state 362
composite structure diagram

UML 295
update model 303

composition
association 373
relationships 376

compound statement 347
C Code Generator 1145
components 1174

compress layout 247
conditional compilation

decisions 882
stereotype 880
UML 880

conditional expression 355
configuration 37, 136

AgileC Code Generator 1269, 1304
Model Verifier 468
stereotype 991
2530 IBM Rational Tau User Guide June 2009



UML deployment 873
configuration branch, merge 135
configuration build 849, 932
configuration file

CCD 1321
Model Verifier 468

configuration macros 1200
configuration management 2415

Check In 2431
Check Out 2431
import module 2434
internationalization 2479
multiple tools 2429

connect
symbols 178

connector 299
C Code Generator 1170
line, update model 303
port, C Code Generator 1152

Connector-Disable (Explorer command) 1974
Connector-Enable (Explorer command) 1975
consider, inline frame 241
console command 471

help (?) 506
console windows 2506
constant

C/C++ import 582
expression 585
members 593
preprocessor macros 583
UML 271

Constraint compartment 265
constraint symbol 380
constructor

C/C++ import 588
contents

Model Verifier configuration 468
continuation

UML 242
Continue-Until-Branch (Explorer command) 1977
Continue-Up-Until-Branch (Explorer command) 1977
convert

UML to C++ style 169
copy 182

element values 459
model elements 75
objects 1109
June 2009 IBM Rational Tau User Guide 2531



Chapter : 
Copy URL 2450
CORBA

class 798
association 796
attribute 797
comment 798
constant 799
enumeration 800
exception 801
IDL Exporter 780
include 802
interface 802
module 804
multiplicity 803
operation 803, 808
package 804
parameter 804
predefined types 807
profile 787
sequences 808
signal 808
struct 808
syntype 809
template types 783
typedef 809
union 810

CORBA IDL exporter 779
co-region 241
count 2169
coverage statistics tab 463
CppGen 1532
CppImport, add-in 548
cppImportSpecification 981
CppStdLibrary 613
CppTypes 1532

CPtr 904
create

activity diagram 307
compartments 188
diagram 167
file 36
instances 461
interaction overview diagram 250
model 55
operation 1137
project 32
2532 IBM Rational Tau User Guide June 2009



project in existing workspace 33
requirements model 50
sequence diagram 221
state machine diagram 328
system model 52
text diagram 378
threads 1290
UML definitions 544
use case diagram 214
window 21
workspace 29

Create Presentation 112
create statement 657
create symbol

C Code Generator 1137
UML 236

CreateEntityCollection 2191
CreateInstance 2149
CreateResource 2109
CreateSemGroup 2267
CreateSemRule 2267
critical

inline frame 241
Current path (Explorer) 1933
Current root (Explorer) 1933
Current state (Explorer) 1933
Customize

Add-ins 2017
dialog 28, 2488
toolbars 25

customize 28
add-ins 2492
CCD 1318
commands 2488
IBM Rational Tau 2011
new toolbar 2490
toolbars 2489
tools 2490
user interface 2021
windows layouts 2490

cut 182
Cygwin 2514

D
dat, tools file extension 2490
data structure

AgileC Code Generator 1312
June 2009 IBM Rational Tau User Guide 2533



Chapter : 
operation 1148
signal and timer 1131

Data types, test values (Explorer) 1963
datatype

inheritance 682
SDL import 667
UML 284

de-allocation 1085
debug 418

macro 1259
UML 1034

debug. See Model Verifier
decision 341

answer 341
C Code Generator 1145
prompting 452

Declare 2249
decomposition 226
deep copy 460
deep history

UML 334
DEF_ANY_PATH 1254
DEF_INFORMAL_ELSE_PATH 1256
DEF_INFORMAL_PATH 1256
DEF_TIMER_VAR 1244
DEF_TIMER_VAR_PARA 1244
default

converts from else 170
Default Create file mode 75
default value

sorts, C Code Generator 1098
UML 269

Default-Options (Explorer command) 1977
Define-Bit-State-Depth (Explorer command) 1977
Define-Bit-State-Hash-Table-Size (Explorer command) 1977
Define-Bit-State-Iteration-Step (Explorer command) 1978
Define-Connector-Queue (Explorer command) 1978
Define-Exhaustive-Depth (Explorer command) 1978
Define-Integer-Output-Mode (Explorer command) 1978
Define-Max-Input-Port-Length (Explorer command) 1979
Define-Max-Instance (Explorer command) 1979
Define-Max-Signal-Definitions (Explorer command) 1979
Define-Max-State-Size (Explorer command) 1979
Define-Max-Test-Values (Explorer command) 1979
Define-Max-Transition-Length (Explorer command) 1980
Define-Parameter-Test-Value (Explorer command) 1980
Define-Priorities (Explorer command) 1980
2534 IBM Rational Tau User Guide June 2009



Define-Random-Walk-Depth (Explorer command) 1981
Define-Random-Walk-Repetitions (Explorer command) 1981
Define-Report-Abort (Explorer command) 1981
Define-Report-Continue (Explorer command) 1981
Define-Report-Log (Explorer command) 1982
Define-Report-Prune (Explorer command) 1982
Define-Root (Explorer command) 1982
Define-Rule (Explorer command) 1983
Define-Scheduling (Explorer command) 1983
Define-Signal (Explorer command) 1983
Define-Spontaneous-Transition-Progress (Explorer command) 1984
Define-Symbol-Time (Explorer command) 1984
Define-Test-Value (Explorer command) 1984
Define-Timer-Progress (Explorer command) 1985
Define-Transition (Explorer command) 1985
Define-Tree-Search-Depth (Explorer command) 1985
Define-Variable-Mode (Explorer command) 1985
definitions tab 117
delayed connectors 691
delete 182

attribute 189
element 73
instances 461
line 193
model elements 199
operation 189
parameter 189
selected signals 248
symbols 199

Delete All Values, Properties Editor 90
Delete Instance, Properties Editor 89
Delete Model 74
Delete Value, Properties Editor 90
Delete, COM API 2151
DeleteSemEntity 2268
DemonGame (Imported from SDL Suite) 699
dependency

architecture modeling 302
relationship 372
use case modeling 218

dependency link 2444
depending declarations 990
deployment 924
deployment example 922
derived 209

attribute 270
operation 272
June 2009 IBM Rational Tau User Guide 2535



Chapter : 
desktop 13
destroy

UML symbol 238
destructor

C/C++ import 589
detailed design activities 57
Detailed-Exa-Var (Explorer command) 1986
diagram 44

autosize 168
create 167
element properties 180
frame 166
general 44
grid 166
heading 166
move 168
name 167
open 167
operations 166
print 167
requirement 1721
save 167
scope 202
size 167
size, print 2467
tooltips 2501
UML 196
zoom 172

Diagram Element Properties 180
Diagram Name column 112, 119
Diagram size 169
Diagram View 16
diagram-centric workflow 72
Diagrams, Model Navigator tab 117
dialog help 2485
Difference list 149, 150
Difference minimization 141
direct addressing 1213

environment 1051
method application 339

directives 663
directories

including 1059
sdlkernels 1058

Directory Service 2438
DirectoryDialog 2251
disable
2536 IBM Rational Tau User Guide June 2009



interrupt 1288
Disable model update while editing 2500
discovery-based storage 39
display

element values 459
name completion 2501

Display Incoming Links 2450
Display Outgoing Links 2450
distributed applications 1033
dock

window 21
dock, window 21
docked window 19
Document Type Definition 742
DoDAF 2014
DOORS

attributes 1728
baseline 1736
formal module 1727
import 1724
link 1729
object 1727
table 1728
toolbar 1740
UML represenation 1727
view 1736

do-while statement 1408, 1591
Down (Explorer command) 1986
Drag and Drop 133

create presentation 134
from model view to a diagram 134
link 134
within and between diagrams 135
within the model view 133

dynamic behavior
classes 46

dynamic memory
AgileC Code Generator 1307
allocation 963, 1307
allocation, de-allocation 1085
C Code Generator 1079
size requirements 1080

dynamic memory, C Code Generator
fragmentation 1086

dynamicLibrary
stereotype 992, 1004
June 2009 IBM Rational Tau User Guide 2537



Chapter : 
E
Eclipse 1469, 1472

change directory 1473
commands 1475, 1477
Integration 1467
plug-in 1468
project 1474
project from UML 1470

EclipseIntegration 1468
edit

artifact properties 832
Breakpoints 453
display name completion window 2501
options 27
show tooltip 2501
symbols 182
text 2404
text in symbols 179

Edit Links 2450
Edit properties of symbols/lines, Properties Editor 88
Editing vertices 192
editor

shortcuts 2405
elements

Java 1356
navigation 116
properties 73, 207
text diagrams 378

ellipsis function 616
else

converts to default 170
emf 184
enable

interrupt 1288
Enable External Relationship support 2453
Enable Instrumentation 2463
enabled direction 193
Encode type of files used by build tools 2482
END_ANY_DECISION 1255
END_ANY_PATH 1255
END_DEFS_ANY_PATH 1255
END_DEFS_INFORMAL_PATH 1256
END_INFORMAL_DECISION 1256
END_INFORMAL_ELSE_PATH 1256
END_INFORMAL_PATH 1257
entity access commands 2254
entity tabs 117
2538 IBM Rational Tau User Guide June 2009



entry connection point 363
enumerated data type

C/C++ import 560
converts from datatype 170

enumerated type 285
C Code Generator 1101
C/C++ import 560

environment 966
file guidelines 1045

environment functions 1040
AgileC Code Generator 1269, 1272
guidelines 1045
macros 1276
xCloseEnv 1045
xGlobalNodeNumber 1054
xInEnv 1049
xInitEnv 1045
xOutEnv 1046

environment header file 1042
environment support 877
environment variables

sctCC 1066
sctCCFLAGS 1066
sctCPPFLAGS 1066
sctIFDEF 1066
sctLD 1066
sctLDFLAGS 1066
sctLINKKERNEL 1066

error
detection 963, 1308
handling 475, 1707
XMI export 776

error messages 417
SDL import 703

ERROR_STATE 1252
Errors

Explorer (detected errors) 2002
Evaluate-Rule (Explorer command) 1986
Examine-Connector-Signal (Explorer command) 1986
Examine-PId (Explorer command) 1987
Examine-Signal-Instance (Explorer command) 1987
Examine-Timer-Instance (Explorer command) 1987
Examine-Variable (Explorer command) 1987
Example

Small executable model 159
example

Deployment 922
June 2009 IBM Rational Tau User Guide 2539



Chapter : 
environment 922
examples 829

in UML 159
exception 608
exe, file extension 846
executable

stereotype 993
execute

application 450
class as applet 1345
class, Java 1345
scenario 467
selection 441
UML Debugger application 1703

ExecuteCOMClient 2224
execution 928

modes 878
tracking 447
tracking UML Debugger 1702

Exhaustive-Exploration (Explorer command) 1988
exit

connection point 364
model verifier 444
UML Debugger 1701

Exit (Explorer command) 1989
expand macros

C Code Generator 973
Model Verifier 1000

explicit connector 299
Explorer

Rules checked 2002
symbol coverage 1935
test values 1963
tree search exploration 2001
truncated paths 1935

Explorer commands
Help, context sensitive 1972

Explorer, advanced exploration 1955
Explorer, assertions, using 1971
Explorer, bit state exploration, collision risk 1935
Explorer, exploring a system 1952
Explorer, external C/C++ code 1967
Explorer, generating 1935
Explorer, incremental validation 1962
Explorer, large state spaces, handling 1956
Explorer, large systems, exploring 1956
Explorer, random walk, using 1962
2540 IBM Rational Tau User Guide June 2009



Explorer, signals, defining 1963, 1966
Explorer, starting 1935
Explorer, state space exploration, decomposing 1956
Explorer, state space exploration, performing 1934
Explorer, state space exploration, pruning 1954
Explorer, state space exploration, rules 1934
Explorer, state space exploration, statistics 1935
Explorer, state space options, advanced 1955
Explorer, statistics, interpreting 1935, 1953
Explorer, symbol coverage 1954
Explorer, test values, defining 1965
Explorer, test values, saving 1967
Explorer, user-defined rules, using 1969
Exploring a system 1952
export

package to Eclipse 1472
package to Java 1336
XMI 762
xsd 1927

expression
Model Verifier 471
UML 353

extends 218
extensibility 382
Extensible Markup Language 2515
extension 384

relationships 378
external

attributes 1095
class 265

External relationship 2445
External relationship options 2453

F
Favorites

tab 118
Features

tab 117
field

expression 355
file 36

add to project 34
C Code Generator source files 1068
CCD configuration file 1321
comp.opt 1063
dialog 28
insert 17
June 2009 IBM Rational Tau User Guide 2541



Chapter : 
make.opt 1059, 1064
makefile 1067
makeoptions 1059, 1064
model split 75
operations 2402
options 26
predef92.sdl 1058
recent 34
representation of 17
run-time library 1068
sctadacom.c 1068
sctadacom.h 1069
sctda.c 1068
sctdamsg.c 1069
sctdamsg.h 1069
sctdamsgcode.h 1069
sctlocal.h 1069
sctos.c 1069
sctos.c, adapt to compiler 1072
sctos.c, contents 1074
sctpred.c 1069
sctpred.h 1070, 1098
sctsdl.c 1070
scttypes.h 1070, 1098
scttypes.h, adapt to compiler 1072
sctutil.c 1070
show in Model view 15
Source reference 1003
stereotype 993
structure 1268
system element 1353

file artifact 937
file extension

.bmp 184

.cfg 1321

.class 1337

.dat 2490

.emf 184

.exe 846

.gif 184

.hs 1128

.html 2235

.ifc 877, 1044

.jar 1337

.jpeg 184

.jpg 184, 2474

.mod 2017
2542 IBM Rational Tau User Guide June 2009



.opt 1063

.pcx 184

.pdf 2515

.pr 875

.sdt 626

.targa 184

.tga 184

.tif 184

.tiff 184

.tot 26

.ttdcfg 468, 510

.ttdscn 466, 510

.ttp 31

.ttw 29

.u2 167

.u2x 171

.xsl 152, 1773
external program launch 2493
folder filter 35
generated file 1064

File View 14
FileOpenDialog 2225
Files

.valinit 1989, 1995, 1996
valinit.com 1989, 1995, 1996

files 17
tab 2486

FileSaveDialog 2226
filter

delete in sequence diagram 247
Model view 15

find 169
receiving instance 1152

Find text in diagrams too 169
FindByGuid 2103
float

window 21
floating window 19
flow 352

append symbol 179
insert symbol 179
orientation 308
remove symbol 179

flow line 352
folder 36

add to project 35
font settings 2480
June 2009 IBM Rational Tau User Guide 2543



Chapter : 
Font settings, options tab 2496
for statement 1408, 1591
formal arguments 563
formal module 1727
formal parameter, C Code Generator 1179
formal parameter, GUID C/C++ import 550
Format, options tab 2495
forward declaration, C/C++ import 599
found message 231
foundation

core 745
data types 745
extension mechanisms 745

four-way compare/merge 135, 143
fragmentation, dynamic memory 1086
frame 166, 379
friend 596

C/C++ import 596
full screen 20
function 562

C/C++ import 562
declaration without prototype 563
pointers 570
prototype 562
skeletons 1041

function pointers
restrictions in C/C++ import 616

fundamental types
C/C++ import 552

G
gate 647, 650

names 244
text, add/remove 244

general ordering line 234
generalization 372

C/C++ import 550
use case modeling 218

generate
C Code Generator 977
environment template functions 973, 1000
html 2471

Generate Diagram dialog 120
Generate reference package 876
generated

code 1032
environment functions 1276
2544 IBM Rational Tau User Guide June 2009



name 1120
GenerateEMF 2174, 2301, 2350

Tcl 2257
GenerateEMFEx 2176, 2178

C++ API 2302, 2351
Tcl 2259, 2260

Generate-SQD-Trace (Explorer command) 1989
generator

SDL 680
generic functions 1106

assignment 1107
copy 1114
equal 1111
free 1112
GenericMakeArray 1113
GenericMakeChoice 1113
GenericMakeOwnRef 1113
GenericMakeStruct 1112
make 1112
operations in generators 1114

GenericMakeArray 1113
GenericMakeChoice 1113
GenericMakeOwnRef 1113
GenericMakeStruct 1112
Get Latest Version 2430
GetActiveProject 2228
GetCompanyAddinsDirectory 2234
GetEntities 2125
GetEntity 2123
GetInstallationDirectory 2228
GETINTRAND 1200
GETINTRAND_MAX 1201
GetMetaClassName 2129
GetModels 2230
GetOwner 2128
GetProject 2231
GetReference 2126
GetReferringEntities 2131
GetSelection 2232
GetTaggedValue 2133
GetTeamAddinsDirectory 2233
GetUserAddinsDirectory 2233
GetUserDirectory 2234
GetValue 2119
gif 184
Global attributes 1147
global attributes, C Code Generator 1147
June 2009 IBM Rational Tau User Guide 2545



Chapter : 
Globally unique identifier 74
Globetrotter, see Macrovision 2514
GNU

C/C++ 2514
go to line 25
Go to source 876, 1516
Goto Owner, Properties Editor 90
Goto Value, Properties Editor 91
Goto-Path (Explorer command) 1989
Goto-Report (Explorer command) 1989
Gray 14
grid 166
guard 343

C Code Generator 1145
triggered transition 1093

guarded transition 333
GUID 74

algorithm 983
assigned by C/C++ import 549
C/C++ import 549
COM API, FindByGuid 2104
compare versions 135
taubatch option 945

guillemets, «» 180

H
header file 987

include, restrictions 622
header files

wildcard C/C++ import 548
heading 166
help

on-screen 62
Help (Explorer command) 1990
hide

windows 2410
hide windows 20
highlight 78

text edit 2403
history nextstate 333
hs

file extension 1128
html 2471

Java applet 1345
open with Tcl 2235

HtmlReport 2235
Hyperlink 2503
2546 IBM Rational Tau User Guide June 2009



hyperlink 2442
link options 2452
options 2503

I
IBM Customer Support 2510
Icon

stereotype 994
icon 183

IconFile 184
Icon mode 184
identify

use cases 50
Identify Design Elements By UML Kind (UML only) 1818
Identify Design Elements Not Justified By Requirements 1818
Identify Requirements Not Addressed By Design Elements 1818
IDL

artifact 780
predefined types 783

IDL exporter, CORBA 779
ifc 877, 1276

AgileC Code Generator 1268
prefix and macro 1044

ignore
inline frame 241

Ignore layout, compare and merge 152
Illegal re-declaration, connectors 697
image file 184
IME (Input Method Editor) 2480
IMGen 875
imperative expressions 356
implementation

activity 310
metaclass 390
signature 389

implicit connector 299
import 254

cat 707
configuration management 2434
dependencies 1386
DOORS 1724
formal module 1724
Japanese SDL Suite 627
JAR file 1335
mdl 707
module 2434
ObjectGeode 631
June 2009 IBM Rational Tau User Guide 2547



Chapter : 
preserved layout 747
requirement 1724
Rose 707
SDL 625
SDL Suite 630
Together 725
UML 741
UML 1.4 744
UML Suite 749
XMI 742
XMI/UML, restrictions 749
xsd 1927

in
parameter 1105

in/out
parameter 1105

INCLUDE
directive 666

include 1058
C files 1270
expression 693
file 977
list of breakpoints 469
list of messages 469
Model Verifier configuration 470
SDT reference 697
source and header files 1068

Include-File (Explorer command) 1990
incoming signal 279
incomplete

message 230
type declaration 602

indent 379
index 63

column 118
expression 355
results 64

informal
decisions 342, 1255
statement 662

inheritance 596
access specifier 598
C/C++ import 596

init, C++ Application Generator 1452, 1663
INIT_PROCESS_TYPE 1241
INIT_TIMER_VAR 1244
INIT_TIMER_VAR_PARA 1244
2548 IBM Rational Tau User Guide June 2009



initial value
sorts, C Code Generator 1098

initialize
state machine 262

inline
#CODE directive 664
C/C++ 873
class 262
code 873
frame 238
functions 569
initialization of arrays 693

inline active classes 1171
inout

converts from in/out 170
input

C/C++ import files 542
SDL import 661
taubatch 943

input. See signal receipt
INPUT_TIMER_VAR 1244
INPUT_TIMER_VAR_PARA 1244
insert

breakpoint 452
breakpoint UML Debugger 1704
file 17
link 2452
project 30
project into workspace 30
symbol 173
symbol in activity flow 179
symbol in flow 179

INSIGNAL_NAME 1232
install

Eclipse integration 1468
instance

path 505
instance components 1171
Instances 16, 444
instrumented application 440, 1698
integration 1468

AgileC Code Generator 1270
compiler and operating system 1283
IBM Rational ClearCase 2427
new compiler 1283
run-time system 1285
SYNERGY/CM 2416
June 2009 IBM Rational Tau User Guide 2549



Chapter : 
Interaction 221
interaction occurrence symbol 245
interaction reference 222
interactive build interface 930
interactive mode 1088
interface 277

port 276
interface header file 1042

AgileC Code Generator 1276
interface overview 2093
interface symbol 277
internals 366
internationalization 2479

add-ins 2481
support 2479

InterpretTclScript 2192
interrupts

AgileC Code Generator 1288
IsKindOf 2138
IsModified 2236
Item 2167
ITtdEntities 2165
ITtdEntity 2114, 2288, 2328
ITtdInteractiveClient 2189
ITtdInteractiveServer 2191
ITtdMetaVisitCallback 2186, 2194, 2195, 2305, 2356
ITtdModel 2102, 2284, 2323
ITtdModelAccess 2097, 2201, 2280, 2320, 2374
ITtdPresentationElement 2173, 2301, 2350
ITtdResource 2172, 2301, 2349
ITtdSymbol 2180, 2183, 2303, 2304, 2352, 2353

J
JAR

file 1337
file artifact 1355

jarFile
stereotype 995

jarPackage 1355
Java

add-in 1327
additional libraries 1357
files 1334
from models 1336, 1472, 1484
restrictions 1358
runtime libraries 1355
support 1327
2550 IBM Rational Tau User Guide June 2009



syntax 1338
U2 syntax 1359
UML packages 1359

javadoc 1338
javaFile, stereotype 996
javaPackage 1354
join 1252
jpeg 184
jpg 184, 2474
junction 351

K
Keep selected signals 248
kernel 1058
keywords. See reserved words
kind 386

L
language, Capplication attribute 978
launch

C Code Generator 1088
command line 2015

library
stereotype 996

library files 1063
library version macros 1199
lifeline 223
lifeline decomposition 225
lifeline symbol 245
limitations, see also restrictions
limited string 1117
line 1004

aggregation 373
association 373
auto-routed 2502
bezier 2502
bi-direct 193, 299
composition 373
connector 299
delete 193
dependency 372
flow 352
generalization 372
go to 25
move 193
non-orthogonal 2502
number 25
June 2009 IBM Rational Tau User Guide 2551



Chapter : 
operations 190
orthogonal 2502
realization 373
re-direct 193, 299
simple transition 352

link 973
commands 2449
creating 2446
deleting 2448
dependency link 2444
display incoming 2450
display outgoing 2450
DOORS 1729
drag and drop 134
hyperlink 2442
navigating 2449
options 2452
overview 2441
SDL import 650
toolbar 2450
URL 2442

Link Requirement To Selected Item In Tau 1816
linkage 609
links

column 118
external 2509
tab 117, 2496
web sites 2510

list breakpoints 453
UML Debugger 1706

List Presentations 186
List References 185
List-Active-Class (Explorer command) 1991
List-Connector-Queue (Explorer command) 1990
List-Input-Port (Explorer command) 1990
List-Next (Explorer command) 1991
List-Parameter-Test-Values (Explorer command) 1991
List-Ready-Queue (Explorer command) 1991
List-Reports (Explorer command) 1991
List-Signal-Definitions (Explorer command) 1992
List-Test-Values (Explorer command) 1992
List-Timer (Explorer command) 1992
literal 287
load

CppImport add-in 548
Model Verifier configuration 469

Load image 184
2552 IBM Rational Tau User Guide June 2009



LoadFile 2099, 2111
LoadLibrary 2263
LoadProfile 2264
LoadProject 2097, 2281, 2282, 2320, 2321, 2322, 2374
Load-Signal-Definitions (Explorer command) 1992
locate

DOORS element from Tau 1730
Eclipse 1474
objects 461
search 64
Tau 1476

Location
column 112, 118

location
Tau Installation 1475

log
execution results 461
result 461
sequence diagram trace 462
textual trace 462

Log-Off (Explorer command) 1992
Log-On (Explorer command) 1992
loop

inline frame 240
LOOP_LABEL 1228
LOOP_LABEL_PRD 1228
LOOP_LABEL_PRD_NOSTATE 1228
lost message 230

M
macro 611, 691

attribute 1095
insert 1261
type info nodes 1195

macro, C/C++ import 611
Macrovision 2514
MainInit function 1055
MainLoop function 1055
make 878

hyperlink to element 2453
Make Link from Start 2450
Make settings

stereotype 997
make template

AgileC Code Generator 1268
relative paths 847

make template file 1067
June 2009 IBM Rational Tau User Guide 2553



Chapter : 
C Code Generator option 974
Model Verifier option 1001

makefile 1066
AgileC Code Generator 1268
stereotype 997

Makefile Generator
stereotype 998

makefile generator 852
makeoptions, make.opt 1064
manifest 936
Match Similar Word 65
MAX_READ_LENGTH 1264
MDI child 21
MDI Child window 19
member 589

access specifier 590
C/C++ import 589
constants 594
functions 563
variable 582

memory fragmentation 1086
memory management 1085

AgileC Code Generator 1286
C Code Generator 1080
class 1080
datatypes 1084
procedure 1083
signal 1082
timer 1083

menu bar 22
merge 135, 2408

command line 144
conflicts 143
considerations 139
differences 143
Model Verifier configuration 469
project 138
textual 156, 158
variations 135
versions 135, 141
zoom ruler 149

Merge-Report-File (Explorer command) 1993
message 227

line 246
Output window 18
send to Model Verifier 454
window 2506
2554 IBM Rational Tau User Guide June 2009



message list
include 469
open 469
save 468

MessageDialog 2237
metaclass 383

classifier 387
implementation 390
signature 388, 390

metafeature type 2121
metafeature values, Properties Editor 85
metamodel 382

classes 387
model view filter 15
profile 387

MetaVisit 2153
method 389
method call 243
method call line 246
method reply line 246
Microsoft Visual

C/C++ 2515
migrating project 2421
minidump 418
MINUS_INFINITY 386
MISRA

compliant 1299
compliant code option 962

missing target
link 2443

mod, file extension 2017
model

compare 135
file mapping 1353
merge 135

model access 2028
adding functionality 2028
commands 2251

model checking 79
model element 198

activity diagrams 309
C++ files 1534
class diagrams 260, 291
component diagrams 304
deployment diagrams 367
handling 74
Java files 1353
June 2009 IBM Rational Tau User Guide 2555



Chapter : 
modeling workflow 72
name scope 202
presentation element 73
sequence diagrams 220, 252
use case diagrams 213

model example 160
Model Index tab 118
model management, XMI import 745
Model Navigator 114

tabs 114
model references 185
Model Selection

compare 141
merge 143

Model Verifier 440, 1698
building an application 440, 1698
configuration 468
execution result 461
open configuration 469
record execution steps 464
replay mode 464
restart execution 451
restrictions 949
send message 454
stereotype 1000
textual trace 445, 446

formatting of strings 446
Model View 15

Filters 15
Model view 147
model-based development 43, 72
model-centric workflow 72
modes

entity 117
link 117
presentation 116

move
diagram 168
files 37
line 193
model elements 75
symbols 176

MSVS7Integration
add-in 2456

multiple
build artifacts 833
inheritance 597
2556 IBM Rational Tau User Guide June 2009



state machines in class 262
multiplicity

association 374
attribute 269
collection type 391
composition 394

mutable member variables 594

N
name 204

C Code Generator 1119
C/C++ import 551
clashes 692
column 112, 119
completion 80
conventions 138
directories 1059
navigation 78
prefix 1119
referencing 80
suffix 1119
symbol table 1161
UML objects in C 1043
unique in C code 1120

namespace 579
naming

new elements 74
rules 204
use cases 215

navigable
association 267
end 374

Navigate 114
Navigating to a system state 1957
navigation 116

files 2403
help file 62
model to code 876, 1516
model to source code 1343
Model View 186
name 78

Navigator 112
neg

inline frame 241
nested

expressions 66
nested states
June 2009 IBM Rational Tau User Guide 2557



Chapter : 
import 747
new 2104

create diagram 167
expression 355
instance of class 347
project wizard 48
toolbar 2490
window 21

New diagram
tab 112

New symbol
tab 112

new toolbar
customize 2490

New Wizard 2486
New-Report-File (Explorer command) 1993
newtype

adding operator 680
Next (Explorer command) 1993
nextstate 1252

action occurrence symbol 247
C Code Generator 1144
history 333

node
references 1161
type 1159

nondeterministic decisions 343
None

Show Elements 175
none 387
non-language constructs 611
non-member functions 562
non-member variable 582
noScope

file size 1018
import 627
stereotype 256

now 357
in generated code 1243

O
object

DOORS 1727
locate in UML 78
Model Verifier mapping 471
taubatch option 946

Object Management Group 2515
2558 IBM Rational Tau User Guide June 2009



objectFile
stereotype 1003

ObjectGeode
import from 631
import, restrictions 698

ObjectIdentifier 500
OCL 2515
Octet 499
OctetString 499
offspring 360
OGC

importing SDL 420, 421
OMG 2515
OnExecute 2190, 2197
OnVisitedEntity 2187, 2188, 2305, 2356
open

diagram 167
file 36
list of breakpoints 469
list of messages 469
Model Verifier configuration 470
scenario 465
workspace 29

Open Linked Surrogate Item In Tau 1816
open systems 162
OpenDocument 2238
Open-Report-File (Explorer command) 1993
operation

compartment 274
operation, UML 271

active classes 1083, 1226
body 365
C Code Generator 1148, 1174
C/C++ import 550
call, C Code Generator 1096
class 263
compartment 274
compound statement 1174
mapping 1148
parameter passing 1105
prompt for value 452
result 1105
signature 390

operators 65
environment header file 974

opt 1063
inline frame 240
June 2009 IBM Rational Tau User Guide 2559



Chapter : 
optimization 1118, 1304
AgileC Code Generator 1304

options 26
Advanced 2504
C Code Generator 1088
cppImportSpecification 988
dialog 2492
file 26
format 2495
general 2492
hyperlink 2503
link 2496
save 2494
Save As 27
taubatch 944
UML Advanced editing 2499
UML Basic Editing 2497
UML Checking 2502
workspace 2495

ordering 184
events 225

ORef
C Code Generator 1101
value syntax 503

Oref 1189
organizing

view 171
orientation 308
outgoing signal 280
Output

Tcl 2239
output 340

compare/merge operation 146
header file 988
statement 659
statement contents 1208
symbol, converts from ^ 170
window 17

Output window
AutoCheck 18
build 19
Check 18
message 18
Model Verifier 19
Presentations 18
References 18
Script 18
2560 IBM Rational Tau User Guide June 2009



search result 18
output. See signal sending 339
OUTSIGNAL_DATA_PTR 1232
overloaded

const 616
conversion operators 616
functions 564, 568
operator 604
operator, C/C++ import 604

Own
C Code Generator 1101
C Code Generator equal function 1111
C Code Generator instantiation 1189
copy 1114
value syntax 503

P
package 252

C Code Generator 1170
components 1170
Java 1354
modeling 251
Predefined 386
tab 117

Package and Classes 75
PAD function 1127

in generated C Code 1055
macros 1227

page column 119
par

inline frame 240
parameter 210
parameter passing 1105

operations 1103
parameter, UML

signal and timer 505
parent 359
parse

COM API 2106
parse text 169
part 296, 1171

C Code Generator 1171
communication 301
symbol 303

Partition Reference 314
passive class

AgileC 1316
June 2009 IBM Rational Tau User Guide 2561



Chapter : 
paste
element values 459
symbols 182
text 28

path 847
source code 847
target directory 847

Path (Explorer) 1933
pcx 184
pdf 2515
pdf, Acrobat file extension 2515
performance

AgileC 1311
physical environment 1033
Pid 359

expressions 357
placement 174
PLUS_INFINITY 386
pointer 553

without type 554
pointer type specifier 554
pointer, C/C++ import mapping 553
port 274

attribute 269
components 1170
interface 276
type 275

POSIX pthreads 1285
PowerSet 1102, 1115

value 502
pr 875
PRD function 1150
Predefined 386
predefined

data 385
data types 1084
names 212
operations 668
type 559, 1098
UML Type 552

predicate 125
agent 131

Preferred filter, Properties Editor 88
prefix 1043

in generated code 1119
system interface header file 1043

preprocessor 989
2562 IBM Rational Tau User Guide June 2009



C/C++ import 871
restrictions 618

preprocessor support 543
presentation element 81

commands 2257
in diagram 73
navigation 115

presentation tabs 116
pretty-print, of generated C code 1318
preview diagram 2469
primitive datatypes 286
print 167

add printer 2466
add printer (UNIX) 2467
CCD configuration 1319
configuration and help 1319
diagram 167
help topics 64
multiple diagrams 2469
set up printer (UNIX) 2467
settings 2467
single diagram 2469

Print-Evaluated-Rule (Explorer command) 1993
Print-File (Explorer command) 1994
Print-Path (Explorer command) 1994
Print-Report-File-Name (Explorer command) 1994
Print-Rule (Explorer command) 1994
Print-Trace (Explorer command) 1994
priority 116

C Code Generator 1092
transition in composite state 363

private, converts from # 170
PROC_DATA_PTR 1251
procedure 639

call 655
PROCEDURE_ALLOC_ERROR 1251
PROCEDURE_ALLOC_ERROR_END 1251
PROCEDURE_VARS 1226
process 637

formal parameters 685
instance 636
properties 967, 1306
type 634

PROCESS_VARS 1226
profile 384, 2023

creating a 2023
deploying for use 2025
June 2009 IBM Rational Tau User Guide 2563



Chapter : 
handling commands 2262
metamodel 387
Requirements 1719
TTDCppPredefined 385
TTDRTTypes 387

project 31, 1475
activate 35
add files 34
add to workspace 30
configuration 38
create 32
file 946
insert 33
new 2486
operations 2402
settings 37
tool bar 938

Project Merge 138
Projects tab 2486
properties 78
Properties (build wizard) 936
Properties editor

shortcuts 2410
properties editor 832
properties macros 1202
Property View, Properties Editor 87
protected, converts from - 170
protection

shared data 1289
public

attributes, C Code Generator 1093
public, converts from + 170
purpose 197

Q
qualifier 686
qualifier, syntax in monitor 505
Query

dialog 129
query 125

agent 131
expression 126

Quit (Explorer command) 1995
quotation marks, automatic 170
quote

automatic typing 170
2564 IBM Rational Tau User Guide June 2009



R
Random-Down (Explorer command) 1995
Random-Walk (Explorer command) 1995
range check 358
Rational Rose 748
RDS server administration 2453
RDS server information 2453
Reachability graphs 1932
ready queue 444

C Code Generator 1092
priority 1092
scheduling 1135

real time 1091
realization, UML 373
realized interface 279
Real-time profile 406
Realtime, Model Verifier option 974
Rebinding references 2503
receive

signals 1140
receiver

attribute 340
expression 340
this 340

Recent files 34, 2452
Recent tab 118
recent workspaces 30
Reconfigure Model View 16
record

execution steps, Model Verifier 464
recursive

CPtr 906
re-direct 193, 299

lines 193
redo 185

shortcut 2404
reference

active objects 360
C type, C/C++ import 553
definition 80
existing definitions 174
rebind option 2503
to model 185
type 553
type specifier 558

Reference existing 174
messages 228
June 2009 IBM Rational Tau User Guide 2565



Chapter : 
name support 80
references tab 117
refine

design model 57
scenarios 55
use cases 55

refresh
status 2433

regular expressions 65
reject

compare and merge 152
relationships

class 289
collaboration, use case 217
composite structure 302
UML 371

relative path 847
C/C++ import 547

relative time line 233
RELEASE_TIMER_VAR 1245
RELEASE_TIMER_VAR_PARA 1245
Remember scroll and zoom 171
remote operation components 1175
remote procedure 644
remove 2171

breakpoint 452
C++ class 1453, 1664
printers (UNIX) 2466
source control 2432
symbol from activity flow 179
UML Debugger breakpoint 1704
unused operations 1118

remove breakpoint 453
UML Debugger 1706

Remove image 184
replay mode 464
REPLYSIGNAL_DATA_PTR 1237
REPLYSIGNAL_DATA_PTR_PRD 1237
report

html 2471
Report types (Explorer) 2002
Reports (Explorer) 1933
representation

file 17
timer 1128

required interface 280
requirement
2566 IBM Rational Tau User Guide June 2009



add-in 1715
copy 1720
deriveReqt 1721
diagram 1721
export to DOORS 1738
import 1724
locate in DOORS 1730
model view 1715
profile 1719
property view 1716
refine 1721
reports 1716
satisfy 1721
stereotype 1719
trace 1720
update from DOORS 1734
verify 1721

requirements analysis activities 49
requirements model 51
reserved words 206, 955
Reset (Explorer command) 1996
resize

diagrams 168
symbol indicators 178
symbols 177

resource
meta class base set 15
physical storage 2256

restart
Model Verifier dialog 2506
Model Verifier execution 451

restore model (f8) 80
restrictions

C build types 949
C code 1015
C Code Generator 949
C Code Generators 902
C++ API client 2279, 2320
C++ Application Generator 956, 958
C/C++ import 616
conditional compilation 885
Corba/IDL generator 811
Corba/IDL generator, attribute 797
Corba/IDL generator, class 798
Corba/IDL generator, interface 802
Corba/IDL generator, operation 804
Corba/IDL generator, predefined type 807
June 2009 IBM Rational Tau User Guide 2567



Chapter : 
Corba/IDL generator, signal 808
Corba/IDL generator, union 810
import from IBM Rational SDL Suite 696
import, ObjectGeode 698
internationalization 2483
Java 1358
Java support 1358
SDL import, code directives 666
SDL import, SDL Suite 697
testing profile 1775
UML for C++ 956, 958
XMI export 774
XMI import 749

result 149
return 350

C Code Generator 1249
codes 1319
from operations 1151
parameter, GUID C/C++ import 550

return type
C/C++ import 563
value semantics in C/C++ import 565

return value, method call 244
review differences 146

dialog 141
Rhapsody 748
role

actor 216
column 119

root
active class, C Code Generator 1170
build 840

RPC
signals components 1175
transition, SDL import 693

RTOS
close task 1273
integration 909
integration files 910, 1270
integration, send signals 1275

RTUtilities
add-in 360, 362

Rules (Explorer) 1933, 2002
rules, SDL import 685
run

C++ class 1453, 1664
run-time
2568 IBM Rational Tau User Guide June 2009



AgileC Code Generator 1269
Java library 1356
kernel 1058
libraries, attributes 1060
library 1058
library directory structure 1058
library table 1060
model 1123
prompting 451
semantics 1090

S
save 349

Auto-backup 2495
breakpoints 468
diagram 167
dialog 2494
in separate file 168
ITtdModel 2109
ITtdResource 2172, 2301, 2349
messages 468
Model Verifier configuration 468
Model Verifier scenario 466
options tab 2494
workspace 30

save diagram image 167
Save in New File 168
save list, compare and merge 152
SaveAll 2242
Save-As-Report-File (Explorer command) 1996
Save-Coverage-Table (Explorer command) 1996
Save-Options (Explorer command) 1996
Save-State-Space (Explorer command) 1996
Save-Test-Values (Explorer command) 1997
scaling, AgileC Code Generator 1269
sccd. See CCD
sccd.cfg 1066
sccdCOMPILE 1323
sccdCOPY 1323
sccdCPP 1322
sccdCPPFLAGS 1322
sccdDEBUG 1323
sccdDELETE 1323
sccdFMOVE 1322
sccdINCLUDE1 1322
sccdINCLUDE2 1322
sccdINFILESUFFIX 1322
June 2009 IBM Rational Tau User Guide 2569



Chapter : 
sccdMACROPREFIX 1322
sccdNAME 1321
sccdOUTFILEREDIR 1322
sccdPURGE 1323
sccdSILENT 1323
sccdTMPDIR 1323
sccdUSE_HS 1323
sccdUSER_CMD1 1324
sccdUSER_CMD2 1324
sccdUSER_CMD3 1324
sccdUSER_CMD4 1324
scenario 51

as sequence diagram 46
create sequence diagram 50
execute Model Verifier 467
modeling 219
open Model Verifier 465
refine 52
save Model Verifier 466
view Model Verifier 466

scheduler, test context 1747
scheduling, C Code Generator 1091
scope 202
Scope (Explorer command) 1997
scope unit

C/C++ import 579
UML 202

Scope-Down (Explorer command) 1997
scopes 632
Scope-Up (Explorer command) 1997
script

Output window 18
scroll, window 171
SCT_POSIX 1200
SCT_VERSION_4_4 1201
SCT_WINDOWS 1200
sctadacom.c 1068
sctadacom.h 1069
SCTAPPLCLENV 1199
SCTAPPLENV 1199
sctAR 1066
sctARFLAGS 1066
sctCC 1065
sctCCFLAGS 1065
sctCODERDIR 1065
sctCODERFLAGS 1065
sctCPPFLAGS 1065
2570 IBM Rational Tau User Guide June 2009



sctda.c 1068
sctdamsg.c 1069
sctdamsg.h 1069
sctdamsgcode.h 1069
SCTDEB 1199
SCTDEBCL 1199
SCTDEBCLCOM 1199
SCTDEBCLENV 1199
SCTDEBCLENVCOM 1199
SCTDEBCOM 1200
sctEXTENSION 1065
sctIFDEF 1065
sctKERNEL 1065
sctLD 1066
sctLDFLAGS 1066
sctLIBEXTENSION 1065
sctLIBNAME 1065
sctLINKCODERLIB 1066
sctLINKCODERLIBDEP 1066
sctLINKKERNEL 1066
sctLINKKERNELDEP 1066
sctlocal.h 1069
sctOEXTENSION 1065
SCTOPT1APPLCLENV 1200
SCTOPT2APPLCLENV 1200
sctos.c 1069, 1074
sctpred.c 1069
sctpred.h 1070, 1098
sctsdl.c 1070
scttypes.h 1070, 1098
sctUSERDEFS 1066
sctutil.c 1070
SDL 629

analyzer, case sensitive 697
comments 686
import 631
import to UML, data type 667
import to UML, operations 668
import to UML, type 655
UML transformation 632

SDL Importer
ObjectGeode 628
SDL Suite 626

SDL Suite
import from 630
import, restrictions 697

SDL_2OUTPUT 1232
June 2009 IBM Rational Tau User Guide 2571



Chapter : 
SDL_2OUTPUT_COMPUTED_TO 1232
SDL_2OUTPUT_NO_TO 1232
SDL_2OUTPUT_RPC_CALL 1237
SDL_2OUTPUT_RPC_REPLY 1238
SDL_2OUTPUT_RPC_REPLY_PRD 1238
SDL_ACTIVE 1245
SDL_ALT2OUTPUT 1233
SDL_ALT2OUTPUT_COMPUTED_TO 1233
SDL_ALT2OUTPUT_NO_TO 1233
SDL_Clock 1076
SDL_Clock (function) 1076
SDL_CREATE 1241
SDL_CREATE_THIS 1242
SDL_DASH_NEXTSTATE 1253
SDL_DASH_NEXTSTATE_PRD 1254
SDL_NEXTSTATE 1253
SDL_NEXTSTATE_PRD 1253
SDL_NOW 1245
SDL_NULL 1264
SDL_OFFSPRING 1228
SDL_Output 1051, 1141
SDL_PARENT 1228
SDL_RESET 1245
SDL_RESET_WITH_PARA 1246
SDL_RETURN 1251
SDL_RPCWAIT_NEXTSTATE 1237
SDL_RPCWAIT_NEXTSTATE_PRD 1237
SDL_SELF 1228
SDL_SENDER 1229
SDL_SET 1246
SDL_SET_DUR 1247
SDL_SET_DUR_WITH_PARA 1247
SDL_SET_TICKS 1247
SDL_SET_TICKS_WITH_PARA 1247
SDL_SET_WITH_PARA 1246
SDL_STATIC_CREATE 1242
SDL_STOP 1243
SDL_THIS 1234
sdlImportSpecification 627
sdlkernels 1058
SDL-PR 875

import 629
sdt, SDL Suite file extension 626
search 66

help file 62
help file, examples 66
help file, highlighting 63
2572 IBM Rational Tau User Guide June 2009



syntax in help 65
search. See find.
select 691

artifact root 2506
diagrams for print 2468
flow 178
metamodel 2505
stereotypes 2506
symbols 176

Select scope
Show Elements 176

selection
Application Builder 1310
build 441
execute 441

selective element build 848
selector

expression 227
self 359
semantic

check 419, 423, 543
checker commands 2265
correct SDL 688
errors 423
highlighting 77

semantic checks, adding 2030
SemCheck 2270
SemMessage 2270
send

signals 1140
send message 454
sender 359
separate file 168
seq

inline frame 240
sequence diagram 220

Help dialog 2500
tracing 449
update model 245

service 690
set

build root 936
Set-Application-All (Explorer command) 1997
Set-Application-Internal (Explorer command) 1998
SetEntity 2143
Set-Scope (Explorer command) 1998
Set-Specification-All (Explorer command) 1999
June 2009 IBM Rational Tau User Guide 2573



Chapter : 
Set-Specification-Internal (Explorer command) 1999
SetTaggedValue 2144
settings

build artifact 845
C Code Generator 1088
project 37

setup
UNIX 28

SetValue 2141
severity 77
shallow history 334
shared data

AgileC Code Generator 1289
Short list

Show Elements 176
shortcut

column 119
shortcut keys 2401
shortcuts

as toolbar 17
tab 117
window 17

Show
Comments 181
Constraints as Compartments 265
Constraints as Symbols 181
Stereotypes as Symbols 266

show
diagram 15
dialogs 2410
differences 2433
element 2505
file 15
history 2433
implementation 16
link 2452
link indicators 2452
windows 20, 2410

Show Actions 152
Show all

Constraints as Symbols 265
Show All Parameters 314
Show All Signals 301
Show Ancestors 152
Show edit mode tooltips 173
Show Elements 175
Show symbol and line tooltips 173
2574 IBM Rational Tau User Guide June 2009



Show/hide model element details
toolbar 173

Show/Hide qualifiers 173
Show/Hide quotation marks 173
Show/Hide stereotypes 173
Show-Mode (Explorer command) 1999
Show-Options (Explorer command) 1999
Show-Versions (Explorer command) 2000
SIGCODE 1234
signal 281, 1124

addressing 339
C Code Generator 1082
example 160
incoming 279
number file (.hs) 1128
outgoing 280
properties 967
properties, AgileC 1306
queue 336
refinement, SDL import 691
routes, SDL import 647
run-time model 1124
run-time operation 1127
run-time receive 1142
SDL import 646
sending principles 1140
symbol table 1175

signal list 283
SDL import 646

signal number file 1044
Signal parameters, detailed layout 1127
signal receipt

symbol 335
UML definition 335

signal sending 340
symbol 339
via port or interface 340

signal sending action 339
signal, UML

parameter 505
SIGNAL_ALLOC_ERROR 1234
SIGNAL_ALLOC_ERROR_END 1234
SIGNAL_NAME 1234
SIGNAL_VARS 1234
Signal-Disable (Explorer command) 2000
Signal-Enable (Explorer command) 2000
signallist, UML 283
June 2009 IBM Rational Tau User Guide 2575



Chapter : 
Signal-Reset (Explorer command) 2000
SignalSet

C Code Generator 1170
signature 388

metaclass 390
TTCN-3 2515

simple transition 352
simulation

macro 1259
time 1090

Simulation Kind 974
simulation. See Model Verifier.
sizeof

C/C++ import restrictions 618
Solaris

Copy and Paste 28
sort

ordering 115
symbol table 1177

Sort definitions
Model View filter 16

source
control 2418

source control
commands 2430
file view 2415
properties 2433

source reference 1003
stereotype 1003

space
in identifier 204

special characters, in identifiers 204
split

model 75
Stack (Explorer command) 2000
standard toolbar 24
Standard View 16
start 337

application, values of attributes 1096
Model Verifier execution 450

Start Link 2449
Start Many Links 2449
Start Model Verifier 442
Start UML Debugger 1700
start, C++ Application Generator 1452, 1664
START_STATE 1253
START_STATE_PRD 1253
2576 IBM Rational Tau User Guide June 2009



startup signal 1175
STARTUP_ALLOC_ERROR 1243
STARTUP_ALLOC_ERROR_END 1243
STARTUP_DATA_PTR 1243
STARTUP_VARS 1243
state 235, 329

C Code Generator 1175
C code macro 1252

state components 1175
state expression 357
state machine 289, 328

example 161
implementation 365
inheritance 364
initialize 262
SDL import 651
signature 390

state machine diagram 326
State space (Explorer) 1933
State space exploration, performing 1934
statement

compound 347
state-oriented view 327
static 271
static coverage views 462
static data 1221
static members 593
status bar 25
status, new objects 1109
step

C++ class 1453, 1664
Step into source 1706
stereotype 383

activity symbol 310
AgileC Code Generator 960
build 970
build artifact 845
C application 977
C Application Customization 979
C Code Generator 971
C++ Application Generator 979
C++ header file 980
C++ implementation file 980
configuration 991
connector line 300
copy 1720
cppImportSpecification 981
June 2009 IBM Rational Tau User Guide 2577



Chapter : 
deriveReqt 1721
dynamicLibrary 992, 1004
executable 993
file 993
formal module 1727
Icon 994
jarFile 995
jarPackage 1355
javaFile 996
javaPackage 1354
library 996
Make settings 997
makefile 997
Makefile Generator 998
Model Verifier 1000
noScope 256, 257
object node 314, 315
objectFile 1003
openNamespace 257
refine 1721
requirement 1719
satisfy 1721
sdlmportSpecification 627
source reference 1003
thread 1005
trace 1720
verify 1721
xmiImportSpecification 744

Stereotype instance compartment 266
Stereotypes

CORBA 787
stop application execution 1056
Stop Model Verifier 2506
stop, UML 350

C Code Generator 1137
C macro 1240

strict
inline frame 241

String 1102
string 1116

encoding 2121
value 502

struct
C Code Generator 1102, 1179
C/C++ import 580, 586
data type 673
without tag 587
2578 IBM Rational Tau User Guide June 2009



subject 217
symbol 219

substate
indicator 331

support 28
suspend

threads 1294
suspension area 244
symbol 379

action 236, 346
appearance 2501
autosize 177
behavior 301
class 260
create 236
decision 341
decision answer 343
destroy 238
edit 182
frame 379
insert 173
interface 277
junction 351
multiple selection 176
operation 271
operations 172
package 252
part 296
port 274
realized interface 279
required interface 280
return 350
save 349
signal 281
signal receipt (input) 335
signal sending 339
start 337
state 329
state machine 328
stereotype 383
stop 350
text 379
timer 283

symbol flow editing 178
symbol table 1157

environment function 1040
example 1154
June 2009 IBM Rational Tau User Guide 2579



Chapter : 
naming 1161
nodes 1159
structure 1158
type info nodes 1180
types 1162

Symbols with compartments 187
synchronize

model and source code 1339, 1491
project with Eclipse 1474
project with Tau 1476

SYNERGY/CM 2416
syntax

check 543
error markers 76
highlighting 76
markers 76
parse 79

syntype 288
C Code Generator 1103, 1177
components 1177
type info node 1189

SysML 397, 2014
Diagram types 398
stereotypes 401

system
(root active class) components 1170
analysis activities 51
design activities 54
model 53
type, SDL 634

system interface header file 1042
System start state (Explorer) 1933
System state (Explorer) 1932

T
TAB

Application Build 432
error prefix 432

tab
categories 115
name 116

tabbed documents 21
table of contents, taubatch option 947
tag definition 383
tagged value 382, 384

edit 832
tagged values, Properties Editor 86
2580 IBM Rational Tau User Guide June 2009



targa 184
target 871
target application 1035
target code expression 358
target directory 847, 970, 1001
target kind 976, 1002, 1060
target name 846
target package

C/C++ import 542
task

SYNERGY 2423
task. See action 346
Tau Object Run-Time 1520
Tau Object Run-time 1448, 1658
Tau Sequence Diagram Trace Mode 2462
TAU_USER_ADDINS_DIR, alternative add-ins directory 2017
taubatch 947

command 943
output 943

TauG2Integration 1468
TauG2IntegrationAddin 2456
TCC

C Code Generation 435
error prefix 435

TCG
C++ Generation 436
error prefix 436

TCI
C/C++ import 433
error prefix 433

TCL 2515
Tcl

API 2215
general purpose commands 2218

TCL API
example of how to use 2028

Tcl API 2215
template

C/C++ import 604
parameters 211
TTCN-3 2515

Test Case 1747
text 703, 2499

file 2483
highlighting 76
parse 169

text diagram 378
June 2009 IBM Rational Tau User Guide 2581



Chapter : 
Text extension symbol 366
text symbol 379
textual merge 156, 158
textual trace 445

applications on console window 447
tga 184
The 2450
this 340

instance of class 347
this expression 356
thread 1005

artifact 834, 938
separate 1005
specific data 1005
stereotype 1005

thread artifact 938
THREADED 1264
threaded 879

application 878
integrations, AgileC Code Generator 1288
integrations, macros 1264
OS integrations 909

THREADED_AFTER_THREAD_START 1266
THREADED_EXPORT_END 1265
THREADED_EXPORT_START 1265
THREADED_GLOBAL_INIT 1264
THREADED_GLOBAL_VARS 1264
THREADED_LISTACCESS_END 1265
THREADED_LISTREAD_START 1265
THREADED_LISTWRITE_START 1265
THREADED_LOCK_INPUTPORT 1265
THREADED_SIGNAL_AND_UNLOCK_INPUTPORT 1265
THREADED_START_THREAD 1265
THREADED_STOP_THREAD 1266
THREADED_THREAD_BEGINNING 1265
THREADED_THREAD_INIT 1264
THREADED_THREAD_VARS 1264
THREADED_UNLOCK_INPUTPORT 1265
THREADED_WAIT_AND_UNLOCK_INPUTPORT 1265
threading model 1060
three-way compare/merge 135
tif 184
tiff 184
TIL

error prefix 434
Intermediate Language 434

Tile Horizontally 19
2582 IBM Rational Tau User Guide June 2009



Tile Vertically 19
time

C Code Generator 1090
C++ applications 1690

time specification line 233
timer 283, 1124

active expression 358
C Code Generator 1130, 1175
C Code Generator data structure 1124
C macro 1243
event 232
handling and time 361
memory requirement 1083
operations 1128, 1243
queue 445, 1129
timeout 232
timeout Symbol 247

timer properties 969, 1307
timer reset 232

action 345
Symbol 247

timer set 232
action 345
Symbol 247

timer, UML
parameter 505

TIMER_DATA_PTR 1248
TIMER_SIGNAL_ALLOC_ERROR 1248
TIMER_SIGNAL_ALLOC_ERROR_END 1248
TIMER_VARS 1248
tlog, URL 2442
TNR

error prefix 431
Name Resolution 431

TO_PROCESS 1235
Toggle parameters 230
tool bar

build 938
project 938

tool event 2055
toolbar 24

customize 25
toolbar button

add 24
toolbars

customize 2489
Toolbars, tab 2489
June 2009 IBM Rational Tau User Guide 2583



Chapter : 
tools
customize 2490

Tools, tab 2490
tooltip

show/hide 2501
Top (Explorer command) 2001
TOR 1448, 1658
TOR, tor 1520
tot 26
trace

back to source 872
back to source headers 544
execution 445
memory needs 1086
requirement 1720
UML Debugger 1701

trace levels 476
Track selection, Properties Editor 88
tracking level 476
Transfer control to target debugger 1706
TRANSFER_SIGNAL 1235
TRANSFER_SIGNAL_PAR 1235
transition 332
Transition Coverage tab 464
transition line 352
transition option 693
transition oriented

view 328
transition overriding 363
Transitions in behavior tree 1932
Translation of depending declarations 612
translation rules

C/C++ import 872
Tree search exploration (Explorer) 2001
Tree-Search (Explorer command) 2001
trigger free

transitions 1451, 1662
TSC

error prefix 423
Semantic Check 423

tSDLTypeInfo 1180
TSI, SDL import 420, 421
TSX

error prefix 422
errors 422
Syntax Analysis 422

TTCN-3 2515
2584 IBM Rational Tau User Guide June 2009



ttdcfg 468, 510
TTDCppPredefined 385, 904
TTDQuery 125
TTDRTTypes 360
TTDRTTypes profile 387
ttdscn 466, 510
ttp 31
ttw 29
two-way compare/merge 135
Type 1193
type

addresses 1104
instances of active classes 1039
signals 1035
specifier 559
Symbol Table Nodes 1162
values 1103
with inheritance 1189

type definitions
type info nodes 1180

type info node 1180
array and CArray 1192
C Code Generator 1106
choice 1191
components 1188
enumeration types 1188
generic functions 1106
in symbol table 1180
limited strings 1194
optimization 1181
PowerSet 1189
PowerSet, Bag, String, Objectidentifier 1193
signal 1194
struct 1190

typedef 560
C/C++ import 560
tagged types 561
void type 562
without name 561

U
U2 1338
u2, file extension 167
u2x

file extension 171
UML 196

1.4, import 745
June 2009 IBM Rational Tau User Guide 2585



Chapter : 
from Eclipse 1471
import 744
import, restrictions 749

UML Advanced editing 2499
UML Basic Editing 2497
UML Checking 2502
UML default value 655
UML Profile for Schedulability, Performance, and Time 406
UML Suite

import 749
uml_cfg.h 1305
uml_kern.c 1271
uml_kern.h 1270
unbounded array 558
underlined name 78
undo 185

check out 2432
shortcut 2404

unicode strings 2096
union

C/C++ import 580, 586
without tag 587

UNIX 2429
file dialogs 28
windows directory 28

UnloadLibrary 2263
UnloadProfile 2265
unnamed packages 1354
unparse 2139, 2294, 2336
unspecified arguments 568
Up (Explorer command) 2001
update

from Java source 1342
Java source 1340, 1491

update model
Active Modeler add-in 187
composite structure diagram 303
sequence diagram 245
use case diagram 218

Update View, Properties Editor 89
URN Map 2493
Use 2452
Use absolute paths for input header files 547
use case 214

modeling 212
refine 52
scenarios 54, 56
2586 IBM Rational Tau User Guide June 2009



workflow 50
use case diagram 212
user defined

customized libraries 1070
icons 183
kernel 976

user interface 12
extending 2021
Tcl customization 2244

User-defined rules (Explorer) 1969
UTF-16, naming 2481

V
Validator, bit state exploration, using 1952
Value template 395

updated models 396
variable

C/C++ import 581
SDL import 683

verbose mode
Agile C Code Generator 970
C Code generator 976
Model Verifier 1002

verify application 439, 1697
version

compare 139
control 2418
merge 141

version control
merge 135

vertical orientation 308
via 340
view

coverage statistics 463
scenario 466

View, Properties Editor 87, 89
views

File View 14
Instances view 16
model 81
Model View 15

Views column 119
virtual

inheritance 598
member functions 591
process type definitions 689

Visual Studio .NET 1509, 1709, 2455, 2457
June 2009 IBM Rational Tau User Guide 2587



Chapter : 
Visualize in Diagram 135
volatile, C/C++ import 609

W
waking up threads 1294
warning

messages 417
XMI export 776

Watch window 456
web service

wsdl 1839
What’s This?, Properties Editor 91
Where to Start a Partial Exploration 1957
while statement 1408, 1591
window

auto-hide 22
Breakpoints 453
Cascade 19
close 20
dock 21
expand/contract 22
layout 19
layout, Help dialog 2490
Navigation 2409
new 21
scroll 171
stored workspace windows 22
zoom 172

Windows
CM set-up 2429
UNIX set-up directory 28

windows layouts
customize 2490

Windows users recommendation 31
With Environment 514, 527, 975
workflow 46, 47
workspace 29

close 30
create 29
Help dialog 2487
open 29
Operations 2402
Options dialog 2495
recent 30
save 30

Workspace window 13
views 14
2588 IBM Rational Tau User Guide June 2009



wrapper class 904
wsdl

version 1839

X
X_LONG_INT 1201
X_SCTTYPES_H 1202
X_XINT32_INT 1202
X_XPTRINT_LONG 1202
XAFTER_VALUE_RET_PRDCALL 1259
xAlloc 1075, 1085
XASSERT 1203
XAT_FIRST_SYMBOL 1259
XAT_LAST_SYMBOL 1259
XAVL_TIMER_QUEUE 1210
XBETWEEN_STMTS 1259
XBETWEEN_STMTS_PRD 1259
XBETWEEN_SYMBOLS 1260
XBETWEEN_SYMBOLS_PRD 1260
XBLO_EXTRAS 1221
XBLS_EXTRAS 1222
XBREAKBEFORE 1217
XCALENDARCLOCK 1203
XCASEAFTERPRDLABELS 1217
XCASELABELS 1218
XCAT(P1,P2) 1201
XCHECK_CHOICE_USAGE 1257
XCHECK_OPTIONAL_USAGE 1258
XCHECK_OREF 1258
XCHECK_OREF2 1259
XCHECK_OWN 1258
XCHECK_REF 1258
xCheckForKeyboardInput 1077
XCLOCK 1203
xCloseEnv 1277

AgileC Code Generator 1273
environment function 1045

XCOMMON_EXTRAS 1222
XCONST 1210
XCONST_COMP 1210
XCOUNTRESETS 1218
XCOVERAGE 1203
XCTRACE 1203
XDEBUG_LABEL 1260
XEALL 1203
XECHOICE 1203
XECREATE 1204
June 2009 IBM Rational Tau User Guide 2589



Chapter : 
XECSOP 1204
XEDECISION 1204
XEERROR 1204
XEEXPORT 1204
XEFIXOF 1204
XEINDEX 1204
XEINTDIV 1204
XEND_PRD 1229
XENV 1204
XENV_INC 1276
xENVOutput, AgileC Code Generator 1273
XENVSIGNALLIMIT 1218
XEOPTIONAL 1205
XEOUTPUT 1205
XEOWN 1205
XERANGE 1205
XEREALDIV 1205
XEREF 1205
XERRORSTATE 1218
xFree 1075, 1085
XFREESIGNALFUNCS 1218
XFREEVARS 1219
XGETEXPORTINGPRS 1239
xGetExportingPrs 1239
xGetSignal 1126

AgileC Code Generator 1273
environment functions 1051

xGlobalNodeNumber 1077
environment functions 1054

XGRTRACE 1205
xHalt 1076
XIDNAMES 1219
xIdNode 1221
xIdNode type 1162
xInEnv

AgileC Code Generator 1273
environment function 1049
guidelines 1053
structure 1278

xInitEnv 1045
AgileC Code Generator 1273
environment function 1045
structure 1277

xInsertIdNode 1231
xInsertIdNode (compilation macro) 1231
XJOIN_SUPER_PRD 1252
XJOIN_SUPER_PRS 1252
2590 IBM Rational Tau User Guide June 2009



XJOIN_SUPER_SRV 1252
XLIT_EXTRAS 1222
XMAIN_NAME 1205
xMainInit 1055
xMainLoop 1055
XMI 742

DTD 742
export 762
import 742
import, restrictions 749
version 744

xmiImportSpecification 744
XML 2515
xml schema

modeling 1921
XMLDecode 2108
XMLEncode 2152
XMONITOR 1206
XMSCE 1206
XMULTIBYTE_SUPPORT 1201
XNAMENODE 1229
XNAMENODE_PRD 1229
XNO_VERSION_CHECK 1201
XNOCONTSIGFUNC 1211
XNOENABCONDFUNC 1211
XNOEQTIMERFUNC 1211
XNOMAIN 1206
XNONE_SIGNAL 1235
XNOPROCATSTARTUP 1251
XNOREMOTEVARIDNODE 1211
XNOSELECT 1201
XNOSIGNALIDNODE 1211
XNOSTARTUPIDNODE 1212
xNotDefPId 1264
XNOUSEOFEXPORT 1212
XNOUSEOFOBJECTIDENTIFIER 1212
XNOUSEOFOCTETBITSTRING 1212
XNOUSEOFREAL 1212
XNRINST 1219
XOPERRORF 1219
XOPT 1212
XOPTCHAN 1213
XOPTDCL 1214
XOPTFPAR 1214
XOPTLIT 1214
XOPTSIGPARA 1214
XOPTSORT 1215
June 2009 IBM Rational Tau User Guide 2591



Chapter : 
XOPTSTRUCT 1215
XOS_TRACE_INPUT 1261
xOutEnv

AgileC Code Generator 1273
environment function 1046
guidelines 1049
structure 1277

XPAC_EXTRAS 1223
XPATH_INFO_IN_ENV_FUNC 1215
XPRD_EXTRAS 1223
XPROCESSDEF_C 1230
XPROCESSDEF_H 1230
XPRS_EXTRAS 1223
XPRSCOUNT 1215
XPRSCOUNTHASH 1215
XPRSHASH 1215
XPRSNODE 1229
XPRSOPT 1216
XPRSSENDER 1219
XREADANDWRITEF 1219
xReleaseSignal 1126
XREMOVETIMERSIG 1220
XRPC_REPLY_INPUT 1239
XRPC_REPLY_INPUT_PRD 1239
XRPC_SAVE_SENDER 1239
XRPC_SAVE_SENDER_PRD 1239
XRPC_SENDER_IN_ALLOC 1239
XRPC_SENDER_IN_ALLOC_PRD 1240
XRPC_SENDER_IN_OUTPUT 1240
XRPC_SENDER_IN_OUTPUT_PRD 1240
XRPC_WAIT_STATE 1240
XSCT_CADVANCED 1202
XSCT_CBASIC 1202
xsd

addin 1925
export 1927
import 1927
modeling 1921
profile 1927
view 1926

XSET_CHOICE_TAG 1257
XSET_CHOICE_TAG_FREE 1257
XSIG_EXTRAS 1223
XSIGLOG 1207
XSIGNALHEADERTYPE 1235
xSignalRec (in generated code) 1124
XSIGPATH 1220
2592 IBM Rational Tau User Guide June 2009



XSIGTYPE 1236
xsl

compare differences list extension 152
xsl, style sheet extension 1773
xSleep_Until 1077
xSortIdNode type 1180
XSPA_EXTRAS 1224
XSRT_EXTRAS 1224
XSTA_EXTRAS 1224
XSYMBTLINK 1220
XSYS_EXTRAS 1225
XSYSTEMVARS 1225
XSYSTEMVARS_H 1225
XTENV 1209
XTESTF 1220
XTIMERHEADERTYPE 1249
XTRACE 1209
XTRACHANNELLIST 1221
XTRACHANNELSTOENV 1220
XUSE_SIGNAL_NUMBERS 1217
XVAR_EXTRAS 1225

Y
YGLOBALPRD_YVARP 1226
yInit 1055

C macro 1230
YINIT_TEMP_VARS 1231
YPAD_FUNCTION 1229
YPAD_PROTOTYPE 1229
YPAD_TEMP_VARS 1226
YPAD_YSVARP 1226
YPAD_YVARP 1226
YPRD_FUNCTION 1230
YPRD_PROTOTYPE 1230
YPRD_TEMP_VARS 1227
YPRD_YVARP 1227
YPRDNAME_VAR 1261
YPRSNAME_VAR 1261
yTest 1220

Z
zoom 172

ruler 149
shortcut 2410
June 2009 IBM Rational Tau User Guide 2593



Chapter : 
2594 IBM Rational Tau User Guide June 2009


	Copyrights
	Copyright license
	Trademarks

	Introduction
	Introduction to IBM Rational Tau 4.3
	UML

	Overview of IBM Rational Tau User Interface
	Desktop
	Workspace window
	Edit markers
	Gray bar
	Red bar
	Asterisk

	Views
	File View
	Model View
	Instances

	Files
	Shortcuts window
	Output window
	General tabs
	UML tool tabs

	Working with windows
	Arrange windows
	Show and hide windows
	Close windows
	Create a new window
	Tabbed documents
	Docking windows
	Auto-hide docked window (Windows)
	Expand/Contract docked window
	Stored workspace windows

	Menu bar and toolbar
	Menu Bar
	Toolbar

	Status bar
	Line navigation
	Progress bar

	Options
	Options file
	Change options
	Work with options Files

	Customizing
	Local setup (UNIX)
	Windows directory
	Copy and Paste
	File dialogs

	Generate support request

	Working with Workspaces
	Workspaces - overview
	Create a new workspace
	Open a workspace
	Save and close a workspace
	Add a project to a workspace

	Working with Projects
	Projects - overview
	Active project

	Recommendation for Windows users
	Starting to work with projects
	Create a new project with a new workspace
	Create a new project in an existing workspace
	Insert an existing project in a workspace

	Add files and folders to your project
	Add files to your project
	Add folders to a project

	Activate a project
	File and folder properties
	Create, open and close files
	Move files

	Project settings and configurations
	Project settings
	Project Configurations

	Discovery based storage
	Introduction
	Discovery Path
	Resource Match Rules
	Directory Match Rules
	Directives
	I18N
	Interpretation Of Directives
	Generic SCC/Synergy
	Making Discovered Files Explicit In A Project
	Allowing An Explicit File To Be Discovered Instead
	Filter syntax
	Manual Rediscovery


	Model and Diagrams
	Models
	Model elements

	Diagrams
	Using the diagrams
	Create a basic package and classes in your model
	Create use cases
	Write scenarios
	Create dynamic behavior of the classes
	Create architecture
	The next step


	Description of Workflow
	Requirements analysis activities
	Overview
	Identify use cases
	Create a requirements model
	Create scenarios
	Verification and validation activities
	Use cases
	Requirements model
	Scenarios

	System analysis activities
	Overview
	Create a system model
	Refine use cases and scenarios
	Verification and validation activities
	System model
	Use cases and scenarios

	System design activities
	Overview
	Create a design model
	Refine use cases and scenarios
	Verification and validation activities
	Design model
	Use cases and scenarios

	Detailed design activities
	Overview
	Refining the design model
	Verification and Validation activities
	Design model

	Implementation activities
	Overview
	Planning the code architecture
	Implementation
	Verification and validation activities

	System test activities
	Overview
	Create test model
	Creating test cases
	Test model
	Test cases
	Testing


	How to Use Help
	Navigate in the help file
	Search
	Search highlighting
	Index
	Locate search or index results
	Bookmark topics in the help file
	Print help topics

	Search syntax in help
	Match similar words
	Regular expressions
	Operators
	Nested expressions



	UML Modeling
	Working with Models
	Models and Model Elements
	Model-based development
	Diagram-centric workflow
	Model-centric workflow
	Model element and Presentation element
	Model element
	Presentation element
	Element properties
	Delete
	Delete from Model

	Model element
	Binding
	GUID
	Automatic naming of new elements
	Copying and moving model elements
	Model in several files

	Text Highlighting
	Syntax highlighting
	Syntax error markers
	Semantic highlighting
	Object Location
	Name navigation

	Properties
	Model checking
	Autocheck
	Editor feedback
	Syntax parse
	Restore model (F8)
	Name support
	Checking a complete model
	Checking a part of a model
	Errors and warnings


	Models and Diagrams
	Diagrams
	Different views of the model

	Presentation element
	Symbols


	Properties Editor
	Opening the Properties Editor
	Multiple windows

	The Properties Editor View
	Properties Editor view when selecting an instance

	Different Kinds of Properties
	Metafeature values
	Tagged values

	Properties Editor Options
	View
	Property view
	Track selection
	Edit properties of symbols/lines
	Preferred filter

	General Shortcut Menu
	Update View
	View
	Track Selection
	Delete Instance
	Delete All Values
	Goto Owner

	Control Shortcut Menu
	Delete Value
	Goto Value
	What’s This?

	Color Codes

	Customizing the Properties Editor
	Designing a Stereotype
	Designing a Metaclass

	TTDExtensionManagement Profile
	Stereotypes
	instancePresentation
	displayName: Charstring
	pagePriority: Real
	nonValueControls: Control[*]

	extensionPresentation
	isVisible: Boolean
	translator: Translator
	control: Control[0..1]

	filterStereotypes
	appliedProfile: Package[*]

	Control model
	Control
	Button
	EditControl
	EditList
	StaticText
	EnumeratedList
	DropDownMenu
	CheckBoxList
	Group
	ColorControl
	QueryControl
	NavigationButton
	GotoOwnerButton
	ValueControl
	PositionedControl


	Create Presentation
	Create Presentation dialog
	New Symbol
	New Diagram
	Location column
	Diagram Name column
	Item Type column, Diagram Type column

	Model Navigator
	Model navigation/creation
	Model navigator tabs
	Sorting

	Tab categories
	Navigation
	Presentation tabs
	Symbols
	Diagrams

	Links
	Entity tabs
	Package
	Features
	Definitions
	References
	Shortcuts
	Bookmarks
	Model Index
	Recent

	Columns
	Index column
	Links column
	Location column
	Name column, Diagram Name column
	Page column
	Role column
	Shortcut column
	Type column, Item Type column, Diagram Type column
	Views column


	Generate Diagram
	Diagram Generation Parameters
	Regenerate Diagram
	Convert a generated diagram into an ordinary diagram

	Using Diagram Generators in Existing Diagrams
	Advanced Diagram Generators
	Diagram type
	Generation settings

	Customization

	Queries
	Concepts
	Query expression
	Collection Operators
	select
	exists
	isEmpty
	Examples

	The Query Dialog
	Saving a query expression as a new query

	Built-in Queries and Predicates
	User-defined Queries and Predicates
	Executing a Query Expression from the APIs

	Drag and Drop
	Within the Model View
	Move
	Copy
	Link
	Copy with Traceability

	From Model View to a Diagram
	Create Presentation
	Create Presentation (include lines)
	Visualize in Diagram

	Within and between Diagrams

	Compare and Merge Versions
	Merge variations
	Configuration
	Name conventions
	Project Merge
	Compare/Merge considerations

	Compare versions
	Version 2 - read from file
	Common ancestor (3-way) or Ancestor to version 1 (4-way)
	Ancestor to version 2 (4-way)
	Model Selection
	Review differences dialog
	Difference minimization

	Merge versions
	Version 2 - read from file
	Common ancestor (3-way) or Ancestor to version 1 (4-way)
	Ancestor to version 2 (4-way)
	Model Selection
	Review differences dialog
	Conflict resolution

	Command line usage
	Single File Mode
	Project Mode

	Review differences dialog
	Output from compare/merge operation
	Model view
	Model view filter
	Version 1
	Result
	Version 2
	Zoom ruler
	Difference list
	Difference list columns
	Difference list filter
	Context Menu
	Save List
	Abbreviated
	Ignore layout
	Show Actions
	Show Ancestors
	Cancel

	Difference Grouping
	Textual merge
	Dynamic differences
	Selecting versions

	Coloring

	Basic Models to Get Started
	Initial design
	Active classes and behavior
	Model example
	Signalling example
	State machine

	Internal communication
	Open and closed systems
	Ports and behavior ports
	Architecture


	Working with Diagrams
	Common Diagram Operations
	Grid
	Frame
	Heading
	Diagram Name
	Create diagrams
	Open, save and print diagrams
	Save diagram image
	Save in New File

	Move diagrams
	Resize diagrams
	Find
	Text parsing
	Auto-quote
	Word wrapping

	Diagram auto layout
	Organizing the view
	Scroll
	Zoom


	Common Symbol Operations
	Symbol information
	Show/hide model element details toolbar

	Add symbols
	Reference existing
	Auto placement

	Show elements
	Select symbols
	Move symbols
	Moving text fields

	Resize symbols
	Autosize symbols
	Collapse symbol
	Resized symbol indicators

	Connect symbols
	Symbol flow editing
	Select a flow or a branch of a flow
	Append symbols to the flow
	Insert a symbol in the flow
	Remove a symbol from the flow

	Edit text fields in symbols
	Diagram element properties
	Handling comments
	Comments and constraints
	Column of Remarks

	Copy, cut, delete or paste symbols
	Icon
	User-specified icons
	Add stereotype
	Ordering
	Icon mode
	Image file

	Image Selector
	Undo
	Model references
	List references
	List presentations
	Reference existing
	Navigate

	Update model
	Usage

	Nested symbols
	Symbols with compartments
	Resizing
	Creating compartments
	Deleting compartments
	Moving compartments
	Show/Hide on compartments

	Compartment text fields
	Delete element
	Hide element
	Move text fields


	Common Line Operations
	Line styles
	Auto-routed (assign endpoints)
	Auto-routed (keep endpoints)
	Orthogonal
	Non-orthogonal
	Bezier

	Draw lines
	Editing vertices
	Move lines
	Delete lines
	Re-direct and bi-direct lines

	UML Language Guide
	Introduction
	UML version
	Diagrams
	Models and diagrams
	Model elements
	Symbols
	Different views of a model element
	Deleting symbols and model elements

	List of language constructs
	Scope, model elements, and diagrams
	Overloaded Definitions


	General Language Constructs
	Names
	Naming rules
	Using spaces and special characters in identifiers
	Case sensitivity
	References
	Reserved words

	Alternative syntax
	Common element properties
	Visibility
	Virtuality
	Derived
	Other properties
	Parameters
	Template parameters

	Predefined names

	Use Case Modeling
	Use case diagram
	Example
	Model elements in use case diagrams
	Create a use case diagram

	Use cases
	Symbol
	The description of a use case
	Naming use cases

	Actors
	Symbol
	The role of an actor

	Subjects
	Symbol

	Relationships
	Association
	Includes
	Extends
	Dependencies
	Generalizations

	Update model
	Use Case Diagram
	Actor Symbol
	Subject Symbol


	Scenario Modeling
	Sequence diagram
	Description
	Example
	Model elements in sequence diagrams
	Create a sequence diagram
	The lifeline ruler section

	Interaction
	Interaction reference
	Symbol
	Syntax

	Lifeline
	Symbol
	Create a lifeline
	Attach/Detach from lifeline
	Ordering of events
	Lifeline decomposition
	Decomposition example
	Syntax

	Message
	Symbol
	Creating a message
	Toggle parameters
	Incomplete message
	Lost message
	Found message
	Copying a message

	Timer event
	Timer set
	Timer reset
	Timer timeout
	Symbols

	Time specification line
	Absolute time line
	Relative time line
	General ordering line
	Symbols

	State
	Symbol

	Action
	Symbol

	Create
	Symbol
	Creating a Create line
	Binding of a constructor

	Destroy
	Symbol

	Inline Frame
	Symbol
	Variations

	Co-region
	Symbol

	Continuation
	Symbol

	Method call
	Symbol
	Gate names
	Activation and suspension

	Update model
	Sequence diagram
	Interaction Occurrence Symbol
	Lifeline Symbol
	Message Line
	Method call line
	Method reply line
	NextState Action Occurrence symbol
	Timer Set symbol
	Timer Timeout symbol
	Timer Reset symbol

	Appearance and filtered delete
	Compress Layout
	Delete selected signals
	Keep selected signals
	Make space

	Interaction overview diagram
	Create an interaction overview diagram
	Model elements in interaction overview diagrams


	Package Modeling
	Package diagram
	Example
	Model elements in package diagrams

	Package
	Symbol
	It is possible to nest other symbols hierarchically inside a package symbol. An element created inside a package symbol will have the package as owner.
	Syntax

	Relationships
	Import
	Access

	<<noScope>> Packages
	<<openNamespace>> Packages

	Class Modeling
	Does the class have structure? What parts does an instance of the class contain?
	Does the class have behavior? Which operations are available?
	Which relationships exist between the class and other elements?
	Is the class active or passive?
	Which communication ports does the class expose to its environment?
	Class diagram
	Example of class diagram
	Model elements in class diagrams

	Class
	Symbol
	Multiple state machines in an active class
	Syntax
	Class heading
	Attribute
	Operation
	Abstract class
	Virtuality
	Visibility
	External class
	Classes and components
	Constraint compartment
	Stereotype instance compartment

	Collaboration
	Attribute
	Aggregation kind
	Default value
	Port
	Multiplicity
	Initial cardinality
	Visibility
	Derived
	Static
	Constant

	Operation
	Symbol
	Syntax

	Active class
	Symbol
	Structure
	Behavior
	Attributes and operations

	Port
	Symbol
	Port type
	Behavior ports
	Ports and interfaces
	Inheritance

	Interface
	Symbol
	Syntax

	Realized interface
	Symbol
	Syntax

	Required interface
	Symbol
	Syntax

	Signal
	Syntax

	Signallist
	Timer
	Symbol
	Syntax

	Datatype
	Symbol
	Enumerated datatype
	Primitive datatypes
	Literal

	Choice
	Syntype
	State machine
	Stereotype
	Relationships

	Object Modeling
	Object Diagram
	Example of object diagram
	Model elements in object diagrams

	Named Instance
	Link

	Slot
	Self reference


	Architecture Modeling
	Composite structure diagram
	Example

	Part
	Symbol

	Connector
	Symbol
	Syntax
	Signal lists and interfaces
	Part communication

	Behavior port
	Symbol

	Relationships
	Dependency

	Update model
	Composite Structure diagram
	Connector Line
	Part Symbol


	Component Modeling
	Component diagram
	Example
	Model elements in component diagrams

	Component
	Symbol

	Relationships

	Activity Modeling
	Activity Diagram
	Create an activity diagram
	Flow orientation
	Activity symbols from model elements
	Model elements in activity diagrams

	Activity
	Symbol

	Activity implementation
	Token flows

	Initial Node
	Symbol

	Action Node
	Avoid execution deadlocks
	Pins
	Symbol
	Syntax

	Object Node
	Symbol

	Decision
	Symbol

	Merge
	Symbol

	Fork
	Symbol

	Join
	Symbol

	Connector
	Symbol
	Syntax

	Accept Event
	Symbol

	Send Signal
	Symbol

	Accept Time Event
	Symbol

	Activity Final
	Symbol

	Flow Final
	Symbol

	Activity Partition
	Symbol
	Partition symbol as Dimension Specification symbol

	Pin
	Symbol
	Syntax

	Relationships
	Activity edge


	Behavior Modeling
	State machine diagram
	State-oriented view
	Transition-oriented view
	Create a state machine diagram

	State machine
	Symbol
	Syntax

	State
	Symbol
	Syntax

	Transition
	Guarded transition

	History nextstate
	Shallow history
	Deep history
	Examples

	Signal Receipt (Input)
	Symbol
	Signal queue
	Syntax

	Start
	Symbol
	Syntax

	Action
	Signal sending action (output)
	Symbol
	Signal addressing
	Signal sending
	Receiver is this
	Signal sending via port or interface
	Receiver is an attribute
	Receiver is an expression
	Examples

	Decision
	Symbol
	Decision answer
	Informal decisions
	Nondeterministic decisions
	Syntax

	Guard
	Symbol
	Syntax

	Timer set action
	Syntax

	Timer reset action
	Syntax

	Action (task)
	Symbol
	Syntax

	Assignment
	Compound statement
	New
	Save
	Symbol
	Syntax

	Stop
	Symbol

	Return
	Symbol
	Syntax

	Junction
	Symbol
	Syntax

	Flow
	Simple transition
	Syntax

	Expressions
	Call expression
	New expression
	Conditional expression
	Field expression
	Index expression
	Instance expression
	This expression
	Imperative expressions
	Arbitrary value (any) expression
	Now expression
	Pid expressions
	State expression
	Timer active expression
	Range check expression
	Target code expression

	Pid
	Self
	Sender
	Parent
	Offspring
	References to active objects

	Timer handling and time
	Composite state
	Entry connection point
	Exit connection point

	State machine inheritance
	Operation body
	State machine implementation
	Internals
	Text extension symbol

	Deployment Modeling
	Deployment diagram
	Example
	Model elements in deployment diagrams

	Artifact
	Symbol

	Node
	Symbol
	Syntax

	Execution environment
	Symbol
	Syntax

	Deployment specification
	Symbol
	Syntax

	Relationships
	Deployment
	Manifestation


	Relationships in UML
	Dependency
	Generalization
	Syntax

	Realization
	Association
	Symbol
	Multiplicity
	Aggregation kind
	Navigable end
	Symbol
	Examples

	Aggregation
	Composition
	Symbol

	Containment
	Extension
	Association
	Description


	Text diagram
	Create a text diagram
	Elements in text diagrams

	Common Symbols
	Frame
	Text symbol
	Syntax

	Comment
	Comment symbol
	Syntax

	Constraint
	Constraint symbol
	Syntax

	Stereotype instance
	Stereotype instance symbol
	Syntax

	Annotation line

	Extensibility
	Metamodel
	Metaclass
	Stereotype
	Tag definition
	Tagged value
	Showing Applied Stereotypes

	Profile
	Extension

	Predefined Data
	Predefined
	Profile TTDRTTypes
	Profile TTDCppPredefined
	Predefined
	PLUS_INFINITY
	MINUS_INFINITY

	Profile TTDRTTypes
	None


	Metamodel Classes
	Metamodel profile
	Classifier
	Signature
	Implementation
	Method
	Signature and implementation
	Operation
	Activity
	State machine
	Class


	Collection Types and Multiplicity
	Implicit collections
	Changing the implicit collection type
	Informal multiplicity
	The <<containerType>> stereotype

	Multiplicity and composition
	Value<> template

	Summary of multiplicity and collection types
	Value template in updated models


	SysML
	Main goals of SysML
	SysML in IBM Rational Tau
	SysML diagram types
	SysML diagrams and symbols
	Activity diagram
	Block definition diagram
	Internal block diagram
	Parametric block diagram
	Requirement diagram
	Sequence diagram
	State machine diagram
	Use case diagram

	Stereotypes on SysML diagram types
	Auto-applied
	Stereotype that can be applied to Diagram
	Stereotypes that can be applied to Class
	Stereotypes that can be applied to Comment
	Stereotypes that can be applied to Dependency
	Stereotypes that can be applied to ObjectNode and ActivityEdge
	Stereotypes that can be applied to ActivityEdge
	Stereotypes that can be applied to Operation and Activity
	Stereotypes that can be applied to InformalConstraint

	SysML reports
	SysML Dependency Matrix
	SysML Dependency Report
	SysML Requirements Report
	SysML Requirements Gap Report

	Deprecated concepts

	Profile for Schedulability, Performance, and Time
	RTresourceModeling
	GRMacquire
	GRMcode
	GRMrealize
	GRMdeploys
	GRMrelease
	GRMrequires

	RTtimeModeling
	RTaction
	RTclkInterrupt
	RTstimulus
	RTclock
	RTdelay
	RTevent
	RTinterval
	RTnewClock
	RTnewTimer
	RTpause
	RTreset
	RTset
	RTstart
	RTtime
	RTtimeout
	RTtimer
	RTtimeService
	RTtimingMechanism
	RTkindEnum

	RTconcurrencyModeling
	CRaction
	CRasynch
	CRconcurrent
	CRcontains
	CRdeferred
	CRimmediate
	CRmsgQ
	CRsynch
	CRthreadingEnum

	SAprofile
	SAaction
	SAengine
	SAowns
	SAprecedes
	SAresource
	SAresponse
	SAschedRes
	SAscheduler
	SAsituation
	SAtrigger
	SAusedHost
	SAuses
	SAlaxityEnum
	SAschedulingPolicyEnum
	SAaccessControlPolicyEnum

	PAprofile
	PAclosedLoad
	PAcontext
	PAhost
	PAopenLoad
	PAresource
	PAstep
	PAschdPolicyEnum

	RSAprofile
	RSAclient
	RSAconnection
	RSAmutex
	RSAorb
	RSAserver
	RSAchannel
	RSAschedulingPolicyEnum


	Error and Warning Messages
	General Application Errors and Warnings
	IBM Rational Tau minidumps (Windows)
	Minidump location
	Minidump contents


	Errors and Warnings from Build
	Phases and identifiers
	TSX: Syntax Analysis
	TSC: Semantic Check
	TNR: Name Resolution
	TAB: Application Build
	TCI: C/C++ Import
	TIL: Intermediate Language
	TCC: C Code Generation
	TCG: C++ Generation
	TSI, OGC: SDL Import
	TUI: UML 1.x Import

	TSX: Syntax Analysis
	TSX0026: Port should not contain two in or two out parts
	TSX0047: Tagged values are not allowed here

	TSC: Semantic Check
	About semantic checks
	TSC0123: A cyclic dependency was found in definition of the %n. (via <string>)
	TSC0134: Incomplete transition. A transition must end with stop, nextstate or join action
	TSC0092: A corresponding 'virtual' or 'redefined' operation was not found in the parent signatures (or parent signatures does not exist).
	TSC0196: A finalized operation cannot be redefined.
	TSC0236: Operation '<name>' cannot be specified as 'Realized' on a port.
	TSC0237: Operation '<name>' cannot be specified as 'Required' on a port.
	TSC2300: Expression 'any (type)' cannot be of interface or state machine type
	TSC2302: An association from a datatype may not have a navigable remote association end
	TSC2303: At most one association end may be aggregate or composite
	TSC2304: An attribute that is not a part may not have initial count
	TSC2305: A part cannot have a default value
	TSC2306: A composite attribute or association end may not be typed by a datatype
	TSC2307: A composite attribute may not have a type, which owns this attribute (directly or indirectly)
	TSC2308: The 'via' of a call expression should reference either a port or a connector
	TSC0269: Generalization between 'Interface I' and 'Class Y' is not allowed
	TSC2325: Cyclic inheritance
	TSC4001: When generating C code, return values must be handled in left hand side of assignment expression

	TNR: Name Resolution
	TNR0023: Failed to locate element referred by: <name>

	TAB: Application Build
	TCI: C/C++ Import
	TIL: Intermediate Language
	TCC: C Code Generation
	TCG: C++ Generation

	UML for Model Verification
	Verifying an Application
	Overview of the Model Verifier
	Generating an Instrumented Application
	Using Build Artifacts
	Building a Selective Model Element
	Using Configurations for Build

	Running the Model Verifier
	Start the Model Verifier
	Start Model Verifier without building
	Launching after Using Build Artifacts
	Launching after Building a Selective Model Element
	Launching after Using Configurations for Build

	Exit the Model Verifier
	Instances
	Ready queue
	Timer queue


	Tracing the Execution
	Textual trace
	Custom textual trace
	Formatting of strings prior to trace
	Textual trace for applications

	UML model tracking
	Enabling UML model tracking
	Disabling UML model tracking
	State machine vs. Activity tracking mode

	Sequence diagram tracing
	Enabling sequence diagram tracing
	Disabling sequence diagram tracing
	Navigating to the UML source
	Interrupting the trace
	Changing sequence diagram trace levels


	Executing the Application
	Start the execution
	Stop the execution
	Re-start the execution
	Run-Time prompting
	Decision prompting
	Operation prompting

	Insert and remove breakpoints
	Insert breakpoints
	Precise positioning of breakpoints
	Remove breakpoints
	List breakpoints

	Send messages
	Create a message
	Send a signal
	Complex signal parameter values

	Watch window
	Watching instance objects
	Removing instance objects from the Watch window
	Opening an empty Watch window

	View and edit via the Console window
	Print address and value of a pointer

	Change element values
	Display element values
	Copy and paste element values
	Copy
	Deep copy

	Create or delete instances
	To create a new instance
	To delete an instance

	Locate objects
	Log the result
	Log the textual trace
	Log the sequence diagram trace

	Static coverage views
	To view coverage statistics
	Coverage Statistics tab
	Code Coverage tab
	Transition Coverage tab


	Replaying Mode
	Open a scenario
	Load a scenario file
	Backward compatibility

	Save a scenario
	Save a scenario

	View the contents of a scenario
	To open the Scenario window

	Execute a scenario

	Model Verifier Configuration
	Save Model Verifier configurations
	Load Model Verifier configurations
	Open a Model Verifier configuration
	Include Model Verifier configuration

	Console commands

	UML Expressions
	Mapping of values to expressions
	Mapping of expressions to values

	Error Handling
	Model Verifier Console
	Trace and Tracking levels
	Change sequence trace level and UML model tracking level

	Activity Simulation
	Activating the ADSim Add-In
	Starting the Activity Simulation
	Commands to Step Through the Activity Model
	Textual Trace
	Activity Diagram Trace
	Trace Colorization
	Setting trace color

	Sequence Diagram Trace
	Breakpoints
	Supported Activity Nodes
	Sending Signals to the Activity
	An Example
	Getting Started with Activity Simulation

	Web Service Simulation
	Activating the WSSim Add-In
	Calling a Web Service from UML
	Generating a UML web service interface from a WSDL package
	Using the generated UML web service interface
	Generating a web service consumer
	Using multiple web services

	Type Mapping
	Date and Time

	SOAP Headers
	Asynchronous Web Service Calls
	Error Handling
	Error Reporting

	Troubleshooting
	Web service call-backs
	Non-Supported types
	Non-Supported bindings


	Model Verifier Reference
	Trace Levels
	Textual trace levels
	Trace level 0
	Trace level 1
	Trace level 2
	Trace level 3
	Trace level 4
	Trace level 5
	Trace level 6

	Execution tracking levels
	Sequence diagram trace levels

	User Interface Commands
	List of user interface commands

	Console
	Input and output of values of passive types
	Integer and natural values
	Boolean values
	Real values
	Time and Duration values
	Character values
	Charstring values
	Pid values
	Bit
	BitString
	Octet
	OctetString
	ObjectIdentifier
	Enumerated values
	Passive class values
	Choice values
	Array values
	String values
	PowerSet values
	Bag values
	Own and ORef values and passive object references

	Syntax of commands
	Introduction
	Command Names
	Parameters
	Matching of parameters
	Qualifiers
	Instance path
	Signal and timer parameters
	Errors in commands

	Console commands
	? (Interactive Context Sensitive Help)
	!U2::Debug add_message
	!U2::Debug assign
	!U2::Debug break
	!U2::Debug delete
	!U2::Debug display
	!U2::Debug echo
	!U2::Debug exec
	!U2::Debug go
	!U2::Debug new
	!U2::Debug next transition
	!U2::Debug open
	!U2::Debug output
	!U2::Debug path2object
	!U2::Debug restart
	!U2::Debug save
	!U2::Debug set_breakpoint
	!U2::Debug set_msc_trace
	!U2::Debug set_replay
	!U2::Debug set_tracking_level
	!U2::Debug start_msc
	!U2::Debug step in
	!U2::Debug step local
	!U2::Debug step out
	!U2::Debug step over
	!U2::Debug stop_msc
	Activity-Mode
	Assign-Value
	ASN1-Value-Notation
	Breakpoint-Output
	Breakpoint-Transition
	Breakpoint-Variable
	Call-env
	Cd
	Clear-Coverage-Table
	Close-Signal-Log
	Command-Log-Off
	Command-Log-On
	Create
	Define-Integer-Output-Mode
	Define-MSC-Trace-Channels
	Display-Array-With-Index
	Examine-Timer-Instance
	Examine-Variable
	Exit
	Go
	Go-Forever
	Include-File
	List-Breakpoints
	List-GR-Trace-Values
	List-MSC-Log
	List-Ready-Queue
	List-Signal-Log
	List-Timer
	List-Trace-Values
	Log-Off
	Log-On
	Next-Local-Statement
	Next-Statement
	Next-Transition
	Next-Visible-Transition
	Now
	Print-Coverage-Table
	Proceed-To-Timer
	Proceed-Until
	Quit
	REF-Address-Notation
	REF-Value-Notation
	Remove-All-Breakpoints
	Remove-Breakpoint
	Reset-GR-Trace
	Reset-Timer
	Reset-Trace
	SDL-Value-Notation
	Save-Breakpoints
	Save-State
	Set-GR-Trace
	Set-MSC-Trace
	Set-Timer
	Set-Trace
	Show-C-Line-Number
	Show-Next-Symbol
	Show-Previous-Symbol
	Show-Versions
	Signal-Log
	Start-Batch-MSC-Log
	Start-env
	Statemachine-Mode
	Stop-env
	Stop-MSC-Log

	Special console commands

	Replay Mode
	Execution steps
	User commands

	Dynamic Errors
	Action on dynamic errors


	UML Import and Export
	.NET Assembly Importer
	Operation Principles
	Import a Component
	Reimport a Component

	Translation Rules
	Assembly and Namespace
	Class
	Interface
	Method
	Enumeration

	C/C++ Import
	Operation Principles
	Target UML package
	Input
	Preprocessor
	Syntax and semantic checks
	C/C++ to UML translation rules
	Created UML definitions
	Trace back to source headers
	Compiler and language support
	Import C/C++
	Specify import input
	Specify import settings
	Specify u2 file for package ImportedDefinitions
	Import output
	Specify import options
	Specify import input in C/C++ import options

	Manual C/C++ Import

	Repeated Import Considerations
	GUID name option
	Generalization
	Return parameter
	Formal parameter
	Attribute
	Operation


	General Translation Rules
	External

	Names
	Fundamental Types
	Translation from C/C++ fundamental types to UML

	Pointer, Array and Reference Type
	Pointer type specifier
	Untyped pointers
	Pointer to char

	Array type specifier
	Unbounded array

	Reference type specifier
	No type specifier
	Predefined type


	Enumerated Types
	Typedef
	Typedef declaration of tagged types
	Typedef without name
	Typedef with void type

	Function
	General, function prototype
	Non-member function
	Member function
	Formal arguments
	Return type
	Function declaration without prototype
	Overloaded functions
	Arguments and return type
	Default argument
	Ambiguities between overloaded functions
	Unspecified argument
	Inline function
	Function pointer
	Function type

	Function body
	Labelled statement
	Declaration statement
	Expression statement
	Break statement
	Continue statement
	For statement
	Do statement
	Goto statement
	If statement
	Switch statement
	While statement
	Return statement
	Try statement
	Compound statement


	Scope Unit
	Namespace
	Class, struct and union
	Template classes

	Variable
	Non-member variable
	Member variable

	Constant
	Constants as preprocessor macros

	Expression
	Binary and unary expressions
	Constant expression

	Class, Struct and Union
	Class, struct, or union without tag
	Anonymous union
	Constructor
	Destructor
	Member
	Member access specifier
	Virtual member functions
	Pure virtual member functions
	Static members
	Constant members
	Member constants
	Mutable member variables
	Bitfield member variables
	Class inside Union

	Friend
	Inheritance
	Multiple inheritance
	Virtual inheritance
	Inheritance access specifier

	Forward declarations
	Generation of class and package diagrams

	Incomplete Type Declaration
	Overloaded Operator
	Template
	Class template
	Function template
	Default template arguments

	Exception
	Miscellaneous
	Language constructs
	Volatile
	Linkage
	Using directive
	Using declaration

	Compiler-specific language constructs
	__declspec

	Non-language constructs
	Macro
	Referencing predefined types in C/C++

	Translation rules for C compilers
	Language


	STL support
	C/C++ Import and Build Types
	C Code Generator
	C++ Application Generator

	Known Restrictions
	C++ language restrictions
	Overloaded conversion operators
	Overloading on const
	Ellipsis function
	Function pointers
	Exceptions
	Preprocessor
	Expression evaluation
	Implicit conversions from int to enum
	Using template parameter as qualifier
	Pointer to constant

	Usability restrictions
	Importing a header with standard includes


	DOORS Import
	SDL Import
	Operation Principles
	Import an SDL system
	SDL import for SDL Suite
	Importing from Japanese edition of SDL Suite
	SDL import for ObjectGeode

	Supported SDL
	SDL-PR
	CIF

	Supported tools and versions
	Import from SDL Suite
	Import from ObjectGeode

	Activate SDL import

	SDL to UML Transformation Rules
	Structure and scopes
	Top-level definitions
	System type, block type, process type
	Service type
	Block instance, process instance
	Service type instance
	Block and process
	Block substructure
	Channel substructure
	Procedure
	Virtual and redefined procedures
	Remote procedure

	Communication
	Signal, signallist
	Gates
	Channels and signal routes
	Connection
	Implicit communication gates and links

	Behavior
	State machine
	Procedure call
	Create statement
	Output statement
	Input statement
	Informal statement

	Code generation directives
	#CODE directive
	#ADT directive
	#INCLUDE directive
	Restrictions for code directives

	Data types
	Simple data types
	Predefined operations
	Predefined C++ types
	Conflicts with UML Predefined types
	Structured data types
	Default values in SDL newtype and syntype
	Checking presence
	Generators
	Newtype with generator transformation, adding operator
	Newtype with literals
	Generator Ref and operators “&” and “*>”
	Data type inheritance
	Variables
	Viewed/revealed variables
	Remote variables

	General rules
	Process formal parameters
	Qualifiers
	Virtuality
	Comments
	External definitions


	Restrictions on SDL Import
	General SDL language restrictions
	Semantically correct SDL
	Case sensitivity

	Not supported SDL language concepts
	Virtual process type definitions
	Service, service type, service type instance
	Create this
	Signal refinement
	Channel substructure
	Delayed connectors
	Macros
	Select
	Name clashes
	Transition option
	Include expression
	Axioms
	RPC transition
	Inline initialization of arrays
	Procedure as qualifier
	ERROR expression

	Restrictions in import from SDL Suite
	Import of datatypes with implementation
	#ADT directive used to implement operators
	Illegal re-declaration of connectors
	Multiple comment symbols result in syntax errors
	Include graphical SDT References must not be checked
	SDL analyzer is operated in case sensitive mode

	Restrictions when importing from ObjectGeode
	Explicit use of implicit operators


	Example Section
	DemonGame (Imported from SDL Suite)

	Error Messages
	General
	Messages from SDL and CIF import

	Rose Import
	Overview
	Getting started
	Rose Import Wizard
	The First Step of Rose Import Wizard
	Specifying model files
	Model file locale
	Loading of referenced model files
	Default location of created U2 files

	The Second Step of Rose Import Wizard
	Specify which parts of the model to import
	Locating missing files
	Specifying U2 file mapping
	Setting up virtual paths
	Log file

	The Third Step of Rose Import Wizard

	Command line user interface
	Transformation rules
	Class diagram
	Collaboration diagram
	State diagram
	Activity diagram
	Tier diagram
	Common rules

	Known limitations
	Model file format
	All diagrams
	Fonts
	Symbols

	Activity diagrams
	Class diagrams
	Sequence diagrams
	State diagrams
	Tier diagrams
	UseCase diagrams

	Together Import
	Overview
	Getting started
	Together Import Wizard
	Step 1
	Specifying projects
	Linked resources
	Default location of created U2 files

	Step 2
	Step 3
	Specify which parts of the model to import
	Locating missing files
	Specifying U2 file mapping
	Setting up import options
	Log file

	Step 4

	Command line user interface
	Transformation rules
	Class diagram
	Actor symbol
	UseCase symbol

	UseCase diagram
	Class symbol

	Communication diagram
	State diagram
	Activity diagram
	State symbol

	Common rules

	UML 1.x Import
	Operation Principles
	XMI
	XMI import
	XMI import add-in
	XMI import architecture

	Import an XMI file
	Importing XMI specification with the same settings once again


	Supported XMI and UML
	Language and version support
	Foundation / core
	Foundation / extension mechanisms
	Foundation / data types
	Model management
	Behavioral elements / common behavior
	Behavioral elements / collaborations
	Behavioral elements / use cases
	Behavioral elements / state machines

	Supported diagram types
	Importing with preserved layout
	Import of nested states

	Import from UML 1.x tools
	Rhapsody
	Rational Rose
	Preserve DOORS links
	IBM Rational Tau UML Suite


	Restrictions
	Type and variable definitions
	Incomplete model
	Unsupported classes
	Foundation: Core
	Behavioral Elements: Common Behavior
	Behavioral Elements: ActivityGraphs
	Behavioral Elements: Collaborations
	Behavioral Elements: State Machines
	Behavioral Elements: Use Cases

	Unsupported attributes
	Foundation: Core
	Foundation: Data Types
	Foundation: Extension Mechanisms
	Behavioral Elements: Collaborations
	Behavioral Elements: State Machines
	Behavioral Elements: Use Cases
	Model Management

	Unsupported composition
	Foundation: Core
	Behavioral Elements: ActivityGraphs
	Behavioral Elements: Collaborations
	Behavioral Elements: State Machines

	Export restrictions
	Class diagram
	State diagram
	Sequence diagram
	Use Case diagram
	Package diagram
	Component diagram
	Deployment diagram
	Activity diagram


	Error Messages
	General
	Messages from XMI import

	UML 1.x Export
	XMI Export
	Operation principles
	XMI export add-in
	Export to an XMI file

	Supported XMI and tool versions
	Supported UML entities
	Model hierarchy
	Model transformations

	Restrictions for XMI export to Rational Rose
	Error and warning messages

	CORBA IDL Exporter
	The CORBA IDL Exporter
	Activating the CORBA IDL add-in
	Creating a CORBA IDL artifact
	The IDLGenerator stereotype
	File Mappings

	Exporting IDL
	Marking model elements
	Using CORBA IDL datatypes

	Predefined IDL types
	Simple types
	Template types
	sequence
	array
	string
	wstring
	fixed

	UML predefined types

	The CORBA Profile
	CORBA
	CORBAAttribute
	CORBABoxedValue
	CORBAEnum
	CORBAException
	CORBAInclude
	CORBAInterface
	CORBAModule
	CORBAOperation
	CORBASequence
	CORBAStruct
	CORBATruncatable
	CORBATypedef
	CORBAUnion
	CORBAValue
	CORBAValueFactory
	case
	discriminator
	IDLFile
	IDLGenerator
	Extraneous stereotypes

	The CCM Profile
	Supported stereotypes
	CORBAArtifact
	CORBAComponent
	CORBAComponentImpl
	CORBAEvent
	CORBAEventSink
	CORBAEventSource
	CORBAFacet
	CORBAFactory
	CORBAFinder
	CORBAHome
	CORBAHomeImpl
	CORBAImplements
	CORBAIsProvidedBy
	CORBAManages
	CORBAPrimaryKey
	CORBAReceptacle
	CORBASegment
	CORBASupports

	Extraneous stereotypes

	Mapping rules
	Artifact
	Association
	Attribute
	Restrictions

	Class
	Restrictions

	Comment
	Component
	Constant
	Enumeration
	Event
	Exception
	Home
	Include
	Implements
	Interface
	Restrictions

	Manages
	Multiplicity
	Operation
	Restrictions

	Package
	Parameter
	Port
	Predefined type
	Restrictions

	Segment
	Sequence
	Signal
	Restrictions

	Struct
	Syntype
	Type definition
	Union
	Restrictions

	Value

	Known restrictions
	Anonymous type
	Value types
	C++ support

	Import of MSVS Solution files
	Overview
	Getting started
	MSVS Solution Import Wizard
	The first step of MSVS Solution import wizard
	The second step of MSVS Solution import wizard
	Result of import

	Re-import of a Solution
	File/Folder Importer
	Overview
	Getting Started

	File/Folder Import Wizard
	The First Step of the File/Folder Import Wizard
	The Second Step of the File/Folder Import Wizard
	Result of Import
	Reimport

	Built-in Extension Modules
	C/C++ Include Analysis
	Generating a Dependency Diagram
	Options



	UML to Applications
	Building and Code Generation Overview and Examples
	Building Applications with IBM Rational Tau
	General
	Building in Interactive or Batch Mode
	Using Build Artifacts
	Adding a build artifact
	Accessing and specifying properties defined in a build artifact
	Location of a build artifact
	Mandatory use of artifacts
	Multiple build artifacts - configurations

	Using Thread Artifacts
	Examples of use

	Using File Artifacts
	Using file artifacts to control C++ code generation
	Using file artifacts for C++ roundtrip
	Use file artifacts to specify C++ targets and make scheme
	Using file artifacts to specifying C++ objects
	Using file artifacts when generating Java

	Example of Use of File Artifacts
	Creating the file artifacts
	Specifying the make dependencies
	Specifying the manifestations

	Using Build Roots
	Changing the build root
	Suitable build roots for C build types
	Suitable build roots for C++ build types
	Suitable build roots for Java build types

	Using Build Types
	Enabling (loading) a build type
	Specifying the build type
	Considerations related to projects with multiple build types
	Remove not used build types
	Changing the build type

	Performing Separate Builds
	Using Build Settings
	Build stereotypes
	Accessing and changing build settings
	Removing build settings

	Specifying C Targets
	C target name
	Specifying and “make” of C targets

	Specifying C++ Targets
	C++ target name
	Specifying and “make” of C++ targets

	Target Directory
	Target directory and make template files

	Error Limit
	Building Using Build Artifact
	Building a Selective Model Element
	Using Configurations for Build
	Building a configuration
	Adding or removing a build artifact to/from a configuration

	Errors and Warnings from Build

	Makefile Generator
	Usage
	Code Generator Stereotypes
	File Stereotypes
	Make Model
	Generator Parameters
	Built-in parameters
	Make parameters
	Target Kind
	Default values for makefile generator parameters
	Win32 - cl values for makefile generator parameters
	Cygwin - g++ values for makefile generator parameters
	Linux - g++ values for makefile generator parameters
	Solaris - CC values for makefile generator parameters
	Solaris - g++ values for makefile generator parameters

	Makefile

	Code Generation in IBM Rational Tau
	C/C++ import
	Target
	Preprocessing
	C and C++ support
	Translation rules
	Trace back to source

	C code generation
	UML models
	Settings

	Inline C/C++
	Escaping # in inline C code

	Checking model before build
	UML semantic checking
	Intermediate code
	C code generation

	UML to C
	UML to C translation, run-time semantics and optimization
	Navigation from model view to source code
	C and C++ support
	Runtime libraries
	Environment support
	make

	Execution modes
	Bare
	Threaded
	Considerations when selecting execution mode


	Conditional Compilation
	UML Level Support
	Conditional Definitions
	Conditional action statements
	Conditional transitions
	Conditional Decisions
	Restrictions on conditional decisions
	Artifacts and Conditional Compilation
	Impact on Code Generation

	Restrictions

	Composite Structures
	Parts vs. whole relations
	Composite structure vs. part-whole relationships
	Dynamically created active instances vs. part-whole relationships
	Communicating with created instances
	Iterating over parts
	Restrictions in C code generators
	Composite structure diagrams & composition
	Dynamic creation of composite classes
	Instance termination
	Instance creation


	Using the CPtr Type in IBM Rational Tau
	Introduction
	CPtr and data types
	CPtr and classes
	Recursive use of CPtr
	Assignment compatibility of CPtr types
	Recursive usage of SetValue/GetValue

	Converting between CPtr and references

	Threaded OS Integrations
	Overview
	RTOS
	Version differences
	Previous integrations:
	New integrations:
	RTOS integration files
	Compilation switches

	Threaded integrations
	The clock function
	Protection of shared data
	Startup phase - creating the threads
	Suspending and waking up threads


	Application Examples
	Examples with environment (EchoServer)
	Behavior

	Deployment and threading example
	Behavior
	Deployment into threads
	Thread artifacts
	Building
	Execution
	Execution performance


	Building Applications Reference
	Interactive Build Interface
	Build Artifact
	Build Stereotype
	Build Operations
	Configuration
	Build Root
	Build Type
	Build Settings
	Model Verifier settings
	C Code Generator settings
	AgileC Code Generator settings
	C++ Application Generator settings
	Java code generator settings
	Make settings
	Makefile Generator settings

	Build Wizard
	Properties specified in the build wizard

	File Artifact
	Thread Artifact
	Project Tool Bar
	Active project
	Active configuration
	Active tool
	Build tool bar

	Build Menu
	Stop
	Check Configuration
	Generate Configuration
	Build Configuration
	Execute Configuration
	Update Configuration
	Clean Configuration
	Start Model Verifier

	Build Shortcut Menu
	Build shortcut menu on build artifacts
	Build shortcut menu on model elements


	Batch Build Interface
	Input
	Output
	Build index file
	Code generator output

	Options
	-B
	-c “Configuration Name”
	-C
	-g GUID
	-G
	-h
	-l (lower case L)
	-o element
	-p “project file”
	-r
	-S
	-T
	-V

	Examples of Using taubatch

	Restrictions in UML Support when Building C Applications
	Restrictions in C build types
	Active code generators
	All C build types
	AgileC Code Generator

	Reserved words
	All C build types
	Model Verifier execution


	Restrictions in UML Support when Building C++ Applications
	Active code generators
	UML restrictions

	Restrictions in UML Support when Building Java Applications
	Active code generators

	Stereotypes for Code Generation
	Stereotypes
	AgileC Code Generator
	Additional Preprocessor Defines
	Code generation properties
	Compile and link
	Dynamic memory allocation
	Error detection
	Environment
	Extra code
	Generate environment template functions
	Make template file
	Operators in environment header file
	Process properties
	Signal properties
	Timer properties
	Support C++
	Suppress C level warnings
	Target directory
	Target kind
	User defined kernel
	Verbose mode

	build
	Target directory

	C Code Generator
	Additional Preprocessor Defines
	Advanced options
	Code generation properties
	Compile and link
	Expand macros
	Generate environment template functions
	Make template file
	Operators in environment header file
	Simulation kind
	Support C++
	Suppress C level warnings
	Target directory
	Target kind
	User defined kernel
	Verbose mode

	C Application
	Generate C code
	Include File
	Language
	C name

	C Application Customization
	Priority

	C++ Application Generator
	C++ header file
	File name
	Precompiled

	C++ implementation file
	File name

	cppImportSpecification
	Add source file references to enable navigation from the UML model to the C++ source
	Always generate constant expressions within [[]]
	C only
	C/C++ dialect
	Do not import definitions from included header files
	Generate artifacts
	GUID algorithm
	Action code strategy
	Import char* as CPtr<char>
	Import C++ pure virtual classes to UML interfaces
	Import unsigned char to Octet
	Import class pointers to UML references
	Input header files
	Options
	Output header file
	Preprocessor
	Selective import
	Set External attributes for imported definitions
	Translation of depending declarations
	Import only exported definitions

	Java
	Configuration
	name

	dynamicLibrary
	File name

	executable
	file
	File name

	Icon
	16 x 16 Pixels Bitmap file
	Icon File
	KeepIconProportions

	LabelPosition
	labelVertPosition
	labelHorzPosition

	jarFile
	javaFile
	library
	File name

	makefile
	Make settings
	Command
	Dialect
	Makefile
	Options

	Makefile generator
	Dialect
	Target directory
	User code

	Model Verifier
	Additional Preprocessor Defines
	Expand macros
	Generate environment template functions
	Make template file
	Suppress C level warnings
	Support C++
	Target directory
	Target kind
	Verbose mode

	objectFile
	Source reference
	File
	Line
	Column

	staticLibrary
	File name

	thread
	Instances
	One thread per instance
	Priority
	Stack size
	User 1, User 2


	Guidelines for Large-Scale Application Development
	Introduction
	Library Builds
	Library artifacts
	Implementation vs. signature files
	The build process
	Restrictions in the C code
	Container types and library builds
	Recursive package import/access
	Library packages and inheritance of active classes


	Managing File Size Using <<noScope>> Packages
	Improving Build Performance
	<<bindByGuid>> packages

	Requirement Traceability in Generated Code
	Introduction
	The U2ReqTrace Add-in
	Annotation Formatting
	Options
	Usage
	API Access


	UML for C Code Generation
	Environment Functions for C Applications
	Introduction
	Generated code
	Physical environment
	Environment functions
	Distributed applications
	Additional advantages
	Building the application
	Simulating and debugging the application
	Target application

	Essentials About Generated C Code
	Types representing signals
	Representation of UML data types in C
	Encoding and decoding of signal parameters
	Representation of signals outside interfaces

	Types representing instances of active classes
	Symbol table

	Environment Functions
	Function skeletons
	System interface header file
	Contents of the system interface header file
	Names of UML objects in C
	Prefix

	Signal number file
	Signal parameter layout file

	Guidelines for Environment Functions
	Functions xInitEnv and xCloseEnv
	Function xOutEnv
	Deducing signal path to the environment
	Improving performance of xOutEnv when many signals
	Guidelines for the xOutEnv function

	Function xInEnv
	Function xGetSignal
	Function SDL_Output
	Guidelines for the xInEnv function

	Function xGlobalNodeNumber
	Functions xMainInit and xMainLoop
	Stopping the execution


	C and AgileC Runtime Libraries
	Runtime Libraries
	Run-Time library directory structure
	sdlkernels
	include
	Runtime libraries
	Name conventions for directories
	Supported libraries
	Runtime libraries defined by attributes

	Library files
	comp.opt
	makeoptions / make.opt
	sccd.cfg
	makefile
	make template file

	Included source and header files
	sctda.c
	sctadacom.c
	sctadacom.h
	sctdamsg.c
	sctdamsg.h
	sctdamsgcode.h
	sctlocal.h
	sctos.c
	sctpred.c
	sctpred.h
	sctsdl.c
	scttypes.h
	sctutil.c

	Creating user-defined (customized) libraries

	Adaptation to Compilers
	Compiler definition section in scttypes.h
	Modifications in the file sctos.c
	xAlloc
	xFree
	xHalt
	SDL_Clock
	SDL_Time
	xSleep_Until
	xGlobalNodeNumber
	xCheckForKeyboardInput


	Dynamic Memory Management in C Code Generator
	Dynamic Memory Size Requirements
	Active classes
	Signals
	Timers
	Operations in active classes
	Predefined data types

	Implementation of Memory Management
	Functions for allocation and de-allocation
	xAlloc
	xFree
	Implementation aspects
	Memory Fragmentation
	Trace of memory needs


	C Code Generator Reference
	C Code Generator Operation Principles
	C Code Generator options and settings
	Launch of C Code Generator
	Interactive mode
	Batch mode


	Implementation of Run-Time Semantics
	Time
	Simulated time
	Real time

	Scheduling
	The ready queue
	Ready queue priority

	Public attributes
	Guards and guards on triggered transitions
	Implementation

	Constant attribute
	External constant attributes
	Using a C macro definition for specifying the value of attribute
	Reading values of attributes at program start up

	Value returning operation call
	Arbitrary value operator (any)
	any in decision
	any (SortName) in expression


	Translation of Data Types
	General
	Implementation of C definitions
	Initial values

	CPtr
	Array
	Bag
	Charstring
	Choice
	Enum
	ORef
	Own
	PowerSet
	String
	Struct
	Syntype

	Parameter Passing to Operations
	Types passed as values
	Types passed as addresses
	Parameter passing
	In parameters
	In/Out parameters
	Operation result


	Generic Functions
	Type info nodes
	Generic assignment functions
	Copy of objects
	Status of new objects
	Old value

	Generic equal functions
	Charstring and Own

	Generic free functions
	Generic make functions
	GenericMakeStruct
	GenericMakeChoice
	GenericMakeOwnRef
	GenericMakeArray
	Copy


	Generic Functions for Operations in Predefined Templates
	General array
	PowerSet
	Bag and general PowerSet
	String
	Limited string

	Optimizations
	Removing unused operations

	Names in Generated C Code
	Prefixes and suffixes in generated C names
	Names in generated code using suffix
	Names in generated code using prefix

	Sequence of characters

	C Code Generator Run-Time Model
	Signals and Timers
	Data structure representing signals and timers
	Allocation of data areas for signals
	Detailed layout of signal parameters
	Sending and receiving signals
	PAD function
	Signal number file

	Timers and operations on timers
	Representation of timer
	Timer queue
	Handling of timers


	Active Classes
	Data structure representing active classes
	Ready queue
	Create and stop operations
	Send and receive of signals
	General principles
	Detailed operation of SDL_Output
	Evaluating how to handle a received signal

	Nextstate operations
	Decision and action operations
	Compound statements
	Guards and guards on triggered transitions
	Global attributes

	Operations
	Data structure representing operations
	PRD function
	Calling and returning from operations

	Connectors
	Finding the receiving instance of an active class
	Example of a small system and the resulting symbol table

	C Code Generator Symbol Table
	Symbol Table Creation and Structure
	Symbol table creation
	Symbol table structure
	Symbol table nodes
	Naming in symbol table
	Node references

	Types Representing the Symbol Table Nodes
	xIdNode type definitions in the symbol table
	Components common to all table nodes
	Components specific to entity classes
	Package components
	System (root active class) components
	Connector and port components
	Parts and active classes with parts
	Active classes, inline active classes, instance components
	Operations, compound statement components
	Remote operation components
	Signal, timer, startup signal, and RPC signals components
	State components
	Sort and syntype components
	Attribute, formal parameter, signal parameter, and struct components
	Attribute in interfaces


	Type Info Nodes
	General
	Type definitions of type info nodes
	Type info node optimization
	General components in type info nodes
	Type specific type info node components
	Type info node components for enumeration types
	Syntype, type with inheritance, and Own, Oref instantiations
	Type info node components for PowerSet (implemented as unsigned in [ ])
	Type info node components for struct
	Type info node components for choice
	Type info node components for array and CArray
	Type info node components for general arrays
	Type info node components for general PowerSet, Bag, String and Objectidentifier
	Type info node components for limited strings
	Type info node components for signal
	Utility macros for type info nodes


	C Code Generator Macros
	General
	C Code Generator Macros
	Library version macros
	SCTAPPLCLENV
	SCTAPPLENV
	SCTDEB
	SCTDEBCL
	SCTDEBCLCOM
	SCTDEBCLENV
	SCTDEBCLENVCOM
	SCTDEBCOM
	SCTOPT1APPLCLENV
	SCTOPT2APPLCLENV

	Compiler definition section macros
	SCT_POSIX
	SCT_WINDOWS

	Configuration macros
	COMMENT(P)
	GETINTRAND
	GETINTRAND_MAX
	SCT_VERSION_4_4
	XCAT(P1,P2)
	X_LONG_INT
	XMULTIBYTE_SUPPORT
	XNOSELECT
	XNO_VERSION_CHECK
	XSCT_CBASIC
	XSCT_CADVANCED
	X_SCTTYPES_H
	X_XINT32_INT
	X_XPTRINT_LONG

	General properties macros
	XASSERT
	XCALENDARCLOCK
	XCLOCK
	XCOVERAGE
	XCTRACE
	XEALL
	XECHOICE
	XECREATE
	XECSOP
	XEDECISION
	XEERROR
	XEEXPORT
	XEFIXOF
	XEINDEX
	XEINTDIV
	XENV
	XEOPTIONAL
	XEOUTPUT
	XEOWN
	XERANGE
	XEREALDIV
	XEREF
	XGRTRACE
	XMAIN_NAME
	XMONITOR
	XMSCE
	XNOMAIN
	XSIGLOG
	XTENV
	XTRACE

	Code optimization macros
	XAVL_TIMER_QUEUE
	XCONST
	XCONST_COMP
	XNOCONTSIGFUNC
	XNOENABCONDFUNC
	XNOEQTIMERFUNC
	XNOREMOTEVARIDNODE
	XNOSIGNALIDNODE
	XNOSTARTUPIDNODE
	XNOUSEOFEXPORT
	XNOUSEOFOBJECTIDENTIFIER
	XNOUSEOFOCTETBITSTRING
	XNOUSEOFREAL
	XOPT
	XOPTCHAN
	XOPTDCL
	XOPTFPAR
	XOPTLIT
	XOPTSIGPARA
	XOPTSORT
	XOPTSTRUCT
	XPATH_INFO_IN_ENV_FUNC
	XPRSCOUNT, XPRSCOUNTHASH
	XPRSHASH
	XPRSOPT
	XUSE_SIGNAL_NUMBERS

	Macros for definition of minor features
	XBREAKBEFORE
	XCASEAFTERPRDLABELS
	XCASELABELS
	XCOUNTRESETS
	XENVSIGNALLIMIT
	XERRORSTATE
	XFREESIGNALFUNCS
	XFREEVARS
	XIDNAMES
	XNRINST
	XOPERRORF
	XPRSSENDER
	XREADANDWRITEF
	XREMOVETIMERSIG
	XSIGPATH
	XSYMBTLINK
	XTESTF
	XTRACHANNELSTOENV
	XTRACHANNELLIST

	Macros for static data, mainly xIdNode
	XBLO_EXTRAS
	XBLS_EXTRAS
	XCOMMON_EXTRAS
	XLIT_EXTRAS
	XPAC_EXTRAS
	XPRD_EXTRAS
	XPRS_EXTRAS
	XSIG_EXTRAS
	XSPA_EXTRAS
	XSRT_EXTRAS
	XSTA_EXTRAS
	XSYS_EXTRAS
	XSYSTEMVARS
	XSYSTEMVARS_H
	XVAR_EXTRAS

	Data in state machines and operations in active classes
	PROCEDURE_VARS
	PROCESS_VARS
	YGLOBALPRD_YVARP
	YPAD_TEMP_VARS
	YPAD_YSVARP
	YPAD_YVARP
	YPRD_TEMP_VARS
	YPRD_YVARP

	Macros used within PAD functions
	BEGIN_PAD
	BEGIN_START_TRANSITION
	CALL_SUPER_PAD_START
	CALL_SUPER_PRD_START
	LOOP_LABEL
	LOOP_LABEL_PRD
	LOOP_LABEL_PRD_NOSTATE
	SDL_OFFSPRING
	SDL_PARENT
	SDL_SELF
	SDL_SENDER
	XEND_PRD
	XPRSNODE
	XNAMENODE
	XNAMENODE_PRD
	YPAD_FUNCTION
	YPAD_PROTOTYPE
	YPRD_FUNCTION
	YPRD_PROTOTYPE

	Macros for the yInit function
	BEGIN_YINIT
	XPROCESSDEF_C
	XPROCESSDEF_H
	xInsertIdNode
	YINIT_TEMP_VARS

	Implementation of signals and signal sending
	ALLOC_SIGNAL
	ALLOC_SIGNAL_PAR
	INSIGNAL_NAME
	OUTSIGNAL_DATA_PTR
	SDL_2OUTPUT
	SDL_2OUTPUT_NO_TO
	SDL_2OUTPUT_COMPUTED_TO
	SDL_ALT2OUTPUT
	SDL_ALT2OUTPUT_NO_TO
	SDL_ALT2OUTPUT_COMPUTED_TO
	SDL_THIS
	SIGCODE
	SIGNAL_ALLOC_ERROR
	SIGNAL_ALLOC_ERROR_END
	SIGNAL_NAME
	SIGNAL_VARS
	TO_PROCESS
	TRANSFER_SIGNAL
	TRANSFER_SIGNAL_PAR
	XNONE_SIGNAL
	XSIGNALHEADERTYPE
	XSIGTYPE

	Implementation of call of remote operations
	ALLOC_REPLY_SIGNAL
	ALLOC_REPLY_SIGNAL_PAR
	ALLOC_REPLY_SIGNAL_PRD
	ALLOC_REPLY_SIGNAL_PRD_PAR
	REPLYSIGNAL_DATA_PTR
	REPLYSIGNAL_DATA_PTR_PRD
	SDL_RPCWAIT_NEXTSTATE
	SDL_RPCWAIT_NEXTSTATE_PRD
	SDL_2OUTPUT_RPC_CALL
	SDL_2OUTPUT_RPC_REPLY
	SDL_2OUTPUT_RPC_REPLY_PRD
	XGETEXPORTINGPRS
	XRPC_REPLY_INPUT
	XRPC_REPLY_INPUT_PRD
	XRPC_SAVE_SENDER
	XRPC_SAVE_SENDER_PRD
	XRPC_SENDER_IN_ALLOC
	XRPC_SENDER_IN_ALLOC_PRD
	XRPC_SENDER_IN_OUTPUT
	XRPC_SENDER_IN_OUTPUT_PRD
	XRPC_WAIT_STATE

	Implementation of static and dynamic create and stop
	ALLOC_STARTUP
	ALLOC_STARTUP_PAR
	ALLOC_STARTUP_THIS
	INIT_PROCESS_TYPE
	SDL_CREATE
	SDL_CREATE_THIS
	SDL_STATIC_CREATE
	SDL_STOP
	STARTUP_ALLOC_ERROR
	STARTUP_ALLOC_ERROR_END
	STARTUP_DATA_PTR
	STARTUP_VARS

	Implementation of timers, timer operations and now
	ALLOC_TIMER_SIGNAL_PAR
	DEF_TIMER_VAR
	DEF_TIMER_VAR_PARA
	INIT_TIMER_VAR
	INIT_TIMER_VAR_PARA
	INPUT_TIMER_VAR
	INPUT_TIMER_VAR_PARA
	RELEASE_TIMER_VAR
	RELEASE_TIMER_VAR_PARA
	SDL_ACTIVE
	SDL_NOW
	SDL_RESET
	SDL_RESET_WITH_PARA
	SDL_SET
	SDL_SET_WITH_PARA
	SDL_SET_DUR
	SDL_SET_DUR_WITH_PARA
	SDL_SET_TICKS
	SDL_SET_TICKS_WITH_PARA
	TIMER_DATA_PTR
	TIMER_SIGNAL_ALLOC_ERROR
	TIMER_SIGNAL_ALLOC_ERROR_END
	TIMER_VARS
	XTIMERHEADERTYPE

	Implementation of call and return
	ALLOC_PROCEDURE
	ALLOC_THIS_PROCEDURE
	ALLOC_VIRT_PROCEDURE
	CALL_PROCEDURE
	CALL_PROCEDURE_IN_PRD
	CALL_PROCEDURE_STARTUP
	CALL_PROCEDURE_STARTUP_SRV
	CALL_THIS_PROCEDURE
	CALL_VIRT_PROCEDURE
	CALL_VIRT_PROCEDURE_IN_PRD
	PROCEDURE_ALLOC_ERROR
	PROCEDURE_ALLOC_ERROR_END
	PROC_DATA_PTR
	SDL_RETURN
	XNOPROCATSTARTUP

	Implementation of join
	XJOIN_SUPER_PRS
	XJOIN_SUPER_PRD
	XJOIN_SUPER_SRV

	Implementation of state and nextstate
	ASTERISK_STATE
	ERROR_STATE
	START_STATE
	START_STATE_PRD
	SDL_NEXTSTATE
	SDL_DASH_NEXTSTATE
	SDL_NEXTSTATE_PRD
	SDL_DASH_NEXTSTATE_PRD

	Implementation of any decisions
	BEGIN_ANY_DECISION
	BEGIN_ANY_PATH
	BEGIN_FIRST_ANY_PATH
	DEF_ANY_PATH
	END_ANY_DECISION
	END_ANY_PATH
	END_DEFS_ANY_PATH

	Implementation of informal decisions
	BEGIN_FIRST_INFORMAL_PATH
	BEGIN_INFORMAL_DECISION
	BEGIN_INFORMAL_ELSE_PATH
	BEGIN_INFORMAL_PATH
	DEF_INFORMAL_PATH
	DEF_INFORMAL_ELSE_PATH
	END_DEFS_INFORMAL_PATH
	END_INFORMAL_ELSE_PATH
	END_INFORMAL_DECISION
	END_INFORMAL_PATH

	Macros for component selection tests
	XCHECK_CHOICE_USAGE
	XSET_CHOICE_TAG
	XSET_CHOICE_TAG_FREE
	XCHECK_OPTIONAL_USAGE
	XCHECK_REF
	XCHECK_OWN
	XCHECK_OREF
	XCHECK_OREF2

	Debug and simulation macros
	XAFTER_VALUE_RET_PRDCALL
	XAT_FIRST_SYMBOL
	XAT_LAST_SYMBOL
	XBETWEEN_STMTS
	XBETWEEN_STMTS_PRD
	XBETWEEN_SYMBOLS
	XBETWEEN_SYMBOLS_PRD
	XDEBUG_LABEL
	XOS_TRACE_INPUT
	YPRSNAME_VAR
	YPRDNAME_VAR

	Utility macros to be inserted
	MAX_READ_LENGTH
	SDL_NULL
	xNotDefPId

	Macros for threaded integrations
	THREADED
	THREADED_GLOBAL_VARS
	THREADED_GLOBAL_INIT
	THREADED_THREAD_VARS
	THREADED_THREAD_INIT
	THREADED_THREAD_BEGINNING
	THREADED_LOCK_INPUTPORT
	THREADED_UNLOCK_INPUTPORT
	THREADED_WAIT_AND_UNLOCK_INPUTPORT
	THREADED_SIGNAL_AND_UNLOCK_INPUTPORT
	THREADED_LISTREAD_START
	THREADED_LISTWRITE_START
	THREADED_LISTACCESS_END
	THREADED_EXPORT_START
	THREADED_EXPORT_END
	THREADED_START_THREAD
	THREADED_STOP_THREAD
	THREADED_AFTER_THREAD_START


	AgileC Code Generator Reference
	File Structure
	Essential files
	Files found in target directory
	Files found in kernel directory
	Files found in RTOS directory

	Include structure for C files
	uml_kern.h
	uml_kern.c


	Environment Functions
	General
	xInitEnv
	xCloseEnv
	xOutEnv
	xInEnv
	Implementing signal sending to the application
	Sending not using xInEnv
	Sending using xInEnv in bare integration
	Send signals with xInEnv in a RTOS integration

	Interface header file (.ifc)
	Generated environment functions
	xInitEnv and xCloseEnv structure
	xOutEnv structure
	xInEnv structure


	Compile and Link an Application
	Essential files
	comp.opt
	systemname.m
	makeoptions (make.opt)
	system name_env.tpm

	Adopting a compiler

	Integration with Compiler and Operating System
	Integration with a new compiler
	Compiler name and switches
	Include files

	Integration with the run-time system
	Clock function
	Memory management
	Disable and enable interrupts
	Threaded integrations
	The clock function
	Protection of shared data
	Startup phase - creating the threads
	Suspending and waking up threads


	MISRA coding rules
	Obvious restrictions in UML
	Non-obvious restrictions in UML
	Violated rules
	Rule 14.7: A function shall have a single point of exit at the end of the function.
	Rule 15.2 An unconditional break shall terminate every non-empty switch clause.
	Rule 17.1 Pointer arithmetic shall only be applied to pointers that address an array or array element. Rule 17.4 Array indexing shall be the only allowed form of pointer arithmetic.
	Rule 19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized expression, a type qualifier, a storage class specifier, or a do-while-zero construct.
	Rule 19.6 #undef shall not be used.
	Non-supported advisory rules


	Optimization and Configuration
	auto_cfg.h
	uml_cfg.h
	Process properties
	Signal properties
	Timer properties
	Dynamic memory allocation
	Error detection
	Miscellaneous
	Selections in the Application Builder

	Some information about performance for different concepts

	Overview of Important Data Structures
	Translation of Passive Classes

	C Compiler Driver
	Application areas for CCD
	How to take advantage of CCD
	Customizing CCD

	CCD User Interface
	Compile a C file
	Print configuration
	Return Codes
	Actions Performed by CCD
	C Beautifier

	CCD Configuration File
	CCD behavior
	CCD variables
	sccdNAME
	sccdINFILESUFFIX
	sccdCPP
	sccdCPPFLAGS
	sccdMACROPREFIX
	sccdINCLUDE1
	sccdINCLUDE2
	sccdOUTFILEREDIR
	sccdFMOVE
	sccdDELETE
	sccdCOPY
	sccdCOMPILE
	sccdDEBUG
	sccdPURGE
	sccdUSE_HS
	sccdSILENT
	sccdTMPDIR
	sccdUSER_CMD1, sccdUSER_CMD2, sccdUSER_CMD3, sccdUSER_CMD4



	UML and Java
	Java Support
	Creating a Java Project
	The Java View
	Activating the Java View
	Working in the Java View
	Differences between the Java View and the Standard View


	Java Build Artifact
	Java Build Artifact Commands
	Generate
	Generate (force)
	Update
	Update (force)
	Build

	Java Build Artifact Settings
	Perform transformations
	Classpath
	Automatic source generation
	Automatic model update
	Support roundtrip
	Apply <<informal>> stereotype to imported methods


	Java Files
	Importing Existing Java Applications
	Importing JAR Files
	Generating Java from Existing Models
	Exporting a package to Java source code
	Generating JAR files
	Generating javadoc


	Java Syntax
	Synchronizing Model and Source Code
	Automatic vs Manual Synchronization
	Manually Updating Java Source Code
	Renaming and moving model elements
	Changing the location of generated Java files
	Changes to existing files

	Manually Updating the Model from Java Source Code
	Synchronized Target Directory

	Navigating to and from Generated Java Files
	Compiling and Executing Java
	Compiling
	Executing a class
	Executing a class as an applet
	Classpath variable

	Execution Tracing
	Start a New Trace Session
	Instrumenting the Java Program
	Option ‘host’
	Option ‘port’
	Option ‘start_method’
	Option ‘skip’
	Setting instrumentation options when using Eclipse

	Instance Tracer
	Example

	Adding Custom Tracers

	Model to File Mapping
	Java file artifacts
	Java packages
	Unnamed package
	JAR file artifacts

	Java Runtime Libraries
	Loading of runtime libraries
	Using the runtime libraries
	Visibility of packages and elements
	Tau Object Runtime library
	Additional libraries

	Java Modeling Utilities
	Active Class Generalization
	Generate Main Method

	Java Settings
	Known Restrictions
	Active code generators
	Model binding in inner classes
	No Java syntax for UML packages
	Switching between Java and U2 syntax fails

	Using the Java EE 5 Addin
	The Hello Example
	Creating a Java EE 5 Project
	Activating the JavaEE5 addin
	Creating an EJB Component Session Bean
	Creating Persistent Entities

	Java EE 5 Addin Reference Manual
	Commands Available for Interfaces
	Commands Available for Classes
	Commands Available for Attributes
	Persistent Entity Utilities
	Stereotypes relevant for Java EE applications

	Java Code Generator Reference
	General
	Java to UML Translation
	Document Structure

	General Translation Rules
	Name of Definitions
	Type of Typed Definitions
	Impact of aggregation kind
	Predefined types

	Collections and Multiplicity
	Informal multiplicity
	Formal multiplicity

	Visibility of Definitions
	Qualified Names
	Comments
	Non-Name Based References

	Package
	Dependency
	Import and Access Dependencies

	Class
	Nested Class
	Active Class

	Interface
	Interfaces with Signals

	Stereotype
	Stereotype Attributes

	Attribute
	Static Attribute

	Operation
	Operation Body
	Operation with Statemachine Implementation
	Operation Parameters
	Parameter multiplicity

	Constructor
	Constructor initializer

	Destructor
	Abstract Operation
	Virtual, Redefined or Finalized Operation
	Exception Specification
	Synchronized Operations
	Main Operation

	Generalization
	Association
	Datatype
	Expression
	Identifier
	Reference to base class
	Reference to non-type UML predefined definition

	Informal Expression
	TimerActive Expression
	Now Expression

	Template
	Atleast Constraints
	Template Instantiation

	Action
	Definition Action
	Expression Action
	Try Action
	Throw Action
	Loop Action
	Stop Action
	NextState Action
	Normal NextState action
	History NextState action
	Deep history NextState action

	Signal Send Action
	Decision Action
	Return Action
	Timer Set Action
	Timer Reset Action

	Signal
	Signal Parameter

	Timer
	State Machine
	Non-local definition access from a statemachine implementation
	State
	Composite state

	Start Transition
	Triggered Transition
	Multiple triggers

	Guard
	Label Transition
	Connection Point

	Architecture
	Port
	Connector
	Dynamic Collection Attribute Typed by Active Class
	Inserting an active instance into a dynamic collection attribute

	Class Composite Structure Initialization

	Translation Customization
	Adding Text During Code Generation
	Implementing Custom Transformations

	Java Run-time Framework
	Introduction
	TOR Package
	TOR UML Model
	Building TOR

	TOR Classes
	CompletedEvent
	Connector
	Dispatchable
	DispatchableClass
	Instantiation of dispatchable classes

	Dispatcher
	DispatcherBehavior
	DispatcherData
	EntryPoint
	Event
	EventExecutor
	EventExecutor.EventAction

	EventQueue
	EventReceiver
	ExitPoint
	InstanceManager
	InternalEvent
	Port
	Region
	Entering a region
	Leaving a region
	Finishing a region

	RunInitialTransition
	State
	Transitions and event handling
	Entering a state
	Leaving a state

	StateMachine
	Synthesized
	ThreadedDispatcher
	ThreadSafeEventQueue
	TimerEvent
	TimerObject
	TimerQueue
	TopRegion

	Utilities
	sendTo
	setTimeUnit

	Operating System Abstraction Layer
	Semaphore
	Time
	Thread
	Behaviour
	suspend
	getCurrentThreadId


	List of Files
	Java source files

	Eclipse Integration
	Installing the Eclipse Integration
	Eclipse integration components
	Eclipse integration plug-in
	Activating the integration in IBM Rational Tau

	Working with Eclipse
	Workflow scenarios
	Create a UML project in Eclipse
	Create a Java project in Eclipse
	Create a project in IBM Rational Tau
	Model and Code Synchronization

	IBM Rational Tau to Eclipse
	Communication
	Connecting to Eclipse
	Commands in IBM Rational Tau
	Importing JAR files
	Export
	Update Model
	Force Update Model
	Update Source Code
	Force Update Source Code
	The command will update the source code by re-generating all java files.
	Change Eclipse directory
	Create Eclipse Project
	Synchronize with Eclipse
	Locate in Eclipse
	Use Java Syntax


	Eclipse to IBM Rational Tau
	Eclipse command list
	Set IBM Rational Tau Location
	Create Corresponding IBM Rational Tau Project
	Synchronize with IBM Rational Tau
	Locate in IBM Rational Tau


	Eclipse Options
	Eclipse location
	Platform options


	UML and C#
	C# support
	Using the C# Support
	Creating a C# Project
	C# Specific Libraries
	TTDCSharp
	TTDCSharpPredefined
	TTDCSharpRuntime

	C# Menu
	Update model
	Force update model
	Update source code
	Force update source code


	Generating C# Code
	Model-to-File Mapping
	Default model-to-file mapping
	Location of generated files

	Navigating to and from Generated C# Files
	Translation Rules
	Compiling, Running and Debugging Generated C# Code

	Importing Existing C# Code
	Using the C# Import Wizard
	Advanced Import Options
	Result of C# Import
	Navigating to and from Imported C# Files

	Synchronizing Model and Source Code
	Automatic vs. Manual Synchronization
	Automatic Synchronization
	Manual Synchronization


	UML to C# Mapping
	General Translation Rules
	Names of definitions
	Predefined UML and C# types
	Comments

	Package
	Class and Interface
	A UML class is translated to a C# class.
	Inheritance
	Partial types

	Datatype
	Stereotype
	Syntype
	Dependency
	Operation
	Parameter
	Variable number of parameters
	Virtual, redefined and finalized operations
	Type conversion operators

	Delegate
	Attribute
	Constant attribute
	Attributes with non-single multiplicity

	Association
	Template
	Expression
	Special call expressions

	Action

	C# Settings
	Visual Studio Integration for C#

	UML and C++
	C++ Support in IBM Rational Tau
	Overview
	Key capabilities
	External C++ and roundtrip
	Using C++ in IBM Rational Tau

	C++ Usage Scenarios
	Visualization of existing C++ code
	Navigation from model view to source code

	UML - C++ roundtrip engineering
	Creating the project
	Generating C++ code
	Applying changes to the generated C++ code
	Propagating changes back to model
	Automatic model and code synchronization

	Application generation for advanced UML concepts
	Model transformations
	Run-time framework
	Generating C++ code

	Accessing C++ APIs from the IBM Rational Tau UML Environment
	Using IBM Rational Tau managed C++ code in a C++ development environment
	Using Visual Studio with IBM Rational Tau
	Workflow

	Migration of existing C++ applications to IBM Rational Tau
	How to import C++ files
	Restrictions

	Tracing execution of IBM Rational Tau generated applications

	Getting started with the C++ support
	C++ Textual Syntax
	C++ Application Generator Reference
	General
	C++ Application Generator add-ins
	CppGen
	CppTypes

	Basic principle of the C++ Application Generator
	Document structure

	Model-to-File Mapping
	cppHeaderFile
	cppImplementationFile
	Include protection

	General Translation Rules
	Name of definitions
	Type of typed definitions
	Impact of aggregation kind
	Predefined types
	Collections and impact of multiplicity
	Combined impact of multiplicity and aggregation kind

	Initial instances
	Informal multiplicity and custom container types
	Comments
	External definition
	Non-name based references
	Markers for synthesized entities

	Package
	Dependency
	Include dependency
	Access dependency
	Import dependency
	Friend dependency

	Structured Classifier
	Attribute
	Attribute default value
	Attribute visibility
	Static attribute
	Constant attribute
	Bitfield

	Operation
	Operation parameters
	Parameter default value
	Parameter multiplicity

	Abstract operation
	Virtual, redefined or finalized operation
	Exception specification
	Operation reference

	Generalization
	Association
	Syntype
	Datatype
	Informal Definition
	Expression
	Identifier
	References to predefined UML definitions
	References to predefined C++ definitions
	References to external C/C++ definitions

	Informal expression
	Call expression
	Field expression
	Assignment
	Charstring and Character values
	TimerActive expression

	Template
	Template instantiation
	Atleast constraint

	Action
	Definition Action
	Expression Action
	Try Action
	Throw Action
	Loop Action
	Stop Action
	NextState Action
	Normal NextState Action
	History NextState Action
	Deep History NextState Action

	Signal Sending Action
	Decision Action
	Return Action
	Join Action
	Timer Set Action
	Timer Reset Action

	Internals
	Operation Body
	Signal
	Signal parameter

	Timer
	State Machine
	State
	Start transition
	Triggered transition
	Multiple triggers

	Guard
	Label transition
	State machine for defining a composite state
	Connection point

	Architecture
	Attributes
	Connectors
	Ports
	Initialization of static structure
	Disconnecting an instance

	Package TTDCppPredefined
	Predefined types
	Stereotypes
	'globalNamespace' extends Package
	'struct' extends Class
	'inheritanceVisibility' extends Generalization
	'virtualInheritance' extends Generalization
	'inline' extends Operation
	'bitfield' extends Attribute
	'CppReference' extends StructuralFeature
	'auto' extends StructuralFeature
	'register' extends StructuralFeature
	'mutable' extends Attribute
	'volatile' extends StructuralFeature, Operation
	'explicit' extends Operation
	'export' extends Signature
	'friend' extends Dependency
	'__declspec' extends Definition
	'manifest implementation' inherits manifest


	Translation Options
	Name mangling options
	Name prefix

	Enable non-ASCII compilation
	Default model-to-file mapping options
	Use default model-to-file mapping
	Use precompiled header

	Code formatting options
	Indentation

	Code organization options
	Sorting of bodies
	Grouping of members
	Group transition if-statements according to trigger definition scope

	Enable COM agents
	Support roundtrip
	Time unit
	Link with TOR
	Instrumentation Options
	Enable instrumentation
	Synchronous instrumentation events

	Debug options
	Executable for debug session
	Command line arguments
	Host name
	TCP/IP port

	Include protection options
	Include Protection First String
	Include Protection Last String

	Automatic model update
	Automatic code generation
	Automatically add operation bodies for operations

	Translation Customization
	Adding Text During Code Generation
	Replacing Text During Code Generation
	Customization Points


	Miscellaneous
	Order of declarations and forward declarations
	Main function
	Generating a default main operation in the UML model


	Environment of C++ Applications
	Introduction
	Modeling the Environment
	Interfacing with the Environment
	Multi-threaded Applications

	C++ Run-time Framework
	Introduction
	TOR namespace
	TOR UML Model
	Building TOR
	Initializing and Finalizing TOR

	TOR Classes
	CompletedEvent
	Connector
	Dispatchable
	Dispatchable::EventAction

	DispatchableClass
	Instantiation of dispatchable classes

	Dispatcher
	DispatcherData
	EntryPoint
	Event
	EventExecutor
	EventQueue
	EventReceiver
	ExitPoint
	InstanceManager
	InternalEvent
	Port
	Connecting ports
	Sending and receiving events

	Region
	Entering a region
	Leaving a region
	Finishing a region

	RunInitialTransition
	State
	Transitions and event handling
	Entering a state
	Leaving a state

	StateMachine
	ThreadedDispatcher
	ThreadSafeEventQueue
	TimerEvent
	TimerObject
	TimerQueue
	TopRegion

	Utilities
	sendTo
	cast
	setTimeUnit
	initializeModel
	initializeLibrary
	finalizeLibrary

	Predefined Types
	Simple types
	Operators
	equal
	implies
	mod
	power
	is
	as

	Any class
	Charstring class

	Containers
	String

	Operating System Abstraction Layer
	Mutex
	RWLock
	Semaphore
	Gate
	Thread
	Time
	Process

	Meta-Data Representation
	Application
	Call
	Called
	Coder
	CoderBuffer
	Create
	Definition
	Delete
	Event
	EventManager
	EventMedia
	EventReceived
	EventSent
	Exit
	LogFile
	Operation
	Return
	Returned
	StackContext
	StringCoderBuffer
	StructuralFeature
	TauHostDebuggerProxy
	TauHostTracer
	U2P_Coder

	List of Files
	Source and header files

	TOR Integration guide
	OS Primitives
	Time
	Mutex
	Semaphore
	Thread
	Process

	Building

	Debugging a C++ Application
	Overview of the UML Debugger
	Generating an Instrumented Application
	Build settings

	Running the UML Debugger
	Start the UML Debugger
	Attach to a running application
	Launching after Building Using Build Artifact
	Launching after Using Configurations for Build

	Exit the UML Debugger

	Tracing the Execution
	UML model tracking
	Sequence diagram tracing

	Executing the Application
	Commands available in Break mode
	Go
	Step Over
	Step Into
	Step Out
	Run execution up to this point

	Commands available in Run mode
	Break Execution

	Breakpoint commands
	Insert breakpoints
	Precise positioning of breakpoints
	Remove breakpoints
	List breakpoints
	Compiled breakpoints

	Step into source

	Error Handling
	Visual Studio Integration for C++

	UML and Requirements
	Modeling Requirements
	Getting started
	Requirements add-in
	Activating the Requirements add-in
	Requirement View
	Requirement Property View
	Requirement Reports
	A number of reports are available for requirements and requirement relations.
	Basic reports
	Detailed reports
	Requirements Report
	Non-satisfied Requirements Report
	Non-verified Requirements Report
	Requirement Relations report


	Requirements profile
	Basics
	Requirement
	Visualizing requirements in diagrams

	Requirement relations
	Trace relation
	Copy relation
	DeriveReqt relation
	Refine relation
	Satisfy relation
	Verify relation
	Test Case

	Requirement Diagram

	Working together with DOORS
	Importing requirements
	DOORS Import Wizard
	Import Settings

	Import result
	Formal module
	Objects
	Attributes
	Links

	Modifying imported requirements

	UML representation of DOORS elements
	Formal module
	Object
	Tables

	Attributes
	Link

	Locating an element in DOORS
	Committing changes from IBM Rational Tau to DOORS
	Supported changes

	Updating from DOORS to IBM Rational Tau
	Update with changes since last synchronization
	Supported changes

	Full update
	When to use the full update


	Changing the view or baseline
	Creating Links
	Exporting requirements to DOORS
	Supported changes
	Adding requirement attributes

	DOORS toolbar
	Migrating from earlier IBM Rational Tau versions
	UML Requirements
	Requirements in .dim files
	Surrogate modules exported using IBM Rational Tau 3.1.1 or earlier versions


	Testing UML Models
	UML Testing Profile
	Activating the Testing Profile Support
	UML Testing Profile
	Definitions
	Arbiter
	Scheduler
	Test case
	Test context
	Test component
	Test objective
	SUT
	Verdict


	Creating a test model
	Creating a test context
	Create test context dialog
	SUT part
	Test component part
	Connectors
	Dependencies
	Test configuration diagram
	Initial test case


	Creating a test case
	Adding an empty test case to a test context
	Adding an empty test case to a test component
	Creating a test case from an existing diagram
	Add to Test Context


	Specifying test case behavior
	Sequence diagrams
	Using action symbols
	Referencing other test cases or operations
	Specifying timing constraints
	Additional lifelines

	State machine diagrams

	Test Framework
	Interfaces
	ITTDArbiter
	ITTDScheduler

	Implementations
	TTDArbiter
	TTDScheduler


	Building and Running test applications
	Building a test application
	Test application build process

	Intermediate test model
	Transformations
	Message reception
	Time specification line

	Running a test application
	Run a test application in the Model Verifier

	Test execution results

	Test Execution and Logging
	Test Driver
	Test input file
	Test log file
	Test generation stereotype

	Known Restrictions
	Build artifact types
	Test case behavior
	Test cases
	Test case behavior - sequence diagram
	Test component
	Testing profile
	Timers


	UML Modeling with DOORS
	Storing models in DOORS
	Introduction to DOORS storage
	Project and model basics
	Projects in DOORS
	Models in DOORS
	Default project
	File system
	Synchronization
	Storage vs synchronization

	Working with projects in DOORS
	Creating a project in DOORS
	Loading a project from DOORS
	Select UML Project dialog

	Working with models in DOORS
	Creating a new model
	Opening a model in Tau
	Using a model in multiple projects
	Setting the default project of a model
	Splitting a model
	Deleting a model

	Module vs object level
	Working with projects in IBM Rational Tau
	Creating a project in Tau
	Loading a project from DOORS

	Working with models in IBM Rational Tau
	Loading a model from DOORS
	Saving a model in DOORS
	Making a read-only model editable

	DOORS Storage Limitations
	Supported code generators, importers, exporters and addins
	Partitions


	UML Elements in DOORS
	Working with UML elements in DOORS
	DOORS representation of a UML element
	UML representation of DOORS attributes
	Object Text
	Other attributes

	Creating a UML element
	Deleting a UML element
	Moving a UML element
	Changing the name of a UML element
	Editing a UML element in Tau
	Creating a Use Case
	Copy & Paste
	Showing Object Text in a diagram
	Showing attributes in a diagram

	Synchronization in DOORS
	Committing changes to the model
	Updating a module with model changes

	Synchronization in IBM Rational Tau
	Setting up a UML model for synchronization
	Committing model changes to DOORS
	Updating a model with changes made in DOORS
	Disabling synchronization of a model
	Disabling synchronization of a single element
	Enabling synchronization of a single element
	Showing or removing a diagram image in DOORS
	Changing synchronization settings

	Synchronization settings
	Location
	Metamodel
	Direction
	Show diagram images
	Show frame symbol
	Show top-level element
	Update/Commit on Open/Save

	Analyst View
	Analysis Type
	UML Element Icon

	Attributes
	UML Kind
	UML Name
	UML Location
	UML Comment Symbol

	Links
	Working with links in DOORS
	Drag and drop in IBM Rational Tau
	Link Requirement to Selected Item in IBM Rational Tau
	Open Linked UML Element in IBM Rational Tau

	Working with links in IBM Rational Tau
	Link modules and link sets

	Filters
	Identify Design Elements Not Justified by Requirements
	Identify Design Elements by UML Kind
	Identify Requirements Not Addressed by Design Elements
	Managing traceability
	Traceability in IBM Rational Tau
	Traceability in DOORS
	Traceability in IBM Rational Tau and DOORS
	Working in Tau
	Working in DOORS
	Keeping consistency between Tau and DOORS



	UML Modeling with System Architect
	Using Tau with System Architect
	Associating an Encyclopedia with a UML Model
	Removing the Association with an Encyclopedia
	Incremental Loading of Elements
	Creating, Editing and Saving UML Elements
	System Architect Storage and New Wizards
	Specifying Encyclopedia Storage for Root Elements
	Moving Information from System Architect to Tau
	Known Restrictions
	Unnamed elements
	Undo/Redo
	Restrictions on Model Root Elements in Encyclopedias
	Profiles and Model Libraries
	Accessing Diagrams from both System Architect and Tau


	UML and Web Services
	Web Services Support
	Modeling Web Services in UML
	Creating a WSDL Project
	WSDL Add-in

	WSDL View
	WSDL Profile
	Generating WSDL
	WSDL Generation from WSDL Centric Models
	WSDL Generation from UML Centric Models

	Importing WSDL
	WSDL/XSD Import Wizard
	First step of the WSDL/XSD import wizard
	Second step of the WSDL/XSD import wizard
	Pressing Finish will import the selected files and/or URLs.
	Result of import

	Re-import

	WSDL Generator Reference
	General
	WSDL Build Artifact
	Default Model-to-File Mapping

	Document Structure

	Interface
	Comment
	Dependency
	Operation
	Parameter
	Overloaded Operations

	Signal
	Attribute
	Exception
	Type
	Binding Artifact
	Default Binding
	Common Binding
	Name variable

	SOAP Binding Properties
	soapBinding::style
	soapBinding::transport
	soapBinding::action
	soapBinding::operationBinding
	soapOperation::operation
	soapOperation::style
	soapOperation::action
	soapOperation::input
	soapOperation::output
	soapOperation::fault
	soapInput::body
	soapInput::header
	soapOutput::body
	soapOutput::header
	soapBody::parts
	soapBody::use
	soapBody::encodingStyle
	soapBody::namespace
	soapHeader::isFault
	soapHeader::part
	soapHeader::use
	soapHeader::encodingStyle
	soapHeader::namespace
	soapFault::name
	soapFault::use
	soapFault::encodingStyle
	soapFault::namespace


	Limitations
	Transmission Primitives
	Non-SOAP Bindings

	Translation Options
	Target Namespace
	Generate Parameter Order
	Generate XSD File

	WSDL/XSD Importer Reference
	WSDL to UML Mapping Rules
	WSDL Profile Contents
	Mapping Rules
	Overview
	extensibility elements
	definitions
	import
	documentation
	types
	message
	part
	portType
	operation
	input
	output
	fault
	binding
	service
	port

	SOAP 1.1 Mapping Rules
	SOAP Profile Overview
	soap:address
	soap:binding
	soap:operation


	XSD to UML Mapping Rules
	XSD Profile Contents
	XS Profile Contents
	SOAPENC Profile Overview
	Mapping rules
	Overview
	Importing non-schema elements
	Importing non-schema attributes
	ID attribute
	attribute declaration
	element declaration
	complex type
	simple content
	simple content : restriction
	simple content : extension
	simple content : attrbute group
	simple content: anyAttribute
	complex content
	complex content:restriction
	complex content: extension
	attribute group definition
	model group definition
	model group schema component: all
	wildcard schema component : any
	identity-constraint definition schema component:unique
	identity-constraint definition schema component:key
	identity-constraint definition schema component:keyref
	identity-constraint definition schema component:selector
	identity-constraint definition schema component:field
	notation declaration
	annotation
	annotation : appinfo
	annotation : documentation
	simple type definition
	simple type : restriction
	simple type : list
	simple type : union
	schema
	include element
	redefine element
	import element

	Postprocessing

	XML Namespace Mapping Rules

	XML Schema Modeling with UML
	Modeling XML Schemas
	Getting started
	XMLFramework add-in
	Activating the XMLFramework add-in

	XSD view
	XSD profile
	Importing XSD Files
	Generating XSD Files

	Exploring UML Models
	The Tau Explorer
	Exploring an Application
	Underlying Principles and Terms
	Behavior Trees
	State Space Explorations
	States and Paths

	Performing Automatic State Space Explorations
	Rules Checked During Exploration
	Interpreting Exploration Statistics

	Generating and Starting an Explorer
	Creating a Build Artifact
	Customizing the Build Artifact

	The Explorer User Interface
	Explorer states
	Explorer Views
	Explorer command prompt
	Log Window
	Explore View
	Navigator View
	Reports View
	Test Values View
	General Options View
	Bit State Options View
	Report Options View
	State Space Options View
	Random Walk Options View
	Exhaustive Options View
	Tree Search Options View


	Guidelines for Model Exploration
	Exploring a UML Model
	Using a Default Exploration
	Determining if the Exploration is Finished
	Handling Low Symbol Coverage
	Using Advanced Exploration

	Exploring Large Systems
	Decomposed Exploration
	More Efficient Bit-State Exploration
	Reducing the State Space Size
	Using Random Walk Exploration
	Incremental Exploration

	Defining Signals from the Environment
	Test Values
	Test Values Restrictions and Options
	Defining and Listing Test Values

	Exploring Systems with External C/C++ Code
	Using User-Defined Rules
	Different Usages
	Examples of Rules
	Managing User-Defined Rules

	Using Assertions

	Model Explorer Reference
	Alphabetical List of Commands
	? (Interactive Context Sensitive Help)
	? (Command Execution)
	Assign-Value
	Bit-State-Exploration
	Bottom
	Cd
	Connector-Disable
	Connector-Enable
	Clear-Coverage-Table
	Clear-Parameter-Test-Values
	Clear-Reports
	Clear-Rule
	Clear-Signal-Definitions
	Clear-Test-Values
	Command-Log-Off
	Command-Log-On
	Continue-Until-Branch
	Continue-Up-Until-Branch
	Default-Options
	Define-Bit-State-Depth
	Define-Bit-State-Hash-Table-Size
	Define-Bit-State-Iteration-Step
	Define-Connector-Queue
	Define-Exhaustive-Depth
	Define-Integer-Output-Mode
	Define-Max-Input-Port-Length
	Define-Max-Instance
	Define-Max-Signal-Definitions
	Define-Max-State-Size
	Define-Max-Test-Values
	Define-Max-Transition-Length
	Define-Parameter-Test-Value
	Define-Priorities
	Define-Random-Walk-Depth
	Define-Random-Walk-Repetitions
	Define-Report-Abort
	Define-Report-Continue
	Define-Report-Log
	Define-Report-Prune
	Define-Root
	Define-Rule
	Define-Scheduling
	Define-Signal
	Define-Spontaneous-Transition-Progress
	Define-Symbol-Time
	Define-Test-Value
	Define-Timer-Progress
	Define-Transition
	Define-Tree-Search-Depth
	Define-Variable-Mode
	Detailed-Exa-Var
	Down
	Evaluate-Rule
	Examine-Connector-Signal
	Examine-PId
	Examine-Signal-Instance
	Examine-Timer-Instance
	Examine-Variable
	Exhaustive-Exploration
	Exit
	Generate-SQD-Trace
	Goto-Path
	Goto-Report
	Help
	Include-File
	List-Connector-Queue
	List-Input-Port
	List-Next
	List-Parameter-Test-Values
	List-Active-Class
	List-Ready-Queue
	List-Reports
	List-Signal-Definitions
	List-Test-Values
	List-Timer
	Load-Signal-Definitions
	Log-Off
	Log-On
	Merge-Report-File
	New-Report-File
	Next
	Open-Report-File
	Print-Evaluated-Rule
	Print-File
	Print-Path
	Print-Report-File-Name
	Print-Rule
	Print-Trace
	Quit
	Random-Down
	Random-Walk
	Reset
	Save-As-Report-File
	Save-Coverage-Table
	Save-Options
	Save-State-Space
	Save-Test-Values
	Scope
	Scope-Down
	Scope-Up
	Set-Application-All
	Set-Application-Internal
	Set-Scope
	Set-Specification-All
	Set-Specification-Internal
	Show-Mode
	Show-Options
	Show-Versions
	Signal-Disable
	Signal-Enable
	Signal-Reset
	Stack
	Top
	Tree-Search
	Tree-Walk
	Up
	User-Defined Rules
	Predicates
	Quantifiers
	Boolean Operator Predicates
	Relational Operator Predicates
	Expressions
	Active Class Functions
	Signal Functions
	Global Functions



	Customizing IBM Rational Tau
	Customizing IBM Rational Tau
	Introduction
	Tcl API
	COM API
	C++ API
	Agents
	Object model
	Metamodel
	Profiles
	Add-ins
	Stereotypes and attributes
	Launch from command line
	Launching IBM Rational Tau with a Tcl script as argument
	Launching IBM Rational Tau with a Workspace (*.ttw) or Project (*.ttp)
	Suppressing the splash screen


	Add-Ins
	Application areas for add-ins
	Activating add-ins
	Contents and structure of an add-in
	Create a new addin module
	Add-in Tcl script execution


	Customizing the User Interface
	General
	Writing the add-in
	Loading the add-in

	Profiles
	Application areas for profiles
	Creating a profile
	Testing the profile
	Deploying the profile for use
	More about profiles


	Model Access
	Application areas for model access
	Adding model access functionality
	Using the Tcl API

	Adding Semantic Checks
	Application areas for semantic checks

	Adding Code Generators
	General
	Build Stereotype
	ABWGen
	Syntax
	Execution


	Adding Importers
	Creating a New Importer
	CanBeApplied
	Run
	Import

	An Example
	XML Based Importers
	Importers Generating Diagrams

	Adding Diagram Generators
	Standard Diagram Generator Parameters
	Implementing a Diagram Generator Agent
	Typical implementation steps

	Example
	Invoking Diagram Generators Programmatically

	Adding Extension Modules for the File/Folder Importer
	Extension Module Options
	Redefinable Agents
	OnImportFile
	OnImportFolder
	OnImportCompleted

	An Example

	Predefined Stereotypes and Attributes
	Agents
	Defining an Agent
	Agent Invocation Triggered by a Tool Event

	Implementing an Agent
	General guidelines for agent implementations
	Implementation using the COM API
	Implementation using the C++ API
	Implementation using the Tcl API
	Implementation using Query Expressions

	Agent Parameters
	Tool Events
	Semantic checker events
	AutoCheck
	Check

	Application builder events
	AB AutoSave
	Insert cross reference file
	AB Client File Response
	Process BuildArtifact

	Editor events
	OpenDiagram
	InsertDiagramElement

	Model interaction events
	Change Entity Property
	Entity Modified
	Create Entity
	Move Entity

	Editor events
	AutoLayout

	Storage Events
	LoadModel
	LoadResource
	SaveResource

	C++ Application Generator Events
	Print C++ Source File
	Print C++ Definition
	Entity File Position

	Java Code Generator Events
	JavaPrintFile
	JavaPrintDefinition
	Transformation

	Model Verifier Events

	Agent Commands
	Defining an Agent Command
	Using an Agent Command

	Utility Agents
	COM API
	Introduction
	Interface overview
	Accessing the API
	Accessing the API from non-interactive clients
	Accessing the API from interactive clients

	Client restrictions
	Bare only
	Unicode strings only


	ITtdModelAccess
	LoadProject
	Parameters
	Return value
	Comments

	LoadFile
	Parameters
	Return value
	Comments

	WriteMessage
	Parameters
	Return value
	Comments

	GetLicense
	Parameters
	Return value
	Comments


	ITtdModel
	FindByGuid
	Parameters
	Return value
	Comments

	New
	Parameters
	Return value
	Comments

	Parse
	Parameters
	Return value
	Comments

	XMLDecode
	Parameters
	Return value
	Comments

	Save
	Return value
	Comments

	CreateResource
	Parameters
	Return value
	Comments

	LoadFile
	Parameters
	Return value
	Comments

	InvokeAgent
	Parameters
	Return value
	Comments


	ITtdEntity
	ApplyStereotype
	Parameters
	Return value

	GetValue
	Parameters
	Return value
	Comments

	GetEntity
	Parameters
	Return value
	Comments

	GetEntities
	Parameters
	Return value
	Comments

	GetReference
	Parameters
	Return value
	Comments

	GetOwner
	Parameters
	Return value
	Comments

	GetMetaClassName
	Parameters
	Return value
	Comments

	GetReferringEntities
	Parameters
	Return value
	Comments

	GetTaggedValue
	Parameters
	Return value
	Comments

	HasAppliedStereotype
	Parameters
	Return value
	Comments

	IsKindOf
	Parameters
	Return value
	Comments

	Unparse
	Parameters
	Return value
	Comments

	SetValue
	Parameters
	Return value
	Comments

	SetEntity
	Parameters
	Return value
	Comments

	SetTaggedValue
	Parameters
	Return value
	Comments

	Create
	Parameters
	Return value
	Comments

	CreateInstance
	Parameters
	Return value
	Comments

	Delete
	Return value
	Comments

	XMLEncode
	Parameters
	Return value
	Comments

	MetaVisit
	Parameters
	Return value
	Comments

	MetaVisitEx
	Parameters

	Bind
	Parameters
	Return value
	Comments

	Clone
	Parameters
	Return value
	Comments

	Move
	Parameters
	Return value
	Comments

	GetModel
	Parameters
	Return value
	Comments

	UnlinkFromOwner
	Return value
	Comments

	Replace
	Parameters
	Return value
	Comments

	GetContainerMetaFeature
	Parameters
	Return value
	Comments

	FindByName
	Parameters
	Return value
	Comments

	GetDescriptiveName
	Parameters
	Return value
	Comments


	ITtdEntities
	_NewEnum
	Parameters
	Return value
	Comments

	Item
	Parameters
	Return value
	Comments

	Count
	Parameters
	Return value
	Comments

	Add
	Parameters
	Return value
	Comments

	Remove
	Parameters
	Return value
	Comments


	ITtdResource
	Save
	Return value
	Comments


	ITtdPresentationElement
	GenerateEMF
	Parameters
	Return value
	Comments

	GenerateEMFEx
	Parameters
	Return value
	Comments

	GenerateImage
	Parameters
	Return value
	Comments


	ITtdSymbol
	SetSize
	Parameters
	Return value
	Comments

	SetPosition
	Parameters
	Return value
	Comments


	ITtdExpression
	GetType
	Parameters
	Return value
	Comments

	EvaluateConstantIntegralExpression
	Parameters
	Return value
	Comments

	GetInstanceChildExpression
	Parameters
	Return value
	Comments


	ITtdMetaVisitCallback
	OnVisitedEntity
	Parameters
	Return value
	Comments

	OnAfterVisitedEntity
	Parameters
	Return value
	Comments


	ITtdInteractiveClient
	OnExecute
	Parameters
	Return value
	Comments


	ITtdInteractiveServer
	CreateEntityCollection
	Parameters
	Return value
	Comments

	InterpretTclScript
	Parameters
	Return value
	Comments


	ITtdSourceBuffer
	AddText
	Parameters
	Return value
	Comments


	ITtdMessageList
	AddMessage
	Parameters
	Return value
	Comments


	ITtdAgent
	Execute
	Parameters
	Return value
	Comments


	ITtdCppAppGenServer
	ScheduleForDeletion
	Parameters
	Return value
	Comments


	ITtdStudioAccess
	OpenWorkspace
	Parameters
	Return value
	Comments

	NewWorkspace
	Parameters
	Return value
	Comments

	OpenProject
	Parameters
	Return value
	Comments

	GetWorkspace
	Parameters
	Return value
	Comments

	InterpretTclScript
	Parameters
	Return value
	Comments

	GetApplicationName
	Parameters
	Return value
	Comments

	GetApplicationPID
	Parameters
	Return value
	Comments

	GetApplicationVersion
	Parameters
	Return value
	Comments

	GetApplicationUserName
	Parameters
	Return value
	Comments


	ITtdWorkspace
	GetPath
	Parameters
	Return value
	Comments

	GetProject
	Parameters
	Return value
	Comments

	GetActiveProject
	Parameters
	Return value
	Comments

	SetActiveProject
	Parameters
	Return value
	Comments


	ITtdProject
	GetPath
	Parameters
	Return value
	Comments

	GetName
	Parameters
	Return value
	Comments

	GetModel
	Parameters
	Return value
	Comments


	Tcl API
	Introduction
	Mapping of COM to Tcl commands

	General Purpose Commands
	std::BrowserReport
	Synopsis
	Description

	std::BrowserReportInit
	Synopsis
	Description

	std::Button
	Synopsis

	std::ComboBox
	Synopsis
	Description

	std::Dialog
	Synopsis
	Description

	std::DirectoryDialog
	Synopsis
	Description

	std::ExecuteCOMClient
	Synopsis
	Description

	std::FileOpenDialog
	Synopsis
	Description

	std::FileSaveDialog
	Synopsis
	Description

	std::Frame show-window
	Synopsis
	Description

	std::GetActiveProject
	Synopsis
	Description

	std::GetInstallationDirectory
	Synopsis
	Description

	std::GetKind
	Synopsis
	Description

	std::GetLocaleDirectory
	Synopsis
	Description

	std::GetModels
	Synopsis
	Description

	std::GetProject
	Synopsis
	Description

	std::GetProjectPath
	Synopsis
	Description

	std::GetSelection
	Description

	std::GetUserAddinsDirectory
	Synopsis
	Description

	std::GetTeamAddinsDirectory
	Synopsis
	Description

	std::GetCompanyAddinsDirectory
	Synopsis
	Description

	std::GetUserDirectory
	Synopsis
	Description

	std::GetWebServerPort
	Synopsis
	Description

	std::HtmlReport
	Synopsis
	Description

	std::IsModified
	Synopsis
	Description

	std::Label
	Synopsis
	Description

	std::Locate
	Synopsis
	Description

	std::MessageDialog
	Synopsis
	Description

	std::OpenDocument
	Synopsis
	Description

	std::Output
	Synopsis
	Description

	std::OutputTab
	Synopsis
	Description

	std::Report
	Synopsis
	Description

	std::Quit
	Synopsis
	Description

	std::ReportInit
	Synopsis
	Description

	std::SaveAll
	Synopsis
	Description

	std::TextReport
	Synopsis
	Description

	std::View
	Synopsis
	Description


	User Interface Add-in Specific Commands
	std::AddCommand
	Synopsis
	Description

	std::AddContextMenu
	Synopsis
	Description

	std::AddMenu
	Synopsis
	Description

	std::AddToolbar
	Synopsis
	Description

	std::Declare
	Synopsis
	Description


	Model Commands
	u2::SelectMetaModel
	Synopsis
	Description


	Entity Commands
	Resource Commands
	Presentation Element Commands
	u2::GenerateEMF
	Synopsis
	Description
	Parameters
	Return value

	u2::GenerateEMFEx
	Synopsis
	Description
	Parameters
	Return value

	u2::GenerateImage
	Synopsis
	Description
	Parameters
	Return value


	Symbol Commands
	Expression Commands
	Library Handling Commands
	u2::LoadLibrary
	Synopsis
	Description

	u2::UnloadLibrary
	Synopsis
	Description

	u2::LoadProfile
	Synopsis
	Description

	u2::UnloadProfile
	Synopsis
	Description


	Semantic Checker Commands
	u2::Check
	Synopsis
	Description

	u2::CreateSemGroup
	Synopsis
	Description

	u2::CreateSemRule
	Synopsis
	Description

	u2::DeleteSemEntity
	Synopsis
	Description

	u2::EnableSemEntity
	Synopsis
	Description

	u2::GetSemEntities
	Synopsis
	Description

	u2::IsSemEntityEnabled
	Synopsis
	Description

	u2::IsSemGroup
	Synopsis
	Description

	u2::QuickCheck
	Synopsis
	Description

	u2::SemMessage
	Synopsis
	Description


	Utility Interface Commands
	u2::AddSourceBufferText
	Synopsis
	Description

	u2::AddMessage
	Synopsis
	Description


	C++ API
	Introduction
	Accessing the API
	Accessing the API from non-interactive clients
	Accessing the API from interactive clients
	Changer object
	Interface casting
	Handling API Errors
	Client restrictions
	Bare only
	Consistent string encoding


	API Interfaces and Functions
	ITtdModelAccess
	LoadProject
	LoadFile
	CreateModel
	GetActiveProject
	Returns the model of the currently active project in the open workspace. This function shall only be used from interactive API clients. If it is used from a non-interactive client an APIError will be thrown.
	GetProjectItem
	GetProjectCount
	WriteMessage
	GetMessageList
	GetDefaultMessageList
	GetLicense

	ITtdModel
	FindByGuid
	New
	Parse
	XMLDecode
	Save
	CreateResource
	LoadFile
	InvokeAgent

	ITtdEntity
	ApplyStereotype
	GetValue
	GetEntity
	GetEntities
	GetReference
	GetOwner
	GetMetaClassName
	GetReferingEntities
	GetTaggedValue
	HasAppliedStereotype
	IsKindOf
	Unparse
	SetValue
	SetEntity
	SetTaggedValue
	Create
	CreateInstance
	Delete
	XMLEncode
	MetaVisit
	Bind
	Locate
	Clone
	Move
	GetModel
	UnlinkFromOwner
	Replace
	GetContainerMetaFeature
	FindByName
	GetDescriptiveName

	ITtdResource
	Save

	ITtdPresentationElement
	GenerateEMF
	GenerateEMFEx
	GenerateImage

	ITtdSymbol
	SetSize
	SetPosition

	ITtdExpression
	GetType
	EvaluateConstantIntegralExpression
	GetInstanceChildExpression

	ITtdMetaVisitCallback
	OnVisitedEntity
	OnAfterVisitedEntity

	ITtdSourceBuffer
	AddText

	ITtdMessageList
	AddMessage
	GetDescription
	GetCount

	ITtdInteractiveServer
	InterpretTclScript

	ITtdCppAppGenServer
	ScheduleForDeletion


	C++ API Set-up
	Windows clients
	Unix clients

	Debug C++ agents in Visual Studio
	Setting up an appropriate debug configuration
	Debugging utilities
	U2ViewModel
	DbgInterpretTclScript


	Java API
	Introduction
	Java version

	Accessing the API
	Execution Environments
	API Initialization and Finalization
	Interface Casting
	Handling API Errors
	Memory Management
	Client restrictions
	Bare only


	API Interfaces and Methods
	ITtdModelAccess
	loadProject
	loadFile
	createModel
	writeMessage

	ITtdModel
	findByGuid
	New
	parse
	XMLDecode
	save
	createResource
	loadFile
	invokeAgent

	ITtdEntity
	applyStereotype
	getValue
	getEntity
	getEntities
	getReference
	getOwner
	getMetaClassName
	getReferingEntities
	getTaggedValue
	hasAppliedStereotype
	isKindOf
	unparse
	setValue
	setEntity
	setTaggedValue
	create
	createInstance
	delete
	XMLEncode
	metaVisit
	bind
	locate
	clone
	move
	getModel
	unlinkFromOwner
	replace
	getContainerMetaFeature
	findByName
	getDescriptiveName

	ITtdResource
	save

	ITtdPresentationElement
	generateEMF
	generateEMFEx
	generateImage

	ITtdSymbol
	setSize
	setPosition

	ITtdExpression
	getType
	evaluateConstantIntegralExpression
	getInstanceChildExpression

	ITtdMetaVisitCallback
	onVisitedEntity
	onAfterVisitedEntity

	ITtdMessageList
	addMessage

	ITtdStudioAccess
	openWorkspace
	newWorkspace
	openProject
	getWorkspace
	interpretTclScript
	getApplicationName
	getApplicationPID
	getApplicationVersion
	getApplicationUserName

	ITtdWorkspace
	getPath
	getProject
	getActiveProject
	setActiveProject

	ITtdProject
	getPath
	getName
	getModel


	Tau Access
	Introduction
	Implementation Principle

	Using Tau Access
	API Entry Point
	Object Lifetime Management
	Interface Casting
	Handling API Errors
	Example
	Other API Differences
	No callback interfaces
	Main thread serialization
	Performance issues


	API Interfaces and Methods
	ITtdTauAccess
	GetRunningTauApplications
	StartNewTauApplication
	GetTauApplicationWithPID
	GetTauApplicationAtNetworkLocation


	XML Framework Library
	Activating the XMLFramework Addin
	Importing XML Documents
	Exporting XML Documents
	UML Representation of XML
	Tag
	Attribute
	Text Node
	Processing Instruction
	Comment

	Tau Web Server
	Purpose of the Tau Web Server
	Configuring the Tau Web Server
	How to Use the Tau Web Server
	URL Syntax
	Delaying Web Requests

	Web Request Handlers
	File
	Agent
	Tcl
	Variable


	Examples
	Limitations
	POST protocol not supported


	Common Reference
	Useful Shortcut Keys
	Workspace Operations
	Project Operations
	File Operations
	Navigate in Files
	Highlight Text
	Edit Text
	Editor Shortcuts
	Compare and Merge
	Application Builder Shortcuts
	Model Verifier Shortcuts
	Window Navigation
	Properties editor
	Show/Hide Windows and Dialogs
	Zoom/Pan
	Setting Up the Tool Environment
	Import Wizard
	Configuration Management
	Source control provider
	Source control information

	Synergy Integration
	Integration with Synergy
	Project handling
	Task handling
	Object handling
	Version handling

	IBM Rational Tau file type definitions
	Install Synergy integration
	Windows

	Log in to Synergy
	Synergy project handling
	Opening an existing Synergy project
	Creating a new Synergy project
	Automatic Task Handling

	Synergy project commands
	Open Managed Project
	Migrate Project
	Project History
	Project Properties
	Project Merge
	Synchronize Project
	Update Project

	Synergy task commands
	Create Task
	Set Task
	Complete Task
	Task Properties
	Current Task Box

	Synergy object commands
	Create Object
	Object Properties
	Object History
	Check Out Object
	Check In Object
	Undo Check Out Object

	Synergy version handling commands
	Refresh Status

	Merge UML Projects using Synergy

	Generic Source Code Control Integration
	Integration with IBM Rational ClearCase
	Install IBM Rational ClearCase integration
	Windows
	UNIX

	Multiple configuration management tools
	Windows
	UNIX

	Source control commands
	Get latest version
	Check out
	Check in
	Undo check out
	Add to source control
	Remove from source control
	Show history
	Show differences
	Source control properties
	Refresh status
	Execute CM tool
	Import module


	Compare and Merge from a Source Code Control tool
	Setup Synergy
	Setup compare and merge operations
	Change existing elements to the new object type

	Setup IBM Rational ClearCase
	Configure the ClearCase type manager
	Create a new element type
	Setup ClearCase magic files for the new element type
	Change existing elements to the new element type


	Directory Server
	Publishing a Tau project
	Synchronizing external relationships

	Working with links
	Hyperlink
	Visualization
	Navigating hyperlinks
	Navigating hyperlinks within Tau
	Navigating hyperlinks in external applications
	Missing targets

	Creating hyperlinks into a Tau model

	Dependency link
	Visualization

	External relationship
	Visualization

	Managing links
	Creating links
	Creating a link using the toolbar
	Creating a link using drag & drop
	Creating multiple links from the same source
	Automatic link creation

	Deleting links
	Navigating a link
	Link commands
	Start Link (CTRL+K)
	Start Many Links
	Make Link from Start (CTRL+L)
	Copy URL
	Display Outgoing Links
	Display Incoming Links
	Edit Links
	Link Options

	Links menu
	Links toolbar
	Current link kind

	Links dialog
	Insert Hyperlink dialog
	Link options
	Active link end is an active target, not an active source
	Automatically create links between modified objects and active link end
	Show link indicators
	Use requirement as target when creating links by drag-and-drop

	Hyperlink options
	By default, make hyperlink to a workspace element

	External relationship options
	Enable External Relationship support
	RDS server information
	RDS server administration


	Visual Studio Integration
	Installing the Integration
	Activate the Visual Studio add-in
	Activate the IBM Rational Tau add-in

	Using Visual Studio with IBM Rational Tau
	Connecting IBM Rational Tau and Visual Studio
	Workflow

	Integration Commands
	IBM Rational Tau Commands
	Create/Update Visual Studio project
	Open Visual Studio project
	Locate an element
	Transfer control to target debugger

	Visual Studio Commands
	Locate in IBM Rational Tau
	Connection Status
	Create/Update Tau Project
	Autolocate
	IBM Rational Tau Trace


	Printing
	Adding and Removing Printers (UNIX)
	Printing Diagrams
	Adding and setting up printers (UNIX only)
	Print settings
	Select diagrams to be printed
	Preview of diagrams
	Print a single diagram
	Print multiple diagrams

	Model Browser
	Generating HTML
	Activating the ModelBrowser add-in

	HTML View
	Contents
	Tree-view
	Properties
	Diagrams

	Output
	File and folder structure
	Naming schemes
	Guid-based
	Guid-based with mangling
	Simple
	Changing naming scheme


	Command line usage
	Internationalization Support
	Supported environments
	Supported platforms
	Configuration Management
	IME (Input Method Editor)

	Font settings
	Modeling with CJK characters
	Code generation with CJK characters
	Automatic UTF-16 naming
	Using ansiName stereotype
	Names of files and folders used by build tool chain
	Encode type of files used by build tools

	Handling textual files
	Restrictions

	Dialog Help
	The New Wizard
	Files tab
	Projects tab
	UML Projects - page 2
	UML Projects - page 3
	Workspaces

	Customize
	Commands tab
	Toolbars tab
	Create New Toolbar
	Windows layouts
	Tools tab
	Add-ins tab

	Options
	General
	Save
	Workspace
	Format
	Font settings
	Links
	UML Basic Editing
	Diagram Editors
	Default Model View Filters
	Default Model View
	Default Property View
	Default Property Filter
	Default Class Symbol Appearance

	UML Advanced Editing
	Text
	Sequence diagrams
	Activity diagrams
	Symbol appearance
	Diagram tooltips
	Name completion
	Automatic update of name-based references

	UML Editing Line Styles
	UML Checking
	AutoCheck
	Check
	Rebind references

	Hyperlink
	Compare/Merge
	External text compare/merge
	Save review information

	Advanced
	Web server
	Proxy settings


	Editor Shortcut
	Show Elements

	Models
	Reconfigure ModelView

	Other
	Select Stereotypes
	Select artifact root

	Model Verifier
	Console Windows
	Message Windows
	Restart
	Stop Model Verifier

	Additional Resources
	Links
	Contacting IBM Rational Software Support
	Prerequisites
	Submitting problems
	UML documents
	Other links
	Borland C/C++
	Cygwin
	GNU C/C++
	ITU-T
	Macrovision
	Microsoft Visual C/C++
	MISRA
	OCL
	OMG
	PDF
	Tcl
	TTCN-3
	XML




