
Copyrights
Copyright Notice
This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for in-
formation on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

Copyright © 2008 by IBM Corporation.

IBM Patents and Licensing
IBM may have patents or pending patent applications covering subject
matter described in this document. The furnishing of this document does not
grant you any license to these patents. You can send written license inquiries
to the following:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) informa-
tion, contact the IBM Intellectual Property Department in your country or
send written inquiries to:
November 2008 Telelogic DOORS Analyst User Guide 1

Chapter :
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

Licensees of this program who wish to have information about it for the pur-
pose of enabling: (i) the exchange of information between independently cre-
ated programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software|
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equiva-
lent agreement between us.

Disclaimer of Warranty
The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law: IN-
TERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical er-
rors. Changes are periodically made to the information herein; these changes
will be incorporated in new editions of the publication. IBM may make im-
provements and/or changes in the product(s) and/or the program(s) described
in this publication at any time without notice.
2 Telelogic DOORS Analyst User Guide November 2008

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Any performance data contained herein was determined in a controlled envi-
ronment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on devel-
opment-level systems and there is no guarantee that these measurements will
be the same on generally available systems. Furthermore, some measure-
ments may have been estimated through extrapolation. Actual results may
vary. Users of this document should verify the applicable data for their spe-
cific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM prod-
ucts. Questions on the capabilities of non-IBM products should be addressed
to the suppliers of those products.

Confidential Information
IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

This information contains examples of data and reports used in daily busi-
ness operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

Additional legal notices are described in the legal_information.html file that
is included in your software installation.

Sample Code Copyright
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application program-
ming interface for the operating platform for which the sample programs are
November 2008 Telelogic DOORS Analyst User Guide 3

Chapter :
written. These examples have not been thoroughly tested under all condi-
tions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs.

IBM Trademarks
For a list of IBM trademarks, visit this Web site www.ibm.com/legal/copytrade.html.
This contains a current listing of United States trademarks owned by IBM.
Please note that laws concerning use and marking of trademarks or product
names vary by country. Always consult a local attorney for additional guid-
ance. Those trademarks followed by ® are registered trademarks of IBM in
the United States; all others are trademarks or common law marks of IBM in
the United States.

Not all common law marks used by IBM are listed on this page. Because of
the large number of products marketed by IBM, IBM's practice is to list only
the most important of its common law marks. Failure of a mark to appear on
this page does not mean that IBM does not use the mark nor does it mean that
the product is not actively marketed or is not significant within its relevant
market.

Third-party Trademarks
Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and Post-
Script are trademarks of Adobe Systems Incorporated or its subsidiaries and
may be registered in certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Micro-
systems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries,
or both.
4 Telelogic DOORS Analyst User Guide November 2008

www.ibm.com/legal/copytrade.html

Macrovision and FLEXnet are registered trademarks or trademarks of Mac-
rovision Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or
other Microsoft products referenced herein are either trademarks or regis-
tered trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of
Netscape Communications Corporation in the United States and other coun-
tries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product or service names may be trademarks or service
marks of others.
November 2008 Telelogic DOORS Analyst User Guide 5

Chapter :
6 Telelogic DOORS Analyst User Guide November 2008

Table of Contents
Copyrights
Copyright Notice . 1

Introduction
1

Introduction to DOORS Analyst 4.2 1
DOORS Analyst commands in DOORS . 3

General functionality . 3
Restrictions . 8
Analyst menu . 9
DOORS Analyst diagram view . 12

Overview of DOORS Analyst User Interface . 12
Desktop . 14
Workspace window . 14
Views . 15
Shortcuts window . 17
Output window . 17
Working with windows . 18
Menu bar and toolbar . 22
Status bar . 25
Options . 25

Model and Diagrams . 26
November 2008 Telelogic DOORS Analyst User Guide i

Table of Contents
Models . 26
Diagrams . 27

How to Use Help . 31
Navigate in the help file . 31
Search syntax in help . 34

UML Modeling
2

Working with Models 39
Models and Model Elements . 40

Model element and Presentation element . 41
Model element . 42
Text Highlighting . 43
Properties . 43
Model checking . 43

Models and Diagrams . 45
Diagrams . 45
Presentation element . 45

Properties Editor . 47
Opening the Properties Editor . 47
The Properties Editor View . 47
Different Kinds of Properties . 49
Properties Editor Options . 50
General Shortcut Menu . 52
Control Shortcut Menu . 54
Color Codes . 55

Customizing the Properties Editor . 58
Designing a Stereotype . 58
ii Telelogic DOORS Analyst User Guide November 2008

Table of Contents
Designing a Metaclass . 61
TTDExtensionManagement Profile . 63

instancePresentation . 63
extensionPresentation . 65
filterStereotypes . 67
Control model . 68

Create Presentation . 76
Model Navigator . 78

Model navigator tabs . 78
Tab categories . 79
Navigation . 80
Presentation tabs . 80
Links . 81
Entity tabs . 81
Columns . 82

Generate Diagram . 84
Diagram Generation Parameters . 85
Regenerate Diagram . 85
Using Diagram Generators in Existing Diagrams . 86
Advanced Diagram Generators . 86
Customization . 88

Queries . 89
Query expression . 90
Collection Operators . 90
The Query Dialog . 93
Built-in Queries and Predicates . 95
User-defined Queries and Predicates . 95
Executing a Query Expression from the APIs . 95

Drag and Drop . 97
Within the Model View . 97
From Model View to a Diagram . 98
Within and between Diagrams . 99
November 2008 Telelogic DOORS Analyst User Guide iii

Table of Contents
3
Working with Diagrams 109

Common Diagram Operations . 110
Create diagrams . 111
Open, save and print diagrams . 111
Move diagrams . 112
Resize diagrams . 112
Find . 113
Text parsing . 113
Diagram auto layout . 114
Organizing the view . 115
DOORS Analyst commands . 116

Common Symbol Operations . 117
Symbol information . 118
Add symbols . 119
Show elements . 120
Select symbols . 121
Move symbols . 122
Resize symbols . 122
Connect symbols . 123
Symbol flow editing . 124
Edit text fields in symbols . 125
Diagram element properties . 125
Handling comments . 126
Copy, cut, delete or paste symbols . 127
Icon . 128
Image Selector . 129
Undo . 130
Model references . 130
Nested symbols . 132
Symbols with compartments . 132
Compartment text fields . 134

Common Line Operations . 134
Line styles . 135
iv Telelogic DOORS Analyst User Guide November 2008

Table of Contents
Draw lines . 136
Editing vertices . 137
Move lines . 137
Delete lines . 137
Re-direct and bi-direct lines . 137

4
UML Language Guide 139

Introduction . 140
UML version . 140
Diagrams . 140
Models and diagrams . 141
List of language constructs . 144
Scope, model elements, and diagrams . 145

General Language Constructs . 147
Names . 147
Alternative syntax . 150
Common element properties . 151
Predefined names . 155

Use Case Modeling . 156
Use case diagram . 156
Use cases . 157
Actors . 159
Subjects . 160
Relationships . 160

Scenario Modeling . 162
Sequence diagram . 162
Interaction . 164
Interaction reference . 165
Lifeline . 166
Message . 170
Timer event . 175
Time specification line . 176
State . 178
November 2008 Telelogic DOORS Analyst User Guide v

Table of Contents
Action . 179
Create . 179
Destroy . 181
Inline Frame . 181
Co-region . 184
Continuation . 185
Method call . 186
Appearance and filtered delete . 188
Interaction overview diagram . 189

Package Modeling . 191
Package diagram . 191
Package . 192
Relationships . 193
<<noScope>> Packages . 196
<<openNamespace>> Packages . 197

Class Modeling . 197
Class diagram . 199
Class . 200
Collaboration . 206
Attribute . 206
Operation . 211
Active class . 212
Port . 214
Interface . 217
Realized interface . 219
Required interface . 220
Signal . 221
Signallist . 223
Timer . 223
Datatype . 224
Choice . 227
Syntype . 228
State machine . 229
Stereotype . 229
vi Telelogic DOORS Analyst User Guide November 2008

Table of Contents
Relationships . 229
Object Modeling . 229

Object Diagram . 230
Named Instance . 232
Slot . 234

Architecture Modeling . 235
Composite structure diagram . 235
Part . 236
Connector . 239
Behavior port . 241
Relationships . 242

Component Modeling . 243
Component diagram . 243
Component . 244
Relationships . 245

Activity Modeling . 245
Activity Diagram . 246
Activity . 248
Activity implementation . 249
Initial Node . 250
Action Node . 250
Object Node . 253
Decision . 254
Merge . 255
Fork . 256
Join . 257
Connector . 258
Accept Event . 258
Send Signal . 259
Accept Time Event . 259
Activity Final . 260
Flow Final . 260
Activity Partition . 261
Pin . 263
November 2008 Telelogic DOORS Analyst User Guide vii

Table of Contents
Relationships . 264
Behavior Modeling . 265

State machine diagram . 265
State machine . 267
State . 268
Transition . 271
History nextstate . 272
Signal Receipt (Input) . 274
Start . 276
Action . 277
Signal sending action (output) . 278
Decision . 280
Guard . 282
Timer set action . 284
Timer reset action . 284
Action (task) . 285
Assignment . 285
Compound statement . 286
New . 286
Save . 287
Stop . 288
Return . 288
Junction . 289
Flow . 290
Simple transition . 290
Expressions . 291
Composite state . 297
State machine inheritance . 299
Operation body . 299
State machine implementation . 300
Internals . 300
Text extension symbol . 301

Deployment Modeling . 301
Deployment diagram . 301
Artifact . 303
viii Telelogic DOORS Analyst User Guide November 2008

Table of Contents
Node . 303
Execution environment . 304
Deployment specification . 304
Relationships . 305

Relationships in UML . 306
Dependency . 307
Generalization . 307
Realization . 308
Association . 308
Aggregation . 311
Composition . 311
Containment . 312
Extension . 313
Association . 313

Common Symbols . 313
Frame . 313
Text symbol . 313
Comment . 314
Constraint . 314
Stereotype instance . 315
Annotation line . 315

Extensibility . 316
Metamodel . 316
Metaclass . 317
Stereotype . 317
Profile . 318
Extension . 318

Predefined Data . 318
Predefined . 319

Metamodel Classes . 320
Classifier . 320
Signature . 320
Implementation . 322
Method . 322
November 2008 Telelogic DOORS Analyst User Guide ix

Table of Contents
Signature and implementation . 323
Profile for Schedulability, Performance, and Time . 324

RTresourceModeling . 324
RTtimeModeling . 324
RTconcurrencyModeling . 327
SAprofile . 327
PAprofile . 330
RSAprofile . 332

5
Error and Warning Messages 335

General Application Errors and Warnings . 336
DOORS Analyst minidumps (Windows) . 336

Errors and Warnings . 337
TSX: Syntax Analysis . 338

TSX0026: Port should not contain two in or two out parts 338
TSX0047: Tagged values are not allowed here . 338

TSC: Semantic Check . 339
About semantic checks . 339
TSC0123: A cyclic dependency was found in definition of the %n.
(via <string>) . 339
TSC0134: Incomplete transition. A transition must end with stop, nextstate or
join action . 339
TSC0092: A corresponding 'virtual' or 'redefined' operation was not found in
the parent signatures (or parent signatures does not exist). 339
TSC0196: A finalized operation cannot be redefined. 341
TSC0236: Operation '<name>' cannot be specified as 'Realized' on a port. 341
TSC0237: Operation '<name>' cannot be specified as 'Required' on a port. 342
TSC2300: Expression 'any (type)' cannot be of interface or state machine type
342
TSC2302: An association from a datatype may not have a navigable remote
association end . 343
TSC2303: At most one association end may be aggregate or composite . . 343
TSC2304: An attribute that is not a part may not have initial count 343
TSC2305: A part cannot have a default value . 344
x Telelogic DOORS Analyst User Guide November 2008

Table of Contents
TSC2306: A composite attribute or association end may not be typed by a
datatype . 344
TSC2307: A composite attribute may not have a type, which owns this attribute
(directly or indirectly) . 344
TSC2308: The 'via' of a call expression should reference either a port or a
connector . 345
TSC0269: Generalization between 'Interface I' and 'Class Y' is not allowed . .
345
TSC2325: Cyclic inheritance . 345
TSC4001: When generating C code, return values must be handled in left hand
side of assignment expression . 346

TNR: Name Resolution . 347
TNR0023: Failed to locate element referred by: <name> 347

UML Import and Export
6

UML 1.x Import 351
Operation Principles . 352

XMI import . 352
Import an XMI file . 354

Supported XMI and UML . 355
Language and version support . 355
Supported diagram types . 357
Import from UML 1.x tools . 358

Restrictions . 359
Type and variable definitions . 359
Incomplete model . 359
Unsupported classes . 360
Unsupported attributes . 361
November 2008 Telelogic DOORS Analyst User Guide xi

Table of Contents
Unsupported composition . 363
Export restrictions . 364

Error Messages . 368

7
UML 1.x Export 371

XMI Export . 372
Operation principles . 372
Supported XMI and tool versions . 372
Supported UML entities . 372
Model hierarchy . 380
Restrictions for XMI export to Rational Rose . 384
Error and warning messages . 386

Common Reference
8

Printing 391
Printing Diagrams . 392

Print settings . 392
Select diagrams to be printed . 393
Preview of diagrams . 393
Print a single diagram . 393
Print multiple diagrams . 394

9
Internationalization Support 395

Supported environments . 395
xii Telelogic DOORS Analyst User Guide November 2008

Table of Contents
Font settings . 396
Modeling with CJK characters . 397
Handling textual files . 398
Restrictions . 398

10
Useful Shortcut Keys 399

Workspace Operations . 399
Project Operations . 400
File Operations . 400
Navigate in Files . 400
Highlight Text . 401
Edit Text . 402
Editor Shortcuts . 403
Window Navigation . 405
Properties editor . 406
Show/Hide Windows and Dialogs . 406
Zoom/Pan . 407

11
Dialog Help 409

The New Wizard . 410
Files tab . 410
Projects tab . 410
UML Projects - page 2 . 410
UML Projects - page 3 . 410
Workspaces . 411

Customize . 411
Commands tab . 411
Toolbars tab . 412
Create New Toolbar . 413
Windows layouts . 413
Tools tab . 413
November 2008 Telelogic DOORS Analyst User Guide xiii

Table of Contents
Add-ins tab . 415
Options . 415

General . 415
Save . 417
Workspace . 417
Format . 418
Font settings . 418
Links . 419

Editor Shortcut . 420
Show Elements . 420
Reconfigure ModelView . 420

Other . 421
Select Stereotypes . 421

12
Additional Resources 423

Links . 424
Contacting IBM Rational Software Support . 424
UML documents . 425
Other links . 425
xiv Telelogic DOORS Analyst User Guide November 2008

Introduction
DOORS Analyst is a visual modeling environment available inside the re-
quirements management tool DOORS. DOORS Analyst enables users to
augment and visualize requirements using diagrams, symbols and pictures
based on the standardized, visual modeling language UML.

To fully take advantage of DOORS Analyst and be able to start working
quickly, it may prove useful to start with one of the DOORS Analyst is a vi-
sual modeling environment available inside the requirements management
tool DOORS. DOORS Analyst enables users to augment and visualize re-
quirements using diagrams, symbols and pictures based on the standardized,
visual modeling language UML.

includes many capabilities for analysis and development of service-oriented
architectures, but of specific interest for this application area are the fol-
lowing chapters:

Chapter 65, Web Services Support, that describes the web service modeling
support in DOORS Analyst is a visual modeling environment available in-
side the requirements management tool DOORS. DOORS Analyst enables
users to augment and visualize requirements using diagrams, symbols and
pictures based on the standardized, visual modeling language UML.

• Chapter 69, Modeling XML Schemas, that describes how to model the
XML data used by the web services,

Chapter 63, Using Tau with System Architect, that describes how to use
DOORS Analyst is a visual modeling environment available inside the re-
quirements management tool DOORS. DOORS Analyst enables users to
augment and visualize requirements using diagrams, symbols and pictures
based on the standardized, visual modeling language UML.
November 2008 Telelogic DOORS Analyst User Guide xv

Chapter :
• Chapter 67, WSDL/XSD Importer Reference, that describes how to im-
port existing service descriptions in WSDL or XSD and how to generate
WSDL/XSD from UML models.

In addition, the following sections can provide useful information:

• Chapter 10, Useful Shortcut Keys will provide a listing of possible short-
cuts, this chapter can provide you with information on how to work faster
and more efficient once you are familiar with what DOORS Analyst can
achieve.
xvi Telelogic DOORS Analyst User Guide November 2008

1
Introduction to DOORS Analyst

4.2
UML

DOORS Analyst contains a set of model-driven tools based on UML 2.1
which are backwards compatible with UML 1.x. There is support for the fol-
lowing diagram types:

• Use case diagram
• Sequence diagram
• State machine diagram
• Activity diagram
• Interaction overview diagram
• Class diagram
• Package diagram
• Component diagram
• Deployment diagram
• Composite structure diagram (formerly called Architecture diagram)

To be able to start working quickly with UML, the topics listed below may
prove useful to start with:
November 2008 Telelogic DOORS Analyst User Guide 1

Chapter 1: Introduction to DOORS Analyst 4.2
• Working with Models
Describes the basics behind model-based development. It provides you
with instructions and introductory information.

• UML Language Guide
This section is a guide to the UML language.

• Java Tutorial
A basic tutorial that allows you to work with the supported diagrams and
to learn how to verify your model.

• UML Quick reference guide
Examples on common constructs in graphical and textual UML.
2 Telelogic DOORS Analyst User Guide November 2008

DOORS Analyst commands in DOORS
DOORS Analyst commands in DOORS
DOORS Analyst is a set of UML tools that allows handling of UML models
from a DOORS requirement database.

General functionality
In all formal modules there is an Analyst menu with a set of commands that
allows you to work with UML models. Enable Analyst should be performed
on a formal module to initiate the other commands. Elements in a formal
module will also have a set of DOORS Analyst specific commands added to
the shortcut menu. This allows you to apply these commands by right-
clicking on the object and point to the command of your choice.

UML Kind

When a module is enabled for DOORS Analyst, a column “Analysis Type”
(in previous versions: “Object Type”) showing the UML kind will be in-
serted. A UML icon will also appear next to the name column.

If a UML diagram symbol is synchronized, “Analysis Type” will show
“Other”.

If a non-synchronized object is moved to a location where the value of “Anal-
ysis Type” is invalid, a small red exclamation mark is displayed in the top
left corner of the UML icon. This marker indicates that the object is out of
context.

Displaying DOORS attribute values in diagrams

The attribute values of an object can be shown in diagrams using a comment
symbol attached to the symbol representing the object. Attributes are divided
in two categories:

• Object Text
• all other attributes, including user defined ones

For instructions on how to display them in diagrams, see:

• Object Text
• Attributes
November 2008 Telelogic DOORS Analyst User Guide 3

Chapter 1: Introduction to DOORS Analyst 4.2
Note
Diagrams can not have comments in DOORS Analyst. It’s therefore not
possible to display Object Text or any other attribute for a diagram object.
Comment symbols placed on the diagram canvas not attached to any symbol
is not associated with the diagram, but it’s owner.

Object Text

The value of the Object Text attribute of an object is by default stored in the
model as well as in DOORS. It can be displayed and edited in DOORS An-
alyst.

To display Object Text in a diagram:

• Select the symbol representing the object whose text you want to display
• Right-click the symbol and select Show/Hide->Show Comments

To remove a comment symbol just select the symbol and click Delete. The
comment will not be deleted from the model, just from the diagram. It can be
displayed again repeating the procedure described above.

To edit Object Text in DOORS Analyst:

• Make sure the Object Text is displayed in a comment symbol as de-
scribed above

• Edit the text, keeping the heading Object Text unchanged

The contents of the Object Text attribute is by default propagated between
DOORS and DOORS Analyst during synchronization. It is stored as a com-
ment in the model, with the heading Object Text. The synchronization of
the object text is controlled by the UML Comment Symbol attribute and can
be turned on and off at will.

To add Object Text to an object in DOORS Analyst when there is none:

• Make sure there’s a symbol representing the correct object
• Create a comment symbol and attach it to the other symbol
• Enter Object Text as the first line in the comment symbol
• Enter the desired object text on the following lines

During synchronization, the text will be inserted as object text in the corre-
sponding DOORS object.
4 Telelogic DOORS Analyst User Guide November 2008

DOORS Analyst commands in DOORS
UML Comment Symbol attribute

By default, the value of the Object Text attribute is propagated between
DOORS and DOORS Analyst and stored as a comment in the model.

The value of the object level attribute UML Comment Symbol controls
whether the object text shall be propagated or not.

If UML Comment Symbol is True (the default) the object text is propagated
between the tools. If the value is False, it isn’t. The value can be changed at
any time.

Deleting a UML comment representing Object Text from DOORS Analyst
will not delete the originating DOORS Object Text. Instead the tool will set
the attribute to False indicating that it will not be propagated anymore.

Attributes

The values of the DOORS attributes of an object can be displayed in a com-
ment symbol in a diagram in DOORS Analyst.

To show attribute values in a diagram:

• In DOORS, select the object whose values you would like to display in a
diagram

• Execute the Select Attributes to Show in Analyst command from the An-
alyst menu

• Select the attributes you would like to see
• Right-click the object and select Edit in Analyst
• Select the symbol representing the object
• Right-click the symbol and select Show/Hide->Show Comments

A comment symbol is created and attached to the symbol. The comment has
a heading named Attributes, followed by the attribute names and values in
the following syntax:

attribute name : attribute value

Attributes with empty values are not included.

To remove the comment symbol just select the symbol and click Delete. The
comment will not be deleted from the model, just from the diagram. It can be
displayed again repeating the procedure described above.
November 2008 Telelogic DOORS Analyst User Guide 5

Chapter 1: Introduction to DOORS Analyst 4.2
Diagrams in DOORS Analyst

A formal module stores UML information in its objects. When the DOORS
Analyst window opens up, you will be able to access the information through
the DOORS Analyst diagram editors.

Storing the model in DOORS

When DOORS Analyst closes its session, this information will be stored as
a UML data model (corresponds to a file with .u2 extension) in the DOORS
module. The next time DOORS Analyst is opened, the UML information
will be based on this data model together with any changes made in the
formal module.

Referencing elements from multiple modules

In an Analyst-enabled module, it is possible to reference elements from other
Analyst modules. This is done by doing “Edit in Analyst” on the modules,
they will now be opened in the same diagram editor. Then, enable the Model
View, and drag-and-drop elements from the Model View to the diagram
where the elements should be referenced.

Shareable edit mode

DOORS Analyst supports DOORS shareable edit mode, enabling users to
concurrently work on different parts of the same DOORS Analyst module.

To use this feature proceed as follows:

• Before using this feature, the formal module must be enabled for DOORS
Analyst (when the module is in exclusive edit mode).

• Set up editable sections using the standard DOORS commands. Please
refer to the DOORS User Manual for more information about how this is
done.

• Open the module in shareable edit mode.
When a module is opened in shareable edit mode, the command Enable
Analyst for Section will be available.
6 Telelogic DOORS Analyst User Guide November 2008

DOORS Analyst commands in DOORS
• To create an Analyst section, first create a DOORS object with an arbi-
trary name. Select this object and choose Enable Analyst for Section.
The “Analysis Type” of this object will now be set to “Model”, indi-
cating that it corresponds to a UML model, and a corresponding UML
root package will be created for this object.

• “Insert UML” can now be used to add UML objects and diagrams.
• To open the diagram editor, use “Edit in Analyst”.

Before launching the editor, a check will be made that all objects in this
section can be locked. If successful, the objects will be locked and the ed-
itor will be opened. Otherwise, an error message will be displayed.

Note
The hierarchy of Analyst models in a formal module must be “flat”, which
means that there cannot be any Analyst models in the object hierarchy
below another Analyst model. This means that care must be taken if Analyst
models are moved around in a formal module, so that they do not end up in
the same object hierarchy. The tool cannot detect this error situation until
“Edit in Analyst” is performed on an Analyst section, i.e. not when the ac-
tual error is introduced.

Objects in one Analyst section can reference objects in another Analyst sec-
tion, see “Referencing elements from multiple modules” for more informa-
tion.

Analyst shareable sections cannot be used together with the “standard” Ana-
lyst-enabled mode.

Links

Links to/from UML elements are shown in DOORS Analyst as red and or-
ange arrows, in the same way as in DOORS. Right-clicking on an arrow in
the Model View will display a menu showing an object’s link endpoints. By
selecting one of these, the DOORS formal module containing this object will
be displayed, with the object selected.
November 2008 Telelogic DOORS Analyst User Guide 7

Chapter 1: Introduction to DOORS Analyst 4.2
Restrictions

Comments

When you edit diagrams in DOORS Analyst which reference elements from
other modules/sections and the edit affects elements in sections that are not
directly editable this may create presentations that will not be persistent. This
typically can happen if you edit a class diagram and add comments to a class
in another module, given that this module is not currently editable.

DOORS Analyst attributes

There exists some attributes used for internal purposes, for example UML
Kind, UML Location and UML Name. Deletion of these attributes leads to
losing DOORS Analyst data. There is furthermore no possibility to recover
such a deletion with Undo and unless you have baselined the module the data
is permanently lost.

Diagram/Diagram below

The diagram can be opened by double-clicking on the diagram. This does not
apply for DOORS 7.1.

Import Partition and Clone

The DOORS functions “Import Partition” and “Clone” are currently not sup-
ported by Analyst.

Copying Analyst modules, e.g. through the DOORS “Copy”, “Paste” or
“Paste and update references” commands, will lead to conflicts between the
original UML elements and the ones in the copied module. This should be
avoided, unless the original module and the copied module are not used con-
currently.

Multiple DOORS servers

DOORS Analyst does not support DOORS clients concurrently running
from different DOORS servers. It is not recommended for example to open
(through “Edit in Analyst”) a DOORS Analyst module from one DOORS da-
tabase, and then open a DOORS Analyst module from another DOORS da-
tabase.
8 Telelogic DOORS Analyst User Guide November 2008

DOORS Analyst commands in DOORS
Analyst menu

Enable Analyst / Disable Analyst

These commands will indicate and control if the DOORS Analyst mode is
activated. A module will be able to store UML models after the menu entry
Enable Analyst is chosen, and a module will lose its ability to store UML
models after the menu entry Disable Analyst is chosen. It will no longer be
possible to open any objects in Analyst after a Disable Analyst command.

Enable Analyst for Section

This command is available when working in DOORS Shareable edit mode.
To create an Analyst editable section, the DOORS module must first have
been enabled for Analyst, in exclusive edit mode.

A model (.u2) file will be indicated with a icon in the DOORS module.

Insert UML

This command gives you the possibility to create diagrams and elements in
a DOORS Analyst enabled module. From its submenu it is possible to select
between creating an UML diagram or an element and whether to create the
new entity in the same scope as the current selection or create it below the
current selection.

Element/Element below

These commands allow you to create a model element. It is possible to create
the following model elements:

• Actor
• Attribute
• Class
• Component
• Node
• Package
• Subject
• System
• Use case
November 2008 Telelogic DOORS Analyst User Guide 9

Chapter 1: Introduction to DOORS Analyst 4.2
Once created, model elements are visualized by an icon.

Diagram/Diagram below

These commands allow you to create a diagram. The diagram is opened in
DOORS Analyst by double-clicking on the diagram. When closing DOORS
Analyst the diagram image is saved in the formal module.

All diagram types are displayed as images in the formal module. They are
stored as a Windows metafile (.wmf).

Note
In a formal module, Diagrams are represented by a DOORS object, and a
table (where the table is shown as an image). DOORS Analyst assumes this
table to be directly below the Diagram object. However, other objects may
also be placed directly below the Diagram object. A general recommenda-
tion is to keep the table immediately following its related object.

Edit in Analyst

This command allows you to edit a selected model element in a diagram
using the appropriate DOORS Analyst editor. “Edit in Analyst” is also avail-
able from the shortcut menu when right-clicking on a model element or dia-
gram image. When an element is present in several diagrams, only one of
them will be displayed.

This command also allows for opening and editing diagrams without any el-
ement selection in the formal module. In this case, the UML root package
that corresponds to the DOORS module is considered 'selected' and used as
the base for the command.

For Shareable edit mode it is possible to edit objects that you have applied
Enable Analyst for Section for.

If there are references to model elements stored in other DOORS modules,
or other shareable sections, these elements will be loaded in read-only mode
by the Analyst diagram editor. The mode can be changed to read/write by
opening the corresponding DOORS module, and then select “Edit in Ana-
lyst” for these elements.
10 Telelogic DOORS Analyst User Guide November 2008

DOORS Analyst commands in DOORS
Select Attributes to Show in Analyst

This command opens a dialog from which you can select DOORS Attributes
to be shown in a comment symbol when the selected DOORS element is
shown in DOORS Analyst.

Update Diagrams

This command updates all diagrams with the changes made to UML ele-
ments in the DOORS module.

Convert Module

This command updates a module which was created with a previous version
of Analyst to the current version.

Note
Diagrams etc. may need updating as well, this is done when opening a UML
object or diagram in Analyst through “Edit in Analyst”, and then saving.

Opening DOORS Analyst modules created in an earlier version may require
a conversion of the modules, for example this could be due to new attributes
being added in the later version. The need for conversion is detected automat-
ically when opening a DOORS Analyst module, by executing a DXL Inter-
action script that prints a message to user about the need for conversion. Con-
version is performed with the command Convert Module followed by a save
of the modules and diagrams.

If “Shareable Edit Mode” has been used on the DOORS Analyst modules, it
is required that the conversion to the new format is performed on all sections
in one operation. For this, user must open the module using “Exclusive Edit”.

Help

This command opens the DOORS Analyst help file.

About Analyst

This command displays the About dialog for DOORS Analyst, showing tool
version and licensing information.
November 2008 Telelogic DOORS Analyst User Guide 11

Chapter 1: Introduction to DOORS Analyst 4.2
DOORS Analyst diagram view
When DOORS Analyst opens up you will be able to access its information
through the diagrams from the formal module.

Any changes done will be synchronized back to the formal module when
save is performed from DOORS Analyst.

Important!
When you move between DOORS and DOORS Analyst you should always
use Edit in Analyst or double-click on a diagram. When you move from
DOORS Analyst to DOORS you should always close the Analyst window or
use the shortcut command “Edit in DOORS”. This will ensure that your ele-
ments are properly synchronized. It is also possible to perform an explicit
save in DOORS Analyst before changing to the DOORS window.

Overview of DOORS Analyst User Interface

Basic layout

The DOORS Analyst user interface contains two different areas: the
Desktop and the tool bars. In addition there is a status bar in the lower part
of the frame and a menu and tool bar area at the top of the interface frame
(the menus will be disabled in Basic layout).

Figure 1: The DOORS Analyst basic layout.

Desktop

Status bar

Tool bars
12 Telelogic DOORS Analyst User Guide November 2008

Overview of DOORS Analyst User Interface
Advanced layout

The complete DOORS Analyst user interface contains several different areas
that can be switched on and off at the will of the user: the Desktop, the
Workspace window and the Output window. In addition there is a status bar
in the lower part of the frame and a menu and Toolbar area at the top of the
interface frame. The windows are all possible to dock according to the user’s
preferences. It is also possible to drag-and-drop frequently used toolbars to a
Shortcuts window.

Desktop
The Desktop, or editing area, is the area of your working documents. This is
where the actual development takes place. Here you will see diagrams, doc-
uments, source files, etc. Once you have opened them for editing or viewing.
Which editor or viewer that is displayed depends on the file types that are in-
cluded in your project.

If you have more than one document opened on the desktop, you can move
between with commands on the Window menu, or by pressing CTRL + TAB
(forwards) or CTRL + SHIFT + TAB (backwards).

Hint
If you want to have your editor expanded to full screen, select Full Screen in
the View menu. To go back, press ESC or ALT + ‘1’.

Figure 2: The DOORS Analyst Desktop.

Workspace
window

Desktop

Output
window

Status bar

Menu bars
and
toolbars
November 2008 Telelogic DOORS Analyst User Guide 13

Chapter 1: Introduction to DOORS Analyst 4.2
See also

“Working with windows” on page 18

Workspace window
The Workspace window is a graphical tool that presents and manages the
structure of the workspace information in a number of Views.

The Workspace window shows the information structure with expandable
nodes. By collapsing and expanding these nodes, and by using different
views, you can focus on different sets of the information in the workspace.

It is possible to move the Workspace window and to make it a floating pal-
ette. When not floating, it is docked at this left-most position. When docked,
the window can only be resized horizontally. The vertical boundary is deter-
mined at the top by the toolbars and at the bottom by the Output window.

Views
In the Workspace window you have access to a number of views. They are
each accessible via separate tabs. The views show different aspects of the
model.

File View

The File View shows your workspace with all elements that are represented
as files.

The File view is not visible when you start DOORS Analyst the first time. To
enable the File view you right-click on the frame of the Workspace window
(the Model View tab) and select File view.

You select the File View by clicking the File View tab in the Workspace
window. Here you can open, edit and save all files. However, if you delete a
file it is only deleted from the File View. The file is still available in the file
system of your operating system.

To get a better overview of your files, you can create folders. You can drag
and drop files between folders. You can display properties by selecting an
item, right-clicking it, and clicking Properties in the shortcut menu.
14 Telelogic DOORS Analyst User Guide November 2008

Overview of DOORS Analyst User Interface
Model View

The Model View contains all the data that you are working with in an abstract
structure. All UML elements are found here. Since the Model View shows
all the elements that are not represented as files, this is the view to select
when you add elements to the model and create diagrams.

The elements in this view are considered as graphical representations of the
model. You may use diagram editors for the design process, but you may as
easily fully design a system just working with the nodes in the Model view.

You select the Model View by clicking the Model View tab in the Work-
space window.

The shortcut menu on the project nodes or the Model nodes will contain a
sub-menu called Model View Filters. This menu will contain check boxes
that defines how a set of predefined filters are applied to the Model View.

A Metamodel may include one Metaclass that has its base set to Resource.
This model element will map to Resource elements in the loaded element at
run-time and will thus only be visible in the Model View if the Show Files
model view filter is turned on. It is possible to show files and resource ele-
ments in the Model View. Use the shortcut sub-menu Model View Filters
and select Show Files.

A metamodel may include metaclasses that have their base set to object
model classes that are subclasses of Diagram. These model elements will
map to diagrams and will thus only be visible in the Model View if the Show
Diagrams model view filter is turned on.

For convenience the metaclasses are classified as either structural entities or
as detailed entities. This will affect how the contents of the Model View is
affected by the Show Details filter.

A metamodel may include metaclasses that have their base set to object
model classes that are subclasses of Implementation. These model elements
will map to implementation-oriented elements and will thus only be visible
in the Model View if the Show Implementations model view filter is turned
on

When the Sort Definitions filter is active (indicated by check-mark in the
menu item), model elements in a given Model View node are sorted in a lex-
icographical order. Diagram nodes will not be affected by the sort operation.
November 2008 Telelogic DOORS Analyst User Guide 15

Chapter 1: Introduction to DOORS Analyst 4.2
The command Reconfigure Model View (from the View menu) allows you
to filter the information in the Model View based on a predefined metamodel.
This affects the project which the selected element belongs to.

In some situations it is possible to cause a node in the Model View to “disap-
pear” when you have selected a filter different from the Standard View. This
happens because some operations in DOORS Analyst (like drag-and-drop)
rely on the basic metamodel that is used for storage of UML information,
while others (like showing the elements in tree form in the Model View) rely
on the currently selected metamodel. When you switch to Standard View,
this model is the same as the basic metamodel. The Diagram View will
present the information based on model elements that can own diagrams and
push the diagram nodes to directly below their owning elements.

Typically this can happen in the following situations:

• drag-and-drop
• cut and paste
• creating diagrams from the Model Navigator Diagrams tab

To restore a node that have disappeared in this way you have two options:

• Use undo to get the node back at its original place.
• Switch to Standard View. In that view, all nodes will be visible. Any

nodes that may have been drag-and-dropped to a position where they did
not appear in the Model View will now show in their new place.

Shortcuts window
The Shortcuts window may contain toolbars, but it will only do so if you put
them there. To put a Toolbar in the Shortcuts window, right-click the toolbar
and click To Shortcut from the shortcut menu. You can reverse the process
by right-clicking on the Shortcuts shown and clicking As Toolbar from the
shortcut menu that appears.

The View menu Shortcuts command controls if the Shortcut window is
shown.

Note
Not all toolbars will be possible to submit to the shortcuts window.
16 Telelogic DOORS Analyst User Guide November 2008

Overview of DOORS Analyst User Interface
Output window
The Output window consists of a number of different tabs that records and
displays information for the corresponding tool. This information is typically
error messages, warnings, result of actions, logging of events, etc. Each tab
represents a different tool.

For some of the tabs, it is possible to navigate from the located element (in
the subject column) to a presentation in a diagram.

The View menu Output command controls if the window is shown.

General tabs

Messages

The Messages tab shows general information regarding the project loading
and other executed actions.

No navigation is available from this tab to other parts of the tool.

Search result

This tab displays the result of a Find operation.

Presentations

This tab displays the result of a List presentations operation.

References

This tab displays the result of a List references operation.

Script

The Script tab shows the result of scripts.

UML tool tabs

Check

You can initiate a complete check of the model to detect errors and warnings.
This tab displays the result of the check. The errors remain in the list even
after they are corrected. The list is changed the next time you invoke the
check procedure.

Navigate
November 2008 Telelogic DOORS Analyst User Guide 17

Chapter 1: Introduction to DOORS Analyst 4.2
This tab contains a tabular model navigation tool, the Model Navigator
which is used to navigate through any given model.

Working with windows
The Window menu is only available in the Advanced layout.

Arrange windows

Tile all document windows:

• On the Window menu, click Tile Horizontally or Tile Vertically.

Overlap document windows:

• On the Window menu, click Cascade.

To change the position of document windows:

Note
The docking state can not be changed for a window with tabbed documents.
1. Right-click the title bar of a document window.
2. In the menu select:

– Docked to dock the window within the application window. There
are also options for where it should be docked.

– Floating to be able to move it outside the application window.
– MDI Child to make the window float within the editing area. There

are also options for maximizing, minimizing and restoring the
window.

To view the active document in full screen:

• On the View menu, click Full Screen
Or

• Press ALT + 1

To view the active document in normal size:

To display the active document in normal size again after you have
viewed it in full screen, do one of the following:
18 Telelogic DOORS Analyst User Guide November 2008

Overview of DOORS Analyst User Interface
• Move the cursor to the top of the screen. When the menu bar appears, on
the View menu, click Full Screen.
Or

• Press ALT + 1

Show and hide windows

Show or hide the workspace window:

• On the View menu, click Workspace
Or

• Press ALT + 0.

Show or hide the output window:

• On the View menu, click Output
Or

• Press ALT + 2.

Close windows

To close a document window:

• On the Window menu, click Close.

To close all document windows:

• On the Window menu, click Close All.

Create a new window

To create a new document window:

• On the Window menu, click New Window.

Tabbed documents

If the option “Tabbed documents” is enabled in general options page, docu-
ments will be opened as tabs in a single window.
November 2008 Telelogic DOORS Analyst User Guide 19

Chapter 1: Introduction to DOORS Analyst 4.2
A document can be detached from a tabbed window by right-clicking the tab
and selecting the Detach menu item. It will then function as a normal MDI
child and the docking state can be changed.

Docking windows

There are three different modes for editor windows in the DOORS Analyst
framework. These are applied to each diagram window individually by right-
clicking the diagram title bar.

Note
The docking state can not be changed for a window with tabbed documents.

Docked
A docked editor window will align into the DOORS Analyst framework
like the workspace window or the Output window. It will be possible to
move the windows around to arrange a suitable view.

Floating
A floating window is on top of the DOORS Analyst framework. It will
turn into a docked window if it is moved towards the framework frame.

MDI child
An MDI child window is positioned into the desktop area. Adjusting
can be done manually inside this area or with commands from the
Window menu.

Auto-hide docked window (Windows)

A window that has a pin symbol in the gripper bar can set to auto-hide mode.
If the pin is pressed, the window will be hidden and a label representing the
window will be displayed instead. By hovering with the mouse over the label
the hidden window will be displayed. Window can be docked again by
clicking on the pin symbol again.

Expand/Contract docked window

When two docked windows share the same side of the main window, a
window can be expanded to take the whole side in possession by clicking on
the arrow symbol on the gripper bar of the window (if available). By doing
this the other windows on the side are minimized. The window can be con-
tracted by clicking on the arrow symbol again.
20 Telelogic DOORS Analyst User Guide November 2008

Overview of DOORS Analyst User Interface
Stored workspace windows

All windows opened during a session will be reopened when the workspace
is loaded again. The information will be saved in a .ttx file with the same path
and name as the workspace.

See also

“Organizing the view” on page 115

Menu bar and toolbar
Depending on your workspace preferences, and the size of your screen, you
can display as many toolbars as you want, or none at all. You can add a button
with a command to a toolbar, change the size of the buttons, and move the
toolbars to different locations to suit your needs.

Menu Bar

The menu bar contains well-known menus such as File, Edit, Project, and so
on. Depending on the task you are performing the number of menus differ.

Most menu commands have a shortcut assigned. A list of Useful Shortcut
Keys is found in Common Reference.

You can add commands to the Tools menu allowing you to easy access to
non-Telelogic tools. This is done from the Tools tab.

As an example, the following procedure demonstrates how to add the Win-
dows Notepad accessory to the Tools menu.

To add a command to the Tools menu:

1. From the Tools menu select Customize, and then click the Tools tab.
2. Click the New (Insert) button.
3. Type the name of the tool, as you want it to appear on the Tools menu,

and press ENTER.
For example, if you want to add a command for the Windows Notepad
accessory, you might type Notepad.

4. In the Command box, browse or type the path and name of the program,
for example, C:\Windows\notepad.exe.
November 2008 Telelogic DOORS Analyst User Guide 21

Chapter 1: Introduction to DOORS Analyst 4.2
5. In the Arguments text box, browse or type any arguments to be passed
to the program. Leave this field empty for the Notepad accessory.

Note
You can use the drop-down arrow next to the Arguments text box to display
a menu of arguments. Select an argument from the list to insert argument
syntax into the Arguments text box.
6. The Initial Directory box is used to specify the file directory where the

executable file for the command is located. For the Notepad accessory
this field is left empty.

When the command appears on the Tools menu, you may click it to run the
program.

You can add arguments to be passed to the program by typing them in the
Arguments text box, or set the initial directory for your program by typing it
in the Initial Directory text box.

If the program you are adding to the Tools menu has a .pif file, the startup
directory specified by the .pif file overrides the directory specified in the
Initial Directory text box.

Toolbar

The toolbar allows you to set up a palette of your most common used tools
in order to have quick access to them. Once you have made any changes to
the toolbar, these changes are saved and retrieved for your next work session.

The standard toolbar corresponds to the operations available in the menu bar.
The standard toolbar can be toggled on and off from the View menu (Stan-
dard command) or from the toolbar area’s shortcut menu, the other toolbars
only from the shortcut menu.

Note
Not all toolbars and commands can be modified. This feature belongs to the
DOORS Analyst framework and is not supported for toolbars related to edi-
tors.

To add a toolbar button:

1. Make sure that the toolbar you want to change is displayed.
2. From the Tools menu select Customize, and then click the Commands

tab.
22 Telelogic DOORS Analyst User Guide November 2008

Overview of DOORS Analyst User Interface
3. Add a button by clicking the name of the category in the Categories box,
and then dragging the button or item from the Buttons area to the dis-
played toolbar.

To delete a toolbar button:

1. Make sure that the toolbar you want to change is displayed.
2. From the Tools menu select Customize, and then click the Commands

tab.
3. To delete a button, drag it off the toolbar.

When you delete a default button from a toolbar, the button is still available
in the Customize dialog box. However, when you delete a toolbar button with
a custom appearance, its appearance is permanently lost, although the com-
mand is still available (Customize dialog box, Commands tab).

Hint
To save a toolbar button with a custom appearance for later use, create a
toolbar for storing unused buttons, move the button to this storage toolbar,
and then hide the storage toolbar.

Show or hide toolbars:

1. From the Tools menu select Customize, and then click the Toolbars tab.
2. Select and clear toolbars to show or hide in the Toolbars list.
3. Click Close.

alternatively

1. Right-click anywhere in the toolbar area in the user interface.
2. Click the toolbar you want to show or hide. The menu closes automati-

cally.

To change the appearance of toolbar buttons:

1. From the Tools menu select Customize, and then click the Toolbars tab.
2. Select the following options:

– Show Tooltips to enable tooltips to be displayed when the cursor
moves over a button or field in the toolbars.

– Large Buttons to display larger sized buttons in the toolbars.
3. Click Close.
November 2008 Telelogic DOORS Analyst User Guide 23

Chapter 1: Introduction to DOORS Analyst 4.2
Status bar
The status bar presents useful information about status of several different
types of tasks, for example it lists errors and tooltips. Here will also be pre-
sented information about progress and current actions.

For text files the current line number and column position are shown in the
right most corner of the Status bar.

Line navigation

Navigation to a specific line in a text file is done by pressing CTRL + SHIFT
+ G. Enter the wanted line number in the dialog that opens.

Progress bar

There is one progress bar displayed showing the overall progress when
opening a workspace to the right of the status bar.

There can also be one displayed for the progress of the separate parts of the
loading process displayed in the message field. In this case there will also be
a message explaining the current action in progress.

Options
Tool options affect DOORS Analyst, not just the current project or work-
space. There are different ways of changing these options:

In the Options dialog, there are different tabs for different options that you
can change. The number of tabs differs depending on what type of project
that is active. To see a description of an option in the Options dialog box,
click the question mark in the dialog box title bar, and then click the option.

Options file

The option settings can be saved in an options file, .tot. This file can later
be edited.

In the installation there will be a number of files with a .tot extension con-
taining internal framework settings and options. These files should normally
not be edited by the user. Editing a file with a .tot extension may cause loss
of data and incorrect behavior of the tool set. The options controlled should
be edited from the Tools menu Options dialog.
24 Telelogic DOORS Analyst User Guide November 2008

Model and Diagrams
Change options

To change options:

1. On the Tools menu, click Options.
2. In the Options dialog box, select and clear options in the different tabs.

In the Advanced tab press F2 to access an option value.
3. Click OK.

Work with options Files

Save the current options in a new options file:

1. On the Project menu, click Options and then Save As.
2. In the Save As dialog, select a name and location for the options file

(.tot).
3. Click Save.
4. Click Yes when you are asked to include the options file in your active

project.

Model and Diagrams

Models
The model comprises all diagrams that describe your system. Different dia-
grams describe different aspects of the application. When modeling a system
in UML, class diagrams describe the entities and the relationships between
these entities.

Use case diagrams and use cases in form of sequence diagrams allows you to
specify external interaction and an overview of a systems behavior.

Activity diagrams and Interaction overview diagrams can be used to describe
parallel behavior in a model.

State machine diagrams describe the behavior of each active class and com-
posite structure diagrams describe the external behavior of an entity and how
the entity interacts with other entities.
November 2008 Telelogic DOORS Analyst User Guide 25

Chapter 1: Introduction to DOORS Analyst 4.2
The application is compiled from the model. Different diagram types show
different views of the model. This means that entities that are available in the
diagram exist in the model, but not necessarily the other way around.

Model elements

Removing a symbol, a presentation element, from a diagram will normally
not result in the deletion of the corresponding entity in the model since an en-
tity might be represented in more than one diagram.

However, deleting an entity in the model results in the deletion of the equiv-
alent symbols in the diagrams since it is the model that represents the appli-
cation and the diagrams only presents different aspects of the model.

Deletion of the presentation element will also delete the model element when
there is a one-to-one relationship between the model element and the presen-
tation element. A one-to-one relationship exists when a model element can
only have one editable presentation, for example this is the case with many
state machine symbols.

The model elements are shown in the Model View of the Workspace
window.

See also

Chapter 2, Working with Models

Chapter 4, UML Language Guide

“Views” on page 15

Diagrams
A diagram is a representation of the model you are working with in UML.
Depending on the type of diagram, you will be able to define different prop-
erties and actions.

Diagrams in general represent different views of a single model. There are a
number of different types of diagrams. Their names are derived from UML
concepts. Supported diagram types are:

• Activity Diagram
• Class diagram
26 Telelogic DOORS Analyst User Guide November 2008

Model and Diagrams
• Component diagram
• Composite structure diagram
• Deployment diagram
• Interaction overview diagram
• Package diagram
• Sequence diagram
• State machine diagram
• Use case diagram

Using the diagrams

As there are several different types of diagrams available to describe the
model, this section gives some hints how they can be used.

The order to perform activities when building a UML model is optional. A
possible workflow is displayed in Figure 3 on page 28.

Figure 3: Diagram creation workflow

Create a basic package and classes
in your model

Describe use cases

Write scenarios

Create dynamic behavior of ac-
tive classes

Create the architecture
November 2008 Telelogic DOORS Analyst User Guide 27

Chapter 1: Introduction to DOORS Analyst 4.2
Create a basic package and classes in your model

It is possible to create new elements directly in the Model View by right-
clicking on a package and from the shortcut menu select New and then
choose the desired element from the submenu. To add a class diagram you
right-click the package in the Model View and from the shortcut menu select
New and then Class diagram.

Create use cases

A use case diagram can exist directly in a package, in a class or be grouped
in a collaboration. A use case can be inserted directly in a package, in a class
or in a collaboration.

Write scenarios

Scenarios in form of sequence diagrams is very easy-to-understand way of
illustrating use cases. Syntax is simple and intuitive to understand, sequence
diagrams is also a good basis for a dynamic behavior design.

Create dynamic behavior of the classes

The next step is to define the behavior of classes that you have set to be ac-
tive. This is done using the state machine diagrams. For each Active class,
add a state machine diagram to the model and when opened, build the in-
ternal state machine that defines the behavior of the class using the symbols
available in the active toolbar.

Create architecture

The next step is to define how objects communicate. Instantiation of objects
(parts) and communication between parts can be described with composite
structure diagrams. Composite structure diagrams describe the internal struc-
ture of classes, attributes of classes and instantiations of classes.

The next step

To continue working, create a test project and get to know how DOORS An-
alyst lets you work with different diagram types, elements and symbols.
28 Telelogic DOORS Analyst User Guide November 2008

Model and Diagrams
See also

“UML Language Guide” on page 139

“Working with Diagrams” on page 109
November 2008 Telelogic DOORS Analyst User Guide 29

Chapter 1: Introduction to DOORS Analyst 4.2
How to Use Help
This help file includes basic and advanced topics covering the supported
functionality.

Additional product documentation is available in the section “Additional Re-
sources” on page 423. There you can find tutorials, language descriptions,
the installation guide and links to external sites, for instance the DOORS An-
alyst Support site.

Additional documentation in Adobe PDF format is also available on the in-
stallation CD.

Navigate in the help file
The help file contains functionality that helps you to easier find the informa-
tion that you are looking for:

• “Search” on page 31
• “Search highlighting” on page 32
• “Index” on page 32
• “Locate search or index results” on page 33
• “Bookmark topics in the help file” on page 33
• “Print help topics” on page 33

Search

To perform a full-text search:

1. In the help viewer, click the Search tab.
2. Type your search string in the Type in the word(s) to search for field.

You may use regular expressions, operators, and nested expressions
when searching.

3. Optionally, you may check some of the following options: Search pre-
vious result, Match similar words and Search titles only.

4. Click List Topics.
5. To open a topic, double-click the topic in the Select topic list or select a

topic and click Display.
30 Telelogic DOORS Analyst User Guide November 2008

http://support.telelogic.com/en/tau/" target="_blank
http://support.telelogic.com/en/tau/" target="_blank

How to Use Help
Example 1: –––

To search for words beginning with “link”, type the following in the search
field:

link*

–––

Search highlighting

The words that you are searching for are highlighted on all pages where they
are found. If you want to, you can turn off this functionality.

Turn off search highlighting:

1. In the help viewer, click the Options button and then click Search High-
light Off.

2. If you have already performed a search, click the Display button in the
help viewer and the search highlighting disappear.

The search highlighting functionality is now turned off until you enable it
again.

Turn on search highlighting:

1. In the help viewer, click the Options button and then click Search High-
light On.

2. If you have already performed a search, click the Display button in the
help viewer and the search highlighting re-appear.

The search highlighting functionality is now turned on until you disable it
again.

Index

To see the list of index entries, select the Index tab. To find the entry you are
looking for, type the first letters of the word or scroll the list. To view the
entry, double-click the entry or select the entry and click Display.
November 2008 Telelogic DOORS Analyst User Guide 31

Chapter 1: Introduction to DOORS Analyst 4.2
Locate search or index results

When you are using the search or the index functionality, the topic you are
looking for will be displayed in the right-hand window. To locate where this
topic is listed in the table of contents, click the Locate button. This allows
you to easily find related topics or to learn where this topic is located the next
time you are looking for it.

Bookmark topics in the help file

If you know that there are topics that you will refer to often or that there are
topics that you consider important for your work, you can bookmark them as
you would do in a regular web browser.

Bookmark a topic:

1. Find your topic using the Contents, Index or Search tabs.
2. Click the Favorites tab. The name of the topic is listed in the Current

topic field.
3. Click Add. The topic is now displayed in the topics list.

Print help topics

You can print a single topic or you can select to print several topics within
the same chapter.

Print an active topic:

• Right-click the displayed topic in the right-hand window and click Print.
The print dialog opens.

Print a single topic from the table of contents

1. Right-click the topic window in the table of contents and click Print. The
Print Topics dialog opens.

2. Click Print the selected topic and click OK. The Print dialog opens.

Print multiple topics:

1. Right-click a book icon in the table of contents and click Print. The Print
Topics dialog opens.

2. Click Print the selected heading and all sub-topics and click OK. The
print dialog opens.
32 Telelogic DOORS Analyst User Guide November 2008

How to Use Help
Search syntax in help
The help viewer supports full text search, and you can search for any combi-
nation of letters (a-z) and numbers (0-9). Words like “the”, “a”, “and”, “but”,
are reserved and cannot be searched for. In addition, you cannot search for
punctuation marks such as colon (:), semicolon (;), hyphen (-) and period (.).

You can group search elements by using quotes and parenthesis.

Match similar words

The Search tab in the help viewer includes a Match similar words option.
If you select this, you will be able to find all occurrences of a word, including
common suffixes. For example, if you search for “run”, the words “run”,
“running”, and “runner” will be found, but not “runtime”.

Regular expressions

The following regular expressions may be used when searching the help:

• * for matching 0 or more characters.
• ? for matching 1 characters.
• A string within quotes (“ab cd”) for matching the string literally.

Operators

You may use the following operators to refine a search in the help: AND,
OR, NOT, and NEAR. The search string is evaluated from left to right. See
table below for examples:

Search for this: Type this in the search field

Topics containing “analyze”, “anal-
ysis”, “analyses”, “analyzed”, and
“analyzing”

analy*

Topics containing “analyzer” and
“analyzed”, but not “analyze” or
“analyzers”

analyze?

Topics containing the literal phrase
“analyze and generate”

“analyze and generate”
November 2008 Telelogic DOORS Analyst User Guide 33

Chapter 1: Introduction to DOORS Analyst 4.2
Nested expressions

By using parentheses, you may nest expressions to perform a complex search
in the help. An expression within parentheses will be evaluated first, before
the rest of the search expression. Expressions may not be nested more than 5
levels.

Search for this: Type this in the search field

Topics containing both “work-
space” and “file”

workspace AND file
or
workspace & file
or
workspace file

Topics containing either “work-
space” or “file”

workspace OR file
or
workspace | file

Topics containing “workspace” but
not “file”

workspace NOT file
or
workspace | file

Topics containing “workspace” and
“file” close together, that is “work-
space” within 8 words of “file”

workspace NEAR file

Topics containing “workspace” but
not “file”, or topics containing
“workspace” but not “directory”

workspace NOT file OR directory
34 Telelogic DOORS Analyst User Guide November 2008

How to Use Help
Search for this: Type this in the search field

Topics containing “workspace”
without either of “file” or “direc-
tory”

workspace NOT (file OR directory)

Topics containing “workspace”
with and “file” and “project” close
together; or topics containing
“workspace” with “directory” and
“project” close together

workspace AND ((file OR direc-
tory) NEAR project)
November 2008 Telelogic DOORS Analyst User Guide 35

Chapter 1: Introduction to DOORS Analyst 4.2
36 Telelogic DOORS Analyst User Guide November 2008

UML Modeling
The chapters that are listed under UML Modeling describe functionality that
is exclusive to UML projects.
November 2008 Telelogic DOORS Analyst User Guide 37

Chapter :
38 Telelogic DOORS Analyst User Guide November 2008

2
Working with Models

This chapter is intended to give an introduction to model-based development.
It contains the background to how model bindings are maintained. It explains
the syntax color scheme for text information.

See also

“Working with Diagrams” on page 109

“UML Language Guide” on page 139
November 2008 Telelogic DOORS Analyst User Guide 39

Chapter 2: Working with Models
Models and Model Elements
Model-based development

The model-based nature of the UML tool set offers strong mechanisms to aid
you in creating and maintaining complex models.

There are two different ways of working:

• diagram-centric, where you create your model as you are creating and
editing the diagrams of the model.

• model-centric, where you create your model in the Model View browser
and afterwards define your diagram views.

It is of course also possible to combine these two paradigms.

Diagram-centric workflow

The diagram-centric workflow is well known for users experienced with
graphical languages. An example how this is carried out can look like the fol-
lowing:

• Create a diagram.
• Create the entities in that diagram.
• For the defined entities, create new diagrams that describe these entities

in further detail.

A benefit with this approach is that you have a graphical context when you
create new entities, which makes it easier to get it right.

Model-centric workflow

The model centric workflow is not dependent on the graphical presentations
that may or may not exist for the definitions in a model. Example of work-
flow:

• Define model elements in the model browser.
• New model elements are placed within this model structure.
• Diagrams are created whenever needed or wanted to visualize relevant

parts of the model.
40 Telelogic DOORS Analyst User Guide November 2008

Models and Model Elements
• Visualizing entities in the diagrams is easily done by dragging an element
from the Model View browser to the diagram.

• Model elements may be visualized several times, and in different dia-
gram views.

One consequence of model-based development is that it is sometimes op-
tional to describe entities within diagrams. If completeness of the diagram
representation of the model is important, the tool can be configured to check
for entities that are not represented graphically.

Model element and Presentation element

Model element

When creating a new definition by entering a new name on either a new ob-
ject or an existing object, the tool will recognize that it does not exist in the
model. This will create a new Model element. This model element will be
visible in the Model view of the Workspace window.

Presentation element

A symbol in a diagram is a Presentation element, which is based on a model
element. There can in many cases be any number of presentation elements to
a given model element.

Element properties

Changing properties on a presentation element, like for example the name of
an attribute in a class symbol, this change will also take place in other pre-
sentations of the class. The change has been done on the model element, and
all presentations that show the affected property will be updated.

If you add a new attribute to the class (either in the model browser or in one
of the presented class symbols), this will not automatically appear in all pre-
sentations. The attribute is of course available in the model so that it can be
conveniently added in the class symbols where it is wanted to visualize this
property.

Delete

If you delete an attribute in a class symbol, this will only remove the presen-
tation of the attribute in that symbol.
November 2008 Telelogic DOORS Analyst User Guide 41

Chapter 2: Working with Models
Delete from Model

When you delete the attribute in the Model View, this will delete the model
element for the attribute and subsequently all presentation elements of the at-
tribute will disappear (it is also possible to right-click on a presentation ele-
ment in a diagram and use the shortcut menu command Delete from Model).

If you delete a class that is referenced in other places, for example as an at-
tribute type in other classes, these references will become unbound when the
class is deleted.

Model element

Automatic naming of new elements

When adding new symbols that can define model elements, a default name
is created for the symbol so that the name is unique in the current scope. You
can just start typing (without selecting the text) to change the given name to
your wanted name.

Copying and moving model elements

A model element can be copied and pasted.

If you copy a symbol that references a model element and paste this symbol,
this will just give a new presentation of the existing model element.
Changing the name in one of these two symbols will also change the name in
the other symbol: they are both presentations of the same element.

If you copy a model element in the browser, you can paste this in another
place (here it is a copy of the model element itself). If you paste into the same
scope you will have two conflicting definitions with the same name, some-
thing the checker will report. If you change the name of one of the model el-
ements, the conflict will be resolved.

Just as model elements can be copied, they can also be moved, typically by
dragging from one scope to another.
42 Telelogic DOORS Analyst User Guide November 2008

Models and Model Elements
Text Highlighting

Object Location

In several places in a UML model, it is possible to locate a definition, for ex-
ample by double-clicking an object in the Model View or in an output pane,
or by choosing the Locate command for an object in an output pane. When
this is performed, the correct diagram appears with the definition highlighted
by yellow text background. Alternatively, if there are several possible pre-
sentations of the definition (or none), the Create Presentation is activated.

Name navigation

It is possible to navigate on names by holding CTRL and clicking on non-
gray representations of names with no underline. The tool-tip also indicates
this possibility.

Properties
The complete set of properties of a model element is not always possible to
edit through its presentation elements in diagrams. For this purpose there is
a Properties Editor in which it is possible to view and edit the properties of a
model element. The Properties editor is opened from the shortcut menu
(right-click on an element and point to Properties...), or press ALT +
ENTER.

Model checking

Syntax parse

When you edit text in diagram symbols, if the text is parsed correctly, the text
is added to the model. After that, the text will be written back to the diagram
symbol again based on the model.

Figure 4: Location marker

String<Pid> ListOfServers;

November 2008 Telelogic DOORS Analyst User Guide 43

Chapter 2: Working with Models
This Text parsing is a consequence of the tight model-based approach. In
some cases it will be written to one specific (of several possible) syntax al-
ternative, thus not preserving your exact formatting.

Restore model (F8)

It is possible to restore a model during text editing when the changes are not
found correct by the syntax parser. This is done with the command F8, while
the selection for the syntax error is still active in text edit. This will restore
the text from the model information.

This command should be used with care. It will erase any text that is not
bound to the model, like comments. When the model is first created and no
correct model has been parsed, this command will erase everything.

Name support

There are different ways you can get help from the tool when you want to ref-
erence a definition.

• Create Presentation lets you browse and navigate quickly through your
complete model.

• Name completion
After typing the first letters of the name, for example ca, pressing CTRL
+ SPACEBAR the tool will try to complete the name to an existing
name, for example card. If there are multiple matches a Name comple-
tion scroll menu will open. Some special cases can be identified
– Typing after a period ('.'). Name completion will list candidates

matching the written characters that are local or inherited members
(structural features or event classes) to the type of the left side expres-
sion.

– Typing after a scope qualifier ('::'). Name completion will list candi-
dates that are in the namespace of the left side expression.

• Reference existing
When creating a new symbol (that can define or reference a model ele-
ment) using the Diagram element creation toolbar and pressing the right
mouse button in the diagram, the shortcut menu appears, with a submenu
called Reference existing. This submenu contains a list of all visible def-
initions of the symbol kind, so that the wanted identifier can be chosen.
44 Telelogic DOORS Analyst User Guide November 2008

Models and Diagrams
Checking a part of a model

Select the part in the Model View to be checked. Use Check selection quick
button (in toolbar Analyzing).

Errors and warnings

If any problems are detected during a check of the model, this will be re-
ported in the Check tab in the Output window. Each problem (warnings and
errors) can normally be traced back to its origin, either in a diagram, or in the
Model View browser. This is done by double-clicking the message or by se-
lecting the message and right-click, then choose Locate in the shortcut menu.

Models and Diagrams

Diagrams

Different views of the model

Diagrams are presentations of a model, typically focusing on one particular
aspect and part of the model. One of the powers of UML is the capability to
give different views of a model. This means that model elements are refer-
enced in several places. Normally, this could be a problem when maintaining
the model, but with the strong model-based tool support, all references are
automatically kept up-to-date, that is if properties of a model element
change, these changes will be reflected in all places where the element is ref-
erenced.

Presentation element

Symbols

Symbols are presentation elements that differ from model elements. If a
symbol is deleted, the model element is still present in the model. The model
element will be deleted when one of the following applies:

• the element is deleted in the Model View browser
• the command Delete from Model is performed on the symbol.

If you change the name of an attribute in a class symbol, this change will also
take place in other presentations of the class.
November 2008 Telelogic DOORS Analyst User Guide 45

Chapter 2: Working with Models
If you add a new attribute to the class (either in the model browser or in one
of the presented class symbols), this will not automatically appear in all pre-
sentations. The attribute is of course available in the model so that it can be
conveniently added in the class symbols where it is wanted to visualize this
property.

If you Delete an attribute in a class symbol, this will only remove the presen-
tation of the attribute in that symbol. If you delete the attribute in the Model
View browser, all presentations of the attribute in different class symbols
will disappear.

If you delete the class itself in the Model View browser, the symbols refer-
ring to this class will disappear from all diagrams. If the class is referenced
in other places, for example as an attribute type in other classes, these refer-
ences will become unbound when the class is deleted.
46 Telelogic DOORS Analyst User Guide November 2008

Properties Editor
Properties Editor

Opening the Properties Editor
The Properties Editor is opened by selecting an element in the Model View
or in a diagram, and selecting “Properties...” in the shortcut menu. The Prop-
erties Editor will open as a docked window. Similar to other editors it can be
undocked, or docked at a different location by right-clicking in its title bar.
The Properties Editor will stay open until you close it.

Multiple windows

It is possible to open more than one Properties Editor. This can for example
be useful when comparing the values of properties on different elements. To
enable this you must deactivate Track selection for one of the Properties Ed-
itor windows.

The Properties Editor View
The view of the Properties Editor consists of the following areas from top to
bottom (see Figure 5 on page 48):

• In the top left of the window is shown the selected element, element name
and icon.

• An “Options...” button for setting Properties Editor Options for the cur-
rent window.

• A Filter selection menu that controls which properties of the element that
are displayed.

• A “Stereotypes...” button for controlling which stereotypes that are ap-
plied to the element. The dialog that is opened when pressing this button
is the same as is opened when the “Stereotypes...” menu item is chosen
in the shortcut menu of an element.

• Controls for viewing and editing properties of the element. This area is
dynamically populated with controls based on the edited element and the
selected filter.
November 2008 Telelogic DOORS Analyst User Guide 47

Chapter 2: Working with Models
The Filter list consists of the following items (not necessarily in this order
though):

• Name of the Metaclass of the edited element.
When this item is selected the Properties Editor will display the Metafea-
ture values of the element (see “Different Kinds of Properties” on page
49).

• Name of each stereotype that is applied to the edited element.
This includes both stereotypes with optional (0..1) and non-optional (1)
extension to their metaclass. See “Extensibility” on page 316 for more in-
formation about stereotype extensions. However, hidden stereotypes (a
stereotype which has the <<hidden>> stereotype applied) are not listed.

Figure 5: Properties editor.

Edited element

Options button

Stereotypes button

Filter list

Properties controls
48 Telelogic DOORS Analyst User Guide November 2008

Properties Editor
• “Comment”
When this item is selected the Properties Editor will display the comment
that is attached to the edited element. If no comment is attached, a button
will appear that lets you create a comment for the element. If multiple
comments are attached to the element, the first comment will be dis-
played.

• “All Properties”
When this item is selected the set of properties is not filtered, and the
Properties Editor will display all properties for the edited element. The
order of the property controls will be the same as the order of the corre-
sponding items in the Filter list.

Properties Editor view when selecting an instance

When an instance is selected some of the standard controls of the Properties
Editor view described above no longer make sense, and will therefore be re-
moved:

• The Stereotypes button is removed, because it is not possible to apply ste-
reotypes on instances.

• The Options button is removed, because some options are not applicable
for instances.

• The Filter list is replaced with information about the signature (e.g. a
class) of the instance.

The typical case when you will see this modified Properties Editor view is
when an instance is selected in the Model View, for example a stereotype in-
stance. However, an instance can also be selected when editing a tagged
value for an attribute typed by a structured type, such as a class.

Different Kinds of Properties
There are in principle two different kinds of properties that can be associated
with the selected element, Metafeature values and Tagged values. The Prop-
erties Editor can edit both kinds of properties.

Metafeature values

These are values for the metafeatures of the element’s Metaclass.
The set of metafeatures for an element is fixed (and to some extent dictated
by the UML standard), so it is not possible to add new metafeatures. The ex-
November 2008 Telelogic DOORS Analyst User Guide 49

Chapter 2: Working with Models
isting set of metafeatures can however be filtered so that only values for some
metafeatures are displayed in the Properties Editor.
An example of a metafeature value is the “Active” property of a class.

Tagged values

These are values for attributes of the stereotypes that are applied to the ele-
ment. Contrary to Metafeature values the number of tagged values on an el-
ement can be arbitrary large since it is possible to apply any number of ste-
reotypes on an element and each of these stereotypes may have any number
of attributes.
An example of a tagged value is the “Icon File” property that lets you specify
an icon to be displayed for a symbol. Another example is shown in Figure 9
on page 56.

Properties Editor Options
The Properties Editor Options dialog is reached from the “Options” button of
the Properties Editor, see Figure 6 on page 51. The options that are set in this
dialog only affects the current Properties Editor, and only as long as it stays
open. This means that it is possible to have two different Properties Editors
open each of which uses a different set of options.

Note
Some of the options are also available in the general Options, allowing you
to set and store options for all Properties Editors that are opened. The
values of some options can also be modified using the General Shortcut
Menu of the Properties Editor.
50 Telelogic DOORS Analyst User Guide November 2008

Properties Editor
View

By default the Properties Editor uses the Control View for editing property
values. This view contains controls for editing element properties in form of
check boxes, pull-down menus etc. For Tagged values textual editing in
UML syntax is also possible. This is supported by using the Text View.

Text field values entered in the Control view will be committed to the model
when you leave edit mode for the field.

Property view

The Properties Editor can be customized using a Metamodel. Such a meta-
model controls for example which metafeatures that are available for each
Metaclass, and the Properties Editor will use this information when deciding
which properties to display for an element. See “Customizing the Properties
Editor” on page 58 for more information on how to use metamodels.

Track selection

By default the Properties Editor will show properties for the element that is
selected in the Model View or in the diagrams. Sometimes it is useful to turn
off this selection tracking to be able to compare the properties of two dif-

Figure 6: Options dialog for Properties editor.
November 2008 Telelogic DOORS Analyst User Guide 51

Chapter 2: Working with Models
ferent elements. This is done by opening the Properties editor for the element
you want to be fixed. Then point to the Options... button and in the dialog
make sure that Track selection is not selected. Now you can open another
Properties editor for any other element, this new properties window will then
track your selection in the model.

Edit properties of symbols/lines

If a symbol or line is selected the Properties Editor will by default show the
properties for the model element that corresponds to that symbol or line. In
order to show the properties of the selected symbol or line instead this option
should be selected.

For example, if a class symbol is selected, the Properties Editor will normally
show the properties for the corresponding class. However, if the Edit prop-
erties of symbols/lines option is set, the properties for the class symbol will
be shown instead.

Preferred filter

This option controls which filter item that is the preferred when a new ele-
ment is selected. Available items are Metaclass, Stereotype, Comment and
All Properties. The option will take effect the next time the edited item is
changed.

General Shortcut Menu
The Properties Editor has a shortcut menu that will appear if the right mouse
button is clicked in the editor view outside a control. The menu is shown in
Figure 7 on page 52.

Figure 7: Shortcut menu in Properties editor.
52 Telelogic DOORS Analyst User Guide November 2008

Properties Editor
Update View

Refreshes the Properties Editor view. The Properties Editor will normally
update its view automatically if values are changed from outside the Proper-
ties Editor. However, there are situations when it is necessary to force an up-
date, for example if new attributes are added to an applied stereotype whose
attribute values are currently displayed, or if the active property Metamodel
is changed when the Properties Editor stays open.

View

This menu item is a shortcut for the corresponding option in the Options di-
alog, see “Properties Editor Options” on page 50.

Track Selection

This menu item is a shortcut for the corresponding option in the Options di-
alog, see “Properties Editor Options” on page 50.

Delete Instance

This menu item is available when editing Tagged values for one single ap-
plied stereotype. It will delete the entire stereotype instance, effectively re-
moving all tagged values contained in that instance. It can be seen as a
shortcut for opening the “Stereotypes” dialog and removing the edited ste-
reotype from the list of applied stereotypes.

Delete All Values

This menu item will delete the values of all displayed properties. Those prop-
erties that have a default value will obtain that value, others will be unspeci-
fied. In the case of editing Tagged values, this menu item will remove all
tagged values, but keep the applied stereotype instance.

Goto Owner

This is a convenient shortcut for going to the property page of the edited el-
ement’s owner. For example, if the properties of a class attribute is edited,
“Goto Owner” will display the properties for the attribute’s owner, i.e. the
class.
November 2008 Telelogic DOORS Analyst User Guide 53

Chapter 2: Working with Models
Note
Some menu items of the Properties Editor shortcut menu are not available
when an instance is selected for editing.

Control Shortcut Menu
There is also a shortcut menu for each property control. The exact contents
of this menu depends on the kind of property control. For example the edit
controls have the standard Cut/Copy/Paste menu items. The menu items
shown in Figure 8 on page 54 are common for all property controls.

Delete Value

This menu item will delete the value of the property control. If the property
has a default value, it will obtain that default value, otherwise it will get an
unspecified value.

Goto Value

The list controls may show a value that is a list of other elements in the
model. For such controls the Goto Value menu item will navigate to the se-
lected element of the list.

For example, most elements have a Comments list which display the list of
all comments that are attached to the edited element. If one of these com-
ments are selected, the Goto Value menu item will be enabled and if chosen
the Properties Editor will display the properties of the selected Comment in-
stead (it typically just has one property - the comment text).

What’s This?

If the attribute that corresponds to the property control (i.e. an attribute in a
stereotype or in a Metaclass) has a comment attached, this menu item will be
enabled. If chosen, that comment will be displayed in a tool tip. Stereotype

Figure 8: Property control, shortcut menu example.
54 Telelogic DOORS Analyst User Guide November 2008

Properties Editor
and Metamodel designers should use the possibility to add comments to ste-
reotype and metaclass attributes in order to help the user of the stereotype or
metaclass to know which value that should be entered in the property control.

For certain controls (for example those showing Metafeature values) a stan-
dard What’s This? text may be displayed even if the attribute has no com-
ment attached. Such a text appears when the value to be entered in the control
is text that is translated into model elements. The tool tip then displays the
kind of text that should be entered into the control. For example, if a UML
expression should be entered in the control the tool tip may say “Expression”.

Color Codes
When editing Tagged values (i.e. not Metafeature values) the Properties Ed-
itor uses a color coding scheme for showing the status of a tagged value.

A tagged value that has been specified explicitly in the applied stereotype in-
stance is indicated by displaying the property control in a white color.

A tagged value that is unspecified in the stereotype instance, but for which
the corresponding stereotype attribute has a default value, is indicated by dis-
playing the property control in a green color.

A tagged value that is unspecified in the stereotype instance, and for which
the corresponding stereotype attribute has no default value specified, is indi-
cated by displaying the property control in a yellow color.

These color codes should be used by the designer of a stereotype, to express
the intent of the stereotype attributes to the user of the stereotype. A green
value signals that it is optional to specify a value for the attribute, since there
is an appropriate default value. A yellow value signals that the user should
specify a value, since no appropriate default value is available for that partic-
ular attribute.

Example 2: Stereotype with colored attribute fields –––––––––––––––––––––––––

Consider a stereotype with three attributes. In Figure 9 on page 56 the stereo-
type MyStereo is applied to a class X. The user specifies a value for the
second attribute, thus the color for this field will change from yellow to
white.
November 2008 Telelogic DOORS Analyst User Guide 55

Chapter 2: Working with Models
–––

Another colorization that is used is to show whether the text of a control con-
tains a syntax error. Such syntax checks are made for all controls whose text
must comply with the U2 textual syntax grammar. Text containing a syntax
error will be shown in red, while correct text will be black. If you leave ed-
iting while the text for such a control is red, the value will go back to its pre-
viously correct value. This colorization is thus a help to avoid accidentally
loosing information while editing.

Example 3: Syntax error colorization in the Properties Editor ––––––––––––––––

The ‘Realizes’ metafeature of a Port expects a list of identifiers. The current
text (see Figure 10 on page 57) for the metafeature contains a syntax error
since ‘signal’ is a UML keyword. Hence, if leaving edit mode now, that value
will go back to the previously correct value (whatever that is).

Figure 9: Stereotype with attributes.
56 Telelogic DOORS Analyst User Guide November 2008

Properties Editor
–––

Figure 10: Correct and incorrect metafeature values.
November 2008 Telelogic DOORS Analyst User Guide 57

Chapter 2: Working with Models
Customizing the Properties Editor
When designing a stereotype to be applied to an element, two user roles can
be identified; the designer of the stereotype who decides which attributes the
stereotype shall have, and the user of the stereotype who applies it to an ele-
ment and specifies Tagged values for the stereotype attributes. Although
these roles could be possessed by the same individual it is very common that
the designer and the user of a stereotype are two different people.

This section will address the designer role, describing how to design a new
stereotype or Metaclass. This also includes how to utilize the various possi-
bilities for customizing the Properties Editor to edit instances of these stereo-
types and metaclasses in the way the designer wants.

The Properties Editor uses a profile to control most of its customization,
called the TTDExtensionManagement Profile, and is available in the Library
folder of any model.

Designing a Stereotype
The following steps should be taken in order to design a stereotype for use
with the Properties Editor:

• Decide where to place the definition of the new stereotype. If the stereo-
type is only intended to be used locally within the current project, it could
be added in the same file as the elements on which it should be applied.
However, it is typical that a stereotype shall be used in multiple projects,
and then it should be placed in a package that is stored in a file of its own.
Such a reusable package with stereotypes is typically a so called profile
package. See “Add-Ins” on page 1987 for more information on how to
load such a package as a library in the tool.

• Give the stereotype a good name. The name of the stereotype will appear
in the Stereotypes dialog, in the filter list of the Properties Editor and in
some symbols in the diagrams. Sometimes it can be useful to use the
TTDExtensionManagement::instancePresentation stereotype in
order to specify a more user-friendly display name for the stereotype.
Such a specified display name will be shown in the Stereotypes dialog
and in the filter list of the Properties Editor. See “TTDExtensionManage-
ment Profile” on page 63 for more information.
58 Telelogic DOORS Analyst User Guide November 2008

Customizing the Properties Editor
• Make a comment for the stereotype. This comment should describe the
purpose of the stereotype, any constraints on elements onto which it can
be applied and so on. The comment will be displayed at the bottom of the
Stereotypes dialog, when the stereotype is selected. It will also be dis-
played as a tool tip for presentations of the stereotype.

• Add attributes with appropriate types and multiplicities to the stereo-
types. A stereotype attribute may have any type and Multiplicity, but you
should be aware of the subset of types and multiplicities that are sup-
ported by the Properties Editor when using its Control View for editing.
If an attribute has a non-supported type or multiplicity, values for that at-
tribute cannot be edited in the Control View. Instead the Text View has
to be used.

The table below specifies the supported combinations of types and multiplic-
ities, and which graphical control that will be used in each case. See also the
table in section “Designing a Metaclass” on page 61 in Chapter 2, Working
with Models for a listing of the supported combinations of types and multi-
plicities that are applicable for attributes in metaclasses only.

Attribute type and multiplicity Property control

Boolean
Single multiplicity

CheckBox

Charstring
Single multiplicity

EditControl

Charstring
Non-single multiplicity

EditList

Enumeration
Single multiplicity

DropDownMenu
(one item for each literal)

Enumeration
Non-single multiplicity

CheckBoxList
(one check box for each lit-
eral)

Structured type (e.g. a class)
Non-optional, single multiplicity (1)
Attribute is a part (composition)

Group
(with one subcontrol for
each attribute of the struc-
tured type)
November 2008 Telelogic DOORS Analyst User Guide 59

Chapter 2: Working with Models
Naturally, a syntype of any of the above mentioned types are also supported.

• In case the default control for an attribute is not appropriate you may
apply the TTDExtensionManagement::extensionPresentation ste-
reotype to an attribute, specifying a custom control as a tagged value. See
“TTDExtensionManagement Profile” on page 63 for more information.

• It is possible to add additional “non-value” controls to the property page
of the stereotype. For example you could add a static text or a button to
the property page. This is done by applying the
TTDExtensionManagement::instancePresentation stereotype to
the stereotype and specifying the additional controls as Tagged values for
the nonValueControls attribute.

• Use the possibility to attach a comment to each stereotype attribute. The
comment text will be visible to the user of the stereotype in the What’s
This shortcut menu item on the control that corresponds to the attribute.

• Consider the possibility of using inheritance between stereotypes. The
property page for the derived stereotype will include all base stereotype
attributes followed by the attributes of the derived stereotype.

Structured type (e.g. a class)
Optional, single multiplicity (0..1)

InstanceEditControl

Structured type (e.g. a class)
Non-single multiplicity

InstanceEditList

Metaclass type
Single multiplicity
Reference

DropDownMenu
(one item for each visible
definition of the metaclass)

Metaclass type
Non-single multiplicity
Reference

EditControl

All other types
Single multiplicity

EditControl (expecting a U2
expression)

All other types
Non-single multiplicity

EditControl (expecting a
comma-separated list of U2
expressions)

Attribute type and multiplicity Property control
60 Telelogic DOORS Analyst User Guide November 2008

Customizing the Properties Editor
• Specify the kind of elements onto which the stereotype shall be appli-
cable. This is done by establishing an Extension between the stereotype
and a Metaclass. The meaning of this is that the stereotype will be appli-
cable to all elements of the specified metaclass. The UML semantics state
that if a stereotype lacks extensions, it cannot be applied to any kind of
element.
If you want the stereotype to be automatically available for all instances
of the extended metaclass, you should make the extension non-optional
(type “1” on the extension line). Thereby the stereotype will be available
in the filter list of the Properties Editor without first having to apply it to
the edited element.
If you want the stereotype to be manually applied, you should make the
extension optional (type “0..1” on the extension line).
It is allowed to use multiple extensions. The stereotype will be available
for all elements that is of any of the specified metaclasses.

Now you are ready to test the new stereotype. Create an element of the cor-
rect kind, i.e. an element of a metaclass that is extended by the stereotype.
Make sure the stereotype is visible from the location of the created element.
Open the Properties Editor on the created element and take a look at the prop-
erty page for the new stereotype. If you specified an optional extension you
should first apply the stereotype, using the “Stereotypes...” button.

Designing a Metaclass
The process of designing a Metaclass is almost the same as when designing
a stereotype. The main difference is how to specify the elements for which
the metaclass shall be available in the Properties Editor. For a metaclass this
is done by applying the <<metaclass>> stereotype to the class that describes
the metaclass. It is in fact this step that makes it a metaclass instead of an or-
dinary class. The tagged value for the base attribute shall specify the name
of the built-in UML metaclass on which the new metaclass shall be based.
November 2008 Telelogic DOORS Analyst User Guide 61

Chapter 2: Working with Models
Note
A good starting point for learning how to design a metaclass, is to study the
TTDMetamodel profile that is available as a library in all models. Here you
can find information about the names of the built-in metaclasses and
metafeatures to be used as base for your own metaclasses and their at-
tributes. You can also see example of use of the TTDExtensionManagement
Profile for customizing the Properties Editor for elements of the specified
metaclasses.
It is TTDMetamodel that is referred to as “Standard Property View” in the
Options dialog of the Properties Editor.

In contrast to a stereotype it is not possible for a metaclass to specify plain
new attributes. All attributes of a metaclass must be based on already existing
metafeatures of the base metaclass. This is done by applying the
metafeature stereotype to the metaclass attributes. If the name of the meta-
class attribute is the same as the name of the corresponding metafeature, the
base tagged value can be omitted. Otherwise it has to be specified.

Note
The careful user will find some metaclass attributes in TTDMetamodel
which do not correspond to metafeatures of the base metaclass. These are
so called query features, and they use the <<queryFeature>> stereotype to
specify a query agent that computes entities from the model. Query features
are not displayed in the Properties Editor - only in Model View.

The table below specifies the supported combinations of types and multiplic-
ities that are applicable for attributes in metaclasses only, and which graph-
ical control that will be used in each case. Compare with the table in section
Designing a Stereotype for a listing of combinations that are valid for all Ste-
reotype attributes.

Attribute type and multiplicity Property control

Metaclass type
Single multiplicity
Composition

EditControl

Metaclass type
Non-single multiplicity
Composition

EntityList
62 Telelogic DOORS Analyst User Guide November 2008

TTDExtensionManagement Profile
When your new metaclass is ready you will have to place it in a package and
store the package in a file of its own. The predefined stereotype
<<propertyModel>> should be applied on the package. Then you should
follow the normal procedure for writing Add-Ins that loads the profile. When
the profile has been loaded you can use the “Options...” button of the Prop-
erties Editor to specify the profile package as the property view to use with
the Properties Editor.

TTDExtensionManagement Profile
The TTDExtensionManagement profile contains stereotypes and classes that
allows you to customize the property pages for your own stereotypes and
metaclasses. Here are the details of this profile, and also some examples of
how to use it.

Stereotypes

The profile contains three stereotypes that are relevant for the Properties Ed-
itor: instancePresentation, extensionPresentation and
filterStereotypes.

instancePresentation
The instancePresentation stereotype may be applied on a stereotype or
Metaclass to customize how instances of the stereotype or metaclass will be
presented in the Properties Editor.
November 2008 Telelogic DOORS Analyst User Guide 63

Chapter 2: Working with Models
displayName: Charstring

This attribute specifies the display name of instances of the stereotype or
metaclass. It is used in the filter list of the Properties Editor and in the Ste-
reotypes dialog. It is also used in some other places in the tool, such as in tool
tips and in the Model View.

If no tagged value is specified for this attribute, the name of the stereotype or
metaclass will be used as display name.

pagePriority: Real

This attribute controls the relative order of two stereotype instances in the
filter list of the Properties Editor and in the property page (if the All Proper-
ties filter is used). An instance of a stereotype with a higher page priority will
be placed before an instance of a stereotype with a lower page priority
number. Any specified page priority is considered to be a higher priority
value than an unspecified page priority.

Figure 11: The <<instancePresentation>> stereotype

Control

+ nonValueControls0..*

<<stereotype>>

instancePresentation
displayName : Charstring
pagePriority : Real

0..1

<<metaclass>>

::TTDMetamodel::Signature
64 Telelogic DOORS Analyst User Guide November 2008

TTDExtensionManagement Profile
Note
If you want to specify a page priority you must use a single numeric value.
More complex expressions will not be evaluated.

nonValueControls: Control[*]

This attribute specifies a list of “non-value” controls, i.e. controls in a prop-
erty page that do not correspond to a particular attribute. Examples of such
controls are “adornments” such as static texts, but it could also be controls
with some behavior, such as a Button.

extensionPresentation
The extensionPresentation stereotype (Figure 12 on page 65) may be
applied on an attribute of a stereotype or a Metaclass to customize how the
Properties Editor will draw the control that corresponds to that attribute.

Figure 12: The <<extensionPresentation>> stereotype

Control

+ control0..1

<<stereotype>>

extensionPresentation
+isVisible :Boolean =true
+translator : Translator

0..1

<<metaclass>>

::TTDMetamodel::StructuralFeature
November 2008 Telelogic DOORS Analyst User Guide 65

Chapter 2: Working with Models
isVisible: Boolean

This attribute controls whether the control for the attribute shall be visible on
the property page or not. You may set its value to false in order to hide the
control for an attribute completely.

translator: Translator

This attribute is used exclusively for parts typed by a metaclass. As men-
tioned in “Designing a Metaclass” on page 61 the Properties Editor uses an
EditControl (in case of single multiplicity) or an EntityList (in case of non-
single multiplicity) as the control for such an attribute. Since the text that is
entered into these controls in this case is UML textual syntax, a parser (trans-
lator) is needed to interpret the text. The Translator enumeration contains one
literal for each available entry point of the UML grammar. Although the
Translator enumeration resides in a hidden (internal) profile, you can find out
the names of its literals with the following procedure:

• Create an enumeration symbol in a class diagram by right-clicking and
choosing Reference existing.

• In the list that appears, select the U2ParserProfile::Translator.
• Right-click on the enumeration symbol and choose “Show Literals” from

the Show/Hide submenu.
Note

Use the List References command (available in the shortcut menu) to find
out how the Translator literals are used in the TTDMetamodel profile. For
example, listing the references for the literal PEP_Multiplicity shows that it
is used as the translator of the StructuralFeature::Multiplicity attribute.
Thus, this translator is used for parsing the multiplicity syntax of UML.

control: Control[0..1]

As mentioned in “Designing a Stereotype” on page 58 the Properties Editor
uses a default control based on the type and multiplicity, and sometimes also
the aggregation kind, of an attribute. The control attribute makes it possible
to specify that a non-default control shall be used for an attribute, or that
some properties of the default control should be changed.

Example 4: Specifying a custom control using the Text View––––––––––––––––––

extensionPresentation(.
control = EditControl(.
66 Telelogic DOORS Analyst User Guide November 2008

TTDExtensionManagement Profile
text = "My Control",
autoLayout = GrowRight

.)
.)

–––

The Control class is an abstract class with one derived class for each control
that is supported by the Properties Editor.

filterStereotypes
The filterStereotypes stereotype may be applied on a package to reduce
the number of stereotypes that will be shown in the Properties Editor when
an element in that package is selected.

appliedProfile: Package[*]

If this list of profile packages is specified, the Properties Editor and the Ste-
reotypes dialog will only show stereotypes defined in these packages for a se-
lected element in the package on which the filterStereotypes stereotype
is applied.

Figure 13: The <<filterStereotypes>> stereotype

<<stereotype,instancePresentation>>

filterStereotypes
<<stereotype,instancePresentation>>

filterStereotypes

<<metaclass,browserNode>>

::TTDMetamodel::Package
<<metaclass,browserNode>>

::TTDMetamodel::Package

0..10..1

appliedProfile
0..*

0..*

November 2008 Telelogic DOORS Analyst User Guide 67

Chapter 2: Working with Models
Control model
The TTDExtensionManagement profile contains a number of Control
classes representing graphical controls used by the Properties Editor. See the
class diagram Controls for an overview of all available control classes.

Control

The Control class is a common base class for all control classes.

text: Charstring

This attribute controls which caption to use for the control. If it is left unspec-
ified, the caption will be the name of the edited stereotype or metaclass at-
tribute.

isEnabled: Boolean

By default a control will be enabled, meaning that it can be used for editing
the displayed value. If this attribute is set to false, the control will instead be
disabled. In some situations the Properties Editor will force a control to be
disabled, regardless of the value for this attribute. This happens if the file that
contains the edited element is read-only, and also for attributes that are de-
rived.

onEnable: Operation

This attribute can be used to give a dynamic condition for when a control
shall be enabled. If an agent operation is specified here it will be called each
time the Properties Editor needs to decide whether the control shall be en-
abled or not. The model context of the agent call is the edited element. The
call has the following parameters:

• [out] enable : Boolean

The agent should set this out parameter to false if the control shall be dis-
abled. By default the control will be enabled.

• stereotypeInstance : Entity

The stereotype instance that is edited in the property page containing the
control. This parameter is only passed when the edited instance is a ste-
reotype instance.

Note
When isEnabled is false the onEnable agent will not be invoked.
68 Telelogic DOORS Analyst User Guide November 2008

TTDExtensionManagement Profile
See also

“Agents” on page 2025 in Chapter 75, Agents

Button

The Button class represents a button that can be pushed. It is not used for
editing a value, but can be used as a non-value control on a property page.
CheckBox is a special kind of button, a toggle box control, which can be used
to edit boolean values.

onClicked: Operation

This attribute can be used to specify some behavior to be executed when the
button is clicked. It may specify an agent operation, which will be invoked
when the button is clicked. The model context of the agent call is the edited
element. There are no parameters in the agent call.

EditControl

An EditControl can be used for editing string values. There are two spe-
cialized versions of the class that can be used when the edited string is a di-
rectory name or a filename. They will add a browse button [...] for opening a
directory or file selection dialog, as an alternative for manually typing the
name in the control.

There is also a special kind of EditControl called InstanceEditControl. It
is used for editing instances (for example instances of classes). The instance
is shown using textual syntax in the control, but to edit the instance there is
a browse button [...] which will bring up another Property Editor for editing
the selected instance.

isMultiLine: Boolean

By default an edit control shows exactly one line of text. By setting this at-
tribute to true, the control will enable multiline editing. In order to see more
than one line of text at the same time, the vertical size of the control may have
to be extended. See PositionedControl for more information on how to do
this.
November 2008 Telelogic DOORS Analyst User Guide 69

Chapter 2: Working with Models
EditList

An EditList control can be used to edit lists of strings. The control contains
buttons for creating a new string in the list and for deleting a selected string
from the list. There are also two buttons for moving a selected string up or
down in the list. A string can also be moved by drag and drop in the list di-
rectly.

There are two specialized versions of EditList that can be used when the ed-
ited strings are directory or file names. They are called DirectoryEditList
and FileEditList and will add a browse button [...] for opening a directory
or file selection dialog, as an alternative for manually typing the name in the
control.

There is also a special kind of EditList known as an EntityList, that can be
used as the control for metaclass attributes (i.e. metafeatures) that are com-
positions typed by another metaclass. Each edited item in an EntityList is
thus an element in the model. The string displayed in the control for such an
element is its textual UML syntax.

Another special kind of EditList is the InstanceEditList which is used for
editing a list of instances (for example instances of classes). The instances are
shown using textual syntax in the control (one instance on each line). To edit
one of the instance double-click on it, and press the browse button [...] which
appears. Doing so will bring up another Property Editor for editing the se-
lected instance.

Figure 14: An EditList control with buttons for creating, deleting and moving strings.
70 Telelogic DOORS Analyst User Guide November 2008

TTDExtensionManagement Profile
StaticText

A StaticText is a non-value control that can be used as an adornment in a
property page. It can for example be useful to add a static text for giving in-
structions to the Properties Editor user on how to specify values in the sup-
plied controls.

EnumeratedList

This is an abstract class that is the common base for controls that edit lists of
enumerated elements. There are two concrete specializations of this class;
DropDownMenu and CheckBoxList.

items: Charstring[*]

If an enumerated list is used as the control for an attribute that is typed by an
enumeration, it will contain one item for each literal of the enumeration. The
name of each item will by default be the name of the corresponding literal.
However, by specifying a list of strings as the value of the items attribute
the names of the list items can be customized.

DropDownMenu

A DropDownMenu is a list of items edited in a drop down menu.

isEditable: Boolean

By default the user can only select one of the existing items from a drop down
menu. By setting this attribute to true, the drop down menu will be editable,
allowing the user to type the name of the item manually.

CheckBoxList

A CheckBoxList is a list of items edited in a list of check boxes. Hence this
control allows multiple list items to be selected.

Group

A Group is just a container control that can contain other controls. It is typi-
cally used as the control for a part attribute of multiplicity 1 typed by a struc-
tured type. There is then one contained subcontrol for each attribute of the
structured type.
November 2008 Telelogic DOORS Analyst User Guide 71

Chapter 2: Working with Models
ColorControl

A ColorControl can be used for attributes of integral type. The value of
such a control is interpreted as a color reference, with three components;
Red, Green and Blue (RGB).

The color value can either be edited using a standard color picker dialog
(opened by clicking on the arrow button), or the RGB value can be typed di-
rectly using the syntax RGB(<red>, <green>, <blue>).

QueryControl

A QueryControl has a similar appearance as a DropDownMenu, but instead
of having a fixed list of entities, the list is dynamically populated by exe-
cuting a query (see Queries). The value of the control is a reference to the en-
tity that is selected from the query result.

query: Operation

This attribute is a reference to the query agent to execute in order to populate
the list.

Figure 15: A ColorControl with green color as value

Figure 16: QueryControl definition

QueryControl

<<primitive>>
::Predefined::OperationReference

'query'1

'query'1
72 Telelogic DOORS Analyst User Guide November 2008

TTDExtensionManagement Profile
NavigationButton

A NavigationButton can be used as the control for metafeatures of single
multiplicity that are typed by a metaclass. This means that the value of the
control is a reference to another entity in the model. When the button is
pressed the property page for that entity is shown.

Navigation buttons can be used when there is a relationship between two en-
tities in a model to make it easier to reach the property page for one of the
entities from the property page of the other entity.

GotoOwnerButton

A GotoOwnerButton is a special kind of NavigationButton which always
performs navigation to the composition owner of the edited element.

ValueControl

Some control classes inherit the ValueControl class, representing controls
that can display and edit a value.

value: Charstring

This attribute is used internally by the Properties Editor to hold a representa-
tion of the control’s value. However, it can also be explicitly specified to
force a control to always show a particular value.

onNewValue: Operation

Figure 17: ValueControl classes

ValueControl

+ 'value' :
Charstring

onNewValue

onNewValue

<<primitive>>
::Predefined::OperationReference

//
A control that may contain a value
(encoded as a character string). The 'onNewValue'
operation (agent) gets invoked each time the
control changes value. It can for example be used
to validate the value, or propagate it to another
control.

November 2008 Telelogic DOORS Analyst User Guide 73

Chapter 2: Working with Models
This attribute specifies an agent operation which will be invoked each time
the control gets a new value. It can be used as a means for validating the en-
tered value of a control, or to propagate a value to another control. The agent
will be called just before the new value is set, with the edited element as its
model context, and with the following parameters:

• attribute : Entity

The edited attribute (stereotype or Metaclass attribute)
• newValue : Entity

The new value to be set to the control.
• stereotypeInstance : Entity

If the edited attribute is a stereotype attribute, this parameter is the ste-
reotype instance that is about to be modified. Otherwise this parameter is
not passed.

PositionedControl

The PositionedControl class represents those properties of a control that
are related to its graphical position and size. By default the Properties Editor
applies a simple kind of autolayout for determining where a control shall be
positioned. Attributes will be positioned left aligned and top-down, and au-
tolayout position for a control is calculated relative to the preceding control.
The attributes of the PositionedControl class makes it possible to customize
this layout to some extent.

x: Integer

Specify a value for this attribute to override the default horizontal position of
the control.

y: Integer

Figure 18: PositionedControl.

PositionedControl
+ x : Integer
+ y : Integer
+ width : Integer
+ height : Integer
+ autoLayout : AutoLayoutKind [0..1]
74 Telelogic DOORS Analyst User Guide November 2008

TTDExtensionManagement Profile
Specify a value for this attribute to override the default vertical position of
the control.

Note
To override the default placement of a control you must give a value both
for the x and y attributes. The position you give to a control will affect a suc-
ceeding control that uses default layout.

width: Integer

Specify a value for this attribute to override the default width of the control.

height: Integer

Specify a value for this attribute to override the default height of the control.

autoLayout: AutoLayoutKind

This attribute specifies an option to the autolayout algorithm that decides
how a control is affected by resizing the Properties Editor window. The fol-
lowing values can be used for this attribute:

• GrowRight

The size of the control grows at its right side when the size of the Prop-
erties Editor window is increased. This is the default behaviour for most
controls.

• GrowBottom

The size of the control grows at its bottom side when the size of the Prop-
erties Editor window is increased.

• GrowRightAndBottom

This size of the control grows at both its right and bottom sides when the
size of the Properties Editor window is increased.
November 2008 Telelogic DOORS Analyst User Guide 75

Chapter 2: Working with Models
Create Presentation
The Create Presentation dialog provides a natural entry point to models, as
an alternative to using the New command to Create diagrams from the Model
View. This dialog is opened from the shortcut menu of any element.

Create Presentation dialog

The Create Presentation dialog has a title and a set of tabs. The dialog title
shows the type and name of the current entity that the Create Presentation is
focused on. The tabs each contain a tab description and a list of alternatives.

A click on an alternative in a tab closes the dialog, creates model elements,
symbols, lines or diagrams as needed, and navigates to them.

New Symbol

With the New Symbol tab, you can create a symbol for the current entity ei-
ther in an existing diagram or create a new diagram containing a presentation
element for the entity.

New Diagram

The New Diagram tab follows the Model View creation rules. From this tab
you may create a diagram below the current entity. This is equivalent to using
the Model View shortcut menu New for creating diagrams.

Location column

The location of the alternative in the model.

Diagram Name column

Name of the alternative.

Item Type column, Diagram Type column

The type of the described entity. For instance: Class, ClassSymbol or
ClassDiagram.
76 Telelogic DOORS Analyst User Guide November 2008

Create Presentation
See also

“Model navigation/creation” on page 78

“Add symbols” on page 119 in Chapter 3, Working with Diagrams
November 2008 Telelogic DOORS Analyst User Guide 77

Chapter 2: Working with Models
Model Navigator
The Model Navigator is a tab, named Navigate, in the Output window that
allows you to browse and navigate through various aspects of any entity in a
model.

The key purpose of the Model Navigator is to provide a natural and powerful
tool for navigation in the model. While the Model View displays the model
based on a hierarchical scope view, the Model Navigator has a number of dif-
ferent views allowing you to cross-examine the model based on the model’s
internal relations.

The model navigator also allows you to:

• Select and display diagrams.
• Navigate to a symbol or line representing the current entity.
• Take navigation shortcuts to entities related to the current entity.

If you select Model Navigator from the Model View shortcut menu or an ed-
itor shortcut menu, then the Model Navigator will be opened.

Model navigation/creation

When you double-click an element in a diagram or in the Model view a
model navigation/creation will be activated

• If there is any presentation element representing the double-clicked ele-
ment the diagram with this element will become active and the Navigate
tab will be activated.

• If there is no presentation element representing the double-clicked ele-
ment the Create Presentation dialog will be opened.

Model navigator tabs
The Model Navigator tab itself has a set of tabs. These tabs each contain a
tab description and a list of alternatives. The set of tabs depends on the cur-
rent entity. The start tab in the window will be selected by using the fol-
lowing criteria:

• Latest used tab
• Highest priority of applicable tabs
78 Telelogic DOORS Analyst User Guide November 2008

Model Navigator
Column widths may be resized by dragging the vertical bar to the right of
each column header.

Sorting

Alternatives in tab lists are initially sorted in ascending order based on the
name column. For tabs without a name column, the type or index number
column is used instead.

Manual sorting is done by clicking on a column header. Repeated clicks will
reverse the sort order.

Tab categories
The Model Navigator tabs can be categorized into two main groups:

• Tabs that show the alternative in the Model View or in a diagram. In this
group you find the Presentation tabs and the Links tab.

• Tabs that refocuses (on CTRL + click) the Model Navigator on a new
model element. This type of tabs are called Entity tabs.

Below, you will find more information on the different tab groups.

• Presentation tabs
A click on an alternative in a presentation tab navigates to a symbol or
line in a diagram (the Symbols tab), or to a diagram itself (the Diagrams
tab).

• The Links tab
A click on an alternative in the Links tab closes the dialog and navigates
to the other link endpoint.

• Entity tabs
On CTRL + click on an alternative in an entity tab the Model Navigator
refocuses on the clicked alternative, which becomes the new current en-
tity. The new current entity is selected in the Model View, if possible. In
this category, you find the Package, Features, Bookmarks, Definitions,
Shortcuts, References, Model Index and Recent tabs.

The Model Navigator tabs are ordered according to the table below.
November 2008 Telelogic DOORS Analyst User Guide 79

Chapter 2: Working with Models
Navigation
Double-clicking on an alternative will show the alternative in both the Model
View and a diagram (if this is possible to do).

Holding down CTRL while you click or double-click will refocus the model
navigator on the clicked alternative, as well as show the alternative in both
the Model View and a diagram (if this is possible to do).

Holding down SHIFT while you click or double-click will show the alterna-
tive only in the Model View, not in a diagram.

The tab and alternative shortcut menus in the Model Navigator contain a list
of recent Model Navigator entities. This list allows you to refocus the Model
Navigator on an entity that recently has been the current Model Navigator en-
tity.

Presentation tabs

Symbols

The Symbols tab shows symbols and lines related to the current entity.

Priority Tab name Category

1 Symbols Presentation

2 Diagrams Presentation

3 Links Link

4 Package Entity

5 Features Entity

6 Bookmarks Entity

7 Definitions Entity

8 Shortcuts Entity

9 References Entity

10 Model Index Entity

11 Recent Entity
80 Telelogic DOORS Analyst User Guide November 2008

Model Navigator
Diagrams

The Diagrams tab shows diagrams closely related to the current entity.

Links
The Links tab contains a list of incoming and outgoing hyperlinks for the cur-
rent entity. Click on a link to navigate to the other link endpoint associated
with the link.

Entity tabs

Package

The Package tab shows a complete list of definitions visible in the package
containing the current entity.

Features

If the current entity is a class or something similar (more precisely: If the cur-
rent entity is a Classifier or is contained in a Classifier), then the Features tab
lists the definitions in that class, together with any inherited definitions.

Definitions

The Definitions tab shows a complete list of local and inherited definitions
in the scope of the current entity.

References

The References tab will list Model references to the current Definition, for
quick navigation to the places where the Definition is used. This information
is similar to the Model View shortcut menu choice List references.

Shortcuts

The Shortcuts tab provides quick navigation through some commonly used
relationships of a model. The most common shortcuts are described in the
text about the Shortcut column.
November 2008 Telelogic DOORS Analyst User Guide 81

Chapter 2: Working with Models
Bookmarks

The Bookmarks tab provides a method for setting and navigating through
bookmarks, to select places in the model that you anticipate re-visiting. The
contents of this tab will only be persistent over the current tool session.
Adding and removing items from the list is done by clicking on the Add/Re-
move and Remove all bookmarks rows in the list.

From the shortcut menu for any model element in the Model View you can
choose Bookmark to add the selected element to this list.

Model Index

The Model Index tab contains an alphabetical list of all definitions in the
model with the exception of unnamed parameters (return parameters). See
also description of the Find dialog.

Recent

The Recent tab keeps track of entities that the Model Navigator has been fo-
cused on, allowing you to refocus the Model Navigator on any of your re-
cently visited entities. You can as an alternative to this tab use the shortcut
menu, which contains the 5 most recent Model Navigator entities.

Columns
Below is a list of the columns appearing in the Model Navigator and a short
description of the listed information.

Index column

This column can be found in the Recent tab and in the Bookmarks tab. It con-
tains numbers indicating the order that entities were visited in. A lower
number means a more recently visited entity.

Links column

The number of incoming and outgoing links to and from the current entity.

Location column

The location of the alternative in the model.
82 Telelogic DOORS Analyst User Guide November 2008

Model Navigator
Name column, Diagram Name column

Name of the alternative.

Page column

The diagram page number. This column can be found in the Diagrams tab.

Role column

The role the current entity plays in the listed reference. This column can be
found in the References tab.

Shortcut column

This column contains a list of shortcuts from the current entity to various re-
lated entities. This column can be found in the Shortcuts tab. Here are a
couple of examples on shortcuts that may appear in the Shortcut column:

• The Scope shortcut: Refocus the Model Navigator on the scope entity
that contains the current entity.

• The Container shortcut: Refocus on the entity that owns the current en-
tity.

• The Model Root shortcut: Refocus on the model root for the current en-
tity. This shortcut is especially useful when having a workspace with
more than one model.

• The Predefined Package shortcut: Refocus on the internal library of pre-
defined types.

Type column, Item Type column, Diagram Type column

The type of the described entity. For instance: Class, ClassSymbol or
ClassDiagram.

Views column

Number of symbols and lines representing the current definition.
November 2008 Telelogic DOORS Analyst User Guide 83

Chapter 2: Working with Models
Generate Diagram
DOORS Analyst supports automatic generation of diagrams in order to visu-
alize existing model elements. There are a number of built-in diagram gener-
ators available, for generating commonly useful diagrams, such as inherit-
ance diagrams, composition diagrams, dependency diagrams etc. It is also
possible to add additional custom diagram generators to support specific vi-
sualization needs.

To generate a diagram, follow these steps:

1. Select an element in the Model View. The selected element will be the
context of the generated diagram. For example, if you want to visualize
super- and sub-classes of a certain class, then you should select that class.

2. In the context menu select Generate Diagram and choose which dia-
gram generator to use in the sub menu. For example, to generate an in-
heritance diagram, select “Generate inheritance view”.

The generated diagram is typically placed under the selected context ele-
ment, but some diagram generators may place it elsewhere in the model, for
example as a top-level diagram, or in a separate package. Afterwards you
may move it to where you want it to be.

Figure 19: The Generate Diagram context menu
84 Telelogic DOORS Analyst User Guide November 2008

Generate Diagram
Diagram Generation Parameters
Diagram generators may take actual parameters to control how the diagram
shall be generated. For example, when generating an inheritance view for a
class, a parameter controls whether the diagram only shall show immediate
super- and sub-classes, or if all recursive super- and sub-classes shall be
shown.

When a diagram generator is run from the Generate Diagram context menu,
default values are used for these parameters. To change the actual parameters
use the command Edit Diagram Generation Parameters available in the
context menu of the generated diagram. You can also edit them by opening
the Properties Editor on the generated diagram, and selecting the <<gener-
ated>> stereotype as filter. Parameters can then either be edited textually in
the Parameters field, or you may press the Edit Parameters button.

Regenerate Diagram
A generated diagram can be regenerated based on new information in the
model. For example, you may want to regenerate an inheritance diagram
when new super- or sub-classes have been added. You may also want to re-
generate a diagram if you have modified the Diagram Generation Parame-
ters.

To regenerate a generated diagram choose the Regenerate command avail-
able in the diagram context menu. It is also possible to regenerate all gener-
ated diagrams in the model by selecting the Regenerate All Diagrams com-
mand in the Tools menu. Only generated diagrams are affected by these
commands.

Important!
When a diagram is regenerated everything it contains will be deleted and
regenerated. This means that if you have made manual modifications to the
diagram, such as changing layout, colors etc., these changes will be lost.
November 2008 Telelogic DOORS Analyst User Guide 85

Chapter 2: Working with Models
Convert a generated diagram into an ordinary diagram

To avoid accidentally regenerating a generated diagram that has been modi-
fied, it is recommended to convert the diagram into an ordinary non-gener-
ated diagram if you want to maintain it manually. To do so follow these steps:

1. Select the generated diagram in Model View.
2. Select Stereotypes... in the context menu.
3. Uncheck the ‘generated’ checkbox and press OK.

After this it is no longer possible to regenerate the diagram.

Using Diagram Generators in Existing Diagrams
A diagram generator doesn’t have to always generate a new diagram. It is
also possible to use a diagram generator in order to add information to an ex-
isting diagram. The steps to do so are:

1. Drag the context element from the Model View into a diagram using the
right mouse button.

2. Drop the element on the diagram and select Visualize in Diagram in the
context menu that appears.

3. In the sub menu select which diagram generator to use.

The symbols and lines generated by the diagram generator will be inserted in
the diagram where the entity was dropped.

Advanced Diagram Generators
In addition to the diagram generators you will find in the Generate Diagram
context menu there are also a few more advanced diagram generators. To use
these diagram generators select the Advanced... command in the Generate
Diagram context menu. This will open the Advanced Generate Diagram di-
alog:
86 Telelogic DOORS Analyst User Guide November 2008

Generate Diagram
This dialog only provide a limited set of diagram generators, but each of
these diagram generators have several customizable layout options.

Diagram type

First thing to do in the Advanced Generate Diagram dialog is to select the
wanted diagram type. Only the diagram types where there is a method to gen-
erate a diagram is displayed.

Generation settings

Secondly, the Method of generation can be selected. Only methods of gen-
eration that can be applied for the above selected diagram type is available.

A description of the selected generation method is displayed below the list of
available generation methods.

Figure 20: The advanced diagram generator dialog
November 2008 Telelogic DOORS Analyst User Guide 87

Chapter 2: Working with Models
Settings for the selected generation method are available by pressing the Ad-
vanced button. These settings will be associated with the generated diagram
and can be edited after generation in the Properties Editor.

Customization
It is possible to create your own diagram generators in order to generate
custom diagrams. See Adding Diagram Generators for more information on
this topic.

It is also possible to invoke diagram generators programmatically. This can
be useful for example when implementing add-ins. See Invoking Diagram
Generators Programmatically for more details.
88 Telelogic DOORS Analyst User Guide November 2008

Queries
Queries
This section describes how to perform a query on a UML model in order to
find entities that fulfill certain conditions.

Queries are useful for finding entities in the model that cannot be found by
using the more basic search facilities of the Find dialog. Using a query is an
alternative to using one of the standard APIs for finding the wanted informa-
tion. Since a query may contain calls to many of the available API functions
(COM, C++, Tcl), the expressive power of a query is equivalent to using the
APIs.

Concepts

A query is an operation that yields a collection of entities from the model.

A predicate is an operation that yields a boolean true or false.

Both a query and a predicate may take any number of input arguments. One
input argument that always is implicitly present is the model context. This
is an entity on which the query or predicate is invoked.

In order to be able to define query and predicate operations in a UML model,
there is a built-in library called TTDQuery, which defines the stereotypes in
Figure 21 on page 89. See also “The Query Dialog” on page 93.

In addition to these stereotypes, the TTDQuery profile also contains a number
of built-in queries and predicates, that are ready to use.

Figure 21: TTDQuery library with stereotypes

<<stereotype>>

query

<<metaclass,browserNode>>

::TTDMetamodel::Operation

0..10..1

<<stereotype>>

predicate

0..10..1
November 2008 Telelogic DOORS Analyst User Guide 89

Chapter 2: Working with Models
Calls to queries and predicates can be put together in a Query expression.
This is an expression that can be interpreted by DOORS Analyst, and just
like when invoking a query operation, the result of the interpretation is a col-
lection of entities from the model. A query expression may use boolean op-
erators and literals, as well as a small subset of the collection operators that
are found in OCL, in order to modify the result obtained by calling queries
and predicates.

Note
Many operations of the public APIs work as either queries or predicates.
These operations are also available for use in query expressions. The UML
definition of these API operations can be found in the library called u2.

Query expression
A query expression is written in textual UML expression syntax. The type of
a query expression must be a collection of entities. This means that when a
query expression is interpreted the result should be a collection of entities.

All sub-expressions that are contained in a query expression must be of either
boolean type, or the type should be a collection of entities. For expressions
of boolean type, the usual boolean operators can be used. The following
boolean operators and literals are supported within a query expression:

and (&&)
or (||)
not (!)
true
false

Parentheses can also be used.

For expressions whose type is a collection of entities, a number of predefined
Collection Operators may be used.

Collection Operators
Certain predefined operators may be used on the collection of entities that re-
sult from executing an expression within a query expression. The names and
semantics of these operations come from OCL (Object Constraint Lan-
guage). In fact, a query expression is a legal OCL expression, except that pe-
riods (.) are used instead of the arrow notation (->) when invoking a pre-
defined collection operation. However, only a subset of OCL is supported.
This subset allows powerful queries to be performed.
90 Telelogic DOORS Analyst User Guide November 2008

Queries
select

Syntax:

select(<boolean expr>)

Type: collection of entities

select projects one collection of entities into another collection of entities.
The resulting collection will contain those entities in the input collection for
which the boolean expression evaluates to true. Thus, select can be used
to filter a collection through a predicate.

exists

Syntax:

exists(<boolean expr>)

Type: boolean

Exists is a boolean operator that returns true if there exists at least one en-
tity in the input collection for which the boolean expression evaluates to
true, otherwise it returns false.

isEmpty

Syntax:

isEmpty()

Type: boolean

This operator returns true if the input collection is empty. Otherwise it re-
turns false.

Examples

Here are some examples of query expressions that uses some of the available
Built-in Queries and Predicates, combined with predefined boolean opera-
tors and collection operators.

Example 5 ––

Find all active classes defined in a package.

[model context = the package]
November 2008 Telelogic DOORS Analyst User Guide 91

Chapter 2: Working with Models
GetAllEntities().select(IsKindOf("Class") and
HasPropertyWithValue("isActive", "true"))

–––

Example 6 ––

Find all attributes in the model that are directly owned by a class.

[model context = the model, i.e. the Session]

GetAllEntities().select(IsKindOf("Attribute") &&
GetOwner().exists(IsKindOf("Class")))

–––

Example 7 ––

Find all «access» dependencies in the model.

[model context = the model, i.e. the Session]

GetAllEntities().select(not
GetTaggedValue("access(..)").isEmpty())

This query will obtain the wanted result, but is quite inefficient since it will
check for an applied «access» stereotype on each entity in the model. Perfor-
mance will be greatly improved just by adding a check that the entity must
be a dependency. For all entities that are not dependencies, there is no need
to invoke the GetTaggedValue query.

GetAllEntities().select(IsKindOf("Dependency") and not
GetTaggedValue("access(..)").isEmpty())

You can rewrite the expression by using the HasAppliedStereotype pred-
icate, which is the recommended way to check if a stereotype is applied on
an element.

GetAllEntities().select(IsKindOf("Dependency") and
HasAppliedStereotype("access"))

Finally, it should be mentioned that the most efficient (and also the shortest)
query expression for finding the «access» dependencies makes use of the
built-in GetStereotypedEntities query:

[model context = the «access» stereotype, found in the
TTDPredefinedStereotypes library]

GetStereotypedEntities()
92 Telelogic DOORS Analyst User Guide November 2008

Queries
As seen in this example there can be alternative query expressions that can
be used to obtain the same result. There can be a great difference in execution
performance between different semantically equivalent queries, so it is can
be worthwhile to consider different alternatives before writing a query ex-
pression.

–––

The Query Dialog
The Query dialog allows you to construct a Query expression to execute. The
dialog is opened by selecting an entity in the Model View or the diagrams,
and selecting the menu item Edit -> Query. The selected entity will be the
model context of the query expression.

Note
The model context of the query expression may be a presentation element
(e.g. a symbol or a line in a diagram). Thus, if you open the query dialog
from a selected entity in a diagram, the selected presentation element will
be the model context. Use the context menu “Show in Model View” to find
the corresponding element in the Model View, in case you want to run the
query on the model element instead.

The Query dialog lists all available Queries and predicates that can be found
in the current model. This list consists of all “built-in” queries and predicates
that are supplied in the predefined TTDQuery and u2 libraries, together with
all queries and predicates that are defined elsewhere (for example user-de-
fined queries and predicates).

The query expression is executed by pressing the Execute button. By default
the result will be output in the “Search Result” tab, but this can be changed
by typing another tab name in the drop down control.

You may construct the query expression either by writing the expression di-
rectly in the edit control, or you can double-click on entries in the list of
available queries and predicates. If the selected operation (query or predi-
cate) do not have any formal input parameters, a call to the operation will be
added directly at the position of the cursor in the query expression text. If,
however, the operation has at least one formal input parameter, a dialog (see
Figure 22 on page 94) will pop-up which allows you to provide the corre-
sponding actual parameter for the operation call.
November 2008 Telelogic DOORS Analyst User Guide 93

Chapter 2: Working with Models
This dialog is in fact a Properties Editor (the parameters are seen as proper-
ties of the operation) and edited values follow the same Color Codes as the
Properties editor. Other features of the Properties Editor, such as obtaining
“What’s This?” help on the meaning of the parameters are also available.

Saving a query expression as a new query

The Query dialog has a Save button that allows you to save a query expres-
sion as a new query in the model. Use this possibility if you have constructed
a query expression that you want to save for the future. You will be prompted
to specify a name and description of the new query, as well as a location in
the model where it shall be stored. It can be a good idea to put all queries in
a common place, for example in a profile package stored in a separate .u2
file. Thereby you can include and use your saved queries in multiple projects.

When you have saved a query expression as a new query, it immediately be-
comes available in the list of queries and predicates that are ready to use in
new query expressions.

Figure 22 Specify actual parameters
94 Telelogic DOORS Analyst User Guide November 2008

Queries
Built-in Queries and Predicates
A number of built-in queries and predicates are available for use in query ex-
pressions. These are defined and documented in the profile libraries
TTDQuery and u2.

In addition to these, it is possible to add user-defined queries and predicates
as described in User-defined Queries and Predicates.

User-defined Queries and Predicates
It is possible to define additional queries and predicates than those that are
supplied as “built-in”. This is done by defining an agent which has the
<<query>> or <<predicate>> stereotype applied. The implementation of
such Agents must fulfill the signature of a query or predicate. Thus a query
agent must return a list of entities, and a predicate agent must return a
boolean value. This mandatory output parameter is passed as the first param-
eter to the agent. In addition the agent may take any number of input param-
eters. These parameters may have any type supported by Agents.

Executing a Query Expression from the APIs
It is possible to execute a Query expression programmatically from all the
public APIs, using the agent in Figure 23 on page 95.

This agent is (like any other agent) invoked using the InvokeAgent operation.

Example 8: Executing a query expression from the Tcl API

This small example shows how to execute the query expression
“GetAllEntities()” from a Tcl script. The script just prints the Tcl ids of
the resulting entities.

set s [std::GetSelection]
set a [u2::FindByGuid $U2

Figure 23 Agent for query execution

<<operation,agent>>

ExecuteQueryExpression
out result : u2::ITtdEntity [*]
queryExpr : Charstring
November 2008 Telelogic DOORS Analyst User Guide 95

Chapter 2: Working with Models
"@TTDQuery@ExecuteQueryExpression"]
set p [lappend p {} "GetAllEntities()"]
u2::InvokeAgent $U2 $a $s p
output [lindex $p 0]

–––
96 Telelogic DOORS Analyst User Guide November 2008

Drag and Drop
Drag and Drop
This section describes how drag and drop can be used to work with the
model.

A drag and drop operation can be done with three different variations of drag
sources and drop targets:

• Within the model view.
• From model view to a diagram.
• Within and between diagrams.

A drag and drop operation can be done either with the left or the right mouse
button. If a drag and drop operation is done with the right mouse button, a
context menu is opened listing the possible operations to perform as a result
of the drag from the source element to the target element. The context menu
will always have a highlighted alternative. This is the operation that will be
performed when a drag and drop operation is done using the left mouse
button. There can also be modifier key within parenthesis next to the opera-
tion. If so, this operation can be performed by holding down this modifier key
will doing a drag and drop using the left mouse button.

Next follows the different operations available using drag and drop.

Within the Model View

Move

Moves an element within the model view.

This is the default operation for drag and drop within the model view and will
be performed if drag and drop is done using the left mouse button.

Copy

Copies an element within the model view.

This operation can be performed by doing a drag and drop operation using
the left mouse button while holding down the CTRL button.
November 2008 Telelogic DOORS Analyst User Guide 97

Chapter 2: Working with Models
Link

Creates a link between the drag source element and the drop target element.
The currently active link type will be used.

Copy with Traceability

Copies an element (including subelements) in the model view and creates
<<trace>> dependencies from the copy to the original.

The operation is performed by doing a drag and drop operation using the
right mouse button and choosing the “Copy with Traceability” command in
the pop-up menu.

The dependencies will be created for all definitions, like e.g. packages,
classes, attributes and operations.

See also

“Working with links” on page 2409

From Model View to a Diagram

Create Presentation

Creates a symbol representing the drag source element in the context of the
drop target element.

This is the default operation for drag and drop from the model view to a dia-
gram and will be performed if drag and drop is done using the left mouse
button.

Create Presentation (include lines)

Does the same thing as Create Presentation with the addition that lines rep-
resenting the drag source element connections to other elements in the drop
target diagram will be created.
98 Telelogic DOORS Analyst User Guide November 2008

Drag and Drop
Visualize in Diagram

This is a sub-menu containing the possible diagram generation methods that
are available for the drag source element and the drop target diagram. The
drag source elements will be visualized in the diagram without affecting any
already existing elements in the diagram.

See also

“Generate Diagram” on page 84

Within and between Diagrams
Drag and drop within and between diagrams has the same operations as
within the model view.
November 2008 Telelogic DOORS Analyst User Guide 99

Chapter 2: Working with Models
Figure 24: Compare Versions dialog
100 Telelogic DOORS Analyst User Guide November 2008

Drag and Drop
Figure 25: Merge Versions dialog

ExitOnSuccess Description

true close Tau after successful operation
false do not close Tau after operation
November 2008 Telelogic DOORS Analyst User Guide 101

Chapter 2: Working with Models
External text compare/External text merge

Figure 26: Review Difference dialog

Figure 27: Context Menu
102 Telelogic DOORS Analyst User Guide November 2008

Drag and Drop
An external textual compare and merge tools can be used for comparing
and/or merging comments, text symbols, task symbols and instance expres-
sions. The “External text compare...” and “External text merge...” operations
are available where applicable.

If an external textual merge is done, the result will be checked if it can be re-
entered into the model. If it cannot be entered into the model, the result file
from the external tool is saved and the path is reported together with an error
message box.

Path and command line switches for the external text compare/merge tool are
available via the Tools menu, Options dialog, under the Compare/Merge tab.

Add bookmark

A bookmark can be added on a selected entity. A comment can be added to
the bookmark. The bookmarks can later be listed in the model navigator.

Figure 28: Semantic and presentation model differences grouping
November 2008 Telelogic DOORS Analyst User Guide 103

Chapter 2: Working with Models
Figure 29: Grouping of “created entity” and “deleted entity” differences

Figure 30: Grouping of “moved entity” differences

Figure 31: Grouping of “modified attributes” differences
104 Telelogic DOORS Analyst User Guide November 2008

Drag and Drop
This composite node contains conflicting differences which are owned by
different representative elements. For example, if entity has been moved in
Version 1 and in Version 2 and the new owners of that entity are different in
Version 1 and Version 2, then the Composite Conflict Group will be created.
This group can contain Difference Nodes only.

Conflict Node

This node corresponds to conflicting differences which are related to the
same representative element.

Consolidated Node

This node corresponds to consolidated differences which are related to the
same representative element.

Difference Node

This node describes the simple change that has been made in Version 1 or in
Version 2.

Composite Textual Difference Node

This group node corresponds to a group of primitive textual differences. This
group can contain Textual Difference Nodes only.

Textual Difference Node

Figure 32: Nodes in Difference list
November 2008 Telelogic DOORS Analyst User Guide 105

Chapter 2: Working with Models
This node corresponds to a primitive textual difference. There are two oper-
ations that represent modifications in the text: Remove and Insert. Remove
means that a part of the text has been deleted (in comparison with the an-
cestor version). Insert means that a new text has been added.

When Textual Difference Node is selected in Differe list, the modified part
of code is highlighted in the one or several windows which represent An-
cestor, Version 1, Version 2 and Result models, see Figure 34 on page 107.

If the selected node corresponds to Remove operation, then the removed part
of the text is selected in Ancestor window (and in Result window, if that op-
eration is rejected). If the selected node corresponds to Insert operation, then
the inserted part of the text is selected in Version 1 (and/or Version 2)
window (and in the Result window, if that operation is accepted).

Figure 33: Textual difference nodes
106 Telelogic DOORS Analyst User Guide November 2008

Drag and Drop
The colors are used in the Review differences dialog in order to simplify the
understanding of changes that have been done in both versions. The blue
color is used to mark presentation elements that correspond to model ele-
ments modified in version 1 only. The green color is used to mark presenta-
tion elements corresponding to model elements that have been modified in
version 2 only. And presentation elements that correspond to model elements
modified in both versions are marked by red color. The same coloring is ap-
plied to modified presentation model elements, i.e. Symbols and Lines as
well as to parts of the text.

Figure 34: Textual difference highlighting
November 2008 Telelogic DOORS Analyst User Guide 107

Chapter 2: Working with Models
108 Telelogic DOORS Analyst User Guide November 2008

3
Working with Diagrams

When you have opened a project you are ready to edit your model.

How you should use the diagram editors in combination with the model in-
formation is highly dependent on the application that you want to create. The
recommendations below are meant to help you getting familiar with the tool
and later you can adapt and change the workflow to fit your needs.
November 2008 Telelogic DOORS Analyst User Guide 109

Chapter 3: Working with Diagrams
Common Diagram Operations
Common diagram operations include:

• Create diagrams
• Open, save and print diagrams
• Move diagrams
• Resize diagrams
• Find
• Text parsing
• Diagram auto layout
• Organizing the view

Grid

The diagram drawing area will always have an active grid, which means that
there will be a snap to grid which is always set to on. The grid spacing is set
to 2 millimeters and cannot be changed. It is possible to show or hide the grid
from the shortcut menu or by changing in the Options, default is hidden. All
symbols, lines and text fields (except those fixed in symbols) will adhere to
the grid. When a symbol is resized, it is done in grid steps. This also applies
to auto resizing.

Frame

All diagrams will have a frame enclosing all symbols, except port symbols
which can be placed on the frame. The upper left corner of the frame symbol
will be at (x=10, y=10) millimeters, measured from the canvas top left
corner. The frame is sized according to the diagram size and layout. The po-
sition can be overruled if extra space is needed for symbols placed on or out-
side the frame.

The frame may be resized and moved in all directions, canvas space permit-
ting.

Heading

The diagram heading is positioned in the top left corner of the diagram. The
text is calculated from the properties of the defining entity.
110 Telelogic DOORS Analyst User Guide November 2008

Common Diagram Operations
Diagram Name

The diagram name is positioned in the top right corner of the diagram. The
text is right aligned. The information is calculated from the model informa-
tion, and thus only editable through the Model view.

Create diagrams
A diagram contains a set of presentation elements representing elements
from your model. Diagrams are managed through the Workspace window.

1. In the Workspace window, click the Model View tab.
2. Select or create a suitable package.
3. You are now able to choose New from the shortcut menu to create an ap-

propriate diagram (or model element).

See also

“Create Presentation” on page 76 in Chapter 2, Working with Models

Open, save and print diagrams
Information in the diagram is saved in a file when you save the project. If you
do not specify a file, the information will reside in the data file (.u2 exten-
sion). This file will normally reside together with the project (.ttp) and
workspace (.ttw) file you are currently using.

• To open a diagram: double-click the diagram icon in the Model View.
• To print an open diagram: on the File menu, click Print...

The diagram size when creating a new diagram is derived from the printer
settings. For example, if the page layout is set to landscape on the printer, di-
agrams will have a landscape orientation.

A diagram can be exported as an image in a range of formats including JPEG,
GIF, BMP and SVG.

A diagram can be saved as an image by opening it and clicking Save As... on
the File menu. A save dialog will open where a file path and wanted image
format can be selected.
November 2008 Telelogic DOORS Analyst User Guide 111

Chapter 3: Working with Diagrams
See also

“Select diagrams to be printed” on page 393 in Chapter 8, Printing

“Save” on page 417 in Chapter 11, Dialog Help

Move diagrams
You can move diagrams within projects and between projects in the same
workspace.

• Click the icon corresponding to the diagram in the Model View and drag
the diagram to its desired location.

Resize diagrams
When a diagram is created the default is that the diagram is placed in an auto
size mode. This mode can be turned off or on from the diagram shortcut
menu or the diagram element properties toolbar. When the diagram is in auto
size mode diagram elements can be dropped, inserted, pasted, moved etc.
anywhere on the editor canvas. If the element is placed outside the frame the
diagram will automatically be resized to fit the element. The auto size mode
will always keep the minimum full pages to contain all diagram elements.

The initial diagram size and layout is determined by the Print settings (size
and orientation). If no printer is installed the size is determined from the cur-
rent Options set. Resize of the diagram is done in two steps. If the diagram is
to be enlarged, it can be done in one of the following ways:

• Change the size of the diagram from the shortcut menu. Right-click on
the diagram in the Model view and select Diagram size..., this will open
a dialog that allows you to control the size manually or return to auto
sizing.

• When auto size is off, you can increase the diagram size in steps of whole
papers by holding down CTRL and clicking on the drag handles of the
frame symbol. If CTRL + SHIFT keys are pressed when clicking on the
handles the diagram will be decreased in size. The mouse cursor will
change appearance according to which keys are pressed.

The frame symbol is automatically resized to match the resize of the diagram.
When resizing the diagram to make it smaller the frame symbol may not be
made smaller than the extent of all symbols (or lines) in the diagram. The
frame must be at least 1 grid point apart from any symbol (line) inside. The
112 Telelogic DOORS Analyst User Guide November 2008

Common Diagram Operations
diagram name symbol will be moved automatically when the diagram is re-
sized. Ports and lines connected to the frame move with the frame. The size
of the canvas may not be made smaller than the frame + margins. Resize of
the frame should follow the grid.

Find
Open the Find Diagrams and Definitions dialog by choosing Find from the
Edit menu. Through the dialog it is possible to locate definitions. To find the
usage of a definition it is possible to Find text in diagrams too. Results are
shown in tab Search result in the Output window. To list where an entity is
used, right-click the entity in the Model view and from the shortcut menu
click List references.

See also

“Model Index” on page 82.

Text parsing
In general, C++ style syntax is used in text symbols (and external files).
UML style syntax is used in all other symbols. However, the parsers accept
some minor deviation from UML (“public” instead of “+”, “output” instead
of “^”, etc.) but will unparse everything in UML style. In text symbols, UML
style deviations are accepted, but will be converted to C++ style (i.e. “+” as
visibility operator is converted to “public”).

These changes fall into this category:

• Visibility: + converts to public
• Visibility: # converts to protected
• Visibility: - converts to private
• Signal Sending: ^ converts to output
• Decision alternative: else converts to default

There are some other properties of the unparse phase:

• “in” parameter direction kind is not unparsed
• quotation marks are removed from names that do not need it (for example

‘Name1’ becomes Name1 after unparse)
• “in / out” parameter direction kind is unparsed as “inout”
November 2008 Telelogic DOORS Analyst User Guide 113

Chapter 3: Working with Diagrams
• data types only with literals become enumerated data types, i.e.
datatype colors { literals red, green; } un-parsed as enum
colors { red, green }

The unparser will expand shortcut notations. Several attributes, remote vari-
ables, signals, timers, exceptions or synonyms defined at once (for example,
Integer i, j, k;) will be unparsed as several separate definitions
(Integer i; Integer j; Integer k;).

The unparsed adds omitted parenthesis in signal and timer definitions (i.e.
“timer T” becomes “timer T()”).

Open ranges (if possible) are converted to UML style: “>= n” is converted
to “n..*” and “>=0” is converted to “0..*”.

Auto-quote

The purpose of auto-quote is to assist you with typing quotation marks. If you
add a whitespace in a name there should be quotation marks added wrapping
the text. Only a limited set of symbols (labels) are auto-quoted. Typically la-
bels that contains names are auto-quoted.

Word wrapping

Word wrapping allows words to be broken up into several lines. This is ap-
plied to multiline labels and to non-autosized symbols. The algorithm for de-
termining where to break a word looks for any of the following: ‘:’, “::”,
whitespace, capital letter, comma (‘,’), period (‘.’), underscore.

Diagram auto layout
The shortcut menu for diagrams (canvas background) includes an Auto-
matic layout menu item for diagram types that has an auto layout algorithm
associated with it. If this menu item is selected the diagram elements will be
placed in a layout suitable for that specific diagram type. For example will
Class diagrams and state machine diagrams have a hierarchical layout.

The auto layout algorithms will be used when placing diagram elements with
the Show elements dialog.

When using the auto layout:

• It is only Generalization lines that are included in the layout algorithm in
class diagrams.
114 Telelogic DOORS Analyst User Guide November 2008

Common Diagram Operations
• Flow lines and transition lines are included in the layout algorithm in
state machine diagrams.

Organizing the view
The editors have several features allowing you to organize your view. These
include shortcuts for scrolling and zoom in/out.

When a diagram is closed, the current scroll and zoom settings can be saved
to a separate file with the extension .u2x and the name
<project>_DiagramSettings. This file is not added to the project (ttp
file). Instead when a project is loaded there is a step that loads files with the
extension .u2s and a corresponding name. This feature is controlled by the
option Remember scroll and zoom.

Scroll

When your diagram is sized so it is not entirely visible in the desktop area it
is possible to scroll the view. Scrolling your diagram view can be done with
the window scroll bars.

(Windows) It is possible to scroll with the IntelliMouse pointing device.

• Vertical scrolling is done by use of the scroll wheel.
• Horizontal scrolling is done by pressing CTRL and at the same time use

the scroll wheel.

Zoom

It is possible to zoom in fixed steps via the Zoom command on the View
menu.

It is possible to do a continuous zoom via the shortcut menu. Right-click in
a diagram, point to zoom and select the desired enlargement level. When not
in text edit mode it is possible to use “-” (minus) for zoom out and “+” (plus)
for zoom in.

(Windows) It is possible to zoom with the IntelliMouse pointing device.

• Press SHIFT and use the middle mouse button, the diagram will zoom.
• Double-click on the scroll wheel will zoom to 100%.
• SHIFT + Double-click on the scroll wheel will zoom to fit the current di-

agram width in the desktop area.
November 2008 Telelogic DOORS Analyst User Guide 115

Chapter 3: Working with Diagrams
See also

“Docking windows” on page 21

“Workspace Operations” on page 399

DOORS Analyst commands
In this section, a set of commands which are specific for the synchronization
between the DOORS Analyst window and DOORS are described. These
commands are represented in three different ways:

• by buttons in a specific tool bar for DOORS Analyst layouts
• in a menu named Analyst
• by right-clicking on an object in a diagram and selecting the command

from the shortcut menu

Switch Layout

The Basic layout is by default set to display the diagrams and the most
common tool bars for editing. The Switch Layout button allows switching to
and from a view containing the Workspace window (with the Model View)
and more tool bars.

When starting DOORS Analyst initially the set of symbols available for ed-
iting is set by a configuration (Metamodel) named “Analyst view”. This al-
lows for a high visibility of the most common symbols.

Show elements

When creating a diagram in DOORS Analyst it is possible to use the Show
elements button (this is also available from the shortcut menu when you
right-click in a diagram) and get a dialog where it is possible to select which
elements to insert in the current diagram. The elements will be placed with
an auto-layout function.

Get DOORS Changes

This button allows you to synchronize the DOORS Analyst contents with the
DOORS objects in the formal module. This is useful when you work with
both the DOORS formal module and in the DOORS Analyst UML view in
parallel and want to propagate the DOORS changes into the UML view.
116 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
Check DOORS Changes

This command allows you to check for changes in the DOORS objects in the
formal module. This is useful when you work with both the DOORS formal
module and in the DOORS Analyst UML view in parallel.

Edit in DOORS

This button will switch focus from the UML element to the corresponding el-
ement in the DOORS module.

Enable synchronization with DOORS

When one or several symbols in a diagram are selected, this command will
enable the synchronization of these symbols with DOORS. This means that
corresponding objects will be created in the DOORS formal module the next
time a synchronization is performed. The “Object Type” column in the
DOORS formal module will contain the text “Other”, meaning that this ob-
ject is not one of the standard predefined model elements in DOORS Analyst.

Note that the synchronization for these objects is one-way, which means that
changes to these objects must be done in the diagrams themselves. It is not
possible to propagate changes from the DOORS formal module to the dia-
grams for these objects.

Disable synchronization with DOORS

When one or several symbols in a diagram are selected, this command will
disable the synchronization of these symbols with DOORS. However, the
pre-defined model elements in DOORS Analyst will still be synchronized
with DOORS.

See also

“DOORS Analyst commands in DOORS” on page 3

Common Symbol Operations
• “Symbol information” on page 118
• “Add symbols” on page 119
• “Show elements” on page 120
• “Select symbols” on page 121
November 2008 Telelogic DOORS Analyst User Guide 117

Chapter 3: Working with Diagrams
• “Move symbols” on page 122
• “Resize symbols” on page 122
• “Connect symbols” on page 123
• “Edit text fields in symbols” on page 125
• “Diagram element properties” on page 125
• “Handling comments” on page 126
• “Copy, cut, delete or paste symbols” on page 127
• “Icon” on page 128
• “Image Selector” on page 129
• “Undo” on page 130
• “Model references” on page 130
• “Nested symbols” on page 132

Symbol information
The selection of Show symbol and line tooltips will allow you to see con-
textual model information, for example stereotype and model bind informa-
tion.

The selection of Show edit mode tooltips will allow you to see information
from syntax parsing while in text edit mode.

Show/hide model element details toolbar

The Show/hide model element details toolbar lets you toggle showing and
hiding of certain features of symbols in diagrams. These settings are remem-
bered per diagram element. If the setting is applied on the diagram, all dia-
gram elements without a setting of their own, will inherit the diagram setting.

• Show/Hide qualifiers
Toggles the qualifying parts of a label text. For example:
Package1::Package2::Class1 will be toggled to Class1.

• Show/Hide stereotypes
Toggles the stereotype label. When the label is hidden the space occupied
by it is considered minimal and can thus affect the symbol size.
118 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
• Show/Hide quotation marks
Toggles the automatic quotation marks, thus a limited set of symbols are
auto-quoted and those symbols are affected by this button. The text will
still be considered quoted when the quotation marks are hidden. Auto-
quoted text is typically names containing a whitespace.

Add symbols
To add a symbol, you click its corresponding icon in the Diagram element
toolbar, then click or right-click in the diagram to position the symbol.

It is also possible to generate symbols from the Model View. You can in
many cases drag a Model element into the desired diagram.

In state machine diagrams it is possible to Insert a symbol in the flow by
pressing CTRL and then click in the diagram element toolbar on the new
symbol. The symbol will be positioned after the currently selected symbol.

Reference existing

When you right-click to position a symbol a shortcut menu will appear for
most symbols. Symbols that do not have this menu are:

• Transition line (used in state machine diagrams when designing in State-
oriented view).

• State machine transition symbols not related to states, signals and opera-
tions.

The shortcut menu contains the following choices: Create New <element>,
Leave Unbound, Reference existing.

• Create New <element>: a new symbol will be created and a corre-
sponding model element will be created in the model.

• Leave Unbound: a new symbol will be created but no corresponding
model element will be created.

• Reference existing: will display a drop-down box with existing model
elements matching type and scope.
November 2008 Telelogic DOORS Analyst User Guide 119

Chapter 3: Working with Diagrams
Auto placement

In many cases it is desired to position a symbol in connection with the pre-
vious, for example a port on a class. For this purpose auto placement of sym-
bols is supported.

• Hold down SHIFT and click the symbol toolbar. The symbol clicked will
be connected to the currently selected symbol.

• Hold down CTRL and click the symbol toolbar. The symbol clicked will
be inserted between the currently selected symbol and the next one.

The symbols in the toolbar will be dimmed if they cannot be connected in a
syntactically correct flow to the currently selected symbol.

It is also possible to use the SHIFT + SPACEBAR and CTRL + SPACEBAR
shortcuts to get a list of the symbols that can be auto placed.

See also

“Name support” on page 44 in Chapter 2, Working with Models

“Create Presentation” on page 76 in Chapter 2, Working with Models

“Model navigation/creation” on page 78 in Chapter 2, Working with Models

“Diagram auto layout” on page 114

“Show elements” on page 120

“Creating a message” on page 171

Show elements
The Show Elements dialog makes it possible to decide what model elements
to show as symbols in the current diagram.

Show Elements is available:

• From the Tools menu
• In diagram shortcut menus.

When Show Elements is invoked, a dialog appears, with a list of model ele-
ments that can be shown as symbols in the current diagram. By adding or re-
moving check marks for model elements, you can add or remove symbols for
their corresponding presentation from the diagram.
120 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
The Show Elements dialog has the following features:

• The All button allows you to check all model elements in the list with one
click.

• The None button allows you to remove all existing check marks with one
click.

• The Short list check box makes it possible to toggle between a short and
a long list of model elements.
– The short list contains model elements that are natural to show in the

current diagram. (For instance, a class in a class diagram.) Model el-
ements that are already shown as symbols in the current diagram, are
also included in the short list, even if they are not natural to show in
the current diagram.

– The long list contains all model elements from the selected scope that
can be shown as symbols in the current diagram. In addition to the
natural model elements for the current diagram, this list also includes
more uncommon conversions. (For instance, the alternative to show
a class as an actor in a use case diagram is included in the long list.)

• The Select scope button brings up a dialog, in which it is possible to se-
lect the scope or scopes to pick model elements from for the list in the
main dialog. As default, only model elements from the local scope where
the diagram resides is included in the list.

A model element is automatically deleted when the last presentation element
(symbol or line) in a diagram has been deleted.

Select symbols
Pressing CTRL while double clicking outside a text field (but within the
symbol boundaries) will select the symbol, outgoing lines and all connected
symbols.

Click and drag (when not clicking on a symbol or line) will create a selection
rectangle. Everything that is placed within the rectangle is selected.

Click and drag while pressing CTRL (when not clicking on a symbol or line)
will create a selection rectangle. Everything that is intersecting the rectangle
is selected.
November 2008 Telelogic DOORS Analyst User Guide 121

Chapter 3: Working with Diagrams
In a state machine flow if you do CTRL + double-click on a symbol in a flow
this will select the symbol and all symbols after. This also works when the
flow is branched.

Move symbols
To move a symbol, click it and drag it to the desired location within the dia-
gram. It is also possible to drag symbols to other diagrams.

Symbols with text fields should be selected as not to enter the text edit mode.
The cursor will change appearance to indicate this.

Moving text fields

It is possible to move some text fields (labels). This is true for labels that be-
longs to lines and for labels that belongs to symbols with the label outside of
the symbol boundaries (port, pin, etc.).

This is done by first selecting a label, which then can be dragged in one of its
handles. The new position will be saved as an offset to the default position.
If you move a line or symbol with a label, then the label will also move and
preserve the offset.

The offset can be removed by clicking on the shortcut command Reset all
label positions. That will reset all labels belonging to the currently selected
symbol to their default position.

Labels can be dragged to anywhere on the desktop, even outside the frame
symbol and diagram area. Labels outside the diagram area will not be
printed.

Resize symbols

To resize symbols manually

1. Select the symbol in question.
2. Place the mouse over one of the eight gray squares.
3. Drag the mouse until the symbol is the size you want it to be.
122 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
Autosize symbols

All symbols offer the choice of Autosize, which adapts the symbol to the size
of the text entered within it. Right-click the symbol and choose Autosize
from the shortcut menu.

Collapse symbol

A symbol with compartments (for example a class symbol) can be collapsed
by checking the “Collapsed” menu item in the shortcut menu for that symbol.
Compartments and any labels inside the compartments will not be visible
when in a collapsed state.

Resized symbol indicators

When three dots appear outside a symbol’s lower right corner, the size of the
symbol is too small to show all text that is available in the symbol’s text
fields. To resize the symbol to adapt to the text, select the symbol and double-
click the dots.

Connect symbols

To connect symbols manually

1. Click a symbol and find its line handles.
2. Drag the line to the other symbol.
3. The end of the line will appear as a circle with crossbars when you reach

the second symbol. Complete the connection by clicking inside the
symbol close to the border position where you would like to attach the
line.

Some connections will result in model elements. If you for example drag the
generalization handle to another class in a class diagram you will end up with
a line between the two classes as well as new icons in the Model View, in-
forming you that a generalization has been added.

Symbols in a State machine diagram can be connected automatically to a
flow with Auto placement.

See also

“Draw lines” on page 136
November 2008 Telelogic DOORS Analyst User Guide 123

Chapter 3: Working with Diagrams
Symbol flow editing
In diagrams which have a concept of flows, such as state chart diagrams and
activity diagrams, there are certain operations possible to manage these
flows.

Select a flow or a branch of a flow

If you do CTRL + double-click on a symbol in a flow this will select the
symbol and all symbols after the selected symbol. This also works when the
flow is branched.

Append symbols to the flow

When adding symbols in an diagram you can create a connected flow of sym-
bols. Hold down SHIFT and click the toolbar. The symbol clicked will be
connected to the currently selected symbol. The symbols in the toolbar will
be dimmed if they cannot be connected in a syntactically correct flow to the
currently selected symbol.

See also

“Auto placement” on page 120

Insert a symbol in the flow

Insert operation is possible when CTRL is pressed and a button is clicked
while the selection corresponds to one of the following cases:

• A single selected symbol (insert operation after this symbol)
• A single selected line (insert operation on this line)
• Two selected symbols with one line between them (insert operation be-

tween the symbols)
Note

• Using CTRL + decision symbol is not possible. There are several pos-
sible flows out from a decision symbol and because of this it is not sup-
ported to insert a decision symbol this way.

See also

“Auto placement” on page 120
124 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
Remove a symbol from the flow

When a symbol is cut or deleted from a flow an auto-created line replaces the
removed symbol and its connected lines if possible.

Edit text fields in symbols
To be able to edit a text field in a symbol, the symbol must first be selected.

• To edit a text field in a symbol, select the symbol and click in the text
field at the position where you would like to add or change. You are now
able to enter your text changes. Text within guillemets, «» (for example
stereotype information), cannot be edited.

• If a symbol is selected, and a double-click is done in a text field the
closest text word will be selected. If the symbol is not selected, the
double-click will be done on the symbol (normally navigation).

• If a symbol is selected, click and drag in a text field in the symbol will
enter edit mode and select the text. If the symbol is not selected, the
symbol will be moved.

• Pressing F2 will enter edit mode for the main text of the selected symbol.
For a single line text all text will be selected, while for a multi line text,
there will be no selection and the text insertion marker will be placed at
the end of the text.

Note
Double clicking outside a text field (but within the symbol boundaries) will
always perform the double click operation for the symbol (normally naviga-
tion).

Diagram element properties
A specific toolbar called Diagram Element Properties is available. This will
contain drop-down boxes that control various properties of the selected
symbol(s)/line(s):

• font
• font size
• symbol / line background color

The toolbar contains a button that will remove the set properties and revert
to default styles.
November 2008 Telelogic DOORS Analyst User Guide 125

Chapter 3: Working with Diagrams
If no symbol is selected, the toolbar commands will apply to all symbols in
the current diagram, except symbols with individually applied properties.

Handling comments
Comment symbols can be added to all symbols.

1. Click on the comment symbol on the toolbar.
2. Position the symbol in the diagram.
3. Connect the annotation line from the comment symbol to the symbol you

want the comment to belong to.

Comments and constraints

The shortcut command Show Comments for Signature symbols (in the sub-
menu to Show/Hide) will create and attach a comment symbol for each com-
ment model element owned by the signature symbol that does not already
have a comment symbol in the current diagram.

The shortcut command Show Constraints as Symbols for Signature sym-
bols will create and attach one constraint symbol for each constraint model
element owned by the signature symbol that does not already have a symbol
in the current diagram.

Column of Remarks

Two or more comment symbols form a Column of Remarks when they are
positioned close and aligned or almost aligned in vertical position, see
Figure 35 on page 127. The vertical positions will be auto-adjusted to form a
left-aligned column when a column of remarks is detected.

The column can be moved in the horizontal direction by pressing SHIFT and
moving the top comment symbol a small vertical distance (less than the total
width of the column). If another comment symbol in the column is moved a
small distance (with SHIFT pressed), it will be repositioned back into its
place in the column. Moving any comment symbol a larger distance will re-
move it from the column.
126 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
Note
The top comment symbol in the column of remarks must be positioned below
the lifeline headers to be included in the column.

Copy, cut, delete or paste symbols
All symbols have a shortcut menu that you may access by right-clicking on
the symbol. From this menu, choose Cut, Copy or Paste according to your
needs.

You can also drag symbols to other tools, for example MS Word.

To delete a symbol, select it and press the Delete key.

Figure 35:Column of remarks
November 2008 Telelogic DOORS Analyst User Guide 127

Chapter 3: Working with Diagrams
Note
A Delete operation may or may not affect your model depending on the type
of symbol and its relation to the model. When you add symbols to your dia-
grams this will in most cases add information to your model. When you de-
lete a symbol in a diagram it will only delete information in the model if
there is a one-to-one relation with the symbol and the model. This is for ex-
ample the case with State machine flow symbols. To delete a symbol and its
corresponding model element use Delete from Model.

Icon

User-specified icons

It is possible to use an image file and replace selected symbol icons with a
user-specified icon. The icon can be specified on the following levels:

• for a specific symbol
• for a specific semantic model element, implying that all symbols that are

associated with the model element will use the icon
• for a specific stereotype, implying that all symbols that are associated

with model elements stereotyped by the symbol will use the icon
• for a specific type (for example class or datatype), implying that all sym-

bols that are associated with instances of the type will use the icon

Add stereotype

This feature is controlled by a stereotype. To activate this you right-click the
model element that is to have the icon, and from the shortcut menu select
Apply Stereotypes. In the dialog apply the stereotype
TTDStereotypeDetails::Icon. You can also through the Properties editor
open this dialog using the Stereotypes button.

The entities that this stereotype can be applied to is controlled by the Meta-
model properties. To view this information go to the Library section in the
Model View and open the package for TTDStereotypeDetails. In the class
diagrams you can view the relations between the supported entities (meta-
classes) and the icon stereotype.
128 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
Ordering

If more than one user-specified icon is specified among the alternatives
above, then the order is according to the list above. Thus, if an icon is speci-
fied for a specific symbol, this will be used, otherwise the icon for the model
element is used and so on.

Icon mode

For symbols identified with a user-specified icon there will be a shortcut
menu choice called Icon mode. When selected this menu choice will cause
the symbol to be visualized instead of the usual symbol.

Image file

The icon is defined by a property of the symbol, model element or applied
stereotype and can be changed using the Properties dialog for the entity. In
this dialog select Icon in the Filter drop-down menu to display a text field
called Icon File. The text in this field is a relative path from the model file
(.u2) to where the image file can be found.

The formats that are supported for the icon image files are

• bitmap (file extension “.bmp”)
• JPEG compressed images (file extension “.jpeg” or “.jpg”)
• Enhanced Meta File (file extension “.emf”)
• GIF (file extension “.gif”)
• TIFF (file extension “.tif”, “.tiff”)
• Targa (file extension “.tga”, “.targa”)
• PCX (file extension “.pcx”)

Note
Using a white and transparent background for an icon image may result in
a black background when Printing Diagrams.

Image Selector
The symbols in diagrams can also be displayed with a user-defined image
using the Image Selector. Activate the add-in ImageSelector, then the
commands Load image and Remove image are available in the Tools menu.
November 2008 Telelogic DOORS Analyst User Guide 129

Chapter 3: Working with Diagrams
Undo
Multiple level of Undo and Redo is available. The whole tool (workspace
window and editors) has a common undo stack. When an operation is un-
done, it is put first in the redo stack to make it possible to redo the undone
operation.

Note
You can undo operations in diagrams that are not currently visible.

Some special considerations have to be taken when using Undo and Redo
when in text-editing mode. Undo steps will be available for each update. An
update is made according to the following scheme: a series of character ad-
ditions will not cause an update until you do something else, for example
back space, delete, arrow keys or mouse selection. Similarly will a series of
deletes not cause an update until you do something different.

When doing an explicit unload (including revert) of a file/resource in a
project the Undo stack is emptied.

Undo is not possible for file system operations.

The Undo stack is not emptied when a Save is performed.

Model references
To find references to model definitions and their usage there is a group of
shortcut commands with similar features. These commands have a contex-
tual nature meaning that they will be dependant on the element that they are
applied on.

List references

List References is a shortcut command in the Model View, which applies to
all model elements. The command calls up a dialog and returns a reference
list in the References tab of the Output window. Possible settings:

• References made to...
The listing contains all references to the model element, for example
usage of a specific class as a type for an attribute is a reference to the
class.
130 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
• References made from...
The listing contains references from a selection, for example references
from an attribute to the class used as its type.

• Include Contained Hierarchy in Report
When selected, this alternative will cause the tool to recursively include
any references to or from the elements contained under the selected ele-
ment. An example is to find for all definitions outside a package, used by
the package and its contained definitions.

• Include Internal references in Report
When selected, this alternative will cause the tool to report references
originating in the object or its contained hierarchy to itself, or to its con-
tained hierarchy. An example of this is to find all uses of a package and
of its contents without finding references made within the package.

List presentations

List Presentations is a shortcut command in the Model View, which applies
to all model elements. Returns a list of all presentation elements in the Pre-
sentations tab of the Output window.

Reference existing

This is a shortcut command when placing a new symbol.

Navigate

Shortcut command in the Model View, opens the Model Navigator or if there
is no existing presentation for the element the Create Presentation dialog.

When you have a selection of multiple nodes in the Model view the com-
mands List References and List Presentations will be applied to all selected
elements.

See also

“Add symbols” on page 119 in Chapter 3, Working with Diagrams
November 2008 Telelogic DOORS Analyst User Guide 131

Chapter 3: Working with Diagrams
Nested symbols
Some symbols can be placed inside other symbols. When a symbol is created
inside another symbol, the model element of the parent symbol is used as
context for creation.

If the parent symbol is auto-sized the size of the parent will change to fit the
created symbol. Otherwise the new symbol will be resized to fit within the
boundaries of the parent symbol. A nested symbol can not be dragged outside
the parent symbol boundaries.

Symbols with compartments
Symbols with compartments have some special functionality related to the
compartments and the contained text fields.

Compartments can contain text fields which in turn is associated with model
elements. Compartment text fields are left-aligned.

Certain symbols, like for example the class symbol, are created with a default
set of compartments. The class symbol for example will have an attribute and
an operation compartment.

Compartments can be selected, and there are a set of operations possible to
perform on them.

When hovering over a compartment for a moment, a tool tip will display the
compartment type.

Resizing

When a symbol with compartments is resized, any compartment that does not
fit in the symbol will be hidden. If some content in the compartment can be
hidden instead of the entire symbol, this will be done instead.

When a symbol is larger than necessary to display all the compartment con-
tents, then the extra space will be evenly distributed among the compart-
ments.

Creating compartments

If a symbol can contain compartments there is a Compartments sub-menu
available on the symbol’s shortcut menu. The sub-menu contains a set of op-
erations for creating compartments in the form Create <Element> compart-
132 Telelogic DOORS Analyst User Guide November 2008

Common Symbol Operations
ment. Executing one of these operations will create a compartment that can
be used to create and display elements of the element type. New compart-
ments will be added in the bottom of the symbol.

Deleting compartments

A compartment can be deleted by selecting it and using the normal Delete
command. Certain compartments can also be directly associated with the
model elements that the compartment is showing, and in that case the Delete
Model command can also be used.

Moving compartments

The order of compartments can be changed by using the Move Up and Move
Down commands available on the Move toolbar.

Show/Hide on compartments

When a specific compartment is selected, the shortcut menu will give the
possibility to show and hide elements of the type that the compartment is
used for. Show and hide operation will only be displayed in the shortcut
menu if they are applicable.

When the symbol is selected, the shortcut menu will give the possibility to
show and hide elements in any of the existing compartments, or create a new
compartment to display a certain type of model element. These operations
will only be displayed if applicable. If there are several compartments
showing the same type of model element, show and hide operations will only
be done on the one first in order. To show and hide elements on a specific
compartment use the shortcut menu of the compartment instead.

It should be noted that the owned model elements will not be shown by de-
fault if an already created element is dragged into a diagram.

See also

“Default Class symbol appearance” on page 643

For the elements to become visible it is also possible to drag-and-drop them
into the compartment or symbol or type them in manually.
November 2008 Telelogic DOORS Analyst User Guide 133

Chapter 3: Working with Diagrams
Hint

Using Name completion is a good way of avoiding to create new features by
mistake. Start typing the name, press CTRL + SPACEBAR or SHIFT + SPA-
CEBAR, if there are multiple possibilities a list will be displayed.

Compartment text fields

Delete element

A text field in a compartment is a separate presentational element that is as-
sociated with a model element. Due to this it is not possible to delete a text
field connected to a model element by deleting all text on the line. To delete
the element associated with the label, enter text mode and use the Delete <El-
ement> operation from the shortcut menu.

Note
It is not possible to delete a text field connected to a model element by de-
leting the text on the line, this will only delete the characters on that line.
The row will still be connected to the model element.

A text field not connected to a model element can be deleted by deleting all
the text on the line and then pressing backspace or delete. It is also possible
to delete an empty text field not connected to a model element by pressing
backspace when the text cursor is first on the text line below or by pressing
delete when the text cursor is last on the text line above.

Hide element

To hide a specific element displayed in a compartment text field enter text
edit mode and use the Hide <Element> operation from the shortcut menu.

Move text fields

It is possible to move feature text fields up and down with the Move Up and
Move Down toolbar buttons (found on the Move toolbar).

Common Line Operations
• Line styles
• Draw lines
• Editing vertices
134 Telelogic DOORS Analyst User Guide November 2008

Common Line Operations
• Move lines
• Delete lines
• Re-direct and bi-direct lines

Line styles
There are five different line styles that can be applied to a line. After a line is
created these styles are available in the context menu on the line.

Auto-routed (assign endpoints)

Line is routed automatically so that obstacles are avoided. Line is orthogonal
as long as there is a possible route for the line. In other cases the line is drawn
as a straight line. Endpoints are automatically reassigned to make the shortest
route as possible. When an endpoint is moved the line style of that line will
automatically be changed to Auto-routed (keep endpoints).

Note that there is no difference in behavior from the Auto-routed (keep end-
points) line style if the line can only be connected at the center of a symbol.

Auto-routed (keep endpoints)

Line is routed automatically so that obstacles are avoided. Line is orthogonal
as long as there is a possible route for the line. In other cases the line is drawn
as a straight line.

If the source endpoint is shared with another line of the same type, a tree
structure will be routed as far as it is possible. This is only possible for certain
type of lines that are common to draw as tree structures, such as the general-
ization line.

Orthogonal

Line is always kept orthogonal and line vertices and segments can be moved.
Vertices can be added and removed from the line.

Non-orthogonal

Line vertices can be moved, added and removed without restrictions. If a
non-orthogonal line is rearranged into an orthogonal line, the line style is au-
tomatically changed to Orthogonal.
November 2008 Telelogic DOORS Analyst User Guide 135

Chapter 3: Working with Diagrams
Bezier

Will give the line a curved layout. When the line is selected two control
points are displayed which can be used to shape the curve.

See also

“UML Editing Line Styles” on page 645

Draw lines
A line can be created either by using the toolbar button or the line handle rep-
resenting the line.

Creating a line with a line handle

1. Select the source symbol.
2. Click the line handle.
3. Add vertices and/or lock endpoint (optional).
4. Click the target symbol or line.

Creating a line with a toolbar button

1. Click the toolbar button.
2. Click the source symbol.
3. Add vertices and/or lock endpoint (optional).
4. Click the target symbol or line.

Vertices can be added while creating the line, with the exception of auto-
routed lines. When it is allowed to place a vertex the cursor will have the
shape of a plus sign.

For all line styles it is possible to lock the starting point position to the
symbol edge, if the starting point is selectable. When creating a line with the
line style Auto-routed (assign endpoints) or Auto-routed (keep endpoints) a
cursor in the shape of a padlock is displayed. When clicking at this state the
starting point of the line will be locked to its current position. If the line have
the line style Auto-routed (assign endpoints) as default line style and the end-
point is locked in this way, the line style will automatically be changed to
Auto-routed (keep endpoints). When creating a line with a line style different
from Auto-routed (assign endpoints) and Auto-routed (keep endpoints) the
starting point can be locked by holding down SHIFT and clicking.
136 Telelogic DOORS Analyst User Guide November 2008

Common Line Operations
Editing vertices
To add a vertex for an existing line hold down CTRL and click on the seg-
ment where the vertex should be created.

To remove a vertex hold down CTRL and click on the vertex that should be
removed.

This can only be done for lines with the line style Orthogonal or Non-orthog-
onal applied. The mouse cursor will change to indicate that the operation is
possible.

See also

“Connect symbols” on page 123

Move lines
To move a line, click one of the endpoints and drag it to the desired location.

Delete lines
Lines are in many cases representing a model element which will remain in
the model even if they are deleted from a diagram. If you want to completely
remove a line, for example an association, then make sure to use Delete from
Model.

Re-direct and bi-direct lines
• To re-direct a line (when applicable), right-click the line and choose Re-

direct from the shortcut menu.
• To bi-direct a line (when applicable), right-click the line with the cursor

close to the side without direction or signal list. Select Enabled Direc-
tion from the shortcut menu.

• If a line is bi-directed, and you want to allow it only one direction, locate
the cursor over the line, close to the side you want to disable. Then dese-
lect Enabled Direction from the shortcut menu.
You can also re-direct the line before or after this operation to make it
point in the desired direction.
November 2008 Telelogic DOORS Analyst User Guide 137

Chapter 3: Working with Diagrams
138 Telelogic DOORS Analyst User Guide November 2008

4
UML Language Guide

This chapter describes the UML language as implemented and supported in
DOORS Analyst 4.2.

• For more information on the supported version of UML, see “UML ver-
sion” on page 140.

See also

Chapter 2, Working with Models

Chapter 3, Working with Diagrams
November 2008 Telelogic DOORS Analyst User Guide 139

Chapter 4: UML Language Guide
Introduction
UML is a modeling language that allows you to specify, visualize, document,
and construct software and systems. In subsequent sections you find infor-
mation about the different diagrams and constructs that can be used to de-
scribe the structure and behavior of systems at different levels of abstraction.
Some constructs are more useful in early development phases, such as re-
quirements and analysis, while others are more useful in later development
phases, such as design, implementation, and test. This ability to tie together
the different development phases is one of the primary strengths of UML.

UML version
The language used in DOORS Analyst is based on the latest OMG UML 2.1
Superstructure submission. In some cases the implementation of DOORS
Analyst differs from the language specification; this is primarily due either
to tool optimizations or the fact that some design decisions were founded on
earlier versions of the submission.

DOORS Analyst also includes some extensions to the language, for example
the possibility to use a textual syntax in conjunction with the graphical nota-
tion defined for UML.

Diagrams
UML consists of a set of diagrams that are used to express different view-
points of a system. Some diagrams focus on the structure of the system, while
others are dedicated to describing behavioral aspects of the system, such as
how an entity interacts with another entity or the set of actions to be per-
formed under specific conditions. Typically, these diagrams are the primary
means through which you specify systems.

The diagrams that are supported in DOORS Analyst are the following:
140 Telelogic DOORS Analyst User Guide November 2008

Introduction
Models and diagrams
A model is a representation of a physical system, and is typically defined by
the entities contained in one or more packages.

Diagram Purpose

Use case diagram Describes how a set of actors interacts in terms
of use cases, usually in the context of a subject
(the described system).

Sequence diagram Describes the event sequence for a use case or
an operation.

Package diagram Describes packages and dependencies between
them.

Class diagram Declares classes and their relations to each
other, typically in the scope of a package or an-
other (container) class.

Composite structure dia-
gram

Describes how parts of a (container) class are
connected to each other to form an internal
structure of the container.

Activity Diagram Used to show parallel and intertwined be-
havior. This may allow a simplified view of a
complex structure where it is possible to focus
on a specific flow of control.

Interaction overview di-
agram

Describes some form of parallel behavior. It is
often used to describe a use case.

Component diagram Focused on the design of components and
shows relations and structure of components

Deployment diagram Used to show how the physical implementation
is structured and the relations between soft-
ware and hardware

State machine diagram Defines the behavior of classes, state machines
and operations.
November 2008 Telelogic DOORS Analyst User Guide 141

Chapter 4: UML Language Guide
Since the model is a representation of a system, it should only be as detailed
as necessary. If, for example, it should be used as the source for automatic
application generation, it needs to contain quite a lot more detail at an algo-
rithmic level than if it is used to visualize requirements.

The model contains all entities that are necessary to describe a system; this
includes diagrams and model elements. The model, or rather the model ele-
ments it contains, are typically shown in different diagrams using symbols
(sometimes called presentation elements, as opposed to model elements).

Model elements

The primary contents of a model are model elements such as classes, at-
tributes, operations, actions, and constraints. A model element is used to
store all characteristics of an entity. It is then possible to show different as-
pects of a model element in diagrams. For example, one class diagram may
show the attributes and operations of the class, while another class diagram
may shown the class hierarchy in which it is defined. These diagrams give
partial views of the same model element, but many more are possible.

Symbols

Symbols are used to graphically visualize (parts of) model elements. Each
symbol is a two-dimensional object that is shown in a diagram. It has a size
that specifies its dimensions and a position that is given in terms of the coor-
dinate system of its diagram.

Most symbols are direct visualizations of a corresponding model element,
such as the class symbol but there are a few that have no underlying model
element, such as the text symbol. These are then only associated with a spe-
cific diagram.

The distinction between model element and symbol is important, but in daily
speak the distinction between the two is often blurred. A class model element
or a class symbol is commonly referred to simply as class.

Different views of a model element

In Figure 36 on page 143, there is an example of the model element a, which
is shown using three different views. First, it is shown as an attribute of the
class C. Second, it is shown as an association end between the classes C and
D. Third, it is shown as a part of the internal structure of class C.
142 Telelogic DOORS Analyst User Guide November 2008

Introduction
Here it is also possible to appreciate the difference between a model deletion
(Delete from Model) and an ordinary Delete from a diagram. The browser
view to the left shows the model, and when deleting elements from the
browser view you delete them from the model and the diagrams in which
they are shown. The two diagram views to the right, however, show the same
attribute a in three different ways: in the attribute compartment of the class
C, as an association end between the classes C and D, and as a part of the in-
ternal structure of the class C.

Deleting symbols and model elements

Elements can be deleted in two different ways from a diagram. An ordinary
Delete removes the symbol, but the model element is retained in the model.
A Delete from Model operation deletes the element from the model and from
all other diagrams in which it is shown.

In some diagrams, model elements and symbols are tightly connected with
each other. This includes sequence diagrams, and state machine diagrams.
Here, there is a one-to-one mapping between symbols and model elements,
and if one is deleted then the other is also deleted. (In other words, a delete
is the same as a Delete from Model in these diagrams.) In particular, this is
applies to for example actions and transitions, but not for states.

Figure 36: Example of different views of an attribute
November 2008 Telelogic DOORS Analyst User Guide 143

Chapter 4: UML Language Guide
See also

“Add symbols” on page 119

“Move symbols” on page 122

“Resize symbols” on page 122

“Connect symbols” on page 123

“Edit text fields in symbols” on page 125

“Copy, cut, delete or paste symbols” on page 127

List of language constructs
The following table lists all the concrete model elements as well as the most
significant other language constructs in UML.

UML model element

Accept Event, Accept Time Event, Access, Action (in operation body,
state machine and state machine diagram), Action (in interaction and se-
quence diagrams), Action Node (in activity diagrams), Active class, Ac-
tivity, Activity Final, Actors, Aggregation, Arbitrary value (any) expres-
sion, Artifact, Assignment, Association, Attribute

Behavior port

Choice, Class, Classifier, Comment, Component, Composite state, Com-
position, Compound statement, Conditional expression, Constant, Con-
nector (in composite structure diagrams), Connector (in activity diagrams),
Continuation, Co-region, Create

Datatype, Decision (in state machine diagrams), Decision (in activity dia-
grams), Dependency, Deployment, Deployment specification, Diagrams,
Destroy

Entry connection point, Execution environment, Exit connection point,
Expressions, Extension

Field expression, Flow Final, Fork

Generalization, Guard

History nextstate
144 Telelogic DOORS Analyst User Guide November 2008

Introduction
Scope, model elements, and diagrams
Some model elements, like packages and classes, represent name scopes.
This means that they are allowed to contain definitions of other model ele-
ments. All definitions within a name scope must be uniquely named, or the
semantic checker will complain. You can think of a scope as a container or
grouping of model elements that belong together.

Most scopes may not only contain model elements, but also diagrams in
which those model elements are shown. The table below shows which dia-
grams are available for each scope.

Imperative expressions, Realization, Import, Index expression, Initial
Node, Inline Frame, Interaction, Interaction reference, Interface, Internals

Join, Junction

Lifeline, Literal

Manifestation, Merge, Message, Method, Method call

New, Nextstate, Node, Now expression

Object Node, Offspring, Operation, Operation body, Signal sending action
(output)

Package, Parent, Part, Activity Partition, Pid expressions, Pin, Port, Pre-
defined, Profile

Range check expression, Realized interface, Required interface, Return

Save, Self, Send Signal, Sender, Signal, Signallist, Signature, Initial tran-
sition, State, State machine, State machine implementation, State expres-
sion, Stereotype, Stop, Subjects, Syntype

Tag definition, Tagged value, Target code expression, Action (task), This
expression, Timer, Timer active expression, Timer reset, Timer reset ac-
tion, Timer set, Timer set action, Timer timeout, Transition

Use cases

UML model element
November 2008 Telelogic DOORS Analyst User Guide 145

Chapter 4: UML Language Guide
Scope unit Allowed model elements Diagrams

Package Package, Class, Use cases, Ar-
tifact, Stereotype, Association,
Datatype, Interface, Syntype,
Choice, Operation, Attribute,
Signal, Signallist, Timer, State
machine

Class diagram
Sequence diagram
Use case diagram

Class Class, Artifact, Stereotype,
Datatype, Interface, Syntype,
Choice, Signal, Signallist,
Timer, Attribute, Operation,
Use cases, State machine,

Class diagram
Composite structure
diagram

Use cases Interaction, State machine im-
plementation, Operation body

Sequence diagram
State machine dia-
gram

Interaction Lifeline Sequence diagram
Use case diagram

Stereotype Attribute

Datatype Literal, Operation

Choice Attribute, Operation,

Interface Signal, Timer, Attribute, Oper-
ation

Operation Operation body, State machine
implementation, Interaction

Operation body State machine, Class, Artifact,
Stereotype, Datatype, Inter-
face, Syntype, Signal, Signal-
list, Timer, Operation, At-
tribute

State machine dia-
gram
146 Telelogic DOORS Analyst User Guide November 2008

General Language Constructs
Overloaded Definitions

For certain kinds of definitions it is allowed to have many definitions with
the same name in a scope. This is true for behavioral features, such as Oper-
ation, Signal, Timer and State machine. These definitions are identified not
only by their names, but also by the types of their parameters. The name and
list of parameter types is called the signature of the behavioral feature. All
behavioral features in the same scope must have unique signatures. Two be-
havioral features in the same scope which have the same name, but different
signatures, are said to be overloaded.

General Language Constructs
There are some language constructs in UML that are common to several di-
agrams.

Names
All definitions in a UML model should have a name—an identifier. There are
certain rules to which these have to adhere.

State machine im-
plementation

Class, Artifact, Stereotype,
Datatype, Interface, Syntype,
Signal, Signallist, Timer, Op-
eration, State, Action, At-
tribute

State machine dia-
gram
Class diagram
Use case diagram

Activity imple-
mentation

Initial Node, Action Node, Ob-
ject Node, Decision, Merge,
Fork, Join, Connector, Accept
Event, Send Signal, Accept
Time Event, Activity Final,
Flow Final, Activity Partition

Activity Diagram

Compound state-
ment

Action, Attribute

Scope unit Allowed model elements Diagrams
November 2008 Telelogic DOORS Analyst User Guide 147

Chapter 4: UML Language Guide
Naming rules

The characters that are allowed in a name are letters, digits, and ‘_’ (under-
score).

The first character of a name cannot be a digit, but should be either a letter or
an underscore. There is furthermore a special case for destructor names,
which always start with an initial ‘~’ (tilde).

Using spaces and special characters in identifiers

By enclosing a name in single quotes, it is possible to get rid of the above
mentioned restrictions, so that (almost) any character can be part of a name,
see Figure 37 on page 148. For example, it is possible to use spaces in a name
as long as the name is enclosed by single quotes, see Example 9 on page 148.

There exist a number of escape characters for string handling. They are \n, \t,
\b, \r and \f and can be placed inside charstring (inside “”) or used as a char-
acter (e.g. '\n').

The “\"” is used in charstring, “\'” respectively as character, and “\\” is
used in both to represent backslash. Any other escaped character between
quotes ('\+', '\s') is interpreted as identifier (+ and s respectively). Inside a
quoted string any other character can follow the slash, representing just itself
(e.g. “a\qa” = “aqa”).

\n: new line
\t: tab
\b: backspace
\r: carriage return
\f: form feed
\": quotation mark, e.g. "my \"quoted\" word"
\': apostrophe character, '\''
\\: backslash

Example 9: Spaces in identifiers –––

Boolean 'has finished'=false;

Figure 37: Using special characters in identifiers
148 Telelogic DOORS Analyst User Guide November 2008

General Language Constructs
–––

Case sensitivity

Identifiers are case sensitive. This means that names that differ only in the
way they use lower and upper case characters are distinct.

Example 10: Case sensitivity –––

Integer MyInt, myint; // Two distinct attributes

–––

References

Named definitions may be referenced from other places in a model. In simple
cases a reference just consists of the name of the definition (enclosed in
single quotes if necessary). However, in the general case a reference can be
more complex.

• A reference may contain a qualifier.

In some cases it is necessary to qualify a name in order to be able to distin-
guish a definition in one scope from another definition with the same name
but in another scope. This is done by prefixing the identifier with the scope
path and using the special scope resolution operator “::”. Global names have
no path, and are simply preceded by “::”. Qualifiers that start with “::” are
called absolute qualifiers, while those that start with a name are called rela-
tive qualifiers.

• A reference may contain actual template arguments.

If the referenced definition is a template (i.e. has Template parameters) the
reference must contain actual values for its template parameters. The actual
template arguments are given as a comma separated list after the name within
‘<‘ ‘>’ brackets.

• A reference may contain a list of parameter types.

When referring to a behavioral feature you must add the names of the param-
eter types, since not only the name but also the parameter types are part of
the signature of the behavioral feature. The parameter type names are given
enclosed in parenthesis after the name.
November 2008 Telelogic DOORS Analyst User Guide 149

Chapter 4: UML Language Guide
Example 11: Different kinds of references –––––––––––––––––––––––––––––––––

In this example two attributes refer to their types using a qualified name.

::Predefined::Integer i;

UtilityTypes::Sorts::ClientIdx j;

If the type is a template class actual template arguments must be specified:

MyClass<Integer, 4> k;

When referring to a behavioral feature such as an operation, the parameter
types must be specified. Note also the keyword ‘operation’ which must be
used to syntactically disambiguate such a reference from an ordinary call of
the operation.

OperationReference r = operation foo(Integer, Boolean);

–––

Reserved words

Some names are reserved words in DOORS Analyst and cannot be used to
name model elements directly. For a complete list of reserved words, see .

Although it is possible to use reserved words as names of definitions by en-
closing them with single quotes, risk for confusion is apparent and this
should be done only when absolutely necessary.

Example 12: Using single quotes for names that are otherwise reserved–––––––––

Integer ‘class’; // confusing attribute name, but valid

–––

Alternative syntax
In addition to the graphical notation defined by UML, a complementary tex-
tual syntax is defined for describing the model in plain text. This can be used
in lieu of the graphical symbols, or in conjunction with them.
150 Telelogic DOORS Analyst User Guide November 2008

General Language Constructs
In Figure 38 on page 151, the same model element is shown twice in a single
diagram. To the left, a graphical notation is used, and to the right, a textual
syntax within a text symbol is used. Changes in either of these views are au-
tomatically propagated to the other.

Common element properties
The following properties exist for many different kinds of model elements.
They can be inspected and controlled through the Properties Editor.

Visibility

Many model elements have a visibility, which is used to determine access
rights for elements outside the scope in which the element is defined. Within
a scope, all elements can be accessed regardless of visibility. There are dif-
ferent levels of visibility:

• Public
All elements that can see (access) the container of the element with
public visibility can also access the element.

• Protected
All elements in the same scope as the element with protected visibility
and the subclasses of its container can access the element

• Private
Only elements within the same scope as the element with private visi-
bility can access the element.

Figure 38: Example of differences between the syntax in
class symbols and the textual syntax
November 2008 Telelogic DOORS Analyst User Guide 151

Chapter 4: UML Language Guide
• Package
An element with package visibility is accessible by all elements enclosed
within the same package.

• None
If visibility is not specified, the element gets a default visibility according
to the table below.

The default visibility of a definition is decided by its scope and type.

Note
Literals always have public visibility.
All literals and public static members of a datatype are visible outside of a
datatype without a qualifier. Qualifiers are only required to resolve ambi-
guities, for example when two datatypes in the same scope have literals with
the same name.

Virtuality

Virtuality comes into play when you have generalization between classifiers
such as classes, and determines whether contained model elements of a spe-
cialized class can be redefined or not.

Virtuality only applies to elements that are contained in types (classifiers that
can be specialized). If the container is specialized, the individual virtuality of
each contained element controls if that element may be changed.

• Virtual
If a contained element is virtual, it is allowed to redefine (change) this el-
ement when its container is specialized.

Scope Visibility

Class, Choice,
Stereotype,
Collaboration,
Artifact

Private

Package Public
Interface Public
DataType Public
152 Telelogic DOORS Analyst User Guide November 2008

General Language Constructs
• Redefined
If an element in a specialized container is redefined, it is changing the
definition of the original element from the base container. The original
element in the base container must be virtual.
A redefined element is still virtual, that is if the container is specialized
once more, the element may be redefined further.

• Finalized
If an element in a specialized container is finalized, it is changing the def-
inition of the original element from the base container. The original ele-
ment in the base container must be virtual. Finalizing also implies pro-
hibiting further redefinition of this element if the container is specialized
once more. In this sense, finalized means “redefined but not virtual“.

• None
If a contained element has no virtuality, it is not allowed to redefine
(change) this element when the container is specialized.

Derived

If an element is derived, it means that its value can be calculated by means
of other elements. Exactly how to specify how to perform the calculation of
the value is context dependent.

A common case of derived elements are derived attributes. For these the der-
ivation rules used when accessing the attribute can be specified using ac-
cessor operations called ‘get’ and ‘set’.

Example 13: Specifying derivation rules for a derived attribute––––––––––––––––

Integer y;
Integer / x
 get { return 5; }
 set { y = value; };

–––

Other properties
• External

If a definition is external, it means that it resides outside this model. The
code generators supplied will not generate code for external elements.
External elements can thus be seen as model representations of externally
available definitions.
November 2008 Telelogic DOORS Analyst User Guide 153

Chapter 4: UML Language Guide
• Abstract
If a classifier is abstract, it is not allowed to directly instantiate the clas-
sifier. If an abstract classifier is specialized, which it typically is, it is al-
lowed to instantiate the specializing classifier (unless it too is marked as
abstract).

• Static
If a definition is static, all instances of the containing classifier shares the
implementation for this element, that is uses the same piece of data.
Hence a static definition can be used without having an instance of the
classifier in which it is defined.

Parameters

Definitions that are behavioral features, such as Operation, Signal or State
machine, may have parameters. The general format (used in classifier sym-
bols and in the Properties Editor) is:

name:type, name2: type2

A parameter has a direction which specifies the direction in which data
“flows” in a call to the behavior:

• In (default)
Data is passed from the caller to the invoked behavior.

• In/Out
Data is passed from the caller to the invoked behavior and also from the
invoked behavior back to the caller.

• Out
Data is passed from the invoked behavior back to the caller.

• Return
Data is passed from the invoked behavior back to the caller as the return
value of the call. At most one parameter may be a return parameter.

Template parameters

A template parameter is a concept for allowing flexible, context-free classi-
fiers. Another name for template parameters is context parameters.

Elements that can be specialized or that can be instantiated (called) may have
template parameters, for example classes and operations.
154 Telelogic DOORS Analyst User Guide November 2008

General Language Constructs
Template parameters are bound with actual parameter “values” either at in-
stantiation or when the containing classifier is specialized or redefined. It is
allowed to bind a subset of the template parameters at specialization. On in-
stantiation, all template parameters must be bound.

As a general rule, whenever a template definition is referenced actual values
for all its template parameters must be specified. There are two exceptions to
this rule

1. If a template parameter has a default value, it is not needed to give an ac-
tual value for it. The default value will then be used.

2. In calls to a behavioral feature with template parameters it is not neces-
sary to specify the actual template arguments if these can be deduced
from the actual call arguments used in the call.

The operators reinterpret_cast<T> and cast<T> cannot be used as ac-
tual template parameters. Any template instantiation containing
reinterpret_cast<T> or cast<T> operator cannot be resolved by name
resolution.

Example 14: Template instantiation containing casting operator–––––––––––––––

The following example illustrates this restriction:

template<const Integer x>
class MyTemplate { }
enum E { L }

/* These template instantations cannot be resolved */
MyTemplate<cast<Integer>(L)> myVar1;
MyTemplate<reinterpret_cast<Integer>(L)> myVar1;

–––

Predefined names
In the provided utility package Predefined are found a number of useful
datatypes, literal values and operations. The names of these entities are not
reserved, but it is recommended to avoid using these names for other entities
as that is likely to cause human misinterpretation.

See also

“Predefined” on page 319
November 2008 Telelogic DOORS Analyst User Guide 155

Chapter 4: UML Language Guide
Use Case Modeling
Use case modeling focuses on determining the context of a system or parts
of it, often in terms of the actors that interact with it, but also on modeling the
requirements of the behavior of these elements.

Use case diagram
A use case diagram illustrates a usage situation by showing the relationships
between use cases and actors. A use case diagram gives a static view of dy-
namic aspects of systems.

Example

Model elements in use case diagrams

The following elements are found in use case diagrams

• Use cases
• Actors

Figure 39: Use case diagram with Actors, Use Cases, a Subject
and Association relationship between the Actors and the Use Cases
156 Telelogic DOORS Analyst User Guide November 2008

Use Case Modeling
• Subjects
• Dependencies
• Includes
• Extends
• Generalizations
• Association

Create a use case diagram

Use case diagrams can be included in packages, classes and collaborations.

1. Select the package (class, collaboration) in the Model View.
2. From the shortcut menu select New and then Use Case diagram.

Use cases can then be drawn using the toolbar or you can drag use cases
from your model into a use case diagram.

• To use the toolbar, first click on the use case symbol and then click in
your diagram where you want to position the use case symbol.

Use cases
A use case represents a coherent unit of functionality provided by a system
or parts of a system. Usually, the system is represented by a class. The func-
tionality is often manifested in terms of communications between the system
and one or more outside actors, including the behavior performed by the
system.

A use case is in many ways similar to an operation, and is in fact modeled as
an operation with the stereotype «use case».

Symbol

A use case is visualized through the use case symbol in a use case diagram.
It can be specified within the scope of:

Figure 40: Use case symbol
November 2008 Telelogic DOORS Analyst User Guide 157

Chapter 4: UML Language Guide
• a package
• a class
• a collaboration
• an implementation

The description of a use case

The behavior of a use case can be defined by:

• an interaction
• a state machine
• an operation body
• an activity

It is also possible to describe the behavior of a use case textually. In this case,
there is often some structure to the text, where the name of the use case is
given, followed by its goals, preconditions and post conditions, exceptional
cases, and the actual functionality in the form of actions that should be per-
formed by the use case.

Example 15: A textual use case–––

Use case: CloseAccount
Goal: Close a user account and make sure the balance of
the account is settled
Preconditions: Customer has an open account
Postconditions: Customer has closed the account and has
paid outstanding dues
Description:
1. Check balance of account
2.a If balance is positive, pay customer
2.b If balance is negative, collect payment from
customer
3. Terminate card associated with account
4. Close account

–––

Naming use cases

When naming Use Cases, it is common to use some kind of verbal descrip-
tion, typically a phrase which contains a verb and an object, for example “do
something”. It is possible to use this name convention, in spite of the fact that
names may not contain spaces, by using a quoted name:
158 Telelogic DOORS Analyst User Guide November 2008

Use Case Modeling
Example 16: Quoted use case name –––––––––––––––––––––––––––––––––––––––

<<usecase>> void 'Open Account' ();

–––

More often, the verb and the noun are written together without the white
space.

Actors
An actor represents an entity that takes part in a use case, for example to ini-
tiate the functionality or as a resource for information needed by the use case.

Symbol

An actor is visualized using a stick figure symbol in a use case diagram. Ac-
tors are connected to use cases using Association.

The role of an actor

In a use case diagram, the focus is on showing the relationships between ac-
tors and use cases. An actor is an entity that is involved in use cases, most
often in the context of one or more Subjects. An actor is external to the sub-
ject for which the use case is defined, and can be human users, external hard-
ware devices, or other subjects. An actor is not necessarily one single phys-
ical entity, but can for example be an entire computer network.

In different use cases, there can be different actors representing the same
physical entity, but with a different role. An actor may also represent dif-
ferent physical entities in different use cases.

The actor is either a reference to a part or an instance of a class.

Figure 41: Actor symbol
November 2008 Telelogic DOORS Analyst User Guide 159

Chapter 4: UML Language Guide
In a use case diagram the focus is on showing the relationships between ac-
tors and use cases. However, sometimes it is also beneficial to focus on the
type-like aspects of an actor. For example to show how actors relate to each
other using inheritance or show some properties of the actor. This is shown
in class diagrams where actors are visualized as a class symbol with the
«actor» stereotype.

The Actor symbol visualizes stereotypes applied to the actor and the class
that the actor references (only if no stereotype is applied to the actor)

Subjects
A subject defines the system boundary for a set of use cases. A subject can
represent a system, subsystem or class. The subject is either a reference to a
part or an instance of a class.

Subject corresponds to the System Boundary of use cases in UML 1.X.

Symbol

Use cases can be enclosed inside a subject symbol. The subject symbol is
drawn around a set of use cases that represent the behavior of for example an
active class. A name and the class type can be written in the upper right
corner of a subject symbol.

A hatched background color can be assigned to the subject symbol.

Relationships
The following relationships can be used within a collaboration or a use case
diagram:

Figure 42: Subject symbol (ATM)

atm : ATM

'Clos e Account'

Ba nk : Ba nkCe ntra l
:us e r

'Ope n Account'

160 Telelogic DOORS Analyst User Guide November 2008

Use Case Modeling
Association

The association relationship is used between an actor and a use case and in-
dicates that an actor participates in that use case. Reversely, the use case is
performed by the actor. One actor may participate in several use cases and
one use case may have several participating actors. Association text is in-
formal.

Includes

The include relationship is used between different use cases to indicate that
one use case is part of another use case. This provides a mechanism to split
large use cases into smaller ones. The behavior of the including use case is
typically not meaningful by itself, but is dependent on the included use cases.

Extends

The extend relationship is used between different use cases to indicate how
and when a use case should be inserted into an extended use case. The ex-
tended use case should be complete by itself; the extensions typically de-
scribe supplementary functionality to be addressed under certain conditions.

Dependencies

Dependencies may be specified between use cases or between actors. A de-
pendency does not give any indication about how the entities are related.

When a dependency is created between two use cases it will implicitly be-
come an include relationship.

Generalizations

A generalization can be specified between use cases; one use case may spe-
cialize a more general use case. For actors that are associated with classes a
generalization can be specified. Generalization text is informal.

See also

“Relationships in UML” on page 306
November 2008 Telelogic DOORS Analyst User Guide 161

Chapter 4: UML Language Guide
Scenario Modeling
Scenario modeling focuses on describing scenarios of system or subsystem
usage. These scenarios are described as sequences of events that occur on
lifelines.

When describing message interactions in increasing detail during this mod-
eling activity, a clearer view emerges of how the responsibilities are divided
between components of the system, but also of the borderline between the
system and the external actors that interact with it.

The scenario modeling activity often takes place rather early in the analysis
activity, but can of course also continue, with greater precision, in the design
activity. The scenarios that are produced are specifications of the dynamic in-
terfaces of the system and system components. They often have a twofold
purpose:

• as a basis for the behavior modeling of components
• as a basis for test cases.

In UML scenarios are modeled using Interactions and the events are shown
in Sequence diagrams as described in this section. Interaction overview dia-
grams are used to control and coordinate individual interactions.

Scenario modeling is very often done as part of a use case analysis. For each
use case an interaction is created describing the behavior associated with the
use case and a sequence diagram is used to visualize the interaction.

Sequence diagram

Description

A Sequence diagram describes an Interaction, visualizing the message inter-
change between lifelines, but also other event occurrences.
162 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
Example

Model elements in sequence diagrams

The following model elements can be found in sequence diagrams:

• Lifeline
• Message
• Action
• State
• Interaction reference
• Timer event
• Time specification line
• Create

Figure 43: Sequence diagram
November 2008 Telelogic DOORS Analyst User Guide 163

Chapter 4: UML Language Guide
• Destroy
• Inline Frame
• Co-region
• Continuation
• Method call

Create a sequence diagram

A sequence diagram is a graphical description of the implementation of an
Interaction. When creating a sequence diagram for example in a package it
will automatically be encapsulated in an Interaction with its implementation.

It is however also possible to give a sequence diagram as implementation of
other behaviors, such as operations and use cases. To accomplish this the se-
quence diagram can be created directly inside the behavior itself.

There are also options related to sequence diagrams:

• Message separation
• Lifeline separation

The lifeline ruler section

When the header is not visible on screen at its normal position in the diagram
because the header is scrolled out of sight in the vertical direction, then the
header is instead visible in the lifeline ruler section.

Interaction
An interaction is a description of the behavior of a use case, operation or
other entity that can have a behavior. In an interaction the focus is on infor-
mation exchange between parts. It is typically described by a Sequence dia-
gram.

The semantics of an interaction is defined by the set of traces that can be de-
rived from the interaction. A trace is a sequence of event occurrences. This
sequence is not necessarily totally ordered. The traces may describe both
possible and impossible scenarios.
164 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
Interactions can be referenced from within other interactions, thus allowing
reuse. This is normally done by the Interaction reference symbol that refer-
ence another use case or operation that contains an interaction as its behavior
definition. It is also possible to refer to an interaction by a Lifeline decompo-
sition.

Interactions are typically used in two different ways:

• to specify the externally visible behavior of a system and its components
• to describe a trace of an execution of a system

See also

“Sequence diagram” on page 162

“Use cases” on page 157

Interaction reference
An Interaction Reference is used to represent references of interactions in se-
quence diagrams. The referenced interaction is usually described in a se-
quence diagram of its own.The name used in the Interaction Reference is the
name of the use case or operation that contains the interaction, not the name
of the interaction itself.

The interaction reference is useful in two ways:

• It can be used as an encapsulation mechanism to hide detailed interac-
tions while focusing on the important message interchange

• It enables reuse of interaction descriptions.
November 2008 Telelogic DOORS Analyst User Guide 165

Chapter 4: UML Language Guide
Symbol

Syntax

The Interaction Reference symbol contains a name, referring to a use case,
operation or other entity that can contain an interaction.

See also

“Interaction” on page 164

“Use cases” on page 157

“Sequence diagram” on page 162

“Attach/Detach from lifeline” on page 167

Lifeline
A Lifeline represents an individual participant in an interaction. While Parts
and structural features may have Multiplicity greater than 1, lifelines repre-
sent only one interacting entity. If a lifeline represents a part that has greater
multiplicity than 1, a specific instance must be chosen through indexing.

Symbol

The lifeline symbol consists of a head and an axis. If the lifeline has not been
created yet, the axis is drawn by a dashed line. When a lifeline is destroyed
(the instance is terminated), the axis is again drawn with a dashed line.

Figure 44: Interaction reference

re f

Clos e Account
166 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
Create a lifeline

To create a lifeline you can either:

• Use the Diagram element toolbar and select a lifeline symbol. Place it in
your diagram. Type in the appropriate information in the heading, for ex-
ample Partname or Classname.

• Drag a class symbol from your model into the sequence diagram to create
a lifeline representing this class. The lifeline will represent any instance
of the class, text in heading symbol reading Classname.

• Drag a part from your model to create a lifeline representing this part.
The lifeline will represent the instance of the part, text in head reading
Partname (or Qualifier::Partname if scope qualifier is necessary).

Attach/Detach from lifeline

When a symbol that can span over several life lines (such as the inline frame
symbol) is selected there is a button next to each lifeline covered by the
symbol. This button attaches or detaches the symbol from the lifeline the
button is next to, depending on its current state. If the symbol is currently at-
tached, the button display a minus sign (-). Otherwise the button display a
plus sign (+).

Figure 45: Lifeline symbol

Ba nk
November 2008 Telelogic DOORS Analyst User Guide 167

Chapter 4: UML Language Guide
Ordering of events

The order of event occurrences along a Lifeline is significant, denoting the
order in which these event occurrences will occur. The absolute distances be-
tween the event occurrences on the Lifeline are, however, irrelevant for the
semantics.

Although the order of events is strictly specified on one lifeline, there is gen-
erally no ordering between events on different lifelines. It is possible to de-
scribe a distributed system using an interaction or a sequence diagram, so that
each asynchronous component is described by its own lifeline.

The only mechanism to order events on different lifelines in the general case
is to synchronize them by message sending. The ordering mechanism of se-
quence diagrams is often called partial ordering; they do not describe a total
order, nor a complete disorder.

For systems that by nature are not asynchronous or distributed (normal pro-
grams, without threading), it is of course possible to have a stricter order in-
terpretation than the general, asynchronous case.

Lifeline decomposition

A lifeline can refer to a composite, that is to an object with parts. This is a
way to reduce complexity of interactions and focus on the most important
message interchange.

In some situations, though, you also want to see the internal communication,
that is to say the detailed message interactions between the parts of a com-
posite object. The decomposition mechanism offers this duality: it is possible
to have two descriptions of the same behavior: one high-level description and
one detailed. The detailed interaction is referenced in the lifeline heading and
is defined in a separate use case or operation, as the example in Figure 46 on
page 169 shows.
168 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
Decomposition example

Syntax

The following syntax is accepted in a Lifeline:

Bank

An instance name, referring to a Part, Port, Attribute or Subject.

Figure 46: Example of lifeline decomposition

: us e r a tm:ATM re f Colle ctMone yDe ta ile d ba nk:Ba nkCe ntra l

s d CollectMoney interaction CollectMoney (1/1)

Ente rCa rd ()

Ente rCa rd ()

Ente rCode ()

Ente rCode ()

Va lida te ()

Va lida te ()

OK ()

OK ()

 Dis pla y ()

Dis pla y ()

ba nk:Ba nkCe ntra l: us e r a tm.dis p a tm.ctrla tm.ui

s d CollectMoneyDetailed interaction CollectMoneyDetailed (1/1)

Ente rCa rd ()

Ente rCa rd ()

Ca rd ()

Ca rd ()

Ente rCode ()

Ente rCode ()

 Code ()

Code ()

Va lida te ()

Va lida te ()

OK ()

OK ()

Dis pla y ()

Dis pla y ()

Dis pla y ()

Dis pla y ()

November 2008 Telelogic DOORS Analyst User Guide 169

Chapter 4: UML Language Guide
Bank: BankCentral

An instance name and a type name, referring to a Class.

:BankCentral

A type name, referring to a Class.

atm[3]

An instance name with a selector expression to reduce the Multiplicity to 1
instance.

atm.Display

An instance name with an attribute referring to a part.

atm ref OpenAccountDetailed

An instance name and a lifeline decomposition, referring to a Use Case or an
Operation, described in a separate interaction and Sequence diagram.

atm[2].Display:ATM ref CloseAccountDetailed

An instance name with selector, part, type and lifeline decomposition.

Message
A message is an occurrence of a Signal, a method call, or a method reply. It
normally has two events; one send event (out) on the sending lifeline and one
receive event (in) on the receiving lifeline. A message can be horizontal or it
can have a slope, but the receive event should not appear above the send
event in the diagram.

Symbol

Figure 47: Messages

s 1 (3.14)

s 1 (3.14)

s 2 (Inte ge r, Re a l)

s 2 (Inte ge r, Re a l)

Va lida te ()

Va lida te ()

170 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
It may take time to send a message and pass it to the receiving side, but a
slope does not have that interpretation. Correspondingly, a horizontal mes-
sage is not necessarily directly delivered at the receiver.

Because of the relationship between signals and messages, the name of a
message must always refer to a visible Signal in the model. If the signal has
parameters, the message should have actual parameter expressions.

Creating a message

Messages have three associated text fields, one for signal name and parame-
ters and two for Gate names.

There are two different methods for placing messages allowing you to create
messages in a simple and unrestricted way.

Traditional: Click on Message line in the Diagram element toolbar.
Click on the sender lifeline, then on the receiver lifeline.

Single-click: Click on Message line in the Diagram element toolbar.
When you click and hold between lifelines the message will attach to the
lifeline to the left. When you release the lifeline will attach to the lifeline to
the right. You can now do several things to create the message you aim for:

• Release to attach the receive point to the lifeline to the right
• Drag to cross any intersecting lifelines, release close to the left of the life-

line you want to receive the message.
• SHIFT + click to send the message from right-to-left.

Summary of how different line types can be created:

• Normal message: Select message in the toolbar. Click between lifelines
for left-to-right direction. SHIFT + click for right-to-left direction. Click
and hold, then drag to cross intersecting lifelines, release to attach next
lifeline in message direction.

• Message to self: Select Message line in the element toolbar. Then click
twice on the same lifeline.

Reference existing signals when you draw a message

1. Click on Message line in the Diagram element toolbar.
2. Point and click on the lifeline that the message should go from.
November 2008 Telelogic DOORS Analyst User Guide 171

Chapter 4: UML Language Guide
3. Point and right-click close to the lifeline that the message should go to.
Point to Reference existing on the shortcut menu and select the signal
from the list.

Reference existing will display the signals visible in the scope.The signals
that are shown are computed as follows:

• If the target lifeline has a type, then the signals/operations shown in the
list are all signals that can be received by this type taking into account
signals in realized interfaces, signals defined in the class itself etc.

• If the source lifeline has a type, then the signals/operations shown in the
list are all signals that can be sent by this type, taking into account all re-
quired interfaces.

• If the source and target lifelines do not have types, but the target lifeline
has a selector then the signals/operations shown in the list are all signals
that can be received by the type of the selector taking into account signals
in realized interfaces, signals defined in the class itself etc.

• If the source and target lifelines do not have types, but the source lifeline
has a selector then the signals/operations shown in the list are all signals
that can be sent by this type, taking into account all required interfaces
that exist.

• If none of the above conditions apply, the signals/operations shown in the
list are all signals visible from the lifeline itself.

• If none of the above mentions conditions apply, the signals/operations
shown in the list are all signals visible from the lifeline itself.

A message can in some cases be drawn so it is only connected to one lifeline.
This is particularly useful when using sequence diagrams for tracing. There
are four message types that can be identified:

• New, the message is sent but not yet received. The message is connected
to its sender.

• Lost, the message is sent but will not be received. The message is con-
nected to its sender and a small circle is drawn at the message arrowhead.

• Old, the message is received but the sender is so far unspecified. The
message is connected to its receiver.

• Found, the message is received but the sender is unknown. The message
is connected to its receiver and origins from a small circle.

Use the property editor to mark a message as Lost or Found.
172 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
A message line can also be auto created in the following ways:

• SHIFT + click on the message in the symbol element toolbar when a life-
line is selected creates a new message. The new message is placed last on
the lifeline, but before any destroy lifeline symbol.

• SHIFT + click on the message in the symbol element toolbar when two
lifelines are selected creates a normal message between the lifelines. The
normal message is horizontal, placed last on the lifelines (before any de-
stroy lifeline symbol), and has a left to right direction.

• SHIFT + click on the message in the symbol element toolbar when a mes-
sage is selected creates a normal message immediately below the selected
message. The normal message is connected to the same lifelines as the
selected message and has the same direction.

Note
When you edit a message, you will see all parameters for that message, in-
dependently of whether parameters are shown or not. When you leave ed-
iting mode, the message text will go back to showing parameters or not in
the same way as other messages do

Toggle parameters

Hides or shows all message parameters in the diagram. As default, parame-
ters are shown. When you enter edit mode for a message text, the parameters
will be shown for all messages.

Incomplete message

A message may be incomplete in the sense that only one of its events is spec-
ified. If the receive event (in) is missing, it is a Lost message. If the send
event (out) is missing, it is a Found message.

Lost message

A lost message is a message where the send event is known, but there is no
receive event. This can be used to describe the case when a message never
reaches its destination.
November 2008 Telelogic DOORS Analyst User Guide 173

Chapter 4: UML Language Guide
Found message

A found message is a message where the receive event is known, but there is
no (known) send event. This can be used to model the case when the origin
of the message is outside the scope of the description. It can also be used to
avoid over-specification: when several lifelines can be the sender, but which
one is not relevant to the scenario.

Copying a message

There are two different methods of copying messages. The first method al-
ways keeps message sender and receiver.

CTRL + Drag: Press CTRL key and hold it. Then click and hold a message
you want to be copied. Drag the message and drop it to the new position. Re-
lease CTRL key.

The other method allows setting different sender and receiver.

Copy and Paste commands: Open the shortcut menu for a message you
want to be copied by right-clicking on this line. Choose Copy from the menu.
Open the shortcut menu by right-clicking in a place in the diagram where the
new message should be inserted. Choose Paste from the menu. You can also

Figure 48: Lost Message

Figure 49: Found Message

s 1 ()

s 1 ()
174 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
use CTRL + C and CTRL + V shortcuts for performing Copy and Paste com-
mands, but note that the position of the new message is defined by the point
in the diagram where you clicked last before pasting.

There are the following options.

• If the point you clicked is between two lifelines, then the new message
will be inserted between these lifelines.

• If the point you clicked is either before the first lifeline or after the last
lifeline, then the sender and receiver will be kept as in source message.

Timer event
A timer is normally described by two distinct events in an interaction. The
first event is the timer set, the second event is either a time-out or a reset.

A timer needs to be declared, before it can be used (just as messages need the
corresponding signals or operations to be declared). Timers are declared with
the Timer symbol in class diagrams.

The timer event symbols have one text field, for name and parameters.

Timer set

The set event creates a timer instance, which now is active. The timer set
event maps to the Timer set action.

Timer reset

The reset event cancels an active timer. The timer reset event maps to the
Timer reset action.

Timer timeout

The timeout event occurs when the timer duration has passed and the timer
signal has been received and consumed by a state machine. The timeout
event maps to a timer signal consumption.
November 2008 Telelogic DOORS Analyst User Guide 175

Chapter 4: UML Language Guide
Symbols

See also

“Timer” on page 223

“Timer set action” on page 284

“Timer reset action” on page 284

Time specification line
The Time specification line is used to create an Absolute time line, a Rela-
tive time line and a General ordering line.

Absolute time line

An absolute time line can be added to the left or right of a lifeline, specifying
an absolute time or a range, “{<Time>}”. The line can be moved up or down
along the lifeline. An absolute time line is created by clicking in the symbol
palette on Time specification line, and by drawing a line connected to a life-
line in only one end.

Relative time line

A relative time line is created by clicking in the symbol palette on Time
specification line, and by drawing a line connected to the same lifeline in
both ends.

Figure 50: Timer set, reset and timeout symbols

Ba nkTim e r

Ba nkTim e r

Ba nkTim e r
176 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
A specific time duration observation, “{<Duration>}”, or a time duration
constraint, “{<Duration>..<Duration>}”, can be specified in the text
field.

A relative time line has an upper border, a lower border and a duration. The
line is always drawn on the right side of a lifeline, but can be moved to the
left side. The borders can be moved up or down along the lifeline.

In most cases, the start and stop events of a relative time line are connected
to other events of the lifeline. For instance:

• The arrival of a message
• The sending of a message
• The start/top of a reference symbol
• The end/bottom of a reference symbol

It is allowed to place a Relative time line start or stop at a place where the
event is not connected to other events.

General ordering line

The general ordering line is a time specification line going between two life-
lines. Create a general ordering line by clicking on Time specification line
in the symbol palette, and by drawing the line between two lifelines.

The general ordering line is used to specify the order of events on different
lifelines without using message lines. It is visualized as a dashed line, with a
filled arrow in the middle. No text is normally associated with the line, but it
is possible to associate a specific duration, “{<Duration>}”, or a range,
“{<Duration>..<Duration>}” with the line.
November 2008 Telelogic DOORS Analyst User Guide 177

Chapter 4: UML Language Guide
Symbols

State
The state symbol is used to indicate that the instance described by the lifeline
is in a specific state.

Symbol

In scenario specifications, the use of the state is mostly done to highlight a
certain state. Normally, you do not indicate all passed states along the life-
line.

The State will bind to a model element if the state machine of the active class
that the lifeline references has a state with the same name.

For traces, though, each state symbol maps to a specific Nextstate occurrence
in a state machine transition. This is true if the lifeline object only has one
main state machine; for active objects with parts, that is active objects that
have several state machines, a simple mapping is not feasible.

Figure 51: Absolute time line, Relative time line and General ordering line

Figure 52: State

Wa itForOK
178 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
Action
The action symbol is used to express events that occur in a lifeline. It corre-
sponds to an action symbol in a State machine. Informal statements must be
written as comments.

Symbol

The allowed textual syntax in the Action is the same as for the Action (task)
symbol in state machine diagrams.

Create
The Create event corresponds to the New operation applied on active classes.

The lifeline that is created is dashed before the reception of the create event,
meaning that it has yet to be created. The name on the create line is the name
of the class corresponding to the lifeline.

Figure 53: Action

Re s =MyOp (3);
November 2008 Telelogic DOORS Analyst User Guide 179

Chapter 4: UML Language Guide
Symbol

Creating a Create line

When drawing a lifeline representing a dynamic instance of a class it is pos-
sible to draw the create event. This is done with the Create line button in the
diagram element toolbar and is handled much like a message. The name of a
create line is the name of the class corresponding to the lifeline. It refers to a
constructor operation for the class. A create line have three associated text
fields, one for the constructor operation name and parameters and two for
Gate names. Formal parameters can be added similar to adding of operation
parameters to a method call line.

Binding of a constructor

Binding of a constructor initializer reference to a base class constructor fails
if the base class constructor is called initialize. The recommendation is to
name it to the same name as the class.

Example 17: Constructor initialize that does not bind –––––––––––––––––––––––

class AutoDispatchableClass : tor::DispatchableClass {
 initialize(tor::DispatchableClass d) {
 d.addToCurrentDispatcher(this);
 init();
 'start'();
 }
}

Figure 54: Create line
180 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
class MyClass : AutoDispatchableClass {
 initialize(tor::DispatchableClass d):
AutoDispatchableClass(d) { }
}

The AutoDispatchableClass reference does not bind.

–––

Destroy
The Destroy event represents a termination of the instance. It corresponds to
the Stop action in a State machine. Events can not occur on a lifeline after the
destroy event.

Symbol

Inline Frame
The inline frame symbol provides a way to group messages that should be
treated similarly within an interaction. This means that it is possible to ex-
press different kinds of variations in a single diagram rather than having to
create a new diagram for each possible variation.

Figure 55: Destroy
November 2008 Telelogic DOORS Analyst User Guide 181

Chapter 4: UML Language Guide
Symbol

It is possible to have inline frame symbols inside other inline frame symbols.
When a second inline frame symbol is added at the same height as an existing
inline frame symbol, this will place a new inline frame symbol inside the ex-
isting inline frame symbol.

An inline frame symbol can have one or several inline frame sections. The
default inline frame symbol has one inline frame section. Inline frame sepa-
rator lines divide the inline frame symbol into several inline frame sections.
Each inline frame separator line has a constraint text.

An inline frame separator line is created with a line handle that appears when
an inline frame symbol is single-selected.

You can drag the inline frame separator line up or down within the symbol,
but it is not possible to cross another separator line connected to the same in-
line frame symbol. An inline frame separator line can be deleted by selecting
the separator line and pressing the delete key.

When a section is removed, objects in that section will also be removed as
they are a part of the removed separator.

If the inline frame symbol is deleted, the contained objects are deleted with it.

The inline frame symbol has one text, which is a combination of:

Figure 56: Inline frame
182 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
• Operator keywords: Examples: seq (default keyword), alt, else, loop,
assert.

• Constraint text. Examples: “[a<3]”, “else”

It is possible to assign a background color to the inline frame symbol. The
color will be shown as diagonal colored lines in the background of the
symbol.

Variations

There are several different possible variations, where the frame is sometimes
split to express alternative groups of messages. The available variations are
the following:

• alt: Expresses one branch of an alternative, or a decision. The frame can
be split into multiple operands, and each operand can be associated with
a condition. Only the alternative branch whose condition is evaluated to
true will be chosen. Exactly one of the branches may be an else branch.

• opt: Expresses that the grouped messages are optional, meaning they do
not have to happen. An optional frame cannot be split. It is possible to
associate the optional frame with a condition, in which case it behaves
just like an alternative, where the second choice is empty.

• loop: Expresses that a set of messages should be repeated a number of
times. A loop frame cannot be split. The number of iterations is given
using a minimum value and a maximum value of the format “loop(min,
max)”. It is possible to give “max” the value “*” which then denotes an
infinite loop.

• par: Expresses that the messages of multiple operands can be interleaved
with each other, or occur in parallel, but the ordering constraint within
each operand must still be preserved. To be meaningful, a parallel frame
must be split.

• seq: This represents the normal semantics of sequence diagrams, where
each lifeline is independent of other lifelines. Weak sequencing is prima-
rily used to override strict sequencing.
November 2008 Telelogic DOORS Analyst User Guide 183

Chapter 4: UML Language Guide
• strict: Expresses that the messages enclosed either in the sequence di-
agram or the combined fragment should have strict sequencing, that is to
say that the vertical position in the diagram is equivalent to the order in
which things will happen. Compare this with weak sequencing, which is
the default for a sequence diagram, where each lifeline has its own time-
line. When using strict sequencing, you can think of this as having a
common global time for the involved lifelines.

• neg: Expresses that the set of messages represented are invalid.
• critical: Expresses that the enclosed messages cannot be interleaved

by other inline frames. This can for example be used within a parallel
frame to override the implied interleaving for a set of messages.

• break: Expresses an exceptional occurrence that interrupts the rest of the
sequence diagram, and instead performs the set of messages enclosed by
the break frame. A break frame cannot be split.

• assert: Expresses that the sequences expressed by the assert frame are
the only valid ones, and that all other sequences are invalid. An assert
frame cannot be split.

• ignore: Expresses that a given set of messages are insignificant and
should not be shown within the frame. This gives a way to only show the
most important messages of an interaction. The format is ignore
{<list_of_messages>}. The converse operation is consider. An ignore
frame cannot be split.

• consider: Expresses that a given set of messages are significant within
the frame, and that messages not shown are thus insignificant. The format
is consider {<list_of_messages>}. The converse operation is ignore. A
consider frame cannot be split.

See also

“Attach/Detach from lifeline” on page 167

Co-region
Symbol and lines can be connected to the lifeline in the normal way also in-
side the co-region symbol. When symbols are connected inside the co-region
symbol, they are always covering the co-region symbol.

A co-region is used to indicate that the order in which elements on a single
lifeline is insignificant.
184 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
Symbol

Continuation
Continuations are only used in alternative inline frames, and acts as labels
that decide how to continue from one part of a sequence to another. An alter-
native or interaction that ends with a continuation can only be continued in
an interaction or alternative that starts with the same continuation.

Symbol

Figure 57: Co-region

Figure 58: Continuations
November 2008 Telelogic DOORS Analyst User Guide 185

Chapter 4: UML Language Guide
The continuation symbol looks like the state symbol, but may span multiple
lifelines.

The symbol contains a text field, located in the center of the symbol. The en-
tered text is not parsed, just saved in the symbol.

It is not possible to place symbols and lines inside the continuation symbol.

See also

“Attach/Detach from lifeline” on page 167

Method call
A method call is similar to a message, but is always synchronous. This means
that it will always be associated with a method reply. Method calls are used
to model for example how operations are invoked between different classes.

Symbol

A method call results in four graphical elements: a call, which is a solid
arrow, a reply, which is a dashed arrow, an activation area, and a suspension
area. The suspension area is a dashed rectangle on the caller lifeline, while
the activation is a solid rectangle on the called lifeline.

The call message and reply message have three associated text fields each,
one for operation name and parameters and two for Gate names.

Figure 59: Method call and reply
186 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
To draw a complete method call:

1. Click on Method call in the Diagram element toolbar.
2. Place the call message start event on the lifeline that the method call

should origin from, drag it to the receiver.
3. Type in operation name and parameter information or drag an operation

from the model onto the message.
4. Edit the operation parameter type information in the call message and

reply message name fields.

The main text of the reply message should normally refer to the same method
as in the call message. The parameters may be different, for instance when
the method has assigned values to out parameters, and there may also be a
return value. It is allowed to only give a return value for the reply line: “:
<value>”.

Deleting a method call or reply line, connected suspension and activation
area symbols are also deleted.

Deleting a suspension or activation area symbol, only the symbol is deleted,
not any connected method call or reply lines.

When you drag a call or reply message the Method call symbol will be re-
sized in the corresponding direction.

Gate names

With the shortcut menu choice Add/Remove Gate text, gate names can be
added to a message, method call or create event. The two gate name texts are
placed below the line. When a gate text is activated, the gate gets a default
name, which can be edited.

Activation and suspension

The lifeline from which the method call originates is suspended while the re-
ceiver is busy executing. This means that it is not doing anything but waiting
for a reply. The lifeline that receives the method call becomes activated while
it is executing the method that is invoked. Once the reply has been sent back
to the caller, both the activation and suspension areas are closed
November 2008 Telelogic DOORS Analyst User Guide 187

Chapter 4: UML Language Guide
Appearance and filtered delete

Compress Layout

The Compress Layout button will compress the distance between messages
and lifelines to be as defined in the tool Options for sequence diagrams.

When the Compress Layout button is pressed the lifelines are compressed
and lined up by moving lifelines in the horizontal direction.

When the Compress Layout button is pressed together with the SHIFT button
the lifelines will be compressed as described above, and objects on lifelines
are also compressed, by moving these objects up or down along the lifelines.

When you press and hold CTRL and press Compress layout the lifelines are
reordered to have the lifeline with the first event (for example a signal
sending) to the left in the diagram.

When you press and hold SHIFT + CTRL and press Compress layout the
lifelines and objects on lifelines are compressed as described above, and life-
lines are reordered to have the lifeline with the first event (for example a
signal sending) to the left in the diagram.

Delete selected signals

Deletes the selected messages. This command will also delete messages
using the same signals as the selected messages. Can also be used to delete
other objects:

This command will delete all <X>, when <X> is selected.

<X> is one of:

• create line
• state symbol
• timer symbol (set, reset and time-out)
• time specification line (absolute time, relative time, general ordering

line)
• method call (call line, activation symbol, reply line, suspension symbol)
• action symbol
• destroy symbol
• reference symbol
188 Telelogic DOORS Analyst User Guide November 2008

Scenario Modeling
• inline frame symbol
• continuation symbol
• text symbol
• comment symbol

Keep selected signals

If you press SHIFT and at point to Delete selected signals on the toolbar, the
command will reverse the filtering effect: Only those messages that are se-
lected, and those messages using the same signals as those messages that are
selected, will remain in the sequence diagram. For other objects, there are the
following rules:

This command will delete all <X>, if there is no selected <X> (<X> is de-
fined in Delete selected signals).

Make space

This command will make space below the selected symbol or line. Press
SHIFT and point to Make space in the toolbar to remove space below the
selected symbol or line.

Interaction overview diagram
Interaction overview diagram is a form of Activity Diagram that focuses on
the control flow between Interactions.

Interaction references in interaction overview diagrams can both define and
reference operations/activities. Interaction reference is used instead of Ac-
tion Node node and Object Node. An Activity edge and control constructs
such as Decision, Fork and Activity Final nodes are the same as in activity
diagrams.
November 2008 Telelogic DOORS Analyst User Guide 189

Chapter 4: UML Language Guide
The table below lists how you can represent the most common interaction op-
erands listed in Variations in an interaction overview diagram.

Create an interaction overview diagram

Interaction overview diagrams can be included in classes and use cases.

1. Select the class (use case) in the Model View.
2. From the shortcut menu select New and then Interaction overview dia-

gram.

Operand Interaction overview construct

alt A Decision node matched with a corresponding
Merge node.

par A Fork node matched with a corresponding Join
node.

loop Decisions and graph cycles in the diagram.

Figure 60: Interaction overview diagram

r e f
startBehaviorstartBehavior

r e f
parallell1parallell1

r e f
parallell2parallell2

[else][else]

[x > 10][x > 10]
190 Telelogic DOORS Analyst User Guide November 2008

Package Modeling
Model elements in interaction overview diagrams

The following model elements can be found in interaction overview dia-
grams:

• Decision
• Flow Final
• Fork
• Initial Node
• Join
• Merge
• Interaction reference, see Action Node
• Relationships

See also

“Sequence diagram” on page 162

“Activity Diagram” on page 246

Package Modeling
When larger systems are to be modeled, the Package construct is vital for or-
ganizing all the different definitions into logical and manageable groups. A
good principle for the organization is to group semantically close elements
that are likely to change together.

Package diagram
Package diagrams are used to visualize collections of Packages and the Re-
lationships between them. It is used to model the breakdown of a system into
logical packages and dependencies between these packages.

The package diagram contains packages and dependencies between these
packages (for example Import and Access dependencies).

A Class diagram can be used for the same purpose.
November 2008 Telelogic DOORS Analyst User Guide 191

Chapter 4: UML Language Guide
Example

Model elements in package diagrams

The following model elements can be found in package diagrams:

• Package
• Relationships

See also

“Class diagram” on page 199

Package
A Package is a mechanism for organizing elements into groups. A package
provides a namespace for the grouped elements. Within the package, those
elements can be referred to directly using their names, but from outside the
package it is often necessary to qualify the names of the model elements.

Figure 61: Packages and their relationships
192 Telelogic DOORS Analyst User Guide November 2008

Package Modeling
A model normally consists of several packages that depend on each other.
Understanding how packages relate to each other is critical when modeling
systems of any complexity, but the larger the system becomes, the more im-
portant this activity becomes since it is often a reflection of the system archi-
tecture.

Symbol

Packages also let you control the visibility and access rights to the individual
elements defined in the packages.

• Definitions (such as classes and other packages) may be collected in a
Package.

• A Package may be imported or accessed by another Package.

It is possible to nest other symbols hierarchically inside a package symbol.
An element created inside a package symbol will have the package as owner.

Syntax

The package symbol contains a text field with the name of the package.
When the referenced package is defined in another namespace the package
name is preceded by a qualifier, like in “OuterPackage::MyPackage”.

See also

“Relationships” on page 193

Relationships
The following Relationships can be used in package diagrams. These are de-
scribed further in the section Relationships in UML.

• Dependency
• Containment

Figure 62: Package

BasicTypes

November 2008 Telelogic DOORS Analyst User Guide 193

Chapter 4: UML Language Guide
A dependency is often stereotyped to give a more precise meaning to the de-
pendency. Two common stereotypes used for that purpose are the <<im-
port>> and <<access>> stereotypes described below.

Import

Import is a special kind of Dependency that is valid in particular between
Packages, but also from for example Classes or State machines to packages.
Its role is to import the names of definitions from a package into the current
namespace, which is usually also a package. This provides a means to avoid
having to use qualifiers. Names of definitions in a package P that has been
imported by another package Q are automatically included in packages that
in turn import or access package Q.

Note
Be restrictive with using import dependencies, as the set of names that be-
come accessible without qualifier in the importing scope can become very
large. It is often better to use access dependencies. If only a small subset of
definitions shall be used the use of qualifiers should also be considered. Al-
though qualified names mean more typing, it becomes very clear for all
readers of a model which definition that is used.

Access

Access is a special kind of Dependency that is valid in particular between
Packages, but also from for example Classes or State machines to packages.
Its role is to import the names of definitions from a package into the current
namespace, which is usually also a package. This provides a means to avoid
having to use qualifiers. Names of definitions in a package P that has been
accessed by another package Q are not included in packages that in turn im-
port or access package Q.

Figure 63: Import
194 Telelogic DOORS Analyst User Guide November 2008

Package Modeling
An import is very closely related to an access; the distinction is primarily that
an import is transitive, meaning that if a package is accessed or imported, you
automatically also get the names of the definitions that are in turn imported
by that package, but not the names of the definitions that are in turn accessed.
Looking at Figure 61 on page 192, the package TermBasic is accessed by
the package TermInterface, meaning that it is possible to refer to the names
of definitions in TermBasic directly in TermInterface. However, these
names are not directly available in package SystemComponents, which im-
ports package TermInterface. In SystemComponents, it is therefore neces-
sary to either explicitly access or import package TermBasic to refer to those
names or explicitly qualify the names.

From an architectural point of view, accesses are preferred over imports
since they force you to consider all the packages that you need, and will not
bring in excess baggage by accident.

Note
It is not necessary to import or access a package to be able to reference def-
initions within it. As long as the definitions are public, they can be refer-
enced using qualification, for example “TermBasic::Xterm” can be used
to reference the element Xterm in package TermBasic. For understand-
ability, however, it is usually a good idea to produce a description of how
packages depend on each other.

See also

“Relationships in UML” on page 306

Figure 64: Access
November 2008 Telelogic DOORS Analyst User Guide 195

Chapter 4: UML Language Guide
<<noScope>> Packages
A «noScope» package is typically used when there is a need to divide the el-
ements of a package into more than one file. However, it can also be used as
soon as there is a need to structure the contents of a package into different
parts but when the package from a UML name scope point still should be
viewed as one entity.

Semantically a package stereotyped by the «noScope» stereotype will be as
visible as any other package in the model view. It will also work as other
packages with respect to storing it in a separate file. From a semantic point
of view all of the elements in the «noScope» package are considered to be
part of the containing package. When referring to an element in a «noScope»
package using a qualifier, the name of the «noScope» package should nor-
mally not be used as part of the qualifier. The «noScope» stereotype makes
all definitions visible outside of the package without a qualifier. It is possible
to use an explicit qualifier to resolve ambiguous cases.

Example 18: «noScope» package –––

package A {
 <<noScope>> package B {
 class C {

 }
 }
 C c; // <<noScope>> makes C visible
}

package A {
 <<noScope>> package B {
 class C {

 }
 }
 class C { }
 C c; // class A::C hides class B::C
}

package A {
 <<noScope>> package B1 {
 class C {

 }
 }
 <<noScope>> package B2 {
 class C {

 }
 }
196 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
 B1::C c;
/* 'C' is an ambiguous name. B1::C or B2::C must be
used. If C is used without qualifier there will be name
resolution errors. */
}

–––

<<openNamespace>> Packages
In some situations it is useful to be able to incrementally define a package as
the sum of a set of packages. Depending on what packages are loaded in a
specific session the package will from a logical point of view have different
contents.

This can in DOORS Analyst be accomplished using «openNamespace»
packages. In practise it works as follows: Define two packages in the same
scope (for example as model roots). Give the package the same name and ste-
reotype both of them with the «openNamespace» stereotype. From a seman-
tics point of view the contents of the packages will now be merged. This im-
plies that elements from one of the packages can directly be used in the other
package without qualifier and also that the used names must be unique within
all of the merged packages.

It is possible to have a hierarchy of nested «openNamespace» packages. So
for example if you have an «openNamespace» Top containing an «open-
Namespace» Sub stored in one file you can have another file that also con-
tains an «openNamespace» Top with an «openNamespace» Sub. If you load
both of these files into the same project both the contents of Top and the con-
tents of Sub will be merged.

The most important scenario when «openNamespace» packages are used is
when you have a base version of a package hierarchy that is maintained sep-
arately but want to extend this, for example with a sub-package, when using
it in a specific application.

Class Modeling
Class modeling is the process of identifying the kind of objects that are part
of the system being designed. This activity often takes place early in the de-
sign phase, or even in the analysis phase, typically after the objects that are
part of the designed system have been identified (through use case and/or
November 2008 Telelogic DOORS Analyst User Guide 197

Chapter 4: UML Language Guide
scenario modeling). Objects that appear to share the same properties, be-
havior, and relationships with other objects are then grouped together and
modeled as a class of objects.

Apart from identifying classes, the class modeling activity also involves the
definition of these classes. This is typically done in a Class diagram. For each
identified class, the following typical questions are answered:

Does the class have structure?
What parts does an instance of the class contain?

The structure of a class is described in a class diagram by means of attributes,
and relationships such as generalizations and associations. A composite
structure diagram can also be used to show how a class is composed.

Does the class have behavior?
Which operations are available?

The behavior of a class is perceived as operations on the class, and the signa-
ture of these operations are described in a class diagram. The same goes for
other behavioral features of the class such as signals, timers or state ma-
chines.

Which relationships exist between the class and other elements?

A class may have relationships not only to other classes, but also to inter-
faces, datatypes, choices, etc. In the section “Relationships in UML” on page
306 you will find information on how to use them in class modeling.

Is the class active or passive?

Simply put you may say that an Active class defines dynamic event-triggered
behavior and a passive class handle information. An instance of an active
class has the ability to dispatch events.

Which communication ports does the class expose to its environment?

The ports of a class may be visualized in a class diagram.
198 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
Class diagram
A Class diagram gives a static view of the model and is used to describe the
types of the objects in a model. These types are typically Classes, but could
also be other classifiers such as primitive, enumeration, interface, choice or
syntype. A class diagram may also show relationships between the types, and
their structural and behavioral features.

The definitions that are shown in a class diagram will by default be contained
in the scope (for example a class or package) that owns the diagram, but it is
also possible to show definitions from another scope.

In “Package Modeling” on page 191, information is provided on how to use
package diagrams as a means for describing the packages of a system and
how they depend on each other, but the same information can alternatively
be described in a class diagram.

Example of class diagram

Model elements in class diagrams

The following model elements can be visualized in class diagrams:

Figure 65: Class diagram
November 2008 Telelogic DOORS Analyst User Guide 199

Chapter 4: UML Language Guide
• Artifact
• Collaboration
• Class

– Active class
• Attribute
• Operation
• Port
• Interface

– Realized interface
– Required interface

• Signal
• Signallist
• Timer
• Datatype
• Choice
• Syntype
• State machine
• Relationships

See also

“Package diagram” on page 191.

Class
A Class is an abstraction of a group of objects that share the same properties
(attributes), behavior (operations), structure, and relationships. A class may
be instantiated (as long as it is not defined to be abstract) into a number of
instances, all of which share the same properties.
200 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
Symbol

If instances of a class will maintain their own thread of execution (run con-
currently with other instances), the class is said to be an Active class. If not,
the instances will execute in the thread of another active instance, and the
class is then said to be Passive.

To make a class active either:

• In the diagram (or the Model View), right-click the class you want to set
as active, then on the shortcut menu click Active.

• Open the Properties Editor for the class and select Active.

The active class is displayed in the diagram with double vertical border lines.

A class may also have an internal structure, visualized in a composite struc-
ture (former architecture) diagram with parts and connectors, that describe
how it is structured from an internal communication point-of-view. It may
also have a state machine (called Initialize or the same name as the class) that
describes it from a run-time execution point of view. This state machine is
the “main” behavior that will be scheduled for execution when the instance
of an active class is created.

Furthermore, a class may have a set of Ports, which specify how instances of
the class may be connected to other instances in the architectural description
of the class. The ports may also be used to group sets of interfaces that are
exposed to different stakeholders.

There are several ways to add classes to a model.

Figure 66: Class with Attributes and Operations

Shape

#origin:Coordinate

-projection:ProjectionType

moveTo(Coordinate)

scale(Real)

display(proj:ProjectionType) : ResultType

+lineColor:Color

+fillColor:Color

move(Coordinate)
November 2008 Telelogic DOORS Analyst User Guide 201

Chapter 4: UML Language Guide
• A class can be added directly in the Model View of the workspace
window. Select the scope where the class should reside and from the
shortcut menu select New/Class.

• Draw a class in a class diagram. Create and open a class diagram, select
a class symbol from the toolbar and place it in the diagram.

• From a composite structure diagram: When double-clicking on an un-
bound part with no type name. This will allow you to create a new dia-
gram describing the part in question, and this diagram will belong to an
inline class created to the part. Possible diagrams are: class diagrams,
composite structure diagrams, state machine diagrams, use case dia-
grams.

Multiple state machines in an active class

You can insert any number of state machines in an active class. However the
following applies:

• If one of the state machines is named initialize or has the same name as
the class, this state machine is considered to be the main state machine of
the class. This state machine is executed when an instance of the class is
created. If you omit this state machine, the Start and Stop symbols will
automatically be inserted in the state machine diagram during the build
process.

• Other state machines in the active class must explicitly be called in order
to be executed. For example, it is possible to use such statemachines as
the behavior when defining composite states.

Syntax

The class symbol contains compartments with editable text fields:

• Class Heading (required)
• Attribute (optional)
• Operation (optional).
• Constraint compartment (optional).
• Stereotype instance compartment (optional).

Class heading

The following example shows different class headings.
202 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
Example 19: Class heading ––

A simple class:

myClass

A class including virtuality:

redefined myC

A class using template parameters:

MyParamClass < type T, Integer c >

–––

Attribute

Example 20: Classes and attributes –––––––––––––––––––––––––––––––––––––––

A class with an Attribute:

public A : Integer = 4

Attributes with multiplicity:

A: Integer [10]
B: Integer [3,>15]
C: Integer [*]

–––

Operation

Example 21: Signal ––

signal s (Integer, Real)

–––

Example 22: A method example ––

private m(x: Integer) : Integer

–––

Abstract class

A class can be abstract. This means that it is not possible to create instances
of this class. The class thus needs to be specialized before it can be instanti-
ated.
November 2008 Telelogic DOORS Analyst User Guide 203

Chapter 4: UML Language Guide
If a class is abstract then the name of the class is shown using italics in the
class symbol.

To make a class abstract either:

• In the diagram (or the Model View), right-click the class you want to set
as abstract, then on the shortcut menu click Abstract.

• Open the Properties Editor for the class and select Abstract.

Virtuality

Virtuality defines whether a class can be redefined or not. This is only appli-
cable if the class is contained in another class.

Visibility

The visibility of a feature of a class, typically an attribute or operation, de-
fines if it can be accessed from outside the class where it is defined.

• None
When no visibility is defined for a feature.

• Public
This feature can be referenced from any place where its contained class
is visible.

• Protected
This feature can be referenced from any descendant (by specialization)
of the class that defines the feature.

• Private
Only the class that defines a private feature can use the feature.

• Package
This feature can be referenced from any place within the nearest en-
closing package from which its contained class is visible.

For more information about visibility, see Visibility.

External class

To define a class as external:
204 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
Open the Properties Editor for the class and select External. The external
property is only shown in the Properties editor.

Classes and components

There is no specific concept for components representing abstractions, but it
can be modeled in other ways.

Classes and components are very similar in UML. A Component is a subclass
of Class in the Metamodel. They can both have attributes, operations, com-
posite structure (what is drawn in composite structure diagrams), ports, inter-
faces, etc. The primary purpose of the component is to provide terminology,
and to highlight those features that are most important in component-based
modeling. This includes the ability to represent how the component is real-
ized, and also to specify the required and provided interfaces of the compo-
nent. Typically, the provided interfaces are realized by one of the realizing
classifiers.

Constraint compartment

It is possible to attach one or several constraint compartments to a class
symbol, with the Add Constraint Compartment shortcut menu choice. A
constraint compartment can also be attached to other class-like symbols,
such as interface or stereotype symbols.

A constraint compartment is placed below the last visible ordinary compart-
ment of the class symbol.

A constraint compartment is similar to a Constraint symbol, with one read-
only “{}” text label and a main text label that is editable.

The shortcut command Show Constraints as Compartments will create
and attach one Constraint compartment for each constraint owned by the
model element corresponding to the class symbol that does not already have
a constraint compartment below the class symbol. The shortcut command
Show Constraints as Symbols will create and attach one Constraint symbol
for each constraint owned by the model element corresponding to the class
symbol.
November 2008 Telelogic DOORS Analyst User Guide 205

Chapter 4: UML Language Guide
Stereotype instance compartment

It is possible to attach one or several stereotype instance compartments to a
class symbol, with the Add Stereotype Instance Compartment shortcut
menu choice. A stereotype instance compartment can also be attached to
other class-like symbols, such as interface or stereotype symbols.

A stereotype instance compartment is placed below the last visible ordinary
compartment of the class symbol.

A stereotype instance compartment is similar to a Stereotype instance
symbol, with one read-only “«»” text label and a main text label that is edit-
able.

The shortcut command Show Stereotypes as Compartments for class sym-
bols will create and attach one Stereotype instance compartment for each ste-
reotype instance applied to the model element associated with the class
symbol that does not already have a stereotype instance compartment below
the class symbol.The shortcut command Show Stereotypes as Symbols will
create and attach one Stereotype instance symbol for each stereotype in-
stance owned by the model element corresponding to the class symbol.

See also

“Datatype” on page 224

“Choice” on page 227

Collaboration
The collaboration symbol behaves like a class symbol, including support for
Icon Mode, but the collaboration symbol is not showing attributes and oper-
ations in the symbol.

Attribute
An attribute is a structural feature that may hold one or several values at run-
time.

Attributes are used for modeling several different, but related, constructs of
the UML language:
206 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
• Attributes
An attribute of a Structured Classifier is modeled as an Attribute. The in-
stance of such an attribute is often called a field, and it may be referenced
by using a Field Expression. There are also so called class-scoped at-
tributes (also called static attributes). All instances of a class share the
same value for a class-scoped attribute.
In composite structure diagrams, attributes with composition aggregation
are often referred to as parts, which is due to the particular nature of that
view to show the hierarchical structure of a class.
Attributes are also used to represent the ends of an association.

• Local variables
A local variable of a state machine, operation or compound statement is
modeled as an Attribute. Such an attribute may be referenced directly by
its name, with a scope qualifier if necessary.

• Constants
A constant is modeled as a read-only Attribute. The value of the constant
is the Default value of the attribute. Typically constants are defined on
package level, but it is possible to define a constant wherever an attribute
can be defined. Constants may be referenced directly by its name, with a
scope qualifier if necessary. As the name indicates, the value of the con-
stant may not be changed once it has been set.

An attribute always has exactly one static type. This type is determined at the
point of defining the attribute, and can be either:

• a class,
• an interface,
• a primitive or enumeration,
• a syntype,
• a delegate,
• or a choice.

Attributes are closely related to associations. A navigable association end
and an attribute is in practice the same thing. This implies that it is possible
to first define an attribute and then visualize this attribute in a class diagram
as the role name of a navigable end of an association. The opposite is of
course also possible: Start by defining an association with one navigable as-
sociation end. Then visualize the association end in the attribute compart-
ment of a class symbol as an attribute.
November 2008 Telelogic DOORS Analyst User Guide 207

Chapter 4: UML Language Guide
The navigability is necessary if you want to use a specific association end/at-
tribute that it is associated with to make a call.

Example 23: Navigability –––

Given the classes A and B. You want to invoke an operation B.op() from the
class A.

With an association with an association end name (“role name”) ‘b’ in the di-
rection from A to B you can make a call ‘b.op();’ only if the association is
navigable.

–––

Attributes can also be visualized as symbols in composite structure diagrams.
Although this is allowed for all attributes of the containing class, this possi-
bility is often only used for parts.

Aggregation kind

If an attribute is typed by a class this implies that the values for this attribute
will be objects, that is instances of the class. In this case the attribute can have
different aggregation kinds that determine the lifetime relationship between
instances of the class containing the attribute and the value instances:

• None
There is no lifetime dependency between the instances of the two classes.
This implies that the attribute will contain one or more references to in-
stances of the value class.

• Shared aggregation
There is no lifetime dependency between the instances of the two classes.
However, informally one is considered to be “owned” by the other. In the
attribute compartment a shared aggregation is indicated by the keyword
“shared” before the attribute name as in “shared a:myclass”. Some code
generators may attach a specific semantics to shared but in practice it is
rarely used due to its weak semantics, and it is normally better to use an
association with no aggregation instead.
208 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
• Composition
There is a strong part/whole relationship between instances of the con-
taining class and instances of the value class. In practice this implies that
there is a lifetime dependency between the two instances. If the con-
taining instance is terminated then the contained instance will also termi-
nate. Composition is indicated by the keyword “part” before the attribute
name as in “part a:myclass”

Note
A non-static attribute may hold a value only when its defining context has
been instantiated. The possible defining contexts listed above for an at-
tribute are instantiated differently. For example, a package is instantiated
when it is used, and an event class is instantiated when it is invoked.

Default value

An attribute may have a default value specified as an Expression. If it does
not have a default value, its value remains undefined when the defining con-
text is instantiated until it is explicitly assigned.

Port

An attribute that is typed by a Class may have communication ports to which
connectors can be connected. These connectors describe communication
paths in a system that convey signals to and from the attribute. This is mainly
used when the attribute represents a part.

Multiplicity

An attribute may have a multiplicity, modeled as a collection of ranges. It
specifies a restriction on how many instances the attribute may hold at run-
time.

Depending on whether the multiplicity of the attribute is >1 or not the actual
type of the attribute is different. If the multiplicity is >1 then the attribute will
have a container type that can hold a list of values. If the multiplicity is ex-
actly 1 (or 0..1) then this is not the case.

Depending on what datatype libraries are available the container type may be
different. Typically different code generators will supply different container
types to provide a suitable integration with the target language. If no specific
datatype library is loaded the String type will be used in the built-in pre-
November 2008 Telelogic DOORS Analyst User Guide 209

Chapter 4: UML Language Guide
defined package as the type of attributes with multiplicity > 1. (The String
type is a predefined collection type that represent an ordered list, or a se-
quence. The values in the list must adhere to the type of the attribute.)

In the attribute compartment of a class symbol the multiplicity is shown
within brackets after the type of the attribute as in:

a : myClass [*]

In the above example, the multiplicity is unbound (represented by the as-
terisk), meaning that it can have any number of values.

If no multiplicity is given it is considered to be 1 by default.

Initial cardinality

For a composite attribute with a multiplicity > 1 there is a shorthand that al-
lows specifying the initial number of instances using an Expression. That
number specifies how many instances that will be automatically created
when the owning Class is instantiated. If an initial number of instances is
omitted, exactly one instance will be created.

Note
If and how the cardinality is interpreted is code generator dependent. Some
code generators may ignore the cardinality of an attribute.

The initial cardinality can be given if an attribute is shown using a part
symbol in a composite structure diagram. However, in this kind of symbol
the syntax is as in:

a : myClass [*] / 2

where the initial number of instances for ‘a’ would be 2.

Visibility

It is possible to specify Visibility for attributes. This can be one of public,
private, protected or package.

Derived

An attribute can be declared to be derived. This indicates that the value of
the attribute is not stored in the corresponding object, but instead is computed
from for example the values of other attributes. The syntax for a derived at-
tribute is a ‘/’ preceding the attribute name as in
210 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
/a:myClass

For more information on how to specify the derivation rule for a derived at-
tribute, see Derived.

Static

A static attribute is an attribute that is owned by the class scope rather than
the instance scope. This means that there is only one Attribute instance that
is shared by all the instances of a particular class.

Constant

A Constant attribute is an attribute which value cannot be modified dynami-
cally. The value of the constant is the default value of the attribute.

An external Constant attribute means that the value is defined outside of the
model or at a later time (build time for example).

Example 24: Textual constant declaration––––––––––––––––––––––––––––––––––

const Integer a = 10;
const Integer extern ext_const;

–––

Operation
An operation is a declaration that instances of a class will be able to handle
calls that match the signature of the operation. An operation can be imple-
mented either by an operation body or a state machine. This implementation
(often called a method) will be executed when the operation has been in-
voked. This means that if the receiver is a passive instance, the implementa-
tion will be executed immediately after the operation has been invoked,
while if the receiver is an active instance the execution of the implementation
may be delayed and executed some time in the future when the instance is in
a state where the operation call is accepted.

Operations can be declared textually in the operations compartment of a class
symbol, and using a special operation symbol.

DOORS Analyst supports a derived property for operations as an extension
to standard UML. This can be used to indicate that the operation has no im-
plementation but is implicitly computed. This property is for analysis only
and will not affect any generated code.
November 2008 Telelogic DOORS Analyst User Guide 211

Chapter 4: UML Language Guide
Symbol

Syntax

The symbol contains two editable text fields: Operation Heading and Param-
eters. The bottom field is always empty.

Active class
An Active Class is a class with its own thread of control. It is distinguished
from the normal (passive) class by the property Active. Graphically, this is
indicated by the special Active Class symbol, as in Figure 68 on page 212.

Symbol

Figure 67: Operation

Figure 68: Active Class

display

<<operation>>

proj:ProjectionType

return ResultType

ATMSystem

part bank : BankCentral

part atm : ATM
212 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
You can make a class active by:

• Selecting it and in the shortcut menu choose Active.
• Selecting it and in the Properties Editor select Active.

The active class is the fundamental building block for modeling real-time be-
havior in UML. Active classes define both the structure (architecture) and
behavior of a model. This duality of the active class concept in UML offers
strong and flexible design capabilities.

Structure

The structure of an active class is defined in one or several Composite struc-
ture diagram, which defines the active class as a set of instances of other ac-
tive classes. These active classes can also have structure, thus enabling de-
scriptions of complex architectures.

Behavior

The behavior of an active class is defined by a State machine in one or several
State machine diagram. This state machine should be named initialize(),
or given the same name as the class.

In order for an active class to be completely specified, it must have either a
structure definition, a state machine definition, or both.

Figure 69: Active Class with Ports and Realized and Required Interfaces

ATM

part disp : Display

part ui : UserInterface

part userSession : Controller [0..10]

toUserfromUser

bank

BankInterfaceBankToATM

mgtIFC

Display, CardEnterCard,EnterCode
November 2008 Telelogic DOORS Analyst User Guide 213

Chapter 4: UML Language Guide
An active class has its own flow of control and can both initiate behavior and
passively react to behavior as observed on its interfaces. Traditionalists
prefer the name reactive class instead of active class, since such classes are
typically event-driven. The initiation of behavior is often done through the
use of timers; at the expiration of a timer some behavior is kicked into gear.

When an active class has several contained parts defined in its composite
structure diagram(s), each part executes asynchronously and concurrently
with other parts in the system. This semantic ensures that the model can be
deployed in a distributed physical environment and is not dependent on being
run on a single processor with shared memory access.

An active class can realize and require interfaces via a Port. Ports together
with their required and realized interfaces define the static contract between
the active class and its environment.

Attributes and operations

In the active Class symbol, it is possible to specify or show attributes of the
class in the second compartment of the symbol and operations in the third
compartment.

See also

“Attribute” on page 206

“Operation” on page 203.

Port
Ports are named interaction points of an active class. They specify the imple-
mented interface (realized) and the needed interfaces from other classes (re-
quired).

Ports are typically used only on active classes. To visualize an already cre-
ated port on an active class symbol or a part symbol, use the Show/Hide
command on the shortcut menu and point to Show Ports.
214 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
Symbol

Hint
The easiest way to attach a port symbol is to first select the frame of the
symbol where the port symbol should be placed and then click the port
symbol in the toolbar.

Port type

The symbol has one text field that should contain a name and that optionally
may contain a type. The type of the port is mainly intended to be used in an
analysis phase.

Note
The code generators in DOORS Analyst do not take the port type into ac-
count. Instead code is generated based on the information given for realized
and required interfaces of the port.

Behavior ports

There are two different kinds of ports: behavior ports and non-behavior ports.
The difference between these two different kinds of ports is that a behavior
port is directly associated with the state machine of the class, whereas a non-
behavior port needs to be connected using connectors and are typically only
relaying the communication from outside the class to some of the internal
parts of the class.

A Behavior port is a port that is directly connected to the state machine of the
class. All signals sent to this port are consumed by the behavior of the class
itself.

Figure 70: Ports on a Class and Ports on a Part

p2 : pt2 [0..5] / 2

 g1

g2ATM

 bank

toUser fromUser

mgtIFC
November 2008 Telelogic DOORS Analyst User Guide 215

Chapter 4: UML Language Guide
Ports and interfaces

For each port, the realized and required interfaces may be specified. The re-
alized interface of a port defines the incoming requests that can be handled
via the port. The required interface defines the outgoing requests that must
be handled by a class connected to the port from the outside via one or more
connectors. In Figure 69 on page 213 you will find an example of ports with
realized and required interfaces.

When defining the structure or behavior of an active class, ports can be de-
clared on the border of a diagram used for this purpose (a composite structure
diagram or a State machine diagram). Ports can also be referenced from
parts, where they are shown on the border of the part symbol.

It is also possible to send messages through a port (without knowledge about
possible receivers at the other end of the attached connector) from a state ma-
chine as an addressing mechanism.

The realized (or required) interface of a port may typically contain references
to interfaces, but also to a signal list, signal or attribute.

The realized and required interfaces of a port are visualized by attaching the
Realized interface symbol and the Required interface symbol to the port. On
these symbols, the supported or needed Interface names (signal list, signal or
attribute) can be specified.

Another way to specify the Realized and Required Interface of a Port is by
the Properties Dialog.

Ports represent:

• Connection points for Interfaces to classes
• Connection points for Connector lines in Composite structure diagram,

connecting instances of these classes with other instances or with the en-
closing frame symbol.

The port symbol can be placed

• On Class symbols
• On Part symbols
• On Behavior symbols
• On the frame of a State machine that is owned by an active class
• On the frame of a composite structure diagrams
216 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
• Within Architecture and State machine diagrams (which has the same se-
mantics as when the port is placed on the frame of these diagrams).

A port can have both explicit and implicit connectors. Each Port symbol can
have zero, one or two interface symbols attached to it.

When you have two interface symbols, one of them should be defined as a
Realized Interface symbol specifying the incoming interfaces (or signals) to
the port and the other should be defined as a Required Interface symbol spec-
ifying the outgoing interfaces from the port.

Ports with or without interfaces can be drawn directly on a class. Either:

• Select the class and hold down SHIFT while you click on the toolbar port
symbol. Type the port name. The port will be positioned on the class’ left
border segment as close as possible to the upper left corner.

• Click on the toolbar port symbol, click on the class where you want to po-
sition the port. Edit the name text field.

Inheritance

In case of a generalization between classes where there are ports belonging
to the supertype these ports will also be inherited.

Ports can be declared public and private to distinguish if a port is externally
exposed or if it is only used internally. It is possible to add more signals to
ports in subclasses.

Interface
An interface is a structured classifier that may not be instantiated. Instead, it
is used for grouping a set of attributes, operations, and signals that must be
implemented by the class that implements the interface. A class that imple-

Figure 71: A port with realized and required interfaces
November 2008 Telelogic DOORS Analyst User Guide 217

Chapter 4: UML Language Guide
ments an interface is said to realize the interface, thus supporting the opera-
tions declared in the interfaces. A class can also require interfaces, it is then
dependent on other active class(es) in order to perform its operations.

Symbol

The operations of an interface typically describe services that are offered by
the class(es) that realizes the interface. Naturally, a class may realize more
than one interface.

Apart from operations, an interface may contain signals and attributes. It may
also contain other definitions, such as types.

An interface can be specialized and may have Template parameters. Multiple
inheritance of interfaces is a useful mechanism to define the communication
interfaces of active classes.

Interfaces can also be associated to each other to provide a definition of pro-
tocols or contracts between classes that realize the involved interfaces. An
example is given in Figure 73 on page 219 that defines the MgmI and
MgmReplyI interfaces. The association between the two interfaces estab-
lishes a relationship between them. This means that wherever one of the in-
terfaces is referenced, for example on a port or associated with a connector,
the other interface will automatically be inserted in the other direction. So,
for example if a class realizes the MgmI interface via a port then the
MgmReplyI interface will automatically be a required interface of the same
port

Figure 72: Interface symbol

BankInterface

<<interf ace>>

+signal Register(CardId:CardInfoType, CodeId:CodeArray)

+signal Validate(CardId:CardInfoType, CodeId:CodeArray)

+AddClient (ATMClient:ClientInfoType) : ResultType

+CentralId:NodeType
218 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
.

Figure 73A contract defined using two associated interfaces

Syntax

The symbol contains three editable text fields:

• Heading,
• Attribute, and
• Operation.

The heading field is used to define the name of the interface.

The attribute field contains definitions of attributes that must be implemented
by classes realizing the interface. Typically, this is a shorthand for a getter
operation and a setter operation to a protected attribute of the realizing class.

The operations field contains definitions of operations and signals that must
be handled by classes realizing the interface.

See also

“Realized interface” on page 219

“Required interface” on page 220

Realized interface
A realized interface attached to a port on a Class visualizes what interfaces
the Class realizes through that port. Interfaces, signals, signal lists and at-
tributes may be specified in the text field.

MgmReplyI
<<interface>>

signal Serv ice(srv I)

MgmI
<<interface>>

signal ReqServ ice()

November 2008 Telelogic DOORS Analyst User Guide 219

Chapter 4: UML Language Guide
Symbol

Syntax

The symbol contains a text field.

Example 25: Realized interface ––

S, p, SigList

–––

See also

“Interface” on page 217

“Required interface” on page 220

Required interface
A required interface attached to a port on a class visualizes what requests the
class expects to be handled through the port. Interfaces, signals, signal lists,
and attributes may be specified in the text field.

Figure 74: Realized Interface

BankInterface, atm_central_sigs

BankCentral

atm
220 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
Symbol

Syntax

The symbol contains a text field.

Example 26: Required interface ––

S, p, SigList

–––

See also

“Interface” on page 217

“Realized interface” on page 219

Signal
A Signal is one of the primary means for communication in UML. A signal
represents an asynchronous message that is sent between active classes. The
signal can carry data, which must conform to the declared parameter types of
the signal.

A signal is most conveniently declared together with other signals, opera-
tions and attributes in an Interface that represents the capabilities of the
classes that realize the interface.

However, a standalone signal declaration can also be made using a special
signal symbol similar to a class symbol as shown in Figure 76 on page 222.

Figure 75: Required Interface

ATM

bank BankInterface
November 2008 Telelogic DOORS Analyst User Guide 221

Chapter 4: UML Language Guide
If numerous distinct signals will be used, it is often more practical to declare
the signals textually in a text symbol:

Example 27: Textual signal declaration––––––––––––––––––––––––––––––––––––

signal Init (IDType id, Charstring iData);
signal SetupReq, SetupInd, AbortReq, AbortInd;
signal ForwardedMsg (IDType, MsgData);

–––

Syntax

The signal symbol contains two editable text fields:

• Heading
• Parameters

The heading field declares the name of the signal and the parameters field de-
clares the parameters of the signals. The name of the parameters may be
omitted, but the parameter types are required.

The third compartment that exists for many class like symbols is always
empty for signal symbols.

See also

“Message” on page 170

“Signallist” on page 223

“Interface” on page 217

“Timer” on page 223

Figure 76Signal

Init

<<signal>>

id:IDType

iData:Charstring
222 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
Signallist
The keyword signallist is used to denote a group of related signals in
order to make the description easier to comprehend. It is typically used in
ports and connectors.

Example 28: signallist declaration ––

signallist MgtSignals = MOGetStatus, MOSet, MOReset;

–––

Note
Using an Interface to group signals together is a more structured approach,
compared to signal lists, since the Interface also encapsulates the signal
declarations.

See also

“Signal” on page 221

“Interface” on page 217

Timer
A Timer is an event that, in the same fashion as a signal, can trigger transi-
tions. A timer is set by an implementation executed by an active class and at
timeout, a timer event can be received by the state machine of that same ac-
tive class instance. A time value is associated with an active timer, which is
the time of the timeout.

Symbol

Timers can, like signals, have parameters. This can be used to allow to set
more than one timer of the same kind without resetting the already active
timer; that is several timers with different parameter values may be active at
the same time.

Figure 77: Timer

DisplayTimer

<<timer>>

id:Natural
November 2008 Telelogic DOORS Analyst User Guide 223

Chapter 4: UML Language Guide
Syntax

Timers can also be declared textually in a text symbol:

Example 29: Textual timer declaration ––––––––––––––––––––––––––––––––––––

timer DisplayTimer (Natural id) = 2;
timer BankTimer () = BankTimeout;
timer UserTimer ();

–––

When declaring a timer textually, it is also possible to give the timer a default
duration, that is a duration before timeout that allows to set the timer without
specifying the duration.

See also

“Timer set action” on page 284

“Timer reset action” on page 284

“Timer set” on page 175

“Timer reset” on page 175

“Timer timeout” on page 175

“Timer active expression” on page 296

Datatype
Datatypes are used for two different purposes:

• To describe primitive types that are available
• To describe user-defined enumeration types

Primitive types are most often defined in model libraries that accompany
specific UML profiles, either standalone profiles or profiles defined to be
used together with specific code generators. In the latter case the datatypes
typically define the target language primitive types and makes them available
in UML models.

It is however also possible to define primitive datatypes in user models, but
this may cause code generation problems.
224 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
An enumeration defines a set of values simply by enumerating them as a list
of enumeration literals.

In any case the datatype may also optionally contain behavior that is defined
by operations.

Symbol

Enumerated datatype

An enumerated datatype is a datatype where the literal values are logical
names. The logical names can optionally be attached to an integral value
specified by a simple expression.

The available default operations are:

• Equality (==, !=)
• Relational operations (<, >, <=, >=)
• Assignment (=)

Example 30: Enumerated datatype –––––––––––––––––––––––––––––––––––––––

enum UKColors { blue, red, white }

Figure 78: Enumeration Datatype

Figure 79: Datatype with operator

UKColors

<<enumeration>>

Blue

Red

White
November 2008 Telelogic DOORS Analyst User Guide 225

Chapter 4: UML Language Guide
enum LinePrinterState {
outOfService = 1,
inServiceFree =2,
inServiceBusy = 6

}

void op() {
LinePrinterState e;
Integer i;
e = cast<LinePrinterState>(1);
e = inServiceFree;

 i = cast<Integer>(e);
}

–––

Note
It is possible to convert between Integer and enumeration types using the
cast operation as in the operation op in Example 30 on page 225.

Primitive datatypes

Primitive datatypes are usually defined in model libraries in profiles but can
also be user defined. However, a user-defined primitive type will not have a
literal syntax, which makes them less useful in practice.

There are however two ways to relate the datatype to another already existing
datatype:

• use copy constructors
• use inheritance

In both of these cases the literal syntax of the existing datatype will be used.
The copy constructor mechanism is the recommended mechanism to intro-
duce new primitive datatypes in UML and this is what is used in most model
libraries.

Note
Primitive datatypes usually need special treatment in code generators. A
user-defined primitive datatype is not likely to work in a code generator un-
less specifically stated in the code generator documentation.

Example 31: Datatype with operators –––––––––––––––––––––––––––––––––––––

datatype simpleInt {
simpleInt(Integer) {}

}
datatype myInt : Integer
{

226 Telelogic DOORS Analyst User Guide November 2008

Class Modeling
myInt plus1 (myInt i) { return i+1;}
}

–––

Literal

A Literal is a definition of an element of the type defined by an enumerated
datatype. The literal is owned by that datatype. The visibility of a literal is
always public.

Aside from having a name (which all definitions have), a literal may also
have an integral value which allows it to be used in arithmetic expressions.

Choice
A Choice is a datatype that can hold one value. This value can be of different
datatypes during the execution. A choice of which type is made when as-
signing a value to a variable. For each potential type field, there is a boolean
operator IsPresent() that can check if the field is present or not.

Example 32: choice–––

choice IntOrBool {
 Integer a;
 Boolean b;
}

IntorBool ib;
Integer i;
Boolean b=true;

ib.a=5;
i=ib.IsPresent("a")?ib.a:0; /* check if ib is Integer;

 if Integer, return ib,
 if not, return 0 */

ib.b=b;

–––

Example 33: choice–––

choice IntOrBool {
 Integer a;
 Real r;
 Integer GetInt() {
 if (IsPresent("r")) {
 return 0;
 } else {
 return a;
 }
 }
}

Using the IsPresent() operator:
November 2008 Telelogic DOORS Analyst User Guide 227

Chapter 4: UML Language Guide
IntOrBool MyVar;
Real num_real;
Integer num_int;
MyVar.a=1;
if(IsPresent(MyVar,"a"))
 {
 num_int =MyVar.a;
 MyVar.r=3.14;
 }
 else
 {
 num_real=MyVar.r;
 }
if (MyVar.IsPresent("r")) {
switch (MyVar.r) {
 case 3.14 :
 {
 nextstate idle;
 }
 default :
 {
 nextstate idle;
 }
}
}

–––

A choice instance value can be specified by an instance expression having
only one assignment where choice_field = value.

Example 34: Choice instance value –––––––––––––––––––––––––––––––––––––––

 choice choice_type
 {
 public Integer ifield;
 public Boolean bfield;
 }
 choice_type an_int = choice_type (. ifield = 1.);

–––

Syntype
A syntype is a datatype that is based on another datatype, the parent type. The
two types are not distinct in terms of type compatibility and literals. The lit-
erals of a syntype are either identical with or a subset of the literals of the
parent. A syntype can be regarded as an alias of another type; an alias that
may be constrained.

Example 35: Syntype –––

syntype myInt = Integer constants (> -10, != 0, <10);
syntype smallPrime = Natural constants (1,2,3,5,7);
228 Telelogic DOORS Analyst User Guide November 2008

Object Modeling
Integer [1..10] myvar; /* inline syntype definition */

–––

Note
Constraints attached to a syntype are treated informally, that is they are not
checked by the Semantic Checker, or considered by the code generators.

State machine
The State machine concept is explained in detail in the Behavior Modeling
section.

Stereotype
The Stereotype concept is explained in detail in the Extensibility section.

Relationships
The following Relationships can be used in class diagrams. These are de-
scribed further in the section Relationships in UML.

• Association
• Aggregation
• Composition
• Dependency
• Extension
• Generalization
• Realization
• Manifestation.
• Containment

Object Modeling
While class modeling focuses on finding the kinds of objects in the designed
application, object modeling is concerned with describing how these objects
may appear at run-time. Typical questions for this analysis activity may be:

• Which objects exist in the application at different points in time?
• What does the objects look like in terms of attribute values etc.?
November 2008 Telelogic DOORS Analyst User Guide 229

Chapter 4: UML Language Guide
• How are the objects linked to each other? Which objects have knowl-
edge of which other objects?

Objects are also knows as instances, and instance modeling is thus also used
as a term for describing this analysis activity.

It is common to perform object modeling in parallel with class modeling. As
objects of the application are identified they can be defined in the model.
This can be done even before the type of the object is known.

In most real-world applications the number of objects at run-time is very
large. It is therefore common to only describe those objects that are of special
interest for the design. For example, it may be particularly interesting to iden-
tify objects that get created at application start-up time to get an under-
standing of the initialization phase of the application.

Object modeling uses mainly Object Diagrams for defining objects and their
relationships, although Class diagrams are sometimes also used.

Object Diagram
An object diagram gives a static view of objects that exist in an application
at a specific point in time (a “snapshot” view). The objects shown in an object
diagram can be named, and it is possible to specify the type of objects. The
objects’ attribute values, called slots, can also be specified. Links between
objects can be visualized using link lines.

A named object in DOORS Analyst is called a named instance to distin-
guish it from unnamed instances, such as applied stereotype instances. A
Named Instance is a definition which by default is placed in the scope con-
taining the object diagram. It is, however, also possible to show named in-
stances from other scopes by dragging them from the Model View onto an
object diagram.

An object diagram may contain multiple instance symbols showing the same
named instance.

Example of object diagram

The object diagram below shows a snapshot view of objects available in the
application described by the class diagram shown in Figure 65 on page 199.
230 Telelogic DOORS Analyst User Guide November 2008

Object Modeling
This object diagram tells us that at some point in time (supposedly at initial-
ization time judging from the name of the diagram) this application contains
one instance of the TrafficSystem class. It has one instance of Car, called
testCar, in its vehicle list attribute. The testCar object has the value
Registered for its regKind attribute.

Model elements in object diagrams

The following model elements can be visualized in object diagrams:

• Named Instance
• Slot
• Dependency

See also

“Class diagram” on page 199.

Figure 80: Object diagram

package Calculator Initialization{1/3}

theSystem : TrafficSystem

testCar : Car
regKind = Registered

vehicle[]

vehicle[]
November 2008 Telelogic DOORS Analyst User Guide 231

Chapter 4: UML Language Guide
Named Instance
A named instance represents an object (instance) in a modeled system and
describes this object completely or partially. Since objects may change over
time, a named instance only provides information about the object at a spe-
cific point in time, or for a specific time period. Note that UML object dia-
grams do not provide means for formally specifying

• the point in time, or time period, where the object complies with the
named instance specification

• whether or not the named instance is a complete or partial specification
of the object

A named instance may have a name. Often this name is to be interpreted in-
formally, and does not correspond to any property at the run-time object de-
scribed by the named instance. However, the usual rules for definitions apply
to named instances. For example, the names of named instances in the same
scope must be unique (see Scope, model elements, and diagrams).

A named instance may have a type. If the specified type is a class, the named
instance describes an object of that class. If it is a datatype, the named in-
stance describes a value of that datatype. It is also possible to specify a be-
havioral feature, such as an operation or a signal, as the type. In that case the
named instance describes an event in the system. For example, if the type is
an operation the named instance describes an operation call, and if the type
is a signal it describes an event of that signal.

The type of a named instance can also be an association. In that case the
named instance represents a Link.

It is allowed to specify an abstract type for a named instance. This does not
mean that the described object is of abstract type, but merely that all shown
properties for the object belong to the abstract type only. The described run-
time object would have a type that is a concrete subtype of the abstract type.

If the named instance type contains structural features, such as class at-
tributes or signal parameters, the named instance may specify values for
those structural features. Such a value specification is called a Slot.

A named instance is shown in an object diagram using an InstanceSymbol.
232 Telelogic DOORS Analyst User Guide November 2008

Object Modeling
As can be seen an instance symbol contains two basic compartments. The
upper compartment holds the name and type of the named instance, while the
lower compartment contains the slots. Note that the syntax for defining a slot
is the usual assignment syntax (the structural feature is assigned a value). For
data type values a plain value can also be used.

Note
Currently the semantic checker will not check type compatibility between a
datatype value and the datatype. Hence, datatype values in object diagrams
are for informal modeling only.

Link

A link is a named instance whose type is an association. It describes a run-
time relationship between two objects. In programming language terms, a
link could correspond to a pointer or a reference.

Links can be visualized in object diagrams in two ways:

1. As a link line, connecting two instance symbols.
2. As an ordinary slot in an instance symbol, where the right hand side of

the slot refers to the target named instance.

Figure 81: Instance symbols defining named instances

Figure 82: Two ways to specify a link

opCall : op

p1 = 4
p2 = true

<<operation>>
op

p1 : Integer
p2 : Boolean

//
Operation call

testCar : Car
regKind = Registered

//
Class object

v : Natural
5

//
Datatype value

emp : Employee
manager = mgr

mgr : Manager

manager

manager
November 2008 Telelogic DOORS Analyst User Guide 233

Chapter 4: UML Language Guide
The text that is entered on the target end of a link line is an expression (see
Expressions). It becomes the left hand side of a Slot expression.

The name of a link can be specified by typing it in a label in the center of the
link line.

Slot
A slot is a value specification for a structural feature belonging to the type of
a named instance.

Slots are used for showing those values of an object that are of interest. The
fact that a named instance has no slots defined does not mean that the corre-
sponding object has no structural feature values, but merely that those values
are not of interest in the model.

Slots may reference all kinds of structural features of a type, including inher-
ited features, and features with non-public visibility.

A slot is an assignment of a value (the right hand side) to a structural feature
(the left hand side). The right hand side is often just a plain identifier, but
more advanced expressions can also be used. Refer to the following model:

Slots defined for an instance of TrafficSystem can for example have the left
hand sides listed in the table below:

Figure 83: Three classes with relationships

Slot left hand side Meaning

vehicle[] One instance in the vehicle collection. The index
of the instance in the collection is not specified.

vehicle[4] One instance in the vehicle collection, located at
index 4.

vehicle[].driver The driver instance of an instance in the vehicle
collection.

TrafficSystem

Vehicle

regKind : RegKind
vehicle

*
vehicle

*

Driver

driver

1
driver

1

234 Telelogic DOORS Analyst User Guide November 2008

Architecture Modeling
Note that if the latter example is visualized with a link line we can show these
kinds of indirect links between objects in a compact way:

Self reference

There are two equivalent ways to specify self references for objects. The
right hand side of such a slot can either be a reference to the containing
named instance, or the keyword this can be used.

Architecture Modeling
During architecture modeling, the internal structure of active classes is de-
scribed from a communication point of view. This is done by connecting the
attributes of the class (in this context referred to as parts) with connectors,
and to specify which signals that may be sent along these connectors. This
structure of parts and connectors is called the architecture, or composite
structure, of the class.

Architecture modeling typically takes place after, or in parallel with, class
modeling during the design phase.

Composite structure diagram
A composite structure (former architecture) diagram defines the internal run-
time structure of an active class, in terms of other active classes. These
building blocks are referred to as parts when they are composite parts of the
containing class. Furthermore the parts are also restricted to be instantiations

Figure 84: Visualizing the link from the traffic system to the driver of its first vehicle

Figure 85: Self reference shown in slot label and with link line

theSystem : TrafficSystem d : Driver

vehicle[0].driver

vehicle[0].driver

inst : SomeClass
p = this

pp
November 2008 Telelogic DOORS Analyst User Guide 235

Chapter 4: UML Language Guide
of active classes. Composite structure diagrams may also express the com-
munication within the active class by visualizing connectors between the
communication ports of the parts.

Example

Part
A part represents one or more instances that is owned by a containing class
instance.

As for all attributes a part can have a Multiplicity that constrains the number
of run-time instances that may exist. If the part has a multiplicity > 1, then a
container type is assumed for the parts. The specific container type can differ
depending on the loaded profiles and Add-Ins, but by default the String type
is used.

When an instance of the containing class is created, a set of instances corre-
sponding to these parts may be created either immediately or at some later
time as described by the initial cardinality and the multiplicity for the part.

Figure 86: Composite structure diagram with parts, ports and connectors

atm:ATM

bank:BankCentral

toUser

fromUser

bank

mgtIFC

atm

UserDisplay

UserCtrlIfc

ATM_Bank_Channel ATM_Bank_Channel

mgtCtrl

Display, Card

EnterCard, EnterCode

CommunicationView active class system (2/2)
236 Telelogic DOORS Analyst User Guide November 2008

Architecture Modeling
Symbol

• If the part symbol has only a name, the implicit class is constructed auto-
matically when the part symbol is created.

• More than one part symbol with the same name can be present in the
same composite structure diagram.

If the referenced class is omitted, this corresponds to a part definition with an
inline class definition. Specifying a part in this way means that the class def-
inition is not separated from the usage of the class which makes the descrip-
tion more compact, but on the other hand less suitable for reuse.

A part of an active class may be shown in the attribute compartment of the
active class symbol, since a part is an Attribute of the containing class. When
an attribute is of the kind part, it describes a composition relationship be-
tween the container class and the part class.

Figure 88: A part visualized in the attribute compartment of a class symbol.

It is also possible to give an overview of a hierarchy of parts using composi-
tion relations in a class diagram as in Figure 89 on page 238

The initial cardinality determines the number of initial instances that will be
created automatically when the containing entity is created. If no initial car-
dinality is given, the number of initially created instances will be equal to the
lower bound of the Multiplicity of the part. If no multiplicity is given, one

Figure 87: Part

s e s s ion:Se s s ionHa ndle r [0.. 5] / 0

ne t

te rm _io

sys

part p : pTy pe
November 2008 Telelogic DOORS Analyst User Guide 237

Chapter 4: UML Language Guide
instance will be created automatically and there will be no upper bound for
the number of simultaneous instances. These instances are instances of the
classifier typing the part.

Parts may be joined by connectors attached to ports. Parts are used to de-
scribe both static and dynamically created and terminated active instances.

A part specifies that a set of instances may exist; this set of instances is a
subset of the total set of instances specified by the classifier typing the part.
When an instance of the containing class is terminated, the contained in-
stances will also terminate.

A part symbol refers to an attribute in the model. The appearance of a part
symbol in a composite structure diagram varies with the aggregation kind of
the corresponding attribute. If the Aggregation kind is composite, the outline
of the part symbol is a solid line. If the aggregation kind is reference or
shared, the outline of the part symbol is dashed.

Figure 89: A part hierarchy visualized using composition in a class diagram

Example 36: Simple part––

myP

–––

sys

qType

pType

 p

q

 r

s

sType

rType

238 Telelogic DOORS Analyst User Guide November 2008

Architecture Modeling
Example 37: Type-based part ––

myP : PT

–––

Example 38: Part with initial and maximum number of instances specified ––––––

myP : PT [0..10] / 1

–––

Connector
A Connector specifies a medium that enables communication between parts
of an active class or between the environment of an active class and one of
its parts. Connectors can visualize communication paths in an intuitive
fashion.

A connector may be unidirectional or bi-directional and specifies for each di-
rection the allowed information. Information that can be sent or conveyed on
a connector can be described by: signal, attribute, signal list and interface.
When the number of signals is large, it is more convenient to define an inter-
face or a signal list to use for each direction of the connector.

By default a connector has no name, it is non-delayed and it is bi-directional.
It is possible to control the properties for a connector line from the shortcut
menu on the connector line.

Symbol

A connector line specifies the communication path between two end points,
for example ports attached to part symbols, to behavior symbols or to the
frame of the diagram.

• If necessary connectors are omitted, some code generators may be able
to create them implicitly.

Figure 90: Connector types

c4s ig2, s ig3 s ig1

c3 i1

Non-delaying, unidirectional Connector

Non-delaying, bidirectional Connector
November 2008 Telelogic DOORS Analyst User Guide 239

Chapter 4: UML Language Guide
• You can re-direct and bi-direct a connector from the shortcut menu.
• When you re-direct a bi-directional connector the signal list areas change

places.
• The name of the connector is optional.
• The lists of interfaces, signals etc. associated with a connector are op-

tional.

The structure of an active class can contain either explicit or implicit con-
nector lines or both. Explicit connectors are visible while implicit connectors
are invisible and cannot be referenced.

Implicit connectors are calculated from all matching realized and required in-
terfaces on:

• Ports on parts contained in the containing class,
• Ports of the containing class,
• Behavior ports of the containing class.

Note
If a port has explicit connectors no implicit connectors will be connected to
the port.

Syntax

The line contains two (uni-directional connector) or three (bidirectional con-
nector) editable text fields.

The center field specifies the name of the connector and the field placed at
the end of the line specifies the signal list area. There is one signal list area
for each arrowhead in the line. The signal list areas may be empty.

Stereotypes applied to the connector line are visible in a non-editable text
field, positioned above the name field.

Example 39: Connector signal list ––

i1,i2,sl1

–––

Signal lists and interfaces

It is possible to draw a connector with signal lists to a port. In this situation
the following applies:
240 Telelogic DOORS Analyst User Guide November 2008

Architecture Modeling
• When there are no signals or interface given on any of the signal lists the
information on the connected ports is used to deduce the signals and in-
terfaces.

• When there are any signals or interfaces given on the signal lists associ-
ated with a connector then all transported signals and interfaces must be
mentioned.

A shortcut menu choice for connector lines in composite structure diagrams
Show All Signals is available. This fills the signal list text fields with signals
and interfaces taken from the attached ports.

• Existing signals and interfaces will not be removed from affected signal
lists.

• Only signals and interfaces not already existing are added to the signal
list.

• The union of signals and interfaces found in the two attached ports is
used. It is thus enough for a signal or interface to appear in one port, for
the signal to show up in a signal list.

• If a signal is realized or required determines which signal list the signal
will be put in.

Part communication

Normally communication between parts is explicitly modeled with ports and
connector lines between ports.

It is not necessary to explicitly model communication if it is unambiguous,
that is if the classes for the parts in the diagram have defined ports that can
be connected in only one possible way.

It is allowed to connect a connector directly to a part symbol. The behavior
is that an unnamed port is created, attached to the part and the connector is
connected to this part. This is allowed both when creating a connector and
when reconnecting an existing connector. This port is not deleted if the con-
nector line is deleted, the port must be manually deleted if it is not needed in
the model anymore.

Behavior port
Even if an active class has structure, that is has parts, it may also have its own
behavior, expressed as a state machine. This behavior can be referenced in
the Composite structure diagram using a behavior port.
November 2008 Telelogic DOORS Analyst User Guide 241

Chapter 4: UML Language Guide
The main purpose of the behavior port is when defining Connectors between
a Part of the Active Class and the Behavior of the Active class; in this case it
must have a Behavior Port.

It is possible to attach connectors to a behavior port in the same way as for
Ports on Parts in order to define the communication interface of the state ma-
chine. It is allowed to have several behavior port in one diagram; in this case,
they all refer to the same underlying behavior.

Symbol

The Behavior port symbol specifies a reference to the unique state machine
of the defined class.

• There can be several behavior port symbols present in one diagram.
• There is no text field in the symbol.

Behavior ports looks like ordinary ports in class diagrams. The appended be-
havior information is only shown in architecture and state machine diagrams.

Hint
You can add the behavior symbol to a composite structure diagram in two
ways. Either by adding a port symbol to the diagram or by dragging an ex-
isting port from the Model View browser to the composite structure dia-
gram. In both cases you also have to choose the command behavior port
from the shortcut menu, or set this property using the Properties Editor.

Relationships

Dependency

The Dependency relationship in composite structure diagrams is used be-
tween parts, to show that one part is dependent of another. One common use
is to indicate a create dependency between parts, that is that instances of one
part can create new instances of another part.

Figure 91: A behavior port
242 Telelogic DOORS Analyst User Guide November 2008

Component Modeling
Component Modeling
Component modeling is about identifying key Component of a system and
model their Interfaces and Relationships.

The key focus when modeling components is to enforce strong encapsulation
by hiding the implementation details inside a component and only expose a
small set of well defined interfaces.

Weak coupling, i.e. minimized dependencies between different components,
is another design principle often applied in component modeling.

Component diagram
A component diagram describes the static structure of a system through a set
of Components, their Relationships and their Realized interfaces and Re-
quired interfaces. Other model elements like Classes and Artifacts can also
be shown in a component diagram to illustrate their relationships with the
components.

Example

Figure 92: Component diagram

<<component>>

ChatServer
- clients : ChatClient [*]

+ registerClient(c : ChatClient)

<<component>>

ChatServer
- clients : ChatClient [*]

+ registerClient(c : ChatClient)

IChatServerIChatServer

<<interface>>

INetworkServices

+ connect()
+ disconnect()

<<interface>>

INetworkServices

+ connect()
+ disconnect()

<<interface>>

IChatServer

+ registerClient(c : ChatClient)
+ unregisterClient(c : ChatClient)
+ sendMessageTo(m : Message, r : ChatClient)

<<interface>>

IChatServer

+ registerClient(c : ChatClient)
+ unregisterClient(c : ChatClient)
+ sendMessageTo(m : Message, r : ChatClient)

<<component>>

ChatClient
<<component>>

ChatClient

IChatServerIChatServer

INetworkServicesINetworkServices
November 2008 Telelogic DOORS Analyst User Guide 243

Chapter 4: UML Language Guide
Model elements in component diagrams

The following elements are found in component diagrams

• Component
• Artifact
• Class
• Interface
• Port
• Realized interface
• Required interface
• Relationships

See also

“Class diagram” on page 199

Component
A component is a small part of a system that is well encapsulated and pro-
vides a well specified service.

The service provided by a component is specified through its Realized inter-
faces. A component should only be accessed through them. The component
may also be dependent on other services; this is specified through its Re-
quired interfaces.

The implementation of the component, i.e. its behavior and architecture
should not be exposed to clients. When only the Interfaces are exposed, one
component can easily be substituted with another one, with a completely dif-
ferent implementation, without affecting the client.

The differences between a Class and a component in UML is minimal, and
they can be used interchangeably. Anything that can be done with a class can
also be done with a component. When using components though, the design
principles outlined above should be adhered to.
244 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
Symbol

The component symbol is identical to the Class Symbol, with the keyword
«component» added to the top.

See also

“Class” on page 200.

Relationships
The following relationships can be used in Component diagrams:

• Association
• Aggregation
• Composition
• Dependency
• Generalization
• Realization
• Manifestation
• Containment

Activity Modeling
Activity modeling is about using Activity Diagrams to model behavior by or-
ganizing it into small behavioral units and to describe the control and data
flow between these units. It can also describe how these units are distributed
across a system.

Activity modeling can be used at an abstract level for business modeling or
at a very low level to model behavior at action code level. It is particularly
useful for the modeling of asynchronous and distributed systems.

Figure 93: Component with a port and realized/required interfaces

<<component>>

ChatServer
- clients : ChatClient [*]

+ registerClient(c : ChatClient)

<<component>>

ChatServer
- clients : ChatClient [*]

+ registerClient(c : ChatClient)

IChatServerIChatServer

INetworkServicesINetworkServices
November 2008 Telelogic DOORS Analyst User Guide 245

Chapter 4: UML Language Guide
See also

“Scenario Modeling” on page 162

“Behavior Modeling” on page 265

Activity Diagram
An activity diagram describes how a behavior is divided into small behav-
ioral units, Action Nodes, and controls the execution sequence between them
using Activity edges and control constructs such as Decision, Fork and Ac-
tivity Final nodes.

Object Nodes and Pins are used to describe how objects and data are passed
between the different actions.

Activity Partitions are used to group related actions into groups, for example
by function or by owner.

Activity diagrams are similar to flowcharts.

Create an activity diagram

Activity diagrams can be included in packages, classes, use cases, operations
and activities.

1. Select the entity where to create the activity diagram in the Model View.
2. From the shortcut menu select New and then Activity diagram.

Figure 94: Activity diagram

Receive
Order
Receive
Order

Fill
Order
Fill
Order

Ship
Order
Ship
Order

Send
Invoice
Send
Invoice

Make
Payment
Make
Payment

Accept
Payment
Accept
Payment

InvoiceInvoice

 Close
Order
Close
Order

[order
rejected]

[order
rejected]

[order
accepted]

[order
accepted]

246 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
Flow orientation

Horizontal is default.

When horizontal orientation is chosen for activity diagrams, it is easy to
create horizontal activity flows:

• Line handles are placed on the middle of the right symbol border.
• New fork/join symbols have a vertical orientation as default. (Already

existing fork/join symbols are not changed when the default orientation
is changed.)

• New partition symbols have as default a header size where the height is
larger than the width. (Already existing partition symbols are not
changed when the default orientation is changed.)

It is possible to change the default flow orientation while appending symbols
in a flow by pressing SHIFT + CTRL together.

Activity symbols from model elements

Copying information from the Model View to an activity diagram using
drag-and-drop is possible. For example it is possible to drag-and-drop an op-
eration node to create an activity symbol which references this operation.
The same can be done with interaction nodes, state machine nodes and use
case nodes.

Note
Actions must be selected (via the shortcut menu) for an existing activity
symbol in order for the reference to be visible before dragging an activity
node to the activity symbol.

Model elements in activity diagrams

The following elements are found in activity diagrams:

• Initial Node
• Action Node
• Object Node
• Decision
• Merge
• Fork
November 2008 Telelogic DOORS Analyst User Guide 247

Chapter 4: UML Language Guide
• Join
• Connector
• Accept Event
• Send Signal
• Accept Time Event
• Activity Final
• Flow Final
• Activity Partition
• Pin
• Relationships.

Activity
An activity is a Signature representing the behavior of a use case, operation
or any other entity that can have a behavior. An activity focuses on breaking
down the behavior into small behavioral units, Action Nodes, and control the
execution of these units based on a token flow model. The implementation of
an activity is typically described by an Activity Diagram.

Symbol

Syntax

An activity symbol is based on the Operation symbol. It has an editable field
for the name of the activity, and a compartment for Parameters of the activity.

Stereotypes applied to the activity are visible in a non-editable text field, po-
sitioned above the name field.

Figure 95: Activity

<<operation,'activity'>>

verifyTransaction
id : TransactionId
248 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
Activity implementation
An activity implementation is the Implementation of an Activity signature. It
contains the Activity Diagrams and a set of activity nodes connected by Ac-
tivity edges. An activity implementation is normally created implicitly when
creating an Activity Diagram.

Token flows

The execution semantics of an activity implementation is based on a token
flow model.Tokens flow from one activity node to other activity nodes
through connected Activity edges. There are two kinds of token:

– Control token
– Data token (also known as object token)

An activity edge can transport both kinds of tokens. When a control token is
transported across the edge it represents a control flow, and when a data
token is transported across the edge it represents a data flow. A control flow
is an activity edge with any activity nodes linked to its ends, except object
nodes. A data flow is an activity edge with an object node linked to at least
one of the edge's ends.

Control tokens constitute a state of logic control of a modeled system,
whereas data tokens are needed to represent a state of data units which are
flowing through a modeled system.

An activity edge is a directed edge which is linked to action nodes, control
nodes, object nodes, pins or connectors. The direction of an edge represents
the direction of the flow. The semantics of an activity edge depends on its
target and source nodes.

When an activity is invoked (called) its activity implementation starts its ex-
ecution by placing a control token on each Initial Node it contains. These to-
kens then flow downstream across outgoing activity edges and collect on the
incoming activity edge ends of those activity nodes to which these edges are
connected. An activity node is allowed to start executing as soon as its input
condition is fulfilled. Different kinds of activity nodes have different input
conditions, but a typical condition is that there must be a token available on
each incoming activity edge end before execution can start. When the ac-
tivity node has completed its execution it delivers a token (of some kind) on
all outgoing activity edge ends. These tokens eventually reach other activity
nodes, and the procedure is repeated.
November 2008 Telelogic DOORS Analyst User Guide 249

Chapter 4: UML Language Guide
The activity implementation continues to execute as long as there are tokens
flowing in it. If none of the activity nodes in the activity implementation has
its input condition fulfilled, no tokens will flow, but the activity implemen-
tation is still in an executing mode, that is control will not be returned to the
caller of the activity. Only when a special activity node, the Activity Final
node, is executed will the entire activity implementation finish its execution
and control is returned to the caller of the activity.

Initial Node
An initial node specifies a starting point for the control flow in an activity im-
plementation. When an activity is invoked and its implementation begins ex-
ecuting each initial node of its implementation receives a control token.

Note that an activity implementation can have any number of initial nodes,
meaning that multiple control flows can be started. Note also the it is not re-
quired to have any initial nodes at all. Flows can also start from a Pin, an Ac-
cept Event and an Accept Time Event.

An initial node may not have any incoming activity edges, and therefore has
no input condition. It executes as soon as it receives a control token and then
offers this token to outgoing edges.

Symbol

Action Node
An action node is a piece of executable functionality in an activity. The be-
havior of an action node can be specified in many ways, for example using
an Activity, Operation, or a State machine. But it is also allowed not to asso-
ciate a behavior to an action node. This can be useful at early stages of devel-
opment, when the details of the behavior is not known.

The behavior of an action node, if any, can either be defined inline in the ac-
tion node, or it can be referenced from the action node. Inline defined behav-
iors are appropriate in order to specify composite hierarchical activity imple-
mentations. Compare with Composite state. Referenced behaviors are
appropriate in order to reuse the same behavior for multiple action nodes in

Figure 96: Initial node
250 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
a model. When using a referenced behavior it should normally be an activity,
but in general it is possible to refer to any operation. The referenced behavior
may in turn have an implementation. For example, a referenced activity may
have an activity implementation.

The input condition for an action node is fulfilled when a token is available
on all incoming activity edges. It then consumes these tokens and starts its
execution. When it has finished its execution, control tokens are offered on
all outgoing edges.

Avoid execution deadlocks

As long as the input condition for an action node is not fulfilled it cannot ex-
ecute. To avoid deadlocks in the execution it is therefore very important to
understand the semantics of Token flows in an activity implementation. As
an example of a common misunderstanding, consider the activity implemen-
tation in Figure 97 on page 251 below.

In this example we have three action nodes A, B, C and two control flow
edges from A to C and from B to C respectively. Here C can be executed only
when both of these edges have a token. If only the edge from A to C has a
token, then the C node will wait for a token on the edge from B to C node. It
is important to understand that nodes are collected on edges not on nodes.

If we instead would want the C node to execute when at least one of these
edges have a token we should insert a Merge node between them as shown
below.

Figure 97: Control flow between action nodes

A

B

C

November 2008 Telelogic DOORS Analyst User Guide 251

Chapter 4: UML Language Guide
Pins

If an action node has a behavior it can have Pins representing Parameters to
its behavior. It is significant if a token reaches an action node directly via an
incoming activity edge, or indirectly via an attached pin. In the former case
the action node will be executed when its input condition is fulfilled. In the
latter case, however, the action node itself does not execute. Instead the token
flows into the behavior implementation in a “streaming” way, so that execu-
tion of the behavior implementation starts with a data token on a pin, rather
than with a control token on an initial node. It is possible to combine these
two mechanisms, by letting both a control token flow into the action node
and data tokens flow into its pins. That is a common way of designing when
the behavior needs data for its execution. It then obtains input data on the
input pins, and a control token to control when execution shall begin. Before
finishing the execution by executing an activity final node, output data is typ-
ically offered as data tokens placed on the output pins.

For more information about pins see Pin.

Symbol

Figure 98: Using a merge node

Figure 99: Action nodes with and without pins, and with and without a behavior (inline
to the left and referenced to the right)

A

B

C

252 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
A shortcut menu choice Actions is available. When checked the a text field
is added for action code. The default is to not display the Actions text field.

A shortcut menu choice Partition Reference is available. This command
will display the text field for Partition Reference above the symbol name
field. The default is to not display the Partition Reference text field.

A shortcut menu choice Show All Parameters is available. The Show All
Parameters command will make all Pin/Parameter symbols visible for the
current selection.

Syntax

The action node symbol may have an informal name. If it references a be-
havior the signature of the behavior appears after a colon. If it has an inline
behavior a “rake” symbol is shown in the upper right corner of the symbol.

Activity partitions in which an action node is explicitly contained, may be
specified in a separate text field above the name field. The syntax is a
comma-separated list of references to activity partitions enclosed in paren-
thesis.

Stereotypes applied to the action node are visible in a non-editable text field,
positioned above the activity partition reference field.

Object Node
An object node represents an instance of a classifier, for example a Class,
participating in the flow. The instance and its values is available for use by
the activity.

The input condition for an object node is that there must be a token on each
incoming activity edge before it may execute. Execution of an object node
simply means that a data token is placed on each outgoing edge. The type of
the data token is the type of the object node, that is the classifier.

An object node does not specify how the output data is obtained. To do that
an Action Node node with an output pin can be used instead. The behavior
of the action node then specifies how to compute the data.
November 2008 Telelogic DOORS Analyst User Guide 253

Chapter 4: UML Language Guide
Symbol

Syntax

The object node symbol has one text label containing the name of the classi-
fier it represents. It is also possible to give an informal name for the object
node. The syntax is then <name> : <type>.

Stereotypes applied to the object node are visible in a non-editable text field,
positioned above the name field.

Decision
A decision node is a control node used in a flow to select one out of several
outgoing flows based on guard conditions. A decision node has one incoming
edge and multiple outgoing edges, each with a guard.

When a token arrives at the incoming edge of a decision node, the guards of
the outgoing edges are evaluated. The order in which the guards are evalu-
ated is not defined by UML, except that any ‘else’ guard is evaluated last. It
is therefore recommended to specify guard conditions that are mutually ex-
clusive. At most one of the guards may be an “else” guard. This guard con-
dition is fulfilled if no other guard condition is fulfilled.

The input token will be placed on the first edge that is encountered for which
its guard condition is fulfilled. If no such edge is found the token is consumed
by the decision node. This is typically an exceptional situation which is best
avoided by using an ‘else’ guard on one of the edges

Note
The current implementation of the activity execution semantics in the Ac-
tivity Simulator only supports informal decisions and decision answers.
When such a decision node is executed the Model Verifier will prompt inter-
actively for which outgoing edge to select. This is a useful feature at early
stages of development, since it allows activities to be simulated before the
exact guard conditions are known.

Figure 100: Object node

AccountAccount
254 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
Symbol

When formally defined the guard conditions shall evaluate to boolean ex-
pressions. Any visible variables, e.g. local variables of an activity implemen-
tation, may be used in the guard condition. The keyword else is used in a
guard to indicate that the edge is selected if none of the other guards evalu-
ates to true.

To merge back multiple outgoing decision flows into a single flow, use a
Merge node.

Note
The Decision and Merge nodes share the same symbol in the symbol palette
of the activity diagram editor.

Merge
A merge node is a control node used to bring together multiple flows into
one. Whenever a token arrives at one of the incoming edges, it is relayed onto
the outgoing edge. Unlike Join, it is not a synchronization of the incoming
flows.

Figure 101: Decision node

[else][else]

[x > 10][x > 10]
November 2008 Telelogic DOORS Analyst User Guide 255

Chapter 4: UML Language Guide
Symbol

Note
The Merge and Decision nodes share the same symbol in the symbol palette
of the activity diagram editor.

Fork
A fork node is a control node that splits one flow into multiple concurrent
flows. Whenever a token arrives at the input edge it will be copied, and one
copy will be placed on each outgoing edge. A fork node is thus a means for
introducing parallelism in an activity model.

To join multiple concurrent flows back into one single flow, use the Join
node.

Symbol

Note
The Fork and Join nodes share the same symbol in the symbol palette of the
activity diagram editor.

Figure 102: Merge node

Figure 103: Fork node

256 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
Join
A join node is a control node used to join, or synchronize, multiple concur-
rent flows back into one single flow.

The input condition for a join node is that there must be a token available on
all incoming edges. When that condition is fulfilled tokens are placed on the
outgoing edge according to the following rules:

• If all input tokens are control tokens, then one single control token is
placed on the outgoing edge.

• If some of the input tokens are data tokens, then all these tokens, but only
these, are placed on the outgoing edge.

Note
The current implementation of the activity execution semantics in the Ac-
tivity Simulator does not follow this rule. Instead it is the token that arrives
last to the join that will decide which kind of token that is placed on the out-
going edge.

To fork a single flow into multiple concurrent flows, use the Fork node.

Symbol

Note
The Join and Fork nodes share the same symbol in the symbol palette of the
activity diagram editor.

Figure 104: Join

November 2008 Telelogic DOORS Analyst User Guide 257

Chapter 4: UML Language Guide
Connector
Connector nodes are used as a graphical short hand to simplify drawing of
complex flows. An Activity edge can end in a connector node and be con-
tinued at another connector node with the same name. This can be used to
split an activity implementation specification over multiple activity dia-
grams.

A connector node may have many incoming edges, but at most one outgoing
edge. Semantically a connector node is equivalent with a Merge node. A
token that arrives at an incoming edge of a connector node is relayed onto its
outgoing edge. If a connector node does not have an outgoing edge it is se-
mantically equivalent with a Flow Final node.

Symbol

Syntax

The connector node symbol has one text label containing the name of the
connector node.

Accept Event
An accept event node is used to indicate waiting for a specific event, typi-
cally a Signal. When the specific event is received, the flow continues by
placing control tokens on all outgoing edges.

Semantically an accept event node is equivalent with an Action Node node,
with a behavior that waits for the event to be received.

Data passed on with the event can be used later in the flow by using output
Pins from the accept event node. An accept event node may not have any
input Pins.

Figure 105: Connector node

AA AA

258 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
The accept event action is similar to an Signal Receipt (Input) in a State ma-
chine.

Symbol

Send Signal
The send signal node is used to create an instance of a Signal and send it. It
is similar to the Signal sending action (output) in a State machine.

Semantically a send signal node is equivalent with an Action Node node,
with a behavior that sends the signal.

A send signal node may have input Pins providing actual arguments for the
formal parameters of the signal to send. It may not have any output Pins.

Symbol

Accept Time Event
An accept time event is a special version of the Accept Event node. It is used
to indicate waiting for a specific time event, typically a Timer timeout or an
absolute time value. When the specific time event is received, the flow con-
tinues by placing control tokens on all outgoing edges.

Contrary to an Accept Event node, an accept time event node may not have
any Pins. In order to wait for a timer with parameters, use an Accept Event
node instead.

Figure 106: Accept event node

Figure 107: Send signal symbol

order
received

processOrder()
November 2008 Telelogic DOORS Analyst User Guide 259

Chapter 4: UML Language Guide
Symbol

Activity Final
The activity final node indicates the termination of an activity. When a token
reaches an activity final node, all flows of the activity are terminated, and the
execution of the activity is completed. Control is returned to the caller of the
activity.

An activity final node may have an arbitrary number of input edges, but no
output edges.

To terminate a single flow of an activity, use Flow Final nodes.

Symbol

Flow Final
The flow final indicates the termination of a single flow in an activity. Only
that particular flow is terminated, not the entire activity. There might still be
other ongoing flows (compare Fork) in the activity.

Tokens received by a flow final node will be consumed by it. A flow final
node may have an arbitrary number of input edges, but no output edges.

To terminate the entire activity, use Activity Final nodes.

Symbol

Figure 108: Accept time event

Figure 109: Activity final

Figure 110: Flow final

t1
260 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
Activity Partition
An activity partition, sometimes called a swimlane, is a grouping mechanism
used to group related Action Nodes to each other. They provide a way of
splitting an activity diagram into different sections to make it easy to see
which section that performs a certain activity, and how data flows between
the different sections.

For example, in business modeling, the different subdivisions of a company
can each be represented by a partition. Another example is to let each parti-
tion represent a thread in a real-time operating system. The diagram would
then show how the actions of a system are distributed among threads.

An activity partition may have a type, which typically is a Class. This ex-
presses a constraint that those instances that perform the actions of the ac-
tivity partition, must be instances of that type. The activity partition may fur-
ther constrain performed actions by specifying one particular instance, which
then must perform the actions. It may also specify an Attribute, which then
must contain the instances that perform the actions.

Symbol

A constraint concerning type, instance or attribute for the activity partition is
specified in a label just below the name label. The syntax is the same as is
used for a Lifeline.

Figure 111: Activity partition

'Order processing'

'Order processing'

November 2008 Telelogic DOORS Analyst User Guide 261

Chapter 4: UML Language Guide
Action Node node symbols that are graphically contained in an activity par-
tition symbol represent actions that belong to that activity partition. It is pos-
sible for an action node to belong to more than one activity partition. This can
happen when using activity partition symbols that are rotated, so that the in-
tersection of two activity partition symbols contains the same action node
symbol. However, it is not possible to accomplish involvement in more than
two activity partitions this way, because an activity diagram only has two di-
mensions. In order to specify that an action node belongs to more than two
activity partitions an explicit list of included partitions may be specified for
the action node. If an action node has an explicit list of activity partition ref-
erences it overrides the implicit reference that can be deduced from the
graphical position.

Example 40: Implicit and explicit activity partition references ––––––––––––––––

Figure 112: Action nodes referring to activity partitions
262 Telelogic DOORS Analyst User Guide November 2008

Activity Modeling
The action nodes above use both implicit activity partition reference (de-
duced from the graphical position of the action node symbol) and explicit ac-
tivity partition references.

A does not belong to any partition.

B belongs to partition P2 (implicit reference)

C belongs to partition P1 (implicit reference)

D belongs to partition P1 and partition P2 (implicit reference)

E belongs to partition P1 and partition P2 (explicit reference)

F belongs to partition P1 (explicit reference)

–––

Partition symbol as Dimension Specification symbol

When there are several rows of partition symbols, the partition symbol in the
top row may be used as a dimension specification symbol. The partition
symbol has a shortcut menu choice for Dimension. A partition has a plain
text in the main label while a dimension has an italic font in the main label.

It is possible to use both horizontal and vertical dimensions at the same time.

Pin
A pin represents a parameter of the behavior of an Action Node node, and are
used for passing data to and from that behavior. They can be seen as Object
Nodes for inputs and outputs to actions.

Pins that have incoming edges input data to the behavior, and are therefore
called input pins. Pins that have outgoing edges output data from the be-
havior, and are consequently called output pins. The direction of the Param-
eters represented by the pin should match how edges are connected to the pin.
For example, an input pin should only have incoming edges, and the corre-
sponding parameter should have “in” direction.

The semantics of executing a pin is the same as for an Object Node. Hence,
execution places a data token on each outgoing edge, and the type of these
data tokens is the type of the parameter represented by the pin.
November 2008 Telelogic DOORS Analyst User Guide 263

Chapter 4: UML Language Guide
A pin may be streaming or non-streaming. In the streaming case the pin can
execute to produce output data tokens even when the behavior of the Action
Node node is executing. In fact there is no connection between the presence
of tokens on streaming input pins and the condition for when the behavior of
the Action Node node is invoked. In the non-streaming case, however, the
behavior will not execute until tokens are available on all input pins.

Note
The current implementation of the activity execution semantics in the Ac-
tivity Simulator only supports streaming pins. However, a non-streaming
pin can be emulated by combining a streaming pin with a Join node in the
activity implementation of the Action Node node behavior. The join node
then has two incoming edges; one from the pin on which the data token will
arrive, and one from the Initial Node on which the control token will arrive
when the behavior is executed.

Symbol

Syntax

The pin text has the same syntax as Parameters, i.e. name : Type.

Relationships

Activity edge

An activity edge is used to connect nodes in an activity implementation. It
enables the flow of control and data tokens between the two connected nodes.

An activity edge is always directed, meaning that a token only can flow in
one direction over an activity edge. The direction of an edge represents the
direction of the flow. An activity edge can transport both kinds of tokens.
When a control token is transported across the edge it represents a control
flow, and when a data token is transported across the edge it represents a data
flow.

An activity edge can have an informal name describing the flow it represents.

Figure 113: Pin symbol

id : Integer
264 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Behavior Modeling
In order to obtain an executable model, the detailed behavior of operations
and active classes must be specified. This is done during behavior modeling,
an activity that usually takes place at the end of the design phase.

A behavior specification may contain states (that is a State machine imple-
mentation), or it may be stateless (that is an Operation body). In either case
there are two ways to describe the behavior:

• As a state machine in a State machine diagram

For implementations that contain states, the graphical form (State machine
diagram) is often to be preferred, while for simple implementations of oper-
ations it could be enough with a textual description of the actions that consti-
tute the Operation body.

State machine diagram
A State machine diagram visualizes a State machine. There are two different
styles of drawing state machine diagrams supported. They are described and
exemplified below. It is possible to combine the two styles.

Figure 114: Activity edge

a1a1 a2a2

November 2008 Telelogic DOORS Analyst User Guide 265

Chapter 4: UML Language Guide
State-oriented view

The state-oriented view of a state machine gives good overview of a complex
state machine but is less practical when focusing on the control flow and
communication aspects of a specific set of transitions. For this reason, it is
also possible to describe the state machine in a transition-oriented way, with
explicit symbols for different actions that can be performed during the tran-
sition.

Figure 115: State-oriented view of a state machine

idle

makingCoffee

coffeeReq / ̂fillWater;coffeeReq / ̂fillWater;

waitCoffee

waterOK / ̂fillCoffee;waterOK / ̂fillCoffee;

heatingCofee

coffeeOK / ̂heatWater;coffeeOK / ̂heatWater;

heated / ̂cupOfCoffee;heated / ̂cupOfCoffee;

makingTea

teaReq / f̂illWater;teaReq / f̂illWater;

heatingTea

waterOK / ̂heatWater;waterOK / ̂heatWater;

heated / ĉupOfWater;heated / ĉupOfWater;

266 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Transition-oriented view

Create a state machine diagram

State machine diagrams can be included in classes and operations (including
use cases).

1. Select the entity where to create the statemachine diagram in the Model
View.

2. From the shortcut menu select New and then State machine diagram.

State machine
A UML state machine is a finite state machine extended with data and signal
handling. The basic elements of a state machine is the state and the transition.
In a model based on the state machine paradigm, execution is carried out with
a certain state as the starting point and a triggering event that causes a transi-
tion to be executed. In the transition, actions can be carried out. At the end of
the transition, a new state is entered. The state machine will be idle in this
state until a new triggering event that may start a transition occurs. An alter-
native way to end a transition is to stop the entire state machine (active class).

Figure 116: Transition-oriented view of a state machine

idle

coffeeReq

fillWater

makingCoffee

teaReq

fillWater

makingTea

makingCoffee

waterOK

fillCoffee

waitCoffee

waitCoffee

coffeeOK

heatWater

heatingCoffee

heatingCoffee

heated

cupOfCoffee

idle

makingTea

waterOK

heatWater

heatingTea

heatingTea

heated

cupOfWater

idle
November 2008 Telelogic DOORS Analyst User Guide 267

Chapter 4: UML Language Guide
Hint
State machines are most simply created either by right-click of a class in the
Model View and choosing New->State machine diagram in the shortcut
menu or by opening the Create Presentation dialog.

Symbol

Syntax

The symbol contains two editable text fields:

• Class Heading
• Parameters

(The Operation field is empty.)

The Parameters field contains the formal parameters of the state machine.
These are used for:

• Passing values to an active class instance upon creation.
• Passing values to a composite state when entering it.

State
A State represents a situation in a State machine where the containing object
is waiting for an event that will trigger a transition to another State. This sit-
uation may have a static condition (if the state does not have substates); in
this case the state machine is inactive while in the state. The situation can also
be dynamic in the sense that there can be state machine behavior hidden in
substates of the state.

Figure 117: State machine

sub

<<statemachine>>

i:Integer

r:Real
268 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Symbol

The State symbol references one or more states and acts as source and/or
target for transitions leading from or to this state (or set of states).

Syntax
• Simple state:

State1
• State with state list:

St1,st2
• State with asterisk state, including list of not included states:

*(st1,st2)

An asterisk state is a shortcut that refers to all states defined in the current
state machine except the states mentioned in the list following the ‘*’
symbol.

Since state machines are hierarchical a state may contain a sub-state ma-
chine. This is indicated in the syntax by giving the name of the state machine
after a colon following the name of the state as in Figure 119 on page 269

Figure 118: State

Figure 119: Sub-state reference

idle s:sub s (4,3) via en1
November 2008 Telelogic DOORS Analyst User Guide 269

Chapter 4: UML Language Guide
The <state>:<state machine> syntax may only be used for state symbols
without incoming lines (i.e. the state symbol should not be a “nextstate”). It
is a syntax error if a state symbol with the label s:myStatemachine has in-
coming lines.

Note
The state symbol may not contain a list of states or an asterisk state defini-
tion if there are transitions that has this particular state symbol as target.
State lists and asterisk states may only specify the source of transitions, not
the target of transitions.

If a state has a substate state machine and this state machine has an entry
point then the entry point may be indicated in the state symbol. This may only
be used if there only exist one transition that has the state symbol as its target
state.

Example 41: State with via clause ––

State St1 containing a ‘via’ clause that determines the entry point in a sub-
state state machine:

St1 via entry1

–––

If a state has a substate this is indicated in the state symbol by a “rake” in the
upper right corner, symbolizing a split flow, see Figure 120 on page 270.

Figure 120: State with substate
270 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Since the State symbol can be used for both defining a state and referencing
a state (the target state of a transition), it is possible to let the symbol act as
both an end point for a transition and the starting point for a new transition,
thus chaining the transitions. This makes sense if using a state-oriented
layout of the state machine. When using a transition-oriented layout it is
however good practice to avoid this, and always separate the transitions, as
in the example above, for the sake of readability.

If a state acts as source for many transitions, it is allowed to specify these in
different diagrams in order to improve readability. Thus the State symbol is
a partial definition of the state.

If the same transition is valid in several states, it is possible to refer to several
states from the State symbol.

See also

“Composite state” on page 297

Transition
A Transition is a sequence of actions that are executed when a State machine
changes the active state.

The syntax used for transitions falls into two different categories depending
on if a state-oriented or transition oriented syntax is used. The state-oriented
transition syntax is described in “Simple transition” on page 290, the transi-
tion-oriented syntax is described by a set of trigger symbols for starting the
transitions and then a set of action symbols that describe the transition de-
tails.

The different trigger symbols correspond to what event that causes the tran-
sition to be initiated. Based on this, different kinds of transitions can be dis-
tinguished:

• triggered transitions
• guarded transitions
• labelled transitions
• initial transitions
November 2008 Telelogic DOORS Analyst User Guide 271

Chapter 4: UML Language Guide
A triggered transition is characterized by the trigger that is associated with
the transitions. Typically this trigger is defined by the specific signal, but it
may also be defined by for example a timer or by an operation. Triggered
transitions are described in more detail in section “Signal Receipt (Input)” on
page 274

A guarded transition is characterized by the fact that it is not triggered by a
specific event. Instead it is triggered either by a certain condition (Guard) that
can be true or false.

Labelled transitions are not real transitions in terms of describing a state-to-
state behavior. Instead they are used to decompose a transition into two (or
more) parts that can be described on two different pages in a diagram. Junc-
tion is also a related construct to labelled transitions used to divide flows.

The Initial Transition (Start) is the transition that will be executed directly
when the state machine is created.

A transition always ends with the state machine entering a state, with a stop,
with a return or with the transfer of control to another transition.

Guarded transition

A Guarded Transition may or may not have a trigger.

If the guarded transition has a trigger, the evaluation of the expression will
be done after the triggering event has happened. If the expression evaluates
to true, the transition is fired. If the expression evaluates to false, the state
machine will remain in the state and the signal that caused the triggering
event will be kept in the signal queue.

See also

“Save” on page 287

History nextstate
The History nextstate is used at the end of a transition to return to the last vis-
ited state.

The symbol can be used to end both simple transitions and flow line (de-
tailed) transitions.
272 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Shallow history

By default, the History nextstate is shallow. This means that when a nextstate
with History is interpreted at the end of a transition, the next state will be the
one in which the current transition is activated.

History nextstate can also be expressed with a normal nextstate, using a hy-
phen instead of a name in the symbol.

nextstate -;

Deep history

It is possible to make the history nextstate deep. This means that similar to
the shallow history, the next state will be the one in which the current transi-
tion is activated. This will apply recursively to all levels of substates of the
entered state.

Hint
You can make the history nextstate deep by selecting it and choosing the
command Deep History from the shortcut menu.

Deep history nextstate can also be expressed with a normal nextstate, using
the following syntax:

nextstate ^-;

Figure 121: Shallow History nextstate

Figure 122: Deep History Nextstate

Ack

Nak
November 2008 Telelogic DOORS Analyst User Guide 273

Chapter 4: UML Language Guide
Examples

In the above example, the transition will end up in the state that was active
when the transition was triggered.

Signal Receipt (Input)
The signal receipt symbol defines which signals that should trigger a partic-
ular transition.

The transition can be guarded by a guard expression that also is shown in the
symbol.

Symbol

The signal receipt symbol receives a signal and must always be preceded by
a State symbol. Together they define a transition.

Hint
You can flip the symbol horizontally from the shortcut menu.
When you delete the signal receipt symbol, the succeeding subtree is deleted
as well.

Figure 123: Shallow History Nextstate with an asterisk state transition

Figure 124:Signal Receipt

Card(header, infoString)
274 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
If the same transition behavior should be invoked for several triggers in one
state, it is possible to have a list of identifiers in the signal receipt symbol.
This mechanism does not allow handling the parameters of each signal and
all the signals will trigger the same transition that ends in one nextstate.

When receiving a signal, its parameters are normally stored in local vari-
ables. It is also allowed to ignore parameters.

The optional guard expression is defined after the trigger and is surrounded
by square brackets.

Signal queue

A State machine is associated with a signal queue that stores the signals that
are sent to the state machine in the order they arrive.

It is not necessary to specify a transition for every possible trigger in each
state. Often it is possible to predict which signals that may arrive, from your
knowledge about the application or domain you are modeling. If the next
signal to consume from the signal queue is not handled in the current state,
that signal will be thrown away. It is also possible to Save a signal tempo-
rarily.

Syntax

The following kinds may be referenced as triggers in a signal receipt symbol:

• Signal
• Timer
• Operation.

Example 42: Simple signal receipt ––

s1(i)

–––

Example 43: Signal Receipt with several triggers ––––––––––––––––––––––––––––

s1(i), myTimer, s3

–––
November 2008 Telelogic DOORS Analyst User Guide 275

Chapter 4: UML Language Guide
Example 44: Signal Receipt with virtuality–––––––––––––––––––––––––––––––––

redefined input s1(i)

–––

Example 45: Asterisk signal receipt–––––––––––––––––––––––––––––––––––––––

It is allowed to specify that all triggers may invoke the transition. This is done
by using an asterisk to denote all visible triggers.

*

–––

Example 46: Guarded signal receipt ––––––––––––––––––––––––––––––––––––––

s1 [x>10]

–––

Start
The Start symbol defines the starting point of a state machine or one starting
point of a composite state. The start symbol thus defines the initial transition.

Symbol

Syntax

The start symbol has one text field that can be used for:

• Referencing an entry point in a composite state
Entry1

• Defining virtuality for the transition
virtual
virtual Entry2

Figure 125: Start

276 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Action
Actions are typically done in the Action symbol using a textual syntax. The
available actions are:

• Local variable definition statement
• Empty statement
• Compound statement
• Assignment
• Action

– Signal Sending (output)
– New
– Set
– Reset

• Expression statement
• If statement
• Decision statement
• Target code statement
• While statement
• For statement
• Delete statement
• Try statement
• Terminating statement

– Return
– Break
– Continue
– Stop
– Nextstate
– Goto (join)
– Throw
November 2008 Telelogic DOORS Analyst User Guide 277

Chapter 4: UML Language Guide
A few of these statements also have a graphical syntax, that is a dedicated
symbol. The stop, return, decision and signal sending statements have dis-
tinct symbols that allow highlighting of important operations on the transi-
tion. It is of course allowed to use the textual syntax for these statements as
well. The most important actions are described below.

Signal sending action (output)
The signal sending action in a transition allows to send signals to other State
machines, the environment or within the same state machine. If the signal has
parameters, expressions matching the parameter types should be provided. It
is allowed to ignore parameters when sending a signal.

It is allowed to specify more than one signal at a signal sending, which will
be handled as sending separate, consecutive signals.

Symbol

The signal sending symbol sends a signal from a transition.

Hint
You can flip the symbol horizontally from the shortcut menu.

Signal addressing

There are several ways to direct a signal to a receiver or routing the signal,
including:

• Omitting addressing
• Directing the signal as a method application on the receiver
• Signal Sending via port or interface

Each of these addressing mechanisms are described below. Direct addressing
of a signal is expressed using period (“<receiver>.<signal>”) for the method
application on a receiver.

Figure 126: Signal Sending

Card(header, "test card 1")
278 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Signal sending

No address or path is specified. The signal will be sent on one of the possible
paths (that is a port / connector).

Receiver is this

If the context is a state machine or an operation of an active class, this means
the state machine of the current active instance, that is the same as self.

If the context is an operation of a passive class, self should be used instead,
to reference to the state machine of the current instance. In this context, this
refers to the instance of the passive class

Signal sending via port or interface

A port identifier is given. The signal will be sent via this port

If an anonymous port that realizes exactly one interface is defined for the
class the identifier can also be an Interface name. In this case it refers to the
anonymous port.

Receiver is an attribute

Either a variable or attribute is given as destination. The type of the variable
or attribute must either be an interface (signal sending via) or an active class
(or the special type Pid defined in the RTUtilities package).

The attribute may also refer to one of the implicit attributes self, sender,
parent or offspring.

Receiver is an expression

The expression must be typed by an interface or an active class (or the special
type Pid defined in the RTUtilities package). This is a similar situation to
when Receiver is an attribute. The difference is that more complex expres-
sions can be given within the parenthesis, for example field or string extrac-
tion.
November 2008 Telelogic DOORS Analyst User Guide 279

Chapter 4: UML Language Guide
Examples

Example 47: Addressing mechanisms –––––––––––––––––––––––––––––––––––––

No address or path is specified:

SuspendInd

Receiver is an implicit attribute:

sender.Ack(id)

Receiver is an attribute, signal carries parameters:

Bank.Card(carddata)

Receiver is a Pid expression (indexed array with Pid elements):

(myList[10].addr).Sig1

An interface (referring to a port):

Ack(id) via myInterface

–––

All these addressing mechanisms have the following in common:

• If there is no alive instance of a state machine at the end of the commu-
nication path, the signal will be lost.

• If the destination references a state machine instance that has terminated,
the signal will be lost.

• If the receiving state machine is in a state were the signal is not handled,
the signal will be lost.

Decision
The decision construct is used to perform alternative actions in a transition
dependent on the value of an expression. It is a mechanism similar to a
switch. A decision has one question part, which contains a dynamic expres-
sion that is evaluated when the decision is executed. Furthermore, a decision
has multiple answer parts, each containing a range expression (or just a
simple expression containing a value or a constant) and leading to different
partial transitions.
280 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Symbol

The Decision symbol specifies alternative paths in the behavior part of a tran-
sition.

• An expression must be defined. Each path is labeled with an answer that
should match the expression for the path to be taken.

• When you delete the decision symbol, the succeeding subtree is deleted
as well.

Decision answer

The Decision Answer symbol specifies one alternative path in the behavior
part of a transition and contains a range condition which is an answer to a de-
cision question.

A range condition is given either as

• a specific value (for example “10” or “true”)
• an open range (for example “>10”)
• an closed range (for example “2..10”)
• a comma separated list of the above mentioned alternatives.

Informal decisions

To facilitate early verification of models it is possible to specify informal de-
cisions. These are characterized by having an expression that is a character
string and answers that also are character strings.

Figure 127: Use of decision

a m ount

100..500 <0, 1,5..10e ls e

notok ok e rrAm ount
November 2008 Telelogic DOORS Analyst User Guide 281

Chapter 4: UML Language Guide
Nondeterministic decisions

It is also possible to describe a nondeterministic decision. This is done by
giving the expression “any” (without quotes) and leaving the decision an-
swers empty.

Syntax

Example 48: Decision expression text example––––––––––––––––––––––––––––––

v+4

–––

Example 49: Decision alternative text example –––––––––––––––––––––––––––––

Simple example:

True

Open range:

>10

Closed range:

0..3

Several ranges:

<-5, 0..2, >10

–––

Guard
A guard symbol can be used for either:

• Triggering a transition based on a certain condition evaluating to “true”.
• A connect transition, that is leaving a substate via an exit point.
282 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Symbol

If a guarded transition is based on a condition, the invocation of the transition
occurs when the provided expression defining the condition is evaluated to
true. The provided expression must be a simple expression and it may not
cause any side effects.

If the transition is defined by referencing an exit point, then the source state
of the transition must have a substate state machine. The transition is exe-
cuted whenever this substate state machine exits via the specified exit point.

Syntax

Example 50: Guarded transition––

[x>10]

–––

Example 51: Connect transition ––

A transition triggered by leaving a composite state via a named exit point
called ‘a’

[a]

–––

Example 52: Connect transition ––

A transition triggered by leaving a composite state via an unnamed exit point.

[]

–––

Figure 128: Guarded transition

WaitAWhile

now<=t0+MaxWait
November 2008 Telelogic DOORS Analyst User Guide 283

Chapter 4: UML Language Guide
Timer set action
The Timer Set Action creates a timer instance, which now is active. Per-
forming set once more on an active timer instance, implicitly resets the first
timer instance and creates a new timer instance.

A timer with parameters may have several timer instances active at the same
time, as long as the parameter values are distinct.

Syntax

Example 53: Absolute time –––

set (MyTimer, aTime);

–––

Example 54: Relative time ––

set (MyTimer, now+10);

–––

Example 55: Timer with default duration––––––––––––––––––––––––––––––––––

timer MyTimer () = 5;
...
set(MyTimer);

–––

Example 56: Timer with parameter–––––––––––––––––––––––––––––––––––––––

timer MyTimer (Integer id);
Integer i = 1;
...
set (MyTimer (i), now+5);

–––

See also

“Timer active expression” on page 296

Timer reset action
The Timer Reset Action resets an active timer instance, if such an instance
exists.
284 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Syntax

Example 57: Reset of normal timer –––––––––––––––––––––––––––––––––––––––

reset(MyTimer);

–––

Example 58: Reset of timer with parameter ––––––––––––––––––––––––––––––––

reset(MyTimer(i));

–––

Action (task)
The Action symbol is used for writing textual code in the behavior part of a
transition, for example variable assignments, for-loops and calls of value re-
turning procedures.

Symbol

Syntax

Example 59: Simple example–––

Integer v1;
v1 = 4;
output s(v1);

–––

Assignment
Assignments are done according to the syntax in the example below. The left
hand side of the assignment can contain a variable identifier, an element of
an indexed variable or a struct field of a struct or class. The right hand side
contains an expression of the same type as the left hand side.

Figure 129: Action symbol

set(t, now+10);
for(Integer i=1;i<=5;i=i+1){
 output Ack(i) to ListOfServers[i];
}

November 2008 Telelogic DOORS Analyst User Guide 285

Chapter 4: UML Language Guide
Example 60: Various assignments ––

Integer i = 0;
myObject = new (theType);
person.age = person.age+1;
arrival[currentDate,person] = now;

–––

The assignment can also be used as an expression in itself. The returned
value of an assignment expression is the right hand side expression, if the as-
signment is successful.

Example 61: Assignment expression ––––––––––––––––––––––––––––––––––––––

if ((a=10)==10) { output s; };

–––

Compound statement
A compound statement contains a number of statements enclosed within
braces {}. It also defines a namespace which makes it possible to declare
local variables within a compound statement.

New
The new statement is used to create instances of both active and passive
classes. To create an instance of the same class as the current class, the key-
word this can be used. The new construct returns a reference to the created
object.

It is of course always possible to communicate with the created instance
using a reference to the object, so by assigning the result of new to a refer-
ence attribute it is possible to for example send signals directly to the created
instance or to call an operation on the instance.

However, to make it possible to communicate with the instance using the
ports and connectors that exists in a model, the created instance must be
added to the architecture (the structure of connectors and ports) that exists in
the application.
286 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Save
It is often wanted to deal with arriving signals in a certain order. However,
signals arriving from the outside world may not always arrive in the order
that is expected. To temporarily save a signal in the signal queue, while
looking for other signals to consume, the Save symbol should be used.

Several signals may be saved in each state, but if a saved signal is not handled
in the next state, it again risks being discarded.

Symbol

The Save symbol saves signals from being discarded when being next to con-
sumed in the state that does not handle the signal.

• This symbol should always be preceded by a State symbol.
• You cannot insert any symbols after the Save symbol.

Syntax

Example 62: Save ––

A simple example:

save s;

Asterisk save:

save *;

–––

Figure 130Using the save symbol

*(idle)

NewJob, Terminate
November 2008 Telelogic DOORS Analyst User Guide 287

Chapter 4: UML Language Guide
Stop
The Stop symbol stops the execution of the current instance. It is possible to
delete an instance of an active class only from within the state machine of the
class, by performing the stop action.

Symbol

The stop action is handled in the following way:

1. If the instance is a simple state machine without any parts, the state ma-
chine will be immediately stopped.

2. If the instance contains parts, each of the part instances will be handled
according to 1) above, as well as this instance.

Return
The Return symbol finishes the execution of operations or substates and
transfers the control to the calling context.

Symbol

Figure 131: Stop

Figure 132: Return in Operation

idle

Terminate

i+1

288 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Syntax

Example 63: Return simple example ––––––––––––––––––––––––––––––––––––––

4+r

–––

Example 64: Return with exit point name in composite state ––––––––––––––––––

exP2

–––

If the operation has no return type or if the composite state exit is through the
default exit point, the text field should be empty.

Junction
Normally, the state and nextstate are sufficient mechanisms to split up a com-
plex state machine into several diagrams. However, if a transition is very
long, it might be necessary to split the description of the transition into sev-
eral parts. This can be done by the Junction symbol, which is used both as a
label and as a jump statement. Another reason for using the junction might
be to avoid having crossing flowlines in a complex flow.

Symbol

The Junction symbol corresponds to the label and join symbols but is also
used in all cases where there is a need to merge flow lines.

• The Junction symbol can have more than one incoming flow line.

Figure 133: Using the junction as a label and corresponding goto

idle

Terminate

Termination

Termination
November 2008 Telelogic DOORS Analyst User Guide 289

Chapter 4: UML Language Guide
Syntax

The symbol contains a text field.

Flow
The Flow line connects two symbols in a transition.

• If you have a symbol selected in the drawing area, and then add another
symbol from the toolbar while holding the <SHIFT> key down, then a
flow line will automatically be created between the symbols.

• You can also create the line by drawing it from the line handle and con-
necting it to the next symbol.

• If you delete a symbol the line connected to the symbol will also be de-
leted.

Simple transition
The Simple Transition line is used to define a transition when using a state-
oriented style.

• You can draw a Simple Transition line from the State symbol only.
• You can create the line by drawing it from the line handle and connecting

it to the next symbol.
• If you delete a symbol the line connected to the symbol will also be de-

leted.

Syntax

There is one text field associated with a simple transition line. This text field
describes both the trigger of the transition, the guard and the actions on the
transition.

The trigger and guard follow the same syntax as is used in an Signal Receipt
(Input) symbol. The actions follow the same syntax as in a Action (task)
symbol with the exception that a short-hand is used to denote signal sending
to save diagrams space: ‘^s’ means the same as ‘output s’.

Simple example

s1(x) / ^s;

Simple transition with guard
290 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
[x>10] / myproc(x);

Both guard and signal receipt

s1 [x>10] / myproc(x);

Expressions
Expressions in UML are similar to expressions in most programming lan-
guages. As expected, expressions may contain references to variables (at-
tributes), literals, constants and operations (calls).

Many expressions may be used as actions by appending a semicolon (;) after
the expression. For example, the following expressions are commonly used
as actions:

• Assignment Expression
• Call expression
• New expression
• Conditional expression

There are a couple of expressions for special variable access or creation of
complex values:

• Field expression
• Index expression
• Instance expression
• This expression

There is also a group of expressions, that similar to variable access, depend
on the underlying dynamic state of the system, they are often referred to as
Imperative expressions:

• Arbitrary value (any) expression
• Now expression
• Pid expressions

– Self
– Sender
– Parent
– Offspring

• Timer active expression
November 2008 Telelogic DOORS Analyst User Guide 291

Chapter 4: UML Language Guide
Other expressions available are:

• Range check expression
• Target code expression

Call expression

A call expression is used for calling operations. It may contain actual param-
eters for the operation call.

Example 65: Call expression–––

foo(3, true, “mmo”)

–––

The value of a call expression is the actual value of the operation’s return pa-
rameter after the call. If the called operation has no return parameter, the call
expression has no value, and must then only be used as a stand-alone expres-
sion in an expression action.

Before the operation call takes place the expressions provided as actual argu-
ments will be evaluated. Note, however, that UML does not define the order
in which the expressions will be evaluated. The actual evaluation order de-
pends on which code generator that is used, and sometimes even on which
compiler that is used for compiling generated code. Therefore, it is recom-
mended that models do not depend on the evaluation order of actual argu-
ments in call expressions.

Example 66: Argument evaluation order is undefined –––––––––––––––––––––––

foo(f1(), f2())

The operations in this example can either be called in the order ‘f2’, ‘f1’,
‘foo’ (right-to-left evaluation order) or ‘f1’, ‘f2’, ‘foo’ (left-to-right evalua-
tion order).

–––

Note
When using the C code generator (including Model Verifier and Model Val-
idator, but excluding AgileC) call arguments will always be evaluated from
left to right, regardless of which target compiler that is used. Still it is not
recommended to exploit this behavior since the evaluation order is not de-
fined in the UML standard.
292 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
New expression

The new expression contains the new() construct as described in “New” on
page 286.

Conditional expression

A Conditional Expression has the form

expr_1 ? expr_2 : expr_3

where the first expression is of the boolean type and the second and third ex-
pressions are of the same type.

The expression expr_1 is evaluated first. If it is true, then the expression
expr_2 is evaluated and provided as the resulting value of the conditional ex-
pression, otherwise expr_3 is evaluated and given as result.

Example 67: Conditional expression ––––––––––––––––––––––––––––––––––––––

imax = (i > j) ? i : j; /* imax = max (i, j) */

–––

Field expression

The Field Expression is used to access a field of a structured datatype, that is
an attribute of a class.

Example 68: Field expression ––

a.b = true;
test = a.b;

–––

Index expression

The Index Expression is used to access an element of an indexed datatype,
typically an array or a string.

Example 69: Index expression––

iarr[i, j] = 1;
i = iarr[k,l];

–––
November 2008 Telelogic DOORS Analyst User Guide 293

Chapter 4: UML Language Guide
Instance expression

The Instance Expression is used to create complex values in one operation.
By this, it is possible to initialize a structured type in one operation, instead
of initializing each field separately. Note, however, that constructors are rec-
ommended for initializing structured types.

Example 70: Instance expression –––

class sType {
 Integer Age;
 Charstring Name;
 Boolean MaleGender;
}
s = sType(. ‘John’, 44, true .);

–––

Instance expressions are also used to describe stereotype instances con-
taining tagged values.

This expression

This refers to the current instance. If this is used in an operation of a passive
class, this refers to the instance of the passive class. If this is used in an op-
eration of an active class or in a state machine, this refers to the instance of
the active class.

Imperative expressions

Imperative Expressions include:

• Arbitrary value (any) expression
• Now expression
• Pid expressions
• State expression
• Timer active expression

Arbitrary value (any) expression

The any Expression yields an arbitrary value of the provided type.

Example 71: any expression –––

anInt = any(Integer);
294 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
output resultSig(any(Boolean));

–––

Now expression

The Now Expression returns the current time value.

Example 72: Now expression–––

Time time_0 = now;
set(delayTimer, now + 10);

–––

Pid expressions

Pid expressions are expressions of the datatype Pid. A Pid Expression is ei-
ther of self, parent, offspring or sender.

Example 73: Pid expressions –––

currentClientId = sender;
new serverAgent;
if (offspring != NULL)
output sender.serverId(offspring)
else output sender.AllServersBusy;

–––

State expression

The State Expression can be used to check the most recently visited state in
the current state machine. If the state machine contains composite states, the
expression returns the most recently visited state of the nearest enclosing
scope. The returned expression will be of the Charstring datatype. If no state
has been visited, an empty string is returned.

Example 74: State expression ––

if (state == "idle") return ;

–––
November 2008 Telelogic DOORS Analyst User Guide 295

Chapter 4: UML Language Guide
Timer active expression

The Timer Active expression is used to check if a named timer is active or
not. A boolean value will be returned. A timer is active either if the timer has
not expired yet or if the timer has expired but the timer signal has not been
consumed yet (or discarded).

Example 75: Timer active expression –––––––––––––––––––––––––––––––––––––

if (active(userTimeout)) reset(userTimeout);

–––

Range check expression

A Range Check Expression is used to check if an expression meets a value
range condition at run-time. It has the form:

expr_1 in type type_ident

Where type_ident may be further restricted by a constraint. The range check
expression will return a Boolean value depending on if the expression
matches the provided type.

Example 76: Range check expressions–––––––––––––––––––––––––––––––––––––

sender in type clientType;
intVar in type Integer constants (1..9, -9..-1);
age in type ageSyntype;

–––

Target code expression

A Target Code Expression is dependent of the selected implementation lan-
guage and contains implementation language code that is not parsed by the
UML parser, but instead added directly to the generated code.

Target code has the format

[[target_code_details]]

The target code (for example Inline C/C++) can contain any expression in the
implementation language that matches the type that the UML context speci-
fies.

If the target code contains the text

]]
296 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
this must be escaped by a # as

#]]

If the target code contains

#

this must be escaped by a # as

##

If it is needed to reference model entities from the target code, this has the
form #(name) where name is an identifier in the model.

Example 77: Target code expression ––––––––––––––––––––––––––––––––––––––

Real side_a, side_b;
...
Real hypotenuse = [[sqrt(pow(#(side_a),2) + pow(#(side_b),2))]];

–––

See also

“C Application” on page 978

Composite state
A composite state is a state which is composed by other states and transitions.
While in any of the substates of the composite state, a trigger with a transition
defined for the composite state will cause an exit of the composite state (and
substates) for a new state.

A composite state can be created in two ways: either by an inline state ma-
chine definition or by referring to a state machine defined elsewhere.

A composite state can implicitly be created when a state machine diagram is
created on a state.

A composite state is marked with a “rake” symbol in the upper right corner
of the state symbol.

The composite state may have several entry and exit points, which are la-
belled.

Transitions in a substate has higher priority than transitions in an outer state.
This applies both to transitions triggered by signals and to transitions trig-
gered by timers.
November 2008 Telelogic DOORS Analyst User Guide 297

Chapter 4: UML Language Guide
This is in UML referred to as transition overriding.

Entry connection point

An Entry Connection Point is a named starting point for entering a composite
state. Entry connection points are referenced at a start symbol inside a com-
posite state and in the nextstate symbol when entering a composite state.

There must be at least one named or unnamed start symbol in a composite
state. Not more than one start symbol can be named in a composite state.

Hint
An Entry connection point is defined in the Model View by selecting a state
machine and choosing the New / Entry Connection Point command in the
shortcut menu.

Figure 134: Use of a composite state

WaitKeyStroke

keyStroke(Key)

KeyType Key;
Integer Nr = 0;
syntype CodeType = String <KeyType>;
CodeType Code;

Nr

<4

Nr=Nr+1;
Code = append (Code, Key);

else

validateUserCode
(Code)

WaitKeyStroke

StatechartDiagram state WaitCode (1/1)

WaitCode

userCardOK

OpenDoor

WrongCode

WaitCard
298 Telelogic DOORS Analyst User Guide November 2008

Behavior Modeling
Exit connection point

An Exit Connection Point is a named exit for leaving a composite state. Exit
connection points are referenced at a return symbol in a composite state and
at connect transitions leading out of composite states.

If there are more than one connect transition from a composite state, at most
one of these connect transitions can be unnamed.

Hint
An Exit connection point is defined in the Model View by selecting a state
machine and choosing the New / Exit Connection Point command in the
shortcut menu.

State machine inheritance
A State machine can be specialized, either directly by inheritance between
state machines or by specialization of the active class that owns the state ma-
chine. A specialized state machine may add features or change features of the
original state machine. Features that may be added include states, transitions,
variables and other entities that can be declared in a state machine. In order
for allowing a feature to be changed by specialization, it must be declared as
virtual in the original state machine. A virtual definition may be redefined
in the specialized state machine. The following concepts can be virtual (and
thus redefined) in a state machine:

• Transitions
– Start
– Signal Receipt
– Guard
– Save

• Operation

Operation body
An Operation Body is a method without states. The action is often a com-
pound action, which contains a list of other actions.
November 2008 Telelogic DOORS Analyst User Guide 299

Chapter 4: UML Language Guide
An Operation Body may be informal, meaning that the specification of how
to execute it is not formally expressed in the UML language, but maybe in
some other language. In that case the operation body will contain an informal
expression containing the informal description.

See also

“State machine implementation” on page 300

“Internals” on page 300

“Implementation” on page 322

State machine implementation
A State machine Implementation is a method containing states and every-
thing else needed to realize the State machine signature. A State machine Im-
plementation is typically implicitly defined when defining a State machine.

See also

“State machine” on page 267

“Internals” on page 300

“Implementation” on page 322

Internals
Internals are used to be able to divide a class definition into one signature-
oriented part and one implementation-oriented part and then store the signa-
ture for a class in a different file than the implementation of the class. The
purpose of this is to facilitate component-based modeling by allowing sepa-
rate version handling and delivery for the signature and the implementation.

See also

“State machine implementation” on page 300

“Operation body” on page 299

“Implementation” on page 322
300 Telelogic DOORS Analyst User Guide November 2008

Deployment Modeling
Text extension symbol
The text extension symbol can be connected to the action symbol to display
the content of the action symbol. This is particularly useful when drawing
transition oriented flows where an action with a large amount of text can dis-
turb the overview of the diagram. The action code can be edited either in the
action symbol or in the text extension symbol.

Deployment Modeling
In deployment modeling, the run-time architecture of the system is modeled.
It describes how deployable pieces of the software, Artifacts, are deployed
onto Nodes representing physical computation resources. Deployment spec-
ifications are used to describe how artifacts are deployed onto nodes. Asso-
ciations are used to model connections between nodes.

Deployment diagram
A deployment diagram specifies a set of Artifacts deployed onto a set of in-
terconnected Nodes. A Deployment specification is used to specify execu-
tion parameters used when deploying an artifact onto a node. An Execution
environment can be used to model a node providing a set of services to the
artifacts deployed onto it.
November 2008 Telelogic DOORS Analyst User Guide 301

Chapter 4: UML Language Guide
Example

Model elements in deployment diagrams

The following elements are found in deployment diagrams

• Artifact
• Node
• Execution environment
• Deployment specification
• Artifact
• Class
• Relationships

See also

“Class diagram” on page 199

Figure 135: Deployment diagram

<<executionEnvironment>>

J2EEServer
<<executionEnvironment>>

J2EEServer

DataStore

DataStore

<<artifact>>

'TransactionHandler.jar'
<<artifact>>

'TransactionHandler.jar'

<<deploymentSpecification>>

transactionSpec

encryptionMode : EncryptionKind = high
enableEncryption : Boolean = true

<<deploymentSpecification>>

transactionSpec

encryptionMode : EncryptionKind = high
enableEncryption : Boolean = true

<<deploy>><<deploy>>

 *

 *

<<artifact>>

'PresentationLayer.jar'
<<artifact>>

'PresentationLayer.jar'

<<deploy>><<deploy>>
302 Telelogic DOORS Analyst User Guide November 2008

Deployment Modeling
“Component diagram” on page 243

Artifact
An Artifact represents a physical piece of information that is used or pro-
duced by a software development process. Examples of artifacts include
source files, scripts, libraries and executable programs.

An artifact manifests a number of elements through Manifestation relations,
meaning that the artifact is built up, or constructed from, these elements. For
example, an artifact representing a header file in C++ can have a manifesta-
tion relation to the class declared in the header file. This information can then
be used by a code generator when generating the physical header file from
the model.

During deployment modeling, artifacts are deployed on nodes using the De-
ployment relationship.

Artifacts are similar to Classes and can have Attributes and Operations. Ar-
tifacts can also participate in the following relations: Dependency (of any el-
ement), Generalization (between artifacts), Composition (typically to other
artifacts). In addition, an artifact is a namespace and can therefore own other
model elements.

Symbol

The artifact symbol is identical to the Class Symbol, with the keyword
«artifact» added to the top.

Node
A node is a named computational resource, typically a specific computer.
Nodes can be connected using Associations to model network topologies.

Figure 136: Artifact symbol

<<artifact>>

'TransactionHandler.jar'

November 2008 Telelogic DOORS Analyst User Guide 303

Chapter 4: UML Language Guide
Symbol

Syntax

A node is depicted as a 3-dimensional cube with the name inside.

Execution environment
A special kind of Node offering an execution environment for the artifacts
deployed onto it. The execution environment typically consists of a set of ser-
vices required by the artifacts during execution.

A typical example is a J2EE server prepared for deployment of J2EE beans.

Symbol

Syntax

Same as node with the stereotype «executionEnvironment» applied.

Deployment specification
A deployment specification is used to specify a set of properties acting as ex-
ecution parameters for an artifact when deployed onto a Node.

Figure 137: Node symbol

Figure 138: Execution environment symbol

myApplicationServer

<<executionEnvironment>>

J2EEServer
304 Telelogic DOORS Analyst User Guide November 2008

Deployment Modeling
A deployment specification is applied to an artifact by drawing a Depen-
dency from the specification to the artifact.

Symbol

Syntax

Same as class with the «deploymentSpecification» stereotype applied.

Relationships
The following relationships can be used in Deployment diagrams:

• Deployment
• Manifestation
• Association
• Aggregation
• Composition
• Generalization
• Dependency

Deployment

A special kind of Dependency used to deploy an artifact onto a deployment
target, typically a Node. An artifact deployed onto a node will perform its ex-
ecution in the context of that node.

Figure 139: Deployment specification symbol

<<deploymentSpecification>>

transactionSpec

encryptionMode : EncryptionKind = high
enableEncryption : Boolean = true

<<deploymentSpecification>>

transactionSpec

encryptionMode : EncryptionKind = high
enableEncryption : Boolean = true
November 2008 Telelogic DOORS Analyst User Guide 305

Chapter 4: UML Language Guide
Manifestation

Manifestation is a special kind of Dependency used from an Artifact to a set
of other elements to describe that the artifact is built up, or constructed from,
these elements.

For example, an artifact representing a header file in C++ can have a mani-
festation relation to the Class declared in the header file. This information
can then be used by a code generator when generating the physical header file
from the model.

Relationships in UML
For general help on editing lines, please see:

“Draw lines” on page 136

“Move lines” on page 137

“Delete lines” on page 137

“Re-direct and bi-direct lines” on page 137

Figure 140: Deployment dependency

Figure 141: Manifestation dependency

<<artifact>>

'TransactionHandler.jar'

<<artifact>>

'TransactionHandler.jar'

<<executionEnvironment>>

J2EEServer
<<executionEnvironment>>

J2EEServer
<<deploy>><<deploy>>

myClass

myClass
<<artifact>>

'myClass.h'
<<artifact>>

'myClass.h' <<manifest>><<manifest>>
306 Telelogic DOORS Analyst User Guide November 2008

Relationships in UML
Dependency
A Dependency is a relationship between two definitions, saying that one of
these definitions (the client) is dependent on the other definition (the sup-
plier) for some reason. The somewhat loose semantics of a Dependency
makes it usable when the other relationship classes are inappropriate and
cannot model a certain relationship.

There is one case when the dependency is used in a more specific way: indi-
cating a creation relationship between instances of active classes, that is
when an instance uses the New statement to create a new instance of a class.
In this case, the dependency can be used between parts or between a part and
the behavior symbol that refers to the state machine of the enclosing active
class.

It is common to give dependencies a more detailed semantics by means of
applying stereotypes on them. For example, see Import and Access depen-
dencies.

Generalization
A Generalization is a relationship between two Signatures (for example
classes or operations), saying that one of these is a more general signature,
and the other is a more specific one. The more specific signature inherits
member definitions from the more general signature, and may also contain
additional members. Because of this, the generalization relationship is also
known as inheritance.

If a generalization is established between two types (for example two
classes) the more specific type defines a subtype of the more general type
(which is sometimes called a supertype). This means that an instance of the
more general type may be substituted by an instance of the more specific
type. In other words, a specialized type is assignment compatible with the
more general type.

Syntax

The generalization line has a text field, which may contain the discriminator.
November 2008 Telelogic DOORS Analyst User Guide 307

Chapter 4: UML Language Guide
Realization
The Realization relationship is a special kind of the Generalization relation-
ship. A Realization is used between a class and an interface to express that
the realizing class conforms to (implements) the interface.

Association
An Association is a semantic relationship between two or many Classifiers,
indicating that instances of these classifiers will be related.

Symbol

The line contains one name field, two role name fields and two Multiplicity
fields.

An Association has two association ends, represented as attributes. These at-
tributes could either both be owned by the association (reflecting the situa-
tion when none of the associated classifiers are affected by the association),
or one attribute could be owned by the association and one by the connected-
to classifier C (reflecting the situation when the association is navigable only
in the direction from C), or the attributes could be owned by one connected-
to classifier each (reflecting the situation when the association is navigable
in both directions). In the case when the association is unidirectional, the
second (remote) Attribute will only exist if it is needed (for example if it car-
ries a role name or a multiplicity).

An Association may also have properties that belong to the Association it-
self, and not to any particular association end.

Figure 142: Association

Links

Links

 attr

 role_b

role_a

x a_x

1..*

x

308 Telelogic DOORS Analyst User Guide November 2008

Relationships in UML
An association can be navigable in both directions.

Multiplicity

Multiplicity at an association end defines how many instances of the class
that can be related by the association.

Aggregation kind

An Association is either a normal association, an Aggregation or a Compo-
sition.

You can change aggregation type on the shortcut menu that is displayed
when you click the ending parts of the line. The alternatives are Association,
Aggregation and Composition. You must first add role names before you can
select aggregation type.

• An Aggregation line specifies that an instance of the aggregate class is an
informally considered owned by the instance of the component class.

• A Composition line specifies a stronger form of aggregation where the
instance of the aggregate class exists only as long as the component class
exists. The lifetime of the contained instance is thus strongly tied to the
lifetime of the containing instance.

Navigable end

A navigable end is an association end that is also an attribute of the classifier
that is the type of the other end.

Symbol

The line contains one name field, two role name fields and two Multiplicity
fields.
November 2008 Telelogic DOORS Analyst User Guide 309

Chapter 4: UML Language Guide
Examples

Example 78: Role text ––

+ myrole

–––

Example 79: Multiplicity text ––

Infinite range:

*

Range condition:

0..3

Multiple range conditions:

1..7,>10

–––

See also

“Attribute” on page 206

“Aggregation” on page 311

“Composition” on page 311

Figure 143: Association

Links

Links

 attr

 role_b

role_a

x a_x

1..*

x

310 Telelogic DOORS Analyst User Guide November 2008

Relationships in UML
Aggregation
Aggregation is a special kind of Association. It is a binary association that
specifies an aggregation relationship (a whole/part relationship).

An aggregation has two ends, an aggregate end and a part end. An aggrega-
tion specifies that an instance of a classifier on the aggregate end aggregates
an instance of the classifier at the part end. The aggregate instance may in
turn be part of another aggregate.

An aggregation part may be part of more than one aggregate.

Symbol

See also

“Attribute” on page 206

“Association” on page 308

“Composition” on page 311

Composition
Composition is a special kind of Aggregation. The composite part is strongly
owned by the composite and may thus only be part of one composition.

Composite parts that are typed by active classes can also be used as parts of
the internal structure of a class as described by Composite structure dia-
grams.

Figure 144: Aggregation

y role1

*

y

November 2008 Telelogic DOORS Analyst User Guide 311

Chapter 4: UML Language Guide
Symbol

See also

“Attribute” on page 206

“Association” on page 308

“Aggregation” on page 311

“Part” on page 236

“Composite structure diagram” on page 235

Containment
The Containment relationship shows that one definition contains another
definition. The contained definition appears in the scope of the container def-
inition. When used between namespaces, such as packages, the containment
relationship is sometimes also called namespace nesting.

Symbol

The Containment line is drawn from the container definition to the contained
definition, and shows a plus sign at the container side.

Figure 145: Composition and a corresponding attribute

Figure 146: Containment

ct

part d:dt [*]

dt

 d

*

312 Telelogic DOORS Analyst User Guide November 2008

Common Symbols
Extension
Extension is used between a stereotype and a metaclass (a Metamodel class)
to indicate that the stereotype extends the metamodel class.

Association

Description

Association is described in detail in the section Use Case Modeling.

Common Symbols

Frame
The symbols in a diagram are enclosed by the Frame symbol placed on the
canvas.

• The frame has margins on all sides.
• You may resize and move the frame in all directions on the canvas, in-

cluding the margins.

Text symbol
The Text Symbol is used for defining variables, interfaces, datatypes etc.

It is not possible to connect lines to the symbol.

Syntax

Example 80: Including the definition of an interface and a syntype –––––––––––––

interface i {
 signal s;
}
syntype s = Integer;

–––

Example 81: Including the definition of a stereotyped class –––––––––––––––––––

<<struct>> class X {
 private Integer I;
November 2008 Telelogic DOORS Analyst User Guide 313

Chapter 4: UML Language Guide
 void inc (Integer incr) {
 I = I + incr;
 }
}

–––

Comment
You use the Comment symbol to define comment text related to graphical
symbols in a diagram.

Comments can also be made in the textual syntax.

Comment symbol

The comment symbol is drawn similar to a Text symbol, but has a read-only
text label in the upper left corner of the symbol. The text is set to “//”, to dis-
tinguish the constraint symbol from for example a constraint symbol. It is
possible to connect the symbol to another symbol with an Annotation line.

The comment symbol is connected on the left side but you can flip the
symbol horizontally from the shortcut menu to connect it from the right side
instead. When a Comment symbol in a diagram is not connected to any other
symbol then the comment model element belongs to the element owning the
diagram. If a Comment symbol is connected to two or more symbols in a di-
agram, then the comment model element belongs to the element owning the
diagram

Syntax

The text is informal and will not be syntactically checked.

See also

“Handling comments” on page 126

Constraint
You use the Constraint symbol to define constraint text related to graphical
symbols in a diagram.

Constraints can also be made in the textual syntax.
314 Telelogic DOORS Analyst User Guide November 2008

Common Symbols
Constraint symbol

The constraint symbol is drawn similar to a Comment symbol, but has a read-
only text label in the upper left corner of the symbol. The text is set to “{}”,
to distinguish the constraint symbol from a comment symbol. It is possible
to connect the symbol to another symbol with an Annotation line.

Syntax

The text is informal and will not be syntactically checked.

Stereotype instance
You use the Stereotype instance symbol to define stereotype instance text re-
lated to a model element.

Stereotype instance symbols can also be made in the textual syntax.

Stereotype instance symbol

The stereotype instance symbol is drawn similar to a Comment symbol, but
has a read-only text label in the upper left corner of the symbol. The text is
set to “«»”, to distinguish the constraint symbol from a comment symbol. It
is possible to connect the symbol to another symbol with an Annotation line.

Syntax

The text is informal and will not be syntactically checked.

Annotation line
The Annotation line connects the Comment, Constraint and Stereotype in-
stance symbol to another element.

You can draw an Annotation line from the line handle on the symbol and at-
tach it to any symbol, inside the diagram frame, other than other Comment,
Constraint and Stereotype instance symbols. It is also not allowed to attach
it to a Text symbol.
November 2008 Telelogic DOORS Analyst User Guide 315

Chapter 4: UML Language Guide
Extensibility
UML is a language that you can customize - in a controlled way. There are
predefined mechanisms to extend UML constructs and to specialize them to
a use for a specific purpose.

The extensibility mechanism of UML is based on the concept of Profile and
Metamodel.

A metamodel is simply a special kind of UML package class model that is
used to describe the information stored in a repository in a tool. A package is
a metamodel if the package name is preceded by the keyword «metamodel».
A metamodel typically contains a set of classes stereotyped by the keyword
«metaclass» that define the metaclasses.

It is possible to define different metamodels and use the build-in repository
to store user-level models based on these metamodels. The only requirement
is that the metamodel must be possible to map to the object model used to
define the run-time repository and storage.

A profile is a special kind of package, identified by the keyword «profile» be-
fore the package name in the heading. A profile contains a set of stereotypes,
that have attributes (called tagged value definitions) and that extend one or
more metaclasses.

In a user model the stereotype can be applied to an object that is an instance
of the extended Metaclass. This will automatically make it possible to add
values

Metamodel
A metamodel is a set of metaclasses, metaattributes etc. that defines a con-
ceptual view of the information stored in the model repository. The main
practical usage of a metamodel is to form a basis for profile definitions.

A user profile can define stereotypes that extend the metaclasses in order to
associate more information to model elements. The extra information is from
a user’s point of view editable using the Properties Editor and is stored in the
model repository.

The UML tool set is able to represent different metamodels each giving a dif-
ferent view of a specific model.
316 Telelogic DOORS Analyst User Guide November 2008

Extensibility
Hint
An example of a metamodel is given in the installation. Simply check the
TTDMetamodel package in the Library node in the Model View. This
package is a simple metamodel that describes the information stored.The
purpose of the TTDMetamodel is to give a view that is very close to the un-
derlying repository structure and each of the classes found in this meta-
model corresponds directly to a core class found in the repository defini-
tion. However, the TTDMetamodel is a simplification of the core repository
in the sense that only the classes that are useful to stereotype are included.
Another simplification is that almost all of the associations and attributes
found in the core repository model are omitted.

Metaclass
A metaclass is used to categorize a set of elements stored in a UML reposi-
tory. It can be defined in metamodels using class symbols where the class
name is stereotyped by «metaclass».

Stereotype
A Stereotype is used to extend the information that can be stored in the model
for a given entity. The extra information is described by the attributes of the
stereotype.

Figure 147: Stereotype Example

Figure 147 on page 317 shows an example of how to extend all classes with
information about the author of the class definition. This is accomplished by
defining a stereotype AuthorInfo with an attribute name that extends the
Metaclass TTDMetamodel::Class.

Tag definition

Tag Definitions are the attributes of a stereotype. When the stereotype is ap-
plied, the tag definitions are used by giving them specific values.

AuthorInfo
<<stereotype>>

name:Charstring
::TTDMetamodel::Class

<<metaclass>>

11
November 2008 Telelogic DOORS Analyst User Guide 317

Chapter 4: UML Language Guide
Tagged value

Tagged values are the values that can be given tag definitions. These values
are set using the Properties Editor.

See also

“Extension” on page 318

Profile
A profile is a special kind of package that is identified by the stereotype «pro-
file». Profiles are used to extend the information that can be stored in a UML
repository by defining stereotypes that extend metaclasses. Figure 147 on
page 317 shows an example of a simple profile.

A profile is applied by using the package Import or Access constructs, for ex-
ample if a model should adapt a certain profile, the top package of the model
should have an import or access that references the package that defines the
wanted profile.

Extension
Extension is used between a Stereotype and a Metamodel class to indicate
that the stereotype extends the metamodel class.

There is one text field associated with the extension line. This can have the
text ‘1’ or ‘0..1’. If the text is ‘1’ then all elements that are instances of the
extended Metaclass will automatically have the stereotype applied.

If the text is ‘0..1’ then you will have to manually apply the stereotype. In
Figure 147 on page 317 is an example of an extension line.

When the stereotype is manually applied, some symbols (class symbol,
signal symbol etc.) will show the applied stereotype in the symbol.

Predefined Data
The data modeling constructs in UML are powerful and allows for modeling
and defining data in numerous ways. However, UML does not contain many
built-in datatypes. Instead UML can be extended with different sets of
datatypes depending on the application area. This is done by defining
datatypes in model libraries (also often referred to as predefined packages).
318 Telelogic DOORS Analyst User Guide November 2008

Predefined Data
Predefined

This package contains generic datatypes with operations that always can be
used.

See also

“Datatype” on page 224

Predefined
The package Predefined is a proprietary extension to UML, which is always
available in a project. This package is automatically used by the model de-
fined in a project. The package defines a number of datatypes, but also a few
other utilities.

Some of the datatypes exist in OMG UML (e.g. Integer or Boolean), but the
Predefined package provides operations for these datatypes which is not
done in the standard.

For each datatype, there is a set of operations to be applied on expressions of
the type.

The package contains the following definitions:

The Package Predefined is also available for inspection or browsing directly
in the Model view. Each project has a node called predefined package. Ex-
panding this node lets you browse the available datatypes, operators and
other definitions.

PLUS_INFINITY

PLUS_INFINITY is a constant of the datatype Real. It can be used as a ref-
erence to the largest Real number that can be used on host, or on a specific
target.

Kind Definitions

Datatypes Boolean, Character, String, Charstring, Integer,
Natural, Real, Array, Any

Constants PLUS_INFINITY, MINUS_INFINITY
November 2008 Telelogic DOORS Analyst User Guide 319

Chapter 4: UML Language Guide
MINUS_INFINITY

PLUS_INFINITY is a constant of the datatype Real. It can be used as a ref-
erence to the largest negative Real number that can be used on host, or on a
specific target.

Metamodel Classes
A few of the more important metaclasses are described below.

Metamodel profile

The TTDMetamodel is available for inspection and browsing directly in the
Model view. When adding a project, there is always a node with the applied
profiles, TTDMetamodel is one of these profiles. Expand Library node and
the TTDMetamodel profile package to see the language model elements,
abstract metaclasses and the relationships between these.

Classifier
Classifier is a Metaclass in the UML language.

A Classifier is a description of data and is the Signature of a set of instances
or Instance Sets. A Classifier defines a type, which for example may be the
type of a StructuralFeature. A Classifier may be associated to other Clas-
sifiers by means of Associations.

Most class-like model elements are classifiers, including:

• Class
• Datatype, Syntype, Choice
• Stereotype
• Interface
• Collaboration

Signature
Signature is a Metaclass in the UML language.

A Signature is an entity that can be the basis for the definition of another Sig-
nature. There are two main mechanisms that enable this:
320 Telelogic DOORS Analyst User Guide November 2008

Metamodel Classes
• Specialization, or inheritance
• Parameterization

Specialization means that a super-signature may be specialized into a set of
sub-signatures. Each sub-signature shares all the properties of the super-sig-
nature and may have some additional ones too. In the Metamodel the special-
ization mechanism is modeled by the Generalization class which is owned by
Signature.

Parameterization means that a Signature may have a list of formal context pa-
rameters. Such a Signature is known as a template. Formal context parame-
ters of a template may be substituted by actual context parameters when the
template is instantiated (for example in a TemplateTypeInstantiation).
Parameterization could make a Signature more flexible for use in different
contexts. In the metamodel the parameterization mechanism is modeled by
the ContextParameter class which is owned by Signature.

In addition to these two mechanisms for defining new Signatures based on
another Signature, there is a third such mechanism that only one Signature
has; the Syntype. This mechanism defines a new Signature by possibly con-
straining another one.

Some Signatures may have an Implementation. In that case the Signature acts
as a façade for the Implementation, hiding all details which users of the Sig-
nature do not need to know. A façade allows for separating of a definition
from its implementation and is what enables separate compilation of parts of
a system. Compare for example with the use of header files in C program-
ming. The following statements are true for a façade:

• A façade does not depend on its implementation.
• A façade does not depend on its uses. (This is in fact true for all Defini-

tions.)

An implementation may only depend on façades.

The following model elements are signatures:

• Classifier
• Operation, signal, timer
November 2008 Telelogic DOORS Analyst User Guide 321

Chapter 4: UML Language Guide
Implementation
An Implementation describes details about a Signature which users of the
signature do not need to know about, but that are necessary from an execu-
tion point of view. While a Signature typically describes static properties of
an entity, the corresponding Implementation is more concerned with the dy-
namic properties.

There are two main kinds of Implementations; Internals and Method. An In-
ternals describes how a Class is structured, both physically and from a com-
munication point of view, while a Method describes an Operation, a
StateType, or a Class from a run-time execution point of view.

An Implementation only depends on Signatures (also referred to as façades),
not on the usage of these Signatures. This is important in order to enable sep-
arate analysis of parts of a system.

Method
A Method is the implementation of an Operation. It describes how it is exe-
cuted at run-time. There are three kinds of methods, each of which has its
own semantics of execution:

• Operation body – a stateless method which is executed by executing the
Action of the OperationBody.

• State machine implementation – a method with states and transitions
which is executed by executing the Action associated with a Transition
that can be initiated in the active state.

• Interaction – a method which describes the interaction and information
exchange between a set of attributes. Contrary to other methods, an inter-
action may not only provide a complete specification of how the opera-
tion shall be executed, but it may also be used to describe how it actually
is executed (that is describing a trace), or provide a partial description of
how it must execute (thereby putting semantic requirements on its other
Methods).

• Activity implementation - a method executing a controlled set of small
behavioral units.
322 Telelogic DOORS Analyst User Guide November 2008

Metamodel Classes
Signature and implementation
Signature and Implementation are two metaclasses in the UML language. A
signature declares an entity and an implementation defines the same entity.
The idea is that these concepts make it possible to separate the signature
physically from the implementation (compare header files for C and C++).

The concepts for which it is possible to do this are:

Operation

Operation signature and Operation body, Activity implementation, State ma-
chine implementation or Interaction.

Activity

Activity signature and Activity implementation.

State machine

State machine signature and State machine implementation.

Class

Class signature and Internals.

•

November 2008 Telelogic DOORS Analyst User Guide 323

Chapter 4: UML Language Guide
Profile for Schedulability, Performance, and
Time

This section lists all stereotypes, tagged values and enumerations of the
UML Profile for Schedulability, Performance, and Time also commonly
referred to as the UML Real-time profile.

Note
Some tagged values can only be edited using the textual syntax. These are
marked as italic in this document.

RTresourceModeling

GRMacquire

GRMblocking : Boolean

GRMcode

GRMrealize

GRMmapping : GRMmappingString

GRMdeploys

GRMrelease

GRMrequires

RTtimeModeling

RTaction

RTstart : RTtimeValue

RTend : RTtimeValue

RTduration : RTtimeValue
324 Telelogic DOORS Analyst User Guide November 2008

Profile for Schedulability, Performance, and Time
RTclkInterrupt

RTstimulus

RTstart : RTtimeValue

RTend : RTtimeValue

RTclock

RTclockId : Charstring

RTdelay

RTevent

RTat : RTtimeValue

RTinterval

RTintState : RTtimeValue

RTintEnd : RTtimeValue

RTintDuration : RTtimeValue

RTnewClock

RTnewTimer

RTtimerPar : RTtimeValue

RTpause

RTreset

RTset

RTtimePar : RTtimeValue
November 2008 Telelogic DOORS Analyst User Guide 325

Chapter 4: UML Language Guide
RTstart

RTtime

RTkind : RTkindEnum

RTtimeout

RTtimer

RTduration : RTtimeValue

RTperiodic : Boolean

RTtimeService

RTtimingMechanism

RTstability : Real

RTdrift : Real

RTskew : Real

RTmaxValue : RTtimeValue

RTorigin : Charstring

RTresolution : RTtimeValue

RToffset : RTtimeValue

RTaccuracy : RTtimeValue

RTcurrentVal : RTtimeValue

RTkindEnum

Literals:

• dense
• discrete
326 Telelogic DOORS Analyst User Guide November 2008

Profile for Schedulability, Performance, and Time
RTconcurrencyModeling

CRaction

CRatomic : Boolean

CRasynch

CRconcurrent

CRcontains

CRdeferred

CRimmediate

CRthreading : CRthreadingEnum

CRmsgQ

CRsynch

CRthreadingEnum

Literals:

• local
• remote

SAprofile

SAaction

SApriority : Integer

SAblocking : RTtimeValue

SAdelay : RTtimeValue

SApreempted : RTtimeValue
November 2008 Telelogic DOORS Analyst User Guide 327

Chapter 4: UML Language Guide
SAready : RTtimeValue

SArelease : RTtimeValue

SAworstCase : RTtimeValue

SAabsDeadline : RTtimeValue

SAlaxity : SAlaxityEnum

SArelDeadline : RTtimeValue

SAengine

SAaccessPolicy : SAaccessControlPolicyEnum

SAcontextSwitch : TimeFunction

SAschedulable : Boolean

SApreemptible : Boolean

SApriorityRange : Range

SArate : Real

SAschedulingPolicy : SAschedulingPolicyEnum

SAutilization : Real

SAaccessPolParam : Real

SAowns

SAprecedes

SAresource

SAacquisition : RTtimeValue

SAcapacity : Integer

SAdeacquisition : RTtimeValue

SAconsumable : Boolean

SAaccessControl : SAaccessControlPolicyEnum
328 Telelogic DOORS Analyst User Guide November 2008

Profile for Schedulability, Performance, and Time
SAptyCeiling : Integer

SApreemptible : Boolean

SAaccessCtrlParam : Real

SAresponse

SAutilization : Real

SAspare : RTtimeValue

SAslack : RTtimeValue

SAoverlaps : Integer

SAschedRes

SAscheduler

SAschedulingPolicy : SAschedulingPolicyEnum

SAsituation

SAtrigger

SAschedulable : Boolean

SAoccurrence : RTarrivalPattern

SAendToEnd : Charstring

SAusedHost

SAuses

SAlaxityEnum

Literals:

• hard
• soft
November 2008 Telelogic DOORS Analyst User Guide 329

Chapter 4: UML Language Guide
SAschedulingPolicyEnum

Literals:

• rateMonotonic
• deadlineMonotonic
• HKL
• fixedPriority
• minimumLaxityFirst
• maximizeAccruedUtility
• MinimumSlackTime

SAaccessControlPolicyEnum

Literals:

• FIFO
• priorityInheritance
• noPreemption
• highestLockers
• priorityCeiling

PAprofile

PAclosedLoad

PArespTime : PAperfValue

PApriority : Integer

PApopulation : Integer

PAextDelay : PAperfValue

PAcontext

PAhost

PAutilization : Real
330 Telelogic DOORS Analyst User Guide November 2008

Profile for Schedulability, Performance, and Time
PAschdPolicy : PAschdPolicyEnum

PArate : Real

PActxtSwT : PAperfValue

PAprioRange : Range

PApreemptable : Boolean

PAthroughput : Real

PAopenLoad

PArespTime : PAperfValue

PApriority : Integer

PAoccurrence : RTarrivalPattern

PAresource

PAutilization : Real

PAschdPolicy : PAschdPolicyEnum

PAcapacity : Integer

PAaxTime : PAperfValue

PArespTime : PAperfValue

PAwaitTime : PAperfValue

PAthroughput : Real

PAstep

PAdemand : PAperfValue

PArespTime : PAperfValue

PAprob : Real

PArep : Integer

PAdelay : PAperfValue
November 2008 Telelogic DOORS Analyst User Guide 331

Chapter 4: UML Language Guide
PAextOp : PAextOpValue

PAinterval : PAperfValue

PAschdPolicyEnum

Literals:

• FIFO
• priority

RSAprofile

RSAclient

RSAtimeout : RTtimeValue

RSAclPrio : Integer

RSAprivate : Integer

RSAconnection

RSAshared : Boolean

RSAhiPrio : Integer

RSAloPrio : Integer

RSAmutex

RSAorb

RSAserver

RSAsrvPrio : Integer

RSAchannel

RSAschedulingPolicy : RSAschedulingPolicyEnum

RSAaverageLatency : RTtimeValue
332 Telelogic DOORS Analyst User Guide November 2008

Profile for Schedulability, Performance, and Time
RSAschedulingPolicyEnum

Literals:

• FIFO
• RateMonotonic
• DeadlineMonotonic
• HKL
• FixedPriority
• MinimumLaxityFirst
• MaximizeAccruedUtility
• MinimumSlackTime
November 2008 Telelogic DOORS Analyst User Guide 333

Chapter 4: UML Language Guide
334 Telelogic DOORS Analyst User Guide November 2008

5
Error and Warning Messages

This document is a reference guide to error and warning messages from the
UML tool set.
November 2008 Telelogic DOORS Analyst User Guide 335

Chapter 5: Error and Warning Messages
General Application Errors and Warnings

DOORS Analyst minidumps (Windows)
DOORS Analyst has built in debug information capturing capabilities on the
Windows platform. If at anytime during running the tool you receive a
window saying DOORS Analyst has crashed and a minidump has been cre-
ated please contact your local DOORS Analyst support. The minidump con-
tains the current call stack and can help identify which calls have been made.
This can help to identify if an error occurred due to internal tool calls and in
these cases may make it possible to resolve problems not already identified.
With consideration to dependencies on operating systems and third party
calls this information can also be of help to improve integrations to the envi-
ronment and publish clearer requirements for third party software which
DOORS Analyst is dependent on.

Minidump location

The minidumps are by default created in a local settings directory but can be
relocated using an environment variable.

Default location:

C:\Documents and Settings\<user>\Local Settings\Temp

Environment variable example:

TAU_DUMP_PATH=c:\DevTools\Telelogic\minidumps\

Minidump contents

The minidumps only contain the call stack and registers, and no memory. this
means that there is no information about the model that the minidump origi-
nated from.

Figure 148: Using special characters in identifiers
336 Telelogic DOORS Analyst User Guide November 2008

Errors and Warnings
Errors and Warnings
Phases and identifiers

There are several phases involved when transforming a UML model to an-
other language, or format. During the processing of the model, error and
warning messages may be presented from each phase to help you identify
where the problems occur. The prefixes identifying the phases are:

• TSX: Syntax Analysis
• TSC: Semantic Check
• TNR: Name Resolution

TSX: Syntax Analysis

The syntax analysis checks how language elements are constructed and put
together in order to form correct UML constructions.

TSC: Semantic Check

The semantic check verifies that the UML model is complete and that the re-
lations between language constructs are meaningful.

TNR: Name Resolution

The name resolution identifies names of the UML entities and attempts to
bind them to the correct definition in the model.
November 2008 Telelogic DOORS Analyst User Guide 337

Chapter 5: Error and Warning Messages
TSX: Syntax Analysis
The syntax analysis checks how language elements are constructed and put
together in order to form correct UML constructions.

The direct cause of syntax errors will in most cases be possible to locate in
the UML model.

Errors and warnings from this phase are prefixed with TSX.

Internal error: <string>

These kinds of errors should not appear. If they do, please contact DOORS
Analyst Support.

TSX0026: Port should not contain two in or two out
parts
This error does not occur by normal usage of the tool.

TSX0047: Tagged values are not allowed here
In some places, for example inside a class symbol, you are prohibited to edit
properties (Tagged values). Only the stereotype itself can be added.

The preferred way to edit properties is by using the Properties Editor.
338 Telelogic DOORS Analyst User Guide November 2008

http://support.telelogic.com/en/tau/
http://support.telelogic.com/en/tau/

TSC: Semantic Check
TSC: Semantic Check

About semantic checks
The semantic check verifies that the UML model is complete and that the re-
lations between language constructs are meaningful.

Semantic errors occur when there are incomplete constructs in your model.
The UML Language Guide can be useful to identify supported constructs.

Errors and warnings from this phase are prefixed with TSC.

TSC0123: A cyclic dependency was found in definition
of the %n. (via <string>)
This is a cyclic dependency error. Since two classes cannot be containers for
the other one at the same time, this is illegal.

The following is an example of this error:

Example 82 –––

class X {
 part Y y;
}

class Y {
 part X x;
}

–––

TSC0134: Incomplete transition. A transition must end
with stop, nextstate or join action
A decision must cover all answer possibilities, including 'else'.

TSC0092: A corresponding 'virtual' or 'redefined'
operation was not found in the parent signatures (or
parent signatures does not exist).
There are a number of situations that may be the cause of this error. The fol-
lowing examples shows the situations which can occur.
November 2008 Telelogic DOORS Analyst User Guide 339

Chapter 5: Error and Warning Messages
Using a redefined operation in an active class that does not have generaliza-
tions:

Example 83: Class without generalizations. ––––––––––––––––––––––––––––––––

active class P {
 redefined void Op() { }
}

–––

Using a redefined operation in a generalization of an active class can cause
this error:

Example 84: No matching operation in the parent class. –––––––––––––––––––––

active class P {
}
active class C : P {
 redefined void Op() { }
}

–––

When the operation (Op) in the parent class has a different signature there can
be the following situations:

Example 85: Virtuality must be “virtual” or “redefined”. ––––––––––––––––––––

It is not possible to redefine non-virtual operations.

active class P {
 void Op () { }
}
active class C : P {
 redefined void Op() { }
}

–––

Example 86: Different return type. –––––––––––––––––––––––––––––––––––––––

active class P {
 virtual Integer Op () { return 1; }
}
active class C : P {
 redefined void Op() { }
}

–––
340 Telelogic DOORS Analyst User Guide November 2008

TSC: Semantic Check
Example 87: Different count of formal parameters. –––––––––––––––––––––––––

active class P {
 virtual void Op (Integer x) { }
}
active class C : P {
 redefined void Op() { }
}

–––

Example 88: Different type of formal parameters. ––––––––––––––––––––––––––

active class P {
 virtual void Op (Integer x) { }
}
active class C : P {
 redefined void Op(Real x) { }
}

–––

TSC0196: A finalized operation cannot be redefined.
Operation in the parent class is finalized, but it has the same signature as in
the child.

Example 89: Finalized operation –––

active class P {
 finalized void Op () { }
}
active class C : P {
 redefined void Op() { }
}

–––

TSC0236: Operation '<name>' cannot be specified as
'Realized' on a port.
The check will detect the following case:

active class <class name>
{
 port <port name> in with <in_name>;
}

where <in_name> is bound to some operation with the same name.
November 2008 Telelogic DOORS Analyst User Guide 341

Chapter 5: Error and Warning Messages
Example 90 –––

active class a {
 void foo() {}
 port p in with foo;
}

This will be reported as an error. To remedy this, foo() must be defined
in an interface to the active class a.

–––

TSC0237: Operation '<name>' cannot be specified as
'Required' on a port.
The check will detect the following case:

active class <class name>
{
 port <port name> out with <out_name>;
}

where <out_name> is bound to some operation with the same name.

Example 91 –––

active class a {
 void foo() {}
 port p out with foo;
}

This will be reported as an error. To remedy this, foo() must be defined
in an interface to the active class a.

–––

TSC2300: Expression 'any (type)' cannot be of interface
or state machine type
The following is an example of this error:

Example 92 –––

interface I {
}

active class X {
 Integer Op () {
 switch (any (I)) {
342 Telelogic DOORS Analyst User Guide November 2008

TSC: Semantic Check
 case 5 : { return 1; }
 default : { return 0; }
 }
 }
}

–––

TSC2302: An association from a datatype may not have
a navigable remote association end
Since datatypes cannot have attributes, it is illegal to have an association
from a datatype. The navigability must always be to the datatype.

This error does not occur by normal usage of the tool.

TSC2303: At most one association end may be aggregate
or composite
Since aggregation and composition are different kind of “part-of” constructs,
two classes cannot be containers for each other.

Example 93 –––

This situation could occur in the situation shown in Figure 149 on page 343.

–––

TSC2304: An attribute that is not a part may not have
initial count
In UML it is not possible to specify the initial count for regular attributes.
That is something that is only possible for parts.

The following is an example of this error:

Figure 149: Classes with circular references.

X

Y

a
myX

0..1
myY

0..1
November 2008 Telelogic DOORS Analyst User Guide 343

Chapter 5: Error and Warning Messages
Example 94 –––

class Z {
 Integer [1..*] a / 1;
}

–––

TSC2305: A part cannot have a default value
Parts are instances of active classes and they cannot have default values. The
following is an example of this error:

Example 95 –––

active class X {
 part Y a = 10;
}

–––

TSC2306: A composite attribute or association end may
not be typed by a datatype
Composite attributes also known as parts in UML must not be instances of
datatypes.

The following is an example of this error:

Example 96 –––

class X {
 part Integer d;
}

–––

TSC2307: A composite attribute may not have a type,
which owns this attribute (directly or indirectly)
This is a cyclic dependency error. Since a class cannot be a container for it-
self this is illegal.

The following is an example of this error:

Example 97 –––

class X {
344 Telelogic DOORS Analyst User Guide November 2008

TSC: Semantic Check
 part X y;
}

–––

TSC2308: The 'via' of a call expression should reference
either a port or a connector
The following is an example of this error:

Example 98 –––

class Y {}
signal sig ();
active class X {
 port p out with sig;
 void Op () {
 output sig via Y;
 }
}

–––

TSC0269: Generalization between 'Interface I' and
'Class Y' is not allowed
The following is an example of this error:

Example 99 –––

class Y {
}
interface I : Y {
}

–––

TSC2325: Cyclic inheritance
This error is caused if a Signature is based on itself, directly or indirectly.

The following is an example of this error:

Example 100 ––

class X : Y {
}
class Y : X {
November 2008 Telelogic DOORS Analyst User Guide 345

Chapter 5: Error and Warning Messages
}

–––

TSC4001: When generating C code, return values must
be handled in left hand side of assignment expression
Return values from for example value returning operations must not be ig-
nored. Such return values must be saved in for example an attribute.

Example 101 ––

Consider an Operation Op, returning an Integer:

Op ():Integer

Call to Op:

...
Integer i;
...
i=Op(); // Correct way of calling Op
Op(); // Error is reported
...

–––

This check is performed only when the semantic checker is run in the context
of a build which involves any of the C code generators and build types.
(Model Verifier, C Code Generator and AgileC Code Generator).
346 Telelogic DOORS Analyst User Guide November 2008

TNR: Name Resolution
TNR: Name Resolution
The name resolution identifies names of the UML entities and binds them to
the correct definition in the model. Name resolution errors are caused by in-
consistencies in your model. This may happen when you change names on
entities in such a way that ambiguities occur and can not be resolved in a de-
terministic way.

Errors and warnings from this phase are prefixed with TNR.

TNR errors where the Subject of the error refers to the project file (.ttp file)
rather than to a UML entity, should be reported to DOORS Analyst Support.

TNR0023: Failed to locate element referred by: <name>
Name binding uses the name to refer to an entity in the current scope. GUID
binding means that an entity is referred by its unique id (GUID). That means
that this error occurs if an entity for some reason is removed and it is referred
somewhere in the model by its GUID.

Solutions are to load the entity with the correct GUID, remove the reference
or change the reference so it uses name binding.
November 2008 Telelogic DOORS Analyst User Guide 347

http://support.telelogic.com/en/tau/

Chapter 5: Error and Warning Messages
348 Telelogic DOORS Analyst User Guide November 2008

UML Import and Export
The chapters in this section describe DOORS Analyst’s capabilities for im-
porting and exporting data in external formats from and to a UML model.
This includes features for information exchange with other modeling tools.

See also

Adding Importers to learn how to add custom importers to DOORS Analyst.
November 2008 Telelogic DOORS Analyst User Guide 349

Chapter :
350 Telelogic DOORS Analyst User Guide November 2008

6
UML 1.x Import

This chapter describes the import of UML 1.x models and diagrams created
by other UML tools than Telelogic DOORS Analyst.
November 2008 Telelogic DOORS Analyst User Guide 351

Chapter 6: UML 1.x Import
Operation Principles
XMI

XMI - XML Metadata Interchange - is a UML metadata representation stan-
dard based on XML that allows to interchange UML models between dif-
ferent (separate) tools. XMI DTDs (XML Document Type Definitions) serve
as syntax specifications for XMI documents, and allow generic XML tools
to be used to compose and validate XMI documents.

A UML meta model class is represented in the XMI DTD by an XML ele-
ment whose name is the class name. The element definition describes the at-
tributes of the class; references to association ends relating to the class; and
nested classes, either explicitly or through composition associations.

An attribute of a Metamodel class is represented in the DTD by an XML el-
ement whose name is the attribute name.

An association (both with and without containment) between metamodel
classes is represented by two XML elements that represent the roles of the
association ends.

XMI import
During UML import a file that complies to the XMI standard is read, and
after interpreting the contents of the XMI file a UML model is created. After
the import has been done, presentation elements (diagrams and symbols) are
created in order to visualize the imported contents. Furthermore, if the im-
ported XMI file contains diagram and symbol information that, such infor-
mation will be use to preserve the appearance of the resulting UML model.

XMI files without any diagram information will be imported, but only UML
model elements will be created.

XMI import add-in

The XMI import is provided among the Add-Ins and named XMIImport.
352 Telelogic DOORS Analyst User Guide November 2008

Operation Principles
XMI import architecture

The architecture of this feature is outlined in Figure 150 on page 353. The
XMI Reader module reads a file with XMI specification. XMI Reader trans-
forms information from each tag and passes it to the UML API.

All elements of the UML model are created in the UML API. The core of
UML API is a set of C++ classes with the same class hierarchy as in the UML
meta model. The UML API is the module builder, which (together with XMI
Reader) creates a skeleton of UML model on the fly (tag by tag).

Some kinds of information can not be added to UML model in this phase.
This is collected and passed to UML Resolver module.

The U2 Resolver performs a set of transformations to the skeleton of UML
model.

Example 102: UML resolver ––

An example of information passed to the U2 resolver is import of an “enu-
meration” data type. For example Rational Rose will export “enumeration”
as a class stereotyped by «enumeration», however in DOORS Analyst “enu-
meration” is a DataType. Information about applied stereotypes is not avail-
able during Class import, thus this Class must be transformed later. Informa-
tion about required transformation is passed to the U2 Resolver during
stereotype import.

–––

Figure 150: XMI import architecture.
November 2008 Telelogic DOORS Analyst User Guide 353

Chapter 6: UML 1.x Import
Import an XMI file
The XMI import is called from DOORS Analyst graphical user interface. In
order to activate the XMI import, a workspace with a project must be open.

• Select a Package in the Model View. (Use the Advanced layout, view
tabs are located in the Workspace window)

• Open the Import Wizard (File menu, Import... command).
• Select Import XMI in the dialog window and press OK.
• Specify the XMI file to import in the dialog window that appears.

The following should be the result when the second dialog closes:

• A package ImportedXMIDefinitions is created in the model
• A stereotype xmiImportSpecification is applied to the package.
• The XMI file to import is stored as a value in the stereotype instance for

the package.
• The import operation is performed, and the result is added to the created

package.

Importing XMI specification with the same settings once again

In the Model View select a package with the xmiImportSpecification ste-
reotype applied.

Right-click on the package and in the pop up menu, select Import XMI.

The import operation is performed, and the result is placed into the package.

To change settings (select file to import), the properties in the stereotype in-
stance for the package can be edited, before doing an Import XMI com-
mand.

Note
When the Import wizard dialog is used, a new package is created. When Im-
port XMI from the pop up menu is reused, the existing package is reused.
354 Telelogic DOORS Analyst User Guide November 2008

Supported XMI and UML
Supported XMI and UML

Language and version support
The following languages and versions are supported by the XMI import:

• XMI 1.0/1.1
• UML 1.4

Listed below are the UML 1.4 entities that are supported by the XMI import.
Relations and attributes to entities are also supported unless specified other-
wise.

Foundation / core
Association
AssociationEnd
Attribute
Class
Comment
Component
Constraint
DataType
Dependency
ElementResidence
Enumeration
EnumerationLiteral
Generalization
Interface
Method
Operation
Parameter
Permission
StructuralFeature

Foundation / extension mechanisms
Stereotype
TaggedValue
TagDefinition

Foundation / data types
Boolean
BooleanExpression
Expression
Integer
Multiplicity
MultiplicityRange
Name
November 2008 Telelogic DOORS Analyst User Guide 355

Chapter 6: UML 1.x Import
ProcedureExpression
String
Uninterpreted

Model management
Model
Package
Subsystem

Behavioral elements / common behavior
ActionSequence
Argument
CallAction
CreateAction
DestroyAction
Exception
ReturnAction
SendAction
Signal
TerminateAction
UninterpretedAction

Behavioral elements / collaborations
ClassifierRole
Collaboration
Interaction
Message

Behavioral elements / use cases
Actor
Extend
Include
UseCase

Behavioral elements / state machines
CompositeState
CallEvent
FinalState
Guard
Pseudostate
Initial
Choice
Junction
DeepHistory
ShallowHistory
SignalEvent
State
SimpleState
StateMachine
356 Telelogic DOORS Analyst User Guide November 2008

Supported XMI and UML
Supported diagram types
Provided that the XMI file contains the required diagram information, the
XMI import supports the following UML diagram types:

• Class diagram
• Component diagram
• Deployment diagram
• Package diagram
• Activity diagram
• Sequence diagram
• Use case diagram
• State machine diagram

Importing with preserved layout

Diagrams that belong to this category are diagrams in which the graphical
layout is present in the XMI file.

• Class diagram
• Component diagram
• Deployment diagram
• Package diagram
• Activity diagram
• Use case diagram
• Sequence diagram
• State machine diagram

Import of nested states

Although the layout is preserved some special considerations apply for
nested states.

• For each state with nested states a set of diagrams will be created (one for
each nested level).

• The positions of states on these diagrams will as far as possible be the
same as on original.
November 2008 Telelogic DOORS Analyst User Guide 357

Chapter 6: UML 1.x Import
• Start and Return symbols will be created on each new diagram when nec-
essary. The positions of these symbols will as far as possible be the same
as the position of corresponding symbols on the higher nested level.

• New entry and exit connection points will be created when necessary.
• Transition events and actions containing large amounts of text may

overlap.

Import from UML 1.x tools
In general terms, the XMI import tool supports XMI files from the following
UML 1.x tools that comply to the supported XMI version(s).

• Rational Rose/Unisys (JCR.2 v.1.3.x)
• DOORS Analyst UML Suite
• Borland Together
• IBM XMI Toolkit.

Rhapsody

Rhapsody exports XMI, but without any diagram information The informa-
tion in the XMI files originating from Rhapsody is used to create model ele-
ments. This will result in a UML structure in the workspace window (but no
diagrams).

Rational Rose
• Rational Rose with Unisys extensions exports XMI with diagram infor-

mation. This information is used during the XMI import when creating
the diagrams (provided that the diagrams are among the Supported dia-
gram types).

• Diagram layouts are preserved for class diagrams, use case diagrams and
sequence diagrams.

• Rational Rose names are supported.

Preserve DOORS links

It is possible to preserve DOORS links during import of XMI from Rational
Rose.

• Export the UML model. Make sure that the “Generate UUIDs” check
button is selected.
358 Telelogic DOORS Analyst User Guide November 2008

Restrictions
• Import the generated XMI into DOORS Analyst.
• Export the new UML from DOORS Analyst to DOORS, using the ex-

isting DOORS integration commands.
• Open the DOORS Analyst surrogate module in DOORS, and select the

menu choice Import Links from Rational Rose and follow the instruc-
tions.

When these actions will be completed, all links to or from the surrogate
module in DOORS (created by the DOORS Rose Link integration) will then
be copied for the DOORS Analyst surrogate module.

DOORS Analyst UML Suite
• DOORS Analyst UML Suite with Unisys extensions exports XMI with

diagram information. This information is used during the XMI import
when creating the diagrams (provided that the diagrams are among the
Supported diagram types).

• Diagram layouts are preserved for class diagrams, use case diagrams and
sequence diagrams.

See also

“Language and version support” on page 355

Restrictions
In addition to the level of XMI/UML support stated elsewhere in this chapter,
the following sections describe other known restrictions.

Type and variable definitions
• Local datatype definitions are not visible in state machine diagrams.
• Local variable definitions are not visible in state machine diagrams.

Incomplete model
XMI specification must be a complete, semantically correct UML model in
order to be imported. In general, incomplete, or incorrect, specifications
cannot be imported to DOORS Analyst, however in some cases such speci-
fications can be imported as a complete specification or with losing some
model information.
November 2008 Telelogic DOORS Analyst User Guide 359

Chapter 6: UML 1.x Import
Example 103: Import of incomplete model ––––––––––––––––––––––––––––––––

In Example1 FinalState will not be imported because this state will be trans-
formed to a ReturnAction. This action should be owned by the incoming (to
FinalState) transition, and as such a transition does not exist in the example
FinalState will not be imported.

In Example2 all diagram elements will be imported, although this diagram is
also incomplete (there is no InitialState in this diagram).

–––

Unsupported classes
Some UML constructs will not be processed during XMI import.

The error message TUI0004 (unsupported classes) will be printed for the fol-
lowing constructs:

Foundation: Core
• Artifact
• Association (between Use Cases)
• Binding
• Flow
• Generalization (between Actors)

Behavioral Elements: Common Behavior
• AttributeLink
• ComponentInstance
• DataValue

Figure 151: Incomplete models.
360 Telelogic DOORS Analyst User Guide November 2008

Restrictions
• Instance
• Link
• LinkEnd
• NodeInstance
• Object
• Reception
• Stimulus
• SubsystemInstance

Behavioral Elements: ActivityGraphs
• ClassifierInState
• ObjectFlowState
• Pseudostate (Shallow history and Deep history)

Behavioral Elements: Collaborations
• AssociationEndRole
• AssociationRole
• CollaborationInstanceSet
• InteractionInstanceSet

Behavioral Elements: State Machines
• ChangeEvent
• StubState
• TimeEvent

Behavioral Elements: Use Cases
• UseCaseInstance

Unsupported attributes
An error message for unsupported attributes (TUI0006) will be printed for
the following attributes:
November 2008 Telelogic DOORS Analyst User Guide 361

Chapter 6: UML 1.x Import
Foundation: Core
• AssociationEnd

– Specification
• Attribute

– AssociationEnd
• BehavioralFeature

– RaisedSignal
• Component

– Deployment
• Constraint

– ConstrainedStereotype
• Feature

– Owner
• Method

– Body
– OwnerScope

• ModelElement
– Presentation
– Template

• Operation
– Concurrency
– Occurrence
– Specification

Foundation: Data Types
• Expression

– Language

Foundation: Extension Mechanisms
• Stereotype

– Icon
– StereotypeConstraint
362 Telelogic DOORS Analyst User Guide November 2008

Restrictions
Behavioral Elements: Collaborations
• Collaboration

– RepresentedClassifier
– RepresentedOperation

• Interaction
– Context

• Message
– Activator

Behavioral Elements: State Machines
• CompositeState

– Concurrent property

Behavioral Elements: Use Cases
• Actor

– Abstract property
• Use Case

– ExtensionPoint

Model Management
• Subsystem

– Instantiable property

Unsupported composition
An error message for unsupported composition (TUI0008) will be printed for
the following constructions:

Foundation: Core
• AssociationEnd

– Qualifier

• Component

– Implementation
November 2008 Telelogic DOORS Analyst User Guide 363

Chapter 6: UML 1.x Import
Behavioral Elements: ActivityGraphs
• State

– InternalTransitions (actions of an activity)
– State (from StateMachine)
– Pseudostate: History (Shallow history and Deep History)

Behavioral Elements: Collaborations
• Collaboration

– ConstrainingElement

Behavioral Elements: State Machines
• StateMachine

– SynchState (Synchronization bar)
• State

– InternalTransition (actions of a state)
– Pseudostate: Junction

Collaboration diagram is not supported at all.

Export restrictions
In some cases Rational Rose provides incomplete export. This may result in
that some information will be lost after import. The known problems (not ex-
ported features) of Rational Rose exporter (Unisys 1.3.6) are listed below.

Class diagram
• Class

– Type (ParameterizedClass, ClassUtility, InstantiatedClass etc.)
– Multiplicity
– Space
– Concurrency
– Format (show visibility)

• Attribute
– Containment
364 Telelogic DOORS Analyst User Guide November 2008

Restrictions
• Operation
– Protocol
– Qualification
– Size
– Time

• Binary Association
– Constraints
– Containment
– Derived
– Friend
– LinkElement
– Name Direction

• Inheritance
– Documentation
– Virtual inheritance
– Friendship Required

• Realization
– Documentation

• Dependency/Instantiates
– Multiplicity from
– Multiplicity to
– Friendship Required

State diagram
• Transition

– Stereotype
– Documentation

Sequence diagram
• Message

– Frequency (periodic, aperiodic)
• Destruction Marker
November 2008 Telelogic DOORS Analyst User Guide 365

Chapter 6: UML 1.x Import
Use Case diagram
• Actor

– Type
– Multiplicity

• Use Case
– Stereotype
– Rank

• Binary Association
– Derived
– Link Element
– Name Direction
– Constraints
– Friend
– Containment

• Dependency

Package diagram
• Dependency

– Documentation

Component diagram
• Package

– Global
• Component

– Declarations

Deployment diagram
• Processor

– Scheduling
• Process

– Priority
• Device

– Stereotype
366 Telelogic DOORS Analyst User Guide November 2008

Restrictions
• Connection

Activity diagram
• Swimlane

– Documentation
• Object
• Object Flow
November 2008 Telelogic DOORS Analyst User Guide 367

Chapter 6: UML 1.x Import
Error Messages
General

Messages during XMI import are printed in the Output window.

Messages from XMI import

Code Text Comment

TUI0004 Attribute
'<name>'
(<name>) of class
'<name>' is unsup-
ported

Error occurs when XMI specification con-
tains attribute that is not specified in XMI
standard or it cannot be applied to current
class in DOORS Analyst. For example, at-
tribute 'isAbstract' of class 'Actor' cannot be
applied in DOORS Analyst.

TUI0006 Composition
'<name>' from
class '<name>' to
class '<name>' is
unsupported

This error message will be printed in case
when composition from one class to other
class is unsupported. For example, the 'qual-
ifier' composition is unsupported in DOORS
Analyst.

TUI0008 Class '<name>' is
unsupported

Error occurs when imported XMI specifica-
tion contains unsupported class, for example
'Instance'.

TUI0009 Graphical ele-
ment '<name>' of
class '<name>'
was not drawn

This error message will be printed in case
when a corresponding ModelElement cannot
be found for a PresentationElement. For ex-
ample, the corresponding ModelElement is
unsupported.

TUI0010 Diagram represen-
tation of '<name>',
with value
'<name>', is un-
supported

Error occurs when presentation element is
not supported by DOORS Analyst. For ex-
ample, a PresentationElement for stereotype.
368 Telelogic DOORS Analyst User Guide November 2008

Error Messages
TUI0016 Failed to open file
'<name>'

File passed to XMI Importer cannot be open

TUI0017 Parse error oc-
curred during
parsing of XMI
file

This error message will be printed in case
when XML parser cannot read information
from XMI specification. For example, XML
parser cannot find end tag.

TUI0022 Internal error Internal error occurs during importing.

Code Text Comment
November 2008 Telelogic DOORS Analyst User Guide 369

Chapter 6: UML 1.x Import
370 Telelogic DOORS Analyst User Guide November 2008

7
UML 1.x Export

This chapter describes how DOORS Analyst supports export of model data
in XMI format to Tools using UML 1.x.
November 2008 Telelogic DOORS Analyst User Guide 371

Chapter 7: UML 1.x Export
XMI Export

Operation principles
The UML exporter generates a file format that complies with the XMI stan-
dard. During export, both model elements and presentation elements are
written out to the file. Diagram and symbol layout information is included in
order to preserve the appearance of the UML model according to Unisys
XML plug-in.

XMI export add-in

The XMI export is provided among the Add-Ins and is named XMIExport.

Export to an XMI file

The XMI exporter is called from the DOORS Analyst graphical user inter-
face.

• Initiate the XMI Export (Tools menu, Export Model to XMI... com-
mand).

• Specify the XMI file to export to in the next dialog window that appears.

When more than one project exists in the workspace, the XMI export is done
on the selected project. Otherwise, i.e. when zero or more than one projects
are selected, the menu choice is dimmed.

Supported XMI and tool versions
The XMI exporter supports the following:

• XMI 1.1

The XMI exporter is tested for the following target tool environment:

• Rational Rose Enterprise Edition 2003
• Rose XML Tools (UniSys XML plug-in) 1.3.6 for Rational Rose

Supported UML entities
Following is a list of tables covering DOORS Analyst UML entities that are
supported by the XMI exporter and shows:
372 Telelogic DOORS Analyst User Guide November 2008

XMI Export
• UML Entity
The UML entity - in DOORS Analyst

• Export
The resulting entity in Rose if exported from DOORS Analyst and im-
ported into Rose.

• Roundtrip
The resulting entity in DOORS Analyst if doing an XMI roundtrip.

All other entities not mentioned in this list are not exported.

UML Diagram Export Roundtrip

Activity diagram [Same] [Same]

Class diagram [Same] [Same]

Component diagram Class diagram Class diagram

Deployment diagram Class diagram Class diagram

Package diagram Class diagram Class diagram

Sequence diagram [Same] [Same]

State machine diagram [Same] [Same]

Text diagram Class diagram
with a note

Class diagram with a note

Use case diagram Class diagram Class diagram

General Export Roundtrip

Comment symbol Note [Same]

Annotation line Anchor [Same]

Text symbol Note Comment symbol

<Any>

Comments Documentation Nothing

Stereotype [Same] [Same]
November 2008 Telelogic DOORS Analyst User Guide 373

Chapter 7: UML 1.x Export
Links Files Nothing

Color [Same] [Same]

Font [Same] [Same]

Activity diagram Export Roundtrip

Activity symbol [Same] [Same]

• Name [Same] [Same]

Actions ‘Entry’ action Nothing

Activity Class stereo-
typed as «ac-
tivity»

Class stereotyped as «ac-
tivity»

Initial Node [Same] [Same]

Activity Final End State Activity Final

Flow Final End State Activity Final

Activity line Transition [Same]

Text Transition
Label

[Same]

Fork/Join Synchroniza-
tion

[Same]

Decision [Same] [Same]

• Name [Same] [Same]

General Export Roundtrip
374 Telelogic DOORS Analyst User Guide November 2008

XMI Export
SendSignalSymbol Unnamed ac-
tivity with a
‘Do/send’ ac-
tion

Auto-renamed activity
without action

AcceptEventSymbol Unnamed ac-
tivity with a
‘Do/receive’
action

Auto-renamed activity
without action

Accept-
TimeEventSymbol

Unnamed ac-
tivity with a
‘Do/receive’
action

Auto-renamed activity
without action

Class diagram Export Roundtrip

Class [Same] [Same]

• Name [Same] [Same]

• Abstract [Same] [Same]

• Template param-
eters

Formal arguments [Same]

• Visibility Export control [Same]

Class Attribute [Same] [Same]

• Name [Same] [Same]

• Type [Same] [Same]

• Visibility Export control [Same]

• Default value Initial value [Same]

• Derived [Same] [Same]

Class Operation [Same] [Same]

• Name [Same] [Same]

• Return type [Same] [Same]

Activity diagram Export Roundtrip
November 2008 Telelogic DOORS Analyst User Guide 375

Chapter 7: UML 1.x Export
• Visibility Export control [Same]

• Raised excep-
tions

Exceptions [Same]

Class Operation Pa-
rameter

[Same] [Same]

• Name [Same] [Same]

• Type [Same] [Same]

• Default value [Same] [Same]

Required Interface Interface Class stereotyped as «inter-
face»

Realized Interface Interface Class stereotyped as «inter-
face»

Interface [Same] Class stereotyped as «inter-
face»

Timer Class stereotyped as
«timer»

Class stereotyped as «timer»

Signal Class stereotyped as
«signal»

[Same]

Stereotype Class stereotyped as
«stereotype»

Class stereotyped as «stereo-
type»

Operation Class stereotyped as
«operation»

Class stereotyped as «opera-
tion»

State machine Class stereotyped as
«statemachine»

Class stereotyped as
«statemachine»

Primitive/Enumera-
tion

Class stereotyped as
«primitive»/«enu-
meration»

Class stereotyped as «primi-
tive»/DataType

Artifact Class stereotyped as
«artifact»

Class stereotyped as «arti-
fact»

Collaboration Class stereotyped as
«collaboration»

Class stereotyped as «collab-
oration»

Class diagram Export Roundtrip
376 Telelogic DOORS Analyst User Guide November 2008

XMI Export
Choice Class stereotyped as
«choice»

Class stereotyped as
«choice»

Association line [Same] [Same]

• Name [Same] [Same]

Association role [Same] [Same]

• Name [Same] [Same]

• Visibility Export control [Same]

Constraints [Same] [Same]

Multiplicity [Same] [Same]

Aggregation Aggregate, Con-
tainment

[Same]

Owner scope Static Nothing

Generalization/Real-
ization line

[Same] [Same]

Dependency line [Same] [Same]

Extension line Dependency stereo-
typed as «extend»

Dependency stereotyped as
«extend»

Component diagram Export Roundtrip

Component symbol Class stereotyped as
«component»

[Same]

Class diagram Export Roundtrip
November 2008 Telelogic DOORS Analyst User Guide 377

Chapter 7: UML 1.x Export
Deployment diagram Export Roundtrip

DeploymentSpecifica-
tionSymbol

Class stereotyped as
«deploymentSpecifi-
cation»

Class stereotyped as «de-
ploymentSpecification»

ExecutionEnviron-
mentSymbol

Class stereotyped as
«executionEnviron-
ment»

Class stereotyped as «ex-
ecutionEnvironment»

NodeSymbol Class stereotyped as
«node»

Class stereotyped as
«node»

Package diagram Export Roundtrip

Package [Same] [Same]

• Name [Same] [Same]

Dependency line [Same] [Same]

Sequence diagram Export Roundtrip

Lifeline [Same] [Same]

• Name [Same] [Same]

• Type Class [Same]

Message Simple message [Same]

• Name [Same] [Same]

Method call Procedure Call
message

Message

• Name [Same] [Same]

Method reply Return message [Same]

• Name [Same] [Same]

Timeout Timeout message Message
378 Telelogic DOORS Analyst User Guide November 2008

XMI Export
• Name [Same] [Same]

Create line Message where the
name is suffixed by
‘:{Create}’

Message where the name is
suffixed by ‘:{Create}’

Interaction Class stereotyped
as «interaction»

Class stereotyped as «inter-
action»

State machine dia-
gram Export Roundtrip

State [Same] [Same]

• Name [Same] [Same]

Multi-state (state
with a state list or as-
terisk state)

State with state
name set to the
original state text

State with state name set to
the original state text

Transition line [Same] [Same]

Label [Same] [Same]

Decision [Same] [Same]

Decision question Name [Same]

Decision answer
symbol

Transition Guard
Condition

Transition Guard Condition

Start [Same] [Same]

Stop End State Return

Return End State [Same]

Flow line Transition Transition

Signal Receipt Transition Event Transition Event

Sequence diagram Export Roundtrip
November 2008 Telelogic DOORS Analyst User Guide 379

Chapter 7: UML 1.x Export
Model hierarchy
The containment hierarchy in Rational Rose is structured as shown in
Figure 152 on page 381.

Guard symbol Transition Guard
Condition

Transition Guard Condition

Action symbol Transition Action Nothing

Signal sending Transition Send
Event

Nothing

Use Case diagram Export Roundtrip

Actor [Same] [Same]

• Name [Same] [Same]

• Visibility Export control [Same]

Use Case [Same] [Same]

• Name [Same] [Same]

Performance line Association ste-
reotyped as «per-
formance»

[Same]

Dependency line [Same] Nothing

• Name [Same] Nothing

Generalization line [Same] [Same]

State machine dia-
gram Export Roundtrip
380 Telelogic DOORS Analyst User Guide November 2008

XMI Export
Rational Rose views are defined as packages. Logical View is a hard coded
predefined package, which is the default place where the Rational Rose XMI
module imports model elements and diagrams.

Figure 152: The containment hierarchy
November 2008 Telelogic DOORS Analyst User Guide 381

Chapter 7: UML 1.x Export
State/Activity Implementations represent state machine specifications and
are placed directly beneath the element for which they apply. The hierarchy
can be infinitely deep since Packages and Classes (via Classes, Class Utili-
ties, Actors and Interfaces) can be nested. All elements can have Files and
URLs beneath them.

As a general rule, containments in an XMI file that are not supported will be
lost on XMI import.

Model transformations

Some transformations take place in order to preserve as much model infor-
mation as possible.

The table below shows:

• DOORS Analyst entity.
• A description of the reason to move entities in exported XMI.
• Entities that are moved up in the hierarchy if contained by the DOORS

Analyst entity.
382 Telelogic DOORS Analyst User Guide November 2008

XMI Export
DOORS Ana-
lyst Description Moved Entities

Internals This has no coun-
terpart.

Class diagram, Package
diagram, Text diagram,
UseCase diagram, Activity,
Actor, Artifact, Association,
Attribute, Choice, Class,
Collaboration, DataType,
Interaction, Interface,
Operation, Signal,
StateMachine, Stereotype,
Timer, UseCase

State Machine
Implementation

This level is very
restricted re-
garding the types
of entities al-
lowed.

Activity, Actor, Artifact,
Association, Attribute,
Choice, Class, Collaboration,
DataType, Interface,
Operation, Signal,
Stereotype, Timer, UseCase,
Class diagram, Package
diagram, Text diagram, Use
Case diagram

Activity Imple-
mentation

This level is very
restricted re-
garding the types
of entities al-
lowed.

Actor, Artifact, Choice,
Class, Collaboration,
DataType, Interface, Signal,
Stereotype, Timer, Use Case
diagram

Interaction Im-
plementation

This has no coun-
terpart.

Activity, Actor, Artifact,
Attribute, Choice, Class,
Collaboration, DataType,
Interface, Operation, Signal,
StateMachine, Stereotype,
Timer, UseCase, Sequence
diagram, UseCase diagram

Nested classes State machine di-
agrams beneath
nested classes are
not imported.

State machine diagram
November 2008 Telelogic DOORS Analyst User Guide 383

Chapter 7: UML 1.x Export
Restrictions for XMI export to Rational Rose
There are a number of limitations in the Rational Rose XMI Import on
DOORS Analyst exported XMI data. The following is a list of known issues.

Class Interface beneath
classes are not
imported.

Interface

Attribute Do not contain
anything.

Artifact, Choice, Class,
Collaboration, DataType,
Interface, Stereotype

Choice Transformed into
a class.

UseCase

General Features Description

Visibility options These settings cannot be transferred through XMI
and therefore sometimes diagram elements overlap
if they do not have the same visibility options set as
in DOORS Analyst. Examples of this are Class at-
tributes, operations and operation signatures. If
they are switched off in DOORS Analyst, but
switched on when importing the XMI data, this
might cause symbol overlap because of the re-
sulting difference in size of Class symbols.

Diagram types Use Case diagrams are imported as Class diagrams
in Logical View.

Lines Lines lose their vertices on import.

Line color is not imported.

Elements Cannot import more than one instance of a symbol
(e.g class) in the same diagram.

Notes Size is not imported.

A note gets duplicated once for each of its anchors.

DOORS Ana-
lyst Description Moved Entities
384 Telelogic DOORS Analyst User Guide November 2008

XMI Export
Activity diagram Description

Activity When an activity has both a stereotype and a sub-ac-
tivity beneath it, it does not import/display properly.

Fill color, Font and Font size are not imported.

Decision Fill color, Font and Font size are not imported.

Object Not imported.

Class diagram Description

Class Multiplicity is not imported.

A Class beneath an Interface is not imported.

Attributes and Operations are not imported for
nested classes.

Class Attribute Static is not imported.

Interface Attributes are not imported.

Package Font, Font size and Fill color are not imported.

Association Derived is not imported.

Constraints is not imported.

Package diagram Description

Package Fill color, Font and Font size are not imported.

Sequence diagram Description

Lifeline The horizontal spacing may not show correctly in ex-
ported XMI, especially if the associated text is long.

Fill color, Font and Font size are not imported.
November 2008 Telelogic DOORS Analyst User Guide 385

Chapter 7: UML 1.x Export
Error and warning messages
Error and warning messages are given in the Output window in a tab called
XMIExport and these messages are all navigable.

UML entities that cannot be represented in XMI generates an error message.

Message Space is added vertically between messages on import.

Messages on the same vertical coordinates get into dif-
ferent levels on the lifeline.

Line color, Font and Font size are not imported.

Destruction Marker Not imported.

Note Does not connect Anchors to Messages on import.

State machine dia-
gram Description

State If a state exists more than once in the same diagram,
only one symbol is imported.

Fill color, Font and Font size are not imported.

Decision Fill color, Font and Font size are not imported.

Transition line Line color, Font and Font size are not imported.

Use Case diagram Description

Actor Size is not imported.

Multiplicity is not imported

Use Case Stereotype is not imported.

Size is not imported.

Dependency Not imported if drawn between Use Cases.

Sequence diagram Description
386 Telelogic DOORS Analyst User Guide November 2008

XMI Export
There is a warning message given when UML entities are transformed or
moved in the containment hierarchy. This is due to incapabilities of Rational
Rose to handle such constructs,.
November 2008 Telelogic DOORS Analyst User Guide 387

Chapter 7: UML 1.x Export
388 Telelogic DOORS Analyst User Guide November 2008

Common Reference
The reference chapters listed in this section describe functionality that is
valid for all types of DOORS Analyst projects.
November 2008 Telelogic DOORS Analyst User Guide 389

Chapter :
390 Telelogic DOORS Analyst User Guide November 2008

8
Printing

This chapter describes different ways of printing a diagram and how to
change print settings.
November 2008 Telelogic DOORS Analyst User Guide 391

Chapter 8: Printing
Printing Diagrams
There are several ways of printing diagrams. You can print single diagrams
from:

• The diagram itself.
• The Model View.
• The Print Manager.
• The diagram preview window.

You can print multiple diagrams from:

• The Model View.
• The Print Manager.

Note
Using a white/transparent background for an Icon image may result in a
black background when printing. This is related to a Windows postscript
driver PS level 2. Changing to PS level 1 may remove the situation. Using a
colored background or frame will also prevent this.

Print settings

To change print settings:

1. On the File menu, select Print Setup.
2. In the Print Setup dialog, select printer, paper size and other properties

allowed for the selected printer. The paper size and orientation will be
used to determine the default diagram size in the editors.

3. Click OK.
1. Print files

To print a file:

1. Open the file that you want to print, and place the cursor somewhere in
the text.

2. On the File menu, click Print or click the print icon in the toolbar.
3. In the Print dialog, change settings according to your preferences.
4. Click OK.
392 Telelogic DOORS Analyst User Guide November 2008

Printing Diagrams
Select diagrams to be printed
All diagrams in your model are available in the Model View. The Print Man-
ager allows you to select which diagrams to print. To open the Print Manager,
click Print Manager, on the File menu.

The diagrams that are included in the container that is active in the Model
View, are listed in the Print Manager. Use the Track Selection button if you
want to change container in the Model View. If the button is not pressed in,
the contents in the Print Manager is locked to the first selection you made.

You can also decide which type of diagrams you want to print by checking
or clearing the diagram type check boxes in the Filter area.

You can calculate the number of pages to print by clicking Pages in the Print
window.

Preview of diagrams

To get a preview of a diagram:

1. Select the diagram in the Model View.
2. Select Print Preview on the File menu. A preview of the diagram is dis-

played.
– You can scroll to other diagrams by using the Next Page and Pre-

vious Page buttons.

Print a single diagram

To print a single diagram from the diagram itself:

1. Open the diagram.
2. Select Print on the File menu. The standard print dialog is displayed.

Figure 153: Track selection button, when not selected
November 2008 Telelogic DOORS Analyst User Guide 393

Chapter 8: Printing
To print a single diagram from the Model View:

1. Select the diagram in the Model View.
2. Right-click the diagram and select Print. The standard print dialog is dis-

played.

To print a single diagram from the Print window in the Print Manager:

1. Select the diagram in the Model View. The diagram icon is displayed in
the Selection area.

2. Click the Print button. The standard print dialog is displayed.

To print a single diagram from the preview window:

• Select Print. The standard print dialog is displayed

Print multiple diagrams

To print multiple diagrams from the Model View:

1. Select the diagrams in the Model View.
2. Select Print Manager on the File menu. The Print window is displayed.
3. Click the Print button or select Print Preview on the File menu and then

Print. The standard print dialog is displayed.

You can print diagrams of the same type(s) at the same time if you use the
Print window and the Filter functionality.

To print multiple diagrams from the Print window:

1. Select Print Manager on the File menu. The Print window is displayed.
2. In the Model View, select the diagram(s) you want to print. The diagrams

and page numbers for the diagram type(s) you selected are displayed in
the Selection area.

3. Click the Print button or select Print Preview on the File menu and then
Print. The standard print dialog is displayed.
394 Telelogic DOORS Analyst User Guide November 2008

9
Internationalization Support

This section describes the internationalization support in Telelogic DOORS
Analyst/Developer and DOORS Analyst/Architect. The main focus of this
document is Chinese, Japanese and Korean (CJK) language handling.

Supported environments
This section describes specific information for Internationalization support
of system environments. The information not described in this section is
common through all languages. Please refer to the installation guide for gen-
eral information.

Supported platforms

The internationalization support in DOORS Analyst is available for Win-
dows 2000 and XP. It is assumed that you use a local version of Windows
and set the locale to use your local language.

Configuration Management

DOORS Analyst does not support CJK environments beyond limitations of
each configuration management tool for CJK support.
November 2008 Telelogic DOORS Analyst User Guide 395

Chapter 9: Internationalization Support
IME (Input Method Editor)

Default IMEs bundled in Windows are supported. Using supported IME, you
can enter your local characters inline.

Font settings
By selecting the correct font for your language, your language is displayed
correctly.

1. Select Tools and then Options from the DOORS Analyst menu bar.
2. Select Format tab.
3. Choose Category and specify font type

– Dialog fixed : the font type setting for dialogs using a fixed width
font.

– Developer diagram symbol font: the font type setting for other sym-
bols and diagrams.

– Report Windows: the font type setting for tabs in the Output
window.

– Output Windows: the font type setting for Message and Script tabs
in the Output window.

– Tcl Files: the font type setting for Tcl and text files opened in
DOORS Analyst.

– C/C++ Header/Source: the font type setting for C/C++ header and
source files opened in DOORS Analyst.

Note
The instructions presented below should be performed before you start to
create elements in your diagrams.

There is also fonts settings for diagrams elements.

1. Select Tools and then Options from the Tau menu bar.
2. Select Font settings tab.
3. Specify font types. See “Font settings” on page 418.

Note
You can also change the font style and size for each element from the Dia-
gram element properties toolbar.
396 Telelogic DOORS Analyst User Guide November 2008

Modeling with CJK characters
DOORS Analyst supports modeling with CJK characters. You can use CJK
characters for

• names of all elements
• comments
• Charstring literals.

You can type CJK characters in the same way as English characters. No spe-
cial operation is needed to draw models with CJK characters.

Preconditions for using CJK characters

In order for CJK characters to display properly in diagrams inside DOORS
formal modules, the following language settings must be properly set:

• Language for non-Unicode programs
• Code page conversion tables

To check or change these settings:

• In the control panel, the setting Regional and Language Options->Ad-
vanced->Language for non-Unicode programs shall be set to the de-
sired language

• The Code page conversion tables setting should include code pages for
the desired language

In addition a font with the correct national characters must be used in the di-
agrams.

To change the default font for new diagrams:

• In Tools->Options...->Format change the following fonts:
Developer diagram symbol font (for normal symbols)
Developer diagram code font (for fixed text symbols)

Note 1

The font options are only used for newly created diagrams, old diagrams
have to be changed manually with the diagram element properties toolbar.

The Developer diagram symbol font property is set on each diagram
and Developer diagram code font is set in each fixed text symbol such
as Text symbol, Task symbol, Comment symbol, etc.
November 2008 Telelogic DOORS Analyst User Guide 397

Chapter 9: Internationalization Support
Note 2
If all settings aren’t properly set up as described above, the diagrams will
look fine in DOORS Analyst, but bad inside a formal module in DOORS.
This is because DOORS Analyst uses font substitution, so it will always dis-
play characters even if they aren’t present in the used font.

Handling textual files
Textual files can be opened inside DOORS Analyst. DOORS Analyst sup-
ports local ANSI encoding and UTF-8 for the textual file. When existing tex-
tual files are opened in DOORS Analyst, DOORS Analyst saves the files in
the original encoding. When the textual file is created in DOORS Analyst,
the file will be saved in UTF-8 by default. You can select encode type from
the Save as dialog.

Restrictions
• Single byte Japanese Katakana and Japanese characters defined between

0x80 and 0xFF in Shift-JIS are not supported.
• CJK characters are not supported for Project names.
398 Telelogic DOORS Analyst User Guide November 2008

10
Useful Shortcut Keys

This section lists useful shortcut keys that you can use. Access keys can be
used in the same way as other standard applications.

Workspace Operations
Keyboard shortcut Description

CTRL + N
Then CTRL + TAB
to Workspaces tab

Create a new workspace

CTRL + O Open an existing workspace.

MINUS SIGN (-) on
the numeric keypad

Contracts the tree of a selected entity.

MULTIPLICA-
TION SIGN (*) on
the numeric keypad

Expands the model tree one level below the selec-
tion. Can be used repeatedly to expand deeper.

PLUS SIGN (+) on
the numeric keypad

Expands the selection.

ALT + 4 Reconfigure Model View, selection of model filter
November 2008 Telelogic DOORS Analyst User Guide 399

Chapter 10: Useful Shortcut Keys
Project Operations

File Operations

Navigate in Files

Keyboard shortcut Description

CTRL + N
Then CTRL + TAB
to Project tab

Create a new project

CTRL + O Open project.

Keyboard shortcut Description

CTRL + N Create a new file

CTRL + O Open a file

CTRL + P Print the active document

CTRL + S Save active document

Keyboard shortcut Description

CTRL + DOWN
ARROW

Scroll down a few rows at a time, without moving
the insertion point

CTRL + END Move insertion point to end of file

CTRL + SHIFT + G Opens the Go to line number dialog

CTRL + HOME Move insertion point to beginning of file

CTRL + LEFT
ARROW

Step left one word at a time

CTRL + M Open Navigator tab in Output window

CTRL + RIGHT
ARROW

Step right one word at a time
400 Telelogic DOORS Analyst User Guide November 2008

Highlight Text
Highlight Text

CTRL + UP
ARROW

Scroll up a few rows at a time, without moving the
insertion point

END Move insertion point to end of line

HOME Move insertion point to beginning of line

Keyboard shortcut Description

CTRL + SHIFT +
END

Highlight text to the end of the file

CTRL + SHIFT +
HOME

Highlight text to the beginning of the file

CTRL + SHIFT +
LEFT ARROW

Highlight one word at a time to the left

CTRL + SHIFT +
RIGHT ARROW

Highlight one word at a time to the right

SHIFT + DOWN
ARROW

Highlight one row downwards

SHIFT + END Highlight to the end of the line

SHIFT + HOME Highlight to the beginning of the line

SHIFT + LEFT
ARROW

Highlight one character at a time to the left

SHIFT + RIGHT
ARROW

Highlight one character at a time to the right

SHIFT + UP
ARROW

Highlight one row upwards

Keyboard shortcut Description
November 2008 Telelogic DOORS Analyst User Guide 401

Chapter 10: Useful Shortcut Keys
Edit Text
Keyboard shortcut Description

CTRL + A Select all

CTRL + C Copy

CTRL + F Find in active file

CTRL + H Replace

CTRL + SPACEBAR
SHIFT + SPACEBAR

Name completion, if a definition is found that
matches the current name up to the cursor position.
If there are multiple matches a Name completion
scroll menu will open.

CTRL + V Paste

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

F1 Help with textual syntax on current selection.

SHIFT + F8 Restores text from model, discarding comments or
user added formatting.

SHIFT + arrow keys Extends the current text selection. Requires that
text is selected

SHIFT + END Selects text from cursor position to end of text row.

SHIFT + HOME Selects text from start of text row to cursor position.
402 Telelogic DOORS Analyst User Guide November 2008

Editor Shortcuts
Editor Shortcuts
Keyboard shortcut Description

Arrow key Selects the symbol in the direction of the arrow, re-
quires current selection

CTRL + <click when
placing symbols in di-
agram>

Allows you to place a number of symbols of the
same type. Requires that you first select a symbol
from the symbol toolbar.

CTRL + <click when
placing symbols in
state machine flow>

Allows you to insert a symbol in the flow. Requires
that you first select the preceding symbol or flow-
line in the flow.

CTRL + <click word
in diagram>

Navigates to definition. If no diagrams contain the
definition, the Model Navigator opens.

CTRL + <double-click
with a symbol selected
in state machine flow>

Selects the entire flow from the selected symbol
and downward. Selection will be done on branched
flows (multiple signals, decision etc.).

CTRL + <Rotate the
wheel button>

Scroll the diagram horizontally (requires an Intelli-
Mouse pointing device)

CTRL + ALT + END Diagram navigation, go down in diagram scope

CTRL + ALT + Page
Down
CTRL + ALT + TAB

Diagram navigation, navigate to next diagram in di-
agram scope

CTRL + Arrow key Moves the selected symbol 5 grid steps in the direc-
tion of the arrow.

CTRL + DELETE Delete from Model, deletes the presentation ele-
ment and its corresponding model element. If other
presentation elements are connected to this model
element, they will also be deleted.

CTRL + DIVISION
SIGN (/) on the nu-
meric keypad

Hide all operations. (Valid for signature symbols:
class, timer, signal, interface, operation, state ma-
chine, datatype, enumeration...)

CTRL + F3 Jumps to the next presentation element of the same
model element
November 2008 Telelogic DOORS Analyst User Guide 403

Chapter 10: Useful Shortcut Keys
CTRL + SHIFT + F3 Jumps to the previous presentation element of the
same model element

CTRL + MINUS
SIGN (-) on the nu-
meric keypad

Hide all attributes, parameters. (Valid for signature
symbols: class, timer, signal, interface, operation,
state machine, datatype, enumeration...)

CTRL + MULTIPLI-
CATION SIGN (*) on
the numeric keypad

Show operations. (Valid for signature symbols:
class, timer, signal, interface, operation, state ma-
chine, datatype, enumeration...)

CTRL + PLUS SIGN
(+) on the numeric
keypad

Show attributes, parameters. (Valid for signature
symbols: class, timer, signal, interface, operation,
state machine, datatype, enumeration...)

CTRL + SHIFT +
<click symbol in
toolbar>

Interaction overview and Activity diagram: Ap-
pend a symbol and toggle orientation. Symbol posi-
tion will be in the currently not selected orientation.
(Append requires that a symbol is selected.)

CTRL + SHIFT +
Arrow key

Moves the selected symbol 1 grid step in the direc-
tion of the arrow.

CTRL + SHIFT + M Open Create Presentation dialog

CTRL + TAB Switches to the next open diagrams

CTRL+ALT + HOME Diagram navigation, go up in diagram scope

CTRL + ALT + Page
Up
CTRL + ALT +
SHIFT + TAB

Diagram navigation, navigate to previous diagram
in diagram scope

ESC, DELETE
<Right-click canvas>

Aborts line creation

F2 Enters the edit mode on a selected symbol

F4 Moves to the next selection in the Output window

SHIFT + <click
symbol in toolbar>

Create and append a symbol in the diagram. Sym-
bols that cannot be auto-created appear dimmed.
(Append requires that a symbol is selected.)

Keyboard shortcut Description
404 Telelogic DOORS Analyst User Guide November 2008

Window Navigation
Window Navigation

SHIFT + Arrow key Selects the symbol in the direction of the arrow and
adds it to the selection. (requires current selection)

SHIFT + F4 Moves to the previous selection in the Output
window

ALT + UP ARROW Moves a selected node up in the Model View.

ALT + DOWN
ARROW

Moves a selected node down in the Model View.

SHIFT + ENTER Shows the model element of the selected diagram
element in the Model View.

F8 Check the current selection.

CTRL + F8 Do a check of the entire model.

SHIFT + SPACEBAR Auto creation. All elements that can be auto created
on the current selection will be displayed. See Auto
placement.

CTRL + SPACEBAR Auto insertion. All elements that can be auto in-
serted after the current selection will be displayed.
See Auto placement.

CTRL + R Route selected lines and assign new endpoints.

Keyboard shortcut Description

ALT + 1 Toggle full screen mode

CTRL + F2 Toggles definition at cursor position as Bookmark
in the Model Navigator

CTRL + F4 Close the active window

Keyboard shortcut Description
November 2008 Telelogic DOORS Analyst User Guide 405

Chapter 10: Useful Shortcut Keys
Properties editor

Show/Hide Windows and Dialogs

CTRL + SHIFT +
TAB
CTRL + SHIFT + F6

Navigate to the previous window

CTRL + TAB
CTRL + F6

Navigate to the next window

SHIFT + F2 Displays Model Navigator with context of defini-
tion at cursor position.

Keyboard shortcut Description

ALT + ENTER Display Properties editor

CTRL +
BACKSPACE

Go to owner, change scope in model tree to the
owner of the current selection

CTRL + ALT + C Switch to Control view

CTRL + ALT + T Switch to Text view

Keyboard shortcut Description

ALT + 0 Show/ hide workspace window

ALT + 2 Show/ hide Output window

ALT + ENTER Display Properties editor

CTRL + Q Open Query dialog on selection

F1 Display Help

Keyboard shortcut Description
406 Telelogic DOORS Analyst User Guide November 2008

Zoom/Pan
Zoom/Pan
Keyboard shortcut Description

<Rotate the wheel
button>

Scroll the diagram vertically (requires an IntelliM-
ouse pointing device)

<Double-click middle
mouse button>

Zoom to 100%

SHIFT + <double-
click middle mouse
button>

Zoom to fit editor window

SHIFT + <rotate wheel
button>

Zoom in or zoom out depending on the rotate direc-
tion.The zoom in point will be where the mouse
pointer is located

CTRL + SHIFT +
<Rotate the wheel
button>

When a single line is selected the diagram will be
scrolled along the line until one of the endpoints are
centered in view (requires an IntelliMouse pointing
device)

MINUS SIGN (-) on
the numeric keypad

Zoom out 25% (This works when a diagram is ac-
tive and not in text edit mode for any element)

PLUS SIGN (+) on the
numeric keypad

Zoom in 25% (This works when a diagram is active
and not in text edit mode for any element)

LESS-THAN SIGN
(<)

When a single line is selected the diagram will be
scrolled to the source endpoint of the line.

GREATER-THAN
SIGN (>)

When a single line is selected the diagram will be
scrolled to the destination endpoint of the line.
November 2008 Telelogic DOORS Analyst User Guide 407

Chapter 10: Useful Shortcut Keys
408 Telelogic DOORS Analyst User Guide November 2008

11
Dialog Help

This section lists the help texts that are displayed when you click the help
button in dialogs.
November 2008 Telelogic DOORS Analyst User Guide 409

Chapter 11: Dialog Help
The New Wizard

Files tab
This dialog provides the possibility to add new files to your design.

• When adding a file you must specify a file name and a location.
• The file can be added to an existing project. The project must be opened

in the File View in order for you to add the file to it.
• The new file is opened in the Desktop.

Projects tab
This dialog provides the possibility to add a new project.

When you add a project, you specify how the project will be used. Depending
on your choice, different add-ins will be loaded at start-up, for example:

UML for Modeling
No add-ins are loaded.

• When adding a project you must specify a project name and a location.
• The project can be included in the current workspace, or a new work-

space can be created for the project.

See also

UML Projects - page 2
This dialog displays a suggested file directory and a suggested name for the
file holding the model.

• You can change or confirm the suggestions.
• As an option, an empty package can be added.

UML Projects - page 3
This dialog displays the name of the project and the name of the related file.

• You can confirm the names by clicking the Finish button or enable
changes by clicking the Back button.
410 Telelogic DOORS Analyst User Guide November 2008

Customize
• The new project appears in the Workspace window.

Workspaces
This dialog provides the possibility to add a new workspace.

• When adding a workspace you must specify a workspace name and a lo-
cation.

• The new workspace is loaded in the Workspace window.

Customize

Commands tab
This tab lists the default menus with toolbar buttons, commands and menus
that you can add to a toolbar or menu. It allows you to move, delete or add
buttons to your toolbars.

1. In the Categories box, click the toolbar name that you want to customize.
2. In the Buttons area, drag the item from the dialog on to the toolbar. Click

the item first to receive information about the specific item.
3. To remove an item from a toolbar, drag the item from the toolbar on to

the dialog.

To add a button to a toolbar:

1. Make sure that the toolbar you want to change is displayed.
2. In the Categories box, the available toolbar buttons or items are grouped.

Select the category where the toolbar button or item you want to add is
located.

3. Click a button or item to receive information about its functionality.
4. Drag the button or item from the Buttons area to the toolbar in the user

interface.

To delete a button from a toolbar:

1. Make sure that the toolbar you want to change is displayed.
2. Drag the button or item off the toolbar.
November 2008 Telelogic DOORS Analyst User Guide 411

Chapter 11: Dialog Help
When you delete a default button from a toolbar, the button is still available
in the Customize dialog box. However, when you delete a toolbar button with
a custom appearance, its appearance is permanently lost, although the com-
mand is still available (Customize dialog box, Commands tab).

Hint
To save a toolbar button with a custom appearance for later use, create a
toolbar for storing unused buttons, move the button to this storage toolbar,
and then hide the storage toolbar.

Toolbars tab
This tab lists standard and custom toolbars.

Select or clear the check boxes to display or hide the toolbars. Each toolbar
appears either in the default location or in the last location that it is moved to.
The menu bar cannot be hidden.

Show Tooltips
Click the check box to enable tooltips to be displayed when the cursor moves
over a button or field in the toolbars.

Large Buttons
Click the check box to display larger sized buttons in the toolbars.

Create a new toolbar:

1. Click New.
2. In the dialog that opens, type the name of the toolbar. The new toolbar

appears in the toolbar area of the interface.
3. From the Commands tab, select the items that you want to add to the

toolbar.

Restore the default toolbar settings:

1. Click the toolbar in the list.
2. Click Reset.

A user-created toolbar cannot be restored.

Delete a user-created toolbar:

1. Click the toolbar in the list.
2. Click Delete.
412 Telelogic DOORS Analyst User Guide November 2008

Customize
A default toolbar cannot be deleted.

Rename a user-created toolbar:

1. Click the toolbar in the list.
2. In the Toolbar Name field, type a new name for the toolbar.
3. Click the toolbar again to save the change.

Create New Toolbar
Type the name of the new custom toolbar. You can use upper or lower case
letters, but each name must be unique regardless of case. The name must be
unique from other toolbars. If you want to change this name later, you can
edit the name in the Toolbar Name box on the Toolbars tab.

Windows layouts
This tab allows you to customize the appearance of the Windows layout. You
can save toolbar positions, visibility and location of docked windows.

Save a new layout:

1. Click the New button.
2. Type a name for your layout.
3. Close the window.

To restore a new layout:

1. Click the layout you want to restore.
2. Click Restore.

To delete a layout:

1. Click the layout you want to delete.
2. Click the Delete button.

Tools tab
This tab allows you to add commands in the Tools menu. These commands
can be associated with any program that runs on your operating system. The
information is saved in a file named Tools.dat in the directory:
November 2008 Telelogic DOORS Analyst User Guide 413

Chapter 11: Dialog Help
C:\Documents and Settings\<user>\Application Data\Telelogic\Shared

Add a command to the Tools menu:

1. Click the New (Insert) button. A blank line, indicated by an empty rect-
angle, appears in the Menu Contents box.

2. Type the name of the command as it will appear in the Tools menu. Press
ENTER to save the name.

3. In the Command field, type the path to the program. You can also use
the browse button to locate the program.

4. In the Arguments text box, browse or type any arguments to be passed
to the program. Use the drop-down arrow next to the Arguments text box
to display a menu of arguments.

5. In the Initial directory box, browse or type the file directory where the
command will be located.

6. If the program is a console program, for instance the Windows command
prompt, you can select to have it run in the Output window. Just select
the Use Output Window check box.

7. Select the Prompt for Arguments check box, if you want to be able to
change argument each time you want to use the command.

8. Select the Use OEM format check box, if you want to the application’s
output to be in OEM format.

9. Click OK. The command appears in the Tools menu.

Additional tasks

• To insert the command in a submenu, separate the menu name and the
name with a backslash ‘\’. For instance, the command Notepad in an ed-
itor menu should be typed editor\Notepad.

• To insert an access key, type an ampersand ‘&’ before the selected letter
in the name.

• Move commands up and down in the menu by using the Move Up and
Move Down buttons.

• To change the name of the command, double-click it and type a new
name.

Delete a command in the Tools menu:

1. Click the command in the list.
2. Click the Delete button.
414 Telelogic DOORS Analyst User Guide November 2008

Options
Add-ins tab
Add-ins are used to extend the tool functionality. From the Add-ins tab you
can load a selection of predefined add-ins.

• To load or unload add-ins, select or clear the check boxes. Close the di-
alog.

Note
It is not recommended to write add-ins in the scope of DOORS Analyst.

See also

“Contents and structure of an add-in” on page 1988 in Chapter 73,
Customizing Telelogic Tau

Options

General
This tab allows you to set general options:

Display status bar
Allows you to show or hide the status bar that is available at the bottom of
the DOORS Analyst user interface.

Show output window when receiving content
When the Output window is closed, information that is normally listed in the
different tabs is not displayed. However, when selecting this option, the
output window will open automatically when new information is listed, for
instance after a manual check.

Track selection in the Print Manager
The Print Manager by default tracks the active selection in the Model View.
This option can be turned off to disable this tracking.

Show advanced option page
Select this option to display an additional tab with all options listed in a tree
structure. Some advanced option can only be set from this additional tab.

Tabbed documents
Select this option to open documents in a single window as tabs.
November 2008 Telelogic DOORS Analyst User Guide 415

Chapter 11: Dialog Help
Show welcome page at startup
This option controls whether or not the welcome page should be opened
when starting the tool. This option can also be set from the welcome page it-
self. If you turn this option off you can open the welcome page manually
from the Help menu.

Source control provider
If you have a source control system installed, you can use this option to en-
able using it from DOORS Analyst. Doing so will enable a source control
menu and toolbar for interaction with your source control system. For more
information see Configuration Management.

Automatically update files
This option can be used if Generic Source Control is selected as source con-
trol provider. If the option is enabled files will be automatically updated from
the CM system before attempting to do a check out.

Disable external program launch for these types of file
In this field you can specify the extension of files, that DOORS Analyst
should attempt to open instead of the external application which otherwise is
associated with that file extension. For instance, if you add the *.txt exten-
sion, text files will be opened in the DOORS Analyst text editor instead of in
your external text editor application.

Select the default help context
If there are many Telelogic tools installed, you can choose which help file to
use as default by selecting the file in this list.

URN Map
Use the URN Map (Universal Resource Name) to define shorthand names
for file storage locations. For example:

home:C:\MyHomeDir;work:C:\MyWorkDir

Here “home” is shorthand for C:\MyHomeDir and “work” is shorthand for
C:\MyWorkDir. Each user may define URNs for his/her environment. These
are used by some components for referring to files, bitmaps and other re-
sources.

•

–––
416 Telelogic DOORS Analyst User Guide November 2008

Options
Save
This tab allows you to set save options in DOORS Analyst.

Save before running tools
Select this option to automatically save any unsaved work before an external
tool is launched.

Prompt before saving files and projects
Select this option to be prompted for saving when modified files and projects
exist when an editor is closed.

Automatic reload of externally modified files
You will by default receive an information message and be prompted to re-
load an externally modified file. Select this option to avoid this prompting,
in order to automatically reload a file that has been modified in another tool
than DOORS Analyst.

Save project’s add-in state in all the loaded projects
This option will let any loaded add-ins become activated for all projects cur-
rently loaded.

Auto-backup
Select the Activate check box to allow automatic saves of your model in pre-
determined intervals. Enter the desired number of minutes between the saves,
either by typing the number or by clicking the up and down buttons.

Workspace
This tab allows you to set general options for the workspace that you have
opened.

Reload last workspace at startup
Select this option to open the workspace that you were working in the last
time DOORS Analyst was running.

Warn on project file status change
Select this option to receive a warning if the status of the project file you are
working in has been changed to read-only. This will protect you from poten-
tially loosing unsaved work.
November 2008 Telelogic DOORS Analyst User Guide 417

Chapter 11: Dialog Help
Projects default location
When you create new projects, you will receive a suggestion where the
project file will be stored. In this text field, type a path, or browse to a folder,
where the new projects will be stored.

Format
This tab allows you to format the appearance of text and colors in windows
and files.

When you have selected a category, you can select:

• Font and Size of the text in the file or window.
• Background color and text color for the selected Category. By default,

system colors defined in the control panel are used. Clear the Automatic
check boxes to select text and background colors.

Font settings
This tab allows you to customize the default fonts used when creating a new
diagram.

Diagram font settings
These font settings determine the default text appearance of the generic dia-
gram element in a created diagram.

Fixed font settings
These font settings determine the default text appearance of symbols that
have texts which are better displayed using a fixed width font. An example
of a symbol that uses this font setting is the Text symbol. If the Enabled
check box is checked, any created symbol of this kind will have the fixed font
settings applied on it.

Label font settings
These font settings determine the default text appearance of text labels that
are not the main label of a diagram element. An example of this is the At-
tribute and Operation labels in a Class symbol. If the Enabled check box is
checked, any created label element will have the label font settings applied
on it.
418 Telelogic DOORS Analyst User Guide November 2008

Options
Links
This tab allows you to customize link creation behavior.

Active link end is an active target, not an active source
If this option is off, then when you use automatic creation of links, you will
create links from your active link end to the other models. If this option is on,
then you will create links to your active link end from the other models.

Automatically create links between modified objects and active link end
If this option is on, then when you select an active link end, all your modifi-
cations will be linked to this link end.

Show link indicators
If this option is on, DOORS Analyst will show the link markers.

Use requirement as target when creating links by drag and drop
Links can be created using drag and drop. If this option is on when doing this
on a requirement the target of the link will be the requirement. If the option
is off the requirement will instead be the source of the link.

Some of the advanced options are documented below.

Web server
Studio - Settings - WebServer
November 2008 Telelogic DOORS Analyst User Guide 419

Chapter 11: Dialog Help
The options PortRangeBegin and PortRangeEnd define the range of
TCP/IP ports used by the Tau Web Server. You may need to change these
options if the default port numbers are not available for use on your machine.

Proxy settings
U2 - Options - ProxySettings

The options Host, Password and User can be set if you access the web
through an HTTP proxy server. They will be used whenever DOORS Ana-
lyst accesses information from an URL, for example when importing a
WSDL file from an URL. The syntax of the host option is
<address>:<port>.

Editor Shortcut

Show Elements
This dialog provides the possibility to add multiple elements to a diagram
with a selection of symbols from your existing model.

• Elements are selected by checking the check box in the element list.
• The element list contains the elements of the current set scope.
• The Set Scope button is used to add elements from any scope in your

model to the element list.

When this dialog is entered as a result of an operation where an element is
initially selected this element will be pre-checked in the list.

• The new diagram is opened in the Desktop.

Reconfigure ModelView
Select the browser model that you want to use. There are two predefined
browser views. The browser view “Standard View”, gives a comprehensive
view of the loaded model including design detail. This view is intended for
design-oriented users.

The other browser view “Diagram View” gives a simplified view of the
loaded model. This view is intended for analysis-oriented users.
420 Telelogic DOORS Analyst User Guide November 2008

Other
See also

“Metamodel” on page 316 in Chapter 4, UML Language Guide

Other

Select Stereotypes
Select the stereotypes that you want to apply to the element. Click each line
to see a description of the each stereotype. The number of applicable stereo-
types varies depending on the selected element.

See also

“Stereotype” on page 317 in Chapter 4, UML Language Guide
November 2008 Telelogic DOORS Analyst User Guide 421

Chapter 11: Dialog Help
422 Telelogic DOORS Analyst User Guide November 2008

12
Additional Resources

This section list documents that are not part of the help file, but that may help
you to extend your knowledge about DOORS Analyst. Links to useful web
resources are also provided.
November 2008 Telelogic DOORS Analyst User Guide 423

Chapter 12: Additional Resources
Links

Contacting IBM Rational Software Support
Support and information for Telelogic products is currently being transi-
tioned from the Telelogic Support site to the IBM Rational Software Support
site. During this transition phase, your product support location depends on
your customer history.

Product support
• If you are a heritage customer, meaning you were a Telelogic customer

prior to November 1, 2008, please visit the DOORS Analyst Web site.
Telelogic customers will be redirected automatically to the IBM Rational
Software Support site after the product information has been migrated.

• If you are a new Rational customer, meaning you did not have Telelogic-
licensed products prior to November 1, 2008, please visit the IBM Ra-
tional Software Support site.

Before you contact Support, gather the background information that you will
need to describe your problem. When describing a problem to an IBM soft-
ware support specialist, be as specific as possible and include all relevant
background information so that the specialist can help you solve the problem
efficiently. To save time, know the answers to these questions:

• What software versions were you running when the problem occurred?
• Do you have logs, traces, or messages that are related to the problem?
• Can you reproduce the problem? If so, what steps do you take to repro-

duce it?
• Is there a workaround for the problem? If so, be prepared to describe the

workaround.

Other information

For Rational software product news, events, and other information, visit the
IBM Rational Software Web site.
424 Telelogic DOORS Analyst User Guide November 2008

http://www.ibm.com/software/rational/
https://support.telelogic.com/doorsanalyst
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/

Links
UML documents
• Java Tutorial

The tutorial is available in your installation in:
• UML Tutorial

The purpose of this tutorial is to make you familiar with DOORS Analyst
and the UML language. The tutorial addresses persons with knowledge
of the basic concepts of how to work with requirements modules in
DOORS and also have a basic UML knowledge.
The tutorial is available in your installation in:
locale/en/radar_ctrl.pdf

• UML Quick reference guide
This document contains common graphical and textual constructs in
UML.
The guide is available in your installation in:
locale/en/quickref.pdf

Other links

Cygwin

For information about the contents of various Cygwin versions, see:
http://www.cygwin.com

GNU C/C++

C/C++ dialect supported by the GNU Compiler Collection.
http://www.gnu.org/software/gcc

ITU-T

Formerly CCITT
http://www.itu.int/

Macrovision

For more information about FLEXnet or Macrovision, please see:
http://www.macrovision.com
November 2008 Telelogic DOORS Analyst User Guide 425

http://www.cygwin.com
http://www.gnu.org/software/gcc/
http://www.itu.int/
http://www.macrovision.com

Chapter 12: Additional Resources
MISRA

The code generated by the AgileC Code Generator is to a large extent com-
pliant with the MISRA coding rules described in the document “MISRA-
C:2004 Guidelines for the use of the C language in critical systems” from Oc-
tober 2004. Please see:

http://www.misra.org.uk

OCL

For more information about OCL (Object Constraint Language), see:
http://www.omg.org

OMG

For more information about Object Management Group (OMG), see:
http://www.omg.org

PDF

PDF files are opened and read with Adobe Acrobat Reader:
www.adobe.com

Tcl

For detailed information refer to the Tcl Developer Site
http://tcl.activestate.com/

TTCN-3

The TTCN-3 standard can be downloaded from
http://www.etsi.org

XML

For information about Extensible Markup Language (XML), see:
http://www.w3.org/XML
426 Telelogic DOORS Analyst User Guide November 2008

http://www.omg.org
http://www.misra.org.uk
http://www.omg.org
http://tcl.activestate.com/
http://www.adobe.com
http://www.etsi.org
http://www.w3.org/XML

Index
Symbols
#, inline code .296
#, private .113
«» .125

A
absolute

time line .176
abstract

class, UML .203
access .194
Acrobat Reader .426
action .285
action, UML sequence diagram 179
action, UML state machine 277
Actions .253
activation

method call .187
active class .212
active timer .296
activity diagram

operations .243
actor .159
Add

Stereotype Instance Compartment .206
add

class in diagram 201
printers (UNIX) 392
stereotype .128
symbol .119
symbol in activity flow 124
toolbar button 23

add-ins
CApplication 410
ModelVerifier 410
tab, Customize 415
XMIExport .372
XMIImport .352

advanced layout .13

aggregation . 311
association . 308
kind, association 309
kind, attribute 208

All
Show Elements 121

All Properties, Properties Editor 49
alt

inline frame . 183
alternative syntax 150
any, UML . 294

expression . 294
appearance . 188
append

symbol in activity flow 124
architecture . 29
architecture diagram. See composite structure

diagram
architecture modeling 235
arrange windows . 19
artifact

UML . 303
assert

inline frame . 184
assignment . 285
association

navigable . 207
relationships 308
use case modeling 161

attribute . 206
class . 203
compartment 214
DOORS . 3
Object Text . 4
UML Comment Symbol 5
UML Kind . 3
UML Location . 8
UML Name . 8

auto
placement, in diagram 120
November 2008 Telelogic DOORS Analyst User Guide 427

Index
Automatic layout 114
Auto-routed (keep endpoints) 135
Autosize . 123
autosize

diagram . 112
symbols . 123

B
behavior

modeling . 265
behavior port . 241

port . 215
behavioral elements

collaborations 356
common behavior 356
state machines 356
use cases . 356

bi-direct . 239
line edit . 137

bmp . 129
bookmark

help file . 33
break

inline frame . 184

C
capture

minidump . 336
cardinality . 210
cascade . 19
case sensitivity

UML . 149
change

options . 26
Check

Output window 18
check

part of a model 45
choice

UML . 227
CJK characters . 397
class . 200

abstract . 204
components . 205
external . 204
heading examples 202
hide attributes 133

modeling . 197
new . 286
show attributes 133
signature . 323
this . 286
UML . 200

class diagram . 199
classifier

metaclass . 320
close

window . 20
Collapsed

symbol command 123
color

Properties Editor values 55
column

Create Presentation 76
diagram type 76, 83
item . 76, 83
Model Navigator 82
type . 76, 83

Column of Remarks 126
commands

customize . 411
commands tab . 411
comment

Column of Remarks 126
comment symbol 314, 315

reference in diagram 126
Comment, Properties Editor 49
Compartment text fields 134
completion . 44
component . 205
composite state . 297
composite structure diagram

UML . 235
composition

association . 308
relationships 311

compound statement 286
compress layout 188
conditional expression 293
configuration management

internationalization 395
connect

symbols . 123
connector . 239
428 Telelogic DOORS Analyst User Guide November 2008

Index
consider, inline frame 184
constant

UML .211
Constraint compartment 205
constraint symbol 314
continuation

UML .185
convert

UML to C++ style 113
Convert Module .11
copy .127

model elements 42
co-region .184
create

activity diagram 246
compartments 132
diagram .111
interaction overview diagram 190
sequence diagram 164
state machine diagram 267
use case diagram 157
window .20

Create Presentation 76
create symbol

UML .179
critical

inline frame .184
Customize

dialog .411
toolbars .24

customize
commands .411
new toolbar .413
toolbars .412
tools .413
windows layouts 413

cut .127
Cygwin .425

D
dat, tools file extension 413
datatype

UML .224
debug .336
decision .280

answer .280
decomposition .169

deep history
UML . 273

default
converts from else 113

default value
UML . 209

definitions tab . 81
delete . 127

attribute . 134
element . 41
line . 137
model elements 143
operation . 134
parameter . 134
selected signals 188
symbols . 143

Delete All Values, Properties Editor 53
Delete Instance, Properties Editor 53
Delete Model . 42
Delete Value, Properties Editor 54
dependency

architecture modeling 242
relationship . 307
use case modeling 161

derived . 153
attribute . 210
operation . 211

desktop . 14
destroy

UML symbol 181
diagram . 27

autosize . 112
create . 111
element properties 125
frame . 110
general . 27
grid . 110
heading . 110
move . 112
name . 111
open . 111
operations . 110
print . 111
save . 111
scope . 145
size . 111
size, print . 392
November 2008 Telelogic DOORS Analyst User Guide 429

Index
UML . 140
zoom . 115

Diagram Element Properties 125
Diagram Name column 76, 83
Diagram size . 112
Diagram View . 17
diagram-centric workflow 40
Diagrams, Model Navigator tab 81
dialog help . 409
direct addressing

method application 278
dock

window . 21
dock, window . 21
docked window . 19
Document Type Definition 352
Drag and Drop . 97

create presentation 98
from model view to a diagram 98
link . 98
within and between diagrams 99
within the model view 97

dynamic behavior
classes . 29

E
edit

symbols . 127
text . 402
text in symbols 125

Edit properties of symbols/lines, Properties Ed-
itor . 52

Editing vertices . 137
editor

shortcuts . 403
elements

navigation . 80
properties 41, 151

else
converts to default 113

emf . 129
Enable Analyst for Section 6
enabled direction 137
entity tabs . 81
entry connection point 298
enumerated data type

converts from datatype 114

enumerated type 225
error

XMI export . 386
error messages . 335
exclamation mark

UML Kind . 3
exit

connection point 299
explicit connector 239
export

XMI . 372
expression

UML . 291
extends . 161
extensibility . 316
Extensible Markup Language 426
extension . 318

relationships 313
external

class . 204

F
Favorites

tab . 82
Features

tab . 81
field

expression . 293
file

operations . 400
options . 25
show in Model view 16

file extension
.bmp . 129
.dat . 413
.emf . 129
.gif . 129
.jpeg . 129
.jpg . 129
.pcx . 129
.pdf . 426
.targa . 129
.tga . 129
.tif . 129
.tiff . 129
.tot . 25
.u2 . 111
430 Telelogic DOORS Analyst User Guide November 2008

Index
.u2x .115
external program launch 416

File View .15
files

tab .410
filter

delete in sequence diagram 188
Model view .16

find .113, 113
Find text in diagrams too 113
float

window .21
floating window .19
flow .290

append symbol 124
insert symbol 124
orientation .247
remove symbol 125

flow line .290
font settings .396
Font settings, options tab 418
Format, options tab 418
found message .174
foundation

core .355
data types .355
extension mechanisms 355

frame .110, 313
full screen .19

G
gate

names .187
text, add/remove 187

general ordering line 177
generalization .307

use case modeling 161
Generate Diagram dialog 84
gif .129
Globetrotter, see Macrovision 425
GNU

C/C++ .425
go to line .25
Goto Owner, Properties Editor 53
Goto Value, Properties Editor 54
grid .110
guard .282, 282

guarded transition 272
guillemets, «» . 125

H
heading . 110
help

on-screen . 31
hide

windows . 406
hide windows . 20
highlight

text edit . 401
history nextstate 272

I
IBM Customer Support 424
icon . 128

IconFile . 129
Icon mode . 129
ignore

inline frame . 184
image file . 129
IME (Input Method Editor) 396
imperative expressions 294
implementation

activity . 249
metaclass . 323
signature . 322

implicit connector 239
import . 194

preserved layout 357
UML . 351
UML 1.4 . 355
UML Suite . 359
XMI . 352
XMI/UML, restrictions 359

incoming signal . 219
incomplete

message . 173
index . 32

column . 82
expression . 293
results . 33

informal
decisions . 281

initialize
state machine 202
November 2008 Telelogic DOORS Analyst User Guide 431

Index
inline
class . 202
frame . 181

inout
converts from in/out 113

input. See signal receipt
insert

symbol . 119
symbol in activity flow 124
symbol in flow 124

Interaction . 164
interaction reference 165
interface . 217

port . 216
interface symbol . 217
internals . 300
internationalization 395

support . 395

J
jpeg . 129
jpg . 129
junction . 289

K
Keep selected signals 189
keywords. See reserved words
kind . 319

L
layout

advanced . 13
lifeline . 166
lifeline decomposition 168
line

aggregation . 308
association . 308
bi-direct 137, 239
composition . 308
connector . 239
delete . 137
dependency . 307
flow . 290
generalization 307
go to . 25
move . 137

number . 25
operations . 134
realization . 308
re-direct 137, 239
simple transition 290

link
drag and drop 98

links
column . 82
external . 423
tab . 81, 419
web sites . 424

List Presentations 131
List References . 130
literal . 227
Load image . 129
locate

search . 33
Location

column . 76, 82
loop

inline frame . 183
lost message . 173

M
Macrovision . 425
Match Similar Word 34
MDI child . 21
MDI Child window 19
menu bar . 22
message . 170

Output window 18
metaclass . 317

classifier . 320
implementation 323
signature 320, 323

metafeature values, Properties Editor 49
metamodel . 316

classes . 320
model view filter 16
profile . 320

method . 322
method call . 186
minidump . 336
MINUS_INFINITY 320
model checking . 43
model element . 142
432 Telelogic DOORS Analyst User Guide November 2008

Index
activity diagrams 247
class diagrams 199, 231
component diagrams 244
deployment diagrams 302
handling .42
modeling workflow 40
name scope .145
presentation element 41
sequence diagrams 163, 192
use case diagrams 156

Model Index tab .82
model management, XMI import 356
Model Navigator .78

tabs .78
model references 130
Model View .15

Filters .16
model-based development 26, 40
model-centric workflow 40
modes

entity .81
link .81
presentation .80

move
diagram .112
line .137
model elements 42
symbols .122

multiple
state machines in class 202

multiplicity
association .309
attribute .209

N
name .147

column .76, 83
completion .44
navigation .43
referencing .44

naming
new elements .42
rules .148
use cases .158

navigable
association .207
end .309

Navigate . 78
navigation . 80

files . 400
help file . 31
Model View . 131
name . 43

Navigator . 76
neg

inline frame . 184
nested

expressions . 35
nested states

import . 357
new

create diagram 111
expression . 293
instance of class 286
toolbar . 413
window . 20

New diagram
tab . 76

New symbol
tab . 76

new toolbar
customize . 413

New Wizard . 410
nextstate

history . 272
nondeterministic decisions 282
None

Show Elements 121
noScope

stereotype . 196
now . 295

O
object

locate in UML 43
Object Management Group 426
Object Text . 4
OCL . 426
OMG . 426
open

diagram . 111
operation

compartment 214
operation, UML . 211
November 2008 Telelogic DOORS Analyst User Guide 433

Index
body . 299
class . 203
compartment 214
signature . 323

operators . 34
opt

inline frame . 183
options . 25

dialog . 415
file . 25
format . 418
general . 415
link . 419
save . 417
Save As . 26
workspace . 417

ordering . 129
events . 168

organizing
view . 115

orientation . 247
outgoing signal . 220
output . 279

symbol, converts from ^ 113
window . 17

Output window
Check . 18
message . 18
Presentations . 18
References . 18
Script . 18
search result . 18

output. See signal sending 278

P
package . 192

modeling . 191
Predefined . 319
tab . 81

page column . 83
par

inline frame . 183
parameter . 154
parse text . 113
part . 236

communication 241
Partition Reference 253

paste
symbols . 127

pcx . 129
pdf . 426
pdf, Acrobat file extension 426
Pid

expressions . 295
placement . 120
PLUS_INFINITY 319
port . 214

attribute . 209
interface . 216
type . 215

Predefined . 319
predefined

data . 318
names . 155

predicate . 89
agent . 95

Preferred filter, Properties Editor 52
presentation element 45

in diagram . 41
navigation . 79

presentation tabs . 80
preview diagram 393
primitive datatypes 226
print . 111

add printer . 392
diagram 111, 111
help topics . 33
multiple diagrams 394
settings . 392
single diagram 393

priority . 80
transition in composite state 297

private, converts from # 113
profile . 318

metamodel . 320
project

new . 410
operations . 400

Projects tab . 410
properties . 43
Properties editor

shortcuts . 406
Property View, Properties Editor 51
protected, converts from - 113
434 Telelogic DOORS Analyst User Guide November 2008

Index
public, converts from + 113
purpose .141

Q
Query

dialog .93
query .89

agent .95
expression .90

quotation marks, automatic 114
quote

automatic typing 114

R
range check .296
Rational Rose .358
realization, UML 308
realized interface 219
Real-time profile 324
receiver

attribute .279
expression .279
this .279

Recent tab .82
Reconfigure Model View 16
re-direct .137, 239

lines .137
redo .130

shortcut .402
reference

definition .44
existing definitions 119
to model .130

Reference existing 119
messages .171
name support .44

references tab .81
regular expressions 34
relationships

class .229
collaboration, use case 160
composite structure 242
UML .306

relative time line .176
Remember scroll and zoom 115
remove

printers (UNIX) 392

symbol from activity flow 125
Remove image . 129
required interface 220
reserved words . 150
resize

diagrams . 112
symbol indicators 123
symbols . 122

resource
meta class base set 16

restore model (f8) 44
restrictions . 8

Clone . 8
Diagram below 8
Import Partition 8
internationalization 398
multiple servers 8
XMI export . 384
XMI import . 359

return . 288
return value, method call 187
Rhapsody . 358
role

actor . 159
column . 83

S
save . 287

Auto-backup 417
diagram . 111
dialog . 417
options tab . 417

scenario
as sequence diagram 29
modeling . 162

scope . 145
scope unit

UML . 146
script

Output window 18
scroll, window . 115
search . 35

help file . 31
help file, examples 35
help file, highlighting 32
syntax in help 34

search. See find.
November 2008 Telelogic DOORS Analyst User Guide 435

Index
select
diagrams for print 393
flow . 124
metamodel . 420
stereotypes . 421
symbols . 121

Select Attribute to Show in Analyst 11
Select scope

Show Elements 121
selector

expression . 170
semantic

check . 337, 339
errors . 339

seq
inline frame . 183

sequence diagram 162
shallow history . 273
shareable edit . 6
Short list

Show Elements 121
shortcut

column . 83
shortcut keys . 399
shortcuts

as toolbar . 17
tab . 81
window . 17

Show
Comments . 126
Constraints as Compartments 205
Constraints as Symbols 126
Stereotypes as Symbols 206

show
diagram . 16
dialogs . 406
element . 420
file . 16
implementation 16
windows . 20, 406

Show all
Constraints as Symbols 205

Show All Parameters 253
Show All Signals 241
Show edit mode tooltips 118
Show Elements . 120
Show symbol and line tooltips 118

Show/hide model element details
toolbar . 118

Show/Hide qualifiers 118
Show/Hide quotation marks 119
Show/Hide stereotypes 118
signal . 221

addressing . 278
incoming . 219
outgoing . 220
queue . 275

signal list . 223
signal receipt

symbol . 274
UML definition 274

signal sending . 279
symbol . 278
via port or interface 279

signal sending action 278
signallist, UML . 223
signature . 320

metaclass . 323
TTCN-3 . 426

simple transition 290
sort

ordering . 79
Sort definitions

Model View filter 16
space

in identifier . 148
special characters, in identifiers 148
standard toolbar . 23
Standard View . 17
start . 276
state . 178, 268
state expression . 295
state machine 229, 267

implementation 300
inheritance . 299
initialize . 202
signature . 323

state machine diagram 265
statement

compound . 286
state-oriented view 266
static . 211
status bar . 25
stereotype . 317
436 Telelogic DOORS Analyst User Guide November 2008

Index
activity symbol 248
connector line 240
noScope .196
object node 253, 254
openNamespace 197
xmiImportSpecification 354

Stereotype instance compartment 206
stop, UML .288
strict

inline frame .184
subject .160
substate

indicator .270
suspension area .187
symbol .313

action .179, 285
autosize .123
behavior .241
class .200
create .179
decision .280
decision answer 282
destroy .181
edit .127
frame .313
insert .119
interface .217
junction .289
multiple selection 121
operation .211
operations .117
package .192
part .236
port .214
realized interface 219
required interface 220
return .288
save .287
signal .221
signal receipt (input) 274
signal sending 278
start .276
state .268
state machine 267
stereotype .317
stop .288
text .313

timer . 223
symbol flow editing 124
Symbols with compartments 132
syntax

parse . 43
syntype . 228

T
TAB

Application Build 347
tab

categories . 79
name . 80

tabbed documents 20
tag definition . 317
tagged value 316, 318
tagged values, Properties Editor 50
targa . 129
target code expression 296
task. See action . 285
TCL . 426
template

parameters . 154
TTCN-3 . 426

text
file . 398
highlighting . 43
parse . 113

Text extension symbol 301
text symbol . 313
tga . 129
this . 279

instance of class 286
this expression . 294
tif . 129
tiff . 129
Tile Horizontally . 19
Tile Vertically . 19
time specification line 176
timer . 223

active expression 296
event . 175
timeout . 175

timer reset . 175
action . 284

timer set . 175
action . 284
November 2008 Telelogic DOORS Analyst User Guide 437

Index
TNR
error prefix . 347
Name Resolution 347

Toggle parameters 173
toolbar . 23

customize . 24
toolbar button

add . 23
toolbars

customize . 412
Toolbars, tab . 412
tools

customize . 413
Tools, tab . 413
tot . 25
Track selection, Properties Editor 51
transition . 271
transition line . 290
transition oriented

view . 267
transition overriding 298
TSC

error prefix . 339
Semantic Check 339

TSX
error prefix . 338
errors . 338
Syntax Analysis 338

TTCN-3 . 426
TTDQuery . 89

U
u2, file extension 111
u2x

file extension 115
UML . 140

1.4, import . 355
import . 355
import, restrictions 359

UML Comment Symbol 5
UML Kind . 3, 8
UML Location . 8
UML Name . 8
UML Profile for Schedulability, Performance,

and Time . 324
UML Suite

import . 359

underlined name . 43
undo . 130

shortcut . 402
Update Diagrams 11
Update View, Properties Editor 53
URN Map . 416
use case . 157

modeling . 156
use case diagram 156
user defined

icons . 128
user interface . 12

V
vertical orientation 247
via . 279
View, Properties Editor 51, 53
views

File View . 15
model . 45
Model View . 15

Views column . 83
Visualize in Diagram 99

W
warning

messages . 335
XMI export . 386

What’s This?, Properties Editor 54
window

auto-hide . 21
Cascade . 19
close . 20
dock . 21
expand/contract 21
layout . 18
layout, Help dialog 413
Navigation . 405
new . 20
scroll . 115
stored workspace windows 22
zoom . 115

windows layouts
customize . 413

workspace
Help dialog . 411
Operations . 399
438 Telelogic DOORS Analyst User Guide November 2008

Index
Options dialog 417
Workspace window 14

views .15

X
XMI .352

DTD .352
export .372
import .352
import, restrictions 359
version .355

xmiImportSpecification 354
XML .426

Z
zoom .115

shortcut .407
November 2008 Telelogic DOORS Analyst User Guide 439

Index
440 Telelogic DOORS Analyst User Guide November 2008

	Copyrights
	Copyright Notice

	Introduction
	Introduction to DOORS Analyst 4.2
	UML

	DOORS Analyst commands in DOORS
	General functionality
	UML Kind
	Displaying DOORS attribute values in diagrams
	Object Text
	UML Comment Symbol attribute
	Attributes
	Diagrams in DOORS Analyst
	Storing the model in DOORS
	Referencing elements from multiple modules
	Shareable edit mode
	Links

	Restrictions
	Comments
	DOORS Analyst attributes
	Diagram/Diagram below
	Import Partition and Clone
	Multiple DOORS servers

	Analyst menu
	Enable Analyst / Disable Analyst
	Enable Analyst for Section
	Insert UML
	Element/Element below
	Diagram/Diagram below
	Edit in Analyst
	Select Attributes to Show in Analyst
	Update Diagrams
	Convert Module
	Help
	About Analyst

	DOORS Analyst diagram view

	Overview of DOORS Analyst User Interface
	Basic layout
	Advanced layout
	Desktop
	Workspace window
	Views
	File View
	Model View

	Shortcuts window
	Output window
	General tabs
	UML tool tabs

	Working with windows
	Arrange windows
	Show and hide windows
	Close windows
	Create a new window
	Tabbed documents
	Docking windows
	Auto-hide docked window (Windows)
	Expand/Contract docked window
	Stored workspace windows

	Menu bar and toolbar
	Menu Bar
	Toolbar

	Status bar
	Line navigation
	Progress bar

	Options
	Options file
	Change options
	Work with options Files

	Model and Diagrams
	Models
	Model elements

	Diagrams
	Using the diagrams
	Create a basic package and classes in your model
	Create use cases
	Write scenarios
	Create dynamic behavior of the classes
	Create architecture
	The next step

	How to Use Help
	Navigate in the help file
	Search
	Search highlighting
	Index
	Locate search or index results
	Bookmark topics in the help file
	Print help topics

	Search syntax in help
	Match similar words
	Regular expressions
	Operators
	Nested expressions

	UML Modeling
	Working with Models
	Models and Model Elements
	Model-based development
	Diagram-centric workflow
	Model-centric workflow
	Model element and Presentation element
	Model element
	Presentation element
	Element properties
	Delete
	Delete from Model

	Model element
	Automatic naming of new elements
	Copying and moving model elements

	Text Highlighting
	Object Location
	Name navigation

	Properties
	Model checking
	Syntax parse
	Restore model (F8)
	Name support
	Checking a part of a model
	Errors and warnings

	Models and Diagrams
	Diagrams
	Different views of the model

	Presentation element
	Symbols

	Properties Editor
	Opening the Properties Editor
	Multiple windows

	The Properties Editor View
	Properties Editor view when selecting an instance

	Different Kinds of Properties
	Metafeature values
	Tagged values

	Properties Editor Options
	View
	Property view
	Track selection
	Edit properties of symbols/lines
	Preferred filter

	General Shortcut Menu
	Update View
	View
	Track Selection
	Delete Instance
	Delete All Values
	Goto Owner

	Control Shortcut Menu
	Delete Value
	Goto Value
	What’s This?

	Color Codes

	Customizing the Properties Editor
	Designing a Stereotype
	Designing a Metaclass

	TTDExtensionManagement Profile
	Stereotypes
	instancePresentation
	displayName: Charstring
	pagePriority: Real
	nonValueControls: Control[*]

	extensionPresentation
	isVisible: Boolean
	translator: Translator
	control: Control[0..1]

	filterStereotypes
	appliedProfile: Package[*]

	Control model
	Control
	Button
	EditControl
	EditList
	StaticText
	EnumeratedList
	DropDownMenu
	CheckBoxList
	Group
	ColorControl
	QueryControl
	NavigationButton
	GotoOwnerButton
	ValueControl
	PositionedControl

	Create Presentation
	Create Presentation dialog
	New Symbol
	New Diagram
	Location column
	Diagram Name column
	Item Type column, Diagram Type column

	Model Navigator
	Model navigation/creation
	Model navigator tabs
	Sorting

	Tab categories
	Navigation
	Presentation tabs
	Symbols
	Diagrams

	Links
	Entity tabs
	Package
	Features
	Definitions
	References
	Shortcuts
	Bookmarks
	Model Index
	Recent

	Columns
	Index column
	Links column
	Location column
	Name column, Diagram Name column
	Page column
	Role column
	Shortcut column
	Type column, Item Type column, Diagram Type column
	Views column

	Generate Diagram
	Diagram Generation Parameters
	Regenerate Diagram
	Convert a generated diagram into an ordinary diagram

	Using Diagram Generators in Existing Diagrams
	Advanced Diagram Generators
	Diagram type
	Generation settings

	Customization

	Queries
	Concepts
	Query expression
	Collection Operators
	select
	exists
	isEmpty
	Examples

	The Query Dialog
	Saving a query expression as a new query

	Built-in Queries and Predicates
	User-defined Queries and Predicates
	Executing a Query Expression from the APIs

	Drag and Drop
	Within the Model View
	Move
	Copy
	Link
	Copy with Traceability

	From Model View to a Diagram
	Create Presentation
	Create Presentation (include lines)
	Visualize in Diagram

	Within and between Diagrams

	Working with Diagrams
	Common Diagram Operations
	Grid
	Frame
	Heading
	Diagram Name
	Create diagrams
	Open, save and print diagrams
	Move diagrams
	Resize diagrams
	Find
	Text parsing
	Auto-quote
	Word wrapping

	Diagram auto layout
	Organizing the view
	Scroll
	Zoom

	DOORS Analyst commands
	Switch Layout
	Show elements
	Get DOORS Changes
	Check DOORS Changes
	Edit in DOORS
	Enable synchronization with DOORS
	Disable synchronization with DOORS

	Common Symbol Operations
	Symbol information
	Show/hide model element details toolbar

	Add symbols
	Reference existing
	Auto placement

	Show elements
	Select symbols
	Move symbols
	Moving text fields

	Resize symbols
	Autosize symbols
	Collapse symbol
	Resized symbol indicators

	Connect symbols
	Symbol flow editing
	Select a flow or a branch of a flow
	Append symbols to the flow
	Insert a symbol in the flow
	Remove a symbol from the flow

	Edit text fields in symbols
	Diagram element properties
	Handling comments
	Comments and constraints
	Column of Remarks

	Copy, cut, delete or paste symbols
	Icon
	User-specified icons
	Add stereotype
	Ordering
	Icon mode
	Image file

	Image Selector
	Undo
	Model references
	List references
	List presentations
	Reference existing
	Navigate

	Nested symbols
	Symbols with compartments
	Resizing
	Creating compartments
	Deleting compartments
	Moving compartments
	Show/Hide on compartments

	Compartment text fields
	Delete element
	Hide element
	Move text fields

	Common Line Operations
	Line styles
	Auto-routed (assign endpoints)
	Auto-routed (keep endpoints)
	Orthogonal
	Non-orthogonal
	Bezier

	Draw lines
	Editing vertices
	Move lines
	Delete lines
	Re-direct and bi-direct lines

	UML Language Guide
	Introduction
	UML version
	Diagrams
	Models and diagrams
	Model elements
	Symbols
	Different views of a model element
	Deleting symbols and model elements

	List of language constructs
	Scope, model elements, and diagrams
	Overloaded Definitions

	General Language Constructs
	Names
	Naming rules
	Using spaces and special characters in identifiers
	Case sensitivity
	References
	Reserved words

	Alternative syntax
	Common element properties
	Visibility
	Virtuality
	Derived
	Other properties
	Parameters
	Template parameters

	Predefined names

	Use Case Modeling
	Use case diagram
	Example
	Model elements in use case diagrams
	Create a use case diagram

	Use cases
	Symbol
	The description of a use case
	Naming use cases

	Actors
	Symbol
	The role of an actor

	Subjects
	Symbol

	Relationships
	Association
	Includes
	Extends
	Dependencies
	Generalizations

	Scenario Modeling
	Sequence diagram
	Description
	Example
	Model elements in sequence diagrams
	Create a sequence diagram
	The lifeline ruler section

	Interaction
	Interaction reference
	Symbol
	Syntax

	Lifeline
	Symbol
	Create a lifeline
	Attach/Detach from lifeline
	Ordering of events
	Lifeline decomposition
	Decomposition example
	Syntax

	Message
	Symbol
	Creating a message
	Toggle parameters
	Incomplete message
	Lost message
	Found message
	Copying a message

	Timer event
	Timer set
	Timer reset
	Timer timeout
	Symbols

	Time specification line
	Absolute time line
	Relative time line
	General ordering line
	Symbols

	State
	Symbol

	Action
	Symbol

	Create
	Symbol
	Creating a Create line
	Binding of a constructor

	Destroy
	Symbol

	Inline Frame
	Symbol
	Variations

	Co-region
	Symbol

	Continuation
	Symbol

	Method call
	Symbol
	Gate names
	Activation and suspension

	Appearance and filtered delete
	Compress Layout
	Delete selected signals
	Keep selected signals
	Make space

	Interaction overview diagram
	Create an interaction overview diagram
	Model elements in interaction overview diagrams

	Package Modeling
	Package diagram
	Example
	Model elements in package diagrams

	Package
	Symbol
	It is possible to nest other symbols hierarchically inside a package symbol. An element created inside a package symbol will have the package as owner.
	Syntax

	Relationships
	Import
	Access

	<<noScope>> Packages
	<<openNamespace>> Packages

	Class Modeling
	Does the class have structure? What parts does an instance of the class contain?
	Does the class have behavior? Which operations are available?
	Which relationships exist between the class and other elements?
	Is the class active or passive?
	Which communication ports does the class expose to its environment?
	Class diagram
	Example of class diagram
	Model elements in class diagrams

	Class
	Symbol
	Multiple state machines in an active class
	Syntax
	Class heading
	Attribute
	Operation
	Abstract class
	Virtuality
	Visibility
	External class
	Classes and components
	Constraint compartment
	Stereotype instance compartment

	Collaboration
	Attribute
	Aggregation kind
	Default value
	Port
	Multiplicity
	Initial cardinality
	Visibility
	Derived
	Static
	Constant

	Operation
	Symbol
	Syntax

	Active class
	Symbol
	Structure
	Behavior
	Attributes and operations

	Port
	Symbol
	Port type
	Behavior ports
	Ports and interfaces
	Inheritance

	Interface
	Symbol
	Syntax

	Realized interface
	Symbol
	Syntax

	Required interface
	Symbol
	Syntax

	Signal
	Syntax

	Signallist
	Timer
	Symbol
	Syntax

	Datatype
	Symbol
	Enumerated datatype
	Primitive datatypes
	Literal

	Choice
	Syntype
	State machine
	Stereotype
	Relationships

	Object Modeling
	Object Diagram
	Example of object diagram
	Model elements in object diagrams

	Named Instance
	Link

	Slot
	Self reference

	Architecture Modeling
	Composite structure diagram
	Example

	Part
	Symbol

	Connector
	Symbol
	Syntax
	Signal lists and interfaces
	Part communication

	Behavior port
	Symbol

	Relationships
	Dependency

	Component Modeling
	Component diagram
	Example
	Model elements in component diagrams

	Component
	Symbol

	Relationships

	Activity Modeling
	Activity Diagram
	Create an activity diagram
	Flow orientation
	Activity symbols from model elements
	Model elements in activity diagrams

	Activity
	Symbol

	Activity implementation
	Token flows

	Initial Node
	Symbol

	Action Node
	Avoid execution deadlocks
	Pins
	Symbol
	Syntax

	Object Node
	Symbol

	Decision
	Symbol

	Merge
	Symbol

	Fork
	Symbol

	Join
	Symbol

	Connector
	Symbol
	Syntax

	Accept Event
	Symbol

	Send Signal
	Symbol

	Accept Time Event
	Symbol

	Activity Final
	Symbol

	Flow Final
	Symbol

	Activity Partition
	Symbol
	Partition symbol as Dimension Specification symbol

	Pin
	Symbol
	Syntax

	Relationships
	Activity edge

	Behavior Modeling
	State machine diagram
	State-oriented view
	Transition-oriented view
	Create a state machine diagram

	State machine
	Symbol
	Syntax

	State
	Symbol
	Syntax

	Transition
	Guarded transition

	History nextstate
	Shallow history
	Deep history
	Examples

	Signal Receipt (Input)
	Symbol
	Signal queue
	Syntax

	Start
	Symbol
	Syntax

	Action
	Signal sending action (output)
	Symbol
	Signal addressing
	Signal sending
	Receiver is this
	Signal sending via port or interface
	Receiver is an attribute
	Receiver is an expression
	Examples

	Decision
	Symbol
	Decision answer
	Informal decisions
	Nondeterministic decisions
	Syntax

	Guard
	Symbol
	Syntax

	Timer set action
	Syntax

	Timer reset action
	Syntax

	Action (task)
	Symbol
	Syntax

	Assignment
	Compound statement
	New
	Save
	Symbol
	Syntax

	Stop
	Symbol

	Return
	Symbol
	Syntax

	Junction
	Symbol
	Syntax

	Flow
	Simple transition
	Syntax

	Expressions
	Call expression
	New expression
	Conditional expression
	Field expression
	Index expression
	Instance expression
	This expression
	Imperative expressions
	Arbitrary value (any) expression
	Now expression
	Pid expressions
	State expression
	Timer active expression
	Range check expression
	Target code expression

	Composite state
	Entry connection point
	Exit connection point

	State machine inheritance
	Operation body
	State machine implementation
	Internals
	Text extension symbol

	Deployment Modeling
	Deployment diagram
	Example
	Model elements in deployment diagrams

	Artifact
	Symbol

	Node
	Symbol
	Syntax

	Execution environment
	Symbol
	Syntax

	Deployment specification
	Symbol
	Syntax

	Relationships
	Deployment
	Manifestation

	Relationships in UML
	Dependency
	Generalization
	Syntax

	Realization
	Association
	Symbol
	Multiplicity
	Aggregation kind
	Navigable end
	Symbol
	Examples

	Aggregation
	Composition
	Symbol

	Containment
	Extension
	Association
	Description

	Common Symbols
	Frame
	Text symbol
	Syntax

	Comment
	Comment symbol
	Syntax

	Constraint
	Constraint symbol
	Syntax

	Stereotype instance
	Stereotype instance symbol
	Syntax

	Annotation line

	Extensibility
	Metamodel
	Metaclass
	Stereotype
	Tag definition
	Tagged value

	Profile
	Extension

	Predefined Data
	Predefined
	Predefined
	PLUS_INFINITY
	MINUS_INFINITY

	Metamodel Classes
	Metamodel profile
	Classifier
	Signature
	Implementation
	Method
	Signature and implementation
	Operation
	Activity
	State machine
	Class

	Profile for Schedulability, Performance, and Time
	RTresourceModeling
	GRMacquire
	GRMcode
	GRMrealize
	GRMdeploys
	GRMrelease
	GRMrequires

	RTtimeModeling
	RTaction
	RTclkInterrupt
	RTstimulus
	RTclock
	RTdelay
	RTevent
	RTinterval
	RTnewClock
	RTnewTimer
	RTpause
	RTreset
	RTset
	RTstart
	RTtime
	RTtimeout
	RTtimer
	RTtimeService
	RTtimingMechanism
	RTkindEnum

	RTconcurrencyModeling
	CRaction
	CRasynch
	CRconcurrent
	CRcontains
	CRdeferred
	CRimmediate
	CRmsgQ
	CRsynch
	CRthreadingEnum

	SAprofile
	SAaction
	SAengine
	SAowns
	SAprecedes
	SAresource
	SAresponse
	SAschedRes
	SAscheduler
	SAsituation
	SAtrigger
	SAusedHost
	SAuses
	SAlaxityEnum
	SAschedulingPolicyEnum
	SAaccessControlPolicyEnum

	PAprofile
	PAclosedLoad
	PAcontext
	PAhost
	PAopenLoad
	PAresource
	PAstep
	PAschdPolicyEnum

	RSAprofile
	RSAclient
	RSAconnection
	RSAmutex
	RSAorb
	RSAserver
	RSAchannel
	RSAschedulingPolicyEnum

	Error and Warning Messages
	General Application Errors and Warnings
	DOORS Analyst minidumps (Windows)
	Minidump location
	Minidump contents

	Errors and Warnings
	Phases and identifiers
	TSX: Syntax Analysis
	TSC: Semantic Check
	TNR: Name Resolution

	TSX: Syntax Analysis
	TSX0026: Port should not contain two in or two out parts
	TSX0047: Tagged values are not allowed here

	TSC: Semantic Check
	About semantic checks
	TSC0123: A cyclic dependency was found in definition of the %n. (via <string>)
	TSC0134: Incomplete transition. A transition must end with stop, nextstate or join action
	TSC0092: A corresponding 'virtual' or 'redefined' operation was not found in the parent signatures (or parent signatures does not exist).
	TSC0196: A finalized operation cannot be redefined.
	TSC0236: Operation '<name>' cannot be specified as 'Realized' on a port.
	TSC0237: Operation '<name>' cannot be specified as 'Required' on a port.
	TSC2300: Expression 'any (type)' cannot be of interface or state machine type
	TSC2302: An association from a datatype may not have a navigable remote association end
	TSC2303: At most one association end may be aggregate or composite
	TSC2304: An attribute that is not a part may not have initial count
	TSC2305: A part cannot have a default value
	TSC2306: A composite attribute or association end may not be typed by a datatype
	TSC2307: A composite attribute may not have a type, which owns this attribute (directly or indirectly)
	TSC2308: The 'via' of a call expression should reference either a port or a connector
	TSC0269: Generalization between 'Interface I' and 'Class Y' is not allowed
	TSC2325: Cyclic inheritance
	TSC4001: When generating C code, return values must be handled in left hand side of assignment expression

	TNR: Name Resolution
	TNR0023: Failed to locate element referred by: <name>

	UML Import and Export
	UML 1.x Import
	Operation Principles
	XMI
	XMI import
	XMI import add-in
	XMI import architecture

	Import an XMI file
	Importing XMI specification with the same settings once again

	Supported XMI and UML
	Language and version support
	Foundation / core
	Foundation / extension mechanisms
	Foundation / data types
	Model management
	Behavioral elements / common behavior
	Behavioral elements / collaborations
	Behavioral elements / use cases
	Behavioral elements / state machines

	Supported diagram types
	Importing with preserved layout
	Import of nested states

	Import from UML 1.x tools
	Rhapsody
	Rational Rose
	Preserve DOORS links
	DOORS Analyst UML Suite

	Restrictions
	Type and variable definitions
	Incomplete model
	Unsupported classes
	Foundation: Core
	Behavioral Elements: Common Behavior
	Behavioral Elements: ActivityGraphs
	Behavioral Elements: Collaborations
	Behavioral Elements: State Machines
	Behavioral Elements: Use Cases

	Unsupported attributes
	Foundation: Core
	Foundation: Data Types
	Foundation: Extension Mechanisms
	Behavioral Elements: Collaborations
	Behavioral Elements: State Machines
	Behavioral Elements: Use Cases
	Model Management

	Unsupported composition
	Foundation: Core
	Behavioral Elements: ActivityGraphs
	Behavioral Elements: Collaborations
	Behavioral Elements: State Machines

	Export restrictions
	Class diagram
	State diagram
	Sequence diagram
	Use Case diagram
	Package diagram
	Component diagram
	Deployment diagram
	Activity diagram

	Error Messages
	General
	Messages from XMI import

	UML 1.x Export
	XMI Export
	Operation principles
	XMI export add-in
	Export to an XMI file

	Supported XMI and tool versions
	Supported UML entities
	Model hierarchy
	Model transformations

	Restrictions for XMI export to Rational Rose
	Error and warning messages

	Common Reference
	Printing
	Printing Diagrams
	Print settings
	Select diagrams to be printed
	Preview of diagrams
	Print a single diagram
	Print multiple diagrams

	Internationalization Support
	Supported environments
	Supported platforms
	Configuration Management
	IME (Input Method Editor)

	Font settings
	Modeling with CJK characters
	Preconditions for using CJK characters

	Handling textual files
	Restrictions

	Useful Shortcut Keys
	Workspace Operations
	Project Operations
	File Operations
	Navigate in Files
	Highlight Text
	Edit Text
	Editor Shortcuts
	Window Navigation
	Properties editor
	Show/Hide Windows and Dialogs
	Zoom/Pan
	Dialog Help
	The New Wizard
	Files tab
	Projects tab
	UML Projects - page 2
	UML Projects - page 3
	Workspaces

	Customize
	Commands tab
	Toolbars tab
	Create New Toolbar
	Windows layouts
	Tools tab
	Add-ins tab

	Options
	General
	Save
	Workspace
	Format
	Font settings
	Links
	Web server
	Proxy settings

	Editor Shortcut
	Show Elements
	Reconfigure ModelView

	Other
	Select Stereotypes

	Additional Resources
	Links
	Contacting IBM Rational Software Support
	Product support
	Other information

	UML documents
	Other links
	Cygwin
	GNU C/C++
	ITU-T
	Macrovision
	MISRA
	OCL
	OMG
	PDF
	Tcl
	TTCN-3
	XML

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

