

Tau®
C# Tutorial

This edition applies to Telelogic Tau version 4.2 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Copyright Notice
This information was developed for products and services offered in the U.S.A. IBM may not offer
the products, services, or features discussed in this document in other countries. Consult your local
IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be used instead.
However, it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

Copyright © 2008 by IBM Corporation.

IBM Patents and Licensing

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send written license inquiries to the following:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

Licensees of this program who wish to have information about it for the purpose of enabling: (i)
the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged, should
contact:
ii

Intellectual Property Dept. for Rational Software|
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Disclaimer of Warranty

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
iii

Confidential Information

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

Additional legal notices are described in the legal_information.html file that is included in your
software installation.

Sample Code Copyright

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs.

IBM Trademarks

For a list of IBM trademarks, visit this Web site www.ibm.com/legal/copytrade.html. This contains a
current listing of United States trademarks owned by IBM. Please note that laws concerning use
and marking of trademarks or product names vary by country. Always consult a local attorney for
additional guidance. Those trademarks followed by ® are registered trademarks of IBM in the
United States; all others are trademarks or common law marks of IBM in the United States.

Not all common law marks used by IBM are listed on this page. Because of the large number of
products marketed by IBM, IBM's practice is to list only the most important of its common law
marks. Failure of a mark to appear on this page does not mean that IBM does not use the mark nor
does it mean that the product is not actively marketed or is not significant within its relevant
market.
iv

www.ibm.com/legal/copytrade.html

Third-party Trademarks

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are trademarks of
Adobe Systems Incorporated or its subsidiaries and may be registered in certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other Microsoft
products referenced herein are either trademarks or registered trademarks of Microsoft
Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape Communications
Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names may be trademarks or service marks of others.
v

vi

Table of Contents
Contents
Copyright license . v

IBM trademarks . v

Third-party trademarks . vi

Getting Started . 1
Overview. 1

Tutorial Objectives . 1

Before You Begin . 1

Documentation Conventions . 2

About the Tau Product . 2
Tool Tips . 3
Starting Tau. 3
Saving a Project in Tau . 3
Closing Tau . 4
Project Files and Directories . 4
Model Element Names . 4
Model Views . 5

Lesson 1: Starting Your Project . 7
Goals for this Lesson . 7

Exercise 1: Using the Tau Developer Wizard . 7
Task 1a: Creating a New Project and Workspace. 7

Exercise 2: Working with Packages . 8
Task 2a: Renaming the Default Package . 9
Task 2b: Creating a New Package . 9

Summary . 9

Lesson 2: Creating a Use Case Diagram . 11
Goals for this Lesson . 11

Exercise 1: Creating a Use Case Diagram . 11
Task 1a: Adding a New Use Case Diagram . 11
Task 1b: Renaming a Use Case Diagram. 12
Task 1c: Adding an Actor and a Use Case . 12
Tau vii

Table of Contents
Task 1d: Adding an Association . 12

Summary . 14

Lesson 3: Creating an Activity Diagram . 15
Goals for this Lesson . 15

Exercise 1: Creating an Activity Diagram . 16
Task 1a: Configuring UML Settings. 16
Task 1b: Adding a New Activity Diagram . 16
Task 1c: Drawing Activity Nodes. 17

Summary . 18

Lesson 4: Creating a Class Diagram . 19
Exercise 1: Creating a Class Diagram . 19

Task 1a: Adding a New Class Diagram. 19
Task 1b: Drawing a Class . 20
Task 1c: Adding Attributes and Operations. 20

Summary . 20

Lesson 5: Generating C# Code and More . 21
Goals for this Lesson . 21

Exercise 1: Generating and Editing C# Code . 21
Task 1a: Generating and Viewing C# Code . 21
Task 1b: Creating a Project in Microsoft Visual Studio . 22
Task 1c: Adding Code for the Compute Operation . 23
Task 1d: Viewing Model Updates . 24
Task 1e: Compiling C# Code . 24
Task 1f: Running your Application . 25

Optional . 25

Summary . 26

Conclusion . 27

Technical Support and Documentation . 29
Contacting Technical Support . 29

Regional Contact Information . 29
Tau Documentation. 29

Index . 29
viii C# Tutorial

Overview
Getting Started

Overview
This tutorial teaches you the basics of working with the Tau product in a C# coding environment,
and introduces the concepts of requirements analysis and project implementation. In the tutorial,
you model a simple application that calculates the population growth projections of senior citizens
residing in a city. The growth projections will help the city’s planner determine the appropriate size
of a new senior center. The calculation example used in this tutorial is based on Fibonacci
numbers. For more information on Fibonacci numbers, see http://en.wikipedia.org/wiki/
Fibonacci_number.

Tutorial Objectives
When you have completed this tutorial, you will have had experience with:

� Using the Tau interface
� Creating a C# project
� Creating a use case diagram
� Creating an activity diagram
� Creating a class diagram
� Generating and editing C# code
� Integrating Tau with Visual Studio 2005
� Running and compiling a C# application

Before You Begin
To complete the lessons in this tutorial, you must have Microsoft Visual Studio 2005 environment
configured. This is because Tau integrates with the IDE for building, running and debugging C#
applications. The integration must also be installed from Program Files > Telelogic > Telelogic
Lifecycle Solution Tools > Tau 4.0 > Install Microsoft Visual Studio 5005 integration.
Tau 1

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number

Getting Started
Documentation Conventions
This document uses the following conventions:

� Boldface for names of GUI objects and controls, including selection choices; and
emphasis. Examples:
– From the Default model view drop-down list box, select Standard View.

– Click the Activity flow final symbol on the Drawing toolbar.
– If the Tau browser does not display, select View > Browser.
– A project file, called <project_name>.ttp.

� Courier font in 10 point for pathnames, system messages, and items that you
have to type. Examples:
– The Output window displays the message Animation session terminated.
– In the Project name box, replace the default project name with <project name>.
– Type show for the function name, and press Enter.

� Italics for the first mention of a concept with an explanation.

About the Tau Product
Telelogic Tau provides standards-based Model Driven Development™ (MDD™) of complex
systems and robust software for enterprise IT applications, including those utilizing Service
Oriented Architectures. Tau’s iterative requirements-based approach, comprehensive error-
checking, and automated simulation increase developer productivity from initial requirements
through final documentation and deployment.

Tau offers a large feature set for developers to employ key enabling technologies in a natural, easy-
to-use tool environment. Tau makes a seamless and efficient environment for systems, software,
and testability. It enables you to perform these tasks:

� Analyze, during which you can define, analyze, and validate the system requirements.
� Design, during which you can specify and design the architecture.
� Implement, during which you can automatically generate code, then build and run

within the Tau product.
2 C# Tutorial

About the Tau Product
Tool Tips
This section describes time saving features in Tau that enable you to work more efficiently on a
project. Wherever possible, the task-oriented procedures in this tutorial demonstrate the use of
these features.

Using Shortcuts

Keyboard shortcuts (CTRL + Arrow Key, for example) allow you to quickly navigate through the
Tau interface. For a complete list of available shortcuts, see the Help topic “Editor Shortcuts.”

Using the Auto Placement Feature

You can use Tau’s auto placement feature to quickly add a series of elements in the drawing area
(CTRL + Space Bar). This feature is especially useful when drawing activity and state machine
diagrams. For more information on this feature, see the Help topic “Add Symbols.”

Starting Tau

Windows

To start the Tau product in Windows, for a typical installation by selecting Start > Programs >
Telelogic > Telelogic Tau version number.

Linux and Solaris

To start the Tau product on Linux and Solaris, type the following command:

<installation path>/bin/tau

Saving a Project in Tau
To save a project in Tau, on the main menu bar, select File > Save All. To configure Tau to
automatically save changes to your project, follow these steps.

1. On the main menu bar, select Tools > Options.

2. On the Save tab, in the Auto-backup panel, select the Activate checkbox and specify an
interval (every 5 minutes, for example.)

3. Click OK.
Tau 3

Getting Started
Closing Tau
To exit the Tau product, follow these steps.

1. Save your work. Do one of the following:

� Press CTRL+S.

� Click the Save button to save your work.
� File > Save All especially if many files were edited.

2. Choose File > Exit or click the Close button

Note
A red bar on the lefthand side of any file in your workspace indicates that you need to save
your work before you exit Tau.

Project Files and Directories
The Tau product creates the following files and subdirectories in the project directory:

� A project file, called <project_name>.ttp contains references to all files, model files
(*.u2) and addins used in the project.

� A workspace, called <project_name>.ttw in which enables users to reference many
projects.

� Model files, called <file_name.u2> that contain the unit files for the project, including
UML diagrams, packages, use cases, code generation configurations and other
granularity of UML elements.

Model Element Names
It is recommened that the names of model elements should follow some conventions, such as
these:

� Class names begin with an upper case letter, such as “System.”
� Operations and methods begin with lower case letters, such as “restartSystem.”
� Upper case letters to separate concatenated words, such as “checkStatus.”
4 C# Tutorial

About the Tau Product
Model Views
Tau enables you to construct a model in several views, each representing different abstract
characteristics of your model. For detailed information on model views, see the Help topic
“Views.”
Tau 5

Getting Started
6 C# Tutorial

Goals for this Lesson
Lesson 1: Starting Your Project
When you create a C# project in Tau, it contains UML diagrams as well as libraries, and add-ins.
Tau creates a directory containing the project files in a specified location. The name you choose for
your new project is used to name project files and directories, and it appears at the top level of the
project hierarchy in the Tau browser.

Goals for this Lesson
In this lesson, you create a new C# project in Tau, configure a project workspace, and add the
necessary packages for the exercises in this tutorial. You will learn about the following concepts:

� Project configuration settings
� Project workspaces
� Project directories

Exercise 1: Using the Tau Developer Wizard
In this exercise, you create a new C# project and workspace in Tau. You also create a package
structure that you reference in completing the exercises in this tutorial.

Task 1a: Creating a New Project and Workspace
To create a C# project, follow these steps:

1. Click Start > Programs > Telelogic > Telelogic Tau version number.

2. Do one of the following:

� Press CTRL+N, or
� On the main toolbar, select File > New, or
� On the Telelogic Tau Welcome page, in the New Project panel, click Proceed.

3. In the New dialog box, in the Project tab, choose UML for C# Code Generation.

4. In the Project name box, type FibonacciNumber.

5. In the Location box, enter a new directory name or browse to an existing directory.
Tau 7

Lesson 1: Starting Your Project
6. Accept the default option Create new workspace.

7. Click OK.

8. In the Developer Wizard, select Enable MS Visual Studio Integration.

9. Accept the remaining Developer Wizard defaults and click Next, then click Finish. Tau
creates a new project and workspace. In the Output window Messages tab, the following
message displays:

Add-in module CSharpApplication activated.

Add-in module MSVS8Integration activated.

Exercise 2: Working with Packages
In this exercise, you create two C# packages in your workspace. The first package is for analysis
and requirements diagrams that provide a high level overview of your application. The second
package is for a class diagram. In subsequent lessons, you create a use case diagram and an activity
diagram in the analysis package, and a class diagram in the class package.

By default, when you create your project, Tau adds a single package in the project directory. The
package has the same name as the project. In the first task of this lesson, you rename the package
8 Tau

Summary
included with the project. In the second task, you create a second C# package for your class
diagram.

Task 2a: Renaming the Default Package
To rename the C# package, follow these steps.

1. In the Model view, select the FibonacciNumber package.

2. Press F2.

3. Type Analysis.

Task 2b: Creating a New Package
To create a new C# package, follow these steps:

1. In the Model view, right-click Model, then Select New Model Element > Package.

2. In the Create Model Root Element dialog box, in the Element Name field, type
Implementation.

3. On the main menu bar, select File > Save All. Notice all the red change bars disappear.

Summary
In this lesson, you created a project that will serve as the basis and structure for storing the models
in the rest of the tutorial. You are ready to proceed to the next lesson, in which you begin your
project by creating a use case diagram.
Tau 9

Lesson 1: Starting Your Project
10 Tau

Goals for this Lesson
Lesson 2: Creating a Use Case
Diagram

Use case diagrams show the behavior and capabilities of a system as it interacts with an external
user or actor. A use case diagram also shows what a system will do and who will use it.

Goals for this Lesson
In this lesson, you create a simple use case diagram for the application you are modeling. As you
work through this lesson, you will learn about the following elements in use case diagrams, and
how to draw them:

� Actors
� Use Cases
� Associations

Exercise 1: Creating a Use Case Diagram
The following figure shows the use case diagram that you create in this exercise.

Use Case Diagram

Task 1a: Adding a New Use Case Diagram
To create a use case diagram, follow these steps.
Tau 11

Lesson 2: Creating a Use Case Diagram
1. Right-click Analysis.

2. Select New Diagram > Use Case diagram. Tau creates the use case diagram in your
workspace and opens it in the drawing area.

Task 1b: Renaming a Use Case Diagram
In this task, you use the properties editor to rename the use case diagram. Follow these steps.

1. Right-click Use case diagram1 and select Properties.

2. In the Edit Properties dialog box, in the Name field, replace the default name
with Senior Citizen Population.

3. Click the Close button to exit the Properties dialog box. Optionally you can leave this
open and it will update to reflect the properties of the selected element .

Task 1c: Adding an Actor and a Use Case
In this task, you add an actor and a use case to the diagram. An actor is an external element outside
of the system that interacts with the system. A use case illustrates the capabilities of a system and
shows why a user interacts with the system.

The actor in your diagram is a city planner who is using a system to gather data on the expected
population growth of senior citizens in the city. The use case shows the system using a Fibonacci
algorithm to compute the growth projections the planner needs to help determine the appropriate
size of the new senior center.

To add an actor and a use case to your diagram, follow these steps.

1. Click the actor symbol on the Drawing toolbar, then click in the drawing area. Tau
adds an actor element in the drawing area.

2. Replace the default name with CityPlanner.

3. Click the use case symbol on the Drawing toolbar, then click in the drawing area. Tau
adds a use case element in the drawing area.

4. Replace the default name with CalculatePopulationGrowth.

Task 1d: Adding an Association
An association line shows a relationship between two elements in a use case diagram. In this task,
you draw an association line that shows the interacting relationship between the city planner and
12 C# Tutorial

Exercise 1: Creating a Use Case Diagram
the application use case. You can add an association line using the association symbol on the
Drawing Tool menu, or by selecting the association “handle” on the CityPlanner element.

To draw an association line using the handle:

1. In the drawing area, select CityPlanner.

2. Click on the Association “handle” at the bottom of the CityPlanner element as shown in
the following figure.

3. Click anywhere inside of the CalculatePopulationGrowth use case element. Tau adds an
association line that connects the two elements.

To draw an association line using the symbol:

1. Click the Association symbol on the Drawing Toolbar.

2. Click the right edge of CityPlanner and the left edge of ComputePopulationGrowth.
Tau adds an association line that connects the two elements.

3. On the main menu bar, select File > Save All.

Your drawing should resemble the Use Case Diagram figure.
Tau 13

Lesson 2: Creating a Use Case Diagram
Summary
In this lesson, you created a use case diagram. You became familiar with the following elements of
use case diagrams:

� Actors
� Use cases
� Associations

You are now ready to proceed to the next lesson, in which you create an activity diagram.
14 C# Tutorial

Goals for this Lesson
Lesson 3: Creating an Activity
Diagram

An activity diagram shows behavior based on sequences of activities. The activity diagram
consists of various activities, data, and messages connected to each other using arrows. The arrows
are used to show the direction of activity flow in the diagram.

Goals for this Lesson
In this lesson, you create an activity diagram. Your activity diagram will show the sequence of
activities that occur when the city planner uses the application to estimate the future population
growth of senior citizens. The city planner starts the application, then enters a value that the
application uses to calculate the population growth. In your activity diagram, the value supplied by
the planner represents a number of years in the future. The response from the application is a
population growth projection based on the number of years.

When you create this activity diagram using Tau, you will learn how to draw

� An initial node
� An action node
� An activity line
� A final node
Tau 15

Lesson 3: Creating an Activity Diagram
Exercise 1: Creating an Activity Diagram
The following figure shows the Activity Diagram that you create in this exercise.

Activity Diagram

Task 1a: Configuring UML Settings
In this task, you configure UML editing settings so you can draw the elements of your activity
diagram as shown in the Activity Diagram figure. By default, Tau is configured to draw the
elements of an activity diagram horizontally. Follow these steps to change the setting to vertical so
you can draw the elements as shown above.

1. On the menu bar, select Tools > Options, then click the UML Advanced Editing tab.

2. On the UML Advanced Editing tab, in the Activity diagrams panel, select Vertical from
the Autocreate orientation drop down list box.

3. Click OK.

Task 1b: Adding a New Activity Diagram
To create an Activity diagram, follow these steps.

1. In the Tau browser, expand Model, then right on the Analysis package.

2. Select New Diagram > Activity Diagram. Tau creates the activity diagram in your
workspace and opens it in the drawing area.
16 C# Tutorial

Exercise 1: Creating an Activity Diagram
3. In the Edit Properties dialog box, in the Name field, replace the default name with
Senior Citizen Population.

4. Click outside of the Name field to commit your name change.

Task 1c: Drawing Activity Nodes
Nodes show a specific unit of behavior within an activity flow. In this task, you draw an initial
node, three action nodes and a final activity node in your diagram. The nodes show the units of
behavior that occur when the user starts the application and enters a value that the application uses
to produce a population projection figure.

To draw activity nodes, follow these steps:

1. Click the initial node symbol on the Drawing toolbar, then click in the drawing area.
Tau adds an initial node element in the drawing area.

2. In the drawing area, select the initial node.

3. Press Shift-Spacebar and on the pop-up menu, click the Activity/action symbol.
repeat twice to result in three action nodes. Notice that each time you add an action node,
Tau automatically includes an activity flow arrow between each node. The arrows show
the direction of flow in the diagram.

4. Continue to press Shift-Spacebar and click the Activity final symbol on the Drawing
toolbar.

5. Click each activity node and type the names as shown in the Activity Diagram figure.

6. On the main menu bar, select File > Save All.

You have finished drawing the activity diagram. Your diagram should resemble the Activity
Diagram figure.
Tau 17

Lesson 3: Creating an Activity Diagram
Summary
In this lesson, you created an activity diagram. You learned about the following elements in an
activity diagram:

� Initial Nodes
� Action Nodes
� Final Nodes
� Associations

You are now ready to proceed to the next lesson, in which you create a class diagram.
18 C# Tutorial

Exercise 1: Creating a Class Diagram
Lesson 4: Creating a Class Diagram
A class diagram shows the types of elements in a system and how they interact and relate to each
other. Class relationships are typically shown with dependency, generalization and association
lines.

Exercise 1: Creating a Class Diagram
In this exercise, you create a class diagram and draw a class in the diagram. The class contains an
operation and an attribute for the application you are modeling.

Task 1a: Adding a New Class Diagram
The following figure shows the Class Diagram that you create in this exercise.

To create a class diagram, follow these steps:

1. In the browser, expand Model.

2. Right-click the Implementation package and select New Diagram > Class Diagram.
Tau creates the class diagram in the scope of the Implementation package.

3. Change the name of the Class Diagram 1 by using the Edit Properties dialog box, or by
selecting the diagram in the model view and pressing F2. The new name should be
Calculate.
Tau 19

Lesson 4: Creating a Class Diagram
Task 1b: Drawing a Class
To draw a class, follow these steps:

1. Click the Class button on the Drawing toolbar, then click anywhere in the drawing
area to add the class to the diagram.

2. Name the class Fib by selecting in the class on the diagram and typing the text.

Task 1c: Adding Attributes and Operations
In this task, you add an attribute and an operation to the class you created in the previous task. The
attribute you add will be the resulting number that is generated when the application performs a
computation. The operation is the act of computing the number.

To add attributes to the Fib class, follow these steps:

1. Select the Fib class.

2. Place the cursor in the middle compartment of the class box and type result:int in the
attribute text box.

3. Place the cursor in the bottom compartment of the class box and type compute(
n:int):int in the operation text box. You can try using name completion here by using
CTRL + Space bar after you started typing int to see a list of possible candidates.

4. If your types have a red underline perform a Check All

5. On the main menu bar, select File > Save All.

Summary
In this lesson, you created a class diagram. You learned about the following elements in a class
diagram:

� Attributes
� Operations

You are now ready to proceed to the next lesson, in which you will generate code from the Fib
class.
20 C# Tutorial

Goals for this Lesson
Lesson 5: Generating C# Code and
More

Goals for this Lesson
In this lesson, you

� Generate source code from your model.
� Add external code, and view updates to your model.
� Build and run your application.

Exercise 1: Generating and Editing C# Code
In this exercise, you generate C# code from the Fib element you created in the previous lesson.
After you generate the code, you use Microsoft Visual Studio to add external code to the compute
operation contained in that element.

Task 1a: Generating and Viewing C# Code
To generate the C# code from your source files, perform the following steps.

1. Right-click on Implementation package and select Update C# source code. Tau
generates C# source code files for the classes and interfaces contained in your.

Note: Default file mapping is used to generate the source code, more on configuring
this can be found in the online help.

2. To examine the generated code, right-click the Fib class and select Goto source.

3. In the Visual Studio Selection dialog box, select New Instance of Visual Studio, then
click OK.

Microsoft Visual Studio displays the source code in a file named Implementation.Fib.cs.

4. Close Microsoft Visual Studio.
Tau 21

Lesson 5: Generating C# Code and More
Task 1b: Creating a Project in Microsoft Visual Studio
In this task, you create a project in Microsoft Visual Studio. For the remainder of this tutorial, you
work with your model in both Visual Studio and in Tau. The Visual Studio project you create in
this task allows you to edit the source code that you generated in Task 1a: Generating and
Viewing C# Code.

Before you create the project, verify that the MSVS8 add-in is enabled in Tau. To do this, perform
the following steps:

1. From the main menu, select Tools > Customize.

2. Click the Add-ins tab.

3. In the list of Customization modules, verify that MSVS8Integration is checked.

4. Click Close.

Tau is also dependendent on Visual Studio saving the projects when they are created. If your
generated files not not show up in your project this may be due to your Visual Studio settings. To
correct this set the following option:

1. From the main menu, select Tools > Options.

2. In Project Solutions there is an option Save new projects when created. Make sure the
check box is selected.

3. Close Visual Studioe a repeat the following steps.

To create a Visual Studio project, follow these steps:

1. In the Model view select the Implementation package.

2. From the Visual Studio .NET menu, select Create/Update Visual Studio .NET C#
Project.

3. Select New instance of Visual Studio.

4. Click OK.

5. In the New Project dialog box, select the Console Application template and give your
project a name.

6. Click OK.

The Console Application main menu is displayed. The Solutions Explorer panel contains several
files used by MSVS. In the next task, you edit the Implementation.Fib.cs and Program.cs source
files. Implementation.Fib.cs contains the code created from your UML model in Tau.
22 C# Tutorial

Exercise 1: Generating and Editing C# Code
Program.cs is a file generated by Visual Studio containing a class program that serves as the main
function in your application. This class has automatically been added to your model view in Tau.

Task 1c: Adding Code for the Compute Operation
In this task you add code that is the body of the compute operation that you created in Lesson 4:
Creating a Class Diagram. To add code manually for the compute operation, follow these steps:

1. In the Model browser, open the Calculate diagram.

2. In the drawing area, right-click the Fib class and select Goto source. Select the submenu
choice corresponding to the generated class.

3. Delete the default entry class Fib and replace it with the following text:

class Fib
{
 int result;
 public int compute(int n)
 {
 if (n == 0)
 result = 1;
 else if (n == 1)
 result = 2;
 else
 result = n + compute(n - 1);
 return result;
 }

}

4. Open the Program.cs file and change the Program class to

class Program

{

 static Implementation.Fib myFib;

 static void Main(string[] args)

 {

 myFib = new Implementation.Fib();

 int res = myFib.compute(Convert.ToInt32(args[0]));

 Console.WriteLine("The result was " +
res.ToString());

 }

}

Tau 23

Lesson 5: Generating C# Code and More
5. Select File > Save All.

Task 1d: Viewing Model Updates
In this task, you view the updates that were made to the model when you added the code in the
previous task. To view the updates in Tau that you made in the previous task, follow these steps.

1. On the Tau main menu, select C# > Update Model. Optionally you can perform this from
Visual Studio using Tau > Create/Update Project.

2. In the Tau Model view, expand the Implementation package, then expand the Fib class.

Notice that Tau has added the operationBody element to the compute(int):int oper-
ation, as shown in the following figure. This is a container in the model that stores the code
implementing the behavior of compute.

Task 1e: Compiling C# Code
In this task, you compile the source code in Visual Studio. To compile your code, follow these
steps.

1. On the Console Application main menu, select Build > Build Console Application1.
24 C# Tutorial

Optional
2. Verify that a “Build suceeded” message is in the status bar in Visual Studio.

Task 1f: Running your Application
The application you have modeled in this tutorial runs an algorithm that computes Fibonacci
numbers. To run the application, follow these steps.

1. In a command window, navigate to your Visual Studio solutions directory.

2. In the Release directory, enter the following command:

ConsoleApplication1 “n”

Where ConsoleApplication1 is the name of the executable and “n” is an integer rep-
resenting a number of years in the future.

3. Press Enter. The result is total number of seniors expected to be residing in the city in the
number of years you specify. For example, if you entered 22, the total number of senior
expected to be residing in the city in 22 years would be approximately 256.

Optional
Depending on whether you prefer to work primarily in the model or the code Tau has some options
to help automate the updated. Tau enables you automatically update your model, or your code
based on settings specified after applying the TTDCSharp::CSharpSettings stereotype. This
stereotype enables the following functionality:

� Automatic model Update - This will update the model whenever the source code is
saved.

� Automatic source generation - Whenever something is changed in the model the code
will be updated.

� Support for roundtripping - Enables one to add new code and keep the model current.
To apply the C# stereotype, follow these steps.

1. In the Model view, right-click Model, then select Properties.

2. Click Stereotypes.

In the Stereotypes dialog box, select the TTDCSharp::CSharpSettings checkbox.
Tau 25

Lesson 5: Generating C# Code and More
Summary
In this lesson, you generated C# code, manually added code, and ran your application. You learned
how to

� Export a C# package
� Edit source code
� Run your generated application
26 C# Tutorial

Conclusion
This tutorial has introduced you to UML modeling with Telelogic Tau in a C# environment. By
completing the exercises in this tutorial, you have become familiar with the Tau product. You have
learned how to:

� Create a project
� Use drawing tools and shortcut keys
� Draw diagrams
� Compile code
� Add external code to a model

Your knowledge of how to perform these tasks gives you a basic understanding of Telelogic Tau.
You will enhance your skills and product knowledge as you continue to work on UML modeling
projects using this product.
Tau 27

Conclusion
28 C# Tutorial

Contacting Technical Support
Technical Support and
Documentation

Contacting Technical Support
The Technical Support staff answers questions about installation issues, application issues, product
defect reporting, and documentation. Technical support engineers, in conjunction with sales
application engineers, assist prospective customers with product evaluations and provide timely
responses to user issues to ensure maximum productivity.

Regional Contact Information
The Americas:
tausupport.us@telelogic.com

Middle East/Africa:
tausupport.eu@telelogic.com

Asia Pacific:
support.apac@telelogic.com

Tau Documentation
The Telelogic Tau documentation provides information on most of the topics covered in this
tutorial. documentation is available from the following locations:

� From the Start menu, click Programs > Telelogic > Telelogic Lifecycle Solutions
Documentation > Telelogic Tau version number > Tau Help.

� From the Help menu in the Tau interface.
Tau 29

mailto:tausupport.eu@telelogic.com
mailto: tausupport.us@telelogic.com
mailto:support.apac@telelogic.com

Technical Support and Documentation
The following table lists the Help topics that provide additional information on key concepts
covered in this tutorial.

Help Topic Reference Information
“UML and C#” General information on UML modeling using Tau

in a C# environment.
“Working with Diagrams” Provides information on creating, saving, and

printing diagrams, as well as other common
diagram operations.

“UML Language Guide” Provides a complete list of UML language
constructs and model elements
30 C# Tutorial

Index
Index

A
Activity diagrams

creating 16
Adding

actors 12
association lines 12
attributes 20
operations 20

C
C# language

editing code 21
generating code 21
packages 8

Class diagrams
creating 19

Closing
Tau 4

Customer support 29

D
Diagrams

activity 16
class 19
usecase 11

Directories 4
Documentation 29

conventions 2

E
Elements

names 4
Exiting

Tau 4

F
Files 4

L
Launching

Linux Tau 3
Tau 3
Windows Tau 3

Linux 3

M
Model

views 5
Models

element names 4

N
Names

for elements 4

O
Opening

Tau 3
Operations 20

P
Packages

creating 8
renaming 9

Projects 4
creating 7
directories 7
files 7
saving 3

R
Renaming 9
renaming 11
Tau 29

Index
S
Solaris

starting Tau on 3
Stereotypes

applying 25

T
Tau 2

closing 4
documentation 29
exiting 4
projects 4
starting 3

technical support 29
Technical support 29
Tool Tips 3

U
Use case diagrams 11

creating 11

W
Windows

starting Tau 3
30 Team Collaboration Guide

	Contents
	Getting Started
	Overview
	Tutorial Objectives
	Before You Begin
	Documentation Conventions
	About the Tau Product
	Tool Tips
	Starting Tau
	Saving a Project in Tau
	Closing Tau
	Project Files and Directories
	Model Element Names
	Model Views

	Lesson 1: Starting Your Project
	Goals for this Lesson
	Exercise 1: Using the Tau Developer Wizard
	Task 1a: Creating a New Project and Workspace

	Exercise 2: Working with Packages
	Task 2a: Renaming the Default Package
	Task 2b: Creating a New Package

	Summary

	Lesson 2: Creating a Use Case Diagram
	Goals for this Lesson
	Exercise 1: Creating a Use Case Diagram
	Task 1a: Adding a New Use Case Diagram
	Task 1b: Renaming a Use Case Diagram
	Task 1c: Adding an Actor and a Use Case
	Task 1d: Adding an Association

	Summary

	Lesson 3: Creating an Activity Diagram
	Goals for this Lesson
	Exercise 1: Creating an Activity Diagram
	Task 1a: Configuring UML Settings
	Task 1b: Adding a New Activity Diagram
	Task 1c: Drawing Activity Nodes

	Summary

	Lesson 4: Creating a Class Diagram
	Exercise 1: Creating a Class Diagram
	Task 1a: Adding a New Class Diagram
	Task 1b: Drawing a Class
	Task 1c: Adding Attributes and Operations

	Summary

	Lesson 5: Generating C# Code and More
	Goals for this Lesson
	Exercise 1: Generating and Editing C# Code
	Task 1a: Generating and Viewing C# Code
	Task 1b: Creating a Project in Microsoft Visual Studio
	Task 1c: Adding Code for the Compute Operation
	Task 1d: Viewing Model Updates
	Task 1e: Compiling C# Code
	Task 1f: Running your Application

	Optional
	Summary

	Conclusion
	Technical Support and Documentation
	Contacting Technical Support
	Regional Contact Information
	Tau Documentation
	Index

