

ii IBM Rational Systems Tester 3.3 User Guide June 2009

June 2009 IBM Rational Systems Tester 3.3 User Guide iii

Copyrights

This edition applies to IBM Rational Systems Tester version 3.3 and to all
subsequent releases and modifications until otherwise indicated in new edi-
tions.

© Copyright IBM Corporation 2000, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure re-
stricted by GSA ADP Schedule Contract with IBM Corp.

Copyright Notice

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for in-
formation on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

Copyright © 2000, 2009 by IBM Corporation.

IBM Patents and Licensing

IBM may have patents or pending patent applications covering subject
matter described in this document. The furnishing of this document does not
grant you any license to these patents. You can send written license inquiries
to the following:

iv IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter :

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) informa-
tion, contact the IBM Intellectual Property Department in your country or
send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

Licensees of this program who wish to have information about it for the pur-
pose of enabling: (i) the exchange of information between independently cre-
ated programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software|
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equiva-
lent agreement between us.

Disclaimer of Warranty

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law: IN-
TERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-

June 2009 IBM Rational Systems Tester 3.3 User Guide v

CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical er-
rors. Changes are periodically made to the information herein; these changes
will be incorporated in new editions of the publication. IBM may make im-
provements and/or changes in the product(s) and/or the program(s) described
in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Any performance data contained herein was determined in a controlled envi-
ronment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on devel-
opment-level systems and there is no guarantee that these measurements will
be the same on generally available systems. Furthermore, some measure-
ments may have been estimated through extrapolation. Actual results may
vary. Users of this document should verify the applicable data for their spe-
cific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM prod-
ucts. Questions on the capabilities of non-IBM products should be addressed
to the suppliers of those products.

Confidential Information

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

This information contains examples of data and reports used in daily busi-
ness operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

Additional legal notices are described in the legal_information.html file that
is included in your software installation.

vi IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter :

Sample Code Copyright

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application program-
ming interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all condi-
tions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs.

IBM Trademarks

For a list of IBM trademarks, visit this Web site www.ibm.com/legal/copytrade.html.
This contains a current listing of United States trademarks owned by IBM.
Please note that laws concerning use and marking of trademarks or product
names vary by country. Always consult a local attorney for additional guid-
ance. Those trademarks followed by ® are registered trademarks of IBM in
the United States; all others are trademarks or common law marks of IBM in
the United States.

Not all common law marks used by IBM are listed on this page. Because of
the large number of products marketed by IBM, IBM's practice is to list only
the most important of its common law marks. Failure of a mark to appear on
this page does not mean that IBM does not use the mark nor does it mean that
the product is not actively marketed or is not significant within its relevant
market.

Third-party Trademarks

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and Post-
Script are trademarks of Adobe Systems Incorporated or its subsidiaries and
may be registered in certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.

www.ibm.com/legal/copytrade.html

June 2009 IBM Rational Systems Tester 3.3 User Guide vii

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Micro-
systems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries,
or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Mac-
rovision Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or
other Microsoft products referenced herein are either trademarks or regis-
tered trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of
Netscape Communications Corporation in the United States and other coun-
tries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product or service names may be trademarks or service
marks of others.

viii IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter :

June 2009 IBM Rational Systems Tester 3.3 User Guide ix

Introduction

IBM Rational Systems Tester 3.3 is a tool for testing of advanced software
systems using TTCN-3.

To fully take advantage of IBM Rational Systems Tester and be able to start
working quickly, it may prove useful to start with:

• Chapter 12, Useful Shortcut Keys will provide a listing of possible short-
cuts, this chapter can provide you with information on how to work faster
and more efficient once you are familiar with what IBM Rational Sys-
tems Tester can achieve.

x IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter :

June 2009 IBM Rational Systems Tester 3.3 User Guide 1

1
Introduction to IBM Rational

Systems Tester 3.3

TTCN-3

IBM Rational Systems Tester contains a complete set of tools for designing,
creating, and executing TTCN-3 test suites. With this you create projects in
a workspace where you administer, edit and analyze different sets of files –
your test suite. You can develop, visualize, and execute tests – all in the same
development environment.

The TTCN-3 tool set is often referred to as Rational Systems Tester. Rational
Systems Tester includes editors for TTCN-3, ASN.1, and text; project build
facilities, and an integrated MSC viewer.

To fully take advantage of the TTCN-3 tool set and be able to quickly start
working with TTCN-3, the topics listed below may prove useful to start with:

• Editing Abstract Test Suites

Manage your workspace, projects, and files. Explore how to create, edit,
and maintain your abstract test suites.

• Creating an ETS

Generate C code from your test suite in order to build an executable test
suite.

2 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

• Execute Tests

In this section, you find all related information on test execution: reports,
execution progress, and test verdicts. Also descriptions of the various log
formats.

• Tutorial
A basic tutorial that allows you to be familiar with Rational Systems
Tester and the syntax.

Overview of IBM Rational Systems Tester User
Interface

The complete IBM Rational Systems Tester user interface contains several
different areas that can be switched on and off at the will of the user: the
Desktop, the Workspace window and the Output window. In addition there
is a status bar in the lower part of the frame and a menu and Toolbar area at
the top of the interface frame. The windows are all possible to dock ac-
cording to the user’s preferences. It is also possible to drag-and-drop fre-
quently used toolbars to a Shortcuts window.

Figure 1: The IBM Rational Systems Tester Desktop.

Workspace
window

Desktop

Output
window

Status bar

Menu bars
and
toolbars

Overview of IBM Rational Systems Tester User Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 3

Desktop

The Desktop, or editing area, is the area of your working documents. This is
where the actual development takes place. Here you will see diagrams, doc-
uments, source files, etc. Once you have opened them for editing or viewing.
Which editor or viewer that is displayed depends on the file types that are in-
cluded in your project.

If you have more than one document opened on the desktop, you can move
between with commands on the Window menu, or by pressing CTRL + TAB
(forwards) or CTRL + SHIFT + TAB (backwards).

Hint
If you want to have your editor expanded to full screen, select Full Screen in
the View menu. To go back, press ESC or ALT + ‘1’.

See also

“Working with windows” on page 7

Workspace window

The Workspace window is a graphical tool that presents and manages the
structure of the workspace information in a number of Views.

The Workspace window shows the information structure with expandable
nodes. By collapsing and expanding these nodes, and by using different
views, you can focus on different sets of the information in the workspace.

It is possible to move the Workspace window and to make it a floating pal-
ette. When not floating, it is docked at this left-most position. When docked,
the window can only be resized horizontally. The vertical boundary is deter-
mined at the top by the toolbars and at the bottom by the Output window.

Edit markers

Gray bar

In the File View elements that can not be edited are marked with a gray bar
between the element symbol and the element name.

4 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Asterisk

When a text file has been edited but not yet save an asterisk will appear in the
window title bar after the file name.

Views

In the Workspace window you have access to a number of views. They are
each accessible via separate tabs. The views show different aspects of the
model.

File View

The File View shows your workspace with all elements that are represented
as files.

You select the File View by clicking the File View tab in the Workspace
window. Here you can open, edit and save all files. However, if you delete a
file it is only deleted from the File View. The file is still available in the file
system of your operating system.

To get a better overview of your files, you can create folders. You can drag
and drop files between folders. You can display properties by selecting an
item, right-clicking it, and clicking Properties in the shortcut menu.

Structured View

The Structured View displays the structure of test suites, sorted by language
elements. When you edit a TTCN-3 file, this is reflected in the structure. This
view is updated each time you save your work.

Files

Files are represented by icons in the File View in the Workspace window.

You may insert any file into your projects that you feel belongs there. The
inserted files will show up as icons in the File View of the Workspace
window. The Workspace window will start the associated program for
viewing or editing if you double-click the file icon.

Overview of IBM Rational Systems Tester User Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 5

Shortcuts window

The Shortcuts window may contain toolbars, but it will only do so if you put
them there. To put a Toolbar in the Shortcuts window, right-click the toolbar
and click To Shortcut from the shortcut menu. You can reverse the process
by right-clicking on the Shortcuts shown and clicking As Toolbar from the
shortcut menu that appears.

The View menu Shortcuts command controls if the Shortcut window is
shown.

Note
Not all toolbars will be possible to submit to the shortcuts window.

Output window

The Output window consists of a number of different tabs that records and
displays information for the corresponding tool. This information is typically
error messages, warnings, result of actions, logging of events, etc. Each tab
represents a different tool.

For some of the tabs, it is possible to navigate from the located element (in
the subject column) to a presentation in a diagram.

The View menu Output command controls if the window is shown.

General tabs

Messages

The Messages tab shows general information regarding the project loading
and other executed actions.

No navigation is available from this tab to other parts of the tool.

Search result

This tab displays the result of a Find operation.

Presentations

This tab displays the result of a List presentations operation.

References

This tab displays the result of a List references operation.

6 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Script

The Script tab shows the result of scripts, for example Tcl scripts.

TTCN-3 tool tabs

Find in Files 1

This is the default tab for search results.

Find in Files 2

When you search in multiple files, you have the option to display your search
results in a second tab. This enables you to perform a second search without
losing the result from the first.

Tester Analyzer

When TTCN-3 is analyzed, all logs are displayed in this tab. The logs include
error messages, warnings, and so on.

TTCN to C Compiler

In the TTCN to C Compiler tab, analysis and code generation messages, such
as warnings and error messages, are presented in a clear and readable way.

It is possible to navigate from error messages or warnings to the source in the
test suite.

Build

All information generated when you build your executable test suite is dis-
played in the Build tab.

Execution

In the Execution tab, information from the execution, together with verdicts,
is displayed to give you all necessary information regarding the outcome of
a test run.

From a given verdict, you can navigate to the source of a given test case by
double-clicking the log item.

Objects

Overview of IBM Rational Systems Tester User Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 7

When you click the List TTCN-3 Objects button in the toolbar, a list of all
TTCN-3 objects (or language elements) in your active project is displayed in
this tab.

Working with windows

Arrange windows

Tile all document windows:

• On the Window menu, click Tile Horizontally or Tile Vertically.

Overlap document windows:

• On the Window menu, click Cascade.

To change the position of document windows:

Note
The docking state can not be changed for a window with tabbed documents.

1. Right-click the title bar of a document window.

2. In the menu select:

– Docked to dock the window within the application window. There
are also options for where it should be docked.

– Floating to be able to move it outside the application window.

– MDI Child to make the window float within the editing area. There
are also options for maximizing, minimizing and restoring the
window.

To view the active document in full screen:

• On the View menu, click Full Screen

Or

• Press ALT + 1

To view the active document in normal size:

To display the active document in normal size again after you have
viewed it in full screen, do one of the following:

8 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

• Move the cursor to the top of the screen. When the menu bar appears, on
the View menu, click Full Screen.

Or

• Press ALT + 1

Show and hide windows

Show or hide the workspace window:

• On the View menu, click Workspace

Or

• Press ALT + 0.

Show or hide the output window:

• On the View menu, click Output

Or

• Press ALT + 2.

Close windows

To close a document window:

• On the Window menu, click Close.

To close all document windows:

• On the Window menu, click Close All.

Create a new window

To create a new document window:

• On the Window menu, click New Window.

Tabbed documents

If the option “Tabbed documents” is enabled in general options page, docu-
ments will be opened as tabs in a single window.

Overview of IBM Rational Systems Tester User Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 9

A document can be detached from a tabbed window by right-clicking the tab
and selecting the Detach menu item. It will then function as a normal MDI
child and the docking state can be changed.

Docking windows

There are three different modes for editor windows in the IBM Rational Sys-
tems Tester framework. These are applied to each diagram window individ-
ually by right-clicking the diagram title bar.

Note
The docking state can not be changed for a window with tabbed documents.

Docked

A docked editor window will align into the IBM Rational Systems
Tester framework like the workspace window or the Output window. It
will be possible to move the windows around to arrange a suitable view.

Floating

A floating window is on top of the IBM Rational Systems Tester frame-
work. It will turn into a docked window if it is moved towards the
framework frame.

MDI child

An MDI child window is positioned into the desktop area. Adjusting
can be done manually inside this area or with commands from the
Window menu.

Auto-hide docked window (Windows)

A window that has a pin symbol in the gripper bar can set to auto-hide mode.
If the pin is pressed, the window will be hidden and a label representing the
window will be displayed instead. By hovering with the mouse over the label
the hidden window will be displayed. Window can be docked again by
clicking on the pin symbol again.

10 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Expand/Contract docked window

When two docked windows share the same side of the main window, a
window can be expanded to take the whole side in possession by clicking on
the arrow symbol on the gripper bar of the window (if available). By doing
this the other windows on the side are minimized. The window can be con-
tracted by clicking on the arrow symbol again.

Stored workspace windows

All windows opened during a session will be reopened when the workspace
is loaded again. The information will be saved in a .ttx file with the same path
and name as the workspace.

See also

“Organizing the view” on page 171

Menu bar and toolbar

When you first start IBM Rational Systems Tester, the toolbars appear just
below the menu bar.

Depending on your workspace preferences, and the size of your screen, you
can display as many toolbars as you want, or none at all. You can add a button
with a command to a toolbar, change the size of the buttons, and move the
toolbars to different locations to suit your needs.

Menu Bar

The menu bar contains well-known menus such as File, Edit, Project, and so
on. Depending on the task you are performing the number of menus differ.

Most menu commands have a shortcut assigned. A list of Useful Shortcut
Keys is found in Common Reference.

You can add commands to the Tools menu allowing you to easy access to
non-IBM Rational tools. This is done from the Tools tab.

As an example, the following procedure demonstrates how to add the Win-
dows Notepad accessory to the Tools menu.

Overview of IBM Rational Systems Tester User Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 11

To add a command to the Tools menu:

1. From the Tools menu select Customize, and then click the Tools tab.

2. Click the New (Insert) button.

3. Type the name of the tool, as you want it to appear on the Tools menu,
and press ENTER.

For example, if you want to add a command for the Windows Notepad
accessory, you might type Notepad.

4. In the Command box, browse or type the path and name of the program,
for example, C:\Windows\notepad.exe.

5. In the Arguments text box, browse or type any arguments to be passed
to the program. Leave this field empty for the Notepad accessory.

Note
You can use the drop-down arrow next to the Arguments text box to display
a menu of arguments. Select an argument from the list to insert argument
syntax into the Arguments text box.

6. The Initial Directory box is used to specify the file directory where the
executable file for the command is located. For the Notepad accessory
this field is left empty.

When the command appears on the Tools menu, you may click it to run the
program.

You can add arguments to be passed to the program by typing them in the
Arguments text box, or set the initial directory for your program by typing it
in the Initial Directory text box.

If the program you are adding to the Tools menu has a .pif file, the startup
directory specified by the .pif file overrides the directory specified in the
Initial Directory text box.

Toolbar

The toolbar allows you to set up a palette of your most common used tools
in order to have quick access to them. Once you have made any changes to
the toolbar, these changes are saved and retrieved for your next work session.

The standard toolbar corresponds to the operations available in the menu bar.
The standard toolbar can be toggled on and off from the View menu (Stan-
dard command) or from the toolbar area’s shortcut menu, the other toolbars
only from the shortcut menu.

12 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Note
Not all toolbars and commands can be modified. This feature belongs to the
IBM Rational Systems Tester framework and is not supported for toolbars
related to editors.

To add a toolbar button:

1. Make sure that the toolbar you want to change is displayed.

2. From the Tools menu select Customize, and then click the Commands
tab.

3. Add a button by clicking the name of the category in the Categories box,
and then dragging the button or item from the Buttons area to the dis-
played toolbar.

To delete a toolbar button:

1. Make sure that the toolbar you want to change is displayed.

2. From the Tools menu select Customize, and then click the Commands
tab.

3. To delete a button, drag it off the toolbar.

When you delete a default button from a toolbar, the button is still available
in the Customize dialog box. However, when you delete a toolbar button with
a custom appearance, its appearance is permanently lost, although the com-
mand is still available (Customize dialog box, Commands tab).

Hint
To save a toolbar button with a custom appearance for later use, create a
toolbar for storing unused buttons, move the button to this storage toolbar,
and then hide the storage toolbar.

Show or hide toolbars:

1. From the Tools menu select Customize, and then click the Toolbars tab.

2. Select and clear toolbars to show or hide in the Toolbars list.

3. Click Close.

alternatively

1. Right-click anywhere in the toolbar area in the user interface.

2. Click the toolbar you want to show or hide. The menu closes automati-
cally.

Overview of IBM Rational Systems Tester User Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 13

To change the appearance of toolbar buttons:

1. From the Tools menu select Customize, and then click the Toolbars tab.

2. Select the following options:

– Show Tooltips to enable tooltips to be displayed when the cursor
moves over a button or field in the toolbars.

– Large Buttons to display larger sized buttons in the toolbars.

3. Click Close.

Status bar

The status bar presents useful information about status of several different
types of tasks, for example it lists errors and tooltips. Here will also be pre-
sented information about progress and current actions.

For TTCN-3 projects and text files the current line number and column posi-
tion are shown in the right most corner of the Status bar.

Line navigation

Navigation to a specific line in a text file is done by pressing CTRL + SHIFT
+ G. Enter the wanted line number in the dialog that opens.

Progress bar

There is one progress bar displayed showing the overall progress when
opening a workspace to the right of the status bar.

There can also be one displayed for the progress of the separate parts of the
loading process displayed in the message field. In this case there will also be
a message explaining the current action in progress.

Options

Tool options affect IBM Rational Systems Tester, not just the current project
or workspace. There are different ways of changing these options:

In the Options dialog, there are different tabs for different options that you
can change. The number of tabs differs depending on what type of project
that is active. To see a description of an option in the Options dialog box,
click the question mark in the dialog box title bar, and then click the option.

14 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

In the Advanced tab you may use a tree view for all options available in the
Options dialog. The Advanced tab is activated from a check box in the Gen-
eral tab. To change the option values in the Advanced tab, select the value
and click F2.

Options file

The option settings can be saved in an options file, .tot. This file can later
be edited.

If the options file is added to a project, you can double-click it in the File
View to open it in an options editor. It is possible to save several options files
in a project and select which one should be used. This is useful if you often
switch options: Instead of changing the options directly, you just change the
priority of the options files.

In the installation there will be a number of files with a .tot extension con-
taining internal framework settings and options. These files should normally
not be edited by the user. Editing a file with a .tot extension may cause loss
of data and incorrect behavior of the tool set. The options controlled should
be edited from the Tools menu Options dialog.

Change options

To change options:

1. On the Tools menu, click Options.

2. In the Options dialog box, select and clear options in the different tabs.
In the Advanced tab press F2 to access an option value.

3. Click OK.

Work with options Files

Save the current options in a new options file:

1. On the Project menu, click Options and then Save As.

2. In the Save As dialog, select a name and location for the options file
(.tot).

3. Click Save.

Overview of IBM Rational Systems Tester User Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 15

4. Click Yes when you are asked to include the options file in your active
project.

By including it in your project, you will be able to open it from the File
View and edit it.

To edit an options file:

1. Make sure that an options file is included in your project, that is, visible
in the File View.

2. Double-click the options file. It will be opened in the options editor.

3. In the options editor, expand the options tree until you are able to see
your options.

4. Select an option.

5. On the selected option, click the Value field and press F2. This will make
the field editable.

6. Enter a new value.

7. Close the file when you are finished. You will be prompted to save your
changes.

Select which option file to use:

1. This is only possible when there are more than one options file included
in your project, that is, visible in the File View.

2. On the Project menu, click Options and then Files.

3. In the Option Files dialog box, select an options file in the list and click
the arrow buttons to move it up or down. The options file on top is the
options file that will be used.

4. Click OK.

Customizing

It is possible to customize the appearance of the user interface. In the Cus-
tomize dialog box (Tools menu), there are options for customizing toolbars,
the Tools menu, window layouts, and add-in modules. This is further de-
scribed in Chapter 73, Customizing Tau.

16 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Local setup (UNIX)

Windows directory

In your home directory a new directory named windows will appear con-
taining a set of files used to align the properties for IBM Rational Systems
Tester between Windows and UNIX. The information stored in these files is
not to be edited by the user.

Copy and Paste

Selection of text and using the middle mouse button for directly pasting it in
another terminal window is supported only from the tabs in the Output
window.

The dedicated buttons for Cut, Copy and Paste commands found on Solaris
native terminals are not supported.

File dialogs

It is possible to filter displayed files in file dialogs with for example “*.u2”
to show only this file type.

Generate support request

A tool for sending information to support can be opened by clicking Gen-
erate Support Request on the Help menu.

From the support tool it is possible to create screen dumps and video clips of
Tau and send information directly to IBM Rational support.

Working with Workspaces

Workspaces - overview

A workspace is a personal working area, where you can add your projects. It
allows you to organize your projects in a logical way. You can define a
number of different workspaces, but you can only work in one workspace at
a time. There is no upper limit regarding the number of added projects.

Working with Workspaces

June 2009 IBM Rational Systems Tester 3.3 User Guide 17

You cannot share your workspace with other users, since the content of your
workspace may not coincide with the needs of other users.

Projects are stored with path names relative to the workspace. This allows
you to move a workspace and all its contents from one location to another
without losing any information.

The information included in a workspace is stored in a text file with the .ttw
extension.

Create a new workspace

IBM Rational Systems Tester always starts with an empty active window. If
you have not recently used workspaces, you may create a new one.

1. On the File menu, click New.

2. Click the Workspaces tab.

3. Type a name for your workspace.

4. Choose the location for your workspace. A folder with the same name as
the workspace is created by default.

5. Click OK.

Open a workspace

Workspaces may be opened, closed, and saved, just as in any other standard
application. Workspaces that you recently have worked with are available in
a shortcut list. The list can contain up to eight different workspaces.

Open a workspace:

1. On the File menu, click Open Workspace.

2. In the Open dialog, select or browse to the file you want to open. Click
Open.

Open a recently opened workspace

1. On the File menu, point to Recent Workspaces. A list of the eight most
recent workspaces is displayed.

2. Select a workspace.

18 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Save and close a workspace
• Save a workspace: On the File menu, click Save Workspace.

• To close a workspace: On the File menu, click Close Workspace.

Add a project to a workspace

There are two methods of adding a project to your workspace:

From the File View:

1. In the File View, right-click your workspace, and click Insert project...
from the shortcut menu.

2. In the Open dialog box, select the project you want to add.

3. Click Open.

From the Project menu:

1. On the Project menu, click Insert Project into Workspace... The Open
dialog box appears.

2. In the Open dialog box, select the project you want to add.

3. Click Open.

See also

“Create a new project with a new workspace” on page 20.

Working with Projects

Projects - overview

A project contains a number of references to source files that together with
instructions on how to compile them produce a program or final binary files.

A project must be inserted in a workspace and you can work with many
projects within the same workspace, allowing for diagrams and documents
to be moved within and between projects. The same project can also be in-
cluded in different users’ workspaces. Projects that you add to a workspace
can be located on other paths, on different drives, or directly in the root di-
rectory. This enables your team to work collectively with the same projects.

Working with Projects

June 2009 IBM Rational Systems Tester 3.3 User Guide 19

If there is no workspace open when you create a project, a directory for the
workspace and a workspace file are also created. Alternatively, you may add
a project to an existing, open workspace.

The files that are referenced in a project can be of any type and for conve-
nience they can be organized in user-created folders.

A project is not individual and can therefore be shared between users. Some
settings are global: if one user adds a file, it is added to the projects of other
users as well. Some settings, such as which font to use, are not global.

The information included in a project is stored in a text file with the .ttp ex-
tension. Files included in a project are stored with relative paths in the project
file.

Active project

When you add a project to a workspace, it will become the active project. All
commands on the Project menu will be applied to the active project. If you
have more than one project in the open workspace, you must actively choose
which project that should be active in the Active Project list that is available
in the toolbar.

Starting to work with projects

When using the tool for the first time, you can, for example, create a file first
and later add this to a project. But the recommended workflow is to create a
project in a workspace, and subsequently add files. By doing this, you are in
a better position to control your project.

You can either create a new workspace or work with an existing one for each
project. Files in a project may be stored locally, or on other locations. The
objective is to offer you a working environment that optimally suits your, and
your project’s, needs.

As you create and modify a project, you can view the components included
in the various views in the workspace window.

You have multiple choices to change and set your preferences, either on tool
level or for your current project. It is for example possible to create custom
toolbars, menu commands, and buttons.

20 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Create a new project with a new workspace
1. On the File menu, click New.

2. Click the Projects tab.

3. Select the type of project you want to create.

4. Type a name for your project. Using the browse button, you can also
change the location of the project. The option Create new workspace is
selected by default.

5. Click OK.

6. If you want, you can change the project settings. Click the help button to
receive more information about the settings.

7. Click Next and Finish.

Create a new project in an existing workspace
1. Open the workspace you want to add the new project to.

2. On the File menu, click New.

3. Click the Projects tab.

4. Select the type of project you want to create.

5. Type a name for your project and click Add to current workspace.

6. Click OK.

7. If you want, you can change the project settings. Click the help button to
receive more information about the settings.

8. Click Next and Finish.

Insert an existing project in a workspace

A project is handled within the workspace it is located in. The workspace can
be opened, closed, and saved, just as in any other standard application. A
project file (.ttp) can be inserted in any workspace, not just the one it is cre-
ated in.

To insert a Project in an existing workspace:

1. Go to the File View tab in the Workspace window.

2. Right-click the workspace icon, on the shortcut menu select Insert File.
The Open dialog box appears.

3. Find the desired project, and click Open.

Working with Projects

June 2009 IBM Rational Systems Tester 3.3 User Guide 21

Note
To be able to view project files it is sometimes necessary to change the file
filter in the Open dialog

See also

“Menu bar and toolbar” on page 10.

“Add a project to a workspace” on page 18.

Add files and folders to your project

Add files to your project

You can add any type of files to your project, including project and work-
space files. A workspace added to a project is treated like a normal text file,
without any functionality. Using drag and drop you can move your files to
and from folders.

There are two ways of adding files to your project.

From the File View:

1. In the File View, right-click the project or a folder, and click Insert
files... from the shortcut menu.

2. In the Open dialog box, select the files you want to add

3. Click Open.

From the Project menu

1. On the Project menu, point to Add to Project and click Files.

2. In the Open dialog box, select the files you want to insert

3. Click Open.

Note
When you add file from the project menu, you cannot decide the target
folder. All files will be added at the root level of the project.

22 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Open a recently accessed file

1. On the File menu, point to Recent Files. A list of the most recent files is
displayed.

2. Select a file.

Add folders to a project

You can add folders to a project to logically organize your files. These
folders are only defined in the project files – they are not represented in your
file system. The file path in the operation system will remain unchanged.

When adding folders you can define a list of file extensions. These indicate
what type of files that will be included in the folder. The list will be used as
a filter when you add files to a folder. Only the files with the listed extensions
will be displayed in the add file dialog by default.

There are two ways of adding a folder to your project:

From the File View:

1. In the File View, right-click the project, and click New Folder from the
shortcut menu.

2. In the New Folder dialog box, type a name in the Folder name box.

3. Type one or more optional extensions in the Folder extension box in the
form of *.<extension>. If you type more than one extension, separate
them with a semicolon (;).

4. Click OK.

From the Project menu:

1. On the Project menu, point to Add To Project and click New Folder.

2. In the New Folder dialog box, type a name in the Folder name box.

3. Type one or more optional extensions in the Folder extension box in the
form of *.<extension>. If you type more than one extension, separate
them with a semicolon (;).

4. Click OK.

Working with Projects

June 2009 IBM Rational Systems Tester 3.3 User Guide 23

Activate a project

To enable any functionality for a project, it must be activated. Only one
project in your workspace can be activated at a time. To activate a project do
one of the following:

• In the File View, right-click the project. Click Set as Active Project
from the shortcut menu.

• In the Project toolbar select the desired project in the Active project list.

• In the Project menu open the Configurations dialog and use the Set ac-
tive button in the Configurations dialog.

Note
If you only have one project in your workspace, this project will automati-
cally be set as active.

See also

“Project settings and configurations” on page 24

File and folder properties

You can view, and in some cases edit, properties for selected workspace
items. Properties will only be available when a single item is selected in File
View.

Properties for files, projects, and workspaces are view-only. Properties for
folders are fully editable.

To view file and folder properties:

• In the File View, right-click an item and select Properties. You can also
press ALT + ENTER.

Set or change folder properties:

1. In the File View, right-click a folder and select Properties.

2. In the Properties Editor box, change the Folder name and File exten-
sions.

3. Optional: press ENTER to apply and verify changes.

4. Unless you want to view or change preferences for other workspace
items, close the dialog box by clicking the close button.

24 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

To close the dialog box without saving any changes:

• Press ESC.

Create, open and close files

To create a new file:

1. On the File menu, click New.

2. Select the file type you want to create.

3. Specify File name and File location.

4. If you have an open project, you can decide if you want to include the file
in the project.

5. Click OK.

To open a file:

1. On the File menu, click Open.

2. In the Open dialog box, select or browse to the file you want to open.

3. Click Open.

Or:

1. On the File menu, click Recent Files. A list of the 8 most recent files is
displayed.

2. Select file.

To close a file:

• On the File menu, click Close.

Project settings and configurations

Project settings, available in the Settings dialog box, include options for anal-
ysis, code generation, building, execution, and logging.

When you change options in the Settings dialog box, they will be saved in
the currently active configuration. A project may contain several configura-
tions. You can Activate a project to set its configuration to be active in the
Configurations dialog box, or in the corresponding lists in the toolbar.

Working with Projects

June 2009 IBM Rational Systems Tester 3.3 User Guide 25

Project settings

There are two ways of changing the settings for your project:

From the File View:

1. In the File View, right-click the project, and click Settings on the
shortcut menu.

2. The Settings dialog box appears. Change the settings according to your
needs.

3. Click OK.

From the Project menu:

1. In the Project toolbar select the desired project in the Active configura-
tion list.

2. On the Project menu, click Settings.

3. The Settings dialog box appears. Change the settings according to your
needs.

4. Click OK.

Project Configurations

To add a new configuration:

1. On the Project menu, click Configurations.

2. In the Configurations dialog box, click Add.

3. In the Add Configurations dialog box, type a name for the configuration,
select an existing configuration to copy the settings from, and select
which project the new configuration should be associated with.

4. Click OK.

To remove a configuration:

1. On the Project menu, click Configurations.

2. In the Configurations dialog box, select a configuration.

3. Click Remove.

4. Click OK.

26 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Discovery based storage

Introduction

Discovery-based storage is necessary to support scenarios where the user
does not wish to have one file (the project file) to have explicit knowledge of
all files contained in a model.

Discovery Path

A discovery path, is a property of a project, and contains a list of locations in
which IBM Rational Systems Tester will search for files. Searching is recur-
sive.

This property is edited through a text field called “discovery location” on the
folder “Discovery” property page.

A discovery location may be a URN reference or a relative path, or a full path
to a u2 model.

• If a path is entered manually (without using the browse button) then the
path will not be altered by IBM Rational Systems Tester.

• If the path is entered using the browse button the path will be adjusted
with respect to the IBM Rational Systems Tester->Options->General-
>URN map. That is, if the file is located under a URN location, then a
URN reference will be calculated and saved.

• If the path is entered using the browse button, and the path is not located
under a URN location but is relative to the project, then this relative path
is calculated and saved.

If a path is entered manually (without using the browse button) then the path
will not be altered by IBM Rational Systems Tester.

However, if the path is entered using the browse button the path will be ad-
justed with respect to the IBM Rational Systems Tester->Options->General-
>URN map. That is, if the file is located under a URN location, then a URN
reference will be calculated and saved.

If he path is entered using the browse button, and the path is not located under
a URN location but is relative to the project, then this relative path is calcu-
lated and saved.

Working with Projects

June 2009 IBM Rational Systems Tester 3.3 User Guide 27

If the path is not in the same filesystem as the project then path is left as-is
and saved.

A Shallow modifier may be added to a discovery location and has the same
semantics as the .u2shallow file - see below.

Wild cards are not supported in names of discovery locations.

Resource Match Rules

Resource Match Rules are regular expressions which specify which files
should be covered by Discovery-based storage.

The set of Match Rules may be either inclusive or exclusive.

The rules are editable through the “discovery file filter” text field on the
folder property page.

The rules are a semicolon separated list of file matching patterns.

If the list is empty (or non-existent) then everything is included

The entries are applied in the order they appear in the list - first match wins.

Directory Match Rules

Directory Match Rules are regular expressions which specify which directo-
ries should be covered by Discovery-based storage.

The set of Match Rules may be either inclusive or exclusive.

The rules are editable through the “discovery directory filter” text field on the
folder property page.

The rules are a semicolon separated list of directory matching patterns.

If the list is empty (or non-existent) then everything is included.

The entries are applied in the order they appear in the list - first match wins.

28 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Directives
• Ignore Directives

If a file named .u2ignore exists in a directory being searched, the direc-
tory and all files within it will be ignored.

If a file named “File.u2.u2ignore” exists then this means that the file
“File.u2” will be ignored.

If a file named directory.u2ignore exists then this means that the direc-
tory “directory” will be ignored.

• Shallow Directives

If a file named .u2shallow exists in a directory being searched, all sub-
directories within it will be ignored.

If a file named directory.u2shallow exists in a directory being
searched, then all subdirectories within “directory” will be ignored.

• Discover Directive

A file with the extension .u2discover may be used to provide an addi-
tional list of discovery locations, as well as a resource inclusion and ex-
clusion list.

Note
Files with the extension *.u2x are always ignored.

• .u2discover file format

#This is a .u2discover file
DiscoveryPath:
#Do not recurse into subdirectories of the following
location
Loca*tion1(Shallow)
Loca*tion2
ResourceInclusion(inclusive):
*.foo
*.boo
DirectoryInclusion(exclusive):
#Skip CVS subdirectories
CVS

Working with Projects

June 2009 IBM Rational Systems Tester 3.3 User Guide 29

The Shallow modifier can be added to discovery locations. This is inter-
preted in the same way as the .u2shallow file extension (see above).

A ResourceInclusion section may be qualified by either “inclusive” or
“exclusive” (default is “inclusive” if not present). Lines starting with '#'
are ignored. All whitespace-only lines are ignored. Sections can come in
any order. Sections must start in first column. All sections are optional.

A DirectoryInclusion section may be qualified by either “inclusive”
or “exclusive” (default is “inclusive” if not present).

Case is not significant in keywords and directives.

I18N

The .u2discover file is assumed to contain valid UNICODE characters in
a UTF-8 stream. BOM or similar magic numbers are ignored.

Interpretation Of Directives

Directory/Resource Inclusion rules are applied per directory/resource. The
inclusion rules present in the project are added to the match rules first, then
when each directory is visited list of match rules present in the .u2discover
file (if present) is appended. When a directory/resource is applied to the
match rules, the first match wins. The additional .u2ignore/.u2shallow
files are used to override any of the previously named matches.

Generic SCC/Synergy

The Generic SCC/Synergy integration works for files that are discovered in
the same way as for normal files.

Making Discovered Files Explicit In A Project

To make a discovered file explicit in a project, simply drag it from its dis-
covery folder (in the File View) and drop it on the project node.

Allowing An Explicit File To Be Discovered Instead

Delete the file reference from the File View (choose “remove elements” from
the subsequent pop-up). And make sure that the directory, in which the file
is contained, is in the DirectoryPath property. Save and reload the project.

30 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Filter syntax

The only file matching wildcard supported is “*”.

Manual Rediscovery

It is possible to force a discovery after the project is loaded. The project con-
text menu has an entry called “Discover Files”. This only adds new files, it
does not remove files that no longer exist.

Project Reports (TTCN-3 projects only)

You have different alternatives to create reports from your project:

• By generating an HTML report on all language elements, that is TTCN-
3 objects, in your active project.

Click the Report on TTCN-3 objects button in the toolbar. An HTML
viewer is activated, allowing you to navigate through the objects through
different lists:

– Modules

– Imports

– Constants

– Ports

– Components

– Groups

– Simple types

– Structured types

– Templates

– Signatures

– Test cases

• By generating a list of all TTCN-3 objects in the output window, sorted
by when it appears in the source.

Click the List Objects button in the toolbar. All objects are displayed in
the Objects tab in the output window, with information on line number,
what kind of object it is, and path.

Working with Projects

June 2009 IBM Rational Systems Tester 3.3 User Guide 31

• By using the Script Wizard.

Click the Script Wizard button in the toolbar. An HTML viewer is acti-
vated, allowing you to navigate in an UML representation of your
project, and to create Tcl scripts to extract information from this model.

See also

32 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

How to Use Help
This help file includes basic and advanced topics covering the supported
functionality.

Additional product documentation is available in the section “Additional Re-
sources” on page 827. There you can find tutorials, language descriptions,
the installation guide and links to external sites, for instance the IBM Ra-
tional Systems Tester Support site.

Additional documentation in Adobe PDF format is also available on the in-
stallation CD.

Navigate in the help file

The help file contains functionality that helps you to easier find the informa-
tion that you are looking for:

• “Search” on page 32

• “Search highlighting” on page 33

• “Index” on page 33

• “Locate search or index results” on page 34

• “Bookmark topics in the help file” on page 34

• “Print help topics” on page 34

Search

To perform a full-text search:

1. In the help viewer, click the Search tab.

2. Type your search string in the Type in the word(s) to search for field.
You may use regular expressions, operators, and nested expressions
when searching.

3. Optionally, you may check some of the following options: Search pre-
vious result, Match similar words and Search titles only.

4. Click List Topics.

5. To open a topic, double-click the topic in the Select topic list or select a
topic and click Display.

http://support.telelogic.com/en/tau/" target="_blank
http://support.telelogic.com/en/tau/" target="_blank

How to Use Help

June 2009 IBM Rational Systems Tester 3.3 User Guide 33

Example 1: –––

To search for words beginning with “link”, type the following in the search
field:

link*

–––

Search highlighting

The words that you are searching for are highlighted on all pages where they
are found. If you want to, you can turn off this functionality.

Turn off search highlighting:

1. In the help viewer, click the Options button and then click Search High-
light Off.

2. If you have already performed a search, click the Display button in the
help viewer and the search highlighting disappear.

The search highlighting functionality is now turned off until you enable it
again.

Turn on search highlighting:

1. In the help viewer, click the Options button and then click Search High-
light On.

2. If you have already performed a search, click the Display button in the
help viewer and the search highlighting re-appear.

The search highlighting functionality is now turned on until you disable it
again.

Index

To see the list of index entries, select the Index tab. To find the entry you are
looking for, type the first letters of the word or scroll the list. To view the
entry, double-click the entry or select the entry and click Display.

34 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Locate search or index results

When you are using the search or the index functionality, the topic you are
looking for will be displayed in the right-hand window. To locate where this
topic is listed in the table of contents, click the Locate button. This allows
you to easily find related topics or to learn where this topic is located the next
time you are looking for it.

Bookmark topics in the help file

If you know that there are topics that you will refer to often or that there are
topics that you consider important for your work, you can bookmark them as
you would do in a regular web browser.

Bookmark a topic:

1. Find your topic using the Contents, Index or Search tabs.

2. Click the Favorites tab. The name of the topic is listed in the Current
topic field.

3. Click Add. The topic is now displayed in the topics list.

Print help topics

You can print a single topic or you can select to print several topics within
the same chapter.

Print an active topic:

• Right-click the displayed topic in the right-hand window and click Print.
The print dialog opens.

Print a single topic from the table of contents

1. Right-click the topic window in the table of contents and click Print. The
Print Topics dialog opens.

2. Click Print the selected topic and click OK. The Print dialog opens.

Print multiple topics:

1. Right-click a book icon in the table of contents and click Print. The Print
Topics dialog opens.

2. Click Print the selected heading and all sub-topics and click OK. The
print dialog opens.

How to Use Help

June 2009 IBM Rational Systems Tester 3.3 User Guide 35

Search syntax in help

The help viewer supports full text search, and you can search for any combi-
nation of letters (a-z) and numbers (0-9). Words like “the”, “a”, “and”, “but”,
are reserved and cannot be searched for. In addition, you cannot search for
punctuation marks such as colon (:), semicolon (;), hyphen (-) and period (.).

You can group search elements by using quotes and parenthesis.

Match similar words

The Search tab in the help viewer includes a Match similar words option.
If you select this, you will be able to find all occurrences of a word, including
common suffixes. For example, if you search for “run”, the words “run”,
“running”, and “runner” will be found, but not “runtime”.

Regular expressions

The following regular expressions may be used when searching the help:

• * for matching 0 or more characters.

• ? for matching 1 characters.

• A string within quotes (“ab cd”) for matching the string literally.

Operators

You may use the following operators to refine a search in the help: AND,
OR, NOT, and NEAR. The search string is evaluated from left to right. See
table below for examples:

Search for this: Type this in the search field

Topics containing “analyze”, “anal-
ysis”, “analyses”, “analyzed”, and
“analyzing”

analy*

Topics containing “analyzer” and
“analyzed”, but not “analyze” or
“analyzers”

analyze?

Topics containing the literal phrase
“analyze and generate”

“analyze and generate”

36 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

Nested expressions

By using parentheses, you may nest expressions to perform a complex search
in the help. An expression within parentheses will be evaluated first, before
the rest of the search expression. Expressions may not be nested more than 5
levels.

Search for this: Type this in the search field

Topics containing both “work-
space” and “file”

workspace AND file

or

workspace & file

or

workspace file

Topics containing either “work-
space” or “file”

workspace OR file

or

workspace | file

Topics containing “workspace” but
not “file”

workspace NOT file

or

workspace | file

Topics containing “workspace” and
“file” close together, that is “work-
space” within 8 words of “file”

workspace NEAR file

Topics containing “workspace” but
not “file”, or topics containing
“workspace” but not “directory”

workspace NOT file OR directory

How to Use Help

June 2009 IBM Rational Systems Tester 3.3 User Guide 37

Search for this: Type this in the search field

Topics containing “workspace”
without either of “file” or “direc-
tory”

workspace NOT (file OR directory)

Topics containing “workspace”
with and “file” and “project” close
together; or topics containing
“workspace” with “directory” and
“project” close together

workspace AND ((file OR direc-
tory) NEAR project)

38 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 1: Introduction to IBM Rational Systems Tester 3.3

June 2009 IBM Rational Systems Tester 3.3 User Guide 39

TTCN-3 Projects

The chapters that are listed under TTCN-3 projects describe functionality
that is exclusive to TTCN-3 projects.

40 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter :

June 2009 IBM Rational Systems Tester 3.3 User Guide 41

2
Supported Languages

This section describes the main languages involved in the IBM Rational Sys-
tems Tester tool set.

About TTCN-3

From a syntactical point of view, TTCN-3 is very different from TTCN-2.
However, much of the well-proven basic functionality of TTCN-2 has been
retained, and in some cases enhanced.

• Core format is a text-based notation

• Core can be viewed as text or in various presentation formats

– Tabular format for conformance testing

– Other standardized formats in the future

– Proprietary formats

These are the objectives for developing TTCN-3:

• Modernization – technology has changed since TTCN-2 was first devel-
oped

• Wider scope of application – should be applicable to many kinds of test
applications not just conformance (development, system, integration)

42 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 2: Supported Languages

• Harmonization – should be the first choice for test specifiers, imple-
menters, and users both for standardized test suites and as a generic solu-
tion in product development.

The main capabilities of TTCN-3 are listed below:

• Dynamic concurrent testing configurations

• Various communication mechanisms (synchronous and asynchronous)

• Data and signature templates with powerful matching mechanisms

• Specification of encoding information

• Display and user-defined attributes

• Test suite parameterization

• Test case control and selection mechanisms

• Assignment and handling of test verdicts

• Harmonized with ASN.1

• Different presentation formats

• Well-defined syntax, static semantics and operational semantics.

Migrating test suites from TTCN-2 to TTCN-3

IBM Rational Systems Tester provides command line converter t2tot3 that
translates test suites written in TTCN-2 into TTCN-3 language. Conversion
rules are based on ETSI TR 101 874 “TTCN-2 To TTCN-3 Mapping“ docu-
ment. The usage is following:

t2tot3 <root 'mp' file> [<'mp' and 'asn' files>]

Converter accepts root test suite module file in ‘mp’ format and additional
test suite ‘mp’ and ‘asn’ files (if any). Converter always produces two files,
one TTCN-3 file and one ASN.1 file (which may be empty).

Note
All TTCN-2 and ASN.1 modules are merged into one TTCN-3 and one
ASN.1 module during conversion.

Some TTCN-2 constructs may not be translated automatically and require
user intervention. Converter prints messages regarding every such encou-
tered construct. Additionally it places ‘TODO’ comments into generated
TTCN-3 module that help user to locate places that probably require manual
changes to the generated code.

June 2009 IBM Rational Systems Tester 3.3 User Guide 43

Support for TTCN-3 Edition 3 extended log() statement

IBM Rational Systems Tester supports an extended log statement that was
introduced in TTCN-3 Edition 3. Unlike the log statement in previous edi-
tions of TTCN-3, which allowed to log only constant character strings, the
new log statement may log almost every object of the test suite: constants,
variables, module parameters, functions returning values, component refer-
ences, timers, port references etc.

For example:

var integer arr[3] := {1,2,3};
var integer i;
for (i := 0; i <3; i := i+1) {
 log("The value of arr[",i,"]=",arr[i]);
}

The output will be:

• The value of arr[0]=1

• The value of arr[1]=2

• The value of arr[2]=3

Support for TTCN-3 Edition 3 component extension

IBM Rational Systems Tester supports the component extension mechanism
introduced in TTCN-3 Edition 3. The component extension is a mechanism
for inheriting structure of a component type.

For example:

type component BaseComp {
port MyPortType P ;

}
type component ExtendedComp extends BaseComp {

const integer N := 110;
}

This is equivalent to:

type component ExtendedComp {
port MyPortType P;
const integer N := 110;

}

44 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 2: Supported Languages

When defining component types by extension, there is no name clash be-
tween a definition taken from the parent type and a definition added in an ex-
tended type, i.e. there shall not be a port, variable, constant or timer identifier
that is declared both in the parent type (directly or also by means of exten-
sion) and the extended type.

Following example is incorrect:

type component BaseComp {
 timer T
}
type component InterimComponent extends BaseComp{
 port MyPortType P[3] ;
}
type component ExtendedComp extends InterimComp {
 var integer T; //compiler error, T is defined in
BaseComp
}

It is allowed to have one component type, extending several parent types, in
one definition. This is specified as a comma-separated list of types in the def-
inition:

For example:

type component MyComp extends BaseCompA, BaseCompB,
BaseCompC {
 ...
}

Besides providing a well-structured mechanism for reuse of the component
type declarations, the component extension mechanism clarifies the compo-
nent compatibility rules with regards to “runs on” clause. If a function F() is
declared to run on component CompF, then it is allowed to execute F() on any
component that directly or indirectly extends CompF. For component type
compatibility, this means that a component of type ExtendedCT, which ex-
tends BaseCT, is compatible with BaseCT. Test cases, functions and alt steps
specifying BaseCT in their “run on” clauses can be executed on ExtendedCT.

Note
Component extension may be treated as macro substitution of base compo-
nent body into extended component. Therefore all referenced entities (e.g.
types) should be visible inside the module that contains extended component
(see example below).

Example 2

module BASE {

June 2009 IBM Rational Systems Tester 3.3 User Guide 45

const integer gloC := 1

type component CT {
const integer compC := gloC

}
}

module INH {
import from BASE {type CT} //gloC is not imported
type component MTC extends CT
{

// ERROR “gloC not defined”
}

}

This example is not correct because gloC constant is not imported into INH
module and hence effective definition of MTC component references unde-
fined gloC object. To fix this example import statement should either include
gloC constant or import all definitions from BASE module.

––

About ASN.1

ASN.1 is the acronym for Abstract Syntax Notation One, a standardized no-
tation for describing structured information, and in particular, data types.

The first appearance of ASN.1 was made public in 1984 by ITU-T. Since
then, it has been standardized internationally and widely used in the specifi-
cation of communication protocols and in many other standard protocols.
With ASN.1, it is possible to view and describe the relevant information and
its structure at a high level with no need to be concerned with low-level in-
formation representation.

Abstract syntax and transfer syntax are the main concepts that are covered in
the ASN.1 language definitions. The abstract syntax is the form that would
normally appear in a standard and is used to describe protocol data unit and
other data structures at the level of human readability. The transfer syntax de-
fines the specific encoding rules that are used in a real implementation of a
protocol that converts the abstract form to the stream of bits that are sent over
a communication channel. Typical encoding rules are Basic Encoding Rules
(BER) and Packed Encoding Rules (PER).

46 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 2: Supported Languages

Supported Character Encoding

In the list below, you find the character encoding supported. The support
means that a file may be edited and saved with the same encoding as it has
been opened with. However, when you create a new file, the encoding will
always be ANSI. For all files, you may select an encoding when saving as.

When you search by using Find in files, Unicode files will not be recognized.

The following character encoding is supported in Rational Systems Tester
editors:

• ANSI

• UniBE with and without BOM

• UniLE with and without BOM

• UTF-8 with BOM

• UTF-8 without BOM

Note
UniBE = 2-byte Unicode Big Endian
UniLE = 2-byte Unicode Little Endian
BOM = Byte Order Mask

TTCN-3 Language Support

IBM Rational Systems Tester supports TTCN-3, as defined in ETSI ES 201
873-1 V2.2.1.

TTCN-3 Limitations
• Only 64 bit size signed integers are supported.

• Predefined sizeoftype function may not be used for imported ASN.1
types.

• Language specification for the TTCN-3 module is used only to resolve
backward compatibility issues between TTCN-3 language editions.

• ‘char’ datatype still is a predefined type and may not be redefined. Type
compatibility rules between char and charstring datatypes conform to
TTCN-3 Edition 2.2.1.

June 2009 IBM Rational Systems Tester 3.3 User Guide 47

TTCN-3 Constructs Not Supported
• Object Identifier – is supported as datatypes but not as qualifier for im-

port declarations

Backward compatibility in TTCN-3

TTCN-3 Edition 3 is almost fully backward compatible with the TTCN-3
Edition 2. However there is a couple of issues that you need to be considered:

• The behavior of “oct2str” and “str2oct” predefined functions has been
changed. New functions “oct2char” and “char2oct” have been introduced
in Edition 3 that perform exactly the same as “oct2str” and “str2oct” in
Edition 2. In other words “oct2str” in Edition 2 equals to “oct2char” in
Edition 3 and “str2oct” in Edition 2 equals to “char2oct” in Edition 3.

• “str2int” function reports runtime error if provided string doesn’t repre-
sent valid integer value (e.g. contains characters). In Edition 2 “str2int”
returned zero in erroneous situations without reporting errors.

Rational Systems Tester provides easy and convenient way of resolving
above-mentioned issues. It’s based on explicit module language specifica-
tion for a TTCN-3 module.

Example 3

module My_Edition_3_module language “TTCN-3:2005”
{ … }

––

“TTCN-3:2001”, “TTCN-3:2003” and “TTCN-3:2005” are three predefined
language specifications that correspond to Edition 1, 2 and 3 of the TTCN-3
language.

By default (without language specification) Rational Systems Tester TTCN-
3 compiler treats TTCN-3 files as defined in Edition 3 and it reports warnings
for all places with changed behavior. You may explicitly define language for
the module and resolve the ambiguities. If you define language as “TTCN-
3:2005” then compiler stops reporting warnings while keeping behavior for
this module. If you specify “TTCN-3:2003” language then behavior of
“oct2str”, “str2oct” and ”str2int” functions will conform to Edition 2.

48 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 2: Supported Languages

ASN.1 Language Support

IBM Rational Systems Tester supports a subset of the basic ASN.1 notation
as defined in X.680-X.683, X.690, and X.691.

ASN.1 EXTERNAL type support

Rational Systems Tester supports ASN.1 EXTERNAL type as defined in
ASN.1 1990 standard. ASN.1 module that contain definitions with EX-
TERNAL type and that is imported into TTCN-3 module should specify
compiler option: STANDARD-VERSION=1990.

Example 4(Using EXTERNAL type in ASN.1 module) ––––––––––––––––––

--$STANDARD-VERSION=1990
MyASNModuleDEFINITIONS AUTOMATIC TAGS ::=
BEGIN

MyExternal ::= EXTERNAL
END

–––

ASN.1 1990 defines EXTERNAL type as:

EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE
{

direct-reference OBJECT IDENTIFIER OPTIONAL,
indirect-reference INTEGER OPTIONAL,
data-value-descriptor ObjectDescriptor OPTIONAL,
encoding CHOICE {

single-ASN1-type [0] ANY,
octet-aligned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING,

}
}

This definition is translated into TTCN-3 type as defined in ASN.1->TTCN-
3 translation rules in TTCN-3 standard.

Although compiler generates BER encoders and decoders for EXTERNAL
type user has to provide user-defined encoder and decoder for "encoding"
field of EXTERNAL type (since ANY type may hold value of arbitrary
ASN.1 type not known to the decoder). This inline CHOICE type is explici-
fied by the compiler and usually receive name
"EXTERNAL_expl_encoding".

June 2009 IBM Rational Systems Tester 3.3 User Guide 49

However this name should not be used to check whether certain type pointer
corresponds to the "encoding" type. Such check should be performed by ob-
taining type pointer to the EXTERNAL type and then getting type pointer for
"encoding" field.

For example, following code may be used to set user-defined encoder and de-
coder for explicified "encoding" type. Usually it's placed in codec setup func-
tion.

Example 5(Setting encoder and decoder for EXTERNAl type) –––––––––––

if (strcmp(t3rt_type_definition_name(type, ctx),
"EXTERNAL") == 0)
{

t3rt_type_set_encoder(t3rt_type_field_type(type,
t3rt_type_field_index(type, "encoding", ctx), ctx),
encode_external, ctx);

t3rt_type_set_decoder(t3rt_type_field_type(type,
t3rt_type_field_index(type, "encoding", ctx), ctx),
decode_external, ctx);
}

––

When implementing encoder and decodeer for EXTERNAL type it’s neces-
sary to keep in mind following issues.

The task of the user-defined encoder is to encode selected CHOICE alterna-
tive into bit string as specified in BER encoding rules. The trivial encoder ob-
tains the value of selected alternative and invokes encoder for it.

Example 6(Example encoder for the EXTERNAL type) –––––––––––––––––

t3rt_codecs_result_t encode_external(t3rt_value_t value,
t3rt_binary_string_t encoded_data, t3rt_context_t ctx)
{

//get alternative value
t3rt_value_t union_value = t3rt_value_union_value(value,

ctx);
//invoke encoder for it
return t3rt_encode(union_value, encoded_data, ctx);

}

––

If "single-ASN1-type" alternative is selected then "encode_external" func-
tion simply calls generated encoder for the type that is the type of the value
stored in "single-ASN1-type" field.

50 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 2: Supported Languages

The task of the user-defined decoder is to decode received bitstring that con-
forms to BER encoding rules. Prior to calling decoder TTCN-3 runtime
system instantiates new value of "encoding" type and sets certain alternative
depending on the service information stored inside the received message. Se-
lected alternative may be queried using t3rt_value_union_index func-
tion. t3rt_value_union_value function may be used also.

Decoder may instantiate new value instance of "encoding" type and over-
write those instantiated by the runtime system.

Since ANY type may represent ASN.1 value of arbitrary type decoder needs
some hints on what is the actual type of transmitted value. This information
is usually passed in the "direct-reference" or "indirect-reference" fields. De-
coder (as well as encoder) may query this information. This may be done by
obtaining pointer to the enclosing "EXTERNAL" value and then querying
"direct-reference" and "indirect-reference" fields using
t3rt_field_by_name function. Enclosing "EXTERNAL" value may be
obtained using t3rt_value_parent function.

Example 7(Example decoder for the EXTERNAL type) –––––––––––––––––

t3rt_codecs_result_t
decode_external(t3rt_binary_string_iter_t * encoded_data,
t3rt_type_t type,
t3rt_alloc_strategy_t strategy,
t3rt_value_t * decoded_value,
t3rt_context_t ctx)

{
t3rt_value_t value;
t3rt_codecs_result_t result;
t3rt_type_t actual_type;
t3rt_value_t parent_value;

//get reference to the enclsosing "EXTERNAL" type value
parent_value = t3rt_value_parent (*decoded_value, ctx);
//calculate type of the transmitted value
actual_type =

getTypeOfTransmittedValue(t3rt_field_by_name(parent_value,
"direct_reference", ctx);
//invoke decoder
result = t3rt_decode(encoded_data, actual_type, strategy,

&value, ctx);
if (result == t3rt_codecs_result_succeeded_c)
{
<fill "decoded_value" with "value">

}
return result;

}

–––

June 2009 IBM Rational Systems Tester 3.3 User Guide 51

Note
User-defined encoder and decoder should conform to BER encoding rules.

ASN.1 Limitations
• An ASN.1 file may only contain one module.

• An ASN.1 file must be encoded in ASCII.

• PER is not supported for EXTERNAL type.

• EXTERNAL type values defined inside ASN.1 module are not translated
into TTCN-3 module.

• “data-value-descriptor” field in EXTERNAL type may contains only
ASCII characters and its length is limited to 1000 symbols.

Compatibility with TTCN-2

TTCN-2 test suites (for example created in IBM Rational TTCN Suite)
cannot be opened directly in IBM Rational Systems Tester. You may use
converter supplied with Rational Systems Tester to translate test suites from
TTCN-2 to TTCN-3 language.

52 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 2: Supported Languages

June 2009 IBM Rational Systems Tester 3.3 User Guide 53

3
Editing Abstract Test Suites

Using IBM Rational Systems Tester, you can create, edit, and analyze your
abstract test suites (ATS).

You organize your projects, files, and project configurations in a workspace.
A workspace consists of a workspace file in a workspace directory. This file
describes the workspace and its contents. When a project is created for the
first time, a directory for the workspace and a workspace file is also created.
In addition, a makefile configuration file is also created.

A project may include various file types, such as TTCN-3, ASN.1, HTML,
and Tcl. When editing, you may perform advanced find and replace opera-
tions in a single file or multiple files, including using regular expressions and
fast incremental searching. It is possible to navigate through sections of
TTCN-3 code by matching group delimiters, by using bookmarks, or by
using the Go To dialog box. You can also use the Script Wizard to navigate
in a UML representation of a TTCN-3 project – presented as HTML files –
and to create Tcl scripts to extract information from this model.

54 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 3: Editing Abstract Test Suites

Editing Abstract Test Suites
When editing TTCN-3 files, you have access to several editing features, such
as syntax coloring, entity lists, and bookmarks to simplify your test suite de-
velopment. In addition to this, you can also edit several other file types such
as ASN.1, text, C, and makefiles.

Most of the editing procedures should seem familiar if you have used other
Windows-based text editors. For example:

• Cutting, copying, pasting, and deleting text

• Undoing and redoing editing actions

• Using the drag-and-drop feature

Hint
While editing, you can right-click to display a shortcut menu of frequently
used commands such as cut, paste, and copy.

When you cut text from a file, the text is removed from your file and placed
on the clipboard. When you delete text from the file, the text is removed from
your file, and the clipboard is not used. Commands that use the clipboard
overwrite whatever was previously placed onto the clipboard by other com-
mands or other applications.

General Editing

Save Files, Projects, and Workspaces

Save changes while editing:

• On the File menu, click Save,

or

Click Save in the toolbar.

Save all files in the workspace:

• On the File menu, click Save All,

or

Click Save All in the toolbar.

General Editing

June 2009 IBM Rational Systems Tester 3.3 User Guide 55

Save as different file type:

1. On the File menu, click Save as.

2. In the Save as box, enter the new file name.

3. Click Save.

Save workspace:

• On the File menu, click Save Workspace.

Note
This procedure saves your workspace, that is your .ttw file, not the
projects, or files, in your workspace. The .ttw file contains the name of the
workspace, and links to all files in the workspace.

Save project options in an Options file:

1. On the Project menu, click Options and then click Save as.

2. In the Save as box, enter name for the for the options file (*.tot).

3. Click Save.

Find and Replace

To find a text string in the current file:

1. Move the insertion point to where you want to begin your search. The lo-
cation of the insertion point selects a default search string.

2. On the Edit menu, click Find.

or

On the toolbar, click the Find button.

3. In the Find dialog box, type the search text or a regular expression.

4. Select search options: case-sensitive, match whole words, or use regular
expressions.

If you use regular expressions, be sure the Regular expression check box
is selected. You can also use the drop-down list to select from a list of up
to 16 previous search strings.

5. Start the search by clicking Find Next or Mark All.

56 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 3: Editing Abstract Test Suites

6. The Find dialog box disappears when the search begins. To repeat a find
operation, use the shortcut keys or toolbar buttons.

If you selected Mark All, all lines containing one or more occurrences of
found text strings will be marked with an unnamed bookmark. You may
navigate between these by pressing F2 (forward) and SHIFT+F2 (back-
ward). The bookmarks disappear when you close the file.

To find a text string in several files:

1. On the Edit menu, click Find in Files

or

on the toolbar, click the Find in Files button.

2. In the Find in Files dialog box, find the search text or use a regular ex-
pression.

You may click the button to the right of the Find what box to display a
list of regular search expressions. When you select an expression from
this list, the expression is substituted as the search text in the Find what
box.

3. Select files or file types to search in.

4. Select a folder to search in.

5. Optionally, you may click the More button to be able to specify addi-
tional folders to search in.

6. Optionally, you may select Output to pane 2 if you want to display the
search result in the Find in Files 2 tab in the Output window.

If not selected, the result will be displayed in the Find in Files 1 tab. This
means that you may keep one previous search result when you perform a
new search.

7. Click Find. The search result will be displayed in a Find in Files tab.

8. In the Output window, double-click a found occurrence to navigate to the
source.

To find a string using incremental search:

1. Move the insertion point to where you want to begin your search.

2. Press CTRL + I. The status bar reads Incremental Search.

3. Type a search string. As you type each character, the first matching string
in your file will be selected.

General Editing

June 2009 IBM Rational Systems Tester 3.3 User Guide 57

4. Press CTRL + I to go to the next match or press CTRL + ALT + I to go
to the previous match.

5. Press ESC to end the search.

To replace text:

1. Move the insertion point to where you want to begin your search. The lo-
cation of the insertion point selects a default search string.

2. On the Edit menu, click Replace.

3. In the Find what dialog box, type the search text or a regular expression.
You can also use the drop-down list to select from up to 16 previous
search strings.

Note
If you use regular expressions, be sure the Regular expression check box is
selected.

4. In the Replace with box, type the replacement text.

5. Select Find options.

6. Start the search by clicking Find Next, Replace, or Replace All.

To find a line number or named bookmark:

1. On the Edit menu, click Go To.

2. In the Go To what dialog box, select the type of item you want (line or
bookmark).

3. Specify line number or bookmark name.

4. Click Go To.

Hint
Click the pushpin button to keep the dialog box open, on top of other win-
dows.

Note
If the Go To what item is undefined, the Go To button appears dimmed, for
example if you have not defined any bookmarks.

Cut, Copy, or Paste Text
1. Select the text you want to cut or copy.

2. On the Edit menu, click Cut or Copy.

58 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 3: Editing Abstract Test Suites

3. The cut or copied text is placed onto the clipboard and is available for
pasting.

4. Move the insertion point to any window where you want to insert the text.

5. On the Edit menu, click Paste.

Hint
You can also use Drag-And-Drop Editing.

Delete Text
1. Select the text you want to delete.

2. On the Edit menu, click Delete

or

On the toolbar, click the Delete button.

The deleted text is not placed onto the clipboard, and cannot be pasted.

Drag-And-Drop Editing

To move text using drag-and-drop editing:

1. Select the text you want to move.

2. Drag the selected text to the new location.

You may cancel the drag-and-drop editing by right-clicking.

To copy text using drag-and-drop editing:

1. Select the text you want to copy.

2. While pressing CTRL, drag the selected text to the new location.

Undo and Redo Editing

To undo editing:

• On the Edit menu, click Undo

• Press CTRL+Z.

To redo editing:

• On the Edit menu, click Redo

• Press CTRL+Y.

General Editing

June 2009 IBM Rational Systems Tester 3.3 User Guide 59

Note
It is only possible to redo editing that was previously undone.

Select All in an Active File

Select all in an active file, either:

• On the Edit menu, click Select All

• Press CTRL+A

• Right-click in a file and click Select All.

Analyze Source Code

Set Analyzer options:

1. On the Project menu, click Settings and then click the Misc. tab.

2. In Analyzer settings, specify number of errors allowed.

3. Click the TTCN-3 tab.

4. Select a Generation type:

– Only Syntax Analysis

Performs a syntax analysis only, without generating any code.

– Run Analyzer but do not generate code

Performs a full semantic and syntactic analysis, without generating
any code.

5. Click the ASN.1 tab, and change settings for Generation type, as above.

6. Click OK.

To analyze a test suite:

• Click the Analyze button in the toolbar.

• On the Project menu, click Analyze.

To cancel the analysis:

• Click the Stop action button in the toolbar

• On the Project menu, click Stop action.

60 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 3: Editing Abstract Test Suites

Colors and Fonts
You may change the colors of text and background and change the font for
different windows and different file types.

It is also possible to use different colors for various code elements, such as
keywords, comments, and operators. This syntax coloring gives you a visual
guide to the structure and state of your code.

Note
Different file types, for example TTCN-3 or ASN.1, may use different syntax
coloring to simplify editing in several parallel editors.

You find options for changing colors and fonts in the Options dialog box. It
is also possible to make changes directly in .ini files.

Entity List
When you edit a TTCN-3 file, the command CTRL+SPACEBAR displays
an entity list functioning as an advanced completion feature that speeds up
your editing. The list contains possible entities next to an icon, indicating
type of entity. When you select an entity from this list, the appropriate entity
is inserted into your source code.

The entity list box is displayed below the edited line in order not to block the
view of the editing area.

As you type extra characters, an incremental search in the entity list is per-
formed. If the invocation of the command results in a non-ambiguous selec-
tion of an entity, that entity is added directly.

The functionality is context sensitive. When you apply this globally, it lists
all the entities at that level. If you prefix an identifier with a module name, it
only lists entities from that module (and imported by that module).

Type Definitions for User-Defined Entities

When editing, you can also type a “.” (PERIOD) after a type. This command
displays a list of all defined fields in this type.

Scope Line

June 2009 IBM Rational Systems Tester 3.3 User Guide 61

Scope Line
When editing TTCN-3, a red scope line to the left of your code is displayed,
showing the active language element your are editing in.

A missing scope line indicates that an error in the code within the active seg-
ment has been detected. If no correction is made, most of the editing assis-
tance, such as entity lists, cease to function.

Bookmarks
Bookmarks make it possible to navigate back and forth between different
places in the same TTCN-3 file. This is useful when you edit large and com-
plex files.

You may place named bookmarks at the cursor position in the current file by
using the Bookmark dialog box. Later, you may navigate between named
bookmarks – independently of the current file – by using the Bookmark or
Go To dialog boxes.

You may toggle an unnamed bookmark on or off by pressing CTRL+F2.
Press F2 to navigate between unnamed bookmarks in the current file.

Figure 2: Example of a scope line

62 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 3: Editing Abstract Test Suites

Set a named bookmark:

1. Move the insertion point to the line and column where you want to set a
named bookmark.

2. On the Edit menu, click Bookmarks.

3. In the Name box, type a name for the bookmark.

4. Click Add to add the named bookmark to the list of bookmarks and to set
the bookmark at the insertion point.

5. Click Close.

Set an unnamed bookmark:

1. Move the insertion point to the line where you want to set a bookmark.

2. Press CTRL+F2.

3. The line is marked in the left margin.

Remove a named bookmark:

1. On the Edit menu, click Bookmarks.

2. Select the name of the bookmark to remove. You may select several
names.

3. Click Delete.

4. Click Close.

To remove an unnamed bookmark:

1. Move the insertion point to anywhere on the line containing the unnamed
bookmark.

2. Press CTRL+F2.

To go to a named bookmark:

1. On the Edit menu, click Bookmarks or Go To.

2. Select the name of the bookmark to jump to.

3. Click Go To.

Note
If the file containing the bookmark is not currently open, it will be opened.

To go to the next unnamed bookmark:

• Press F2

Go To

June 2009 IBM Rational Systems Tester 3.3 User Guide 63

To go to the previous unnamed bookmark:

• Press SHIFT+F2

Go To
The Go To dialog box allows you to jump quickly to:

• Named bookmarks: Enter a bookmark name or select one from the drop-
down list.

• Lines: Enter the line number.

Go To Definition
IBM Rational Systems Tester provides “Go To Definition” feature in the text
editor. For every TTCN-3 reference (constant, variable, type reference, tem-
plate, function, etc.) it is now possible to jump to the declaration of this ref-
erence.

Right-click on any word in a TTCN-3 source file. In the shortcut menu you
can choose “Go To Definition”, which will bring you to the declaration of the
word under the cursor if this word corresponds to a valid TTCN-3 declaration
visible at this point.

Outline View
When editing TTCN-3 files, you also have access to an outline view. This
view displays your code linearly, whereas the Structured View is sorted by
language elements.

You find the outline view on the left hand pane of the editor. It is minimized
by default.

64 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 3: Editing Abstract Test Suites

TTCN-3 Quick Information

Pop-Up Parameter Information

When you edit a TTCN-3 file, a pop-up parameter information box is dis-
played on mouse-over hovering. This feature provides help when a call to a
given function or method is to be performed. This pop-up box is displayed
below the currently edited line to minimize interruption when you are ed-
iting.

The parameter in bold indicates the next parameter required as you type the
function or test case call.

Pop-Up Type Information

In a very similar way as for functions and their parameters, the type defini-
tion for a given identifier in a pop-up window can be displayed. When
writing test suites you define sequences of send and receive messages, and
this information speeds up development work by minimizing navigation
back and forth among your files.

Identifier information is displayed when you place the pointer over an iden-
tifier.

Note
This only works for identifiers that are of a defined, given type.

Figure 3: The outline view

Search

June 2009 IBM Rational Systems Tester 3.3 User Guide 65

Search
There are two methods for searching: full string search and incremental
search. With full string search, you specify the entire search string before the
search begins. With incremental search, the search is performed as you type
the string.

Full string search

With the advanced find and replace capabilities, you can search for text in a
single source file or in multiple files. You can search for literal text strings or
use regular expressions to find words or characters. A regular expression is
a search string that uses special characters to match a text pattern in a file.
You can use regular expressions, including tagged regular expressions, with
the Find, Find in Files, and Replace commands.

Besides the Find dialog boxes, you may also enter your search string in the
Find text field and click the Find or Find in Files buttons.

Incremental search

Incremental search is performed in the status bar. Start incremental search by
pressing CTRL + I. Then type a text string.

Note
Regular expressions are not supported with incremental searching.

Analysis Settings
When editing TTCN-3 and ASN.1, you can perform an advanced analysis to
ensure correctness, either for a whole file, or for a specific module.

You perform a so called pure analysis session with no code generation as re-
sult as part of your editing, when clicking Analyze on the Project menu.

A simple analysis is also performed continuously during editing, with pos-
sible errors indicated by a missing scope line.

When your test suite is analyzed, the result is presented in the Output
window. There is a reserved tab, Tester Analyzer, for this information and it
is possible to navigate from this to the TTCN-3 or ASN.1 source. You do this
by double-clicking the analysis message, or by right-clicking and selecting
Locate in the drop-down menu.

66 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 3: Editing Abstract Test Suites

Correctly written code always pass the analysis, but if your code includes
features not supported by the Compiler, a warning message about lack of
functionality is displayed. Show-stoppers are reported as errors.

You can select different levels of analysis. One level is to perform simple
syntax analysis only, and another level is to perform a full semantic and syn-
tactic analysis.

Note
These options are set in the Settings dialog box, in the TTCN-3 and ASN.1
tabs respectively.

Reports

All reports from the analysis session are displayed in the Output window. Er-
rors or warnings can be set to be written to file.

Hint
It is possible to set to ignore warnings.

You can specify the amount of messages that is allowed before terminating
the analysis (default setting is 100). This is set in the Misc. tab, in the Settings
dialog box.

Converting TTCN-3 to XML
TTCN-3 files may be converted to XML, optionally including a DTD. This
conversion is a command-line feature that you invoke with the command
t3doc.

The syntax for a t3doc command is the following:

[-dtd] [-m] [-o <output filename> | -stdout] <input filenames>

All options will be described below, but you may also enter t3doc -? to get
help on options.

Converting TTCN-3 to XML

June 2009 IBM Rational Systems Tester 3.3 User Guide 67

Example 8: ––

To generate one XML file with a specified filename, with a DTD, and with
several TTCN-3 files as input:

1. Change directory to \bin in the Rational Systems Tester installation di-
rectory.

2. Enter the following:

t3doc -dtd -o my_xml_output my_test1.ttcn my_test2.ttcn
my_test3.ttcn

––

Example 9: ––

To generate an XML file for each TTCN-3 file:

1. Change directory to \bin in the Rational Systems Tester installation di-
rectory.

2. Enter the following:

t3doc -m my_test1.ttcn my_test2.ttcn my_test3.ttcn

––

Option Explanation

-dtd Includes a DTD first in the XML file

-m Generates an XML file for each TTCN-3 file.
If this option is not set, the output for each
TTCN-3 file will be combined into one single
XML file. In any case, the information will
be the same.

-o <output_filename>
| -stdout

-o <output filename> specifies the name
of the generated XML file. If this option is
set, it overrides the option -m. If this option is
not set, the XML file will have the same name
as the first TTCN-3 file.

-stdout generates XML to stdout instead of
to a file.

<input filename> The names of the TTCN-3 files that are to be
converted, separated by spaces.

68 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 3: Editing Abstract Test Suites

June 2009 IBM Rational Systems Tester 3.3 User Guide 69

4
Creating an ETS

Before you are able to build an executable test suite (ETS), you will have to
generate C code from your abstract test suite (ATS), by using the IBM Ra-
tional Systems Tester Compiler. The Compiler is composed of separate, but
closely integrated, internal tools. One for analysis to ensure correctness, and
one for C code generation. You are able to set different options for compila-
tion, both on a global, project level, and on a module specific level.

The generated code contains ANSI-C representations of the ATS. By using
a third-party ANSI-C compiler, you build the C files, together with integra-
tion files, into an executable test suite. When building, you need to specify a
makefile. This file is also created during code generation.

See also

“Compiler Settings Overview” on page 70 on different options for generating
code from TTCN-3 and ASN.1.

“Makefile Generation” on page 79

“Build Settings” on page 115 in Chapter 5, Building

70 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

Compiler Settings Overview
All settings for the Compiler are set on a global level, that is for all modules
and files in your active project. In the Settings dialog box, you change op-
tions for your TTCN-3 and ASN.1 files.

All options are set in the General Module Settings in the TTCN-3 and ASN.1
tab respectively, where you select your settings through standard check
boxes and drop-down menus. But you also have the possibility to state ex-
ceptions for individual modules in the Module Specific Settings, where you
may enter option flags in a text field.

It is not possible to state exceptions on file level.

When generating code, the Compiler also uses settings in the Build tab,
namely TRI integration, Root module, and Generate makefile.

You can also run the Compiler from the command-line.

TTCN-3 Settings
General settings are selected in the TTCN-3 tab in the Settings dialog box.

Note
The browser pane in the Settings dialog box is provided to give you an over-
view of the active project.

The following options are available:

Verbosity Level

All messages are displayed in the TTCN to C Compiler tab in the Output
window.

• Report errors only

Errors indicate that you will not be able to generate any code.

• Report errors and warnings (default)

Warnings allows code generation, but it is not recommended to proceed
unless you correct your test suite.

• Report errors, warnings and compiler progress

Allows you to inspect the code generation progress, in addition to errors
and warnings.

ASN.1 Settings

June 2009 IBM Rational Systems Tester 3.3 User Guide 71

• Full report

Maximum verbosity.

Generation Type
• Only Syntax Analysis

Performs a syntax analysis without generating any code.

• Run Analyzer but do not generate code

Performs a full semantic and syntactic analysis, without generating any
code.

• Run Analyzer and Generate Code

Performs a full semantic and syntactic analysis and generates code.

Output Directory

Allows you to set a different output directory. The default output directory is
your working directory.

TTCN-3 module specific settings

Allows you to state exceptions to the general settings for specified modules.
These settings override the general settings.

Note
There are also settings relevant for code generation in the Build tab.“Build
Settings” on page 115.

See also

“Running the Compiler from the Command-Line” on page 73

ASN.1 Settings
General settings are selected in the ASN.1 tab in the Settings dialog box.

Note
The browser pane in the Settings dialog is provided to give you an overview
of the active project.

The following alternatives are available:

72 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

Verbosity Level

All messages are displayed in the TTCN to C Compiler tab in the Output
window.

• Report errors only

Errors indicate that you will not be able to generate any code.

• Report errors and warnings (default)

Warnings allows code generation, but it is not recommended to proceed
unless you correct your code.

• Report errors, warnings and compiler progress

Allows you to inspect the code generation progress.

• Full report

Maximum verbosity.

Generation Type
• Only Syntax Analysis

Performs a syntax analysis without generating any code.

• Run Analyzer but do not generate code

Performs a full semantic and syntactic analysis, without generating any
code.

• Run Analyzer and Generate Code

Performs a full semantic and syntactic analysis and generates code.

Use target code identifier prefix

Allows you to specify a prefix in free text, to avoid type or identifier name
clashes in the generated code.

Use output base name for files

Allows you to specify a name in free text for split generated files. If no option
is specified, the module name is used.

Output Directory

Allows you to set a different output directory. The default output directory is
your working directory.

Running the Compiler from the Command-Line

June 2009 IBM Rational Systems Tester 3.3 User Guide 73

ASN.1 module specific settings

Allows you to state exceptions to the general settings for specified modules.
These settings override the general settings.

Note
There are also settings relevant for code generation in the Build tab.“Build
Settings” on page 115.

See also

“Running the Compiler from the Command-Line” on page 73

Running the Compiler from the Command-
Line

You may invoke the Compiler from the command-line with the command
t3cg. All options available are described below. This information is also
available from the command-line. In the bin directory, type t3cg -h or
t3cg -?

Most options are also applicable to ASN.1 module specific settings and
TTCN-3 module specific settings in the Settings dialog box.

t3cg command syntax and semantics

A t3cg command may consist of the following:

[Global Options] -M [-A [Module Options] <ASN.1 module names>
-T [Module Options] <TTCN-3 module names>] -F [-A [File
Options] <ASN.1 file names> -T [File Options] <TTCN-3 file
names>]

Module specific settings syntax and semantics

The ASN.1 module specific settings and TTCN-3 module specific settings in
the Settings dialog box allows you to state exceptions for specified modules.
These settings override the general settings. A module specific setting con-
sists of the following:

[Module Options] <Module names>

74 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

Note
It is not possible to specify a TTCN-3 module name in the ASN.1 tab, or the
other way around.

Global options

Note
All options are case sensitive.

[Global Options] Explanation

-? | -h Displays help on options

-V Displays version information.

-t Specifies that a generated makefile will be adapted
to TRI integration.

-m <number> Specifies the number of analysis errors that should
be allowed before compilation stops. Default
<number> is 100.

-f <filename> Overrides default mcfg file name. By default com-
piler looks for mcfg file with hardcoded name that
depends on platform used (Windows, Linux, So-
laris). Use this switch to specify arbitrary mcfg file.

-k Generates a makefile with extension .new, without
overwriting an existing.
(This option requires the -r option)

-K Generates a makefile and overwrites an existing,
after saving a copy of it.
(This option requires the -r option)

-E Forces generation of a file containing “main“ func-
tion. This switch may be used to generate “main”
function without generating makefile. When make-
file generation is enabled it overrides MAINFILE
option specified in mcfg file.

-B Skips rebuilding of unchanged ASN.1 and TTCN-3
files.

Running the Compiler from the Command-Line

June 2009 IBM Rational Systems Tester 3.3 User Guide 75

Module options

Note
All options are case sensitive.

-M [-A [Module Options] <ASN.1 module names> -T [Module
Options] <TTCN-3 module names>]

-M means beginning of modules section.

-i Enables TCI support. This option is necessary when
using TCI functions in the integration (e.g. when
implementing coders using TCI CD interface).

-R Generates code and makefile with support for Ra-
tional Systems Tester GUI test management. Re-
quires “-i“ switch.

-p Specifies project directory. This option is necessary
when relative paths are used to specify output direc-
tories.

-G Generates code and makefile for debugging.

-O Skips code generation for unused (not referenced)
module-level declarations.

-D Forces strict TTCN-3 standard compliance.
Without this option compiler enables several devi-
ations (e.g. nested comments) from TTCN-3 stan-
dard.

-l <number> Specifies the maximum length of description that is
generated for every template. Default <number> is
100.

-r <name of
module>

Specifies a root module. If no root module is spec-
ified then first compiled module is assumed to be
root.

-T [Module
Options]

Specifies that [Module Options] will be globally
applied to all TTCN-3 modules.

-A [Module
Options]

Specifies that [Module Options] will be globally
applied to all ASN.1 modules.

[Global Options] Explanation

76 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

-A means the following [Module Options] should be applied to <ASN.1
module names>.

-T means the following [Module Options] should be applied to <TTCN-3
module names>.

<ASN.1 module names> means names of ASN.1 modules separated by
space.

<TTCN-3 module names> means names of TTCN-3 modules separated by
space.

Note
A [Module Option] set on module level overrides a [Module Option] set on
global level.

[Module Options] Explanation

-v <number> Sets verbosity level according to <number>.

<number> is the verbosity level value, where

1 means Report errors only

2 means Report errors and warnings (default)

3 means Report errors, warnings and compiler
progress

4 means Full report.

-I <number> Specifies that the analysis should detect non-initial-
ized variables in your TTCN-3 code, according to
<number>.

<number> is how serious non-initialized values
should be treated, where

0 means this type of analysis is switched off

1 means warnings will be issued (default)

2 means errors will be issued, which prevents code
generation.

-w Weak typing analysis: The type checker will not
check for the violation of subtype restrictions.

-s Sets generation type to Only syntax analysis.

Running the Compiler from the Command-Line

June 2009 IBM Rational Systems Tester 3.3 User Guide 77

File options

Note
All options are case sensitive.

-F [-A [File Options] <ASN.1 file names> -T [File Options]
<TTCN-3 file names>]

-F means beginning of files section.

-A means the following [File Options] should be applied to all modules
in <ASN.1 file names>.

-T means the following [File Options] should be applied to all modules
in <TTCN-3 file names>.

<ASN.1 file names> means names of ASN.1 files separated by space.

<TTCN-3 file names> means names of TTCN-3 files separated by space.

-a Sets generation type to Run analyzer but do not
generate code.

-c Sets generation type to Run analyzer and generate
code. This is the default behavior.

-d <path> Sets output directory to the directory specified in
<path>. Default is your project directory. If you put
the path within quotes, you will avoid interpretation
of special characters in a command shell.

-o <file name> Specifies the generated file base name. Default is
the module name. If you put the file name within
quotes, you will avoid interpretation of special
characters in a command shell.

-C <ASN.1 codec> Specifies the type of codec generated for ASN.1
modules. Valid values are “none”, “all”, “no-trans-
lation”, “BER:1997”, “BER:1997-length-form-3”,
“PER-BASIC-ALIGNED:1997”, “PER-BASIC-
UNALIGNED:1997”. Default value is “all”.

[Module Options] Explanation

78 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

Example 10: Using t3cg from the command-line ––––––––––––––––––––––

In this example you wish to stop the Compiler after more than 30 errors and
change the output directory for code generated for all TTCN-3 modules in all
TTCN-3 files. The generation type for the TTCN-3 module module_a
should be syntax analysis only, for module_b it should be syntax and se-
mantic analysis, while for module_c it should use the default generation type
(analyze and generate code). All three modules are contained in a single file,
modules.ttcn. The file my_asn_types.asn contains an ASN.1 module that
should be analyzed and for which code should be generated.

1. Change directory to \bin in the Rational Systems Tester installation di-
rectory.

2. Enter the following:

t3cg -m 30 -T -d “/another/directory” -M -T -s module_a
-a module_b module_c -F -T -e ASCII my_modules.ttcn -A -
e my_asn_types.asn

–––

Example 11: Using the Settings dialog box for specifying module specific

[File Options] Explanation

-e <character en-
coding>

Specifies the character encoding used in the file.

<character encoding> may one of the following:

ASCII

UTF-8

UCS-2

UCS-2LE

UCS-2BE

UNKNOWN FORMAT (default) If you do not
specify a file type, the Compiler will try to deter-
mine it automatically.

If you accidently specify the wrong format, the
compilation will stop.

Compiler Output

June 2009 IBM Rational Systems Tester 3.3 User Guide 79

options –––

In this example, you wish to set verbosity level to Report errors only and gen-
eration type to Run Analyzer but do not generate code for the module
TestModule1, and verbosity level Full report and generation type Only
syntax analysis for the module TestModule2.

1. In the Specific TTCN-3 Module Settings text box, enter:

-a -v 1 TestModule1 -s -v 4 TestModule2

2. Click OK.

––

Compiler Output
The Compiler will generate ANSI-C files, header files, and a makefile, ac-
cording to your settings in the Settings dialog box, in the TTCN-3, ASN.1,
and Build tab. The makefile generation is also based on a makefile configu-
ration file.

Error messages and warnings will be produced according to the following
format:

<absolute pathname>(<line>):Error/Warning Message

Other messages, like progress, will be given in free form.

All output is displayed in the TTCN to C Compiler tab, in the Output
window.

Makefile Generation
When a makefile is generated, information is gathered from the Compiler
and from user-specific input that is provided in an OS specific makefile gen-
eration configuration (mcfg) file.

There are two choices for mcfg file creation. By default mcfg file is created
automatically when you invoke compiler according to the options that you
specify in the project settings. All new projects use this type of configuring
makefile generation. Another choice is to manually define mcfg file using
template provided in the installation.

80 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

In the /include directory in the installation directory, there is a makefile
configuration file, make_win.mcfg (Windows) or make_solaris.mcfg
(UNIX) available. If you choose manual project configuration then you need
to copy this file to your project directory. By default the name of mcfg file
used for makefile generation is determined using OSTYPE environment
variable. If the name of mcfg file that you are using doesn’t correspond to the
OSTYPE value then you need to provide mcfg file name on the “Build” tab
in the project settings.

You can edit the makefile configuration file to create a makefile that is suit-
able for your needs. Instructions how to do this are included in the makefile
configuration file itself.

Important!
Avoid editing makefile configuration file in the Include directory, as it’s
used as a template by the New Project wizard.

During code generation, the makefile will be generated in your project direc-
tory.

Defining makefile configuration manually

Ensure that you have a copy of makefile configuration file in your project di-
rectory and on the Build tab in the project settings “use mcfg file“ choice is
selected. If the name of the mcfg file differs from the default one then provide
it in the entry field.

Before code generation, you have to specify which TRI integration to use.
This is done in the Settings dialog box, in the Build tab. The TRI integration
alternatives are:

• Rational Systems Tester TRI

• Example

• None

The selection you make affects the contents of the generated makefile.

Whether you are generating a makefile based on TRI, the example integra-
tion or none, you will probably need to modify either the makefile configu-
ration file or the actual makefile before building the ETS. Both files are lo-
cated in the projects directory.

Makefile Generation

June 2009 IBM Rational Systems Tester 3.3 User Guide 81

When you open the makefile configuration file, you will be presented with
information how to edit the file and what values that can be used for the dif-
ferent settings.

The modifications you can do include:

• Name of the generated makefile

• Name of third-party compiler

• Third-party compiler location

• Linkers and linker flags, when applicable

• Output name for the ETS (default name is set to the same as your root
module)

• Whether to create a main function C file

• Locations of ASN.1 and RTS libraries

• Control extensions on generated files

• Type of the ETS (executable or static library)

It is possible to add C files necessary for your integration.

Example 12: Specify extensions on generated files –––––––––––––––––––

It is possible to specify arbitrary extensions that will be used in the generated
makefile for object files and for executable files.

Use CC_OBJ_EXT in the configuration file (.mcfg) to specify the object file
extension and LD_EXE_EXT to specify the extension for the executable file.

Windows:

CC_OBJ_EXT = obj
LD_OBJ_EXT = exe

UNIX:

CC_OBJ_EXT = o
LD_OBJ_EXT =

If these makefile variables are not specified the makefile generator will use
default extensions, according to current platform.

––

82 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

Automated makefile configuration

You may automate makefile configuration by delegating this issue to the
IBM Rational Systems Tester framework. In this case before invoking com-
piler Rational Systems Tester generates temporary makefile configuration
file using the options that you specify in the project settings and files attached
to the workspace.

The main advantage of using automated makefile generation is that C and
LIB files attached to the workspace are treated as adapter files and are auto-
matically put into generated makefile. You may exclude certain files from
build be right clicking on them and choosing Settings in the context window.
Go to Build tab and check Exclude this file from Build. This tells Rational
Systems Tester to ignore the file during makefile generation. Additionally
Rational Systems Tester automatically links libraries from the dependent
projects (if the project target is a library).

Open Build tab in the Settings dialog, choose “Use Makefile Options“
choice and press “Makefile Options...“ button. The opened window contains
several tabs that represent all settings inside a makefile configuration file. So
defining settings here is exactly the same as manually defining them in the
mcfg file.

You may load contents of existing makefile configuration file by pressing the
button located on the top of the window. Locate mcfg file and press “Ok”.

Note
When you load makefile configuration file Rational Systems Tester uses
“TRI integration” value on Build tab to select certain section inside the
mcfg file.

Hint
In the Build tab in the Settings dialog box, you have the option either to
overwrite an existing makefile when generating a new, or to save the new
makefile with the extension .new.

Make build settings location independent

To make for easier migration of projects between computers IBM Rational
Systems Tester offers <TESTER_DIR> template and
TELELOGIC_TESTER_DIR environment variable.

Makefile Generation

June 2009 IBM Rational Systems Tester 3.3 User Guide 83

You may use <TESTER_DIR> template for the settings inside Makefile Op-
tions dialog in the project settings to specify that actual Rational Systems
Tester installation directory should substitute this template during build pro-
cess. This allows using one and the same project on different computers that
have Rational Systems Tester installed in different locations without
changing project settings. All new projects use this mechanism

TELELOGIC_TESTER_DIR environment variable may be used to override
<TESTER_DIR> default substitution. If this variable is set in the environ-
ment its value is used instead of actual Rational Systems Tester location. If
Rational Systems Tester determines that this variable is not set then it defines
this varible when executing external tools (like “make”) during build pro-
cess. User provided makefiles may rely on this variable.

Note
<TESTER_DIR> template may be used only inside Makefile Options di-
alog. Using it for other project settings will not perfrom any substitutions.

Target project type

Project may be built into an executable or a static library. Usually projects
are built into test executable. If you have several projects that share common
TTCN-3 code then you may decide to create multi-project workspace, move
common code to the separate project and built it into library. Other projects
links this library during the linking stage.

By default project generated makefile creates executable. In order to create
the library do the following:

• Set BUILD_LIBRARY switch in makefile configuration file to yes.

• Open Makefile Options on Build tab in project settings and select Build
Library choice.

After all rebuild your project.

Note
Only static link libraries are supported, you may not create dynamic link li-
braries.

When you compile project into library and specify dependencies between
this project and another projects that are built into executable you need to
keep in mind following issues:

84 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

• All TTCN-3 and ASN.1 files inside a library project are added to the list
of compiled files in the depending executable project with “analyze
only“ switch.

• When you use automated makefile configuration libraries created during
library project builds are automatically linked to the depending execut-
able project. You do not need to care about include and library directories
and paths to the library files. When configuring makefile generation
manually it’s your task to link this libraries correctly.

Generate a makefile

To generate a makefile from the user interface

To generate a makefile from the user interface, follow the instructions below:

1. When manually defining makefile configuration a makefile configura-
tion file must be located in the project directory. For automated makefile
configuration all adapter files should be either attached to the project or
specified in the Makefile Options in the project settings.

2. Optionally, add the makefile configuration file to your project. From the
Project menu, point to Add To Project and click Files. Find the file and
click Open. This means that you can edit the makefile configuration file
directly from the Files tab in the Workspace window.

3. From the Project menu, click Settings. In the dialog box that opens se-
lect the Build tab.

4. Make sure that the Generate Makefile check box is selected.

5. In the Root module field, type the name of your root module.

6. Click OK.

7. From the Project menu, click Compiler

or

click the Compiler button on the toolbar.

ASN.1 in TTCN-3 modules

June 2009 IBM Rational Systems Tester 3.3 User Guide 85

To generate a makefile from the command-line

To generate a makefile from the command-line, follow the instructions
below:

1. A makefile configuration file must be located in the project directory. If
you did not copy the makefile configuration file when you created your
project, copy the file make_win.mcfg (Windows) or
make_solaris.mcfg (UNIX) from the Include directory to your
project directory.

2. On the command-line type:

t3cg -k -r <name of root module>

See also

“Running the Compiler from the Command-Line” on page 73

ASN.1 in TTCN-3 modules
TTCN-3 provides a clean interface for using ASN.1 version 1997 in TTCN-
3 modules. TTCN-3 is fully harmonized with ASN.1, which may optionally
be used with TTCN-3 modules as alternative data type and value syntax.

Example 13: –––

import from MyASN1Module language "ASN.1:1997" {
type MyASN1Type

}

––

Rational Systems Tester uses separate compilers to analyze ASN.1 files and
generate BER and PER encoders and decoders for ASN.1 definitions. The set
of ASN.1 tools in Rational Systems Tester include:

• mkprefil - tool for defining mapping between ASN.1 module names
and ASN.1 files

• casn - ASN.1 analyzer

• asn2c - ASN.1 to C compiler and BER encoder/decoder generator

• asn2per - ASN.1 PER encoder/decoder generator

• popvar - tool for post-processing ASN.1 variables

86 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

If Rational Systems Tester project contains ASN.1 modules then TTCN-3
compiler automatically invokes all needed ASN.1 tools and generates make-
file for building executable test suite (ETS) no matter whether Rational Sys-
tems Tester project is compiled from GUI or in batch mode. All ASN.1 tool
invocations are done transparent to the user but he/she can use project setting
to provide options for ASN.1 files.

ASN.1 files may be analyzed separately by invoking casn in batch mode.
casn requires that each file contains exactly one ASN.1 module. The casn
checks the files and produces compiler listing files that contain information
about the modules.

How to run casn:

The command line for running casn is as follows:

casn.exe \
[-<option>=<value>]... \
[+<option-file>]... \
<prefix>...

The <prefix> arguments specify names of the ASN.1 module definition files
to be compiled.

A prefix is a file name without a suffix. For example if an ASN.1 module re-
sides in the file “MyAsnFile.asn” then file prefix that must be specified for
casn is “MyAsnFile”.

By default the maximum length of a file prefix is five characters. It is pos-
sible to raise the limit by using the casn option PREFIXLEN.

Example 14: ––

casn.exe -prefixlen=9 MyAsnFile

–––

In case when Rational Systems Tester project contains several ASN.1 files
it’s necessary to provide mappings between ASN.1 module names and
ASN.1 files. This may be done either manually by specifying PREFIX and
PREFIXLEN command line parameters or automatically with the help of
mkprefil tool.

ASN.1 Encoding

June 2009 IBM Rational Systems Tester 3.3 User Guide 87

Example 15: ––

The files TopLayer.asn, MidLayer.asn and BottomLayer.asn contain defini-
tions of the ASN.1 modules TopLayerPDUs, MiddleLayerPDUs and Bot-
tomLayerPDUs.

To compile files with manually specified mappings execute:

casn.exe -PREFIX=TopLayerPDUs:TopLayer -
PREFIX=MiddleLayerPDUs:MidLayer -PREFIX=BottomLayerPDUs:BottomLayer
-PREFIXLEN=11 TopLayer MidLayer BottomLayer

––

Option file that contains mappings between ASN.1 module references and
file names may be automatically generated by using mkprefil:

mkprefil.exe -option-file=prefix.opt TopLayer MidLayer BottomLayer

mkprefil will generate prefix.opt file containing:

Automatically generated by MKPREFIL ...
-PREFIX=TopLayerPDUs:TopLayer
-PREFIX=MiddleLayerPDUs:MidLayer
-PREFIX=BottomLayerPDUs:BottomLayer
-PREFIXLEN=11

Then ASN.1 files my be compiled by executing:

casn.exe +prefix.opt TopLayer MidLayer BottomLayer

The casn tool generates two files, one that contains compiler listing and an-
other that contains binary representation of an ASN.1 module definition. If
there are errors or warnings during the compilation then consult the listing
file. The syntax tree file is intended only for back-end tools (asn2c and
asn2per).

ASN.1 Encoding
The Compiler generates separate files containing BER and PER encoders
variations for types that have an encoding attribute. All variations supported
are generated if any of the encoding attributes is specified. The encoding
rules and variations supported are:

• BER (definite length, indefinite length)

• PER (octet aligned, octet unaligned)

88 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

The BER definite length form, is chosen to be short if the length of the ele-
ment is included in the range (0...127). Longer elements are encoded using
the long form of length encoding. The decoders support both forms. Only
basic PER is supported, not canonical PER.

Encoder usage from TTCN-3 attributes

The corresponding encoding attributes are:

• “BER:1997”, with variant: “length form 3"

• “PER-BASIC-ALIGNED:1997”

• “PER-BASIC-UNALIGNED:1997”

The BER attribute used without variant, defaults to definite length encoding.
BER definite length encoding length field variations are selected automati-
cally as stated above. Variants other than “length form 3” are not supported.

Encoding attributes are supported only per type. Using an encoding attribute
when importing an ASN.1 type results in the corresponding encoder being
used in run time. Field encoding attributes are not supported.

Encoder usage at run time

You can give the following command-line switches to the runtime system to
override encoding to all ASN.1 types used in the executable modules:

• t3asn.<module_name>.BER.DEFINITE-LENGTH

• t3asn.<module_name>.BER.INDEFINITE-LENGTH

• t3asn.<module_name>.PER.BASIC-ALIGNED

• t3asn.<module_name>.PER.BASIC-UNALIGNED

They are boolean options and should be used as follows:

Example 16: ––

To set types defined in a module called MESSAGES to use BER definite
length encoding, type the following:

-t3rt "-confbool t3asn.MESSAGES.BER.DEFINITE-LENGTH true"

–––

The option for BER indefinite length corresponds to the combination of at-
tributes “BER:1997” and “length form 3”.

ASN.1 Encoding

June 2009 IBM Rational Systems Tester 3.3 User Guide 89

The command-line switches is further explained in “Command-Line Syntax”
on page 122 in Chapter 6, Execute Tests.

Encoding open types

An encoder must be registered for an open type in run time initialization
functions. The encoder must perform the following:

• Take the correct alternative from the TTCN-3 run time value.

• Get the encoder for the alternative type.

• Call the encoder function for the union alternative value and encoded
data

The decoder performs the same sequence in reverse order, adding identifica-
tion of the message:

• Create the open type value.

• Find out the type of the message.

• Get the decoder for the message from the run time type.

• Call the decoder.

• Set the union value to the alternative.

Using encoding attributes for a module other encoders are accessible from
type descriptors.

Set Compiling Options
1. On the Project menu, click Settings.

2. Click the TTCN-3 tab.

3. Set Verbosity Level.

4. Set Generation Type.

5. Set Output Directory.

6. If desired, specify TTCN-3 module specific settings.

7. Click the ASN.1 tab.

8. Set the same settings as described for the TTCN-3 tab.

9. Select Use target code identifier prefix, when applicable.

10. Select Use Output Base Name for Files, when applicable.

11. If desired, specify ASN.1 module specific settings.

90 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

12. Click the Build tab.

13. Select a TRI Integration:

– Rational Systems Tester TRI

– Example

– None

14. Specify Root module.

15. Select Generate makefile.

16. If you generate a new makefile, and there is already a generated makefile
in the same directory, select whether it should overwritten or not.

17. Click OK.

Compile Test Suites

To compile test suites:

• On the Project menu, click Compiler

or

click the Compiler button in the toolbar.

To cancel compilation:

• Click the Stop action button in the toolbar

or

on the Project menu, click Stop action.

Industrial Standard Test Suites

June 2009 IBM Rational Systems Tester 3.3 User Guide 91

Industrial Standard Test Suites

SIP test suite

Compilation of ETSI Session Initiation Protocol (SIP) abstract test suites is
supported. To create an SIP executable test suite one should:

• Create empty Rational Systems Tester project

• Add SIP TTCN-3 files to the project

• Provide TRI integration and encoders/decoders implemented either using
TCI CD or proprietary IBM Rational codec interface.

• Compile and build project.

In order to compile a SIP test suite it is necessary to make the changes de-
scribed below to the SIP ttcn-3 files.

The TTCN-3 analyzer will report three semantic errors. These errors concern
the instantiation of templates that contain matching symbols. According to
the TTCN-3 standard this is not allowed.

The erroneous operations are:

– valueof(Route_l_4) in the test case SIP_CC_PR_MP_RQ_V_045.
An error is reported since the Route_l_4 template contains an “*”
symbol in its definition.

– valueof(Contact_RD_Multi_s) in ptcRDMultiRegistration
function and SIP_CC_RD_CE_V_004 testcase. Error is reported since
Contact_RD_Multi_s template contains “ifpresent” operation in
its definition.

To fix these errors you can create a copy of the templates for Route_l_4 and
Contact_RD_Multi_s, then replace any matching symbols with the appro-
priate value expressions and use the modified templates in the above men-
tioned “valueof” operations.

Assuming that Route_l_4_value is a copy of Route_l_4 and
Contact_RD_Multi_s_value is a copy of Contact_RD_Multi_s, then
the “*” symbol in Route_l_4_value may be substituted with “omit” and
“ifpresent” in Contact_RD_Multi_s_value may simply be deleted.

92 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

IPv6 test suite

The current Rational Systems Tester IPv6 test suite is based on the IPv6 draft
version published September 9, 2005

To create an IPv6 executable test suite one should:

• Create empty Rational Systems Tester project

• Add IPv6 ttcn-3 files to the project

• Provide TRI integration and encoders/decoders implemented either using
TCI CD or proprietary IBM Rational codec interface.

• Compile and build project.

Besides the IPv6 abstract test suite there exists a base TTCN-3 library that is
included in the IPv6 test suite but also is available as a separate package.

It is necessary to declare a constant in the module LibCommon_Sync.

const charstring c_prSyncPoint := "T3 sync point";

This is due to the fact that the separate package contains one undefined con-
stant (c_prSyncPoint) that may lead to some compile errors (the full IPv6
test suite compiles successfully)

TCI interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 93

TCI interface
IBM Rational Systems Tester supports standard TTCN-3 Test Control Inter-
face (TCI). The TCI consists of several parts (sub-interfaces) providing con-
trol over different aspects of test execution and IBM Rational Systems Tester
supports the majority of them. Using the TCI it is possible to:

TCI TM

Manage test execution using TCI TM (obtain information on the structure of
test system, start/stop test cases and control parts, define module parame-
ters).

TCI CD

Implement and plug-in encoders or decoders using TCI CD (access defined
types in test system include “encode” attribute, create and manipulate with
values).

TCI TL

Retrieve information about test execution using TCI TL logging (log exhaus-
tive set of events generated during test execution). TCI TL has been intro-
duced in TTCN-3 Version 3.0.

Test Executable build requirements

IBM Rational Systems Tester provides built-in test management. Besides
driving test execution using RTS functions (in particular
t3rt_run_test_suite()), it is possible to do similar things using either the TCI
functions (tciStartControl() and tciStartTestCase()) or by means of
the Rational Systems Tester GUI. This affects how a test executable is built.

When working with the Rational Systems Tester GUI it is sufficient to set the
desired way of managing test execution in the project settings on Build tab:

• Static using RTS function

• Static using TCI functions

• Dynamic using Rational Systems Tester GUI

When building a test executable manually from the command line it is nec-
essary to keep in mind the following:

94 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

The TCI requires that additional information is generated by the compiler.
The TCI support in the compiler is switched on using the “-i” command line
parameter. This will generate the additional files ts_modules.c and
ts_modules.h, a special template main program and a special makefile. The
template main program provides an example of how to select a root module
and how to start the control part from it. The makefile with TCI support con-
tains the additional rules to build the file ts_modules.c and link it with the
TCI support library libt3tci.lib into a test executable.

Before using any of the TCI functions it is necessary to initialize the TCI in-
terface using tciInit() function. The prototype is similar to the prototype
of the main() function. tciInit() returns true if it succeeds and false other-
wise. The TCI interface is finalized by applying the tciFinalize() func-
tion. For example the main() function for the test executable may start with
the following lines:

main(int argc, char *argv[]) {
 if (tciInit(argc, argv)) {
 tciSetRoot("my_root_module");
 tciStartControl();
 ...
 }
 ...
 tciFinalize();
}

Note
It is recommended to initialize the TCI inside main() function, as the TCI
should be initialized outside any calls to the runtime system functions (in-
cluding t3rt_run_test_suite).

In order to control the test execution through the GUI it is necessary to follow
some additional requirements for the compiler invocation. The compiler
should be invoked with “-i -R” command line options. This will generate a
special main program, that should not be changed, and a special makefile.
The main function in this case consists of only one line:

main(int argc, char *argv[]) {
 tciStartTestsuiteServer(argc, argv);
}

Test management using the IBM Rational Systems Tester GUI requires two
additional libraries are linked with the test executable. Besides libt3tci.lib
that is the main TCI support library it is necessary to link also libt3tcite.lib
and the system RPC (Remote Procedure Call) communication library, which
is different for Windows and Linux/Solaris platforms. Windows RPC library
is rpcrt4.lib whereas Linux and Solaris RPC library is librpcsvc.a. Under

TCI interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 95

Windows the test executable should be linked with libt3tci.lib, libt3tcite.lib
and rpcrt4.lib libraries (and of course all other required TTCN-3 libraries like
for example libt3rts.lib).

Functions to be implemented by the user

Similar to the TRI in the TCI interface you have to define a set of functions
that provide the test executable ways to obtain information (e.g. a module pa-
rameter value) or notify the user about different events (runtime error, end of
test execution etc.). The templates for the whole set of these functions are de-
fined in t3tci_template.c file that is found in the installation directory.

It is not necessary to implement all (or even any) of these functions. For ex-
ample, to manage test execution from IBM Rational Systems Tester GUI
there is no need to make changes to the provided t3tci_template.c file at all.
However, in order to plug standardized encoders and decoders, it is necessary
to change the tciEncode() and the tciDecode() functions. To catch
runtime errors it is necessary to change the implementation of the gatherer
function.

The build rules file, t3tci_template.c, is automatically put into the generated
makefile if the TCI/GUI test management is selected in the project settings
or if the TCI support is switched on in the compiler. It is possible to define
another file with the set of these functions by modifying the project configu-
ration (mcfg) file.

Note
All files that use the TCI functions should include the header file “tci.h”.
This file is provided in the installation structure.

Using TCI encoders and decoders

IBM Rational Systems Tester provides a standard interface to implement and
plug in encoders and decoders through the TCI CD interface. The implemen-
tation of encoders and decoders is based on Type and Value interfaces. These
provide an extensive set of functions to manipulate with built-in and user-de-
fined types and to create and change values. The Type and Value interfaces
are described in the TTCN-3 TCI standard. A declaration with short com-
ments may also be found in the header files tci_types.h and tci_values.h, lo-
cated in the installation directory.

96 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

The top function for the encoder is tciEncode(). This function is called by
the runtime system each time it is required to encode a value. This function
returns encoded binary strings that later are sent through communication
channels.

The top function for the decoder is tciDecode(). This function is called by
the runtime system each time it is required to decode a binary string. The
runtime system also passes to tciDecode() the decoding hypothesis (ex-
pected type reference), that may be used to determine an encoding rule, if
contents of received message are not in it self sufficient to choose the de-
coding rule.

After implementing tciEncode() and tciDecode(), coders have to be
plugged into the runtime system. TCI encoders and decoders are plugged
similarly into encoders and decoders that are implemented using proprietary
IBM Rational type and value interfaces. This allows for reuse of existing
codec implementations while using the TCI TM interface to manage test ex-
ecution.

TCI encoders/decoders are plugged in using wrapper functions provided in
runtime system t3rt_tci_encode() and t3rt_tci_decode(). The following code
describes how a TCI codec implementation may be plugged into the runtime
system. This code should be linked into the test executable.

static void tci_codec_init_function(t3rt_context_t ctx) {
}
static void tci_codec_setup_function(t3rt_type_t type,
t3rt_context_t ctx) {
t3rt_type_set_encoder (type, t3rt_tci_encode, ctx);
t3rt_type_set_decoder (type, t3rt_tci_decode, ctx);

}
void t3ud_register_codecs (int argc, char * argv [], t3rt_context_t
ctx) {
t3rt_codecs_register(&tci_codec_init_function,

&tci_codec_setup_function, ctx);
}

Note
Sometimes it is necessary to allocate for temporary memory in the
tciEncode() and tciDecode() functions (e.g. for the binary string re-
turned by tciEncode()). This is done by the tciMemoryAllocate() func-
tion. The memory will be automatically de-allocated by the runtime system
when it is not needed anymore.

TCI interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 97

Providing values of module parameters

The TCI interface provides the ability to set the values of module parameters
using the standardized tciGetModulePar() function. During module ini-
tialization the runtime system requests the value of each module parameter.
In addition to existing ways of defining the module parameter values (using
t3ud_read_module_param() function, in the module parameter file or with
the use of command line parameters) IBM Rational Systems Tester supports
tciGetModulePar(). This function has priority over all above-mentioned
mechanisms. The runtime system will query module parameter value in the
following chain:

• tciGetModulePar

• t3ud_read_module_param

• command line parameters

• module parameter file

This chain will be executed independently for each parameter thus it is pos-
sible to leave the tciGetModulePar() unimplemented for some parameters
and define them in the module parameter file.

The TTCN-3 TCI standard does not provide any way of obtaining the type
for a module parameter, thus it is not possible to build a module parameter
value if it does not have default value. For this purpose IBM Rational Sys-
tems Tester provides an additional non-standard function,
tciGetModuleParameterType(), that may be used.

Asynchronous behavior in TCI

The TCI TM interface contains two functions, tciStartControl() and
tciStartTestCase(), whose behavior is different from the similar RTS
function t3rt_run_test_suite(). t3rt_run_test_suite() will only after finishing
execution return the whole control part. In turn tciStartControl() will
start the control part and return immediately without waiting for the termina-
tion of the control part. The same is true for tciStartTestCase().

The synchronous behavior of tciStartControl() may be implemented as
following:

tciStartControlSync() {
 tciStartControl();
 <wait for tciControlTerminated() to be called>
 return;
}

98 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

The main program generated by the compiler will handle this.

Using logging capabilities of the TCI

IBM Rational Systems Tester fully supports the TCI TL logging (test log-
ging) interface. This interface consists of an exhaustive set of functions that
cover the various aspects of a test execution. Each function is invoked by the
runtime system when the corresponding event occurs during a test execution.
All information concerning this event is passed through parameters of these
functions. Besides information specific for a certain event, each function
passes the id of a component that generated this event, the timestamp of an
event and a location inside the TTCN-3 source file.

Using the TCI TL it is for example possible to log:

• send and receive of a message

• procedure calls, replies and exceptions, in procedure communication

• creation and termination of components

• changes to the values of variables

• evaluation of alternatives in an alt statement

Note
The t3tci_template.c file contains the implementation with an empty body
for all of the TCI TL functions.

Limitations - TTCN-3 Tools

June 2009 IBM Rational Systems Tester 3.3 User Guide 99

Limitations - TTCN-3 Tools
This section describes the known limitations for tools used in the process of
creating an ETS. The release notes for IBM Rational Systems Tester contains
additional information on tool limitations.

Editing Limitations

TTCN-3 Editing Limitations
• Coloring of nested comments is not supported. First encounterd ‘*/’ se-

quence in nested comment block changes “comment” color to “normal
text” color.

ASN.1 Editing Limitations
• A structured view for ASN.1 modules is not available.

• Named bookmarks are not available in ASN.1 files.

Runtime System Limitations

Test Case Parameters

Passing of ‘inout’ and ‘out’ test case parameters will not keep information
in partially initialized values. For these parameters, a value will be passed
only if it is fully initialized – otherwise it is considered not to be initialized.
The workaround is to make sure that values passed as ‘inout’ or ‘out’ pa-
rameters to test cases are fully initialized, even if parts of them are going to
be overwritten.

Type Checking Limitations

The type checking implements a structural compatibility check that is
slightly stricter than what ETSI ES 201 873-1 V2.2.1 specifies. Types are
compatible when they are of the same “kind” of type. For example, two
records with the same (recursive) type composition of the fields are compat-
ible while an array of three integers is not compatible with a record con-
taining three integer fields.

100 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

NULL ASCII Character in Character Strings

The ASCII character NULL (‘\0’) is not supported inside character strings.
Even though it can be inserted into a string, operations on such strings will
not be performed correctly (length calculation, for instance).

Limitation in implementation of TCI interface.

Implementation of TCI TL logging in IBM Rational Systems Tester has fol-
lowing limitations:

• duration parameter in tliTStop event always contains zero.

• Four functions (tliMDetected_c, tliPrGetCallDetected_c,
tliPrGetReplyDetected_c, tliPrCatchDetected_c) that corre-
spond to the detection of an arrived inter-component message, procedure
call, reply or exception will not provide the detected values.

• tciGetValueEncoding() and tciGetValueEncodingVariant()
functions are not supported. tciGetTypeEncoding() and
tciGetTypeEncodingVariant() may be used instead.

• tliMatch event is not supported.

• tciGetTestCaseTSI() is not supported.

Compiler Limitations

Memory allocation exception

During the compilation of a TTCN-3 file the compiler consumes virtual
memory. The larger TTCN-3 file the more memory is required by the com-
piler to generate the C code. In the situation when the TTCN-3 file is very
large there may occur a memory allocation error exception during code gen-
eration. If this happens there are two possible actions that can remedy the sit-
uation:

• Increase the size of the swap file, thus increasing the size of available vir-
tual memory.

• Split the TTCN-3 file into several smaller files.

Limitations - TTCN-3 Tools

June 2009 IBM Rational Systems Tester 3.3 User Guide 101

Note
On Linux and Solaris the compiler will not notify you about a memory allo-
cation error if the size of virtual memory is set to <unlimited>. Instead the
program will stop execution with a “segmentation fault” message. To get a
meaningful error message you must ensure that the maximum size of virtual
memory is set to a limited value. This parameter is changed using the com-
mand “ulimit -v”.

Stack overflow

A very large TTCN-3 file may result in a stack overflow exception during
static analysis.

In this case it may become necessary to increase the size of the available
stack for a compiler process. On Windows it is done using the editbin.exe
utility supplied with Visual Studio .NET, on Linux and Solaris it may be
done using the “ulimit -s” command.

Note
On Linux and Solaris the compiler will stop execution with a “segmentation
fault” message in the case of a stack overflow exception.

Makefile Limitations
• In makefiles, the path to ASN.1 libraries (ASN1_LIB) may not be longer

than 250 characters. If longer, the path will be truncated and as a conse-
quence, it is not possible to build an executable.

Other Limitations

Statement terminator symbol (semicolon) is optional everywhere except two
places:

• Altstep local declarations (variables, constants, timers or templates)

• Counter declaration inside the header of ‘for’ loop

Build limitations

Build intelligence doesn’t support library projects that contain only ASN.1
files.

102 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

TTCN-3 Compiling Limitations

TTCN-3 Module Specific Settings and Command Line
Compilation

If you use the -d flag (for specifying an output directory) in the TTCN-3
module specific settings in the Settings dialog box, or if you use the Com-
piler from the command-line, the following is not supported:

• More than one non-existing directory in a path.

However, if you specify one non-existing directory, it will be created.
For example, this is allowed:

-d /home/output/doesnotexist/
This is not allowed:

-d /home/output/doesnotexist/doesnotexist/
Compilation will fail.

• Current directory for Windows drives. For example, if you generate to a
directory with the option

-d C:
the output will be generated to the root instead of the current directory.

ASN.1 Compiling Limitations

Module Names
• If module names do not differ in the first 5 characters of the identifier,

name clashes will occur.

• The target code includes a number of header files. Their names may clash
with names of header file in you generated source code. Especially on
Windows, the file name clashes may result in compilation errors, such as
duplicate definitions and/or missing definitions. You avoid these errors
by renaming the modules in your source code.

• ASN.1 and TTCN-3 modules must not have identical names

Modules and Files
• A module file’s base name must not be more than 30 characters long.

Limitations - TTCN-3 Tools

June 2009 IBM Rational Systems Tester 3.3 User Guide 103

Module Definitions
• A SEQUENCE OF type having an element type referenced from another

module, will result in errors during compilation and/or linking.

• Import definitions are mapped to TTCN-3 to the ‘import all’ construct.

Module Related Errors and Warnings
• FATAL ERROR: Can not open file for reading

This error message mean that you have not specified a file that is required
for compilation, when running the Compiler from the command-line.

The missing file is a file containing an ASN.1 module that is referenced
in other modules, which were included in compilation.

Identifiers

Identifiers in ASN.1 may only be 128 characters. If longer, only the first 128
characters will be used.

Open Types

Open types are mapped to the corresponding ‘anytype’ without restrictions,
so that the union type generated contains all the types visible in a module.

ASN.1 Module Specific Settings and Command Line Compilation

If you use the -d flag (for specifying an output directory) in the ASN.1
module specific settings in the Settings dialog box, or if you use the Com-
piler from the command-line, the following is not supported:

• More than one non-existing directory in a path.

However, if you specify one non-existing directory, it will be created.
For example, this is allowed (assuming that /doesnotexist are non-
existing directories):

-d /home/output/doesnotexist/
This is not allowed:

-d /home/output/doesnotexist/doesnotexist/
Compilation will fail.

• Current directory for Windows drives. For example, if you generate to a
directory with the option

-d C:
the output will be generated to the root instead of the current directory.

104 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

ASN.1 Constructs Supported in TTCN-3

Only the following ASN.1 constructs are supported in TTCN-3:

• CHOICE

• BOOLEAN

• CLASS

• ENUMERATED

• EXTERNAL

• IA5String

• INTEGER

• NULL

• NumericString

• OBJECT IDENTIFIER

• OCTET STRING

• Open type, with the limitation of no open type values

• Parameterization

• PrintableString

• SEQUENCE

• SEQUENCE OF

• SET

• SET OF

• VisibleString

• UTCTime

• Basic value definitions only

ASN.1 Constructs Not Supported

The following ASN.1 constructs (from X.680-683) are not supported:

• ABSTRACT-SYNTAX

• ASN1-CHARACTER-MODULE

• BMPString

• CHARACTER STRING

• EMBEDDED PDV

Limitations - TTCN-3 Tools

June 2009 IBM Rational Systems Tester 3.3 User Guide 105

• Extension groups

notation “[[““]]”

• GeneralString

• GraphicString

• INSTANCE OF

• ISO646String

• ObjectDescriptor

• Selection type

notation “<“

• T61String

• TeletexString

• TYPE-IDENTIFIER

• UniversalString

• “ValueSetTypeAssignment”

Notation “<type> <type::= <valueset>”

• VideotexString

• Absolute reference

Notation “@”<module>.<element>

• C style comment notation, /* comment */

ASN.1 Constructs Partially Supported

The following ASN.1 constructs are supported, but with limitations:

ASN.1 Con-
struct Comment

ABSENT Will pass analysis, but no code will be generated.

ALL Will pass analysis, but no code will be generated.

APPLICATION
TAGS

No PER support.

See “TAGS” on page 109.

106 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

BIT STRING PER Limitations: Maximum fixed constraint value is 64K-1.

Bit strings of types defining named bits should be defined using
the bits.

Named bits are not imported into TTCN3. Define all bit string
values by using named bits in ASN.1.

CHOICE Value notation is not supported.

PER limitations: Max 255 alternatives in extension root. Max 63
alternatives in extension addition.

CLASS Will pass analysis, but no code will be generated. Information on
usage is in “Open Types” on page 103.

All types used in CLASS definitions must be defined types.

COMPO-
NENTS OF

Value notation is not supported.

Will pass analysis but no code will be generated.

See “SEQUENCE” on page 108.

CON-
STRAINED BY

Will pass analysis, but no code is generated for CONSTRAINED
BY constraints and keywords used in those definitions so the
value checking has to be implemented in application code.

ENUMER-
ATED

Enumeration item values must fit into 32 bit integers.

PER limitations: Enumerated type must be a defined type when it
is a component of SEQUENCE, SEQUENCE OF, or SET OF
type.

EXCEPT Will pass analysis, but no code will be generated.

EXPLICIT
TAGS

No PER support.

See “TAGS” on page 109.

Extensibility

(“...”)

Only one extension marker supported in structures. No extensi-
bility of INTEGER, ENUMERATED or string types’ constraints
for ASN.1 encoders.

Will pass analysis, but no code will be generated.

FROM Only list syntax is supported. Will pass analysis, but no code will
be generated.

ASN.1 Con-
struct

Comment

Limitations - TTCN-3 Tools

June 2009 IBM Rational Systems Tester 3.3 User Guide 107

IA5String PER general restrictions:

• Unconstrained

• Max 16 bits/character

IF PRESENT No code is generated for simple WITH COMPONENT, WITH
COMPONENTS, and CONSTRAINED BY constraints and key-
words used in those definitions so the value checking has to be
implemented in application code.

IMPLICIT
TAGS

No PER support.

See “TAGS” on page 109.

INTEGER Supported value range is 64 bit signed integers.

Note: Compiler specific integer type is usable for Visual C++ and
GCC compilers, generated for INTEGER subtypes with corre-
sponding constraint values

Note: GCC option -O is not usable with large integers and
ASN.1 encoders.

INTERSEC-
TION

Will pass analysis, but no code will be generated.

MAX Will pass analysis, but no code will be generated.

MIN Will pass analysis, but no code will be generated.

MINUS-IN-
FINITY

REAL value range constraint identifiers MINUS-INFINITY and
PLUS-INFINITY are not supported.

NULL Value notation is not supported in TTCN-3. Import for example:
asn1-NULL NULL ::= NULL

OBJECT IDEN-
TIFIER

Maximum number of elements is 32.

OPTIONAL Open type field could not be optional in inline subtype definition.
Use explicit subtype definition.

OCTET
STRING

Maximum fixed constraint value is 64K-1.

ASN.1 Con-
struct

Comment

108 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

Parameteriza-
tion

Parameterization of types with types, object sets and values is
supported.

Parameterization of CLASS with CLASS or object sets is not
supported.

Parameterization with inline SEQUENCE values is not sup-
ported. Use explicit SEQUENCE value declaration.

PLUS-IN-
FINITY

REAL value range constraint identifiers MINUS-INFINITY and
PLUS-INFINITY are not supported.

PRIVATE
TAGS

No PER support.

See “TAGS” on page 109.

REAL Will pass analysis, but no code will be generated.

REAL values are not supported in CLASS definitions.

No PER support.

SEQUENCE PER limitations: Max 32 optional elements in extension root.
Max 32 elements in extension addition.

Value notation is not supported.

Extensible constraints are not supported. Only one extension
marker supported in structures.

See “SEQUENCE OF” on page 108, “COMPONENTS OF” on
page 106 and “TAGS” on page 109.

SEQUENCE OF An imported element type of a SEQUENCE does not work.

Value notation is not supported.

PER limitations: Component type must be a defined type if SE-
QUENCE OF is defined without size constraints or with large
upper bound constraint (more than 64K).

SIZE Will pass analysis, but no code will be generated. In PER en-
coding, only range constraints are supported.

ASN.1 Con-
struct

Comment

Limitations - TTCN-3 Tools

June 2009 IBM Rational Systems Tester 3.3 User Guide 109

TAGS AUTOMATIC TAGS default tagging mode is required for PER
support. In general, tagged types are not supported in PER but
they work if the tag does not have effect to resulting coding ac-
cording of the PER encoding rules. If AUTOMATIC TAGS are
not used, the encodings will be correct only for structures where
the target happens to produce the same order of elements as with
AUTOMATIC TAGS.

See “APPLICATION TAGS” on page 105, “EXPLICIT TAGS”
on page 106, “IMPLICIT TAGS” on page 107, and “PRIVATE
TAGS” on page 108.

UNION Will pass analysis, but no code will be generated.

UNIVERSAL See “TAGS” on page 109.

WITH COMPO-
NENT

No code is generated for simple WITH COMPONENT con-
straints and keywords used in those definitions so the value
checking has to be implemented in application code.

WITH COMPO-
NENTS

No code is generated for simple WITH COMPONENTS con-
straints and keywords used in those definitions so the value
checking has to be implemented in application code.

“|” Complex constraints are not supported in type and codec gener-
ation and a warning will be generated.

“!” Exception specification is treated as comment, that is, the ETS
must check and handle the exceptions.

“^” Will pass analysis, but no code will be generated. No PER sup-
port.

“\” Will pass analysis, but no code will be generated. No PER sup-
port.

ASN.1 Con-
struct

Comment

110 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 4: Creating an ETS

June 2009 IBM Rational Systems Tester 3.3 User Guide 111

5
Building

Before you can execute your test suite, the generated ANSI-C code must be
compiled by using either the previously generated or user provided makefile.

Compiling generated code

Using GCC on Windows to compile C files

To use IBM Rational Systems Tester with GCC on Windows, the following
should be done:

1. Locate make_win_gcc.mcfg file in the include subdirectory inside Ra-
tional Systems Tester installation and copy it to your project directory.

2. On Build tab in Settings dialog set target platform to “CygWin“.

3. When manual makefile configuration is used set mcfg file to
make_win_gcc.mcfg. When automated makefile configuration is used
open Makefile Options dialog and load make_win_gcc.mcfg file.

4. Change the Build Settings in the TTCN-3 project in the following way:

– Remove the preamble vsvars32.bat

– Change the make command from nmake to make

112 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 5: Building

Rational Systems Tester GCC libraries

A working environment for GCC assumes a IBM Rational Systems Tester
installation, and for Rational Systems Tester also a distribution of the spe-
cific win32-GCC files that are required for the operation of GCC from within
the Rational Systems Tester environment.

This distribution contains the following libraries and configuration files,
compiled with GCC:

libt3rts.a
librts.a
libcvrts.a
libasn2t3rts.a
libt3tri.a
libt3tci.a
libt3tcite.a
libt3dbg.a
make_win_gcc.mcfg

Restrictions using GCC for Rational Systems
Tester

Error handling

Error handling where signals are caught using sigaction is not supported.
As an example of this: should the application perform a division by zero, it
will result in the application terminating unexpectedly, instead of catching
the exception signal and printing an appropriate error message.

Using a Remote Host Compiler
If you use the Windows version of Rational Systems Tester, you are still able
to use a Rational Systems Tester Compiler located on a UNIX server. Your
project has to be located in your UNIX home directory, and the UNIX Com-
piler has to be reachable from that server. Another prerequisite is of course
that the server has a valid license for the Rational Systems Tester Compiler.

In your local installation of Rational Systems Tester, you can find options for
using a remote Compiler in the Rational Systems Tester/TTCN to C tab in
the Options dialog box. When you have set the options to invoke a remote
Compiler, that Compiler will be used the next time you analyze and generate
code for a project that is located in your home directory, according to options
in the Settings dialog box.

Using a Remote Host Compiler

June 2009 IBM Rational Systems Tester 3.3 User Guide 113

About the Rational Systems Tester/TTCN to C options
• Enable remote invocation

Enables you to use a Compiler located on a UNIX server. If this is not
selected, all other options are unavailable.

• Remote host

Type the name of the server where the Compiler and your project are lo-
cated.

Authorization options:

• User name

Type a user name that is valid for the server.

• Password

Type the password associated with the user name.

Path mapping options:

• Local path

Enter the path to your UNIX home directory, as seen from your Windows
computer, that is, the drive to where your UNIX home directory is
mapped, for example z:.

It is not necessary to map the network drive before you enter the local
path, but it must be mapped before the remote invocation will work.

• Remote path

Type the full path to your UNIX home directory, as seen from the UNIX
server that you specified in the Remote host box. For example:

/home/your_name.
• Remote tools path

Type the full path to the remote Compiler, t3cg, as seen from the UNIX
server that you specified in the Remote host box. For example /opt/Tele-
logic/Tester/bin.

SSH options:

• Reject connections to unknown hosts

Rejects connections to the server if it is not listed in the known hosts file.

• Automatically memorize unknown hosts

Adds the server to the known hosts file, if not listed already.

114 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 5: Building

• Extra SSH parameters

Optionally, type additional SSH parameters.

Bypassing the TRI external function
mechanism

It is possible to bypass the RTS mechanism for calling external functions, for
example using triExternalCall in the TRI case.

Example 17: ––

1. In the makefile, define the symbol EXT_FUNC_BYPASS_TRI_m_f, for a
function f in a module m.

2. At link time, provide an implementation of a function with the following
prototype:

extern t3rt_value_t m_f(long t3cg_argc, t3rt_value_t
t3cg_argv[], t3rt_context_t t3cg_context).

This function will then be called in the generated code wherever the func-
tion f is invoked.

–––

Build Settings

June 2009 IBM Rational Systems Tester 3.3 User Guide 115

Build Settings
The output from the code generation is:

• ANSI-C files

• Header files

• makefile (optionally)

All this must now be compiled and mapped to an integration (and possibly a
TRI implementation), in order for the ETS to be able to be executed in the
actual test environment.

Build Settings for Generating Code

To be able to generate appropriate code and makefile, you should change the
following build settings before code generation:

• Specify which TRI settings to use (relevant only for manual makefile
configuration). The alternatives are:

– Rational Systems Tester TRI

This is a complete TRI compatible library provided by IBM Rational.
It can be found in the directory /integrations/tri/<platform>
in the installation directory. Rational Systems Tester TRI is the de-
fault value.

– Example

This is an example non-TRI based example integration provided by
IBM Rational.

The complete example integration can be found in the directory /in-
tegrations/example in the installation directory.

– None

Select this if you have made an entire integration and wish to control
the configuration of the build process.

If this option is selected, only the generated C files are included in the
makefile, according to what you have specified in the makefile gen-
eration configuration file. You can select to either edit this configu-
ration file prior to code generation, or to edit the generated makefile.

• Specify Root module

This is the root TTCN-3 module that defines the execution order. It is
necessary to specify this, otherwise no makefile will be generated.

116 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 5: Building

• Select Generate makefile to generate a makefile

If selected, a makefile will be generated, based on the selected TRI set-
ting and the makefile configuration file in your project.

If you generate a makefile, you should also specify whether it should
overwrite an existing makefile (with the same name and in the same di-
rectory), after a copy of it is saved; or if the new makefile should be saved
with the extension .new, thus not overwriting an existing makefile.

You find all these settings in the Build tab in the Settings dialog box.

Settings for Building

To be able to build the ETS correctly, you have to specify the following:

• A Make command preamble (that is, the file that specifies the configu-
ration of your build environment), depending on what operating system
and third-party compiler vendor you use.

• A Make command, depending on what operating system and third-party
compiler vendor you use.

• A Makefile to use when building. If you have generated a makefile, the
name of the makefile is specified in the makefile configuration file

Specifying result file

It’s necessary to specify the result file on the Build tab. Result file denotes
the target file that is created during project build. It’s used by Rational Sys-
tems Tester to track changes in the project and suggest recompiling project
when source files or project settings changed.

Result file is automatically filled during the compilation if root module is
specified.

Note
Result file may differ from the executable file.

Set Build Options
Note

Code generation must be performed before build.

1. On the Project menu, click Settings, and then click the Build tab.

2. Specify Make command preamble.

Build intelligence

June 2009 IBM Rational Systems Tester 3.3 User Guide 117

3. Specify a Make command.

4. Enter the location of a previously generated makefile.

5. Click OK.

The other settings in the Build tab are relevant for code generation.

See also

“Set Compiling Options” on page 89.

Build an ETS

To build an executable test suite:

• Click the Build button on the toolbar.

or

on the Project menu, click Build

or

click F7.

To cancel build:

• Click the Stop action button in the toolbar

or

on the Project menu, click Stop action.

Build intelligence
Rational Systems Tester tracks changes in the project to avoid inconsistent
builds. The tracking includes:

• Changes in all source files attached to the project

• Changes in the dependent projects

• Addition of new files to the project

• Changes in the project settings

118 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 5: Building

When you invoke build, execute or debug action Rational Systems Tester
checks whether this action is valid for the current project state. If project is
out of date then dialog window is opened asking to recompile or rebuild
project. You may accept or reject Rational Systems Tester suggestion. The
possible choices are: Yes, Yes to all, No, No to all and Cancel.

• Yes means that suggested action and only it should be performed. Further
actions (if any) should be asked for confirmation again.

• Yes to all means that this actions and all necessary further action should
be performed without asking confirmation.

• No means that this action should be skipped.

• No to all means that this action and all further actions should be skipped
without asking confirmation.

• Cancel means that the action should be aborted.

Each option in project settings fall into one of three classes. Changing it re-
quires project recompilation, project rebuild or nothing. For example
changing root module forces project recompilation while changing execut-
able command line parameters does nothing.

Note
Build intelligence takes into account compile and build errors and project
sessions. It may not be reset by closing project and reopening it again.

Project configurations
You may specify arbitrary number of configurations for the every project in
a workspace. All project settings including “Exclude from build“ option are
stored separately for every configuration.

Note
Dependencies between projects are common for all configurations

Using configurations you may easily maintain debug and release versions of
your test suite or versions that are compiled using difference target compilers
(e.g. Microsoft VC++ and GCC).

To create new configuration open Project menu and choose Configura-
tions. Press Add button, enter the name for the new configuration and con-
figuration to copy settings from. Press Ok to finish operation.

Multiproject workspaces

June 2009 IBM Rational Systems Tester 3.3 User Guide 119

Important!
It’s strongly recommended that all projects in the workspace have one and
the same set of configurations

Multiproject workspaces
Usually workspace contains only one project that is built into executable.
Sometimes there is a need to divide project into several smaller ones moving
common parts into libraries. Rational Systems Tester assists you greatly in
maintaining such complex projects.

Specifying dependencies between projects

To create multiproject workspace do the following:

• Fill workspace with projects by creating new projects within current
workspace or adding existing projects to the workspace.

• Define dependencies between projects.

Dependency tree of projects inside a workspace is defined by specifying all
projects which current project depends on. Right click on a project and
choose Project Dependencies in the popup window. Check all projects that
should be built prior to this project. Rational Systems Tester prevents you
from defining cyclic dependencies, which are not allowed. Every time you
change dependencies you may switch to Build Order tab and observe the
evaluated ordering of projects that will be used in all build operations.

After dependencies are defined Rational Systems Tester executes all build
operations according in the automatically evaluated build order.

Batch build operations
There are four build operations in IBM Rational Systems Tester environ-
ment:

• Analyze

• Compile

• Build

• Clean

120 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 5: Building

Each of these operations may be applied to either only the selected project or
active project including all dependent projects or all projects in the work-
space.

By default active project is built including all dependent projects. This type
of build operation is invoked when you invoke build operations from Project
menu, from toolbar or when you right click on a project and choose operation
from popup menu. You may also open Build menu and invoke analyze, com-
pile, build and clean operation from there.

Note
Active project and current project configuration is specified using the
Project toolbar or Configurations item in Project menu.

You may want to perform operation only for the selected project without de-
pendent ones. Right click on a project or select a project and open Build
menu. Open Project Only submenu and choose required operation.

Finally you may decide to perform operation for the whole workspace. In this
case operation will be performed for all projects in their dependency order.
Open Build menu and choose Analyze All, Compile All, Build All or Clean
All.

When the invoked build operation requires executing operations in the de-
pendent projects Rational Systems Tester tries to use one and the same con-
figuration for all projects. It’s your task to have certain configuration defined
for all depending projects. If no corresponding configuration found in the de-
pendent project then Rational Systems Tester warns about it asking whether
you would like to continue process using the default configuration.

Example 18–––

If you decided to build project MyExe when the current configuration is set
to MSVC and this project depends on MyLib project then Rational Systems
Tester tries to locate MSVC configuration in MyLib project and use it. Lack
of the MSVC configuration in MyLib project may result in inconsistent
build.

–––

June 2009 IBM Rational Systems Tester 3.3 User Guide 121

6
Execute Tests

When executing a test suite, you get reports, logs, of which test case in the
test suite is executed. You also get the runtime reports of execution progress,
as well as the verdict.

During execution, the log information can be saved both as an MSC trace,
and as a text file that allows you to navigate from each event to the source in
the abstract test suite. You may also specify your own log formats.

The log information, that is, runtime reports and the log file, are displayed in
the Execution tab in the Output window. MSC files may be displayed in a
separate viewer.

It is possible to reproduce test cases as well as to (re)configure connections
to the underlying stack or SUT.

122 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

Command-Line Execution Overview
Command-line execution is fundamentally the way to execute the built ETS.
The execution from the Rational Systems Tester user interface is a wrapper
around the command-line execution, making it usable from the user interface
with dialogs, log output, and navigability.

The RTS part of the built ETS can be given command-line arguments for
controlling and setting up the environment for the ETS to execute in.

Command-Line Syntax
<ets> [user switches] -t3rt [“<switches>” [user
switches]]

or

<ets> [user switches] -t3rttmpl <filename>

Hint
Just using -t3rt with no switches will display a help text on stdout stream.

• [user switches]

Switches that are handled by the main function in general, the RTS does
not regard them. The switches to the RTS is given as a space separated
list of switches within the quoted string.

• -t3rttmpl <filename>

This will generate a configuration file template, in a file with the given
name to be used with the -file switch.

Example 19: ––

etsbin -t3rt “-file myconfigfile +lrtconf -to 10.0”

–––

Switches are parsed from left to right, and depth-first into any configuration
files, that is, any switches given after a file directive will override the
switches in the file.

Note
These switches can also be used when executing from the Rational Systems
Tester user interface: On the Project menu, click Settings and then click the
Execution tab. Enter the switches in the Additional execution switches text
box.

Command-Line Switches

June 2009 IBM Rational Systems Tester 3.3 User Guide 123

Command-Line Switches

Switch Description

-confint <k> <n> General integer value. Sets the key <k> to the in-
teger value <n>.

Example: -conffloat my.int 42

-confbool <k>
true|false

General boolean value. Sets the key <k> to the
boolean value true or false.

Example: -conffloat my.flag false

-conffloat <k>
<n>

General floating point value. Sets the key <k> to the
floating point value <n>[.<m>].

Example: -conffloat my.float 41.9

-confcstr <k>
[‘]<s>[‘]

General character string value. Sets the key <k> to
the character string value <s>.

Example: -confcstr my.str qwerty

-confbstr <k>
<bstr>

General binary string value. Sets the key <k> to the
binary string value <bstr>. The binary string can
be given on the form:

[']<str>['][h|H|o|O|b|B].

Example: -confbstr my.hex ‘DEADBEEF’H

-file <filename> Use configuration file <filename> as input. See
“Configuration Files” on page 132 for more details.

-par <par_name>
<value>

Module parameter initialization. The named
module parameter will be initialized with the given
value definition. See “Module Parameter Syntax”
on page 133 for the value definition format.

Initializing a module parameter value with this
switch will have the highest precedence (over both
initialization file and default value).

Example: -par Module1.par1 12

Example: -par par2 {{3,false},{2,true}}

124 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

-parfile
<filename>

Module parameter initialization file.

When module parameters are initialized and no ex-
plicit command-line definition is given (-par
switch) a value definition will be searched for in the
given initialization file(s). If this switch is used
multiple times on the command-line (with different
files) the last value definition found in any of the
files will have precedence. The files will be pro-
cessed in the order given on the command-line. See
“Module Parameter Syntax” on page 133 for the
value definition format.

If a multi-process integration is used for concurrent
component execution, the same filename as given
on the command-line will be used in all processes,
that is to say that the initialization file must be
available to all processes in terms of file location.

Example: -parfile ModPars_01

-v/--verbosity
<level>

Verbosity level of the built-in textual event log.

The value ranges from 0 to 4 with the following
meaning:

0 - off (no log event are displayed)

1 - minimal (for example testcase_started,
test case_error, etc.)

2 - normal (most TTCN-3 statement operations)

3 - extended (for example message_detected,
port_mapped, etc.)

See “t3rt.logging.builtin.verbosity” on page 129 for
more details.

-
lrtconf/+lrtconf

Disable the displaying of the runtime configuration
contents. Disabled by default.

See“t3rt.logging.rtconf_dump.enabled” on page
129 for more details.

Switch Description

User Interface Execution

June 2009 IBM Rational Systems Tester 3.3 User Guide 125

User Interface Execution

Execution Settings

To start an execution of your test suite you click Execution on the Project
menu.

The execution settings gives you a possibility to make choices for the execu-
tion. You find the settings in the Execution tab in the Settings dialog box.

You can select one or all of these options in a single execution:

• Module parameters

Allows you to specify a module parameters initialization file. For more
information, see “Module Parameter Syntax” on page 133.

-to <time-out
value>

Maximum time-out time for the execute statement.

See “t3rt.behavior.default.testcase_timeout” on
page 128 for more details.

+tmpp/++temporar
y_memory_poison_
pill
-tmpp/--
temporary_memory
_poison_pill

Enable/disable “poison pilling” of released tempo-
rary memory.

See “t3rt.temporary_memory.poison_pill.enabled”
on page 131 for more details.

-tmru/--
temporary_memory
_release_unused

Enable/disable immediate deallocation of released
temporary memory.

See “t3rt.temporary_memory.release_unused.en-
abled” on page 131 for more details.

-tm <nbytes>/
--block_size
<nbytes>

Defining the size (in bytes) of the blocks that are
being allocated when the temporary memory area
grows.

See“t3rt.temporary_memory.block_size” on page
130 for more details.

Switch Description

126 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

• Behavior

– Default test case timeout

Allows you to specify a default time-out value in seconds that will be
used if the execute statement is called with no time-out value.

– Use of built-in codec if non is registered for a type

Allows to use built-in codec for all types that do not have explicitly
registered encoders and decoders. Note that use of this option is safe
only for internal communication between test components.

– Continue template matching on fail

Allows to proceed with matching fields of the structured value after
mismatch is detected. Using this option slows down performance but
shows all differences between the template and matching value.

– Assume timers in TRI are implemented as “active“

Tells runtime system library that TRI timer implementation actively
reports timeouts with triTimeout function. Otherwise RTS will try to
evaluate timout basing on timer elapsed time.

– Pass template formal parameters by value

Tells RTS to translate static templates into template variables and
pass them by value to called function.

• Optional configuration file

Allows you to specify a configuration file, for re-use purposes. (That is,
if you have an individual configuration file that you wish to use and re-
use for several test executions.)

• Additional execution switches

Allows you to set additional switches, that is exceptions or additions to
the settings in the configuration file.

All switches are listed in “Command-Line Switches” on page 123.

• Executable test binary

Specify location of the executable test binary, the ETS, created during
build.

Invoking an ETS on a Remote Host

June 2009 IBM Rational Systems Tester 3.3 User Guide 127

Invoking an ETS on a Remote Host
An executable test suite may be located on a UNIX server, and you will still
be able to invoke it from your computer. There is no specific license required
for the UNIX server, but the ETS must be executable on that platform.

You find options for remote invocation of an ETS in the Options dialog box,
Rational Systems Tester/TTCN to C tab. For a description of options, see
“Using a Remote Host Compiler” on page 112 in Chapter 5, Building. The
options are described from a Compiler perspective but are applicable to ETS
invocation too.

Set Execution Options
1. On the Project menu, click Settings, then click the Execution tab.

2. Select:

– Enable log event generation to allow logging.

– Display Configuration settings, when applicable.

– Display registered log mechanisms, when applicable.

– Log also to file and specify a filename and destination, when appli-
cable

3. Specify Module parameters.

4. Specify Default test case time-out in seconds, when applicable.

5. Select Optional configuration file, when applicable.

6. Set Additional execution settings, when applicable. All switches are
listed in “Command-Line Switches” on page 123.

7. Specify Executable test binary.

8. Click OK.

Execute a Test Suite

To execute a test suite:

• On the Project menu, click Execute.

• Press F5

• On the toolbar, click the Execute button.

128 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

To cancel an execution:

• Click the Stop action button on the toolbar

• On the Project menu, click Stop action.

Predefined Configuration Keys
Keys starting with t3rt are reserved for the RTS. There are also some pre-
defined keys that the RTS uses that can be set using the general -conf...
switches.

t3rt.behavior.default.testcase_timeout

Setting this value will override the “wait forever” behavior of calling the ex-
ecute statement with no timeout time. This will not apply to the execute state-
ment that a timeout value has been given.

The value is a float-point value in seconds.

Useful to force a time-out even if a test case is hanging. This will make a con-
trol execute from start to end and generate a test case error for each timed out
test cases.

No default timeout value is set by default.

t3rt.control.ack_timeout

The maximum time (in seconds) before timing out on pending (internal) ac-
knowledgements.

The value is a float-point value in seconds.

t3rt.timers.assuming_all_active

Setting this boolean will make the RTS assume that all timers are active.

The default value is false, that is, the timers can be implemented using both
a passive and/or an active scheme.

This means that if the RTS is not told explicitly (using
“t3rt_timer_timed_out” on page 340 in Chapter 10, Runtime System APIs
(non-TRI) or “triTimeout” on page 554 in Chapter 10, Runtime System APIs
(TRI)) that a timer has timed out, it will never time out.

Predefined Configuration Keys

June 2009 IBM Rational Systems Tester 3.3 User Guide 129

This should only be used if the timers’ integration is using active timers only.
See the Technical Integration Documentation for different timer implemen-
tations.

t3rt.logging.builtin.verbosity

This boolean value controls the verbosity level of the built-in textual log.

Level 0 turns off the logging.

Level 1 is a minimal set of event just reporting the progress of test cases, their
verdicts and any test case errors. This is intended for a standard test run
where the test result itself is interesting.

Level 2 (default) is intended for test suite writers who needs to trace the ex-
ecution more closely to find out what goes wrong in the executed test. Most
significant TTCN-3 operations are logged here.

Level 3 - This is intended for the integration/codecs system writers that needs
to know all the details available. Here encoding/decoding failures and ex-
ternal stimuli detection (that is, when information arrives in the RTS) are re-
ported.

Level 4 - All events. Information and debug messages included.

See “Execution Logs” on page 143 in Chapter 7, Execution Logs for more in-
formation.

t3rt.logging.rtconf_dump.enabled

This will display the actual configuration settings in the runtime configura-
tion mechanism.

This is useful if you make a lot of configuration through configuration files
or long switch lines, and want to verify the final configuration settings.

Disabled by default. See the Technical Integration Documentation for an ex-
planation.

t3rt.matching.continue_on_fail

A template allows you to specify matching information for received data
(only allowed for receive constraints). Normally the matching process stops
when an error has been detected.

130 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

This key allows you to complete the matching process even though errors has
been detected.

Disabled by default.

t3rt.values.limits.epsilon_double

This value is used to set up “epsilon”, used in comparisons of floating-point
values.

Compare with “t3rt_type_is_equal” on page 251 in Chapter 10, Runtime
System APIs.

The default value is 2*DBL_EPSILON (from 'limits.h').

Note
Setting this value to 0.0 will be equal to direct comparison of floats. Gener-
ally, this is not recommended.

t3rt.codecs.builtin_as_default.enabled

Setting this boolean value to true will make the RTS use the built-in codecs
when no registered codecs has been registered for a type.

The transfer syntax for this is internal and never will be published. Enabling
this should only be made in those cases where messages are never sent to the
SUT (or TRI SA implementation).

It is disabled by default.

t3rt.temporary_memory.block_size

Set size (in bytes) of the blocks that are being allocated when the temporary
memory area grows.

The default value of this is 100.000 bytes.

Setting this to a large number will have the effect that fewer calls to the
system is made to allocate heap memory, which is a slow operation. The
memory area will grow in larger increments which could possibly make the
ETS consume more memory than necessary.

Setting this to a small number will cause more memory allocating calls to the
system and the temporary memory area will consist of (possibly many)
smaller blocks.

Predefined Configuration Keys

June 2009 IBM Rational Systems Tester 3.3 User Guide 131

t3rt.temporary_memory.poison_pill.enabled

Enabling this boolean value will result in memory being overwritten with a
known bit pattern when the memory is (logically) “freed”. This is only appli-
cable to temporary memory. See the Technical Integration Documentation
for information on temporary memory.

This is disabled by default and enabling it is only relevant in debug situations
in an environment where memory can be displayed. Enabling poison pilling
will decrease performance slightly.

t3rt.temporary_memory.release_unused.enabled

Enabling this boolean value will result in immediate freeing of unused tem-
porary memory when leaving temporary memory scope block, i.e. when
calling t3rt_memory_temp_end function. By default deallocation of tempo-
rary memory blocks is delayed until component termination. When execu-
tion leaves temporary memory scope all blocks allocated in that scope are
marked as unused and reused later upon runtime system request. Such
strategy allows to save malloc calls, but may result in unnecessarily big
memory consumption of test suite executable.

Enable this boolean value to free temporary memory blocks as soon as they
become unused. This is only applicable to temporary memory. See the Tech-
nical Integration Documentation for information on temporary memory.

Enabling this flag will decrease performance slightly.

t3rt.values.value2string.print_kinds.enable

Enabling output of value kinds in the value-to-string operations.

t3rt.values.value2string.print_types.enable

Enabling output of value types in the value-to-string operations.

t3rt.values.value2string.print_field_names.enable

Enabling output of field names in the value-to-string operations.

t3rt.logging.builtin.print_field_names

Enabling output of field names in the built-in log.

132 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

t3rt.logging.builtin.pretty_print

Pretty print values in the built-in log. When printing structured values each
element will be printed on separate line maintaining indentation.

t3rt.logging.builtin.limit_size

Truncate structured and values to the specified number of elements. If length
of a value exceeds specified limit then value is truncated and “<...>“ is ap-
pended to its end.

Configuration Files
Collecting a set of “standard” configuration settings in one or more configu-
ration files can be useful. Especially when they can be overridden using sub-
sequent command-line switches.

<key> [<type>] = <value>

Example: mysetting.integration.version integer = 201

The type for a predefined key is implicitly known. Forcing another type for
predefined keys will cause undefined behavior.

The types that can be specified as key types are:

integer
float
boolean
charstring
bitstring
hexstring
octetstring
binary

The string values can be quoted but that is only required when the string
value contains spaces.

The value for a binary typed key is:

[<quote>]<data>[<quote>][<format specifier>

<quote> ::= '|" (enclosing quotes must be the same)

<data> ::= A sequence of characters 0-1 or A-F. The
sequence may have blank separators.

<format specifier> ::= H|h|B|b|O|o (hex, bit, octet)

Module Parameter Syntax

June 2009 IBM Rational Systems Tester 3.3 User Guide 133

If no format specifier i given, hex format is assumed. If a format specifier is
provided, the data has to be quoted.

See also

“-file <filename>” on page 123

Module Parameter Syntax

Value definition on command-line

As stated in the documentation for the -par switch, a module parameter is
specified as:

-par <par_name> <value>

Value definition in initialization file

When specified in a file, the syntax for each parameter is:

<par_name> := <value>;

Lines (in a file) starting with ‘#’ are considered to be comment lines and will
be ignored.

In both cases, the name of the parameter should be fully qualified with
module name (for example MyMod.par1). If an unqualified parameter name
(for example par1) is used, it is assumed to be a parameter of the root module.
If this is not the case, the definition will not be found during initialization.

The value syntax has intentionally been chosen as close to TTCN-3 as pos-
sible. Basically, constant literal expressions that require no evaluation is sup-
ported.

List of supported expressions:

• Literals of type:

integer
char
float
boolean
objid
verdicttype
bitstring
hexstring
octetstring

134 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

charstring
record
recordof
set
setof
enumerated
union

• References to test suite constants.

• Field references to constants of record or set types, (that is, the “dot” no-
tation).

Example: M.par1 := M.rec_const1.field1;

• Element indexing in constants of array type.

The numeric expression given as index have to be a positive integer lit-
eral or a reference to a positive integer constant.

Example: M.par2 := M.arr_const1[4];

Example: M.par2 := M.arr_const1[M.int_const1];

• Field identifiers for record or set value definitions.

Example: { field1 := 42 }

• The omit symbol for optional record or set fields.

• Implicitly omitted fields are only supported if field identifiers are used,
that is, not if the value list syntax is used.

Limitations

The following is a list of constructs that cannot be used in module parameter
definitions:

• Any of the TTCN-3 Operators (§15.0 in ETSI ES 201 873-1 V2.2.1).

• References to other module parameters.

• References to variables.

• Expressions of type:

universal char
universal charstring
anytype
address
port
component
default

Module Parameter Syntax

June 2009 IBM Rational Systems Tester 3.3 User Guide 135

• Union values can only be given using the r-value notation.

Example: M.union_par := { int_field := 13 };

Example: M.union_par.int_field := 13; // Wrong!

• The “not used” symbol ‘-’.

Note
Any constructs that are not covered by these two lists are considered to be
unsupported.

Table editor for module parameters

IBM Rational Systems Tester provides grid-like editor for module parame-
ters files. Double click on module parameters file in the workspace window,
Rational Systems Tester opens window containing grid with four columns:

• Module Name

• Parameter Name

• Parameter Value

• Comment (optional)

Note
Table editor is loaded only for files with “modparams” extension. If Ra-
tional Systems Tester fails to parse file structure it opens file in text editor.

Add module parameters

There are two ways of adding module parameters:

• Drag-and-drop module parameter from the “Structured view” window

• Choose parameter from the drop down list box in the table

Using drag-and-drop to add parameters

To add module parameters to the table using drag-and-drop:

• Open Structured View window and locate module parameter node

• Drag this parameter to the table and drop it on the last (free) line in the
table. You need to drop it over second column (Parameter Name). Ra-
tional Systems Tester automatically fills Module Name column

136 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

Note
Dropping parameter over filled (not the last) line in the table overwrites ex-
isting data

Adding parameter from the drop down list

To choose the parameter from the list of all defined module parameters:

• Locate last (empty) line in the table

• Select second (Parameter Name) column

• Expand the list, scroll down to desired parameter and choose it. Rational
Systems Tester automatically fills Module name column

Hint
You may want to start with choosing the module. Then Rational Systems
Tester filters out all parameters defined in other modules.

Deleting module parameters

To delete one or several parameters from the table select desired parameters
with the mouse by clicking on the line header containing ordinal line number
and press del key.

Hint
You may use Ctrl and Shift keys to select blocks of parameters

Sorting and reordering parameters

You may reorder parameters in the table by selecting a line and drag-and-
dropping it to another location in the table (upper or lower).

You may sort the entries of the table in the ascending or descending order by
clicking on the column header.

You may change the width or height of a line by pointing the mouse over
column or line header boundary and expanding it to the desired size.

Module parameter validation

Rational Systems Tester doesn’t perform any kind of validating data entered
in the table editor. Checking whether specified parameter is defined in the
test suite and whether provided value conforms to the parameter type is per-
formed at runtime during test suite initialization.

Test management in Rational Systems Tester GUI

June 2009 IBM Rational Systems Tester 3.3 User Guide 137

Test management in Rational Systems
Tester GUI

IBM Rational Systems Tester provides the ability to manage test execution
directly from GUI without hard coding the control part and rebuilding the test
executable each time there is a need to execute a certain test case. A test case
that does not have parameters may be started with only a mouse click. Be-
sides executing single test cases it is also possible to define test plans - a sort
of batch file that defines a sequence of test cases to be executed. Unlike
changes to control parts, changes to the test plan does not require a rebuilding
of the test executable. Each IBM Rational Systems Tester project may con-
tain an arbitrary number of test plans.

In order to manage tests, execution from GUI project should be compiled
with “Test management” project setting set to “Dynamic through Rational
Systems Tester GUI”. This option is located on “Build” tab in the Project
Settings dialog.

Note
This option should be set at start of test executable also.

When a test executable with enabled test management is started IBM Ra-
tional Systems Tester establishes communication with it and requests a list
of modules and defined test cases. This information is displayed in the “Ex-
ecution” tab in the “Output” window.

Note
“Execution” tab is normally hidden and activated only at start of test exe-
cutable.

Modules and test cases are displayed in a tree-like view. The root of the tree
is a name of a test executable. The next level is occupied by the modules de-
fined in the test suite. Leafs of the tree represent the test cases defined in the
test suite.

How to enable GUI test management for existing
project

Several changes have to be done in the project configuration (.mcfg) file in
order to use GUI test management for existing project:

138 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

• Add the following three libraries to the list of libraries linked to the test
executable.

– Windows: libt3tci.lib libt3tcite.lib rpcrt4.lib

– Linux: libt3tci.a libt3tcite.a librpcsvc.a

– Solaris: libt3tci.a libt3tcite.a librpcsvc.a libnsl.a

Under Linux and Solaris due to peculiarities of a standard Unix linker
(ld) it is necessary to enclose linked libraries with special switches. If
gcc compiler is used to build test executable then above mentioned three
libraries should be linked with the command:
-Wl,--start-group -lt3tci -lt3tcite -Wl,--end-group -lrpcsvc
rpcrt4.lib and librpcsvc.a are standard system libraries.

• Add t3tci_template.c file to the list of source files. This file is by default
located in the directory:

[SYSTEMS_TESTER_INSTALL_DIR]\integrations\tci
• Open the project settings dialog and on the “Build” tab set the “Test man-

agement” parameter to “Dynamic through Rational Systems Tester
GUI”.

• Recompile and rebuild the project.

• Start the test executable and notice the “Execution” tab in “Output”
window.

Starting and stopping control parts

Ensure that the test executable is running and that the “Execution” tab is dis-
played in the “Output” window.

To start a control part of a certain module, select the module in the tree. Then
open the “Project” menu and select “Start Control Part”. It is also possible to
start the control part if you right-click on a module and select “Start Control
Part” from the shortcut menu.

To stop a control part you open the project menu and select “Stop Control
Part” or right-click on the module and select “Stop Control Part” from the
shortcut menu.

Starting and stopping test cases

Ensure that a test executable is running and that the “Execution” tab is dis-
played in “Workspace” window.

Test management in Rational Systems Tester GUI

June 2009 IBM Rational Systems Tester 3.3 User Guide 139

To start a certain test case, first select it in the tree. Then open the “Project”
menu and select “Start Test Case”. It is also possible to right-click the test
case and select “Start Test Case” from the shortcut menu. If the test case does
not have any parameters it will start immediately.

If the test case has parameters a dialog window will open. This window lists
all the test case parameters with name and type. It is required to give values
to all of the parameters. The values are defined by string representations in
the same way as they are defined in a source TTCN-3 file. When you have
defined all values and pressed the “Run” button Rational Systems Tester will
create parameter values from the string representation and start the test case.

Description of errors are found on the “TCI” tab of the “Output” window.

To stop a test case you open the Project menu and select “Stop Test Case” or
right-click on a test case and select “Stop Test Case” from the shortcut menu.

Defining test plans

A test plan represents a batch of test cases that are executed one by one. Each
test case may be executed several number of times. An example of test plan
is:

• Execute test case tc_01() 1 time

• Execute test case tc_02(“Maoist”) 3 times

• Execute test case tc_03({1,2,3}) 6 times

IBM Rational Systems Tester projects may have an arbitrary number of test
plans. Each test plan is defined in a separate file. In order to define a test plan
you first create a new empty test plan using the File menu->New wizard (you
may safely close the opened window).

Note
A test plan may be modified and executed only when a test executable is
started.

Ensure that a test executable is running and that the “Execution” tab is dis-
played in “Output” window.

Switch to the “File view” tab, select the test plan file and in the “Project”
menu choose “Modify Test Plan” item. It is possible to modify a test plan if
you right-click on a test plan file name and choose “Modify Test Plan” in the
shortcut menu. The “Test Plan Editing” dialog will appear.

140 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

The “Test Plan Editing” dialog consist of a list box with four columns:

• Module name of a test case

• Test case name

• Test case parameters

• Number of iterations

Each line represents a batch step. It may be described using the following
TTCN-3 code where strings in “<>” are substituted with those defined by the
user:

for (i := 0; i < <NUMBER_OF_ITERATIONS>; i := i + 1) {
execute(<MODULE>.<TESTCASE>(<PARAMETER_LIST>));

}

Press the “Add Test Case” button to add an entry to the list. The module
name and the test case name will be filled in from the prepared set of avail-
able modules and test cases in the test suite. Clicking on the first or second
column will open a drop down list box with the available choices. Test case
parameters (if any) should be defined in a comma delimited list. Finally the
number of test case iterations is set in the last column.

Every entry in the test plan window may be deleted by selecting it and
pressing the “Delete Test Case” button.

Press “Save” to confirm changes and close the “Test Plan Editing” dialog.

Press “Cancel” to discard all changes and close the “Test Plan Editing” di-
alog.

Press “Run” to confirm changes and execute test plan.

If any parameters are defined incorrectly (the length of the list is not correct
or a defined string value is not compatible with the type of the formal param-
eter) then an error will be posted at the time of pressing “Run” or “Save”
button

Running test plans

Ensure that the test executable is running and that the “Execution” tab is dis-
played in the “Workspace” window.

Test management in Rational Systems Tester GUI

June 2009 IBM Rational Systems Tester 3.3 User Guide 141

Switch to the “File view” tab, select the test plan file and in the “Project”
menu choose “Run Test Plan”. It is possible to run a test plan if you right-
click on the test plan file name and choose “Run Test Plan” in the shortcut
menu.

Test Plan Internals

Test plans are not automatically synchronized with TTCN-3 files. Every
error in a test plan specification (unknown test case name, wrong parameter
type, etc.) is detected only when the test plan is saved or executed.

To check a test plan definition against a test suite specification you open the
editing window and press the Save button.

The test plan file is a saved as a plain text file.

142 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 6: Execute Tests

June 2009 IBM Rational Systems Tester 3.3 User Guide 143

7
Execution Logs

Log Mechanism

IBM Rational Systems Tester contains several built-in log mechanisms that
may be used to trace test suite execution. These are text (ASCII-based)
simple and customizable log mechanisms, MSC file logging and graphical
execution tracing. The example provided in the installation showing imple-
mentation of log mechanism using TTCN-3 standard TCI TL logging inter-
face may be used instead of default text logging.

144 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Simple Text Log
The log format of the built-in text log mechanism is the same whether you
execute from the command-line or from the Rational Systems Tester user in-
terface. When executed from the Rational Systems Tester, you are able to
navigate to the source of the log messages from the Execution tab in the
Output window.

It is also possible to save the execution output to file and open it later.

This log mechanism prints the values of all event parameters. You may use
Customizable Text Log mechanism to select certain event parameters and
specify your own event definition.

The simple built-in log mechanism logs to stdout. Each event has the fol-
lowing format:

<filename> (<line number>): [<component name>] <event name>
< <arg1>, <arg2>...<argN> > - <scope name>(<arg1>,
<arg2>...<argN>)

Example 20: ––

bar.ttcn (42): [CompA] testcase_started < tc_1 > -
Module3()

–––
• <filename> and <line number>

This is the TTCN-3 source location where the event occurs.

• <component name>

This is the running component generating the event.

• <event name> and its arguments <arg1>...<argN>

This is the actual event. The scope information is the function, test case,
test step, and so on, in which context you are executing.

When an error is logged, an error code is printed together with an error de-
scription. The description of these error codes can be found in “Error Codes
Overview” on page 151.

Example 21: ––

mymod.ttcn (42): [Comp1] ERROR GRL0006: Type 'YourType'
must be either integer or float. - testcase29()

–––

Simple Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 145

Logging verbosity

The level of logging verbosity is decided by the predefined configuration key
t3rt.logging.builtin.verbosity.

An integer value is assigned to all available logging events. By setting the
configuration key t3rt.logging.builtin.verbosity you decide which events that
should be logged. If you set the verbosity level to “2”, all logging events with
integer values 2 or lower will be listed.

However, if you only want to display a subset of the events with verbosity
level “2”, you must customize your logging. This means that you can change
which events to log and which events that should not be logged. In the
include directory in your installation directory, there is a file called
rtconf.cfg available. This file includes all logging events and their corre-
sponding integer values.

Follow the instructions below to customize you logging verbosity:

1. Copy the file RTconf.cfg and paste it at a location of your choice.
Change the name of the file.

2. Open the file in a text editor and change the integer values of the events.
Save the file.

3. From the Project menu, click Settings.

4. Select the Execution tab and in the Optional configuration file field,
open your customized file.

See also

“t3rt.logging.builtin.verbosity” on page 129 in Chapter 6, Execute Tests

Logging Settings

The logging settings gives you a possibility to make choices for the text log-
ging. You find the settings in the Logging tab in the Settings dialog box.

You can select one or all of these options in a single execution:

146 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

• Logging settings

– Enable log event generation

Allows you to enable or disable all log generation.

– Display configuration settings

Allows you to display current configuration settings in the Execution
tab in the Output window.

– Pretty print values

Tells text log mechanism to print every field of a structured value on
separate line maintaining indentation.

– Truncate string/vector values

Tells text log mechanism to truncate string (all kinds), recordof, setof
and array values to the specified number of elements. If value is trun-
cated it’s appended with “...”.

– Show timestamps

Turns on timestamping for every event. Timestamps appear at the be-
ginning of the event log line.

• Log target

– Write log to

Choose where to write log data: to output window, to external file or
both.

– External log file

Specify the name of the file to which log data will be written. Not ap-
plicable when log target is set to “Tester output window“.

Enable Text-File Logging
1. On the Project menu, click Settings, then click the Logging tab.

2. Select Enable log event generation.

3. Select Log target and specify a filename if log is written to a file.

4. Click OK.

See also

“Set Execution Options” on page 127 in Chapter 6, Execute Tests.

Simple Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 147

Display Log From Text File

Specify which log file to view:

1. On the Project menu, click Settings, and then the Misc tab.

2. Specify the text log that you want to view in the Post mortem log file
box.

3. Click OK.

View a text log file:

• On the Project menu, click Post-mortem debugger.

• Click the Post-mortem debugger button on the toolbar.

Navigate in Execution Log
1. In the Output window, select the Execution tab.

2. Press F4 or SHIFT+F4 to browse log items.

Navigate from Execution Log
1. In the Output window, select the Execution tab.

Right-click an item and select Locate. The corresponding item is located in
the abstract test suite.

148 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Customizable Text Log
Customizable text log mechanism provide you with the ability to define log
output by specifying format string for every event. Similar to “printf“ func-
tion format string contains free text and special parameters that are substi-
tuted with real values at runtime. Parameters are enclosed in “%“, e.g.
%TimeStamp% denotes event timestamp and is substituted with something
like “12:37:59.223“.

Each event has predefined set of parameters. Format string is checked during
test suite initialization. Syntax errors in format string as well as use of illegal
parameters are reported immediately and execution aborts.

Every event has default format string that is specified in RTConf.cfg file. Use
this file as a template if you want to change event format. For example
“message_sent“ event has following definition:

"%Location%%TimeStamp%[%CompName%] %Event%: %PortName%.send
(%MsgValue%) to '%ToCompName%'"

At runtime this definition is substituted with actual parameter values and
printed. The resulted string may look like:

ts.ttcn (289): 12:37:59.223 [MTC] message_sent: P.send (1)
to 'Cint:1'

The behavior of customizable text log is the same as Simple Text Log mech-
anism. These mechanisms are interchangeable and differ only in the contents
of the log messages.

By default customizable log mechanism is used but you may revert back to
simple text log by patching t3rts_conditional.c file that is usually located in
<Rational Systems Tester Installation Folder>/lib directory. In this case you
need to disable registration of customizable log mechanism and enable
simple log mechanism registration. This may be simple done by compiling
t3rts_conditional.c file with T3RT_LEGACY_BUILTIN_LOG value de-
fined (e.g. /DT3RT_LEGACY_BUILTIN_LOG).

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 149

Valid event parameters

Common parameters for all events

Timestamp is displayed only when RTConf key t3rt.logging.timestamp.en-
abled is set to true.

It’s possible to control how timestamp is presented in the log with the help
of user-defined t3ud_make_timestamp function. The value returned by this
function is put into the log without any changes. The default implementation
prints timestamp as “HH:MM:SS.NNN“.

"Event" Event name

"Location" Source location of the event

"CompName" Name of the component that produced event

"CompAddr" Address of the component that produced event

"TimeStamp” Local time at the moment of event generation

150 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “message_sent” event

Parameters for “message_sent_mc” event

Parameters for “message_sent_bc” event

Parameters for “sut_message_sent” event

Parameters for “sut_message_sent_mc” event

"PortName" Local port name

"MsgValue" Value sent through port

"ToCompName" Destination component name

"ToCompAddr" Destination component address

"PortName" Local port name

"MsgValue" Value sent through port

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"PortName" Local port name

"MsgValue" Value sent through port

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"PortName" Local port name

"MsgValue" Value sent through port

"SutAddr" SUT address (if specified)

"PortName" Local port name

"MsgValue" Value sent through port

"SutAddrList" List of SUT addresses (if specified)

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 151

Parameters for “sut_message_sent_bc” event

Parameters for “message_sent_failed”

Parameters for “message_sent_failed_mc”

Parameters for “message_sent_failed_bc”

"PortName" Local port name

"MsgValue" Value sent through port

"PortName" Local port name

"MsgValue" Value sent through port

"ToCompName" Destination component name

"ToCompAddr" Destination component address

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"MsgValue" Value sent through port

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"MsgValue" Value sent through port

"ToComp-
NameList"

List of destination components names

152 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

"ToCompAddrList" List of destination components addresses

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 153

Parameters for “sut_message_sent_failed” event

Parameters for “sut_message_sent_failed_mc” event

Parameters for “sut_message_sent_failed_bc” event

Parameters for “message_detected” event

"PortName" Local port name

"MsgValue" Value sent through port

"SutAddr" SUT address (if specified)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"MsgValue" Value sent through port

"SutAddrList" List of SUT addresses (if specified)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"MsgValue" Value sent through port

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

“MsgData" Binary string detected at port

"FromCompName" Sending component name

"FromCompAddr" Sending component address

154 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “sut_message_detected” event

Parameters for “message_received” event

Parameters for “message_found” event

Parameters for “message_discarded” event

"PortName" Local port name

“MsgData" Binary string detected at port

"SutAddr" SUT address (if specified)

"PortName" Local port name

"MsgValue" Value received through port

"MsgTemplate" Template specified in the receive operation (if
specified)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

"PortName" Local port name

"MsgValue" Value received through port

"MsgTemplate" Template specified in the check(receive) operation
(if specified)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

"PortName" Local port name

"MsgValue" Value received through port

"MsgTemplate" Template specified in the trigger operation (if spec-
ified)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 155

Parameters for “sut_message_received” event

Parameters for “sut_message_found” event

Parameters for “sut_message_discarded” event

Parameters for “sut_action_performed” event

Parameters for “call_initiated” event

"PortName" Local port name

"MsgValue" Value received through port

"MsgTemplate" Template specified in the receive operation (if
specified)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"MsgValue" Value received through port

"MsgTemplate" Template specified in the check(receive) operation
(if specified)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"MsgValue" Value received through port

"MsgTemplate" Template specified in the trigger operation (if spec-
ified)

"SutAddr" SUT address (if specified)

"Action" SUT action performed

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"ToCompName" Destination component name

"ToCompAddr" Destination component address

156 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “call_initiated_mc” event

Parameters for “call_initiated_bc” event

Parameters for “sut_call_initiated” event

Parameters for “sut_call_initiated_mc” event

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"SutAddrList" List of SUT addresses (if specified)

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 157

Parameters for “sut_call_initiated_bc” event

Parameters for “call_failed” event

Parameters for “call_failed_mc” event

Parameters for “call_failed_bc” event

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"ToCompName" Destination component name

"ToCompAddr" Destination component address

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

158 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

"ToComp-
NameList"

Liast of destination components names

"ToCompAddrList" List of destination components addresses

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 159

Parameters for “sut_call_failed” event

Parameters for “sut_call_failed_mc” event

Parameters for “sut_call_failed_bc” event

Parameters for “call_timed_out” event

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"SutAddr" SUT address (if specified)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"SutAddrList" List of SUT addresses (if specified)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

160 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “sut_call_timed_out” event

Parameters for “call_detected” event

Parameters for “sut_call_detected” event

Parameters for “call_received” event

"PortName" Local port name

"PortName" Local port name

"ProcName" Name of called procedure

"SignatureData" Encoded signature value (includes encoded actual
parameters)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

"PortName" Local port name

"ProcName" Name of called procedure

"SignatureData" Encoded signature value (includes encoded actual
parameters)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"SignatureTem-
plate"

Template specified in the getcall operation (if spec-
ified)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 161

Parameters for “call_found” event

Parameters for “sut_call_received” event

Parameters for “sut_call_found” event

Parameters for “reply_sent” event

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"SignatureTem-
plate"

Template specified in the check(getcall) operation
(if specified)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"SignatureTem-
plate"

Template specified in the getcall operation (if spec-
ified)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"ProcName" Name of called procedure

"Signature" Signature value (includes values of all parameters)

"SignatureTem-
plate"

Template specified in the check(getcall) operation
(if specified)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

162 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

"ReturnValue" The procedure return value (if any)

"ToCompName" Destination component name

"ToCompAddr" Destination component address

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 163

Parameters for “reply_sent_mc” event

Parameters for “reply_sent_bc” event

Parameters for “sut_reply_sent” event

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"SutAddr" SUT address (if specified)

164 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “sut_reply_sent_mc” event

Parameters for “sut_reply_sent_bc” event

Parameters for “reply_failed” event

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"SutAddrList" List of SUT addresses (if specified)

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"ToCompName" Destination component name

"ToCompAddr" Destination component address

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 165

Parameters for “reply_failed_mc” event

Parameters for “reply_failed_bc” event

Parameters for “sut_reply_failed” event

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

166 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

"ReturnValue" The procedure return value (if any)

"SutAddr" SUT address (if specified)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 167

Parameters for “sut_reply_failed_mc” event

Parameters for “sut_reply_failed_bc” event

Parameters for “reply_detected” event

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"SutAddrList" List of SUT addresses (if specified)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is sent

"Signature" Signature value (includes values of all parameters
and the return value)

"ReturnValue" The procedure return value (if any)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"ProcName" Name of the procedure for which the reply is de-
tected

"SignatureData" Encoded signature value (includes encoded actual
parameters)

"ReturnValueData" Encoded return value (if any)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

168 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “sut_reply_detected” event

Parameters for “reply_received” event

Parameters for “reply_found” event

"PortName" Local port name

"ProcName" Signature name

"SignatureData" Encoded signature value (includes encoded actual
parameters)

"ReturnValueData" Encoded return value (if any)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"ProcName" Name of procedure for which the reply is received

"Signature" Signature value (includes values for all parameters
and the return value)

"SignatureTem-
plate"

Template specified in the getreply operation (if
specified)

"ReturnValue" Return value (if any)

"ReturnValueTem-
plate"

Template for return value specified in the getreply
operation (if specified)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

"PortName" Local port name

"ProcName" Name of procedure for which the reply is received

"Signature" Signature value (includes values for all parameters
and the return value)

"SignatureTem-
plate"

Template specified in the check(getreply) operation
(if specified)

"ReturnValue" Return value (if any)

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 169

"ReturnValueTem-
plate"

Template for return value specified in the getreply
operation (if specified)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

170 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “sut_reply_received” event

Parameters for “sut_reply_found” event

Parameters for “exception_raised” event

"PortName" Local port name

"ProcName" Name of procedure for which the reply is received

"Signature" Signature value (includes values for all parameters
and the return value)

"SignatureTem-
plate"

Template specified in the getreply operation (if
specified)

"ReturnValue" Return value (if any)

"ReturnValueTem-
plate"

Template for return value specified in the getreply
operation (if specified)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"ProcName" Name of procedure for which the reply is received

"Signature" Signature value (includes values for all parameters
and the return value)

"SignatureTem-
plate"

Template specified in the getreply operation (if
specified)

"ReturnValue" Return value (if any)

"ReturnValueTem-
plate"

Template for return value specified in the getreply
operation (if specified)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"ToCompName" Destination component name

"ToCompAddr" Destination component address

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 171

Parameters for “exception_raised_mc” event

Parameters for “exception_raised_bc” event

Parameters for “sut_exception_raised” event

Parameters for “sut_exception_raised_mc” event

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"SutAddr" SUT address (if specified)

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"SutAddrList" List of SUT addresses (if specified)

172 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “sut_exception_raised_bc” event

Parameters for “raise_failed” event

Parameters for “raise_failed_mc” event

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"ToCompName" Destination component name

"ToCompAddr" Destination component address

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 173

Parameters for “raise_failed_bc” event

Parameters for “sut_raise_failed” event

Parameters for “sut_raise_failed_mc” event

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"ToComp-
NameList"

List of destination components names

"ToCompAddrList" List of destination components addresses

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"SutAddr" SUT address (if specified)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"SutAddrList" List of SUT addresses (if specified)

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

174 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “sut_raise_failed_bc” event

Parameters for “exception_detected” event

Parameters for “sut_exception_detected” event

Parameters for “timeout_exception_detected” event

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
raised

"Exception" Exception value

"CodecStatus" Boolean signaling status of encoding operation

"TransmitStatus" Boolean signaling status of network transmission
operation

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
detected

"ExceptionData" Encoded exception value

"FromCompName" Sending component name

"FromCompAddr" Sending component address

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
detected

"ExceptionData" Encoded exception value

"SutAddr" SUT address (if specified)

"PortName" Local port name

"SignatureName" Name of the procedure for which the timeout ex-
ception is detected

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 175

Parameters for “sut_timeout_exception_detected” event

Parameters for “exception_caught” event

Parameters for “exception_found” event

Parameters for “sut_exception_caught” event

"PortName" Local port name

"SignatureName" Name of the procedure for which the timeout ex-
ception is detected

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
received

"Exception" Exception value

"ExceptionTem-
plate"

Template specified in the catch operation (if speci-
fied)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
received

"Exception" Exception value

"ExceptionTem-
plate"

Template specified in the check(catch) operation (if
specified)

"FromCompName" Sending component name

"FromCompAddr" Sending component address

"PortName" Local port name

"SignatureName" Name of the procedure for which the exception is
received

176 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

"Exception" Exception value

"ExceptionTem-
plate"

Template specified in the catch operation (if speci-
fied)

"SutAddr" SUT address (if specified)

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 177

Parameters for “sut_exception_found” event

Parameters for “timeout_exception_caught” event

Parameters for “timeout_exception_found” event

Parameters for “sut_timeout_exception_caught” event

Parameters for “sut_timeout_exception_found” event

Parameters for “timer_started” event

"PortName" Local port name

"SignatureName" Signature name

"Exception" Exception value

"ExceptionTem-
plate"

Template specified in the check(catch) operation (if
specified)

"SutAddr" SUT address (if specified)

"PortName" Local port name

"SignatureName" Name of the procedure for which the timeout ex-
ception is received

"PortName" Local port name

"SignatureName" Name of the procedure for which the timeout ex-
ception is received

"PortName" Local port name

"SignatureName" Name of the procedure for which the timeout ex-
ception is detected

"PortName" Local port name

"SignatureName" Name of the procedure for which the timeout ex-
ception is detected

"TimerName" Name of the started timer

"Duration" Timer duration

178 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “timer_stopped” event

Parameters for “timer_read” event

Parameters for “timer_is_running” event

Parameters for “timeout_detected” event

Parameters for “timeout_received” event

Parameters for “timeout_mismatch” event

"TimerName" Name of the stopped timer

"TimerName" Name of the timer read

"Duration" Overall timer duration

"Elapsed" Time elapsed since timer start

"State" Current timer state

"TimerName" Name of the timer

"IsRunning" Boolean signaling whether timer is running

"Duration" Overall timer duration

"Elapsed" Time elapsed since timer start

"State" Current timer state

"TimerName" Name of the timer for which timeout is detected

"TimerName" Name of the timer for which timeout is received

"Duration" Overall timer duration

"TimerTemplate" Template specified in the timeout operation

"TimerName" Name of the timer for which timeout is checked

"TimerTemplate" Template specified in the timeout operation

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 179

Parameters for “component_created” event

Main test component is assigned with “MTC“ name. Parallel test component
by default are assigned with “TypeName:<Ordinal Number>“. However if
user specified component name in the ‘create’ operation then user-defined
name is shown.

"PtcType" Name of the created component type

"PtcName" Name of the created component

"PtcAddr" Address of the created component

180 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “component_started” event

Parameters for “component_is_running” event

Parameters for “component_is_alive” event

Parameters for “component_stopped” event

Parameters for “component_killed” event

Parameters for “component_terminated” event

None

"PtcName" Name of the started component

"PtcAddr" Address of the started component

"FunctionName" Name of the invoked function

"Signature" Signature value of the invoked function (includes
values for all actual parameters)

"PtcName" Name of the checked component

"PtcAddr" Address of the checked component

"IsRunning" Boolean signaling whether component is running

"PtcName" Name of the checked component

"PtcAddr" Address of the checked component

"IsAlive" Boolean signaling whether component is alive

"PtcName" Name of the stopped component

"PtcAddr" Address of the stopped component

"PtcName" Name of the killed component

"PtcAddr" Address of the killed component

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 181

Parameters for “done_check_failed” event

Parameters for “done_check_succeeded” event

Parameters for “kill_check_failed” event

Parameters for “kill_check_succeeded” event

Parameters for “port_connected” event

"PtcName" Name of the checked component

"PtcAddr" Address of the checked component

"PtcTemplate" Template specified in the done operation

"PtcName" Name of the checked component

"PtcAddr" Address of the checked component

"PtcTemplate" Template specified in the done operation

"PtcName" Name of the checked component

"PtcAddr" Address of the checked component

"PtcTemplate" Template specified in the killed operation

"PtcName" Name of the checked component

"PtcAddr" Address of the checked component

"PtcTemplate" Template specified in the killed operation

"PtcName1" Name of the component specified in the first pa-
rameter of connect operation

"PtcAddr1" Address of the component specified in the first pa-
rameter of connect operation

"PortName1" Name of the port specified in the first parameter of
connect operation

182 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

"PtcName2" Name of the component specified in the second pa-
rameter of connect operation

"PtcAddr2" Address of the component specified in the second
parameter of connect operation

"PortName2" Name of the port specified in the second parameter
of connect operation

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 183

Parameters for “port_disconnected” event

Parameters for “port_mapped” event

Parameters for “port_unmapped” event

Parameters for “port_enabled” event

"PtcName1" Name of the component specified in the first pa-
rameter of disconnect operation

"PtcAddr1" Address of the component specified in the first pa-
rameter of disconnect operation

"PortName1" Name of the port specified in the first parameter of
disconnect operation

"PtcName2" Name of the component specified in the second pa-
rameter of disconnect operation

"PtcAddr2" Address of the component specified in the second
parameter of disconnect operation

"PortName2" Name of the port specified in the second parameter
of disconnect operation

"PtcName" Name of the component specified in the map oper-
ation

"PtcAddr" Address of the component specified in the map op-
eration

"PortName" Name of the port specified in the map operation

"SysPortName" Name of the TSI port specified in the map operation

"PtcName" Name of the component specified in the unmap op-
eration

"PtcAddr" Address of the component specified in the unmap
operation

"PortName" Name of the port specified in the unmap operation

"SysPortName" Name of the TSI port specified in the unmap oper-
ation

"PortName" Name of the started port

184 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “port_disabled” event

Parameters for “port_halted” event

Parameters for “port_cleared” event

Parameters for “scope_entered” event

Parameters for “scope_left” event

Parameters for “scope_changed” event

None

"PortName" Name of the stopped port

"PortName" Name of the halted port

"PortName" Name of the cleared port

"ScopeName" Name of the entered scope (function, altstep,
testcase, etc)

"ScopeKind" Scope kind

"Signature" Signature value of the entered scope (includes
values of all formal parameters)

"ScopeName" Name of the scope left (function, altstep, testcase,
etc)

"ScopeKind" Scope kind

"Signature" Signature value of the scope left (includes values of
all formal parameters and the return value)

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 185

Parameters for “alternative_activated” event

Parameters for “alternative_deactivated” event

Parameters for “local_verdict_changed” event

Value of “NewVerdict” may be better than than the value of “OldVerdict“
but this doesn’t mean that verdict changes to better one (e.g. fail->pass).

Parameters for “local_verdict_queried” event

Parameters for “variable_modified” event

“VarName“ denotes the name of the whole (base) variable. It means that
even if certain field of the compound variable has been modified then the
whole variable name and value apear in this event.

"AltstepName" Name of the activated altstep

"Signature" Signature value of the activated altstep (includes
values of all actual parameters)

"DefaultRef" Default reference value of the activated alstep

"DefaultRef" Default reference value of the deactivated alstep

"OldVerdict" Previous local component verdict

"NewVerdict" Verdict attempted to set on the component

"Verdict" Local component verdict

"VarName" Name of the modified variable

"NewValue" New value of the variable

186 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “template_match_begin” event

Parameters for “template_match_end” event

Parameters for “template_match_failed” event

Parameters for “template_mismatch” event

Parameters for “sender_mismatch” event

"Value" Value (field) matched against the template

"ValueName" Value (field) name that is matched

"Template" Template used

"Status" Boolean signaling the result of matching value
(field) against template

"Value" Value (field) matched against the template

"ValueName" Value (field) name that is matched

"Template" Template used

"Value" Value (field) matched against the template

"ValueName" Value (field) name that is matched

"Template" Template used

"Reason" Reason of mismatch

"FromCompName" Actual sending component name (for intercompo-
nent operation)

"ActualSen-
derAddr"

Actual sender address (SUT address for SUT oper-
ation)

"ExpectedSen-
derAddr"

Expected sender address (SUT address for SUT op-
erations)

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 187

Parameters for “testcase_started” event

Parameters for “testcase_ended” event

Parameters for “testcase_timed_out” event

Parameters for “testcase_error” event

Parameters for “testcase_verdict” event

Parameters for “message_encoded” event

"TestcaseName" Name of the test case started

"Signature" Signature value of the test case started (includes
values of all formal parameters)

"Timeout" Test case timeout

"TestcaseName" Name of the test case started

"Signature" Signature value of the test case started (includes
values of all formal parameters)

"Verdict" Test case verdict

"TestcaseName" Name of the timed out test case

"Timeout" Test case timeout

"TestcaseName" Name of the test case

"ErrorMsg" Error description

"TestcaseName" Name of the test case

"Verdict" Test case verdict

"Value" Value that is encoded

"Data" Encoded data (binary string)

"Strategy" Strategy used for encoding operation (built-in or
user-defined encoder)

188 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “message_encode_failed” event

Parameters for “message_decoded” event

Parameters for “message_decode_failed” event

Parameters for “info_message” event

Parameters for “warning_message” event

Parameters for “error_message” event

Parameters for “debug_message” event

"Value" Value failed to be encoded

"Strategy" Strategy used for encoding operation (built-in or
user-defined encoder)

"Value" Value that is decoded

"Data" Decoded data (binary string)

"Strategy" Strategy used for encoding operation (built-in or
user-defined encoder)

"Data" Data failed to be decoded

"Strategy" Strategy used for encoding operation (built-in or
user-defined encoder)

"Message" Information message

"Kind" Message kind

"Message" Warning message

"Kind" Message kind

"Message" Error message

"Kind" Message kind

"Message" Debug message

"Kind" Message kind

Customizable Text Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 189

Parameters for “ttcn3_message” event

Parameters for “alt_entered” event

None

Parameters for “alt_left” event

None

Parameters for “alt_rejected” event

None

Parameters for “alt_else” event

None

Parameters for “alt_defaults” event

None

Parameters for “alt_repeat” event

None

Parameters for “alt_wait” event

None

"Message" TTCN-3 log message

"Kind" Message kind

190 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Parameters for “function_call” event

Parameters for “external_function_call” event

Parameters for “altstep_call” event

"FunctionName" Name of the invoked function

"Signature" Signature value of the invoked function (includes
values of all actual parameters)

"FunctionName" Name of the invoked external function

"Signature" Signature value of the invoked external function
(includes values of all actual parameters)

"AltstepName" Name of the invoked altstep

"Signature" Signature value of the invoked altstep (includes
values of all actual parameters)

MSC File Log

June 2009 IBM Rational Systems Tester 3.3 User Guide 191

MSC File Log
A generated MSC file log mainly contains dynamic information. This way,
the execution trace may be made available in a graphical format so that you
easily can see what messages were sent from where to where, what happened
when, and where the execution stopped and why, and so on.

There is one MSC-file created for each executed test case. It is named like
this:

[name of the TTCN-3-module]_[name of the test case]_[number
of execution times].mpr

For example, execution of TTCN-3 Tutorial will produce 3 files:

TutorialModule_TC1a_0.mpr
TutorialModule_TC2s_1.mpr
TutorialModule_TCTimer_2.mpr

The MSC format conforms to the MSC96 standard (ITU_T Z.120) in the
MSC-PR-format.

Enable MSC Logging

To enable MSC logging, you have two options depending on how your
project is managed. If you are using mcfg file to configure project then set
MSC_LOGGING option to “yes” (MSC_LOGGING=yes) in mcfg file. This
will add T3RT_MSC96_EVENT_LOG to the list of defined compiler
switches in the generated makefile.

On Windows generated makefile will look smth like:

• Change the switch to:

CFLAGS = /c /W2 /MT /Zi /DT3RT_MSC96_EVENT_LOG

On UNIX generated makefile will look smth like:

• Change the switch to:

CFLAGS = -c -W2 -MT -Zi -DT3RT_MSC96_EVENT_LOG

If you are configuring project through makefile options then you need to set
“Generate MSC logging“ check on “General“ tab.

In both cases project has to be recompiled and rebuilt.

192 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Convert MSC files into sequence diagrams

With MSC run-time tracing enabled in TTCN-3 project settings the execu-
tion of an ETS produces one trace for every executed test case. Each MSC
trace is stored in a separate text file.

The .mpr files are produced only when graphical execution tracing is dis-
abled. If an ETS is started from the Rational Systems Tester GUI with graph-
ical tracing enabled there will be sequence diagrams generated in real-time
during the execution.

It is possible to open an .mpr file in a text editor if you select the file and in
the File menu point to Open.

There are two ways for converting mpr files into sequence diagrams. The typ-
ical approach is to click MSC File Trace on the Project menu, select a set
of mpr files and click OK. All selected files will be automatically converted.
Alternative approach is to add mpr files to the project and activate them one
by one by double-clicking on them:

• Open TTCN-3 project

• Add the .mpr file to the project. This can be done from the Project menu.
Point to Add to Project and then choose Files.

• Double click on the .mpr filename in the workspace window

The .mpr file will be converted to a sequence diagrams which will be opened
in the desktop area.

Display Log Files

Specify which log file to view:

1. On the Project menu, click Settings, and then the Misc tab.

2. Specify the MSC file that you want to view in the Input MSC file box.

3. Click OK.

View an MSC log file:

• On the Project menu, click MSC File Trace.

• Click the MSC File Trace button on the toolbar.

• Add MSC files to your project. Then double-click them in the File View
to open them.

Graphical Execution Tracing

June 2009 IBM Rational Systems Tester 3.3 User Guide 193

Graphical Execution Tracing
Graphical execution tracing is based on MSC File Log. It processes MSC
statements in real-time, converts them into sequence diagrams and displays
on screen. No mpr files are generated if graphical tracing is enabled.

For each test case and test case run separate diagram is produced.

If you closed diagram window you may always restore it through “Model
View“ tab in the workspace window. Open “Model“ subtree and locate
“Debug Trace“ package. All diagrams are placed in this package.

You have to manually save diagrams into external file if you wish to work
with them later. Right click on “Debug Trace“ and choose “Save in New
File“. Rational Systems Tester creates U2 file for all diagrams an puts it into
the project.

TTCN-3 specific diagram attributes

Each event on the diagram has additoinal attributes that represent event
timestamp and event location in the TTCN-3 code. You may view these at-
tributes by right clicking on the diagram element and choosing “Properties“
item in the popup window. All available attributes are displayed in the “Com-
ments” list box.

Note
Rational Systems Tester extracts attributes from the specific information
that is generated into mpr files. Files generated with previous Rational Sys-
tems Tester versions may lack information and some attributes may be
missing. Consider regenerating mpr files using latest Rational Systems
Tester version.

Value of top attribute from the “Comments” list box is displayed in the tool-
top window when you hover mouse over diagram element corresponding to
event. You may force displaying certain attribute by reordering elements in
the list box.

Enable Graphical Execution Tracing

To enable graphical execution tracing you have to enable MSC logging first.
See Enable MSC Logging for instructions.

194 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

After that go to project settings and open “Execution“ tab. Set “Enable run-
time MSC tracing“ check to enable graphical tracing and start execution of
test suite.

TCI TL logging

June 2009 IBM Rational Systems Tester 3.3 User Guide 195

TCI TL logging
TCI TL logging is enabled by default. This means that whether a project is
build with the test management option set to “Dynamic through Rational
Systems Tester GUI” or “Static using TCI/TM functions in ETS” all of the
TCI TL functions (prefixed with “tli”) will be called as long as the corre-
sponding event happens inside the runtime system.

Since the calls to the TCI TL functions may affect the overall performance
of a test suite it is possible to disable the TCI TL logging.

TCI TL log mechanism may be disabled at runtime using check box on the
Logging tab in the project settings or by providing the following command
line parameter to the test executable:

-t3rt "-confbool t3rt.tci.tl.enabled false" .

This parameter may be specified in “Additional execution switches” project
option (in the Project Settings dialog, “Execution” tab).

196 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

XML Logging
IBM Rational Systems Tester supports XML logging as defined in Part 6 of
TTCN-3 standard “TTCN-3 Control Interfaces (TCI)“. One of the major ad-
vantages of the XML logging over generic ASCII logging is that it provides
information about mismatches between a message and a template in very
convenient way. XML logging is implemented in the dedicated log mecha-
nism that should be registered in the runtime system. XML data generated
during test suite exeuction is passed to the user-provided event handling
functions that may write it to an external file or zip and pass to another ma-
chine in a network. Amount of generated data may be controlled by assigning
a severity level (integer number) to every event and then filtering out all
events that have severity less than specified during test suite execution.

Enable XML logging

XML logging may be enabled either using project setting in Rational Sys-
tems Tester or manually in project mcfg file.

Enable XML logging in project settings

To enable XML logging in Rational Systems Tester:

• Open project settings, switch to Build tab, enter Makefile Options dialog
and check “Generate XML logging”

• Leave Makefile Options dialog and switch to Logging tab. Check “En-
able XML Logging” and provide the name for the target file. If you leave
this field empty log will be written to ExecutionLog.xml file.

Enable XML logging in project configuration file

To enable XML logging using project configuration file:

• Open mcfg file for your project (e.g. make_win.mcfg)

• Add XML_LOGGING=yes to the file header (before SECTION part)

XML Logging

June 2009 IBM Rational Systems Tester 3.3 User Guide 197

Pretty print XML data

XML log mechanism may format output data by indenting each tag. This
makes it possible to review XML data in generic text editor but increases size
of the output file. Note that major internet browsers reformat XML data ther-
fore there is no need to pretty print XML data if viewing it in the browser.

Open project settings, switch to Logging tab and check “Pretty print XML
data“ to get XML data in the indented format.

Control amount of XML data

You may control amount of XML data by enabling/disabling certain events
at runtime in the similar way as it’s done for built-in ASCII logging. See Log-
ging verbosity section for details. However event levels as well as verbosity
level may be specified for XML log mechanism independently from ASCII
logging.

Note
Generation of XML data for mismatch events requires having
“template_match_failed” event enabled. Levels assigned to
“template_match_begin”, “template_match_end” and
“template_mismatch” events are ignored and implicitly set to the level of
“template_match_failed” event.

Redirect XML data stream

When registering XML log mechanism in the runtime system one has to pro-
vide XML data handlers (function pointers) that will receive portions of
XML data and consume it appropriately (write to a file, send to network ma-
chine, display in the window).

Three valid (not NULL) function pointers must be provided to XML log reg-
istration function:

• pInitFunc will be called once during initialization and will provide
XML data header. This function receives reference to context therefore
RTConf data may be queried at this moment.

198 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

• pEventFunc will be called for every event providing complete XML
data block representing exactly one event. XML data describing one
event is never splitted. Two events never merged. This function must be
thread safe since calls to it may overlap. This function receives reference
to context.

• pFinalizeFunc will be called once during test suite finalization and will
provide XML data footer. This function doesn’t provide context.

Below is the example implementation of these three functions taken from
t3rts_conditional.c file (error handling was removed to shorten example):

Example 22

void
t3rt_register_provided_logging (int argc, char * argv [])
{
// register XML log mechanism in the runtime system
t3rt_register_xml_log_mechanism(&xmlLogInit,

&xmlLogEvent,
&xmlLogFinalize);

}

//
// XML data handlers
//

void xmlLogInit(const char *xmlLogHeader,
unsigned long headerSize,
t3rt_context_t ctx)

{
gpXmlLogOutfile = fopen(gpXmlLogOutname, "w")
fwrite(xmlLogHeader, 1, headerSize, gpXmlLogOutfile);

}

void xmlLogEvent(const char *xmlEventData,
unsigned long dataSize,
t3rt_context_t ctx)

{
 fwrite(xmlEventData, 1, dataSize, gpXmlLogOutfile);
}

void xmlLogFinalize(const char *xmlLogFooter,
unsigned long footerSize)

{
 fwrite(xmlLogFooter, 1, footerSize, gpXmlLogOutfile);
 fclose(gpXmlLogOutfile);
}

–––

XML Logging

June 2009 IBM Rational Systems Tester 3.3 User Guide 199

XML log schema

XML log is generated according to the standard schema defined in Part 6 of
TTCN-3 standard Version 3.3.1. XSD files containing schema are delivered
with Rational Systems Tester and located in
[SYSTEMS_TESTER_INSTALLATION_DIR]/etc directory. The files are:

• SimpleTypes.xsd

• Types.xsd

• Values.xsd

• Templates.xsd

• Events.xsd

• TLI.xsd

Control XML log from command line

You may use the following command line switches to control XML log when
running test suite from the command line:

• -t3rt “-xmllog” enables XML log.

• -t3rt "-xmlv <verbosity>" sets verbosity level for XML log mechanism

• -t3rt "-xmldebug" pretty prints XML data

• -t3rtxmlout "<filename>" sets output filename for XML data. Note that
this switch is specific to default implementation of XML data handlers in
the t3rts_conditional.c file

Note
Using the above mentioned runtime switches without having XML log mech-
anism registered results in the runtime errors during test suite initialization

200 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Error Codes

Group Prefixes

The runtime system error codes can be grouped into the following:

General Error Codes

Error Codes Descriptions

GRL* “General Error Codes” on page 200

FMT* “Wide String Related Error Codes” on page 203

VAL* “Values Related Error Codes” on page 204

TYP* “Types Related Error Codes” on page 207

PRT* “Port Operations Error Codes” on page 208

CMP* “Component Operations Error Codes” on page 210

TMR* “Timer Operations Error Codes” on page 215

ACL* “Activation Lists Error Codes” on page 215

CNF* “Runtime Configuration Error Codes” on page 216

Error Code Description

GRL0001 The value was not of the expected kind.

The cause of the error is probably that a function
was called with a value for which the function was
not defined to handle.

GRL0002 The value was expected to be an instantiated value
of some type.

The cause of the error is probably that a function
was called with a pseudo value that this function
does not accept.

GRL0003 The value was expected to be properly initialized
before the intended operation could be performed.

Error Codes

June 2009 IBM Rational Systems Tester 3.3 User Guide 201

GRL0004 The named (pointer) parameter to a function was
unexpectedly NULL.

GRL0005 An attempt to index into an entity resulted in an
“out of bounds” error.

The cause of the error is probably that an incorrect
index is being used in a function call.

The named entity, the actual index, and the lower
and upper bound should be sufficient to localize the
problem.

GRL0006 A type was used in an operation where another type
was expected.

GRL0007 A type was used in an operation where that partic-
ular type was not allowed.

GRL0008 An operation failed because an unusable type struc-
ture was applied.

It is the given (unusable) type that is displayed.

The error can probably be found in the usage of the
operation.

GRL0009 The named parameter to a function was unexpect-
edly negative where it is not permitted (‘int2bit’,
for instance).

GRL0010 “Out of bounds” error.

The cause of the error is probably an integer value
that is out of range for a particular operation.

The named entity, the actual value, and the lower
and upper bound should be sufficient to localize the
problem.

GRL0011 “Division by zero” error.

The second operand to the rem operation was zero
for which the operation is not defined. The actual
call to ‘rem’ can be the result of a ‘mod’ operation
since this is defined in terms of the ‘rem’ operation.

Error Code Description

202 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

GRL0012 General “division by zero” error.

The execution of an integer division with zero (0) as
the divisor was detected. Make proper adjustment
to the test suite to eliminate this problem.

GRL0013 File could not be found.

The named file could not be located when the RTS
attempted to open it. It is probably a filename given
as command-line argument. Check the file path and
verify that the name is correct.

GRL0014 Object not found in symbol table.

The named object (e.g. type instance) could not be
located in the symbol table of a module. This error
is generated by t3rt_find_element function. The pr-
opable cause for it is that some TTCN-3 modules in
the project were not regenerated after TTCN-3 files
changed.

GRL0015 Misspelling in the regexp pattern.

This is a warning, not an error. It’s reported by
runtime system when it parses regexp pattern and
encounters propable syntax error (incorrectly spec-
ified metacharacter).

GRL0016 Compilation of pattern failed.

This error is reported by runtime system when it
fails to parse regexp pattern due to bad structure of
a pattern.

GRL0017 Bad type reference.

This error is reported when \N{typereference}
metacharacter inside regexp pattern doesn’t repre-
sent valid type reference for specifying alphabet.

Error Code Description

Error Codes

June 2009 IBM Rational Systems Tester 3.3 User Guide 203

Wide String Related Error Codes

Error Code Description

FMT001 The parameter number (after “%”) in the formatting
string is incorrect.

The cause of the error is probably an attempt to use
0 as parameter number, or no number at all (no
digits).

FMT002 The wide string unexpectedly ends after “%” and
parameter number, where a valid parameter type
character is expected.

The cause of the error is probably an incorrect wide
format string.

FMT003 The format type character is not recognized.

The cause of the error is either that a type character
is a non-ASCII character, or that the type character
is not valid.

FMT004 The wide string unexpectedly ends after “%” char-
acter, where a valid parameter number or another
“%” character is expected.

The cause of the error is probably an incorrect wide
format string.

FMT005 The format specifiers for the parameter are not con-
sistent.

This error will occur if the same parameter is re-
ferred in the wide format string with different type
specifiers.

FMT006 One of the parameters numbers was skipped in the
format wide string.

If MAXNUM is the maximum parameter number
used in the format wide string, then there should be
also present all the parameters in the 1...MAXNUM
range.

204 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Values Related Error Codes

Error Code Description

VAL0001 Values of this kind cannot be copied.

The cause of the error is probably that a copy func-
tion was called with a value of port/component
record or timer.

VAL0002 Value is read-only and cannot be changed.

The cause of this error is an attempt to delete or as-
sign to a value that was allocated using static allo-
cation strategy.

VAL0003 Value failed consistency check against its own
type.

The cause of this error is probably an attempt to set
or use a value that is not allowed by the type of this
value.

VAL0004 Values of this kind cannot be assigned to (used as l-
value).

The cause of the error is probably that an assign
function was called with a value of port/component
record or timer.

VAL0005 Length, provided as parameter to one of the
‘int2{bit, hex, oct}’ functions, is not suffi-
cient for conversion.

VAL0006 String was unexpectedly empty.

The cause of the error is probably an attempt to con-
vert empty string into an integer or retrieve element
by index from empty string.

VAL0007 String, provided as parameter to one of the
‘{str,bit, hex, oct}2int’ functions, cannot be
converted into an integer due to overflow.

VAL0008 Vector was unexpectedly empty.

The cause of the error is probably an attempt to ma-
nipulate with an element of the empty vector.

Error Codes

June 2009 IBM Rational Systems Tester 3.3 User Guide 205

VAL0009 Object identifier was unexpectedly empty.

The cause of the error is probably an attempt to ma-
nipulate with an element of the empty object iden-
tifier.

VAL0010 The union value alternative was expected to be se-
lected before the intended operation could be per-
formed.

VAL0011 Rvalue cannot be assigned to the lvalue due to
type check failure.

The cause of this error is probably an attempt to as-
sign values of incompatible types, or rvalue that
violates type restrictions of the lvalue type.

VAL0012 Field of the record or set value cannot be marked as
omitted since it is mandatory.

The cause of this error is call to the
‘t3rt_value_set_omit’ with a field that is not speci-
fied as optional.

VAL0013 The element value accessed is not used. Either im-
plicitly by leaving out the value at initialization or
by using the explicit ‘-’ (NotUsedSymbol).

Check the initialization of this element in the value
or remove the access to it.

VAL0014 The attempted selection of union alternative is not
a valid one according to the union type.

Check that the alternative is in the type and change
the usage to a valid one.

VAL0015 Value initialization failed during parsing (for ex-
ample module parameter initialization). Check that
the value definition is correct and that it is of correct
type.

Error Code Description

206 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

VAL0016 An unexpected character was encountered during
value parsing (for example module parameter ini-
tialization). The string displayed shows the position
where the parsing halted. Check that the value def-
inition is correct and that it is of correct type.

VAL0017 An unexpected syntax was encountered during
value parsing. The string displayed shows the posi-
tion where the parsing halted. Check that the value
definition is correct and that it is of correct type.

VAL0018 An attempt to set a non-zero sized array to empty
was detected. This is not allowed.

VAL0019 When converting an octet string to a character
string, a symbol outside the convertible range was
encountered.

VAL0020 Casting of a value to another type failed.

VAL0021 Failed to pass omit as a pass-by-value parameter to
a function.

VAL0022 Failed to pass static template by reference (as inout
parameter) to a function.

VAL0023 ‘valueof’ operation failed because template con-
tained matching symbols (e.g. ‘*’ or ‘?’).

VAL0024 Operation over template variables could not be per-
formed for template variables of this type. This
error is reported for example when trying to deref-
erence string element in a string template variable
using subscription operation (‘str[i]’).

VAL0025 Operation over template variables could not be per-
formed for template variables with such structure.
This error is reported for example when trying to
dereference element in a record template variable,
to which ‘*’ is assigned.

VAL0026 Provided values have to be of the same type al-
though they were not.

Error Code Description

Error Codes

June 2009 IBM Rational Systems Tester 3.3 User Guide 207

Types Related Error Codes

VAL0027 When converting character string to an octet string,
a symbol that doesn’t represent valid octet char-
acter (A-F, 0-9) was encountered.

VAL0028 When processing regexp pattern runtime system
failed to locate value with the name specified in
value reference metacharatcer \{value}.

VAL0029 String value specified in \N{value} alphabet meta-
character should have length of 1 element.

VAL0030 char2int and unichar2int functions accept string
only with one element length.

Error Code Description

TYP0001 Type has no fields.

The cause of the error is an attempt to access a field
of the type that does not have any.

TYP0002 No applicable codecs found when encoding or de-
coding a value of the reported type.

The cause of the error is that no codec function was
registered for this type and the built-in codecs was
disabled.

TYP0003 sizeoftype function failed because provided type
doesn’t correspond to length restricted subtype or
upper length boudary has infinite limit.

Error Code Description

208 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Port Operations Error Codes

Error Code Description

PRT0001 Port without valid assigned address detected.

The cause of the error is probably that the port value
was not correctly initialized with the appropriate
address.

PRT0002 Found multiple handled calls of same type from
same client.

The cause of the error is probably an error in the test
suite.

PRT0003 Ports are incompatible.

The cause of the error is an attempt to connect or
map ports that are not compatible. All out/inout
types of one port must be acceptable as in/inout
types for another one.

PRT0004 Port is inactive.

Operation on unmapped/unconnected port at-
tempted.

PRT0005 Value can not be sent or received on the port.

The type of a value being communicated could not
be found in the list of allowed message declared in
the port type.

PRT0006 Communication was attempted on a port that was
not mapped/connected.

The only situation where ports are mapped implic-
itly are when a system component type is specified
for a test case. In all other cases, map operations
have to be done explicitly.

PRT0007 Communication is attempted on a connected port
that has more than one destination connected. A
component destination must be stated explicitly on
the communication operation.

Error Codes

June 2009 IBM Rational Systems Tester 3.3 User Guide 209

PRT0008 Address unavailable.

During the process of extracting the sender address
of an operation by using the “sender redirect”
syntax (-> sender addr_var) the address was not
available in the port input queue.

The source of the problem is in the integration (for
example the SA implementation in the case of
TRI).

PRT0009 Wrong type of destination reference.

When stating destination with the to directive, the
destination must be a component reference for a
connected port and an address for a mapped port.

The analyzer should prevent this from happening
but in some cases it can not and improper usage is
only detectable at runtime.

PRT0010 An address value had, unexpectedly, the value null.
This can occur if the to address argument for a com-
munication operation has the value null.

Error Code Description

210 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Component Operations Error Codes

Error Code Description

CMP0001 Component without valid assigned address de-
tected.

The cause of the error is probably that a PTC was
created without a valid control port address.

CMP0002 Component terminated with running timers.

The cause of the error is probably that a component
was terminated (abruptly or not) and the test suite
did not wait for or cancel the relevant timer.

CMP0003 Component terminated with unconsumed mes-
sages.

The cause of the error is probably that a component
was terminated (abruptly or not) and the test suite is
written such that it did not receive these messages
before termination.

CMP0004 May not connect a system port. Use map instead.

The cause of the error is that one of the components
specified to a connect operation is identical to the
system component. This is not allowed. Use the
map operation for this purpose.

CMP0005 Problem with operation detected at this position.

This is a generic error message indicating that some
error condition was detected. Look elsewhere in the
information log for additional information on what
the actual problem is.

This message is generated primarily to give the cor-
rect source location for the other error message.

CMP0006 Attempt to map a port more than once.

The present implementation of TTCN-3 limits port
mappings to at most one mapping per port.

Error Codes

June 2009 IBM Rational Systems Tester 3.3 User Guide 211

CMP0007 Attempt to map a port that is already connected.

It is not allowed to have a port that is simulta-
neously connected and mapped according to ETSI
ES 201 873-1 V2.2.1.

CMP0008 Attempt to map without specifying a system port.

It is not allowed to map without specifying one
system port according to ETSI ES 201 873-1
V2.2.1.

CMP0009 Disconnect of unconnected port attempted.

There is no use in disconnecting a port when it is
not yet connected.

CMP0010 Unmap of unmapped port attempted.

There is no use in unmapping a port when it is not
yet mapped.

CMP0011 Disconnect of a mapped port attempted.

The cause of the error is that one of the components
specified to a disconnect operation is identical to
the system component.

This is not allowed. Use the unmap operation for
this purpose.

CMP0012 Unmap of a connected port attempted.

The cause of the error is that none of the compo-
nents specified to an unmap operation is identical to
the system component.

This is not allowed. Use the disconnect operation
for this purpose.

CMP0013 Start on component not in newly initialized state

The cause of the error is that the components spec-
ified to a start operation is either already running or
has been running.

This is not allowed.

Error Code Description

212 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

CMP0014 Map to multiple system ports not allowed

The cause of the error is that the map operation is
applied on an already mapped port.

This is not allowed.

CMP0015 Connect to multiple ports in the same component
not allowed

The cause of the error is that the connect operation
is applied on a port that is already connected to a
port on the same component.

This is not allowed (section 8.2 in ETSI ES 201
873-1 V2.2.1).

CMP0016 Mapping two system ports are not allowed

The cause of the error is that the map operation is
applied to two system ports.

This is not allowed (section 8.2 in ETSI ES 201
873-1 V2.2.1).

CMP0017 The execution of the test case took longer than the
specified time.

The cause of the error is either that the execution
ended up in a dead-lock or the execution just has
not finished.

CMP0018 Unexpected null component reference.

The cause of the error is that one of the component
operations is performed on a null component refer-
ence, where it is not applicable.

CMP0019 Unexpected null component reference constant.

The cause of the error is that one of the component
operations is performed on a null component refer-
ence symbol, where it is not applicable.

CMP0020 Attempt to connect an already mapped port.

ETSI ES 201 873-1 V2.2.1 prohibits a port from
being both mapped to a system port and connected
to a component port at the same time.

Error Code Description

Error Codes

June 2009 IBM Rational Systems Tester 3.3 User Guide 213

CMP0021 Operation not allowed to be applied to all/any ex-
cept in the MTC.

ETSI ES 201 873-1 V2.2.1 prohibits applying oper-
ations to all/any components except from within the
MTC.

CMP0022 Waiting for acknowledgement timed out.

In the internal communication of the running com-
ponents, an acknowledgement response took too
long. Either this is an effect of slow execution in
parts of the code or a hanging component did not re-
spond. Try to increase this value substantially to see
if the problem disappears. (“t3rt.con-
trol.ack_timeout” on page 128 in Chapter 6,
Execute Tests)

CMP0023 Attempt to map a port to an occupied system port.

It is not allowed to map two ports of the same com-
ponent to the same system port.

CMP0024 Attempt to execute a test case that cannot be found.

CMP0025 Operation not allowed to be applied except in the
control part.

The TTCN-3 standard, ETSI ES 201 873-1 V2.2.1,
prohibits applying certain operations except from
within the control part of the test suite.

CMP0026 Deadlock in alt construct detected.

The TTCN-3 standard, ETSI ES 201 873-1 V2.2.1,
explicitly require testing for situations where an
alt would be unable to proceed due to all ports
being filled with non-matching data (messages,
procedures or exceptions).

CMP0027 Detected a spurious timeout that was discarded.

The cause of this error is probably that a timer from
a previous test case delivered a timeout “too late” so
that the following test case had already started
when it was delivered.

Error Code Description

214 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

CMP0028 Detected a lookup of a named object that is not
available in the current component.

The cause of this error is probably that the actual
component used in the TTCN-3 code is of an in-
valid type.

CMP0029 Detected a behavior that is unsupported in the cur-
rent situation.

The cause of this error is probably that the behavior
specified for a component type initialization in-
cludes an operation that is unsupported at that
time.The solution is to move the initialization state-
ment in question to early in the testcase/function-
that contain the behavior associated with the com-
ponent type.

CMP0030 Premature component termination detected.

The cause of this warning is probably that the be-
havior specified for the test case do not take into ac-
count the possibilityfor components to run com-
pletely independently which in turn may cause
other components to not be finished when the MTC
terminates and hence terminates the test case. The
solution to this is most likely to insert a "all compo-
nent.done" statement near the end of the test case.

CMP0031 Map to unexistent port.

The cause of this error is the attempt to map a com-
ponent's port to a non-existent TSI port.

CMP0032 Unmap from unexistent port.

The cause of this error is the attempt to unmap a
component's port from a non-existent TSI port.

CMP0033 Creation of component for test case without TSI.

The cause of this error is the attempt to create par-
allel component for a test case that doesn’t explic-
itly declare system (TSI) component. Such test
cases may have only MTC component.

Error Code Description

Error Codes

June 2009 IBM Rational Systems Tester 3.3 User Guide 215

Timer Operations Error Codes

Activation Lists Error Codes

Error Code Description

TMR0001 Timer with invalid duration

The cause of the error is probably that a timer was
either specified with a negative default duration or
started with a negative duration.

TMR0002 Timer has no defined duration.

An operation was made where a duration was
needed for a timer. This happens, for example,
when a 'start' operation is made with no explicit du-
ration and no default duration was stated for the
timer declaration.

Error Code Description

ACL0001 Invalid default reference.

The cause of the error is an attempt to use deacti-
vate statement with an invalid default reference
(that is, already deactivated, for instance).

ACL0002 Test step is not found.

The cause of the error is an attempt to use activate
statement with a combination of module-
name/teststepname that cannot be found.

ACL0003 Local timer passed to activated altstep.

The cause of the error is an attempt to use activate
statement with an altstep passing to it local timer
(only component timers are allowed).

216 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 7: Execution Logs

Runtime Configuration Error Codes

Error Code Description

CNF0001 Unknown switch.

RTconf encountered unknown switch that will be
discarded.

CNF0002 During parsing of a configuration file, no proper
type could be found for the given key. Either the
type was not stated or it was misspelled. The key is
ignored.

CNF0003 During parsing of a configuration file, the value of
the key could not be parsed in the context of the
stated type. Check that the type and the value corre-
spond. The key is ignored.

CNF0004 Syntax error found when parsing the command-line
switches. The string found does not necessarily
point to the exact position of the error, it is very
likely that the error occurred earlier.

CNF0005 An error occurred when setting a value to a config-
uration key of another type than the expected. For
example:

'-confbool this.confkey 10'

The problem may also occur if a switch is supplied
with the wrong type of argument, for example '-to
true' which would set the overall test case timeout
value to true when it is supposed to be a float value.

CNF0006 A module parameter given on command-line was
not a valid module parameter. Module parameters
must start with an alpha symbol, contain only al-
phanumeric symbols and have a maximum of one
dot symbol. If a dot symbol is found, the following
identifier must start with an alpha symbol.

June 2009 IBM Rational Systems Tester 3.3 User Guide 217

Debugging Test Suite

IBM Rational Systems Tester contains two debuggers: real-time and post-
mortem.

Real-time debugger may be used to debug ETS while test suite is executing.
That is you use real-time debugger to control and analyze test suite execu-
tion.

Post-mortem debugging means that the debugger gets all the input after ETS
finished its execution, to achieve this the debugger works with a trace (log)
output of the ETS.

218 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter : Debugging Test Suite

TTCN-3 Real-Timer Debugger
TTCN-3 Real-Time debugger may be used to control and investigate test
suite execution. Debugger may be used with any form of test management
including GUI test management. In order to perform real-time debugging test
suite has to be compiled and built with debugger support enabled.

Working with the debugger

General debugger workflow includes building project for debug, starting the
debugger, setting necessary breakpoints, executing test suite up to break-
point, tracing certain parts of test suite, investigating state of variables and
possible runtime errors.

Building project for debugging

In order to debug test suite you may have to rebuild project with debugger
support turned on. To do it go to project setting, open “Build” tab and select
“Build for debug” check box. Then recompile and rebuild project.

Note
You may normally execute your test suite while debugger support is enabled
without any degrade of performance.

Existing projects require manual patching of project configuration file (mcfg
file) and probably t3rts_conditional.c file if you are not using this file from
the Rational Systems Tester installation.

Locate make_win.mcfg file (or other according to platform used) in the in-
stallation directory and copy line started with “DEBUGGER_LIBS” into
your project mcfg file.

If you use custom makefile then you have consider following requirements.
Project has to be compiled with “-G” option and libt3dbg library (and several
system libraries) has to be linked to the test suite executable. The value of
DEBUGGER_LIBS variable denotes the list of libraries that have to be
linked.

If you use custom t3rts_conditional.c file (not from Rational Systems Tester
installation) please consider that real-time debugger has to be registered in
the runtime system. Usually (at least for new projects) this is done by in-

TTCN-3 Real-Timer Debugger

June 2009 IBM Rational Systems Tester 3.3 User Guide 219

voking t3rt_register_debugger function. Ensure that this function is in-
voked from the t3rt_register_provided_logging function, which is de-
fined in t3rts_conditional.c file.

Starting and stopping debugger

Real-time debugger session is started by pressing “Real-time debugger”
button on the tool bar or choosing menu item with the same name from the
“Project” menu. You will receive error message if debugger for some reason
cannot start (see Building project for debugging for notes on enabling de-
bugger support in existing projects).

Depending on selected test management you may observe two situations. If
GUI test management is used then Rational Systems Tester fills “Execution”
tab in the workspace window with available test cases and awaits your com-
mand. You may set necessary breakpoints and start execution or tracing of a
test case or control part.

If you are using other forms of test management then debugger breaks exe-
cution at the beginning of control part providing you with the ability to set
necessary breakpoints and choose whether to continue execution or start
tracing.

Debugger may be stopped by pressing “Stop debugger” or “Stop action” but-
tons or choosing “Stop action” menu item from “Project” menu. Debugger
also stops when test suite executable terminates.

All user-defined breakpoints are permanently saved when debugger stops.
They will be restored at next debugger session.

Setting and removing breakpoints

You may set breakpoint by pressing “Set/Remove breakpoint” button or
choosing menu item with the same name from “Debugger” menu. You may
also perform this action by right clicking on certain line and choosing corre-
sponding item from the popup window.

When breakpoint is set red bullet appears on the left border of the window.

Breakpoint may be removed by pressing the same button. Red bullet disap-
pears when breakpoint is removed.

Breakpoints may be temporarily disabled. Read Administering breakpoints
section on how to disable and enable breakpoints.

220 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter : Debugging Test Suite

Administering breakpoints

Breakpoint administration is performed using the special window that may
be opened by choosing “Edit breakpoints” item from “Edit” menu. Break-
point administration window contains list of currently set breakpoints. Each
line contains a check that denotes whether breakpoint is enabled or disabled
and a position of the breakpoint.

You may remove check thus disabling the breakpoint. Read bullet at the
breakpoints line becomes grey in this case. Debugger doesn’t break execu-
tion at disabled breakpoints.

Double clicking on any line in the breakpoint window locates the breakpoint
in the text editor.

Pressing “del” button in the breakpoint window removes selected breakpoint.

Breaking execution

You may break execution of the test suite at any moment by pressing “Break”
button or choosing “Break” menu item from the debugger menu. Debugger
pauses all executing components and locates source position of MTC com-
ponent in the text editor. Current position is highlighted with yellow arrow at
the left border of the window.

Debugger also highlights the event description in the execution log for the
last event of MTC component.

Press “Go” button or choose “Go” menu item from the debugger menu to
continue execution.

Tracing execution

Debugger support three tracing operations:

• Step Into. This operation continues execution up to next statement and
breaks execution upon reaching it. This operation steps into user defined
functions, altsteps and test cases.

• Step Over. Similar to Step Into but doesn’t step into user defined func-
tions, altsteps and test cases.

• Step Out. This operations continues execution up to the end of current
scope (function, altstep, test case or control part).

TTCN-3 Real-Timer Debugger

June 2009 IBM Rational Systems Tester 3.3 User Guide 221

You may invoke any of these tracing operations by pressing corresponding
buttons or choosing corresponding menu items from the “Debugger” menu.

Note
When debugger steps into scope (e.g. function) it always make a step on the
scope header (e.g. function name). When debugger leaves the scope it al-
ways make a step on the closing “}” of the scope body.

Step Into command when invoked on “execute” or “start” TTCN-3 operation
steps into test case or a function started on parallel component.

If you are using GUI test management when you may start tracing of a test
case or control part by right clicking on the certain item of the “Execution”
tab in the workspace window and choosing “Trace Test Case” or “Trace
Control Part”. You may also use toolbar or “Project” menu for this action.

Tracing TTCN-3 “alt” statements

You may perform tracing of “alt” blocks. In this case Step Into and Step Over
actions have specific semantics. Pressing Step Over on an “alt” block header
or an alternative continues execution until one of the alternatives matches
and execution flow enters body of the alternative. Debugger breaks at the be-
ginning of the alternative body. If alternative doesn’t have body then de-
bugger breaks at first statement after “alt” block.

Pressing StepIn on an “alt” block header or an alternative allows to step
through matching of all alternatives as well as guard expression. In this case
debugger breaks on every alternative and steps into defaults and any func-
tions that may be used in guard expressions. You may set breakpoints in the
activated altsteps and in functions that are used in guard expressions. De-
bugger breaks test suite execution when it reaches these breakpoints.

Note
When execution breaks in a function invoked from guard expression always
use StepIn to trace function body.

Handling runtime errors

Debugger traps runtime errors and notifies user about them. When runtime
error occurs debugger breaks execution at error position and shows dialog
window with error information. Information includes source position, com-
ponent and scope name and error description. Pressing “Ok” button in this
window locates error position in the text editor.

222 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter : Debugging Test Suite

If you choose to continue execution then runtime system correctly shutdowns
test case execution.

Inspecting Call Stack

When debugger breaks execution (e.g. execution reaches breakpoint) you
may inspect (trace) call stack of currently selected component. Open “De-
bugger View” tab in the workspace window. You will notice “CallStack“
node in the displayed tree. The name in brackets denotes the name of the cur-
rent component. Child nodes represent stack frames of the component. Top
child node denotes topmost stack frame.

Double click on an arbitrary entry. Debugger locates the source position in
the text editor and updates watches and execution log. Watched variables re-
ceive values that they have inside the selected stack frame. Variables that are
not visible there are shown as undefined. In execution log debugger locates
and selects event description that was generated for the current stack state-
ment (usually function call).

Observe that position for inner stack frames is marked with green triangle
while position of topmost frame is marked with yellow arrow. Whatever
frame is selected you may always invoke “Show next statement“ debugger
command to locate the current position in the topmost stack frame.

Debugging parallel components

IBM Rational Systems Tester real-time debugger supports debugging of test
suites with multiple parallel test components. While debugging such test
suite you need to keep in mind several specifics.

Debugger has the notion of “active” component. Only one component may
be active at the same moment. Active component differs from other compo-
nents in two things:

• Position in the text editor (with yellow arrow) is shown for active com-
ponent.

• Tracing operations are performed for an active component.

When debugger breaks execution you may manually select arbitrary compo-
nent as active. Open “Debugger View” tab in the workspace window. You
will notice “Components“ node in the displayed tree. Child nodes represent
all components executing in the test suite. This may include control compo-
nent (CPC) if test suite execution started from the control part.

TTCN-3 Real-Timer Debugger

June 2009 IBM Rational Systems Tester 3.3 User Guide 223

Double click on arbitrary component to set is as active. Debugger updates
watches, execution log, call stack and according the selected component and
locates its current position in the text editor. Subsequent tracing operations
will be related to this component.

You may always refer to the “CallStack” node in the “Debugger View“ to de-
termine which component is active. This name of the active component is
displayed in brackets, e.g. “CallStack (MyPTC)“.

Note
When one of the components breaks execution (e.g. reaches breakpoint) de-
bugger stops all other components. No components are executing in the
background.

Semantics of becoming “active” for a component are following:

• Initially component executing control part (CPC component) is active if
control part is started to execute or MTC – if test case is started to execute
directly using GUI test management.

• Invoking “Step Into” operation on “execute” statement makes MTC ac-
tive.

• Invoking “Step Into” operation on “start” statement makes corre-
sponding PTC active.

• When user breaks execution with “Break” command MTC becomes ac-
tive (or CPC if no test case is running).

• When component reaches breakpoint it becomes active.

• When active PTC terminates MTC becomes active

• When MTC terminates CPC becomes active.

• When runtime error occurs in the component it becomes active.

Example 23(Example debugging scenario) ––––––––––––––––––––––––––

User starts test case from the “Execution“ tab thus MTC is active. At some
moment in time PTC:5 reaches breakpoint and becomes active. Debugger
shows source position for this component and highlights last event of PTC:5
in the execution trace window. Note that this may not be last entry in the trace
window. PTC:5 is traced with StepInto/StepOver/StepOut commands.

While tracing operation is performed PTC:1 reaches breakpoint thus PTC:1
becomes active and debugger forgets about PTC:5. Debugger pauses all ex-
ecuting components and locates source position of the PTC:1.

224 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter : Debugging Test Suite

PTC:1 is traced up to its end. When PTC:1 terminates debugger makes MTC
active, pauses all components and locates MTC source position in the text ed-
itor.

–––

Watching variables

IBM Rational Systems Tester real-time debugger provides the ability to
watch the values of variables and simple expressions. Values of structured
variables (records, unions, arrays) are displayed in tree-like view allowing to
expand and collapse subfields thus providing convenient way for inspecting
test suite execution state.

Debugger supports watching of almost every object in the test suite. It’s pos-
sible to watch values of constants, variables, templates, component and de-
fault references, the state of ports and timers.

Expressions that may be watched are restricted to record field names (e.g. re-
cordVar.field1.subField2), array elements (e.g. arrayVar[7]) and its mixes
(e.g. arrayVar[7].field1[8].subField2). It’s allowed to use references to other
variables (e.g. loop counter) to select certain array element (e.g. arrayVar[i]).
Variable names may be given in the qualified form, i.e. may be prefixed with
module names (e.g. MyModule.myConst). It’s not allowed to use calls to
functions (including TTCN-3 predefined functions).

Note
Variables may be watched only when test suite execution is paused
(broken).

Quick inspection of variables

You may quickly inspect the value of a variable or expression by hovering
mouse over it in the text editor. Value is displayed in the tooltip window in
the “pretty-printed“ form. Curly braces are not displayed in order to mini-
mize the size of the tooltip window. This should not harm the presentation of
the value since every field is printed on separate line.

Debugger tries to guess the expression which has to be watched. It means that
if mouse is hovered over a variable name then the value of the whole variable
is displayed. And if cursor is hovered over a field name (i.e. over a “myField“
part in “recordVar.myField“ string) then only the value of the field under
cursor is displayed.

TTCN-3 Real-Timer Debugger

June 2009 IBM Rational Systems Tester 3.3 User Guide 225

If tooltip window is not shown then it means that either name under cursor
doesn’t denote valid expression or debugger failed to guess right the in-
spected expression. The later situation may occur when expression contain
spaces, e.g. “arrayVar [7]“. In this case you may select the expression that
you are interested in and hover mouse over selection, the value of the se-
lected expression will be displayed in tooltip.

Adding variables to the Watch window

There exist two ways of adding variables to the watch window: using Debug
menu and using context menu in the text editor.

To add variable through menu choose “Add Watch“ item in the “Debug”
menu, type watched expression in the opened window and press “Ok”
button.

To add variable through text editor context menu right click on the variable
or field name and choose “Add Watch“ in the popup window. Accept or
change suggested watch expression and press “Ok“. If you chose “Add
Watch“ after right clicking on the selection then this selection will be used as
an expression to be watched.

Names of all watched expressions are displayed in the “Watches“ folder on
the “Debugger View“ in the workspace window. Only unique names are dis-
played. If you added one and the same variable for several times then
“Watches“ folder will contain exactly one element for all of these entries.

Note
Watches are saved between debugger sessions even if you closed project
and restarted Rational Systems Tester.

Removing variables from Watch window

There are several ways of removing watched expressions from watch
window. You may right click on a watched value and choose “UnWatch“ or
press “del” button on it.

In order to delete all instances of this or that watched expression locate it in
“Watches“ folder on the “Debugger View”, right click mouse on it and
choose “UnWatchAll”. Debugger will remove instances of this expression
from all watched windows and “Watches“ folder as well.

226 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter : Debugging Test Suite

Working with Watch windows

You may open arbitrary number of watch windows in the debugger. Choose
“Open new watch window“ in the “Debug“ menu to open new window. Each
time when you add new watch it’s put into the currently selected watch
window. If no watch windows opened then debugger opens new window.

You may duplicate watch by drag-and-dropping watched value between
watch windows. Right clicking on a watched value and choosing “Watch“
creates a duplicate entry in the same watch window.

You may quickly create new watch for a record field. Right click on the node
representing the field value in a compound value and choose “Watch“. De-
bugger will create new watch instance for a selected field.

Note
Closing watch window doesn’t remove watches from it. You have to manu-
ally remove them by choosing “UnWatchAll“ on the certain entry in the
“Watches” folder on the “Debugger View“ tab.

Printing watched expression value

You may display the value of a watched expression or any of its fields in the
“Output” window. Value is displayed according to TTCN-3 syntax rules so
you may copy-paste outputed string into TTCN-3 text editor and use it in test
specification.

To print value of watched expression right click on a watched value and
choose “Display“. Value of the selected object will be displayed in the “De-
bugger“ of the output window.

Note
Values of objects that do not have standard representation (e.g. timers and
ports) and undefined variables are displayed in angle brackets.

Debugger commands

Following debugger commands are supported in real-time debugger:

• Restart

• Stop

• Go

• Insert/Remove breakpoint

TTCN-3 Real-Timer Debugger

June 2009 IBM Rational Systems Tester 3.3 User Guide 227

• Step into

• Step over

• Step out

• Show next statement

Restart

This commands restarts debugged test suite.

If you need to start system under test prior to starting test suite (e.g. if con-
nection between ETS and SUT is established in triSAReset function) then
this command may not function properly. This is because debugger doesn’t
restart SUT and it may not execute when triSAReset is called. In such case
first stop debugger, then restart SUT and finally start debugger.

Key accelerator is CTRL + SHIFT + F5.

Step Into

This command continues test suite execution up to the next statement of “ac-
tive“ component (see Administering breakpoints about “active“ compo-
nents). This command steps into user-defined functions, altsteps and test
cases. StepInto may be used to trace alternatives, guard expressions and de-
faults in “alt“ blocks.

Note
If another component reaches breakpoint then StepInto command will not
be completed.

Key accelerator is F11.

Step Over

This command continues test suite execution up to the next statement of “ac-
tive“ component (see Administering breakpoints about “active“ compo-
nents). This command doesn’t steps into user-defined functions, altsteps
and test cases. StepOver may not be used to trace “alt“ blocks.

Note
If another component reaches breakpoint then StepOver command will not
be completed.

Key accelerator is F10.

228 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter : Debugging Test Suite

Step Out

When this command is executed debugger stops at the source position imme-
diately outside the current scope (i.e. function, test case, altstep or control
part). StepOut may not be used to trace “alt“ blocks.

Note
If another component reaches breakpoint then StepOut command will not be
completed.

Key accelerator is SHIFT + F11.

Show next statement

This command is used to locate current source position of “active“ compo-
nent. Editor window with current source line is brought to the front, and cen-
tered on this line.

Key accelerator is ALT + * (‘*’ on the numeric keypad).

Breakpoints

Breakpoints can be used to break test suite execution at certain position.

Breakpoints in Rational Systems Tester work the same way as breakpoints in
Microsoft Visual Studio with respect to threads: as soon as breakpoint
(source line) is encountered in any of the running components, execution
breaks and text editor window showing reached source position opens.

Source lines with breakpoints are marked specially in the editor windows.

Insert/Remove breakpoint

This operation sets a breakpoint on the current source line if there was no
breakpoint; it removes existing breakpoint if there is one.

Key accelerator is F9.

Go

This command is used together with breakpoints; it resumes test suite execu-
tion until one of the components reaches breakpoint or runtime error is gen-
erated or test suite terminates.

TTCN-3 Post-Mortem Debugger

June 2009 IBM Rational Systems Tester 3.3 User Guide 229

TTCN-3 Post-Mortem Debugger
Post-mortem debugging means that the debugger gets all the input after ETS
finished its execution, to achieve this the debugger works with a trace (log)
output of the ETS.

Post-Mortem debugger may be useful in debugging time-critical test suites
where stopping at breakpoint while ETS is executing may impact the overall
test case verdict.

General workflow

In order for the post-mortem debugger to work (and its commands activated)
it is necessary to perform the following steps.

• Enable the Post-mortem debugger.
From the Tools menu select the Customize command. Go to the Add-Ins
tab and select the TTCN3PostMortemDebugger.

• Run ETS, so Execution output tab contains a log of the ETS execution.
Save the log (by default this will be in a file with extension .spm). An-
other option is to reuse any previous log files, saved from a previous run.
To do this you can save the log from the output tab into a text file after
ETS has finished. It is also possible to set this up for your project, from
the Project menu choose Settings and then go to the Execution tab.
Check the Log also to file option. Enter the filename of your choice.

• Provide the name of the log file. From the Project menu choose Settings
and then go to the Misc tab. Browse to the file in the Post-mortem log
file field.

• Run the Post-mortem debugger option in the Project menu.

Debugger commands

Functionality for reconstruction of ETS control flow is similar to function-
ality provided by Microsoft Visual Studio debugger. MSVS debugger is real-
time, so all features do not make sense for the post-mortem debugger.

Following debugger commands are supported in Post-mortem debugger:

• Restart

• Stop

• Go

230 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter : Debugging Test Suite

• Insert/Remove breakpoint

• Step into

• Step over

• Step out

• Show next statement

All these commands are described in detail below.

Restart

This command allows to revert debugger state to the one corresponding to
the beginning of ETS execution, so traversing can be started once again.

This operation is performed automatically after ETS is executed once again,
so there is no need to perform any specific “start traversing” operation.

Key accelerator is CTRL + SHIFT + F5.

Step Into

This command selects and focuses on source line that has been executed after
the one that is currently selected. For calls to named scopes (like functions,
test cases, altstep and control part), next statement inside the scope is se-
lected.

Key accelerator is F11.

Step Over

This command selects and focuses on source line that has been executed after
the one that is currently selected. This is very similar to Step Into operation;
the difference is in how it treats named scopes (like functions, test cases,
altstep and control part). These scopes are considered as single statements
by this operation. So, if, for example, currently selected statement is a func-
tion call, then Step Over will select the statement after the function call, not
the first statement inside the function body, as it will be for Step Into.

Key accelerator is F10.

TTCN-3 Post-Mortem Debugger

June 2009 IBM Rational Systems Tester 3.3 User Guide 231

Step Out

When this command is executed, debugger selects the source line immedi-
ately outside the current named scope (like function, test case, altstep or
control part).

Key accelerator is SHIFT + F11.

Show next statement

This command is used to focus on the next statement to be executed (as seen
in the execution log). Editor window with current source line is brought to
the front, and centered on this line.

Key accelerator is ALT + * (‘*’ on the numeric keypad).

Breakpoints

Breakpoints can be used with post-mortem debugger to simplify traversing.
They work similar to breakpoints in any other real-time debugger. In the
post-mortem debugger they are used primarily to skip directly to the inter-
esting parts of execution traces.

Source lines with breakpoints are marked specially in the editor windows.

When it comes to concurrent execution of TTCN-3 components, breakpoints
in Rational Systems Tester work the same way as breakpoints in Microsoft
Visual Studio with respect to threads: as soon as breakpoint (source line) is
encountered in any of the running components, traversing terminates and
control returns to the user.

Insert/Remove breakpoint

This operation sets a breakpoint on the current source line if there was no
breakpoint; it removes existing breakpoint if there is one.

Key accelerator is F9.

Go

This command is used together with breakpoints; it means “traverse execu-
tion log until the end, or until a source line with breakpoint is encountered;
then stop”. The line with a breakpoint becomes current line, and it is possible

232 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter : Debugging Test Suite

to use other commands (like Step Into) starting from this position. If no
breakpoints are encountered, debugger reports that end of execution log is
reached, and automatically performs “Restart traversing” command.

June 2009 IBM Rational Systems Tester 3.3 User Guide 233

9
Using the Script Wizard

IBM Rational Systems Tester includes a Script Wizard, enabling you to nav-
igate in a UML representation of a TTCN-3 project – presented as HTML
files – and to create Tcl scripts to extract information from this model.

With the Script Wizard, you can filter information in your projects and only
display the parts that are essential to you.

You can store the UML navigation history, and the resulting model query in
a Tcl script by clicking Create script code, always displayed at the top of the
HTML page. When your script is done, just click on the Execute script button
in the toolbar. This creates a Tcl interpreter that executes the script and sub-
sequently displays HTML pages or information in an output tab.

Hint
By clicking the + or - signs in the HTML page, different UML elements, that
is, Associations, Classes and so on, are collapsed or expanded.

You reach the Script Wizard through the Script Wizard button in the toolbar,
or by selecting Script Wizard in the Tools menu.

Note
The interpreter is different for each execution of the script, and that you
cannot share a variable among different executions.

234 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 9: Using the Script Wizard

About Tcl
Tcl (Tool Command Language) has a simple and programmable syntax and
can be either used as a standalone application or embedded in application
programs.

Tcl Semantics
All Tcl command names begin with a capital letter, followed by lower-case
letters, unless it is a new word:

command -> Command
addmenu -> AddMenu

All parameters are written with small letters, without any '-' or '_'. With one
exception, some parameters can begin with a '-':

Selection add <object>, ReportInit <tabname> [-check]

Tcl Commands
Tclscripts are made up of commands separated by newline characters or
semicolons. All commands have the same basic form, but for most com-
mands the word structure is important, with each word used for a distinct pur-
pose.

All Tcl commands return results. If a command has no meaningful result, an
empty string will be returned.

Tcl API Commands

MapRole
MapRole <sourceobject> <rolename> [-filter <filterscript>]
[<script>]

GetRole
GetRole <sourceobject> <rolename>

Class
Class <object>

Tcl Commands

June 2009 IBM Rational Systems Tester 3.3 User Guide 235

Get
Get <sourceobject> <attributename>

RolesOf
RolesOf [<sourceobject>|<classname>]

AttributesOf
AttributesOf [<sourceobject>|<classname>]

Classes
Classes

Call
Call <sourceobject> <methodname> [<args>]

Create
Create <mainobject> <classname>

SetAtt
SetAtt <object> <attribute> <value>

SetRole
SetRole <sourceobject> <rolename> <destobject>

AddRole
AddRole <sourceobject> <rolename> <destobject>

Output Commands

Output
Output <text>

This command allows Tcl script to print a message in the Script output tab.

OutputLog
OutputLog [on <tabname> <pathname> <separator>|off]

This command starts/ends the log of the Output window, which means that
the content of tabs are flushed in files.

236 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 9: Using the Script Wizard

<pathname> must contain the path of the directory when the different log
files will be created (file name are the name of the tabs).

<separator> is the character (or string) used to separate the column values
of a same line.

Report Commands

ReportInit
ReportInit <tabname> [-check] [-cb <filename>]
[<columnlabel> <columnwidth> <columnalignment>]+

This command is used to create a new report tab in the Output window.

If the -check is used, a check box is displayed before each result line. These
check boxes allow a more powerful navigation: only the checked lines will
be selected when you navigate by using the F4 key, others are ignored.

If the -cb <filename> is present, then the associated Tcl script file will be
evaluated when you double-click on a line object, and the OnDoubleClick
procedure of this Tcl script will be called with double-clicked object as pa-
rameter.

For each <columnlabel> <columnwidth> <columnalignment> item, a
new column is created with the corresponding label, width and alignment.
An alignment of 0 means left align and an alignment of 1 means right. For
sorting, columns right aligned are considered as number and columns left
aligned are considered as text.

Report
Report <sourceobject> [<label_string>]*

This command is used for adding new lines in a report tab.

The <sourceobject> will be used to fill the first column (icon + text) auto-
matically.

The <label_string> values are labels, used to fill the remaining columns.

BrowserReportInit
BrowserReportInit <tabname> [<iconfile>] [-keep] [-cb
<filename>]

Tcl Commands

June 2009 IBM Rational Systems Tester 3.3 User Guide 237

This command allows you to activate a tree tab inside the Browser view. If
needed, the tab is created.

If <iconfile> is present, then the icon will be used as the tab image.

If -keep is present then the content of the tab (if any) is kept, otherwise the
tab is re-set.

If the -cb <filename> is present, then the associated Tcl script file will be
evaluated when you double-click on a tree object, and the OnDoubleClick
procedure of this Tcl script will be called with the double-clicked object as
parameter.

BrowserReport
BrowserReport [-expanded] [-userdata <userdata>]
<childobject> [<parentobject>]

This command is used to add new object called <childobject> in the tree.

If -expanded is present and if the object has children, then the node will be
expanded, otherwise it will be collapsed.

If <parentobject> is present the node is created as a child of the node cor-
responding to <parentobject>.

If -userdata is present, then <userdata> will be associated to this node on
the tree.

HtmlReport
HtmlReport [-delete] [-use <ident>] [<filename>]+

Command to load an HTML file inside an HTML view.

The first <filename> is the URL to load.

Any following <filename> will be file(s) to delete when not used anymore,
if -delete is present.

If the -use option is used, then the window with the title <ident> must be
used again if it already exists.

TextReport
TextReport <filename> [<line>] [<column>]

238 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 9: Using the Script Wizard

This command opens the file <filename>, and locates (puts the position of
the cursor) to a <line> if specified, and to a <column> if specified. You may
specify a line without specifying any column.

Activate Commands

Activate
activate <object>

This command simulates a double-click on the occurrence of <object>.

ActivateBrowser
ActivateBrowser [<tabname>]

The browser view becomes active. If a <tabname> is present, then this com-
mand activates this tab.

ActivateProject
ActivateProject <projectname>

This command changes the active project into the workspace.

ActivateConf
ActivateConf <confname>

This command changes the current configuration of the active project into
the workspace.

ActivateTool
ActivateTool <toolname>

This command changes the current tool.

OpenDocument
OpenDocument <filename>

This command opens the file <filename>.

This command is related to the SaveDocument command.

Important!
Be careful, this command applies to the active view (call Activate or Acti-
vate-Browser before calling it)

Tcl Commands

June 2009 IBM Rational Systems Tester 3.3 User Guide 239

Command activate
Command activate <extensionident> <commandid>

This command simulates the call of the command, as if you click on the menu
or the toolbar.

commandid is a hexadecimal number

Command get
Command get [state|check|menu|toolbar] <extensionident>
<commandid>

This command returns a value indicating the status of the command.

If state is used, it returns if the command is greyed or not (possible return
values are Unknown, Disabled and Normal).

If check is used, it returns if the command is checked or not (possible return
values are Unknown, Disabled or Normal).

If toolbar is used, it returns if this command can be found in a toolbar (pos-
sible re-turn values are Disabled or Normal).

If menu is used, it returns if this command can be found in a menu (possible
return values are Disabled or Normal).

Selection Commands

The selection commands modify a special selection only known by the Tcl
script. If the Tcl command Command activate is called, and the Tcl selection
is not empty, the command takes into account the Tcl selection. If the Tcl se-
lection is empty, it takes into account the selection in Rational Systems
Tester.

Selection add
Selection add <object>

Add an object to the Tcl selection.

Selection remove
Selection remove <object>

Remove an object from the Tcl selection

240 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 9: Using the Script Wizard

Selection set
selection set <object>

Empty the Tcl selection, then add the object to it.

Selection reset
selection reset

Empty the Tcl selection

Commands from the Edit Menu

Undo
Undo

Call Undo on the Edit menu.

Redo
Redo

Call Redo on the Edit menu.

Cut
Cut <object>

Call Cut on the Edit menu, after having selected <object>. The selection then
returns to its previous value.

Copy
Copy <object>

Call Copy on the Edit menu, after having selected <object>. The selection
then returns to its previous value.

Paste
Paste <objectcontainer>

Call Paste on the Edit menu, after having selected <objectcontainer>. The
selection then returns to its previous value.

Delete
Delete <object>

Tcl Commands

June 2009 IBM Rational Systems Tester 3.3 User Guide 241

Call Delete on the Edit menu, after having selected <object>. The selection
then returns to its previous value.

CanCut
CanCut <object>

Evaluates if Cut on the Edit menu would be available with <object> selected.

Possible return values are Unknown, Disabled and Normal.

CanCopy
CanCopy <object>

Evaluates if Copy on the Edit menu would be available with <object> se-
lected.

Possible return values are Unknown, Disabled and Normal.

CanPaste
CanPaste < objectcontainer>

Evaluates if Paste on the Edit menu would be available with <object> se-
lected.

Possible return values are Unknown, Disabled and Normal.

CanDelete
CanDelete <object>

Evaluates if Delete on the Edit menu would be available with <object> se-
lected.

Possible return values are Unknown, Disabled and Normal.

Miscellaneous commands

Locate
Locate <locatestring>

This function locates an object described by <locatestring>. This string
must be understood by a DataServer.

242 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 9: Using the Script Wizard

SaveDocument
SaveDocument <filename>

This command saves the file <filename>. This file must be opened in Ra-
tional Systems Tester.

This command is related to the OpenDocument command.

SaveAll
SaveAll [<filename>]

This command saves the whole content of a project if the <filename> of the
project is given (this project must be opened in Rational Systems Tester), or
saves everything if there is no parameter.

The <filename> parameter can be only the name of a project file, or the full
path of a project file.

FlushEvents
FlushEvents

This command refreshes all Rational Systems Tester windows.

View Data in the Script Wizard

Simply navigate in the UML meta-model and click on Eval script code (al-
ways displayed at the top of the page). Data is displayed in the Browse tab of
the Output window or in the Script tab for textual information.

Create Tcl Script Code
1. Start the Script Wizard by clicking Script Wizard in the Tools menu. You

cam also click the Script Wizard button in the toolbar.

2. Click project or TTCN-3.

3. Click Create script code. The script is displayed.

4. Click the Execute Script button in the toolbar.

5. In the File menu, click Save.

Tcl Commands

June 2009 IBM Rational Systems Tester 3.3 User Guide 243

Copy Tcl Script Code
1. Start the Script Wizard by clicking Script Wizard in the Tools menu. You

can also click the Script Wizard button in the toolbar.

2. Click project or TTCN-3.

3. Browse to the code you wish to copy.

4. Click Copy script code.

5. Paste the copied code into another script or document.

Customize the Rational Systems Tester Views
1. Start the Script Wizard by clicking Script Wizard in the Tools menu. You

can also click the Script Wizard button in the toolbar.

2. Click project or TTCN-3.

3. Click Create script code. The script is displayed.

4. Use one of the following functions:

fwreportInit tabName [iconFile] [-keep] [-cb tclFile]

5. Click the Execute Script button in the menu bar. You can also press
CTRL+F5.

This activates a new tab in the workspace window, when needed.

– If iconFile is present, then this file (that is, the icon) will be used as
the tab image.

– If -keep is present then the content of the tab (if any) is kept, other-
wise the tab is reset.

– If the -cb tclFile is present, then the associated Tcl script will be
evaluated when you double-click a tree object, and the
OnDoubleClick procedure of this Tcl script will be called with this
object as parameter.

fwreport [-expanded] identObj [parentObj]:

Adds a new object in the tree.

– If -expanded is present and if the object has children, the node will be
expanded, if not, it will be collapsed.

– If parentObj is present the node is created as a child of the node cor-
responding to parentObj.

reportInit [-check] [-cb tclfile] [column-label column-
width column-alignment]+:

244 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 9: Using the Script Wizard

Creates a new report tab in the Output window.

– If the -check is used, a check box is displayed before each result line.
These check boxes allow more powerful navigation: only checked
lines will be selected when you navigate by using the F4 key, others
are ignored.

– If the -cb tclFile is present the associated Tcl script will be eval-
uated when you double-click on a line object, and the
OnDoubleClick procedure of this Tcl script will be called with the
double-clicked object as parameter. For each column-label column-
width column-alignment a new column is created with the corre-
sponding label, width and alignment.

Note
An alignment of 0 means left align and an alignment of 1 means right.

For sorting, columns right aligned are considered as number and columns
left aligned are considered as text.

report sourceObject [label]*:

Adds new lines in a report tab.

– The sourceObject will be used to fill the first column (icon + text)
automatically.

– The labels are used to fill the remaining columns.

output msg:
Allows the Tcl script to print a message in the Tcl output tab.

June 2009 IBM Rational Systems Tester 3.3 User Guide 245

10
Runtime System APIs

246 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Runtime Layer API
This interface contains all the services that the RTS provides. It is both used
by the generated code from the IBM Rational Systems Tester Compiler and
from user implementation such as a non-TRI integration, codecs systems and
log mechanisms.

Although most functions in the RTL interface are public and can be used by
anyone, a number of them are only intended to be from the code generated
by the Rational Systems Tester Compiler.

See also

“RTL Function for Generated Code Only” on page 500 for a complete listing.

RTL Type Definitions

Descriptions of the C types that are used in the Runtime Layer API are spread
out to the functions where they are most relevant. Most of these types are ac-
cessed through functions, their actual, underlying, representation is not
meant to be public. However, a few types (for example
t3rt_symbol_entry_t) have a public representation which will be detailed
where appropriate. Type definitions of function prototypes are described
where they are used (functions used in codecs registration for instance).

t3rt_context_t

Throughout the execution an object of the type t3rt_context_t is passed
around to all RTS functions. It contains information about the current com-
ponent and a lot of other data.

Example 24: Function with t3rt_context_t parameter ––––––––––––––––––

t3rt_value_delete

Deletes the value and (recursively) all the value elements.

void t3rt_value_delete (t3rt_value_t *value, t3rt_context_t
context);

–––

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 247

RTL Type Functions
These are the type related functions that instantiates values and accesses type
information. Types are generated statically, so the functions have read-only
access, no dynamic type construction exists.

Note
The type representation is visible from a C perspective but should never be
directly de-referenced since that representation can change without notice.
Always use the type access functions.

Each user-defined type have generated type descriptors and the built-in types
of the TTCN-3 language has the following t3rt_type_t type descriptor
constants:

t3rt_integer_type
t3rt_float_type
t3rt_boolean_type
t3rt_verdicttype_type
t3rt_default_type
t3rt_charstring_type
t3rt_bitstring_type
t3rt_octetstring_type
t3rt_hexstring_type
t3rt_universal_charstring_type
t3rt_char_type
t3rt_universal_char_type
t3rt_address_type
t3rt_timer_type
t3rt_objectidentifier_type
t3rt_binary_string_type (added type, not TTCN-3)

There are also two special type descriptor constants that represent an illegal
type and a non-existing type. Many RTL type-related functions are not appli-
cable for these two type descriptors:

t3rt_illegal_type
t3rt_undefined_type

RTL Type Related Type Definition

The following are the C types used in the type related functions:

t3rt_type_t

A type descriptor representing a TTCN-3 type. It is a very central entity
of the RTS. The type descriptors are all static and are either statically
defined by the RTS or generated by the Rational Systems Tester Com-

248 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

piler. The structural definition of this descriptor happens to be public
but should never be accessed in any other way than with the type access
functions.

t3rt_type_kind_t

Represents the type kind of the TTCN-3 type, integer and record, and
so on. The difference between a “type” and the “type kind” is that the
record type in TTCN-3 is not a type on its own but have to be defined
further, while an integer is both a type and a type kind. So, the type de-
scriptor for the user-defined TTCN-3 type MyRecord will have the type
kind record.

t3rt_encoding_attr_t

Contains information about the “with encode”, “with variant”, “with
display“ and “with extension“ attribute if one is available for the type.
All attributes have this representation but are retrieved by four different
access functions t3rt_type_encode_attribute,
t3rt_type_variant_attribute, t3rt_type_display_attribute and
t3rt_type_extension_attribute. Additional functions may be used to
query attributes of type fields using either their names or indexes.

t3rt_field_properties_t

A numeric type that reflects the properties of a field in a structured type.
Retrieved through t3rt_type_field_properties.

t3rt_long_integer_t

The signed 64-bit integer type representation. Used, for example, in
t3rt_value_set_integer.

t3rt_unsigned_long_integer_t

The unsigned 64-bit integer type representation.

t3rt_type_instantiate_value

Creates a new value instance of a type.

t3rt_value_t t3rt_type_instantiate_value
(t3rt_type_t type,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 249

Parameters

Description

This function creates an uninitialized value instance of the given type.

In the majority of cases, the type descriptor is directly available when a value
has to be instantiated (for example in decoders). In those cases it is straight-
forward to make the instantiation.

In cases where values of TTCN-3 built-in types must be created, there are
constant type descriptors to use (for example the t3rt_integer_type type de-
scriptor to instantiate a pure integer value).

In rare cases, if a value has to be instantiated when no type descriptor is
present, the type descriptor can be located (by name) through the symbol
table. See RTL Symbol Table Functions for accessing type descriptors from
user-defined types.

Memory for the new instance is allocated according to the specified strategy.

After the value has been allocated, the post-processing function of the type,
if present, is called.

It is not possible to instantiate signature values from signature types.

Example Usage
/* Instantiate a value of a given type descriptor ‘type’*/
t3rt_value_t builtin_val =
t3rt_type_instantiate_value(type, t3rt_temp_alloc_c, ctx);
...
/* Instantiate an integer value */
t3rt_value_t builtin_val =
t3rt_type_instantiate_value(t3rt_integer_type,
t3rt_temp_alloc_c, ctx);
...
/* Instantiate a value of type MyType. */
t3rt_type_t type = t3rt_find_element(“MyType”, ctx);
t3rt_value_t my_val = t3rt_type_instantiate_value(type-
>type_descriptor, t3rt_temp_alloc_c, ctx);

type A TTCN-3 built-in or a generated type descriptor.

strategy Memory allocation strategy.

250 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

The newly created value. This never returns any special value constants
(t3rt_no_value_c, for example), a test case error will be generated if a value
can not be instantiated and the current test case will be terminated.

See also

“RTL Symbol Table Functions” on page 490

“t3rt_type_field_type” on page 257

“t3rt_type_template_base_type” on page 269

“t3rt_type_array_contained_type” on page 269

“t3rt_value_kind” on page 279

t3rt_type_instantiate_named_value

Creates a new value instance of the type with a given name.

t3rt_value_t t3rt_type_instantiate_named_value
(t3rt_type_t type,
 const char* name,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Same as t3rt_type_instantiate_value but with a charstring typed label at-
tached to it.

t3rt_type_check

Verifies that a value corresponds to a type.

bool t3rt_type_check

type The type to instantiate.

name Name of the value.

strategy Memory allocation strategy.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 251

(t3rt_type_t type,
 t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

Description

Checks if a value is compatible to a type. Built-in checks are made and a call
is made to the generated type check function which means that, for example,
type restrictions are checked.

Return Values

True if the value is compatible with the type, otherwise false.

See also

“t3rt_type_is_equal” on page 251

t3rt_type_is_equal

Checks if two type descriptors represent the same type.

bool t3rt_type_is_equal
(t3rt_type_t type1,
 t3rt_type_t type2,
 t3rt_context_t ctx);

Parameters

Description

Checks if two type descriptors are equal. Since it is not sufficient to compare
the type descriptors by the equality operator in C, this predicate should be
used instead of direct t3rt_type_t instance comparison.

type The type to check against.

value The value to check.

type1 A valid type descriptor.

type2 A valid type descriptor.

252 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

True if the types are the same, otherwise false.

See also

“t3rt_type_check” on page 250

t3rt_type_kind

Retrieves the type kind from the type.

t3rt_type_kind_t t3rt_type_kind
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

All type descriptors are of a specific type kind. The difference of a type and
a type kind is, for example, that integer is a type but record is a type kind.
This is because you can not instantiate a value of type record, it can only be
instantiated from a user-defined type based on record.

Return Value

The kind of the type, see t3rt_type_kind_t for applicable values.

t3rt_type_parent

Retrieves the parent type descriptor from the type.

t3rt_type_t t3rt_type_parent
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

type A valid type descriptor.

type A valid type descriptor.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 253

Description

While t3rt_type_field_type function obtains field type for a given structured
type descriptor this function behaves vice versa. For a given type that should
represent field type of some structured type (e.g. record) it returns type de-
scriptor of that parent type.

Return Value

Valid type descriptor if given type descriptor represents field type, NULL
otherwise.

t3rt_type_name, t3rt_type_definition_name

Returns the name of the type.

const char *t3rt_type_name
(t3rt_type_t type,
 t3rt_context_t ctx);

const char *t3rt_type_definition_name
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

Accesses the name of the type. The two functions only differ when the type
is imported.

Return Values

If the type is local (that is, not imported) the returned name will be the plain
type name.

If the type is imported, t3rt_type_name will return “<m>.<t>” where <m> is
the imported module and <t> the type name, and t3rt_type_definition_name
will just return the unqualified type name.

type The type to access.

254 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

See also

“t3rt_type_module, t3rt_type_definition_module” on page 254

t3rt_type_module, t3rt_type_definition_module

Returns the module name of a type.

const char *t3rt_type_module
(t3rt_type_t type,
 t3rt_context_t ctx);

const char *t3rt_type_definition_module
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

Accesses the module of the type. The two functions only differ if the type is
imported.

Return Values

If the type is local (that is, not imported) both functions return the same, ob-
vious, module name.

If the type is imported, t3rt_type_module returns the importing module name
and t3rt_type_definition_module returns the module name from where the
type was imported.

See also

“t3rt_type_name, t3rt_type_definition_name” on page 253

t3rt_type_qualified_name

Returns the name of a type qualified with the name of a module name.

const char *t3rt_type_qualified_name
(t3rt_type_t type,
 t3rt_context_t ctx);

type The type to access.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 255

Parameters

Description

Returns a type name which is qualified with a module name, separated by a
‘.’ (PERIOD) character, for example “Mod1.MyType”.

The module name is always the module in which the type is defined.

Return Values

Returns a qualified name, allocated in temporary memory.

See also

“t3rt_type_name, t3rt_type_definition_name” on page 253

“t3rt_type_module, t3rt_type_definition_module” on page 254

t3rt_type_field_count

Returns number of sub-fields of the specified type.

unsigned long t3rt_type_field_count
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

This is applicable to structured types (for example records and sets) where
the number returned in the number of fields in the type declaration.

It is also applicable to template types (number of formal parameters), signa-
ture types (number of formal parameters) and enumerated types (number of
enumerated elements).

Zero field in the signature type represents type of the returned value.

type The type to access.

type A valid type descriptor of a structured type.

256 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

The number of “fields” in the type, zero if not applicable or no fields are
found.

t3rt_type_field_name

Returns the name associated with indicated sub-field of the specified type.

const char * t3rt_type_field_name
(t3rt_type_t type,
 unsigned long field_index,
 t3rt_context_t ctx);

Parameters

Description

This is applicable to structured types (for example records and sets) where
the name is the name of the field in the type declaration.

It is also applicable to template types (name of formal parameter at index),
signature types (name of formal parameter at index) and enumerated types
(name of enumerated element at index).

Indices always starts from zero in all field access by index. If the index is not
valid, a test case error will be generated and the test case will terminate.

Zero field in the signature type represents type of the returned value.

Return Values

The name of the “field”.

t3rt_type_field_index

Returns the index associated with indicated sub-field of the specified type.

unsigned long t3rt_type_field_index
(t3rt_type_t type,

type A valid type descriptor.

field_index A valid field index of the type descriptor. Indexes
always starts from zero.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 257

 const char *field_name,
 t3rt_context_t ctx);

Parameters

Description

This is applicable to structured types that have declared fields with names
(for example records and sets).

It is also applicable to template types (index of named formal parameter), sig-
nature types (index of names formal parameter) and enumerated types (index
of named enumerated element).

Indices always starts from zero in all field access by index.

Return Values

The index of the named “field”. If no field could be found,
t3rt_no_field_index_c is returned.

t3rt_type_field_type

Returns the type associated with indicated sub-field of the specified type.

t3rt_type_t t3rt_type_field_type
(t3rt_type_t type,
 unsigned long field_index,
 t3rt_context_t ctx);

Parameters

value A valid type descriptor.

field_name A valid field name of the type descriptor.

type A valid type descriptor

field_index A valid field index of the type descriptor. Indexes
always starts from zero.

258 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This is applicable to structured types (for example records and sets) with
typed fields.

It is also applicable to template types (type of formal parameter at index), sig-
nature types (type of formal parameter at index) and enumerated types (type
of enumerated element at index).

Indices always starts from zero in all field access by index. If the index is not
valid, a test case error will be generated and the test case will terminate.

Zero field in the signature type represents type of the returned value.

Return Values

The type of the indicated field.

t3rt_type_field_properties

Returns the type associated with indicated sub-field of the specified type.

t3rt_field_properties_t t3rt_type_field_properties
(t3rt_type_t type,
 unsigned long field_index,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the field properties of the given field in this structured type.

Zero field in the signature type represents type of the returned value.

Return Values

A field can have one of the following values:

type A valid type descriptor representing a structured
type, for example a record, a template or a signature
type.

field_index A valid index with respect to the number of fields
in the type. Indexes always starts from zero.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 259

t3rt_type_enum_named_values_count

Returns number of named values of the specified enumerated type.

unsigned long t3rt_type_enum_named_values_count
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values

The number of enumerated elements in the type.

Field Property Description

t3rt_field_property_no_property_c No properties

t3rt_field_property_mandatory_c This is the default attribute when the
field is not optional.

t3rt_field_property_optional_c The field is optional according to the
type definition (which is either a record
or a set type).

t3rt_field_property_in_value_c The field represents an in parameter of a
type with formal parameters (for ex-
ample a template or a signature).

t3rt_field_property_out_value_c The field represents an out parameter of
a type with formal parameters (for ex-
ample a template or a signature).

t3rt_field_property_inout_value_c The field represents an inout parameter
of a type with formal parameters (for ex-
ample a template or a signature).

t3rt_field_property_return_value_c The field represents the return type of a
type that has a return type (for example
a signature).

type A valid type descriptor for an enumerated type.

260 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_type_enum_name_by_index

Returns the name associated with the indicated position of the specified enu-
merated type.

const char * t3rt_type_enum_name_by_index
(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values

Returns the name of the enumerated element at the given index.

t3rt_type_enum_number_by_index

Returns the number associated with the indicated position of the specified
enumerated type.

t3rt_long_integer_t t3rt_type_enum_number_by_index
(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values

The enumeration number of the named element.

type A valid type descriptor for an enumerated type.

index A valid index within the range from 0 to one less
than the number of enumerated elements. A test
case will be generated otherwise.

type A valid type descriptor for an enumerated type.

index A valid index within the range from 0 to one less
than the number of enumerated elements. A test
case will be generated otherwise.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 261

t3rt_type_enum_name_by_number

Returns the name associated with the indicated number of the specified enu-
merated type.

const char * t3rt_type_enum_name_by_number
(t3rt_type_t type,
 t3rt_long_integer_t named_value_number,
 t3rt_context_t ctx);

Parameters

Return Values

The name of the enumerated element for the given enumerated (integer)
value or NULL if the number can not be found.

t3rt_type_enum_number_by_name

Returns the number associated with the indicated name of the specified enu-
merated type.

t3rt_long_integer_t t3rt_type_enum_number_by_name
(t3rt_type_t type,
 const char *named_value_name,
 t3rt_context_t ctx);

Parameters

Return Values

The enumeration number of the named element or t3rt_no_enum_number_c
if no such named element can be found.

type A valid type descriptor for an enumerated type.

named_value_number A valid number in the enumerated type.

type A valid type descriptor for an enumerated type.

named_value_name A valid enumerated element in the enumerated
type.

262 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_type_field_encode_attribute_by_name

Returns encoding attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_encode_attribute_by_name

(t3rt_type_t type,
 const char *fieldname,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with encode” attribute descriptor for the given type field
identified using its field name.

t3rt_type_field_encode_attribute_by_index

Returns encoding attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_encode_attribute_by_index

(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with encode” attribute descriptor for the given type field
identified using its field index.

t3rt_type_field_variant_attribute_by_name

Returns variant attribute associated with a type's field.

t3rt_encoding_attr_t

type A valid type descriptor.

field_name Type field name.

type A valid type descriptor.

index Type field index.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 263

t3rt_type_field_variant_attribute_by_name
(t3rt_type_t type,
 const char *fieldname,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with variant” attribute descriptor for the given type field identified
using its field name.

t3rt_type_field_variant_attribute_by_index

Returns variant attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_variant_attribute_by_index

(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with variant” attribute descriptor for the given type field identified
using its field index.

t3rt_type_field_display_attribute_by_name

Returns display attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_display_attribute_by_name

(t3rt_type_t type,
 const char *fieldname,
 t3rt_context_t ctx);

type A valid type descriptor.

field_name Type field name.

type A valid type descriptor.

index Type field index.

264 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Return Values
Returns “with display” attribute descriptor for the given type field
identified using its field name.

t3rt_type_field_display_attribute_by_index

Returns display attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_display_attribute_by_index

(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with display” attribute descriptor for the given type field
identified using its field index.

t3rt_type_field_extension_attribute_by_name

Returns extension attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_extension_attribute_by_name

(t3rt_type_t type,
 const char *fieldname,
 t3rt_context_t ctx);

Parameters

type A valid type descriptor.

field_name Type field name.

type A valid type descriptor.

index Type field index.

type A valid type descriptor.

field_name Type field name.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 265

Return Values
Returns “with extension” attribute descriptor for the given type field
identified using its field name.

t3rt_type_field_extension_attribute_by_index

Returns extension attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_extension_attribute_by_index

(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with extension” attribute descriptor for the given type field
identified using its field index.

t3rt_type_encode_attribute

Returns the encode attribute associated with the type.

t3rt_encoding_attr_t t3rt_type_encode_attribute
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with encode” attribute descriptor for the given type.

t3rt_type_variant_attribute

Returns the variant attribute associated with the type.

t3rt_encoding_attr_t t3rt_type_variant_attribute

type A valid type descriptor.

index Type field index.

type A valid type descriptor.

266 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with variant” attribute descriptor for the given type.

t3rt_type_display_attribute

Returns the display attribute associated with the type.

t3rt_encoding_attr_t t3rt_type_display_attribute
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with display” attribute descriptor for the given type.

t3rt_type_extension_attribute

Returns the extension attribute associated with the type.

t3rt_encoding_attr_t t3rt_type_extension_attribute
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with extension” attribute descriptor for the given type.

type A valid type descriptor.

type A valid type descriptor.

type A valid type descriptor.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 267

t3rt_encoding_attr_get_specifier

Returns the free text string specifier of the encode, variant, display or exten-
sion attribute.

const char* t3rt_encoding_attr_get_specifier
(t3rt_encoding_attr_t attr,
 t3rt_context_t ctx);

Parameters

Description

This function returns character string that represents attribute specifier as de-
fined in the TTCN-3 module. ‘attr’ parameter should be a valid attribute de-
scriptor previously obtained by one of the attribute extraction functions (e.g.
t3rt_type_encode_attribute).

Return Values
Returns character string attribute specifier as defined in the TTCN-3
module.

t3rt_encoding_attr_is_override

Predicates telling if the attribute specification has been overridden by envel-
oping TTCN-3 element.

bool t3rt_encoding_attr_is_override
(t3rt_encoding_attr_t attr,
 t3rt_context_t ctx);

Parameters

Description

This function tests whether given attribute has been overridden by the at-
tribute specification of enveloping TTCN-3 element, which declares at-
tribute with “override“ statement. This function only informs about the hap-
pened overriding. There is no way of accessing original attribute specifier.

attr A valid attribute descriptor.

attr A valid attribute descriptor.

268 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values
Returns true if attribute specifier represents attribute of enveloping TTCN-
3 element declared with “override“ statement, false otherwise.

t3rt_type_array_size

Retrieves the size of the array type.

unsigned long t3rt_type_array_size
(t3rt_type_t array_type,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the size in elements of the given array type.

Return Values

The size of the array type.

t3rt_type_array_base_index

Retrieves lower subscription index of the array type.

unsigned long t3rt_type_array_base_index
(t3rt_type_t array_type,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the lower subscription index of the given array type.

array_type The array type itself.

array_type The array type itself.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 269

Return Values

For the majority of the array types this function returns zero. This is the case
for the below mentioned ‘my_array’ type.

type integer my_array[10];

‘my_array’ type has size of 10 with base index equal to 0.

When array type defines lower boundary then base index may be greater than
zero.

type integer another_array[5..10];

‘another_array’ type has size of 6 with base index equal to 5.

t3rt_type_array_contained_type

Retrieves the type of the elements of this array type.

t3rt_type_t t3rt_type_array_contained_type
(t3rt_type_t array_type,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the type descriptor that is the type of the value elements of this
array type.

Return Values

The valid type descriptor for the array elements.

t3rt_type_template_base_type

Retrieves the base type of this template type.

t3rt_type_t t3rt_type_template_base_type
(t3rt_type_t type,
 t3rt_context_t ctx);

array_type The array type itself.

270 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

Retrieves the base type of the given template type. In the template definition

template integer my_template := 7

calling this function against ‘my_template’ type descriptor returns type de-
scriptor for the ‘integer’ data type.

Return Values

The valid type descriptor for the base template type.

t3rt_template_description

Retrieves unparsed template description as defined in the TTCN-3 module

const char * t3rt_template_description
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the unparsed template constraint as defined in the TTCN-3
module. This function relies on the information generated by the compiler.
Usually template constraint is truncated to 100 characters to make generated
code smaller however you may control the maximum size of generated tem-
plate description using “-l <max_length>“ compiler option. If template con-
straint has been truncated then compiler appends “...“ string to the end of it.

Return Values

Returns character string that represents template constraint as defined in the
TTCN-3 module.

type The template type itself.

type The template type itself.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 271

t3rt_type_set_encoder

Sets the encoder function of the type descriptor.

void t3rt_type_set_encoder
(t3rt_type_t type,
 t3rt_encoder_function_t encoder_function,
 t3rt_context_t ctx);

Parameters

Description

This will set the encoder function of the type descriptor. There can be only
one encoder function for each type.

The encoder function will be called prior to sending a value on a port.

This function is typically called from a registered codecs system’s setup
function.

If you are using coders implemented with TCI CD interface then you need to
set t3rt_tci_encode as an encoder function.

See also

“RTL Codecs Functions” on page 473

t3rt_type_set_decoder

Sets the decoder function of the type descriptor.

void t3rt_type_set_decoder
(t3rt_type_t type,
 t3rt_decoder_function_t decoder_function,
 t3rt_context_t ctx);

Parameters

type The type to set encoder function for.

encoder_function Function to set.

type The type to set decoder for.

decoder_function Function to set.

272 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This will set the decoder function of the type descriptor. There can be only
one decoder function for each type.

The decoder function will be used to decode an incoming value before any
TTCN-3 operations (for example match) are performed.

This function is typically called from a registered codecs system’s setup
function.

If you are using coders implemented with TCI CD interface then you need to
set t3rt_tci_decode as a decoder function.

See also

“RTL Codecs Functions” on page 473

t3rt_type_get_encoder

Retrieve the encoder function of the type descriptor.

t3rt_encoder_function_t t3rt_type_get_encoder
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

This will retrieve the encoder function of the type descriptor. There can be
only one encoder function for each type.

The encoder function will be called prior to sending a value on a port.

Return Values

The set function pointer or NULL if none is present.

type Type descriptor from which to retrieve the encoder
function.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 273

See also

“RTL Codecs Functions” on page 473

t3rt_type_get_decoder

Retrieve the decoder function of the type descriptor.

t3rt_decoder_function_t t3rt_type_get_decoder
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

This will retrieve the registered decoder function of the type descriptor.
There can be only one decoder function for each type.

The decoder function will be used to decode an incoming value before any
TTCN-3 operations (for example match) are performed.

Return Values

The set function pointer or NULL if none is present.

See also

“RTL Codecs Functions” on page 473

RTL Value Functions
These are the value related functions that handles the variables, timers, ports,
and component references in TTCN-3.

The actual value representation is internal and the values can only be manip-
ulated through functions.

type Type descriptor from which to retrieve the decoder
function.

274 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

The following value constants (of type t3rt_value_t) are defined, and
where and when they are used is described among the individual API func-
tions.

t3rt_illegal_value_c
t3rt_omit_value_c
t3rt_anyone_value_c
t3rt_anyornone_value_c
t3rt_no_value_c
t3rt_not_used_value_c
t3rt_value_any_c
t3rt_value_all_c
t3rt_value_no_return_c
t3rt_timeout_exception_c
t3rt_value_null_address_c
t3rt_value_true_c
t3rt_value_false_c
t3rt_value_verdict_pass_c
t3rt_value_verdict_fail_c
t3rt_value_verdict_inconc_c
t3rt_value_verdict_none_c
t3rt_value_verdict_error_c
t3rt_value_null_default_reference_c
t3rt_value_null_component_reference_c

RTL Value Related Type Definitions

t3rt_value_t

The representation of a variable, timer, component (reference), port
(reference), and so on. Basically all entities that can be passed as param-
eters to functions, test step, test cases, and so on, or declared within
component types.

t3rt_verdict_t

An enumeration of all the possible verdicts in TTCN-3.

t3rt_value_copy

Returns a newly created “deep” copy of the value.

t3rt_value_t t3rt_value_copy
(const t3rt_type_t value,
 const t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 275

Parameters

Description

Some kinds of values (timers, port and component records) cannot be copied.
Copied value has to be fully initialized. Use t3rt_value_is_initialized to
check whether given value is initialized. Calling this function for not-initial-
ized values results in test case error.

Return Values
Copy of given value allocated according to specified memory allocation
strategy.

t3rt_value_parent

Returns parent (enveloping) value of the given value

t3rt_value_t t3rt_value_parent
(const t3rt_value_t value,
 t3rt_context_t context);

Parameters

Description

This function is applicable to the various types of values: records, sets, ar-
rays, unions, signatures, etc. Given an element of a structured value it returns
reference to the compound value that contains given element. If “value“ is
not an element of a compound value then this function returns
t3rt_no_value_c special value.

Example Usage
/* Suppose ‘record_value’ is a value of record type */
/* ‘element_value’ is a first field in this record value */

t3rt_value_t element_value =

value The value to copy.

alt_index Memory allocation strategy for the created copy of
the original value.

value Element of the structured value.

276 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_value_field_by_index(record_value, 0, ctx);
...
/* Get reference to record value using field value */
t3rt_value_t parent_value =
t3rt_value_parent(element_value, ctx);
...
/* Parent value for ‘element_value’ is a ‘record_value’*/
assert(parent_value == record_value);

Return Values
Parent value for the given element value.

t3rt_value_is_dynamic_template

Checks whether underlying value is a generic value or a dynamic template.

bool t3rt_value_is_dynamic_template
(const t3rt_value_t value,
 t3rt_context_t context);

Parameters

Description

This function may be used to distinguish dynamic templates from generic
values.

Return Values
Returns true if provided value represents template, false if it’s a generic
value.

t3rt_value_set_union_alternative_by_index

Returns the newly created uninitiated value for the alternative.

t3rt_value_t t3rt_value_set_union_alternative_by_index
(t3rt_value_t union_value,
 unsigned long alt_index,
 t3rt_context_t context);

value Value to be checked.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 277

Parameters

Description

Initializes the union value by calling t3rt_type_instantiate_value for the type,
corresponding to alternative. The initialization uses the same allocation
strategy as the union value. Returns the newly created uninitiated value for
the alternative.

If the new alternative is different from the current alternative, the allocated
value will be de-allocated and replaced by a newly instantiated (uninitiated)
value. If the new alternative is the same as the current one, this function will
keep the existing value.

Return Values

The union value given as input parameter.

t3rt_value_set_union_alternative_by_name

Returns the newly created uninitiated value for the alternative.

t3rt_value_t t3rt_value_set_union_alternative_by_name
(t3rt_value_t union_value,
 const char* alt_name,
 t3rt_context_t context);

Parameters

union_value The union value to initialize.

alt_index The index of the alternative to select. An index that
does not correspond to a valid alternative according
to the type will give a test case error.

union_value The union value to initialize.

alt_name The name of the alternative to select. A name that
does not correspond to a valid alternative according
to the type will give a test case error.

278 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

Initializes the union value by calling t3rt_type_instantiate_value for the type,
corresponding to alternative. The initialization uses the same allocation
strategy as the union value. Returns the newly created uninitiated value for
the alternative.

If the new alternative is different from the current alternative, the allocated
value will be de-allocated and replaced by a newly instantiated (uninitiated)
value. If the new alternative is the same as the current one, this function will
keep the existing value.

Return Values

The union value given as input parameter.

t3rt_value_delete

Deletes the value and (recursively) all the value elements.

void t3rt_value_delete
(t3rt_value_t *value,
 t3rt_context_t context);

Parameters

Description

It’s not necessary to delete values allocated in the temporary memory (i.e.
values allocated with t3rt_temp_alloc_c strategy) since deallocation of ob-
jects in temporary memory is performed automatically by the runtime
system.

t3rt_value_is_initialized

Checks if value and all its elements (recursively) are initialized.

bool t3rt_value_is_initialized
(t3rt_value_t value,
 t3rt_context_t context);

value Address of a value to be deleted.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 279

Parameters

Description
Some of value operations (e.g. copy, assign, encode) requires used value to
be fully initialized. Arrays (including “record of” and “set of”) are treated
as not initialized if they have undefined elements. Omitted optional fields
in records and sets should be explicitly assigned with “omit“ value using
t3rt_value_set_omit otherwise they also are treated as not-initialized.

Return Values

Returns “true“ if value is initialized, false otherwise.

t3rt_value_kind

Calls the t3rt_type_kind function.

t3rt_type_kind_t t3rt_value_kind
(t3rt_value_t value,
 t3rt_context_t context);

Parameters

Description

This function simply calls t3rt_type_kind for the value type, i.e. it’s the same
as calling t3rt_type_kind(t3rt_value_type(value, context), context).

Return Values

Returns type kind of the value type.

t3rt_value_type

Returns the type descriptor for the type of the value.

t3rt_type_t t3rt_value_type
(const t3rt_value_t value,
 t3rt_context_t context);

value Value to be checked.

value Valid value descriptor.

280 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Return Values

Returns the type descriptor for the type of the value.

t3rt_value_set_label

Sets a label (for example name) of a value.

void t3rt_value_set_label
(t3rt_value_t value,
 t3rt_value_t label,
 t3rt_context_t context);

Parameters

Description

This applies a label on a value. The label is also any kind of value to keep this
general. It is most widely use with a charstring value signifying a variable
name for instance.

It is applied automatically for instantiated ports and timers that are declared
inside a component type definition when the component is instantiated.

The set label is retrieved by calling the t3rt_value_label function.

See also

“t3rt_type_instantiate_named_value” on page 250

t3rt_value_label

Retrieves the label of the value.

t3rt_value_t t3rt_value_label
(const t3rt_value_t value,
 t3rt_context_t context);

value Valid value descriptor.

value The value to label.

label The label of the value.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 281

Parameters

Description

The label is an arbitrary value that serves as a “name” for the value.

For generated entities, the name is a charstring typed value with the name
of the declared entity (for example variables, timers, ports, and so on).

Return Values

The label value. If no label has been set the t3rt_no_value_c constant is re-
turned.

t3rt_value_allocation_strategy

Returns the memory allocation strategy used for allocation of the value.

t3rt_alloc_strategy_t t3rt_value_allocation_strategy
(const t3rt_value_t value,
 t3rt_context_t context);

Parameters

Description

All elements of a compound value are allocated always using one and the
same strategy. It’s not possible to have some elements of a value to be allo-
cated in permanent memory and other elements - in temporary memory.

Return Values

Returns the memory allocation strategy used for allocation of the value.

t3rt_value_string_length

Returns the length of the string value.

unsigned long t3rt_value_string_length

value Valid value descriptor.

value Valid value descriptor.

282 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

(t3rt_value_t string_value,
 t3rt_context_t context);

Parameters

Description

This function operates on charstring, bitstring, octetstring, hexstring, uni-
versal charstring and binary string values. The length is measured in ele-
ments of a certain string type. Length of octetstring is measured in octets
while each octet is represented by two hex symbols. Length of binary string
is measured in bits.

Return Values

Length of a string value measured in elements.

t3rt_value_vector_size

Returns size of the vector.

unsigned long t3rt_value_vector_size
(t3rt_value_t vector_value,
 t3rt_context_t context);

Parameters

Description

This function operates on setof, recordof, array, set, record, objectidentifier,
signature, and template values. Undefined and omitted elements are also
counted.

Return Values

The number of element in the vector.

string_value Value of one of the string types.

vector_value Value of one of the vector types.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 283

t3rt_value_set_vector_size

Resizes a recordof or setof value by adding or removing elements when nec-
essary.

void t3rt_value_set_vector_size
(t3rt_value_t vector_value,
 const unsigned long new_size,
 t3rt_context_t context);

Parameters

Description

This function operates only on setof and recordof.

When called, the size of the vector will be modified. If the vector is short-
ened, the truncated elements are de-allocated normally and if the vector is
lengthened, the special value constant t3rt_not_used_value_c is added as
placeholder for each new element.

To set fields of a vector, use “t3rt_value_assign_vector_element” on page
295.

t3rt_value_set_vector_empty

Initialize a vector value to being empty.

void t3rt_value_set_vector_empty
(t3rt_value_t vector_value,
 t3rt_context_t context);

Parameters

Description

This function operates on setof, recordof, array, record, set and signature
values.When called, the value will be initialized to empty.

vector_value The vector value to set.

new_size The desired size of the vector.

vector_value The vector value to set.

284 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

For arrays, the size of the array must be zero or a test case error will be gen-
erated. For recordof and setof if the value contains elements it will behave
like t3rt_value_set_vector_size passing it zero length. For record, set and sig-
nature values this function will assign t3rt_not_used_value_c to all fields.

When implementing decoder for a vector type it’s necessary to call this func-
tion for a record or set value even if record type definition doesn’t contain
fields.

To set fields of a vector, use “t3rt_value_assign_vector_element” on page
295.

t3rt_value_field_by_index

Returns the value of the indicated field.

t3rt_value_t t3rt_value_field_by_index
(t3rt_value_t value,
 unsigned long field_index,
 t3rt_context_t context);

Parameters

Description

This function operates on setof, recordof, array, record, set, signature and
template values. For all kinds of values except recordof and setof specified
field index should not exceed ordinal index of last field value.

When applied to recordof and setof value while “field_index” is greater than
value size this function expands recordof/setof assigning
t3rt_not_used_value_c to all new elements.

If requested field value has not been defined then this function instantiates
specified field value and returns uninitialized value instance. Returned value
is lvalue (that is, the returned element can be used in assignment). There is
no need to use t3rt_value_assign_vector_element after filling returned field
value.

value Valid vector value.

field_index Zero based position of the requested field.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 285

Return Values

Returns previously set or fresh instance of (if field has not been defined) field
value.

t3rt_value_field_by_name

Returns the value of the indicated field.

t3rt_value_t t3rt_value_field_by_name
(t3rt_value_t value,
 const char *field_name,
 t3rt_context_t context);

Parameters

Description

This function is similar to t3rt_value_field_by_index but queries field value
using given field name. This function operates only on records, sets, signa-
tures and templates.

The field with the provided name should exist in the underlying type. The
name of field may be obtained by its ordinal index inside structured type with
the help of “t3rt_type_field_name” on page 256 function.

Return Values

Returns previously set or fresh instance of (if field has not been defined) field
value.

t3rt_value_vector_element

Returns the value of the vector’s indicated element.

t3rt_value_t t3rt_value_vector_element
(t3rt_value_t value,
 unsigned long element_index,
 t3rt_context_t context);

value Valid vector value.

field_name Name of the requested field.

286 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function behaves similar to t3rt_value_field_by_index.

Return Values

Returns the value of the specified element.

t3rt_value_string_element

Returns the newly created string value containing the indicated element of
the given string.

t3rt_value_t t3rt_value_string_element
(t3rt_value_t string_value,
 unsigned long element_index,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Description

This function operates on charstring, octetstring, bitstring, hexstring and uni-
versal charstring type values. The type of the returned value depends on the
type of the given string. For charstring and universal charstring values this
function returns char and universal char values correspondingly. For other
string types it returns value of the same type but containing only one (speci-
fied) element.

Specified element index should point to element within string boundaries
otherwise test case error is generated.

value Valid vector value.

element_index Zero based position of the requested element.

value Valid string value.

element_index Zero based position of the requested element.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 287

t3rt_value_union_value

Returns the value of the union value.

t3rt_value_t t3rt_value_union_value
(t3rt_value_t union_value,
 t3rt_context_t context);

Parameters

Description

This function returns value that represents chosen union variant. If no union
variant has been chosen then test case error is generated.

Return Values

Returns chosen union variant value.

t3rt_value_union_index

Returns the index of the current union alternative.

unsigned long t3rt_value_union_index
(t3rt_value_t union_value,
 t3rt_context_t context);

Parameters

Description

This function returns zero based index of chosen union variant.If no union
variant has been chosen then -1 is returned.

Return Values

Returns index of chosen alternative or -1 if union alternative has not been set.

value Valid union value.

value Valid union value.

288 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_value_get_integer

Extract the corresponding integer from the TTCN-3 runtime system value
representation.

t3rt_long_integer_t t3rt_value_get_integer
(const t3rt_value_t integer_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_enum_number

Extract integer of the corresponding enumeration from the TTCN-3 runtime
system value representation.

t3rt_long_integer_t t3rt_value_get_enum_number
(const t3rt_value_t enum_value,
 t3rt_context_t context);

Parameters

Description

This is a function that is used for mapping simple values from the RTS value
representation to a corresponding representation in the target language (cur-
rently the C language).

integer_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

enum_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 289

t3rt_value_get_enum_name

Extract the corresponding name of the enumeration value.

const char* t3rt_value_get_enum_name
(const t3rt_value_t enum_value,
 t3rt_context_t context);

Parameters

Description

This function is used to extract the name of the enumeration value according
to the information in the value’s type.

t3rt_value_get_float

Extract the corresponding floating-point value from the TTCN-3 runtime
system value representation.

double t3rt_value_get_float
(const t3rt_value_t float_value,
 t3rt_context_t context) ;

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

enum_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

float_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

290 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_value_get_boolean

Extract the corresponding boolean value from the TTCN-3 runtime system
value representation.

bool t3rt_value_get_boolean
(const t3rt_value_t boolean_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_char

Extract the corresponding character value from the TTCN-3 runtime system
value representation.

char t3rt_value_get_char
(const t3rt_value_t char_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

boolean_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

char_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 291

t3rt_value_get_string

Extract the corresponding string value from the TTCN-3 runtime system
value representation.

const char* t3rt_value_get_string
(const t3rt_value_t string_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_universal_char

Extract the corresponding universal character value from the TTCN-3
runtime system value representation.

const t3rt_wide_char_t * t3rt_value_get_universal_char
(const t3rt_value_t universal_char_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

string_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

universal_char_v
alue

Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

292 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_value_get_universal_charstring

Extract the corresponding wide string value from the TTCN-3 runtime
system value representation.

t3rt_wide_string_t t3rt_value_get_universal_charstring
(const t3rt_value_t widestring_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for map simple values from the RTS value
representation to a corresponding representation in the target language (cur-
rently the C language).

t3rt_value_get_binary_string

Extract the corresponding binary data value from the TTCN-3 runtime
system value representation.

t3rt_binary_string_t t3rt_value_get_binary_string
(const t3rt_value_t binary_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

widestring_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

binary_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 293

Note
This type of a binary_string value is not defined in ETSI ES 201 873-1
V2.2.1. This is a proprietary value type that has been introduced to be able
to pass around generic binary data in a uniform way.

t3rt_value_get_verdict

Extract the corresponding verdict value from the TTCN-3 runtime system
value representation.

t3rt_verdict_t t3rt_value_get_verdict
(const t3rt_value_t verdict_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_port_address

Extract the corresponding address from the TTCN-3 runtime system value
representation.

t3rt_binary_string_t t3rt_value_get_port_address
(const t3rt_value_t portref_value,
 t3rt_context_t context);

Parameters

verdict_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

portref_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

294 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_objectid_element

Retrieves object identifier number from the specified position.

unsigned long t3rt_value_get_objectid_element
(const t3rt_value_t objid_value,
 unsigned long index,
 t3rt_context_t context);

Parameters

Description
This function extracts object identifier element from the specified position.
Index parameter should be a zero based integer value. If index is greater
than the length of object identifier value minus 1 then test case error is
generated. Use t3rt_value_vector_size function to get the length of object
identifier value.

Return Values

Returns integer representing object identifier element at specified position.

t3rt_value_assign

Assign one, fully initialized, value to another.

void t3rt_value_assign
(t3rt_value_t lvalue,
 const t3rt_value_t rvalue,
 t3rt_context_t context);

objid_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 295

Parameters

Description

First, this function checks if rvalue is compatible with the type of the lvalue
(done by calling the t3rt_type_check function). Then, for the values of basic
types, it simply copies the target value from rvalue into lvalue. For all other
types, it does an element-wise assignment recursively.

See also

“t3rt_type_instantiate_value” on page 248

“t3rt_value_copy” on page 274

“t3rt_value_assign_vector_element” on page 295

“t3rt_value_assign_string_element” on page 296

t3rt_value_assign_vector_element

Assigns the contents of the element into the indicated position of the vector.

void t3rt_value_assign_vector_element
(t3rt_value_t vector,
 const unsigned long index,
 const t3rt_value_t element,
 t3rt_context_t context);

Parameters

lvalue An instantiated value of the appropriate type to as-
sign to.

rvalue A fully initialized value to assign from.

vector Valid value of one of vector types.

index Zero based position in vector value to assign to.

element Element to assigned to the specified position of
vector value.

296 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This function operates on array, set, record, recordof, setof, template and sig-
nature values. For all kinds of values except recordof and setof specified field
index should not exceed ordinal index of last field value (i.e. the size of com-
pound value minus 1).

When applied to recordof and setof value while “field_index” is greater than
value size this function expands recordof/setof assigning
t3rt_not_used_value_c to all new elements.

This function may be used to assign omit to optional fields of record and set
values.

Type check for vector value is performed after assignment.

t3rt_value_assign_string_element

Assigns the content of the one_char string into the indicated position of the
string.

void t3rt_value_assign_string_element
(t3rt_value_t string,
 const unsigned long index,
 const t3rt_value_t one_char,
 t3rt_context_t context);

Parameters

Description

This function operates on charstring, bitstring, octetstring, hexstring and uni-
versal charstring types. When applied to charstring and universal charstring
values assigned element should be of char or universal char type correspond-
ingly. For other string values assigned element should have the same type as
string value but with length equal to 1.

string Valid value of one of string types.

index Zero based position in vector value to assign to.

one_char Element to assigned to the specified position of
string value.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 297

Assigning value to the position outside current string boundaries generates
test case error.

Type check for vector value is performed after assignment.

t3rt_value_set_integer

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_integer
(t3rt_value_t value,
 t3rt_long_integer_t number,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_integer” on page 288

t3rt_value_set_boolean

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_boolean
(t3rt_value_t boolean_value,
 const bool flag,
 t3rt_context_t context);

value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

number The new integer value.

298 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_boolean” on page 290

t3rt_value_set_enum

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_enum
(t3rt_value_t enum_value,
 t3rt_long_integer_t number,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

boolean_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

flag The new boolean value.

enum_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

number The new enumeration value.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 299

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_enum_number” on page 288

“t3rt_value_get_enum_name” on page 289

t3rt_value_set_float

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_float
(t3rt_value_t float_value,
 const double number,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_float” on page 289

t3rt_value_set_verdict

Set a TTCN-3 RTS value from the corresponding C representation.

float_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

number The new floating-point value.

300 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_value_t t3rt_value_set_verdict
(t3rt_value_t verdict_value,
 const t3rt_verdict_t verdict,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_verdict” on page 293

t3rt_value_set_char

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_char
(t3rt_value_t char_value,
 const char single_char,
 t3rt_context_t context);

Parameters

verdict_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

verdict The new verdict value.

char_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

single_char The new character value.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 301

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_char” on page 290

t3rt_value_set_string

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_string
(t3rt_value_t string_value,
 const char *string,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value. Assigned octetstring and hex-
string values are always converted to the upper case.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_string” on page 291

string_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

string The new string value.

302 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_value_set_universal_char

t3rt_value_set_universal_char,
t3rt_value_set_universal_char_to_ascii

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_universal_char
(t3rt_value_t universal_char_value,
 const t3rt_wide_char_t single_wchar,
 t3rt_context_t context);

t3rt_value_t t3rt_value_set_universal_char_to_ascii
(t3rt_value_t universal_char_value,
 const char single_char,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value. Two different routines are
available to initialize universal character value. It can be filled either from
t3rt_wide_char_t value or from ASCII char symbol.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_universal_char” on page 291

universal_char_v
alue

The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

single_wchar The new universal character value.

single_char The new char value

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 303

t3rt_value_set_universal_charstring

t3rt_value_set_universal_charstring,
t3rt_value_set_universal_charstring_to_ascii,
t3rt_value_set_universal_charstring_from_wchar_array

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_universal_charstring
(t3rt_value_t wide_string_value,
 const t3rt_wide_string_t string,
 t3rt_context_t context);

t3rt_value_t t3rt_value_set_universal_charstring_to_ascii
(t3rt_value_t wide_string_value,
 const char * ascii_data,
 t3rt_context_t context);

t3rt_value_t
t3rt_value_set_universal_charstring_from_wchar_array

(t3rt_value_t wide_string_value,
 const t3rt_wide_char_t * wchar_data,
 unsigned long length,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value. Three different routines are
available to initialize universal character string. It can be filled either from
t3rt_wide_string_t value or from array of t3rt_wide_char_t elements (each
element representing one symbol) or from ASCII null-terminated character
string.

wide_string_valu
e

The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

string The new string value.

ascii_data ASCII string

wchar_data Array of t3rt_wide_char_t elements

length Number of elements in the “wchar_data” array

304 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_universal_charstring” on page 292

t3rt_value_set_binary_string

Set a RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_binary_string
(t3rt_value_t bstring_value,
 const t3rt_binary_string_t data,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_verdict” on page 293

t3rt_value_set_address_value

t3rt_value_add_vector_element

Add a new value element to a recordof or setof typed value.

binary_string_va
lue

The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

data The new data.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 305

t3rt_value_t t3rt_value_add_vector_element
(t3rt_value_t value,
 const t3rt_value_t element,
 t3rt_context_t context);

Parameters

Description

This appends a (copy of a) value to a recordof or setof value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_assign_vector_element” on page 295

“t3rt_value_remove_vector_element” on page 305

“t3rt_value_vector_element” on page 285

t3rt_value_remove_vector_element

Remove an element from a recordof or setof typed value.

void t3rt_value_remove_vector_element
(t3rt_value_t value,
 const unsigned long index,
 t3rt_context_t context);

Parameters

value The vector value

element The element to add.

value The list value to remove an element from.

index The index of the element to remove.

306 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

Removes an element from the recordof or setof value and decreases the
length with 1.

See also

“t3rt_value_add_vector_element” on page 304

“t3rt_value_assign_vector_element” on page 295

“t3rt_value_vector_element” on page 285

t3rt_value_add_objectid_element

Add a number to the end of the object identifier value.

t3rt_value_t t3rt_value_add_objectid_element
(t3rt_value_t objid_value,
 unsigned long element,
 t3rt_context_t context);

Parameters

Description

This function added specified integer to the end of objectidentifier list.

Return Values

Returns modified object identifier value passed as first parameter.

t3rt_value_set_omit

Set an optional field of a record or set as omitted.

void t3rt_value_set_omit
(t3rt_value_t value,

objid_value The objectidentifier value to be modified. If the
value is not appropriate for this operation a test case
error will be generated.

element Integer to be added to the end of objectidentifier
list.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 307

 unsigned long field_index,
 t3rt_context_t context);

Parameters

Description

Changes the status of a record or set field to be omitted. To check if a field is
omitted, use “t3rt_ispresent” on page 308.

t3rt_verdict_string

Convert a verdict value to its name.

const char *t3rt_verdict_string(t3rt_verdict_t verdict)

Parameters

Description

Primitive function that converts from verdict constant to string representa-
tion. Intended to be used for logging purposes.

For example, for the t3rt_verdict_pass_c constant, the string “pass” will be
returned.

Return Values

String representation of a verdict constant.

t3rt_value_check

Checks that the value fulfills its type restrictions.

bool t3rt_value_check

value The record or set value to be modified. If the value
is not appropriate for this operation a test case error
will be generated.

field_index The field to be set as omitted.

verdict The verdict to be converted. See type for constants.

308 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

(t3rt_value_t value,
 t3rt_context_t context);

Description

Verifies that the value fulfills the restrictions of its own type. Calls the
t3rt_type_check function.

Return Values

True if the value fulfills it own type, otherwise false.

RTL Predefined Operations Functions

t3rt_ispresent

Checks if the indicated field is present in the record or set value (that is, not
omitted).

bool t3rt_ispresent
(t3rt_value_t record_value,
 unsigned long field_index,
 t3rt_context_t context);

Parameters

Description

This is only applicable to record and set values.

Return Values

Returns true if the field is omitted, false otherwise.

t3rt_ischosen

Checks if the indicated field is present in the union value.

record_value A fully instantiated record or set value.

field_index The index of the field to be checked. Indexes starts
from 0.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 309

bool t3rt_ischosen
(t3rt_value_t union_value,
 unsigned long alt_index,
 t3rt_context_t context);

Parameters

Description

This is only applicable to union values and checks whether a given field is
selected/chosen in the instantiated union value.

If only the type field name is available, use “t3rt_type_field_index” on page
256 to convert the field name to an index and then use this as argument to this
function.

Return Values

Returns true if the alternative is selected, false otherwise.

t3rt_concatenate

Returns a newly created string value that contains a concatenated string.

t3rt_value_t t3rt_concatenate
(t3rt_value_t string1,
 t3rt_value_t string2,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

union_value A fully instantiated union value.

alt_index A valid index (according to the type) for a union se-
lection.

string1 First (left) part of concatenation.

string2 Second (right) part of the concatenation.

strategy Memory allocation strategy for the result string

310 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

The requirement for concatenation is that the two strings have to be of the
same type kind. The type of the resulting value is based on this type kind. So,
if two hexstrings are concatenated and they are of type T1 and T2 respec-
tively, the result will be a string of the type hexstring.

Return Values

Returns concatenation of the given strings allocated to the specified memory
allocation strategy.

t3rt_is_equal

Checks whether two values are equal.

bool t3rt_is_equal
(t3rt_value_t value1,
 t3rt_value_t value2,
 t3rt_context_t ctx);

Parameters

Description

Both values have to be fully initialized otherwise test case error is generated.
It’s not necessary for compared values to have one and the same type how-
ever they should be of one and the same value kind, i.e. they should have one
and the same base type.

Return Values
Returns true is values are equal, false otherwise.

t3rt_is_greater

Checks whether first value is greater than second.

bool t3rt_is_greater
(t3rt_value_t value1,
 t3rt_value_t value2,

value1 One value descriptor.

value2 Another value descriptor.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 311

 t3rt_context_t ctx);

Parameters

Description

This function may be used to compare two values. It returns true if first value
is greater than the second one. This function is applicable only to objectiden-
tifer values.

Return Values
Returns true if first value is greater than the second, false otherwise.

t3rt_is_lesser

Checks whether first value is lesser than second.

bool t3rt_is_lesser
(t3rt_value_t value1,
 t3rt_value_t value2,
 t3rt_context_t ctx);

Parameters

Description

This function may be used to compare two values. It returns true if first value
is lesser than the second one. This function is applicable only to objectiden-
tifer values.

Return Values
Returns true if first value is lesserthan the second, false otherwise.

value1 One value descriptor.

value2 Another value descriptor.

value1 One value descriptor.

value2 Another value descriptor.

312 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_not4b

Returns a copy of the operand on which the predefined operation has been
applied.

t3rt_value_t t3rt_not4b
(t3rt_value_t string,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This performs the not4b operation according to ETSI ES 201 873-1 V2.2.1.

This is applicable to string value of type bitstring, hexstring and
octetstring.

Return Values

A copy of the resulting value, allocated according to the given strategy.

t3rt_and4b

Returns a copy of the operand on which the predefined operation has been
applied.

t3rt_value_t t3rt_and4b
(t3rt_value_t string1,
 t3rt_value_t string2,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

string The string operand.

strategy Memory allocation strategy for the resulting value.

string1 One string operand.

string2 The other string operand.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 313

Description

This performs the and4b operation according to ETSI ES 201 873-1 V2.2.1.

This is applicable to string value of type bitstring, hexstring and
octetstring.

Return Values

A copy of the resulting value, allocated according to the given strategy.

t3rt_or4b

Returns a copy of the operand on which the predefined operation has been
applied.

t3rt_value_t t3rt_or4b
(t3rt_value_t string1,
 t3rt_value_t string2,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This performs the or4b operation according to ETSI ES 201 873-1 V2.2.1.

This is applicable to string value of type bitstring, hexstring and
octetstring.

Return Values

A copy of the resulting value, allocated according to the given strategy.

t3rt_xor4b

Returns a copy of the operand on which the predefined operation has been
applied.

string1 One string operand.

string2 The other string operand.

strategy Memory allocation strategy for the resulting value.

314 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_value_t t3rt_xor4b
(t3rt_value_t string1,
 t3rt_value_t string2,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This performs the xor4b operation according to ETSI ES 201 873-1 V2.2.1.

This is applicable to string value of type bitstring, hexstring and
octetstring.

Return Values

A copy of the resulting value, allocated according to the given strategy.

t3rt_rotateleft

Performs a rotation operation on a copy of a string operand.

t3rt_value_t t3rt_rotateleft
(t3rt_value_t string,
 unsigned long count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

string1 One string operand.

string2 The other string operand.

strategy Memory allocation strategy for the resulting value.

string The string to rotate.

count The number of rotations.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 315

Description

Rotates the string element in the string according to ETSI ES 201 873-1
V2.2.1.

Return Values

A copy of the rotated string allocated with the specified allocation strategy.

t3rt_rotateright

Performs a rotation operation on a copy of a string operand.

t3rt_value_t t3rt_rotateright
(t3rt_value_t string,
 unsigned long count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Rotates the string element in the string according to ETSI ES 201 873-1
V2.2.1.

Return Values

A copy of the rotated string allocated with the specified allocation strategy.

t3rt_shiftleft

Shift a string a number of elements to the left.

t3rt_value_t t3rt_shiftleft
(t3rt_value_t string,
 unsigned long count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

string The string to rotate.

count The number of rotations.

strategy Memory allocation strategy for the resulting value.

316 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This produces a copy of the operand that is shifted the given number of ele-
ment.

Return Values

A copy of the resulting string according to the specified allocation strategy.

t3rt_shiftright

Shift a string a number of elements.

t3rt_value_t t3rt_shiftright
(t3rt_value_t string,
 unsigned long count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This produces a copy of the operand that is shifted the given number of ele-
ment.

Return Values

A copy of the resulting string according to the specified allocation strategy.

string The string to shift.

count The number of elements to shift.

strategy Memory allocation strategy for the resulting value.

string The string to shift.

count The number of elements to shift.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 317

t3rt_bit2int

Predefined conversion function.

t3rt_value_t t3rt_bit2int
(t3rt_value_t bitstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Runtime system
doesn’t support integer values wider than 64-bit representation thus it’s pos-
sible to get overflow when using this function. Integer overflow during con-
version results in runtime error.

Return Values

The converted value allocated according to the specified strategy.

t3rt_hex2int

Predefined conversion function.

t3rt_value_t t3rt_hex2int
(t3rt_value_t hexstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

bitstring_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

hexstring_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

318 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

Converts a value of one kind to a value of another kind. Runtime system
doesn’t support integer values wider than 64-bit representation thus it’s pos-
sible to get overflow when using this function. Integer overflow during con-
version results in runtime error.

Return Values

The converted value allocated according to the specified strategy.

t3rt_oct2int

Predefined conversion function.

t3rt_value_t t3rt_oct2int
(t3rt_value_t octetstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Runtime system
doesn’t support integer values wider than 64-bit representation thus it’s pos-
sible to get overflow when using this function. Integer overflow during con-
version results in runtime error.

Return Values

The converted value allocated according to the specified strategy.

t3rt_str2int

Predefined conversion function.

t3rt_value_t t3rt_str2int

octetstring_valu
e

Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 319

(t3rt_value_t charstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Runtime system
doesn’t support integer values wider than 64-bit representation thus it’s pos-
sible to get overflow when using this function. Integer overflow during con-
version results in runtime error.

Return Values

The converted value allocated according to the specified strategy.

t3rt_str2float

Predefined conversion function.

t3rt_value_t t3rt_str2float
(t3rt_value_t charstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind.

charstring_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

charstring_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

320 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

The converted value allocated according to the specified strategy.

t3rt_char2int

Predefined conversion function.

t3rt_value_t t3rt_char2int
(t3rt_value_t char_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts given character into its ASCII character code.

Return Values

The converted value allocated according to the specified strategy.

t3rt_unichar2int

Predefined conversion function.

t3rt_value_t t3rt_unichar2int
(t3rt_value_t wide_char_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

char_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 321

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts wide character representation (i.e. byte array) into an integer value.
This function calls t3rt_wchar2int.

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2bit

Predefined conversion function.

t3rt_value_t t3rt_int2bit
(t3rt_value_t int_value,
 unsigned long length,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Specified length
should be large enough to receive all bits of given integer value. If length is
greater than necessary to store binary representation of given integer then re-
sulting bitstring is padded with zeros.

wide_char_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

length Length of the resulting bitstring.

strategy Memory allocation strategy for the resulting value.

322 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2hex

Predefined conversion function.

t3rt_value_t t3rt_int2hex
(t3rt_value_t int_value,
 unsigned long length,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Specified length
should be large enough to receive all hex chars of given integer value. If
length is greater than necessary to store hexadecimal representation of given
integer then resulting hexstring is padded with zeros.

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2oct

Predefined conversion function.

t3rt_value_t t3rt_int2oct
(t3rt_value_t int_value,
 unsigned long length,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

length The length of the resulting string containing the
converted integer value.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 323

Parameters

Description

Converts a value of one kind to a value of another kind. Length is measured
in octets, i.e. it should be twice smaller than the character length of octet rep-
resentation. Specified length should be large enough to receive all octets of
given integer value. If length is greater than necessary to store octet represen-
tation of given integer then resulting octetstring is padded with zeros

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2str

Predefined conversion function.

t3rt_value_t t3rt_int2str
(t3rt_value_t int_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

length The length of the resulting string containing the
converted integer value.

strategy Memory allocation strategy for the resulting value.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

324 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2char

Predefined conversion function.

t3rt_value_t t3rt_int2char
(t3rt_value_t int_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. It’s assumed that
given integer value represents 7-bit ASCII code of a certain character. Char-
acter code should be in range from 0 to 127, otherwise test case error is gen-
erated.

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2unichar

Predefined conversion function.

t3rt_value_t t3rt_int2unichar
(t3rt_value_t int_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 325

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts integer into a wide char representation (i.e. byte array). This function
calls t3rt_int2wchar.

Return Values

The converted value allocated according to the specified strategy.

t3rt_bit2str

Predefined conversion function.

t3rt_value_t t3rt_bit2str
(t3rt_value_t bitstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts bitstring into its text representation, e.g. '1110101'B => "1110101".

Return Values
The converted value allocated according to the specified strategy.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

bitstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

326 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_hex2str

Predefined conversion function.

t3rt_value_t t3rt_hex2str
(t3rt_value_t hexstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts hexstring into its text representation, e.g. '78ADF'H => "78ADF".

Return Values
The converted value allocated according to the specified strategy.

t3rt_oct2str

Predefined conversion function.

t3rt_value_t t3rt_oct2str
(t3rt_value_t octeststring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

hexstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

octetstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 327

Description

Converts a value of one kind to a value of another kind. This function con-
verts octetstring into its text representation, e.g. '7788'O => "7788".

Return Values
The converted value allocated according to the specified strategy.

t3rt_str2oct

Predefined conversion function.

t3rt_value_t t3rt_str2oct
(t3rt_value_t charstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts octetstring represented by its text representation into octetstring, e.g.
“7788” => ‘7788’O.

Return Values
The converted value allocated according to the specified strategy.

t3rt_oct2char

Predefined conversion function.

t3rt_value_t t3rt_oct2char
(t3rt_value_t octeststring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

charstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

328 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

The input parameter invalue shall not contain octet values higher than 7F.
The resulting charstring shall have the same length as the input octetstring.
The octets are interpreted as ISO/IEC 646 codes (according to the IRV) and
the resulting characters are appended to the returned value..

Return Values
The converted value allocated according to the specified strategy.

t3rt_char2oct

Predefined conversion function.

t3rt_value_t t3rt_char2oct
(t3rt_value_t charstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Each octet of the oc-
tetstring will contain the ISO/IEC 646 codes (according to the IRV) of the
appropriate characters of invalue, e.g. “Tinky-Winky" ->
'54696E6B792D57696E6B79'O

octetstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

charstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 329

Return Values
The converted value allocated according to the specified strategy.

t3rt_bit2hex

Predefined conversion function.

t3rt_value_t t3rt_bit2hex
(t3rt_value_t bitstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts bitstring into hexstring, e.g. ‘111010’B=> ‘3A’H.

Return Values
The converted value allocated according to the specified strategy.

t3rt_hex2oct

Predefined conversion function.

t3rt_value_t t3rt_hex2oct
(t3rt_value_t hexstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

bitstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

hexstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

330 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

Converts a value of one kind to a value of another kind. This function con-
verts hexstring into octetstring. If the length of given hexstring is odd then its
padded wit zero character, e.g. ‘ABC’H=> ‘0ABC’O.

Return Values
The converted value allocated according to the specified strategy.

t3rt_bit2oct

Predefined conversion function.

t3rt_value_t t3rt_bit2oct
(t3rt_value_t bitstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts bitstring into octetstring, e.g. ‘101100111010’B=> ‘0B3A’O.

Return Values
The converted value allocated according to the specified strategy.

t3rt_hex2bit

Predefined conversion function.

t3rt_value_t t3rt_hex2bit
(t3rt_value_t hexstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

bitstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 331

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts hexstring into bitstring, e.g. ‘3A’H =>‘111010’B.

Return Values
The converted value allocated according to the specified strategy.

t3rt_oct2hex

Predefined conversion function.

t3rt_value_t t3rt_oct2hex
(t3rt_value_t octetstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts octetstring into hexstring, e.g., ‘0ABC’H=> ‘0ABC’H.

Return Values
The converted value allocated according to the specified strategy.

hexstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

octetstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

332 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_oct2bit

Predefined conversion function.

t3rt_value_t t3rt_oct2bit
(t3rt_value_t octetstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts octetstring into bitstring, e.g. ‘0B3A’O=>‘101100111010’B .

Return Values
The converted value allocated according to the specified strategy.

t3rt_int2float

Predefined conversion function.

t3rt_value_t t3rt_int2float
(t3rt_value_t int_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

octetstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 333

Description

Converts a value of one kind to a value of another kind. This function con-
verts integer into float, e.g. 123=>123.0 .

Return Values
The converted value allocated according to the specified strategy.

t3rt_float2int

Predefined conversion function.

t3rt_value_t t3rt_float2int
(t3rt_value_t float_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts float into integer. Using this function may result in data loss since all
fractional digits are thrown away, e.g. 123.78=>123. No rounding is per-
formed.

Return Values
The converted value allocated according to the specified strategy.

t3rt_rnd

This is the direct mapping of the TTCN-3 “rnd“ function.

t3rt_value_t t3rt_rnd
(t3rt_value_t seed_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

334 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function generates pseudo random float type value in the range from 0
to 1. Use “seed_value” parameter to initialize random value generator. You
may pass t3rt_no_value_c as a seed value thus telling runtime system to use
internal seed value.

Return Values
Random float value in the range from 0 to 1.

t3rt_decomp

This is the direct mapping of TTCN-3 “decomp“ function.

t3rt_value_t t3rt_decomp
(t3rt_value_t objid_value,
 unsigned long index,
 unsigned long return_count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This function operates on objectidentifier type values. Given value should be
fully initialized. Index of the first and last element of the extracted objecti-
dentifier should be within the length of the given value.

seed_value Float type seed value for random value generator.

strategy Memory allocation strategy for the resulting value.

objid_value Valid value of objectidentifier type.

index Index of the first element to be extracted.

return_count Number of elements to be extracted.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 335

Return Values
Objectidentifier value representing the part of the provided value.

t3rt_substr

This is the direct mapping of TTCN-3 “substr“ function.

t3rt_value_t t3rt_substr
(t3rt_value_t string_value,
 unsigned long index,
 unsigned long return_count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This function operates on charstring, octetstring, bitstring, hexstring and uni-
versal charstring type values. Given string value should be fully initialized.
Index of the first and last element of the extracted substring should be within
the length of the given string value. Note that index and the length parameters
for a octetstring are given in elements (not in characters).

Return Values
Substring of the given string.

t3rt_replace

This is the direct mapping of TTCN-3 “replace“ function.

t3rt_value_t t3rt_replace
(t3rt_value_t string_value,
 unsigned long index,
 unsigned long return_count,
t3rt_value_t str_replace_with,

 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

string_value Valid value of one of string types.

index Index of the first element to be extracted.

return_count Number of elements to be extracted.

strategy Memory allocation strategy for the resulting value.

336 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function operates on charstring, octetstring, bitstring, hexstring and uni-
versal charstring type values. Given string value should be fully initialized.
Index of the first and last element of the replaced substring should be within
the length of the given string value. Note that index and the length parameters
for a octetstring are given in elements (not in characters). The types of the
first and forth parameters should be compatible otherwise testcase error is
generated.

Return Values
New string with changed content.

t3rt_lengthof

This is the direct mapping of TTCN-3 “lengthof” function.

unsigned long t3rt_lengthof
(t3rt_value_t string,
 t3rt_context_t ctx);

Parameters

Description

This function operates on charstring, octetstring, bitstring, hexstring and uni-
versal charstring type values. It simply calls t3rt_value_string_length func-
tion.

string_value Valid value of one of string types.

index Index of the first element to be extracted.

return_count Number of elements to be extracted.

str_replace_with Valid value of one of string types. The type should
be compatible with the type of string_value param-
eter.

strategy Memory allocation strategy for the resulting value.

string Valid value of one of string types.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 337

Return Values
Length of the given string measured in elements.

t3rt_sizeof

This is the direct mapping of TTCN-3 “sizeof” function.

unsigned long t3rt_sizeof
(t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

Description

This function operates on array, recordof, setof, record, set, objectidentifier,
signature and template values. For template values, this function returns
sizeof (valueof(value)), if valueof(value) is defined. When applied to record
and set values this function counts only defined values, i.e. optional values
explicitly set to omit are not considered.

Return Values
Actual number of elements in the given value.

t3rt_sizeoftype

This is the direct mapping of TTCN-3 “sizeoftype” function.

unsigned long t3rt_sizeoftype
(t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

value Valid value of one of the vector types including
templates and object identifiers.

value Valid value of recordof, setof or array type or tem-
plate of one of these types.

338 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This function operates on array, recordof, setof and template values. This
function shall be applied to values of types with length restriction. The actual
number to be returned is the sequential number of the last element without
respect to whether its value is defined or not (i.e. the upper length index of
the type definition on which the parameter of the function is based on plus 1).

Return Values
Maximum allowed length for a length restricted type.

t3rt_mod

Calculate the module operation according to ETSI ES 201 873-1 V2.2.1.

t3rt_long_integer_t t3rt_mod
(t3rt_long_integer_t x,
 t3rt_long_integer_t y,
 t3rt_context_t ctx);

Parameters

Description

This function computes the rest that remains from an integer division of x by
y. For positive arguments x and y this function behaves similar to t3rt_rem,
but the result is different when arguments are negative, e.g. -2 mod 3 = 1.

Return Values

The module value of the operands.

t3rt_rem

Calculate the remainder operation according to ETSI ES 201 873-1 V2.2.1.

t3rt_long_integer_t t3rt_rem
(t3rt_long_integer_t x,
 t3rt_long_integer_t y,
 t3rt_context_t ctx);

x First integer operand.

y Second (non-zero) integer operand.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 339

Parameters

Description

This function computes the rest that remains from an integer division of x by
y. For positive arguments x and y this function behaves similar to t3rt_mod,
but the result is different when arguments are negative, e.g. -2 rem 3 = -2.

Return Values

The remainder when dividing the operands (x/y).

t3rt_log

Logs the string value on the information log channel as a TTCN-3 message.

void t3rt_log
(t3rt_value_t char_string,
 t3rt_context_t ctx);

Parameters

Description

This function sends given string to the log channels of all registered log
mechanisms. It simply calls t3rt_log_string_to_all for the specified string.
The message kind of the logged string is “ttcn-3“.

t3rt_regexp_regexp

This is the direct mapping of the TTCN-3 “regexp” function.

t3rt_value_t t3rt_regexp_regexp
(t3rt_value_t value,
 t3rt_value_t pattern,
 int group_index,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

x First operand.

y Second (non-zero) operand.

char_string Valid string value.

340 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function matches string against regular expression. It’s important to
keep in mind that the whole given value is matched against pattern. It means
that pattern parameter should specify matching pattern for the whole string,
not for searched element (as it may be done in Perl). If pattern declares
groups then this function may be used to extract the value of certain group
using ordinal zero-based group number. The type of returned value is the
same as the type of the given matching value.

Return Values

Returns extracted match substring if match succeeded, empty string (““) oth-
erwise.

RTL Timer Functions

RTL Timer Related Type Definitions

t3rt_timer_handle_t

This is a union type used to store timer handles. It is either an unsigned
long or a void*.

t3rt_timer_state_t

This is used for reporting the state of a timer (as in t3pl_timer_read for
example). The values can either be t3rt_timer_state_stopped,
t3rt_timer_state_running or t3rt_timer_state_timedout.

t3rt_timer_timed_out

Inform the RTS that a timer has timed out.

value Matching value.

pattern Matching pattern.

group_index Zero-based group index.

strategy Memory allocation strategy for the resulting value.

RTL Component Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 341

void t3rt_timer_timed_out
(const t3rt_timer_handle_t handle,
 t3rt_context_t ctx);

Parameters

Description

This function is usually used in integration to notify runtime system that
timer specified by its handle has timed out. In “Example“ integration it’s
called as a result of invoking triTimeout TRI function.

This function must be called for every timer if test suite has been started with
“t3rt.timers.assuming_all_active“ RTConf key enabled. Specifying this RT-
Conf key tells runtime system that all timers in test suite are “active“, i.e. tim-
eout event is generated by the integration. This may be critical for real-time
systems.

When “t3rt.timers.assuming_all_active“ RTConf key is not specified
runtime system performs evaluation if timeout event for every timer using in-
ternal real-time clock. Thus in such case call to t3rt_timer_timed_out (or tri-
Timeout) may be omitted.

RTL Component Functions

t3rt_component_main

Main function for a new component thread.

void t3rt_component_main
(t3rt_binary_string_t control_port_address,
 t3rt_context_t ctx);

Parameters

handle The timer that has timed out.

control_port_add
ress

The control port address for this new component.
This address may not be NULL.

342 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This function is used in the t3pl_task_create as the main function. It needs
the control_port_address to be able to create the context of the new compo-
nent.

t3rt_component_self

This is the direct mapping of TTCN-3 “self” component reference.

t3rt_value_t t3rt_component_self(t3rt_context_t ctx);

Description

This function returns reference to the component instance on which this
function has been invoked.

Return values

Returns reference to the current component.

t3rt_component_mtc

This is the direct mapping of TTCN-3 “mtc” component reference.

t3rt_value_t t3rt_component_mtc(t3rt_context_t ctx);

Description

This function returns reference to the main test component instance.

Return values
Returns reference to the MTC component.

t3rt_component_system

This is the direct mapping of TTCN-3 “system” component reference.

t3rt_value_t t3rt_component_system(t3rt_context_t ctx);

Description

This function returns reference to the system component instance.

RTL Component Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 343

Return values
Returns reference to the TSI component.

t3rt_component_set_local_verdict

This is the direct mapping of TTCN-3 “setverdict” statement.

void t3rt_component_set_local_verdict
(t3rt_value_t verdict_value,
 t3rt_context_t ctx);

Parameters

Description
This function sets changes verdict of a component on which this function
has been invoked. It maintains TTCN-3 verdict hierarchy thus attempting
to change “inconc“ verdict to “pass“ does nothing. The same is applicable
to “error“ verdict.

t3rt_component_get_local_verdict

This is the direct mapping of TTCN-3 “getverdict” statement.

t3rt_value_t t3rt_component_get_local_verdict
(t3rt_context_t ctx);

Description
This function returns local verdict of a component on which this function
has been invoked. Use t3rt_value_get_verdict function to extract actual
verdict from the returned value.

Return Values

Returns local component verdict.

t3rt_component_element

Returns indicated component element value.

t3rt_value_t t3rt_component_element
(const char* element,
 t3rt_context_t ctx);

verdict_value Valid verdict value to set.

344 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function returns component element value (port record, constant, vari-
able, or timer) of a component on which this function has been invoked.
Component value is identified by its name as defined in component type dec-
laration.

The names of component fields may be obtained by processing component
type using t3rt_type_field_name function.

Return Values

Returns value of a component field.

t3rt_component_mute

Turns on/off logging of events on the component.

void t3rt_component_mute
(bool on_off,
 t3rt_context_t ctx);

Parameters

Description
This function switches on and off logging of all events on the current
component. Component is specified through provided context reference.
When logging is switched off all log mechanisms including built-in log
stop generating events. This function doesn’t have impact on real-time
debugger.

RTL Port Functions

t3rt_port_insert_message

Inserts specified data on behalf of sender into the local port input queue.

element Name of component type field.

on_off Flag signalling new logging state.

RTL Port Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 345

void t3rt_port_insert_message
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t bstring,
 t3rt_context_t ctx);

Parameters

Description

This function is usually used in integration. It’s invoked upon receiving mes-
sage and adds message to the incoming queue of a specified port. For mes-
sages received from SUT it’s possible to specify sender address that distin-
guishes certain SUT entity from all other entities that communicate with test
system through this port.

t3rt_port_insert_call

Appends a call event with specified parameters to the queue associated with
the port.

void t3rt_port_insert_call
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t sender,
 t3rt_context_t ctx);

Parameters

port_address Receiving port address.

sut_address Address inside SUT.

bstring Encoded message.

port_address Receiving port address.

sut_address Address inside SUT.

signature_type Signature of the received procedure call.

parameters Array of encoded actual parameters.

sender Obsolete, should be NULL.

346 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This function is usually used in integration. It’s invoked upon receiving re-
mote procedure call and adds call to the incoming queue of a specified port.
For procedure calls received from SUT it’s possible to specify sender address
that distinguishes certain SUT entity from all other entities that communicate
with test system through this port.

t3rt_port_insert_reply

Appends a reply event with specified parameters and return value to the
queue associated with the port.

void t3rt_port_insert_reply
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t return_value,
 t3rt_binary_string_t sender,
 t3rt_context_t ctx);

Parameters

Description
This function is usually used in integration. It’s invoked upon receiving
reply to a remote procedure call and adds reply to the incoming queue of a
specified port. For procedure replies received from SUT it’s possible to
specify sender address that distinguishes certain SUT entity from all other
entities that communicate with test system through this port.

port_address Receiving port address.

sut_address Address inside SUT.

signature_type Signature of the received procedure reply.

parameters Array of encoded actual parameters.

return_value Encoded return value.

sender Obsolete, should be NULL.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 347

t3rt_port_insert_exception

Appends an exception event with specified data to the queue associated with
the port.

void t3rt_port_insert_exception
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t exception_data,
 t3rt_binary_string_t sender,
 t3rt_context_t ctx);

Parameters

Description
This function is usually used in integration. It’s invoked upon receiving
exception to a remote procedure call and adds exception to the incoming
queue of a specified port. For exceptions raised from SUT it’s possible to
specify sender address that distinguishes certain SUT entity from all other
entities that communicate with test system through this port.

RTL Log Functions
This is the functions that handle logging, both from the perspective of log-
ging events and also from the perspective of implementing a log mechanism.

RTL Log Related Type Definitions

t3rt_log_mechanism_init_function_t

A function of this prototype is one of the functions registered for a log
mechanism. It will be called once (in each process) for all components
and should initialize the log mechanism to a working state.

t3rt_log_mechanism_finalize_function_t

port_address Receiving port address.

sut_address Address inside SUT.

signature_type Signature of the procedure that raised exception.

exception_data Encoded exception value.

sender Obsolete, should be NULL.

348 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

A function of this prototype is one of the functions registered for a log
mechanism. It will be called once (in each process) for all components
and should make any necessary clean up on the log mechanism level.

t3rt_log_mechanism_open_function_t

A function of this prototype is one of the functions registered for a log
mechanism. It will be called once per component with a newly created
log instance and has the option of setting any auxiliary data for this par-
ticular instance.

t3rt_log_mechanism_close_function_t

A function of this prototype is one of the functions registered for a log
mechanism. It will be called once per component with the log instance
in question and should make any necessary clean up and closing of this
log instance.

t3rt_log_mechanism_log_event_function_t

A function of this prototype is one of the functions registered for a log
mechanism. It will be called whenever a log event is generated by the
RTS. It should implement the desired filtering of the set of events and
take care of the actual log event visualization (printing to standard I/O,
for example).

t3rt_log_mechanism_version_t

This represents a version of the log mechanism interface. If this
changes, old log mechanisms can still function if they just tell the RTS
which version they support. (This is currently not used.)

t3rt_log_message_kind_t

This represents severity of a message logged in the runtime system in-
terface. It should be one of the t3rt_log_predefined_message_kind_t
values. These values cover “info”, “ttcn-3“, “warning”, “error“ and
“debug“ messages. “ttcn-3” kind messages are the result of TTCN-3 log
statement.

t3rt_log_event_kind_t

This represents type of a message logged in the runtime system. It’s
passed to the event handler installed with t3rt_log_register_listener
every time event is generated. Most of events have special functions
that decode array of event parameters and extract certain values relevant
to the generated event. Event decoding function is chosen basing on the
event kind. Valid event kinds are:

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 349

t3rt_log_mechanism_t

This is a descriptor of a log mechanism. Each registered log mechanism
is assigned with such descriptor. t3rt_log_mechanism_t object is one
and the same for all instances of the log mechanism (i.e. it’s a sort of a
type). Log mechanism instances are of t3rt_log_t type.

t3rt_log_t

This is a log instance (retrieved from a registered log mechanism)
through which logging is channeled. This is used as a handle when
giving log events to the log mechanisms. When component is created in
the test suite runtime system creates new instances of every registered
log mechanism for this component.

t3rt_codecs_strategy_t

This represents encoding (decoding) strategy that has been used by the
runtime system to encode (decode) message. There are two possible op-
tions: registered (user-provided) codec or built-in codec.
t3rt_codecs_strategy_t type is defined as enumeration:

typedef enum t3rt__codecs_strategy_internal_t
{

t3rt_codecs_strategy_registered_c,
t3rt_codecs_strategy_builtin_c

} t3rt_codecs_strategy_t;

Events generated in RTS

RTS generates exhaustive set of events that fully describe runtime behavior
of test suite. Some of the events are one-to-one mapping of TTCN-3 opera-
tions (e.g. mapping of a port), in other cases one TTCN-3 statement (e.g.
“alt” statement) may correspond to several runtime events.

Most of events are augmented with event parameters that are passed to user-
defined event handler function as NULL-terminated array of t3rt_value_t ob-
jects. If event has parameters then they may be extracted from this array
using certain extraction function (e.g. t3rt_log_extract_message_sent).

Message Sent

This event has three kinds t3rt_log_event_message_sent_c,
t3rt_log_event_message_sent_mc_c and
t3rt_log_event_message_sent_bc_c for unicast, multicast and broad-
cast operations correspondingly. It’s generated as a result of successful

350 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

TTCN-3 “send” operation on connected port.Use one of
t3rt_log_extract_message_sent, t3rt_log_extract_message_sent_mc or
t3rt_log_extract_message_sent_bc functions to extract event parameters.

SUT Message Sent

This event has three kinds t3rt_log_event_sut_message_sent_c,
t3rt_log_event_sut_message_sent_mc_c and
t3rt_log_event_sut_message_sent_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “send” operation on mapped port. Use one of
t3rt_log_extract_message_sent, t3rt_log_extract_message_sent_mc or
t3rt_log_extract_message_sent_bc functions to extract event parameters.

Message Sent Failed

This event has three kinds t3rt_log_event_message_sent_failed_c,
t3rt_log_event_message_sent_failed_mc_c and
t3rt_log_event_message_sent_failed_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of failed
TTCN-3 “send” operation on connected port due to encoding or transmission
error. Use one of t3rt_log_extract_message_sent_failed,
t3rt_log_extract_message_sent_failed_mc or
t3rt_log_extract_message_sent_failed_bc functions to extract event parame-
ters.

SUT Message Sent Failed

This event has three kinds
t3rt_log_event_message_sut_sent_failed_c,

t3rt_log_event_message_sut_sent_failed_mc_c and
t3rt_log_event_message_sut_sent_failed_bc_c for unicast, multi-
cast and broadcast operations correspondingly. It’s generated as a result of
failed TTCN-3 “send” operation on mapped port due to encoding or trans-
mission error. Use one of t3rt_log_extract_message_sent_failed,
t3rt_log_extract_message_sent_failed_mc or
t3rt_log_extract_message_sent_failed_bc functions to extract event parame-
ters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 351

Message Detected

This event has kind t3rt_log_event_message_detected_c. It’s gener-
ated when a local message (i.e. not from SUT) is put into component in-
coming port queue. Use t3rt_log_extract_message_detected function to ex-
tract event parameters.

SUT Message Detected

This event has kind t3rt_log_event_sut_message_detected_c. It’s
generated when a message from SUT is put into component incoming port
queue. Use t3rt_log_extract_message_detected function to extract event pa-
rameters.

Message Received

This event has kind t3rt_log_event_message_received_c. It’s gener-
ated as a result of successful TTCN-3 “receive” operation on connected port.
Use t3rt_log_extract_message_received, t3rt_log_extract_message_found
functions to extract event parameters.

SUT Message Received

This event has kind t3rt_log_event_sut_message_received_c. It’s
generated as a result of successful TTCN-3 “receive” operation on mapped
port. Use t3rt_log_extract_message_received,
t3rt_log_extract_message_found functions to extract event parameters.

Message Found

This event has kind t3rt_log_event_message_found_c. It’s generated as
a result of successful TTCN-3 “check(receive)” operation on connected port.
Use t3rt_log_extract_message_received, t3rt_log_extract_message_found
functions to extract event parameters.

SUT Message Found

This event has kind t3rt_log_event_sut_message_found_c. It’s gener-
ated as a result of successful TTCN-3 “check(receive)” operation on mapped
port. Use t3rt_log_extract_message_received,
t3rt_log_extract_message_found functions to extract event parameters.

352 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Message Discarded

This event has kind t3rt_log_event_message_discarded_c. It’s gener-
ated as a result of successful TTCN-3 “trigger” operation on connected port.
Use t3rt_log_extract_message_discarded function to extract event parame-
ters.

SUT Message Discarded

This event has kind t3rt_log_event_sut_message_discarded_c. It’s
generated as a result of successful TTCN-3 “trigger” operation on mapped
port. Use t3rt_log_extract_message_discarded function to extract event pa-
rameters.

Call Initiated

This event has three kinds t3rt_log_event_call_initiated_c,
t3rt_log_event_call_initiated_mc_c and
t3rt_log_event_call_initiated_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “call” operation on connected port. Use one of
t3rt_log_extract_call_initiated, t3rt_log_extract_call_initiated_mc or
t3rt_log_extract_call_initiated_bc functions to extract event parameters.

SUT Call Initiated

This event has three kinds t3rt_log_event_sut_call_initiated_c,
t3rt_log_event_sut_call_initiated_mc_c and
t3rt_log_event_sut_call_initiated_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “call” operation on mapped port. Use one of
t3rt_log_extract_call_initiated, t3rt_log_extract_call_initiated_mc or
t3rt_log_extract_call_initiated_bc functions to extract event parameters.

Call Failed

This event has three kinds t3rt_log_event_call_failed_c,
t3rt_log_event_call_failed_mc_c and
t3rt_log_event_call_failed_bc_c for unicast, multicast and broadcast
operations correspondingly. It’s generated as a result of failed TTCN-3

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 353

“call” operation on connected port due to encoding or transmission errors.
Use one of t3rt_log_extract_call_failed, t3rt_log_extract_call_failed_mc or
t3rt_log_extract_call_failed_bc functions to extract event parameters.

SUT Call Failed

This event has three kinds t3rt_log_event_sut_call_failed_c,
t3rt_log_event_sut_call_failed_mc_c and
t3rt_log_event_sut_call_failed_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of failed
TTCN-3 “call” operation on mapped port due to encoding or transmission er-
rors. Use one of t3rt_log_extract_call_failed,
t3rt_log_extract_call_failed_mc or t3rt_log_extract_call_failed_bc func-
tions to extract event parameters.

Call Timed Out

This event has kind t3rt_log_event_call_timed_out_c. It’s generated
as a result of failed TTCN-3 “call” operation on connected port due to tim-
eout event. Use t3rt_log_extract_call_timed_out function to extract event pa-
rameters.

SUT Call Timed Out

This event has kind t3rt_log_event_sut_call_timed_out_c. It’s gener-
ated as a result of failed TTCN-3 “call” operation on mapped port due to tim-
eout event. Use t3rt_log_extract_call_timed_out function to extract event pa-
rameters.

Call Detected

This event has kind t3rt_log_event_call_detected_c. It’s generated
when a local (i.e. not from SUT) procedure call request is put into component
incoming port queue. Use t3rt_log_extract_call_detected function to extract
event parameters.

SUT Call Detected

This event has kind t3rt_log_event_sut_call_detected_c. It’s gener-
ated when a procedure call request from SUT is put into component in-
coming port queue. Use t3rt_log_extract_call_detected function to extract
event parameters.

354 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Call Received

This event has kind t3rt_log_event_call_received_c. It’s generated as
a result of a successful TTCN-3 “getcall“ operation on connected port. Use
t3rt_log_extract_call_received, t3rt_log_extract_call_found functions to ex-
tract event parameters.

SUT Call Received

This event has kind t3rt_log_event_sut_call_received_c. It’s gener-
ated as a result of a successful TTCN-3 “getcall“ operation on mapped port.
Use t3rt_log_extract_call_received, t3rt_log_extract_call_found functions
to extract event parameters.

Call Found

This event has kind t3rt_log_event_call_found_c. It’s generated as a
result of a successful TTCN-3 “check(getcall)“ operation on connected port.
Use t3rt_log_extract_call_received, t3rt_log_extract_call_found functions
to extract event parameters.

SUT Call Found

This event has kind t3rt_log_event_sut_call_found_c. It’s generated
as a result of a successful TTCN-3 “check(getcall)“ operation on mapped
port. Use t3rt_log_extract_call_received, t3rt_log_extract_call_found func-
tions to extract event parameters.

Reply Sent

This event has three kinds t3rt_log_event_reply_sent_c,
t3rt_log_event_reply_sent_mc_c and
t3rt_log_event_reply_sent_bc_c for unicast, multicast and broadcast
operations correspondingly. It’s generated as a result of successful TTCN-3
“reply” operation on connected port.Use one of t3rt_log_extract_reply_sent,
t3rt_log_extract_reply_sent_mc or t3rt_log_extract_reply_sent_bc func-
tions to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 355

SUT Reply Sent

This event has three kinds t3rt_log_event_sut_reply_sent_c,
t3rt_log_event_sut_reply_sent_mc_c and
t3rt_log_event_sut_reply_sent_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “reply” operation on mapped port.Use one of
t3rt_log_extract_reply_sent, t3rt_log_extract_reply_sent_mc or
t3rt_log_extract_reply_sent_bc functions to extract event parameters.

Reply Failed

This event has three kinds t3rt_log_event_reply_failed_c,
t3rt_log_event_reply_failed_mc_c and
t3rt_log_event_reply_failed_bc_c for unicast, multicast and broad-
cast operations correspondingly. It’s generated as a result of failed TTCN-3
“reply” operation on connected port due to encoding or transmission errors.
Use one of t3rt_log_extract_reply_failed, t3rt_log_extract_reply_failed_mc
or t3rt_log_extract_reply_failed_bc functions to extract event parameters.

SUT Reply Failed

This event has three kinds t3rt_log_event_sut_reply_failed_c,
t3rt_log_event_sut_reply_failed_mc_c and
t3rt_log_event_sut_reply_failed_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of failed
TTCN-3 “reply” operation on mapped port due to encoding or transmission
errors. Use one of t3rt_log_extract_reply_failed,
t3rt_log_extract_reply_failed_mc or t3rt_log_extract_reply_failed_bc func-
tions to extract event parameters.

Reply Detected

This event has kind t3rt_log_event_reply_detected_c. It’s generated
when a local (i.e. not from SUT) procedure call reply is put into component
incoming port queue. Use t3rt_log_extract_reply_detected function to ex-
tract event parameters.

356 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

SUT Reply Detected

This event has kind t3rt_log_event_sut_reply_detected_c. It’s gener-
ated when a procedure call reply from SUT is put into component incoming
port queue. Use t3rt_log_extract_reply_detected function to extract event pa-
rameters.

Reply Received

This event has kind t3rt_log_event_reply_received_c. It’s generated
as a result of a successful TTCN-3 “getreply“ operation on connected port.
Use t3rt_log_extract_reply_received, t3rt_log_extract_reply_found func-
tions to extract event parameters.

SUT Reply Received

This event has kind t3rt_log_event_sut_reply_received_c. It’s gener-
ated as a result of a successful TTCN-3 “getreply“ operation on mapped port.
Use t3rt_log_extract_reply_received, t3rt_log_extract_reply_found func-
tions to extract event parameters.

Reply Found

This event has kind t3rt_log_event_reply_found_c. It’s generated as a
result of a successful TTCN-3 “check(getreply)“ operation on connected
port. Use t3rt_log_extract_reply_received, t3rt_log_extract_reply_found
functions to extract event parameters.

SUT Reply Found

This event has kind t3rt_log_event_sut_reply_found_c. It’s generated
as a result of a successful TTCN-3 “check(getreply)“ operation on mapped
port. Use t3rt_log_extract_reply_received, t3rt_log_extract_reply_found
functions to extract event parameters.

Exception Raised

This event has three kinds t3rt_log_event_exception_raised_c,
t3rt_log_event_exception_raised_mc_c and
t3rt_log_event_exception_raised_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “raise” operation on connected port. Use one of

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 357

t3rt_log_extract_exception_raised, t3rt_log_extract_exception_raised_mc
or t3rt_log_extract_exception_raised_bc functions to extract event parame-
ters.

SUT Exception Raised

This event has three kinds t3rt_log_event_sut_exception_raised_c,
t3rt_log_event_sut_exception_raised_mc_c and
t3rt_log_event_sut_exception_raised_bc_c for unicast, multicast
and broadcast operations correspondingly. It’s generated as a result of suc-
cessful TTCN-3 “raise” operation on mapped port.Use one of
t3rt_log_extract_exception_raised, t3rt_log_extract_exception_raised_mc
or t3rt_log_extract_exception_raised_bc functions to extract event parame-
ters.

Raise Failed

This event has three kinds t3rt_log_event_raise_failed_c,
t3rt_log_event_raise_failed_mc_c and
t3rt_log_event_raise_failed_bc_c for unicast, multicast and broad-
cast operations correspondingly. It’s generated as a result of failed TTCN-3
“raise” operation on connected port due to encoding or transmission errors.
Use one of t3rt_log_extract_raise_failed, t3rt_log_extract_raise_failed_mc
or t3rt_log_extract_raise_failed_bc functions to extract event parameters.

SUT Raise Failed

This event has three kinds t3rt_log_event_sut_raise_failed_c,
t3rt_log_event_sut_raise_failed_mc_c and
t3rt_log_event_sut_raise_failed_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of failed
TTCN-3 “raise” operation on mapped port due to encoding or transmission
errors. Use one of t3rt_log_extract_raise_failed,
t3rt_log_extract_raise_failed_mc or t3rt_log_extract_raise_failed_bc func-
tions to extract event parameters.

Exception Detected

This event has kind t3rt_log_event_exception_detected_c. It’s gener-
ated when a local (i.e. not in SUT) procedure call exception is put into com-
ponent incoming port queue. Use t3rt_log_extract_exception_detected func-
tion to extract event parameters.

358 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

SUT Exception Detected

This event has kind t3rt_log_event_sut_exception_detected_c. It’s
generated when a SUT procedure call exception is put into component in-
coming port queue. Use t3rt_log_extract_exception_detected function to ex-
tract event parameters.

Exception Caught

This event has kind t3rt_log_event_exception_caught_c. It’s gener-
ated as a result of a successful TTCN-3 “catch“ operation on connected port.
Use t3rt_log_extract_exception_caught, t3rt_log_extract_exception_found
functions to extract event parameters.

SUT Exception Caught

This event has kind t3rt_log_event_sut_exception_caught_c. It’s
generated as a result of a successful TTCN-3 “catch“ operation on mapped
port. Use t3rt_log_extract_exception_caught,
t3rt_log_extract_exception_found functions to extract event parameters.

Exception Found

This event has kind t3rt_log_event_exception_found_c. It’s generated
as a result of a successful TTCN-3 “check(catch)“ operation on connected
port. Use t3rt_log_extract_exception_caught,
t3rt_log_extract_exception_found functions to extract event parameters.

SUT Exception Found

This event has kind t3rt_log_event_sut_exception_found_c. It’s gen-
erated as a result of a successful TTCN-3 “check(catch)“ operation on
mapped port. Use t3rt_log_extract_exception_caught,
t3rt_log_extract_exception_found functions to extract event parameters.

Timeout Exception Detected

This event has kind t3rt_log_event_timeout_exception_detected_c.
It’s generated when a local (i.e. not in SUT) procedure call timeout exception
is put into component incoming port queue. Use
t3rt_log_extract_timeout_exception_detected function to extract event pa-
rameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 359

SUT Timeout Exception Detected

This event has kind
t3rt_log_event_sut_timeout_exception_detected_c. It’s generated
when a SUT procedure call timeout exception is put into component in-
coming port queue. Use t3rt_log_extract_timeout_exception_detected func-
tion to extract event parameters.

Timeout Exception Caught

This event has kind t3rt_log_event_timeout_exception_caught_c.
It’s generated as a result of a successful TTCN-3 “catch(timeout)“ operation
on connected port. Use t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found functions to extract event param-
eters.

SUT Timeout Exception Caught

This event has kind
t3rt_log_event_sut_timeout_exception_caught_c. It’s generated as
a result of a successful TTCN-3 “catch(timeout)“ operation on mapped port.
Use t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found functions to extract event param-
eters.

Timeout Exception Found

This event has kind t3rt_log_event_timeout_exception_found_c. It’s
generated as a result of a successful TTCN-3 “check(catch(timeout))“ oper-
ation on connected port. Use t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found functions to extract event param-
eters.

SUT Timeout Exception Found

This event has kind
t3rt_log_event_sut_timeout_exception_found_c. It’s generated as a
result of a successful TTCN-3 “check(catch(timeout))“ operation on mapped
port. Use t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found functions to extract event param-
eters.

360 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

SUT Action Performed

This event has kind t3rt_log_event_sut_action_performed_c. It’s
generated as a result of TTCN-3 “action“ operation. Use
t3rt_log_extract_sut_action function to extract event parameters.

Timer Started

This event has kind t3rt_log_event_timer_started_c. It’s generated as
a result of TTCN-3 “start“ timer operation. Use
t3rt_log_extract_timer_started function to extract event parameters.

Timer Stopped

This event has kind t3rt_log_event_timer_stopped_c. It’s generated as
a result of TTCN-3 “stop“ timer operation. Use
t3rt_log_extract_timer_stopped function to extract event parameters.

Timer Read

This event has kind t3rt_log_event_timer_read_c. It’s generated as a
result of TTCN-3 “read“ timer operation. Use t3rt_log_extract_timer_read
function to extract event parameters.

Timer Is Running Check Performed

This event has kind t3rt_log_event_timer_is_running_c. It’s gener-
ated as a result of TTCN-3 “running“ timer operation. Use
t3rt_log_extract_timer_is_running function to extract event parameters.

Timer Timeout Detected

This event has kind t3rt_log_event_timeout_detected_c. It’s gener-
ated when RTS is notified about timer timeout be means of triTimeout oper-
ation. Use t3rt_log_extract_timeout_detected function to extract event pa-
rameters.

Timer Timed Out Check Succeeded

This event has kind t3rt_log_event_timeout_received_c. It’s gener-
ated when timer timed out alternative matches. Use
t3rt_log_extract_timeout_received function to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 361

Timer Timed Out Check Failed

This event has kind t3rt_log_event_timeout_mismatch_c. It’s gener-
ated each time timer timed out alternative fails to match. Use
t3rt_log_extract_timeout_mismatch function to extract event parameters.

Component Created

This event has kind t3rt_log_event_component_created_c. It’s gener-
ated as a result of TTCN-3 “create“ and “execute“ component operations.
Use t3rt_log_extract_component_created function to extract event parame-
ters.

Component Started

This event has kind t3rt_log_event_component_started_c. It’s gener-
ated as a result of TTCN-3 “start“ and “execute“ component operations. Use
t3rt_log_extract_component_started function to extract event parameters.

Component Is Running Check Performed

This event has kind t3rt_log_event_component_is_running_c. It’s
generated as a result of TTCN-3 “running“ component operation. Use
t3rt_log_extract_component_is_running function to extract event parame-
ters.

Component Is Alive Check Performed

This event has kind t3rt_log_event_component_is_alive_c. It’s gener-
ated as a result of TTCN-3 “alive“ component operation. Use
t3rt_log_extract_component_is_alive function to extract event parameters.

Component Stopped

This event has kind t3rt_log_event_component_stopped_c. It’s gener-
ated when component terminates. Use t3rt_log_extract_component_stopped
function to extract event parameters.

362 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Component Killed

This event has kind t3rt_log_event_component_killed_c. It’s gener-
ated when alive component terminates. Use
t3rt_log_extract_component_killed function to extract event parameters.

Component Terminated

This event has kind t3rt_log_event_component_terminated_c. It’s not
generated yet.

Component Done Check Succeeded

This event has kind t3rt_log_event_done_check_succeeded_c. It’s
generated when component done alternative matches. Use
t3rt_log_extract_done_check_succeeded function to extract event parame-
ters.

Component Done Check Failed

This event has kind t3rt_log_event_done_check_failed_c. It’s gener-
ated when component done alternative fails to match. Use
t3rt_log_extract_done_check_failed function to extract event parameters.

Component Killed Check Succeeded

This event has kind t3rt_log_event_kill_check_succeeded_c. It’s
generated when component killed alternative matches. Use
t3rt_log_extract_kill_check_succeeded function to extract event parameters.

Component Killed Check Failed

This event has kind t3rt_log_event_kill_check_failed_c. It’s gener-
ated when component killed alternative fails to match. Use
t3rt_log_extract_kill_check_failed function to extract event parameters.

Port Connected

This event has kind t3rt_log_event_port_connected_c. It’s generated
as a result of TTCN-3 “connect“ port operation. Use
t3rt_log_extract_port_connected function to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 363

Port Disconnected

This event has kind t3rt_log_event_port_disconnected_c. It’s gener-
ated as a result of TTCN-3 “disconnect“ port operation. Use
t3rt_log_extract_port_disconnected function to extract event parameters.

Port Mapped

This event has kind t3rt_log_event_port_mapped_c. It’s generated as a
result of TTCN-3 “map“ port operation. Use t3rt_log_extract_port_mapped
function to extract event parameters.

Port Unmapped

This event has kind t3rt_log_event_port_unmapped_c. It’s generated as
a result of TTCN-3 “unmap“ port operation. Use
t3rt_log_extract_port_unmapped function to extract event parameters.

Port Enabled

This event has kind t3rt_log_event_port_enabled_c. It’s generated as a
result of TTCN-3 “start“ port operation. Use t3rt_log_extract_port_enabled
function to extract event parameters.

Port Disabled

This event has kind t3rt_log_event_port_disabled_c. It’s generated as
a result of TTCN-3 “stop“ port operation. Use
t3rt_log_extract_port_disabled function to extract event parameters.

Port Halted

This event has kind t3rt_log_event_port_halted_c. It’s generated as a
result of TTCN-3 “halt“ port operation. Use t3rt_log_extract_port_halted
function to extract event parameters.

Port Cleared

This event has kind t3rt_log_event_port_cleared_c. It’s generated as a
result of TTCN-3 “clear“ port operation. Use t3rt_log_extract_port_cleared
function to extract event parameters.

364 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Scope Entered

This event has kind t3rt_log_event_scope_entered_c. It’s generated
when execution control enters new scope (e.g. function, testcase, altstep or
control part). This event is also generated for module initialization and final-
ization functions. One of the event parameters (see t3rt_scope_kind_t) may
be used to obtain the type of entered scope. Use
t3rt_log_extract_scope_entered function to extract event parameters.

Scope Changed

This event has kind t3rt_log_event_scope_changed_c. It’s generated
when TTCN-3 source location changes, i.e. next TTCN-3 statement is going
to be executed. This event is generated only when test suite is running under
TTCN-3 debugger. Use t3rt_log_extract_scope_changed function to extract
event parameters.

Scope Left

This event has kind t3rt_log_event_scope_left_c. It’s generated when
execution control leaves scope (e.g. function, testcase, altstep or control
part). Use t3rt_log_extract_scope_left function to extract event parameters.

Alternative Activated

This event has kind t3rt_log_event_alternative_activated_c. It’s
generated as a result of TTCN-3 “activate“ operation. Use
t3rt_log_extract_alternative_activated_event function to extract event pa-
rameters.

Alternative Deactivated

This event has kind t3rt_log_event_alternative_deactivated_c. It’s
generated as a result of TTCN-3 “deactivate“ operation. Use
t3rt_log_extract_alternative_deactivated_event function to extract event pa-
rameters.

Local Verdict Set

This event has kind t3rt_log_event_local_verdict_changed_c. It’s
generated as a result of TTCN-3 “setverdict“ operation. This event is gener-
ated also implicitly by RTS when “error“ verdict is set due to runtime error

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 365

or overall test case verdict is changed. In later case event is generated for
CPC (control component). Use t3rt_log_extract_local_verdict_changed
function to extract event parameters.

Local Verdict Read

This event has kind t3rt_log_event_local_verdict_queried_c. It’s
generated as a result of TTCN-3 “getverdict“ operation. Use
t3rt_log_extract_local_verdict_queried function to extract event parameters.

Variable Modified

This event has kind t3rt_log_event_variable_modified_c. It’s gener-
ated whenever any variable, constant or module parameter (either whole
value or some of its elements) is assigned with value. Use
t3rt_log_extract_variable_modified function to extract event parameters.

Function called

This event has kind t3rt_log_event_function_call_c. It’s generated
whenever function is invoked. Use t3rt_log_extract_function_call function
to extract event parameters.

External Function Called

This event has kind t3rt_log_event_external_function_call_c. It’s
generated whenever external function is invoked. Use
t3rt_log_extract_external_function_call function to extract event parame-
ters.

Altstep Called

This event has kind t3rt_log_event_altstep_call_c. It’s generated
whenever altstep is directly invoked. Use t3rt_log_extract_altstep_call func-
tion to extract event parameters.

Template Match Failed

This event has kind t3rt_log_event_template_match_failed_c. It’s
generated whenever matching of a value against template fails. This may be
the result of mismatching alternative in “alt” statement or a mismatch in di-

366 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

rectly called “match“ operation. Use
t3rt_log_extract_template_match_failed function to extract event parame-
ters.

Template Match Begin

This event has kind t3rt_log_event_template_match_begin_c. It’s
generated whenever matching of a subtemplate inside a structured template
begins. Use t3rt_log_extract_template_match_begin function to extract
event parameters.

Template Match End

This event has kind t3rt_log_event_template_match_end_c. It’s gener-
ated whenever matching of a subtemplate inside a structured template ends.
Use t3rt_log_extract_template_match_end function to extract event parame-
ters.

Template Mismatch

This event has kind t3rt_log_event_template_match_begin_c. It’s
generated whenever matching of a template or a subtemplate inside a struc-
tured template fails. Use t3rt_log_extract_template_mismatch function to
extract event parameters.

Test case started

This event has kind t3rt_log_event_testcase_started_c. It’s gener-
ated whenever test case starts (e.g. as a result of TTCN-3 “execute“ opera-
tion). Use t3rt_log_extract_testcase_started function to extract event param-
eters.

Test case ended

This event has kind t3rt_log_event_testcase_ended_c. It’s generated
whenever test case terminates . Use t3rt_log_extract_testcase_ended func-
tion to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 367

Test case timed out

This event has kind t3rt_log_event_testcase_timed_out_c. It’s gener-
ated whenever test case times out. Use t3rt_log_extract_testcase_timed_out
function to extract event parameters.

Test case verdict

This event has kind t3rt_log_event_testcase_verdict_c. It’s gener-
ated whenever test case terminates. This event is obsolete and will be re-
moved in future. Listen to “test case ended“ event instead of it. Use
t3rt_log_extract_test_case_verdict function to extract event parameters.

Test case error

This event has kind t3rt_log_event_testcase_error_c. It’s generated
whenever test case error is signalled. Use t3rt_log_extract_testcase_error
function to extract event parameters.

Information Message

This event has kind t3rt_log_event_info_message_c. It’s generated
whenever information message is sent to registered log mechanisms. Use
t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

Warning Message

This event has kind t3rt_log_event_warning_message_c. It’s generated
whenever warning message is sent to registered log mechanisms. Use
t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

Error Message

This event has kind t3rt_log_event_error_message_c. It’s generated
whenever error message is sent to registered log mechanisms. Usually this
event is followed by “test case error“ event. Use

368 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

Debug Message

This event has kind t3rt_log_event_debug_message_c. It’s generated
whenever debug message is sent to registered log mechanisms. Use
t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

TTCN-3 Message

This event has kind t3rt_log_event_ttcn3_message_c. It’s generated
whenever TTCN-3 message is sent to registered log mechanisms. Usually
this event is the result of the TTCN-3 log statement. Use
t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

Data Encoded

This event has kind t3rt_log_event_message_encoded_c. It’s generated
to log successful encoding of a value into binary string. Use
t3rt_log_extract_message_encoded function to extract event parameters.

Data Encoding Failed

This event has kind t3rt_log_event_message_encode_failed_c. It’s
generated to log failure while encoding a value into binary string. Use
t3rt_log_extract_message_encode_failed function to extract event parame-
ters.

Data Decoded

This event has kind t3rt_log_event_message_decoded_c. It’s generated
to log successful decoding of a binary string. Use
t3rt_log_extract_message_decoded function to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 369

Data Decoding Failed

This event has kind t3rt_log_event_message_decode_failed_c. It’s
generated to log failure while decoding binary string. Use
t3rt_log_extract_message_decode_failed function to extract event parame-
ters.

Alt Statement Entered

This event has kind t3rt_log_event_alt_entered_c. It’s generated
when execution controls reaches “alt” statement. No event parameters are as-
sociated with this event.

Alt Statement Left

This event has kind t3rt_log_event_alt_left_c. It’s generated when ex-
ecution controls leaves “alt” statement. No event parameters are associated
with this event.

Alternative Rejected

This event has kind t3rt_log_event_alt_rejected_c. It’s generated
when guard expression evaluates to false thus skipping matching of guarded
alternative. No event parameters are associated with this event.

Else Alternative Entered

This event has kind t3rt_log_event_alt_else_c. It’s generated when ex-
ecution control enters statement block of “else” alternative. No event param-
eters are associated with this event.

Defaults Processing Started

This event has kind t3rt_log_event_alt_defaults_c. It’s generated to
log starting execution of defaults. No event parameters are associated with
this event.

Repeat Encountered

This event has kind t3rt_log_event_alt_repeat_c. It’s generated when-
ever execution controls encounters “repeat“ statement. No event parameters
are associated with this event.

370 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Alt Statement Waits New Events

This event has kind t3rt_log_event_alt_wait_c. It’s generated when-
ever execution controls reaches end of “alt” statement without successful
matching of any alternative. Thus component execution is suspended until
new events occur. No event parameters are associated with this event.

Sender Mismatch

This event has kind t3rt_log_event_sender_mismatch_c. It’s generated
as a result of a failed TTCN-3 “receive”, “getcall“, “getreply“ or “catch“ op-
eration due to sender mismatch. It means that alternative mismatched be-
cause actual sender of an operation doesn’t match expected one. Use
t3rt_log_extract_sender_mismatch function to extract event parameters.

RTS Log Handling Functions

t3rt_log_register_listener

Register a new log mechanism.

void t3rt_log_register_listener
(const char * mechanism_name,
 t3rt_log_mechanism_version_t version,
 t3rt_log_mechanism_init_function_t init_func,
 t3rt_log_mechanism_finalize_function_t final_func,
 t3rt_log_mechanism_open_function_t open_func,
 t3rt_log_mechanism_close_function_t close_func,
 t3rt_log_mechanism_log_event_function_t log_func);

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 371

Parameters

Description

This function registers the log mechanism to listen to the event channel. All
functions except event handling one may be NULL. The name of the log
mechanism is used to uniquely identify it inside RTS. This is necessary in
order to send event to certain log mechanism (see t3rt_log_event). The ver-
sion supported by the mechanism should be stated using the version con-
stants.

Initializing function is called once during the initialization of RTS. Final-
izing function is called once during the finalization of the RTS and it doesn’t
have t3rt_context_t parameter. Opening function is called once for every
created component during the component initialization. Closing function is
called once for every component during the component termination.

This function does not have a t3rt_context_t parameter.

t3rt_log_mechanism_set_auxiliary

Associates user-defined untyped buffer with the log mechanism.

void t3rt_log_mechanism_set_auxiliary
(t3rt_log_mechanism_t log_mechanism,
 void * aux,
 t3rt_context_t context);

mechanism_name Log mechanism name.

version Log mechanism version.

init_func Initializing function.

final_func Finalizing function.

open_func Opening function.

close_func Closing function.

log_func Event handling function.

372 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function allows associating any kind of user defined data with the log
mechanism. Data buffer is shared between all instances of the log mecha-
nism. It means that each component may get pointer to this buffer using
t3rt_log_mechanism_get_auxiliary function.

Note
Ensure that access to this buffer is serialized if test suite creates parallel
components. Since components execute concurrently access to this buffer
outside critical section may result in unpredictable behavior.

t3rt_log_mechanism_get_auxiliary

Retrieves user-defined untyped buffer from the given log mechanism.

void * t3rt_log_mechanism_get_auxiliary
(t3rt_log_mechanism_t log_mechanism,
 t3rt_context_t context);

Parameters

Description

This function returns pointer to the log mechanism auxiliary data buffer pre-
viously set by t3rt_log_mechanism_set_auxiliary function.

Return Values

Returns pointer to the auxiliary log mechanism data buffer. NULL if non is
set.

t3rt_log_set_auxiliary

Associates user-defined untyped buffer with the log instance.

log_mechanism Log mechanism descriptor.

aux Pointer to log mechanism auxiliary buffer.

log_mechanism Log mechanism descriptor.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 373

void t3rt_log_set_auxiliary
(t3rt_log_t log_instance,
 void * aux,
 t3rt_context_t context);

Parameters

Description

This function allows associating any kind of user defined data with the in-
stance of the log mechanism. This buffer is private to the executing compo-
nent. It may be queried using t3rt_log_get_auxiliary function.

t3rt_log_get_auxiliary

Retrieves user-defined untyped buffer from the given the log instance.

void * t3rt_log_get_auxiliary
(t3rt_log_t log_instance,
 t3rt_context_t context);

Parameters

Description

This function returns pointer to the log instance auxiliary data buffer previ-
ously set by t3rt_log_set_auxiliary function.

Return Values
Returns pointer to the auxiliary log instance data buffer. NULL if non is
set.

t3rt_log_get_log_mechanism

Retrieves log mechanism descriptor for the given log instance.

t3rt_log_mechanism_t t3rt_log_get_log_mechanism
(t3rt_log_t log,
 t3rt_context_t context);

log_instance Log mechanism instance descriptor.

aux Pointer to log mechanism auxiliary buffer.

log_instance Log mechanism instance descriptor.

374 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Return Values
Returns log mechanism descriptor for the given log instance.

t3rt_log_message_kind_name

Returns message kind (severity) as an ASCII string.

const char*
t3rt_log_message_kind_name(t3rt_log_message_kind_t kind)

Parameters

Return Values
Returns string representation for the given message kind.

t3rt_log_is_concentrator

Obsolete function. Should not be used.

bool t3rt_log_is_concentrator(t3rt_context_t ctx)

t3rt_log_string

Logs string to the specified log mechanism.

void t3rt_log_string
(const char* dest,
 t3rt_log_message_kind_t msg_kind,
 const char *string,
 t3rt_context_t ctx);

log_instance Log mechanism instance descriptor.

kind Message kind.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 375

Parameters

Description

This function logs the ASCII string message into event stream. Depending
on message kind Information Message, Warning Message, Error Message,
Debug Message or TTCN-3 Message event is logged.

The destination is the (registered) name of the log mechanism to pass the
string to. The t3rt_log_all_mechanisms_c constant may be used to pass the
string to all mechanisms.

t3rt_log_string_to_all

Logs string to all listening log mechanisms.

void t3rt_log_string_to_all
(t3rt_log_message_kind_t msg_kind,
 const char *string,
 t3rt_context_t ctx);

Parameters

Description

This function logs the ASCII string message into event stream. Depending
on message kind Information Message, Warning Message, Error Message,
Debug Message or TTCN-3 Message event is logged.

Message is received by all log mechanisms registered in the runtime
system.

t3rt_log_wide_string

Logs wide string to the specified log mechanism.

dest Name of destination log mechanism.

msg_kind Message kind.

string ASCII string to log.

msg_kind Message kind.

string ASCII string to log.

376 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

void t3rt_log_wide_string
(const char * dest,
 t3rt_log_message_kind_t msg_kind,
 t3rt_wide_string_t string,
 t3rt_context_t ctx);

Parameters

Description

This function logs the wide (possibly internationalized) string message into
event stream. Depending on message kind Information Message, Warning
Message, Error Message, Debug Message or TTCN-3 Message event is
logged.

The destination is the (registered) name of the log mechanism to pass the
string to. The t3rt_log_all_mechanisms_c constant may be used to pass the
string to all mechanisms.

t3rt_log_wide_string_to_all
void t3rt_log_wide_string_to_all

(t3rt_log_message_kind_t msg_kind,
 t3rt_wide_string_t string,
 t3rt_context_t ctx);

Parameters

Description

This function logs the wide (possibly internationalized) string message into
event stream. Depending on message kind Information Message, Warning
Message, Error Message, Debug Message or TTCN-3 Message event is
logged.

Message is received by all log mechanisms registered in the runtime
system.

dest Name of destination log mechanism.

msg_kind Message kind.

string Wide string to log.

msg_kind Message kind.

string Wide string to log.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 377

t3rt_log_event

Logs the event to the event log channel of specified log mechanism.

void t3rt_log_event
(const char * dest,
 t3rt_log_event_kind_t event_kind,
 t3rt_value_t params[],
 t3rt_context_t ctx);

Parameters

Description

This function logs event into event stream. Each event is identified by the
event kind (see t3rt_log_event_kind_t).

Event parameters should be specified as NULL terminated array of
t3rt_value_t values.

The destination is the (registered) name of the log mechanism to pass the
string to. The t3rt_log_all_mechanisms_c constant may be used to pass the
event to all mechanisms.

t3rt_log_event_to_all

Logs the event to the event log channel of all registered log mechanisms.

void t3rt_log_event_to_all
(t3rt_log_event_kind_t event_kind,
 t3rt_value_t params[],
 t3rt_context_t ctx);

dest Name of destination log mechanism.

event_kind Event kind.

params NULL terminated array of event parameters.

378 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function logs event into event stream. Each event is identified by the
event kind (see t3rt_log_event_kind_t).

Event parameters should be specified as NULL terminated array of
t3rt_value_t values.

Message is received by all log mechanisms registered in the runtime system.

t3rt_log_event_kind_string

Returns a textual representation of the log event kind.

const char *
t3rt_log_event_kind_string(t3rt_log_event_kind_t event);

Parameters

Description

Returns the t3rt_log_unknown_event_kind_name_c string constant if the
event kind cannot be identified.

Return Values

Returns string representation for the given event kind.

t3rt_log_extract_message_sent

Decode parameters of Message Sent and SUT Message Sent events.

void t3rt_log_extract_message_sent
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,

event_kind Event kind.

params NULL terminated array of event parameters.

event_kind Event kind.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 379

 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_sent extracts information describing a suc-
cessfull unicast "send" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_message_sent_mc

Decode parameters of Message Sent and SUT Message Sent events.

void t3rt_log_extract_message_sent_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

destination_comp
_address

Receiving component address (SUT address for
SUT messages).

destination_port
_address

Receiving port address.

380 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_message_sent_mc extracts information describing a
successfull multicast "send" TTCN-3 statement. This function is available
for user-defined log mechanisms.

t3rt_log_extract_message_sent_bc

Decode parameters of Message Sent and SUT Message Sent events.

void t3rt_log_extract_message_sent_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT messages).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 381

Parameters

Description

t3rt_log_extract_message_sent_bc extracts information describing a
successfull broadcast "send" TTCN-3 statement. This function is available
for user-defined log mechanisms.

t3rt_log_extract_message_sent_failed

Decode parameters of Message Sent Failed and SUT Message Sent Failed
events.

void t3rt_log_extract_message_sent_failed
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

382 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_message_sent_failed extracts information de-
scribing a failed unicast "send" TTCN-3 statement. This function is available
for user-defined log mechanisms.

t3rt_log_extract_message_sent_failed_mc

Decode parameters of Message Sent Failed and SUT Message Sent Failed
events.

void t3rt_log_extract_message_sent_failed_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 bool *codec_status,
 bool *communication_status,

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

destination_comp
_address

Receiving component address (SUT address for
SUT messages).

destination_port
_address

Receiving port address.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 383

 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_sent_failed_mc extracts information de-
scribing a failed multicast "send" TTCN-3 statement. This function is avail-
able for user-defined log mechanisms.

t3rt_log_extract_message_sent_failed_bc

Decode parameters of Message Sent Failed and SUT Message Sent Failed
events.

void t3rt_log_extract_message_sent_failed_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 bool *codec_status,
 bool *communication_status,

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT messages).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

384 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_sent_failed_bc extracts information de-
scribing a failed broadcast "send" TTCN-3 statement. This function is avail-
able for user-defined log mechanisms.

t3rt_log_extract_message_detected

Decode parameters of Message Detected and SUT Message Detected events.

void t3rt_log_extract_message_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *detected_data,
 unsigned long *seq_no,
 t3rt_binary_string_t *sender_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 385

Parameters

Description

t3rt_log_extract_message_detected extracts information describing a
message (received by the integration) inserted into port queue. This function
is available for user-defined log mechanisms.

t3rt_log_extract_message_received,
t3rt_log_extract_message_found

Decode parameters of Message Received, SUT Message Received, Message
Found and SUT Message Found events.

void t3rt_log_extract_message_received
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_value,
 t3rt_value_t *received_value,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t *sender_address,
 t3rt_context_t ctx);

void t3rt_log_extract_message_found
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_value,
 t3rt_value_t *received_value,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t *sender_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

detected_data Encoded message.

seq_no Unique message number.

sender_address Address of the sending component (SUT address
for SUT messages).

386 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_message_received extracts information describing
TTCN-3 “receive“ statement. t3rt_log_extract_message_found ex-
tracts information describing TTCN-3 “check(receive)“ statement. These
functions are available for user-defined log mechanisms.

t3rt_log_extract_message_discarded

Decode parameters of Message Discarded and SUT Message Discarded
events.

void t3rt_log_extract_message_discarded
(t3rt_value_t params[],
const char **local_port_name,
t3rt_binary_string_t *local_port_address,
t3rt_value_t *template_discarded,
t3rt_value_t *discarded_value,
unsigned long *seq_no,
t3rt_binary_string_t *sender_address,
t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_value Template value for the received message.

received_value Actual value received.

encoded_msg Encoded message.

seq_no Unique message number.

sender_address Address of the sending component (SUT address
for SUT messages).

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 387

Parameters

Description

t3rt_log_extract_message_discarded extracts information describing
"trigger" TTCN-3 statement. This function is available for user-defined log
mechanisms.

t3rt_log_extract_call_initiated

Decode parameters of Call Initiated and SUT Call Initiated events.

void t3rt_log_extract_call_initiated
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_discard
ed

Template value for the discarded message.

discarded_value Actual value discarded.

seq_no Unique message number.

sender_address Address of the sending component (SUT address
for SUT messages).

388 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_call_initiated extracts information describing suc-
cessfull unicast "call" TTCN-3 statement. This function is available for user-
defined log mechanisms.

t3rt_log_extract_call_initiated_mc

Decode parameters of Call Initiated and SUT Call Initiated events.

void t3rt_log_extract_call_initiated_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_address

Receiving component address (SUT address for
SUT calls).

destination_port
_address

Receiving port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 389

Parameters

Description

t3rt_log_extract_call_initiated_mc extracts information describing
successfull multicast "call" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_call_initiated_bc

Decode parameters of Call Initiated and SUT Call Initiated events.

void t3rt_log_extract_call_initiated_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT calls).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

390 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_call_initiated_bc extracts information describing
successfull broadcast "call" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_call_failed

Decode parameters of Call Failed and SUT Call Failed events.

void t3rt_log_extract_call_failed
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 391

Parameters

Description

t3rt_log_extract_call_failed extracts information describing failed
unicast "call" TTCN-3 statement. This function is available for user-defined
log mechanisms.

t3rt_log_extract_call_failed_mc

Decode parameters of Call Failed and SUT Call Failed events.

void t3rt_log_extract_call_failed_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_address

Receiving component address (SUT address for
SUT calls).

destination_port
_address

Receiving port address.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

392 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_call_failed_mc extracts information describing
failed multicast "call" TTCN-3 statement. This function is available for user-
defined log mechanisms.

t3rt_log_extract_call_failed_bc

Decode parameters of Call Failed and SUT Call Failed events.

void t3rt_log_extract_call_failed_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT calls).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 393

Parameters

Description

t3rt_log_extract_call_failed_bc extracts information describing
failed broadcast "call" TTCN-3 statement. This function is available for user-
defined log mechanisms.

t3rt_log_extract_call_timed_out

Decode parameters of Call Timed Out and SUT Call Timed Out events.

void t3rt_log_extract_call_timed_out
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

394 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_call_timed_out extracts information describing
timed out "call" TTCN-3 statement. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_call_detected

Decode parameters of Call Detected and SUT Call Detected events.

void t3rt_log_extract_call_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *sender_address,
 unsigned long *seq_no,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_call_detected extracts information describing a
procedure call (received by the integration) inserted into port queue. This
function is available for user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

sender_address Sending component address (SUT address for SUT
calls).

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 395

t3rt_log_extract_call_received,
t3rt_log_extract_call_found

Decode parameters of Call Received, SUT Call Received, Call Found and
SUT Call Found events.

void t3rt_log_extract_call_received
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

void t3rt_log_extract_call_found
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_call_received extracts information describing
TTCN-3 “getcall“ statement. t3rt_log_extract_call_found extracts in-
formation describing TTCN-3 “check(getcall)“ statement. These functions
are available for user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_address

Receiving component address (SUT address for
SUT calls).

396 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_log_extract_reply_sent

Decode parameters of Reply Sent and SUT Reply Sent events.

void
t3rt_log_extract_reply_sent

(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_sent extracts information describing a suc-
cessfull unicast "reply" TTCN-3 statement. This function is available for
user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

destination_port
_address

Receiving port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 397

t3rt_log_extract_reply_sent_mc

Decode parameters of Reply Sent and SUT Reply Sent events.

void
t3rt_log_extract_reply_sent_mc

(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_sent_mc extracts information describing a
successfull multicast "reply" TTCN-3 statement. This function is available
for user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT replies).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

398 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_log_extract_reply_sent_bc

Decode parameters of Reply Sent and SUT Reply Sent events.

void
t3rt_log_extract_reply_sent_bc

(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_sent_bc extracts information describing a
successfull broadcast "reply" TTCN-3 statement. This function is available
for user-defined log mechanisms.

t3rt_log_extract_reply_failed

Decode parameters of Reply Failed and SUT Reply Failed events.

void t3rt_log_extract_reply_failed
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 399

 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_failed extracts information describing failed
unicast "getcall" TTCN-3 statement. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_reply_failed_mc

Decode parameters of Reply Failed and SUT Reply Failed events.

void t3rt_log_extract_reply_failed_mc

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

destination_port
_address

Receiving port address.

codec_statsu Status of encoding operation.

communication_st
atus

Status of transmission operation.

400 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_failed_mc extracts information describing
failed multicast "getcall" TTCN-3 statement. This function is available for
user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT replies).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

codec_statsu Status of encoding operation.

communication_st
atus

Status of transmission operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 401

t3rt_log_extract_reply_failed_bc

Decode parameters of Reply Failed and SUT Reply Failed events.

void t3rt_log_extract_reply_failed_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_failed_bc extracts information describing
failed broadcast "getcall" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_reply_detected

Decode parameters of Reply Detected and SUT Reply Detected events.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

codec_statsu Status of encoding operation.

communication_st
atus

Status of transmission operation.

402 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

void t3rt_log_extract_reply_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *destination_comp_address,
 unsigned long *seq_no,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_detected extracts information describing a
procedure reply (received by the integration) inserted into port queue. This
function is available for user-defined log mechanisms.

t3rt_log_extract_reply_received,
t3rt_log_extract_reply_found

Decode parameters of Reply Received, SUT Reply Received, Reply Found
and SUT Reply Found events.

void t3rt_log_extract_reply_received
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

void t3rt_log_extract_reply_found
 (t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

destination_comp
_address

Sending component address (SUT address for SUT
replies).

seq_no Unique reply number.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 403

 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_received extracts information describing
TTCN-3 “getreply“ statement. t3rt_log_extract_reply_found extracts
information describing TTCN-3 “check(getreply)“ statement. These func-
tions are available for user-defined log mechanisms.

t3rt_log_extract_exception_raised

Decode parameters of Exception Raised and SUT Exception Raised events.

void t3rt_log_extract_exception_raised
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_value Signature template for the reply.

reply_value Signature value for the reply.

seq_no Unique reply number.

destination_comp
_address

Sending component address (SUT address for SUT
replies).

404 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_exception_raised extracts information describing a
successfull unicast "raise" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_exception_raised_mc

Decode parameters of Exception Raised and SUT Exception Raised events.

void t3rt_log_extract_exception_raised_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

destination_port
_address

Receiving port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 405

Parameters

Description

t3rt_log_extract_exception_raised_mc extracts information de-
scribing a successfull multicast "raise" TTCN-3 statement. This function is
available for user-defined log mechanisms.

t3rt_log_extract_exception_raised_bc

Decode parameters of Exception Raised and SUT Exception Raised events.

void t3rt_log_extract_exception_raised_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT replies).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

406 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_exception_raised_bc extracts information de-
scribing a successfull broadcast "raise" TTCN-3 statement. This function is
available for user-defined log mechanisms.

t3rt_log_extract_raise_failed

Decode parameters of Raise Failed and SUT Raise Failed events.

void t3rt_log_extract_raise_failed
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 407

Parameters

Description

t3rt_log_extract_raise_failed extracts information describing failed
unicast "raise" TTCN-3 statement. This function is available for user-defined
log mechanisms.

t3rt_log_extract_raise_failed_mc

Decode parameters of Raise Failed and SUT Raise Failed events.

void t3rt_log_extract_raise_failed_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

destination_port
_address

Receiving port address.

codec_status Status of encoding operation.

communication_st
atus

Status of communication operation.

408 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_raise_failed_mc extracts information describing
failed multicast "raise" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_raise_failed_bc

Decode parameters of Raise Failed and SUT Raise Failed events.

void t3rt_log_extract_raise_failed_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT replies).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

codec_status Status of encoding operation.

communication_st
atus

Status of communication operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 409

Parameters

Description

t3rt_log_extract_raise_failed_bc extracts information describing
failed broadcast "raise" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_exception_detected

Decode parameters of Exception Detected and SUT Exception Detected
events.

void t3rt_log_extract_exception_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *detected_data,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

codec_status Status of encoding operation.

communication_st
atus

Status of communication operation.

410 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_exception_detected extracts information de-
scribing a procedure exception (received by the integration) inserted into port
queue. This function is available for user-defined log mechanisms.

t3rt_log_extract_exception_caught,
t3rt_log_extract_exception_found

Decode parameters of Exception Caught, SUT Exception Caught, Exception
Found and SUT Exception Found events.

void t3rt_log_extract_exception_caught
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_value,
 t3rt_value_t *caught_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

void t3rt_log_extract_exception_found
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_value,
 t3rt_value_t *caught_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

detected_data Encoded exception value.

seq_no Unique exception number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 411

Parameters

Description

t3rt_log_extract_exception_caught extracts information describing
TTCN-3 “catch“ statement. t3rt_log_extract_exception_found ex-
tracts information describing TTCN-3 “check(catch)“ statement. These func-
tions are available for user-defined log mechanisms.

t3rt_log_extract_timeout_exception_detected

Decode parameters of Timeout Exception Detected and SUT Timeout Ex-
ception Detected events.

void t3rt_log_extract_timeout_exception_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_value Encoded exception value.

caught_value Actual exception value caught.

seq_no Unique exception number.

destination_comp
_address

Sending component address (SUT address for SUT
exceptions).

412 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_timeout_exception_detected extracts information
describing a detected procedure call timeout exception. This function is
available for user-defined log mechanisms.

t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found

Decode parameters of Timeout Exception Caught, SUT Timeout Exception
Caught, Timeout Exception Found and SUT Timeout Exception Found
events.

void t3rt_log_extract_timeout_exception_caught
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

void t3rt_log_extract_timeout_exception_found
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 413

Parameters

Description

t3rt_log_extract_timeout_exception_caught extracts information
describing TTCN-3 “catch(timeout)“ statement.
t3rt_log_extract_timeout_exception_found extracts information de-
scribing TTCN-3 “check(catch(timeout))“ statement. These functions are
available for user-defined log mechanisms.

t3rt_log_extract_sender_mismatch

Decode parameters of Sender Mismatch event.

void t3rt_log_extract_sender_mismatch
(t3rt_value_t params[],
 t3rt_value_t *port,
 t3rt_binary_string_t *actual_sender,
 t3rt_binary_string_t *expected_sender,
 unsigned long *seq_no,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

destination_comp
_address

Sending component address (SUT address for SUT
exceptions).

414 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_sender_mismatch extracts information describing a
mismatch of a sender address. This function is available for user-defined log
mechanisms.

t3rt_log_extract_sut_action

Decode parameters of SUT Action Performed event.

void t3rt_log_extract_sut_action
(t3rt_value_t params[],
 t3rt_value_t *string_or_template,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_sut_action extracts information describing a TTCN-
3 “action“ statement. This function is available for user-defined log mecha-
nisms.

t3rt_log_extract_timer_started

Decode parameters of Timer Started event.

void t3rt_log_extract_timer_started
(t3rt_value_t params[],
 const char **timer_name,

params Array of event parameters, received from RTS.

port Receiving port value.

actual_sender Encoded actual sender.

expected_sender Encoded expected sender.

seq_no Unique message/call/reply/exception number.

params Array of event parameters, received from RTS.

string_or_templa
te

String or template argument to SUT action.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 415

 unsigned long *unique_id,
 double *duration,
 double *default_duration,
 t3rt_timer_handle_t *handle,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_timer_started extracts information describing a
TTCN-3 timer “start“ statement. This function is available for user-defined
log mechanisms.

t3rt_log_extract_timer_stopped

Decode parameters of Timer Stopped event.

void t3rt_log_extract_timer_stopped
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

duration Timer duration.

default_duration Default timer duration.

handle Timer handle.

416 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_timer_stopped extracts information describing a
TTCN-3 timer “stop“ statement. This function is available for user-defined
log mechanisms.

t3rt_log_extract_timer_read

Decode parameters of Timer Read event.

void t3rt_log_extract_timer_read
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 double *elapsed_time,
 t3rt_timer_state_t *state,
 double *duration,
 double *default_duration,
 t3rt_timer_handle_t *handle,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 417

Parameters

Description

t3rt_log_extract_timer_read extracts information describing a TTCN-
3 timer “read“ statement. This function is available for user-defined log
mechanisms.

t3rt_log_extract_timer_is_running

Decode parameters of Timer Is Running Check Performed event.

void t3rt_log_extract_timer_is_running
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 double *elapsed_time,
 t3rt_timer_state_t *state,
 double *duration,
 double *default_duration,
 t3rt_timer_handle_t *handle,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

elapsed_time Time elapsed since timer start.

state Timer state.

duration Timer duration.

default_duration Default timer duration.

handle Timer handle.

418 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_timer_is_running extracts information describing a
TTCN-3 timer “running“ statement. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_timeout_detected

Decode parameters of timer Timer Timeout Detected event.

void t3rt_log_extract_timeout_detected
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_timeout_detected extracts information describing a
detected timer timeout (when triTimeout is called). This function is available
for user-defined log mechanisms.

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

elapsed_time Time elapsed since timer start.

state Timer state.

duration Timer duration.

default_duration Default timer duration.

handle Timer handle.

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 419

t3rt_log_extract_timeout_received

Decode parameters of Timer Timed Out Check Succeeded event.

void t3rt_log_extract_timeout_received
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_timeout_received extracts information describing
matched timeout alternative. This function is available for user-defined log
mechanisms.

t3rt_log_extract_timeout_mismatch

Decode parameters of Timer Timed Out Check Failed event.

void t3rt_log_extract_timeout_mismatch
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_timeout_mismatch extracts information describing
mismatched timeout alternative. This function is available for user-defined
log mechanisms.

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

420 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_log_extract_component_created

Decode parameters of Component Created event.

void t3rt_log_extract_component_created
(t3rt_value_t params[],
 const char **component_name,
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_created extracts information describing
component creation event that is generated for TTCN-3 “create“ and “exe-
cute“ operations. This function is available for user-defined log mechanisms.

t3rt_log_extract_component_started

Decode parameters of Component Started event.

void t3rt_log_extract_component_started
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 const char **module,
 const char **function,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_name Name of the created component.

component_addres
s

Address of the created component.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 421

Parameters

Description

t3rt_log_extract_component_started extracts information describing
component start event that is generated for TTCN-3 “start“ and “execute“ op-
erations. This function is available for user-defined log mechanisms.

t3rt_log_extract_component_is_running

Decode parameters of Component Is Running Check Performed event.

void t3rt_log_extract_component_is_running
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 bool *is_running,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_is_running extracts information de-
scribing TTCN-3 component “running“ operation. This function is available
for user-defined log mechanisms.

t3rt_log_extract_component_is_alive

Decode parameters of Component Is Alive Check Performed event.

void t3rt_log_extract_component_is_alive

params Array of event parameters, received from RTS.

component_addres
s

Address of the started component.

module Module name of the started function.

function Name of the started function.

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

is_running State of the checked component.

422 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 bool *is_alive,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_is_alive extracts information de-
scribing TTCN-3 component “alive“ operation. This function is available for
user-defined log mechanisms.

t3rt_log_extract_component_stopped

Decode parameters of Component Stopped event.

void t3rt_log_extract_component_stopped
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_stopped extracts information describing
TTCN-3 component termination event. This function is available for user-
defined log mechanisms.

t3rt_log_extract_component_killed

Decode parameters of Component Killed event.

void t3rt_log_extract_component_killed

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

is_alive State of the checked component.

params Array of event parameters, received from RTS.

component_addres
s

Address of the stopped component.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 423

(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_killed extracts information describing
TTCN-3 alive component termination event. This function is available for
user-defined log mechanisms.

t3rt_log_extract_done_check_succeeded

Decode parameters of Component Done Check Succeeded event.

void t3rt_log_extract_done_check_succeeded
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_done_check_succeeded extracts information de-
scribing matched component “done“ alternative. This function is available
for user-defined log mechanisms.

t3rt_log_extract_done_check_failed

Decode parameters of Component Done Check Failed event.

void t3rt_log_extract_done_check_failed
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s

Address of the killed component.

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

424 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_done_check_failed extracts information describing
mismatched component “done“ alternative. This function is available for
user-defined log mechanisms.

t3rt_log_extract_kill_check_succeeded

Decode parameters of Component Killed Check Succeeded event.

void t3rt_log_extract_kill_check_succeeded
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_kill_check_succeeded extracts information de-
scribing matched component “killed“ alternative. This function is available
for user-defined log mechanisms.

t3rt_log_extract_kill_check_failed

Decode parameters of Component Killed Check Failed event.

void t3rt_log_extract_kill_check_failed
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 425

Parameters

Description

t3rt_log_extract_kill_check_failed extracts information describing
mismatched component “killed“ alternative. This function is available for
user-defined log mechanisms.

t3rt_log_extract_port_connected

Decode parameters of Port Connected event.

void t3rt_log_extract_port_connected
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address1,
 const char **port_name1,
 t3rt_binary_string_t *port_address1,
 t3rt_binary_string_t *component_address2,
 const char **port_name2,
 t3rt_binary_string_t *port_address2,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

426 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_port_connected extracts information describing
TTCN-3 port “connect“ operation. This function is available for user-defined
log mechanisms.

t3rt_log_extract_port_disconnected

Decode parameters of Port Disconnected event.

void t3rt_log_extract_port_disconnected
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address1,
 const char **port_name1,
 t3rt_binary_string_t *port_address1,
 t3rt_binary_string_t *component_address2,
 const char **port_name2,
 t3rt_binary_string_t *port_address2,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s1

First port component address.

port_name1 First port.name.

port_address1 First port address

component_addres
s2

Second port component address.

port_name2 Second port name.

port_address2 Second port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 427

Parameters

Description

t3rt_log_extract_port_disconnected extracts information describing
TTCN-3 port “disconnect“ operation. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_port_mapped

Decode parameters of Port Mapped event.

void t3rt_log_extract_port_mapped
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 const char **local_port_name,
 const char **system_port_name,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s1

First port component address.

port_name1 First port.name.

port_address1 First port address

component_addres
s2

Second port component address.

port_name2 Second port name.

port_address2 Second port address.

428 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_port_mapped extracts information describing TTCN-
3 port “map“ operation. This function is available for user-defined log mech-
anisms.

t3rt_log_extract_port_unmapped

Decode parameters of Port Unmapped event.

void t3rt_log_extract_port_unmapped
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 const char **local_port_name,
 const char **system_port_name,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_unmapped extracts information describing
TTCN-3 port “unmap“ operation. This function is available for user-defined
log mechanisms.

params Array of event parameters, received from RTS.

component_addres
s

Local port component address.

local_port_name Local port.name.

system_port_name System (TSI) port name.

params Array of event parameters, received from RTS.

component_addres
s

Local port component address.

local_port_name Local port.name.

system_port_name System (TSI) port name.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 429

t3rt_log_extract_port_enabled

Decode parameters of Port Enabled event.

void t3rt_log_extract_port_enabled
(t3rt_value_t params[],
 const char **port_name,
 t3rt_binary_string_t *port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_enabled extracts information describing
TTCN-3 port “start“ operation. This function is available for user-defined
log mechanisms.

t3rt_log_extract_port_disabled

Decode parameters of Port Disabled event.

void t3rt_log_extract_port_disabled
(t3rt_value_t params[],
 const char **port_name,
 t3rt_binary_string_t *port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_disabled extracts information describing
TTCN-3 port “stop“ operation. This function is available for user-defined log
mechanisms.

params Array of event parameters, received from RTS.

port_name Port.name.

port_address Port address.

params Array of event parameters, received from RTS.

port_name Port.name.

port_address Port address.

430 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_log_extract_port_halted

Decode parameters of Port Halted event.

void t3rt_log_extract_port_halted
(t3rt_value_t params[],
 const char **port_name,
 t3rt_binary_string_t *port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_halted extracts information describing TTCN-
3 port “halt“ operation. This function is available for user-defined log mech-
anisms.

t3rt_log_extract_port_cleared

Decode parameters of Port Cleared event.

void t3rt_log_extract_port_cleared
(t3rt_value_t params[],
 const char **port_name,
 t3rt_binary_string_t *port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_cleared extracts information describing
TTCN-3 port “clear“ operation. This function is available for user-defined
log mechanisms.

params Array of event parameters, received from RTS.

port_name Port.name.

port_address Port address.

params Array of event parameters, received from RTS.

port_name Port.name.

port_address Port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 431

t3rt_log_extract_local_verdict_changed

Decode parameters of Local Verdict Set event.

void t3rt_log_extract_local_verdict_changed
(t3rt_value_t params[],
 t3rt_verdict_t *prev_verdict,
 t3rt_verdict_t *attempt_verdict,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_verdict_changed extracts information describing
TTCN-3 “setverdict“ operation. This event is generated in several other
cases (see Local Verdict Set event description for more info). This function
is available for user-defined log mechanisms.

t3rt_log_extract_local_verdict_queried

Decode parameters of Local Verdict Read event.

void t3rt_log_extract_local_verdict_queried
(t3rt_value_t params[],
 t3rt_verdict_t *verdict,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_verdict_queried extracts information describing
TTCN-3 “getverdict“ operation. This function is available for user-defined
log mechanisms.

params Array of event parameters, received from RTS.

prev_verdict Previous verdict.

attempt_verdict New verdict to be set.

params Array of event parameters, received from RTS.

verdict Current verdict.

432 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_log_extract_template_match_failed

Decode parameters of Template Match Failed event.

void t3rt_log_extract_template_match_failed
(t3rt_value_t params[],
 t3rt_value_t *template_value,
 t3rt_value_t *unmatched_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_template_match_failed extracts information de-
scribing failed matching operation. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_template_mismatch

Decode parameters of Template Mismatch event.

void t3rt_log_extract_template_mismatch
(t3rt_value_t params[],
 t3rt_value_t *field_or_item_specifier,
 t3rt_value_t *unmatched_value,
 t3rt_value_t* reference_value,
 const char** reference_value_descr,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

template_value Template value for the matching operation.

unmatched_value Mismatched value.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 433

Parameters

Description

t3rt_log_extract_template_mismatch extracts information describing
failed match of a value or a field value. This function is available for user-
defined log mechanisms.

t3rt_log_extract_template_match_begin

Decode parameters of Template Match Begin event.

void t3rt_log_extract_template_match_begin
(t3rt_value_t params[],
 t3rt_value_t * matched_value,
 t3rt_value_t * reference_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_template_match_begin extracts information de-
scribing start of a match operation. This function is available for user-defined
log mechanisms.

t3rt_log_extract_template_match_end

Decode parameters of Template Match End event.

params Array of event parameters, received from RTS.

field_or_item_sp
ecifier

Integer or charstring value describing the specifier
of unmatched field.

unmatched_value Unmatched value.

reference_value Reference value used in match operation.

reference_value_
descr

Description of failed matching operation.

params Array of event parameters, received from RTS.

matched_value Value to be matched.

reference_value Reference value used in match operation.

434 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

void t3rt_log_extract_template_match_end
(t3rt_value_t params[],
 bool *status,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_template_match_end extracts information de-
scribing end of a match operation. This function is available for user-defined
log mechanisms.

t3rt_log_extract_testcase_started

Decode parameters of Test case started event.

void t3rt_log_extract_testcase_started
(t3rt_value_t params[],
 const char **module_name,
 const char **testcase_name,
 double *timeout,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_testcase_started extracts information describing
start of a test case. This function is available for user-defined log mecha-
nisms.

params Array of event parameters, received from RTS.

status Result of the matching operation (success or fail).

params Array of event parameters, received from RTS.

module_name Module name of the started test case.

testcase_name Name of the started test case.

timeout Test case timeout.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 435

t3rt_log_extract_testcase_ended

Decode parameters of Test case ended event.

void t3rt_log_extract_testcase_ended
(t3rt_value_t params[],
 const char **module_name,
 const char **testcase_name,
 t3rt_verdict_t *verdict,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_testcase_ended extracts information describing ter-
mination of a test case. This function is available for user-defined log mech-
anisms.

t3rt_log_extract_testcase_timed_out

Decode parameters of Test case timed out event.

void t3rt_log_extract_testcase_timed_out
(t3rt_value_t params[],
 const char **module_name,
 const char **testcase_name,
 double *timeout,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

module_name Module name of the terminated test case.

testcase_name Name of the terminated test case.

verdict Test case verdict.

436 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

t3rt_log_extract_testcase_timed_out extracts information de-
scribing test case timeout event. This function is available for user-defined
log mechanisms.

t3rt_log_extract_testcase_error

Decode parameters of Test case error event.

void t3rt_log_extract_testcase_error
(t3rt_value_t params[],
 const char **module_name,
 const char **scope_name,
 const char **error_msg,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_testcase_error extracts information describing test
case error event. This function is available for user-defined log mechanisms.

t3rt_log_extract_test_case_verdict

Decode parameters of Test case verdict event.

params Array of event parameters, received from RTS.

module_name Module name of the timed out test case.

testcase_name Name of the timed out test case.

timeout Test case timeout.

params Array of event parameters, received from RTS.

module_name Module name of the scope that generated error.

scope_name Name of the scope (i.e. function) that generated
error.

error_msg Error description.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 437

void t3rt_log_extract_test_case_verdict
(t3rt_value_t params[],
 const char **testcase_name,
 t3rt_verdict_t *verdict,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_test_case_verdict extracts information describing
setting overall test case verdict. This function is available for user-defined
log mechanisms.

t3rt_log_extract_variable_modified

Decode parameters of Variable Modified event.

void t3rt_log_extract_variable_modified
(t3rt_value_t params[],
 t3rt_value_t *value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_variable_modified extracts information describing
modification odf a variable, constant or module parameter. This function is
available for user-defined log mechanisms.

t3rt_log_extract_scope_entered

Decode parameters of Scope Entered event.

void t3rt_log_extract_scope_entered

params Array of event parameters, received from RTS.

testcase_name Name of the terminated test case.

verdict Test case verdict.

params Array of event parameters, received from RTS.

value Modified value (after modification).

438 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

(t3rt_value_t params[],
 const char **scope_name,
 t3rt_scope_kind_t *scope_kind,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_scope_entered extracts information describing en-
tering a new scope (function, testcase, altstep, etc). This function is available
for user-defined log mechanisms.

t3rt_log_extract_scope_changed

Decode parameters of Scope Changed event.

void t3rt_log_extract_scope_changed
(t3rt_value_t params[],
 unsigned long *line_number,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_scope_changed extracts information describing
change in the scope source TTCN-3 position. This function is available for
user-defined log mechanisms.

t3rt_log_extract_scope_left

Decode parameters of Scope Left event.

void t3rt_log_extract_scope_left
(t3rt_value_t params[],

params Array of event parameters, received from RTS.

scope_name Name of the entered scope.

scope_kind Scope kind.

params Array of event parameters, received from RTS.

line_number Source TTCN-3 position in the scope.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 439

 const char **scope_name,
 t3rt_scope_kind_t *scope_kind,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_scope_left extracts information describing leaving
of a scope (fucntion, testcase, altstep, etc). This function is available for user-
defined log mechanisms.

t3rt_log_extract_alternative_activated_event

Decode parameters of Alternative Activated event.

void t3rt_log_extract_alternative_activated_event
(t3rt_value_t params[],
 const char **module_name,
 const char **altstep_name,
 t3rt_value_t *default_reference,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_alternative_activated_event extracts informa-
tion describing TTCN-3 “activate“ operation. This function is available for
user-defined log mechanisms.

params Array of event parameters, received from RTS.

scope_name Name of the left scope.

scope_kind Scope kind.

params Array of event parameters, received from RTS.

module_name Module name of the activated altstep.

altstep_name Name of the activated altstep.

default_referenc
e

Default reference of the activated altstep.

440 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_log_extract_alternative_deactivated_event

Decode parameters of Alternative Deactivated event.

void t3rt_log_extract_alternative_deactivated_event
(t3rt_value_t params[],
 t3rt_value_t *default_reference,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_alternative_deactivated_event extracts infor-
mation describing TTCN-3 “deactivate“ operation. This function is available
for user-defined log mechanisms.

t3rt_log_extract_message_decoded

Decode parameters of Data Decoded event.

void t3rt_log_extract_message_decoded
(t3rt_value_t params[],
 t3rt_binary_string_t * encoded_data,
 t3rt_value_t * decoded_value,
 t3rt_codecs_strategy_t * strategy,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

default_referenc
e

Default reference of the deactivated altstep.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 441

Parameters

Description

t3rt_log_extract_message_decoded extracts information describing
successfull decoding of an encoded data. This function is available for user-
defined log mechanisms.

t3rt_log_extract_message_decode_failed

Decode parameters of Data Decoding Failed event.

void t3rt_log_extract_message_decode_failed
(t3rt_value_t params[],
 t3rt_binary_string_t * encoded_data,
 t3rt_codecs_strategy_t * strategy,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_decode_failed extracts information de-
scribing failed decoding of an encoded data. This function is available for
user-defined log mechanisms.

t3rt_log_extract_message_encoded

Decode parameters of Data Encoded event.

void t3rt_log_extract_message_encoded
(t3rt_value_t params[],
 t3rt_value_t * value,

params Array of event parameters, received from RTS.

encoded_data Encoded data.

decoded_value Decoded value.

strategy Decoding strategy selected by the RTS.

params Array of event parameters, received from RTS.

encoded_data Encoded data.

strategy Decoding strategy selected by the RTS.

442 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 t3rt_binary_string_t * encoded_data,
 t3rt_codecs_strategy_t * strategy,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_encoded extracts information describing
successfull encoding of a value. This function is available for user-defined
log mechanisms.

t3rt_log_extract_message_encode_failed

Decode parameters of Data Encoding Failed event.

void t3rt_log_extract_message_encode_failed
(t3rt_value_t params[],
 t3rt_value_t * value,
 t3rt_codecs_strategy_t * strategy,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_encode_failed extracts information de-
scribing failed encoding of a value. This function is available for user-de-
fined log mechanisms.

params Array of event parameters, received from RTS.

value Encoded value.

encoded_data Encoded data.

strategy Encoding strategy selected by the RTS.

params Array of event parameters, received from RTS.

value Value to be encoded.

strategy Encoding strategy selected by the RTS.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 443

t3rt_log_extract_text_message_string

Decode parameters of Information Message, Warning Message, Error Mes-
sage, Debug Message and TTCN-3 Message events.

void t3rt_log_extract_text_message_string
(t3rt_value_t params[],
 const char** text,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_text_message_string extracts information de-
scribing test message event. Information is extracted into ASCII string. This
function is available for user-defined log mechanisms.

t3rt_log_extract_text_message_widestring

Decode parameters of Information Message, Warning Message, Error Mes-
sage, Debug Message and TTCN-3 Message events.

void t3rt_log_extract_text_message_widestring
(t3rt_value_t params[],
 t3rt_wide_string_t* text,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_text_message_widestring extracts information de-
scribing test message event. Information is extracted into wide string. This
function is available for user-defined log mechanisms.

params Array of event parameters, received from RTS.

text ASCII message description.

params Array of event parameters, received from RTS.

text Possibly internationalized message description.

444 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_log_extract_function_call

Decode parameters of Function called event.

void t3rt_log_extract_function_call
(t3rt_value_t params[],
 const char **function_name,
 t3rt_value_t *signature_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_function_call extracts information describing invo-
cation of a function. This function is available for user-defined log mecha-
nisms.

t3rt_log_extract_external_function_call

Decode parameters of External Function Called event.

void t3rt_log_extract_external_function_call
(t3rt_value_t params[],
 const char **function_name,
 t3rt_value_t *signature_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_external_function_call extracts information de-
scribing invocation of an external function. This function is available for
user-defined log mechanisms.

params Array of event parameters, received from RTS.

function_name Invoked function name.

signature_value Signature value describing actual parameters.

params Array of event parameters, received from RTS.

function_name Invoked external function name.

signature_value Signature value describing actual parameters.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 445

t3rt_log_extract_altstep_call

Decode parameters of Altstep Called event.

void t3rt_log_extract_altstep_call
(t3rt_value_t params[],
 const char **altstep_name,
 t3rt_value_t *signature_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_altstep_call extracts information describing invo-
cation of an altstep. This function is available for user-defined log mecha-
nisms.

RTL Wide String Functions

RTL Wide String Related Type Definitions

t3rt_wide_string_t

This is a string that contains multi-byte characters (t3rt_wide_char_t).
It is used for localized strings and for the representation of the
universal_charstring TTCN-3 type.

t3rt_wide_char_t

Representation of a character inside a t3rt_wide_string_t.

t3rt_wchar2int

Converts wide character content into the corresponding integer code number
(ISO-10646).

void t3rt_wchar2int
(const t3rt_wide_char_t wchar,
 unsigned long * wchar_code,

params Array of event parameters, received from RTS.

altstep_name Invoked altstep name.

signature_value Signature value describing actual parameters.

446 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 t3rt_context_t context);

Parameters

Description

This function converts wide character representation (i.e. byte array) into an
integer value. Each of four bytes in the result integer stores corresponding
part from t3rt_wide_char_t character representation.

t3rt_wchar2quad

Converts wide character content into the corresponding quadruple.

void t3rt_wchar2quad
(const t3rt_wide_char_t wchar,
 unsigned char * group,
 unsigned char * plane,
 unsigned char * row,
 unsigned char * cell,
 t3rt_context_t context);

Parameters

Description

This function extracts group, plane, row and cell bytes from the wide char-
acter representation (i.e. byte array).

wchar Wide char value to be converted.

wchar_code Output parameter that receives conversion result.

wchar Wide char value to be converted.

group Output parameter that receives group byte of wide
character.

plane Output parameter that receives plane byte of wide
character.

row Output parameter that receives row byte of wide
character.

cell Output parameter that receives cell byte of wide
character.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 447

t3rt_char2wchar

Converts character (ISO-646) into the wide character content (ISO-10646).

void t3rt_char2wchar
(char char_code,
 t3rt_wide_char_t * wchar,
 t3rt_context_t context);

Parameters

Description
This function converts ASCII character represented by its character code
into wide char representation.

t3rt_int2wchar

Converts integer code number (ISO-10646) into the wide character content.

void t3rt_int2wchar
(unsigned long wchar_code,
 t3rt_wide_char_t * wchar,
 t3rt_context_t context);

Parameters

Description
This function converts integer value (that is the code of a wide character)
into the wide character representation (i.e. byte array).

t3rt_quad2wchar

Converts quadruple into the wide character content.

void t3rt_quad2wchar
(unsigned char group,
 unsigned char plane,

char_code Char value to be converted.

wchar Output parameter that receives conversion result.

wchar_code Integer representing wide char code.

wchar Output parameter that receives conversion result.

448 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 unsigned char row,
 unsigned char cell,
 t3rt_wide_char_t * wchar,
 t3rt_context_t context);

Parameters

Description

This function merges group, plane, row and cell bytes into the wide character
representation (i.e. byte array).

t3rt_wchar_cmp

Compare two wide char characters.

int t3rt_wchar_cmp
(const t3rt_wide_char_t wchar1,
 const t3rt_wide_char_t wchar2,
 t3rt_context_t context);

Parameters

Description

This function compares two wide characters by their codes, i.e. result is eval-
uated by comparing the output of t3rt_wchar2int for both given wide chars.

Return Values

Returns -1 if “wchar1” is lesser than “wchar”2, 1 if “wchar1” is greater than
“wchar2”, 0 if they are equal.

group Group byte of wide character.

plane Plane byte of wide character.

row Row byte of wide character.

cell Cell byte of wide character.

wchar Output parameter that receives conversion result.

wchar1 First wide character.

wchar2 Second wide character.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 449

t3rt_wide_string_rotateleft

Makes a left-rotated copy of the wide string.

t3rt_wide_string_t t3rt_wide_string_rotateleft
(t3rt_wide_string_t wstring,
 unsigned long char_count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Description

Rotates the string element in the string according to ETSI ES 201 873-1
V2.2.1.

Return Values

A copy of the rotated string allocated with the specified allocation strategy.

t3rt_wide_string_rotateright

Makes a right-rotated copy of the wide string.

t3rt_wide_string_t t3rt_wide_string_rotateright
(t3rt_wide_string_t wstring,
 unsigned long char_count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

wstring The string to rotate.

char_count The number of rotations.

strategy Memory allocation strategy for the resulting value.

wstring The string to rotate.

char_count The number of rotations.

strategy Memory allocation strategy for the resulting value.

450 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

Rotates the string element in the string according to ETSI ES 201 873-1
V2.2.1.

Return Values

A copy of the rotated string allocated with the specified allocation strategy.

t3rt_wide_string_set_element

Sets the wide character at the specified index position.

void t3rt_wide_string_set_element
(t3rt_wide_string_t wstring,
 unsigned long index,
 const t3rt_wide_char_t wchar,
 t3rt_context_t context);

Parameters

Description

This functions sets contents of wide string at specified position to the given
wide character. Assigning value to the position outside current string bound-
aries generates test case error.

t3rt_wide_string_set_element_to_ascii_char

Sets the character at the specified index position.

void t3rt_wide_string_set_element_to_ascii_char
(t3rt_wide_string_t wstring,
 unsigned long index,
 char chr,
 t3rt_context_t context);

wstring Wide string to be changed.

index Zero based position in wide string to assign to.

wchar Element to assigned to the specified position of
wide string.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 451

Parameters

Description
This functions sets contents of wide string at specified position to the given
ASCII character. Assigning value to the position outside current string
boundaries generates test case error.

t3rt_wide_string_element

Returns the wide character at the specified index position.

void t3rt_wide_string_element
(const t3rt_wide_string_t wstring,
 unsigned long index,
 t3rt_wide_char_t * wchar,
 t3rt_context_t context);

Parameters

Description

This function extracts single wide character from the given position of the
wide string. Specified element index should point to element within string
boundaries otherwise test case error is generated.

t3rt_wide_string_allocate

Creates an empty wide string and pre-allocates space for the given length.

t3rt_wide_string_t t3rt_wide_string_allocate
(t3rt_alloc_strategy_t strategy,

wstring Wide string to be changed.

index Zero based position in wide string to assign to.

chr Element to assigned to the specified position of
wide string.

wstring Queried wide string.

index Zero based position in wide string.

wchar Output parameter for the requested wide string ele-
ment.

452 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 unsigned long alloc_size,
 t3rt_context_t context);

Parameters

Description

This function creates new empty wide string. Allocation size specifies the
initial size of the internal string buffer. It may be equal to zero and serves
only to increase the performance of the wide string operations. Allocation
size is given in number of wide characters.

Return Values

New instance of wide string allocated according the specified strategy.

t3rt_wide_string_deallocate

De-allocates the wide string.

void t3rt_wide_string_deallocate
(t3rt_wide_string_t * wstring,
 t3rt_context_t context);

Parameters

Description
This function deletes specified wide string and frees all memory reserved
by this string.

t3rt_wide_string_construct_from_ascii

Constructs a wide string out of the NULL terminated ASCII string.

t3rt_wide_string_t t3rt_wide_string_construct_from_ascii
(const char * ascii_string,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

strategy Memory allocation strategy for the created string.

alloc_size Initial size of the string buffer.

wstring Address of wide string to be deallocated.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 453

Parameters

Description

This function creates new wide string and fills it with the given ASCII string.

Return Values

New instance of wide string allocated according the specified strategy and
filled with the specified value.

t3rt_wide_string_construct_from_wchar

Constructs a single character wide string out of a wide character

t3rt_wide_string_t t3rt_wide_string_construct_from_wchar
(const t3rt_wide_char_t character,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Description

This function creates new one element wide string and fills it with the given
wide char.

Return Values

New instance of wide string allocated according the specified strategy and
filled with the specified value.

ascii_string NULL-terminated free ASCII text string.

strategy Memory allocation strategy for the resulting string.

character Single wide character.

strategy Memory allocation strategy for the resulting string.

454 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_wide_string_set

Sets the contents of the wide string to a copy of the character array of given
length.

void t3rt_wide_string_set
(t3rt_wide_string_t wstring,
 unsigned long length,
 const t3rt_wide_char_t value[],
 t3rt_context_t context);

Parameters

Description

This function rewrites contents of the given wide string with the new value.
New value is specified with the array of wide characters. Length of the wide
char array is provided in the separate function formal parameter.

t3rt_wide_string_set_ascii

Sets the contents of the wide string to a copy of the null-terminated character
string.

void t3rt_wide_string_set_ascii
(t3rt_wide_string_t wstring,
 const char * ascii_string,
 t3rt_context_t context);

Parameters

Description
This function rewrites contents of the given wide string with the new value.
New value is specified with the NULL-terminated ASCII string.

wstring Valid wide string.

length Length of wide character array.

value Array of wide characters.

wstring Valid wide string.

ascii_string NULL-terminated ASCII string.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 455

t3rt_wide_string_set_wchar_array

Sets the contents of the wide string to a copy of the array of wide chars.

void t3rt_wide_string_set_wchar_array
(t3rt_wide_string_t wstring,
 const t3rt_wide_char_t * string,
 unsigned long length,
 t3rt_context_t context);

Parameters

Description

This function rewrites contents of the given wide string with the new value.
New value is specified with the array of wide characters. Length of the wide
char array is provided in the separate function formal parameter. This func-
tion behaves similar to t3rt_wide_string_set.

t3rt_wide_string_copy

Makes a copy of the wide string.

t3rt_wide_string_t t3rt_wide_string_copy
(t3rt_wide_string_t wstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Return Values

Returns copy of the wide string allocated according to the specified strategy.

wstring Valid wide string.

string Array of wide characters.

length Length of the wide char array.

wstring Valid wide string.

strategy memory allocation strategy for the resulting value.

456 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_wide_string_length

Returns the number of the wide characters in the wide string.

unsigned long t3rt_wide_string_length
(t3rt_wide_string_t wstring,
 t3rt_context_t context);

Parameters

Return Values

Returns the number of the wide characters in the wide string.

t3rt_wide_string_is_equal

Compares two wide strings for equality.

bool t3rt_wide_string_is_equal
(t3rt_wide_string_t wstring1,
 t3rt_wide_string_t wstring2,
 t3rt_context_t context);

Parameters

Description

This function accepts NULL pointer as a wide string reference. If both wide
strings equal to NULL then functions returns true.

Return Values
Returns true if strings are equal, false otherwise.

t3rt_wide_string_content

Returns the actual character array of the wide string.

const unsigned char * t3rt_wide_string_content

wstring Valid wide string.

wstring1 First wide string.

wstring2 Second wide string.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 457

(t3rt_wide_string_t wstring,
 t3rt_context_t context);

Parameters

Description

This function returns reference to the internal wide string buffer. Length of
this buffer is returned by the t3rt_wide_string_length function.

Return Values
Returns reference to the internal wide string buffer that is the array of wide
characters.

t3rt_wide_string_assign

Assigns the src wide string to the dest wide string.

void t3rt_wide_string_assign
(t3rt_wide_string_t dest,
 const t3rt_wide_string_t src,
 t3rt_context_t context);

Parameters

Description

This function assigns one wide string to the another. Destination wide string
has to be allocated prior to assignment.

t3rt_wide_string_append

Appends one wide string the end of another.

void t3rt_wide_string_append
(t3rt_wide_string_t wstring,
 t3rt_wide_string_t appwstr,
 t3rt_context_t context);

wstring Valid wide string.

dest Destination wide string.

src Source wide string.

458 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description
This function appends “appwstr“ to the end of “wstring“.

t3rt_format_char_string, t3rt_format_wide_string

Support for the parametrized wide string formatting.

t3rt_wide_string_t t3rt_format_char_string
(const char * fmt_cstring,
 t3rt_context_t context,
 ...);

t3rt_wide_string_t t3rt_format_wide_string
(const t3rt_wide_string_t fmt_wstring,
 t3rt_context_t context,
 ...);

Parameters

Description

Main formatting functions that drives the conversion process and invokes
support functions. Format string is represented by the ASCII string or the
wide string.

The behavior of these function is similar to the “printf” function. However
format string is based on different rules. Format string is a generic free text
string that contains format patterns. Each format pattern is substituted from
the variable length function parameter list, which should contain enough
values. Each format pattern starts with “%“ symbol. First symbol after “%“
describes the ordinal number of the actual parameter. That is one and the
same parameter may occur in several patterns. The second (and the last)
symbol describes the type of the corresponding data (actual parameter).

wstring Wide string that will be changed.

appwstr Appended wide string

fmt_string Format string.

... Optional variable length list of parameters.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 459

For example, pattern “%3s” tells that third parameter is an ASCII string
value. Valid type specifiers are:

RTL Binary String Functions
The binary string is an arbitrarily sized sequence of bits that is used by en-
coders/decoders and in various other situation when binary data have to be
represented.

RTL Binary String Related Type Definitions

t3rt_binary_string_t

Representation for a sequence of binary data. The string will grow dy-
namically to the necessary size.

t3rt_binary_string_iter_t

This is an iterator used when reading data from a binary string. Used in,
for example, decoders. The binary string iterator API functions have the
t3rt_bstring_iter-prefix.

t3rt_binary_string_allocate

Creates an empty binary string of given size

t3rt_binary_string_t t3rt_binary_string_allocate
(t3rt_alloc_strategy_t strategy,
 unsigned long alloc_length,
 t3rt_context_t context);

‘c’ ASCII character.

‘s’ ASCII string.

‘w’ Wide string.

‘d’ 32-bit integer.

‘D’ 64-bit integer.

‘f’ Float value.

‘b’ Binary string.

‘V’ t3rt_value_t reference.

460 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function creates new empty binary string. Allocation size specifies the
initial size of the internal string buffer. It may be equal to zero and serves
only to increase the performance of the binary string operations. Allocation
size is given in number of bits.

Return Values

New instance of binary string allocated according the specified strategy.

t3rt_binary_string_deallocate

Deletes binary string data.

void t3rt_binary_string_deallocate
(t3rt_binary_string_t string,
 t3rt_context_t context);

Parameters

Description

Use t3rt_binary_string_deallocate_all instead.
t3rt_binary_string_deallocate is a deprecated function and will be
removed in future versions.

t3rt_binary_string_deallocate frees the internal string buffer used to
store actual data. The memory allocated for the service structure itself should
be freed manually by the user

t3rt_binary_string_deallocate_all

Fully deletes binary string freeing all allocated memory.

strategy Memory allocation strategy for the created string.

alloc_length Initial size of the string buffer.

string Binary string to be deleted.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 461

void t3rt_binary_string_deallocate_all
(t3rt_binary_string_t * string,
 t3rt_context_t context);

Parameters

Description

t3rt_binary_string_deallocate_all fully frees the memory allocated
for a binary string.

t3rt_binary_string_construct

Creates new binary string from the specified data array.

t3rt_binary_string_t t3rt_binary_string_construct
(t3rt_alloc_strategy_t strategy,
 unsigned long length,
 const unsigned char *data,
 t3rt_context_t context);

Parameters

Description

This function creates new binary string and initializes it with the data from
the provided buffer.

Return Values

New instance of binary string allocated according the specified strategy and
filled with the specified data.

t3rt_binary_string_copy

Makes a copy of the string.

string Pointer to the binary string to be deleted.

strategy Memory allocation strategy for the resulting string.

length Length of data buffer in bits.

data Data buffer.

462 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_binary_string_t t3rt_binary_string_copy
(t3rt_binary_string_t string,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Return Values
Returns copy of the given binary string allocated according the specified
strategy.

t3rt_binary_string_clear

Clears the contents. This will only set the length to zero.

void t3rt_binary_string_clear
(t3rt_binary_string_t string,
 t3rt_context_t context);

Parameters

Description
This function sets the length of the binary string to zero. String buffer is not
touched and memory is not released.

t3rt_binary_string_length

The number of used bits in the string.

unsigned long t3rt_binary_string_length
(t3rt_binary_string_t string,
 t3rt_context_t context);

Parameters

string Binary string to copy.

strategy Memory allocation strategy for the resulting string.

string Binary string to clear.

string Valid binary string.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 463

Return Values
Returns the length of the given string in bits.

t3rt_binary_string_is_equal

Compares two bit strings for equality.

bool t3rt_binary_string_is_equal
(t3rt_binary_string_t s1,
 t3rt_binary_string_t s2,
 t3rt_context_t context);

Parameters

Return Values
Returns true if binary strings are equal, false otherwise.

t3rt_binary_string_pad

Aligns the binary string by padding the last byte with zeroes if not fully used.

void t3rt_binary_string_pad
(t3rt_binary_string_t string,
 t3rt_context_t context);

Parameters

Description

If the given binary string is not byte-aligned then it’s appended with certain
number of zero bits (from 1 to 7) to make the resulting string byte-aligned.

t3rt_binary_string_assign

Assigns one binary string to another.

void t3rt_binary_string_assign
(t3rt_binary_string_t dest,

s1 Valid binary string.

s1 Valid binary string.

string Valid binary string.

464 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 t3rt_binary_string_t src,
 t3rt_context_t context);

Parameters

Description

This function assigns one binary string to another. Both strings has to be
valid binary strings, allocated prior to the assignment.

t3rt_binary_string_append

t3rt_binary_string_append, t3rt_binary_string_append_1byte,
t3rt_binary_string_append_2bytes,
t3rt_binary_string_append_4bytes,
t3rt_binary_string_append_nbytes,
t3rt_binary_string_append_nbits,
t3rt_binary_string_append_from_iter,
t3rt_binary_string_append_bits

Append binary string from different sources.

void t3rt_binary_string_append
(t3rt_binary_string_t string,
 t3rt_binary_string_t appstr,
 t3rt_context_t context);

void t3rt_binary_string_append_1byte
(t3rt_binary_string_t string,
 unsigned char data_1,
 t3rt_context_t context);

void t3rt_binary_string_append_2bytes
(t3rt_binary_string_t string,
 unsigned short data_2,
 t3rt_context_t context);

void t3rt_binary_string_append_4bytes
(t3rt_binary_string_t string,
 unsigned long data_4,
 t3rt_context_t context);

void t3rt_binary_string_append_nbytes

dest Destination binary string.

src Source binary string.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 465

(t3rt_binary_string_t string,
 const unsigned char *data_n,
 unsigned long byte_size,t3rt_context_t context);

void t3rt_binary_string_append_nbits
(t3rt_binary_string_t string,
 const unsigned char *data_n,
 unsigned long bit_size,
 t3rt_context_t context);

void t3rt_binary_string_append_from_iter
(t3rt_binary_string_t string,
 t3rt_binary_string_iter_t *iter,
 unsigned long iter_bits,
 t3rt_context_t context);

void t3rt_binary_string_append_bits
(t3rt_binary_string_t string,
 unsigned char data_1,
 unsigned char n_bits,
 t3rt_context_t context);

Parameters

Description

The above functions append given binary string with data that may be pro-
vided differently.

string Valid binary string.

appstr Valid binary string.

data_1 8-bit integer (unsigned char).

data_2 16-bit integer (unsigned short).

data_4 32-bit integer (unsigned long)

data_n Pointer to data buffer

iter Binary string iterator

byte_size Length of data buffer in bytes.

bit_size Length of data buffer in bits.

iter_bits Number of bits to extract from the iterator.

n_bits Number of bits to extract from 8-bit integer.

466 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

In t3rt_binary_string_append data is appended from of another binary
string. The length of appended data is the length of appended binary string.

In t3rt_binary_string_append_1byte data is appended from given un-
signed char buffer. The length of appended data is 8 bits.

In t3rt_binary_string_append_2byte data is appended from given un-
signed short buffer. The length of appended data is 16bits.

In t3rt_binary_string_append_4byte data is appended from given un-
signed long. The length of appended data is 32bits.

In t3rt_binary_string_append_nbytes data is appended from given
data buffer. The length of appended data is specified by the “byte_size“ pa-
rameter in bytes (i.e. the actual length of appended data is “byte_size” * 8).

In t3rt_binary_string_append_nbits data is appended from given data
buffer. The length of appended data is specified by the “bit_size“ parameter
in bits.

In t3rt_binary_string_append_bits data is appended from given un-
signed char. The length of appended data is specified by the “n_bits“ param-
eter in bits. Value of “n_bits“ may not be grater than 8.

In t3rt_binary_string_append_iter data is appended from given bi-
nary string iterator, which has been previously initialized using one of the bi-
nary string iterator functions (e.g. t3rt_binary_string_start). The length of ap-
pended data is specified by the “iter_bits“ parameter in bits. Value of
“iter_bits“ may not be grater than remaining length of the iterator. It may be
queried using t3rt_bstring_iter_remaining_room function. After invoking
this function iterator is moved forward to the “iter_bits“ number of bits.

t3rt_bstring_iter_remaining_room

Returns the remaining room in the given iterator.

unsigned long t3rt_bstring_iter_remaining_room
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

iter Address of the binary string iterator.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 467

Return Values

Returns the number of bits between the current position of the iterator and
the end of the binary string. Returns zero then iterator is at the end of the bi-
nary string.

t3rt_binary_string_start

Sets the iterator at the beginning of the string.

void t3rt_binary_string_start
(t3rt_binary_string_t string,
 t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Description

This function initializes iterator and sets it to the start of given binary string.

Example Usage
t3rt_binary_string_iter_t iter;
t3rt_binary_string_start(bstring, &iter, ctx);
t3rt_decode(&iter, value_type, t3rt_temp_alloc_c, &value,
ctx);

t3rt_binary_string_set_at

Sets the iterator to the indicated bit position of the string.

void t3rt_binary_string_set_at
(t3rt_binary_string_t string,
 unsigned long index,
 t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

string Valid binary string.

iter Address of the binary string iterator.

468 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function initializes iterator and sets it to the specified position inside bi-
nary string. Position should be within the boundaries of the given string.

t3rt_bstring_iter_forward_nbits

Moves the iterator forward.

void t3rt_bstring_iter_forward_nbits
(t3rt_binary_string_iter_t *iter,
 unsigned long n_bits,
 t3rt_context_t context);

Parameters

Description
This function moves iterator forward to the specified number of bits. After
moving iterator should point to the valid position within binary string.

t3rt_bstring_iter_backward_nbits

Moves the iterator backwards.

void t3rt_bstring_iter_backward_nbits
(t3rt_binary_string_iter_t *iter,
 unsigned long n_bits,
 t3rt_context_t context);
 t3rt_context_t context);

string Valid binary string.

index Position inside binary string.

iter Address of the binary string iterator.

iter Address of the binary string iterator.

n_bits Offset in bits

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 469

Parameters

Description
This function moves iterator backward to the specified number of bits.
After moving iterator should point to the valid position within binary
string.

t3rt_bstring_iter_next_byte

Moves the iterator forwards to the start of the next byte.

void t3rt_bstring_iter_next_byte
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Description
This function moves the iterator forward to the start of the next byte. If the
current position is at a start of a byte, the iterator will move one byte
forward.

t3rt_bstring_iter_is_at_boundary

Checks if the iterator is positioned at the beginning of a byte.

bool t3rt_bstring_iter_is_at_boundary
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Description
This function checks if the iterator is positioned at the beginning of a byte,
i.e. that it is byte aligned.

iter Address of the binary string iterator.

n_bits Offset in bits

iter Address of the binary string iterator.

iter Address of the binary string iterator.

470 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

Returns true if iterator is byte aligned, false otherwise.

t3rt_bstring_iter_bits_to_byte_boundary

Returns number of bits left to the next byte boundary.

unsigned char t3rt_bstring_iter_bits_to_byte_boundary
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Return Values

Returns integer from 0 to 7 that is the number of bits between current iterator
position and next byte boundary.

t3rt_bstring_iter_at_end,
t3rt_bstring_iter_at_start

Predicates to check if the iterator is positioned at the end or beginning of the
string.

bool t3rt_bstring_iter_at_end
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

bool t3rt_bstring_iter_at_start
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Return Values

t3rt_bstring_iter_at_end returns true if iterator is positioned at the end
of binary string, false otherwise.

iter Address of the binary string iterator.

iter Address of the binary string iterator.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 471

t3rt_bstring_iter_at_start returns true if iterator is positioned at the
start of binary string, false otherwise.

t3rt_bstring_iter_is_bit_set

Checks if the bit at the current position is set.

bool t3rt_bstring_iter_is_bit_set
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Return Values
Returns true if bit is set (i.e. equals to 1) at the current iterator position,
false otherwise.

t3rt_bstring_iter_get_bits

t3rt_bstring_iter_get_bits, t3rt_bstring_iter_get_1byte,
t3rt_bstring_iter_get_2bytes, t3rt_bstring_iter_get_4bytes,
t3rt_bstring_iter_get_nbytes, t3rt_bstring_iter_get_nbits

Extracts data from the binary string.

unsigned char t3rt_bstring_iter_get_bits
(t3rt_binary_string_iter_t *iter,
 unsigned char n_bits,
 t3rt_context_t context);

unsigned char t3rt_bstring_iter_get_1byte
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

unsigned short t3rt_bstring_iter_get_2bytes
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

unsigned long t3rt_bstring_iter_get_4bytes
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

void t3rt_bstring_iter_get_nbytes
(t3rt_binary_string_iter_t *iter,
 unsigned long byte_size,

iter Address of the binary string iterator.

472 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 unsigned char *data,
 t3rt_context_t context);

void t3rt_bstring_iter_get_nbits
(t3rt_binary_string_iter_t *iter,
 unsigned long bit_size,
 unsigned char *data,
 t3rt_context_t context);

Parameters

Description

The above functions extracts specified amount of data from the binary string
and return it in this or tat way. Starting position is identified by the current
position of the iterator. The remaining room of the iterator (see
t3rt_bstring_iter_remaining_room) should be greater or equal to the length
of the extracted data. After extracting data iterator is moved forward.

t3rt_bstring_iter_get_bits extracts 0 to 8 bits from the string and re-
turns them as unsigned char value.

t3rt_bstring_iter_get_1byte extracts 8 bits from the string and returns
them as unsigned char value.

t3rt_bstring_iter_get_2bytes extracts 16 bits from the string and re-
turns them as unsigned short value.

t3rt_bstring_iter_get_4bytes extracts 32 bits from the string and re-
turns them as unsigned long value.

t3rt_bstring_iter_get_nbytes extracts specified number of bytes from
the string and puts them into given buffer.

t3rt_bstring_iter_get_nbits extracts specified number of bits from
the string and puts them into given buffer.

iter Address of the binary string iterator.

n_bits Number of bits to return (n_bits <= 8).

byte_size Amount of bytes to extract.

bit_size Amount of bits to extract.

data Pointer to data buffer.

RTL Codecs Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 473

Return Values

t3rt_bstring_iter_get_bits returns extracted 0-8 bits as unsigned char
value.

t3rt_bstring_iter_get_1byte returns extracted 8 bits as unsigned char
value.

t3rt_bstring_iter_get_2bytes extracts returns extracted 16 bits as un-
signed short value.

t3rt_bstring_iter_get_4bytes returns extracted 32 bits as unsigned
long value.

RTL Codecs Functions

RTL Codecs Related Type Definitions

t3rt_codecs_init_function_t

This type of function is registered in “t3rt_codecs_register” on page 474
and invoked when the codecs system must be initialized.

t3rt_codecs_setup_function_t

This type of function is registered in “t3rt_codecs_register” on page 474
and called repeatedly to set up codecs functions for a given TTCN-3
type.

t3rt_codecs_result_t

This represents the return status of the encoder and decoder functions.
It signifies that the operation was not applicable, failed, or successful.
The symbols used are: t3rt_codecs_result_not_applicable_c,
t3rt_codecs_result_failed_c or t3rt_codecs_result_succeeded_c respec-
tively.

t3rt_encoder_function_t

This is the function prototype that all encoder function must have. A
function of this prototype is associated with a TTCN-3 type by the reg-
istered setup function.

t3rt_decoder_function_t

474 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

This is the function prototype that all decoder function must have. A
function of this prototype is associated with a TTCN-3 type by the reg-
istered setup function.

t3rt_codecs_register

Registers a codecs system to the RTS to provide encoder and decoder func-
tions to all or a subset of the types in the TTCN-3 modules.

void t3rt_codecs_register
(t3rt_codecs_init_function_t init_function,
 t3rt_codecs_setup_function_t setup_function,
 t3rt_context_t ctx);

Parameters

t3rt_encode

Encode a value with the available encoder function of the type.

t3rt_codecs_result_t t3rt_encode
(t3rt_value_t value,
 t3rt_binary_string_t encoded_data,
 t3rt_context_t ctx);

Parameters

init_function The initialization function of the codecs system.
This will be called once (for each process)

setup_function This setup function will be called once for every ex-
isting type that has not been setup already

value Any TTCN-3 value to be encoded. This does not
apply to values that can not be passed.

encoded_data The inout value container where the encoded data
will be appended. This container will grow to the
necessary size and can be allocated with zero
length. See the t3rt_binary_string_allocate func-
tions.

RTL Codecs Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 475

Description

Encodes the value into a binary string allocated according to the encoding
strategy.

Note
This function conforms to the “t3rt_encoder_function_t” on page 473 pro-
totype but should never be set as encoder function for a type by a codecs
system’s setup function (“t3rt_codecs_setup_function_t” on page 473).
Doing so will cause a stack overflow.

Return Values

Compare with “t3rt_codecs_result_t” on page 473 for applicable values.

t3rt_decode

Decode an encoded binary string into the proper TTCN-3 RTS value using
the available decoder function of the type.

t3rt_codecs_result_t t3rt_decode
(t3rt_binary_string_iter_t * encoded_data,
 t3rt_type_t type,
 t3rt_alloc_strategy_t strategy,
 t3rt_value_t * decoded_value,
 t3rt_context_t ctx);

Parameters

Description

Decodes the data into a value.

encoded_data A binary string iterator to traverse the binary data.

type The expected type for this decoding. Encoding at-
tributes associated with this type can be extracted
from it.

decoded_value The inout result of the decoding that should be
filled in if the decoding was successful.

476 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Note
This function conforms to the “t3rt_decoder_function_t” on page 473 pro-
totype but should never be set as decoder function for a type by a codecs
system’s setup function (“t3rt_codecs_setup_function_t” on page 473).
Doing so that will cause a stack overflow.

Return Values

Compare with “t3rt_codecs_result_t” on page 473 for applicable values.

See also

“RTL Binary String Functions” on page 459

t3rt_tci_encode

Envelop function for the tciEncode.

t3rt_codecs_result_t t3rt_tci_encode
(t3rt_value_t value,
 t3rt_binary_string_t encoded_data,
 t3rt_context_t ctx);

Parameters

Description

This is a conversion function between t3rt_encode RTS encoding function
and tciEncode TCI encoding function. It should be registered by the user for
all types that are encoded using tciEncode.

Note
Ensure that you compiled test system with TCI support enabled. See com-
piler command line option for more info.

value Any TTCN-3 value to be encoded. This does not
apply to values that can not be passed.

encoded_data The inout value container where the encoded data
will be appended. This container will grow to the
necessary size and can be allocated with zero
length. See the t3rt_binary_string_allocate func-
tions.

RTL Codecs Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 477

Return Values

Compare with “t3rt_codecs_result_t” on page 473 for applicable values.

t3rt_tci_decode

Envelop function for the tciDecode.

t3rt_codecs_result_t t3rt_tci_decode
(t3rt_binary_string_iter_t * encoded_data,
 t3rt_type_t type,
 t3rt_alloc_strategy_t strategy,
 t3rt_value_t * decoded_value,
 t3rt_context_t ctx);

Parameters

Description

This is a conversion function between t3rt_decode RTS decoding function
and tciDecode TCI decoding function. It should be registered by the user for
all types that are decoded using tciDecode.

Note
Ensure that you compiled test system with TCI support enabled. See com-
piler command line option for more info.

Return Values

Compare with “t3rt_codecs_result_t” on page 473 for applicable values.

encoded_data A binary string iterator to traverse the binary data.

type The expected type for this decoding. Encoding at-
tributes associated with this type can be extracted
from it.

decoded_value The inout result of the decoding that should be
filled in if the decoding was successful.

478 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

RTL Error Handling Functions

RTL Error Handling Related Type Definitions

t3rt_error_description_t

This is a composition of information about an encountered error, used
in the t3rt_report_fatal_system_error function. The information is ex-
plicitly provided since the current state of the system can not be trusted.

t3rt_report_error

Report test case error and terminate the execution of the test case.

void t3rt_report_error
(unsigned long line,
 const char* file,
 t3rt_wide_string_t err_msg,
 t3rt_context_t ctx);

Parameters

Description

This function formats and sends a log message about the error, followed by
propagating the error verdict. This will have the effect that all running com-
ponents to shut down and the current test case to terminate.

The system will continue execution for the remainder of the control part.

This is the function to be used in implementation of the integration layer, en-
coders/decoders, log mechanisms, and so on to report an error from which
the system can recover and continue execution of the control part.

If an unrecoverable situation has occurred, the function
“t3rt_report_fatal_system_error” on page 479 should be used that will termi-
nate execution of the whole test suite.

line This is the line in the file at which point the error
occurred.

file This is the source file in which the error occurred.

err_msg This is the error message, represented by a wide
string (possibly localized).

RTL Execution Control

June 2009 IBM Rational Systems Tester 3.3 User Guide 479

t3rt_report_fatal_system_error

Report an unrecoverable error and terminate the execution of the whole
system.

void t3rt_report_fatal_system_error
(t3rt_error_description_t err,
 t3rt_context_t context);

Parameters

Description

This function logs the error description and then terminate execution without
attempting to shut anything down (other components, for example) grace-
fully.

RTL Execution Control
These functions are controlling the initialization, execution and finalization
(clean-up) of the test suite execution. They are only intended to be called
from the code generated by the Rational Systems Tester Compiler.

RTL Execution Control Related Type Definitions

t3rt_module_register_function_t

This is a function type that, when invoked, should take care of the reg-
istering of a TTCN-3 module, recursively through the imported mod-
ules. This function is automatically generated by the Compiler and used
in module registering.

t3rt_control_part_function_t

The control part function is a function that, when invoked, execute a
control part of a TTCN-3 module. Such a function is generated by the
Compiler for each module and the root module’s function will be used
as default in the execution of the test suite.

t3rt_snapshot_return_t

err The error description.

480 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

A value of this type is returned from the t3pl_component_wait function
and should tell whether a timeout occurred
(t3rt_snapshot_return_timeout), data was detected
(t3rt_snapshot_return_data_received) or both at the same time
(t3rt_snapshot_return_timeout_and_data_received).

t3rt_run_test_suite

Executes the control part of the test suite’s root module. This is the entry
point to the RTS.

void t3rt_run_test_suite
(int argc,
 char * argv [],
 t3rt_module_register_function_t root_module_func,
 t3rt_control_part_function_t control_part_func);

Parameters

Description

This function encapsulates the whole procedure of initialization, execution,
and finalization of the test execution.

First, the runtime engine modules are pre-initialized with the command-line
information (in argc and argv). Then, the root module is registered using the
provided registration function.

All the loaded modules are initialized (including module parameters initial-
ization) starting from the root module.

After this, the specified control part will be executed. The predefined con-
stant t3rt_root_control_part_c can be specified to run the control part
of the registered root module.

Last, cleanup is performed (using the generated “finalize” functions).

argc The number of command-line arguments.

argv The command-line arguments to the ETS.

root_module_func The function pointer to the (generated) register
function of the root module.

control_part_fun
c

The function pointer to the (generated) function
that executes the root modules control part.

RTL Memory Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 481

t3rt_exit

Aborts execution by following the proper shutdown procedures.

void t3rt_exit (void);

Description

Aborts execution by following the proper shutdown procedures.

The context of the control part component will be internally available. It is
necessary for sending messages to the control part component and to find the
list of known components.

Shutdown messages will be sent to all known components followed by
calling 't3pl_task_kill' with appropriate arguments.

This will also terminate the control part component.

t3rt_abort

Aborts execution abruptly.

void t3rt_abort (void);

Description

Aborts execution skipping proper shutdown procedures.

This will also terminate the control part component.

RTL Memory Functions

RTL Memory Related Type Definitions

t3rt_alloc_strategy_t

This type is used when functions potentially have to allocate memory to
perform its task, or, when you explicitly allocate new values and so on.
To allocate memory in temporary memory, use t3rt_temp_alloc_c and
to allocate in permanent (heap) memory use t3rt_perm_alloc_c.

t3rt_memory_scope_t

482 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

This is a position in a temporary memory area that is used for optimized
de-allocation.

t3rt_memory_temp_begin

Saves the current “next allocation position” in the temporary memory area.

void t3rt_memory_temp_begin
(t3rt_memory_scope_t *memory_scope,
 t3rt_context_t ctx);

Parameters

Description

This function creates a new memory scope in which allocation are made until
it is closed by “t3rt_memory_temp_end” on page 482.

This function is intended to be used when a new temporary memory scope is
desired, that will be closed to release the memory allocated.

The memory position is a structured object that is intended to be allocated on
the stack.

Example Usage
{
 t3rt_memory_scope_t mscope;

 t3rt_memory_temp_begin(&mscope, ctx);
 /* Processing that make allocation using the
 t3rt_temp_alloc_c allocation strategy. */
 t3rt_memory_temp_end(&mscope, ctx);
}

t3rt_memory_temp_end

Closes (and virtually deallocates) a previously created memory scope.

void t3rt_memory_temp_end
(t3rt_memory_scope_t *memory_scope,
 t3rt_context_t ctx);

memory_scope A storage variable for a new temporary memory
scope. This is an inout parameter.

RTL Memory Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 483

Parameters

Description

This function closed the given memory scope which will virtually deallocate
the memory allocated since the scope was created.

This is to be treated as “freeing” the temporary memory and subsequent tem-
porary memory allocations will overwrite any residing data.

If poison pilling is enabled, the memory blocks in the scope will be over-
written with a pattern signifying that the memory has been deallocated.

Example Usage
{
 t3rt_memory_scope_t mscope;

 t3rt_memory_temp_begin(&mscope, ctx);
 /* Processing that make allocation using the
 t3rt_temp_alloc_c allocation strategy. */
 t3rt_memory_temp_end(&mscope, ctx);
}

t3rt_memory_temp_clear

Closes (and virtually deallocates) a previously created memory scope.

void t3rt_memory_temp_clear
(t3rt_memory_scope_t *memory_scope,
 t3rt_context_t ctx);

Parameters

Description

This function clears the current scope, that is, it virtually deallocates the
memory allocated since the scope was created.

This is to be treated as “freeing” the temporary memory and subsequent tem-
porary memory allocations will overwrite any residing data.

memory_scope The previously created memory scope.

memory_scope The previously created memory scope.

484 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

If poison pilling is enabled, the memory blocks in the scope will be over-
written with a pattern signifying that the memory has been deallocated.

Example Usage
{
 t3rt_memory_scope_t mscope;

 t3rt_memory_temp_begin(&mscope, ctx);
 /* Processing that make allocation using the
 t3rt_temp_alloc_c allocation strategy. */
 t3rt_memory_temp_clear(&mscope, ctx);
 /* Processing that make allocation using the
 t3rt_temp_alloc_c allocation strategy. */
 t3rt_memory_temp_end(&mscope, ctx);
}

t3rt_memory_temp_allocate

Allocates temporary memory in current memory scope.

Parameters

void * t3rt_memory_temp_allocate
(unsigned long size,
 t3rt_context_t context);

Description

Allocates size number of bytes in the temporary memory area.

Return Values

Returns pointer to allocated block. Returns NULL in case of error.

size Size of allocated block in bytes.

RTL Source Tracking Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 485

RTL Source Tracking Functions

RTL Source Tracking Related Type Definitions

t3rt_source_location_t

This entity represents a location in a TTCN-3 source file (or in any lan-
guage source file that can be expressed with file name and line number.

A stack of objects of this type represents the call-stack during execution.

It is passed to the log mechanisms for all events to enable the logging to
point to the exact location where something happened.

t3rt_scope_kind_t

These enumeration values signifies the kind of scope that the source lo-
cation represents.

t3rt_scope_function_c
t3rt_scope_external_function_c
t3rt_scope_testcase_c
t3rt_scope_teststep_c
t3rt_scope_control_part_c
t3rt_scope_undefined_c

t3rt_targetcode_location_push

Pushes a new target code location on the stack.

void t3rt_targetcode_location_push
(const char *scope_name,
 const char *file_name,
 unsigned long line_number,
 t3rt_context_t ctx);

Parameters

Description

This sets the target code location and stores it within the component.

scope_name Name of an entered scope, as a C function, for ex-
ample.

file_name Name of the target code file.

line_number Line in the target code file.

486 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

A symmetric “t3rt_targetcode_location_pop” on page 486 must be made
after a push at all returning point in the scope or the location information will
be inconsistent.

t3rt_targetcode_location_set_line

Updates the line number of the pushed source code object on the stack.

void t3rt_targetcode_location_set_line
(unsigned long line,
 t3rt_context_t ctx);

Parameters

Description

This sets the line number of the topmost target code location object.

t3rt_targetcode_location_pop

Removes a previously pushed target code location from the stack.

void t3rt_targetcode_location_pop(t3rt_context_t ctx);

Description

This removes one target code location element from the source location
stack.

A symmetric “t3rt_targetcode_location_push” on page 485 must be made
prior to this or the location information will be inconsistent.

t3rt_targetcode_location_get

Returns location created by the last call to t3rt_targetcode_location_push.

t3rt_source_location_t t3rt_targetcode_location_get
(t3rt_context_t ctx);

line The new line number.

RTL Source Tracking Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 487

Description

This function only retrieves the topmost, target code related, source location
object.

Return Values

The topmost source location object. If not found a static object is returned,
representing the “unknown” location.

t3rt_source_tracking_top

Retrieves the top element pushed on the source location stack without re-
moving it.

t3rt_source_location_t t3rt_source_tracking_top
(t3rt_context_t ctx);

Description

Retrieves the location on the top of the source tracking stack independent of
the type of the top source location object. To retrieve a specific kind of source
location, use “t3rt_targetcode_location_get” on page 486.

Return Values

The topmost source location. If the stack is empty, a test case error will be
generated and the execution will terminate.

t3rt_source_location_module_name

Returns the module name.

const char* t3rt_source_location_module_name
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns module name of the given source location object.

location Source location object.

488 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_source_location_scope_name

Retrieves the scope name.

const char* t3rt_source_location_scope_name
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns scope (usually function, testcase or altstep) name of the given source
location object.

t3rt_source_location_scope_arguments

Returns the scope arguments.

t3rt_value_t* t3rt_source_location_scope_arguments
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns the (null-terminated) vector of scope arguments from a source loca-
tion object.

t3rt_source_location_scope_kind

Retrieves the scope kind.

t3rt_scope_kind_t t3rt_source_location_scope_name
(t3rt_source_location_t location,
 t3rt_context_t ctx);

location Source location object.

location Source location object.

RTL Source Tracking Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 489

Parameters

Return Values

Returns the scope kind from a given source location object.

t3rt_source_location_file_name

Retrieves the file name.

const char* t3rt_source_location_file_name
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns the file name from a given source location object.

t3rt_source_location_file_line

Retrieves the line number.

unsigned long t3rt_source_location_file_line
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns the line number in the source file from a given source location ob-
ject.

location Source location object.

location Source location object.

location Source location object.

490 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_source_location_is_ttcn3

Check whether the source location is a TTCN-3 source location or not.

bool t3rt_source_location_is_ttcn3
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns true if source location represents location in a TTCN-3 file, false if
it’s a target code location.

RTL Symbol Table Functions
One symbol table is generated statically per TTCN-3 module. Elements can
not be added dynamically during runtime. The intended usage is only to pro-
vide uniform access to the declared entities in the test suite modules.

RTL Symbol Table Related Type Definitions

t3rt_symbol_entry_t

This is an element of a module’s symbol table. Its structure is only public
(that is, the fields are visible and can be accessed) because the entries are
statically generated by the Compiler. Use the access function below to
access the information.

t3rt_symbol_entry_kind_t

This is an enumeration of the different kinds of which a symbol table
entry can be. It can be any of the following:

t3rt_symbol_entry_kind_module
t3rt_symbol_entry_kind_imported_module
t3rt_symbol_entry_kind_group
t3rt_symbol_entry_kind_userdefined_type
t3rt_symbol_entry_kind_signature_type
t3rt_symbol_entry_kind_template_type
t3rt_symbol_entry_kind_constant
t3rt_symbol_entry_kind_external_constant
t3rt_symbol_entry_kind_module_parameter

location Source location object.

RTL Symbol Table Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 491

t3rt_symbol_entry_kind_initialize_function
t3rt_symbol_entry_kind_module_params_initialize_function
t3rt_symbol_entry_kind_finalize_function
t3rt_symbol_entry_kind_external_function
t3rt_symbol_entry_kind_control_part_function
t3rt_symbol_entry_kind_function
t3rt_symbol_entry_kind_test_step
t3rt_symbol_entry_kind_testcase

t3rt_find_element

Finds the element in the symbol table of the specified module and returns it.

t3rt_symbol_entry_t t3rt_find_element
(const char *module_name,
 const char *element_name,
 t3rt_context_t context);

Parameters

Description

This function searches for element using its name in symbol table of the spec-
ified module. Module name may be an empty string (i.e. ““) thus telling RTS
to search in the symbol table of the root module. Using NULL as the value
of module name results in test case error.

Each imported object is represented in the symbol table of importing module
either by one or two entries. In most cases there are two entries, one entry
with fully qualified name (<name of imported module>.<name of imported
object>) and one entry with only object name. If two objects that are im-
ported from separate modules have same names then each of them is repre-
sented in the symbol table of importing module only by one entry with the
name given in fully qualified format. It means that care should be taken when
searching for imported objects.

Return Value

The symbol table entry if found, otherwise NULL is returned.

module_name Search is performed in the symbol table of this
module.

element_name Object to search for.

492 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3rt_root_module_name

Returns the name of the root module.

const char * t3rt_root_module_name (t3rt_context_t
context);

Description

Usually root module is set automatically by RTS according to the specified
root module registration function passed to the t3rt_run_test_suite. However
it may be set manually when using TCI test management by calling tciRoot-
Module function.

Return Values

Returns the name of the current root module.

t3rt_symbol_table_entry_name

Access the symbol table entry name.

const char* t3rt_symbol_table_entry_name
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

This is always the name of the symbol for which this is an entry.

Return Value

The name of the symbol or the empty string (““) if the entry is invalid.

t3rt_symbol_table_entry_kind

Access the kind of symbol table entry.

t3rt_symbol_entry_kind_t t3rt_symbol_table_entry_kind
(t3rt_symbol_entry_t entry,

entry The symbol table entry.

RTL Symbol Table Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 493

 t3rt_context_t ctx);

Parameters

Description

This retrieves the kind of symbol table entry.

Return Value

See t3rt_symbol_entry_kind_t type for value set.

t3rt_symbol_table_entry_type

Access the type descriptor of the symbol table entry.

t3rt_type_t t3rt_symbol_table_entry_type
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

This is only applicable to entries for user-defined types, signature types and
templates.

Return Value

The type of the symbol or t3rt_undefined_type type constant if the entry is
invalid.

t3rt_symbol_table_entry_value

Access the value for the symbol table entry.

t3rt_value_t t3rt_symbol_table_entry_value
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

entry The symbol table entry.

entry The symbol table entry.

494 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This is only applicable to constants and external constants.

Return Value

The associated constant value or the t3rt_no_value_c value constant if the
entry is invalid.

t3rt_symbol_table_entry_function

Access the function information of the symbol table entry.

void* t3rt_symbol_table_entry_function
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

This is only applicable for function-related symbols like test cases, functions,
test steps, and so on. This is where the pointer to the generated C function is
stored.

To be used, it has to be explicitly casted to the appropriate function. It is only
intended to be used by the Rational Systems Tester Compiler.

Return Value

The (“voidified”) function pointer of the symbol or NULL if the entry is in-
valid.

t3rt_symbol_table_entry_attribute

Access the attribute information of the symbol table entry.

entry The symbol table entry.

entry The symbol table entry.

RTL Symbol Table Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 495

void* t3rt_symbol_table_entry_attribute
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

This field is currently not used and should not be necessary to access. It is for
future extensibility in this area.

Return Value

Currently always NULL.

t3rt_symbol_table_entry_auxiliary

Access the auxiliary information of the symbol table entry.

void* t3rt_symbol_table_entry_auxiliary
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

The auxiliary field is currently not used and should not be necessary to ac-
cess. It is only intended for future extensions.

Return Value

A pointer to the auxiliary data or NULL if not present or if the entry is in-
valid.

entry The symbol table entry.

entry The symbol table entry.

496 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

RTL Miscellaneous Functions

t3rt_rtconf_get_param

Returns the value of configuration parameter name.

t3rt_value_t t3rt_rtconf_get_param
(const char *param_name,
 t3rt_context_t ctx);

Parameters

Description

This function queries the value of the specified key from the RTConf config-
uration table.

Return Values

If the key is illegal, t3rt_illegal_value_c will be returned and if the
value is not present, the t3rt_no_value_c is returned.

t3rt_rtconf_set_param

Sets the configuration parameter param_name to the provided value.

void t3rt_rtconf_set_param
(const char *param_name,
 t3rt_value_t param_value,
 t3rt_context_t ctx);

Parameters

param_name RTConf parameter name.

param_name RTConf parameter name.

parameter_value Parameter value to set.

RTL Miscellaneous Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 497

Description

If the key exists, the current value will be overwritten, and no warning will
be issued when this happens. If the param_value is blank (that is, NULL
since it is really a pointer) the t3rt_no_value_c will be inserted.

During a test case execution this function will not be allowed to modify the
information in runtime configuration, it will be a no-op.

t3rt_register_default_logging

Called during initialization to register the built-in log mechanism(s).

void t3rt_register_default_logging(void);

Description

This is located in a source file t3rts_conditional.c just to make it pos-
sible to remove the built-in log mechanism(s) at compile time when building
the ETS.

If the T3RT_NO_BUILTIN_LOG symbol is set when compiling, the built-
in log mechanism will be disabled.

Look in the file to see what compilation symbols can be used to accomplish
this.

t3rt_register_provided_logging

Called during initialization to register the provided log mechanisms (apart
from the built-in log).

void t3rt_register_provided_logging(void);

Description

This is located in a source file t3rts_conditional.c just to make it pos-
sible to enable the provided log mechanisms at compile time when building
the ETS.

If the T3RT_MSC96_EVENT_LOG symbol is set when compiling, the
MSC-96 log mechanism will be enabled.

If the T3RT_DEBUG symbol is set when compiling, the TTCN-3 real-time
debugger will be enabled.

498 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Look in the file to see what compilation symbols can be used to accomplish
this.

t3rt_context_get_component_type

Retrieve the component type of the component of this runtime context.

t3rt_type_t t3rt_context_get_component_type (t3rt_context_t
ctx);

Description

This can be used to access the component type information from a context.

Return Value

The type descriptor for the component.

t3rt_context_get_component_address

Retrieve the component control port address of the component of this
runtime context.

t3rt_binary_string_t t3rt_context_get_component_address
(t3rt_context_t ctx);

Description

This can be used to access the component (control port) address from a con-
text.

This address is used to control running components and is unique for all com-
ponents. It can be useful as an identifier for the component instance.

Return Value

The binary string containing the component control port address.

t3rt_context_get_component_name

Retrieve the name of the component of this runtime context.

const char* t3rt_context_get_component_name (t3rt_context_t
ctx);

RTL Miscellaneous Functions

June 2009 IBM Rational Systems Tester 3.3 User Guide 499

Description

This can be used to access the component name from a context. This is the
name provided at the component create operation. If name is not provided ex-
plicitly then system generates and assigns unique name.

This name is used in logging to identify component.

Return Value

The character string with the component name.

t3rt_set_epsilon_double

Set the constant for floating point value comparison.

void t3rt_set_epsilon_double
(double epsilon,
 t3rt_context_t context);

Parameters

Description

Sets the constant value to be used when comparing floating point values.

Instead of calling this function from user-defined code, the configuration
t3rt.values.limits.epsilon_double key can be applied for the execu-
tion of the ETS.

t3rt_epsilon_double

Retrieve the constant used in floating point value comparison.

double t3rt_epsilon_double(t3rt_context_t context);

Description

Sets the constant value to be used when comparing floating point values.

epsilon The value to be used when comparing floating point
value. See configuration key
“t3rt.values.limits.epsilon_double” on page 130 for
detailed description.

500 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

This value can be explicitly set by calling the function
t3rt_set_epsilon_double, or by setting the configuration key
t3rt.values.limits.epsilon_double.

Return Value

If the value is not configured explicitly the value returned is equal to
2*DBL_EPSILON from the <limits.h> definitions.

t3rt_value_to_string, t3rt_value_to_wide_string

Prints value into ASCII or wide string.

const char * t3rt_value_to_string
(t3rt_value_t value,
 t3rt_context_t ctx);

t3rt_wide_string_t t3rt_value_to_wide_string
(t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

Description

This functions may be used to print value into ASCII or wide string. It’s not
assumed that ASCII representation conforms to the TTCN-3 representation
of the given value. The intended use of this function is in custom log mech-
anisms.

Return Values

Returns free text representation of the specified value.

RTL Function for Generated Code Only
There are a number of functions that can be encountered in the public RTL
interface that are only intended to be used in the code generated from the Ra-
tional Systems Tester TTCN-3 Compiler. Those functions are listed here.

value Value to be printed.

RTL Function for Generated Code Only

June 2009 IBM Rational Systems Tester 3.3 User Guide 501

Important!
Using any of these functions from your own code can cause the ETS to be-
have in an undefined way! Contact your Rational Systems Tester support
organization if you need to use them.

• t3rt_type_instantiate_template

• t3rt_type_instantiate_dynamic_template

• t3rt_type_instantiate_named_dynamic_template

• t3rt_type_instantiate_external_value

• t3rt_type_check_builtin

• t3rt_type_check_char_range

• t3rt_type_check_universal_char_range

• t3rt_type_check_port_message

• t3rt_template_match

• t3rt_template_match_signature

• t3rt_value_set_null

• t3rt_value_set_address_value

• t3rt_value_get_address_value

• t3rt_value_set_external_value

• t3rt_value_get_external_value

• t3rt_value_set_timer_default_duration

• t3rt_value_set_timer_in_array_default_duration

• t3rt_valueof

• t3rt_valueof_signature

• t3rt_value_init

• t3rt_value_init_vector_element

• t3rt_value_init_vector_element_partial

• t3rt_value_assign_vector_element_partial

• t3rt_value_assign_and_log

• t3rt_value_try_field_by_index

• t3rt_match

• t3rt_match_signature

• t3rt_recordof_match

502 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

• t3rt_setof_match

• t3rt_subset_match

• t3rt_superset_match

• t3rt_regexp_match

• t3rt_regexp_match_substring

• t3rt_match_continue_on_fail

• t3rt_timer_start

• t3rt_timer_stop

• t3rt_timer_read

• t3rt_timer_is_running

• t3rt_timer_is_timed_out

• t3rt_timer_try_timed_out

• t3rt_component_create

• t3rt_component_execute

• t3rt_component_start

• t3rt_component_stop

• t3rt_component_kill

• t3rt_component_is_running

• t3rt_component_is_alive

• t3rt_component_try_done

• t3rt_component_try_killed

• t3rt_component_try_else

• t3rt_component_snapshot

• t3rt_component_control

• t3rt_component_wait

• t3rt_component_connect_port

• t3rt_component_map_port

• t3rt_component_disconnect_port

• t3rt_component_unmap_port

• t3rt_component_set_system_component_type

• t3rt_port_clear

• t3rt_port_start

RTL Function for Generated Code Only

June 2009 IBM Rational Systems Tester 3.3 User Guide 503

• t3rt_port_stop

• t3rt_port_halt

• t3rt_port_is_enabled

• t3rt_port_sut_action

• t3rt_port_send

• t3rt_port_call

• t3rt_port_reply

• t3rt_port_raise

• t3rt_port_try_receive

• t3rt_port_try_trigger

• t3rt_port_try_getcall

• t3rt_port_try_getreply

• t3rt_port_try_catch

• t3rt_port_try_catch_timeout

• t3rt_builtin_encode

• t3rt_builtin_decode

• t3rt_module_register

• t3rt_call_function

• t3rt_call_external_function

• t3rt_call_altstep

• t3rt_activate

• t3rt_deactivate

• t3rt_activation_list_invoke

• t3rt_retrieve_module_parameter

• t3rt_log_list_to_all

• t3rt_log_template_mismatch_by_name_event

• t3rt_log_template_mismatch_by_index_event

• t3rt_log_template_mismatch_event

• t3rt_log_alt_entered_event

• t3rt_log_alt_left_event

• t3rt_log_alt_rejected_event

• t3rt_log_alt_else_event

504 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

• t3rt_log_alt_defaults_event

• t3rt_log_alt_repeat_event

• t3rt_log_alt_wait_event

• t3rt_log_variable_modified_event

• t3rt_source_location_push

• t3rt_source_location_pop

• t3rt_source_location_push_block

• t3rt_source_location_pop_block

• t3rt_source_location_set_line

• t3rt_source_location_get

• t3rt_get_source_location

• t3rt_source_tracking_register_value

• t3rt_source_tracking_find_value

• t3rt_template_set_value

• t3rt_template_set_value_range

• t3rt_template_set_value_list

• t3rt_template_set_length_constraint

• t3rt_template_set_string_pattern

• t3rt_template_set_permutation

• t3rt_templateof

• t3rt_int2charstr

• t3rt_int2unicharstr

• t3rt_str2int_zero

• t3rt_str2float_zero

• all functions having two undescores after “t3rt” prefix (i.e. t3rt__XYZ))

Platform Layer API
This is the interface that provides the services needed by the RTS. All func-
tions have to be implemented when creating a PL-based integration (in dif-
ference to a TRI based integration).

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 505

A working implementation, called the “Example integration”, is provided in
the distribution and can be found in the /integrations/example directory in the
Rational Systems Tester installation directory. This can be copied and mod-
ified to fit your own integration needs.

Important!
The actual example integration implementation can potentially change
without prior notice in future versions. The PL API will not change without
notice.

PL General Functions

t3pl_general_prepare_testcase

Prepares the integration for a new test case.

void t3pl_general_prepare_testcase
(const char* module,
 const char* testcase,
 t3rt_type_t mtc_type,
 t3rt_type_t system_type,
 t3rt_context_t context);

Parameters

Description

This function is called before the execution of each test case to enable the in-
tegration to be prepared, if necessary.

t3pl_general_postprocess_testcase

Finalizes the integration for a terminating test case.

void t3pl_general_postprocess_testcase
(const char* module,
 const char* testcase,

module Name of module that defines test case.

testcase Name of the preparing test case.

mtc_type Type of the mtc component.

system_type Type of the system component.

506 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 t3rt_type_t mtc_type,
 t3rt_type_t system_type,
 t3rt_context_t context);

Parameters

Description

This function is called when the execution of each test case is going to termi-
nate.

t3pl_general_testcase_terminated

Cleans up after a test case has finished.

void t3pl_general_testcase_terminated
(const char* module,
 const char* testcase,
 t3rt_type_t mtc_type,
 t3rt_type_t system_type,
 t3rt_context_t context);

Parameters

Description

This function is called when the execution of a test case has been finished to
enable the integration to take the actions it finds necessary.

module Name of module that defines test case.

testcase Name of the preparing test case.

mtc_type Type of the mtc component.

system_type Type of the system component.

module Name of module that defines test case.

testcase Name of the terminated test case.

mtc_type Type of the mtc component.

system_type Type of the system component.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 507

t3pl_general_control_terminated

Cleans up after a control part has finished.

void t3pl_general_control_terminated
(const char* module,
 t3rt_context_t context);

Parameters

Description

This function is called when the execution of a control part has been finished
to enable the integration to take actions it finds necessary. This function is
also called after test case directly started with tciStartTestcase command ter-
minates.

t3pl_call_external_function

Carries out the execution of an external function.

void t3pl_call_external_function
(t3rt_type_t signature_type,
 t3rt_value_t parameters[],
 t3rt_value_t return_value,
 t3rt_context_t context);

Parameters

module Name of module that defines test case.

signature_type The signature type for the external function.

parameters Actual argument vector for the function call.

return_value The (pre-allocated) inout value container for the re-
turn value.

If this is set to the t3rt_no_value_c constant, no re-
turn value is expected (according to the signature
type).

508 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This function is called as a result of an external function call in the test suite.
This function may block.

PL Timer Functions

t3pl_time_pre_initialize

Performs timer module pre-initialization.

void t3pl_time_pre_initialize
(int argc,
 char *argv[],
 t3rt_context_t context);

Parameters

Description

This function is called to perform pre-initialization of timer module. It’s
called before RTConf table is filled with user-provided values.

This function is called only once.

t3pl_time_initialize

Initializes/Resets timer module.

void t3pl_time_initialize (t3rt_context_t ctx);

Description

This function is called to initialize/reset timer module. It’s called after RT-
Conf and root module initialization.

When using TCI or GUI test management this function is called at initializa-
tion of every directly started test case and/or control part.

argc Number of elements in the argv character string
array.

argv String array of command line parameters.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 509

t3pl_time_finalize

Finalizes timer module.

void t3pl_time_finalize (t3rt_context_t ctx);

Description

This function is called to finalize timer module. No timer handling routines
will be called after it.

t3pl_timer_create

Creates a timer instance into the “stopped” state.

void t3pl_timer_create
(t3rt_timer_handle_t *handle,
 t3rt_context_t context);

Parameters

Description

This function is called to create new timer instance. The initial state of cre-
ated timer is “stopped“.

t3pl_timer_delete

Deletes the timer instance. It will never be used again.

void t3pl_timer_delete
(const t3rt_timer_handle_t *handle,
 t3rt_context_t context);

Parameters

handle Pointer to t3rt_timer_handle_t object that receives
handle of created timer

handle Pointer to t3rt_timer_handle_t object that stores
handle of timer to be deleted

510 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This function is called to delete timer instance. It’s not assumed that timer
should be stopped prior to calling this function.

t3pl_timer_start

Starts a created timer instance.

void t3pl_timer_start
(const t3rt_timer_handle_t handle,
 double duration,
 t3rt_context_t context);

Parameters

Description

This function is used to start or restart the timer and may be applied to run-
ning timer. This should set the timer into the “running” state.

t3pl_timer_stop

Stops a timer instance.

void t3pl_timer_stop
(const t3rt_timer_handle_t handle,
 t3rt_context_t context);

Parameters

Description

This should set the timer into the “stopped” state.

t3pl_timer_read

Reads the current value of a timer.

handle Timer handle

duration Timeout period specified in seconds

handle Timer handle

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 511

t3rt_timer_state_t t3pl_timer_read
(const t3rt_timer_handle_t handle,
 double *elapsed_time,
 t3rt_context_t context);

Parameters

Description

This function is used to query timer state. Second parameter may be NULL.

Return Value

Returns timer state. If elapsed timer parameter is not NULL then it’s set to
number of seconds elapsed since timer start.

t3pl_timer_decode

Obtains TRI timer id from the timer handle.

t3rt_binary_string_t t3pl_timer_decode
(t3rt_timer_handle_t handle,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This function is used to convert runtime system timer handle into TRI timer
id. Note that timer id is returned as t3rt_binary_string_t object, not as TriTi-
merId (i.e. TRI BinaryString).

handle Timer handle

elapsed_timer Number of seconds elapsed since timer start (‘out’
parameter)

handle Timer handle

strategy Memory allocation strategy for the return value

512 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Value

Returns TRI timer id as binary string of t3rt_binary_string_t type.

PL Communication Functions

t3pl_communication_pre_initialize

Performs communication module pre-initialization.

void t3pl_communication_pre_initialize
(int argc,
 char *argv[],
 t3rt_context_t context);

Parameters

Description

This function is called to perform pre-initialization of communication
module. It’s called before RTConf table is filled with user-provided values.

This function is called only once.

t3pl_communication_initialize

Initializes/Resets communication module.

void t3pl_communication_initialize(t3rt_context_t context);

Description

This function is called to initialize/reset communication module. It’s called
after RTConf and root module initialization.

When using TCI or GUI test management this function is called at initializa-
tion of every directly started test case and/or control part.

argc Number of elements in the argv character string
array.

argv String array of command line parameters.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 513

t3pl_communication_finalize

Finalizes communication module.

void t3pl_communication_finalize (t3rt_context_t ctx);

Description

This function is called to finalize communication module. No communica-
tion handling routines will be called after it.

t3pl_port_create

Creates and initializes a port.

void t3pl_port_create
(t3rt_value_t port_value,
 t3rt_binary_string_t address,
 const char* name, long index,
 t3rt_context_t ctx);

Parameters

Description
Creates and initializes new port. It includes any platform dependent
communications mechanism, address, and queue initialization. This
function supports only scalar ports and one-dimensional port arrays.
Address of created port should be returned through ‘address’ out parameter.

t3pl_port_create_control_port_for_cpc

Creates control port for CPC (control) component

void t3pl_port_create_control_port_for_cpc
(t3rt_binary_string_t address,
 t3rt_context_t ctx);

port_value Port value, may be used to extract port type.

address Address of created port (‘out’ parameter).

name Port or port array name.

index Index in port array, -1 in case of scalar port.

514 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description
Creates and initializes CPC control port. It includes any platform dependent
communications mechanism, address, and queue initialization. This is the
first port created in the test suite.

t3pl_port_start

Starts a port.

void t3pl_port_start
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description
This is the direct mapping of the TTCN-3 port ‘start’ statement. After it
port becomes active and should be able to transmit data through it.

t3pl_port_stop

Stops a port.

void t3pl_port_stop
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description
This is the direct mapping of the TTCN-3 port ‘stop’ statement. After it
port becomes inactive and should not transmit any data through it.

address Address of created port (‘out’ parameter).

port_address Address of port to be started.

port_address Address of port to be stopped.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 515

t3pl_port_halt

Halts a port.

void t3pl_port_halt
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description
This is the direct mapping of the TTCN-3 port ‘halt’ statement. After it port
stops transmitting messages and receiving new messages. All data already
in port queue is processed accordingly. After all message are extracted
from port queue port becomes inactive.

t3pl_port_destroy

Destroys a port.

void t3pl_port_destroy
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description
This function destroys port deallocating all port data structures. The port
with given address will never be used more.

t3pl_port_clear

Discards any data contents of the port.

void t3pl_port_clear
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

port_address Address of port to be halted.

port_address Address of port to be destroyed.

516 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description
This is the direct mapping of the TTCN-3 port ‘clear’ statement. Any
received data in port buffers that has not been passed to runtime system is
deleted.

t3pl_port_component_send

Send data to another running test component.

void t3pl_port_component_send
(t3rt_binary_string_t dest_component,
 t3rt_binary_string_t port_address,
 t3rt_binary_string_t data,
 t3rt_context_t ctx);

Parameters

Description
This function is called whenever one of the components (including control
component) needs to communicate with another component. It may be
called as a result of TTCN-3 ‘send’, ‘call’, ‘reply’, ‘raise’ operations as
well as to perform service communication through control port. It’s used
only in internal test suite communication, communication with SUT is done
using other functions.

t3pl_port_sut_send

Send encoded data to the SUT.

void t3pl_port_sut_send
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t data,
 t3rt_binary_string_t sender_port_address,
 t3rt_context_t ctx);

port_address Address of port to be cleared.

dest_component Destination component address.

port_address Destination port address.

data Encoded data.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 517

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 unicast ‘send’
operation on a component port that has been mapped to a system port. port
address parameter identifies port that has been previously mapped.

t3pl_port_sut_send_mc

Send encoded data to the multiple entities within SUT.

void t3pl_port_sut_send_mc
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address_list[],
 t3rt_binary_string_t data,
 t3rt_binary_string_t sender_port_address,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 multicast
‘send’ operation on a component port that has been mapped to a system port.
port address parameter identifies port that has been previously mapped.

port_address Address of destination previously mapped port.

sut_address The encoded SUT address value.

data Encoded data

sender_port_addr
ess

The port address of the sender.

port_address Address of destination previously mapped port.

sut_address_list NULL-terminated list of the encoded SUT address
values.

data Encoded data

sender_port_addr
ess

The port address of the sender.

518 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3pl_port_sut_send_bc

Send encoded data to all entities within SUT.

void t3pl_port_sut_send_bc
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t data,
 t3rt_binary_string_t sender_port_address,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 broadcast
‘send’ operation on a component port that has been mapped to a system port.
port address parameter identifies port that has been previously mapped.

t3pl_port_sut_call

Request SUT to call specified remote function.

void* t3pl_port_sut_call
(t3rt_binary_string_t port_to_call,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_context_t ctx);

Parameters

port_address Address of destination previously mapped port.

data Encoded data

sender_port_addr
ess

The port address of the sender.

port_to_call Address of destination previously mapped port

sut_address The encoded SUT address value

caller_port Address of caller’s port

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 519

Description

This function is called by the RTS when it executes a TTCN-3 unicast ‘call’
operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but output parame-
ters are replaced with NULL values in the array.

This function is expected to not block, which means it should somehow re-
quest another thread or process to perform the actual call on behalf of the re-
questing component.

This function returns an opaque handle that is assumed to represent the re-
quested call operation. This handle is later supplied when calling either the
t3pl_port_sut_call_done or the t3pl_port_sut_call_abort function.

Return Values

This function returns an opaque handle that is assumed to represent the re-
quested call operation. If such a handle is not needed, NULL may be returned
instead.

t3pl_port_sut_call_mc

Request SUT to call specified remote function.

void* t3pl_port_sut_call_mc
(t3rt_binary_string_t port_to_call,
 t3rt_binary_string_t sut_address_list[],
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_context_t ctx);

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function to
be called

parameters An array of encoded parameter values – not NULL
terminated

520 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 multicast
‘call’ operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but output parame-
ters are replaced with NULL values in the array.

This function is expected to not block, which means it should somehow re-
quest another thread or process to perform the actual call on behalf of the re-
questing component.

This function returns an opaque handle that is assumed to represent the re-
quested call operation. This handle is later supplied when calling either the
t3pl_port_sut_call_done or the t3pl_port_sut_call_abort function.

Return Values

This function returns an opaque handle that is assumed to represent the re-
quested call operation. If such a handle is not needed, NULL may be returned
instead.

t3pl_port_sut_call_bc

Request SUT to call specified remote function.

void* t3pl_port_sut_call_bc
(t3rt_binary_string_t port_to_call,
 t3rt_binary_string_t caller_port,

port_to_call Address of destination previously mapped port

sut_address_list NULL-terminated list of the encoded SUT address
values

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function to
be called

parameters An array of encoded parameter values – not NULL
terminated

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 521

 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 broadcast
‘call’ operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but output parame-
ters are replaced with NULL values in the array.

This function is expected to not block, which means it should somehow re-
quest another thread or process to perform the actual call on behalf of the re-
questing component.

This function returns an opaque handle that is assumed to represent the re-
quested call operation. This handle is later supplied when calling either the
t3pl_port_sut_call_done or the t3pl_port_sut_call_abort function.

Return Values

This function returns an opaque handle that is assumed to represent the re-
quested call operation. If such a handle is not needed, NULL may be returned
instead.

t3pl_port_sut_call_done

Request SUT to release the handle to the finished call operation.

void t3pl_port_sut_call_done

port_to_call Address of destination previously mapped port

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function to
be called

parameters An array of encoded parameter values – not NULL
terminated

522 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

(void* handle,
 t3rt_context_t ctx);

Parameters

Description

This function is expected to release the opaque handle that is assumed to rep-
resent a previously requested call operation.

t3pl_port_sut_call_abort

Request SUT to release the handle to the timed out call operation.

void t3pl_port_sut_call_abort
(void* handle,
 t3rt_context_t ctx);

Parameters

Description

This function is expected to release the opaque handle that is assumed to rep-
resent a previously requested call operation. Note the risk of encountering a
race condition here, as the call operation was not “officially” terminated
when this function is decided to be called, but may have managed to termi-
nate before this function is called anyway.

t3pl_port_sut_reply

Return a reply value to a previously received call.

void t3pl_port_sut_reply
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,

handle the handle previously returned by the
t3pl_port_sut_call function

handle the handle previously returned by the
t3pl_port_sut_call function

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 523

 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t return_value,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 unicast ‘reply’
operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but input parameters
are replaced with NULL values in the array.

t3pl_port_sut_reply_mc

Return a reply value to a previously received call.

void t3pl_port_sut_reply_mc
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t sut_address_list[],
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t return_value,
 t3rt_context_t ctx);

destination_port Address of destination previously mapped port

sut_address Encoded SUT address value

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

parameters An array of encoded parameter values – not NULL
terminated

return_value The encoded return value, if any

524 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 multicast
‘reply’ operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but input parameters
are replaced with NULL values in the array.

t3pl_port_sut_reply_bc

Return a reply value to a previously received call.

void t3pl_port_sut_reply_bc
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t return_value,
 t3rt_context_t ctx);

Parameters

destination_port Address of destination previously mapped port

sut_address_list NULL-terminated list of the encoded SUT address
values

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

parameters An array of encoded parameter values – not NULL
terminated

return_value The encoded return value, if any

destination_port Address of destination previously mapped port

caller_port Address of caller’s port

address Reserved parameter, should be NULL

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 525

Description

This function is called by the RTS when it executes a TTCN-3 broadcast
‘reply’ operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but input parameters
are replaced with NULL values in the array.

t3pl_port_sut_raise

Return an exception value to a previously received call.

void t3pl_port_sut_raise
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t exception_value,
 t3rt_context_t ctx);

Parameters

signature_type The signature type, this specifies which function
was called

parameters An array of encoded parameter values – not NULL
terminated

return_value The encoded return value, if any

destination_port Address of destination previously mapped port

sut_address Encoded SUT address value

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

exception_value The encoded exception value

526 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This function is called by the RTS when it executes a TTCN-3 unicast ‘raise’
operation on a component port that has been mapped to a system port.

The exception value is provided in encoded form, that is, binary data.

t3pl_port_sut_raise_mc

Return an exception value to a previously received call.

void t3pl_port_sut_raise_mc
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t sut_address_list[],
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t exception_value,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 multicast
‘raise’ operation on a component port that has been mapped to a system port.

The exception value is provided in encoded form, that is, binary data.

t3pl_port_sut_raise_bc

Return an exception value to a previously received call.

destination_port Address of destination previously mapped port

sut_address_list NULL-terminated list of the encoded SUT address
values

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

exception_value The encoded exception value

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 527

void t3pl_port_sut_raise_bc
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t exception_value,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 broadcast
‘raise’ operation on a component port that has been mapped to a system port.

The exception value is provided in encoded form, that is, binary data.

t3pl_port_sut_action

Performs the SUT action (implicit send in TTCN-2).

void t3pl_port_sut_action
(t3rt_value_t string_or_template,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 “SUT action”
operation. Depending on what type of action is performed specified value
may represent character string or template value.

destination_port Address of destination previously mapped port

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

exception_value The encoded exception value

string_or_templa
te

Character string or template value

528 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3pl_port_retrieve_system_port

Retrieves the system port address.

void t3pl_port_retrieve_system_port
(const char * system_port_name,
 long index,
 t3rt_binary_string_t system_port_address,
 t3rt_context_t ctx);

Parameters

Description

This function is called when mapping and unmapping a local port to a named
system port. It locates system (TSI) component port using given port name
and port array index and returns port address through ‘system_port_address’
output parameter.

t3pl_port_release_system_port

Releases the system port address.

void t3pl_port_release_system_port
(t3rt_binary_string_t system_port_address,
 t3rt_context_t ctx);

Parameters

Description

This function is called when unmapping a system port.

system_port_name Name of system (TSI) port (or port array)

index Index in port array (or -1 in case of scalar port)

system_port_addr
ess

Output parameter for system (TSI) port address

system_port_addr
ess

TSI port address

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 529

t3pl_port_map, t3pl_port_unmap

Maps and unmaps port

void t3pl_port_map
(t3rt_binary_string_t port_address,
 const char* system_port_name,
 long index,
 t3rt_context_t ctx);

void t3pl_port_unmap
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description

These functions are direct mappings of the TTCN-3 ‘map’ and ‘unmap’ op-
erations. ‘port_address’ represents port that is going to be mapped or un-
mapped. Multidimensional port arrays are not supported.

t3pl_component_get_system_control_port

Returns the port for controlling the system (TSI) component.

t3rt_binary_string_t t3pl_component_get_system_control_port
(t3rt_context_t ctx);

Description

This function is called whenever there is a need to get address of system
(TSI) component control port.

Return Value

Address of system (TSI) component control port.

port_address Container for mapped/unmapped port address

system_port_name Name of system port (or name of port array)

index Index in port array (or -1 for scalar port)

530 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3pl_component_set_system_component_type

Sets the component type of the system component.

void t3pl_component_set_system_component_type
(t3rt_type_t component_type,
 t3rt_context_t ctx);

Parameters

Description

This function is called when starting test case. It’s the right place to create
and initialize system component. It should create control port and all com-
munication ports. Use given component type to process all component fields
and perform necessary initialization. After leaving this function system com-
ponent should be ready for map and unmap operations.

t3pl_component_wait

Retrieve any input from the environment to put in ports or detect timeout.

t3rt_snapshot_return_t t3pl_component_wait
(double* real_time_wait,
 double* time_to_soonest_timeout,
 t3rt_context_t ctx);

Parameters

component_type Type of system (TSI) component

real_time_wait An inout timeout value stating the maximum time
we want to wait before the waiting should be inter-
rupted. It should be modified and set to the “time
left” after data has arrived.

This timeout value comes from real-time related
time-outs in difference to the declared timer.

time_to_soonest_
timeout

An inout timeout value stating the maximum time
the integration should to wait before the TTCN-3
timer will time out. It should be modified and set to
the “time left” after data has arrived.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 531

Description

Blocks the current component waiting for some external stimuli (that is,
some message received or timer timing out). This function will return infor-
mation if there was data received and/or a timeout occurred. In either case the
timeout values, real_time_wait and time_to_soonest_timeout must be up-
dated according to how long it really took.

The actual wait should not be longer than the least of the timeout values. The
reason for having two timeout values is that if the time scale for TTCN-3
timers is not equal to the real-time clock (for example, time is slowed down
or sped up), the integration is the only place where this is known and this
function must make adjustments to the time waited.

t3rt_duration_forever_c is a valid timeout value for both parameters
and if both parameters have this value the function should wait indefinitely.

If one (or both) of the timeout values is set to t3rt_duration_nowait_c,
the function should have polling semantics, just checking for existing
data/time-outs, not waiting.

Return Values

Returns information if data was received, and/or a timeout occurred.

t3pl_component_control

Processes and dispatches control messages.

t3pl_component_control(t3rt_context_t ctx);

Description

This function is called whenever it’s necessary to process control messages
in the incoming event queue without touching data messages. It differs from
the t3pl_component_wait in two ways: it processes only control messages
(i.e. messages received through control port) and it doesn’t block if there are
no messages.

532 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

PL Memory Functions

t3pl_memory_pre_initialize

Performs memory module pre-initialization.

void t3pl_memory_pre_initialize(int argc, char *argv[])

Parameters

Description

This function is called to perform pre-initialization of memory module. It’s
called before RTConf table initialization.

This function is called only once.

After a call to t3pl_memory_pre_initialize, the t3pl_memory_allocate func-
tion must be working.

t3pl_memory_initialize

Initializes/Resets memory module

void t3pl_memory_initialize (t3rt_context_t context);

Description

This function is called to initialize/reset memory module. It’s called after
RTConf and root module initialization.

When using TCI or GUI test management this function is called at initializa-
tion of every directly started test case and/or control part.

After a call to t3pl_memory_initialize, all memory primitives must be avail-
able.

argc Number of elements in the argv character string
array.

argv String array of command line parameters.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 533

t3pl_memory_finalize

Finalizes memory module

void t3pl_memory_finalize (t3rt_context_t context);

Description

This function is called to finalize memory module. No memory handling rou-
tines will be called after it.

t3pl_memory_allocate

Allocated memory block

void* t3pl_memory_allocate
(const t3rt_alloc_strategy_t strategy,
 const unsigned long size,
 t3rt_context_t context);

Parameters

Description

This function allocates ‘size’ number of bytes of memory.

Return value

Returns pointer to allocated memory or NULL if memory cannot be allo-
cated.

t3pl_memory_deallocate

Deallocates given memory block

void t3pl_memory_deallocate
(const t3rt_alloc_strategy_t strategy,
 void* mem,
 t3rt_context_t context);

strategy Memory allocation strategy.

size Size of allocated memory in bytes.

534 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This function deallocates given memory block. It’s not assumed that integra-
tion stores memory allocation strategy for each allocated block thus
‘strategy’ parameter is used to tell integration which strategy has been used
to allocate given memory block.

t3pl_memory_reallocate

Reallocates given memory block

void* t3pl_memory_reallocate
(const t3rt_alloc_strategy_t strategy,
 void* mem, const unsigned long new_size,
 t3rt_context_t context);

Parameters

Description

This function is called to resize existing memory block. The contents of the
result are unchanged up to the shorter of new and old sizes. New block may
be in a different location, i.e. it’s not guaranteed that pointer returned by
t3pl_memory_reallocate is the same as passed through ‘mem’ parameter.

strategy Memory allocation strategy of the given memory
block.

mem Pointer to the memory block to be deallocated.

strategy Memory allocation strategy of the given memory
block.

mem Pointer to the memory block to be reallocated.

new_size Size in bytes for the new memory block

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 535

PL Concurrency Functions

t3pl_concurrency_pre_initialize

Pre-initializes the concurrency module.

void t3pl_concurrency_pre_initialize
(int argc,
 char *argv[],
 t3rt_context_t ctx);

Parameters

Description

This function is called to perform pre-initialization of concurrency module.
It’s called before RTConf table is filled with user-provided values thus it
cannot rely on RTS configuration information.

This function is called only once.

t3pl_concurrency_initialize

Initializes/Resets the concurrency functionality.

void t3pl_concurrency_initialize (t3rt_context_t ctx);

Description

These should set the concurrency implementation of the integration into a
state where it is fully functional.

This function can rely on the contents of the RTS configuration information.

When using TCI or GUI test management this function is called at initializa-
tion of every directly started test case and/or control part.

argc Number of elements in the argv character string
array.

argv String array of command line parameters.

536 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3pl_concurrency_finalize

Finalizes concurrency module.

void t3pl_concurrency_finalize (t3rt_context_t ctx);

Description

This function is called to finalize all concurrency handling functionality. No
concurrency handling routines will be called after it.

t3pl_concurrency_start_separate_component

Called when a component has been started in a separate process.

void t3pl_concurrency_start_separate_component
(int argc,
 const char* argv[],
 t3rt_context_t ctx);

Parameters

Description

Start the first (non-CPC) component of the current process. This should com-
municate with the creator of this component and hand over the newly created
control port address of this component.

This function is supposed to end by calling the t3rt_component_main func-
tion with the newly created control port address of this component along with
the provided context.

t3pl_task_create

Create a port to control the task and a thread of execution executing the func-
tion t3rt_component_main.

void t3pl_task_create
(int argc,

argc Number of arguments in the argument vector
‘argv’.

argv The argument vector passed from the command
line when the process was created

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 537

 const char * argv[],
 t3rt_value_t component_value,
 t3rt_binary_string_t address,
 t3rt_context_t context);

Parameters

Description

This is a direct mapping from the TTCN-3 create operation. This function
creates the thread of execution, the control port of this component and ini-
tiates the component value with the control port address. After this operation,
the created component is fully initialized and in a state where it is listening
to its control port.

t3pl_task_setup

Initializes new component

void t3pl_task_setup
(t3rt_binary_string_t compaddr,
 t3rt_context_t context);

Parameters

Description

This function is called from the t3rt_component_main function in an attempt
to setup whatever is necessary for the component to communicate through its
ports. It is created after the control port has been created but before any other
port is created and before any communication between components is made.

argc Number of arguments in the argument vector
‘argv’.

argv The argument vector passed from the command
line when the process was created

component_value Inout value for the component.

address Inout parameter to be set to the address of the cre-
ated tasks control port.

compaddr Task control port address.

538 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3pl_task_id

Lookups task identifier

unsigned long t3pl_task_id();

Description

This function is used to lookup system dependent task identifier (e.g. process
or thread id or whatever). Note that this function does not receive reference
to context. Task identifier may be reused by other component after it’s termi-
nation, i.e. two components may have same id if they do not execute concur-
rently.

Return Value

Returns integer value that uniquely identifies task in the test suite. This func-
tion should return one and the same value each time component calls it.

t3pl_task_register_context

Registers context of the new task

void t3pl_task_register_context (t3rt_context_t context);

Description

This provides integration with the task context. It may be used to call RTS
routines that require context reference from inside the TRI functions that
doesn’t know about RTS context (e.g. triExternalFunction).

t3pl_task_kill

Force the task to stop executing.

void t3pl_task_kill
(t3rt_binary_string_t address,
 const bool shutdown_acknowledged,
 t3rt_context_t context);

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 539

Parameters

Description

This is called by a component in a thread that wants to kill a task running in
another thread. This function is called even if the task did shutdown ac-
cording to the normal shutdown procedure. This is done just to enable the im-
plementation to make necessary clean up.

t3pl_task_exit

Called to terminate this task.

void t3pl_task_exit
(t3rt_context_cleanup_function_t context_cleanup_f,
 t3rt_context_t context);

Parameters

Description
This is called by a component thread to exit normally with finalizing all
task objects. ‘context_cleanup_f’ function should be called right before
terminating task.

t3pl_sem_create

Creates new semaphore object

void* t3pl_sem_create
(unsigned int value,
 t3rt_context_t ctx);

address Address to the control port of the component exe-
cuting in this task that should be killed.

shutdown_acknowl
edged

Set to “true” if the component shut down according
to the normal shutdown procedure.

context_cleanup_
f

Address to the function that performs context final-
ization.

540 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description
This function creates new semaphore that guards ‘value’ instances of some
object. It means that ‘value’ threads may simultaneously acquire (lock)
semaphore. ‘value’ is the initial value for semaphore counter. It may be
equal to zero.

Return Value

Returns handle to the created semaphore or NULL if it cannot be created.

t3pl_sem_wait

Performs unlimited time waiting on semaphore

bool t3pl_sem_wait
(void *sem,
 t3rt_context_t ctx);

Parameters

Description
This function acquires (locks) semaphore. Each time this function is called
semaphore counter (that initially equals to ‘value’ parameter of
t3pl_sem_create function) is decremented. If the value of semaphore
counter equals to zero (before decremented) then the thread is put into sleep
state until one of other threads release semaphore by calling t3pl_sem_post.

Return Value

Returns true if semaphore has been acquired, false in case of error.

t3pl_sem_trywait

Tries to acquire (lock) semaphore without waiting

bool t3pl_sem_trywait

value Amount of available resources guarded by sema-
phore.

sem Handle to the semaphore.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 541

(void *sem,
 t3rt_context_t ctx);

Parameters

Description
This function tries to acquire (lock) semaphore. If semaphore counter is
greater than zero then behavior of this function is the same as
t3pl_sem_wait. If semaphore counter equals to zero then function returns
immediately without putting thread into sleep state. Semaphore is not
acquired in latter case.

Return Value

Returns true if semaphore has been acquired, false otherwise.

t3pl_sem_timedwait

Performs limited time waiting on semaphore.

bool t3pl_sem_trywait
(void *sem,
 double wait_seconds,
 t3rt_context_t ctx);

Parameters

Description
This function tries to acquire (lock) semaphore. If semaphore counter is
greater than zero then behavior of this function is the same as
t3pl_sem_wait. If semaphore counter equals to zero then function waits
specified amount of time for the semaphore to be released. If semaphore
cannot be acquired during the specified time then function aborts returning
false.

Return Value

Returns true if semaphore has been acquired, false otherwise.

sem Handle to the semaphore.

sem Handle to the semaphore.

wait_seconds Wait limit

542 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3pl_sem_post

Releases semaphore

bool t3pl_sem_post
(void *sem,
 t3rt_context_t ctx);

Parameters

Description
This function releases (unlocks) semaphore. Each time this function is
called semaphore counter (that initially equals to ‘value’ parameter of
t3pl_sem_create function) increments. If there were threads waiting for
semaphore in sleep state then one of them is awaken (thus decreasing
semaphore counter).

Return Value

Returns true if semaphore has been released, false in case of error.

t3pl_sem_destroy

Destroys semaphore object

bool t3pl_sem_destroy
(void *sem,
 t3rt_context_t ctx);

Parameters

Description
This function destroys given semaphore. All waiting threads (if any) are
released.

Return Value

Returns true if semaphore has been successfully destroyed, false in case of
error.

sem Handle to the semaphore.

sem Handle to the semaphore.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 543

User Defined Functions

t3ud_register_codecs

Function called in the initiation phase to enable registering of codecs sys-
tems.

void t3ud_register_codecs
(int argc,
 char * argv[],
 t3rt_context_t ctx);

Parameters

Description

This function should call the t3rt_codecs_register function to register a co-
decs system. More than one codecs system can be registered.

t3ud_register_log_mechanisms

Register a log mechanism.

void t3ud_register_log_mechanisms(int argc, char * argv[]);

Parameters

Description

This function should registers all user-defined log mechanisms by, for each
such mechanism, calling the t3rt_log_register_listener function.

argc Number of arguments in the argument vector
‘argv’.

argv The argument vector passed from the command
line when the process was created

argc Number of arguments in the argument vector
‘argv’.

argv The argument vector passed from the command
line when the process was created

544 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

t3ud_read_module_param

Function to read a given test suite parameter for a module.

bool t3ud_read_module_param
(const char * module_name,
 const char * param_name,
 t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

Description

The read value should be stored in the provided value parameter by using the
provided inout value container. If the type of the value is needed (or any
value or type information), it can be accessed using the normal value and
type access functions.

If this function defines the requested module parameter no attempts to set the
parameters default value will be made.

The intended way to set module parameters is by using the command-line
switches -par and -parfile. This function is only necessary to implement
when a module parameter must be retrieved from a source where the com-
mand-line way is not sufficient.

Return Values

Returns true if the module parameter value was defined (set) by this function,
false otherwise.

t3ud_retreive_configuration

Retrieves any environment information and stores this in the RTS configura-
tion.

module_name The name of the module.

param_name Name of the module parameter

value Inout value container for the value to be read. This
is an instantiated value of the correct (expected)
type and the read value should be set (or assigned)
to it.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 User Guide 545

void t3ud_retrieve_configuration(t3rt_context_t ctx);

Description

This is a place to set up any configuration information in the environment
into the RTS configuration storage using the function
“t3rt_rtconf_set_param” on page 496.

t3ud_make_timestamp

Function to build user-defined timestamp for event logging.

void t3ud_make_timestamp
(t3rt_binary_string_t timestamp,
 t3rt_context_t ctx);

Parameters

Description

This function should prepare ASCII-based timestamp exactly in the same
way as it should appear in execution log. Run-time system doesn’t perform
any transformations of the prepared timestamp and prints it as is. Binary
string is used as the container for the arbitrary length character string only.

Example 25

void t3ud_make_timestamp(t3rt_binary_string_t timestamp,
t3rt_context_t ctx)
{

struct timeb timebuffer;
char *timeline;
ftime(&timebuffer);
timeline = ctime(& (timebuffer.time));
t3rt_binary_string_append_nbytes(timestamp, timeline,
strlen(timeline)+1, ctx);

}

––

timestamp Inout binary string container for the ASCII times-
tamp. This is an allocated binary string which
should be filled with the valid ASCII timestamp.

546 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

None.

TRI API
This interface is defined according to TRI (ETSI ES 201 873-5 V3.2.1). See
this document for further details.

The TRI interface functions are divided into four parts as defined in ETSI ES
201 873-5 V3.2.1, depending how and where they are used. They can be im-
plemented by Rational Systems Tester (TE), the System Adaptor (SA) or the
Platform Adaptor (PA) and used from (that is, called by) the same parts. So,
the categories are:

• SA->TE

• PA->TE

• TE->SA

• TE->PA.

TRI Type Definitions

BinaryString

This is used for storing binary data, when handling encoded values, for
example.

The data field is an array of bytes, not a null-terminated (ASCII) string.
bits is the number of bits stored in the array and the aux field is for fu-
ture extensibility of TRI functionality.

struct
{
 unsigned char* data;
 long int bits;
 void* aux;
};

QualifiedName

A value of this type is used for any named object declared in the context
of a component, a type or a timer, and so on.

The moduleName and objectName fields are the TTCN-3 identifiers lit-
erally and the aux field is for future extensibility of TRI functionality.

struct

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 547

{
 char* moduleName;
 char* objectName;
 void* aux;
};

TriActionTemplate

An alias type for BinaryString representing an action template.

TriAddress

An alias type for BinaryString representing an address.

TriAddressList

The representation of a list of TriAddress. This type is used for multicast
communication in TRI.

No special values mark the end of addrList[]. The length field shall be
used to traverse this array properly.

typedef struct _TriAddressList
{
 TriAddress **addrList;
 long int length;
};

TriException

An alias type for BinaryString representing an exception.

TriFunctionId

An alias type for QualifiedName representing a function identifier.

TriMessage

An alias type for BinaryString representing an encoded value.

TriSignatureId

An alias type for QualifiedName representing a signature identifier.

TriTestCaseId

An alias type for QualifiedName representing a test case identifier.

TriTimerDuration

A double value representing a time duration.

TriTimerId

An alias type for BinaryString representing a unique timer identifier.

548 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Note
Pending ETSI statement on timer and snapshot semantics may influence fu-
ture representation.

TriStatus

This is the status returned by all TRI functions that says whether the func-
tion succeeded or failed. The value of the type is either TRI_Error or
TRI_OK.

Note
This is an unsigned integer type and all negative values are reserved for fu-
ture extension of TRI functionality.

TriComponentId

The representation of a component instance.

The compInst field is a unique “handle” for the component instance,
compName is the name of the component as provided in the “start” com-
ponent operation and compType is the name of the component type.

typedef struct _TriComponentId
{
BinaryString compInst;
char* compName;
QualifiedName compType;

};

TriComponentIdList

The representation of a list of TriComponentId. This type is used for mul-
ticast communication in TRI.

No special values mark the end of compIdList[]. The length field shall be
used to traverse this array properly.

typedef struct _TriComponentIdList
{
 TriComponentId **compIdList;
 long int length;
};

TriParameterPassingMode
typedef enum
{
 TRI_IN = 0,
 TRI_INOUT = 1,
 TRI_OUT = 2
};

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 549

TriParameter

The representation of an encoded parameter to functions.

typedef struct _TriParameter
{
 BinaryString par;
 TriParameterPassingMode mode;
};

TriParameterList

No special values mark the end of parList[]. The length field shall be used
to traverse this array properly.

typedef struct _TriParameterList
{
 TriParameter **parList;
 long int length;
};

TriPortId

compInst is for component instance. For a singular (non-array) declara-
tion, the portIndex value should be -1. The aux field is for future exten-
sibility of TRI functionality.

typedef struct _TriPortId
{
 TriComponentId compInst;
 char* portName;
 long int portIndex;
 QualifiedName portType;
 void* aux;
};

TriPortIdList

No special values mark the end of portIdList[]. The length field shall be
used to traverse this array properly.

typedef struct _TriPortIdList
{
 TriPortId **portIdList;
 long int length;
};

SA->TE Functions

These functions are provided by the TRI integration to be called from the SA.

550 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

triEnqueueMsg

Enqueues a message in the input queue of the given port.

void triEnqueueMsg
(const TriPortId *tsiPortId,
 const TriAddress *sutAddress,
 const TriComponentId *componentId,
 const TriMessage *receivedMessage);

Parameters

Description

This operation is called by the SA after it has received a message from the
SUT. It can only be used when tsiPortId has been either previously mapped
to a port of componentId or has been referenced in the previous triExe-
cuteTestCase statement.

In the invocation of a triEnqueueMessage operation receivedMessage shall
contain an encoded value.

This operation shall pass the message to the TE indicating the port of the
component componentId to which the TSI port tsiPortId is mapped.

The decoding of receivedMessage has to be done in the TE.

triEnqueueCall

Enqueues a call request in the input queue of the given procedure port.

void triEnqueueCall
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList);

tsiPortId identifier of the test system interface port via which
the message is enqueued by the SUT Adapter

sutAddress (optional) source address within the SUT

componentId identifier of the receiving test component

receivedMessage the encoded received message

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 551

Parameters

Description

This operation can be called by the SA after it has received a procedure call
from the SUT. It can only be used when tsiPortId has been either previously
mapped to a port of componentId or referenced in the previous triExecute
statement.

In the invocation of a triEnqueueCall operation all in and inout procedure pa-
rameters contain encoded values. All out procedure parameters shall contain
the distinct value of null since they are only relevant in the reply on the pro-
cedure call but not in the procedure call itself.

The TE can enqueue this procedure call with the signature identifier signa-
tureId at the port of the component componentId to which the TSI port tsi-
PortId is mapped. The decoding of procedure parameters has to be done in
the TE.

No error shall be indicated by the TE in case the value of any out parameter
is non-null.

triEnqueueReply

Enqueues a reply to a call in the input queue of the given procedure port.

void TriEnqueueReply
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,

tsiPortId identifier of the test system interface port via which
the message is enqueued by the SUT Adapter

sutAddress (optional) source address within the SUT

componentId identifier of the receiving test component

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

552 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 const TriParameter* returnValue);

Parameters

Description

This operation can be called by the SA after it has received a reply from the
SUT. It can only be used when tsiPortId has been either previously mapped
to a port of componentId or referenced in the previous triExecute statement.

In the invocation of a triEnqueueReply operation all out and inout procedure
parameters and the return value contain encoded values. All in procedure pa-
rameters shall contain the distinct value of null since they are only of rele-
vance to the procedure call but not in the reply to the call.

If no return type has been defined for the procedure signature in the TTCN-
3 ATS, the distinct value null shall be used for the return value.

The TE can enqueue this reply to the procedure call with the signature iden-
tifier signatureId at the port of the component componentId to which the TSI
port tsiPortId is mapped. The decoding of the procedure parameters has to be
done within the TE.

No error shall be indicated by the TE in case the value of any in parameter or
a non-defined return value is non-null.

tsiPortId identifier of the test system interface port via which
the message is enqueued by the SUT Adapter

sutAddress (optional) source address within the SUT

componentId identifier of the receiving test component

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

returnValue (optional) encoded return value of the procedure
call

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 553

triEnqueueException

Enqueues an exception (raised during a call operation) in the input queue of
the given procedure port.

void TriEnqueueException
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriException* exception);

Parameters

Description

This operation can be called by the SA after it has received a reply from the
SUT. It can only be used when tsiPortId has been either previously mapped
to a port of componentId or referenced in the previous triExecuteTestCase
statement.

In the invocation of a triEnqueueException operation exception shall contain
an encoded value.

The TE can enqueue this exception for the procedure call with the signature
identifier signatureId at the port of the component componentId to which the
TSI port tsiPortId is mapped.

The decoding of the exception has to be done within the TE.

PA->TE Functions

These functions are provided by TRI integration to be called from the PA.

tsiPortId identifier of the test system interface port via which
the message is enqueued by the SUT Adapter

sutAddress (optional) source address within the SUT

componentId identifier of the receiving test component

signatureId identifier of the signature of the procedure call

exception the encoded exception

554 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

triTimeout

This operation is called by the PA when a timer has expired.

void triTimeout(const TriTimerId *timerId);

Parameters

Description

This operation is called by the PA after a timer, which has previously been
started using the triStartTimer operation, has expired, that is, it has reached
its maximum duration value.

The timeout with the timerId can be added to the timeout list in the TE. The
implementation of this operation in the TE has to be done in such a manner
that it addresses the different TTCN-3 semantics for timers defined in
TTCN-3.

TE->SA Functions

These functions are implemented in the SA part of the TRI implementation
and will be called from the TE.

triSAReset

This operation can be called by the TE at any time to reset the SA.

TriStatus triSAReset(void);

Description

The SA shall reset all communication means which it is maintaining, that is
reset static connections to the SUT, close dynamic connections to the SUT,
discard any pending messages or procedure calls, for example.

The triSAReset operation returns TRI_OK in case the operation has been
successfully performed, TRI_Error otherwise.

timerId Identifier of the timer instance.

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 555

Return Values

The return status of the triSAReset operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triExecuteTestcase

Called to prepare the TRI implementation that a test case is about to be exe-
cuted.

TriStatus triExecuteTestcase
(const TriTestCaseId *testCaseId,
 const TriPortIdList *tsiPortList);

Parameters

Description

This operation is called by the TE immediately before the execution of any
test case. The test case that is going to be executed is indicated by the
testCaseId. tsiPortList contains all ports that have been declared in the
definition of the system component for the test case, that is, the TSI ports. If
a system component has not been explicitly defined for the test case in the
TTCN-3 ATS then the tsiPortList contains all communication ports of the
MTC test component. The ports in tsiPortList are ordered as they appear in
the respective TTCN-3 component declaration.

The SA can set up any static connections to the SUT and initialize any com-
munication means for TSI ports.

The triExecuteTestcase operation returns TRI_OK in case the operation has
been successfully performed, TRI_Error otherwise.

Return Values

The return status of the triExecuteTestcase operation. The return status indi-
cates the local success (TRI_OK) or failure (TRI_Error) of the operation.

testCaseId Identifier of the test case that is going to be exe-
cuted.

tsiPortList A list of test system interface ports defined for the
test system.

556 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

triEndTestcase

Called immediately after the execution of any test case.

TriStatus triEndTestcase(void);

Description

This operation is called by the TE immediately after the execution of any test
case.

The SA can free resources, cease communication at system ports and to test
components.

The triEndTestCase operation returns TRI_OK in case the operation has
been successfully performed, TRI_Error otherwise.

Return Values

The return status of the triEndTestcase operation. The return status indicates
the local success (TRI_OK) or failure (TRI_Error) of the operation.

triMap

Called when a port needs to be mapped.

TriStatus triMap
(const TriPortId *compPortId,
 const TriPortId *tsiPortId);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 map operation.

The SA can establish a dynamic connection to the SUT for the referenced
TSI port.

compPortId Identifier of the test component port to be mapped.

tsiPortId Identifier of the test system interface port to be
mapped.

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 557

The triMap operation returns TRI_Error in case a connection could not be es-
tablished successfully, TRI_OK otherwise. The operation should return
TRI_OK in case no dynamic connection needs to be established by the test
system.

Return Values

The return status of the triMap operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

triUnmap

This operation is called by the TE when it executes any TTCN-3 unmap op-
eration.

TriStatus triUnmap
(const TriPortId *compPortId,
 const TriPortId *tsiPortId);

Parameters

Description

The SA shall close a dynamic connection to the SUT for the referenced TSI
port.

The triUnmap operation returns TRI_Error in case a connection could not be
closed successfully or no such connection has been established previously,
TRI_OK otherwise. The operation should return TRI_OK in case no dy-
namic connections have to be established by the test system.

Return Values

The return status of the triUnmap operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

compPortId Identifier of the test component port to be un-
mapped.

tsiPortId Identifier of the test system interface port to be un-
mapped.

558 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

triSend

Called when a message needs to be sent on a port to the single recipient.

TriStatus triSend
(const TriComponentId *componentId,
 const TriPortId *tsiPortId,
 const TriAddress *sutAddress,
 const TriMessage *sendMessage);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 unicast send
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 send operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI op-
eration call.

The SA can send the message to the SUT.

The triSend operation returns TRI_OK in case it has been completed suc-
cessfully. Otherwise TRI_Error shall be returned. Notice that the return value
TRI_OK does not imply that the SUT has received sendMessage.

Return Values

The return status of the triSend operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

componentId Identifier of the sending test component.

tsiPortId Identifier of the test system interface port via which
the message is sent to the SUT Adapter.

sutAddress (Optional) destination address within the SUT.

sendMessage The encoded message to be send.

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 559

triSendMC

Called when a message needs to be sent on a port to the multiple recipients.

TriStatus triSendMC
(const TriComponentId *componentId,
 const TriPortId *tsiPortId,
 const TriAddressList *sutAddresses,
 const TriMessage *sendMessage);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 multicast send
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 send operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI op-
eration call.

The SA can send the message to the SUT.

The triSendMC operation returns TRI_OK in case it has been completed suc-
cessfully. Otherwise TRI_Error shall be returned. Notice that the return value
TRI_OK does not imply that the SUT has received sendMessage.

Return Values

The return status of the triSendMC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

componentId Identifier of the sending test component.

tsiPortId Identifier of the test system interface port via which
the message is sent to the SUT Adapter.

sutAddresses (Optional) destination addresses within the SUT.

sendMessage The encoded message to be send.

560 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

triSendBC

Called when a message needs to be sent on a port to all recipients in a SUT.

TriStatus triSendBC
(const TriComponentId *componentId,
 const TriPortId *tsiPortId,
 const TriMessage *sendMessage);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 broadcast send
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 send operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI op-
eration call.

The SA can send the message to the SUT.

The triSendBC operation returns TRI_OK in case it has been completed suc-
cessfully. Otherwise TRI_Error shall be returned. Notice that the return value
TRI_OK does not imply that the SUT has received sendMessage.

Return Values

The return status of the triSendBC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triCall

Called when a procedure call needs to be made on a port to the single recip-
ient.

componentId Identifier of the sending test component.

tsiPortId Identifier of the test system interface port via which
the message is sent to the SUT Adapter.

sendMessage The encoded message to be send.

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 561

TriStatus triCall
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 unicast call
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 call operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All in and inout procedure parameters contain encoded values. All out pro-
cedure parameters shall contain the distinct value of null since they are only
of relevance in a reply to the procedure call but not in the procedure call it-
self.

The procedure parameters are the parameters specified in the TTCN-3 signa-
ture template. Their encoding has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation, the SA can initiate the procedure call corre-
sponding to the signature identifier signatureId and the TSI port tsiPortId.

componentId identifier of the test component issuing the proce-
dure call

tsiPortId identifier of the test system interface port via which
the procedure call is sent to the SUT Adapter

sutAddress (Optional) destination address within the SUT.

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

562 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

The triCall operation shall return without waiting for the return of the issued
procedure call. This might be achieved for example by spawning a new
thread or process. This handling of this procedure call is, however, dependent
on implementation of the TE.

This TRI operation returns TRI_OK on successful initiation of the procedure
call, TRI_Error otherwise. No error shall be indicated by the SA in case the
value of any out parameter is non-null. Notice that the return value of this
TRI operation does not make any statement about the success or failure of
the procedure call.

Note
An optional timeout value, which can be specified in the TTCN-3 ATS for a
call operation, is not included in the triCall operation signature. The TE is
responsible for addressing this issue by starting a timer for the TTCN-3 call
operation in the PA with a separate TRI operation call, that is, triStart-
Timer.

Return Values

The return status of the triCall operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

triCallMC

Called when a procedure call needs to be made on a port to the multiple re-
cipients.

TriStatus triCall
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList);

Parameters

componentId identifier of the test component issuing the proce-
dure call

tsiPortId identifier of the test system interface port via which
the procedure call is sent to the SUT Adapter

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 563

Description

This operation is called by the TE when it executes a TTCN-3 multicast call
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 call operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All in and inout procedure parameters contain encoded values. All out pro-
cedure parameters shall contain the distinct value of null since they are only
of relevance in a reply to the procedure call but not in the procedure call it-
self.

The procedure parameters are the parameters specified in the TTCN-3 signa-
ture template. Their encoding has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation, the SA can initiate the procedure call corre-
sponding to the signature identifier signatureId and the TSI port tsiPortId.

The triCallMC operation shall return without waiting for the return of the is-
sued procedure call. This might be achieved for example by spawning a new
thread or process. This handling of this procedure call is, however, dependent
on implementation of the TE.

This TRI operation returns TRI_OK on successful initiation of the procedure
call, TRI_Error otherwise. No error shall be indicated by the SA in case the
value of any out parameter is non-null. Notice that the return value of this
TRI operation does not make any statement about the success or failure of
the procedure call.

sutAddresses (Optional) destination addresses within the SUT.

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

564 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Note
An optional timeout value, which can be specified in the TTCN-3 ATS for a
call operation, is not included in the triCallMC operation signature. The TE
is responsible for addressing this issue by starting a timer for the TTCN-3
call operation in the PA with a separate TRI operation call, that is, triStart-
Timer.

Return Values

The return status of the triCallMC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triCallBC

Called when a procedure call needs to be made on a port to all recipients in
a SUT.

TriStatus triCall
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList);

Parameters

componentId identifier of the test component issuing the proce-
dure call

tsiPortId identifier of the test system interface port via which
the procedure call is sent to the SUT Adapter

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 565

Description

This operation is called by the TE when it executes a TTCN-3 broadcast call
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 call operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All in and inout procedure parameters contain encoded values. All out pro-
cedure parameters shall contain the distinct value of null since they are only
of relevance in a reply to the procedure call but not in the procedure call it-
self.

The procedure parameters are the parameters specified in the TTCN-3 signa-
ture template. Their encoding has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation, the SA can initiate the procedure call corre-
sponding to the signature identifier signatureId and the TSI port tsiPortId.

The triCallBC operation shall return without waiting for the return of the is-
sued procedure call. This might be achieved for example by spawning a new
thread or process. This handling of this procedure call is, however, dependent
on implementation of the TE.

This TRI operation returns TRI_OK on successful initiation of the procedure
call, TRI_Error otherwise. No error shall be indicated by the SA in case the
value of any out parameter is non-null. Notice that the return value of this
TRI operation does not make any statement about the success or failure of
the procedure call.

Note
An optional timeout value, which can be specified in the TTCN-3 ATS for a
call operation, is not included in the triCallBC operation signature. The TE
is responsible for addressing this issue by starting a timer for the TTCN-3
call operation in the PA with a separate TRI operation call, that is, triStart-
Timer.

Return Values

The return status of the triCallBC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

566 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

triReply

Called when a reply (to a call operation) needs to be made on a port to the
single recipient.

TriStatus triReply
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 unicast reply
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 reply operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All out and inout procedure parameters and the return value contain encoded
values. All in procedure parameters shall contain the distinct value of null
since they are only of relevance to the procedure call but not in the reply to
the call.

componentId identifier of the replying test component

tsiPortId iidentifier of the test system interface port via
which the reply is sent to the SUT Adapter

sutAddress (Optional) destination address within the SUT.

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

returnValue (optional) encoded return value of the procedure
call

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 567

The parameterList contains procedure call parameters. These parameters are
the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

If no return type has been defined for the procedure signature in the TTCN-
3 ATS, the distinct value null shall be passed for the return value.

On invocation of this operation, the SA can issue the reply to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triReply operation will return TRI_OK on successful execution of this
operation, TRI_Error otherwise. No error shall be indicated by the SA in case
the value of any in parameter or a non-defined return value is non-null.

Return Values

The return status of the triReply operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triReplyMC

Called when a reply (to a call operation) needs to be made on a port to the
multiple recipients.

TriStatus triReplyMC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue);

Parameters

componentId identifier of the replying test component

tsiPortId iidentifier of the test system interface port via
which the reply is sent to the SUT Adapter

sutAddresses (Optional) destination addresses within the SUT.

568 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by the TE when it executes a TTCN-3 multicast reply
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 reply operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All out and inout procedure parameters and the return value contain encoded
values. All in procedure parameters shall contain the distinct value of null
since they are only of relevance to the procedure call but not in the reply to
the call.

The parameterList contains procedure call parameters. These parameters are
the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

If no return type has been defined for the procedure signature in the TTCN-
3 ATS, the distinct value null shall be passed for the return value.

On invocation of this operation, the SA can issue the reply to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triReplyMC operation will return TRI_OK on successful execution of
this operation, TRI_Error otherwise. No error shall be indicated by the SA in
case the value of any in parameter or a non-defined return value is non-null.

Return Values

The return status of the triReplyMC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

returnValue (optional) encoded return value of the procedure
call

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 569

triReplyBC

Called when a reply (to a call operation) needs to be made on a port to all re-
cipients in a SUT.

TriStatus triReply
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 broadcast
reply operation on a component port which has been mapped to a TSI port.
This operation is called by the TE for all TTCN-3 reply operations if no
system component has been specified for a test case, that is, only an MTC
test component is created for a test case.

All out and inout procedure parameters and the return value contain encoded
values. All in procedure parameters shall contain the distinct value of null
since they are only of relevance to the procedure call but not in the reply to
the call.

The parameterList contains procedure call parameters. These parameters are
the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

componentId identifier of the replying test component

tsiPortId iidentifier of the test system interface port via
which the reply is sent to the SUT Adapter

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

returnValue (optional) encoded return value of the procedure
call

570 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

If no return type has been defined for the procedure signature in the TTCN-
3 ATS, the distinct value null shall be passed for the return value.

On invocation of this operation, the SA can issue the reply to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triReplyBC operation will return TRI_OK on successful execution of
this operation, TRI_Error otherwise. No error shall be indicated by the SA in
case the value of any in parameter or a non-defined return value is non-null.

Return Values

The return status of the triReplyBC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triRaise

Called to raise an exception (during a call operation) on a port to the single
recipient.

TriStatus triRaise
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriException* exception);

Parameters

componentId identifier of the replying test component

tsiPortId identifier of the test system interface port via which
the reply is sent to the SUT Adapter

sutAddress (Optional) destination address within the SUT.

signatureId identifier of the signature of the procedure call

exception the encoded exception

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 571

Description

This operation is called by the TE when it executes a TTCN-3 unicast raise
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 raise operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation the SA can raise an exception to a procedure
call corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triRaise operation returns TRI_OK on successful execution of the oper-
ation, TRI_Error otherwise.

Return Values

The return status of the triRaise operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triRaiseMC

Called to raise an exception (during a call operation) on a port to the multiple
recipient.

TriStatus triRaiseMC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriException* exception);

Parameters

componentId identifier of the replying test component

tsiPortId identifier of the test system interface port via which
the reply is sent to the SUT Adapter

572 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by the TE when it executes a TTCN-3 multicast raise
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 raise operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation the SA can raise an exception to a procedure
call corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triRaiseMC operation returns TRI_OK on successful execution of the
operation, TRI_Error otherwise.

Return Values

The return status of the triRaiseMC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triRaiseBC

Called to raise an exception (during a call operation) on a port to all recipi-
ents in a SUT.

TriStatus triRaiseBC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriException* exception);

sutAddresses (Optional) destination addresses within the SUT.

signatureId identifier of the signature of the procedure call

exception the encoded exception

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 573

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 broadcast raise
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 raise operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation the SA can raise an exception to a procedure
call corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triRaiseBC operation returns TRI_OK on successful execution of the op-
eration, TRI_Error otherwise.

Return Values

The return status of the triRaiseBC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triSUTActionInformal

This operation is called by the TE when it executes a TTCN-3 SUT action
operation, which only contains a string.

TriStatus triSUTActionInformal(char* description);

componentId identifier of the replying test component

tsiPortId identifier of the test system interface port via which
the reply is sent to the SUT Adapter

signatureId identifier of the signature of the procedure call

exception the encoded exception

574 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

On invocation of this operation the SA shall initiate the described actions to
be taken on the SUT, that is turn on, initialize, or send a message to the SUT,
for example.

The triSUTactionInformal operation returns TRI_OK on successful exe-
cution of the operation, TRI_Error otherwise. Notice that the return value of
this TRI operation does not make any statement about the success or failure
of the actions to be taken on the SUT.

Return Values

The return status of the triSUTactionInformal operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of the op-
eration.

triSUTActionTemplate

This operation is called by the TE when it executes a TTCN-3 SUT action
operation, which uses a template.

TriStatus triSUTActionTemplate(const TriActionTemplate*
templateValue);

Parameters

Description

The encoding of the action template value has to be done in the TE prior to
this TRI operation call.

On invocation of this operation the SA shall initiate the actions to be taken
on the SUT using the passed template value, turn on, initialize, or send a mes-
sage to the SUT, for example.

description An informal description of an action to be taken on
the SUT.

templateValue the encoded value of the action template

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 575

The triSUTactionTemplate operation returns TRI_OK on successful exe-
cution of the operation, TRI_Error otherwise. Notice that the return value of
this TRI operation does not make any statement about the success or failure
of the actions to be taken on the SUT.

Return Values

The return status of the triSUTactionTemplate operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of the op-
eration.

TE->PA Functions

These functions are implemented in the SA part of the TRI implementation
and will be called from the TE.

triPAReset

This operation can be called by the TE at any time to reset the PA.

TriStatus triPAReset(void);

Description

The PA shall reset all timing activities which it is currently performing, stop
all running timers, discard any pending time-outs of expired timers, for ex-
ample.

The triPAReset operation returns TRI_OK in case the operation has been
performed successfully, TRI_Error otherwise.

Return Values

The return status of the triPAReset operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triStartTimer

This operation is called by the TE when a timer needs to be started.

TriStatus triStartTimer
(const TriTimerId *timerId,
 TriTimerDuration timerDuration);

576 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

On invocation of this operation the PA shall start the indicated timer with the
indicated duration. The timer runs from the value zero (0.0) up to the max-
imum specified by timerDuration. Should the timer indicated by timerId al-
ready be running it is to be restarted. When the timer expires the PA will call
the triTimeout() operation with timerId.

The triStartTimer operation returns TRI_OK if the timer has been started
successfully, TRI_Error otherwise.

Return Values

The return status of the triStartTimer operation. The return status indicates
the local success (TRI_OK) or failure (TRI_Error) of the operation.

triStopTimer

This operation is called by the TE when a timer is to be stopped.

TriStatus triStopTimer(const TriTimerId *timerId);

Parameters

Description

On invocation of this operation the PA shall use the timerId to stop the indi-
cated timer instance. The stopping of an inactive timer, that is, a timer which
has not been started or has already expired, should have no effect.

The triStopTimer operation returns TRI_OK if the operation has been per-
formed successfully, TRI_Error otherwise. Notice that stopping an inactive
timer is a valid operation. In this case TRI_OK shall be returned.

timerId Identifier of the timer instance.

timerDuration Duration of the timer in seconds.

timerId Identifier of the timer instance.

TRI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 577

Return Values

The return status of the triStopTimer operation. The return status indicates
the local success (TRI_OK) or failure (TRI_Error) of the operation.

triReadTimer

This operation may be called by the TE when a TTCN-3 read timer operation
is to be executed on the indicated timer.

TriStatus triReadTimer
(const TriTimerId *timerId,
 TriTimerDuration *elapsedTime);

Parameters

Description

On invocation of this operation the PA shall use the timerId to access the time
that elapsed since this timer was started. The return value elapsedTime shall
be provided in seconds. The reading of an inactive timer, that is, a timer
which has not been started or already expired, shall return an elapsed time
value of zero.

The triReadTimer operation returns TRI_OK if the operation has been per-
formed successfully, TRI_Error otherwise.

Return Values

The return status of the triReadTimer operation. The return status indicates
the local success (TRI_OK) or failure (TRI_Error) of the operation.

triTimerRunning

This operation may be called by the TE when a TTCN-3 running timer oper-
ation is to be executed on the indicated timer.

TriStatus triTimerRunning
(const TriTimerId *timerId,

timerId Identifier of the timer instance.

elapsedTime Value of the time elapsed since the timer has been
started in seconds.

578 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

 unsigned char *running);

Parameters

Description

On invocation of this operation the PA shall use the timerId to access the
status of the timer. The operation sets running to the boolean value true if and
only if the timer is currently running.

The triTimerRunning operation returns TRI_OK if the status of the timer has
been successfully determined, TRI_Error otherwise.

Return Values

The return status of the triTimerRunning operation. The return status indi-
cates the local success (TRI_OK) or failure (TRI_Error) of the operation.

triExternalFunction

This operation is called by the TE when it executes a function which is de-
fined to be TTCN-3 external (that is, all non-external functions are imple-
mented within the TE).

TriStatus triExternalFunction
(const TriFunctionId *functionId,
 TriParameterList *parameterList,
 TriParameter *returnValue);

Parameters

timerId Identifier of the timer instance.

running Status of the timer.

functionId Identifier of the external function.

parameterList A list of encoded parameters for the indicated func-
tion. The parameters in parameterList are ordered
as they appear in the TTCN-3 function declaration.

returnValue (Optional) encoded return value.

TCI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 579

Description

In the invocation of a triExternalFunction operation by the TE, all in and
inout function parameters contain encoded values. All out function parame-
ters shall contain the distinct value of null since they are only of relevance in
the return from the external function but not in its invocation. No error shall
be indicated by the PA in case the value of any out parameter is non-null.

For each external function specified in the TTCN-3 ATS, the PA shall imple-
ment the behavior. On invocation of this operation the PA shall invoke the
function indicated by the identifier functionId. It shall access the specified in
and inout function parameters in parameterList, evaluate the external func-
tion using the values of these parameters, and compute values for inout and
out parameters in parameterList. The operation shall then return encoded
values for all inout and out function parameters, the distinct value of null for
all in parameters, and the encoded return value of the external function.

If no return type has been defined for this external function in the TTCN-3
ATS, the distinct value null shall be used for the latter.

The triExternalFunction operation returns TRI_OK if the PA completes the
evaluation of the external function successfully, TRI_Error otherwise.

Note
Whereas all other TRI operations are considered to be non-blocking, the
triExternalFunction operation is considered to be blocking. That means that
the operation shall not return before the indicated external function has
been fully evaluated. External functions have to be implemented carefully as
they could cause deadlock of test component execution or even the entire
test system implementation.

Return Values

The return status of the triExternalFunction operation. The return status indi-
cates the local success (TRI_OK) or failure (TRI_Error) of the operation.

TCI API

TCI type declarations

String

 String is a synonym for char*

580 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

TciVerdictValue

 TciVerdictValue is a synonym for unsigned long int.

 May take the value equal to the one of the following constants:

 TCI_VERDICT_NONE;
 TCI_VERDICT_PASS;
 TCI_VERDICT_INCONC;
 TCI_VERDICT_FAIL;
 TCI_VERDICT_ERROR;

TciObjidElemValue
This type is used for string and integer representations of object identi-
fier element.

typedef struct _TciObjidElemValue
{
String elem_as_ascii;
long int elem_as_number;

void* aux;
};

TciObjidValue

This type is used to represent a list of objid elements. No special values
mark the end of elements. The length field shall be used to traverse this
array properly.

typedef struct _TciObjidValue
{
long int length;
TciObjidElemValue *elements;

}*;

TciCharStringValue

This type is used to represent character string.

No special values mark the end of string. The length field shall be used
to traverse this array properly.

typedef struct _TciCharStringValue
{
unsigned long int length;
char* string;

}*;

TciUCValue

 Synonym for unsigned char[4]. Represents group, plane, row and
cell of universal character as defined in char (group, plane, row, cell)
format.

TCI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 581

TciUCReturnValue

 Synonym for unsigned char*. This type is used instead of Tci-
UCValue for return values in functions.

TciUCStringValue

This type is used for textual representation of universal character string.

No special values mark the end of string. The length field shall be used
to traverse this array properly.

typedef struct _TciUCStringValue
{
unsigned long int length;
TciUCValue *string;

}*;

TciModuleIdType

Synonym for QualifiedName. This type is used to represent module
name.

TciModuleIdListType

This type is used to represent the list of modules.

No special values mark the end of an idList. The length field shall be
used to traverse this array properly.

typedef struct _TciModuleIdListType
{
long int length;
TciModuleIdType *idList;

}*;

TciModuleParameterIdType

Synonym for QualifiedName. This type is used to represent the quali-
fied name of module parameter as defined in TTCN-3 ATS.

TciModuleParameterType

This type is used to represent the parameter name and the default value
of a module parameter.

typedef struct _TciModuleParameterType
{
TciModuleParameterIdType parName;
TciValue defaultValue;

};

TciModuleParameterListType

582 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

This type is used to represent the module parameters of a TTCN-3
module.

No special values mark the end of a modParList. The length field shall
be used to traverse this array properly.

typedef struct _TciModuleParameterListType
{
long int length;
TciModuleParameterType *modParList;

}*;

TciTestCaseIdType

Synonym for QualifiedName. This type is used to represent the quali-
fied name of test case as defined in TTCN-3 ATS.

TciTestCaseIdListType

This type is used to represent the list of test cases.

No special values mark the end of idList. The length field shall be
used to traverse this array properly.

typedef struct _TciTestCaseIdListType
{
long int length;
TciTestCaseIdType *idList;

}*;

TciTestCaseParameterIdType

Synonym for String. This type is used to represent the name of test case
formal parameter as defined in TTCN-3 ATS.

TciTestCaseParameterIdListType

This type is used to represent the list of test case formal parameter
names.

No special values mark the end of idList. The length field shall be
used to traverse this array properly.

typedef struct _TciTestCaseParameterIdListType
{
long int length;
TciTestCaseParameterIdType *idList;

}*;

TciParameterPassingModeType

This type is used to represent the passing mode of a test case parameter:
in, inout or out.

TCI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 583

typedef enum
{
TCI_IN_PAR,
TCI_INOUT_PAR,
TCI_OUT_PAR

};

TciParameterTypeType

This type is used to represent the type of a test case parameter as well
as its passing mode.

typedef struct _TciParameterTypeType
{
TciParameterPassingModeType parPassMode;
TciType parType;

};

TciParameterTypeListType

This type is used to represent the types and passing modes of all test
case formal parameters.

No special values mark the end of parList. The length field shall be used
to traverse this array properly.

typedef struct _TciParameterTypeListType
{
long int length;
TciParameterTypeType *parList;

}*;

TciParameterType

This type is used to represent the actual value of a test case parameter
as well as its passing mode.

typedef struct _TciParameterType
{
String parName;
TciParameterPassingModeType parPassMode;
TciValue parValue;

};

TciParameterListType

This type is used to represent the actual values of all test case parame-
ters.

No special values mark the end of parList. The length field shall be used
to traverse this array properly.

typedef struct _TciParameterListType

584 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

{
long int length;
TciParameterType *parList;

}*;

TciTestComponentKindType

This type is used to represent component kind: internal control compo-
nent, main test component, parallel test component or system compo-
nent.

typedef enum
{
TCI_CTRL_COMP,
TCI_MTC_COMP,
TCI_PTC_COMP,
TCI_SYS_COMP,
TCI_ALIVE_COMP

};

TciTypeClassType

This type is used to represent the all possible kinds of values that may
by handled in runtime.

typedef enum
{
TCI_ADDRESS_TYPE,
TCI_ANYTYPE_TYPE,
TCI_BITSTRING_TYPE,
TCI_BOOLEAN_TYPE,
TCI_CHAR_TYPE,
TCI_CHARSTRING_TYPE,
TCI_COMPONENT_TYPE,
TCI_ENUMERATED_TYPE,
TCI_FLOAT_TYPE,
TCI_HEXSTRING_TYPE,
TCI_INTEGER_TYPE,
TCI_OBJID_TYPE,
TCI_OCTETSTRING_TYPE,
TCI_RECORD_TYPE,
TCI_RECORD_OF_TYPE,
TCI_SET_TYPE,
TCI_SET_OF_TYPE,
TCI_UNION_TYPE,
TCI_UNIVERSAL_CHAR_TYPE,
TCI_UNIVERSAL_CHARSTRING_TYPE,
TCI_VERDICT_TYPE,
TCI_DEFAULT_TYPE,
TCI_PORT_TYPE,
TCI_TIMER_TYPE,
TCI_TEMPLATE_TYPE

};

TCI API

June 2009 IBM Rational Systems Tester 3.3 User Guide 585

ComponentStatus

This type is used to represent the component status.

typedef enum
{
inactiveC,
runningC,
stoppedC,
killedC

};

TimerStatus

This type is used to represent the timer status.

typedef enum
{
runningT,
inactiveT,
expiredT

};

PortStatus

This type is used to represent the port status.

typedef enum
{
startedP,
haltedP,
stoppedP

};

TciSignatureIdType

Synonym for QualifiedName. This type is used to represent the quali-
fied name of a procedure signature as defined in TTCN-3 ATS.

TciBehaviourIdType

Synonym for QualifiedName. This type is used to represent the quali-
fied name of a function or altstep as defined in TTCN-3 ATS.

TciValueList

This type is used to represent the list of values.

No special values mark the end of valueList. The length field shall be
used to traverse this array properly.

typedef struct _TciValueList
{
long int length;
TciValue *valueList;

}*;

586 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

TciValueDifference

This type is used to represent the difference between the value and tem-
plate.

It contains value, template and a meaningful description for the reason
of this difference

typedef struct _TciValueDifference
{
TciValue val;
TciValueTemplate tmpl;
String desc;

};

TciValueDifferenceList

This type is used to represent the list of difference between the value
and template.

No special values mark the end of diffList. The length field shall be
used to traverse this array properly.

typedef struct _TciValueDifferenceList
{
long int length;
TciValueDifference *diffList;

}*;

TCI Type Interface API

tciGetDefiningModule

Lookups the module identifier that defines a specified type.

TciModuleIdType tciGetDefiningModule(TciType typeId);

Parameters

Description

This operation may be called to lookup module identifier of the module in
which type is defined. If type is a TTCN-3 base type, e.g. boolean, integer,
etc. then distinct NULL value is returned.

typeId Identifier of the type instance.

TCI Type Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 587

Return Values

Returns the module identifier for the user-defined types, NULL for built-in
types.

tciGetName

Lookups the name of the specified type

String tciGetName(TciType typeId);

Parameters

Description

This operation may be called to lookup the name of the type as defined in
TTCN-3

abstract test suite specification.

Return Values

Returns the name of the type as defined in the TTCN-3 module

tciGetTypeClass

Lookups type class of the specified type

TciTypeClassType tciGetTypeClass(TciType typeId);

Parameters

Description

This operation may be called to lookup the type class of the type. Array types
are represented as types from RECORD_OF type class.

typeId Identifier of the type instance.

typeId Identifier of the type instance.

588 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Some of the type classes (DEFAULT, PORT, TIMER, TEMPLATE - for
formal template parameters) are not specified in the standard. These classes
were intentionally added in Rational Systems Tester since during testsuite
execution TCI TL may provide the values of above-mentioned type classes.
However there are no functions to process such values.

Return Values

Returns the type class of the respective type.

tciNewInstance

Creates new value of specified type

TciValue tciNewInstance(TciType typeId);

Parameters

Description

This operation may be called to instantiate new value of the specified type.

The initial value of the created value is undefined.

This function may be called only for types from the following type classes:

 BOOLEAN
 CHAR
 FLOAT
 UNIVERSAL_CHAR
 VERDICT
 ENUMERATED
 UNIVERSAL_CHARSTRING
 OBJID
 ADDRESS
 RECORD
 SET
 RECORD_OF
 SET_OF
 UNION
 ANYTYPE
 INTEGER
 BITSTRING
 CHARSTRING
 HEXSTRING

typeId Identifier of the type instance.

TCI Type Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 589

 OCTETSTRING

When called for type from other type classes tciNewInstance will produce
error and return NULL value.

Return Values

Returns a freshly created (not-initialized) value of the given type.

Returns NULL in case of error.

tciGetTypeEncoding

Lookups the encoding attribute of specified type

String tciGetTypeEncoding(TciType typeId);

Parameters

Description

This operation returns the type encoding attribute as defined in TTCN-3, if
any. If no encoding attribute is defined the distinct value NULL is returned.

Return Values

Returns the encoding attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

tciGetTypeEncodingVariant

Lookups the encoding attribute of specified type

String tciGetTypeEncodingVariant(TciType typeId);

Parameters

typeId Identifier of the type instance.

typeId Identifier of the type instance.

590 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation returns the type encoding variant attribute as defined in
TTCN-3, if any. If no encoding variant attribute is defined the distinct value
NULL is returned.

Return Values

Returns the encoding variant attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

tciGetTypeExtension

Lookups the extension attribute of specified type

String* tciGetTypeExtension(TciType typeId);

Parameters

Description

This operation returns the type encoding extension attribute as defined in
TTCN-3, if any. If no extension variant attribute is defined the distinct value
NULL is returned.

This function returns NULL terminated string array. It contains more than
one element for compound types. The first element in the array represents ex-
tension attribute for the type itself while subsequent elements represent ex-
tension attributes for the fields. Empty string (i.e. ““) denotes absence of ex-
tension attribute.

Return Values

Returns the extension attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

TCI Value Interface API
Generic operations

typeId Identifier of the type instance.

TCI Value Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 591

tciGetType

Lookups type identifier of the specified value

TciType tciGetType(TciValue valueId);

Parameters

Description

This operation may be called to lookup type identifier of the respective value.

Return Values

Returns the type of the specified value.

Returns NULL in case of error.

tciNotPresent

Checks whether specified value is 'omit'

unsigned char tciNotPresent(TciValue valueId);

Parameters

Description

This operation may be called to check whether respective value is omitted or
not. If valueId equals to NULL then value is also treated as omitted.

Return Values

Returns true if the specified value is 'omit' or NULL, false otherwise

tciGetValueEncoding

Lookups the encoding attribute of specified value

valueId Identifier of the value instance.

valueId Identifier of the value instance.

592 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

String tciGetValueEncoding(TciValue valueId);

Note
This function is not supported!

Parameters

Description

This operation returns the value encoding attribute as defined in TTCN-3, if
any. If no encoding attribute is defined the distinct value NULL is returned.

Return Values

Returns the encoding attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

tciGetValueEncodingVariant

Lookups the encoding attribute of specified value.

String tciGetValueEncodingVariant(TciValue valueId);

Note
This function is not supported!

Parameters

Description

This operation returns the value encoding variant attribute as defined in
TTCN-3, if any. If no encoding variant attribute is defined the distinct value
NULL is returned.

Return Values

Returns the encoding variant attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

valueId Identifier of the value instance.

valueId Identifier of the value instance.

Integer Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 593

Integer Value Interface

tciGetIntAbs

Lookups absolute value of an integer as an ASCII string

String tciGetIntAbs(TciValue valueId);

Parameters

Description

This operation may be called to obtain absolute value of an integer value.

Absolute value is returned as an 10-base ASCII string. Since integer value
may be filled digit-by-digit there exist intermediate states in which integer
value has invalid contents. Using this function for such undefined values will
lead to error and NULL string will be returned.

Return Values

Returns the (10-base) integer absolute value as an ASCII string.

Returns NULL if specified value is not a valid integer value.

tciGetIntNumberOfDigits

Lookups the number of digits (length) of an integer value

unsigned long int tciGetIntNumberOfDigits(in TciValue
valueId);

Parameters

valueId Identifier of the value instance.

valueId Identifier of the value instance.

594 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation may be called to obtain the number of digits (the length in
other words) of an integer value. Number of digits of an integer value may
be changed by calling tciSetIntNumberOfDigits or setting digit using
tciSetIntDigit beyond the length of an integer.

Return Values

Returns the number of digits in an integer value.

tciGetIntSign

Lookups the sign (+/-) of an integer value

unsigned char tciGetIntSign(in TciValue valueId);

Parameters

Description

This operation may be called to obtain the sign of an integer value.

True corresponds to positive values and the zero.

False corresponds to the negative values.

Return Values

Returns true if the number is positive or zero, false otherwise

tciGetIntDigit

Lookups the digit of an integer value at specified position

unsigned char tciGetIntDigit(in TciValue valueId, unsigned
long int position);

valueId Identifier of the value instance.

Integer Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 595

Parameters

Description

This operation may be called to obtain the value of a digit at specified posi-
tion. Position '0' corresponds to the least significant digit of an integer. For
example, in a value '12345' position '0' corresponds to the digit '5'.

Return Values

Returns the value of the digit at specified position

tciSetIntAbs

Sets absolute value of an integer using ASCII string

void tciSetIntAbs(TciValue valueId, String absValue);

Parameters

Description

This operation may be called to set absolute value of an integer value.

Absolute value is specified using 10-base ASCII string.

Due to the limitations in Rational Systems Tester runtime system it's possible
to

specify only those values that fit into 64-bit signed integer.

Return Values

None

valueId Identifier of the value instance.

position Zero based offset from the least significant digit of
an integer

valueId Identifier of the value instance.

absValue 10-base ASCII string representing absolute integer
value

596 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tciSetIntNumberOfDigits

Sets the number of digits (length) in an integer value

void tciSetIntNumberOfDigits(in TciValue valueId, unsigned
long int nDigits);

Parameters

Description

This operation may be called to set the number of digits (the length in other
words) of an integer value. If specified number of digits is greater than cur-
rent length then integer is expanded and digits are marked as not-initialized.
If specified number of digits is lower then the current length of a value then
the value is truncated and all digits that lie beyond new length are lost.

Return Values

None

tciSetIntSign

Sets the sign (+/-) of an integer value

void tciSetIntSign(in TciValue valueId, unsigned char
sign);

Parameters

Description

This operation may be called to set the sign of an integer value.

True corresponds to positive values and the zero.

valueId Identifier of the value instance.

nDigits Number of digits to be set in an integer value

valueId Identifier of the value instance.

sign boolean value representing either '+' or '-

Float Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 597

False corresponds to the negative values.

Return Values

None

tciSetIntDigit

Lookups the digit of an integer value at specified position

void tciSetIntDigit(in TciValue valueId, unsigned long int
position, unsigned char digit);

Parameters

Description

This operation may be called to set the value of a digit at specified position.
Position '0' corresponds to the least significant digit of an integer. For ex-
ample, in a value '12345' position '0' corresponds to the digit '5'.

Return Values

None

Float Value Interface

tciGetFloatValue

Returns the float value of a specified value

double tciGetFloatValue(TciValue valueId);

valueId Identifier of the value instance.

position Zero based offset from the least significant digit of
an integer

digit The value to be set to the digit at the specified posi-
tion

598 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation may be called to obtain the float value of a specified value.

Return Values

Returns the float value of this TTCN-3 float

tciSetFloatValue

Sets the value to a specified float value

void tciSetFloatValue(TciValue valueId, double floatValue);

Parameters

Description

This operation may be called to set the value to a specified float value.

Return Values

None

Boolean Value Interface

tciGetBooleanValue

Returns the boolean value of a specified value

unsigned char tciGetBooleanValue(TciValue valueId);

valueId Identifier of the value instance.

valueId Identifier of the value instance.

floatValue The float value to assign to the specified value

Object Identifier Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 599

Parameters

Description

This operation may be called to obtain the boolean value of a specified value.

Return Values

Returns the boolean value of this TTCN-3 boolean

tciSetBooleanValue

Sets the value to a specified boolean value

void tciSetBooleanValue(TciValue valueId, unsigned char
booleanValue);

Parameters

Description

This operation may be called to set the value to a specified boolean value.

Return Values

None

Object Identifier Value Interface

tciGetTciObjidValue

Returns the objid value of a specified value

TciObjidValue tciGetTciObjidValue(TciValue valueId);

valueId Identifier of the value instance.

valueId Identifier of the value instance.

booleanValue The boolean value to assign to the specified value

600 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation may be called to obtain the objid value of a specified value.

Return Values

Returns the objid value of this TTCN-3 object identifier

tciSetObjidValue

Sets the value to a specified objid value

void tciSetObjidValue(TciValue valueId, TciObjidValue
objidValue);

Parameters

Description

This operation may be called to set the value to a specified objid value.

Return Values

None

Char Value Interface

tciGetCharValue

Returns the character value of a specified value

unsigned char tciGetCharValue(TciValue valueId);

valueId Identifier of the value instance.

valueId Identifier of the value instance.

objidValue The objid value that should be assigned to specified
value

Universal Char Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 601

Parameters

Description

This operation may be called to obtain the character value of a specified
value.

Return Values

Returns the character value of this TTCN-3 char

tciSetCharValue

Sets the value to a specified character value

void tciSetCharValue(TciValue valueId, unsigned char
charValue);

Parameters

Description

This operation may be called to set the value to a specified character value.

Return Values

None

Universal Char Value Interface

tciGetUniversalCharValue

Returns the universal character value of a specified value

TciUCReturnValue tciGetUniversalCharValue(TciValue

valueId Identifier of the value instance.

valueId Identifier of the value instance.

charValue The character value that should be assigned to spec-
ified value

602 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

valueId);

Parameters

Description

This operation may be called to obtain the universal character value of a
specified value. TciUCReturnValue type was introduced in Rational Sys-
tems Tester due to semantics of C programming language. Originally this
functions return the value of TciUCValue type but TciUCValue is defined as
fixed size array and C cannot return such arrays.

Return Values

Returns the universal character value of this TTCN-3 universal char

tciSetUniversalCharValue

Sets the value to a specified character value

void tciSetCharValue(TciValue valueId, TciUCValue
uniCharValue);

Parameters

Description

This operation may be called to set the value to a specified universal char-
acter value.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

uniCharValue Universal char value that should be assigned to
specified value

Charstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 603

Charstring Value Interface

tciGetCStringValue

Returns the character string of a specified value

TciCharStringValue tciGetCStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the character string of a specified
value.

Return Values

Returns the character string of this TTCN-3 charstring

tciSetCStringValue

Sets the value to a specified character string

void tciSetCStringValue(TciValue valueId,
TciCharStringValue charStrValue);

Parameters

Description

This operation may be called to set the value to a specified character string.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

charStrValue character string that should be assigned to specified
value

604 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tciGetCharstringValue

Returns the NULL terminated character string of a specified value

String tciGetCharstringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the NULL terminated character string
of a specified value.

Return Values

Returns the NULL terminated character string of this TTCN-3 charstring

tciSetCharstringValue

Sets the value to a specified NULL terminated character string

void tciSetCharstringValue(TciValue valueId, String
charStrValue);

Parameters

Description

This operation may be called to set the value to a specified NULL terminated
character string.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

charStrValue NULL terminated character string that should be
assigned to specified value

Charstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 605

tciGetCStringCharValue

Returns the character at specified position of charstring

unsigned char tciGetCStringCharValue(TciValue valueId,
unsigned long int position);

Parameters

Description

This operation may be called to obtain the character at specified position of
TTCN-3 charstring. Position 0 denotes the first char of the character string.
Valid values for position are from 0 to “length-1”. Characters are num-
bered from left to right.

Return Values

Returns the character at specified position of the TTCN-3 charstring

tciSetCStringCharValue

Sets the character at specified position of charstring

void tciSetCStringCharValue(TciValue valueId, unsigned long
int position, unsigned char charValue);

Parameters

valueId Identifier of the value instance.

position Zero based offset from the character string

valueId Identifier of the value instance.

position Zero based offset from the character string

charvalue character to be set

606 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation may be called to set the character at specified position of
TTCN-3 charstring. Position 0 denotes the first char of the character
string.Valid values for position are from 0 to “length-1”. Characters are
numbered from left to right.

Return Values

None

tciGetCStringLength

Returns the length of the specified charstring value

unsigned long int tciGetCStringLength(TciValue valueId);

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 charstring.
If specified value is omitted then zero is returned.

Return Values

Returns the length of the specified charstring value in chars.

Returns zero if value is 'omit'.

tciSetCStringLength

Sets the length of the specified charstring value

void tciSetCStringLength(TciValue valueId, unsigned long
int length);

valueId Identifier of the value instance.

Universal Charstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 607

Parameters

Description

This operation may be called to change the length of the TTCN-3 charstring.
If new length is greater than current one then string is padded with '\0' char-
acters. If new length is lower than current one then string is truncated.

Return Values

None

Universal Charstring Value Interface

tciGetUCStringValue

Returns the universal character string of a specified value

TciUCStringValue tciGetUCStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the textual representation of the uni-
versal character string of a specified value.

Return Values

Returns the textual representation of the universal character string of the
specified value.

valueId Identifier of the value instance.

length New length to be set to the specified charstring
value

valueId Identifier of the value instance.

608 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tciSetUCStringValue

Sets the value to a specified universal character string according to its textual
representation

void tciSetUCStringValue(TciValue valueId, TciUCStringValue
uniCharStrValue);

Parameters

Description

This operation may be called to set the value to a specified universal char-
acter string, which is defined by means of textual representation.

Return Values

None

tciGetUCStringCharValue

Returns the universal character at specified position of universal charstring.

TciUCReturnValue tciGetUCStringCharValue(TciValue valueId,
unsigned long int position);

Parameters

Description

This operation may be called to obtain the universal character at specified po-
sition of TTCN-3 universal charstring. Position 0 denotes the first universal
char of the universal character string. Valid values for position are from 0 to
“length-1”. Universal characters are numbered from left to right. TciU-
CReturnValue type was introduced in Rational Systems Tester due to seman-

valueId Identifier of the value instance.

uniCharStrValue Universal character string value that should be as-
signed to specified value

valueId Identifier of the value instance.

position Zero based offset from the character string

Universal Charstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 609

tics of C programming language. Originally this functions return the value of
TciUCValue type but a TciUCValue is defined as a fixed size array and C
cannot return such arrays.

Return Values

Returns the universal character at specified position of the TTCN-3 universal
charstring

tciSetUCStringCharValue

Sets the universal character at specified position of universal charstring

void tciSetUCStringCharValue(TciValue valueId, unsigned
long int position, TciUCValue uniCharValue);

Parameters

Description

This operation may be called to set the universal character at specified posi-
tion of TTCN-3 universal charstring. Position 0 denotes the first universal
char of the universal character string. Valid values for position are from 0 to
“length-1”. Universal characters are numbered from left to right.

Return Values

None

tciGetUCStringLength

Returns the length of the specified universal charstring value

unsigned long int tciGetUCStringLength(TciValue valueId);

valueId Identifier of the value instance.

position Zero based offset from the start of the string

uniCharValue Universal character to be set

610 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 universal
charstring in universal characters. If specified value is omitted then zero is
returned.

Return Values

Returns the length of the specified universal charstring value in universal
chars.

Returns zero if value is 'omit'.

tciSetUCStringLength

Sets the length of the specified universal charstring value

void tciSetUCStringLength(TciValue valueId, unsigned long
int length);

Parameters

Description

This operation may be called to change the length of the TTCN-3 charstring.
If new length is greater than current one then string is padded with 'char
(255,255,255,255)' universal characters. If new length is lower than current
one then string is truncated.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

Bitstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 611

Bitstring Value Interface

tciGetBStringValue

Returns the textual representation of the bit string of a specified value

String tciGetBStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the textual representation of the bit
string of a specified value. E.g. the textual representation of 0101 is '0101'B.
The textual representation of the empty TTCN-3 bitstring is ''B, with length
zero.

Return Values

Returns the textual representation of the bit string of this TTCN-3 bitstring

tciSetBStringValue

Sets the value to a specified bit string according to its textual representation.

void tciSetBStringValue(TciValue valueId, String
bitStrValue);

Parameters

Description

This operation may be called to set the value to a specified bit string ac-
cording to its textual representation. E.g. to assign bitstring 0101 the value of
bitStrValue formal parameter should be '0101'B

valueId Identifier of the value instance.

valueId Identifier of the value instance.

bitStrValue textual representation of the bit string that should be
assigned to specified value

612 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

None

tciGetBStringBitValue

Returns the bit (0 or 1) at specified position of bitstring

long int tciGetBStringBitValue(TciValue valueId, unsigned
long int position);

Parameters

Description

This operation may be called to obtain the bit (0 or 1) at specified position of
TTCN-3 bitstring. Position 0 denotes the first bit of the bit string. Valid
values for position are from 0 to “length-1”. Bits are numbered from left to
right.

Return Values

Returns the bit (0 or 1) at specified position of the TTCN-3 bitstring

tciSetBStringBitValue

Sets the bit (0 or 1) at specified position of bitstring

void tciSetBStringBitValue(TciValue valueId, unsigned long
int position, long int bitValue);

Parameters

valueId Identifier of the value instance.

position Zero based offset from the start of the string

valueId Identifier of the value instance.

position Zero based offset from the start of the hex string

bitValue bit (0 or 1) to be set

Bitstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 613

Description

This operation may be called to set the bit (0 or 1) at specified position of
TTCN-3 bitstring. Position 0 denotes the first bit of the bit string. Valid
values for position are from 0 to “length-1”. Bits are numbered from left to
right.

Return Values

None

tciGetBStringLength

Returns the length of the specified bitstring value

unsigned long int tciGetBStringLength(TciValue valueId);

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 bitstring.

If specified value is omitted then zero is returned.

Return Values

Returns the length of the specified bitstring value in bits.

Returns zero if value is 'omit'.

tciSetBStringLength

Sets the length of the specified bitstring value

void tciSetBStringLength(TciValue valueId, unsigned long
int length);

valueId Identifier of the value instance.

614 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation may be called to change the length of the TTCN-3 bitstring.

If new length is greater than current one then string is expanded and bits are
marked as not-initialized. If new length is lower than current one then string
is truncated.

Return Values

None

Octetstring Value Interface

tciGetOStringValue

Returns the textual representation of the octet string of a specified value

String tciGetOStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the textual representation of the octet
string of a specified value. E.g. the textual representation of 0xCAFFEE is
'CAFFEE'O. The textual representation of the empty TTCN-3 octetstring is
''O, while its length is zero.

Return Values

Returns the textual representation of the octet string of this TTCN-3 octet-
string

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

valueId Identifier of the value instance.

Octetstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 615

tciSetOStringValue

Sets the value to a specified octet string according to its textual representa-
tion.

void tciSetOStringValue(TciValue valueId, String
octStrValue);

Parameters

Description

This operation may be called to set the value to a specified octet string ac-
cording to its textual representation. E.g. to assign octetstring 0xABCD the
value of octStrValue formal parameter should be 'ABCD'O

Return Values

None

tciGetOStringOctetValue

Returns the octet (integer in range 0..255) at specified position of octetstring

long int tciGetOStringOctetValue(TciValue valueId, unsigned
long int position);

Parameters

valueId Identifier of the value instance.

position Zero based offset from the start of the hex string

octStrValue textual representation of the octet string that should
be assigned to specified value

valueId Identifier of the value instance.

position Zero based offset from the start of the string

616 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation may be called to obtain the octet (integer in range 0..255) at
specified position of TTCN-3 octetstring. Position 0 denotes the first octet of
the octet string. Valid values for position are from 0 to “length-1”. Octets
are numbered from left to right.

Return Values

Returns the octet (integer in range 0..255) at specified position of the TTCN-
3 octetstring

tciSetOStringOctetValue

Sets the octet (integer in range 0..255) at specified position of octetstring

void tciSetOStringOctetValue(TciValue valueId, unsigned
long int position, long int octValue);

Parameters

Description

This operation may be called to set the octet (integer in range 0..255) at spec-
ified position of TTCN-3 octetstring. Position 0 denotes the first octet of the
octet string. Valid values for position are from 0 to “length-1”. Octets are
numbered from left to right.

Return Values

None

tciGetOStringLength

Returns the length of the specified octetstring value

valueId Identifier of the value instance.

position Zero based offset from the start of the hex string

octValue octet (integer in range 0..255) to be set

Octetstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 617

unsigned long int tciGetOStringLength(TciValue valueId);

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 octetstring.
If specified value is omitted then zero is returned.

Return Values

Returns the length of the specified octetstring value in octets.

Returns zero if value is 'omit'.

tciSetOStringLength

Sets the length of the specified octetstring value

void tciSetOStringLength(TciValue valueId, unsigned long
int length);

Parameters

Description

This operation may be called to change the length of the TTCN-3 octetstring.
If new length is greater than current one then string is expanded and octets
are marked as not-initialized. If new length is lower than current one then
string is truncated.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

618 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Hexstring Value Interface

tciGetHStringValue

Returns the textual representation of the hex string of a specified value

String tciGetHStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the textual representation of the hex
string of a specified value. E.g. the textual representation of 0xAFFEE is
'AFFEE'H. The textual representation of the empty TTCN-3 hexstring is ''H,
while its length is zero.

Return Values

Returns the textual representation of the hex string of this TTCN-3 hexstring

tciSetHStringValue

Sets the value to a specified hex string according to its textual representation.

void tciSetHStringValue(TciValue valueId, String
hexStrValue);

Parameters

Description

This operation may be called to set the value to a specified hex string ac-
cording to its textual representation. E.g. to assign hexstring 0xABC the
value of hexStrValue formal parameter should be 'ABC'H

valueId Identifier of the value instance.

valueId Identifier of the value instance.

hexStrValue textual representation of the hex string that should
be assigned to specified value

Hexstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 619

Return Values

None

tciGetHStringHexValue

Returns the hexadecimal digit (integer in range 0..15) at specified position of
hexstring

long int tciGetHStringHexValue(TciValue valueId, unsigned
long int position);

Parameters

Description

This operation may be called to obtain the hex digit (integer in range 0..15)
at specified position of TTCN-3 hexstring. Position 0 denotes the first hex of
the hex string. Valid values for position are from 0 to “length-1”. Hex digits
are numbered from left to right.

Return Values

Returns the hexadecimal digit (integer in range 0..15) at specified position of
the TTCN-3 hexstring

tciSetHStringHexValue

Sets the hex digit (integer in range 0..15) at specified position of hexstring

void tciSetHStringHexValue(TciValue valueId, unsigned long
int position, long int hexValue);

Parameters

valueId Identifier of the value instance.

position zero based offset from the start of the hex string

valueId Identifier of the value instance.

position Zero based offset from the start of the hex string

hexValue Hex digit (integer in range 0..15) to be set

620 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation may be called to set the hex digit (integer in range 0..15) at
specified position of TTCN-3 hexstring. Position 0 denotes the first hex digit
of the hex string. Valid values for position are from 0 to “length-1”. Hex
digits are numbered from left to right.

Return Values

None

tciGetHStringLength

Returns the length of the specified hexstring value

unsigned long int tciGetHStringLength(TciValue valueId);

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 hexstring.
If specified value is omitted then zero is returned.

Return Values

Returns the length of the specified hexstring value in hex digits.

Returns zero if value is 'omit'.

tciSetHStringLength

Sets the length of the specified hexstring value

void tciSetHStringLength(TciValue valueId, unsigned long
int length);

valueId Identifier of the value instance.

Record/Set Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 621

Parameters

Description

This operation may be called to change the length of the TTCN-3 hexstring.
If new length is greater than current one then string is expanded and hex
digits are marked as not-initialized. If new length is lower than current one
then string is truncated.

Return Values

None

Record/Set Value Interface

tciGetRecFieldValue

Returns the field value of specified record/set

TciValue tciGetRecFieldValue(TciValue valueId, String
fieldName);

Parameters

Description

This operation may be called to obtain the record/set field value by the
record/set field name. If no field with such name exists in record/set then
error is reported and NULL value is returned. It's allowed to use this function
against undefined record/set fields. In this case omitted value will be created
and returned.

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

valueId Identifier of the value instance.

fieldName Name of the record/set field

622 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

Returns the field value of specified record/set.

tciSetRecFieldValue

Sets the field value of specified record/set

void tciSetRecFieldValue(TciValue valueId, String
fieldName, TciValue fieldValueId);

Parameters

Description

This operation may be called to set the record/set field value by the record/set
field name. If no field with such name exists in record/set then error is re-
ported. When assigning field value runtime system creates copy of the passed
value (3rd parameter), thus it's possible to reuse passed field value in chain
of assignments (e.g. in a loop).

Return Values

None.

tciSetFieldOmitted

Marks the referenced optional field in a record/set as being omitted.

void tciSetFieldOmitted(TciValue valueId, String
fieldName);

Parameters

valueId Identifier of the value instance.

fieldName Name of the record/set field

fieldValueId identifier or the value instance to be assigned to
record/set field

valueId Identifier of the value instance.

fieldName Name of the record/set field

RecordOf/SetOf Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 623

Description

This operation may be called to omit the optional field in a record or set. If
no field with such name exists in record/set then error is reported. Calling this
operation for a mandatory field also results in error.

Return Values

None.

tciGetRecFieldNames

Returns the NULL terminated array of record/set field names

String* tciGetRecFieldNames(TciValue valueId);

Parameters

Description

This operation may be called to obtain the array of record/set field names.
The end of array is identified by NULL element. If record/set has no fields
then NULL is returned.

Return Values

Returns the NULL terminated array of record/set field names.

Returns NULL if record/set has no fields.

RecordOf/SetOf Value Interface

tciGetRecOfFieldValue

Returns the element value of record_of/set_of at specified position

TciValue tciGetRecOfFieldValue(TciValue valueId, unsigned
long int position);

valueId Identifier of the record/set value instance.

624 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation may be called to obtain the value of record_of/set_of ele-
ment at specified position. Valid position is between zero and length -1, for
other positions the distinct value NULL is returned. recordOf and SetOf
values will not be automatically expanded if position exceeds its lengths. It's
allowed to use this function against undefined record_of/set_of ele-
ments. In this case an uninitialized value will be created and returned.

Return Values

Returns the element value of record_of/set_of at specified position.

tciSetRecOfFieldValue

Sets the element value of record_of/set_of at specified position

void tciSetRecOfFieldValue(TciValue vecValueId, unsigned
long int position, TciValue elemValueId);

Parameters

Description

This operation may be called to set the record_of/set_of element value at
specified position. If position is greater than (length -1) the record of is ex-
tended to have the length (position + 1). The record of elements between the
original position at length and position - 1 are set to omit. When assigning

valueId Identifier of the record_of/set_of the value in-
stance.

position position of the element to return

vecValueId Identifier of the record_of/set_of the value in-
stance.

position position of the element to set

elemValueId identifier of the value instance to be assigned to
record_of/set_of element

RecordOf/SetOf Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 625

element value runtime system creates copy of the passed value (3rd param-
eter), thus it's possible to reuse passed element value in chain of assignments
(e.g. in a loop).

Return Values

None.

tciAppendRecOfFieldValue

Appends specified value to the record_of/set_of

void tciAppendRecOfFieldValue(TciValue vecValueId, TciValue
elemValueId);

Parameters

Description

This operation may be called to append the element to the end of
record_of/set_of, i.e. to set element value at position 'length'. When as-
signing element value runtime system creates copy of the passed value (2nd
parameter), thus it's possible to reuse passed element value in chain of as-
signments (e.g. in a loop).

Return Values

None.

tciGetRecOfElementType

Returns the type identifier of the element of the specified
record_of/set_of

TciType tciGetRecOfElementType(TciValue valueId);

vecValueId Identifier of the record_of/set_of the value in-
stance.

elemValueId identifier of the value instance to be appended to
record_of/set_of

626 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation may be called to lookup the element type of the
record_of/set_of.

Return Values

Returns the type identifier of the elements of the specified
record_of/set_of

tciGetRecOfLength

Returns the actual length of the specified record_of/set_of value

unsigned long int tciGetRecOfLength(TciValue valueId);

Parameters

Description

This operation may be called to lookup the actual length of the
record_of/set_of value.

Return Values

Returns the actual length of the specified record_of/set_of value

tciSetRecOfLength

Sets the length of the specified record_of/set_of value

void tciSetRecOfLength(TciValue valueId, unsigned long int
length);

valueId Identifier of the value instance.

valueId Identifier of the value instance.

Union/Anytype Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 627

Parameters

Description

This operation may be called to change the length of the record_of/set_of
value. If length is greater than the original length then record_of/set_of
is expanded and newly created elements are set as undefined. If length is less
than the original length then record_of/set_of is truncated to the specified
length.

Return Values

Returns the actual length of the specified record_of/set_of value

Union/Anytype Value Interface

tciGetUnionVariant

Returns the variant value of specified union/anytype

TciValue tciGetUnionVariant(TciValue valueId, String
variantName);

Parameters

Description

This operation may be called to obtain the union/anytype variant value that
is denoted by the variant name. If no variant was previously set or
variantName is not equal to the result of tciGetUnionPresentVariantName()
then variantName is selected as present variant and fresh uninitialized value

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

valueId Identifier of the union/anytype value instance.

variantName name of the union/anytype variant

628 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

is returned. The type of returned value corresponds to the union variant with
name equal to variantName. If no variant with such name exists in
union/anytype then error is reported and NULL value is returned.

Return Values

Returns the variant value of specified union/anytype denoted by
variantName

tciSetUnionVariant

Sets the variant value of specified union/anytype and assigns specified value
to it

void tciSetUnionVariant(TciValue valueId, String
variantName, TciValue variantValueId);

Parameters

Description

This operation may be called to set the union/anytype variant and assign a
value to it. Union/anytype variant is denoted by the specified variant name.
If no variant with such name exists in union/anytype then error is reported
and function returns without changing union/anytype state. When assigning
variant value runtime system creates copy of the passed value (3rd param-
eter), thus it's possible to reuse passed variant value in chain of assignments
(e.g. in a loop).

Return Values

None.

tciGetUnionPresentVariantName

Returns the name of the currently selected variant of specified union/anytype

valueId Identifier of the union/anytype value instance.

variantName name of the union/anytype variant

variantValueId identifier of the value instance to be assigned to
union/anytype variant

Union/Anytype Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 629

String tciGetUnionPresentVariantName(TciValue valueId);

Parameters

Description

This operation may be called to lookup the name of currently selected
union/anytype variant. If no variant was previously set then NULL is re-
turned.

Return Values

Returns the name of currently selected union/anytype variant.

Returns NULL if no variant selected.

tciGetUnionVariantNames

Returns the NULL terminated array of union/anytype variant names

String* tciGetUnionVariantNames(TciValue inst);

Parameters

Description

This operation may be called to obtain the array of union/anytype variant
names. The end of array is identified by NULL element. If union has no vari-
ants then NULL is returned. If the valueId represents the TTCN-3 anytype,
i.e. the type class of the type obtained by tciGetType is ANYTYPE, then the
array of all built-in and user-defined TTCN-3 type names is returned

Return Values

Returns the NULL terminated array of union/anytype variant names.

Returns NULL if union has no variants.

valueId Identifier of the union/anytype value instance.

valueId Identifier of the union/anytype value instance.

630 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Enumerated Value Interface

tciGetEnumValue

Returns the string identifier of the specified enumerated value

String tciGetEnumValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the string identifier of the enumerated
value. This identifier equals the identifier in the TTCN-3 specification.

Return Values

Returns the string identifier of the specified enumerated value.

Returns NULL if enumerated value is not assigned with one of the enumer-
ation choices.

tciSetEnumValue

Sets the enumerated value to a specified string identifier

void tciSetEnumValue(TciValue valueId, String enumValue);

Parameters

Description

This operation may be called to set the enumerated value to a specified string
identifier. String identifier should be equal to the one of the possible enumer-
ated choices. If enumValue is not an allowed value for this enumeration then
the operation is ignored.

valueId Identifier of the value instance.

valueId Identifier of the value instance.

enumValue string identifier, one of enumerated choices

Verdict Value Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 631

Return Values

None

Verdict Value Interface

tciGetVerdictValue

Returns verdict stored in the specified value

TciVerdictValue tciGetVerdictValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the verdict from the specified value.
Verdict is presented as an integer, which value denotes one of the possible
TTCN-3 verdicts. Returned integer equals to the one of the following con-
stants:

TCI_VERDICT_NONE, TCI_VERDICT_PASS,
TCI_VERDICT_INCONC, TCI_VERDICT_FAIL,
TCI_VERDICT_ERROR

Return Values

Returns the integer value that denotes one of the verdicts stored in the spec-
ified value

tciSetVerdictValue

Sets the verdict value to a specified verdict constant

void tciSetVerdictValue(TciValue valueId, TciVerdictValue
verdict);

valueId Identifier of the value instance.

632 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation may be called to set the verdict value to the one of possible
TTCN-3 verdicts. Verdict is presented as an integer, which value should be
equal to the one of the following constants:

TCI_VERDICT_NONE, TCI_VERDICT_PASS,
TCI_VERDICT_INCONC, TCI_VERDICT_FAIL,
TCI_VERDICT_ERROR

Return Values

None

Address Value Interface

tciGetAddressValue

Returns underlying value of the specified address value

TciValue tciGetAddressValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the underlying value of the specified
address value. Returned value is no longer of type class ADDRESS, but
rather of the actual type used for 'address' type representation.

valueId Identifier of the value instance.

verdict integer value that denotes one of the TTCN-3 ver-
dicts

valueId Identifier of the value instance.

TCI TE->CD Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 633

Return Values

Returns the underlying value of the specified address value. The type of the
returned value is the type that is used in user-defined address type specifiica-
tion.

tciSetAddressValue

Sets the underlying value of the specified address value

void tciSetAddressValue(TciValue addrValueId, TciValue
undValueId);

Parameters

Description

This operation may be called to set the underlying address value to the spec-
ified value. The type of undValueId should be the type that is used in user-
defined address type specification.

Return Values

None

TCI TE->CD Interface API

tciGetTypeForName

Lookups type identifier using specified type name.

TciType tciGetTypeForName(String typeName);

Parameters

addrValueId identifier of the address value instance

undValueId identifier of the value instance to be assigned to ad-
dress value

typeName name of type to look up

634 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation may be called to lookup type identifier using specified type
name. Built-in TTCN-3 types can be retrieved from the TE by using the
TTCN-3 keywords for the predefined types. In this case typeName denotes
to the basic TTCN-3 type like charstring, bitstring etc. User-defined
types as well as address and anytype types should be specified using fully
qualified names.

Return Values

Returns the type identifier for the built-in and user-defined types.

Returns the distinct value null if the requested type can not be returned.

tciGetIntegerType

Lookups type identifier for the predefined type integer.

TciType tciGetIntegerType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
integer.

Return Values

Returns the type identifier for the predefined type integer.

tciGetFloatType

Lookups type identifier for the predefined type float.

TciType tciGetFloatType();

Parameters

None

TCI TE->CD Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 635

Description

This operation may be called to lookup type identifier for the predefined type
float.

Return Values

Returns the type identifier for the predefined type float.

tciGetBooleanType

Lookups type identifier for the predefined type boolean.

TciType tciGetBooleanType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
boolean.

Return Values

Returns the type identifier for the predefined type boolean.

tciGetCharType

Lookups type identifier for the predefined type char.

TciType tciGetCharType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
char.

636 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

Returns the type identifier for the predefined type char.

tciGetUniversalCharType

Lookups type identifier for the predefined type universal char.

TciType tciGetUniversalCharType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
universal char.

Return Values

Returns the type identifier for the predefined type universal char.

tciGetObjidType

Lookups type identifier for the predefined type objid.

TciType tciGetObjidType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
objid.

Return Values

Returns the type identifier for the predefined type objid.

TCI TE->CD Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 637

tciGetCharstringType

Lookups type identifier for the predefined type charstring.

TciType tciGetCharstringType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
charstring.

Return Values

Returns the type identifier for the predefined type charstring.

tciGetUniversalCharstringType

Lookups type identifier for the predefined type universal charstring.

TciType tciGetUniversalCharstringType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
universal charstring.

Return Values

Returns the type identifier for the predefined type universal charstring.

tciGetHexstringType

Lookups type identifier for the predefined type hexstring.

TciType tciGetHexstringType();

638 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
hexstring.

Return Values

Returns the type identifier for the predefined type hexstring.

tciGetBitstringType

Lookups type identifier for the predefined type bitstring.

TciType tciGetBitstringType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
bitstring.

Return Values

Returns the type identifier for the predefined type bitstring.

tciGetOctetstringType

Lookups type identifier for the predefined type octetstring.

TciType tciGetOctetstringType();

Parameters

None

TCI TE->CD Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 639

Description

This operation may be called to lookup type identifier for the predefined type
octetstring.

Return Values

Returns the type identifier for the predefined type octetstring.

tciGetVerdictType

Lookups type identifier for the predefined type verdicttype.

TciType tciGetVerdictType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
verdicttype.

Return Values

Returns the type identifier for the predefined type verdicttype..

tciErrorReq

Notifies the TE about non-recoverable error while encoding/decoding the
data

void tciErrorReq(String message);

Parameters

Description

This operation may be called to notify TE about an unrecoverable error situ-
ation within the CD and forward the error indication to the test management

message character string containing description of error

640 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

None.

TCI CD->TE Interface API

tciDecode

Decodes received data.

TciValue tciDecode(BinaryString message, TciType
decodingHypothesis);

Parameters

Description

This operations decodes message according to the encoding rules and returns
a TTCN-3 value. The decodingHypothesis shall be used to determine
whether the encoded value can be decoded. If an encoding rule is not self-
sufficient, i.e. if the encoded message does not inherently contain its type
decodingHypothesis shall be used. If the encoded value can be decoded
without the decoding hypothesis, the distinct NULL value shall be returned
if the type determined from the encoded message is not compatible with the
decoding hypothesis.

Return Values

Returns decoded value or NULL if decoding is not possible.

tciEncode

Encodes value to be sent.

BinaryString tciEncode(TciValue valueId);

message encoded data

decodingHypothesis Type identifier of expected type

TCI TE->TM Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 641

Parameters

Description

This operations encodes value according to encoding rules.

Return Values

Returns binary string containing encoded representation of the specified
value.

TCI TE->TM Interface API

tciRootModule

Selects specified module as root module.

void tciRootModule(String moduleId);

Parameters

Description

This operation selects the indicated module for execution through a subse-
quent call using tciStartTestCase or tciStartControl. A tciError will be is-
sued by the TE if no such module exists. This operation shall be used only if
neither the control part nor a test case is currently being executed.

Return Values

None.

tciGetModules

Lookups the list of all modules defined in the testsuite.

TciModuleIdListType tciGetModules();

valueId Value to be encoded

moduleId the name of module to be set as root

642 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

None

Description

This operation returns the list of all modules defined in the testsuite.

The modules are ordered as they appear in the TTCN-3 module.

Return Values

Returns the list of module names.

tciGetImportedModules

Lookups the list of all modules imported by the root module.

TciModuleIdListType tciGetImportedModules();

Parameters

None

Description

This operation returns the list of imported modules of the root module.

The modules are ordered as they appear in the TTCN-3 module.

If no imported module exist, an empty module list is returned.

If the TE cannot provide a list, the distinct NULL value is returned.

This operation shall be used only if a root module has been set before.

Return Values

Returns the list of module names.

tciGetModuleParameters

Lookups the list of module parameters of a specified module.
TciModuleParameterListType

TCI TE->TM Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 643

tciGetModuleParameters(TciModuleIdType moduleName);

Parameters

Description

This operation returns the list of module parameters of the identified module.
The parameters are ordered as they appear in the TTCN-3 module. If no
module parameters exist, an empty module parameter list is returned. If the
TE cannot provide a list, the distinct NULL value is returned. This operation
shall be used only if a root module has been set before.

Return Values

Returns the list of module parameters.

tciGetModuleParameterType

Returns the type identifier of a specified module parameter.

TciType tciGetModuleParameterType(TciModuleParameterIdType
modParId);

Parameters

Description

This operation returns the type of the specified module parameter. This may
be required if module parameter does not have default value. If the TE cannot
provide type, the distinct NULL value is returned. This operation shall be
used only if a root module has been set before.

Return Values

Returns the type identifier of a specified module parameter.

moduleName module name for which to return module parame-
ters

modParId fully qualified name of a module parameter

644 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tciGetTestCases

Lookups the list of test cases either defined or imported in root module.

TciTestCaseIdListType T3TCI(tciGetTestCases) ();

Parameters

None

Description

This operation returns the list of test cases that are either defined in or im-
ported into the root module. If no test cases exist, an empty test case list is
returned. If the TE cannot provide a list, the distinct NULL value is returned.
This operation shall be used only if a root module has been set before.

Return Values

Returns the list of test cases.

tciGetTestCaseParameters

Lookups the list of formal parameters types of a specified test case.

TciParameterTypeListType
tciGetTestCaseParameters(TciTestCaseIdType testCaseId);

Parameters

Description

This operation returns the list of parameter types of the given test case. The
parameter types are ordered as they appear in the TTCN-3 signature of the
test case. If no test case parameters exist, an empty parameter type list is re-
turned. If the TE cannot provide a list, the distinct NULL value is returned.
This operation shall be used only if a root module has been set before.

Return Values

Returns the list of test case formal parameters types.

testCaseId fully qualified test case name

TCI TE->TM Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 645

tciGetTestCaseParametersNames

Lookups the list of formal parameters names of a specified test case.

TciTestCaseParameterIdListType
tciGetTestCaseParametersNames(TciTestCaseIdType
testCaseId);

Parameters

Description

This operation returns the list of parameter names of the given test case. The
parameter names are ordered as they appear in the TTCN-3 signature of the
test case. If no test case parameters exist, an empty parameter name list is re-
turned. If the TE cannot provide a list, the distinct NULL value is returned.
This operation shall be used only if a root module has been set before.

Return Values

Returns the list of test case formal parameters names.

tciGetTestCaseTSI

Returns the list of system ports of a specified test case.

TriPortIdList tciGetTestCaseTSI(TciTestCaseIdType
testCaseId);

Parameters

Description

This operation returns the list of system ports of the given test case that have
been declared in the definition of the system component for the test case, i.e.
the TSI ports. If a system component has not been explicitly defined for the
test case, then the list contains all communication ports of the MTC test com-

testCaseId fully qualified test case name

testCaseId fully qualified test case name

646 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

ponent. The ports are ordered as they appear in the respective TTCN-3 com-
ponent type declaration. If no system ports exist, an empty port list is re-
turned. If the TE cannot provide a list, the distinct NULL value is returned.

This operation shall be used only if a root module has been set before.

Note
This operation is not supported

Return Values

Returns the list of test case system ports.

tciStartTestCase

Starts test case with the specified actual parameters.

void tciStartTestCase(TciTestCaseIdType testCaseId,
TciParameterListType parameterList);

Parameters

Description

This operation starts a test case in the currently selected module with the
given parameters. A tciError will be issued by the TE if no such test case
exists. All in and inout test case parameters in parameterList shall contain de-
fined values. All out test case parameters in parameterList shall contain the
distinct NULL value since they are only of relevance when the test case ter-
minates. This operation shall be used only if a root module has been set be-
fore. It is only a testCaseId for a test case that is declared in the currently
selected TTCN-3 module that shall pass. Test cases that are imported in a ref-
erenced module can not be started. To start imported test cases the referenced
(imported) module must be selected first using the tciRootModule opera-
tion

Return Values

None.

testCaseId fully qualified test case name

parameterList A list of actual test case parameters

TCI TE->TM Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 647

tciStopTestCase

Stops currently running test case.

void tciStopTestCase();

Parameters

None

Description

This operation stops the test case currently being executed. If the TE is not
executing a test case, the operation is ignored. If the control part is being ex-
ecuted, tciStopTestCase will stop execution of the currently executed test
case, i.e. the execution of the test case that has recently been indicated using
the provided operation tciTestCaseStarted. A possible executing control part
will continue execution as if the test case has stopped normally and returned
with verdict ERROR. This operation shall be used only if a root module has
been set before.

Return Values

None.

tciStartControl

Starts control part of the selected module.

TriComponentId tciStartControl();

Parameters

None

Description

This operation starts the control part of the selected module. The control part
starts TTCN-3 test cases as described in TTCN-3. While executing the con-
trol part the TE calls the provided operation tciTestCaseStarted and tciTest-
CaseTerminated for every test case that has been started and that has termi-

648 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

nated. After termination of the control part the TE calls the provided
operation tciControlTerminated. This operation shall be used only if a root
module has been set before.

Return Values

Returns the id of a component that executes started control part

tciStopControl

Stops currently executing control part.

void tciStopControl();

Parameters

None

Description

This operation stops execution of the control part. If no control part is cur-
rently being executed the operation is ignored. If a test case has been started
directly this will stop execution of the current test case as if tciStopTestCase
has been called. This operation shall be used only if a root module has been
set before.

Return Values

None.

TCI TM->TE Interface API

tciTestCaseStarted

Notifies that test case has been started.

void tciTestCaseStarted(TciTestCaseIdType testCaseId,
TciParameterListType parameterList, double timeout);

TCI TM->TE Interface API

June 2009 IBM Rational Systems Tester 3.3 User Guide 649

Parameters

Description

This operation indicates to the test management that a test case with
testCaseId has been started. It will not be distinguished whether the test case
has been started explicitly using the required operation tciStartTestCase or
implicitly while executing the control part. Zero value in timeout indicates
that test case has been started without timeout.

Return Values

None.

tciTestCaseTerminated

Notifies that test case has been ended.

void tciTestCaseTerminated(TciValue verdict,
TciParameterListType parameterlist);

Parameters

Description

This operation indicates to the test management that a test case that has been
currently executed on the MTC has terminated with specified final ver-
dict.All out and inout test case parameters contain non NULL values. All in
test case parameters contain the distinct NULL value.

Return Values

None.

testCaseId fully qualified test case name

parameterList A list of actual test case parameters

timeout double value of test case timeout

verdict final test case verdict

parameterList list of test case parameters (inout and out have non
NULL values)

650 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tciControlTerminated

Notifies that control part has been ended.

void tciControlTerminated();

Parameters

None.

Description

This operation indicates to the test management that the control part of the
selected module has just terminated execution.

Return Values

None.

tciGetModulePar

Returns the value of a specified module parameter.

TciValue tciGetModulePar(TciModuleParameterIdType
parameterId);

Parameters

Description

The test management provides to the TE a value for the indicated module pa-
rameter. Every call of tciGetModulePar() should return the same value
throughout the execution of an explicitly started test case or throughout the
execution of a control part. If the management cannot provide a TTCN-3
value, the distinct NULL value should be returned.

Return Values

Returns the value of a specified module parameter.

parameterId fully qualified name of a module parameter.

Service Functions to TCI Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 651

Returns NULL if value cannot be determined.

tciError

Notifies about runtime error in TE.

void tciError(String message);

Parameters

Description

This operation indicates the occurrence of an unrecoverable error situation.
message contains a reason phrase that might be communicated to the test
system user. It is up to the test management to terminate execution of test
cases or control parts if running. The test management has to take explicit
measures to terminate test execution immediately.

Return Values

None.

Service Functions to TCI Interface

tciInit

Initializes TCI interface.

int tciInit(int argc, char *argv[]);

Parameters

message description of a runtime error

argc number of command line Parameters

argv string array of command line Parameters

652 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation performs general initialization of the TCI interface.Command
line parameters that have been passed to the main() function should be passed
to tciInit() as well. tciInit() should be called outside of any TTCN-3 RTS
functions. No TCI functions should be called prior to tciInit()

Return Values

Returns true on success, false otherwise.

tciMemoryAllocate

Allocates specified number of bytes in temporary memory area.

void *tciMemoryAllocate(unsigned long bytes);

Parameters

Description

This function allocates memory block in temporary memory area. It is just a
wrapper to t3rt_memory_temp_allocate() function that cannot be used inside
TCI functions due to the lack of access to context.

Return Values

Returns pointer to newly allocated memory.

Returns NULL if memory cannot be allocated.

tciStartTestsuiteServer

Main function that is called when test suite execution is controlled using Ra-
tional Systems Tester GUI.

int tciStartTestsuiteServer(int argc, char *argv[]);

Parameters

bytes amount of memory in bytes to be allocated

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 653

Description

This function initializes TCI interface and starts all internal servers that are
necessary to control test suite execution from Rational Systems Tester GUI.
This is a blocking function. It will return only when test suite (not certain test
case or control part) will be terminated. tciStartTestsuiteServer() should be
called outside of any TTCN-3 RTS functions. No TCI functions should be
called prior to tciStartTestsuiteServer()

Return Values

Returns true on success, false otherwise.

TCI TL->TE Interface

tliTcExecute

Logs execute test case request.

void tliTcExecute(String am, long int ts, String src, long
int line, TriComponentId c, TciTestCaseIdType tcId,
TciParameterListType pars, TriTimerDuration dur);

Parameters

argc number of command line Parameters

argv string array of command line Parameters

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

654 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the execute test case request.

Return Values

None.

tliTcStart

Logs start of a test case.

void tliTcStart(String am, long int ts, String src, long
int line, TriComponentId c, TciTestCaseIdType tcId,
TciParameterListType pars, TriTimerDuration dur);

Parameters

Description

This operation is called by TE to log the start of a test case. This event occurs
before the test case is started.

tcId The test case to be executed

pars The list of parameters required by the test case.

dur Duration of the execution

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

tcId The test case to be executed

pars The list of parameters required by the test case.

dur Duration of the execution

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 655

Return Values

None.

tliTcStop

Logs stop of a test case.

void tliTcStop(String am, long int ts, String src, long int
line, TriComponentId c);

Parameters

Description

This operation is called by TE to log the stop of a test case.

Return Values

None.

tliTcStarted

Logs start of a test case.

void tliTcStarted(String am, long int ts, String src, long
int line, TriComponentId c, TciTestCaseIdType tcId,
TciParameterListType pars, TriTimerDuration dur);

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

656 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation is called by TM to log the start of a test case. This event occurs
after the test case was started.

Return Values

None.

tliTcTerminated

Logs termination of a test case.

void tliTcTerminated(String am, long int ts, String src,
long int line, TriComponentId c, TciTestCaseIdType tcId,
TciParameterListType pars, TciValue outcome);

Parameters

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

tcId The test case to be executed

pars The list of parameters required by the test case.

dur Duration of the execution

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 657

Description

This operation is called by TM to log the termination of a test case. This
event occurs after the test case terminated.

Return Values

None.

tliCtrlStart

Logs start of the control part.

void tliCtrlStart(String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

Description

This operation is called by TE to log the start of the control part. This event
occurs before the control is started. If the control is not represented by a TRI
component, c is null.

c The component which produces this event

tcId The test case to be executed

pars The list of parameters required by the test case.

outcome The verdict of the test case

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

658 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

None.

tliCtrlStop

Logs stop of the control part.

void tliCtrlStop(String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

Description

This operation is called by TE to log the stop of the control part. This event
occurs before the control is stopped. If the control is not represented by a TRI
component, c is null.

Return Values

None.

tliCtrlTerminated

Logs termination of the control part.

void tliCtrlTerminated (String am, long int ts, String src,
long int line, TriComponentId c);

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 659

Parameters

Description

This operation is called by TM to log the termination of the control part. This
event occurs after the control has terminated. If the control is not represented
by a TRI component, c is null.

Return Values

None.

tliMSend_m

Logs unicast (point-to-point communication) send operation.

void tliMSend_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TciValue msgValue, TriAddress address, TriStatus
encoderFailure, TriMessage msg, TriStatus
transmissionFailure);

Parameters

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

660 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by SA to log a unicast send operation. This event oc-
curs after sending. This event is used for logging the communication with the
SUT.

Return Values

None.

tliMSend_m_BC

Logs broadcast send operation.

void tliMSend_m_BC(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TciValue msgValue, TriStatus encoderFailure,
TriMessage msg, TriStatus transmissionFailure);

Parameters

atPort The port via which the message is sent

toPort The port to which the message is sent

msgValue The value to be encoded and sent

address The address of the destination within the
SUT

encoderFailure The failure message which might occur at
encoding

msg The encoded message

transmissionFailure The failure message which might occur at
transmission

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 661

Description

This operation is called by SA to log a broadcast send operation. This event
occurs after sending. This event is used for logging the communication with
the SUT.

Return Values

None.

tliMSend_m_MC

Logs multicast send operation.

void tliMSend_m_MC(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TciValue msgValue, TriAddressList addresses,
TriStatus encoderFailure, TriMessage msg, TriStatus
transmissionFailure);

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPort The port to which the message is sent

msgValue The value to be encoded and sent

address The address of the destination within the
SUT

encoderFailure The failure message which might occur at
encoding

msg The encoded message

transmissionFailure The failure message which might occur at
transmission

662 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation is called by SA to log a multicast send operation. This event
occurs after sending. This event is used for logging the communication with
the SUT.

Return Values

None.

tliMSend_c

Logs unicast send operation.

void tliMSend_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TciValue msgValue, TriStatus transmissionFailure);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPort The port to which the message is sent

msgValue The value to be encoded and sent

addresses The addresses of the destination within the
SUT

encoderFailure The failure message which might occur at
encoding

msg The encoded message

transmissionFailure The failure message which might occur at
transmission

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 663

Parameters

Description

This operation is called by CH to log a unicast send operation. This event oc-
curs after sending. This event is used for logging the inter-component com-
munication.

Return Values

None.

tliMSend_c_BC

Logs broadcast send operation.

void tliMSend_c_BC(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortIdList
toPortList, TciValue msgValue, TriStatus
transmissionFailure);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPort The port to which the message is sent

msgValue The value to be encoded and sent

transmissionFailure The failure message which might occur at
transmission

664 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation is called by CH to log a broadcast send operation. This event
occurs after sending. This event is used for logging the inter-component
communication.

Return Values

None.

tliMSend_c_MC

Logs multicast send operation.

void tliMSend_c_MC(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortIdList
toPortList, TciValue msgValue, TriStatus
transmissionFailure);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPortList The ports to which the message is sent

msgValue The value to be encoded and sent

transmissionFailure The failure message which might occur at
transmission

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 665

Parameters

Description

This operation is called by CH to log a multicast send operation. This event
occurs after sending. This event is used for logging the inter-component
communication.

Return Values

None.

tliMDetected_m

Logs enqueuing of a message.

void tliMDetected_m(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriMessage msg, TriAddress address);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPortList The ports to which the message is sent

msgValue The value to be encoded and sent

transmissionFailure The failure message which might occur at
transmission

666 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation is called by SA to log the enqueuing of a message. This event
occurs after the message is enqueued. This event is used for logging the com-
munication with the SUT.

Return Values

None.

tliMDetected_c

Logs enqueuing of a message.

void tliMDetected_c(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TciValue msgValue);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port at which the message is detected

fromPort The port via which the message is sent

msg The encoded value enqueued into port

address The address of the source within the SUT

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 667

Parameters

Description

This operation is called by CH to log the enqueuing of a message. This event
occurs after the message is enqueued. This event is used for logging the inter-
component communication.

Return Values

None.

tliMMismatch_m

Logs mismatch of a template.

void tliMMismatch_m(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port, TciValue
msgValue, TciValueTemplate msgTmpl, TciValueDifferenceList
diffs, TriAddress address, TciValueTemplate addressTmpl);

Parameters

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port at which the message is detected

fromPort The value enqueued into port

msgValue The value to be encoded and sent

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

668 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a template. This event
occurs after checking a template match. This event is used for logging the
communication with the SUT.

Return Values

None.

tliMMismatch_c

Logs mismatch of a template.

void tliMMismatch_c(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port, TciValue
msgValue, TciValueTemplate msgTmpl, TciValueDifferenceList
diffs, TriComponentId from, TciNonValueTemplate fromTmpl);

line The line number where the request is per-
formed

c The component which produces this event

port The port via which the message is received

msgValue The message which is checked against the
template

msgTmpl The template used to check the message
match

diffs The difference/the mismatch between mes-
sage and template

address The address of the source within the SUT

addressTmpl The expected address of the source within
the SUT

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 669

Parameters

Description

This operation is called by TE to log the mismatch of a template. This event
occurs after checking a template match. This event is used for logging the
inter-component communication.

Return Values

None.

tliMReceive_m

Logs receive of a message.

void tliMReceive_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port, TciValue
msgValue, TciValueTemplate msgTmpl, TriAddress address,
TciValueTemplate addressTmpl);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

port The port via which the message is received

msgValue The message which is checked against the
template

msgTmpl The template used to check the message
match

diffs The difference/the mismatch between mes-
sage and template

from The component which sent the message

fromTmpl The expected sender component

670 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation is called by TE to log the receive of a message. This event oc-
curs after checking a template match. This event is used for logging the com-
munication with SUT.

Return Values

None.

tliMReceive_c

Logs receive of a message.

void tliMReceive_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port, TciValue
msgValue, TciValueTemplate msgTmpl, TriComponentId from,
TciNonValueTemplate fromTmpl);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

port The port via which the message is received

msgValue The message which is checked against the
template

msgTmpl The template used to check the message
match

address The address of the source within the SUT

addressTmpl The expected address of the source within
the SUT

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 671

Parameters

Description

This operation is called by TE to log the receive of a message. This event oc-
curs after checking a template match. This event is used for logging the inter-
component communication.

Return Values

None.

tliPrCall_m

Logs unicast call operation.

void tliPrCall_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciParameterListType
parsValue, TriAddress address, TriStatus encoderFailure,
TriParameterList pars, TriStatus transmissionFailure);

Parameters

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

port The port via which the message is received

msgValue The message which is checked against the
template

msgTmpl The template used to check the message
match

from The component which sent the message

fromTmpl The expected sender component

672 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by SA to log a unicast call operation. This event oc-
curs after call execution. This event is used for logging the communication
with the SUT.

Return Values

None.

tliPrCall_m_BC

Logs broadcast call operation.

void tliPrCall_m_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature,
TciParameterListType parsValue, TriStatus encoderFailure,
TriParameterList pars, TriStatus transmissionFailure);

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPort The port for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

address The address of the destination within the SUT.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded parameters.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 673

Parameters

Description

This operation is called by SA to log a broadcast call operation. This event
occurs after call execution. This event is used for logging the communication
with the SUT.

Return Values

None.

tliPrCall_m_MC

Logs multicast call operation.

void tliPrCall_m_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature,
TciParameterListType parsValue, TriAddressList addresses,
TriStatus encoderFailure, TriParameterList pars, TriStatus

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPort The port for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded parameters.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

674 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

transmissionFailure);

Parameters

Description

This operation is called by SA to log a multicast call operation. This event
occurs after call execution. This event is used for logging the communication
with the SUT.

Return Values

None.

tliPrCall_c

Logs unicast call operation.

void tliPrCall_c(String am, long int ts, String src, long

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPort The port for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

addresses The addresses of the destinations within the SUT.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded parameters.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 675

int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciParameterListType
parsValue, TriStatus transmissionFailure);

Parameters

Description

This operation is called by CH to log a unicast call operation. This event oc-
curs after call execution. This event is used for logging the inter-component
communication.

Return Values

None.

tliPrCall_c_BC

Logs broadcast call operation.

void tliPrCall_c_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciParameterListType parsValue, TriStatus
transmissionFailure);

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPort The port for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

676 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation is called by CH to log a broadcast call operation. This event
occurs after call execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

tliPrCall_c_MC

Logs multicast call operation.

void tliPrCall_c_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciParameterListType parsValue, TriStatus
transmissionFailure);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPortList List of ports for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 677

Description

This operation is called by CH to log a multicast call operation. This event
occurs after call execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

tliPrGetCallDetected_m

Logs getcall enqueue operation.

void tliPrGetCallDetected_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature,
TriParameterList pars, TriAddress address);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPortList List of ports for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

678 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by SA to log the getcall enqueue operation. This
event occurs after call is enqueued. This event is used for logging the com-
munication with the SUT.

Return Values

None.

tliPrGetCallDetected_c

Logs getcall enqueue operation.

void tliPrGetCallDetected_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature,
TciParameterListType parsValue);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is received.

fromPort The port via which the call is sent.

signature The signature of the detected call.

pars The encoded parameters of detected call.

address The address of the destination within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 679

Description

This operation is called by CH to log the getcall enqueue operation. This
event occurs after call is enqueued. This event is used for logging the inter-
component communication.

Return Values

None.

tliPrGetCallMismatch_m

Logs mismatch of a getcall.

void tliPrGetCallMismatch_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValueDifferenceList diff,
TriAddress address, TciValueTemplate addressTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is received.

fromPort The port via which the call is sent.

signature The signature of the called operation.

parsValue The parameters of detected call.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

680 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a getcall. This event
occurs after getcall is checked against a template. This event is used for
logging the communication with the SUT.

Return Values

None.

tliPrGetCallMismatch_c

Logs mismatch of a getcall.

void tliPrGetCallMismatch_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValueDifferenceList diffs,
TriComponentId from, TciNonValueTemplate fromTmpl);

Parameters

line The line number where the request is performed.

c The component which produces this event.

port The port via which the call is received.

signature The signature of the detected call.

parsValue The parameters of detected call.

parsTmpl The template used to check the parameter match.

diffs The difference/the mismatch between call and tem-
plate

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 681

Description

This operation is called by TE to log the mismatch of a getcall. This event
occurs after getcall is checked against a template. This event is used for
logging the inter-component communication.

Return Values

None.

tliPrGetCall_m

Logs getting a call.

void tliPrGetCall_m(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TriAddress address,
TciValueTemplate addressTmpl);

Parameters

line The line number where the request is performed.

c The component which produces this event.

port The port via which the call is received.

signature The signature of the detected call.

parsValue The parameters of detected call.

parsTmpl The template used to check the parameter match.

diffs The difference/the mismatch between message and
template

from The component which called the operation.

fromTmpl The expected calling component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

682 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log getting a call. This event occurs after
getcall has matched against a template. This event is used for logging the
communication with the SUT.

Return Values

None.

tliPrGetCall_c

Logs getting a call.

void tliPrGetCall_c(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TriComponentId from,
TciNonValueTemplate fromTmpl);

Parameters

line The line number where the request is performed.

c The component which produces this event.

port The port via which the call is received.

signature The signature of the detected call.

parsValue The parameters of detected call.

parsTmpl The template used to check the parameter match.

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 683

Description

This operation is called by TE to log getting a call. This event occurs after
getcall has matched against a template. This event is used for logging the
inter-component communication.

Return Values

None.

tliPrReply_m

Logs unicast reply operation.

void tliPrReply_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciValue parsValue,
TciValue replValue, TriAddress address, TriStatus
encoderFailure, TriParameterList pars, TriParameter repl,
TriStatus transmissionFailure);

Parameters

port The port via which the call is received.

signature The signature of the detected call.

parsValue The parameters of detected call.

parsTmpl The template used to check the parameter match.

from The component which called the operation.

fromTmpl The expected calling component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

684 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by SA to log a unicast reply operation. This event oc-
curs after reply execution. This event is used for logging the communication
with the SUT

Return Values

None.

tliPrReply_m_BC

Logs broadcast reply operation.

void tliPrReply_m_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature, TciValue
parsValue, TciValue replValue, TriStatus encoderFailure,
TriParameterList pars, TriParameter repl, TriStatus
transmissionFailure);

Parameters

toPort The port for which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

address The address of the destination within the SUT.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded signature parameters relating to the
reply.

repl The encoded reply.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 685

Description

This operation is called by SA to log a broadcast reply operation. This event
occurs after reply execution. This event is used for logging the communica-
tion with the SUT

Return Values

None.

tliPrReply_m_MC

Logs multicast reply operation.

void tliPrReply_m_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPort The port for which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded signature parameters relating to the
reply.

repl The encoded reply.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

686 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

TriPortId toPort, TriSignatureId signature, TciValue
parsValue, TciValue replValue, TriAddressList addresses,
TriStatus encoderFailure, TriParameterList pars,
TriParameter repl, TriStatus transmissionFailure);

Parameters

Description

This operation is called by SA to log a multicast reply operation. This event
occurs after reply execution. This event is used for logging the communica-
tion with the SUT

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPort The port for which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

addresses The addresses of the destinations within the SUT.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded signature parameters relating to the
reply.

repl The encoded reply.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 687

Return Values

None.

tliPrReply_c

Logs unicast reply operation.

void tliPrReply_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciValue parsValue,
TciValue replValue, TriStatus transmissionFailure);

Parameters

Description

This operation is called by CH to log a unicast reply operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPort The port for which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

688 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tliPrReply_c_BC

Logs broadcast reply operation.

void tliPrReply_c_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciValue parsValue, TciValue replValue, TriStatus
transmissionFailure);

Parameters

Description

This operation is called by CH to log a broadcast reply operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPortList List of ports to which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 689

tliPrReply_c_MC

Logs multicast reply operation.

void tliPrReply_c_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciValue parsValue, TciValue replValue, TriStatus
transmissionFailure);

Parameters

Description

This operation is called by CH to log a multicast reply operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPortList List of ports to which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

690 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tliPrGetReplyDetected_m

Logs getreply enqueue operation.

void tliPrGetReplyDetected_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TriParameterList pars,
TriParameter repl, TriAddress address);

Parameters

Description

This operation is called by SA to log the getreply enqueue operation. This
event occurs after getreply is enqueued. This event is used for logging the
communication with the SUT.

Note
getreply is a TTCN-3 port operation. When a reply to previously made
procedure call is received from a communication channel it is added to the
port queue. Later the runtime system will extract it from the port queue (in a
first-in-first-out order), then generate other events like “reply matched tem-
plate”. The function tliPrGetReplyDetected_m() is intended to log the re-
ceive of a reply and its addition to the port queue.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port to which the reply is enqueued.

fromPort The port from which the reply is sent.

signature The signature relating to the reply.

pars The encoded signature parameters relating to the
reply.

repl The received encoded reply.

address The address of the source within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 691

Return Values

None.

tliPrGetReplyDetected_c

Logs getreply enqueue operation.

void tliPrGetReplyDetected_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature,
TciParameterListType parsValue, TciValue replValue);

Parameters

Description

This operation is called by CH to log the getreply enqueue operation. This
event occurs after getreply is enqueued. This event is used for logging the
inter-component communication.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port to which the reply is enqueued.

fromPort The port from which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The received reply.

692 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tliPrGetReplyMismatch_m

Logs mismatch of a getreply operation.

void tliPrGetReplyMismatch_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValue replValue,
TciValueTemplate replyTmpl, TciValueDifferenceList diffs,
TriAddress address, TciValueTemplate addressTmpl);

Parameters

Description

This operation is called by TE to log the mismatch of a getreply operation.
This event occurs after getreply is checked against a template. This event
is used for logging the communication with SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the reply is received.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

parsTmpl The signature template relating to the reply.

replValue The received reply.

replyTmpl The template used to check the reply match.

diffs The difference/the mismatch between reply and
template

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 693

Return Values

None.

tliPrGetReplyMismatch_c

Logs mismatch of a getreply operation.

void tliPrGetReplyMismatch_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValue replValue,
TciValueTemplate replyTmpl, TciValueDifferenceList diffs,
TriComponentId from, TciNonValueTemplate fromTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the reply is received.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

parsTmpl The signature template relating to the reply.

repl The received reply.

replyTmpl The template used to check the reply match.

diffs The difference/the mismatch between reply and
template

from The component which sent the reply.

fromTmpl The expected replying component.

694 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a getreply operation.
This event occurs after getreply is checked against a template. This event
is used for logging the inter-component communication.

Return Values

None.

tliPrGetReply_m

Logs getting a reply.

void tliPrGetReply_m(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValue replValue,
TciValueTemplate replyTmpl, TriAddress address,
TciValueTemplate addressTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the reply is received.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

parsTmpl The signature template relating to the reply.

replValue The received reply.

replyTmpl The template used to check the reply match.

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 695

Description

This operation is called by TE to log getting a reply. This event occurs after
getreply is checked against a template. This event is used for logging the
communication with SUT.

Return Values

None.

tliPrGetReply_c

Logs getting a reply.

void tliPrGetReply_c(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValue replValue,
TciValueTemplate replyTmpl, TriComponentId from,
TciNonValueTemplate fromTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the reply is received.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

parsTmpl The signature template relating to the reply.

replValue The received reply.

replyTmpl The template used to check the reply match.

from The component which sent the reply.

fromTmpl The expected replying component.

696 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log getting a reply. This event occurs after
getreply is checked against a template. This event is used for logging the
inter-component communication.

Return Values

None.

tliPrRaise_m

Logs unicast raise operation.

void tliPrRaise_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciParameterListType
parsValue, TciValue excValue, TriAddress address, TriStatus
encoderFailure, TriException exc, TriStatus
transmissionFailure);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the exception is sent.

toPort The port to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

address The address of the destination within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 697

Description

This operation is called by SA to log a unicast raise operation. This event oc-
curs after reply execution. This event is used for logging the communication
with the SUT.

Return Values

None.

tliPrRaise_m_BC

Logs broadcast raise operation.

void tliPrRaise_m_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature,
TciParameterListType parsValue, TciValue excValue,
TriStatus encoderFailure, TriException exc, TriStatus
transmissionFailure);

Parameters

encoderFailure The failure message which might occur at en-
coding.

exc The encoded exception.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the exception is sent.

toPort The port to which the exception is sent.

signature The signature relating to the exception.

698 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by SA to log a broadcast raise operation. This event
occurs after reply execution. This event is used for logging the communica-
tion with the SUT.

Return Values

None.

tliPrRaise_m_MC

Logs multicast raise operation.

void tliPrRaise_m_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature,
TciParameterListType parsValue, TciValue excValue,
TriAddressList addresses, TriStatus encoderFailure,
TriException exc, TriStatus transmissionFailure);

Parameters

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

encoderFailure The failure message which might occur at en-
coding.

exc The encoded exception.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the exception is sent.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 699

Description

This operation is called by SA to log a multicast raise operation. This event
occurs after reply execution. This event is used for logging the communica-
tion with the SUT.

Return Values

None.

tliPrRaise_c

Logs unicast raise operation.

void tliPrRaise_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciParameterListType
parsValue, TciValue excValue, TriStatus
transmissionFailure);

Parameters

toPort The port to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

addresses The addresses of the destinations within the SUT.

encoderFailure The failure message which might occur at en-
coding.

exc The encoded exception.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

700 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by CH to log a unicast raise operation. This event oc-
curs after reply execution. This event is used for logging the inter-component
communication.

Return Values

None.

tliPrRaise_c_BC

Logs broadcast raise operation.

void tliPrRaise_c_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciParameterListType parsValue, TciValue excValue,
TriStatus transmissionFailure);

Parameters

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the exception is sent.

toPort The port to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 701

Description

This operation is called by CH to log a broadcast raise operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

tliPrRaise_c_MC

Logs multicast raise operation.

void tliPrRaise_c_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciParameterListType parsValue, TciValue excValue,
TriStatus transmissionFailure);

Parameters

c The component which produces this event.

atPort The port via which the exception is sent.

toPortList List of ports to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

702 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by CH to log a multicast raise operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

tliPrCatchDetected_m

Logs catch enqueue operation.

void tliPrCatchDetected_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature, TriException
exc, TriAddress address);

Parameters

atPort The port via which the exception is sent.

toPortList List of ports to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port to which the exception is enqueued.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 703

Description

This operation is called by SA to log the catch enqueue operation. This event
occurs after catch is enqueued. This event is used for logging the communi-
cation with the SUT.

Return Values

None.

tliPrCatchDetected_c

Logs catch enqueue operation.

void tliPrCatchDetected_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature, TciValue
excValue, TriAddress address);

Parameters

fromPort The port from which the exception is sent.

signature The signature relating to the exception.

exc The caught exception.

address The address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port to which the exception is enqueued.

fromPort The port from which the exception is sent.

704 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by CH to log the catch enqueue operation. This event
occurs after catch is enqueued. This event is used for logging the inter-com-
ponent communication.

Return Values

None.

tliPrCatchMismatch_m

Logs mismatch of a catch operation.

void tliPrCatchMismatch_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciValue excValue,
TciValueTemplate excTmpl, TciValueDifferenceList diffs,
TriAddress address, TciValueTemplate addressTmpl);

Parameters

signature The signature relating to the exception.

excValue The caught exception.

address The address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

excValue The received exception.

excTmpl The template used to check the exception match.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 705

Description

This operation is called by TE to log the mismatch of a catch operation. This
event occurs after catch is checked against a template. This event is used for
logging the communication with SUT.

Return Values

None.

tliPrCatchMismatch_c

Logs mismatch of a catch operation.

void tliPrCatchMismatch_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciValue excValue,
TciValueTemplate excTmpl, TciValueDifferenceList diffs,
TriComponentId from, TciNonValueTemplate fromTmpl);

Parameters

diffs The difference/the mismatch between exception
and template

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

excValue The received exception.

excTmpl The template used to check the exception match.

706 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a catch operation. This
event occurs after catch is checked against a template. This event is used for
logging the inter-component communication.

Return Values

None.

tliPrCatch_m

Logs catching an exception.

void tliPrCatch_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port, TriSignatureId
signature, TciValue excValue, TciValueTemplate excTmpl,
TriAddress address, TciValueTemplate addressTmpl);

Parameters

diffs The difference/the mismatch between exception
and template

from The component which sent the reply.

fromTmpl The expected replying component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

excValue The received exception.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 707

Description

This operation is called by SA to log catching an exception. This event oc-
curs after catch is checked against a template. This event is used for logging
the communication with SUT.

Return Values

None.

tliPrCatch_c

Logs catching an exception.

void tliPrCatch_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port, TriSignatureId
signature, TciValue excValue, TciValueTemplate excTmpl,
TriComponentId from, TciNonValueTemplate fromTmpl);

Parameters

excTmpl The template used to check the exception match.

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

excValue The received exception.

708 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by CH to log catching an exception. This event oc-
curs after catch is checked against a template. This event is used for logging
the inter-component communication.

Return Values

None.

tliPrCatchTimeoutDetected

Logs detection of a catch timeout.

void tliPrCatchTimeoutDetected(String am, long int ts,
String src, long int line, TriComponentId c, TriPortId
port, TriSignatureId signature);

Parameters

Description

This operation is called by PA to log the detection of a catch timeout. This
event occurs after the timeout is enqueued.

excTmpl The template used to check the exception match.

from The component which sent the reply.

fromTmpl The expected replying component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line the line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 709

Return Values

None.

tliPrCatchTimeout

Logs catching a timeout.

void tliPrCatchTimeout (String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature);

Parameters

Description

This operation is called by TE to log catching a timeout. This event occurs
after the catch timeout has been performed.

Return Values

None.

tliCCreate

Logs create component operation.

void tliCCreate(String am, long int ts, String src, long
int line, TriComponentId c, TriComponentId comp, String
name, unsigned char alive);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

710 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the create component operation. This
event occurs after component creation.

Return Values

None.

tliCStart

Logs start component operation.

void tliCStart(String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp,
TciBehaviourIdType beh, TciParameterListType pars);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is created.

name Name of the created component.

alive Signals whether component is alive.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 711

Description

This operation is called by TE to log the start component operation. This
event occurs after component start.

Return Values

None.

tliCRunning

Logs running component operation.

void tliCRunning(String am, long int ts, String src, long
int line, TriComponentId c, TriComponentId comp,
ComponentStatus status);

Parameters

Description

This operation is called by TE to log the running component operation. This
event occurs after component running.

comp The component which is started.

beh The behavior being started on the component.

pars The parameters of the started behavior.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is checked to be running.

status The status of this component.

712 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

None.

tliCAlive

Logs alive component operation.

void tliCAlive(String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp,
ComponentStatus status);

Parameters

Description

This operation is called by TE to log the alive component operation. This
event occurs after component alive.

Return Values

None.

tliCStop

Logs stop component operation.

void tliCStop(String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is checked to be running.

status The status of this component.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 713

Description

This operation is called by TE to log the stop component operation. This
event occurs after component stop.

Return Values

None.

tliCKill

Logs kill component operation.

void tliCKill(String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is stopped.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is stopped.

714 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the kill component operation. This event
occurs after component kill.

Return Values

None.

tliCDoneMismatch

Logs mismatch of a done component operation.

void tliCDoneMismatch(String am, long int ts, String src,
long int line, TriComponentId c, TriComponentId comp,
TciNonValueTemplate compTmpl);

Parameters

Description

This operation is called by TE to log the mismatch of a done component op-
eration. This event occurs after done is checked against a template.

Return Values

None.

tliCDone

Logs done component operation.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The first component which is not yet done.

compTmpl The template used to check the done match.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 715

void tliCDone (String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp,
TciNonValueTemplate compTmpl);

Parameters

Description

This operation is called by TE to log the done component operation. This
event occurs after the done operation.

Return Values

None.

tliCKilledMismatch

Logs mismatch of a killed component operation.

void tliCKilledMismatch(String am, long int ts, String src,
long int line, TriComponentId c, TriComponentId comp,
TciNonValueTemplate compTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is done.

compTmpl The template used to check the done match.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

716 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a killed component op-
eration. This event occurs after killed is checked against a template.

Return Values

None.

tliCKilled

Logs killed component operation.

void tliCKilled (String am, long int ts, String src, long
int line, TriComponentId c, TriComponentId comp,
TciNonValueTemplate compTmpl);

Parameters

Description

This operation is called by TE to log the killed component operation. This
event occurs after the killed operation.

line The line number where the request is performed.

c The component which produces this event.

comp The first component which is not yet killed.

compTmpl The template used to check the done match.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is killed.

compTmpl The template used to check the done match.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 717

Return Values

None.

tliCTerminated

Logs termination of a component.

void tliCTerminated(String am, long int ts, String src,
long int line, TriComponentId c, TriComponentId comp,
TciValue verdict);

Parameters

Description

This operation is called by TE to log the termination of a component. This
event occurs after the termination of the component.

Return Values

None.

tliPConnect

Logs connect operation.

void tliPConnect(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port1, TriPortId
port2);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

verdict The verdict of the component.

718 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by CH to log the connect operation. This event oc-
curs after the connect operation.

Return Values

None.

tliPDisconnect

Logs disconnect operation.

void tliPDisconnect(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port1, TriPortId
port2);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port1 The first port to be connected.

port2 The second port to be connected.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 719

Description

This operation is called by CH to log the disconnect operation. This event oc-
curs after the disconnect operation.

Return Values

None.

tliPMap

Logs map operation.

void tliPMap(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port1, TriPortId port2);

Parameters

Description

This operation is called by SA to log the map operation. This event occurs
after the map operation.

c The component which produces this event.

port1 The first port to be disconnected.

port2 The second port to be disconnected.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port1 The first port to be mapped.

port2 The second port to be mapped.

720 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

None.

tliPUnmap

Logs an un-map operation.

void tliPUnmap(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port1, TriPortId port2);

Parameters

Description

This operation is called by SA to log an un-map operation. This event occurs
after the un-map operation.

Return Values

None.

tliPClear

Logs port clear operation.

void tliPClear(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port1 The first port to be unmapped.

port2 The second port to be unmapped.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 721

Description

This operation is called by TE to log the port clear operation. This event oc-
curs after the port clear operation.

Return Values

None.

tliPStart

Logs port start operation.

void tliPStart(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port to be cleared.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port to be started.

722 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log the port start operation. This event oc-
curs after the port start operation.

Return Values

None.

tliPStop

Logs port stop operation.

void tliPStop(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port);

Parameters

Description

This operation is called by TE to log the port stop operation. This event oc-
curs after the port stop operation.

Return Values

None.

tliPHalt

Logs port halt operation.

void tliPHalt(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port);

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port to be stopped.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 723

Parameters

Description

This operation is called by TE to log the port halt operation. This event oc-
curs after the port halt operation.

Return Values

None.

tliEncode

Logs encode operation.

void tliEncode(String am, long int ts, String src, long int
line, TriComponentId c, TciValue val, TriStatus
encoderFailure, TriMessage msg, String codec);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port to be stopped.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

value The value to be encoded.

724 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by CD to log the encode operation.

Return Values

None.

tliDecode

Logs decode operation.

void tliDecode(String am, long int ts, String src, long int
line, TriComponentId c, TciValue val, TriStatus
decoderFailure, TriMessage msg, String codec);

Parameters

encoderFailure The failure message which might occur at en-
coding.

msg The encoded value.

codec The used encoder.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

msg The value to be decoded.

decoderFailure The failure message which might occur at de-
coding.

value The decoded value.

codec The used decoder.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 725

Description

This operation is called by CD to log the decode operation.

Return Values

None.

tliTTimeoutDetected

Logs detection of a timeout.

void tliTTimeoutDetected(String am, long int ts, String
src, long int line, TriComponentId c, TriTimerId timer);

Parameters

Description

This operation is called by PA to log the detection of a timeout. This event
occurs after timeout is enqueued.

Return Values

None.

tliTTimeoutMismatch

Logs timeout mismatch.

void tliTTimeoutMismatch(String am, long int ts, String
src, long int line, TriComponentId c, TriTimerId timer,
TciNonValueTemplate timerTmpl);

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The timer that timed out.

726 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Parameters

Description

This operation is called by TE to log a timeout mismatch. This event occurs
after a timeout match failed.

Return Values

None.

tliTTimeout

Logs timeout match.

void tliTTimeoutMismatch(String am, long int ts, String
src, long int line, TriComponentId c, TciNonValueTemplate
timerTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The first timer which is not yet stopped.

timerTmpl The timer template that did not match.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 727

Description

This operation is called by TE to log a timeout match. This event occurs after
a timeout matched.

Return Values

None.

tliTStart

Logs start of a timer.

void tliTStart(String am, long int ts, String src, long int
line, TriComponentId c, TriTimerId timer, TriTimerDuration
dur);

Parameters

Description

This operation is called by PA to log the start of a timer. This event occurs
after the start timer operation.

c The component which produces this event.

timer The timer which timed out.

timerTmpl The timer template that matched.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The timer that is started.

dur The timer duration.

728 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

None.

tliTStop

Logs stop of a timer.

void tliTStop(String am, long int ts, String src, long int
line, TriComponentId c, TriTimerId timer, TriTimerDuration
dur);

Parameters

Description

This operation is called by PA to log the stop of a timer. This event occurs
after the stop timer operation.

Return Values

None.

tliTRead

Logs reading of a timer.

void tliTRead(String am, long int ts, String src, long int
line, TriComponentId c, TriTimerId timer, TriTimerDuration
elapsed);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The timer that is stopped.

dur Timer duration at the moment of stopping it.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 729

Description

This operation is called by PA to log the reading of a timer. This event occurs
after the read timer operation.

Return Values

None.

tliTRunning

Logs running timer operation.

void tliTRunning(String am, long int ts, String src, long
int line, TriComponentId c, TriTimerId timer, TimerStatus
status);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The timer that is started.

elapsed The elapsed time of the timer.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

730 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by PA to log the running timer operation. This event
occurs after the running timer operation.

Return Values

None.

tliSEnter

Logs entering of a scope.

void tliSEnter(String am, long int ts, String src, long int
line, TriComponentId c, QualifiedName name,
TciParameterListType parsValue, String kind);

Parameters

Description

This operation is called by TE to log the entering of a scope. This event oc-
curs after the scope has been entered.

c The component which produces this event.

timer The timer which is checked to be running.

status The status of this component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

name The name of the scope.

parsValue The parameters of the scope.

kind The kind of the scope.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 731

Return Values

None.

tliSLeave

Logs leaving of a scope.

void tliSLeave(String am, long int ts, String src, long int
line, TriComponentId c, QualifiedName name,
TciParameterListType parsValue, TciValue val, String kind);

Parameters

Description

This operation is called by TE to log the leaving of a scope. This event occurs
after the scope has been left.

Return Values

None.

tliVar

Logs modification of the value of a variable.

void tliVar(String am, long int ts, String src, long int

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

name The name of the scope.

val The return value of the scope.

parsValue Values of formal parameters when leaving scope.

kind The kind of the scope.

732 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

line, TriComponentId c, QualifiedName name, TciValue
varValue);

Parameters

Description

This operation is called by TE to log the modification of the value of a vari-
able. This event occurs after the values have been changed.

Return Values

None.

tliModulePar

Logs value of a module parameter.

void tliModulePar(String am, long int ts, String src, long
int line, TriComponentId c, QualifiedName name, TciValue
parValue);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

name The name of the variable.

varValue The new value of the variable.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 733

Description

This operation is called by TE to log the value of a module parameter. This
event occurs after the access to the value of a module parameter.

Return Values

None.

tliGetVerdict

Logs a getverdict operation.

void tliGetVerdict(String am, long int ts, String src, long
int line, TriComponentId c, TciValue verdict);

Parameters

Description

This operation is called by TE to log the getverdict operation. This event
occurs after the getverdict operation.

Return Values

None.

c The component which produces this event.

name The name of the module parameter.

parValue The value of the module parameter.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

verdict The current value of the local verdict.

734 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tliSetVerdict

Logs setverdict operation.

void tliSetVerdict(String am, long int ts, String src, long
int line, TriComponentId c, TciValue verdict);

Parameters

Description

This operation is called by TE to log the setverdict operation. This event
occurs after the setverdict operation.

Return Values

None.

tliLog

Logs TTCN-3 statement log.

void tliLog (String am, long int ts, String src, long int
line, TriComponentId c, String log);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

verdict The value to be set to the local verdict.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 735

Description

This operation is called by TM to log the TTCN-3 statement log. This event
occurs after the TTCN-3 log operation.

Return Values

None.

tliAEnter

Logs entering an alt.

void tliAEnter(String am, long int ts, String src, long int
line, TriComponentId c);

Parameters

Description

This operation is called by TE to log entering an alt. This event occurs after
an alt has been entered.

Return Values

None.

line The line number where the request is performed.

c The component which produces this event.

log Value to be logged.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

736 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tliALeave

Logs leaving an alt.

void tliALeave(String am, long int ts, String src, long int
line, TriComponentId c);

Parameters

Description

This operation is called by TE to log leaving an alt. This event occurs after
the alt has been leaved.

Return Values

None.

tliANomatch

Logs a no-match of an alt.

void tliANomatch (String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 737

Description

This operation is called by TE to log the no-match of an alt. This event occurs
after the alt has not matched.

Return Values

None.

tliARepeat

Logs repeating an alt.

void tliARepeat(String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

Description

This operation is called by TE to log repeating an alt. This event occurs when
the alt is been repeated.

Return Values

None.

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

738 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

tliADefaults

Logs entering the default section.

void tliADefaults(String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

Description

This operation is called by TE to log entering the default section. This event
occurs after the default section has been entered.

Return Values

None.

tliAActivate

Logs activation of a default.

void tliAActivate(String am, long int ts, String src, long
int line, TriComponentId c, QualifiedName name,
TciParameterListType pars, TciValue ref);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 739

Description

This operation is called by TE to log the activation of a default. This event
occurs after the default activation.

Return Values

None.

tliADeactivate

Logs deactivation of a default.

void tliADeactivate(String am, long int ts, String src,
long int line, TriComponentId c, TciValue ref);

Parameters

Description

This operation is called by TE to log the deactivation of a default. This event
occurs after the default deactivation.

line The line number where the request is performed.

c The component which produces this event.

name The name of the default.

pars The parameter of the default.

ref The resulting default reference.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

ref The resulting default reference.

740 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Return Values

None.

tliAWait

Logs that the component awaits events for a new snapshot.

void tliAWait(String am, long ts, String src, long line,
TriComponentId c);

Parameters

Description

This operation is called by TE to log that the component awaits events for a
new snapshot.

Return Values

None.

tliAction

Logs the SUT action statement.

void tliAction(String am, long ts, String src, long line,
TriComponentId c, String action);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 741

Description

This operation is called by TE to log that the SUT action statement.

Return Values

None.

tliMatch

Logs the successfully executed match operation.

void tliMatch(String am, long ts, String src, long line,
TriComponentId c, TciValue expr, TciValueTemplate tmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

action SUT action string.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

expr The value which is matched.

tmpl The template which is used in matching operation.

742 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation is called by TE to log successfully executed match operation.

Return Values

None.

tliMatchMismatch

Logs the unsuccessfully executed match operation - mismatch occurred .

void tliMatchMismatch(String am, long ts, String src, long
line, TriComponentId c, TciValue expr, TciValueTemplate
tmpl, TciValueDifferenceList diffs);

Parameters

Description

This operation is called by TE to log unsuccessfully executed match opera-
tion - mismatch occurred.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

expr The value which is matched.

tmpl The template which is used in matching operation.

diffs List of differences between value and template.

TCI Template Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 743

tliInfo

Logs additional test suite execution information.

void tliInfo(String am, long ts, String src, long line,
TriComponentId c, long int level, String info);

Parameters

Description

This operation is used to log additional information during test execution.
The generation of this event is tool dependent as well as the usage of the pa-
rameters level and info.

Return Values

None.

TCI Template Interface

tciIsOmitValueTemplate

Checks whether specified template is 'omit'

unsigned char tciIsOmitValueTemplate(TciValueTemplate
templateId);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

level Severity of the informal message

info Text information

744 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation may be called to check whether template represent 'omit'
value template or not.

Return Values

Returns 'true' if specified template represents 'omit' value template, false oth-
erwise.

tciIsAnyValueTemplate

Checks whether specified template is '?'

unsigned char tciIsAnyValueTemplate(TciValueTemplate
templateId);

Parameters

Description

This operation may be called to check whether template represent any ('?')
value template or not.

Return Values

Returns 'true' if specified template represents any ('?') value template, false
otherwise.

tciIsAnyOrOmitValueTemplate

Checks whether specified template is '*'

unsigned char tciIsAnyOrOmitValueTemplate(TciValueTemplate
templateId);

Parameters

templateId identifier of the value template instance

templateId identifier of the value template instance

TCI Template Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 745

Description

This operation may be called to check whether template represent any or
omit ('*') value template or not.

Return Values

Returns 'true' if specified template represents any or omit ('*') value template,
false otherwise.

tciGetValueTemplateDef

Returns string representation of the template definition

String tciGetValueTemplateDef(TciValueTemplate templateId);

Parameters

Description

This operation may be called to obtain string representation of a value tem-
plate definition.

Return Values

Returns string representation of the template definition for specified value
template

tciIsAnyNonValueTemplate

Checks whether specified template is 'any <instance>'

unsigned char tciIsAnyNonValueTemplate(TciNonValueTemplate
inst);

Parameters

templateId identifier of the value template instance

templateId identifier of the value template instance

746 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

Description

This operation may be called to check whether template represent any ('any
<instance>') non-value template or not.

Return Values

Returns 'true' if specified template represents any ('any <instance>') non-
value template, false otherwise.

tciIsAllNonValueTemplate

Checks whether specified template is 'all <instance>'

unsigned char tciIsAllNonValueTemplate(TciNonValueTemplate
inst);

Parameters

Description

This operation may be called to check whether template represent any ('all
<instance>') non-value template or not.

Return Values

Returns 'true' if specified template represents any ('all <instance>') non-value
template, false otherwise.

tciGetNonValueTemplateDef

Returns string representation of the template definition

String tciGetNonValueTemplateDef(TciNonValueTemplate
templateId);

Parameters

templateId identifier of the value template instance

templateId identifier of the non-value template instance

TCI Template Interface

June 2009 IBM Rational Systems Tester 3.3 User Guide 747

Description

This operation may be called to obtain string representation of a non-value
template definition.

Return Values

Returns string representation of the template definition for specified non-
value template

templateId identifier of the non-value template instance

748 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 10: Runtime System APIs

June 2009 IBM Rational Systems Tester 3.3 User Guide 749

11
Regular Expressions in Search

750 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 11: Regular Expressions in Search

Regular Expressions in Search
You may use the following regular expressions when finding and replacing
in IBM Rational Systems Tester.

Regular expression Explanation

. (Period.) Any single character.

[] Any one of the characters contained in the brackets,
or any of an ASCII range of characters separated by
a hyphen (-). For example,

• b[aeiou]d matches bad, bed, bid, bod, and bud

• r[eo]+d matches red, rod, reed, and rood, but
not reod or roed.

• x[0-9] matches x0, x1, x2, and so on.

If the first character in the brackets is a caret (^),
then the regular expression matches any characters
except those in the brackets.

^ The beginning of a line.

$ The end of a line.

\(\) Indicates a tagged expression to retain for replace-
ment purposes. If the expression in the Find What
box is \(lpsz\)BigPointer, and the expression
in the Replace With box is \1NewPointer, all se-
lected occurrences of lpszBigPointer are re-
placed with lpszNewPointer. Each occurrence of
a tagged expression is numbered according to its
order in the Find What box, and its replacement ex-
pression is \n, where 1 corresponds to the first
tagged expression, 2 to the second, and so on. You
can have up to nine tagged expressions.

Regular Expressions in Search

June 2009 IBM Rational Systems Tester 3.3 User Guide 751

\~ No match if the following character or characters
occur. For example, b\~a+d matches bbd, bcd,
bdd, and so on, but not bad.

You can use this expression to prefix a group of
characters you want to exclude, which is useful for
excluding matches of particular words. For ex-
ample, foo\~\(lish\) matches foo in food and
afoot but not in foolish.

\{c\!c\} Any one of the characters separated by the alterna-
tion symbol (\!). For example, \{j\!u\}+fruit
finds jfruit, jjfruit, ufruit, ujfruit,
uufruit, and so on.

* None or more of the preceding characters or expres-
sions. For example, ba*c matches bc, bac, baac,
baaac, and so on.

+ At least one or more of the preceding characters or
expressions. For example, ba+c matches bac,
baac, baaac, but not bc.

\{\} Any sequence of characters between the escaped
braces. For example, \{ju\}+fruit finds
jufruit, jujufruit, jujujufruit, and so on. It
will not find jfruit, ufruit, or ujfruit, because
the sequence ju is not in any of those strings.

[^] Any character except those following the caret (^)
character in the brackets, or any of an ASCII range
of characters separated by a hyphen (-). For ex-
ample, x[^0-9] matches xa, xb, xc, and so on, but
not x0, x1, x2, and so on.

\:a Any single alphanumeric character [a – z,A – Z,0
– 9].

\:b Any white-space character. The \:b finds tabs and
spaces. There is no alternate syntax to express :b.

\:c Any single alphabetic character [a – z,A – Z].

\:d Any decimal digit [0 – 9].

Regular expression Explanation

752 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 11: Regular Expressions in Search

\:n Any unsigned number \{[0-9]+\.[0-9]*\![0-9]*\.[0-
9]+\![0-9]+\}. For example, \:n should match 123,
.45, and 123.45.

\:z Any unsigned decimal integer [0 – 9]+.

\:h Any hexadecimal number [0-9 a-f A-F]+.

\:i Any C/C++ identifier [a – z, A – Z_$] [a – z, A –
Z,0 – 9_$]+.

\:w Any alphabetic string [a – z, A – Z]+. The string
need not be bounded by white space or appear at the
beginning or the end of a line.

\:q Any quoted string \{"[^"]*"\!'[^']*'\}.

\ Removes the pattern match characteristic in the
Find What text box from the special characters
listed above. For example, 100$ matches 100 at the
end of a line, but 100\$ matches the character
string 100$ anywhere on a line.

Regular expression Explanation

June 2009 IBM Rational Systems Tester 3.3 User Guide 753

Common Reference

The reference chapters listed in this section describe functionality that is
valid for all types of IBM Rational Systems Tester projects.

754 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter :

June 2009 IBM Rational Systems Tester 3.3 User Guide 755

12
Useful Shortcut Keys

This section lists useful shortcut keys that you can use. Access keys can be
used in the same way as other standard applications.

(UNIX) This only applies to Exceed users: If you use a non-American key-
board, you must map the ALT button correctly in order to use the access
keys.

To map the ALT button:

1. Click the Start button, point to Programs, point to Exceed and click
xconfig.

2. In the dialog that opens, double-click Input. The Input dialog opens.

3. In the Alt key field, select To X or Right To Window, Left To X.

4. Close the dialog.

Note
UNIX: Some short-cut sequences (such as ALT-X, CTRL-H) may be inter-
cepted by the X11 window manager and can cause other actions to be taken
than those described in this manual. In most cases it is possible to configure
the X11 window manager not to intercept specific short-cut sequences.
Please refer to the documentation on your window manager for further in-
formation regarding short-cuts.

756 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 12: Useful Shortcut Keys

Workspace Operations

Project Operations

File Operations

Keyboard shortcut Description

CTRL + N
Then CTRL + TAB
to Workspaces tab

Create a new workspace

CTRL + O Open an existing workspace.

MINUS SIGN (-) on
the numeric keypad

Contracts the tree of a selected entity.

MULTIPLICA-
TION SIGN (*) on
the numeric keypad

Expands the model tree one level below the selec-
tion. Can be used repeatedly to expand deeper.

PLUS SIGN (+) on
the numeric keypad

Expands the selection.

Keyboard shortcut Description

CTRL + N
Then CTRL + TAB
to Project tab

Create a new project

CTRL + O Open project.

Keyboard shortcut Description

CTRL + N Create a new file

CTRL + O Open a file

CTRL + P Print the active document

CTRL + S Save active document

Navigate in Files

June 2009 IBM Rational Systems Tester 3.3 User Guide 757

Navigate in Files

Navigate in TTCN-3 Files

Keyboard shortcut Description

CTRL + DOWN
ARROW

Scroll down a few rows at a time, without moving
the insertion point

CTRL + END Move insertion point to end of file

CTRL + SHIFT + G Opens the Go to line number dialog

CTRL + HOME Move insertion point to beginning of file

CTRL + LEFT
ARROW

Step left one word at a time

CTRL + M Open Navigator tab in Output window

CTRL + RIGHT
ARROW

Step right one word at a time

CTRL + UP
ARROW

Scroll up a few rows at a time, without moving the
insertion point

END Move insertion point to end of line

HOME Move insertion point to beginning of line

Keyboard shortcut Description

ALT + F2 Edit named bookmarks

CTRL + E Toggle insertion point between beginning and end
of current scope

CTRL + F2 Toggle an unnamed bookmark

CTRL + G Go to a line number or named bookmark

CTRL +
SPACEBAR

Display entity list

F2 Go to the next bookmark

SHIFT + F2 Go to the previous unnamed bookmark

758 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 12: Useful Shortcut Keys

Highlight Text

Edit Text

Keyboard shortcut Description

CTRL + A Select all (TTCN-3 only)

CTRL + SHIFT +
END

Highlight text to the end of the file

CTRL + SHIFT +
HOME

Highlight text to the beginning of the file

CTRL + SHIFT +
LEFT ARROW

Highlight one word at a time to the left

CTRL + SHIFT +
RIGHT ARROW

Highlight one word at a time to the right

SHIFT + DOWN
ARROW

Highlight one row downwards

SHIFT + END Highlight to the end of the line

SHIFT + HOME Highlight to the beginning of the line

SHIFT + LEFT
ARROW

Highlight one character at a time to the left

SHIFT + RIGHT
ARROW

Highlight one character at a time to the right

SHIFT + UP
ARROW

Highlight one row upwards

Keyboard shortcut Description

CTRL + A Select all

CTRL + ALT + F Find in files (TTCN-3)

CTRL + ALT + I Find previous incremental search match (TTCN-3)

CTRL + BACK-
SPACE

Step left in a file and delete a whole word at a time
(TTCN-3)

Application Builder Shortcuts

June 2009 IBM Rational Systems Tester 3.3 User Guide 759

Application Builder Shortcuts

CTRL + C Copy

CTRL + DELETE Delete the word to the right of the cursor (TTCN-3)

CTRL + F Find in active file

CTRL + H Replace

CTRL + I Go to the next incremental search match (TTCN-3)

CTRL + SPACEBAR

SHIFT + SPACEBAR

Name completion, if a definition is found that
matches the current name up to the cursor position.
If there are multiple matches a Name completion
scroll menu will open.

CTRL + V Paste

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

F3 Go to the next find match (TTCN-3)

F1 Help with textual syntax on current selection.

SHIFT + arrow keys Extends the current text selection. Requires that
text is selected

SHIFT + END Selects text from cursor position to end of text row.

SHIFT + F3 Go to the previous find match (TTCN-3 only)

SHIFT + HOME Selects text from start of text row to cursor position.

Keyboard shortcut Description

CTRL + SCROLL
LOCK

Stops the build process

F5 Launch the current configuration

F6 Generate current configuration

Keyboard shortcut Description

760 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 12: Useful Shortcut Keys

Window Navigation

Properties editor

F7 Build the current configuration

SHIFT + F5 Stops the execution

SHIFT + F6 Update configuration

Keyboard shortcut Description

ALT + 1 Toggle full screen mode

CTRL + F4 Close the active window

CTRL + SHIFT +
TAB

CTRL + SHIFT + F6

Navigate to the previous window

CTRL + TAB

CTRL + F6

Navigate to the next window

Keyboard shortcut Description

ALT + ENTER Display Properties editor

CTRL +
BACKSPACE

Go to owner, change scope in model tree to the
owner of the current selection

CTRL + ALT + C Switch to Control view

CTRL + ALT + T Switch to Text view

Keyboard shortcut Description

Show/Hide Windows and Dialogs

June 2009 IBM Rational Systems Tester 3.3 User Guide 761

Show/Hide Windows and Dialogs

Zoom/Pan

Keyboard shortcut Description

ALT + 0 Show/ hide workspace window

ALT + 2 Show/ hide Output window

ALT + ENTER Display Properties editor

CTRL + Q Open Query dialog on selection

F1 Display Help

Keyboard shortcut Description

<Rotate the wheel
button>

Scroll the diagram vertically (requires an Intelli-
Mouse pointing device)

<Double-click middle
mouse button>

Zoom to 100%

SHIFT + <double-
click middle mouse
button>

Zoom to fit editor window

SHIFT + <rotate wheel
button>

Zoom in or zoom out depending on the rotate direc-
tion.The zoom in point will be where the mouse
pointer is located

CTRL + SHIFT +
<Rotate the wheel
button>

When a single line is selected the diagram will be
scrolled along the line until one of the endpoints are
centered in view (requires an IntelliMouse pointing
device)

MINUS SIGN (-) on
the numeric keypad

Zoom out 25% (This works when a diagram is ac-
tive and not in text edit mode for any element)

762 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 12: Useful Shortcut Keys

PLUS SIGN (+) on the
numeric keypad

Zoom in 25% (This works when a diagram is active
and not in text edit mode for any element)

LESS-THAN SIGN
(<)

When a single line is selected the diagram will be
scrolled to the source endpoint of the line.

GREATER-THAN
SIGN (>)

When a single line is selected the diagram will be
scrolled to the destination endpoint of the line.

Keyboard shortcut Description

June 2009 IBM Rational Systems Tester 3.3 User Guide 763

13
Setting Up the Tool Environment

This section mainly provides information how to integrate IBM Rational
Systems Tester with different tools.

764 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Working with Links
The link concept in IBM Rational Systems Tester allows any element to be
linked either to another element or to an external element. The external ele-
ment can be a file or a web page. It is also possible to support links specific
to an integration with other software tools.

Link options

IBM Rational Systems Tester offers you the possibility to customize link cre-
ation behavior. You can change link options via the Tools menu by selecting
Options or clicking on the Display Link Options toolbar button.

Active link end is an active target, not an active source

If this option is disabled, then when you use automatic creation of links, you
will create links from your active link end to the other models.

If this option is enabled, then you will create links to your active link end
from the other models.

Automatically create links between modified objects and active
link end

If this option is enabled, then when you select an active link end, all your
modifications will be linked to this link end.

Show link indicators

If this option is enabled, IBM Rational Systems Tester will show the link
markers.

Hyperlink options

IBM Rational Systems Tester offers you the possibility to customize link cre-
ation behavior via the Tools menu by selecting Options or clicking on the
Display Link Options toolbar button.

By default, make hyperlink to a workspace element

When the Insert hyperlink dialog is started this option controls the start set-
ting of the Link to text field.

Working with Links

June 2009 IBM Rational Systems Tester 3.3 User Guide 765

When checked, the application allows you to select the target of your hyper-
link within your workspace. Otherwise, you are prompted to specify another
type of target, such as an existing file or a web page.

Insert hyperlink dialog

This dialog allows you to search for a target for a link. The following is
present in the dialog.

• Link to: text field allowing a selection if the link is external (web page
or file) or within the elements of the current workspace.

• Text to display will be visible through the link output tab or the Links
dialog, in the name column.

• Unique Resource Location of the hyperlink target: text field allowing
you to specify a web page location directly.

• List for selection of recently used files, web pages and links, with radio
buttons for Recent files, Browsed pages and Inserted links to be dis-
played in the field.

URL

With respect to Hyperlinks, objects that have a link going to them are identi-
fied by a unique string. IBM Rational Systems Tester has its own protocol
for representing link targets.

A Uniform Resource Location (URL) describes where to find a given object
of IBM Rational Systems Tester, it appears as:

tlog://<project_path>:plugin_ident:string_ident

It consists of the following parts:

• <project_path> is the windows path of the project containing the ob-
ject.

• plugin_ident is the IBM Rational Systems Tester internal identifica-
tion of the IBM Rational Systems Tester add-in which owns the object.

• String ident is a string representing the object for a given project of a
given plug in.

URLs in html pages or in Microsoft Word documents following this format
will allow a web browser to launch IBM Rational Systems Tester and select
the wished object.

766 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Copy URL

You can get the URL for a presentation element from the shortcut menu com-
mand Copy URL.

Missing targets

In IBM Rational Systems Tester, depending on the currently active project in
your workspace, the link target can be missing.

When a missing target refers to a IBM Rational Systems Tester object, the
message that the project is not loaded will be issued.

Note
The link source can not be missing, as the source is the carrier of the link in-
formation.

Link operations

Link commands can be operated from:

• The link menu

• The link toolbar

• The shortcut menu will have a context sensitive part with a links section
containing a subset of the link commands

The following commands are accessible for links:

Start Link (CTRL+K)

Start Many Links

Make Link from Start (CTRL+L)

Display Outgoing Links

This command will produce a list in the link tab of the Output window
of the links going out from the selected entity.

Display Incoming Links

This command will produce a list in the link tab of the Output window
of the links coming in to the selected entity.

Edit Links

Working with Links

June 2009 IBM Rational Systems Tester 3.3 User Guide 767

Link Options

DependencyAdd hyperlinks

You can add hyperlinks to elements in your workspace. The hyperlinks can
also go to external files or web pages (default). This allows you to show re-
lations to external elements in a simple way. It is also possible to create a hy-
perlink between elements.

An out link will be indicated with a blue underline.

An in link will be indicated with a dashed blue underline in diagrams and in
the Workspace window with a blue arrow to the right of the element linked
to.

Add Dependency links

You can add Dependency links to elements in your workspace. This allows
you to show relations to for example elements in other packages.

An out link will be modeled as a Dependency.

Add links

Creating a link
1. To create a link, select the object you want as source for the link.

2. Select the command Start Link (CTRL+K) from the Link toolbar, the
Link menu or right-click the element and from the shortcut menu and
choose Links, then point to Start Link.

If you created a Hyperlink:

• From the Insert Hyperlink dialog then select the object that you want as
target for the link. It is also possible to change the setting of the Link to
field and close the dialog to add a link to an element in the current work-
space.

If you created a Dependency link:

• Right-click the object that you want as target for the link in the current
workspace and select Make Link from Start (CTRL+L).

768 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Automatic creation

There is a special mode for link creation, which is called Automatic Cre-
ation. By combining Start Many Links and the option Automatically create
links between modified objects and active link end, you can trigger an effi-
cient mode of creating links. Launch this mode, and continue work within
IBM Rational Systems Tester. IBM Rational Systems Tester will automati-
cally make links.

1. Set the type of links you will make to your active object, incoming or out-
going by specifying the option Active link end is an active target, not an
active source.

2. Select your active link end.

Link messages

Whatever means you used to create a link, a message in the Messages output
tab indicates that a link has been created.

Configuration Management

June 2009 IBM Rational Systems Tester 3.3 User Guide 769

Configuration Management
IBM Rational Systems Tester supports integration schemes with configura-
tion management tools.

• An integration scheme based on the Microsoft Source Control Integra-
tion Interface. This means that as long as the source control system that
you use support the Microsoft Source Control Integration Interface it
should work with IBM Rational Systems Tester. There is currently sup-
port for Integration with IBM Rational ClearCase which is regularly ver-
ified to work using Microsoft Source Control Integration Interface.

• A utility to start Tau Compare and Merge operations on u2 file versions
selected directly in the configuration management tool.

Source control provider

The General tab of Tools->Options contains the Source control provider
drop down that enables the user to select source control scheme. IBM Ra-
tional Systems Tester must be restarted for this to take effect.

See also

“Source control information” on page 769

“Multiple configuration management tools” on page 772

“Source control commands” on page 773

Source control information

The status of the files in the configuration management tool is displayed by
different icons in the File View. The following icons apply:

• blue check mark

This icon indicates that the file or folder is checked out.

• orange check mark

This icon is used for folders that are partially checked out. It indicates
that in the folder there are files that are checked in and files that are
checked out or that the folder contains files that are not added to source
control.

770 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

• red x

This icon indicates that the file or folder is checked in.

• no icon

If no icon is available the file or folder is not added to the configuration
management tool data base.

The status can also be viewed in the property page of a file.

Note
It is necessary to install the Synergy integration via a separate installer be-
fore it is possible to activate the integration.

Generic Source Code Control Integration

Integration with IBM Rational ClearCase

This section describes how to integrate Rational ClearCase with IBM Ra-
tional Systems Tester. For further details see the Rational ClearCase user
documentation.

The integration uses the Microsoft Source Control Interface and the com-
mands that are supported for ClearCase are the same as described in section
“Source control commands” on page 773.

Install IBM Rational ClearCase integration

Windows

The source control system that will be used is specified in a system registry
When ClearCase is installed, this source control system registry key should
be set automatically. However, if you have more than one configuration
management tool installed locally, you may have to edit this value manually.

1. Start IBM Rational Systems Tester.

2. On the Tools menu, click Options.

3. In the general tab, select Generic Source Control (SCC) in the Source
control provider choice.

Generic Source Code Control Integration

June 2009 IBM Rational Systems Tester 3.3 User Guide 771

4. Click OK.

The next time you start IBM Rational Systems Tester, a new menu, Source
Control, will be available from the Project menu. A new toolbar is also added
as well.

UNIX

You need to set the register keys and the environment variables. You should
be logged on with your normal user identity. If you run on a network with
multiple UNIX versions available you have to make a set-up for each UNIX
version.

1. Make sure that the ClearCase PATH environment variable is set cor-
rectly.

2. To set the register keys, run the script:

<installationsdir>/bin/setreg_ClearCase

You only have to run the script the first time you will access ClearCase.

3. To set the environment variables, run the script:

source <installationsdir>bin/setenv_ClearCase

If you do not update your login file with this path, you need to re-run it
each time you login.

4. Start IBM Rational Systems Tester.

5. On the Tools menu, click Options.

6. In the general tab, select Generic Source Control (SCC) in the Source
control provider choice.

7. Click OK.

The next time you start IBM Rational Systems Tester, a new menu, Source
Control, will be available from the Project menu. A new toolbar is also added
as well.

Note
Before you can use the source control commands, the files in your project
must be located in a ClearCase view. See the IBM Rational ClearCase doc-
umentation for further instructions.

See also

“Configuration Management” on page 769

772 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

“Multiple configuration management tools” on page 772

IBM Rational ClearCase user documentation

Multiple configuration management tools

Windows

If you have more than one Configuration Management (CM) tool installed,
you must select which CM tool that you will use. This is determined by the
value of the registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider]

If you want to change provider, you must change the value of this registry
key.

The providers that you have installed are listed as values for the registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\Inst
alledSCCProviders]

Example 26: Registry key settings –––––––––––––––––––––––––––––––––

Microsoft SourceSafe:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider]
"ProviderRegKey"="Software\Microsoft\SourceSafe\ccm"

IBM Rational ClearCase:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider]
"ProviderRegKey"="Software\Atria\ClearCase"

–––

UNIX

If you have more than one Configuration Management (CM) tool installed,
you must select which CM tool that you will use.

Generic Source Code Control Integration

June 2009 IBM Rational Systems Tester 3.3 User Guide 773

You need to set the register keys and the environment variables. You should
be logged on with your normal user identity.

1. To change the register keys, run the script for your configuration man-
agement tool:

ClearCase: <installationsdir>/bin/setreg_ClearCase

You only need to run the script the first time you will access your CM
tool.

2. To change the environment variables, run the script for your configura-
tion management tool:

ClearCase:
source <installationsdir>bin/setenv_ClearCase

If you previously have updated your login file with one of the paths
above, just edit that file.

Source control commands

The basic commands and functions of your CM tool is available in a separate
Source Control menu which is available in the Project menu. The commands
are also available via the source control toolbar.

For a number of commands, a file dialog opens where you can select which
files that the command should apply to. Depending on the command and the
file or folder you selected before the command is issued, the listed files in the
dialog may vary. For instance if you select the check out command on a
folder, only files that are still checked in are listed in the dialog.

Note
The following commands are defined in the Microsoft SCC Interface docu-
mentation. All commands may not be available for your configuration man-
agement tool and the functionality of the commands may vary. Your config-
uration tool may also add commands and toolbar buttons that are unique
for that configuration management tool. They are not listed here.

774 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Get latest version

This command retrieves the latest copy of the file from the source control
server and copies it to your computer. It is still read-only. If you are working
in on a project with more than one team member, update your local copies
frequently to incorporate changes made by others.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Get Latest
Version. The file selection dialog opens.

3. Select the files you want to update and press OK.

Check out

This command retrieves the latest version of a file or folder from the source
control server and reserves the file or folder for you. The file is copied to your
computer and the status changes from read-only to read/write. Unless you
allow multiple check outs, the file is locked on your source control server.

Use CTRL + ENTER for line breaks in the comment field.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Check Out.
The file selection dialog opens.

3. Select the files you want to check out and press OK.

Check in

This command copies your local version to the source control server as the
latest version of the item. The status of the item changes from read/write to
read-only. It is now possible for other users to check out the file. If you have
not made any changes to the item you should undo the check out rather than
check in the item.

Use CTRL + ENTER for line breaks in the comment field.

1. Make sure that you have saved your files.

2. Click the file or folder in the File View.

3. On the Project menu, point to Source Control and click Check In. The
file selection dialog opens.

4. Select the files you want to check in and press OK.

Generic Source Code Control Integration

June 2009 IBM Rational Systems Tester 3.3 User Guide 775

Elements that are checked in and therefore not editable are marked with a
Gray bar between the element symbol and the element name. The bar does
not relate to if the file that the element belongs to is writable, it is an internal
flag only.

Undo check out

This command returns the item to the source control server. No changes are
saved. This is the command you should use if you have not made any changes
to a file that you have checked out.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Undo Check
Out. The file selection dialog opens.

3. Select the files you want to undo the check out and press OK.

Add to source control

This command adds the item to the source control server.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Add to source
Control. The file selection dialog opens.

3. Select the files you want to add and press OK.

Note
If you selected to add the project file, all files in the project will be listed in
the file selection dialog.

Note
The underlying source control provider may impose restrictions on the files
added to source control that can cause the “Add to source control” opera-
tion to fail. Common restrictions relate for example to the file location, file
names and user privileges. Refer to the documentation of your source con-
trol provider for detailed information.

776 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Remove from source control

This command allows you to remove files and folders from the source con-
trol server. You cannot remove entire projects or solutions with this com-
mand. See your source control documentation for further instructions.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Remove from
source Control. The file selection dialog opens.

3. Select the files you want to remove and press OK.

Show history

A configuration management tool keeps a record for all versions of items that
you have added to the source control server. This command allows you to list
the history record for one file at a time.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Show History.

Show differences

This command allows you to show the differences between your local copy
of an item and the latest version on the source control server. This command
can only be applied to one file at a time.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Show Differ-
ences.

Source control properties

This command displays the properties of the selected item. The dialog that
opens is tool dependent.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Source Control
Properties. Your configuration management tool displays the properties
of the item.

Requirements Management (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 777

Refresh status

This command updates the status of the selected items from your configura-
tion management tool. This is a useful command if you have done operations
on the files directly in your configuration management tool. If you refresh the
project file, (*.ttp), that status of all files in the project will be refreshed.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Refresh Status.

Execute CM tool

This command invokes the Configuration Management (CM) tool that is
connected to IBM Rational Systems Tester. The CM tool that is connected is
dependent on the settings of the registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider]

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Source Con-
trol.

Import module

This command allows you to find files that are stored on your source control
server but are not part of the project you are working with. The files that you
find are added to your local computer and inserted in your project.

1. Click the file or folder in the File View.

2. On the Project menu, point to Source Control and click Import from
Source Control.

Note
Import from Source Control is not used with ClearCase.

Requirements Management (Windows)
IBM Rational DOORS is a state-of-the-art requirements management tool
ensuring traceability through the overall development process.

The DOORS integration reduces the amount of work and provides a consis-
tent user interface and behavior.

778 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

The key features of the DOORS integration are:

• make information in IBM Rational Systems Tester visible in DOORS

• view and manage DOORS formal modules in IBM Rational Systems
Tester

• view and manage DOORS links in IBM Rational Systems Tester

One goal of this integration is to let each user work with either IBM Rational
Systems Tester or DOORS, without the need to learn the other tool, or to
have both tools running at the same time. The following chapters focus on
the use of the integration from the IBM Rational Systems Tester side.

It is assumed that you have a basic knowledge of DOORS. Please study the
DOORS User Manual if you need more information about using DOORS.

Note
This integration need to be installed via a separate installer.

Launching DOORS

To ensure that the integration works properly, it is recommended to first start
IBM Rational Systems Tester, then launch DOORS from IBM Rational Sys-
tems Tester. This is especially important in a multiuser environment such as
Citrix, where several instances of e.g. DOORS can be running at the same
time on one machine. Always launching DOORS from IBM Rational Sys-
tems Tester guarantees that the tools will be able to communicate correctly
with each other, in both directions.

It is also possible to first start DOORS, and then launch IBM Rational Sys-
tems Tester from DOORS. This will be done implicitly by DOORS for a
number of operations, e.g. “Commit to IBM Rational Systems Tester”.

Update/Commit a DOORS module after Archive/Restore

If a DOORS module has been archived and then restored, and possibly also
moved from one DOORS database to another, the references in IBM Ra-
tional Systems Tester to this module have to be updated (and vice versa).
This is accomplished by using either the Commit or the Update command.
The DOORS database will be searched, and if a module which matches the
information in IBM Rational Systems Tester is found, all references in IBM
Rational Systems Tester will be updated to reflect the new location of the
DOORS module.

Managing IBM Rational Systems Tester Information in DOORS (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 779

See also

“Recommendation for Windows users” on page 33

“DOORS Integration Menus (Windows)” on page 797

Managing IBM Rational Systems Tester
Information in DOORS (Windows)

Export a DOORS module

Surrogate modules

When a IBM Rational Systems Tester model is exported, a DOORS formal
module is created. However, as the original objects of this module are not
DOORS objects, the module is called “surrogate”.

Export

When exporting to DOORS, two steps are necessary to export data from IBM
Rational Systems Tester:

1. Prepare the data to export

2. Perform the export.

Note
The following describes exporting TTCN-3 models. It is also possible to ex-
port a file/project hierarchy from the File View.

Prepare export

A TTCN-3 object hierarchy can be exported from the Structured View to a
DOORS formal module.

780 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

To prepare the export of a TTCN-3 model sub-hierarchy to DOORS, perform
the following steps:

1. Select the item you want to be the root of your DOORS formal module
in the Structured View (or the File View if exporting a project hier-
archy).

2. Right-click on this item, select DOORS and then Prepare Export from
the shortcut menu.

3. The DOORS tab will be shown, containing a view of the exported hier-
archy.

To revert, choose Unexport from the same menu.

Note
You may export the whole test suite structure by choosing “Prepare Ex-
port” for the child of a root (project) element in the Structured View. In this
case all TTCN-3 data in later added modules and physical files will be auto-
matically included into set of exported objects.

Export a module to DOORS as a surrogate

To create a surrogate module in DOORS, follow these steps:

1. Select the module in the DOORS tab.

2. Right-click, and from the shortcut menu select Commit to DOORS.... If
DOORS is not already running, it will be started now. After providing
your login information, you can proceed with the export.

3. The Export Module dialog allows setting the parameters for the surro-
gate DOORS module.

4. Type the name of the surrogate module to create in DOORS.

5. Choose the location in the DOORS database.

6. Fill in Object identifiers data: start number and prefix; or use the default
values.

7. Press OK.

IBM Rational Systems Tester now creates a formal module in DOORS, con-
taining objects corresponding to the exported objects in IBM Rational Sys-
tems Tester.

Managing IBM Rational Systems Tester Information in DOORS (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 781

Unexport of a DOORS module

This command will remove the relationship between a model in IBM Ra-
tional Systems Tester and the corresponding formal module in DOORS.
After this, it will no longer be possible to Commit to DOORS for the
module. The exported module in the DOORS tab in the workspace will also
disappear. However, the corresponding formal module will still be present in
DOORS.

The command is activated with the following steps:

1. Select the root object of the exported model in the workspace window.

2. Right-click on the item, from the shortcut menu select DOORS and then
Unexport.

Committing changes from IBM Rational Systems Tester to
DOORS

Described below is how to commit changes made to an exported TTCN-3
model:

1. Select the exported TTCN-3 model in the DOORS tab.

2. Right-click and select Commit to DOORS... from the shortcut menu.

The surrogate module in DOORS should not be edited. Changes should al-
ways be made in IBM Rational Systems Tester and propagated to DOORS.

Update/Commit on Open/Save

When this option is enabled, each time the IBM Rational Systems Tester
workspace is saved, all changes to an exported model will be committed to
the corresponding DOORS surrogate module. If DOORS is not already run-
ning, it will be started.

Propagate test case verdicts to DOORS

When tests are executed under the control of IBM Rational Systems Tester
GUI test management information about test case verdicts is persistently
stored in the project. For each defined test case this information includes:

• Total number of test case executions performed

• Total number of passed executions

• Verdict from last execution

782 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

If test case is included into exported structure then above-mentioned data is
propagated to DOORS.

Note
When test case is executed under real-time debugger verdicts are not con-
sidered

Attributes created for exported definitions

Each TTCN-3 definition exported to DOORS is augmented with a set of at-
tributes

• TTCN3 Kind - object kind (constant, function, testcase, etc)

• TTCN3 Location - slash-separated path to object starting from the de-
fining module (e.g. "MyModule/MyTestCase")

• TTCN3 File Path - path to TTCN-3 file name (e.g.
c:\MyProjects\MyTest.ttcn)

• TTCN3 Definition - TTCN-3 definition as defined in the test suite. Def-
inition is given without "body" i.e., function definition doesn't show
function body, template definition doesn't show constraint, constant def-
inition doesn't show assigned value, etc)

• TTCN3 Display Name - a TTCN-3 object name as displayed in the struc-
tured view

• TTCN3 TotalExecutions - total number of test case executions (appli-
cable only to test cases)

• TTCN3 TotalPassed - total number of test cases executions ended with
"pass" verdict (applicable only to test cases)

• TTCN3 LastVerdict - verdict of the last execution (applicable only to test
cases)

Managing DOORS Modules in IBM
Rational Systems Tester (Windows)

It is possible to import a DOORS formal module into IBM Rational Systems
Tester, containing:

• all the objects of the formal module

• all the outgoing links from the objects of this formal module to all the
other formal modules of the DOORS database

Managing DOORS Modules in IBM Rational Systems Tester (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 783

• a set of predefined attributes for the objects

The formal module will be included as a file in a IBM Rational Systems
Tester project, representing a snapshot of the DOORS formal module. OLE
objects and pictures in the DOORS formal module are currently not sup-
ported by IBM Rational Systems Tester, only plain text.

Even if you, as a DOORS user, have full access control to the objects in this
module, you will not be able to modify them in IBM Rational Systems
Tester. The requirements they contain are shown to you:

• for information purposes

• to serve as link ends of the DOORS links that you may create in IBM Ra-
tional Systems Tester, for example from (or to) TTCN-3 elements

Import a DOORS formal module

To import a DOORS module into your current project, do the following:

1. Select the Project menu, Add To Project and then Components…

2. Choose the component “DOORS Imported module file” and click Insert.

If DOORS is not already running, it will be started now. After providing
your login information, you should be connected to DOORS and ready
to import a formal module. The next page of the DOORS wizard, the
Module selection dialog, is displayed.

3. Select the formal module you wish to import and click Next.

The Choose view, baseline and destination location page of the
DOORS wizard is displayed. Select the DOORS view (default: Standard
view) and baseline (default: [None]) which should be used for the import.

You can also choose the name and the path of the file which will contain
the information from the imported DOORS module. By default, the name
of the DOORS module and the path of the current IBM Rational Systems
Tester project file are provided.

4. Check the information in the dialog, change if needed.

5. Click Finish.

The information in the DOORS module will now be shown in IBM Ra-
tional Systems Tester, in a new workspace tab called DOORS, and a new
DOORS Imported Module (.dim) file should appear in the File View of
your project.

784 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

At this point, you have successfully imported a DOORS formal module, with
its objects and its outgoing links.

You can also import a DOORS formal module to your active project by se-
lecting the Project menu, Import and then Import from DOORS… This is
equivalent to the operation described above.

Note that if you choose to import a DOORS view, the DOORS formal
module will be displayed during the import.

View a DOORS module

There is a workspace tab labeled DOORS which shows a hierarchical view
of the objects in the DOORS modules present in a project.

IBM Rational Systems Tester offers you the possibility to get an overview of
the requirements of a DOORS formal module. To open the DOORS view:

1. Go to the DOORS workspace tab.

2. Select a formal module, double-click the formal module or object name.

In this view it is possible to see the full text of the requirement.

Locate a DOORS object from IBM Rational
Systems Tester

The IBM Rational Systems Tester Locate command can be used to view the
corresponding DOORS object in the current or baseline version of the
DOORS module, by following these steps:

1. Select the DOORS object (for example in the DOORS workspace tab).

2. Right-click, from the shortcut menu select DOORS and then Locate.

IBM Rational Systems Tester then launches DOORS. After logging in, the
surrogate formal module is opened and the corresponding object is selected.

Managing DOORS Modules in IBM Rational Systems Tester (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 785

Update a DOORS module

When a DOORS module has been imported to IBM Rational Systems Tester,
any changes made in the DOORS module will not be visible in IBM Rational
Systems Tester until you do an update from DOORS:

1. To update an imported DOORS module, first select it in the DOORS
workspace tab.

2. Right-click and select Update from DOORS... from the shortcut menu.

The DOORS tab and the DOORS view in IBM Rational Systems Tester will
now reflect the changes done in DOORS; e.g. deleted, added, or modified ob-
jects.

Note
This option is not available for baselined DOORS modules, as these are al-
ways read-only.

Committing changes from IBM Rational Systems Tester to
DOORS

Committing an imported module to DOORS will not update the incoming
links, as the DOORS view in IBM Rational Systems Tester is read-only.

Update/Commit on Open/Save

When this option is enabled, each time a IBM Rational Systems Tester work-
space is opened, modules imported from DOORS will be updated with all
changes made in the corresponding formal modules in DOORS. If DOORS
is not already running, it will be started.

Note
This option is not available for baselined DOORS modules, as these are al-
ways read-only.

Changing view or baseline for an imported module

By selecting the shortcut menu command Change View/Baseline... for an
imported DOORS module, the currently used view and baseline will be dis-
played in a dialog. If these settings are changed, the imported module will be
updated accordingly.

786 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Removing a DOORS module from a project

The shortcut menu command Remove can be used to remove an imported
DOORS module from the DOORS view in IBM Rational Systems Tester.
Doing so will delete the DOORS Imported Module (.dim) file from the file
system and from the project file, and it will remove all links to/from the im-
ported DOORS module.

View synchronization information

You can select a DOORS module and open the Properties dialog using the
shortcut menu (or ALT+ENTER). This dialog contains the following infor-
mation regarding the module:

Integration

This tab displays information about the synchronized formal module.

• Name is the name of the DOORS formal module.

• Location is the identification number of the DOORS formal module.

• Type indicates if the module is imported or exported.

• Last update indicates the date when the last synchronization occurred.

DOORS toolbar

It is possible to perform the previously described operations by using the but-
tons of the DOORS toolbar:

• Start DOORS: this starts DOORS if it is not already started. After pro-
viding the login information, IBM Rational Systems Tester will be con-
nected to DOORS.

• Import a DOORS formal module: this will launch the DOORS Import
Formal Module wizard.

• Locate an element in DOORS: this starts DOORS and selects a given
object into DOORS.

• Export a hierarchy to DOORS: this is a shortcut that combines the Pre-
pare Export and Commit to DOORS commands.

Traceability Links (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 787

Traceability Links (Windows)
It is possible to manage DOORS links with IBM Rational Systems Tester.
This section presents the basics you have to know to create and delete links
in IBM Rational Systems Tester, and navigate the links.

Incoming and outgoing links

A link has a source and a target. For the source, the link is called an outgoing
link and for the target it is called an incoming link. So, if you create a link,
you will see that there is a link going to the target, but also coming from the
source.

Link sets and link modules

In DOORS, you must have link sets and link modules to be able to create
links. This is not the case in IBM Rational Systems Tester. The link is created
and stored with its source, so you must have the correct access rights. In
Example 28 on page 793 it will be shown how DOORS Link modules are
created to export IBM Rational Systems Tester links to DOORS. Link sets
are implicit in IBM Rational Systems Tester, but if you export your links to
DOORS they will appear in the correct link set.

Link kind

IBM Rational Systems Tester is able to manage other links than traceability
(DOORS) links, therefore you must always specify a link kind. The available
link kinds depend on what is installed on your system. If the DOORS inte-
grations is properly installed, Traceability links, Dependency links and Hy-
perlinks are available by default.

Missing Targets

When browsing for a link (in or out) in DOORS, the link always reaches its
target if it is in the same database as the source. However, in IBM Rational
Systems Tester, depending on the currently active project in your workspace,
the link target can be missing.

If the missing target is a DOORS object, IBM Rational Systems Tester auto-
matically opens DOORS to show you the actual target. If the missing target
refers to a IBM Rational Systems Tester object, only the message that the
project is not loaded will be issued.

788 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Note
The link source can not be missing, as the source is the carrier of the link in-
formation.

See also

Working with Links

Link operations

Link commands can be operated from:

• The link menu

• The link toolbar

• The shortcut menu which has a links section containing a subset of the
link commands

Link commands

The following commands are available for links:

Start Link (CTRL+K)

Start Many Links

Make Link from Start (CTRL+L)

Display Outgoing

This command will produce a list in the link tab of the Output window
of the links going out from the selected entity.

Display Incoming

This command will produce a list in the link tab of the Output window
of the links coming in to the selected entity.

Edit...

Options...

Traceability Links (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 789

Current Link Kind list

Before issuing any link commands for DOORS links, make sure that you
have selected Traceability link in the Current Link Kind list. This list is
found in the link toolbar.

Link options

IBM Rational Systems Tester offers you the possibility to customize link cre-
ation behavior. You can change the link options via the Tools menu by se-
lecting Options, or clicking on the Display Link Options toolbar button.

Active link end is an active target, not an active source

This option is only effective when you create multiple links. If this option is
disabled (which is the default), links will be created from your active link end
to the other models. If this option is enabled, the links will be created in the
reverse direction, i.e. from the other models to your active link end.

Show link indicators

If this option is enabled, IBM Rational Systems Tester will show the link
markers.

Link creation

Creating a link

To create a link, simply select the object which should be the source of the
link, and choose the command Start Link (CTRL+K). Then, select the object
that you want to be the target for the link, and choose the Make Link from
Start (CTRL+L) command.

Creating multiple links from one source

If you have more than one link to create from the same source (or to the same
target), you can use the Start Many Links command.

1. Set the type of links you will make to your active object, incoming or out-
going, by specifying the option: Active link end is an active target, not an
active source.

2. Select your active link end.

790 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

3. Choose the Start Many Links command.

4. Select your other link ends and create each link by selecting the Make
Link from Start command.

5. Stop the automatic creation by choosing the Clear Start Many Links
command, or by pressing the corresponding quick button.

Link messages

Whenever a link is created using any of the above methods, a message in the
Messages output tab indicates that a link has been created.

Example 27: Message output from link creation ––––––––––––––––––––––

Traceability link created from 1 <start> to 2 <next>

–––

This message is especially useful when making links in the automatic mode.

Delete a link

To delete a link, use the Links dialog.

Note
Links in baselined DOORS modules can not be changed, as these are al-
ways read-only.

Viewing links

IBM Rational Systems Tester shows the links coming from or going to a
given object in three different ways:

• Link markers

• Context Link menu

• Links dialog

Link markers

Objects with links going to another object is displayed with a marker, also
when the object has incoming links to itself.

For traceability links, the markers used are the red and orange arrows familiar
to DOORS users.

Traceability Links (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 791

Context Link menu

The link markers only give an indication of existing links. To find out which
objects are linked, right-click the link marker to see a menu displaying the
link kind, and in a sub menu, the linked objects. The same information is also
available in the Links shortcut menu for an object, in the sub menus In-
coming/Outgoing.

Links dialog

A list of all objects linked to a given object can be viewed in the Links di-
alog. Select an object and choose Edit... (from the Links menu or the Links
toolbar).

The Links dialog shows all the objects connected with a selected object. An
object which is not loaded into IBM Rational Systems Tester is referred to
by its URL instead of its name. It is possible to change the direction to see
either objects that are targets or sources of the links. It is also possible to de-
lete a link by selecting the corresponding object, and then press the Delete
key (or use the right-click menu choice “Delete link”).

Navigation

To navigate to a link endpoint, right-click the link marker to see a menu dis-
playing the link kind; then, in the sub menu, select a link endpoint. Or, use
the Context Link menu. The effect of navigating a link is to mark the link end
as selected. Navigation can be done both to the link sources and the link tar-
gets of a given object.

There are three situations that can be identified when you want to navigate to
a link target (a link source is always available):

• The target of the link is loaded and directly reachable

• The target of the link is not loaded, and it is in an external (un-launched)
tool

• The target of the link is not loaded, and it is not reachable

If the target is a DOORS object, IBM Rational Systems Tester will automat-
ically launch DOORS (prompting you to provide the login information) and
select the target object.

792 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Synchronizing links

The power of the integration between DOORS and IBM Rational Systems
Tester comes with the possibility to work with the links with both tools. It is
possible to export links created in IBM Rational Systems Tester to DOORS,
and import links created in DOORS.

Links where the source is a DOORS object should be made in DOORS, and
then synchronized to IBM Rational Systems Tester. Trying to make a link
from an object in the DOORS view in IBM Rational Systems Tester could
lead to problems if you do not have the correct access rights to the corre-
sponding DOORS requirements module. Of course, making links to an ob-
ject in the DOORS view in IBM Rational Systems Tester will not present this
problem, as the DOORS requirements module will not be affected when syn-
chronizing these links.

If there is a link between a DOORS object within IBM Rational Systems
Tester and a IBM Rational Systems Tester object, then to be able to export
and view this link in DOORS, the IBM Rational Systems Tester model must
be exported to DOORS.

Important!
All links are fully synchronized between IBM Rational Systems Tester and
DOORS. It doesn’t matter which tool a link was originally created in. It is
therefore important that all links are present in one tool before committing
to the other. If not, links will be deleted.

Links to requirements not represented in IBM Rational Systems Tester are
imported and set up symbolically.

Note
The synchronization of links handles only outgoing links, meaning that if
you commit a module from IBM Rational Systems Tester to DOORS, all
links which have their source in that module (indicated by a red arrow
pointing to the right) will be exported to DOORS, but not any links which
have their target in that module. These links can be exported by finding the
source module, and then do “Commit to DOORS”. Similarly, if you do
“Update from IBM Rational Systems Tester“in DOORS, this is equivalent
to “Commit to DOORS” in IBM Rational Systems Tester - it is the same
command which is executed in both cases.

Traceability Links (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 793

Example 28: Committing links –––––––––––––––––––––––––––––––––––––

Synchronizing the DOORS formal module that contains the source objects
will also synchronize the links. IBM Rational Systems Tester will automati-
cally detect that the links have link ends in a DOORS module and will syn-
chronize the links.

Links in IBM Rational Systems Tester can also be exported to a DOORS da-
tabase.

Consider this scenario: Export a formal module containing a TTCN-3 model
to DOORS. Import a DOORS formal module and make some links to the ob-
jects, see Figure 4 on page 793.

Commit the changes in the previously exported model

After exporting the model “SIP.ttp”, you can commit the changes to
DOORS, and the corresponding links will be created in DOORS.

Figure 4: IBM Rational Systems Tester with a model exported to DOORS, and an im-
ported DOORS formal module

794 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

The database view (in DOORS) will now show the formal module and the
link module containing the link created in IBM Rational Systems Tester, see
Figure 5 on page 794.

It is then possible to open the formal modules (in DOORS) to check their
contents and that the links have been created correctly.

Figure 5: DOORS database view

Traceability Links (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 795

Open the Link module (in DOORS) which will show the link set implicitly
created by IBM Rational Systems Tester, see Figure 6 on page 795.

––

Example 29: Updating links –––––––––––––––––––––––––––––––––––––––

IBM Rational Systems Tester can also import links created within DOORS.
Consider the previously exported model. Make a link from it to the formal
module using DOORS.

Figure 6: DOORS link module

796 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Go back to IBM Rational Systems Tester and update the changes made in
DOORS.

Figure 7: New link created in DOORS

Figure 8: IBM Rational Systems Tester with DOORS module and updated link

DOORS Integration Menus (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 797

The link is now correctly imported into IBM Rational Systems Tester.

––

DOORS Integration Menus (Windows)
In the Rational Systems Tester sub-menu of DOORS, you can find the fol-
lowing commands:

• “Available commands in database explorer menus” on page 797

• “Shortcut menu for database explorer” on page 798

• “Surrogate module menus” on page 798

• “Shortcut menu for surrogate modules” on page 799

• “Requirements module menus” on page 800

• “Shortcut menu for requirements modules” on page 801

Available commands in database explorer menus

Create TTCN-3 Test Suite...

This command will start up a wizard with the objective of creating a
new project in IBM Rational Systems Tester.

You will be prompted for the project name and location. Once this has
been gathered, IBM Rational Systems Tester will be started and a new
project will be created.

IBM Rational Systems Tester will then export this information to a
DOORS surrogate module.

Open in Rational Systems Tester

This option is only enabled if there is a currently selected module in the
Database Explorer.

For modules containing surrogate information, a IBM Rational Systems
Tester client will be started with that particular workspace loaded.

It is not possible to open modules containing requirement information
(i.e. not surrogate modules) in IBM Rational Systems Tester.

Start Rational Systems Tester

798 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

This option will start a IBM Rational Systems Tester client with no par-
ticular workspace loaded.

Help

This option opens the help file containing information about the integra-
tion.

About Integration...

This option will display a dialog with information about the integration,
e.g. copyright and version number.

Shortcut menu for database explorer

In the database explorer, the following commands are available in the
shortcut menu (under the Rational Systems Tester submenu):

Create TTCN-3 Test Suite...

Open in Rational Systems Tester

Start Rational Systems Tester

Surrogate module menus

The commands described below are found in the Rational Systems Tester
menu.

Update from Rational Systems Tester

This option is only enabled for modules containing surrogate informa-
tion. It will make a call to IBM Rational Systems Tester in order to
begin an export operation. This will in turn cause the IBM Rational Sys-
tems Tester client to be started if it is not already running.

Commit Links to Rational Systems Tester

This command will propagate outgoing links from the current module
to the corresponding IBM Rational Systems Tester model. It will make
a call to IBM Rational Systems Tester to begin an import operation.
This will cause the IBM Rational Systems Tester client to be started if
it is not already running.

Locate

DOORS Integration Menus (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 799

This option is only enabled for modules containing surrogate informa-
tion.

This will cause the corresponding IBM Rational Systems Tester item
for the selected surrogate entry to be selected. The IBM Rational Sys-
tems Tester client will be started if it is not already running.

Filter (Sub-Menu) (TTCN-3 only)

The Filter function provides an important aspect of the integration al-
lowing traceability between requirements and design.

Identify Design Elements Not Justified by Requirements

This option is only enabled for modules containing surrogate informa-
tion.

It will query all out-links in the object hierarchy and filter on out-links
that do not have a corresponding entry in another (assumed to be a re-
quirements) module.

Note that if the description for the IBM Rational Systems Tester surro-
gate module is changed, this function will not work as expected.

Identify Design Elements by TTCN-3 Kind (TTCN-3 only)

This option will present the user with a list of all TTCN-3 kinds present
in the surrogate module. A filter will then be applied so that only objects
with these values will be displayed.

Open in Rational Systems Tester

Help

About Integration...

Shortcut menu for surrogate modules

In a formal module, when a requirement is selected, the following commands
will be available in the shortcut menu (under the Rational Systems Tester
submenu):

Locate

800 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

Requirements module menus

The commands described below are found in the Rational Systems Tester
menu.

Commit to Rational Systems Tester

If the requirements module already has been exported to IBM Rational
Systems Tester, the corresponding IBM Rational Systems Tester
project will be used. Otherwise, you will be prompted for the name and
path to a IBM Rational Systems Tester project which this module
should be imported to.

A call to IBM Rational Systems Tester will be made for it to begin an
import operation. This will in turn cause the IBM Rational Systems
Tester client to be started if it is not already running.

Update Links from Rational Systems Tester

This command will propagate the outgoing links from the IBM Rational
Systems Tester model that corresponds to the current DOORS module
into DOORS. It will make a call to IBM Rational Systems Tester to
begin an export operation.This will cause the IBM Rational Systems
Tester client to be started if it is not already running.

Open Linked Surrogate Item in Rational Systems Tester

This option allows you to open linked surrogate entries in IBM Rational
Systems Tester.

If in-links exist from multiple surrogate entries then a dialog will be dis-
played allowing a specific selection to be made.

Link Requirement to Selected Item in Rational Systems Tester

This will create an out-link from the current object to the corresponding
entry in the surrogate module for the currently selected object in the
IBM Rational Systems Tester workspace.

Filter (Sub-Menu) (TTCN-3 only)

Identify Requirements Not Addressed by Design Elements

This will query all in-links in the object hierarchy and filter on in-links
that do not have a corresponding entry in any surrogate module.

DOORS Integration Menus (Windows)

June 2009 IBM Rational Systems Tester 3.3 User Guide 801

When filtering all ancestors of accepted objects will be shown. This will
preserve the heading hierarchy and provide help to place each require-
ment.

Note that if the description for the IBM Rational Systems Tester surro-
gate module is changed, this function will not work as expected.

Start Rational Systems Tester

Help

About Integration...

Shortcut menu for requirements modules

In a requirements module, when a requirement is selected, the following
commands will be available in the shortcut menu (under the Rational Sys-
tems Tester submenu):

Open Linked Surrogate Item in Rational Systems Tester

Link Requirement to Selected Item in Rational Systems Tester

802 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 13: Setting Up the Tool Environment

June 2009 IBM Rational Systems Tester 3.3 User Guide 803

14
Printing

This chapter describes different ways of printing a diagram and how to
change print settings.

804 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 14: Printing

Adding and Removing Printers (UNIX)
The MainWin Control Panel allows you to make your printers available in
the IBM Rational Systems Tester print dialog.

To open the MainWin Control Panel:

• From the terminal window, type:
<installation directory>/bin/mwcontrol

The control panel opens.

To add a printer:

1. When the control panel is open, click Printers. The Printer window
opens.

2. Click Add New Printer and follow the instructions in the add printer
wizard that opens.

3. When you have completed the wizard, close the printer dialog and the
Control Panel.

4. Restart IBM Rational Systems Tester.

To remove a printer:

1. When the control panel is open, click Printers. The Printer window
opens.

2. Right-click the printer you want to remove and click Delete.

3. Close the printer dialog and the Control Panel.

4. Restart IBM Rational Systems Tester.

Printing Diagrams

June 2009 IBM Rational Systems Tester 3.3 User Guide 805

Printing Diagrams
There are several ways of printing diagrams. You can print single diagrams
from:

• The diagram itself.

• The Model View.

• The Print Manager.

• The diagram preview window.

You can print multiple diagrams from:

• The Model View.

• The Print Manager.

Note
Using a white/transparent background for an Icon image may result in a
black background when printing. This is related to a Windows postscript
driver PS level 2. Changing to PS level 1 may remove the situation. Using a
colored background or frame will also prevent this.

Adding and setting up printers (UNIX only)

The procedure how to add and set up printers for use from IBM Rational Sys-
tems Tester on UNIX hosts is done with the MainWin Control Panel, de-
scribed in detail in the Installation Guide.

Print settings

To change print settings:

1. On the File menu, select Print Setup.

2. In the Print Setup dialog, select printer, paper size and other properties
allowed for the selected printer. The paper size and orientation will be
used to determine the default diagram size in the editors.

806 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 14: Printing

3. Click OK.

1. Print files

To print a file:

1. Open the file that you want to print, and place the cursor somewhere in
the text.

2. On the File menu, click Print or click the print icon in the toolbar.

3. In the Print dialog, change settings according to your preferences.

4. Click OK.

Select diagrams to be printed

All diagrams in your model are available in the Model View. The Print Man-
ager allows you to select which diagrams to print. To open the Print Manager,
click Print Manager, on the File menu.

The diagrams that are included in the container that is active in the Model
View, are listed in the Print Manager. Use the Track Selection button if you
want to change container in the Model View. If the button is not pressed in,
the contents in the Print Manager is locked to the first selection you made.

You can also decide which type of diagrams you want to print by checking
or clearing the diagram type check boxes in the Filter area.

You can calculate the number of pages to print by clicking Pages in the Print
window.

Figure 9: Track selection button, when not selected

Printing Diagrams

June 2009 IBM Rational Systems Tester 3.3 User Guide 807

Preview of diagrams

To get a preview of a diagram:

1. Select the diagram in the Model View.

2. Select Print Preview on the File menu. A preview of the diagram is dis-
played.

– You can scroll to other diagrams by using the Next Page and Pre-
vious Page buttons.

Print a single diagram

To print a single diagram from the diagram itself:

1. Open the diagram.

2. Select Print on the File menu. The standard print dialog is displayed.

To print a single diagram from the Model View:

1. Select the diagram in the Model View.

2. Right-click the diagram and select Print. The standard print dialog is dis-
played.

To print a single diagram from the Print window in the Print Manager:

1. Select the diagram in the Model View. The diagram icon is displayed in
the Selection area.

2. Click the Print button. The standard print dialog is displayed.

To print a single diagram from the preview window:

• Select Print. The standard print dialog is displayed

Print multiple diagrams

To print multiple diagrams from the Model View:

1. Select the diagrams in the Model View.

2. Select Print Manager on the File menu. The Print window is displayed.

3. Click the Print button or select Print Preview on the File menu and then
Print. The standard print dialog is displayed.

808 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 14: Printing

You can print diagrams of the same type(s) at the same time if you use the
Print window and the Filter functionality.

To print multiple diagrams from the Print window:

1. Select Print Manager on the File menu. The Print window is displayed.

2. In the Model View, select the diagram(s) you want to print. The diagrams
and page numbers for the diagram type(s) you selected are displayed in
the Selection area.

3. Click the Print button or select Print Preview on the File menu and then
Print. The standard print dialog is displayed.

June 2009 IBM Rational Systems Tester 3.3 User Guide 809

15
Internationalization Support

This section describes the internationalization support in IBM Rational Sys-
tems Tester. The main focus of this document is Chinese, Japanese and Ko-
rean (CJK) language handling.

Supported environments

This section describes specific information for Internationalization support
of system environments. The information not described in this section is
common through all languages. Please refer to the installation guide for gen-
eral information.

Supported platforms

The internationalization support in IBM Rational Systems Tester is available
for Windows 2000 and XP. It is assumed that you use a local version of Win-
dows and set the locale to use your local language.

Configuration Management

IBM Rational Systems Tester does not support CJK environments beyond
limitations of each configuration management tool for CJK support.

810 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 15: Internationalization Support

IME (Input Method Editor)

Default IMEs bundled in Windows are supported. Using supported IME, you
can enter your local characters inline.

Font settings

By selecting the correct font for your language, your language is displayed
correctly.

1. Select Tools and then Options from the IBM Rational Systems Tester
menu bar.

2. Select Format tab.

3. Choose Category and specify font type

– Dialog fixed : the font type setting for dialogs using a fixed width
font.

– Developer diagram symbol font: the font type setting for other sym-
bols and diagrams.

– Report Windows: the font type setting for tabs in the Output
window.

– Output Windows: the font type setting for Message, Model Verifier
and Script tabs in the Output window.

– Tcl Files: the font type setting for Tcl and text files opened in IBM
Rational Systems Tester.

– C/C++ Header/Source: the font type setting for C/C++ header and
source files opened in IBM Rational Systems Tester.

Note
The instructions presented below should be performed before you start to
create elements in your diagrams.

There is also fonts settings for diagrams elements.

1. Select Tools and then Options from the Tau menu bar.

2. Select Font settings tab.

3. Specify font types. See “Font settings” on page 825.

Note
You can also change the font style and size for each element from the Dia-
gram element properties toolbar.

June 2009 IBM Rational Systems Tester 3.3 User Guide 811

Modeling with CJK characters

IBM Rational Systems Tester supports modeling with CJK characters. You
can use CJK characters for

• names of all elements

• comments

• Charstring literals.

You can type CJK characters in the same way as English characters. No spe-
cial operation is needed to draw models with CJK characters.

Code generation with CJK characters

Element names in the model are used as names of identifiers in generated
C/C++ files. However, in C/C++ grammar, CJK characters are illegal for
identifier names. So, IBM Rational Systems Tester have a mechanism to pro-
vide legal names for C/C++ code and it can be done in two ways.

Automatic UTF-16 naming

If CJK characters are used in an element name, IBM Rational Systems Tester
provides the legal name in generated C/C++ code. The provided legal name
consists of a UTF-16 big endian encoded hexadecimal string that is prefixed
by tau_ and suffixed by _tau

Example 30: UTF-16 encoded name–––––––––––––––––––––––––––––––––––––––

MALMÖ is encoded as

tau_004D0041004C004D00D6_tau

–––

Using ansiName stereotype

If you want to use CJK characters for element names and you want to specify
legal name for generated C/++ code, you can use the stereotype ansiName.

1. From the Tools menu select Customize. Go to the Add-Ins tab.

2. Check the Internationalization add-in to load ansiName stereotype in
the current project. (You need to activate it per project.)

3. Enter the element name in the diagram with CJK characters.

812 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 15: Internationalization Support

4. In the Model View, right-click the element for which you want to specify
a legal name.

5. On the shortcut menu, click Properties.

6. From the Filter box, select ansiName.

7. Type the legal name for the code generation in the name field.

When you specify a legal name by ansiName, the specified name is used for
C/C++ code.

Names of files and folders used by build tool chain

Names of class symbols and package symbols

The names of class symbols and package symbols are used as generated file
and folder names. If CJK characters are used in symbol names, the encoding
mechanism described in “Code generation with CJK characters” on page 811
is applied to name the generated folders and files. If you want to specify the
file and folder names, then use ansiName stereotypes as in “Using ansiName
stereotype” on page 811.

Comments

Comments will not be presented in generated C/C++ files. This applies to
both CJK characters, English characters and any other language.

Encode type of files used by build tools

The encode type of the files that are processed by the build tool chain (such
as the files holding the intermediate format and the generated C/C++ files)
are encoded using the system locale encoding. For example, on Japanese
Windows, the generated files will be encoded using SHIFT-JIS, so that Mi-
crosoft Visual C++ can handle and compile the files.

Therefore, you need to set correct locale for your language to generate files
with the correct encoding.

1. Open the Windows Control panel

2. Open the Regional Settings dialog and select the General tab.

3. Make sure that the selected locale is the correct one.

June 2009 IBM Rational Systems Tester 3.3 User Guide 813

Handling textual files

Textual files can be opened inside IBM Rational Systems Tester. IBM Ra-
tional Systems Tester supports local ANSI encoding and UTF-8 for the tex-
tual file. When existing textual files are opened in IBM Rational Systems
Tester, IBM Rational Systems Tester saves the files in the original encoding.
When the textual file is created in IBM Rational Systems Tester, the file will
be saved in UTF-8 by default. You can select encode type from the Save as
dialog.

Restrictions
• Single byte Japanese Katakana and Japanese characters defined between

0x80 and 0xFF in Shift-JIS are not supported.

• CJK characters are not supported for Project names.

• Using CJK names for messages and message text parameters may result
in displaying UTF-16 big endian encoded names instead of original CJK
names, when tracing a Model Verifier in Sequence diagrams. In order to
find out the original names, decoding must take place in an external ap-
plication that supports displaying UTF-16 encoded characters.

See also

“Automatic UTF-16 naming” on page 811.

814 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 15: Internationalization Support

June 2009 IBM Rational Systems Tester 3.3 User Guide 815

16
Dialog Help

This section lists the help texts that are displayed when you click the help
button in dialogs.

816 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 16: Dialog Help

The New Wizard

Files tab

This dialog provides the possibility to add new files to your design.

• When adding a file you must specify a file name and a location.

• The file can be added to an existing project. The project must be opened
in the File View in order for you to add the file to it.

• The new file is opened in the Desktop.

Projects tab

This dialog provides the possibility to add a new project.

When you add a project, you specify how the project will be used. Depending
on your choice, different add-ins will be loaded at start-up, for example:

TTCN Project
No add-ins are loaded. This is a Rational Systems Tester project. The struc-
tured view will be available in the workspace window.

Should you later want to change the default add-ins in your project, you can
do so using the Add-ins tab (Tools menu, select Customize).

• When adding a project you must specify a project name and a location.

• The project can be included in the current workspace, or a new work-
space can be created for the project.

See also

“Working with Projects” on page 18 in Chapter 1, Introduction to IBM
Rational Systems Tester 3.3

“Add-ins tab” on page 821

TTCN Projects - page 2

This dialog allows you to set properties for your TTCN-3 project.

• Specify the file directory where new files will be created.

Customize

June 2009 IBM Rational Systems Tester 3.3 User Guide 817

• Select if you want to add a TTCN-3 file to the project. You must specify
the file name.

• If you add a new file to the project, you may also add an empty module
to the file. In that case, you should also type a module identifier.

• Select Copy makefile configuration file, if you want this file added to
your project.

See also

“Makefile Generation” on page 79 in Chapter 4, Creating an ETS

TTCN Projects - page 3

This dialog confirms your selections. Click Back if you want to make any
changes.

Workspaces

This dialog provides the possibility to add a new workspace.

• When adding a workspace you must specify a workspace name and a lo-
cation.

• The new workspace is loaded in the Workspace window.

See also

“Working with Workspaces” on page 16 in Chapter 1, Introduction to IBM
Rational Systems Tester 3.3

Customize

Commands tab

This tab lists the default menus with toolbar buttons, commands and menus
that you can add to a toolbar or menu. It allows you to move, delete or add
buttons to your toolbars.

1. In the Categories box, click the toolbar name that you want to customize.

2. In the Buttons area, drag the item from the dialog on to the toolbar. Click
the item first to receive information about the specific item.

818 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 16: Dialog Help

3. To remove an item from a toolbar, drag the item from the toolbar on to
the dialog.

To add a button to a toolbar:

1. Make sure that the toolbar you want to change is displayed.

2. In the Categories box, the available toolbar buttons or items are grouped.
Select the category where the toolbar button or item you want to add is
located.

3. Click a button or item to receive information about its functionality.

4. Drag the button or item from the Buttons area to the toolbar in the user
interface.

To delete a button from a toolbar:

1. Make sure that the toolbar you want to change is displayed.

2. Drag the button or item off the toolbar.

When you delete a default button from a toolbar, the button is still available
in the Customize dialog box. However, when you delete a toolbar button with
a custom appearance, its appearance is permanently lost, although the com-
mand is still available (Customize dialog box, Commands tab).

Hint
To save a toolbar button with a custom appearance for later use, create a
toolbar for storing unused buttons, move the button to this storage toolbar,
and then hide the storage toolbar.

Toolbars tab

This tab lists standard and custom toolbars.

Select or clear the check boxes to display or hide the toolbars. Each toolbar
appears either in the default location or in the last location that it is moved to.
The menu bar cannot be hidden.

Show Tooltips
Click the check box to enable tooltips to be displayed when the cursor moves
over a button or field in the toolbars.

Large Buttons
Click the check box to display larger sized buttons in the toolbars.

Customize

June 2009 IBM Rational Systems Tester 3.3 User Guide 819

Create a new toolbar:

1. Click New.

2. In the dialog that opens, type the name of the toolbar. The new toolbar
appears in the toolbar area of the interface.

3. From the Commands tab, select the items that you want to add to the
toolbar.

Restore the default toolbar settings:

1. Click the toolbar in the list.

2. Click Reset.

A user-created toolbar cannot be restored.

Delete a user-created toolbar:

1. Click the toolbar in the list.

2. Click Delete.

A default toolbar cannot be deleted.

Rename a user-created toolbar:

1. Click the toolbar in the list.

2. In the Toolbar Name field, type a new name for the toolbar.

3. Click the toolbar again to save the change.

Create New Toolbar

Type the name of the new custom toolbar. You can use upper or lower case
letters, but each name must be unique regardless of case. The name must be
unique from other toolbars. If you want to change this name later, you can
edit the name in the Toolbar Name box on the Toolbars tab.

Windows layouts

This tab allows you to customize the appearance of the Windows layout. You
can save toolbar positions, visibility and location of docked windows.

820 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 16: Dialog Help

Save a new layout:

1. Click the New button.

2. Type a name for your layout.

3. Close the window.

To restore a new layout:

1. Click the layout you want to restore.

2. Click Restore.

To delete a layout:

1. Click the layout you want to delete.

2. Click the Delete button.

Tools tab

This tab allows you to add commands in the Tools menu. These commands
can be associated with any program that runs on your operating system. The
information is saved in a file named Tools.dat in the directory:

C:\Documents and Settings\<user>\Application Data\Telelogic\Shared

Add a command to the Tools menu:

1. Click the New (Insert) button. A blank line, indicated by an empty rect-
angle, appears in the Menu Contents box.

2. Type the name of the command as it will appear in the Tools menu. Press
ENTER to save the name.

3. In the Command field, type the path to the program. You can also use
the browse button to locate the program.

4. In the Arguments text box, browse or type any arguments to be passed
to the program. Use the drop-down arrow next to the Arguments text box
to display a menu of arguments.

5. In the Initial directory box, browse or type the file directory where the
command will be located.

6. If the program is a console program, for instance the Windows command
prompt, you can select to have it run in the Output window. Just select
the Use Output Window check box.

Customize

June 2009 IBM Rational Systems Tester 3.3 User Guide 821

7. Select the Prompt for Arguments check box, if you want to be able to
change argument each time you want to use the command.

8. Select the Use OEM format check box, if you want to the application’s
output to be in OEM format.

9. Click OK. The command appears in the Tools menu.

Additional tasks

• To insert the command in a submenu, separate the menu name and the
name with a backslash ‘\’. For instance, the command Notepad in an ed-
itor menu should be typed editor\Notepad.

• To insert an access key, type an ampersand ‘&’ before the selected letter
in the name.

• Move commands up and down in the menu by using the Move Up and
Move Down buttons.

• To change the name of the command, double-click it and type a new
name.

Delete a command in the Tools menu:

1. Click the command in the list.

2. Click the Delete button.

Add-ins tab

Add-ins are used to extend the tool functionality. From the Add-ins tab you
can load a selection of predefined add-ins.

The different add-ins are optimized for different build situations. This means
that you often do not have to change any build settings. When you click an
add-in, you will see its usage in the description field.

• To load or unload add-ins, select or clear the check boxes. Close the di-
alog.

• You can modify the available add-ins. Click the add-in and click Modify.
The dialog that opens allows you to customize the add-in according to
your needs.

• You can also create your own add-ins by clicking Create. The dialog that
opens allows you to configure the add-in according to your needs.

822 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 16: Dialog Help

See also

“Contents and structure of an add-in” on page 1608 in Chapter 45,
Customizing Telelogic Tau

Options

General

This tab allows you to set general options:

The Display status bar allows you to show or hide the status bar that is avail-
able at the bottom of the IBM Rational Systems Tester user interface.

When the Output window is closed, information that is normally listed in the
different tabs is not displayed. However, when selecting the Show output
window when receiving content check box, the output window will open
automatically when new information is listed, for instance after a manual
check.

Connect to the Source Control System at start-up
If you have a source control system installed, you can select this check box.
This enables a source control menu and toolbar for interaction with your
source control system.

Show advanced option page
Select to display an additional tab with all options listed in a tree structure.

Tabbed documents
Select to open documents in a single window as tabs.

Disable external program launch for these type of file
In this field you can specify the extension of files, that any associated ex-
ternal application is not to be launched when they are opened from within
IBM Rational Systems Tester. For instance, if you add the .htm extension,
htm files will not be opened in your web browser if opened from within IBM
Rational Systems Tester.

Select the default help context
If there are many Telelogic tools installed, you can choose which help file to
use as default by selecting the file in the Select the default help context box.

Options

June 2009 IBM Rational Systems Tester 3.3 User Guide 823

URN Map
Use the URN Map (Universal Resource Name) to define shorthand names
for file storage locations. For example:

home:C:\MyHomeDir;work:C:\MyWorkDir

Here “home” is shorthand for C:\MyHomeDir and “work” is shorthand for
C:\MyWorkDir. Each user may define URNs for his/her environment. These
are used by some components for referring to files, bitmaps and other re-
sources.

–––

Save

This tab allows you to set save options in IBM Rational Systems Tester.

Save before running tools
Select to automatically save any unsaved work before an external tool is
launched.

Prompt before saving files and projects
Select to be prompted when files and projects are being saved when an editor
closes.

Automatic reload of externally modified files
You will by default receive an information message and be prompted to re-
load an externally modified file. Select this option to automatically reload a
file that has been modified in another tool than IBM Rational Systems Tester.

Save project’s add-in state in all the loaded projects
This option will let any loaded add-ins become activated for all projects cur-
rently loaded.

Auto-backup
Select the Activate check box to allow automatic saves of your model in pre-
determined intervals. Enter the desired number of minutes between the saves,
either by typing the number or by clicking the up and down buttons.

Workspace

This tab allows you to set general options for the workspace that you have
opened.

824 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 16: Dialog Help

Reload last workspace at startup
Select to open the workspace that you were working in the last time IBM Ra-
tional Systems Tester is running.

Warn on project file status change
Select to receive a warning if the status of the project file you are working in
has been changed to read-only. This will protect you from potentially loosing
unsaved work.

Projects default location
When you create new projects, you will receive a suggestion where the
project file will be stored. In this text field, type a path, or browse to a folder,
where the new projects will be stored.

Format

This tab allows you to format the appearance of text and colors in windows
and files.

When you have selected a category, you can select:

• Font and Size of the text in the file or window.

• Background color and text color for the selected Category. By default,
system colors defined in the control panel are used. Clear the Automatic
check boxes to select text and background colors.

Links

This tab allows you to customize link creation behavior.

Active link end is an active target, not an active source
If this option is off, then when you use automatic creation of links, you will
create links from your active link end to the other models. If this option is on,
then you will create links to your active link end from the other models.

Automatically create links between modified objects and active link end
If this option is on, then when you select an active link end, all your modifi-
cations will be linked to this link end.

Show link indicators
If this option is on, IBM Rational Systems Tester will show the link markers.

TTCN Dialogs

June 2009 IBM Rational Systems Tester 3.3 User Guide 825

Compare/Merge

This tab allows you to change options for compare/merge.

External text compare/merge

Default values for these options are compatible with the textual com-
pare/merge tool of Synergy CM if installed.

External text compare/merge tool path

Path to the external text compare/merge tool that can be used from the review
differences dialog.

Command line switches

Depending on what compare/merge usecase it is, the external com-
pare/merge tool will be called with the corresponding command line
switches option.

Advanced

The Advanced tab allows you to change the values for any option. Navigate
the window to find the option which value you want to change. To change
the option value, select the value and click F2.

TTCN Dialogs

Find In Files

Use this dialog when you want to look for an item in any of your files.

• Type the file types you want to look for in the in Files/file types field.
Separate multiple file types with a semicolon. For example, if you want
to look for your item in HTML files and ASN-1 files you should type:
.html;.asn

826 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 16: Dialog Help

• By default, the search result will be presented in a tab in the Output
window called Find in Files 1. If you want to select the Output to pane 2
check box, the search result will instead be presented in the tab called
Find in Files 2. This feature is useful if you want to search for several
items.

See also

“Find and Replace” on page 55

Go To

This dialog allows you to quickly jump to anywhere in your files.

• Select if you want to go to a line or a bookmark. If you have not defined
any bookmarks, the list of bookmarks will be empty.

• If you press the pin button before the jump is performed, the Go To di-
alog does not close after the jump has been performed.

See also

“Bookmarks” on page 61

“Go To” on page 63

Go To Line

This dialog allows you to quickly jump to anywhere in a text file.

• Enter a line number and press OK.

June 2009 IBM Rational Systems Tester 3.3 User Guide 827

17
Additional Resources

This section list documents that are not part of the help file, but that may help
you to extend your knowledge about IBM Rational Systems Tester. Links to
useful web resources are also provided.

828 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 17: Additional Resources

Links

Telelogic links

IBM Rational Systems Tester

TTCN-3 documents

TTCN-3 Tutorial (PDF)

A basic tutorial that allows you to become familiar with Rational Systems
Tester and the TRI integration. The tutorial is available in your installation
in:

.../locale/en/tutorial.pdf

Other links

Borland C/C++

C/C++ dialect supported by the Borland builder.
http://www.borland.com/cbuilder

Cygwin

For information about the contents of various Cygwin versions, see:
http://www.cygwin.com

GNU C/C++

C/C++ dialect supported by the GNU Compiler Collection.
http://www.gnu.org/software/gcc

ITU-T

Formerly CCITT
http://www.itu.int/

http://www.cygwin.com" target="_blank
http://www.gnu.org/software/gcc/" target="_blank
http://www.itu.int/" target="_blank
http://www.borland.com/cbuilder/index.html" target="_blank

Links

June 2009 IBM Rational Systems Tester 3.3 User Guide 829

Macrovision

For more information about FLEXnet or Macrovision, please see:
http://www.macrovision.com

Microsoft Visual C/C++

C/C++ dialect supported by Microsoft Visual C++:
http://msdn.microsoft.com/visualc

MISRA

The code generated by the AgileC Code Generator is to a large extent com-
pliant with the MISRA coding rules described in the document “MISRA-
C:2004 Guidelines for the use of the C language in critical systems” from Oc-
tober 2004. Please see:

http://www.misra.org.uk

OCL

For more information about OCL (Object Constraint Language), see:
http://www.omg.org

OMG

For more information about Object Management Group (OMG), see:
http://www.omg.org

PDF

PDF files are opened and read with Adobe Acrobat Reader:
www.adobe.com

Tcl

For detailed information refer to the Tcl Developer Site
http://tcl.activestate.com/

TTCN-3

The TTCN-3 standard can be downloaded from
http://www.etsi.org

http://www.omg.org" target="_blank
http://www.macrovision.com" target="_blank
http://www.misra.org.uk" target="_blank
http://www.omg.org" target="_blank
http://tcl.activestate.com/" target="_blank
http://www.adobe.com" target="_blank
http://www.etsi.org" target="_blank
http://msdn.microsoft.com/visualc/" target="_blank

830 IBM Rational Systems Tester 3.3 User Guide June 2009

Chapter 17: Additional Resources

XML

For information about Extensible Markup Language (XML), see:
http://www.w3.org/XML

http://www.w3.org/XML/" target="_blank

June 2009 IBM Rational Systems Tester 3.3 User Guide 831

Index

A
Acrobat Reader .829
activate

commands .238
project .23

ActivateBrowser .238
ActivateConf .238
ActivateProject .238
ActivateTool .238
Activation Lists Error Codes 215
active link .789
Active link end is an active target, not an active

source .789
active project .19
add

components .783
file to projects .21
folder to project 22
hyperlinks .767
printers (UNIX) 804
projects to workspace 18
source control 775
toolbar button 12

add to project .783
add-ins

CApplication 816
customize .821
Internationalization 811
ModelVerifier 816
tab, Customize 821

AddRole .235
Administer breakpoints 220
advanced

options .14, 825
analysis settings .65
analyze

amount of error messages 66
during edit .65
output .65
semantic .65

set options . 59
syntactic . 65
test results . 191
TTCN-3 . 59

ansiName . 811
API

TRI . 546, 579
TTCN-3 runtime 245

arrange windows . 7
ASN.1 . 45

analyze in TTCN-3 85
analyzer, casn 85
C compiler . 85
command line compilation 103
compiling limitations 102
encoding . 87
in TTCN-3 . 104
language support 48
limitations, edit 99
limitations, language 51
limitations, module specific settings 103
limitations, not supported 104
limitations, partially supported 105
module specific settings 73
module to file mapping 85
PER encoder . 85
post-processing 85
settings . 71
syntax colors . 60

asn2c . 85
asn2per . 85
AttributesOf . 235
Automated makefile configuration 82

B
Backward compatibility

TTCN-3 . 47
Batch build operations 119
BinaryString . 546
bookmark . 61

832 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

help file . 34
named . 61
set . 62
simple . 61

Borland
C/C++ . 828

Break execution . 220
browse page . 765
BrowserReport . 237
BrowserReportInit 236
build

ETS . 117
settings, TTCN-3 115
TTCN-3 test suite 111

Build intelligence 117
built-in

log mechanisms 144
bypass

RTS Mechanism 114

C
Call, Tcl API . 235
CanCopy . 241
CanCut . 241
CanDelete . 241
CanPaste . 241
cascade . 7
casn . 85
change

options . 14
Check in

configuration management 774
Check out

configuration management 774
CJK characters . 811
Class, Tcl API . 234
Classes, Tcl API . 235
ClearCase . 770
clipboard . 54
close

file . 24
window . 8
workspace . 18

CM tool
execute . 777
integration . 769

code generation

CJK characters 811
color

options . 60
Command activate 239
Command get . 239
command line

execution log 144
syntax

during execution 122
command-line

execution overview 122
switches . 123
syntax . 122

commands
customize . 817
edit menu . 240

commands tab . 817
commit

changes on exported module 793
Commit Links To Tau 798
Commit to Tau . 800
compile

SIP test suites 91
test suites . 90

compiler
command-line 73
output . 79
settings . 70

Compiling generated code 111
component

operations error codes 210
components . 783
configuration . 24
configuration file

TTCN-3 . 132
configuration management 769

Check In . 774
Check Out . 774
import module 777
internationalization 809
multiple tools 772

Control amount of XML data 197
Control XML log from command line . . 199
copy

Tcl script . 243
text, Abstract Test suite 57

Copy URL . 766

Index

June 2009 IBM Rational Systems Tester 3.3 User Guide 833

create
file .24
file, TTCN-3 .54
hyperlink .767
project .20
project in existing workspace 20
Tcl .233
Tcl code .242
test suites .54
traceability link 789
window .8
workspace .17

Create UML
Model (UML only) 797

Current Link Kind
list .789
traceability link 789

Customizable Text Log 148
Customize

dialog .15, 817
toolbars .12

customize .15
add-ins .821
commands .817
new toolbar .819
TAU/Tester Views 243
toolbars .818
tools .820
windows layouts 819

cut
edit text in Abstract Test suite 57

Cut, Tcl API .240
Cygwin .828

D
dat, tools file extension 820
database explorer menus 797
Debugging .217
delete

text, TTCN-3 .58
Delete, Tcl API .240
dependency

add .767
desktop .3
diagram

size, print .805
dialog help .815

dim . 783
discovery-based storage 26
Display Incoming Links 766, 788
Display Log Files 147, 192
Display Outgoing Links 766, 788
dock

window . 9
dock, window . 9
docked window . 7
DOORS . 777

export to . 779
import, formal module 783
import, update module 785
link . 787
link options . 789
module . 782
modules in Tau 782
Tau menu . 797
toolbar . 786
traceability link 787
unexport . 781
update . 785
Workspace window 784

DTD
including in XML conversion 66

E
edit

Abstract Test Suites 53, 54
defining makefile configuration manually

 . 80
entity list . 60
file . 61
Go To dialog . 63
Limitations . 99
links . 791
options . 15
scope line . 61
support

pop-up information 64
syntax coloring 60
test suites . 54
text . 758
TTCN-3 . 64
type definitions 60

Edit Link . 791
Edit Links 766, 788, 791

834 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

edit support
pop-up information 64

Enable Graphical Execution Tracing 193
Enable MSC Logging 191
Enable Text-File Logging 146
Enabling and disabling breakpoints 220
Encode type of files used by build tools . 812
encoder

TTCN-3 attributes 88
Encoder usage at run time 88
encoding

open types . 89
entity list . 60

description of . 60
error codes . 200

test execution results 144
error messages

during analysis 66
set allowed amount 66

ETS . 69
invoking on remote host 127
Remote Host 127

execute
command line 122
command line log 144
error codes . 144
log format . 144
Script Wizard 233
set options . 127
test suite . 127
text event log 144

execution
logs . 143
settings . 125

export
as surrogate (DOORS) 780
DOORS module 779
to DOORS . 779

Extensible Markup Language 830

F
field

property . 259
file . 23

add . 54
add to project . 21
create . 54

dialog . 16
edit . 61
insert . 4
operations . 756
options . 14, 77
recent . 22
representation of 4
save . 54

file extension
.dat . 820
.dim . 783
.html . 765
.mcfg . 137
.new . 74
.pdf . 829
.spm . 229
.tot . 14
.ttp . 18
.ttw . 16
external program launch 822
folder filter . 22

File View . 4
files . 4

tab . 816
filter

sub-menu (UML only) 799
find . 55

files . 825
float

window . 9
floating window . 7
FlushEvents . 242
folder . 23

add to project 22
font settings . 810
fonts . 60
formal module . 782
Format, options tab 824
full screen . 7
full string search . 65

G
generate

makefile . 84
makefile from command-line 85
makefile from user interface 84
MSC file . 144

Index

June 2009 IBM Rational Systems Tester 3.3 User Guide 835

Get .235
Get Latest Version 774
GetRole .234
 .74
Global options .74
Globetrotter, see Macrovision 829
GNU

C/C++ .828
Go To .826

dialog .57, 63
Go To Definition

text edit .63
go to line .13
Gray .3

H
Handle runtime errors 221
Help

DOORS .798
help

on-screen .32
hide

windows .761
hide windows .8
highlight

text edit .758
html

open URL .765
HtmlReport .237
hyperlink .765

add .767
commands .766
create .767
link options .764
options .764

Hyperlink options 764

I
identifier

ASN.1 .103
Identify Design Elements By UML Kind (UML

only) .799
Identify Design Elements Not Justified By Re-

quirements .799
Identify Requirements Not Addressed By De-

sign Elements .800
IME (Input Method Editor) 810

import
configuration management 777
DOORS . 785
DOORS formal module 783
module . 777
module from DOORS 783

incremental search 56, 65
index . 33

results . 34
insert

file . 4
hyperlink . 765
link . 765
project . 18
project into workspace 18

integration . 786
DOORS . 797
IBM Rational ClearCase 770

internationalization 809
add-ins . 811
support . 809

L
limitations

ASN.1 . 51
TTCN-3 . 46, 99
TTCN-3 command line 134

line
go to . 13
number . 13

link . 764
commands 766, 788
create . 767, 789
customize creation 789
display incoming 766, 788
display outgoing 766, 788
end . 789
kind . 787
links dialog . 791
make . 789
markers . 790
messages 768, 790
modules . 787
multiple . 789
operations 766, 788
options . 764
sets . 787

836 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

show indicators 789
start . 767, 789
start many . 789
synchronize . 792

Link Requirement To Selected Item In Tau .
800

links
external . 827
tab . 824
web sites . 828

locate . 241, 798
DOORS object from Tau 784
search . 34

location independent build settings 82
log

built-in . 144
MSC . 144
report . 66
verbosity . 145

logging
settings . 145

M
Macrovision . 829
make

hyperlink to element 764
Link from Start 790

Make Link from Start 766, 788, 789
makefile generation 79
makefile limitations 101
MapRole . 234
Match Similar Word 35
mcfg . 137
MDI child . 9
MDI Child window 7
menu bar . 10
message

Output window 5
Microsoft Visual

C/C++ . 829
Migrating from TTCN-2 42, 42
missing target

link . 766, 787
mkprefil . 85
module

definitions . 103
errors and warnings 103

files . 102
formal . 782
import . 783
initialization file values 133
names . 102
options . 75
parameter syntax 133
settings syntax 73

MSC
convert to sequence diagrams 192

MSC file . 144
Log . 191

MSC tracers. See MSC viewers
MSC viewer . 144
multiple links . 789
Multiproject workspaces 119

N
navigation

execution log 147
files . 757
from test results to ATS 147
help file . 32
TTCN-3 . 757

nested
expressions . 36

new
file extension . 74
toolbar . 819
window . 8

new toolbar
customize . 819

New Wizard . 816
NULL

character in strings 100

O
Object Management Group 829
OCL . 829
OMG . 829
open

file . 24
In Tau . 797
workspace . 17

Open Linked Surrogate Item In Tau 800
open types . 103
OpenDocument . 238

Index

June 2009 IBM Rational Systems Tester 3.3 User Guide 837

operators .35
options .13

Advanced .825
analyze .59
dialog .822
file .14
format .824
general .822
hyperlink .764
link .789, 824
save .823
Save As .14
set test execution options 127
test execution 125
TTCN-3 to XML 67
workspace .823

Other Limitations 101
Outline View, expanding 63
Output

Tcl .235
output

commands .235
directory, ASN.1 72
directory, TTCN-3 71
window .5

Output window
message .5
Presentations .5
References .5
Script .6
search result .5

OutputLog .235

P
parameter

pop-up information 64
paste

Tcl .240
text .16, 57

paste text .57
pdf .829
pdf, Acrobat file extension 829
PL

Communication Functions 512
Concurrency Functions 535
General

Functions .505

Memory Functions 532
Timer Functions 508

platform layer
API . 504

pop-up information
parameter . 64
types . 64

popvar . 85
port

operations error codes 208
Post-Mortem Debugger 229
predefined

configuration keys 128
Prepare DOORS module to export 779
Pretty print XML data 197
preview diagram 807
print

add printer . 804
add printer (UNIX) 805
help topics . 34
multiple diagrams 807
set up printer (UNIX) 805
settings . 805
single diagram 807

project . 18
activate . 23
add files . 21
add to workspace 18
configuration . 25
create . 20
insert . 20
new . 816
operations . 756
reports (TTCN projects only) 30
settings . 24

Project configurations 118
Projects tab . 816
Properties editor

shortcuts . 760

Q
QualifiedName . 546

R
Real-Timer Debugger 218
Recent files . 22, 765
recent workspaces 17

838 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

Redirect XML data stream 197
redo . 58, 240

shortcut . 759
refresh

status . 777
regular expressions 35, 750

replace . 57
search . 65, 750

Remote Host Compiler 112
remote invocation

ETS . 127
remove

printers (UNIX) 804
source control 776

replace . 55
text . 57, 65

Report . 236
report

commands . 236
log . 66

ReportInit . 236
representation

file . 4
requirements management, Windows . . . 777
requirements module menus 800
restrictions

GCC for TAU/Tester 112
internationalization 813

result file . 116
RolesOf . 235
RTL

Binary String Functions 459
Binary String Related Type Definitions

459
Codecs Functions 473
Codecs Related Type Definitions . . . 473
Component Functions 341
Error Handling Functions 478
Error Handling Related Type Definitions

. 478
Execution Control 479
Execution Control Related Type Defini-

tions . 479
Function for Generated Code Only . 500
Log Functions 347
Log Related Type Definitions 347
Memory Functions 481

Memory Related Type Definitions . 481
Miscellaneous Functions 496
Port Functions 344
Predefined Operations Functions . . 308
Source Tracking Functions 485
Source Tracking Related Type Defini-

tions . 485
Symbol Table Functions 490
Symbol Table Related Type Definitions

490
Timer Functions 340
Timer Related Type Definitions . . . 340
Type Definitions 246
Type Functions 247
Type Related Type Definition 247
Value Functions 273
Value Related Type Definitions . . . 274
Wide String Functions 445
Wide String Related Type Definitions .

445
run-time

configuration error codes 216
layer API . 246
system API . 245
system limitations 99

S
save

Auto-backup 823
dialog . 823
edit . 54
options tab . 823
workspace . 18

SaveAll . 242
SaveDocument . 242
scope line . 61
script

execute . 233
Output window 6

Script Wizard . 233
create Tcl . 242
Tcl . 234
Tcl commands 234

search . 36
full string search 65
help file . 32
help file, examples 36

Index

June 2009 IBM Rational Systems Tester 3.3 User Guide 839

help file, highlighting 33
incremental .56
incremental search 65
regular expressions 55
replace .55, 65
syntax in help .35
text string .55
to replace text .57
using regular expressions 65

select
all .59
diagrams for print 806

selection
commands .239

Selection add .239
Selection remove 239
Selection reset .240
Selection set .240
Session Initiation Protocol

abstract test suites 91
set

build options .116
compiling options 89
execution options 127

SetAtt .235
SetRole .235
Setting and removing breakpoints 219
settings

building .116
project .24

setup
UNIX .16

shortcut
menu for database explorer 798
menu for requirement modules 801
menu for surrogate modules 799

shortcut keys .755
shortcuts

as toolbar .5
window .5

show
dialogs .761
differences .776
history .776
link .789
link indicators 789
windows .8, 761

signature
TTCN-3 . 829

Solaris
Copy and Paste 16

source
active link . 789

source control
commands . 773
file view . 769
properties . 776

Specifying dependencies 119
spm . 229
standard toolbar . 11
start

link . 767
Start debugger . 219
Start Link 766, 788, 789
Start Many Links 766, 788, 789
Start Tau . 797
status bar . 13
Stop debugger . 219
Structured View . 4
support . 16
surrogate module 779

menus . 798
synchronize

link . 792
syntax

coloring . 60

T
t3cg, command syntax 73
t3pl_call_external_function 507
t3pl_communication_initialize 512
t3pl_communication_pre_initialize 512
t3pl_component_get_system_control_port . .

529
t3pl_component_set_system_component_type

. 530
t3pl_component_wait 530
t3pl_concurrency_initialize 535
t3pl_concurrency_pre_initialize 535
t3pl_concurrency_start_separate_component

536
t3pl_general_postprocess_testcase 505
t3pl_general_prepare_testcase 505
t3pl_general_testcase_terminated 506

840 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

t3pl_memory_allocate 533
t3pl_memory_deallocate 533
t3pl_memory_initialize 532
t3pl_memory_pre_initialize 532
t3pl_memory_reallocate 534
t3pl_port_clear . 515
t3pl_port_component_send 516
t3pl_port_create . 513
t3pl_port_create_control_port 513
t3pl_port_destroy 515
t3pl_port_halt . 515
t3pl_port_map . 529
t3pl_port_release_system_port 528
t3pl_port_retrieve_system_port 528
t3pl_port_start . 514
t3pl_port_stop . 514
t3pl_port_sut_action 527
t3pl_port_sut_call 518
t3pl_port_sut_call_abort 522
t3pl_port_sut_call_bc 520
t3pl_port_sut_call_done 521
t3pl_port_sut_call_mc 519
t3pl_port_sut_raise 525
t3pl_port_sut_raise_bc 526
t3pl_port_sut_raise_mc 526
t3pl_port_sut_reply 522
t3pl_port_sut_reply_bc 524
t3pl_port_sut_reply_mc 523
t3pl_port_sut_send 516
t3pl_port_sut_send_bc 518
t3pl_port_sut_send_mc 517
t3pl_port_unmap 529
t3pl_sem_destroy 542
t3pl_sem_init . 539
t3pl_sem_post . 542
t3pl_sem_timedwait 541
t3pl_sem_trywait 540
t3pl_sem_wait . 540
t3pl_task_create . 536
t3pl_task_exit . 539
t3pl_task_kill . 538
t3pl_task_setup . 537
t3pl_time_initialize 508
t3pl_time_pre_initialize 508
t3pl_timer_create 509
t3pl_timer_delete 509
t3pl_timer_read . 510

t3pl_timer_start . 510
t3pl_timer_stop . 510
t3rt.behavior.default.testcase_timeout . . 128
t3rt.codecs.builtin_as_default.enabled . . 130
t3rt.control.ack_timeout 128
t3rt.logging.builtin.limit_size 132
t3rt.logging.builtin.pretty_print 132
t3rt.logging.builtin.print_field_names . . 131
t3rt.logging.builtin.verbosity 129
t3rt.logging.rtconf_dump.enabled 129
t3rt.matching.continue_on_fail 129
t3rt.temporary_memory.block_size 130
t3rt.temporary_memory.poison_pill.enabled

131
t3rt.temporary_memory.release_unused.en-

abled . 131
t3rt.timers.assuming_all_active 128
t3rt.values.limits.epsilon_double 130
t3rt.values.value2string.print_field_names.en-

able . 131
t3rt.values.value2string.print_kinds.enable .

131
t3rt.values.value2string.print_types.enable .

131
t3rt_alloc_strategy_t 481
t3rt_and4b . 312
t3rt_binary_string_allocate 459
t3rt_binary_string_append 464, 464
t3rt_binary_string_append_1byte . . 464, 464
t3rt_binary_string_append_2bytes . 464, 464
t3rt_binary_string_append_4bytes . 464, 464
t3rt_binary_string_append_bits 464
t3rt_binary_string_append_from_iter . . . 464,

464
t3rt_binary_string_append_nbits . . 464, 464
t3rt_binary_string_append_nbytes . 464, 464
t3rt_binary_string_assign 463
t3rt_binary_string_clear 462
t3rt_binary_string_construct 461
t3rt_binary_string_copy 461
t3rt_binary_string_deallocate 460, 460
t3rt_binary_string_deallocate_all 460
t3rt_binary_string_is_equal 463
t3rt_binary_string_iter_t 459
t3rt_binary_string_length 462
t3rt_binary_string_pad 463
t3rt_binary_string_set_at 467

Index

June 2009 IBM Rational Systems Tester 3.3 User Guide 841

t3rt_binary_string_start 467
t3rt_binary_string_t 459
t3rt_bit2int .317
t3rt_bstring_iter_at_end 470, 470
t3rt_bstring_iter_at_start 470, 470
t3rt_bstring_iter_backward_nbits 468
t3rt_bstring_iter_bits_to_byte_boundary .470
t3rt_bstring_iter_forward_nbits 468
t3rt_bstring_iter_get_1byte 471, 471
t3rt_bstring_iter_get_2bytes 471, 471
t3rt_bstring_iter_get_4bytes 471, 471
t3rt_bstring_iter_get_bits 471, 471
t3rt_bstring_iter_get_nbits 471, 471
t3rt_bstring_iter_get_nbytes 471, 471
t3rt_bstring_iter_is_at_boundary 469
t3rt_bstring_iter_is_bit_set 471
t3rt_bstring_iter_next_byte 469
t3rt_bstring_iter_remaining_room 466
t3rt_char2int .320
t3rt_char2oct .328
t3rt_char2wchar .447
t3rt_codecs_init_function_t 473
t3rt_codecs_register 474
t3rt_codecs_result_t 473
t3rt_codecs_setup_function_t 473
t3rt_component_element 343
t3rt_component_get_local_verdict 343
t3rt_component_main 341
t3rt_component_mtc 342
t3rt_component_mute 344
t3rt_component_self 342
t3rt_component_set_local_verdict 343
t3rt_component_system 342
t3rt_concatenate .309
t3rt_context_get_component_address . . .498
t3rt_context_get_component_name 498
t3rt_context_get_component_type 498
t3rt_context_t .246
t3rt_control_part_function_t 479
t3rt_decode .475
t3rt_decoder_function_t 473
t3rt_decomp .334
t3rt_encode .474
t3rt_encoder_function_t 473
t3rt_encoding_attr_get_specifier 267
t3rt_encoding_attr_is_override 267
t3rt_encoding_attr_t 248

t3rt_epsilon_double 499
t3rt_error_description_t 478
t3rt_exit . 481
t3rt_field_properties_t 248
t3rt_find_element 491
t3rt_format_char_string 458, 458
t3rt_format_wide_string 458, 458
t3rt_hex2int . 317
t3rt_int2bit . 321
t3rt_int2char . 324
t3rt_int2hex . 322
t3rt_int2oct . 322
t3rt_int2str . 323
t3rt_int2unichar . 324
t3rt_int2wchar . 447
t3rt_is_equal . 310
t3rt_is_greater . 310
t3rt_is_lesser . 311
t3rt_ischosen . 308
t3rt_ispresent . 308
t3rt_lengthof . 336
t3rt_log . 339
t3rt_log_event . 377
t3rt_log_event_kind_string 378
t3rt_log_event_kind_t 348
t3rt_log_event_to_all 377
t3rt_log_extract_call_failed_bc 392
t3rt_log_extract_call_failed_mc 391
t3rt_log_extract_call_found 395
t3rt_log_extract_call_initiated_bc 389
t3rt_log_extract_call_initiated_mc 388
t3rt_log_extract_call_received 395
t3rt_log_extract_component_created . . . 420
t3rt_log_extract_component_is_alive . . . 421
t3rt_log_extract_component_killed 422
t3rt_log_extract_component_started 420
t3rt_log_extract_exception_caught 410
t3rt_log_extract_exception_found 410
t3rt_log_extract_exception_raised_bc . . 405
t3rt_log_extract_exception_raised_mc . . 404
t3rt_log_extract_kill_check_failed 424
t3rt_log_extract_kill_check_succeeded . 424
t3rt_log_extract_local_verdict_changed . 431
t3rt_log_extract_message_decode_failed 441
t3rt_log_extract_message_decoded 440
t3rt_log_extract_message_detected 384
t3rt_log_extract_message_discarded . . . 386

842 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

t3rt_log_extract_message_encode_failed 442
t3rt_log_extract_message_encoded 441
t3rt_log_extract_message_found 385
t3rt_log_extract_message_received . 385, 385
t3rt_log_extract_message_sent 378
t3rt_log_extract_message_sent_bc 380
t3rt_log_extract_message_sent_failed_bc 383
t3rt_log_extract_message_sent_failed_mc . .

382
t3rt_log_extract_message_sent_mc 379
t3rt_log_extract_port_connected 425
t3rt_log_extract_port_disabled 429
t3rt_log_extract_port_disconnected 426
t3rt_log_extract_port_enabled 429
t3rt_log_extract_port_halted 430
t3rt_log_extract_port_mapped 427
t3rt_log_extract_port_unmapped 428
t3rt_log_extract_raise_failed_bc 408
t3rt_log_extract_raise_failed_mc 407
t3rt_log_extract_reply_failed_bc 401
t3rt_log_extract_reply_failed_mc 399
t3rt_log_extract_reply_found 402
t3rt_log_extract_reply_received 402
t3rt_log_extract_reply_sent 396
t3rt_log_extract_reply_sent_bc 398
t3rt_log_extract_reply_sent_mc 397
t3rt_log_extract_scope_entered 437
t3rt_log_extract_scope_left 438
t3rt_log_extract_sut_action 414
t3rt_log_extract_template_match_failed . 432
t3rt_log_extract_template_mismatch . . . 432
t3rt_log_extract_test_case_verdict 436
t3rt_log_extract_testcase_ended 435
t3rt_log_extract_testcase_started 434
t3rt_log_extract_text_message_string . . . 443
t3rt_log_extract_text_message_widestring . .

443
t3rt_log_extract_timeout_detected 418
t3rt_log_extract_timeout_exception_caught .

412
t3rt_log_extract_timeout_exception_found . .

412
t3rt_log_extract_timeout_received 419
t3rt_log_extract_timer_is_running 417
t3rt_log_extract_timer_read 416
t3rt_log_extract_timer_started 414
t3rt_log_extract_timer_stopped 415

t3rt_log_extract_variable_modified 437
t3rt_log_get_auxiliary 373
t3rt_log_get_log_mechanism 373
t3rt_log_is_concentrator 374
t3rt_log_mechanism_close_function_t . . 348
t3rt_log_mechanism_finalize_function_t 347
t3rt_log_mechanism_get_auxiliary 372
t3rt_log_mechanism_init_function_t . . . 347
t3rt_log_mechanism_log_event_function_t .

348
t3rt_log_mechanism_open_function_t . . 348
t3rt_log_mechanism_set_auxiliary 371
t3rt_log_mechanism_version_t 348
t3rt_log_message_kind_name 374
t3rt_log_message_kind_t 348
t3rt_log_register_listener 370
t3rt_log_set_auxiliary 372
t3rt_log_string . 374
t3rt_log_string_to_all 375
t3rt_log_t . 349
t3rt_log_wide_string 375
t3rt_log_wide_string_to_all 376
t3rt_long_integer_t 248
t3rt_memory_scope_t 481
t3rt_memory_temp_allocate 484
t3rt_memory_temp_begin 482
t3rt_memory_temp_clear 483
t3rt_memory_temp_end 482
t3rt_mod . 338
t3rt_module_register_function_t 479
t3rt_not4b . 312
t3rt_oct2char . 327
t3rt_oct2int . 318
t3rt_oct2str . 326
t3rt_or4b . 313
t3rt_port_insert_call 345
t3rt_port_insert_exception 347
t3rt_port_insert_message 344
t3rt_port_insert_reply 346
t3rt_quad2wchar 447
t3rt_register_default_logging 497
t3rt_register_provided_logging 497
t3rt_rem . 338
t3rt_replace . 335
t3rt_report_error 478
t3rt_report_fatal_system_error 479
t3rt_rotateleft . 314

Index

June 2009 IBM Rational Systems Tester 3.3 User Guide 843

t3rt_rotateright .315
t3rt_rtconf_get_param 496
t3rt_rtconf_set_param 496
t3rt_run_test_suite 480
t3rt_scope_kind_t 485
t3rt_set_epsilon_double 499
t3rt_shiftleft .315
t3rt_shiftright .316
t3rt_sizeof .337
t3rt_sizeoftype .337
t3rt_snapshot_return_t 479
t3rt_source_location_file_line 489
t3rt_source_location_file_name 489
t3rt_source_location_is_ttcn3 490
t3rt_source_location_module_name 487
t3rt_source_location_scope_arguments . .488
t3rt_source_location_scope_kind 488
t3rt_source_location_scope_name 488
t3rt_source_location_t 485
t3rt_source_tracking_top 487
t3rt_str2float .319
t3rt_str2int .318
t3rt_str2oct .327
t3rt_symbol_entry_kind_t 490
t3rt_symbol_entry_t 490
t3rt_symbol_table_entry_attribute 494
t3rt_symbol_table_entry_auxiliary 495
t3rt_symbol_table_entry_function 494
t3rt_symbol_table_entry_kind 492
t3rt_symbol_table_entry_name 492
t3rt_symbol_table_entry_type 493
t3rt_symbol_table_entry_value 493
t3rt_targetcode_location_get 486
t3rt_targetcode_location_pop 486
t3rt_targetcode_location_push 485
t3rt_targetcode_location_set_line 486
t3rt_timer_handle_t 340
t3rt_timer_state_t 340
t3rt_timer_timed_out 340
t3rt_type_array_contained_type 269
t3rt_type_array_size 268
t3rt_type_check .250
t3rt_type_definition_module 254, 254
t3rt_type_definition_name 253, 253
t3rt_type_display_attribute 266
t3rt_type_encode_attribute 265
t3rt_type_enum_name_by_index 260

t3rt_type_enum_name_by_number 261
t3rt_type_enum_named_values_count . . 259
t3rt_type_enum_number_by_index 260
t3rt_type_enum_number_by_name 261
t3rt_type_extension_attribute 266
t3rt_type_field_count 255
t3rt_type_field_display_attribute_by_index .

264
t3rt_type_field_display_attribute_by_name .

263
t3rt_type_field_encode_attribute_by_index .

262
t3rt_type_field_encode_attribute_by_name .

262
t3rt_type_field_extension_attribute_by_index

265
t3rt_type_field_extension_attribute_by_name

264
t3rt_type_field_index 256
t3rt_type_field_name 256
t3rt_type_field_properties 258
t3rt_type_field_type 257
t3rt_type_field_variant_attribute_by_index .

263, . 263
t3rt_type_field_variant_attribute_by_name .

262, . 262
t3rt_type_get_decoder 273
t3rt_type_get_encoder 272
t3rt_type_instantiate_named_value 250
t3rt_type_instantiate_value 248
t3rt_type_is_equal 251
t3rt_type_kind . 252
t3rt_type_kind_t 248
t3rt_type_module 254, 254
t3rt_type_name 253, 253
t3rt_type_qualified_name 254
t3rt_type_set_decoder 271
t3rt_type_set_encoder 271
t3rt_type_t . 247
t3rt_type_template_base_type 269
t3rt_type_variant_attribute 265, 265
t3rt_unichar2int . 320
t3rt_unsigned_long_integer_t 248
t3rt_value_add_vector_element 304
t3rt_value_allocation_strategy 281
t3rt_value_assign 294
t3rt_value_assign_string_element 296

844 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

t3rt_value_assign_vector_element 295
t3rt_value_check 307
t3rt_value_copy . 274
t3rt_value_delete 278
t3rt_value_field_by_index 284
t3rt_value_field_by_name 285
t3rt_value_get_binary_string 292
t3rt_value_get_boolean 290
t3rt_value_get_char 290, 290
t3rt_value_get_enum_name 289
t3rt_value_get_enum_number 288
t3rt_value_get_float 289
t3rt_value_get_integer 288
t3rt_value_get_port_address 293
t3rt_value_get_string 291
t3rt_value_get_universal_char 291
t3rt_value_get_universal_charstring_string .

292
t3rt_value_get_verdict 293
t3rt_value_is_dynamic_template 276
t3rt_value_is_initialized 278
t3rt_value_kind . 279
t3rt_value_label . 280
t3rt_value_remove_vector_element 305
t3rt_value_set_binary_string 304
t3rt_value_set_boolean 297
t3rt_value_set_char 300
t3rt_value_set_enum 298
t3rt_value_set_float 299
t3rt_value_set_integer 297
t3rt_value_set_label 280
t3rt_value_set_omit 306
t3rt_value_set_string 301
t3rt_value_set_union_alternative_by_index .

276
t3rt_value_set_union_alternative_by_name .

277
t3rt_value_set_universal_char 302
t3rt_value_set_universal_char_to_ascii . . 302
t3rt_value_set_universal_charstring 303, 303
t3rt_value_set_universal_charstring_from_wc

har_array . 303
t3rt_value_set_universal_charstring_to_ascii

303
t3rt_value_set_vector_empty 283
t3rt_value_set_vector_size 283
t3rt_value_set_verdict 299

t3rt_value_string_element 286
t3rt_value_string_length 281
t3rt_value_t . 274
t3rt_value_to_string 500
t3rt_value_to_wide_string 500
t3rt_value_type . 279
t3rt_value_union_index 287
t3rt_value_union_value 287
t3rt_value_vector_element 285
t3rt_value_vector_size 282
t3rt_verdict_string 307
t3rt_verdict_t . 274
t3rt_wchar2int . 445
t3rt_wchar2quad 446
t3rt_wide_char_t 445
t3rt_wide_string_allocate 451
t3rt_wide_string_append 457
t3rt_wide_string_assign 457
t3rt_wide_string_construct_from_ascii . 452
t3rt_wide_string_content 456
t3rt_wide_string_copy 455
t3rt_wide_string_deallocate 452
t3rt_wide_string_element 451
t3rt_wide_string_is_equal 456
t3rt_wide_string_length 456
t3rt_wide_string_rotateleft 449
t3rt_wide_string_rotateright 449
t3rt_wide_string_set 454
t3rt_wide_string_set_ascii 454
t3rt_wide_string_set_element 450
t3rt_wide_string_set_element_to_ascii_char

450
t3rt_wide_string_t 445
t3rt_xor4b . 313
t3ud_make_timestamp 545
t3ud_read_module_param 544
t3ud_register_codecs 543
t3ud_register_log_mechanisms 543
t3ud_retreive_configuration 544
tabbed documents . 8
Table editor for module parameters 135
target

active link . 789
target code identifier prefix 72
Target project type 83
TCI CD

encoder interface 95

Index

June 2009 IBM Rational Systems Tester 3.3 User Guide 845

TCI TL
test logging interface 98

TCI TM
interface .97

TCL .829
Tcl .234

API commands 234
copy script .243
create .233
script code .242
semantics .234
to create .242

template
TTCN-3 .829

test case
execute .121
parameters .99

test results
analyze .191
MSC file .191
navigate .147
navigate to ATS 147

test suites
create .54
edit .54
execute .121

Tester Analyzer .6
text

file .813
text event log

during test execution 144
Text Log .144
TextReport .237
Tile Horizontally .7
Tile Vertically .7
timer

operations, Error Codes 215
tlog, URL .765
toolbar .11

customize .12
toolbar button

add .12
toolbars

customize .818
Toolbars, tab .818
tools

customize .820

Tools, tab . 820
tot . 14
Trace execution . 220
traceability link

DOORS . 787
TRI API . 546, 579
TRI Type Definitions 546
TriActionTemplate 547
TriAddress . 547
TriAddressList . 547
triCall . 560
triCallBC . 564
triCallMC . 562
TriComponentId 548
TriComponentIdList 548
triEndTestcase . 556
triEnqueueCall . 550
triEnqueueException 553
triEnqueueMsg . 550
triEnqueueReply 551
TriException . 547
triExecuteTestcase 555
triExternalFunction 578
TriFunctionId . 547
triMap . 556
TriMessage . 547
TriParameter . 549
TriParameterList 549
TriParameterPassingMode 548
triPAReset . 575
TriPortId . 549
TriPortIdList . 549
triRaise . 570
triRaiseBC . 572
triRaiseMC . 571
triReadTimer . 577
triReply . 566
triReplyBC . 569
triReplyMC . 567
triSAReset . 554
triSend . 558
TriSignatureId . 547
triStartTimer . 575
TriStatus . 548
triStopTimer . 576
triSUTActionInformal 573
triSUTActionTemplate 574

846 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

TriTestCaseId . 547
triTimeout . 554
TriTimerDuration 547
TriTimerId . 547
triTimerRunning 577
triUnmap . 557
TTCN-2 . 51

description of . 41
TTCN-3 . 41, 829

analyze . 65
C options . 113
converting to XML 66
Dialogs . 825
edit . 64
limitations, edit 99
Projects . 816
syntax colors . 60
XML . 66

TTCN-3 specific diagram attributes 193
TTCN3PostMortemDebugger 229
ttp . 18
ttw . 16
type

pop-up information 64
related error codes 207

type checking, limitations 99
type definitions . 60

U
UML

Script Wizard 233
undo

check out . 775
Script Wizard 240
shortcut . 759

unexport
DOORS . 781

UNIX . 772
file dialogs . 16
windows directory 16

update
DOORS . 785
DOORS module 785
import . 785

Update From Tau 798
Update Links From Tau 800, 800
URL, Uniform Resource Location 765

URN Map . 823
user defined

entities . 60
functions . 543

user interface . 2
test suite execution 125

UTF-16, naming 811

V
value

error codes . 204
verbosity level, ASN.1 72
verbosity level, TTCN-3 70
view

DOORS module 784
links . 790
synchronization 786

views
DOORS . 784
File View . 4
Structured View 4

W
warning

during analysis 66
wide string error codes 203
window

auto-hide . 9
Cascade . 7
close . 8
dock . 9
expand/contract 10
layout . 7
layout, Help dialog 819
Navigation . 760
new . 8
stored workspace windows 10

Windows
CM set-up . 772
UNIX set-up directory 16

windows layouts
customize . 819

workspace . 16
close . 18
create . 17
Help dialog . 817
open . 17

Index

June 2009 IBM Rational Systems Tester 3.3 User Guide 847

Operations .756
Options dialog 823
recent .17
save .18, 54

Workspace window 3
DOORS .784
views .4

X
XML .830
XML log schema 199
XML Logging .196
XML, TTCN-3 converting 66

Z
zoom

shortcut .761

848 IBM Rational Systems Tester 3.3 User Guide June 2009

Index

	Copyrights
	Copyright Notice

	Introduction
	Introduction to IBM Rational Systems Tester 3.3
	TTCN-3
	Overview of IBM Rational Systems Tester User Interface
	Desktop
	Workspace window
	Edit markers
	Gray bar
	Asterisk

	Views
	File View
	Structured View

	Files
	Shortcuts window
	Output window
	General tabs
	TTCN-3 tool tabs

	Working with windows
	Arrange windows
	Show and hide windows
	Close windows
	Create a new window
	Tabbed documents
	Docking windows
	Auto-hide docked window (Windows)
	Expand/Contract docked window
	Stored workspace windows

	Menu bar and toolbar
	Menu Bar
	Toolbar

	Status bar
	Line navigation
	Progress bar

	Options
	Options file
	Change options
	Work with options Files

	Customizing
	Local setup (UNIX)
	Windows directory
	Copy and Paste
	File dialogs

	Generate support request

	Working with Workspaces
	Workspaces - overview
	Create a new workspace
	Open a workspace
	Save and close a workspace
	Add a project to a workspace

	Working with Projects
	Projects - overview
	Active project

	Starting to work with projects
	Create a new project with a new workspace
	Create a new project in an existing workspace
	Insert an existing project in a workspace

	Add files and folders to your project
	Add files to your project
	Add folders to a project

	Activate a project
	File and folder properties
	Create, open and close files
	Project settings and configurations
	Project settings
	Project Configurations

	Discovery based storage
	Introduction
	Discovery Path
	Resource Match Rules
	Directory Match Rules
	Directives
	I18N
	Interpretation Of Directives
	Generic SCC/Synergy
	Making Discovered Files Explicit In A Project
	Allowing An Explicit File To Be Discovered Instead
	Filter syntax
	Manual Rediscovery

	Project Reports (TTCN-3 projects only)

	How to Use Help
	Navigate in the help file
	Search
	Search highlighting
	Index
	Locate search or index results
	Bookmark topics in the help file
	Print help topics

	Search syntax in help
	Match similar words
	Regular expressions
	Operators
	Nested expressions

	TTCN-3 Projects
	Supported Languages
	About TTCN-3
	Migrating test suites from TTCN-2 to TTCN-3
	Support for TTCN-3 Edition 3 extended log() statement
	Support for TTCN-3 Edition 3 component extension

	About ASN.1
	Supported Character Encoding
	TTCN-3 Language Support
	TTCN-3 Limitations
	TTCN-3 Constructs Not Supported
	Backward compatibility in TTCN-3

	ASN.1 Language Support
	ASN.1 EXTERNAL type support
	ASN.1 Limitations

	Compatibility with TTCN-2

	Editing Abstract Test Suites
	Editing Abstract Test Suites
	General Editing
	Save Files, Projects, and Workspaces
	Find and Replace
	Cut, Copy, or Paste Text
	Delete Text
	Drag-And-Drop Editing
	Undo and Redo Editing
	Select All in an Active File
	Analyze Source Code

	Colors and Fonts
	Entity List
	Type Definitions for User-Defined Entities

	Scope Line
	Bookmarks
	Go To
	Go To Definition
	Outline View
	TTCN-3 Quick Information
	Pop-Up Parameter Information
	Pop-Up Type Information

	Search
	Full string search
	Incremental search

	Analysis Settings
	Reports

	Converting TTCN-3 to XML

	Creating an ETS
	Compiler Settings Overview
	TTCN-3 Settings
	Verbosity Level
	Generation Type
	Output Directory
	TTCN-3 module specific settings

	ASN.1 Settings
	Verbosity Level
	Generation Type
	Use target code identifier prefix
	Use output base name for files
	Output Directory
	ASN.1 module specific settings

	Running the Compiler from the Command- Line
	t3cg command syntax and semantics
	Module specific settings syntax and semantics
	Global options
	Module options
	File options

	Compiler Output
	Makefile Generation
	Defining makefile configuration manually
	Automated makefile configuration
	Make build settings location independent

	Target project type
	Generate a makefile
	To generate a makefile from the user interface
	To generate a makefile from the command-line

	ASN.1 in TTCN-3 modules
	How to run casn:

	ASN.1 Encoding
	Encoder usage from TTCN-3 attributes
	Encoder usage at run time
	Encoding open types
	Set Compiling Options
	Compile Test Suites

	Industrial Standard Test Suites
	SIP test suite
	IPv6 test suite

	TCI interface
	TCI TM
	TCI CD
	TCI TL
	Test Executable build requirements
	Functions to be implemented by the user
	Using TCI encoders and decoders
	Providing values of module parameters
	Asynchronous behavior in TCI
	Using logging capabilities of the TCI

	Limitations - TTCN-3 Tools
	Editing Limitations
	TTCN-3 Editing Limitations
	ASN.1 Editing Limitations

	Runtime System Limitations
	Test Case Parameters
	Type Checking Limitations
	NULL ASCII Character in Character Strings

	Limitation in implementation of TCI interface.
	Compiler Limitations
	Memory allocation exception
	Stack overflow
	Makefile Limitations
	Other Limitations

	Build limitations
	TTCN-3 Compiling Limitations
	TTCN-3 Module Specific Settings and Command Line Compilation

	ASN.1 Compiling Limitations
	Module Names
	Modules and Files
	Module Definitions
	Module Related Errors and Warnings
	Identifiers
	Open Types
	ASN.1 Module Specific Settings and Command Line Compilation
	ASN.1 Constructs Supported in TTCN-3
	ASN.1 Constructs Not Supported
	ASN.1 Constructs Partially Supported

	Building
	Compiling generated code
	Using GCC on Windows to compile C files
	Rational Systems Tester GCC libraries
	Restrictions using GCC for Rational Systems Tester
	Error handling

	Using a Remote Host Compiler
	About the Rational Systems Tester/TTCN to C options

	Bypassing the TRI external function mechanism
	Build Settings
	Build Settings for Generating Code
	Settings for Building
	Specifying result file
	Set Build Options
	Build an ETS

	Build intelligence
	Project configurations
	Multiproject workspaces
	Specifying dependencies between projects

	Batch build operations

	Execute Tests
	Command-Line Execution Overview
	Command-Line Syntax

	Command-Line Switches
	User Interface Execution
	Execution Settings

	Invoking an ETS on a Remote Host
	Set Execution Options
	Execute a Test Suite

	Predefined Configuration Keys
	t3rt.behavior.default.testcase_timeout
	t3rt.control.ack_timeout
	t3rt.timers.assuming_all_active
	t3rt.logging.builtin.verbosity
	t3rt.logging.rtconf_dump.enabled
	t3rt.matching.continue_on_fail
	t3rt.values.limits.epsilon_double
	t3rt.codecs.builtin_as_default.enabled
	t3rt.temporary_memory.block_size
	t3rt.temporary_memory.poison_pill.enabled
	t3rt.temporary_memory.release_unused.enabled
	t3rt.values.value2string.print_kinds.enable
	t3rt.values.value2string.print_types.enable
	t3rt.values.value2string.print_field_names.enable
	t3rt.logging.builtin.print_field_names
	t3rt.logging.builtin.pretty_print
	t3rt.logging.builtin.limit_size

	Configuration Files
	Module Parameter Syntax
	Value definition on command-line
	Value definition in initialization file
	Limitations
	Table editor for module parameters
	Add module parameters
	Using drag-and-drop to add parameters
	Adding parameter from the drop down list
	Deleting module parameters
	Sorting and reordering parameters
	Module parameter validation

	Test management in Rational Systems Tester GUI
	How to enable GUI test management for existing project
	Starting and stopping control parts
	Starting and stopping test cases
	Defining test plans
	Running test plans
	Test Plan Internals

	Execution Logs
	Log Mechanism
	Simple Text Log
	Logging verbosity
	Logging Settings
	Enable Text-File Logging
	Display Log From Text File
	Navigate in Execution Log
	Navigate from Execution Log

	Customizable Text Log
	Valid event parameters
	Common parameters for all events
	Parameters for “message_sent” event
	Parameters for “message_sent_mc” event
	Parameters for “message_sent_bc” event
	Parameters for “sut_message_sent” event
	Parameters for “sut_message_sent_mc” event
	Parameters for “sut_message_sent_bc” event
	Parameters for “message_sent_failed”
	Parameters for “message_sent_failed_mc”
	Parameters for “message_sent_failed_bc”
	Parameters for “sut_message_sent_failed” event
	Parameters for “sut_message_sent_failed_mc” event
	Parameters for “sut_message_sent_failed_bc” event
	Parameters for “message_detected” event
	Parameters for “sut_message_detected” event
	Parameters for “message_received” event
	Parameters for “message_found” event
	Parameters for “message_discarded” event
	Parameters for “sut_message_received” event
	Parameters for “sut_message_found” event
	Parameters for “sut_message_discarded” event
	Parameters for “sut_action_performed” event
	Parameters for “call_initiated” event
	Parameters for “call_initiated_mc” event
	Parameters for “call_initiated_bc” event
	Parameters for “sut_call_initiated” event
	Parameters for “sut_call_initiated_mc” event
	Parameters for “sut_call_initiated_bc” event
	Parameters for “call_failed” event
	Parameters for “call_failed_mc” event
	Parameters for “call_failed_bc” event
	Parameters for “sut_call_failed” event
	Parameters for “sut_call_failed_mc” event
	Parameters for “sut_call_failed_bc” event
	Parameters for “call_timed_out” event
	Parameters for “sut_call_timed_out” event
	Parameters for “call_detected” event
	Parameters for “sut_call_detected” event
	Parameters for “call_received” event
	Parameters for “call_found” event
	Parameters for “sut_call_received” event
	Parameters for “sut_call_found” event
	Parameters for “reply_sent” event
	Parameters for “reply_sent_mc” event
	Parameters for “reply_sent_bc” event
	Parameters for “sut_reply_sent” event
	Parameters for “sut_reply_sent_mc” event
	Parameters for “sut_reply_sent_bc” event
	Parameters for “reply_failed” event
	Parameters for “reply_failed_mc” event
	Parameters for “reply_failed_bc” event
	Parameters for “sut_reply_failed” event
	Parameters for “sut_reply_failed_mc” event
	Parameters for “sut_reply_failed_bc” event
	Parameters for “reply_detected” event
	Parameters for “sut_reply_detected” event
	Parameters for “reply_received” event
	Parameters for “reply_found” event
	Parameters for “sut_reply_received” event
	Parameters for “sut_reply_found” event
	Parameters for “exception_raised” event
	Parameters for “exception_raised_mc” event
	Parameters for “exception_raised_bc” event
	Parameters for “sut_exception_raised” event
	Parameters for “sut_exception_raised_mc” event
	Parameters for “sut_exception_raised_bc” event
	Parameters for “raise_failed” event
	Parameters for “raise_failed_mc” event
	Parameters for “raise_failed_bc” event
	Parameters for “sut_raise_failed” event
	Parameters for “sut_raise_failed_mc” event
	Parameters for “sut_raise_failed_bc” event
	Parameters for “exception_detected” event
	Parameters for “sut_exception_detected” event
	Parameters for “timeout_exception_detected” event
	Parameters for “sut_timeout_exception_detected” event
	Parameters for “exception_caught” event
	Parameters for “exception_found” event
	Parameters for “sut_exception_caught” event
	Parameters for “sut_exception_found” event
	Parameters for “timeout_exception_caught” event
	Parameters for “timeout_exception_found” event
	Parameters for “sut_timeout_exception_caught” event
	Parameters for “sut_timeout_exception_found” event
	Parameters for “timer_started” event
	Parameters for “timer_stopped” event
	Parameters for “timer_read” event
	Parameters for “timer_is_running” event
	Parameters for “timeout_detected” event
	Parameters for “timeout_received” event
	Parameters for “timeout_mismatch” event
	Parameters for “component_created” event
	Parameters for “component_started” event
	Parameters for “component_is_running” event
	Parameters for “component_is_alive” event
	Parameters for “component_stopped” event
	Parameters for “component_killed” event
	Parameters for “done_check_failed” event
	Parameters for “done_check_succeeded” event
	Parameters for “kill_check_failed” event
	Parameters for “kill_check_succeeded” event
	Parameters for “port_connected” event
	Parameters for “port_disconnected” event
	Parameters for “port_mapped” event
	Parameters for “port_unmapped” event
	Parameters for “port_enabled” event
	Parameters for “port_disabled” event
	Parameters for “port_halted” event
	Parameters for “port_cleared” event
	Parameters for “scope_entered” event
	Parameters for “scope_left” event
	Parameters for “scope_changed” event
	Parameters for “alternative_activated” event
	Parameters for “alternative_deactivated” event
	Parameters for “local_verdict_changed” event
	Parameters for “local_verdict_queried” event
	Parameters for “variable_modified” event
	Parameters for “template_match_begin” event
	Parameters for “template_match_end” event
	Parameters for “template_match_failed” event
	Parameters for “template_mismatch” event
	Parameters for “sender_mismatch” event
	Parameters for “testcase_started” event
	Parameters for “testcase_ended” event
	Parameters for “testcase_timed_out” event
	Parameters for “testcase_error” event
	Parameters for “testcase_verdict” event
	Parameters for “message_encoded” event
	Parameters for “message_encode_failed” event
	Parameters for “message_decoded” event
	Parameters for “message_decode_failed” event
	Parameters for “info_message” event
	Parameters for “warning_message” event
	Parameters for “error_message” event
	Parameters for “debug_message” event
	Parameters for “ttcn3_message” event
	Parameters for “alt_entered” event
	Parameters for “alt_left” event
	Parameters for “alt_rejected” event
	Parameters for “alt_else” event
	Parameters for “alt_defaults” event
	Parameters for “alt_repeat” event
	Parameters for “alt_wait” event
	Parameters for “function_call” event
	Parameters for “external_function_call” event
	Parameters for “altstep_call” event

	MSC File Log
	Enable MSC Logging
	Convert MSC files into sequence diagrams

	Display Log Files

	Graphical Execution Tracing
	TTCN-3 specific diagram attributes
	Enable Graphical Execution Tracing

	TCI TL logging
	XML Logging
	Enable XML logging
	Enable XML logging in project settings
	Enable XML logging in project configuration file
	Pretty print XML data

	Control amount of XML data
	Redirect XML data stream
	XML log schema
	Control XML log from command line

	Error Codes
	Group Prefixes
	General Error Codes
	Wide String Related Error Codes
	Values Related Error Codes
	Types Related Error Codes
	Port Operations Error Codes
	Component Operations Error Codes
	Timer Operations Error Codes
	Activation Lists Error Codes
	Runtime Configuration Error Codes

	Debugging Test Suite
	TTCN-3 Real-Timer Debugger
	Working with the debugger
	Building project for debugging
	Starting and stopping debugger
	Setting and removing breakpoints
	Administering breakpoints
	Breaking execution
	Tracing execution
	Tracing TTCN-3 “alt” statements

	Handling runtime errors
	Inspecting Call Stack
	Debugging parallel components
	Watching variables
	Quick inspection of variables
	Adding variables to the Watch window
	Removing variables from Watch window
	Working with Watch windows
	Printing watched expression value

	Debugger commands
	Restart
	Step Into
	Step Over
	Step Out
	Show next statement
	Breakpoints
	Insert/Remove breakpoint
	Go

	TTCN-3 Post-Mortem Debugger
	General workflow
	Debugger commands
	Restart
	Step Into
	Step Over
	Step Out
	Show next statement
	Breakpoints
	Insert/Remove breakpoint
	Go

	Using the Script Wizard
	About Tcl
	Tcl Semantics
	Tcl Commands
	Tcl API Commands
	MapRole
	GetRole
	Class
	Get
	RolesOf
	AttributesOf
	Classes
	Call
	Create
	SetAtt
	SetRole
	AddRole

	Output Commands
	Output
	OutputLog

	Report Commands
	ReportInit
	Report
	BrowserReportInit
	BrowserReport
	HtmlReport
	TextReport

	Activate Commands
	Activate
	ActivateBrowser
	ActivateProject
	ActivateConf
	ActivateTool
	OpenDocument
	Command activate
	Command get

	Selection Commands
	Selection add
	Selection remove
	Selection set
	Selection reset

	Commands from the Edit Menu
	Undo
	Redo
	Cut
	Copy
	Paste
	Delete
	CanCut
	CanCopy
	CanPaste
	CanDelete

	Miscellaneous commands
	Locate
	SaveDocument
	SaveAll
	FlushEvents

	View Data in the Script Wizard
	Create Tcl Script Code

	Copy Tcl Script Code
	Customize the Rational Systems Tester Views

	Runtime System APIs
	Runtime Layer API
	RTL Type Definitions
	t3rt_context_t

	RTL Type Functions
	RTL Type Related Type Definition
	t3rt_type_instantiate_value
	Parameters
	Description
	Example Usage
	Return Values

	t3rt_type_instantiate_named_value
	Parameters
	Description

	t3rt_type_check
	Parameters
	Description
	Return Values

	t3rt_type_is_equal
	Parameters
	Description
	Return Values

	t3rt_type_kind
	Parameters
	Description
	Return Value

	t3rt_type_parent
	Parameters
	Description
	Return Value

	t3rt_type_name, t3rt_type_definition_name
	Parameters
	Description
	Return Values

	t3rt_type_module, t3rt_type_definition_module
	Parameters
	Description
	Return Values

	t3rt_type_qualified_name
	Parameters
	Description
	Return Values

	t3rt_type_field_count
	Parameters
	Description
	Return Values

	t3rt_type_field_name
	Parameters
	Description
	Return Values

	t3rt_type_field_index
	Parameters
	Description
	Return Values

	t3rt_type_field_type
	Parameters
	Description
	Return Values

	t3rt_type_field_properties
	Parameters
	Description
	Return Values

	t3rt_type_enum_named_values_count
	Parameters
	Return Values

	t3rt_type_enum_name_by_index
	Parameters
	Return Values

	t3rt_type_enum_number_by_index
	Parameters
	Return Values

	t3rt_type_enum_name_by_number
	Parameters
	Return Values

	t3rt_type_enum_number_by_name
	Parameters
	Return Values

	t3rt_type_field_encode_attribute_by_name
	Parameters
	Return Values

	t3rt_type_field_encode_attribute_by_index
	Parameters
	Return Values

	t3rt_type_field_variant_attribute_by_name
	Parameters
	Return Values

	t3rt_type_field_variant_attribute_by_index
	Parameters
	Return Values

	t3rt_type_field_display_attribute_by_name
	Parameters
	Return Values

	t3rt_type_field_display_attribute_by_index
	Parameters
	Return Values

	t3rt_type_field_extension_attribute_by_name
	Parameters
	Return Values

	t3rt_type_field_extension_attribute_by_index
	Parameters
	Return Values

	t3rt_type_encode_attribute
	Parameters
	Return Values

	t3rt_type_variant_attribute
	Parameters
	Return Values

	t3rt_type_display_attribute
	Parameters
	Return Values

	t3rt_type_extension_attribute
	Parameters
	Return Values

	t3rt_encoding_attr_get_specifier
	Parameters
	Description
	Return Values

	t3rt_encoding_attr_is_override
	Parameters
	Description
	Return Values

	t3rt_type_array_size
	Parameters
	Description
	Return Values

	t3rt_type_array_base_index
	Parameters
	Description
	Return Values

	t3rt_type_array_contained_type
	Parameters
	Description
	Return Values

	t3rt_type_template_base_type
	Parameters
	Description
	Return Values

	t3rt_template_description
	Parameters
	Description
	Return Values

	t3rt_type_set_encoder
	Parameters
	Description

	t3rt_type_set_decoder
	Parameters
	Description

	t3rt_type_get_encoder
	Parameters
	Description
	Return Values

	t3rt_type_get_decoder
	Parameters
	Description
	Return Values

	RTL Value Functions
	RTL Value Related Type Definitions
	t3rt_value_copy
	Parameters
	Description
	Return Values

	t3rt_value_parent
	Parameters
	Description
	Example Usage
	Return Values

	t3rt_value_is_dynamic_template
	Parameters
	Description
	Return Values

	t3rt_value_set_union_alternative_by_index
	Parameters
	Description
	Return Values

	t3rt_value_set_union_alternative_by_name
	Parameters
	Description
	Return Values

	t3rt_value_delete
	Parameters
	Description

	t3rt_value_is_initialized
	Parameters
	Description
	Return Values

	t3rt_value_kind
	Parameters
	Description
	Return Values

	t3rt_value_type
	Parameters
	Return Values

	t3rt_value_set_label
	Parameters
	Description

	t3rt_value_label
	Parameters
	Description
	Return Values

	t3rt_value_allocation_strategy
	Parameters
	Description
	Return Values

	t3rt_value_string_length
	Parameters
	Description
	Return Values

	t3rt_value_vector_size
	Parameters
	Description
	Return Values

	t3rt_value_set_vector_size
	Parameters
	Description

	t3rt_value_set_vector_empty
	Parameters
	Description

	t3rt_value_field_by_index
	Parameters
	Description
	Return Values

	t3rt_value_field_by_name
	Parameters
	Description
	Return Values

	t3rt_value_vector_element
	Parameters
	Description
	Return Values

	t3rt_value_string_element
	Parameters
	Description

	t3rt_value_union_value
	Parameters
	Description
	Return Values

	t3rt_value_union_index
	Parameters
	Description
	Return Values

	t3rt_value_get_integer
	Parameters
	Description

	t3rt_value_get_enum_number
	Parameters
	Description

	t3rt_value_get_enum_name
	Parameters
	Description

	t3rt_value_get_float
	Parameters
	Description

	t3rt_value_get_boolean
	Parameters
	Description

	t3rt_value_get_char
	Parameters
	Description

	t3rt_value_get_string
	Parameters
	Description

	t3rt_value_get_universal_char
	Parameters
	Description

	t3rt_value_get_universal_charstring
	Parameters
	Description

	t3rt_value_get_binary_string
	Parameters
	Description

	t3rt_value_get_verdict
	Parameters
	Description

	t3rt_value_get_port_address
	Parameters
	Description

	t3rt_value_get_objectid_element
	Parameters
	Description
	Return Values

	t3rt_value_assign
	Parameters
	Description

	t3rt_value_assign_vector_element
	Parameters
	Description

	t3rt_value_assign_string_element
	Parameters
	Description

	t3rt_value_set_integer
	Parameters
	Description
	Return Values

	t3rt_value_set_boolean
	Parameters
	Description
	Return Values

	t3rt_value_set_enum
	Parameters
	Description
	Return Values

	t3rt_value_set_float
	Parameters
	Description
	Return Values

	t3rt_value_set_verdict
	Parameters
	Description
	Return Values

	t3rt_value_set_char
	Parameters
	Description
	Return Values

	t3rt_value_set_string
	Parameters
	Description
	Return Values

	t3rt_value_set_universal_char
	t3rt_value_set_universal_char, t3rt_value_set_universal_char_to_ascii
	Parameters
	Description
	Return Values

	t3rt_value_set_universal_charstring
	t3rt_value_set_universal_charstring, t3rt_value_set_universal_charstring_to_ascii, t3rt_value_set_universal_charstring_from_wchar_array
	Parameters
	Description
	Return Values

	t3rt_value_set_binary_string
	Parameters
	Description
	Return Values

	t3rt_value_add_vector_element
	Parameters
	Description
	Return Values

	t3rt_value_remove_vector_element
	Parameters
	Description

	t3rt_value_add_objectid_element
	Parameters
	Description
	Return Values

	t3rt_value_set_omit
	Parameters
	Description

	t3rt_verdict_string
	Parameters
	Description
	Return Values

	t3rt_value_check
	Description
	Return Values

	RTL Predefined Operations Functions
	t3rt_ispresent
	Parameters
	Description
	Return Values

	t3rt_ischosen
	Parameters
	Description
	Return Values

	t3rt_concatenate
	Parameters
	Description
	Return Values

	t3rt_is_equal
	Parameters
	Description
	Return Values

	t3rt_is_greater
	Parameters
	Description
	Return Values

	t3rt_is_lesser
	Parameters
	Description
	Return Values

	t3rt_not4b
	Parameters
	Description
	Return Values

	t3rt_and4b
	Parameters
	Description
	Return Values

	t3rt_or4b
	Parameters
	Description
	Return Values

	t3rt_xor4b
	Parameters
	Description
	Return Values

	t3rt_rotateleft
	Parameters
	Description
	Return Values

	t3rt_rotateright
	Parameters
	Description
	Return Values

	t3rt_shiftleft
	Parameters
	Description
	Return Values

	t3rt_shiftright
	Parameters
	Description
	Return Values

	t3rt_bit2int
	Parameters
	Description
	Return Values

	t3rt_hex2int
	Parameters
	Description
	Return Values

	t3rt_oct2int
	Parameters
	Description
	Return Values

	t3rt_str2int
	Parameters
	Description
	Return Values

	t3rt_str2float
	Parameters
	Description
	Return Values

	t3rt_char2int
	Parameters
	Description
	Return Values

	t3rt_unichar2int
	Parameters
	Description
	Return Values

	t3rt_int2bit
	Parameters
	Description
	Return Values

	t3rt_int2hex
	Parameters
	Description
	Return Values

	t3rt_int2oct
	Parameters
	Description
	Return Values

	t3rt_int2str
	Parameters
	Description
	Return Values

	t3rt_int2char
	Parameters
	Description
	Return Values

	t3rt_int2unichar
	Parameters
	Description
	Return Values

	t3rt_bit2str
	Parameters
	Description
	Return Values

	t3rt_hex2str
	Parameters
	Description
	Return Values

	t3rt_oct2str
	Parameters
	Description
	Return Values

	t3rt_str2oct
	Parameters
	Description
	Return Values

	t3rt_oct2char
	Parameters
	Description
	Return Values

	t3rt_char2oct
	Parameters
	Description
	Return Values

	t3rt_bit2hex
	Parameters
	Description
	Return Values

	t3rt_hex2oct
	Parameters
	Description
	Return Values

	t3rt_bit2oct
	Parameters
	Description
	Return Values

	t3rt_hex2bit
	Parameters
	Description
	Return Values

	t3rt_oct2hex
	Parameters
	Description
	Return Values

	t3rt_oct2bit
	Parameters
	Description
	Return Values

	t3rt_int2float
	Parameters
	Description
	Return Values

	t3rt_float2int
	Parameters
	Description
	Return Values

	t3rt_rnd
	Parameters
	Description
	Return Values

	t3rt_decomp
	Parameters
	Description
	Return Values

	t3rt_substr
	Parameters
	Description
	Return Values

	t3rt_replace
	Parameters
	Description
	Return Values

	t3rt_lengthof
	Parameters
	Description
	Return Values

	t3rt_sizeof
	Parameters
	Description
	Return Values

	t3rt_sizeoftype
	Parameters
	Description
	Return Values

	t3rt_mod
	Parameters
	Description
	Return Values

	t3rt_rem
	Parameters
	Description
	Return Values

	t3rt_log
	Parameters
	Description

	t3rt_regexp_regexp
	Parameters
	Description
	Return Values

	RTL Timer Functions
	RTL Timer Related Type Definitions
	t3rt_timer_timed_out
	Parameters
	Description

	RTL Component Functions
	t3rt_component_main
	Parameters
	Description

	t3rt_component_self
	Description
	Return values

	t3rt_component_mtc
	Description
	Return values

	t3rt_component_system
	Description
	Return values

	t3rt_component_set_local_verdict
	Parameters
	Description

	t3rt_component_get_local_verdict
	Description
	Return Values

	t3rt_component_element
	Parameters
	Description
	Return Values

	t3rt_component_mute
	Parameters
	Description

	RTL Port Functions
	t3rt_port_insert_message
	Parameters
	Description

	t3rt_port_insert_call
	Parameters
	Description

	t3rt_port_insert_reply
	Parameters
	Description

	t3rt_port_insert_exception
	Parameters
	Description

	RTL Log Functions
	RTL Log Related Type Definitions
	Events generated in RTS
	Message Sent
	SUT Message Sent
	Message Sent Failed
	SUT Message Sent Failed
	Message Detected
	SUT Message Detected
	Message Received
	SUT Message Received
	Message Found
	SUT Message Found
	Message Discarded
	SUT Message Discarded
	Call Initiated
	SUT Call Initiated
	Call Failed
	SUT Call Failed
	Call Timed Out
	SUT Call Timed Out
	Call Detected
	SUT Call Detected
	Call Received
	SUT Call Received
	Call Found
	SUT Call Found
	Reply Sent
	SUT Reply Sent
	Reply Failed
	SUT Reply Failed
	Reply Detected
	SUT Reply Detected
	Reply Received
	SUT Reply Received
	Reply Found
	SUT Reply Found
	Exception Raised
	SUT Exception Raised
	Raise Failed
	SUT Raise Failed
	Exception Detected
	SUT Exception Detected
	Exception Caught
	SUT Exception Caught
	Exception Found
	SUT Exception Found
	Timeout Exception Detected
	SUT Timeout Exception Detected
	Timeout Exception Caught
	SUT Timeout Exception Caught
	Timeout Exception Found
	SUT Timeout Exception Found
	SUT Action Performed
	Timer Started
	Timer Stopped
	Timer Read
	Timer Is Running Check Performed
	Timer Timeout Detected
	Timer Timed Out Check Succeeded
	Timer Timed Out Check Failed
	Component Created
	Component Started
	Component Is Running Check Performed
	Component Is Alive Check Performed
	Component Stopped
	Component Killed
	Component Terminated
	Component Done Check Succeeded
	Component Done Check Failed
	Component Killed Check Succeeded
	Component Killed Check Failed
	Port Connected
	Port Disconnected
	Port Mapped
	Port Unmapped
	Port Enabled
	Port Disabled
	Port Halted
	Port Cleared
	Scope Entered
	Scope Changed
	Scope Left
	Alternative Activated
	Alternative Deactivated
	Local Verdict Set
	Local Verdict Read
	Variable Modified
	Function called
	External Function Called
	Altstep Called
	Template Match Failed
	Template Match Begin
	Template Match End
	Template Mismatch
	Test case started
	Test case ended
	Test case timed out
	Test case verdict
	Test case error
	Information Message
	Warning Message
	Error Message
	Debug Message
	TTCN-3 Message
	Data Encoded
	Data Encoding Failed
	Data Decoded
	Data Decoding Failed
	Alt Statement Entered
	Alt Statement Left
	Alternative Rejected
	Else Alternative Entered
	Defaults Processing Started
	Repeat Encountered
	Alt Statement Waits New Events
	Sender Mismatch

	RTS Log Handling Functions
	t3rt_log_register_listener
	Parameters
	Description

	t3rt_log_mechanism_set_auxiliary
	Parameters
	Description

	t3rt_log_mechanism_get_auxiliary
	Parameters
	Description
	Return Values

	t3rt_log_set_auxiliary
	Parameters
	Description

	t3rt_log_get_auxiliary
	Parameters
	Description
	Return Values

	t3rt_log_get_log_mechanism
	Parameters
	Return Values

	t3rt_log_message_kind_name
	Parameters
	Return Values

	t3rt_log_is_concentrator
	t3rt_log_string
	Parameters
	Description

	t3rt_log_string_to_all
	Parameters
	Description

	t3rt_log_wide_string
	Parameters
	Description

	t3rt_log_wide_string_to_all
	Parameters
	Description

	t3rt_log_event
	Parameters
	Description

	t3rt_log_event_to_all
	Parameters
	Description

	t3rt_log_event_kind_string
	Parameters
	Description
	Return Values

	t3rt_log_extract_message_sent
	Parameters
	Description

	t3rt_log_extract_message_sent_mc
	Parameters
	Description

	t3rt_log_extract_message_sent_bc
	Parameters
	Description

	t3rt_log_extract_message_sent_failed
	Parameters
	Description

	t3rt_log_extract_message_sent_failed_mc
	Parameters
	Description

	t3rt_log_extract_message_sent_failed_bc
	Parameters
	Description

	t3rt_log_extract_message_detected
	Parameters
	Description

	t3rt_log_extract_message_received, t3rt_log_extract_message_found
	Parameters
	Description

	t3rt_log_extract_message_discarded
	Parameters
	Description

	t3rt_log_extract_call_initiated
	Parameters
	Description

	t3rt_log_extract_call_initiated_mc
	Parameters
	Description

	t3rt_log_extract_call_initiated_bc
	Parameters
	Description

	t3rt_log_extract_call_failed
	Parameters
	Description

	t3rt_log_extract_call_failed_mc
	Parameters
	Description

	t3rt_log_extract_call_failed_bc
	Parameters
	Description

	t3rt_log_extract_call_timed_out
	Parameters
	Description

	t3rt_log_extract_call_detected
	Parameters
	Description

	t3rt_log_extract_call_received, t3rt_log_extract_call_found
	Parameters
	Description

	t3rt_log_extract_reply_sent
	Parameters
	Description

	t3rt_log_extract_reply_sent_mc
	Parameters
	Description

	t3rt_log_extract_reply_sent_bc
	Parameters
	Description

	t3rt_log_extract_reply_failed
	Parameters
	Description

	t3rt_log_extract_reply_failed_mc
	Parameters
	Description

	t3rt_log_extract_reply_failed_bc
	Parameters
	Description

	t3rt_log_extract_reply_detected
	Parameters
	Description

	t3rt_log_extract_reply_received, t3rt_log_extract_reply_found
	Parameters
	Description

	t3rt_log_extract_exception_raised
	Parameters
	Description

	t3rt_log_extract_exception_raised_mc
	Parameters
	Description

	t3rt_log_extract_exception_raised_bc
	Parameters
	Description

	t3rt_log_extract_raise_failed
	Parameters
	Description

	t3rt_log_extract_raise_failed_mc
	Parameters
	Description

	t3rt_log_extract_raise_failed_bc
	Parameters
	Description

	t3rt_log_extract_exception_detected
	Parameters
	Description

	t3rt_log_extract_exception_caught, t3rt_log_extract_exception_found
	Parameters
	Description

	t3rt_log_extract_timeout_exception_detected
	Parameters
	Description

	t3rt_log_extract_timeout_exception_caught, t3rt_log_extract_timeout_exception_found
	Parameters
	Description

	t3rt_log_extract_sender_mismatch
	Parameters
	Description

	t3rt_log_extract_sut_action
	Parameters
	Description

	t3rt_log_extract_timer_started
	Parameters
	Description

	t3rt_log_extract_timer_stopped
	Parameters
	Description

	t3rt_log_extract_timer_read
	Parameters
	Description

	t3rt_log_extract_timer_is_running
	Parameters
	Description

	t3rt_log_extract_timeout_detected
	Parameters
	Description

	t3rt_log_extract_timeout_received
	Parameters
	Description

	t3rt_log_extract_timeout_mismatch
	Parameters
	Description

	t3rt_log_extract_component_created
	Parameters
	Description

	t3rt_log_extract_component_started
	Parameters
	Description

	t3rt_log_extract_component_is_running
	Parameters
	Description

	t3rt_log_extract_component_is_alive
	Parameters
	Description

	t3rt_log_extract_component_stopped
	Parameters
	Description

	t3rt_log_extract_component_killed
	Parameters
	Description

	t3rt_log_extract_done_check_succeeded
	Parameters
	Description

	t3rt_log_extract_done_check_failed
	Parameters
	Description

	t3rt_log_extract_kill_check_succeeded
	Parameters
	Description

	t3rt_log_extract_kill_check_failed
	Parameters
	Description

	t3rt_log_extract_port_connected
	Parameters
	Description

	t3rt_log_extract_port_disconnected
	Parameters
	Description

	t3rt_log_extract_port_mapped
	Parameters
	Description

	t3rt_log_extract_port_unmapped
	Parameters
	Description

	t3rt_log_extract_port_enabled
	Parameters
	Description

	t3rt_log_extract_port_disabled
	Parameters
	Description

	t3rt_log_extract_port_halted
	Parameters
	Description

	t3rt_log_extract_port_cleared
	Parameters
	Description

	t3rt_log_extract_local_verdict_changed
	Parameters
	Description

	t3rt_log_extract_local_verdict_queried
	Parameters
	Description

	t3rt_log_extract_template_match_failed
	Parameters
	Description

	t3rt_log_extract_template_mismatch
	Parameters
	Description

	t3rt_log_extract_template_match_begin
	Parameters
	Description

	t3rt_log_extract_template_match_end
	Parameters
	Description

	t3rt_log_extract_testcase_started
	Parameters
	Description

	t3rt_log_extract_testcase_ended
	Parameters
	Description

	t3rt_log_extract_testcase_timed_out
	Parameters
	Description

	t3rt_log_extract_testcase_error
	Parameters
	Description

	t3rt_log_extract_test_case_verdict
	Parameters
	Description

	t3rt_log_extract_variable_modified
	Parameters
	Description

	t3rt_log_extract_scope_entered
	Parameters
	Description

	t3rt_log_extract_scope_changed
	Parameters
	Description

	t3rt_log_extract_scope_left
	Parameters
	Description

	t3rt_log_extract_alternative_activated_event
	Parameters
	Description

	t3rt_log_extract_alternative_deactivated_event
	Parameters
	Description

	t3rt_log_extract_message_decoded
	Parameters
	Description

	t3rt_log_extract_message_decode_failed
	Parameters
	Description

	t3rt_log_extract_message_encoded
	Parameters
	Description

	t3rt_log_extract_message_encode_failed
	Parameters
	Description

	t3rt_log_extract_text_message_string
	Parameters
	Description

	t3rt_log_extract_text_message_widestring
	Parameters
	Description

	t3rt_log_extract_function_call
	Parameters
	Description

	t3rt_log_extract_external_function_call
	Parameters
	Description

	t3rt_log_extract_altstep_call
	Parameters
	Description

	RTL Wide String Functions
	RTL Wide String Related Type Definitions
	t3rt_wchar2int
	Parameters
	Description

	t3rt_wchar2quad
	Parameters
	Description

	t3rt_char2wchar
	Parameters
	Description

	t3rt_int2wchar
	Parameters
	Description

	t3rt_quad2wchar
	Parameters
	Description

	t3rt_wchar_cmp
	Parameters
	Description
	Return Values

	t3rt_wide_string_rotateleft
	Parameters
	Description
	Return Values

	t3rt_wide_string_rotateright
	Parameters
	Description
	Return Values

	t3rt_wide_string_set_element
	Parameters
	Description

	t3rt_wide_string_set_element_to_ascii_char
	Parameters
	Description

	t3rt_wide_string_element
	Parameters
	Description

	t3rt_wide_string_allocate
	Parameters
	Description
	Return Values

	t3rt_wide_string_deallocate
	Parameters
	Description

	t3rt_wide_string_construct_from_ascii
	Parameters
	Description
	Return Values

	t3rt_wide_string_construct_from_wchar
	Parameters
	Description
	Return Values

	t3rt_wide_string_set
	Parameters
	Description

	t3rt_wide_string_set_ascii
	Parameters
	Description

	t3rt_wide_string_set_wchar_array
	Parameters
	Description

	t3rt_wide_string_copy
	Parameters
	Return Values

	t3rt_wide_string_length
	Parameters
	Return Values

	t3rt_wide_string_is_equal
	Parameters
	Description
	Return Values

	t3rt_wide_string_content
	Parameters
	Description
	Return Values

	t3rt_wide_string_assign
	Parameters
	Description

	t3rt_wide_string_append
	Parameters
	Description

	t3rt_format_char_string, t3rt_format_wide_string
	Parameters
	Description

	RTL Binary String Functions
	RTL Binary String Related Type Definitions
	t3rt_binary_string_allocate
	Parameters
	Description
	Return Values

	t3rt_binary_string_deallocate
	Parameters
	Description

	t3rt_binary_string_deallocate_all
	Parameters
	Description

	t3rt_binary_string_construct
	Parameters
	Description
	Return Values

	t3rt_binary_string_copy
	Parameters
	Return Values

	t3rt_binary_string_clear
	Parameters
	Description

	t3rt_binary_string_length
	Parameters
	Return Values

	t3rt_binary_string_is_equal
	Parameters
	Return Values

	t3rt_binary_string_pad
	Parameters
	Description

	t3rt_binary_string_assign
	Parameters
	Description

	t3rt_binary_string_append
	t3rt_binary_string_append, t3rt_binary_string_append_1byte, t3rt_binary_string_append_2bytes, t3rt_binary_string_append_4bytes, ...
	Parameters
	Description

	t3rt_bstring_iter_remaining_room
	Parameters
	Return Values

	t3rt_binary_string_start
	Parameters
	Description
	Example Usage

	t3rt_binary_string_set_at
	Parameters
	Description

	t3rt_bstring_iter_forward_nbits
	Parameters
	Description

	t3rt_bstring_iter_backward_nbits
	Parameters
	Description

	t3rt_bstring_iter_next_byte
	Parameters
	Description

	t3rt_bstring_iter_is_at_boundary
	Parameters
	Description
	Return Values

	t3rt_bstring_iter_bits_to_byte_boundary
	Parameters
	Return Values

	t3rt_bstring_iter_at_end, t3rt_bstring_iter_at_start
	Parameters
	Return Values

	t3rt_bstring_iter_is_bit_set
	Parameters
	Return Values

	t3rt_bstring_iter_get_bits
	t3rt_bstring_iter_get_bits, t3rt_bstring_iter_get_1byte, t3rt_bstring_iter_get_2bytes, t3rt_bstring_iter_get_4bytes, t3rt_bstring_iter_get_nbytes, t3rt_bstring_iter_get_nbits
	Parameters
	Description
	Return Values

	RTL Codecs Functions
	RTL Codecs Related Type Definitions
	t3rt_codecs_register
	Parameters

	t3rt_encode
	Parameters
	Description
	Return Values

	t3rt_decode
	Parameters
	Description
	Return Values

	t3rt_tci_encode
	Parameters
	Description
	Return Values

	t3rt_tci_decode
	Parameters
	Description
	Return Values

	RTL Error Handling Functions
	RTL Error Handling Related Type Definitions
	t3rt_report_error
	Parameters
	Description

	t3rt_report_fatal_system_error
	Parameters
	Description

	RTL Execution Control
	RTL Execution Control Related Type Definitions
	t3rt_run_test_suite
	Parameters
	Description

	t3rt_exit
	Description

	t3rt_abort
	Description

	RTL Memory Functions
	RTL Memory Related Type Definitions
	t3rt_memory_temp_begin
	Parameters
	Description
	Example Usage

	t3rt_memory_temp_end
	Parameters
	Description
	Example Usage

	t3rt_memory_temp_clear
	Parameters
	Description
	Example Usage

	t3rt_memory_temp_allocate
	Parameters
	Description
	Return Values

	RTL Source Tracking Functions
	RTL Source Tracking Related Type Definitions
	t3rt_targetcode_location_push
	Parameters
	Description

	t3rt_targetcode_location_set_line
	Parameters
	Description

	t3rt_targetcode_location_pop
	Description

	t3rt_targetcode_location_get
	Description
	Return Values

	t3rt_source_tracking_top
	Description
	Return Values

	t3rt_source_location_module_name
	Parameters
	Return Values

	t3rt_source_location_scope_name
	Parameters
	Return Values

	t3rt_source_location_scope_arguments
	Parameters
	Return Values

	t3rt_source_location_scope_kind
	Parameters
	Return Values

	t3rt_source_location_file_name
	Parameters
	Return Values

	t3rt_source_location_file_line
	Parameters
	Return Values

	t3rt_source_location_is_ttcn3
	Parameters
	Return Values

	RTL Symbol Table Functions
	RTL Symbol Table Related Type Definitions
	t3rt_find_element
	Parameters
	Description
	Return Value

	t3rt_root_module_name
	Description
	Return Values

	t3rt_symbol_table_entry_name
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_kind
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_type
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_value
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_function
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_attribute
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_auxiliary
	Parameters
	Description
	Return Value

	RTL Miscellaneous Functions
	t3rt_rtconf_get_param
	Parameters
	Description
	Return Values

	t3rt_rtconf_set_param
	Parameters
	Description

	t3rt_register_default_logging
	Description

	t3rt_register_provided_logging
	Description

	t3rt_context_get_component_type
	Description
	Return Value

	t3rt_context_get_component_address
	Description
	Return Value

	t3rt_context_get_component_name
	Description
	Return Value

	t3rt_set_epsilon_double
	Parameters
	Description

	t3rt_epsilon_double
	Description
	Return Value

	t3rt_value_to_string, t3rt_value_to_wide_string
	Parameters
	Description
	Return Values

	RTL Function for Generated Code Only
	Platform Layer API
	PL General Functions
	t3pl_general_prepare_testcase
	Parameters
	Description

	t3pl_general_postprocess_testcase
	Parameters
	Description

	t3pl_general_testcase_terminated
	Parameters
	Description

	t3pl_general_control_terminated
	Parameters
	Description

	t3pl_call_external_function
	Parameters
	Description

	PL Timer Functions
	t3pl_time_pre_initialize
	Parameters
	Description

	t3pl_time_initialize
	Description

	t3pl_time_finalize
	Description

	t3pl_timer_create
	Parameters
	Description

	t3pl_timer_delete
	Parameters
	Description

	t3pl_timer_start
	Parameters
	Description

	t3pl_timer_stop
	Parameters
	Description

	t3pl_timer_read
	Parameters
	Description
	Return Value

	t3pl_timer_decode
	Parameters
	Description
	Return Value

	PL Communication Functions
	t3pl_communication_pre_initialize
	Parameters
	Description

	t3pl_communication_initialize
	Description

	t3pl_communication_finalize
	Description

	t3pl_port_create
	Parameters
	Description

	t3pl_port_create_control_port_for_cpc
	Parameters
	Description

	t3pl_port_start
	Parameters
	Description

	t3pl_port_stop
	Parameters
	Description

	t3pl_port_halt
	Parameters
	Description

	t3pl_port_destroy
	Parameters
	Description

	t3pl_port_clear
	Parameters
	Description

	t3pl_port_component_send
	Parameters
	Description

	t3pl_port_sut_send
	Parameters
	Description

	t3pl_port_sut_send_mc
	Parameters
	Description

	t3pl_port_sut_send_bc
	Parameters
	Description

	t3pl_port_sut_call
	Parameters
	Description
	Return Values

	t3pl_port_sut_call_mc
	Parameters
	Description
	Return Values

	t3pl_port_sut_call_bc
	Parameters
	Description
	Return Values

	t3pl_port_sut_call_done
	Parameters
	Description

	t3pl_port_sut_call_abort
	Parameters
	Description

	t3pl_port_sut_reply
	Parameters
	Description

	t3pl_port_sut_reply_mc
	Parameters
	Description

	t3pl_port_sut_reply_bc
	Parameters
	Description

	t3pl_port_sut_raise
	Parameters
	Description

	t3pl_port_sut_raise_mc
	Parameters
	Description

	t3pl_port_sut_raise_bc
	Parameters
	Description

	t3pl_port_sut_action
	Parameters
	Description

	t3pl_port_retrieve_system_port
	Parameters
	Description

	t3pl_port_release_system_port
	Parameters
	Description

	t3pl_port_map, t3pl_port_unmap
	Parameters
	Description

	t3pl_component_get_system_control_port
	Description
	Return Value

	t3pl_component_set_system_component_type
	Parameters
	Description

	t3pl_component_wait
	Parameters
	Description
	Return Values

	t3pl_component_control
	Description

	PL Memory Functions
	t3pl_memory_pre_initialize
	Parameters
	Description

	t3pl_memory_initialize
	Description

	t3pl_memory_finalize
	Description

	t3pl_memory_allocate
	Parameters
	Description
	Return value

	t3pl_memory_deallocate
	Parameters
	Description

	t3pl_memory_reallocate
	Parameters
	Description

	PL Concurrency Functions
	t3pl_concurrency_pre_initialize
	Parameters
	Description

	t3pl_concurrency_initialize
	Description

	t3pl_concurrency_finalize
	Description

	t3pl_concurrency_start_separate_component
	Parameters
	Description

	t3pl_task_create
	Parameters
	Description

	t3pl_task_setup
	Parameters
	Description

	t3pl_task_id
	Description
	Return Value

	t3pl_task_register_context
	Description

	t3pl_task_kill
	Parameters
	Description

	t3pl_task_exit
	Parameters
	Description

	t3pl_sem_create
	Parameters
	Description
	Return Value

	t3pl_sem_wait
	Parameters
	Description
	Return Value

	t3pl_sem_trywait
	Parameters
	Description
	Return Value

	t3pl_sem_timedwait
	Parameters
	Description
	Return Value

	t3pl_sem_post
	Parameters
	Description
	Return Value

	t3pl_sem_destroy
	Parameters
	Description
	Return Value

	User Defined Functions
	t3ud_register_codecs
	Parameters
	Description

	t3ud_register_log_mechanisms
	Parameters
	Description

	t3ud_read_module_param
	Parameters
	Description
	Return Values

	t3ud_retreive_configuration
	Description

	t3ud_make_timestamp
	Parameters
	Description
	Return Values

	TRI API
	TRI Type Definitions
	SA->TE Functions
	triEnqueueMsg
	Parameters
	Description

	triEnqueueCall
	Parameters
	Description

	triEnqueueReply
	Parameters
	Description

	triEnqueueException
	Parameters
	Description

	PA->TE Functions
	triTimeout
	Parameters
	Description

	TE->SA Functions
	triSAReset
	Description
	Return Values

	triExecuteTestcase
	Parameters
	Description
	Return Values

	triEndTestcase
	Description
	Return Values

	triMap
	Parameters
	Description
	Return Values

	triUnmap
	Parameters
	Description
	Return Values

	triSend
	Parameters
	Description
	Return Values

	triSendMC
	Parameters
	Description
	Return Values

	triSendBC
	Parameters
	Description
	Return Values

	triCall
	Parameters
	Description
	Return Values

	triCallMC
	Parameters
	Description
	Return Values

	triCallBC
	Parameters
	Description
	Return Values

	triReply
	Parameters
	Description
	Return Values

	triReplyMC
	Parameters
	Description
	Return Values

	triReplyBC
	Parameters
	Description
	Return Values

	triRaise
	Parameters
	Description
	Return Values

	triRaiseMC
	Parameters
	Description
	Return Values

	triRaiseBC
	Parameters
	Description
	Return Values

	triSUTActionInformal
	Parameters
	Description
	Return Values

	triSUTActionTemplate
	Parameters
	Description
	Return Values

	TE->PA Functions
	triPAReset
	Description
	Return Values

	triStartTimer
	Parameters
	Description
	Return Values

	triStopTimer
	Parameters
	Description
	Return Values

	triReadTimer
	Parameters
	Description
	Return Values

	triTimerRunning
	Parameters
	Description
	Return Values

	triExternalFunction
	Parameters
	Description
	Return Values

	TCI API
	TCI type declarations

	TCI Type Interface API
	tciGetDefiningModule
	Parameters
	Description
	Return Values

	tciGetName
	Parameters
	Description
	Return Values

	tciGetTypeClass
	Parameters
	Description
	Return Values
	Returns the type class of the respective type.

	tciNewInstance
	Parameters
	Description
	Return Values

	tciGetTypeEncoding
	Parameters
	Description
	Return Values

	tciGetTypeEncodingVariant
	Parameters
	Description
	Return Values

	tciGetTypeExtension
	Parameters
	Description
	Return Values

	TCI Value Interface API
	tciGetType
	Parameters
	Description
	Return Values

	tciNotPresent
	Parameters
	Description
	Return Values

	tciGetValueEncoding
	Parameters
	Description
	Return Values

	tciGetValueEncodingVariant
	Parameters
	Description
	Return Values

	Integer Value Interface
	tciGetIntAbs
	Parameters
	Description
	Return Values

	tciGetIntNumberOfDigits
	Parameters
	Description
	Return Values

	tciGetIntSign
	Parameters
	Description
	Return Values

	tciGetIntDigit
	Parameters
	Description
	Return Values

	tciSetIntAbs
	Parameters
	Description
	Return Values

	tciSetIntNumberOfDigits
	Parameters
	Description
	Return Values

	tciSetIntSign
	Parameters
	Description
	Return Values

	tciSetIntDigit
	Parameters
	Description
	Return Values

	Float Value Interface
	tciGetFloatValue
	Parameters
	Description
	Return Values

	tciSetFloatValue
	Parameters
	Description
	Return Values

	Boolean Value Interface
	tciGetBooleanValue
	Parameters
	Description
	Return Values

	tciSetBooleanValue
	Parameters
	Description
	Return Values

	Object Identifier Value Interface
	tciGetTciObjidValue
	Parameters
	Description
	Return Values

	tciSetObjidValue
	Parameters
	Description
	Return Values

	Char Value Interface
	tciGetCharValue
	Parameters
	Description
	Return Values

	tciSetCharValue
	Parameters
	Description
	Return Values

	Universal Char Value Interface
	tciGetUniversalCharValue
	Parameters
	Description
	Return Values

	tciSetUniversalCharValue
	Parameters
	Description
	Return Values

	Charstring Value Interface
	tciGetCStringValue
	Parameters
	Description
	Return Values

	tciSetCStringValue
	Parameters
	Description
	Return Values

	tciGetCharstringValue
	Parameters
	Description
	Return Values

	tciSetCharstringValue
	Parameters
	Description
	Return Values

	tciGetCStringCharValue
	Parameters
	Description
	Return Values

	tciSetCStringCharValue
	Parameters
	Description
	Return Values

	tciGetCStringLength
	Parameters
	Description
	Return Values

	tciSetCStringLength
	Parameters
	Description
	Return Values

	Universal Charstring Value Interface
	tciGetUCStringValue
	Parameters
	Description
	Return Values

	tciSetUCStringValue
	Parameters
	Description
	Return Values

	tciGetUCStringCharValue
	Parameters
	Description
	Return Values

	tciSetUCStringCharValue
	Parameters
	Description
	Return Values

	tciGetUCStringLength
	Parameters
	Description
	Return Values

	tciSetUCStringLength
	Parameters
	Description
	Return Values

	Bitstring Value Interface
	tciGetBStringValue
	Parameters
	Description
	Return Values

	tciSetBStringValue
	Parameters
	Description
	Return Values

	tciGetBStringBitValue
	Parameters
	Description
	Return Values

	tciSetBStringBitValue
	Parameters
	Description
	Return Values

	tciGetBStringLength
	Parameters
	Description
	Return Values

	tciSetBStringLength
	Parameters
	Description
	Return Values

	Octetstring Value Interface
	tciGetOStringValue
	Parameters
	Description
	Return Values

	tciSetOStringValue
	Parameters
	Description
	Return Values

	tciGetOStringOctetValue
	Parameters
	Description
	Return Values

	tciSetOStringOctetValue
	Parameters
	Description
	Return Values

	tciGetOStringLength
	Parameters
	Description
	Return Values

	tciSetOStringLength
	Parameters
	Description
	Return Values

	Hexstring Value Interface
	tciGetHStringValue
	Parameters
	Description
	Return Values

	tciSetHStringValue
	Parameters
	Description
	Return Values

	tciGetHStringHexValue
	Parameters
	Description
	Return Values

	tciSetHStringHexValue
	Parameters
	Description
	Return Values

	tciGetHStringLength
	Parameters
	Description
	Return Values

	tciSetHStringLength
	Parameters
	Description
	Return Values

	Record/Set Value Interface
	tciGetRecFieldValue
	Parameters
	Description
	Return Values

	tciSetRecFieldValue
	Parameters
	Description
	Return Values

	tciSetFieldOmitted
	Parameters
	Description
	Return Values

	tciGetRecFieldNames
	Parameters
	Description
	Return Values

	RecordOf/SetOf Value Interface
	tciGetRecOfFieldValue
	Parameters
	Description
	Return Values

	tciSetRecOfFieldValue
	Parameters
	Description
	Return Values

	tciAppendRecOfFieldValue
	Parameters
	Description
	Return Values

	tciGetRecOfElementType
	Parameters
	Description
	Return Values

	tciGetRecOfLength
	Parameters
	Description
	Return Values

	tciSetRecOfLength
	Parameters
	Description
	Return Values

	Union/Anytype Value Interface
	tciGetUnionVariant
	Parameters
	Description
	Return Values

	tciSetUnionVariant
	Parameters
	Description
	Return Values

	tciGetUnionPresentVariantName
	Parameters
	Description
	Return Values

	tciGetUnionVariantNames
	Parameters
	Description
	Return Values

	Enumerated Value Interface
	tciGetEnumValue
	Parameters
	Description
	Return Values

	tciSetEnumValue
	Parameters
	Description
	Return Values

	Verdict Value Interface
	tciGetVerdictValue
	Parameters
	Description
	Return Values

	tciSetVerdictValue
	Parameters
	Description
	Return Values

	Address Value Interface
	tciGetAddressValue
	Parameters
	Description
	Return Values

	tciSetAddressValue
	Parameters
	Description
	Return Values

	TCI TE->CD Interface API
	tciGetTypeForName
	Parameters
	Description
	Return Values

	tciGetIntegerType
	Parameters
	Description
	Return Values

	tciGetFloatType
	Parameters
	Description
	Return Values

	tciGetBooleanType
	Parameters
	Description
	Return Values

	tciGetCharType
	Parameters
	Description
	Return Values

	tciGetUniversalCharType
	Parameters
	Description
	Return Values

	tciGetObjidType
	Parameters
	Description
	Return Values

	tciGetCharstringType
	Parameters
	Description
	Return Values

	tciGetUniversalCharstringType
	Parameters
	Description
	Return Values

	tciGetHexstringType
	Parameters
	Description
	Return Values

	tciGetBitstringType
	Parameters
	Description
	Return Values

	tciGetOctetstringType
	Parameters
	Description
	Return Values

	tciGetVerdictType
	Parameters
	Description
	Return Values

	tciErrorReq
	Parameters
	Description
	Return Values

	TCI CD->TE Interface API
	tciDecode
	Parameters
	Description
	Return Values

	tciEncode
	Parameters
	Description
	Return Values

	TCI TE->TM Interface API
	tciRootModule
	Parameters
	Description
	Return Values

	tciGetModules
	Parameters
	Description
	Return Values

	tciGetImportedModules
	Parameters
	Description
	Return Values

	tciGetModuleParameters
	Lookups the list of module parameters of a specified module.
	Parameters
	Description
	Return Values

	tciGetModuleParameterType
	Parameters
	Description
	Return Values

	tciGetTestCases
	Parameters
	Description
	Return Values

	tciGetTestCaseParameters
	Parameters
	Description
	Return Values

	tciGetTestCaseParametersNames
	Parameters
	Description
	Return Values

	tciGetTestCaseTSI
	Parameters
	Description
	Return Values

	tciStartTestCase
	Parameters
	Description
	Return Values

	tciStopTestCase
	Parameters
	Description
	Return Values

	tciStartControl
	Parameters
	Description
	Return Values

	tciStopControl
	Parameters
	Description
	Return Values

	TCI TM->TE Interface API
	tciTestCaseStarted
	Parameters
	Description
	Return Values

	tciTestCaseTerminated
	Parameters
	Description
	Return Values

	tciControlTerminated
	Parameters
	Description
	Return Values

	tciGetModulePar
	Parameters
	Description
	Return Values

	tciError
	Parameters
	Description
	Return Values

	Service Functions to TCI Interface
	tciInit
	Description
	Return Values

	tciMemoryAllocate
	Description
	Return Values

	tciStartTestsuiteServer
	Description
	Return Values

	TCI TL->TE Interface
	tliTcExecute
	Parameters
	Description
	Return Values

	tliTcStart
	Parameters
	Description
	Return Values

	tliTcStop
	Parameters
	Description
	Return Values

	tliTcStarted
	Parameters
	Description
	Return Values

	tliTcTerminated
	Parameters
	Description
	Return Values

	tliCtrlStart
	Parameters
	Description
	Return Values

	tliCtrlStop
	Parameters
	Description
	Return Values

	tliCtrlTerminated
	Parameters
	Description
	Return Values

	tliMSend_m
	Parameters
	Description
	Return Values

	tliMSend_m_BC
	Parameters
	Description
	Return Values

	tliMSend_m_MC
	Parameters
	Description
	Return Values

	tliMSend_c
	Parameters
	Description
	Return Values

	tliMSend_c_BC
	Parameters
	Description
	Return Values

	tliMSend_c_MC
	Parameters
	Description
	Return Values

	tliMDetected_m
	Parameters
	Description
	Return Values

	tliMDetected_c
	Parameters
	Description
	Return Values

	tliMMismatch_m
	Parameters
	Description
	Return Values

	tliMMismatch_c
	Parameters
	Description
	Return Values

	tliMReceive_m
	Parameters
	Description
	Return Values

	tliMReceive_c
	Parameters
	Description
	Return Values

	tliPrCall_m
	Description
	Return Values

	tliPrCall_m_BC
	Description
	Return Values

	tliPrCall_m_MC
	Description
	Return Values

	tliPrCall_c
	Description
	Return Values

	tliPrCall_c_BC
	Description
	Return Values

	tliPrCall_c_MC
	Description
	Return Values

	tliPrGetCallDetected_m
	Description
	Return Values

	tliPrGetCallDetected_c
	Description
	Return Values

	tliPrGetCallMismatch_m
	Description
	Return Values

	tliPrGetCallMismatch_c
	Description
	Return Values

	tliPrGetCall_m
	Description
	Return Values

	tliPrGetCall_c
	Description
	Return Values

	tliPrReply_m
	Description
	Return Values

	tliPrReply_m_BC
	Description
	Return Values

	tliPrReply_m_MC
	Description
	Return Values

	tliPrReply_c
	Description
	Return Values

	tliPrReply_c_BC
	Description
	Return Values

	tliPrReply_c_MC
	Description
	Return Values

	tliPrGetReplyDetected_m
	Description
	Return Values

	tliPrGetReplyDetected_c
	Description
	Return Values

	tliPrGetReplyMismatch_m
	Description
	Return Values

	tliPrGetReplyMismatch_c
	Description
	Return Values

	tliPrGetReply_m
	Description
	Return Values

	tliPrGetReply_c
	Description
	Return Values

	tliPrRaise_m
	Description
	Return Values

	tliPrRaise_m_BC
	Description
	Return Values

	tliPrRaise_m_MC
	Description
	Return Values

	tliPrRaise_c
	Description
	Return Values

	tliPrRaise_c_BC
	Description
	Return Values

	tliPrRaise_c_MC
	Description
	Return Values

	tliPrCatchDetected_m
	Description
	Return Values

	tliPrCatchDetected_c
	Description
	Return Values

	tliPrCatchMismatch_m
	Description
	Return Values

	tliPrCatchMismatch_c
	Description
	Return Values

	tliPrCatch_m
	Description
	Return Values

	tliPrCatch_c
	Description
	Return Values

	tliPrCatchTimeoutDetected
	Parameters
	Description
	Return Values

	tliPrCatchTimeout
	Description
	Return Values

	tliCCreate
	Description
	Return Values

	tliCStart
	Description
	Return Values

	tliCRunning
	Description
	Return Values

	tliCAlive
	Description
	Return Values

	tliCStop
	Description
	Return Values

	tliCKill
	Description
	Return Values

	tliCDoneMismatch
	Description
	Return Values

	tliCDone
	Description
	Return Values

	tliCKilledMismatch
	Description
	Return Values

	tliCKilled
	Description
	Return Values

	tliCTerminated
	Description
	Return Values

	tliPConnect
	Description
	Return Values

	tliPDisconnect
	Description
	Return Values

	tliPMap
	Description
	Return Values

	tliPUnmap
	Description
	Return Values

	tliPClear
	Description
	Return Values

	tliPStart
	Description
	Return Values

	tliPStop
	Description
	Return Values

	tliPHalt
	Description
	Return Values

	tliEncode
	Description
	Return Values

	tliDecode
	Description
	Return Values

	tliTTimeoutDetected
	Description
	Return Values

	tliTTimeoutMismatch
	Description
	Return Values

	tliTTimeout
	Description
	Return Values

	tliTStart
	Description
	Return Values

	tliTStop
	Description
	Return Values

	tliTRead
	Description
	Return Values

	tliTRunning
	Description
	Return Values

	tliSEnter
	Description
	Return Values

	tliSLeave
	Description
	Return Values

	tliVar
	Description
	Return Values

	tliModulePar
	Description
	Return Values

	tliGetVerdict
	Description
	Return Values

	tliSetVerdict
	Description
	Return Values

	tliLog
	Description
	Return Values

	tliAEnter
	Description
	Return Values

	tliALeave
	Description
	Return Values

	tliANomatch
	Description
	Return Values

	tliARepeat
	Description
	Return Values

	tliADefaults
	Description
	Return Values

	tliAActivate
	Description
	Return Values

	tliADeactivate
	Description
	Return Values

	tliAWait
	Description
	Return Values

	tliAction
	Description
	Return Values

	tliMatch
	Description
	Return Values

	tliMatchMismatch
	Description
	Return Values

	tliInfo
	Description
	Return Values

	TCI Template Interface
	tciIsOmitValueTemplate
	Description
	Return Values

	tciIsAnyValueTemplate
	Description
	Return Values

	tciIsAnyOrOmitValueTemplate
	Description
	Return Values

	tciGetValueTemplateDef
	Description
	Return Values

	tciIsAnyNonValueTemplate
	Description
	Return Values

	tciIsAllNonValueTemplate
	Description
	Return Values

	tciGetNonValueTemplateDef
	Description
	Return Values

	Regular Expressions in Search
	Regular Expressions in Search

	Common Reference
	Useful Shortcut Keys
	Workspace Operations
	Project Operations
	File Operations
	Navigate in Files
	Navigate in TTCN-3 Files
	Highlight Text
	Edit Text
	Application Builder Shortcuts
	Window Navigation
	Properties editor
	Show/Hide Windows and Dialogs
	Zoom/Pan

	Setting Up the Tool Environment
	Working with Links
	Link options
	Active link end is an active target, not an active source
	Automatically create links between modified objects and active link end
	Show link indicators

	Hyperlink options
	By default, make hyperlink to a workspace element

	Insert hyperlink dialog
	URL
	Copy URL
	Missing targets

	Link operations
	DependencyAdd hyperlinks
	Add Dependency links
	Add links
	Creating a link
	Automatic creation
	Link messages

	Configuration Management
	Source control provider
	Source control information

	Generic Source Code Control Integration
	Integration with IBM Rational ClearCase
	Install IBM Rational ClearCase integration
	Windows
	UNIX

	Multiple configuration management tools
	Windows
	UNIX

	Source control commands
	Get latest version
	Check out
	Check in
	Undo check out
	Add to source control
	Remove from source control
	Show history
	Show differences
	Source control properties
	Refresh status
	Execute CM tool
	Import module

	Requirements Management (Windows)
	Launching DOORS
	Update/Commit a DOORS module after Archive/Restore

	Managing IBM Rational Systems Tester Information in DOORS (Windows)
	Export a DOORS module
	Surrogate modules
	Export
	Prepare export
	Export a module to DOORS as a surrogate
	Unexport of a DOORS module
	Committing changes from IBM Rational Systems Tester to DOORS
	Update/Commit on Open/Save
	Propagate test case verdicts to DOORS
	Attributes created for exported definitions

	Managing DOORS Modules in IBM Rational Systems Tester (Windows)
	Import a DOORS formal module
	View a DOORS module
	Locate a DOORS object from IBM Rational Systems Tester
	Update a DOORS module
	Committing changes from IBM Rational Systems Tester to DOORS
	Update/Commit on Open/Save

	Changing view or baseline for an imported module
	Removing a DOORS module from a project
	View synchronization information
	Integration

	DOORS toolbar

	Traceability Links (Windows)
	Incoming and outgoing links
	Link sets and link modules
	Link kind
	Missing Targets
	Link operations
	Link commands
	Current Link Kind list

	Link options
	Active link end is an active target, not an active source
	Show link indicators

	Link creation
	Creating a link
	Creating multiple links from one source
	Link messages
	Delete a link

	Viewing links
	Link markers
	Context Link menu
	Links dialog
	Navigation

	Synchronizing links
	Commit the changes in the previously exported model

	DOORS Integration Menus (Windows)
	Available commands in database explorer menus
	Shortcut menu for database explorer
	Surrogate module menus
	Shortcut menu for surrogate modules
	Requirements module menus
	Shortcut menu for requirements modules

	Printing
	Adding and Removing Printers (UNIX)
	Printing Diagrams
	Adding and setting up printers (UNIX only)
	Print settings
	Select diagrams to be printed
	Preview of diagrams
	Print a single diagram
	Print multiple diagrams

	Internationalization Support
	Supported environments
	Supported platforms
	Configuration Management
	IME (Input Method Editor)

	Font settings
	Modeling with CJK characters
	Code generation with CJK characters
	Automatic UTF-16 naming
	Using ansiName stereotype
	Names of files and folders used by build tool chain
	Encode type of files used by build tools

	Handling textual files
	Restrictions

	Dialog Help
	The New Wizard
	Files tab
	Projects tab
	TTCN Projects - page 2
	TTCN Projects - page 3
	Workspaces

	Customize
	Commands tab
	Toolbars tab
	Create New Toolbar
	Windows layouts
	Tools tab
	Add-ins tab

	Options
	General
	Save
	Workspace
	Format
	Links
	Compare/Merge
	External text compare/merge

	Advanced

	TTCN Dialogs
	Find In Files
	Go To
	Go To Line

	Additional Resources
	Links
	Telelogic links
	IBM Rational Systems Tester
	TTCN-3 documents

	Other links
	Borland C/C++
	Cygwin
	GNU C/C++
	ITU-T
	Macrovision
	Microsoft Visual C/C++
	MISRA
	OCL
	OMG
	PDF
	Tcl
	TTCN-3
	XML

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

