

ii IBM Rational Systems Tester 3.3 Technical Integration June 2009

Copyrights

This edition applies to IBM Rational Systems Tester version 3.3 and to all
subsequent releases and modifications until otherwise indicated in new edi-
tions.

© Copyright IBM Corporation 2000, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure re-
stricted by GSA ADP Schedule Contract with IBM Corp.

Copyright Notice

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for in-
formation on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

Copyright © 2000, 2009 by IBM Corporation.

IBM Patents and Licensing

IBM may have patents or pending patent applications covering subject
matter described in this document. The furnishing of this document does not
grant you any license to these patents. You can send written license inquiries
to the following:
June 2009 IBM Rational Systems Tester 3.3 Technical Integration iii

Chapter :
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) informa-
tion, contact the IBM Intellectual Property Department in your country or
send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

Licensees of this program who wish to have information about it for the pur-
pose of enabling: (i) the exchange of information between independently cre-
ated programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software|
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equiva-
lent agreement between us.

Disclaimer of Warranty

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law: IN-
TERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-
iv IBM Rational Systems Tester 3.3 Technical Integration June 2009

CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical er-
rors. Changes are periodically made to the information herein; these changes
will be incorporated in new editions of the publication. IBM may make im-
provements and/or changes in the product(s) and/or the program(s) described
in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Any performance data contained herein was determined in a controlled envi-
ronment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on devel-
opment-level systems and there is no guarantee that these measurements will
be the same on generally available systems. Furthermore, some measure-
ments may have been estimated through extrapolation. Actual results may
vary. Users of this document should verify the applicable data for their spe-
cific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM prod-
ucts. Questions on the capabilities of non-IBM products should be addressed
to the suppliers of those products.

Confidential Information

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

This information contains examples of data and reports used in daily busi-
ness operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

Additional legal notices are described in the legal_information.html file that
is included in your software installation.
June 2009 IBM Rational Systems Tester 3.3 Technical Integration v

Chapter :
Sample Code Copyright

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application program-
ming interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all condi-
tions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs.

IBM Trademarks

For a list of IBM trademarks, visit this Web site www.ibm.com/legal/copytrade.html.
This contains a current listing of United States trademarks owned by IBM.
Please note that laws concerning use and marking of trademarks or product
names vary by country. Always consult a local attorney for additional guid-
ance. Those trademarks followed by ® are registered trademarks of IBM in
the United States; all others are trademarks or common law marks of IBM in
the United States.

Not all common law marks used by IBM are listed on this page. Because of
the large number of products marketed by IBM, IBM's practice is to list only
the most important of its common law marks. Failure of a mark to appear on
this page does not mean that IBM does not use the mark nor does it mean that
the product is not actively marketed or is not significant within its relevant
market.

Third-party Trademarks

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and Post-
Script are trademarks of Adobe Systems Incorporated or its subsidiaries and
may be registered in certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.
vi IBM Rational Systems Tester 3.3 Technical Integration June 2009

www.ibm.com/legal/copytrade.html

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Micro-
systems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries,
or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Mac-
rovision Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or
other Microsoft products referenced herein are either trademarks or regis-
tered trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of
Netscape Communications Corporation in the United States and other coun-
tries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product or service names may be trademarks or service
marks of others.
June 2009 IBM Rational Systems Tester 3.3 Technical Integration vii

Chapter :
viii IBM Rational Systems Tester 3.3 Technical Integration June 2009

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 1

1
Introduction

2 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 1: Introduction

About This Document
This Technical Integration Documentation describes what an ETS is, what
parts it consists of and the required work necessary to make it perform its sole
intended task, executing tests.

The aim of this document is to enable a developer (or at least someone with
programming experience) to develop a working integration. The first chapter
also aims at giving managers and testers an overview of the subject.

Chapter 2, ETS Architecture, describes the composition of an ETS and a little
on how they interact to perform the execution of an ETS.

Chapter 3, Integrations, describes the necessity of an integration as well as
information on how to choose an already existing integration or implement
an integration from scratch.

Chapter 4, Log Mechanisms, describes how to create and apply user-defined
log mechanisms to attain the desired log output.

Chapter 5, Codecs Systems, describes how to implement encoders and de-
coders and how to make the ETS use them where intended.

Chapter 6, Miscellaneous, describes wide string and binary string support.

Chapter 7, Runtime System APIs, is an extensive function reference chapter
that describes each function in the available interfaces individually on what
they do or how they should be implemented.

See Also

”Creating an ETS” in the online help

”Executing Tests” in the online help

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 3

2
ETS Architecture

4 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 2: ETS Architecture

ETS Architecture Overview

This illustration depicts the main parts of an ETS.

• TTCN-3 Dependent Code

This is the necessary information generated from the TTCN-3 test suite
by the Rational Systems Tester Compiler.

• Runtime System (RTS)

This is the provided library implementing the semantics of TTCN-3. The
RTS provides the services defined by the Runtime Layer (RTL) inter-
face.

• Integration

This part must be provided by the user, in order to connect the test system
to the System Under Test (SUT). The integration implements the services
defined by the Platform Layer (PL) interface.

From the RTS’s point of view, an integration is an implementation of the PL
interface. Besides an implementation of the PL interface, at least one codecs
systems is required to perform encoding and decoding of values.

Figure 1: Architecture of an Executable Test Suite (ETS)

RTL

RTL
PL

TTCN-3 Dependent Code

Runtime System

Integration

System Under Test

Lo
g

m
ec

h-
an

is
m

s

C
od

ec
s

S
ys

te
m

s

ETS

ETS Architecture Overview

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 5

Log mechanisms are code modules that handles all the log events generated
from the RTS. Any number of log mechanisms can be plugged into the RTS.
A text based log mechanism and an MSC log mechanism are also provided
with the RTS.

See Also

“TTCN-3 ATS Generated Code” on page 5

“Runtime System” on page 5

“Integrations” on page 8

“Codecs Systems” on page 9

“Logging” on page 10

TTCN-3 ATS Generated Code

The generated code from the Compiler maps the constructs of
the TTCN-3 language to corresponding representations in the
C language. Details on this mapping is outside the scope of this
section. The generated code is supposed to be “invisible” since
it just serves as a (vital) intermediate step in the transition from
the ATS to the ETS.

Some generated entities (for example type descriptors) are described in
“Runtime System Details” on page 23 in Chapter 3, Integrations.

Runtime System

The runtime system is the “engine” of the TTCN-3 test suite
execution. It handles values, controls components, and so on.

In the figure “Architecture of an Executable Test Suite (ETS)”
on page 4, the two interfaces defined by the RTS can be seen
as bold horizontal lines. One is the Runtime Layer (RTL), and
the other is the Platform Layer (PL).

The RTL is the services provided by the RTS. This is used by the generated
code, by non-TRI integrations, encoders/decoders, and so on. The PL defines
the services that the RTS needs from the integration to be able to function
properly. Both these interfaces are in turn divided into smaller parts.

6 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 2: ETS Architecture

Note
For TRI based integrations there is also the TRI specification that is a pre-
requisite before attempting to implement a TRI based integration. The TRI
has its place inside the integration module. See “TRI Based Integrations”
on page 12 in Chapter 3, Integrations.

Execution Environment

The execution model of the RTS is based on the concept of component in-
stances (of declared component types), running in parallel, executing TTCN-
3 functions (test case, test step, function, and so on).

The implementation of the threads of execution is provided by the integration
(through the PL interface) to make the RTS as independent from the platform
as possible.

The intended execution model is to have components running in separate
threads of execution (multiple threads within one process, or as separate pro-
cesses). By nature, such an execution model is prone to “race” conditions.
This means that the test results may depend on the scheduling of tasks in the
underlying platform. This integration “freedom” might become a real
problem only when running poorly written test cases, where the potential
scheduling variations have not been taken into consideration.

Memory Handling

Throughout the execution of the test suite’s control part, a lot of memory al-
location has to be made. These allocations can either be done using perma-
nent or temporary memory.

The temporary allocation strategy is managed by the RTS, and is a dynami-
cally growing memory area expanded on demand. A separate temporary
memory area exists for each TTCN-3 component. The temporary allocation
is a position-oriented, stack based implementation with de-allocations made
by manipulating (resetting) positions. When a memory position is reset to a
previous mark, with memory being allocated again, the previously de-allo-
cated blocks will be reused.

The main idea behind this functionality is to minimize problems with perma-
nent memory allocations. Permanent allocations in heap memory are known
to be time consuming (that is, slow) and if allocated memory is not explicitly
de-allocated, memory leaks will occur.

ETS Architecture Overview

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 7

Permanent allocations are allocations made in heap memory, which therefore
have to be de-allocated explicitly. The services needed for permanent
memory allocations are provided by the PL implementation and are neces-
sary for the implementation of the temporary memory handling in the RTL.

Pre-initialization, Initialization and Finalization

The integration interface is divided into several modules, each having a spe-
cific responsibility. Each one of these module has to be initialized before it
can carry out its services and clean-up after it has finished.

The initialization step has been divided in two phases, the “pre-initialization”
and the “initialization” phase. In most cases it is sufficient to place all initial-
ization code into the initialization phase. The only module that is required to
be (at least partially) functional after the pre-initialization phase is the PL
Memory module (described in “Memory” on page 22 in Chapter 3,
Integrations).

Configurability

The RTS can be configured in a number of ways to control its behavior. For
this, a general storage facility is available, populated with key/value pairs
where the keys are predefined and known to the RTS. The values are repre-
sented as TTCN-3 RTS values, so basically any kind of value can be used for
configuration information.

The storage facility is also intended to be used by integrations, codecs, and
so on, where configurability is relevant.

The storage facility can be populated either by providing special switches on
the command-line to the ETS, or programmatically using a single API func-
tion to set the values. The command-line approach is limited to a subset of
the basic, non-structured types in the RTS. Reading from the storage is done
by a single access function.

Source Tracking

The RTS has a mechanism available to keep information on source code lo-
cations during execution. This is primarily intended to track the test execu-
tion through the TTCN-3 test suite source. This mechanism is referred to as
“source location” information.

8 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 2: ETS Architecture

The secondary “flavor” of this mechanism is to track execution in other inte-
gration modules like, for example, encoder and decoder functions and log
mechanisms implementations. This approach is referred to as “target code lo-
cation” information. It is intended to be used as an optional (but handy)
mechanism to be used by integration developers.

Source tracking information is visible in all events logged by the built-in log
mechanism. The functions can be found in “RTL Source Tracking Func-
tions” on page 287 in Chapter 7, Runtime System APIs.

See Also

“Runtime Layer API” on page 48 in Chapter 7, Runtime System APIs

“Platform Layer API” on page 306 in Chapter 7, Runtime System APIs

Integrations

One of the parts of the ETS that you, as a user, have to provide
is the module that makes the RTS interact with the SUT. This
is referred to as “an integration”.

An integration is an implementation of the PL interface defined
by the RTS. The PL interface is what the RTS requires in terms
of integration services to be fully functional. The integration

provides memory primitives, representation of timers, handling of time, SUT
communication, task concurrency primitives, and so on.

Different SUTs require different integrations in terms of timer implementa-
tions, communication mechanisms, and so on. The RTS also requires other
services such as concurrency primitives (for executing parallel test compo-
nents), semaphores for thread synchronization, and so on.

Equipping the ETS with an integration implementation is done by imple-
menting a set of required functions that the RTS needs. This can be done in
three different ways:

• Using the provided TRI integration

This is the most simple choice which minimizes the implementation ef-
fort to only cover the System Adaptor (SA) and Platform Adaptor (PA)
functions that the TRI document specifies.

ETS Architecture Overview

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 9

• Extending and modifying the non-TRI example integration

Starting from a working example implementation of a non-TRI integra-
tion you can adjust the integration for your own needs without having to
implement all of the PL functions from scratch.

• Implementing a non-TRI integration from scratch

This is by far the most flexible way of making an integration but it re-
quires some more work than either of the previous alternatives. Using
this approach means that you must implement all the functions in the PL
yourself.

See Also

Chapter 3, Integrations, for details on how to make an integration, and for de-
scriptions of already provided integrations.

“TRI API” on page 348 in Chapter 7, Runtime System APIs

“Platform Layer API” on page 306 in Chapter 7, Runtime System APIs

Codecs Systems

To be able to pass TTCN-3 values between components
through the communication primitives, for example send and
call, functions to encode and decode values must be provided.
The encoders take values and encode them to a transferable bi-
nary representation, and the decoders make the reverse opera-
tion.

After the initialization phase, all declared types that will have to be encoded
must have one associated encoder function and one associated decoder func-
tion. It is the responsibility of the codecs system to provide both these func-
tion as well as making the association.

A codecs system is basically a set of encoder and decoder functions. Prefer-
ably they all implement the same encoding scheme (BER or PER for ASN.1,
for example).

The RTS supports multiple codecs systems, which are registered at runtime
in the initialization phase. In this phase, all registered codecs systems will be
asked in turn to associate encoder and decoder functions for the existing
types in the system.

10 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 2: ETS Architecture

See Also

“Codecs Systems” on page 41 in Chapter 5, Codecs Systems.

Logging

Logging the execution of a test is an essential part of the RTS.
A default text-based log mechanism is provided, as well as a
mechanism that logs to file with MSC-96 syntax.

The RTS supports a very flexible and easy way to plug in any
number of user-defined log mechanisms to cover any need
from any customer.

Each component has its own log instances, and only events and information
messages that is related to that specific component will be logged to its cor-
responding log instances.

See Also

“Log Mechanisms” on page 31 in Chapter 4, Log Mechanisms on how to pro-
vide your own log mechanisms.

Internationalization and Localization
The runtime system is internationalized, that is, all necessary
mechanisms are in place to enable localization.

Error messages and predefined configuration key descriptions
are the only localized items. The only currently available local-
ization target is U.S. English.

The intention is not to enable user-defined localizations, but to support local-
ization requests from customers.

The internationalization mechanism supports character sets with a maximum
of up to 32 bits per character.

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 11

3
Integrations

12 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

TRI Based Integrations
TRI is a specification that defines an interface between the test
executable and the SUT. In TRI terminology, it is an interface
between Rational Systems Tester (TE), the System Adaptor
(SA) and the Platform Adaptor (PA).

The IBM Rational TRI compatible integration is provided both
as a library and as source code. The library can be found in the
integrations/tri/<platform> directory and the source
code is the same as the example PL integration found in the

integrations/example. Both are located in the Rational Systems Tester
installation directory.

You have to implement the functions required on the SUT side of TRI (that
is, the TE->SA and TE->PA functions defined in ETSI TR 102 043 V1.1.1
(2002-04)). This module should include the Rational Systems Tester TRI
header file, integrations/t3tri.h, which contains the TRI definitions
according to the TRI to ANSI-C-mapping.

Template and example implementations can be found in the /integra-
tions/tri directory. They are are provided to make it easier to implement
the necessary functions.

Figure 2: TRI Based Integration

PL

TRI Integration

TRI Implementation.

SA

TRI

PA

System Under Test

TRI Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 13

Implementation Information/Hints

TRI, as defined in ETSI TR 102 043 V1.1.1 (2002-04), covers SUT commu-
nication, timer support, and external function calls. This is not sufficient for
a complete integration in terms of PL functionality, hence it does not cover
every need of the RTS. Therefore, the rest of the functionality is provided.

In the current TRI integration, all TTCN-3 components are executing in one
and the same process, but each component executes in a separate thread.
Communication between TTCN-3 components is handled within the pro-
vided integration.

The timer implementation is based on real-time, leaving the TRI implemen-
tation no means of controlling the advancement time.

Note
Due to the non-blocking nature of the TRI, the TRI implementation (SA and
PA) has to run in a separate thread other than the RTS. This thread should
be created early (for example in the triSAReset function) and should
handle all the requests made by the RTS.

14 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

PL Based Integrations

PL Integration Modules

This section describes the different part of the integration that
is required to be implemented to complete the ETS. The defi-
nitions for these parts can be found in the t3pl-prefixed header
files in the include directory in the Rational Systems Tester
installation directory.

An example integration implementation is described in “Ex-
ample Integration” on page 28.

These are the sub-modules of a non-TRI based integration.

• “General” on page 15

Covers the bits and pieces not covered by the other parts.

• “Timers” on page 15

Handles timers and their operations.

• “Communication” on page 17

Covers the handling of ports, and the communication primitives for
these.

Figure 3: Non-TRI Based Integration

PL

System Under Test

General

MemoryConcurrency

Timers Communication

PL Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 15

• “Concurrency” on page 20

Provides the necessary functionality to execute components in parallel.

• “Memory” on page 22

Implements the necessary memory primitives for memory handling.

General

This part currently contains pre- and postamble functions to prepare for and
clean up after a test case. It also contains one function that should implement
handling of external function calls.

General functions

These are the functions that are required by the RTS with respect to general
behavior.

See Also

“Platform Layer API” on page 306

Timers

Timers are a very important concept in a test suite and the actual timer im-
plementation (representation and operations) is made in the integration.
These services are used by the RTS to carry out the TTCN-3 semantics.

Function to implement Description

t3pl_general_prepa
re_testcase

Prepares testcase execution.

t3pl_general_postp
rocess_testcase

Finalizes testcase execution (called within MTC)
during testcase termination.

t3pl_general_testc
ase_terminated

Finalizes testcase execution (called within CPC)
after testcase termination.

t3pl_general_contr
ol_terminated

Finalizes control part execution.

t3pl_call_external
_function

Performs external function call.

16 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

The timer API consists of functions for creating, controlling, and destroying
timers. Timer are always created on demand from the RTS. Both TTCN-3
declared timers and implicit timers can be created.

Timer are declared locally in TTCN-3 components and are never shared be-
tween them.

Timer Functions

These are the functions that are required by the RTS with respect to timers.

Active and Passive Timers

A timer can be either passive or active (not both), but a system can consist of
a mix of both active and passive timers. The difference between them is how
time-outs are detected. The time-out of a passive timer is only detected when

Function to implement Description

t3pl_time_pre_init
ialize

Initializes as much as possible to make the module
work. The implementation of this function can not
rely on configuration information through RTconf.

t3pl_time_initiali
ze

Initializes (or re-initializes) the module. The imple-
mentation of this function can rely on configuration
information through RTconf.

t3pl_time_finalize Finalizes the module. The implementation of this
function can rely on configuration information
through RTconf.

t3pl_timer_create Creates a timer, and returns a handle that will be
used by the RTS to refer to it.

t3pl_timer_delete Deletes the timer with the given handle.

t3pl_timer_start Sets a given timer in the started state (“running”).

t3pl_timer_stop Sets a given timer to the stopped state (not “run-
ning”).

t3pl_timer_read Reads the state and elapsed time of a given timer.

t3pl_timer_decode Returns binary string containing TriTimerId corre-
sponding to provided internal RTS timer handle.

PL Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 17

the timer’s status is explicitly asked for by the RTS, while an active timer re-
ports its time-out actively by telling the RTS when this happens. Effectively,
potential time-outs are detected earlier when active timers are used.

By default, the RTS supports both passive and active timers simultaneously.
During execution, when turning to the communication part of the integration
for more data to process, a maximum time to wait is calculated from the
states of the known running timers. This is for keeping the waiting time to a
minimum. As a result from this, the RTS is real-time dependant. If more con-
trol over the advancement of time is desired, the RTS can be configured to
only trigger on active timers and wait, in effect, until data is received or a
time-out is actively triggered.

See Also

“PL Timer Functions” on page 310 in Chapter 7, Runtime System APIs

”Predefined Configuration Keys” in the online help for information on how
to control the RTS.

Communication

All communications are made in terms of the ports concept of TTCN-3. Ports
are the only means of transporting information between running components
both in synchronous (that is the send operation) and asynchronous (the call
operation) communication. The communication is highly oriented around the
component, port, and binary data.

Ports are always created on demand from the RTS and are uniquely defined
by a globally unique port address. Global uniqueness here means that no two
ports may have the same address in the whole (arbitrarily distributed) test
system. Ports and their addresses are allocated and maintained by the integra-
tion, as well as by the actual implementation for passing information between
them.

Note
There are other ports than the declared ports of a TTCN-3 component type.
Such ports are used as administration ports to control the components, and
is a result of the design of the RTS rather then imposed by TTCN-3. They
are referred to as “control ports” and requires very little special treatment.

18 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

Communication Functions

Function to implement Description

t3pl_communication_pre_init
ialize

Initializes as much as possible to make the
module work. The implementation of this
function can not rely on configuration infor-
mation through RTconf.

t3pl_communication_initiali
ze

Initializes (or re-initializes) the module. The
implementation of this function can rely on
configuration information through RTconf.

t3pl_port_create Creates and initializes a port, and returns a
globally unique address.

t3pl_port_create_control_po
rt_for_cpc

Creates and initializes a control port port for
component control, and returns a globally
unique address. Very similar to
t3pl_port_create.

t3pl_port_start Sets the given port in a started state.

t3pl_port_halt Sets the given port in a halted state.

t3pl_port_stop Sets the given port in a stopped state (dis-
abled)

t3pl_port_destroy Removes and deallocates the given port.

t3pl_port_clear Discards any data contents in the port queue.

t3pl_port_map Associates a given port to a given system
port.

t3pl_port_unmap Removes an association of a given port to a
given system port.

t3pl_port_component_send Sends encoded data between components.

t3pl_port_sut_send Sends encoded data to the SUT.

t3pl_port_sut_send_mc Sends encoded data to the multiple entities
within SUT.

t3pl_port_sut_send_bc Sends encoded data to all entities within
SUT.

t3pl_port_sut_call Performs procedure call to the SUT.

PL Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 19

t3pl_port_sut_call_mc Performs procedure call to the multiple enti-
ties within SUT.

t3pl_port_sut_call_bc Performs procedure call to all entities within
SUT.

t3pl_port_sut_call_done Finalizes successful procedure call to the
SUT.

t3pl_port_sut_call_abort Aborts procedure call to the SUT (e.g. due to
timeout).

t3pl_port_sut_reply Performs reply on a procedure call to the
SUT.

t3pl_port_sut_reply_mc Performs reply on a procedure call to the
multiple entities within SUT.

t3pl_port_sut_reply_bc Performs reply on a procedure call to all en-
tities within SUT.

t3pl_port_sut_raise Raises exception on a procedure call to the
SUT.

t3pl_port_sut_raise_mc Raises exception on a procedure call to the
multiple entities within SUT.

t3pl_port_sut_raise_bc Raises exception on a procedure call to all
entities within SUT.

t3pl_port_sut_action Performs a SUT action.

t3pl_port_retrieve_system_p
ort

Retrieves the address of a named system
port.

t3pl_port_release_system_po
rt

Releases the given system port.

t3pl_component_get_system_c
ontrol_port

Returns the port for controlling the (virtual)
system component.

Function to implement Description

20 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

See Also

“PL Communication Functions” on page 314 in Chapter 7, Runtime System
APIs

Concurrency

Since the RTS has a true concurrent execution model for the TTCN-3 com-
ponents, it has to be able to create new execution threads. These so called
tasks can be arbitrarily distributed, that is either as new threads within the
same process, or as separate processes.

The concurrency integration must provide semaphores to enable the multi-
threaded RTS (and integration) to function properly (with respect to thread
synchronization). The semaphore services are defined by the t3pl_sem_-
prefixed function.

The function needed to be implemented is declared in the
t3pl_concurrency.h file in the include directory.

t3pl_component_set_system_c
omponent_type

Makes the necessary initialization to set up
the system “component” to be of the given
type.

t3pl_component_wait Waits for any incoming data or active timers
to time out, and reports to the RTS when ei-
ther event occurs.

t3pl_component_control Similar to t3pl_component_wait but pro-
cesses only control messages and doesn’t
block.

Function to implement Description

PL Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 21

Concurrency Functions

Function to implement Description

t3pl_concurrency_pre_initi
alize

Initializes as much as possible to make the
module work. The implementation of this
function can not rely on configuration infor-
mation through RTconf.

t3pl_concurrency_initializ
e

Initializes (or re-initializes) the module. The
implementation of this function can rely on
configuration information through RTconf.

t3pl_concurrency_finalize Finalizes the module. The implementation of
this function can rely on configuration infor-
mation through RTconf.

t3pl_concurrency_start_sep
arate_component

Called when a new component has been
started in a separate process. Takes the neces-
sary steps to initialize its control port and re-
turns its address to the creating component.

t3pl_task_register_context Informs the integration of the runtime context
that is associated with the current thread of
execution.

t3pl_task_create Creates a new thread of execution (possibly
in a separate process) for a new component.
Returns a fully functional control port to this
component.

t3pl_task_setup Setups whatever is necessary for the compo-
nent to communicate through its ports.

t3pl_task_kill Forces a given task to stop executing.

t3pl_task_exit Exits the current task (called by the termi-
nating task itself).

t3pl_sem_create,
t3pl_sem_wait,
t3pl_sem_trywait,
t3pl_sem_timedwait,
t3pl_sem_post,
t3pl_sem_destroy

Semaphore primitives.

22 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

See Also

“PL Concurrency Functions” on page 337 in Chapter 7, Runtime System APIs

Memory

The RTS makes no assumption about the actual memory handling of an in-
tegration. It allocates, re-allocates, and deallocates memory only through the
PL Memory interface.

The interface is based on the (ANSI-C) malloc/realloc/free paradigm.
The functions that must be implemented are declared in the t3pl_memory.h
file in the include directory of the Rational Systems Tester installation.

Important!
It is vital that the memory module is working after the
t3pl_memory_pre_initialize function has been called.

Memory Functions

Function to implement Description

t3pl_memory_pre_initi
alize

Initializes as much as possible to make the
module work. The implementation of this func-
tion can not rely on configuration information
through RTconf. It is vital that the memory
module is working after this function has been
called.

t3pl_memory_initializ
e

Initializes (or re-initializes) the module. The im-
plementation of this function can rely on config-
uration information through RTconf

t3pl_memory_finalize Finalizes the module. The implementation of
this function can rely on configuration informa-
tion through RTconf

t3pl_memory_allocate Allocates the requested number of bytes of
memory.

t3pl_memory_deallocat
e

De-allocates (or releases) a block of memory.

t3pl_memory_reallocat
e

Reallocates (that is, resizes) a block of memory.

PL Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 23

See Also

“PL Memory Functions” on page 334 in Chapter 7, Runtime System APIs.

Runtime System Details

There are some concepts of the RTS that have to be handled (or
at least known) in any implementation using the RTL interface
and the RTS. The objects are used to carry data around the
system and to function as containers of all information during
runtime.

Runtime Context

Throughout the execution of a test suite a wide range of environmental data
is needed. For this purpose, a runtime context is passed around to (almost)
every function in the RTS. A context is created for each new TTCN-3 com-
ponent and is passed around throughout that component’s execution.

The context contains a diverse set of local information such as local verdict,
log instances, a temporary memory area, and so on.

The context is normally neveraccessed but is usually just passed around as
an opaque object.

Symbol Table

All the generated objects of the TTCN-3 test suite can be found by symbolic
lookup in a symbol table. This is accessed by the RTS whenever symbolic
information has to be mapped into relevant data. This can be the lookup of
test case functions by name, finding types and constants of a specific module,
and so on.

This table is a static entity in the generated code and cannot be made dy-
namic. However, this is not necessary since it contains statically declared
symbols for a specific TTCN-3 module.

Functions for accessing this data can be found in “RTL Symbol Table Func-
tions” on page 292 in Chapter 7, Runtime System APIs.

24 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

Control Part Component (CPC)

The phrase “executing a test suite” would be more correctly stated as “exe-
cuting the control part of the root module of the TTCN-3 test suite modules”.
In the RTS implementation, the control part always executes in the initial
process thread of the ETS, that is, the thread calling the t3rt_run
_test_suite function. The rest of the components can be distributed arbi-
trarily, it’s all up to the integration implementation.

For the purpose of executing the root module’s control part and to control all
the running test components, a control part component (CPC) is created.

PL Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 25

Component Distribution

An arbitrary number of parallel test components are created during the course
of the ETS execution. The number depends entirely on what is written in the
test suite.

The illustrations that follow show different component distribution topology
scenarios. The boxes in the figures depicts process boundaries, and the cir-
cles depicts tasks (threads of execution within the process boundary) in
which one component is executing. The process boundaries can also be ma-
chine boundaries. The arrows shows which component that creates another
component.

The “Main process” box is the main process of the ETS executable.

Note
The sole responsibility for starting new tasks in the appropriate process lies
on the t3pl_task_create function. See “PL Concurrency Functions”
on page 337 in Chapter 7, Runtime System APIs for further details.

All illustrations show a possible distribution topology scenario of a test case
(executed in an MTC) that has created two PTCs.

The above scenario depicts a threading only integration where no component
is run in a separate process. Unless special considerations must be made, this
topology is recommended as it probably is the most resource efficient and
best performing topology.

Figure 4: Single process ETS

Main process

CPC

PTC

MTC

PTC

26 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

This is the scenario that both the provided TRI based integration and the PL
based example integration is implementing.

In the above scenario, the major part of the test system is running in the main
process but one (or more) PTCs are running in a separate thread. This kind
of distribution might be required by some SUTs, perhaps in combination
with the kind of tests being performed.

This topology requires a more complex task creation implementation in the
integration, as well as support for inter-process communication.

Figure 5: PTC running in separate process

Figure 6: Running the test components in a separate process

PTC

Main process

CPC MTC PTC

Main process

CPC

PTC

MTC

PTC

PL Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 27

In this scenario, the test components are all running in a separate process
other than the control part components. This can be useful when the SUT is
running in another environment (for example, machine and operating
system) than the one the tester is running the tests from. Especially since the
communication between the test components and the SUT is the most time
critical for the test results.

Control Ports

All components that are running during the execution of a control part are
controlled by the control part component (CPC). The controlling mechanism
is message based, and all controlling messages are sent through control ports.
Each component has one (and only one) control port to which it is always lis-
tening for control messages.

All the component control relies on this control port mechanism, from com-
ponent startup, through execution, to shutting the system down when it has
been finished or an error has occurred.

What is required from the integration implementation in this area is the cre-
ation of the control ports (very similar to normal ports) and the service to
send binary data between such ports.

See Also

“Runtime Layer API” on page 48 in Chapter 7, Runtime System APIs

“Platform Layer API” on page 306 in Chapter 7, Runtime System APIs

“TRI API” on page 348 in Chapter 7, Runtime System APIs

28 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

Example Integration

This integration serves both as an example and as the template
for developing an integration of your own. It is therefore re-
leased as source code. You can find it in the /integra-
tions/example directory in the Rational Systems Tester in-
stallation directory.

Note
This example integration is delivered without support.
Changes in future versions will be done without prior notice.

Note
No codecs system is provided by the example integration. At least one has to
be provided. See the “Codecs Systems Overview” on page 42 in Chapter 5,
Codecs Systems.

General

The functions in the general module are left un-implemented. The implemen-
tation can be found in the example_general.c file. What have to be added
here is support for external function calls.

Timers

This example integration implements a passive timer scheme. The imple-
mentation can be found in the example_time.c file. If no special timer con-
sideration (like non-linear or non-real-timers) is needed, this implementation
should be directly reusable.

Communication

The communication part in the example integration, includes a representa-
tion of the currently created ports for the running components, as well as the
ports of the current system component.

Since communication is made in a multi-threaded environment, FIFO-like
queues are used for passing messages to components, instead of direct inser-
tions into port queues. The messages are dispatched into the proper port input
queues by the correct thread, when new information is checked by the re-
ceiving component (in the t3pl_component_wait function).

PL Based Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 29

An implementation can be found in the example_communication.c file.
The implementation is a pure “loop-back” (or “reflecting”) integration where
all SUT messages sent on one port is sent back on the same port directly, as
if the SUT had immediately responded with the same message on the same
port.This is one of the fundamental things that has to be changed in order to
make this a fully functional communication implementation.

Concurrency

The example integration is a threaded implementation which creates new
tasks in new threads within the same process. Support for distributing com-
ponents into separate processes are part of the RTS design, but the example
integration does not implement this.

The implementation can be found in the example_concurrency.c file.

Memory

The example integration implements the required functions on top of the
standard C memory primitives malloc, free, and so on. If this is sufficient, the
implementation can be directly reused. The example implementation can be
found in the example_memory.c file.

Components

This module contains the representation of a component and information
about all its port and timers. Thread information is also stored here for each
task. In the current implementation there is a logical one-to-one mapping be-
tween a task and component and a thread. (example_components.c)

Semaphores

The semaphores needed to protect the multi-threaded implementation is lo-
cated here. Semaphores are used to protect the critical sections and to syn-
chronize the threads. (example_semaphore.c)

Event queue

Component are executed in separate threads and event queues are used for
component-to-component communication. This is an indirection to make
sure that a thread other than the components own thread inserts data into port
queues. (example_eventqueue.c)

30 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 3: Integrations

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 31

4
Log Mechanisms

32 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 4: Log Mechanisms

Log Mechanisms Overview
If you have special requirements for log formats, destinations,
behavior, and so on for your implementation, user defined log
mechanisms can be developed and plugged into the RTS. This
is considered optional since built-in log mechanisms are pro-
vided and used by default.

A log mechanism is registered to the RTS, and for each component a log in-
stance will be created. These log instances is called each time something has
to be logged. When a component is terminated, the log instance is closed.

Since components have their own execution threads, and possibly different
memory address spaces, only events and information messages that occur in
a specific component will be logged to any log instance.

Note
In the case where components execute in separate threads within the same
process the log function have to be multi-thread safe. This is because the
same log function can potentially be called from more than one thread si-
multaneously.

Implementing Log Mechanisms

A log mechanism consists of a small set of functions: initialize,
finalize, open, close, and log event.

The intended place to register your own log mechanisms is the
t3ud_register_log_mechanisms function. This file must
then be compiled and linked with the ETS. Doing so will
“shadow” the empty t3ud_register_log_mechanisms
function already compiled into the RTS.

Init and Finalize

These two functions are called once. The init function is called in the ini-
tialization phase of the ETS, and the finalize function is called when the
root module’s control part has been executed.

Log Mechanisms Overview

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 33

Open and Close

The open and close functions are called to create and destroy log instances
respectively. These instances are then used as a log “stream” object to the log
function.

Log Event

The one (and only) logging function is called when something interesting has
happened (that is, after the actual event) in the RTS. It is called with the type
of the event and number of actual event parameters. There is a predefined set
of event types and they are generated by the RTS, or occasionally by the gen-
erated code.

The same event and parameters will be sent to all event log instances so that
no excessive event generation is performed.

Important!
It is crucial that the data is not tampered with (that is, modified or de-
stroyed) since all log instances will reuse the same data.

See Also

“RTL Port Functions” on page 146 in Chapter 7, Runtime System APIs

34 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 4: Log Mechanisms

Registering a Log Mechanism

This is an example of a working log mechanism that logs the verdict of an
executed test case to the stdout stream.

Example 1: Registering a Log Mechanism –––––––––––––––––––––––––––

/* My log mechanism log function in my_log.c. */
static void
my_log(t3rt_log_t log,

t3rt_log_event_kind_t event,
t3rt_source_location_t source_location,
t3rt_value_t params[],
t3rt_binary_string_t origin,
const char *origin_name,
bool forwarded, /* Future extension! */
t3rt_binary_string_t aux,
t3rt_context_t ctx)

{
t3rt_verdict_t verdict;
char *tcname;

if (event == t3rt_log_event_testcase_ended_c) {
t3rt_log_extract_testcase_ended(params,

NULL,
&tcname,
&verdict,
ctx);

printf(“Testcase %s ended in %s\n”,
tcname, t3rt_verdict_string(verdict));

}
}

...
/* Register my log mechanism in
t3ud_register_log_mechanisms.c. */

void
t3ud_register_log_mechanisms (void)
{
t3rt_log_register_listener(

“MyLog”,
t3rt_log_mechanism_version_1_c,
NULL, NULL, NULL, NULL, my_log);

}

–––

See Also

“RTL Log Functions” on page 149 in Chapter 7, Runtime System APIs

Pre-Defined Log Events

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 35

Pre-Defined Log Events
The following list covers the log events issued by the RTS
during execution. The actual parameters to these events are
available through the log event extraction functions (see “RTL
Log Functions” on page 149 in Chapter 7, Runtime System
APIs).

Log events that is prefixed with [sut] are two separate events that is either
component-component based, or component-SUT based. The Comment
column either states the TTCN-3 operation or statement that is the reason for
the event, or just a general comment.

Log event Comment

[sut] message sent,

[sut] message sent failed

send

[sut] message sent mc,

[sut] message sent failed
mc

send to (recipient1, recipient2)

[sut] message sent bc,

[sut] message sent failed
bc

send to all.component

[sut] message detected A message/call has been added to the destination
port input queue.

[sut] message received receive

[sut] message found check(receive)

[sut] message discarded trigger or as a result of a port being cleared.

sut action performed action

[sut] call initiated,

[sut] call failed

call

[sut] call initiated mc,

[sut] call failed mc

call to (recipient1, recipient2)

36 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 4: Log Mechanisms

[sut] call initiated bc,

[sut] call failed bc

call to all.component

[sut] call timed out An outgoing call failed to complete within speci-
fied period.

[sut] call detected An incoming call has been added to the destination
port input queue.

[sut] call received getcall

[sut] call found check(getcall)

[sut] reply sent,

[sut] reply failed

reply

[sut] reply sent mc,

[sut] reply failed mc

reply to (recipient1, recipient2)

[sut] reply sent bc,

[sut] reply failed bc

reply to all.component

[sut] reply detected An incoming reply has been added to the destina-
tion port input queue.

[sut] reply received getreply

[sut] reply found check(getreply)

[sut] exception raised,

[sut] raise failed

raise

[sut] exception raised
mc,

[sut] raise failed mc

raise to (recipient1, recipient2)

[sut] exception raised bc,

[sut] raise failed bc

raise to all.component

[sut] exception detected An exception was added to the procedure based
port’s queue.

[sut] exception caught catch

[sut] exception found check(catch)

Log event Comment

Pre-Defined Log Events

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 37

[sut] timeout exception
detected

An timeout exception was added to the procedure
based port’s queue.

[sut] timeout exception
caught

catch(timeout).

[sut] timeout exception
found

check(catch(timeout))

timer started <timer>.start

timer stopped <timer>.stop

timer read read

timer is running <timer>.running

time-out detected A time-out of a running timer has been detected.

time-out received,

time-out mismatch

timeout

component created create

component started <component>.start

component is running <component>.running

component is alive alive

component stopped <component>.stop

component killed kill

component terminated The component has been shut down by the RTS.

done check succeeded,

done check failed

done

killed check succeeded,

killed check failed

killed

port connected connect

port disconnected disconnect

port mapped map

Log event Comment

38 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 4: Log Mechanisms

port unmapped unmap

port enabled <port>.start

port disabled <port>.stop

port halted halt

port cleared clear

scope entered A TTCN-3 testcase, function or test step has been
entered.

scope left A TTCN-3 testcase, function or test step has been
exited.

local verdict changed setverdict

local verdict queried getverdict

alternative_activated activate

alternative_deactivated deactivate

variable modified An assignment operation has been performed.

template match failed receive/trigger/getcall/getreply/catch
or a separate attempted match did not succeed.

template mismatch Indicates the position where the template mis-
matched. (A template match failed event will
follow.)

template match begin Indicates the start of matching subtemplate

template match end Indicates the end of matching subtemplate

sender mismatch Indicates mismatch of the template specified in the
from clause

testcase started execute

testcase ended The testcase was finished.

testcase timed out The execute operation timed out.

testcase error A test case error occurred. Reported by the compo-
nent where the error occurred.

Log event Comment

Pre-Defined Log Events

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 39

message encoded A value was encoded successfully.

message encode failed A value was not encoded successfully.

message decoded A value was decoded successfully.

message decode failed A value was not decoded successfully.

info message Information message.

warning message Warning message.

error message Error message.

debug message Debug message.

TTCN-3 message log

alt entered Indicates entering alt block statement

alt left Indicates leaving alt block statement

alt rejected Guard expression in alternative evaluated to false

alt else else branch in alt block is selected

alt defaults Indicates starting evaluation of activated defaults

alt repeat repeat

alt wait Indicates execution reached end of alt block state-
ment while all alternatives failed to match, compo-
nent wait for new events

function call Indicates function call

external function call Indicates external function call

altstep call Indicates explicit altstep call

Log event Comment

40 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 4: Log Mechanisms

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 41

5
Codecs Systems

42 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 5: Codecs Systems

Codecs Systems Overview
Please refer to “Codecs Systems” on page 9 in Chapter 2, ETS
Architecture, for introductions to encoder and decoder func-
tions and codecs systems.

A codecs system is considered to be part of the integration
since at least one codecs system is required to be present by the
RTS.

A codecs system has only one responsibility. That is to – when presented
with a type of the TTCN-3 system – associate an encoder and decoder func-
tion for that type (if the codecs system is applicable for the given type). The
encoder and decoder functions of the codecs system are subsequently respon-
sible to encode and decode, respectively, when invoked from the RTS.

The codecs systems are activated by registering an initialization function
and a setup function by calling the t3rt_codecs_register function. The
initialization function should make sure that the encoders and decoder are
able to work, and the setup function must associate encoder and decoder
function if applicable.

See Also

“RTL Codecs Functions” on page 275 in Chapter 7, Runtime System APIs

Encoder and Decoder Functions
The RTS defines one function prototype for the encoder func-
tion, and one for the decoder function. All associated encoders
and decoders must have this prototype.

An encoder function will be called when a value is sent to the
SUT. The encoder function is retrieved from the value’s type.
The encoder function is given a binary data “container” that
must be filled with the encoded data.

A decoder function will be called whenever received data have to be con-
verted into a TTCN-3 RTS value, to be able to perform matching algorithms
(as well as other operations like, for example, logging). Typically, a decoder
function will be called when a receive operation is encountered, and a de-
code attempt must be made.

Registering a Codecs System

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 43

When decoding attempts are made, a decoder function must be able to handle
data that it can not decode. For these cases it must report that the decoding
failed, so that new attempts with other types’s decode functions can be tried.

Please refer to “RTL Value Functions” on page 75 in Chapter 7, Runtime
System APIs for information on how to access RTS value objects, and “RTL
Type Functions” on page 49 in Chapter 7, Runtime System APIs for informa-
tion on type information of how to access type information.

Note
The “with encode” statement for encoding attributes of TTCN-3 types are
accessed from the RTS type object (t3rt_type_t). This can be useful (or
even necessary) to associate the correct encoder and decoder in the setup
phase, and in the actual encoding and decoding.

Registering a Codecs System
The intended location to register a codecs system is in the
t3ud_register_codecs in the t3ud_register_codecs.c
file. This file must be compiled and linked with the ETS. Doing
so will “shadow” the empty t3ud_register_codecs function
already compiled into the RTS.

Example 2: A Codecs System Embryo––––––––––––––––––––––––––––––

/* t3ud_register_codecs.c

*

* This small example does not do any real encoding or
* decoding. It sets up the encoder/decoder functions for
* all types in the system. This can be done selectively
* given, for example, the type’s module name.
*/

#include “t3rts.h”

t3rt_codecs_result_t
ex_encode(t3rt_value_t value,

t3rt_binary_string_t encoded_data,
t3rt_context_t ctx)

{

/* Perform encoding by filling in the binary
data container*/

44 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 5: Codecs Systems

return t3rt_codecs_result_succeeded_c;

}

t3rt_codecs_result_t
ex_decode(t3rt_binary_string_iter_t* encoded_data,

t3rt_type_t type,
t3rt_alloc_strategy_t strategy,
t3rt_value_t * decoded_value,
t3rt_context_t ctx)

{

*decoded_value = t3rt_type_instantiate(type, strategy,
ctx);

/* Perform decoding */

return t3rt_codecs_result_succeeded_c;

}

void
ex_codec_setup(t3rt_type_t type, t3rt_context_t ctx)

{

t3rt_type_set_encoder(type, ex_encode, ctx);

t3rt_type_set_decoder(type, ex_decode, ctx);

}

/* Registers user-provided codecs */

void
t3ud_register_codecs (t3rt_context_t ctx)

{

/* This example doesn’t have to do any initialization.
This is why the init function is not registered.*/

t3rt_codecs_register(NULL, ex_codec_setup, ctx);

}

–––

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 45

6
Miscellaneous

46 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 6: Miscellaneous

Binary String Support
To satisfy the need for a binary data representation in the RTS for both en-
coding and decoding situations, as well as the representation of (component
and port) addresses, the binary string support has been implemented.

The binary string type and functions are primarily intended to be used by en-
coders and decoders.

See Also

“RTL Binary String Functions” on page 261 in Chapter 7, Runtime System
APIs

Wide String Support
To be able to internationalize the RTS and to provide a representation for the
universal charstring type, the wide string type has been implemented.
It is public since it has to be operated on by, for instance, log mechanisms.

See Also

“RTL Wide String Functions” on page 247 in Chapter 7, Runtime System
APIs

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 47

7
Runtime System APIs

48 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Runtime Layer API
This interface contains all the services that the RTS provides. It is both used
by the generated code from the IBM Rational Systems Tester Compiler and
from user implementation such as a non-TRI integration, codecs systems and
log mechanisms.

Although most functions in the RTL interface are public and can be used by
anyone, a number of them are only intended to be from the code generated
by the Rational Systems Tester Compiler.

See also

“RTL Function for Generated Code Only” on page 302 for a complete listing.

RTL Type Definitions

Descriptions of the C types that are used in the Runtime Layer API are spread
out to the functions where they are most relevant. Most of these types are ac-
cessed through functions, their actual, underlying, representation is not
meant to be public. However, a few types (for example
t3rt_symbol_entry_t) have a public representation which will be detailed
where appropriate. Type definitions of function prototypes are described
where they are used (functions used in codecs registration for instance).

t3rt_context_t

Throughout the execution an object of the type t3rt_context_t is passed
around to all RTS functions. It contains information about the current com-
ponent and a lot of other data.

Example 3: Function with t3rt_context_t parameter –––––––––––––––––––

t3rt_value_delete

Deletes the value and (recursively) all the value elements.

void t3rt_value_delete (t3rt_value_t *value, t3rt_context_t
context);

–––

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 49

RTL Type Functions
These are the type related functions that instantiates values and accesses type
information. Types are generated statically, so the functions have read-only
access, no dynamic type construction exists.

Note
The type representation is visible from a C perspective but should never be
directly de-referenced since that representation can change without notice.
Always use the type access functions.

Each user-defined type have generated type descriptors and the built-in types
of the TTCN-3 language has the following t3rt_type_t type descriptor
constants:

t3rt_integer_type
t3rt_float_type
t3rt_boolean_type
t3rt_verdicttype_type
t3rt_default_type
t3rt_charstring_type
t3rt_bitstring_type
t3rt_octetstring_type
t3rt_hexstring_type
t3rt_universal_charstring_type
t3rt_char_type
t3rt_universal_char_type
t3rt_address_type
t3rt_timer_type
t3rt_objectidentifier_type
t3rt_binary_string_type (added type, not TTCN-3)

There are also two special type descriptor constants that represent an illegal
type and a non-existing type. Many RTL type-related functions are not appli-
cable for these two type descriptors:

t3rt_illegal_type
t3rt_undefined_type

RTL Type Related Type Definition

The following are the C types used in the type related functions:

t3rt_type_t

A type descriptor representing a TTCN-3 type. It is a very central entity
of the RTS. The type descriptors are all static and are either statically
defined by the RTS or generated by the Rational Systems Tester Com-

50 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

piler. The structural definition of this descriptor happens to be public
but should never be accessed in any other way than with the type access
functions.

t3rt_type_kind_t

Represents the type kind of the TTCN-3 type, integer and record, and
so on. The difference between a “type” and the “type kind” is that the
record type in TTCN-3 is not a type on its own but have to be defined
further, while an integer is both a type and a type kind. So, the type de-
scriptor for the user-defined TTCN-3 type MyRecord will have the type
kind record.

t3rt_encoding_attr_t

Contains information about the “with encode”, “with variant”, “with
display“ and “with extension“ attribute if one is available for the type.
All attributes have this representation but are retrieved by four different
access functions t3rt_type_encode_attribute,
t3rt_type_variant_attribute, t3rt_type_display_attribute and
t3rt_type_extension_attribute. Additional functions may be used to
query attributes of type fields using either their names or indexes.

t3rt_field_properties_t

A numeric type that reflects the properties of a field in a structured type.
Retrieved through t3rt_type_field_properties.

t3rt_long_integer_t

The signed 64-bit integer type representation. Used, for example, in
t3rt_value_set_integer.

t3rt_unsigned_long_integer_t

The unsigned 64-bit integer type representation.

t3rt_type_instantiate_value

Creates a new value instance of a type.

t3rt_value_t t3rt_type_instantiate_value
(t3rt_type_t type,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 51

Parameters

Description

This function creates an uninitialized value instance of the given type.

In the majority of cases, the type descriptor is directly available when a value
has to be instantiated (for example in decoders). In those cases it is straight-
forward to make the instantiation.

In cases where values of TTCN-3 built-in types must be created, there are
constant type descriptors to use (for example the t3rt_integer_type type de-
scriptor to instantiate a pure integer value).

In rare cases, if a value has to be instantiated when no type descriptor is
present, the type descriptor can be located (by name) through the symbol
table. See RTL Symbol Table Functions for accessing type descriptors from
user-defined types.

Memory for the new instance is allocated according to the specified strategy.

After the value has been allocated, the post-processing function of the type,
if present, is called.

It is not possible to instantiate signature values from signature types.

Example Usage
/* Instantiate a value of a given type descriptor ‘type’*/
t3rt_value_t builtin_val =
t3rt_type_instantiate_value(type, t3rt_temp_alloc_c, ctx);
...
/* Instantiate an integer value */
t3rt_value_t builtin_val =
t3rt_type_instantiate_value(t3rt_integer_type,
t3rt_temp_alloc_c, ctx);
...
/* Instantiate a value of type MyType. */
t3rt_type_t type = t3rt_find_element(“MyType”, ctx);
t3rt_value_t my_val = t3rt_type_instantiate_value(type-
>type_descriptor, t3rt_temp_alloc_c, ctx);

type A TTCN-3 built-in or a generated type descriptor.

strategy Memory allocation strategy.

52 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

The newly created value. This never returns any special value constants
(t3rt_no_value_c, for example), a test case error will be generated if a value
can not be instantiated and the current test case will be terminated.

See also

“RTL Symbol Table Functions” on page 292

“t3rt_type_field_type” on page 59

“t3rt_type_template_base_type” on page 71

“t3rt_type_array_contained_type” on page 71

“t3rt_value_kind” on page 81

t3rt_type_instantiate_named_value

Creates a new value instance of the type with a given name.

t3rt_value_t t3rt_type_instantiate_named_value
(t3rt_type_t type,
 const char* name,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Same as t3rt_type_instantiate_value but with a charstring typed label at-
tached to it.

t3rt_type_check

Verifies that a value corresponds to a type.

bool t3rt_type_check

type The type to instantiate.

name Name of the value.

strategy Memory allocation strategy.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 53

(t3rt_type_t type,
 t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

Description

Checks if a value is compatible to a type. Built-in checks are made and a call
is made to the generated type check function which means that, for example,
type restrictions are checked.

Return Values

True if the value is compatible with the type, otherwise false.

See also

“t3rt_type_is_equal” on page 53

t3rt_type_is_equal

Checks if two type descriptors represent the same type.

bool t3rt_type_is_equal
(t3rt_type_t type1,
 t3rt_type_t type2,
 t3rt_context_t ctx);

Parameters

Description

Checks if two type descriptors are equal. Since it is not sufficient to compare
the type descriptors by the equality operator in C, this predicate should be
used instead of direct t3rt_type_t instance comparison.

type The type to check against.

value The value to check.

type1 A valid type descriptor.

type2 A valid type descriptor.

54 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

True if the types are the same, otherwise false.

See also

“t3rt_type_check” on page 52

t3rt_type_kind

Retrieves the type kind from the type.

t3rt_type_kind_t t3rt_type_kind
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

All type descriptors are of a specific type kind. The difference of a type and
a type kind is, for example, that integer is a type but record is a type kind.
This is because you can not instantiate a value of type record, it can only be
instantiated from a user-defined type based on record.

Return Value

The kind of the type, see t3rt_type_kind_t for applicable values.

t3rt_type_parent

Retrieves the parent type descriptor from the type.

t3rt_type_t t3rt_type_parent
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

type A valid type descriptor.

type A valid type descriptor.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 55

Description

While t3rt_type_field_type function obtains field type for a given structured
type descriptor this function behaves vice versa. For a given type that should
represent field type of some structured type (e.g. record) it returns type de-
scriptor of that parent type.

Return Value

Valid type descriptor if given type descriptor represents field type, NULL
otherwise.

t3rt_type_name, t3rt_type_definition_name

Returns the name of the type.

const char *t3rt_type_name
(t3rt_type_t type,
 t3rt_context_t ctx);

const char *t3rt_type_definition_name
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

Accesses the name of the type. The two functions only differ when the type
is imported.

Return Values

If the type is local (that is, not imported) the returned name will be the plain
type name.

If the type is imported, t3rt_type_name will return “<m>.<t>” where <m> is
the imported module and <t> the type name, and t3rt_type_definition_name
will just return the unqualified type name.

type The type to access.

56 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

See also

“t3rt_type_module, t3rt_type_definition_module” on page 56

t3rt_type_module, t3rt_type_definition_module

Returns the module name of a type.

const char *t3rt_type_module
(t3rt_type_t type,
 t3rt_context_t ctx);

const char *t3rt_type_definition_module
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

Accesses the module of the type. The two functions only differ if the type is
imported.

Return Values

If the type is local (that is, not imported) both functions return the same, ob-
vious, module name.

If the type is imported, t3rt_type_module returns the importing module name
and t3rt_type_definition_module returns the module name from where the
type was imported.

See also

“t3rt_type_name, t3rt_type_definition_name” on page 55

t3rt_type_qualified_name

Returns the name of a type qualified with the name of a module name.

const char *t3rt_type_qualified_name
(t3rt_type_t type,
 t3rt_context_t ctx);

type The type to access.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 57

Parameters

Description

Returns a type name which is qualified with a module name, separated by a
‘.’ (PERIOD) character, for example “Mod1.MyType”.

The module name is always the module in which the type is defined.

Return Values

Returns a qualified name, allocated in temporary memory.

See also

“t3rt_type_name, t3rt_type_definition_name” on page 55

“t3rt_type_module, t3rt_type_definition_module” on page 56

t3rt_type_field_count

Returns number of sub-fields of the specified type.

unsigned long t3rt_type_field_count
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

This is applicable to structured types (for example records and sets) where
the number returned in the number of fields in the type declaration.

It is also applicable to template types (number of formal parameters), signa-
ture types (number of formal parameters) and enumerated types (number of
enumerated elements).

Zero field in the signature type represents type of the returned value.

type The type to access.

type A valid type descriptor of a structured type.

58 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

The number of “fields” in the type, zero if not applicable or no fields are
found.

t3rt_type_field_name

Returns the name associated with indicated sub-field of the specified type.

const char * t3rt_type_field_name
(t3rt_type_t type,
 unsigned long field_index,
 t3rt_context_t ctx);

Parameters

Description

This is applicable to structured types (for example records and sets) where
the name is the name of the field in the type declaration.

It is also applicable to template types (name of formal parameter at index),
signature types (name of formal parameter at index) and enumerated types
(name of enumerated element at index).

Indices always starts from zero in all field access by index. If the index is not
valid, a test case error will be generated and the test case will terminate.

Zero field in the signature type represents type of the returned value.

Return Values

The name of the “field”.

t3rt_type_field_index

Returns the index associated with indicated sub-field of the specified type.

unsigned long t3rt_type_field_index
(t3rt_type_t type,

type A valid type descriptor.

field_index A valid field index of the type descriptor. Indexes
always starts from zero.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 59

 const char *field_name,
 t3rt_context_t ctx);

Parameters

Description

This is applicable to structured types that have declared fields with names
(for example records and sets).

It is also applicable to template types (index of named formal parameter), sig-
nature types (index of names formal parameter) and enumerated types (index
of named enumerated element).

Indices always starts from zero in all field access by index.

Return Values

The index of the named “field”. If no field could be found,
t3rt_no_field_index_c is returned.

t3rt_type_field_type

Returns the type associated with indicated sub-field of the specified type.

t3rt_type_t t3rt_type_field_type
(t3rt_type_t type,
 unsigned long field_index,
 t3rt_context_t ctx);

Parameters

value A valid type descriptor.

field_name A valid field name of the type descriptor.

type A valid type descriptor

field_index A valid field index of the type descriptor. Indexes
always starts from zero.

60 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This is applicable to structured types (for example records and sets) with
typed fields.

It is also applicable to template types (type of formal parameter at index), sig-
nature types (type of formal parameter at index) and enumerated types (type
of enumerated element at index).

Indices always starts from zero in all field access by index. If the index is not
valid, a test case error will be generated and the test case will terminate.

Zero field in the signature type represents type of the returned value.

Return Values

The type of the indicated field.

t3rt_type_field_properties

Returns the type associated with indicated sub-field of the specified type.

t3rt_field_properties_t t3rt_type_field_properties
(t3rt_type_t type,
 unsigned long field_index,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the field properties of the given field in this structured type.

Zero field in the signature type represents type of the returned value.

Return Values

A field can have one of the following values:

type A valid type descriptor representing a structured
type, for example a record, a template or a signature
type.

field_index A valid index with respect to the number of fields
in the type. Indexes always starts from zero.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 61

t3rt_type_enum_named_values_count

Returns number of named values of the specified enumerated type.

unsigned long t3rt_type_enum_named_values_count
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values

The number of enumerated elements in the type.

Field Property Description

t3rt_field_property_no_property_c No properties

t3rt_field_property_mandatory_c This is the default attribute when the
field is not optional.

t3rt_field_property_optional_c The field is optional according to the
type definition (which is either a record
or a set type).

t3rt_field_property_in_value_c The field represents an in parameter of a
type with formal parameters (for ex-
ample a template or a signature).

t3rt_field_property_out_value_c The field represents an out parameter of
a type with formal parameters (for ex-
ample a template or a signature).

t3rt_field_property_inout_value_c The field represents an inout parameter
of a type with formal parameters (for ex-
ample a template or a signature).

t3rt_field_property_return_value_c The field represents the return type of a
type that has a return type (for example
a signature).

type A valid type descriptor for an enumerated type.

62 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_type_enum_name_by_index

Returns the name associated with the indicated position of the specified enu-
merated type.

const char * t3rt_type_enum_name_by_index
(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values

Returns the name of the enumerated element at the given index.

t3rt_type_enum_number_by_index

Returns the number associated with the indicated position of the specified
enumerated type.

t3rt_long_integer_t t3rt_type_enum_number_by_index
(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values

The enumeration number of the named element.

type A valid type descriptor for an enumerated type.

index A valid index within the range from 0 to one less
than the number of enumerated elements. A test
case will be generated otherwise.

type A valid type descriptor for an enumerated type.

index A valid index within the range from 0 to one less
than the number of enumerated elements. A test
case will be generated otherwise.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 63

t3rt_type_enum_name_by_number

Returns the name associated with the indicated number of the specified enu-
merated type.

const char * t3rt_type_enum_name_by_number
(t3rt_type_t type,
 t3rt_long_integer_t named_value_number,
 t3rt_context_t ctx);

Parameters

Return Values

The name of the enumerated element for the given enumerated (integer)
value or NULL if the number can not be found.

t3rt_type_enum_number_by_name

Returns the number associated with the indicated name of the specified enu-
merated type.

t3rt_long_integer_t t3rt_type_enum_number_by_name
(t3rt_type_t type,
 const char *named_value_name,
 t3rt_context_t ctx);

Parameters

Return Values

The enumeration number of the named element or t3rt_no_enum_number_c
if no such named element can be found.

type A valid type descriptor for an enumerated type.

named_value_number A valid number in the enumerated type.

type A valid type descriptor for an enumerated type.

named_value_name A valid enumerated element in the enumerated
type.

64 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_type_field_encode_attribute_by_name

Returns encoding attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_encode_attribute_by_name

(t3rt_type_t type,
 const char *fieldname,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with encode” attribute descriptor for the given type field
identified using its field name.

t3rt_type_field_encode_attribute_by_index

Returns encoding attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_encode_attribute_by_index

(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with encode” attribute descriptor for the given type field
identified using its field index.

t3rt_type_field_variant_attribute_by_name

Returns variant attribute associated with a type's field.

t3rt_encoding_attr_t

type A valid type descriptor.

field_name Type field name.

type A valid type descriptor.

index Type field index.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 65

t3rt_type_field_variant_attribute_by_name
(t3rt_type_t type,
 const char *fieldname,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with variant” attribute descriptor for the given type field identified
using its field name.

t3rt_type_field_variant_attribute_by_index

Returns variant attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_variant_attribute_by_index

(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with variant” attribute descriptor for the given type field identified
using its field index.

t3rt_type_field_display_attribute_by_name

Returns display attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_display_attribute_by_name

(t3rt_type_t type,
 const char *fieldname,
 t3rt_context_t ctx);

type A valid type descriptor.

field_name Type field name.

type A valid type descriptor.

index Type field index.

66 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Return Values
Returns “with display” attribute descriptor for the given type field
identified using its field name.

t3rt_type_field_display_attribute_by_index

Returns display attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_display_attribute_by_index

(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with display” attribute descriptor for the given type field
identified using its field index.

t3rt_type_field_extension_attribute_by_name

Returns extension attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_extension_attribute_by_name

(t3rt_type_t type,
 const char *fieldname,
 t3rt_context_t ctx);

Parameters

type A valid type descriptor.

field_name Type field name.

type A valid type descriptor.

index Type field index.

type A valid type descriptor.

field_name Type field name.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 67

Return Values
Returns “with extension” attribute descriptor for the given type field
identified using its field name.

t3rt_type_field_extension_attribute_by_index

Returns extension attribute associated with a type's field.

t3rt_encoding_attr_t
t3rt_type_field_extension_attribute_by_index

(t3rt_type_t type,
 unsigned long index,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with extension” attribute descriptor for the given type field
identified using its field index.

t3rt_type_encode_attribute

Returns the encode attribute associated with the type.

t3rt_encoding_attr_t t3rt_type_encode_attribute
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with encode” attribute descriptor for the given type.

t3rt_type_variant_attribute

Returns the variant attribute associated with the type.

t3rt_encoding_attr_t t3rt_type_variant_attribute

type A valid type descriptor.

index Type field index.

type A valid type descriptor.

68 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with variant” attribute descriptor for the given type.

t3rt_type_display_attribute

Returns the display attribute associated with the type.

t3rt_encoding_attr_t t3rt_type_display_attribute
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with display” attribute descriptor for the given type.

t3rt_type_extension_attribute

Returns the extension attribute associated with the type.

t3rt_encoding_attr_t t3rt_type_extension_attribute
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Return Values
Returns “with extension” attribute descriptor for the given type.

type A valid type descriptor.

type A valid type descriptor.

type A valid type descriptor.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 69

t3rt_encoding_attr_get_specifier

Returns the free text string specifier of the encode, variant, display or exten-
sion attribute.

const char* t3rt_encoding_attr_get_specifier
(t3rt_encoding_attr_t attr,
 t3rt_context_t ctx);

Parameters

Description

This function returns character string that represents attribute specifier as de-
fined in the TTCN-3 module. ‘attr’ parameter should be a valid attribute de-
scriptor previously obtained by one of the attribute extraction functions (e.g.
t3rt_type_encode_attribute).

Return Values
Returns character string attribute specifier as defined in the TTCN-3
module.

t3rt_encoding_attr_is_override

Predicates telling if the attribute specification has been overridden by envel-
oping TTCN-3 element.

bool t3rt_encoding_attr_is_override
(t3rt_encoding_attr_t attr,
 t3rt_context_t ctx);

Parameters

Description

This function tests whether given attribute has been overridden by the at-
tribute specification of enveloping TTCN-3 element, which declares at-
tribute with “override“ statement. This function only informs about the hap-
pened overriding. There is no way of accessing original attribute specifier.

attr A valid attribute descriptor.

attr A valid attribute descriptor.

70 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values
Returns true if attribute specifier represents attribute of enveloping TTCN-
3 element declared with “override“ statement, false otherwise.

t3rt_type_array_size

Retrieves the size of the array type.

unsigned long t3rt_type_array_size
(t3rt_type_t array_type,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the size in elements of the given array type.

Return Values

The size of the array type.

t3rt_type_array_base_index

Retrieves lower subscription index of the array type.

unsigned long t3rt_type_array_base_index
(t3rt_type_t array_type,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the lower subscription index of the given array type.

array_type The array type itself.

array_type The array type itself.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 71

Return Values

For the majority of the array types this function returns zero. This is the case
for the below mentioned ‘my_array’ type.

type integer my_array[10];

‘my_array’ type has size of 10 with base index equal to 0.

When array type defines lower boundary then base index may be greater than
zero.

type integer another_array[5..10];

‘another_array’ type has size of 6 with base index equal to 5.

t3rt_type_array_contained_type

Retrieves the type of the elements of this array type.

t3rt_type_t t3rt_type_array_contained_type
(t3rt_type_t array_type,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the type descriptor that is the type of the value elements of this
array type.

Return Values

The valid type descriptor for the array elements.

t3rt_type_template_base_type

Retrieves the base type of this template type.

t3rt_type_t t3rt_type_template_base_type
(t3rt_type_t type,
 t3rt_context_t ctx);

array_type The array type itself.

72 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

Retrieves the base type of the given template type. In the template definition

template integer my_template := 7

calling this function against ‘my_template’ type descriptor returns type de-
scriptor for the ‘integer’ data type.

Return Values

The valid type descriptor for the base template type.

t3rt_template_description

Retrieves unparsed template description as defined in the TTCN-3 module

const char * t3rt_template_description
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

Retrieves the unparsed template constraint as defined in the TTCN-3
module. This function relies on the information generated by the compiler.
Usually template constraint is truncated to 100 characters to make generated
code smaller however you may control the maximum size of generated tem-
plate description using “-l <max_length>“ compiler option. If template con-
straint has been truncated then compiler appends “...“ string to the end of it.

Return Values

Returns character string that represents template constraint as defined in the
TTCN-3 module.

type The template type itself.

type The template type itself.

RTL Type Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 73

t3rt_type_set_encoder

Sets the encoder function of the type descriptor.

void t3rt_type_set_encoder
(t3rt_type_t type,
 t3rt_encoder_function_t encoder_function,
 t3rt_context_t ctx);

Parameters

Description

This will set the encoder function of the type descriptor. There can be only
one encoder function for each type.

The encoder function will be called prior to sending a value on a port.

This function is typically called from a registered codecs system’s setup
function.

If you are using coders implemented with TCI CD interface then you need to
set t3rt_tci_encode as an encoder function.

See also

“RTL Codecs Functions” on page 275

t3rt_type_set_decoder

Sets the decoder function of the type descriptor.

void t3rt_type_set_decoder
(t3rt_type_t type,
 t3rt_decoder_function_t decoder_function,
 t3rt_context_t ctx);

Parameters

type The type to set encoder function for.

encoder_function Function to set.

type The type to set decoder for.

decoder_function Function to set.

74 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This will set the decoder function of the type descriptor. There can be only
one decoder function for each type.

The decoder function will be used to decode an incoming value before any
TTCN-3 operations (for example match) are performed.

This function is typically called from a registered codecs system’s setup
function.

If you are using coders implemented with TCI CD interface then you need to
set t3rt_tci_decode as a decoder function.

See also

“RTL Codecs Functions” on page 275

t3rt_type_get_encoder

Retrieve the encoder function of the type descriptor.

t3rt_encoder_function_t t3rt_type_get_encoder
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

This will retrieve the encoder function of the type descriptor. There can be
only one encoder function for each type.

The encoder function will be called prior to sending a value on a port.

Return Values

The set function pointer or NULL if none is present.

type Type descriptor from which to retrieve the encoder
function.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 75

See also

“RTL Codecs Functions” on page 275

t3rt_type_get_decoder

Retrieve the decoder function of the type descriptor.

t3rt_decoder_function_t t3rt_type_get_decoder
(t3rt_type_t type,
 t3rt_context_t ctx);

Parameters

Description

This will retrieve the registered decoder function of the type descriptor.
There can be only one decoder function for each type.

The decoder function will be used to decode an incoming value before any
TTCN-3 operations (for example match) are performed.

Return Values

The set function pointer or NULL if none is present.

See also

“RTL Codecs Functions” on page 275

RTL Value Functions
These are the value related functions that handles the variables, timers, ports,
and component references in TTCN-3.

The actual value representation is internal and the values can only be manip-
ulated through functions.

type Type descriptor from which to retrieve the decoder
function.

76 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

The following value constants (of type t3rt_value_t) are defined, and
where and when they are used is described among the individual API func-
tions.

t3rt_illegal_value_c
t3rt_omit_value_c
t3rt_anyone_value_c
t3rt_anyornone_value_c
t3rt_no_value_c
t3rt_not_used_value_c
t3rt_value_any_c
t3rt_value_all_c
t3rt_value_no_return_c
t3rt_timeout_exception_c
t3rt_value_null_address_c
t3rt_value_true_c
t3rt_value_false_c
t3rt_value_verdict_pass_c
t3rt_value_verdict_fail_c
t3rt_value_verdict_inconc_c
t3rt_value_verdict_none_c
t3rt_value_verdict_error_c
t3rt_value_null_default_reference_c
t3rt_value_null_component_reference_c

RTL Value Related Type Definitions

t3rt_value_t

The representation of a variable, timer, component (reference), port
(reference), and so on. Basically all entities that can be passed as param-
eters to functions, test step, test cases, and so on, or declared within
component types.

t3rt_verdict_t

An enumeration of all the possible verdicts in TTCN-3.

t3rt_value_copy

Returns a newly created “deep” copy of the value.

t3rt_value_t t3rt_value_copy
(const t3rt_type_t value,
 const t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 77

Parameters

Description

Some kinds of values (timers, port and component records) cannot be copied.
Copied value has to be fully initialized. Use t3rt_value_is_initialized to
check whether given value is initialized. Calling this function for not-initial-
ized values results in test case error.

Return Values
Copy of given value allocated according to specified memory allocation
strategy.

t3rt_value_parent

Returns parent (enveloping) value of the given value

t3rt_value_t t3rt_value_parent
(const t3rt_value_t value,
 t3rt_context_t context);

Parameters

Description

This function is applicable to the various types of values: records, sets, ar-
rays, unions, signatures, etc. Given an element of a structured value it returns
reference to the compound value that contains given element. If “value“ is
not an element of a compound value then this function returns
t3rt_no_value_c special value.

Example Usage
/* Suppose ‘record_value’ is a value of record type */
/* ‘element_value’ is a first field in this record value */

t3rt_value_t element_value =

value The value to copy.

alt_index Memory allocation strategy for the created copy of
the original value.

value Element of the structured value.

78 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_value_field_by_index(record_value, 0, ctx);
...
/* Get reference to record value using field value */
t3rt_value_t parent_value =
t3rt_value_parent(element_value, ctx);
...
/* Parent value for ‘element_value’ is a ‘record_value’*/
assert(parent_value == record_value);

Return Values
Parent value for the given element value.

t3rt_value_is_dynamic_template

Checks whether underlying value is a generic value or a dynamic template.

bool t3rt_value_is_dynamic_template
(const t3rt_value_t value,
 t3rt_context_t context);

Parameters

Description

This function may be used to distinguish dynamic templates from generic
values.

Return Values
Returns true if provided value represents template, false if it’s a generic
value.

t3rt_value_set_union_alternative_by_index

Returns the newly created uninitiated value for the alternative.

t3rt_value_t t3rt_value_set_union_alternative_by_index
(t3rt_value_t union_value,
 unsigned long alt_index,
 t3rt_context_t context);

value Value to be checked.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 79

Parameters

Description

Initializes the union value by calling t3rt_type_instantiate_value for the type,
corresponding to alternative. The initialization uses the same allocation
strategy as the union value. Returns the newly created uninitiated value for
the alternative.

If the new alternative is different from the current alternative, the allocated
value will be de-allocated and replaced by a newly instantiated (uninitiated)
value. If the new alternative is the same as the current one, this function will
keep the existing value.

Return Values

The union value given as input parameter.

t3rt_value_set_union_alternative_by_name

Returns the newly created uninitiated value for the alternative.

t3rt_value_t t3rt_value_set_union_alternative_by_name
(t3rt_value_t union_value,
 const char* alt_name,
 t3rt_context_t context);

Parameters

union_value The union value to initialize.

alt_index The index of the alternative to select. An index that
does not correspond to a valid alternative according
to the type will give a test case error.

union_value The union value to initialize.

alt_name The name of the alternative to select. A name that
does not correspond to a valid alternative according
to the type will give a test case error.

80 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

Initializes the union value by calling t3rt_type_instantiate_value for the type,
corresponding to alternative. The initialization uses the same allocation
strategy as the union value. Returns the newly created uninitiated value for
the alternative.

If the new alternative is different from the current alternative, the allocated
value will be de-allocated and replaced by a newly instantiated (uninitiated)
value. If the new alternative is the same as the current one, this function will
keep the existing value.

Return Values

The union value given as input parameter.

t3rt_value_delete

Deletes the value and (recursively) all the value elements.

void t3rt_value_delete
(t3rt_value_t *value,
 t3rt_context_t context);

Parameters

Description

It’s not necessary to delete values allocated in the temporary memory (i.e.
values allocated with t3rt_temp_alloc_c strategy) since deallocation of ob-
jects in temporary memory is performed automatically by the runtime
system.

t3rt_value_is_initialized

Checks if value and all its elements (recursively) are initialized.

bool t3rt_value_is_initialized
(t3rt_value_t value,
 t3rt_context_t context);

value Address of a value to be deleted.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 81

Parameters

Description
Some of value operations (e.g. copy, assign, encode) requires used value to
be fully initialized. Arrays (including “record of” and “set of”) are treated
as not initialized if they have undefined elements. Omitted optional fields
in records and sets should be explicitly assigned with “omit“ value using
t3rt_value_set_omit otherwise they also are treated as not-initialized.

Return Values

Returns “true“ if value is initialized, false otherwise.

t3rt_value_kind

Calls the t3rt_type_kind function.

t3rt_type_kind_t t3rt_value_kind
(t3rt_value_t value,
 t3rt_context_t context);

Parameters

Description

This function simply calls t3rt_type_kind for the value type, i.e. it’s the same
as calling t3rt_type_kind(t3rt_value_type(value, context), context).

Return Values

Returns type kind of the value type.

t3rt_value_type

Returns the type descriptor for the type of the value.

t3rt_type_t t3rt_value_type
(const t3rt_value_t value,
 t3rt_context_t context);

value Value to be checked.

value Valid value descriptor.

82 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Return Values

Returns the type descriptor for the type of the value.

t3rt_value_set_label

Sets a label (for example name) of a value.

void t3rt_value_set_label
(t3rt_value_t value,
 t3rt_value_t label,
 t3rt_context_t context);

Parameters

Description

This applies a label on a value. The label is also any kind of value to keep this
general. It is most widely use with a charstring value signifying a variable
name for instance.

It is applied automatically for instantiated ports and timers that are declared
inside a component type definition when the component is instantiated.

The set label is retrieved by calling the t3rt_value_label function.

See also

“t3rt_type_instantiate_named_value” on page 52

t3rt_value_label

Retrieves the label of the value.

t3rt_value_t t3rt_value_label
(const t3rt_value_t value,
 t3rt_context_t context);

value Valid value descriptor.

value The value to label.

label The label of the value.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 83

Parameters

Description

The label is an arbitrary value that serves as a “name” for the value.

For generated entities, the name is a charstring typed value with the name
of the declared entity (for example variables, timers, ports, and so on).

Return Values

The label value. If no label has been set the t3rt_no_value_c constant is re-
turned.

t3rt_value_allocation_strategy

Returns the memory allocation strategy used for allocation of the value.

t3rt_alloc_strategy_t t3rt_value_allocation_strategy
(const t3rt_value_t value,
 t3rt_context_t context);

Parameters

Description

All elements of a compound value are allocated always using one and the
same strategy. It’s not possible to have some elements of a value to be allo-
cated in permanent memory and other elements - in temporary memory.

Return Values

Returns the memory allocation strategy used for allocation of the value.

t3rt_value_string_length

Returns the length of the string value.

unsigned long t3rt_value_string_length

value Valid value descriptor.

value Valid value descriptor.

84 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

(t3rt_value_t string_value,
 t3rt_context_t context);

Parameters

Description

This function operates on charstring, bitstring, octetstring, hexstring, uni-
versal charstring and binary string values. The length is measured in ele-
ments of a certain string type. Length of octetstring is measured in octets
while each octet is represented by two hex symbols. Length of binary string
is measured in bits.

Return Values

Length of a string value measured in elements.

t3rt_value_vector_size

Returns size of the vector.

unsigned long t3rt_value_vector_size
(t3rt_value_t vector_value,
 t3rt_context_t context);

Parameters

Description

This function operates on setof, recordof, array, set, record, objectidentifier,
signature, and template values. Undefined and omitted elements are also
counted.

Return Values

The number of element in the vector.

string_value Value of one of the string types.

vector_value Value of one of the vector types.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 85

t3rt_value_set_vector_size

Resizes a recordof or setof value by adding or removing elements when nec-
essary.

void t3rt_value_set_vector_size
(t3rt_value_t vector_value,
 const unsigned long new_size,
 t3rt_context_t context);

Parameters

Description

This function operates only on setof and recordof.

When called, the size of the vector will be modified. If the vector is short-
ened, the truncated elements are de-allocated normally and if the vector is
lengthened, the special value constant t3rt_not_used_value_c is added as
placeholder for each new element.

To set fields of a vector, use “t3rt_value_assign_vector_element” on page
97.

t3rt_value_set_vector_empty

Initialize a vector value to being empty.

void t3rt_value_set_vector_empty
(t3rt_value_t vector_value,
 t3rt_context_t context);

Parameters

Description

This function operates on setof, recordof, array, record, set and signature
values.When called, the value will be initialized to empty.

vector_value The vector value to set.

new_size The desired size of the vector.

vector_value The vector value to set.

86 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

For arrays, the size of the array must be zero or a test case error will be gen-
erated. For recordof and setof if the value contains elements it will behave
like t3rt_value_set_vector_size passing it zero length. For record, set and sig-
nature values this function will assign t3rt_not_used_value_c to all fields.

When implementing decoder for a vector type it’s necessary to call this func-
tion for a record or set value even if record type definition doesn’t contain
fields.

To set fields of a vector, use “t3rt_value_assign_vector_element” on page
97.

t3rt_value_field_by_index

Returns the value of the indicated field.

t3rt_value_t t3rt_value_field_by_index
(t3rt_value_t value,
 unsigned long field_index,
 t3rt_context_t context);

Parameters

Description

This function operates on setof, recordof, array, record, set, signature and
template values. For all kinds of values except recordof and setof specified
field index should not exceed ordinal index of last field value.

When applied to recordof and setof value while “field_index” is greater than
value size this function expands recordof/setof assigning
t3rt_not_used_value_c to all new elements.

If requested field value has not been defined then this function instantiates
specified field value and returns uninitialized value instance. Returned value
is lvalue (that is, the returned element can be used in assignment). There is
no need to use t3rt_value_assign_vector_element after filling returned field
value.

value Valid vector value.

field_index Zero based position of the requested field.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 87

Return Values

Returns previously set or fresh instance of (if field has not been defined) field
value.

t3rt_value_field_by_name

Returns the value of the indicated field.

t3rt_value_t t3rt_value_field_by_name
(t3rt_value_t value,
 const char *field_name,
 t3rt_context_t context);

Parameters

Description

This function is similar to t3rt_value_field_by_index but queries field value
using given field name. This function operates only on records, sets, signa-
tures and templates.

The field with the provided name should exist in the underlying type. The
name of field may be obtained by its ordinal index inside structured type with
the help of “t3rt_type_field_name” on page 58 function.

Return Values

Returns previously set or fresh instance of (if field has not been defined) field
value.

t3rt_value_vector_element

Returns the value of the vector’s indicated element.

t3rt_value_t t3rt_value_vector_element
(t3rt_value_t value,
 unsigned long element_index,
 t3rt_context_t context);

value Valid vector value.

field_name Name of the requested field.

88 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function behaves similar to t3rt_value_field_by_index.

Return Values

Returns the value of the specified element.

t3rt_value_string_element

Returns the newly created string value containing the indicated element of
the given string.

t3rt_value_t t3rt_value_string_element
(t3rt_value_t string_value,
 unsigned long element_index,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Description

This function operates on charstring, octetstring, bitstring, hexstring and uni-
versal charstring type values. The type of the returned value depends on the
type of the given string. For charstring and universal charstring values this
function returns char and universal char values correspondingly. For other
string types it returns value of the same type but containing only one (speci-
fied) element.

Specified element index should point to element within string boundaries
otherwise test case error is generated.

value Valid vector value.

element_index Zero based position of the requested element.

value Valid string value.

element_index Zero based position of the requested element.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 89

t3rt_value_union_value

Returns the value of the union value.

t3rt_value_t t3rt_value_union_value
(t3rt_value_t union_value,
 t3rt_context_t context);

Parameters

Description

This function returns value that represents chosen union variant. If no union
variant has been chosen then test case error is generated.

Return Values

Returns chosen union variant value.

t3rt_value_union_index

Returns the index of the current union alternative.

unsigned long t3rt_value_union_index
(t3rt_value_t union_value,
 t3rt_context_t context);

Parameters

Description

This function returns zero based index of chosen union variant.If no union
variant has been chosen then -1 is returned.

Return Values

Returns index of chosen alternative or -1 if union alternative has not been set.

value Valid union value.

value Valid union value.

90 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_value_get_integer

Extract the corresponding integer from the TTCN-3 runtime system value
representation.

t3rt_long_integer_t t3rt_value_get_integer
(const t3rt_value_t integer_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_enum_number

Extract integer of the corresponding enumeration from the TTCN-3 runtime
system value representation.

t3rt_long_integer_t t3rt_value_get_enum_number
(const t3rt_value_t enum_value,
 t3rt_context_t context);

Parameters

Description

This is a function that is used for mapping simple values from the RTS value
representation to a corresponding representation in the target language (cur-
rently the C language).

integer_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

enum_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 91

t3rt_value_get_enum_name

Extract the corresponding name of the enumeration value.

const char* t3rt_value_get_enum_name
(const t3rt_value_t enum_value,
 t3rt_context_t context);

Parameters

Description

This function is used to extract the name of the enumeration value according
to the information in the value’s type.

t3rt_value_get_float

Extract the corresponding floating-point value from the TTCN-3 runtime
system value representation.

double t3rt_value_get_float
(const t3rt_value_t float_value,
 t3rt_context_t context) ;

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

enum_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

float_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

92 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_value_get_boolean

Extract the corresponding boolean value from the TTCN-3 runtime system
value representation.

bool t3rt_value_get_boolean
(const t3rt_value_t boolean_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_char

Extract the corresponding character value from the TTCN-3 runtime system
value representation.

char t3rt_value_get_char
(const t3rt_value_t char_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

boolean_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

char_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 93

t3rt_value_get_string

Extract the corresponding string value from the TTCN-3 runtime system
value representation.

const char* t3rt_value_get_string
(const t3rt_value_t string_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_universal_char

Extract the corresponding universal character value from the TTCN-3
runtime system value representation.

const t3rt_wide_char_t * t3rt_value_get_universal_char
(const t3rt_value_t universal_char_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

string_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

universal_char_v
alue

Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

94 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_value_get_universal_charstring

Extract the corresponding wide string value from the TTCN-3 runtime
system value representation.

t3rt_wide_string_t t3rt_value_get_universal_charstring
(const t3rt_value_t widestring_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for map simple values from the RTS value
representation to a corresponding representation in the target language (cur-
rently the C language).

t3rt_value_get_binary_string

Extract the corresponding binary data value from the TTCN-3 runtime
system value representation.

t3rt_binary_string_t t3rt_value_get_binary_string
(const t3rt_value_t binary_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

widestring_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

binary_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 95

Note
This type of a binary_string value is not defined in ETSI ES 201 873-1
V2.2.1. This is a proprietary value type that has been introduced to be able
to pass around generic binary data in a uniform way.

t3rt_value_get_verdict

Extract the corresponding verdict value from the TTCN-3 runtime system
value representation.

t3rt_verdict_t t3rt_value_get_verdict
(const t3rt_value_t verdict_value,
 t3rt_context_t context);

Parameters

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_port_address

Extract the corresponding address from the TTCN-3 runtime system value
representation.

t3rt_binary_string_t t3rt_value_get_port_address
(const t3rt_value_t portref_value,
 t3rt_context_t context);

Parameters

verdict_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

portref_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

96 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This is the function that is used for mapping simple values from the RTS
value representation to a corresponding representation in the target language
(currently the C language).

t3rt_value_get_objectid_element

Retrieves object identifier number from the specified position.

unsigned long t3rt_value_get_objectid_element
(const t3rt_value_t objid_value,
 unsigned long index,
 t3rt_context_t context);

Parameters

Description
This function extracts object identifier element from the specified position.
Index parameter should be a zero based integer value. If index is greater
than the length of object identifier value minus 1 then test case error is
generated. Use t3rt_value_vector_size function to get the length of object
identifier value.

Return Values

Returns integer representing object identifier element at specified position.

t3rt_value_assign

Assign one, fully initialized, value to another.

void t3rt_value_assign
(t3rt_value_t lvalue,
 const t3rt_value_t rvalue,
 t3rt_context_t context);

objid_value Value to extract from. If the value is not appropriate
for the extraction operation a test case error will be
generated.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 97

Parameters

Description

First, this function checks if rvalue is compatible with the type of the lvalue
(done by calling the t3rt_type_check function). Then, for the values of basic
types, it simply copies the target value from rvalue into lvalue. For all other
types, it does an element-wise assignment recursively.

See also

“t3rt_type_instantiate_value” on page 50

“t3rt_value_copy” on page 76

“t3rt_value_assign_vector_element” on page 97

“t3rt_value_assign_string_element” on page 98

t3rt_value_assign_vector_element

Assigns the contents of the element into the indicated position of the vector.

void t3rt_value_assign_vector_element
(t3rt_value_t vector,
 const unsigned long index,
 const t3rt_value_t element,
 t3rt_context_t context);

Parameters

lvalue An instantiated value of the appropriate type to as-
sign to.

rvalue A fully initialized value to assign from.

vector Valid value of one of vector types.

index Zero based position in vector value to assign to.

element Element to assigned to the specified position of
vector value.

98 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This function operates on array, set, record, recordof, setof, template and sig-
nature values. For all kinds of values except recordof and setof specified field
index should not exceed ordinal index of last field value (i.e. the size of com-
pound value minus 1).

When applied to recordof and setof value while “field_index” is greater than
value size this function expands recordof/setof assigning
t3rt_not_used_value_c to all new elements.

This function may be used to assign omit to optional fields of record and set
values.

Type check for vector value is performed after assignment.

t3rt_value_assign_string_element

Assigns the content of the one_char string into the indicated position of the
string.

void t3rt_value_assign_string_element
(t3rt_value_t string,
 const unsigned long index,
 const t3rt_value_t one_char,
 t3rt_context_t context);

Parameters

Description

This function operates on charstring, bitstring, octetstring, hexstring and uni-
versal charstring types. When applied to charstring and universal charstring
values assigned element should be of char or universal char type correspond-
ingly. For other string values assigned element should have the same type as
string value but with length equal to 1.

string Valid value of one of string types.

index Zero based position in vector value to assign to.

one_char Element to assigned to the specified position of
string value.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 99

Assigning value to the position outside current string boundaries generates
test case error.

Type check for vector value is performed after assignment.

t3rt_value_set_integer

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_integer
(t3rt_value_t value,
 t3rt_long_integer_t number,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_integer” on page 90

t3rt_value_set_boolean

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_boolean
(t3rt_value_t boolean_value,
 const bool flag,
 t3rt_context_t context);

value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

number The new integer value.

100 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_boolean” on page 92

t3rt_value_set_enum

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_enum
(t3rt_value_t enum_value,
 t3rt_long_integer_t number,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

boolean_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

flag The new boolean value.

enum_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

number The new enumeration value.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 101

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_enum_number” on page 90

“t3rt_value_get_enum_name” on page 91

t3rt_value_set_float

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_float
(t3rt_value_t float_value,
 const double number,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_float” on page 91

t3rt_value_set_verdict

Set a TTCN-3 RTS value from the corresponding C representation.

float_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

number The new floating-point value.

102 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_value_t t3rt_value_set_verdict
(t3rt_value_t verdict_value,
 const t3rt_verdict_t verdict,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_verdict” on page 95

t3rt_value_set_char

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_char
(t3rt_value_t char_value,
 const char single_char,
 t3rt_context_t context);

Parameters

verdict_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

verdict The new verdict value.

char_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

single_char The new character value.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 103

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_char” on page 92

t3rt_value_set_string

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_string
(t3rt_value_t string_value,
 const char *string,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value. Assigned octetstring and hex-
string values are always converted to the upper case.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_string” on page 93

string_value The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

string The new string value.

104 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_value_set_universal_char

t3rt_value_set_universal_char,
t3rt_value_set_universal_char_to_ascii

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_universal_char
(t3rt_value_t universal_char_value,
 const t3rt_wide_char_t single_wchar,
 t3rt_context_t context);

t3rt_value_t t3rt_value_set_universal_char_to_ascii
(t3rt_value_t universal_char_value,
 const char single_char,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value. Two different routines are
available to initialize universal character value. It can be filled either from
t3rt_wide_char_t value or from ASCII char symbol.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_universal_char” on page 93

universal_char_v
alue

The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

single_wchar The new universal character value.

single_char The new char value

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 105

t3rt_value_set_universal_charstring

t3rt_value_set_universal_charstring,
t3rt_value_set_universal_charstring_to_ascii,
t3rt_value_set_universal_charstring_from_wchar_array

Set a TTCN-3 RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_universal_charstring
(t3rt_value_t wide_string_value,
 const t3rt_wide_string_t string,
 t3rt_context_t context);

t3rt_value_t t3rt_value_set_universal_charstring_to_ascii
(t3rt_value_t wide_string_value,
 const char * ascii_data,
 t3rt_context_t context);

t3rt_value_t
t3rt_value_set_universal_charstring_from_wchar_array

(t3rt_value_t wide_string_value,
 const t3rt_wide_char_t * wchar_data,
 unsigned long length,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value. Three different routines are
available to initialize universal character string. It can be filled either from
t3rt_wide_string_t value or from array of t3rt_wide_char_t elements (each
element representing one symbol) or from ASCII null-terminated character
string.

wide_string_valu
e

The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

string The new string value.

ascii_data ASCII string

wchar_data Array of t3rt_wide_char_t elements

length Number of elements in the “wchar_data” array

106 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_universal_charstring” on page 94

t3rt_value_set_binary_string

Set a RTS value from the corresponding C representation.

t3rt_value_t t3rt_value_set_binary_string
(t3rt_value_t bstring_value,
 const t3rt_binary_string_t data,
 t3rt_context_t context);

Parameters

Description

Sets the TTCN-3 RTS value to the given value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_get_verdict” on page 95

t3rt_value_set_address_value

t3rt_value_add_vector_element

Add a new value element to a recordof or setof typed value.

binary_string_va
lue

The value to be modified. If the value is not appro-
priate for this operation a test case error will be gen-
erated.

data The new data.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 107

t3rt_value_t t3rt_value_add_vector_element
(t3rt_value_t value,
 const t3rt_value_t element,
 t3rt_context_t context);

Parameters

Description

This appends a (copy of a) value to a recordof or setof value.

Return Values

The modified value, that is, the same value passed as first argument to the
function.

See also

“t3rt_value_assign_vector_element” on page 97

“t3rt_value_remove_vector_element” on page 107

“t3rt_value_vector_element” on page 87

t3rt_value_remove_vector_element

Remove an element from a recordof or setof typed value.

void t3rt_value_remove_vector_element
(t3rt_value_t value,
 const unsigned long index,
 t3rt_context_t context);

Parameters

value The vector value

element The element to add.

value The list value to remove an element from.

index The index of the element to remove.

108 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

Removes an element from the recordof or setof value and decreases the
length with 1.

See also

“t3rt_value_add_vector_element” on page 106

“t3rt_value_assign_vector_element” on page 97

“t3rt_value_vector_element” on page 87

t3rt_value_add_objectid_element

Add a number to the end of the object identifier value.

t3rt_value_t t3rt_value_add_objectid_element
(t3rt_value_t objid_value,
 unsigned long element,
 t3rt_context_t context);

Parameters

Description

This function added specified integer to the end of objectidentifier list.

Return Values

Returns modified object identifier value passed as first parameter.

t3rt_value_set_omit

Set an optional field of a record or set as omitted.

void t3rt_value_set_omit
(t3rt_value_t value,

objid_value The objectidentifier value to be modified. If the
value is not appropriate for this operation a test case
error will be generated.

element Integer to be added to the end of objectidentifier
list.

RTL Value Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 109

 unsigned long field_index,
 t3rt_context_t context);

Parameters

Description

Changes the status of a record or set field to be omitted. To check if a field is
omitted, use “t3rt_ispresent” on page 110.

t3rt_verdict_string

Convert a verdict value to its name.

const char *t3rt_verdict_string(t3rt_verdict_t verdict)

Parameters

Description

Primitive function that converts from verdict constant to string representa-
tion. Intended to be used for logging purposes.

For example, for the t3rt_verdict_pass_c constant, the string “pass” will be
returned.

Return Values

String representation of a verdict constant.

t3rt_value_check

Checks that the value fulfills its type restrictions.

bool t3rt_value_check

value The record or set value to be modified. If the value
is not appropriate for this operation a test case error
will be generated.

field_index The field to be set as omitted.

verdict The verdict to be converted. See type for constants.

110 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

(t3rt_value_t value,
 t3rt_context_t context);

Description

Verifies that the value fulfills the restrictions of its own type. Calls the
t3rt_type_check function.

Return Values

True if the value fulfills it own type, otherwise false.

RTL Predefined Operations Functions

t3rt_ispresent

Checks if the indicated field is present in the record or set value (that is, not
omitted).

bool t3rt_ispresent
(t3rt_value_t record_value,
 unsigned long field_index,
 t3rt_context_t context);

Parameters

Description

This is only applicable to record and set values.

Return Values

Returns true if the field is omitted, false otherwise.

t3rt_ischosen

Checks if the indicated field is present in the union value.

record_value A fully instantiated record or set value.

field_index The index of the field to be checked. Indexes starts
from 0.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 111

bool t3rt_ischosen
(t3rt_value_t union_value,
 unsigned long alt_index,
 t3rt_context_t context);

Parameters

Description

This is only applicable to union values and checks whether a given field is
selected/chosen in the instantiated union value.

If only the type field name is available, use “t3rt_type_field_index” on page
58 to convert the field name to an index and then use this as argument to this
function.

Return Values

Returns true if the alternative is selected, false otherwise.

t3rt_concatenate

Returns a newly created string value that contains a concatenated string.

t3rt_value_t t3rt_concatenate
(t3rt_value_t string1,
 t3rt_value_t string2,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

union_value A fully instantiated union value.

alt_index A valid index (according to the type) for a union se-
lection.

string1 First (left) part of concatenation.

string2 Second (right) part of the concatenation.

strategy Memory allocation strategy for the result string

112 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

The requirement for concatenation is that the two strings have to be of the
same type kind. The type of the resulting value is based on this type kind. So,
if two hexstrings are concatenated and they are of type T1 and T2 respec-
tively, the result will be a string of the type hexstring.

Return Values

Returns concatenation of the given strings allocated to the specified memory
allocation strategy.

t3rt_is_equal

Checks whether two values are equal.

bool t3rt_is_equal
(t3rt_value_t value1,
 t3rt_value_t value2,
 t3rt_context_t ctx);

Parameters

Description

Both values have to be fully initialized otherwise test case error is generated.
It’s not necessary for compared values to have one and the same type how-
ever they should be of one and the same value kind, i.e. they should have one
and the same base type.

Return Values
Returns true is values are equal, false otherwise.

t3rt_is_greater

Checks whether first value is greater than second.

bool t3rt_is_greater
(t3rt_value_t value1,
 t3rt_value_t value2,

value1 One value descriptor.

value2 Another value descriptor.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 113

 t3rt_context_t ctx);

Parameters

Description

This function may be used to compare two values. It returns true if first value
is greater than the second one. This function is applicable only to objectiden-
tifer values.

Return Values
Returns true if first value is greater than the second, false otherwise.

t3rt_is_lesser

Checks whether first value is lesser than second.

bool t3rt_is_lesser
(t3rt_value_t value1,
 t3rt_value_t value2,
 t3rt_context_t ctx);

Parameters

Description

This function may be used to compare two values. It returns true if first value
is lesser than the second one. This function is applicable only to objectiden-
tifer values.

Return Values
Returns true if first value is lesserthan the second, false otherwise.

value1 One value descriptor.

value2 Another value descriptor.

value1 One value descriptor.

value2 Another value descriptor.

114 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_not4b

Returns a copy of the operand on which the predefined operation has been
applied.

t3rt_value_t t3rt_not4b
(t3rt_value_t string,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This performs the not4b operation according to ETSI ES 201 873-1 V2.2.1.

This is applicable to string value of type bitstring, hexstring and
octetstring.

Return Values

A copy of the resulting value, allocated according to the given strategy.

t3rt_and4b

Returns a copy of the operand on which the predefined operation has been
applied.

t3rt_value_t t3rt_and4b
(t3rt_value_t string1,
 t3rt_value_t string2,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

string The string operand.

strategy Memory allocation strategy for the resulting value.

string1 One string operand.

string2 The other string operand.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 115

Description

This performs the and4b operation according to ETSI ES 201 873-1 V2.2.1.

This is applicable to string value of type bitstring, hexstring and
octetstring.

Return Values

A copy of the resulting value, allocated according to the given strategy.

t3rt_or4b

Returns a copy of the operand on which the predefined operation has been
applied.

t3rt_value_t t3rt_or4b
(t3rt_value_t string1,
 t3rt_value_t string2,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This performs the or4b operation according to ETSI ES 201 873-1 V2.2.1.

This is applicable to string value of type bitstring, hexstring and
octetstring.

Return Values

A copy of the resulting value, allocated according to the given strategy.

t3rt_xor4b

Returns a copy of the operand on which the predefined operation has been
applied.

string1 One string operand.

string2 The other string operand.

strategy Memory allocation strategy for the resulting value.

116 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_value_t t3rt_xor4b
(t3rt_value_t string1,
 t3rt_value_t string2,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This performs the xor4b operation according to ETSI ES 201 873-1 V2.2.1.

This is applicable to string value of type bitstring, hexstring and
octetstring.

Return Values

A copy of the resulting value, allocated according to the given strategy.

t3rt_rotateleft

Performs a rotation operation on a copy of a string operand.

t3rt_value_t t3rt_rotateleft
(t3rt_value_t string,
 unsigned long count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

string1 One string operand.

string2 The other string operand.

strategy Memory allocation strategy for the resulting value.

string The string to rotate.

count The number of rotations.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 117

Description

Rotates the string element in the string according to ETSI ES 201 873-1
V2.2.1.

Return Values

A copy of the rotated string allocated with the specified allocation strategy.

t3rt_rotateright

Performs a rotation operation on a copy of a string operand.

t3rt_value_t t3rt_rotateright
(t3rt_value_t string,
 unsigned long count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Rotates the string element in the string according to ETSI ES 201 873-1
V2.2.1.

Return Values

A copy of the rotated string allocated with the specified allocation strategy.

t3rt_shiftleft

Shift a string a number of elements to the left.

t3rt_value_t t3rt_shiftleft
(t3rt_value_t string,
 unsigned long count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

string The string to rotate.

count The number of rotations.

strategy Memory allocation strategy for the resulting value.

118 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This produces a copy of the operand that is shifted the given number of ele-
ment.

Return Values

A copy of the resulting string according to the specified allocation strategy.

t3rt_shiftright

Shift a string a number of elements.

t3rt_value_t t3rt_shiftright
(t3rt_value_t string,
 unsigned long count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This produces a copy of the operand that is shifted the given number of ele-
ment.

Return Values

A copy of the resulting string according to the specified allocation strategy.

string The string to shift.

count The number of elements to shift.

strategy Memory allocation strategy for the resulting value.

string The string to shift.

count The number of elements to shift.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 119

t3rt_bit2int

Predefined conversion function.

t3rt_value_t t3rt_bit2int
(t3rt_value_t bitstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Runtime system
doesn’t support integer values wider than 64-bit representation thus it’s pos-
sible to get overflow when using this function. Integer overflow during con-
version results in runtime error.

Return Values

The converted value allocated according to the specified strategy.

t3rt_hex2int

Predefined conversion function.

t3rt_value_t t3rt_hex2int
(t3rt_value_t hexstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

bitstring_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

hexstring_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

120 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

Converts a value of one kind to a value of another kind. Runtime system
doesn’t support integer values wider than 64-bit representation thus it’s pos-
sible to get overflow when using this function. Integer overflow during con-
version results in runtime error.

Return Values

The converted value allocated according to the specified strategy.

t3rt_oct2int

Predefined conversion function.

t3rt_value_t t3rt_oct2int
(t3rt_value_t octetstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Runtime system
doesn’t support integer values wider than 64-bit representation thus it’s pos-
sible to get overflow when using this function. Integer overflow during con-
version results in runtime error.

Return Values

The converted value allocated according to the specified strategy.

t3rt_str2int

Predefined conversion function.

t3rt_value_t t3rt_str2int

octetstring_valu
e

Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 121

(t3rt_value_t charstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Runtime system
doesn’t support integer values wider than 64-bit representation thus it’s pos-
sible to get overflow when using this function. Integer overflow during con-
version results in runtime error.

Return Values

The converted value allocated according to the specified strategy.

t3rt_str2float

Predefined conversion function.

t3rt_value_t t3rt_str2float
(t3rt_value_t charstring_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind.

charstring_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

charstring_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

122 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

The converted value allocated according to the specified strategy.

t3rt_char2int

Predefined conversion function.

t3rt_value_t t3rt_char2int
(t3rt_value_t char_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts given character into its ASCII character code.

Return Values

The converted value allocated according to the specified strategy.

t3rt_unichar2int

Predefined conversion function.

t3rt_value_t t3rt_unichar2int
(t3rt_value_t wide_char_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

char_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 123

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts wide character representation (i.e. byte array) into an integer value.
This function calls t3rt_wchar2int.

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2bit

Predefined conversion function.

t3rt_value_t t3rt_int2bit
(t3rt_value_t int_value,
 unsigned long length,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Specified length
should be large enough to receive all bits of given integer value. If length is
greater than necessary to store binary representation of given integer then re-
sulting bitstring is padded with zeros.

wide_char_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

length Length of the resulting bitstring.

strategy Memory allocation strategy for the resulting value.

124 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2hex

Predefined conversion function.

t3rt_value_t t3rt_int2hex
(t3rt_value_t int_value,
 unsigned long length,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Specified length
should be large enough to receive all hex chars of given integer value. If
length is greater than necessary to store hexadecimal representation of given
integer then resulting hexstring is padded with zeros.

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2oct

Predefined conversion function.

t3rt_value_t t3rt_int2oct
(t3rt_value_t int_value,
 unsigned long length,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

length The length of the resulting string containing the
converted integer value.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 125

Parameters

Description

Converts a value of one kind to a value of another kind. Length is measured
in octets, i.e. it should be twice smaller than the character length of octet rep-
resentation. Specified length should be large enough to receive all octets of
given integer value. If length is greater than necessary to store octet represen-
tation of given integer then resulting octetstring is padded with zeros

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2str

Predefined conversion function.

t3rt_value_t t3rt_int2str
(t3rt_value_t int_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

length The length of the resulting string containing the
converted integer value.

strategy Memory allocation strategy for the resulting value.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

126 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2char

Predefined conversion function.

t3rt_value_t t3rt_int2char
(t3rt_value_t int_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. It’s assumed that
given integer value represents 7-bit ASCII code of a certain character. Char-
acter code should be in range from 0 to 127, otherwise test case error is gen-
erated.

Return Values

The converted value allocated according to the specified strategy.

t3rt_int2unichar

Predefined conversion function.

t3rt_value_t t3rt_int2unichar
(t3rt_value_t int_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 127

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts integer into a wide char representation (i.e. byte array). This function
calls t3rt_int2wchar.

Return Values

The converted value allocated according to the specified strategy.

t3rt_bit2str

Predefined conversion function.

t3rt_value_t t3rt_bit2str
(t3rt_value_t bitstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts bitstring into its text representation, e.g. '1110101'B => "1110101".

Return Values
The converted value allocated according to the specified strategy.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

bitstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

128 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_hex2str

Predefined conversion function.

t3rt_value_t t3rt_hex2str
(t3rt_value_t hexstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts hexstring into its text representation, e.g. '78ADF'H => "78ADF".

Return Values
The converted value allocated according to the specified strategy.

t3rt_oct2str

Predefined conversion function.

t3rt_value_t t3rt_oct2str
(t3rt_value_t octeststring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

hexstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

octetstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 129

Description

Converts a value of one kind to a value of another kind. This function con-
verts octetstring into its text representation, e.g. '7788'O => "7788".

Return Values
The converted value allocated according to the specified strategy.

t3rt_str2oct

Predefined conversion function.

t3rt_value_t t3rt_str2oct
(t3rt_value_t charstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts octetstring represented by its text representation into octetstring, e.g.
“7788” => ‘7788’O.

Return Values
The converted value allocated according to the specified strategy.

t3rt_oct2char

Predefined conversion function.

t3rt_value_t t3rt_oct2char
(t3rt_value_t octeststring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

charstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

130 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

The input parameter invalue shall not contain octet values higher than 7F.
The resulting charstring shall have the same length as the input octetstring.
The octets are interpreted as ISO/IEC 646 codes (according to the IRV) and
the resulting characters are appended to the returned value..

Return Values
The converted value allocated according to the specified strategy.

t3rt_char2oct

Predefined conversion function.

t3rt_value_t t3rt_char2oct
(t3rt_value_t charstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. Each octet of the oc-
tetstring will contain the ISO/IEC 646 codes (according to the IRV) of the
appropriate characters of invalue, e.g. “Tinky-Winky" ->
'54696E6B792D57696E6B79'O

octetstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

charstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 131

Return Values
The converted value allocated according to the specified strategy.

t3rt_bit2hex

Predefined conversion function.

t3rt_value_t t3rt_bit2hex
(t3rt_value_t bitstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts bitstring into hexstring, e.g. ‘111010’B=> ‘3A’H.

Return Values
The converted value allocated according to the specified strategy.

t3rt_hex2oct

Predefined conversion function.

t3rt_value_t t3rt_hex2oct
(t3rt_value_t hexstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

bitstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

hexstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

132 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

Converts a value of one kind to a value of another kind. This function con-
verts hexstring into octetstring. If the length of given hexstring is odd then its
padded wit zero character, e.g. ‘ABC’H=> ‘0ABC’O.

Return Values
The converted value allocated according to the specified strategy.

t3rt_bit2oct

Predefined conversion function.

t3rt_value_t t3rt_bit2oct
(t3rt_value_t bitstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts bitstring into octetstring, e.g. ‘101100111010’B=> ‘0B3A’O.

Return Values
The converted value allocated according to the specified strategy.

t3rt_hex2bit

Predefined conversion function.

t3rt_value_t t3rt_hex2bit
(t3rt_value_t hexstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

bitstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 133

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts hexstring into bitstring, e.g. ‘3A’H =>‘111010’B.

Return Values
The converted value allocated according to the specified strategy.

t3rt_oct2hex

Predefined conversion function.

t3rt_value_t t3rt_oct2hex
(t3rt_value_t octetstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts octetstring into hexstring, e.g., ‘0ABC’H=> ‘0ABC’H.

Return Values
The converted value allocated according to the specified strategy.

hexstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

octetstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

134 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_oct2bit

Predefined conversion function.

t3rt_value_t t3rt_oct2bit
(t3rt_value_t octetstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts octetstring into bitstring, e.g. ‘0B3A’O=>‘101100111010’B .

Return Values
The converted value allocated according to the specified strategy.

t3rt_int2float

Predefined conversion function.

t3rt_value_t t3rt_int2float
(t3rt_value_t int_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

octetstring Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 135

Description

Converts a value of one kind to a value of another kind. This function con-
verts integer into float, e.g. 123=>123.0 .

Return Values
The converted value allocated according to the specified strategy.

t3rt_float2int

Predefined conversion function.

t3rt_value_t t3rt_float2int
(t3rt_value_t float_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

Converts a value of one kind to a value of another kind. This function con-
verts float into integer. Using this function may result in data loss since all
fractional digits are thrown away, e.g. 123.78=>123. No rounding is per-
formed.

Return Values
The converted value allocated according to the specified strategy.

t3rt_rnd

This is the direct mapping of the TTCN-3 “rnd“ function.

t3rt_value_t t3rt_rnd
(t3rt_value_t seed_value,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

int_value Value to be converted. If the value is not appro-
priate for the conversion operation, a test case error
will be generated.

strategy Memory allocation strategy for the resulting value.

136 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function generates pseudo random float type value in the range from 0
to 1. Use “seed_value” parameter to initialize random value generator. You
may pass t3rt_no_value_c as a seed value thus telling runtime system to use
internal seed value.

Return Values
Random float value in the range from 0 to 1.

t3rt_decomp

This is the direct mapping of TTCN-3 “decomp“ function.

t3rt_value_t t3rt_decomp
(t3rt_value_t objid_value,
 unsigned long index,
 unsigned long return_count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This function operates on objectidentifier type values. Given value should be
fully initialized. Index of the first and last element of the extracted objecti-
dentifier should be within the length of the given value.

seed_value Float type seed value for random value generator.

strategy Memory allocation strategy for the resulting value.

objid_value Valid value of objectidentifier type.

index Index of the first element to be extracted.

return_count Number of elements to be extracted.

strategy Memory allocation strategy for the resulting value.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 137

Return Values
Objectidentifier value representing the part of the provided value.

t3rt_substr

This is the direct mapping of TTCN-3 “substr“ function.

t3rt_value_t t3rt_substr
(t3rt_value_t string_value,
 unsigned long index,
 unsigned long return_count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This function operates on charstring, octetstring, bitstring, hexstring and uni-
versal charstring type values. Given string value should be fully initialized.
Index of the first and last element of the extracted substring should be within
the length of the given string value. Note that index and the length parameters
for a octetstring are given in elements (not in characters).

Return Values
Substring of the given string.

t3rt_replace

This is the direct mapping of TTCN-3 “replace“ function.

t3rt_value_t t3rt_replace
(t3rt_value_t string_value,
 unsigned long index,
 unsigned long return_count,
t3rt_value_t str_replace_with,

 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

string_value Valid value of one of string types.

index Index of the first element to be extracted.

return_count Number of elements to be extracted.

strategy Memory allocation strategy for the resulting value.

138 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function operates on charstring, octetstring, bitstring, hexstring and uni-
versal charstring type values. Given string value should be fully initialized.
Index of the first and last element of the replaced substring should be within
the length of the given string value. Note that index and the length parameters
for a octetstring are given in elements (not in characters). The types of the
first and forth parameters should be compatible otherwise testcase error is
generated.

Return Values
New string with changed content.

t3rt_lengthof

This is the direct mapping of TTCN-3 “lengthof” function.

unsigned long t3rt_lengthof
(t3rt_value_t string,
 t3rt_context_t ctx);

Parameters

Description

This function operates on charstring, octetstring, bitstring, hexstring and uni-
versal charstring type values. It simply calls t3rt_value_string_length func-
tion.

string_value Valid value of one of string types.

index Index of the first element to be extracted.

return_count Number of elements to be extracted.

str_replace_with Valid value of one of string types. The type should
be compatible with the type of string_value param-
eter.

strategy Memory allocation strategy for the resulting value.

string Valid value of one of string types.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 139

Return Values
Length of the given string measured in elements.

t3rt_sizeof

This is the direct mapping of TTCN-3 “sizeof” function.

unsigned long t3rt_sizeof
(t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

Description

This function operates on array, recordof, setof, record, set, objectidentifier,
signature and template values. For template values, this function returns
sizeof (valueof(value)), if valueof(value) is defined. When applied to record
and set values this function counts only defined values, i.e. optional values
explicitly set to omit are not considered.

Return Values
Actual number of elements in the given value.

t3rt_sizeoftype

This is the direct mapping of TTCN-3 “sizeoftype” function.

unsigned long t3rt_sizeoftype
(t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

value Valid value of one of the vector types including
templates and object identifiers.

value Valid value of recordof, setof or array type or tem-
plate of one of these types.

140 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This function operates on array, recordof, setof and template values. This
function shall be applied to values of types with length restriction. The actual
number to be returned is the sequential number of the last element without
respect to whether its value is defined or not (i.e. the upper length index of
the type definition on which the parameter of the function is based on plus 1).

Return Values
Maximum allowed length for a length restricted type.

t3rt_mod

Calculate the module operation according to ETSI ES 201 873-1 V2.2.1.

t3rt_long_integer_t t3rt_mod
(t3rt_long_integer_t x,
 t3rt_long_integer_t y,
 t3rt_context_t ctx);

Parameters

Description

This function computes the rest that remains from an integer division of x by
y. For positive arguments x and y this function behaves similar to t3rt_rem,
but the result is different when arguments are negative, e.g. -2 mod 3 = 1.

Return Values

The module value of the operands.

t3rt_rem

Calculate the remainder operation according to ETSI ES 201 873-1 V2.2.1.

t3rt_long_integer_t t3rt_rem
(t3rt_long_integer_t x,
 t3rt_long_integer_t y,
 t3rt_context_t ctx);

x First integer operand.

y Second (non-zero) integer operand.

RTL Predefined Operations Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 141

Parameters

Description

This function computes the rest that remains from an integer division of x by
y. For positive arguments x and y this function behaves similar to t3rt_mod,
but the result is different when arguments are negative, e.g. -2 rem 3 = -2.

Return Values

The remainder when dividing the operands (x/y).

t3rt_log

Logs the string value on the information log channel as a TTCN-3 message.

void t3rt_log
(t3rt_value_t char_string,
 t3rt_context_t ctx);

Parameters

Description

This function sends given string to the log channels of all registered log
mechanisms. It simply calls t3rt_log_string_to_all for the specified string.
The message kind of the logged string is “ttcn-3“.

t3rt_regexp_regexp

This is the direct mapping of the TTCN-3 “regexp” function.

t3rt_value_t t3rt_regexp_regexp
(t3rt_value_t value,
 t3rt_value_t pattern,
 int group_index,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

x First operand.

y Second (non-zero) operand.

char_string Valid string value.

142 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function matches string against regular expression. It’s important to
keep in mind that the whole given value is matched against pattern. It means
that pattern parameter should specify matching pattern for the whole string,
not for searched element (as it may be done in Perl). If pattern declares
groups then this function may be used to extract the value of certain group
using ordinal zero-based group number. The type of returned value is the
same as the type of the given matching value.

Return Values

Returns extracted match substring if match succeeded, empty string (““) oth-
erwise.

RTL Timer Functions

RTL Timer Related Type Definitions

t3rt_timer_handle_t

This is a union type used to store timer handles. It is either an unsigned
long or a void*.

t3rt_timer_state_t

This is used for reporting the state of a timer (as in t3pl_timer_read for
example). The values can either be t3rt_timer_state_stopped,
t3rt_timer_state_running or t3rt_timer_state_timedout.

t3rt_timer_timed_out

Inform the RTS that a timer has timed out.

value Matching value.

pattern Matching pattern.

group_index Zero-based group index.

strategy Memory allocation strategy for the resulting value.

RTL Component Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 143

void t3rt_timer_timed_out
(const t3rt_timer_handle_t handle,
 t3rt_context_t ctx);

Parameters

Description

This function is usually used in integration to notify runtime system that
timer specified by its handle has timed out. In “Example“ integration it’s
called as a result of invoking triTimeout TRI function.

This function must be called for every timer if test suite has been started with
“t3rt.timers.assuming_all_active“ RTConf key enabled. Specifying this RT-
Conf key tells runtime system that all timers in test suite are “active“, i.e. tim-
eout event is generated by the integration. This may be critical for real-time
systems.

When “t3rt.timers.assuming_all_active“ RTConf key is not specified
runtime system performs evaluation if timeout event for every timer using in-
ternal real-time clock. Thus in such case call to t3rt_timer_timed_out (or tri-
Timeout) may be omitted.

RTL Component Functions

t3rt_component_main

Main function for a new component thread.

void t3rt_component_main
(t3rt_binary_string_t control_port_address,
 t3rt_context_t ctx);

Parameters

handle The timer that has timed out.

control_port_add
ress

The control port address for this new component.
This address may not be NULL.

144 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This function is used in the t3pl_task_create as the main function. It needs
the control_port_address to be able to create the context of the new compo-
nent.

t3rt_component_self

This is the direct mapping of TTCN-3 “self” component reference.

t3rt_value_t t3rt_component_self(t3rt_context_t ctx);

Description

This function returns reference to the component instance on which this
function has been invoked.

Return values

Returns reference to the current component.

t3rt_component_mtc

This is the direct mapping of TTCN-3 “mtc” component reference.

t3rt_value_t t3rt_component_mtc(t3rt_context_t ctx);

Description

This function returns reference to the main test component instance.

Return values
Returns reference to the MTC component.

t3rt_component_system

This is the direct mapping of TTCN-3 “system” component reference.

t3rt_value_t t3rt_component_system(t3rt_context_t ctx);

Description

This function returns reference to the system component instance.

RTL Component Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 145

Return values
Returns reference to the TSI component.

t3rt_component_set_local_verdict

This is the direct mapping of TTCN-3 “setverdict” statement.

void t3rt_component_set_local_verdict
(t3rt_value_t verdict_value,
 t3rt_context_t ctx);

Parameters

Description
This function sets changes verdict of a component on which this function
has been invoked. It maintains TTCN-3 verdict hierarchy thus attempting
to change “inconc“ verdict to “pass“ does nothing. The same is applicable
to “error“ verdict.

t3rt_component_get_local_verdict

This is the direct mapping of TTCN-3 “getverdict” statement.

t3rt_value_t t3rt_component_get_local_verdict
(t3rt_context_t ctx);

Description
This function returns local verdict of a component on which this function
has been invoked. Use t3rt_value_get_verdict function to extract actual
verdict from the returned value.

Return Values

Returns local component verdict.

t3rt_component_element

Returns indicated component element value.

t3rt_value_t t3rt_component_element
(const char* element,
 t3rt_context_t ctx);

verdict_value Valid verdict value to set.

146 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function returns component element value (port record, constant, vari-
able, or timer) of a component on which this function has been invoked.
Component value is identified by its name as defined in component type dec-
laration.

The names of component fields may be obtained by processing component
type using t3rt_type_field_name function.

Return Values

Returns value of a component field.

t3rt_component_mute

Turns on/off logging of events on the component.

void t3rt_component_mute
(bool on_off,
 t3rt_context_t ctx);

Parameters

Description
This function switches on and off logging of all events on the current
component. Component is specified through provided context reference.
When logging is switched off all log mechanisms including built-in log
stop generating events. This function doesn’t have impact on real-time
debugger.

RTL Port Functions

t3rt_port_insert_message

Inserts specified data on behalf of sender into the local port input queue.

element Name of component type field.

on_off Flag signalling new logging state.

RTL Port Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 147

void t3rt_port_insert_message
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t bstring,
 t3rt_context_t ctx);

Parameters

Description

This function is usually used in integration. It’s invoked upon receiving mes-
sage and adds message to the incoming queue of a specified port. For mes-
sages received from SUT it’s possible to specify sender address that distin-
guishes certain SUT entity from all other entities that communicate with test
system through this port.

t3rt_port_insert_call

Appends a call event with specified parameters to the queue associated with
the port.

void t3rt_port_insert_call
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t sender,
 t3rt_context_t ctx);

Parameters

port_address Receiving port address.

sut_address Address inside SUT.

bstring Encoded message.

port_address Receiving port address.

sut_address Address inside SUT.

signature_type Signature of the received procedure call.

parameters Array of encoded actual parameters.

sender Obsolete, should be NULL.

148 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This function is usually used in integration. It’s invoked upon receiving re-
mote procedure call and adds call to the incoming queue of a specified port.
For procedure calls received from SUT it’s possible to specify sender address
that distinguishes certain SUT entity from all other entities that communicate
with test system through this port.

t3rt_port_insert_reply

Appends a reply event with specified parameters and return value to the
queue associated with the port.

void t3rt_port_insert_reply
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t return_value,
 t3rt_binary_string_t sender,
 t3rt_context_t ctx);

Parameters

Description
This function is usually used in integration. It’s invoked upon receiving
reply to a remote procedure call and adds reply to the incoming queue of a
specified port. For procedure replies received from SUT it’s possible to
specify sender address that distinguishes certain SUT entity from all other
entities that communicate with test system through this port.

port_address Receiving port address.

sut_address Address inside SUT.

signature_type Signature of the received procedure reply.

parameters Array of encoded actual parameters.

return_value Encoded return value.

sender Obsolete, should be NULL.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 149

t3rt_port_insert_exception

Appends an exception event with specified data to the queue associated with
the port.

void t3rt_port_insert_exception
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t exception_data,
 t3rt_binary_string_t sender,
 t3rt_context_t ctx);

Parameters

Description
This function is usually used in integration. It’s invoked upon receiving
exception to a remote procedure call and adds exception to the incoming
queue of a specified port. For exceptions raised from SUT it’s possible to
specify sender address that distinguishes certain SUT entity from all other
entities that communicate with test system through this port.

RTL Log Functions
This is the functions that handle logging, both from the perspective of log-
ging events and also from the perspective of implementing a log mechanism.

RTL Log Related Type Definitions

t3rt_log_mechanism_init_function_t

A function of this prototype is one of the functions registered for a log
mechanism. It will be called once (in each process) for all components
and should initialize the log mechanism to a working state.

t3rt_log_mechanism_finalize_function_t

port_address Receiving port address.

sut_address Address inside SUT.

signature_type Signature of the procedure that raised exception.

exception_data Encoded exception value.

sender Obsolete, should be NULL.

150 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

A function of this prototype is one of the functions registered for a log
mechanism. It will be called once (in each process) for all components
and should make any necessary clean up on the log mechanism level.

t3rt_log_mechanism_open_function_t

A function of this prototype is one of the functions registered for a log
mechanism. It will be called once per component with a newly created
log instance and has the option of setting any auxiliary data for this par-
ticular instance.

t3rt_log_mechanism_close_function_t

A function of this prototype is one of the functions registered for a log
mechanism. It will be called once per component with the log instance
in question and should make any necessary clean up and closing of this
log instance.

t3rt_log_mechanism_log_event_function_t

A function of this prototype is one of the functions registered for a log
mechanism. It will be called whenever a log event is generated by the
RTS. It should implement the desired filtering of the set of events and
take care of the actual log event visualization (printing to standard I/O,
for example).

t3rt_log_mechanism_version_t

This represents a version of the log mechanism interface. If this
changes, old log mechanisms can still function if they just tell the RTS
which version they support. (This is currently not used.)

t3rt_log_message_kind_t

This represents severity of a message logged in the runtime system in-
terface. It should be one of the t3rt_log_predefined_message_kind_t
values. These values cover “info”, “ttcn-3“, “warning”, “error“ and
“debug“ messages. “ttcn-3” kind messages are the result of TTCN-3 log
statement.

t3rt_log_event_kind_t

This represents type of a message logged in the runtime system. It’s
passed to the event handler installed with t3rt_log_register_listener
every time event is generated. Most of events have special functions
that decode array of event parameters and extract certain values relevant
to the generated event. Event decoding function is chosen basing on the
event kind. Valid event kinds are:

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 151

t3rt_log_mechanism_t

This is a descriptor of a log mechanism. Each registered log mechanism
is assigned with such descriptor. t3rt_log_mechanism_t object is one
and the same for all instances of the log mechanism (i.e. it’s a sort of a
type). Log mechanism instances are of t3rt_log_t type.

t3rt_log_t

This is a log instance (retrieved from a registered log mechanism)
through which logging is channeled. This is used as a handle when
giving log events to the log mechanisms. When component is created in
the test suite runtime system creates new instances of every registered
log mechanism for this component.

t3rt_codecs_strategy_t

This represents encoding (decoding) strategy that has been used by the
runtime system to encode (decode) message. There are two possible op-
tions: registered (user-provided) codec or built-in codec.
t3rt_codecs_strategy_t type is defined as enumeration:

typedef enum t3rt__codecs_strategy_internal_t
{

t3rt_codecs_strategy_registered_c,
t3rt_codecs_strategy_builtin_c

} t3rt_codecs_strategy_t;

Events generated in RTS

RTS generates exhaustive set of events that fully describe runtime behavior
of test suite. Some of the events are one-to-one mapping of TTCN-3 opera-
tions (e.g. mapping of a port), in other cases one TTCN-3 statement (e.g.
“alt” statement) may correspond to several runtime events.

Most of events are augmented with event parameters that are passed to user-
defined event handler function as NULL-terminated array of t3rt_value_t ob-
jects. If event has parameters then they may be extracted from this array
using certain extraction function (e.g. t3rt_log_extract_message_sent).

Message Sent

This event has three kinds t3rt_log_event_message_sent_c,
t3rt_log_event_message_sent_mc_c and
t3rt_log_event_message_sent_bc_c for unicast, multicast and broad-
cast operations correspondingly. It’s generated as a result of successful

152 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

TTCN-3 “send” operation on connected port.Use one of
t3rt_log_extract_message_sent, t3rt_log_extract_message_sent_mc or
t3rt_log_extract_message_sent_bc functions to extract event parameters.

SUT Message Sent

This event has three kinds t3rt_log_event_sut_message_sent_c,
t3rt_log_event_sut_message_sent_mc_c and
t3rt_log_event_sut_message_sent_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “send” operation on mapped port. Use one of
t3rt_log_extract_message_sent, t3rt_log_extract_message_sent_mc or
t3rt_log_extract_message_sent_bc functions to extract event parameters.

Message Sent Failed

This event has three kinds t3rt_log_event_message_sent_failed_c,
t3rt_log_event_message_sent_failed_mc_c and
t3rt_log_event_message_sent_failed_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of failed
TTCN-3 “send” operation on connected port due to encoding or transmission
error. Use one of t3rt_log_extract_message_sent_failed,
t3rt_log_extract_message_sent_failed_mc or
t3rt_log_extract_message_sent_failed_bc functions to extract event parame-
ters.

SUT Message Sent Failed

This event has three kinds
t3rt_log_event_message_sut_sent_failed_c,

t3rt_log_event_message_sut_sent_failed_mc_c and
t3rt_log_event_message_sut_sent_failed_bc_c for unicast, multi-
cast and broadcast operations correspondingly. It’s generated as a result of
failed TTCN-3 “send” operation on mapped port due to encoding or trans-
mission error. Use one of t3rt_log_extract_message_sent_failed,
t3rt_log_extract_message_sent_failed_mc or
t3rt_log_extract_message_sent_failed_bc functions to extract event parame-
ters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 153

Message Detected

This event has kind t3rt_log_event_message_detected_c. It’s gener-
ated when a local message (i.e. not from SUT) is put into component in-
coming port queue. Use t3rt_log_extract_message_detected function to ex-
tract event parameters.

SUT Message Detected

This event has kind t3rt_log_event_sut_message_detected_c. It’s
generated when a message from SUT is put into component incoming port
queue. Use t3rt_log_extract_message_detected function to extract event pa-
rameters.

Message Received

This event has kind t3rt_log_event_message_received_c. It’s gener-
ated as a result of successful TTCN-3 “receive” operation on connected port.
Use t3rt_log_extract_message_received, t3rt_log_extract_message_found
functions to extract event parameters.

SUT Message Received

This event has kind t3rt_log_event_sut_message_received_c. It’s
generated as a result of successful TTCN-3 “receive” operation on mapped
port. Use t3rt_log_extract_message_received,
t3rt_log_extract_message_found functions to extract event parameters.

Message Found

This event has kind t3rt_log_event_message_found_c. It’s generated as
a result of successful TTCN-3 “check(receive)” operation on connected port.
Use t3rt_log_extract_message_received, t3rt_log_extract_message_found
functions to extract event parameters.

SUT Message Found

This event has kind t3rt_log_event_sut_message_found_c. It’s gener-
ated as a result of successful TTCN-3 “check(receive)” operation on mapped
port. Use t3rt_log_extract_message_received,
t3rt_log_extract_message_found functions to extract event parameters.

154 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Message Discarded

This event has kind t3rt_log_event_message_discarded_c. It’s gener-
ated as a result of successful TTCN-3 “trigger” operation on connected port.
Use t3rt_log_extract_message_discarded function to extract event parame-
ters.

SUT Message Discarded

This event has kind t3rt_log_event_sut_message_discarded_c. It’s
generated as a result of successful TTCN-3 “trigger” operation on mapped
port. Use t3rt_log_extract_message_discarded function to extract event pa-
rameters.

Call Initiated

This event has three kinds t3rt_log_event_call_initiated_c,
t3rt_log_event_call_initiated_mc_c and
t3rt_log_event_call_initiated_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “call” operation on connected port. Use one of
t3rt_log_extract_call_initiated, t3rt_log_extract_call_initiated_mc or
t3rt_log_extract_call_initiated_bc functions to extract event parameters.

SUT Call Initiated

This event has three kinds t3rt_log_event_sut_call_initiated_c,
t3rt_log_event_sut_call_initiated_mc_c and
t3rt_log_event_sut_call_initiated_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “call” operation on mapped port. Use one of
t3rt_log_extract_call_initiated, t3rt_log_extract_call_initiated_mc or
t3rt_log_extract_call_initiated_bc functions to extract event parameters.

Call Failed

This event has three kinds t3rt_log_event_call_failed_c,
t3rt_log_event_call_failed_mc_c and
t3rt_log_event_call_failed_bc_c for unicast, multicast and broadcast
operations correspondingly. It’s generated as a result of failed TTCN-3

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 155

“call” operation on connected port due to encoding or transmission errors.
Use one of t3rt_log_extract_call_failed, t3rt_log_extract_call_failed_mc or
t3rt_log_extract_call_failed_bc functions to extract event parameters.

SUT Call Failed

This event has three kinds t3rt_log_event_sut_call_failed_c,
t3rt_log_event_sut_call_failed_mc_c and
t3rt_log_event_sut_call_failed_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of failed
TTCN-3 “call” operation on mapped port due to encoding or transmission er-
rors. Use one of t3rt_log_extract_call_failed,
t3rt_log_extract_call_failed_mc or t3rt_log_extract_call_failed_bc func-
tions to extract event parameters.

Call Timed Out

This event has kind t3rt_log_event_call_timed_out_c. It’s generated
as a result of failed TTCN-3 “call” operation on connected port due to tim-
eout event. Use t3rt_log_extract_call_timed_out function to extract event pa-
rameters.

SUT Call Timed Out

This event has kind t3rt_log_event_sut_call_timed_out_c. It’s gener-
ated as a result of failed TTCN-3 “call” operation on mapped port due to tim-
eout event. Use t3rt_log_extract_call_timed_out function to extract event pa-
rameters.

Call Detected

This event has kind t3rt_log_event_call_detected_c. It’s generated
when a local (i.e. not from SUT) procedure call request is put into component
incoming port queue. Use t3rt_log_extract_call_detected function to extract
event parameters.

SUT Call Detected

This event has kind t3rt_log_event_sut_call_detected_c. It’s gener-
ated when a procedure call request from SUT is put into component in-
coming port queue. Use t3rt_log_extract_call_detected function to extract
event parameters.

156 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Call Received

This event has kind t3rt_log_event_call_received_c. It’s generated as
a result of a successful TTCN-3 “getcall“ operation on connected port. Use
t3rt_log_extract_call_received, t3rt_log_extract_call_found functions to ex-
tract event parameters.

SUT Call Received

This event has kind t3rt_log_event_sut_call_received_c. It’s gener-
ated as a result of a successful TTCN-3 “getcall“ operation on mapped port.
Use t3rt_log_extract_call_received, t3rt_log_extract_call_found functions
to extract event parameters.

Call Found

This event has kind t3rt_log_event_call_found_c. It’s generated as a
result of a successful TTCN-3 “check(getcall)“ operation on connected port.
Use t3rt_log_extract_call_received, t3rt_log_extract_call_found functions
to extract event parameters.

SUT Call Found

This event has kind t3rt_log_event_sut_call_found_c. It’s generated
as a result of a successful TTCN-3 “check(getcall)“ operation on mapped
port. Use t3rt_log_extract_call_received, t3rt_log_extract_call_found func-
tions to extract event parameters.

Reply Sent

This event has three kinds t3rt_log_event_reply_sent_c,
t3rt_log_event_reply_sent_mc_c and
t3rt_log_event_reply_sent_bc_c for unicast, multicast and broadcast
operations correspondingly. It’s generated as a result of successful TTCN-3
“reply” operation on connected port.Use one of t3rt_log_extract_reply_sent,
t3rt_log_extract_reply_sent_mc or t3rt_log_extract_reply_sent_bc func-
tions to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 157

SUT Reply Sent

This event has three kinds t3rt_log_event_sut_reply_sent_c,
t3rt_log_event_sut_reply_sent_mc_c and
t3rt_log_event_sut_reply_sent_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “reply” operation on mapped port.Use one of
t3rt_log_extract_reply_sent, t3rt_log_extract_reply_sent_mc or
t3rt_log_extract_reply_sent_bc functions to extract event parameters.

Reply Failed

This event has three kinds t3rt_log_event_reply_failed_c,
t3rt_log_event_reply_failed_mc_c and
t3rt_log_event_reply_failed_bc_c for unicast, multicast and broad-
cast operations correspondingly. It’s generated as a result of failed TTCN-3
“reply” operation on connected port due to encoding or transmission errors.
Use one of t3rt_log_extract_reply_failed, t3rt_log_extract_reply_failed_mc
or t3rt_log_extract_reply_failed_bc functions to extract event parameters.

SUT Reply Failed

This event has three kinds t3rt_log_event_sut_reply_failed_c,
t3rt_log_event_sut_reply_failed_mc_c and
t3rt_log_event_sut_reply_failed_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of failed
TTCN-3 “reply” operation on mapped port due to encoding or transmission
errors. Use one of t3rt_log_extract_reply_failed,
t3rt_log_extract_reply_failed_mc or t3rt_log_extract_reply_failed_bc func-
tions to extract event parameters.

Reply Detected

This event has kind t3rt_log_event_reply_detected_c. It’s generated
when a local (i.e. not from SUT) procedure call reply is put into component
incoming port queue. Use t3rt_log_extract_reply_detected function to ex-
tract event parameters.

158 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

SUT Reply Detected

This event has kind t3rt_log_event_sut_reply_detected_c. It’s gener-
ated when a procedure call reply from SUT is put into component incoming
port queue. Use t3rt_log_extract_reply_detected function to extract event pa-
rameters.

Reply Received

This event has kind t3rt_log_event_reply_received_c. It’s generated
as a result of a successful TTCN-3 “getreply“ operation on connected port.
Use t3rt_log_extract_reply_received, t3rt_log_extract_reply_found func-
tions to extract event parameters.

SUT Reply Received

This event has kind t3rt_log_event_sut_reply_received_c. It’s gener-
ated as a result of a successful TTCN-3 “getreply“ operation on mapped port.
Use t3rt_log_extract_reply_received, t3rt_log_extract_reply_found func-
tions to extract event parameters.

Reply Found

This event has kind t3rt_log_event_reply_found_c. It’s generated as a
result of a successful TTCN-3 “check(getreply)“ operation on connected
port. Use t3rt_log_extract_reply_received, t3rt_log_extract_reply_found
functions to extract event parameters.

SUT Reply Found

This event has kind t3rt_log_event_sut_reply_found_c. It’s generated
as a result of a successful TTCN-3 “check(getreply)“ operation on mapped
port. Use t3rt_log_extract_reply_received, t3rt_log_extract_reply_found
functions to extract event parameters.

Exception Raised

This event has three kinds t3rt_log_event_exception_raised_c,
t3rt_log_event_exception_raised_mc_c and
t3rt_log_event_exception_raised_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of successful
TTCN-3 “raise” operation on connected port. Use one of

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 159

t3rt_log_extract_exception_raised, t3rt_log_extract_exception_raised_mc
or t3rt_log_extract_exception_raised_bc functions to extract event parame-
ters.

SUT Exception Raised

This event has three kinds t3rt_log_event_sut_exception_raised_c,
t3rt_log_event_sut_exception_raised_mc_c and
t3rt_log_event_sut_exception_raised_bc_c for unicast, multicast
and broadcast operations correspondingly. It’s generated as a result of suc-
cessful TTCN-3 “raise” operation on mapped port.Use one of
t3rt_log_extract_exception_raised, t3rt_log_extract_exception_raised_mc
or t3rt_log_extract_exception_raised_bc functions to extract event parame-
ters.

Raise Failed

This event has three kinds t3rt_log_event_raise_failed_c,
t3rt_log_event_raise_failed_mc_c and
t3rt_log_event_raise_failed_bc_c for unicast, multicast and broad-
cast operations correspondingly. It’s generated as a result of failed TTCN-3
“raise” operation on connected port due to encoding or transmission errors.
Use one of t3rt_log_extract_raise_failed, t3rt_log_extract_raise_failed_mc
or t3rt_log_extract_raise_failed_bc functions to extract event parameters.

SUT Raise Failed

This event has three kinds t3rt_log_event_sut_raise_failed_c,
t3rt_log_event_sut_raise_failed_mc_c and
t3rt_log_event_sut_raise_failed_bc_c for unicast, multicast and
broadcast operations correspondingly. It’s generated as a result of failed
TTCN-3 “raise” operation on mapped port due to encoding or transmission
errors. Use one of t3rt_log_extract_raise_failed,
t3rt_log_extract_raise_failed_mc or t3rt_log_extract_raise_failed_bc func-
tions to extract event parameters.

Exception Detected

This event has kind t3rt_log_event_exception_detected_c. It’s gener-
ated when a local (i.e. not in SUT) procedure call exception is put into com-
ponent incoming port queue. Use t3rt_log_extract_exception_detected func-
tion to extract event parameters.

160 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

SUT Exception Detected

This event has kind t3rt_log_event_sut_exception_detected_c. It’s
generated when a SUT procedure call exception is put into component in-
coming port queue. Use t3rt_log_extract_exception_detected function to ex-
tract event parameters.

Exception Caught

This event has kind t3rt_log_event_exception_caught_c. It’s gener-
ated as a result of a successful TTCN-3 “catch“ operation on connected port.
Use t3rt_log_extract_exception_caught, t3rt_log_extract_exception_found
functions to extract event parameters.

SUT Exception Caught

This event has kind t3rt_log_event_sut_exception_caught_c. It’s
generated as a result of a successful TTCN-3 “catch“ operation on mapped
port. Use t3rt_log_extract_exception_caught,
t3rt_log_extract_exception_found functions to extract event parameters.

Exception Found

This event has kind t3rt_log_event_exception_found_c. It’s generated
as a result of a successful TTCN-3 “check(catch)“ operation on connected
port. Use t3rt_log_extract_exception_caught,
t3rt_log_extract_exception_found functions to extract event parameters.

SUT Exception Found

This event has kind t3rt_log_event_sut_exception_found_c. It’s gen-
erated as a result of a successful TTCN-3 “check(catch)“ operation on
mapped port. Use t3rt_log_extract_exception_caught,
t3rt_log_extract_exception_found functions to extract event parameters.

Timeout Exception Detected

This event has kind t3rt_log_event_timeout_exception_detected_c.
It’s generated when a local (i.e. not in SUT) procedure call timeout exception
is put into component incoming port queue. Use
t3rt_log_extract_timeout_exception_detected function to extract event pa-
rameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 161

SUT Timeout Exception Detected

This event has kind
t3rt_log_event_sut_timeout_exception_detected_c. It’s generated
when a SUT procedure call timeout exception is put into component in-
coming port queue. Use t3rt_log_extract_timeout_exception_detected func-
tion to extract event parameters.

Timeout Exception Caught

This event has kind t3rt_log_event_timeout_exception_caught_c.
It’s generated as a result of a successful TTCN-3 “catch(timeout)“ operation
on connected port. Use t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found functions to extract event param-
eters.

SUT Timeout Exception Caught

This event has kind
t3rt_log_event_sut_timeout_exception_caught_c. It’s generated as
a result of a successful TTCN-3 “catch(timeout)“ operation on mapped port.
Use t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found functions to extract event param-
eters.

Timeout Exception Found

This event has kind t3rt_log_event_timeout_exception_found_c. It’s
generated as a result of a successful TTCN-3 “check(catch(timeout))“ oper-
ation on connected port. Use t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found functions to extract event param-
eters.

SUT Timeout Exception Found

This event has kind
t3rt_log_event_sut_timeout_exception_found_c. It’s generated as a
result of a successful TTCN-3 “check(catch(timeout))“ operation on mapped
port. Use t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found functions to extract event param-
eters.

162 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

SUT Action Performed

This event has kind t3rt_log_event_sut_action_performed_c. It’s
generated as a result of TTCN-3 “action“ operation. Use
t3rt_log_extract_sut_action function to extract event parameters.

Timer Started

This event has kind t3rt_log_event_timer_started_c. It’s generated as
a result of TTCN-3 “start“ timer operation. Use
t3rt_log_extract_timer_started function to extract event parameters.

Timer Stopped

This event has kind t3rt_log_event_timer_stopped_c. It’s generated as
a result of TTCN-3 “stop“ timer operation. Use
t3rt_log_extract_timer_stopped function to extract event parameters.

Timer Read

This event has kind t3rt_log_event_timer_read_c. It’s generated as a
result of TTCN-3 “read“ timer operation. Use t3rt_log_extract_timer_read
function to extract event parameters.

Timer Is Running Check Performed

This event has kind t3rt_log_event_timer_is_running_c. It’s gener-
ated as a result of TTCN-3 “running“ timer operation. Use
t3rt_log_extract_timer_is_running function to extract event parameters.

Timer Timeout Detected

This event has kind t3rt_log_event_timeout_detected_c. It’s gener-
ated when RTS is notified about timer timeout be means of triTimeout oper-
ation. Use t3rt_log_extract_timeout_detected function to extract event pa-
rameters.

Timer Timed Out Check Succeeded

This event has kind t3rt_log_event_timeout_received_c. It’s gener-
ated when timer timed out alternative matches. Use
t3rt_log_extract_timeout_received function to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 163

Timer Timed Out Check Failed

This event has kind t3rt_log_event_timeout_mismatch_c. It’s gener-
ated each time timer timed out alternative fails to match. Use
t3rt_log_extract_timeout_mismatch function to extract event parameters.

Component Created

This event has kind t3rt_log_event_component_created_c. It’s gener-
ated as a result of TTCN-3 “create“ and “execute“ component operations.
Use t3rt_log_extract_component_created function to extract event parame-
ters.

Component Started

This event has kind t3rt_log_event_component_started_c. It’s gener-
ated as a result of TTCN-3 “start“ and “execute“ component operations. Use
t3rt_log_extract_component_started function to extract event parameters.

Component Is Running Check Performed

This event has kind t3rt_log_event_component_is_running_c. It’s
generated as a result of TTCN-3 “running“ component operation. Use
t3rt_log_extract_component_is_running function to extract event parame-
ters.

Component Is Alive Check Performed

This event has kind t3rt_log_event_component_is_alive_c. It’s gener-
ated as a result of TTCN-3 “alive“ component operation. Use
t3rt_log_extract_component_is_alive function to extract event parameters.

Component Stopped

This event has kind t3rt_log_event_component_stopped_c. It’s gener-
ated when component terminates. Use t3rt_log_extract_component_stopped
function to extract event parameters.

164 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Component Killed

This event has kind t3rt_log_event_component_killed_c. It’s gener-
ated when alive component terminates. Use
t3rt_log_extract_component_killed function to extract event parameters.

Component Terminated

This event has kind t3rt_log_event_component_terminated_c. It’s not
generated yet.

Component Done Check Succeeded

This event has kind t3rt_log_event_done_check_succeeded_c. It’s
generated when component done alternative matches. Use
t3rt_log_extract_done_check_succeeded function to extract event parame-
ters.

Component Done Check Failed

This event has kind t3rt_log_event_done_check_failed_c. It’s gener-
ated when component done alternative fails to match. Use
t3rt_log_extract_done_check_failed function to extract event parameters.

Component Killed Check Succeeded

This event has kind t3rt_log_event_kill_check_succeeded_c. It’s
generated when component killed alternative matches. Use
t3rt_log_extract_kill_check_succeeded function to extract event parameters.

Component Killed Check Failed

This event has kind t3rt_log_event_kill_check_failed_c. It’s gener-
ated when component killed alternative fails to match. Use
t3rt_log_extract_kill_check_failed function to extract event parameters.

Port Connected

This event has kind t3rt_log_event_port_connected_c. It’s generated
as a result of TTCN-3 “connect“ port operation. Use
t3rt_log_extract_port_connected function to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 165

Port Disconnected

This event has kind t3rt_log_event_port_disconnected_c. It’s gener-
ated as a result of TTCN-3 “disconnect“ port operation. Use
t3rt_log_extract_port_disconnected function to extract event parameters.

Port Mapped

This event has kind t3rt_log_event_port_mapped_c. It’s generated as a
result of TTCN-3 “map“ port operation. Use t3rt_log_extract_port_mapped
function to extract event parameters.

Port Unmapped

This event has kind t3rt_log_event_port_unmapped_c. It’s generated as
a result of TTCN-3 “unmap“ port operation. Use
t3rt_log_extract_port_unmapped function to extract event parameters.

Port Enabled

This event has kind t3rt_log_event_port_enabled_c. It’s generated as a
result of TTCN-3 “start“ port operation. Use t3rt_log_extract_port_enabled
function to extract event parameters.

Port Disabled

This event has kind t3rt_log_event_port_disabled_c. It’s generated as
a result of TTCN-3 “stop“ port operation. Use
t3rt_log_extract_port_disabled function to extract event parameters.

Port Halted

This event has kind t3rt_log_event_port_halted_c. It’s generated as a
result of TTCN-3 “halt“ port operation. Use t3rt_log_extract_port_halted
function to extract event parameters.

Port Cleared

This event has kind t3rt_log_event_port_cleared_c. It’s generated as a
result of TTCN-3 “clear“ port operation. Use t3rt_log_extract_port_cleared
function to extract event parameters.

166 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Scope Entered

This event has kind t3rt_log_event_scope_entered_c. It’s generated
when execution control enters new scope (e.g. function, testcase, altstep or
control part). This event is also generated for module initialization and final-
ization functions. One of the event parameters (see t3rt_scope_kind_t) may
be used to obtain the type of entered scope. Use
t3rt_log_extract_scope_entered function to extract event parameters.

Scope Changed

This event has kind t3rt_log_event_scope_changed_c. It’s generated
when TTCN-3 source location changes, i.e. next TTCN-3 statement is going
to be executed. This event is generated only when test suite is running under
TTCN-3 debugger. Use t3rt_log_extract_scope_changed function to extract
event parameters.

Scope Left

This event has kind t3rt_log_event_scope_left_c. It’s generated when
execution control leaves scope (e.g. function, testcase, altstep or control
part). Use t3rt_log_extract_scope_left function to extract event parameters.

Alternative Activated

This event has kind t3rt_log_event_alternative_activated_c. It’s
generated as a result of TTCN-3 “activate“ operation. Use
t3rt_log_extract_alternative_activated_event function to extract event pa-
rameters.

Alternative Deactivated

This event has kind t3rt_log_event_alternative_deactivated_c. It’s
generated as a result of TTCN-3 “deactivate“ operation. Use
t3rt_log_extract_alternative_deactivated_event function to extract event pa-
rameters.

Local Verdict Set

This event has kind t3rt_log_event_local_verdict_changed_c. It’s
generated as a result of TTCN-3 “setverdict“ operation. This event is gener-
ated also implicitly by RTS when “error“ verdict is set due to runtime error

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 167

or overall test case verdict is changed. In later case event is generated for
CPC (control component). Use t3rt_log_extract_local_verdict_changed
function to extract event parameters.

Local Verdict Read

This event has kind t3rt_log_event_local_verdict_queried_c. It’s
generated as a result of TTCN-3 “getverdict“ operation. Use
t3rt_log_extract_local_verdict_queried function to extract event parameters.

Variable Modified

This event has kind t3rt_log_event_variable_modified_c. It’s gener-
ated whenever any variable, constant or module parameter (either whole
value or some of its elements) is assigned with value. Use
t3rt_log_extract_variable_modified function to extract event parameters.

Function called

This event has kind t3rt_log_event_function_call_c. It’s generated
whenever function is invoked. Use t3rt_log_extract_function_call function
to extract event parameters.

External Function Called

This event has kind t3rt_log_event_external_function_call_c. It’s
generated whenever external function is invoked. Use
t3rt_log_extract_external_function_call function to extract event parame-
ters.

Altstep Called

This event has kind t3rt_log_event_altstep_call_c. It’s generated
whenever altstep is directly invoked. Use t3rt_log_extract_altstep_call func-
tion to extract event parameters.

Template Match Failed

This event has kind t3rt_log_event_template_match_failed_c. It’s
generated whenever matching of a value against template fails. This may be
the result of mismatching alternative in “alt” statement or a mismatch in di-

168 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

rectly called “match“ operation. Use
t3rt_log_extract_template_match_failed function to extract event parame-
ters.

Template Match Begin

This event has kind t3rt_log_event_template_match_begin_c. It’s
generated whenever matching of a subtemplate inside a structured template
begins. Use t3rt_log_extract_template_match_begin function to extract
event parameters.

Template Match End

This event has kind t3rt_log_event_template_match_end_c. It’s gener-
ated whenever matching of a subtemplate inside a structured template ends.
Use t3rt_log_extract_template_match_end function to extract event parame-
ters.

Template Mismatch

This event has kind t3rt_log_event_template_match_begin_c. It’s
generated whenever matching of a template or a subtemplate inside a struc-
tured template fails. Use t3rt_log_extract_template_mismatch function to
extract event parameters.

Test case started

This event has kind t3rt_log_event_testcase_started_c. It’s gener-
ated whenever test case starts (e.g. as a result of TTCN-3 “execute“ opera-
tion). Use t3rt_log_extract_testcase_started function to extract event param-
eters.

Test case ended

This event has kind t3rt_log_event_testcase_ended_c. It’s generated
whenever test case terminates . Use t3rt_log_extract_testcase_ended func-
tion to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 169

Test case timed out

This event has kind t3rt_log_event_testcase_timed_out_c. It’s gener-
ated whenever test case times out. Use t3rt_log_extract_testcase_timed_out
function to extract event parameters.

Test case verdict

This event has kind t3rt_log_event_testcase_verdict_c. It’s gener-
ated whenever test case terminates. This event is obsolete and will be re-
moved in future. Listen to “test case ended“ event instead of it. Use
t3rt_log_extract_test_case_verdict function to extract event parameters.

Test case error

This event has kind t3rt_log_event_testcase_error_c. It’s generated
whenever test case error is signalled. Use t3rt_log_extract_testcase_error
function to extract event parameters.

Information Message

This event has kind t3rt_log_event_info_message_c. It’s generated
whenever information message is sent to registered log mechanisms. Use
t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

Warning Message

This event has kind t3rt_log_event_warning_message_c. It’s generated
whenever warning message is sent to registered log mechanisms. Use
t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

Error Message

This event has kind t3rt_log_event_error_message_c. It’s generated
whenever error message is sent to registered log mechanisms. Usually this
event is followed by “test case error“ event. Use

170 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

Debug Message

This event has kind t3rt_log_event_debug_message_c. It’s generated
whenever debug message is sent to registered log mechanisms. Use
t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

TTCN-3 Message

This event has kind t3rt_log_event_ttcn3_message_c. It’s generated
whenever TTCN-3 message is sent to registered log mechanisms. Usually
this event is the result of the TTCN-3 log statement. Use
t3rt_log_extract_text_message_string or
t3rt_log_extract_text_message_widestring functions to extract event param-
eters.

Data Encoded

This event has kind t3rt_log_event_message_encoded_c. It’s generated
to log successful encoding of a value into binary string. Use
t3rt_log_extract_message_encoded function to extract event parameters.

Data Encoding Failed

This event has kind t3rt_log_event_message_encode_failed_c. It’s
generated to log failure while encoding a value into binary string. Use
t3rt_log_extract_message_encode_failed function to extract event parame-
ters.

Data Decoded

This event has kind t3rt_log_event_message_decoded_c. It’s generated
to log successful decoding of a binary string. Use
t3rt_log_extract_message_decoded function to extract event parameters.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 171

Data Decoding Failed

This event has kind t3rt_log_event_message_decode_failed_c. It’s
generated to log failure while decoding binary string. Use
t3rt_log_extract_message_decode_failed function to extract event parame-
ters.

Alt Statement Entered

This event has kind t3rt_log_event_alt_entered_c. It’s generated
when execution controls reaches “alt” statement. No event parameters are as-
sociated with this event.

Alt Statement Left

This event has kind t3rt_log_event_alt_left_c. It’s generated when ex-
ecution controls leaves “alt” statement. No event parameters are associated
with this event.

Alternative Rejected

This event has kind t3rt_log_event_alt_rejected_c. It’s generated
when guard expression evaluates to false thus skipping matching of guarded
alternative. No event parameters are associated with this event.

Else Alternative Entered

This event has kind t3rt_log_event_alt_else_c. It’s generated when ex-
ecution control enters statement block of “else” alternative. No event param-
eters are associated with this event.

Defaults Processing Started

This event has kind t3rt_log_event_alt_defaults_c. It’s generated to
log starting execution of defaults. No event parameters are associated with
this event.

Repeat Encountered

This event has kind t3rt_log_event_alt_repeat_c. It’s generated when-
ever execution controls encounters “repeat“ statement. No event parameters
are associated with this event.

172 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Alt Statement Waits New Events

This event has kind t3rt_log_event_alt_wait_c. It’s generated when-
ever execution controls reaches end of “alt” statement without successful
matching of any alternative. Thus component execution is suspended until
new events occur. No event parameters are associated with this event.

Sender Mismatch

This event has kind t3rt_log_event_sender_mismatch_c. It’s generated
as a result of a failed TTCN-3 “receive”, “getcall“, “getreply“ or “catch“ op-
eration due to sender mismatch. It means that alternative mismatched be-
cause actual sender of an operation doesn’t match expected one. Use
t3rt_log_extract_sender_mismatch function to extract event parameters.

RTS Log Handling Functions

t3rt_log_register_listener

Register a new log mechanism.

void t3rt_log_register_listener
(const char * mechanism_name,
 t3rt_log_mechanism_version_t version,
 t3rt_log_mechanism_init_function_t init_func,
 t3rt_log_mechanism_finalize_function_t final_func,
 t3rt_log_mechanism_open_function_t open_func,
 t3rt_log_mechanism_close_function_t close_func,
 t3rt_log_mechanism_log_event_function_t log_func);

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 173

Parameters

Description

This function registers the log mechanism to listen to the event channel. All
functions except event handling one may be NULL. The name of the log
mechanism is used to uniquely identify it inside RTS. This is necessary in
order to send event to certain log mechanism (see t3rt_log_event). The ver-
sion supported by the mechanism should be stated using the version con-
stants.

Initializing function is called once during the initialization of RTS. Final-
izing function is called once during the finalization of the RTS and it doesn’t
have t3rt_context_t parameter. Opening function is called once for every
created component during the component initialization. Closing function is
called once for every component during the component termination.

This function does not have a t3rt_context_t parameter.

t3rt_log_mechanism_set_auxiliary

Associates user-defined untyped buffer with the log mechanism.

void t3rt_log_mechanism_set_auxiliary
(t3rt_log_mechanism_t log_mechanism,
 void * aux,
 t3rt_context_t context);

mechanism_name Log mechanism name.

version Log mechanism version.

init_func Initializing function.

final_func Finalizing function.

open_func Opening function.

close_func Closing function.

log_func Event handling function.

174 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function allows associating any kind of user defined data with the log
mechanism. Data buffer is shared between all instances of the log mecha-
nism. It means that each component may get pointer to this buffer using
t3rt_log_mechanism_get_auxiliary function.

Note
Ensure that access to this buffer is serialized if test suite creates parallel
components. Since components execute concurrently access to this buffer
outside critical section may result in unpredictable behavior.

t3rt_log_mechanism_get_auxiliary

Retrieves user-defined untyped buffer from the given log mechanism.

void * t3rt_log_mechanism_get_auxiliary
(t3rt_log_mechanism_t log_mechanism,
 t3rt_context_t context);

Parameters

Description

This function returns pointer to the log mechanism auxiliary data buffer pre-
viously set by t3rt_log_mechanism_set_auxiliary function.

Return Values

Returns pointer to the auxiliary log mechanism data buffer. NULL if non is
set.

t3rt_log_set_auxiliary

Associates user-defined untyped buffer with the log instance.

log_mechanism Log mechanism descriptor.

aux Pointer to log mechanism auxiliary buffer.

log_mechanism Log mechanism descriptor.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 175

void t3rt_log_set_auxiliary
(t3rt_log_t log_instance,
 void * aux,
 t3rt_context_t context);

Parameters

Description

This function allows associating any kind of user defined data with the in-
stance of the log mechanism. This buffer is private to the executing compo-
nent. It may be queried using t3rt_log_get_auxiliary function.

t3rt_log_get_auxiliary

Retrieves user-defined untyped buffer from the given the log instance.

void * t3rt_log_get_auxiliary
(t3rt_log_t log_instance,
 t3rt_context_t context);

Parameters

Description

This function returns pointer to the log instance auxiliary data buffer previ-
ously set by t3rt_log_set_auxiliary function.

Return Values
Returns pointer to the auxiliary log instance data buffer. NULL if non is
set.

t3rt_log_get_log_mechanism

Retrieves log mechanism descriptor for the given log instance.

t3rt_log_mechanism_t t3rt_log_get_log_mechanism
(t3rt_log_t log,
 t3rt_context_t context);

log_instance Log mechanism instance descriptor.

aux Pointer to log mechanism auxiliary buffer.

log_instance Log mechanism instance descriptor.

176 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Return Values
Returns log mechanism descriptor for the given log instance.

t3rt_log_message_kind_name

Returns message kind (severity) as an ASCII string.

const char*
t3rt_log_message_kind_name(t3rt_log_message_kind_t kind)

Parameters

Return Values
Returns string representation for the given message kind.

t3rt_log_is_concentrator

Obsolete function. Should not be used.

bool t3rt_log_is_concentrator(t3rt_context_t ctx)

t3rt_log_string

Logs string to the specified log mechanism.

void t3rt_log_string
(const char* dest,
 t3rt_log_message_kind_t msg_kind,
 const char *string,
 t3rt_context_t ctx);

log_instance Log mechanism instance descriptor.

kind Message kind.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 177

Parameters

Description

This function logs the ASCII string message into event stream. Depending
on message kind Information Message, Warning Message, Error Message,
Debug Message or TTCN-3 Message event is logged.

The destination is the (registered) name of the log mechanism to pass the
string to. The t3rt_log_all_mechanisms_c constant may be used to pass the
string to all mechanisms.

t3rt_log_string_to_all

Logs string to all listening log mechanisms.

void t3rt_log_string_to_all
(t3rt_log_message_kind_t msg_kind,
 const char *string,
 t3rt_context_t ctx);

Parameters

Description

This function logs the ASCII string message into event stream. Depending
on message kind Information Message, Warning Message, Error Message,
Debug Message or TTCN-3 Message event is logged.

Message is received by all log mechanisms registered in the runtime
system.

t3rt_log_wide_string

Logs wide string to the specified log mechanism.

dest Name of destination log mechanism.

msg_kind Message kind.

string ASCII string to log.

msg_kind Message kind.

string ASCII string to log.

178 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

void t3rt_log_wide_string
(const char * dest,
 t3rt_log_message_kind_t msg_kind,
 t3rt_wide_string_t string,
 t3rt_context_t ctx);

Parameters

Description

This function logs the wide (possibly internationalized) string message into
event stream. Depending on message kind Information Message, Warning
Message, Error Message, Debug Message or TTCN-3 Message event is
logged.

The destination is the (registered) name of the log mechanism to pass the
string to. The t3rt_log_all_mechanisms_c constant may be used to pass the
string to all mechanisms.

t3rt_log_wide_string_to_all
void t3rt_log_wide_string_to_all

(t3rt_log_message_kind_t msg_kind,
 t3rt_wide_string_t string,
 t3rt_context_t ctx);

Parameters

Description

This function logs the wide (possibly internationalized) string message into
event stream. Depending on message kind Information Message, Warning
Message, Error Message, Debug Message or TTCN-3 Message event is
logged.

Message is received by all log mechanisms registered in the runtime
system.

dest Name of destination log mechanism.

msg_kind Message kind.

string Wide string to log.

msg_kind Message kind.

string Wide string to log.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 179

t3rt_log_event

Logs the event to the event log channel of specified log mechanism.

void t3rt_log_event
(const char * dest,
 t3rt_log_event_kind_t event_kind,
 t3rt_value_t params[],
 t3rt_context_t ctx);

Parameters

Description

This function logs event into event stream. Each event is identified by the
event kind (see t3rt_log_event_kind_t).

Event parameters should be specified as NULL terminated array of
t3rt_value_t values.

The destination is the (registered) name of the log mechanism to pass the
string to. The t3rt_log_all_mechanisms_c constant may be used to pass the
event to all mechanisms.

t3rt_log_event_to_all

Logs the event to the event log channel of all registered log mechanisms.

void t3rt_log_event_to_all
(t3rt_log_event_kind_t event_kind,
 t3rt_value_t params[],
 t3rt_context_t ctx);

dest Name of destination log mechanism.

event_kind Event kind.

params NULL terminated array of event parameters.

180 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function logs event into event stream. Each event is identified by the
event kind (see t3rt_log_event_kind_t).

Event parameters should be specified as NULL terminated array of
t3rt_value_t values.

Message is received by all log mechanisms registered in the runtime system.

t3rt_log_event_kind_string

Returns a textual representation of the log event kind.

const char *
t3rt_log_event_kind_string(t3rt_log_event_kind_t event);

Parameters

Description

Returns the t3rt_log_unknown_event_kind_name_c string constant if the
event kind cannot be identified.

Return Values

Returns string representation for the given event kind.

t3rt_log_extract_message_sent

Decode parameters of Message Sent and SUT Message Sent events.

void t3rt_log_extract_message_sent
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,

event_kind Event kind.

params NULL terminated array of event parameters.

event_kind Event kind.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 181

 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_sent extracts information describing a suc-
cessfull unicast "send" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_message_sent_mc

Decode parameters of Message Sent and SUT Message Sent events.

void t3rt_log_extract_message_sent_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

destination_comp
_address

Receiving component address (SUT address for
SUT messages).

destination_port
_address

Receiving port address.

182 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_message_sent_mc extracts information describing a
successfull multicast "send" TTCN-3 statement. This function is available
for user-defined log mechanisms.

t3rt_log_extract_message_sent_bc

Decode parameters of Message Sent and SUT Message Sent events.

void t3rt_log_extract_message_sent_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT messages).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 183

Parameters

Description

t3rt_log_extract_message_sent_bc extracts information describing a
successfull broadcast "send" TTCN-3 statement. This function is available
for user-defined log mechanisms.

t3rt_log_extract_message_sent_failed

Decode parameters of Message Sent Failed and SUT Message Sent Failed
events.

void t3rt_log_extract_message_sent_failed
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

184 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_message_sent_failed extracts information de-
scribing a failed unicast "send" TTCN-3 statement. This function is available
for user-defined log mechanisms.

t3rt_log_extract_message_sent_failed_mc

Decode parameters of Message Sent Failed and SUT Message Sent Failed
events.

void t3rt_log_extract_message_sent_failed_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 bool *codec_status,
 bool *communication_status,

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

destination_comp
_address

Receiving component address (SUT address for
SUT messages).

destination_port
_address

Receiving port address.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 185

 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_sent_failed_mc extracts information de-
scribing a failed multicast "send" TTCN-3 statement. This function is avail-
able for user-defined log mechanisms.

t3rt_log_extract_message_sent_failed_bc

Decode parameters of Message Sent Failed and SUT Message Sent Failed
events.

void t3rt_log_extract_message_sent_failed_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_message,
 t3rt_value_t *sent_message,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 bool *codec_status,
 bool *communication_status,

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT messages).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

186 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_sent_failed_bc extracts information de-
scribing a failed broadcast "send" TTCN-3 statement. This function is avail-
able for user-defined log mechanisms.

t3rt_log_extract_message_detected

Decode parameters of Message Detected and SUT Message Detected events.

void t3rt_log_extract_message_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *detected_data,
 unsigned long *seq_no,
 t3rt_binary_string_t *sender_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_message Template value for the sent message.

sent_message Actual value sent.

encoded_msg Encoded message.

seq_no Unique message number.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 187

Parameters

Description

t3rt_log_extract_message_detected extracts information describing a
message (received by the integration) inserted into port queue. This function
is available for user-defined log mechanisms.

t3rt_log_extract_message_received,
t3rt_log_extract_message_found

Decode parameters of Message Received, SUT Message Received, Message
Found and SUT Message Found events.

void t3rt_log_extract_message_received
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_value,
 t3rt_value_t *received_value,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t *sender_address,
 t3rt_context_t ctx);

void t3rt_log_extract_message_found
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_value,
 t3rt_value_t *received_value,
 t3rt_binary_string_t *encoded_msg,
 unsigned long *seq_no,
 t3rt_binary_string_t *sender_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

detected_data Encoded message.

seq_no Unique message number.

sender_address Address of the sending component (SUT address
for SUT messages).

188 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_message_received extracts information describing
TTCN-3 “receive“ statement. t3rt_log_extract_message_found ex-
tracts information describing TTCN-3 “check(receive)“ statement. These
functions are available for user-defined log mechanisms.

t3rt_log_extract_message_discarded

Decode parameters of Message Discarded and SUT Message Discarded
events.

void t3rt_log_extract_message_discarded
(t3rt_value_t params[],
const char **local_port_name,
t3rt_binary_string_t *local_port_address,
t3rt_value_t *template_discarded,
t3rt_value_t *discarded_value,
unsigned long *seq_no,
t3rt_binary_string_t *sender_address,
t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_value Template value for the received message.

received_value Actual value received.

encoded_msg Encoded message.

seq_no Unique message number.

sender_address Address of the sending component (SUT address
for SUT messages).

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 189

Parameters

Description

t3rt_log_extract_message_discarded extracts information describing
"trigger" TTCN-3 statement. This function is available for user-defined log
mechanisms.

t3rt_log_extract_call_initiated

Decode parameters of Call Initiated and SUT Call Initiated events.

void t3rt_log_extract_call_initiated
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_discard
ed

Template value for the discarded message.

discarded_value Actual value discarded.

seq_no Unique message number.

sender_address Address of the sending component (SUT address
for SUT messages).

190 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_call_initiated extracts information describing suc-
cessfull unicast "call" TTCN-3 statement. This function is available for user-
defined log mechanisms.

t3rt_log_extract_call_initiated_mc

Decode parameters of Call Initiated and SUT Call Initiated events.

void t3rt_log_extract_call_initiated_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_address

Receiving component address (SUT address for
SUT calls).

destination_port
_address

Receiving port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 191

Parameters

Description

t3rt_log_extract_call_initiated_mc extracts information describing
successfull multicast "call" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_call_initiated_bc

Decode parameters of Call Initiated and SUT Call Initiated events.

void t3rt_log_extract_call_initiated_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT calls).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

192 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_call_initiated_bc extracts information describing
successfull broadcast "call" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_call_failed

Decode parameters of Call Failed and SUT Call Failed events.

void t3rt_log_extract_call_failed
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 193

Parameters

Description

t3rt_log_extract_call_failed extracts information describing failed
unicast "call" TTCN-3 statement. This function is available for user-defined
log mechanisms.

t3rt_log_extract_call_failed_mc

Decode parameters of Call Failed and SUT Call Failed events.

void t3rt_log_extract_call_failed_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_address

Receiving component address (SUT address for
SUT calls).

destination_port
_address

Receiving port address.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

194 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_call_failed_mc extracts information describing
failed multicast "call" TTCN-3 statement. This function is available for user-
defined log mechanisms.

t3rt_log_extract_call_failed_bc

Decode parameters of Call Failed and SUT Call Failed events.

void t3rt_log_extract_call_failed_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT calls).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 195

Parameters

Description

t3rt_log_extract_call_failed_bc extracts information describing
failed broadcast "call" TTCN-3 statement. This function is available for user-
defined log mechanisms.

t3rt_log_extract_call_timed_out

Decode parameters of Call Timed Out and SUT Call Timed Out events.

void t3rt_log_extract_call_timed_out
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

196 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_call_timed_out extracts information describing
timed out "call" TTCN-3 statement. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_call_detected

Decode parameters of Call Detected and SUT Call Detected events.

void t3rt_log_extract_call_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *sender_address,
 unsigned long *seq_no,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_call_detected extracts information describing a
procedure call (received by the integration) inserted into port queue. This
function is available for user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

sender_address Sending component address (SUT address for SUT
calls).

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 197

t3rt_log_extract_call_received,
t3rt_log_extract_call_found

Decode parameters of Call Received, SUT Call Received, Call Found and
SUT Call Found events.

void t3rt_log_extract_call_received
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

void t3rt_log_extract_call_found
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_call,
 t3rt_value_t *call_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_call_received extracts information describing
TTCN-3 “getcall“ statement. t3rt_log_extract_call_found extracts in-
formation describing TTCN-3 “check(getcall)“ statement. These functions
are available for user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_call Template value for the called signature.

call_value Actual signature value called.

seq_no Unique call number.

destination_comp
_address

Receiving component address (SUT address for
SUT calls).

198 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_log_extract_reply_sent

Decode parameters of Reply Sent and SUT Reply Sent events.

void
t3rt_log_extract_reply_sent

(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_sent extracts information describing a suc-
cessfull unicast "reply" TTCN-3 statement. This function is available for
user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

destination_port
_address

Receiving port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 199

t3rt_log_extract_reply_sent_mc

Decode parameters of Reply Sent and SUT Reply Sent events.

void
t3rt_log_extract_reply_sent_mc

(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_sent_mc extracts information describing a
successfull multicast "reply" TTCN-3 statement. This function is available
for user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT replies).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

200 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_log_extract_reply_sent_bc

Decode parameters of Reply Sent and SUT Reply Sent events.

void
t3rt_log_extract_reply_sent_bc

(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_sent_bc extracts information describing a
successfull broadcast "reply" TTCN-3 statement. This function is available
for user-defined log mechanisms.

t3rt_log_extract_reply_failed

Decode parameters of Reply Failed and SUT Reply Failed events.

void t3rt_log_extract_reply_failed
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 201

 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_failed extracts information describing failed
unicast "getcall" TTCN-3 statement. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_reply_failed_mc

Decode parameters of Reply Failed and SUT Reply Failed events.

void t3rt_log_extract_reply_failed_mc

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

destination_port
_address

Receiving port address.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

202 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_failed_mc extracts information describing
failed multicast "getcall" TTCN-3 statement. This function is available for
user-defined log mechanisms.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT replies).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 203

t3rt_log_extract_reply_failed_bc

Decode parameters of Reply Failed and SUT Reply Failed events.

void t3rt_log_extract_reply_failed_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 t3rt_value_t *template_return,
 t3rt_value_t *return_value,
 unsigned long *seq_no,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_failed_bc extracts information describing
failed broadcast "getcall" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_reply_detected

Decode parameters of Reply Detected and SUT Reply Detected events.

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_reply Template value for the reply signature.

reply_value Actual reply signature value.

template_return Template for the returned value.

return_value Actual value returned.

seq_no Unique reply number.

codec_status Status of encoding operation.

communication_st
atus

Status of transmission operation.

204 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

void t3rt_log_extract_reply_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *destination_comp_address,
 unsigned long *seq_no,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_detected extracts information describing a
procedure reply (received by the integration) inserted into port queue. This
function is available for user-defined log mechanisms.

t3rt_log_extract_reply_received,
t3rt_log_extract_reply_found

Decode parameters of Reply Received, SUT Reply Received, Reply Found
and SUT Reply Found events.

void t3rt_log_extract_reply_received
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

void t3rt_log_extract_reply_found
 (t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_reply,
 t3rt_value_t *reply_value,

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

destination_comp
_address

Sending component address (SUT address for SUT
replies).

seq_no Unique reply number.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 205

 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_reply_received extracts information describing
TTCN-3 “getreply“ statement. t3rt_log_extract_reply_found extracts
information describing TTCN-3 “check(getreply)“ statement. These func-
tions are available for user-defined log mechanisms.

t3rt_log_extract_exception_raised

Decode parameters of Exception Raised and SUT Exception Raised events.

void t3rt_log_extract_exception_raised
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_value Signature template for the reply.

reply_value Signature value for the reply.

seq_no Unique reply number.

destination_comp
_address

Sending component address (SUT address for SUT
replies).

206 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_exception_raised extracts information describing a
successfull unicast "raise" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_exception_raised_mc

Decode parameters of Exception Raised and SUT Exception Raised events.

void t3rt_log_extract_exception_raised_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

destination_port
_address

Receiving port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 207

Parameters

Description

t3rt_log_extract_exception_raised_mc extracts information de-
scribing a successfull multicast "raise" TTCN-3 statement. This function is
available for user-defined log mechanisms.

t3rt_log_extract_exception_raised_bc

Decode parameters of Exception Raised and SUT Exception Raised events.

void t3rt_log_extract_exception_raised_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT replies).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

208 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_exception_raised_bc extracts information de-
scribing a successfull broadcast "raise" TTCN-3 statement. This function is
available for user-defined log mechanisms.

t3rt_log_extract_raise_failed

Decode parameters of Raise Failed and SUT Raise Failed events.

void t3rt_log_extract_raise_failed
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_binary_string_t *destination_port_address,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 209

Parameters

Description

t3rt_log_extract_raise_failed extracts information describing failed
unicast "raise" TTCN-3 statement. This function is available for user-defined
log mechanisms.

t3rt_log_extract_raise_failed_mc

Decode parameters of Raise Failed and SUT Raise Failed events.

void t3rt_log_extract_raise_failed_mc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 t3rt_binary_string_t **destination_comp_addr_list,
 t3rt_binary_string_t **destination_port_addr_list,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

destination_port
_address

Receiving port address.

codec_status Status of encoding operation.

communication_st
atus

Status of communication operation.

210 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_raise_failed_mc extracts information describing
failed multicast "raise" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_raise_failed_bc

Decode parameters of Raise Failed and SUT Raise Failed events.

void t3rt_log_extract_raise_failed_bc
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_exception,
 t3rt_value_t *exception_value,
 unsigned long *seq_no,
 bool *codec_status,
 bool *communication_status,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

destination_comp
_addr_list

NULL-terminated list of receiving components ad-
dresses (SUT address for SUT replies).

destination_port
_addr_list

NULL-terminated list of receiving ports addresses.

codec_status Status of encoding operation.

communication_st
atus

Status of communication operation.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 211

Parameters

Description

t3rt_log_extract_raise_failed_bc extracts information describing
failed broadcast "raise" TTCN-3 statement. This function is available for
user-defined log mechanisms.

t3rt_log_extract_exception_detected

Decode parameters of Exception Detected and SUT Exception Detected
events.

void t3rt_log_extract_exception_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *detected_data,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Sending port name.

local_port_addre
ss

Sending port address.

template_excepti
on

Template for the raised exception.

exception_value Actual exception value raised.

seq_no Unique exception number.

codec_status Status of encoding operation.

communication_st
atus

Status of communication operation.

212 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_exception_detected extracts information de-
scribing a procedure exception (received by the integration) inserted into port
queue. This function is available for user-defined log mechanisms.

t3rt_log_extract_exception_caught,
t3rt_log_extract_exception_found

Decode parameters of Exception Caught, SUT Exception Caught, Exception
Found and SUT Exception Found events.

void t3rt_log_extract_exception_caught
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_value,
 t3rt_value_t *caught_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

void t3rt_log_extract_exception_found
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_value_t *template_value,
 t3rt_value_t *caught_value,
 unsigned long *seq_no,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

detected_data Encoded exception value.

seq_no Unique exception number.

destination_comp
_address

Receiving component address (SUT address for
SUT replies).

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 213

Parameters

Description

t3rt_log_extract_exception_caught extracts information describing
TTCN-3 “catch“ statement. t3rt_log_extract_exception_found ex-
tracts information describing TTCN-3 “check(catch)“ statement. These func-
tions are available for user-defined log mechanisms.

t3rt_log_extract_timeout_exception_detected

Decode parameters of Timeout Exception Detected and SUT Timeout Ex-
ception Detected events.

void t3rt_log_extract_timeout_exception_detected
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

template_value Encoded exception value.

caught_value Actual exception value caught.

seq_no Unique exception number.

destination_comp
_address

Sending component address (SUT address for SUT
exceptions).

214 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_timeout_exception_detected extracts information
describing a detected procedure call timeout exception. This function is
available for user-defined log mechanisms.

t3rt_log_extract_timeout_exception_caught,
t3rt_log_extract_timeout_exception_found

Decode parameters of Timeout Exception Caught, SUT Timeout Exception
Caught, Timeout Exception Found and SUT Timeout Exception Found
events.

void t3rt_log_extract_timeout_exception_caught
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

void t3rt_log_extract_timeout_exception_found
(t3rt_value_t params[],
 const char **local_port_name,
 t3rt_binary_string_t *local_port_address,
 t3rt_binary_string_t *destination_comp_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 215

Parameters

Description

t3rt_log_extract_timeout_exception_caught extracts information
describing TTCN-3 “catch(timeout)“ statement.
t3rt_log_extract_timeout_exception_found extracts information de-
scribing TTCN-3 “check(catch(timeout))“ statement. These functions are
available for user-defined log mechanisms.

t3rt_log_extract_sender_mismatch

Decode parameters of Sender Mismatch event.

void t3rt_log_extract_sender_mismatch
(t3rt_value_t params[],
 t3rt_value_t *port,
 t3rt_binary_string_t *actual_sender,
 t3rt_binary_string_t *expected_sender,
 unsigned long *seq_no,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

local_port_name Receiving port name.

local_port_addre
ss

Receiving port address.

destination_comp
_address

Sending component address (SUT address for SUT
exceptions).

216 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_sender_mismatch extracts information describing a
mismatch of a sender address. This function is available for user-defined log
mechanisms.

t3rt_log_extract_sut_action

Decode parameters of SUT Action Performed event.

void t3rt_log_extract_sut_action
(t3rt_value_t params[],
 t3rt_value_t *string_or_template,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_sut_action extracts information describing a TTCN-
3 “action“ statement. This function is available for user-defined log mecha-
nisms.

t3rt_log_extract_timer_started

Decode parameters of Timer Started event.

void t3rt_log_extract_timer_started
(t3rt_value_t params[],
 const char **timer_name,

params Array of event parameters, received from RTS.

port Receiving port value.

actual_sender Encoded actual sender.

expected_sender Encoded expected sender.

seq_no Unique message/call/reply/exception number.

params Array of event parameters, received from RTS.

string_or_templa
te

String or template argument to SUT action.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 217

 unsigned long *unique_id,
 double *duration,
 double *default_duration,
 t3rt_timer_handle_t *handle,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_timer_started extracts information describing a
TTCN-3 timer “start“ statement. This function is available for user-defined
log mechanisms.

t3rt_log_extract_timer_stopped

Decode parameters of Timer Stopped event.

void t3rt_log_extract_timer_stopped
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

duration Timer duration.

default_duration Default timer duration.

handle Timer handle.

218 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_timer_stopped extracts information describing a
TTCN-3 timer “stop“ statement. This function is available for user-defined
log mechanisms.

t3rt_log_extract_timer_read

Decode parameters of Timer Read event.

void t3rt_log_extract_timer_read
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 double *elapsed_time,
 t3rt_timer_state_t *state,
 double *duration,
 double *default_duration,
 t3rt_timer_handle_t *handle,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 219

Parameters

Description

t3rt_log_extract_timer_read extracts information describing a TTCN-
3 timer “read“ statement. This function is available for user-defined log
mechanisms.

t3rt_log_extract_timer_is_running

Decode parameters of Timer Is Running Check Performed event.

void t3rt_log_extract_timer_is_running
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 double *elapsed_time,
 t3rt_timer_state_t *state,
 double *duration,
 double *default_duration,
 t3rt_timer_handle_t *handle,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

elapsed_time Time elapsed since timer start.

state Timer state.

duration Timer duration.

default_duration Default timer duration.

handle Timer handle.

220 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_timer_is_running extracts information describing a
TTCN-3 timer “running“ statement. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_timeout_detected

Decode parameters of timer Timer Timeout Detected event.

void t3rt_log_extract_timeout_detected
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_timeout_detected extracts information describing a
detected timer timeout (when triTimeout is called). This function is available
for user-defined log mechanisms.

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

elapsed_time Time elapsed since timer start.

state Timer state.

duration Timer duration.

default_duration Default timer duration.

handle Timer handle.

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 221

t3rt_log_extract_timeout_received

Decode parameters of Timer Timed Out Check Succeeded event.

void t3rt_log_extract_timeout_received
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_timeout_received extracts information describing
matched timeout alternative. This function is available for user-defined log
mechanisms.

t3rt_log_extract_timeout_mismatch

Decode parameters of Timer Timed Out Check Failed event.

void t3rt_log_extract_timeout_mismatch
(t3rt_value_t params[],
 const char **timer_name,
 unsigned long *unique_id,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_timeout_mismatch extracts information describing
mismatched timeout alternative. This function is available for user-defined
log mechanisms.

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

params Array of event parameters, received from RTS.

timer_name Timer name.

unique_id Unique timer id.

222 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_log_extract_component_created

Decode parameters of Component Created event.

void t3rt_log_extract_component_created
(t3rt_value_t params[],
 const char **component_name,
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_created extracts information describing
component creation event that is generated for TTCN-3 “create“ and “exe-
cute“ operations. This function is available for user-defined log mechanisms.

t3rt_log_extract_component_started

Decode parameters of Component Started event.

void t3rt_log_extract_component_started
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 const char **module,
 const char **function,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_name Name of the created component.

component_addres
s

Address of the created component.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 223

Parameters

Description

t3rt_log_extract_component_started extracts information describing
component start event that is generated for TTCN-3 “start“ and “execute“ op-
erations. This function is available for user-defined log mechanisms.

t3rt_log_extract_component_is_running

Decode parameters of Component Is Running Check Performed event.

void t3rt_log_extract_component_is_running
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 bool *is_running,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_is_running extracts information de-
scribing TTCN-3 component “running“ operation. This function is available
for user-defined log mechanisms.

t3rt_log_extract_component_is_alive

Decode parameters of Component Is Alive Check Performed event.

void t3rt_log_extract_component_is_alive

params Array of event parameters, received from RTS.

component_addres
s

Address of the started component.

module Module name of the started function.

function Name of the started function.

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

is_running State of the checked component.

224 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 bool *is_alive,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_is_alive extracts information de-
scribing TTCN-3 component “alive“ operation. This function is available for
user-defined log mechanisms.

t3rt_log_extract_component_stopped

Decode parameters of Component Stopped event.

void t3rt_log_extract_component_stopped
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_stopped extracts information describing
TTCN-3 component termination event. This function is available for user-
defined log mechanisms.

t3rt_log_extract_component_killed

Decode parameters of Component Killed event.

void t3rt_log_extract_component_killed

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

is_alive State of the checked component.

params Array of event parameters, received from RTS.

component_addres
s

Address of the stopped component.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 225

(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_component_killed extracts information describing
TTCN-3 alive component termination event. This function is available for
user-defined log mechanisms.

t3rt_log_extract_done_check_succeeded

Decode parameters of Component Done Check Succeeded event.

void t3rt_log_extract_done_check_succeeded
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_done_check_succeeded extracts information de-
scribing matched component “done“ alternative. This function is available
for user-defined log mechanisms.

t3rt_log_extract_done_check_failed

Decode parameters of Component Done Check Failed event.

void t3rt_log_extract_done_check_failed
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s

Address of the killed component.

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

226 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_done_check_failed extracts information describing
mismatched component “done“ alternative. This function is available for
user-defined log mechanisms.

t3rt_log_extract_kill_check_succeeded

Decode parameters of Component Killed Check Succeeded event.

void t3rt_log_extract_kill_check_succeeded
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_kill_check_succeeded extracts information de-
scribing matched component “killed“ alternative. This function is available
for user-defined log mechanisms.

t3rt_log_extract_kill_check_failed

Decode parameters of Component Killed Check Failed event.

void t3rt_log_extract_kill_check_failed
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 227

Parameters

Description

t3rt_log_extract_kill_check_failed extracts information describing
mismatched component “killed“ alternative. This function is available for
user-defined log mechanisms.

t3rt_log_extract_port_connected

Decode parameters of Port Connected event.

void t3rt_log_extract_port_connected
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address1,
 const char **port_name1,
 t3rt_binary_string_t *port_address1,
 t3rt_binary_string_t *component_address2,
 const char **port_name2,
 t3rt_binary_string_t *port_address2,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s

Address of the checked component.

228 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_port_connected extracts information describing
TTCN-3 port “connect“ operation. This function is available for user-defined
log mechanisms.

t3rt_log_extract_port_disconnected

Decode parameters of Port Disconnected event.

void t3rt_log_extract_port_disconnected
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address1,
 const char **port_name1,
 t3rt_binary_string_t *port_address1,
 t3rt_binary_string_t *component_address2,
 const char **port_name2,
 t3rt_binary_string_t *port_address2,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s1

First port component address.

port_name1 First port.name.

port_address1 First port address

component_addres
s2

Second port component address.

port_name2 Second port name.

port_address2 Second port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 229

Parameters

Description

t3rt_log_extract_port_disconnected extracts information describing
TTCN-3 port “disconnect“ operation. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_port_mapped

Decode parameters of Port Mapped event.

void t3rt_log_extract_port_mapped
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 const char **local_port_name,
 const char **system_port_name,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

component_addres
s1

First port component address.

port_name1 First port.name.

port_address1 First port address

component_addres
s2

Second port component address.

port_name2 Second port name.

port_address2 Second port address.

230 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_port_mapped extracts information describing TTCN-
3 port “map“ operation. This function is available for user-defined log mech-
anisms.

t3rt_log_extract_port_unmapped

Decode parameters of Port Unmapped event.

void t3rt_log_extract_port_unmapped
(t3rt_value_t params[],
 t3rt_binary_string_t *component_address,
 const char **local_port_name,
 const char **system_port_name,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_unmapped extracts information describing
TTCN-3 port “unmap“ operation. This function is available for user-defined
log mechanisms.

params Array of event parameters, received from RTS.

component_addres
s

Local port component address.

local_port_name Local port.name.

system_port_name System (TSI) port name.

params Array of event parameters, received from RTS.

component_addres
s

Local port component address.

local_port_name Local port.name.

system_port_name System (TSI) port name.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 231

t3rt_log_extract_port_enabled

Decode parameters of Port Enabled event.

void t3rt_log_extract_port_enabled
(t3rt_value_t params[],
 const char **port_name,
 t3rt_binary_string_t *port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_enabled extracts information describing
TTCN-3 port “start“ operation. This function is available for user-defined
log mechanisms.

t3rt_log_extract_port_disabled

Decode parameters of Port Disabled event.

void t3rt_log_extract_port_disabled
(t3rt_value_t params[],
 const char **port_name,
 t3rt_binary_string_t *port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_disabled extracts information describing
TTCN-3 port “stop“ operation. This function is available for user-defined log
mechanisms.

params Array of event parameters, received from RTS.

port_name Port.name.

port_address Port address.

params Array of event parameters, received from RTS.

port_name Port.name.

port_address Port address.

232 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_log_extract_port_halted

Decode parameters of Port Halted event.

void t3rt_log_extract_port_halted
(t3rt_value_t params[],
 const char **port_name,
 t3rt_binary_string_t *port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_halted extracts information describing TTCN-
3 port “halt“ operation. This function is available for user-defined log mech-
anisms.

t3rt_log_extract_port_cleared

Decode parameters of Port Cleared event.

void t3rt_log_extract_port_cleared
(t3rt_value_t params[],
 const char **port_name,
 t3rt_binary_string_t *port_address,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_port_cleared extracts information describing
TTCN-3 port “clear“ operation. This function is available for user-defined
log mechanisms.

params Array of event parameters, received from RTS.

port_name Port.name.

port_address Port address.

params Array of event parameters, received from RTS.

port_name Port.name.

port_address Port address.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 233

t3rt_log_extract_local_verdict_changed

Decode parameters of Local Verdict Set event.

void t3rt_log_extract_local_verdict_changed
(t3rt_value_t params[],
 t3rt_verdict_t *prev_verdict,
 t3rt_verdict_t *attempt_verdict,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_verdict_changed extracts information describing
TTCN-3 “setverdict“ operation. This event is generated in several other
cases (see Local Verdict Set event description for more info). This function
is available for user-defined log mechanisms.

t3rt_log_extract_local_verdict_queried

Decode parameters of Local Verdict Read event.

void t3rt_log_extract_local_verdict_queried
(t3rt_value_t params[],
 t3rt_verdict_t *verdict,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_verdict_queried extracts information describing
TTCN-3 “getverdict“ operation. This function is available for user-defined
log mechanisms.

params Array of event parameters, received from RTS.

prev_verdict Previous verdict.

attempt_verdict New verdict to be set.

params Array of event parameters, received from RTS.

verdict Current verdict.

234 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_log_extract_template_match_failed

Decode parameters of Template Match Failed event.

void t3rt_log_extract_template_match_failed
(t3rt_value_t params[],
 t3rt_value_t *template_value,
 t3rt_value_t *unmatched_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_template_match_failed extracts information de-
scribing failed matching operation. This function is available for user-de-
fined log mechanisms.

t3rt_log_extract_template_mismatch

Decode parameters of Template Mismatch event.

void t3rt_log_extract_template_mismatch
(t3rt_value_t params[],
 t3rt_value_t *field_or_item_specifier,
 t3rt_value_t *unmatched_value,
 t3rt_value_t* reference_value,
 const char** reference_value_descr,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

template_value Template value for the matching operation.

unmatched_value Mismatched value.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 235

Parameters

Description

t3rt_log_extract_template_mismatch extracts information describing
failed match of a value or a field value. This function is available for user-
defined log mechanisms.

t3rt_log_extract_template_match_begin

Decode parameters of Template Match Begin event.

void t3rt_log_extract_template_match_begin
(t3rt_value_t params[],
 t3rt_value_t * matched_value,
 t3rt_value_t * reference_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_template_match_begin extracts information de-
scribing start of a match operation. This function is available for user-defined
log mechanisms.

t3rt_log_extract_template_match_end

Decode parameters of Template Match End event.

params Array of event parameters, received from RTS.

field_or_item_sp
ecifier

Integer or charstring value describing the specifier
of unmatched field.

unmatched_value Unmatched value.

reference_value Reference value used in match operation.

reference_value_
descr

Description of failed matching operation.

params Array of event parameters, received from RTS.

matched_value Value to be matched.

reference_value Reference value used in match operation.

236 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

void t3rt_log_extract_template_match_end
(t3rt_value_t params[],
 bool *status,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_template_match_end extracts information de-
scribing end of a match operation. This function is available for user-defined
log mechanisms.

t3rt_log_extract_testcase_started

Decode parameters of Test case started event.

void t3rt_log_extract_testcase_started
(t3rt_value_t params[],
 const char **module_name,
 const char **testcase_name,
 double *timeout,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_testcase_started extracts information describing
start of a test case. This function is available for user-defined log mecha-
nisms.

params Array of event parameters, received from RTS.

status Result of the matching operation (success or fail).

params Array of event parameters, received from RTS.

module_name Module name of the started test case.

testcase_name Name of the started test case.

timeout Test case timeout.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 237

t3rt_log_extract_testcase_ended

Decode parameters of Test case ended event.

void t3rt_log_extract_testcase_ended
(t3rt_value_t params[],
 const char **module_name,
 const char **testcase_name,
 t3rt_verdict_t *verdict,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_testcase_ended extracts information describing ter-
mination of a test case. This function is available for user-defined log mech-
anisms.

t3rt_log_extract_testcase_timed_out

Decode parameters of Test case timed out event.

void t3rt_log_extract_testcase_timed_out
(t3rt_value_t params[],
 const char **module_name,
 const char **testcase_name,
 double *timeout,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

module_name Module name of the terminated test case.

testcase_name Name of the terminated test case.

verdict Test case verdict.

238 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

t3rt_log_extract_testcase_timed_out extracts information de-
scribing test case timeout event. This function is available for user-defined
log mechanisms.

t3rt_log_extract_testcase_error

Decode parameters of Test case error event.

void t3rt_log_extract_testcase_error
(t3rt_value_t params[],
 const char **module_name,
 const char **scope_name,
 const char **error_msg,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_testcase_error extracts information describing test
case error event. This function is available for user-defined log mechanisms.

t3rt_log_extract_test_case_verdict

Decode parameters of Test case verdict event.

params Array of event parameters, received from RTS.

module_name Module name of the timed out test case.

testcase_name Name of the timed out test case.

timeout Test case timeout.

params Array of event parameters, received from RTS.

module_name Module name of the scope that generated error.

scope_name Name of the scope (i.e. function) that generated
error.

error_msg Error description.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 239

void t3rt_log_extract_test_case_verdict
(t3rt_value_t params[],
 const char **testcase_name,
 t3rt_verdict_t *verdict,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_test_case_verdict extracts information describing
setting overall test case verdict. This function is available for user-defined
log mechanisms.

t3rt_log_extract_variable_modified

Decode parameters of Variable Modified event.

void t3rt_log_extract_variable_modified
(t3rt_value_t params[],
 t3rt_value_t *value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_variable_modified extracts information describing
modification odf a variable, constant or module parameter. This function is
available for user-defined log mechanisms.

t3rt_log_extract_scope_entered

Decode parameters of Scope Entered event.

void t3rt_log_extract_scope_entered

params Array of event parameters, received from RTS.

testcase_name Name of the terminated test case.

verdict Test case verdict.

params Array of event parameters, received from RTS.

value Modified value (after modification).

240 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

(t3rt_value_t params[],
 const char **scope_name,
 t3rt_scope_kind_t *scope_kind,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_scope_entered extracts information describing en-
tering a new scope (function, testcase, altstep, etc). This function is available
for user-defined log mechanisms.

t3rt_log_extract_scope_changed

Decode parameters of Scope Changed event.

void t3rt_log_extract_scope_changed
(t3rt_value_t params[],
 unsigned long *line_number,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_scope_changed extracts information describing
change in the scope source TTCN-3 position. This function is available for
user-defined log mechanisms.

t3rt_log_extract_scope_left

Decode parameters of Scope Left event.

void t3rt_log_extract_scope_left
(t3rt_value_t params[],

params Array of event parameters, received from RTS.

scope_name Name of the entered scope.

scope_kind Scope kind.

params Array of event parameters, received from RTS.

line_number Source TTCN-3 position in the scope.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 241

 const char **scope_name,
 t3rt_scope_kind_t *scope_kind,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_scope_left extracts information describing leaving
of a scope (fucntion, testcase, altstep, etc). This function is available for user-
defined log mechanisms.

t3rt_log_extract_alternative_activated_event

Decode parameters of Alternative Activated event.

void t3rt_log_extract_alternative_activated_event
(t3rt_value_t params[],
 const char **module_name,
 const char **altstep_name,
 t3rt_value_t *default_reference,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_alternative_activated_event extracts informa-
tion describing TTCN-3 “activate“ operation. This function is available for
user-defined log mechanisms.

params Array of event parameters, received from RTS.

scope_name Name of the left scope.

scope_kind Scope kind.

params Array of event parameters, received from RTS.

module_name Module name of the activated altstep.

altstep_name Name of the activated altstep.

default_referenc
e

Default reference of the activated altstep.

242 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_log_extract_alternative_deactivated_event

Decode parameters of Alternative Deactivated event.

void t3rt_log_extract_alternative_deactivated_event
(t3rt_value_t params[],
 t3rt_value_t *default_reference,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_alternative_deactivated_event extracts infor-
mation describing TTCN-3 “deactivate“ operation. This function is available
for user-defined log mechanisms.

t3rt_log_extract_message_decoded

Decode parameters of Data Decoded event.

void t3rt_log_extract_message_decoded
(t3rt_value_t params[],
 t3rt_binary_string_t * encoded_data,
 t3rt_value_t * decoded_value,
 t3rt_codecs_strategy_t * strategy,
 t3rt_context_t ctx);

params Array of event parameters, received from RTS.

default_referenc
e

Default reference of the deactivated altstep.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 243

Parameters

Description

t3rt_log_extract_message_decoded extracts information describing
successfull decoding of an encoded data. This function is available for user-
defined log mechanisms.

t3rt_log_extract_message_decode_failed

Decode parameters of Data Decoding Failed event.

void t3rt_log_extract_message_decode_failed
(t3rt_value_t params[],
 t3rt_binary_string_t * encoded_data,
 t3rt_codecs_strategy_t * strategy,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_decode_failed extracts information de-
scribing failed decoding of an encoded data. This function is available for
user-defined log mechanisms.

t3rt_log_extract_message_encoded

Decode parameters of Data Encoded event.

void t3rt_log_extract_message_encoded
(t3rt_value_t params[],
 t3rt_value_t * value,

params Array of event parameters, received from RTS.

encoded_data Encoded data.

decoded_value Decoded value.

strategy Decoding strategy selected by the RTS.

params Array of event parameters, received from RTS.

encoded_data Encoded data.

strategy Decoding strategy selected by the RTS.

244 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 t3rt_binary_string_t * encoded_data,
 t3rt_codecs_strategy_t * strategy,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_encoded extracts information describing
successfull encoding of a value. This function is available for user-defined
log mechanisms.

t3rt_log_extract_message_encode_failed

Decode parameters of Data Encoding Failed event.

void t3rt_log_extract_message_encode_failed
(t3rt_value_t params[],
 t3rt_value_t * value,
 t3rt_codecs_strategy_t * strategy,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_message_encode_failed extracts information de-
scribing failed encoding of a value. This function is available for user-de-
fined log mechanisms.

params Array of event parameters, received from RTS.

value Encoded value.

encoded_data Encoded data.

strategy Encoding strategy selected by the RTS.

params Array of event parameters, received from RTS.

value Value to be encoded.

strategy Encoding strategy selected by the RTS.

RTL Log Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 245

t3rt_log_extract_text_message_string

Decode parameters of Information Message, Warning Message, Error Mes-
sage, Debug Message and TTCN-3 Message events.

void t3rt_log_extract_text_message_string
(t3rt_value_t params[],
 const char** text,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_text_message_string extracts information de-
scribing test message event. Information is extracted into ASCII string. This
function is available for user-defined log mechanisms.

t3rt_log_extract_text_message_widestring

Decode parameters of Information Message, Warning Message, Error Mes-
sage, Debug Message and TTCN-3 Message events.

void t3rt_log_extract_text_message_widestring
(t3rt_value_t params[],
 t3rt_wide_string_t* text,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_text_message_widestring extracts information de-
scribing test message event. Information is extracted into wide string. This
function is available for user-defined log mechanisms.

params Array of event parameters, received from RTS.

text ASCII message description.

params Array of event parameters, received from RTS.

text Possibly internationalized message description.

246 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_log_extract_function_call

Decode parameters of Function called event.

void t3rt_log_extract_function_call
(t3rt_value_t params[],
 const char **function_name,
 t3rt_value_t *signature_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_function_call extracts information describing invo-
cation of a function. This function is available for user-defined log mecha-
nisms.

t3rt_log_extract_external_function_call

Decode parameters of External Function Called event.

void t3rt_log_extract_external_function_call
(t3rt_value_t params[],
 const char **function_name,
 t3rt_value_t *signature_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_external_function_call extracts information de-
scribing invocation of an external function. This function is available for
user-defined log mechanisms.

params Array of event parameters, received from RTS.

function_name Invoked function name.

signature_value Signature value describing actual parameters.

params Array of event parameters, received from RTS.

function_name Invoked external function name.

signature_value Signature value describing actual parameters.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 247

t3rt_log_extract_altstep_call

Decode parameters of Altstep Called event.

void t3rt_log_extract_altstep_call
(t3rt_value_t params[],
 const char **altstep_name,
 t3rt_value_t *signature_value,
 t3rt_context_t ctx);

Parameters

Description

t3rt_log_extract_altstep_call extracts information describing invo-
cation of an altstep. This function is available for user-defined log mecha-
nisms.

RTL Wide String Functions

RTL Wide String Related Type Definitions

t3rt_wide_string_t

This is a string that contains multi-byte characters (t3rt_wide_char_t).
It is used for localized strings and for the representation of the
universal_charstring TTCN-3 type.

t3rt_wide_char_t

Representation of a character inside a t3rt_wide_string_t.

t3rt_wchar2int

Converts wide character content into the corresponding integer code number
(ISO-10646).

void t3rt_wchar2int
(const t3rt_wide_char_t wchar,
 unsigned long * wchar_code,

params Array of event parameters, received from RTS.

altstep_name Invoked altstep name.

signature_value Signature value describing actual parameters.

248 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 t3rt_context_t context);

Parameters

Description

This function converts wide character representation (i.e. byte array) into an
integer value. Each of four bytes in the result integer stores corresponding
part from t3rt_wide_char_t character representation.

t3rt_wchar2quad

Converts wide character content into the corresponding quadruple.

void t3rt_wchar2quad
(const t3rt_wide_char_t wchar,
 unsigned char * group,
 unsigned char * plane,
 unsigned char * row,
 unsigned char * cell,
 t3rt_context_t context);

Parameters

Description

This function extracts group, plane, row and cell bytes from the wide char-
acter representation (i.e. byte array).

wchar Wide char value to be converted.

wchar_code Output parameter that receives conversion result.

wchar Wide char value to be converted.

group Output parameter that receives group byte of wide
character.

plane Output parameter that receives plane byte of wide
character.

row Output parameter that receives row byte of wide
character.

cell Output parameter that receives cell byte of wide
character.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 249

t3rt_char2wchar

Converts character (ISO-646) into the wide character content (ISO-10646).

void t3rt_char2wchar
(char char_code,
 t3rt_wide_char_t * wchar,
 t3rt_context_t context);

Parameters

Description
This function converts ASCII character represented by its character code
into wide char representation.

t3rt_int2wchar

Converts integer code number (ISO-10646) into the wide character content.

void t3rt_int2wchar
(unsigned long wchar_code,
 t3rt_wide_char_t * wchar,
 t3rt_context_t context);

Parameters

Description
This function converts integer value (that is the code of a wide character)
into the wide character representation (i.e. byte array).

t3rt_quad2wchar

Converts quadruple into the wide character content.

void t3rt_quad2wchar
(unsigned char group,
 unsigned char plane,

char_code Char value to be converted.

wchar Output parameter that receives conversion result.

wchar_code Integer representing wide char code.

wchar Output parameter that receives conversion result.

250 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 unsigned char row,
 unsigned char cell,
 t3rt_wide_char_t * wchar,
 t3rt_context_t context);

Parameters

Description

This function merges group, plane, row and cell bytes into the wide character
representation (i.e. byte array).

t3rt_wchar_cmp

Compare two wide char characters.

int t3rt_wchar_cmp
(const t3rt_wide_char_t wchar1,
 const t3rt_wide_char_t wchar2,
 t3rt_context_t context);

Parameters

Description

This function compares two wide characters by their codes, i.e. result is eval-
uated by comparing the output of t3rt_wchar2int for both given wide chars.

Return Values

Returns -1 if “wchar1” is lesser than “wchar”2, 1 if “wchar1” is greater than
“wchar2”, 0 if they are equal.

group Group byte of wide character.

plane Plane byte of wide character.

row Row byte of wide character.

cell Cell byte of wide character.

wchar Output parameter that receives conversion result.

wchar1 First wide character.

wchar2 Second wide character.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 251

t3rt_wide_string_rotateleft

Makes a left-rotated copy of the wide string.

t3rt_wide_string_t t3rt_wide_string_rotateleft
(t3rt_wide_string_t wstring,
 unsigned long char_count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Description

Rotates the string element in the string according to ETSI ES 201 873-1
V2.2.1.

Return Values

A copy of the rotated string allocated with the specified allocation strategy.

t3rt_wide_string_rotateright

Makes a right-rotated copy of the wide string.

t3rt_wide_string_t t3rt_wide_string_rotateright
(t3rt_wide_string_t wstring,
 unsigned long char_count,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

wstring The string to rotate.

char_count The number of rotations.

strategy Memory allocation strategy for the resulting value.

wstring The string to rotate.

char_count The number of rotations.

strategy Memory allocation strategy for the resulting value.

252 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

Rotates the string element in the string according to ETSI ES 201 873-1
V2.2.1.

Return Values

A copy of the rotated string allocated with the specified allocation strategy.

t3rt_wide_string_set_element

Sets the wide character at the specified index position.

void t3rt_wide_string_set_element
(t3rt_wide_string_t wstring,
 unsigned long index,
 const t3rt_wide_char_t wchar,
 t3rt_context_t context);

Parameters

Description

This functions sets contents of wide string at specified position to the given
wide character. Assigning value to the position outside current string bound-
aries generates test case error.

t3rt_wide_string_set_element_to_ascii_char

Sets the character at the specified index position.

void t3rt_wide_string_set_element_to_ascii_char
(t3rt_wide_string_t wstring,
 unsigned long index,
 char chr,
 t3rt_context_t context);

wstring Wide string to be changed.

index Zero based position in wide string to assign to.

wchar Element to assigned to the specified position of
wide string.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 253

Parameters

Description
This functions sets contents of wide string at specified position to the given
ASCII character. Assigning value to the position outside current string
boundaries generates test case error.

t3rt_wide_string_element

Returns the wide character at the specified index position.

void t3rt_wide_string_element
(const t3rt_wide_string_t wstring,
 unsigned long index,
 t3rt_wide_char_t * wchar,
 t3rt_context_t context);

Parameters

Description

This function extracts single wide character from the given position of the
wide string. Specified element index should point to element within string
boundaries otherwise test case error is generated.

t3rt_wide_string_allocate

Creates an empty wide string and pre-allocates space for the given length.

t3rt_wide_string_t t3rt_wide_string_allocate
(t3rt_alloc_strategy_t strategy,

wstring Wide string to be changed.

index Zero based position in wide string to assign to.

chr Element to assigned to the specified position of
wide string.

wstring Queried wide string.

index Zero based position in wide string.

wchar Output parameter for the requested wide string ele-
ment.

254 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 unsigned long alloc_size,
 t3rt_context_t context);

Parameters

Description

This function creates new empty wide string. Allocation size specifies the
initial size of the internal string buffer. It may be equal to zero and serves
only to increase the performance of the wide string operations. Allocation
size is given in number of wide characters.

Return Values

New instance of wide string allocated according the specified strategy.

t3rt_wide_string_deallocate

De-allocates the wide string.

void t3rt_wide_string_deallocate
(t3rt_wide_string_t * wstring,
 t3rt_context_t context);

Parameters

Description
This function deletes specified wide string and frees all memory reserved
by this string.

t3rt_wide_string_construct_from_ascii

Constructs a wide string out of the NULL terminated ASCII string.

t3rt_wide_string_t t3rt_wide_string_construct_from_ascii
(const char * ascii_string,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

strategy Memory allocation strategy for the created string.

alloc_size Initial size of the string buffer.

wstring Address of wide string to be deallocated.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 255

Parameters

Description

This function creates new wide string and fills it with the given ASCII string.

Return Values

New instance of wide string allocated according the specified strategy and
filled with the specified value.

t3rt_wide_string_construct_from_wchar

Constructs a single character wide string out of a wide character

t3rt_wide_string_t t3rt_wide_string_construct_from_wchar
(const t3rt_wide_char_t character,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Description

This function creates new one element wide string and fills it with the given
wide char.

Return Values

New instance of wide string allocated according the specified strategy and
filled with the specified value.

ascii_string NULL-terminated free ASCII text string.

strategy Memory allocation strategy for the resulting string.

character Single wide character.

strategy Memory allocation strategy for the resulting string.

256 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_wide_string_set

Sets the contents of the wide string to a copy of the character array of given
length.

void t3rt_wide_string_set
(t3rt_wide_string_t wstring,
 unsigned long length,
 const t3rt_wide_char_t value[],
 t3rt_context_t context);

Parameters

Description

This function rewrites contents of the given wide string with the new value.
New value is specified with the array of wide characters. Length of the wide
char array is provided in the separate function formal parameter.

t3rt_wide_string_set_ascii

Sets the contents of the wide string to a copy of the null-terminated character
string.

void t3rt_wide_string_set_ascii
(t3rt_wide_string_t wstring,
 const char * ascii_string,
 t3rt_context_t context);

Parameters

Description
This function rewrites contents of the given wide string with the new value.
New value is specified with the NULL-terminated ASCII string.

wstring Valid wide string.

length Length of wide character array.

value Array of wide characters.

wstring Valid wide string.

ascii_string NULL-terminated ASCII string.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 257

t3rt_wide_string_set_wchar_array

Sets the contents of the wide string to a copy of the array of wide chars.

void t3rt_wide_string_set_wchar_array
(t3rt_wide_string_t wstring,
 const t3rt_wide_char_t * string,
 unsigned long length,
 t3rt_context_t context);

Parameters

Description

This function rewrites contents of the given wide string with the new value.
New value is specified with the array of wide characters. Length of the wide
char array is provided in the separate function formal parameter. This func-
tion behaves similar to t3rt_wide_string_set.

t3rt_wide_string_copy

Makes a copy of the wide string.

t3rt_wide_string_t t3rt_wide_string_copy
(t3rt_wide_string_t wstring,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Return Values

Returns copy of the wide string allocated according to the specified strategy.

wstring Valid wide string.

string Array of wide characters.

length Length of the wide char array.

wstring Valid wide string.

strategy memory allocation strategy for the resulting value.

258 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_wide_string_length

Returns the number of the wide characters in the wide string.

unsigned long t3rt_wide_string_length
(t3rt_wide_string_t wstring,
 t3rt_context_t context);

Parameters

Return Values

Returns the number of the wide characters in the wide string.

t3rt_wide_string_is_equal

Compares two wide strings for equality.

bool t3rt_wide_string_is_equal
(t3rt_wide_string_t wstring1,
 t3rt_wide_string_t wstring2,
 t3rt_context_t context);

Parameters

Description

This function accepts NULL pointer as a wide string reference. If both wide
strings equal to NULL then functions returns true.

Return Values
Returns true if strings are equal, false otherwise.

t3rt_wide_string_content

Returns the actual character array of the wide string.

const unsigned char * t3rt_wide_string_content

wstring Valid wide string.

wstring1 First wide string.

wstring2 Second wide string.

RTL Wide String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 259

(t3rt_wide_string_t wstring,
 t3rt_context_t context);

Parameters

Description

This function returns reference to the internal wide string buffer. Length of
this buffer is returned by the t3rt_wide_string_length function.

Return Values
Returns reference to the internal wide string buffer that is the array of wide
characters.

t3rt_wide_string_assign

Assigns the src wide string to the dest wide string.

void t3rt_wide_string_assign
(t3rt_wide_string_t dest,
 const t3rt_wide_string_t src,
 t3rt_context_t context);

Parameters

Description

This function assigns one wide string to the another. Destination wide string
has to be allocated prior to assignment.

t3rt_wide_string_append

Appends one wide string the end of another.

void t3rt_wide_string_append
(t3rt_wide_string_t wstring,
 t3rt_wide_string_t appwstr,
 t3rt_context_t context);

wstring Valid wide string.

dest Destination wide string.

src Source wide string.

260 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description
This function appends “appwstr“ to the end of “wstring“.

t3rt_format_char_string, t3rt_format_wide_string

Support for the parametrized wide string formatting.

t3rt_wide_string_t t3rt_format_char_string
(const char * fmt_cstring,
 t3rt_context_t context,
 ...);

t3rt_wide_string_t t3rt_format_wide_string
(const t3rt_wide_string_t fmt_wstring,
 t3rt_context_t context,
 ...);

Parameters

Description

Main formatting functions that drives the conversion process and invokes
support functions. Format string is represented by the ASCII string or the
wide string.

The behavior of these function is similar to the “printf” function. However
format string is based on different rules. Format string is a generic free text
string that contains format patterns. Each format pattern is substituted from
the variable length function parameter list, which should contain enough
values. Each format pattern starts with “%“ symbol. First symbol after “%“
describes the ordinal number of the actual parameter. That is one and the
same parameter may occur in several patterns. The second (and the last)
symbol describes the type of the corresponding data (actual parameter).

wstring Wide string that will be changed.

appwstr Appended wide string

fmt_string Format string.

... Optional variable length list of parameters.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 261

For example, pattern “%3s” tells that third parameter is an ASCII string
value. Valid type specifiers are:

RTL Binary String Functions
The binary string is an arbitrarily sized sequence of bits that is used by en-
coders/decoders and in various other situation when binary data have to be
represented.

RTL Binary String Related Type Definitions

t3rt_binary_string_t

Representation for a sequence of binary data. The string will grow dy-
namically to the necessary size.

t3rt_binary_string_iter_t

This is an iterator used when reading data from a binary string. Used in,
for example, decoders. The binary string iterator API functions have the
t3rt_bstring_iter-prefix.

t3rt_binary_string_allocate

Creates an empty binary string of given size

t3rt_binary_string_t t3rt_binary_string_allocate
(t3rt_alloc_strategy_t strategy,
 unsigned long alloc_length,
 t3rt_context_t context);

‘c’ ASCII character.

‘s’ ASCII string.

‘w’ Wide string.

‘d’ 32-bit integer.

‘D’ 64-bit integer.

‘f’ Float value.

‘b’ Binary string.

‘V’ t3rt_value_t reference.

262 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function creates new empty binary string. Allocation size specifies the
initial size of the internal string buffer. It may be equal to zero and serves
only to increase the performance of the binary string operations. Allocation
size is given in number of bits.

Return Values

New instance of binary string allocated according the specified strategy.

t3rt_binary_string_deallocate

Deletes binary string data.

void t3rt_binary_string_deallocate
(t3rt_binary_string_t string,
 t3rt_context_t context);

Parameters

Description

Use t3rt_binary_string_deallocate_all instead.
t3rt_binary_string_deallocate is a deprecated function and will be
removed in future versions.

t3rt_binary_string_deallocate frees the internal string buffer used to
store actual data. The memory allocated for the service structure itself should
be freed manually by the user

t3rt_binary_string_deallocate_all

Fully deletes binary string freeing all allocated memory.

strategy Memory allocation strategy for the created string.

alloc_length Initial size of the string buffer.

string Binary string to be deleted.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 263

void t3rt_binary_string_deallocate_all
(t3rt_binary_string_t * string,
 t3rt_context_t context);

Parameters

Description

t3rt_binary_string_deallocate_all fully frees the memory allocated
for a binary string.

t3rt_binary_string_construct

Creates new binary string from the specified data array.

t3rt_binary_string_t t3rt_binary_string_construct
(t3rt_alloc_strategy_t strategy,
 unsigned long length,
 const unsigned char *data,
 t3rt_context_t context);

Parameters

Description

This function creates new binary string and initializes it with the data from
the provided buffer.

Return Values

New instance of binary string allocated according the specified strategy and
filled with the specified data.

t3rt_binary_string_copy

Makes a copy of the string.

string Pointer to the binary string to be deleted.

strategy Memory allocation strategy for the resulting string.

length Length of data buffer in bits.

data Data buffer.

264 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_binary_string_t t3rt_binary_string_copy
(t3rt_binary_string_t string,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t context);

Parameters

Return Values
Returns copy of the given binary string allocated according the specified
strategy.

t3rt_binary_string_clear

Clears the contents. This will only set the length to zero.

void t3rt_binary_string_clear
(t3rt_binary_string_t string,
 t3rt_context_t context);

Parameters

Description
This function sets the length of the binary string to zero. String buffer is not
touched and memory is not released.

t3rt_binary_string_length

The number of used bits in the string.

unsigned long t3rt_binary_string_length
(t3rt_binary_string_t string,
 t3rt_context_t context);

Parameters

string Binary string to copy.

strategy Memory allocation strategy for the resulting string.

string Binary string to clear.

string Valid binary string.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 265

Return Values
Returns the length of the given string in bits.

t3rt_binary_string_is_equal

Compares two bit strings for equality.

bool t3rt_binary_string_is_equal
(t3rt_binary_string_t s1,
 t3rt_binary_string_t s2,
 t3rt_context_t context);

Parameters

Return Values
Returns true if binary strings are equal, false otherwise.

t3rt_binary_string_pad

Aligns the binary string by padding the last byte with zeroes if not fully used.

void t3rt_binary_string_pad
(t3rt_binary_string_t string,
 t3rt_context_t context);

Parameters

Description

If the given binary string is not byte-aligned then it’s appended with certain
number of zero bits (from 1 to 7) to make the resulting string byte-aligned.

t3rt_binary_string_assign

Assigns one binary string to another.

void t3rt_binary_string_assign
(t3rt_binary_string_t dest,

s1 Valid binary string.

s1 Valid binary string.

string Valid binary string.

266 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 t3rt_binary_string_t src,
 t3rt_context_t context);

Parameters

Description

This function assigns one binary string to another. Both strings has to be
valid binary strings, allocated prior to the assignment.

t3rt_binary_string_append

t3rt_binary_string_append, t3rt_binary_string_append_1byte,
t3rt_binary_string_append_2bytes,
t3rt_binary_string_append_4bytes,
t3rt_binary_string_append_nbytes,
t3rt_binary_string_append_nbits,
t3rt_binary_string_append_from_iter,
t3rt_binary_string_append_bits

Append binary string from different sources.

void t3rt_binary_string_append
(t3rt_binary_string_t string,
 t3rt_binary_string_t appstr,
 t3rt_context_t context);

void t3rt_binary_string_append_1byte
(t3rt_binary_string_t string,
 unsigned char data_1,
 t3rt_context_t context);

void t3rt_binary_string_append_2bytes
(t3rt_binary_string_t string,
 unsigned short data_2,
 t3rt_context_t context);

void t3rt_binary_string_append_4bytes
(t3rt_binary_string_t string,
 unsigned long data_4,
 t3rt_context_t context);

void t3rt_binary_string_append_nbytes

dest Destination binary string.

src Source binary string.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 267

(t3rt_binary_string_t string,
 const unsigned char *data_n,
 unsigned long byte_size,t3rt_context_t context);

void t3rt_binary_string_append_nbits
(t3rt_binary_string_t string,
 const unsigned char *data_n,
 unsigned long bit_size,
 t3rt_context_t context);

void t3rt_binary_string_append_from_iter
(t3rt_binary_string_t string,
 t3rt_binary_string_iter_t *iter,
 unsigned long iter_bits,
 t3rt_context_t context);

void t3rt_binary_string_append_bits
(t3rt_binary_string_t string,
 unsigned char data_1,
 unsigned char n_bits,
 t3rt_context_t context);

Parameters

Description

The above functions append given binary string with data that may be pro-
vided differently.

string Valid binary string.

appstr Valid binary string.

data_1 8-bit integer (unsigned char).

data_2 16-bit integer (unsigned short).

data_4 32-bit integer (unsigned long)

data_n Pointer to data buffer

iter Binary string iterator

byte_size Length of data buffer in bytes.

bit_size Length of data buffer in bits.

iter_bits Number of bits to extract from the iterator.

n_bits Number of bits to extract from 8-bit integer.

268 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

In t3rt_binary_string_append data is appended from of another binary
string. The length of appended data is the length of appended binary string.

In t3rt_binary_string_append_1byte data is appended from given un-
signed char buffer. The length of appended data is 8 bits.

In t3rt_binary_string_append_2byte data is appended from given un-
signed short buffer. The length of appended data is 16bits.

In t3rt_binary_string_append_4byte data is appended from given un-
signed long. The length of appended data is 32bits.

In t3rt_binary_string_append_nbytes data is appended from given
data buffer. The length of appended data is specified by the “byte_size“ pa-
rameter in bytes (i.e. the actual length of appended data is “byte_size” * 8).

In t3rt_binary_string_append_nbits data is appended from given data
buffer. The length of appended data is specified by the “bit_size“ parameter
in bits.

In t3rt_binary_string_append_bits data is appended from given un-
signed char. The length of appended data is specified by the “n_bits“ param-
eter in bits. Value of “n_bits“ may not be grater than 8.

In t3rt_binary_string_append_iter data is appended from given bi-
nary string iterator, which has been previously initialized using one of the bi-
nary string iterator functions (e.g. t3rt_binary_string_start). The length of ap-
pended data is specified by the “iter_bits“ parameter in bits. Value of
“iter_bits“ may not be grater than remaining length of the iterator. It may be
queried using t3rt_bstring_iter_remaining_room function. After invoking
this function iterator is moved forward to the “iter_bits“ number of bits.

t3rt_bstring_iter_remaining_room

Returns the remaining room in the given iterator.

unsigned long t3rt_bstring_iter_remaining_room
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

iter Address of the binary string iterator.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 269

Return Values

Returns the number of bits between the current position of the iterator and
the end of the binary string. Returns zero then iterator is at the end of the bi-
nary string.

t3rt_binary_string_start

Sets the iterator at the beginning of the string.

void t3rt_binary_string_start
(t3rt_binary_string_t string,
 t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Description

This function initializes iterator and sets it to the start of given binary string.

Example Usage
t3rt_binary_string_iter_t iter;
t3rt_binary_string_start(bstring, &iter, ctx);
t3rt_decode(&iter, value_type, t3rt_temp_alloc_c, &value,
ctx);

t3rt_binary_string_set_at

Sets the iterator to the indicated bit position of the string.

void t3rt_binary_string_set_at
(t3rt_binary_string_t string,
 unsigned long index,
 t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

string Valid binary string.

iter Address of the binary string iterator.

270 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function initializes iterator and sets it to the specified position inside bi-
nary string. Position should be within the boundaries of the given string.

t3rt_bstring_iter_forward_nbits

Moves the iterator forward.

void t3rt_bstring_iter_forward_nbits
(t3rt_binary_string_iter_t *iter,
 unsigned long n_bits,
 t3rt_context_t context);

Parameters

Description
This function moves iterator forward to the specified number of bits. After
moving iterator should point to the valid position within binary string.

t3rt_bstring_iter_backward_nbits

Moves the iterator backwards.

void t3rt_bstring_iter_backward_nbits
(t3rt_binary_string_iter_t *iter,
 unsigned long n_bits,
 t3rt_context_t context);
 t3rt_context_t context);

string Valid binary string.

index Position inside binary string.

iter Address of the binary string iterator.

iter Address of the binary string iterator.

n_bits Offset in bits

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 271

Parameters

Description
This function moves iterator backward to the specified number of bits.
After moving iterator should point to the valid position within binary
string.

t3rt_bstring_iter_next_byte

Moves the iterator forwards to the start of the next byte.

void t3rt_bstring_iter_next_byte
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Description
This function moves the iterator forward to the start of the next byte. If the
current position is at a start of a byte, the iterator will move one byte
forward.

t3rt_bstring_iter_is_at_boundary

Checks if the iterator is positioned at the beginning of a byte.

bool t3rt_bstring_iter_is_at_boundary
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Description
This function checks if the iterator is positioned at the beginning of a byte,
i.e. that it is byte aligned.

iter Address of the binary string iterator.

n_bits Offset in bits

iter Address of the binary string iterator.

iter Address of the binary string iterator.

272 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

Returns true if iterator is byte aligned, false otherwise.

t3rt_bstring_iter_bits_to_byte_boundary

Returns number of bits left to the next byte boundary.

unsigned char t3rt_bstring_iter_bits_to_byte_boundary
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Return Values

Returns integer from 0 to 7 that is the number of bits between current iterator
position and next byte boundary.

t3rt_bstring_iter_at_end,
t3rt_bstring_iter_at_start

Predicates to check if the iterator is positioned at the end or beginning of the
string.

bool t3rt_bstring_iter_at_end
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

bool t3rt_bstring_iter_at_start
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Return Values

t3rt_bstring_iter_at_end returns true if iterator is positioned at the end
of binary string, false otherwise.

iter Address of the binary string iterator.

iter Address of the binary string iterator.

RTL Binary String Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 273

t3rt_bstring_iter_at_start returns true if iterator is positioned at the
start of binary string, false otherwise.

t3rt_bstring_iter_is_bit_set

Checks if the bit at the current position is set.

bool t3rt_bstring_iter_is_bit_set
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

Parameters

Return Values
Returns true if bit is set (i.e. equals to 1) at the current iterator position,
false otherwise.

t3rt_bstring_iter_get_bits

t3rt_bstring_iter_get_bits, t3rt_bstring_iter_get_1byte,
t3rt_bstring_iter_get_2bytes, t3rt_bstring_iter_get_4bytes,
t3rt_bstring_iter_get_nbytes, t3rt_bstring_iter_get_nbits

Extracts data from the binary string.

unsigned char t3rt_bstring_iter_get_bits
(t3rt_binary_string_iter_t *iter,
 unsigned char n_bits,
 t3rt_context_t context);

unsigned char t3rt_bstring_iter_get_1byte
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

unsigned short t3rt_bstring_iter_get_2bytes
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

unsigned long t3rt_bstring_iter_get_4bytes
(t3rt_binary_string_iter_t *iter,
 t3rt_context_t context);

void t3rt_bstring_iter_get_nbytes
(t3rt_binary_string_iter_t *iter,
 unsigned long byte_size,

iter Address of the binary string iterator.

274 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 unsigned char *data,
 t3rt_context_t context);

void t3rt_bstring_iter_get_nbits
(t3rt_binary_string_iter_t *iter,
 unsigned long bit_size,
 unsigned char *data,
 t3rt_context_t context);

Parameters

Description

The above functions extracts specified amount of data from the binary string
and return it in this or tat way. Starting position is identified by the current
position of the iterator. The remaining room of the iterator (see
t3rt_bstring_iter_remaining_room) should be greater or equal to the length
of the extracted data. After extracting data iterator is moved forward.

t3rt_bstring_iter_get_bits extracts 0 to 8 bits from the string and re-
turns them as unsigned char value.

t3rt_bstring_iter_get_1byte extracts 8 bits from the string and returns
them as unsigned char value.

t3rt_bstring_iter_get_2bytes extracts 16 bits from the string and re-
turns them as unsigned short value.

t3rt_bstring_iter_get_4bytes extracts 32 bits from the string and re-
turns them as unsigned long value.

t3rt_bstring_iter_get_nbytes extracts specified number of bytes from
the string and puts them into given buffer.

t3rt_bstring_iter_get_nbits extracts specified number of bits from
the string and puts them into given buffer.

iter Address of the binary string iterator.

n_bits Number of bits to return (n_bits <= 8).

byte_size Amount of bytes to extract.

bit_size Amount of bits to extract.

data Pointer to data buffer.

RTL Codecs Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 275

Return Values

t3rt_bstring_iter_get_bits returns extracted 0-8 bits as unsigned char
value.

t3rt_bstring_iter_get_1byte returns extracted 8 bits as unsigned char
value.

t3rt_bstring_iter_get_2bytes extracts returns extracted 16 bits as un-
signed short value.

t3rt_bstring_iter_get_4bytes returns extracted 32 bits as unsigned
long value.

RTL Codecs Functions

RTL Codecs Related Type Definitions

t3rt_codecs_init_function_t

This type of function is registered in “t3rt_codecs_register” on page 276
and invoked when the codecs system must be initialized.

t3rt_codecs_setup_function_t

This type of function is registered in “t3rt_codecs_register” on page 276
and called repeatedly to set up codecs functions for a given TTCN-3
type.

t3rt_codecs_result_t

This represents the return status of the encoder and decoder functions.
It signifies that the operation was not applicable, failed, or successful.
The symbols used are: t3rt_codecs_result_not_applicable_c,
t3rt_codecs_result_failed_c or t3rt_codecs_result_succeeded_c respec-
tively.

t3rt_encoder_function_t

This is the function prototype that all encoder function must have. A
function of this prototype is associated with a TTCN-3 type by the reg-
istered setup function.

t3rt_decoder_function_t

276 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

This is the function prototype that all decoder function must have. A
function of this prototype is associated with a TTCN-3 type by the reg-
istered setup function.

t3rt_codecs_register

Registers a codecs system to the RTS to provide encoder and decoder func-
tions to all or a subset of the types in the TTCN-3 modules.

void t3rt_codecs_register
(t3rt_codecs_init_function_t init_function,
 t3rt_codecs_setup_function_t setup_function,
 t3rt_context_t ctx);

Parameters

t3rt_encode

Encode a value with the available encoder function of the type.

t3rt_codecs_result_t t3rt_encode
(t3rt_value_t value,
 t3rt_binary_string_t encoded_data,
 t3rt_context_t ctx);

Parameters

init_function The initialization function of the codecs system.
This will be called once (for each process)

setup_function This setup function will be called once for every ex-
isting type that has not been setup already

value Any TTCN-3 value to be encoded. This does not
apply to values that can not be passed.

encoded_data The inout value container where the encoded data
will be appended. This container will grow to the
necessary size and can be allocated with zero
length. See the t3rt_binary_string_allocate func-
tions.

RTL Codecs Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 277

Description

Encodes the value into a binary string allocated according to the encoding
strategy.

Note
This function conforms to the “t3rt_encoder_function_t” on page 275 pro-
totype but should never be set as encoder function for a type by a codecs
system’s setup function (“t3rt_codecs_setup_function_t” on page 275).
Doing so will cause a stack overflow.

Return Values

Compare with “t3rt_codecs_result_t” on page 275 for applicable values.

t3rt_decode

Decode an encoded binary string into the proper TTCN-3 RTS value using
the available decoder function of the type.

t3rt_codecs_result_t t3rt_decode
(t3rt_binary_string_iter_t * encoded_data,
 t3rt_type_t type,
 t3rt_alloc_strategy_t strategy,
 t3rt_value_t * decoded_value,
 t3rt_context_t ctx);

Parameters

Description

Decodes the data into a value.

encoded_data A binary string iterator to traverse the binary data.

type The expected type for this decoding. Encoding at-
tributes associated with this type can be extracted
from it.

decoded_value The inout result of the decoding that should be
filled in if the decoding was successful.

278 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Note
This function conforms to the “t3rt_decoder_function_t” on page 275 pro-
totype but should never be set as decoder function for a type by a codecs
system’s setup function (“t3rt_codecs_setup_function_t” on page 275).
Doing so that will cause a stack overflow.

Return Values

Compare with “t3rt_codecs_result_t” on page 275 for applicable values.

See also

“RTL Binary String Functions” on page 261

t3rt_tci_encode

Envelop function for the tciEncode.

t3rt_codecs_result_t t3rt_tci_encode
(t3rt_value_t value,
 t3rt_binary_string_t encoded_data,
 t3rt_context_t ctx);

Parameters

Description

This is a conversion function between t3rt_encode RTS encoding function
and tciEncode TCI encoding function. It should be registered by the user for
all types that are encoded using tciEncode.

Note
Ensure that you compiled test system with TCI support enabled. See com-
piler command line option for more info.

value Any TTCN-3 value to be encoded. This does not
apply to values that can not be passed.

encoded_data The inout value container where the encoded data
will be appended. This container will grow to the
necessary size and can be allocated with zero
length. See the t3rt_binary_string_allocate func-
tions.

RTL Codecs Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 279

Return Values

Compare with “t3rt_codecs_result_t” on page 275 for applicable values.

t3rt_tci_decode

Envelop function for the tciDecode.

t3rt_codecs_result_t t3rt_tci_decode
(t3rt_binary_string_iter_t * encoded_data,
 t3rt_type_t type,
 t3rt_alloc_strategy_t strategy,
 t3rt_value_t * decoded_value,
 t3rt_context_t ctx);

Parameters

Description

This is a conversion function between t3rt_decode RTS decoding function
and tciDecode TCI decoding function. It should be registered by the user for
all types that are decoded using tciDecode.

Note
Ensure that you compiled test system with TCI support enabled. See com-
piler command line option for more info.

Return Values

Compare with “t3rt_codecs_result_t” on page 275 for applicable values.

encoded_data A binary string iterator to traverse the binary data.

type The expected type for this decoding. Encoding at-
tributes associated with this type can be extracted
from it.

decoded_value The inout result of the decoding that should be
filled in if the decoding was successful.

280 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

RTL Error Handling Functions

RTL Error Handling Related Type Definitions

t3rt_error_description_t

This is a composition of information about an encountered error, used
in the t3rt_report_fatal_system_error function. The information is ex-
plicitly provided since the current state of the system can not be trusted.

t3rt_report_error

Report test case error and terminate the execution of the test case.

void t3rt_report_error
(unsigned long line,
 const char* file,
 t3rt_wide_string_t err_msg,
 t3rt_context_t ctx);

Parameters

Description

This function formats and sends a log message about the error, followed by
propagating the error verdict. This will have the effect that all running com-
ponents to shut down and the current test case to terminate.

The system will continue execution for the remainder of the control part.

This is the function to be used in implementation of the integration layer, en-
coders/decoders, log mechanisms, and so on to report an error from which
the system can recover and continue execution of the control part.

If an unrecoverable situation has occurred, the function
“t3rt_report_fatal_system_error” on page 281 should be used that will termi-
nate execution of the whole test suite.

line This is the line in the file at which point the error
occurred.

file This is the source file in which the error occurred.

err_msg This is the error message, represented by a wide
string (possibly localized).

RTL Execution Control

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 281

t3rt_report_fatal_system_error

Report an unrecoverable error and terminate the execution of the whole
system.

void t3rt_report_fatal_system_error
(t3rt_error_description_t err,
 t3rt_context_t context);

Parameters

Description

This function logs the error description and then terminate execution without
attempting to shut anything down (other components, for example) grace-
fully.

RTL Execution Control
These functions are controlling the initialization, execution and finalization
(clean-up) of the test suite execution. They are only intended to be called
from the code generated by the Rational Systems Tester Compiler.

RTL Execution Control Related Type Definitions

t3rt_module_register_function_t

This is a function type that, when invoked, should take care of the reg-
istering of a TTCN-3 module, recursively through the imported mod-
ules. This function is automatically generated by the Compiler and used
in module registering.

t3rt_control_part_function_t

The control part function is a function that, when invoked, execute a
control part of a TTCN-3 module. Such a function is generated by the
Compiler for each module and the root module’s function will be used
as default in the execution of the test suite.

t3rt_snapshot_return_t

err The error description.

282 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

A value of this type is returned from the t3pl_component_wait function
and should tell whether a timeout occurred
(t3rt_snapshot_return_timeout), data was detected
(t3rt_snapshot_return_data_received) or both at the same time
(t3rt_snapshot_return_timeout_and_data_received).

t3rt_run_test_suite

Executes the control part of the test suite’s root module. This is the entry
point to the RTS.

void t3rt_run_test_suite
(int argc,
 char * argv [],
 t3rt_module_register_function_t root_module_func,
 t3rt_control_part_function_t control_part_func);

Parameters

Description

This function encapsulates the whole procedure of initialization, execution,
and finalization of the test execution.

First, the runtime engine modules are pre-initialized with the command-line
information (in argc and argv). Then, the root module is registered using the
provided registration function.

All the loaded modules are initialized (including module parameters initial-
ization) starting from the root module.

After this, the specified control part will be executed. The predefined con-
stant t3rt_root_control_part_c can be specified to run the control part
of the registered root module.

Last, cleanup is performed (using the generated “finalize” functions).

argc The number of command-line arguments.

argv The command-line arguments to the ETS.

root_module_func The function pointer to the (generated) register
function of the root module.

control_part_fun
c

The function pointer to the (generated) function
that executes the root modules control part.

RTL Memory Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 283

t3rt_exit

Aborts execution by following the proper shutdown procedures.

void t3rt_exit (void);

Description

Aborts execution by following the proper shutdown procedures.

The context of the control part component will be internally available. It is
necessary for sending messages to the control part component and to find the
list of known components.

Shutdown messages will be sent to all known components followed by
calling 't3pl_task_kill' with appropriate arguments.

This will also terminate the control part component.

t3rt_abort

Aborts execution abruptly.

void t3rt_abort (void);

Description

Aborts execution skipping proper shutdown procedures.

This will also terminate the control part component.

RTL Memory Functions

RTL Memory Related Type Definitions

t3rt_alloc_strategy_t

This type is used when functions potentially have to allocate memory to
perform its task, or, when you explicitly allocate new values and so on.
To allocate memory in temporary memory, use t3rt_temp_alloc_c and
to allocate in permanent (heap) memory use t3rt_perm_alloc_c.

t3rt_memory_scope_t

284 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

This is a position in a temporary memory area that is used for optimized
de-allocation.

t3rt_memory_temp_begin

Saves the current “next allocation position” in the temporary memory area.

void t3rt_memory_temp_begin
(t3rt_memory_scope_t *memory_scope,
 t3rt_context_t ctx);

Parameters

Description

This function creates a new memory scope in which allocation are made until
it is closed by “t3rt_memory_temp_end” on page 284.

This function is intended to be used when a new temporary memory scope is
desired, that will be closed to release the memory allocated.

The memory position is a structured object that is intended to be allocated on
the stack.

Example Usage
{
 t3rt_memory_scope_t mscope;

 t3rt_memory_temp_begin(&mscope, ctx);
 /* Processing that make allocation using the
 t3rt_temp_alloc_c allocation strategy. */
 t3rt_memory_temp_end(&mscope, ctx);
}

t3rt_memory_temp_end

Closes (and virtually deallocates) a previously created memory scope.

void t3rt_memory_temp_end
(t3rt_memory_scope_t *memory_scope,
 t3rt_context_t ctx);

memory_scope A storage variable for a new temporary memory
scope. This is an inout parameter.

RTL Memory Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 285

Parameters

Description

This function closed the given memory scope which will virtually deallocate
the memory allocated since the scope was created.

This is to be treated as “freeing” the temporary memory and subsequent tem-
porary memory allocations will overwrite any residing data.

If poison pilling is enabled, the memory blocks in the scope will be over-
written with a pattern signifying that the memory has been deallocated.

Example Usage
{
 t3rt_memory_scope_t mscope;

 t3rt_memory_temp_begin(&mscope, ctx);
 /* Processing that make allocation using the
 t3rt_temp_alloc_c allocation strategy. */
 t3rt_memory_temp_end(&mscope, ctx);
}

t3rt_memory_temp_clear

Closes (and virtually deallocates) a previously created memory scope.

void t3rt_memory_temp_clear
(t3rt_memory_scope_t *memory_scope,
 t3rt_context_t ctx);

Parameters

Description

This function clears the current scope, that is, it virtually deallocates the
memory allocated since the scope was created.

This is to be treated as “freeing” the temporary memory and subsequent tem-
porary memory allocations will overwrite any residing data.

memory_scope The previously created memory scope.

memory_scope The previously created memory scope.

286 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

If poison pilling is enabled, the memory blocks in the scope will be over-
written with a pattern signifying that the memory has been deallocated.

Example Usage
{
 t3rt_memory_scope_t mscope;

 t3rt_memory_temp_begin(&mscope, ctx);
 /* Processing that make allocation using the
 t3rt_temp_alloc_c allocation strategy. */
 t3rt_memory_temp_clear(&mscope, ctx);
 /* Processing that make allocation using the
 t3rt_temp_alloc_c allocation strategy. */
 t3rt_memory_temp_end(&mscope, ctx);
}

t3rt_memory_temp_allocate

Allocates temporary memory in current memory scope.

Parameters

void * t3rt_memory_temp_allocate
(unsigned long size,
 t3rt_context_t context);

Description

Allocates size number of bytes in the temporary memory area.

Return Values

Returns pointer to allocated block. Returns NULL in case of error.

size Size of allocated block in bytes.

RTL Source Tracking Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 287

RTL Source Tracking Functions

RTL Source Tracking Related Type Definitions

t3rt_source_location_t

This entity represents a location in a TTCN-3 source file (or in any lan-
guage source file that can be expressed with file name and line number.

A stack of objects of this type represents the call-stack during execution.

It is passed to the log mechanisms for all events to enable the logging to
point to the exact location where something happened.

t3rt_scope_kind_t

These enumeration values signifies the kind of scope that the source lo-
cation represents.

t3rt_scope_function_c
t3rt_scope_external_function_c
t3rt_scope_testcase_c
t3rt_scope_teststep_c
t3rt_scope_control_part_c
t3rt_scope_undefined_c

t3rt_targetcode_location_push

Pushes a new target code location on the stack.

void t3rt_targetcode_location_push
(const char *scope_name,
 const char *file_name,
 unsigned long line_number,
 t3rt_context_t ctx);

Parameters

Description

This sets the target code location and stores it within the component.

scope_name Name of an entered scope, as a C function, for ex-
ample.

file_name Name of the target code file.

line_number Line in the target code file.

288 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

A symmetric “t3rt_targetcode_location_pop” on page 288 must be made
after a push at all returning point in the scope or the location information will
be inconsistent.

t3rt_targetcode_location_set_line

Updates the line number of the pushed source code object on the stack.

void t3rt_targetcode_location_set_line
(unsigned long line,
 t3rt_context_t ctx);

Parameters

Description

This sets the line number of the topmost target code location object.

t3rt_targetcode_location_pop

Removes a previously pushed target code location from the stack.

void t3rt_targetcode_location_pop(t3rt_context_t ctx);

Description

This removes one target code location element from the source location
stack.

A symmetric “t3rt_targetcode_location_push” on page 287 must be made
prior to this or the location information will be inconsistent.

t3rt_targetcode_location_get

Returns location created by the last call to t3rt_targetcode_location_push.

t3rt_source_location_t t3rt_targetcode_location_get
(t3rt_context_t ctx);

line The new line number.

RTL Source Tracking Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 289

Description

This function only retrieves the topmost, target code related, source location
object.

Return Values

The topmost source location object. If not found a static object is returned,
representing the “unknown” location.

t3rt_source_tracking_top

Retrieves the top element pushed on the source location stack without re-
moving it.

t3rt_source_location_t t3rt_source_tracking_top
(t3rt_context_t ctx);

Description

Retrieves the location on the top of the source tracking stack independent of
the type of the top source location object. To retrieve a specific kind of source
location, use “t3rt_targetcode_location_get” on page 288.

Return Values

The topmost source location. If the stack is empty, a test case error will be
generated and the execution will terminate.

t3rt_source_location_module_name

Returns the module name.

const char* t3rt_source_location_module_name
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns module name of the given source location object.

location Source location object.

290 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_source_location_scope_name

Retrieves the scope name.

const char* t3rt_source_location_scope_name
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns scope (usually function, testcase or altstep) name of the given source
location object.

t3rt_source_location_scope_arguments

Returns the scope arguments.

t3rt_value_t* t3rt_source_location_scope_arguments
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns the (null-terminated) vector of scope arguments from a source loca-
tion object.

t3rt_source_location_scope_kind

Retrieves the scope kind.

t3rt_scope_kind_t t3rt_source_location_scope_name
(t3rt_source_location_t location,
 t3rt_context_t ctx);

location Source location object.

location Source location object.

RTL Source Tracking Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 291

Parameters

Return Values

Returns the scope kind from a given source location object.

t3rt_source_location_file_name

Retrieves the file name.

const char* t3rt_source_location_file_name
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns the file name from a given source location object.

t3rt_source_location_file_line

Retrieves the line number.

unsigned long t3rt_source_location_file_line
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns the line number in the source file from a given source location ob-
ject.

location Source location object.

location Source location object.

location Source location object.

292 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_source_location_is_ttcn3

Check whether the source location is a TTCN-3 source location or not.

bool t3rt_source_location_is_ttcn3
(t3rt_source_location_t location,
 t3rt_context_t ctx);

Parameters

Return Values

Returns true if source location represents location in a TTCN-3 file, false if
it’s a target code location.

RTL Symbol Table Functions
One symbol table is generated statically per TTCN-3 module. Elements can
not be added dynamically during runtime. The intended usage is only to pro-
vide uniform access to the declared entities in the test suite modules.

RTL Symbol Table Related Type Definitions

t3rt_symbol_entry_t

This is an element of a module’s symbol table. Its structure is only public
(that is, the fields are visible and can be accessed) because the entries are
statically generated by the Compiler. Use the access function below to
access the information.

t3rt_symbol_entry_kind_t

This is an enumeration of the different kinds of which a symbol table
entry can be. It can be any of the following:

t3rt_symbol_entry_kind_module
t3rt_symbol_entry_kind_imported_module
t3rt_symbol_entry_kind_group
t3rt_symbol_entry_kind_userdefined_type
t3rt_symbol_entry_kind_signature_type
t3rt_symbol_entry_kind_template_type
t3rt_symbol_entry_kind_constant
t3rt_symbol_entry_kind_external_constant
t3rt_symbol_entry_kind_module_parameter

location Source location object.

RTL Symbol Table Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 293

t3rt_symbol_entry_kind_initialize_function
t3rt_symbol_entry_kind_module_params_initialize_function
t3rt_symbol_entry_kind_finalize_function
t3rt_symbol_entry_kind_external_function
t3rt_symbol_entry_kind_control_part_function
t3rt_symbol_entry_kind_function
t3rt_symbol_entry_kind_test_step
t3rt_symbol_entry_kind_testcase

t3rt_find_element

Finds the element in the symbol table of the specified module and returns it.

t3rt_symbol_entry_t t3rt_find_element
(const char *module_name,
 const char *element_name,
 t3rt_context_t context);

Parameters

Description

This function searches for element using its name in symbol table of the spec-
ified module. Module name may be an empty string (i.e. ““) thus telling RTS
to search in the symbol table of the root module. Using NULL as the value
of module name results in test case error.

Each imported object is represented in the symbol table of importing module
either by one or two entries. In most cases there are two entries, one entry
with fully qualified name (<name of imported module>.<name of imported
object>) and one entry with only object name. If two objects that are im-
ported from separate modules have same names then each of them is repre-
sented in the symbol table of importing module only by one entry with the
name given in fully qualified format. It means that care should be taken when
searching for imported objects.

Return Value

The symbol table entry if found, otherwise NULL is returned.

module_name Search is performed in the symbol table of this
module.

element_name Object to search for.

294 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3rt_root_module_name

Returns the name of the root module.

const char * t3rt_root_module_name (t3rt_context_t
context);

Description

Usually root module is set automatically by RTS according to the specified
root module registration function passed to the t3rt_run_test_suite. However
it may be set manually when using TCI test management by calling tciRoot-
Module function.

Return Values

Returns the name of the current root module.

t3rt_symbol_table_entry_name

Access the symbol table entry name.

const char* t3rt_symbol_table_entry_name
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

This is always the name of the symbol for which this is an entry.

Return Value

The name of the symbol or the empty string (““) if the entry is invalid.

t3rt_symbol_table_entry_kind

Access the kind of symbol table entry.

t3rt_symbol_entry_kind_t t3rt_symbol_table_entry_kind
(t3rt_symbol_entry_t entry,

entry The symbol table entry.

RTL Symbol Table Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 295

 t3rt_context_t ctx);

Parameters

Description

This retrieves the kind of symbol table entry.

Return Value

See t3rt_symbol_entry_kind_t type for value set.

t3rt_symbol_table_entry_type

Access the type descriptor of the symbol table entry.

t3rt_type_t t3rt_symbol_table_entry_type
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

This is only applicable to entries for user-defined types, signature types and
templates.

Return Value

The type of the symbol or t3rt_undefined_type type constant if the entry is
invalid.

t3rt_symbol_table_entry_value

Access the value for the symbol table entry.

t3rt_value_t t3rt_symbol_table_entry_value
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

entry The symbol table entry.

entry The symbol table entry.

296 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This is only applicable to constants and external constants.

Return Value

The associated constant value or the t3rt_no_value_c value constant if the
entry is invalid.

t3rt_symbol_table_entry_function

Access the function information of the symbol table entry.

void* t3rt_symbol_table_entry_function
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

This is only applicable for function-related symbols like test cases, functions,
test steps, and so on. This is where the pointer to the generated C function is
stored.

To be used, it has to be explicitly casted to the appropriate function. It is only
intended to be used by the Rational Systems Tester Compiler.

Return Value

The (“voidified”) function pointer of the symbol or NULL if the entry is in-
valid.

t3rt_symbol_table_entry_attribute

Access the attribute information of the symbol table entry.

entry The symbol table entry.

entry The symbol table entry.

RTL Symbol Table Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 297

void* t3rt_symbol_table_entry_attribute
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

This field is currently not used and should not be necessary to access. It is for
future extensibility in this area.

Return Value

Currently always NULL.

t3rt_symbol_table_entry_auxiliary

Access the auxiliary information of the symbol table entry.

void* t3rt_symbol_table_entry_auxiliary
(t3rt_symbol_entry_t entry,
 t3rt_context_t ctx);

Parameters

Description

The auxiliary field is currently not used and should not be necessary to ac-
cess. It is only intended for future extensions.

Return Value

A pointer to the auxiliary data or NULL if not present or if the entry is in-
valid.

entry The symbol table entry.

entry The symbol table entry.

298 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

RTL Miscellaneous Functions

t3rt_rtconf_get_param

Returns the value of configuration parameter name.

t3rt_value_t t3rt_rtconf_get_param
(const char *param_name,
 t3rt_context_t ctx);

Parameters

Description

This function queries the value of the specified key from the RTConf config-
uration table.

Return Values

If the key is illegal, t3rt_illegal_value_c will be returned and if the
value is not present, the t3rt_no_value_c is returned.

t3rt_rtconf_set_param

Sets the configuration parameter param_name to the provided value.

void t3rt_rtconf_set_param
(const char *param_name,
 t3rt_value_t param_value,
 t3rt_context_t ctx);

Parameters

param_name RTConf parameter name.

param_name RTConf parameter name.

parameter_value Parameter value to set.

RTL Miscellaneous Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 299

Description

If the key exists, the current value will be overwritten, and no warning will
be issued when this happens. If the param_value is blank (that is, NULL
since it is really a pointer) the t3rt_no_value_c will be inserted.

During a test case execution this function will not be allowed to modify the
information in runtime configuration, it will be a no-op.

t3rt_register_default_logging

Called during initialization to register the built-in log mechanism(s).

void t3rt_register_default_logging(void);

Description

This is located in a source file t3rts_conditional.c just to make it pos-
sible to remove the built-in log mechanism(s) at compile time when building
the ETS.

If the T3RT_NO_BUILTIN_LOG symbol is set when compiling, the built-
in log mechanism will be disabled.

Look in the file to see what compilation symbols can be used to accomplish
this.

t3rt_register_provided_logging

Called during initialization to register the provided log mechanisms (apart
from the built-in log).

void t3rt_register_provided_logging(void);

Description

This is located in a source file t3rts_conditional.c just to make it pos-
sible to enable the provided log mechanisms at compile time when building
the ETS.

If the T3RT_MSC96_EVENT_LOG symbol is set when compiling, the
MSC-96 log mechanism will be enabled.

If the T3RT_DEBUG symbol is set when compiling, the TTCN-3 real-time
debugger will be enabled.

300 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Look in the file to see what compilation symbols can be used to accomplish
this.

t3rt_context_get_component_type

Retrieve the component type of the component of this runtime context.

t3rt_type_t t3rt_context_get_component_type (t3rt_context_t
ctx);

Description

This can be used to access the component type information from a context.

Return Value

The type descriptor for the component.

t3rt_context_get_component_address

Retrieve the component control port address of the component of this
runtime context.

t3rt_binary_string_t t3rt_context_get_component_address
(t3rt_context_t ctx);

Description

This can be used to access the component (control port) address from a con-
text.

This address is used to control running components and is unique for all com-
ponents. It can be useful as an identifier for the component instance.

Return Value

The binary string containing the component control port address.

t3rt_context_get_component_name

Retrieve the name of the component of this runtime context.

const char* t3rt_context_get_component_name (t3rt_context_t
ctx);

RTL Miscellaneous Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 301

Description

This can be used to access the component name from a context. This is the
name provided at the component create operation. If name is not provided ex-
plicitly then system generates and assigns unique name.

This name is used in logging to identify component.

Return Value

The character string with the component name.

t3rt_set_epsilon_double

Set the constant for floating point value comparison.

void t3rt_set_epsilon_double
(double epsilon,
 t3rt_context_t context);

Parameters

Description

Sets the constant value to be used when comparing floating point values.

Instead of calling this function from user-defined code, the configuration
t3rt.values.limits.epsilon_double key can be applied for the execu-
tion of the ETS.

t3rt_epsilon_double

Retrieve the constant used in floating point value comparison.

double t3rt_epsilon_double(t3rt_context_t context);

Description

Sets the constant value to be used when comparing floating point values.

epsilon The value to be used when comparing floating point
value. See configuration key
“t3rt.values.limits.epsilon_double” on page 128 for
detailed description.

302 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

This value can be explicitly set by calling the function
t3rt_set_epsilon_double, or by setting the configuration key
t3rt.values.limits.epsilon_double.

Return Value

If the value is not configured explicitly the value returned is equal to
2*DBL_EPSILON from the <limits.h> definitions.

t3rt_value_to_string, t3rt_value_to_wide_string

Prints value into ASCII or wide string.

const char * t3rt_value_to_string
(t3rt_value_t value,
 t3rt_context_t ctx);

t3rt_wide_string_t t3rt_value_to_wide_string
(t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

Description

This functions may be used to print value into ASCII or wide string. It’s not
assumed that ASCII representation conforms to the TTCN-3 representation
of the given value. The intended use of this function is in custom log mech-
anisms.

Return Values

Returns free text representation of the specified value.

RTL Function for Generated Code Only
There are a number of functions that can be encountered in the public RTL
interface that are only intended to be used in the code generated from the Ra-
tional Systems Tester TTCN-3 Compiler. Those functions are listed here.

value Value to be printed.

RTL Function for Generated Code Only

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 303

Important!
Using any of these functions from your own code can cause the ETS to be-
have in an undefined way! Contact your Rational Systems Tester support
organization if you need to use them.

• t3rt_type_instantiate_template

• t3rt_type_instantiate_dynamic_template

• t3rt_type_instantiate_named_dynamic_template

• t3rt_type_instantiate_external_value

• t3rt_type_check_builtin

• t3rt_type_check_char_range

• t3rt_type_check_universal_char_range

• t3rt_type_check_port_message

• t3rt_template_match

• t3rt_template_match_signature

• t3rt_value_set_null

• t3rt_value_set_address_value

• t3rt_value_get_address_value

• t3rt_value_set_external_value

• t3rt_value_get_external_value

• t3rt_value_set_timer_default_duration

• t3rt_value_set_timer_in_array_default_duration

• t3rt_valueof

• t3rt_valueof_signature

• t3rt_value_init

• t3rt_value_init_vector_element

• t3rt_value_init_vector_element_partial

• t3rt_value_assign_vector_element_partial

• t3rt_value_assign_and_log

• t3rt_value_try_field_by_index

• t3rt_match

• t3rt_match_signature

• t3rt_recordof_match

304 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

• t3rt_setof_match

• t3rt_subset_match

• t3rt_superset_match

• t3rt_regexp_match

• t3rt_regexp_match_substring

• t3rt_match_continue_on_fail

• t3rt_timer_start

• t3rt_timer_stop

• t3rt_timer_read

• t3rt_timer_is_running

• t3rt_timer_is_timed_out

• t3rt_timer_try_timed_out

• t3rt_component_create

• t3rt_component_execute

• t3rt_component_start

• t3rt_component_stop

• t3rt_component_kill

• t3rt_component_is_running

• t3rt_component_is_alive

• t3rt_component_try_done

• t3rt_component_try_killed

• t3rt_component_try_else

• t3rt_component_snapshot

• t3rt_component_control

• t3rt_component_wait

• t3rt_component_connect_port

• t3rt_component_map_port

• t3rt_component_disconnect_port

• t3rt_component_unmap_port

• t3rt_component_set_system_component_type

• t3rt_port_clear

• t3rt_port_start

RTL Function for Generated Code Only

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 305

• t3rt_port_stop

• t3rt_port_halt

• t3rt_port_is_enabled

• t3rt_port_sut_action

• t3rt_port_send

• t3rt_port_call

• t3rt_port_reply

• t3rt_port_raise

• t3rt_port_try_receive

• t3rt_port_try_trigger

• t3rt_port_try_getcall

• t3rt_port_try_getreply

• t3rt_port_try_catch

• t3rt_port_try_catch_timeout

• t3rt_builtin_encode

• t3rt_builtin_decode

• t3rt_module_register

• t3rt_call_function

• t3rt_call_external_function

• t3rt_call_altstep

• t3rt_activate

• t3rt_deactivate

• t3rt_activation_list_invoke

• t3rt_retrieve_module_parameter

• t3rt_log_list_to_all

• t3rt_log_template_mismatch_by_name_event

• t3rt_log_template_mismatch_by_index_event

• t3rt_log_template_mismatch_event

• t3rt_log_alt_entered_event

• t3rt_log_alt_left_event

• t3rt_log_alt_rejected_event

• t3rt_log_alt_else_event

306 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

• t3rt_log_alt_defaults_event

• t3rt_log_alt_repeat_event

• t3rt_log_alt_wait_event

• t3rt_log_variable_modified_event

• t3rt_source_location_push

• t3rt_source_location_pop

• t3rt_source_location_push_block

• t3rt_source_location_pop_block

• t3rt_source_location_set_line

• t3rt_source_location_get

• t3rt_get_source_location

• t3rt_source_tracking_register_value

• t3rt_source_tracking_find_value

• t3rt_template_set_value

• t3rt_template_set_value_range

• t3rt_template_set_value_list

• t3rt_template_set_length_constraint

• t3rt_template_set_string_pattern

• t3rt_template_set_permutation

• t3rt_templateof

• t3rt_int2charstr

• t3rt_int2unicharstr

• t3rt_str2int_zero

• t3rt_str2float_zero

• all functions having two undescores after “t3rt” prefix (i.e. t3rt__XYZ))

Platform Layer API
This is the interface that provides the services needed by the RTS. All func-
tions have to be implemented when creating a PL-based integration (in dif-
ference to a TRI based integration).

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 307

A working implementation, called the “Example integration”, is provided in
the distribution and can be found in the /integrations/example directory in the
Rational Systems Tester installation directory. This can be copied and mod-
ified to fit your own integration needs.

Important!
The actual example integration implementation can potentially change
without prior notice in future versions. The PL API will not change without
notice.

PL General Functions

t3pl_general_prepare_testcase

Prepares the integration for a new test case.

void t3pl_general_prepare_testcase
(const char* module,
 const char* testcase,
 t3rt_type_t mtc_type,
 t3rt_type_t system_type,
 t3rt_context_t context);

Parameters

Description

This function is called before the execution of each test case to enable the in-
tegration to be prepared, if necessary.

t3pl_general_postprocess_testcase

Finalizes the integration for a terminating test case.

void t3pl_general_postprocess_testcase
(const char* module,
 const char* testcase,

module Name of module that defines test case.

testcase Name of the preparing test case.

mtc_type Type of the mtc component.

system_type Type of the system component.

308 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 t3rt_type_t mtc_type,
 t3rt_type_t system_type,
 t3rt_context_t context);

Parameters

Description

This function is called when the execution of each test case is going to termi-
nate.

t3pl_general_testcase_terminated

Cleans up after a test case has finished.

void t3pl_general_testcase_terminated
(const char* module,
 const char* testcase,
 t3rt_type_t mtc_type,
 t3rt_type_t system_type,
 t3rt_context_t context);

Parameters

Description

This function is called when the execution of a test case has been finished to
enable the integration to take the actions it finds necessary.

module Name of module that defines test case.

testcase Name of the preparing test case.

mtc_type Type of the mtc component.

system_type Type of the system component.

module Name of module that defines test case.

testcase Name of the terminated test case.

mtc_type Type of the mtc component.

system_type Type of the system component.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 309

t3pl_general_control_terminated

Cleans up after a control part has finished.

void t3pl_general_control_terminated
(const char* module,
 t3rt_context_t context);

Parameters

Description

This function is called when the execution of a control part has been finished
to enable the integration to take actions it finds necessary. This function is
also called after test case directly started with tciStartTestcase command ter-
minates.

t3pl_call_external_function

Carries out the execution of an external function.

void t3pl_call_external_function
(t3rt_type_t signature_type,
 t3rt_value_t parameters[],
 t3rt_value_t return_value,
 t3rt_context_t context);

Parameters

module Name of module that defines test case.

signature_type The signature type for the external function.

parameters Actual argument vector for the function call.

return_value The (pre-allocated) inout value container for the re-
turn value.

If this is set to the t3rt_no_value_c constant, no re-
turn value is expected (according to the signature
type).

310 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This function is called as a result of an external function call in the test suite.
This function may block.

PL Timer Functions

t3pl_time_pre_initialize

Performs timer module pre-initialization.

void t3pl_time_pre_initialize
(int argc,
 char *argv[],
 t3rt_context_t context);

Parameters

Description

This function is called to perform pre-initialization of timer module. It’s
called before RTConf table is filled with user-provided values.

This function is called only once.

t3pl_time_initialize

Initializes/Resets timer module.

void t3pl_time_initialize (t3rt_context_t ctx);

Description

This function is called to initialize/reset timer module. It’s called after RT-
Conf and root module initialization.

When using TCI or GUI test management this function is called at initializa-
tion of every directly started test case and/or control part.

argc Number of elements in the argv character string
array.

argv String array of command line parameters.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 311

t3pl_time_finalize

Finalizes timer module.

void t3pl_time_finalize (t3rt_context_t ctx);

Description

This function is called to finalize timer module. No timer handling routines
will be called after it.

t3pl_timer_create

Creates a timer instance into the “stopped” state.

void t3pl_timer_create
(t3rt_timer_handle_t *handle,
 t3rt_context_t context);

Parameters

Description

This function is called to create new timer instance. The initial state of cre-
ated timer is “stopped“.

t3pl_timer_delete

Deletes the timer instance. It will never be used again.

void t3pl_timer_delete
(const t3rt_timer_handle_t *handle,
 t3rt_context_t context);

Parameters

handle Pointer to t3rt_timer_handle_t object that receives
handle of created timer

handle Pointer to t3rt_timer_handle_t object that stores
handle of timer to be deleted

312 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This function is called to delete timer instance. It’s not assumed that timer
should be stopped prior to calling this function.

t3pl_timer_start

Starts a created timer instance.

void t3pl_timer_start
(const t3rt_timer_handle_t handle,
 double duration,
 t3rt_context_t context);

Parameters

Description

This function is used to start or restart the timer and may be applied to run-
ning timer. This should set the timer into the “running” state.

t3pl_timer_stop

Stops a timer instance.

void t3pl_timer_stop
(const t3rt_timer_handle_t handle,
 t3rt_context_t context);

Parameters

Description

This should set the timer into the “stopped” state.

t3pl_timer_read

Reads the current value of a timer.

handle Timer handle

duration Timeout period specified in seconds

handle Timer handle

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 313

t3rt_timer_state_t t3pl_timer_read
(const t3rt_timer_handle_t handle,
 double *elapsed_time,
 t3rt_context_t context);

Parameters

Description

This function is used to query timer state. Second parameter may be NULL.

Return Value

Returns timer state. If elapsed timer parameter is not NULL then it’s set to
number of seconds elapsed since timer start.

t3pl_timer_decode

Obtains TRI timer id from the timer handle.

t3rt_binary_string_t t3pl_timer_decode
(t3rt_timer_handle_t handle,
 t3rt_alloc_strategy_t strategy,
 t3rt_context_t ctx);

Parameters

Description

This function is used to convert runtime system timer handle into TRI timer
id. Note that timer id is returned as t3rt_binary_string_t object, not as TriTi-
merId (i.e. TRI BinaryString).

handle Timer handle

elapsed_timer Number of seconds elapsed since timer start (‘out’
parameter)

handle Timer handle

strategy Memory allocation strategy for the return value

314 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Value

Returns TRI timer id as binary string of t3rt_binary_string_t type.

PL Communication Functions

t3pl_communication_pre_initialize

Performs communication module pre-initialization.

void t3pl_communication_pre_initialize
(int argc,
 char *argv[],
 t3rt_context_t context);

Parameters

Description

This function is called to perform pre-initialization of communication
module. It’s called before RTConf table is filled with user-provided values.

This function is called only once.

t3pl_communication_initialize

Initializes/Resets communication module.

void t3pl_communication_initialize(t3rt_context_t context);

Description

This function is called to initialize/reset communication module. It’s called
after RTConf and root module initialization.

When using TCI or GUI test management this function is called at initializa-
tion of every directly started test case and/or control part.

argc Number of elements in the argv character string
array.

argv String array of command line parameters.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 315

t3pl_communication_finalize

Finalizes communication module.

void t3pl_communication_finalize (t3rt_context_t ctx);

Description

This function is called to finalize communication module. No communica-
tion handling routines will be called after it.

t3pl_port_create

Creates and initializes a port.

void t3pl_port_create
(t3rt_value_t port_value,
 t3rt_binary_string_t address,
 const char* name, long index,
 t3rt_context_t ctx);

Parameters

Description
Creates and initializes new port. It includes any platform dependent
communications mechanism, address, and queue initialization. This
function supports only scalar ports and one-dimensional port arrays.
Address of created port should be returned through ‘address’ out parameter.

t3pl_port_create_control_port_for_cpc

Creates control port for CPC (control) component

void t3pl_port_create_control_port_for_cpc
(t3rt_binary_string_t address,
 t3rt_context_t ctx);

port_value Port value, may be used to extract port type.

address Address of created port (‘out’ parameter).

name Port or port array name.

index Index in port array, -1 in case of scalar port.

316 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description
Creates and initializes CPC control port. It includes any platform dependent
communications mechanism, address, and queue initialization. This is the
first port created in the test suite.

t3pl_port_start

Starts a port.

void t3pl_port_start
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description
This is the direct mapping of the TTCN-3 port ‘start’ statement. After it
port becomes active and should be able to transmit data through it.

t3pl_port_stop

Stops a port.

void t3pl_port_stop
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description
This is the direct mapping of the TTCN-3 port ‘stop’ statement. After it
port becomes inactive and should not transmit any data through it.

address Address of created port (‘out’ parameter).

port_address Address of port to be started.

port_address Address of port to be stopped.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 317

t3pl_port_halt

Halts a port.

void t3pl_port_halt
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description
This is the direct mapping of the TTCN-3 port ‘halt’ statement. After it port
stops transmitting messages and receiving new messages. All data already
in port queue is processed accordingly. After all message are extracted
from port queue port becomes inactive.

t3pl_port_destroy

Destroys a port.

void t3pl_port_destroy
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description
This function destroys port deallocating all port data structures. The port
with given address will never be used more.

t3pl_port_clear

Discards any data contents of the port.

void t3pl_port_clear
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

port_address Address of port to be halted.

port_address Address of port to be destroyed.

318 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description
This is the direct mapping of the TTCN-3 port ‘clear’ statement. Any
received data in port buffers that has not been passed to runtime system is
deleted.

t3pl_port_component_send

Send data to another running test component.

void t3pl_port_component_send
(t3rt_binary_string_t dest_component,
 t3rt_binary_string_t port_address,
 t3rt_binary_string_t data,
 t3rt_context_t ctx);

Parameters

Description
This function is called whenever one of the components (including control
component) needs to communicate with another component. It may be
called as a result of TTCN-3 ‘send’, ‘call’, ‘reply’, ‘raise’ operations as
well as to perform service communication through control port. It’s used
only in internal test suite communication, communication with SUT is done
using other functions.

t3pl_port_sut_send

Send encoded data to the SUT.

void t3pl_port_sut_send
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t data,
 t3rt_binary_string_t sender_port_address,
 t3rt_context_t ctx);

port_address Address of port to be cleared.

dest_component Destination component address.

port_address Destination port address.

data Encoded data.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 319

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 unicast ‘send’
operation on a component port that has been mapped to a system port. port
address parameter identifies port that has been previously mapped.

t3pl_port_sut_send_mc

Send encoded data to the multiple entities within SUT.

void t3pl_port_sut_send_mc
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t sut_address_list[],
 t3rt_binary_string_t data,
 t3rt_binary_string_t sender_port_address,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 multicast
‘send’ operation on a component port that has been mapped to a system port.
port address parameter identifies port that has been previously mapped.

port_address Address of destination previously mapped port.

sut_address The encoded SUT address value.

data Encoded data

sender_port_addr
ess

The port address of the sender.

port_address Address of destination previously mapped port.

sut_address_list NULL-terminated list of the encoded SUT address
values.

data Encoded data

sender_port_addr
ess

The port address of the sender.

320 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3pl_port_sut_send_bc

Send encoded data to all entities within SUT.

void t3pl_port_sut_send_bc
(t3rt_binary_string_t port_address,
 t3rt_binary_string_t data,
 t3rt_binary_string_t sender_port_address,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 broadcast
‘send’ operation on a component port that has been mapped to a system port.
port address parameter identifies port that has been previously mapped.

t3pl_port_sut_call

Request SUT to call specified remote function.

void* t3pl_port_sut_call
(t3rt_binary_string_t port_to_call,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_context_t ctx);

Parameters

port_address Address of destination previously mapped port.

data Encoded data

sender_port_addr
ess

The port address of the sender.

port_to_call Address of destination previously mapped port

sut_address The encoded SUT address value

caller_port Address of caller’s port

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 321

Description

This function is called by the RTS when it executes a TTCN-3 unicast ‘call’
operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but output parame-
ters are replaced with NULL values in the array.

This function is expected to not block, which means it should somehow re-
quest another thread or process to perform the actual call on behalf of the re-
questing component.

This function returns an opaque handle that is assumed to represent the re-
quested call operation. This handle is later supplied when calling either the
t3pl_port_sut_call_done or the t3pl_port_sut_call_abort function.

Return Values

This function returns an opaque handle that is assumed to represent the re-
quested call operation. If such a handle is not needed, NULL may be returned
instead.

t3pl_port_sut_call_mc

Request SUT to call specified remote function.

void* t3pl_port_sut_call_mc
(t3rt_binary_string_t port_to_call,
 t3rt_binary_string_t sut_address_list[],
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_context_t ctx);

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function to
be called

parameters An array of encoded parameter values – not NULL
terminated

322 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 multicast
‘call’ operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but output parame-
ters are replaced with NULL values in the array.

This function is expected to not block, which means it should somehow re-
quest another thread or process to perform the actual call on behalf of the re-
questing component.

This function returns an opaque handle that is assumed to represent the re-
quested call operation. This handle is later supplied when calling either the
t3pl_port_sut_call_done or the t3pl_port_sut_call_abort function.

Return Values

This function returns an opaque handle that is assumed to represent the re-
quested call operation. If such a handle is not needed, NULL may be returned
instead.

t3pl_port_sut_call_bc

Request SUT to call specified remote function.

void* t3pl_port_sut_call_bc
(t3rt_binary_string_t port_to_call,
 t3rt_binary_string_t caller_port,

port_to_call Address of destination previously mapped port

sut_address_list NULL-terminated list of the encoded SUT address
values

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function to
be called

parameters An array of encoded parameter values – not NULL
terminated

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 323

 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 broadcast
‘call’ operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but output parame-
ters are replaced with NULL values in the array.

This function is expected to not block, which means it should somehow re-
quest another thread or process to perform the actual call on behalf of the re-
questing component.

This function returns an opaque handle that is assumed to represent the re-
quested call operation. This handle is later supplied when calling either the
t3pl_port_sut_call_done or the t3pl_port_sut_call_abort function.

Return Values

This function returns an opaque handle that is assumed to represent the re-
quested call operation. If such a handle is not needed, NULL may be returned
instead.

t3pl_port_sut_call_done

Request SUT to release the handle to the finished call operation.

void t3pl_port_sut_call_done

port_to_call Address of destination previously mapped port

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function to
be called

parameters An array of encoded parameter values – not NULL
terminated

324 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

(void* handle,
 t3rt_context_t ctx);

Parameters

Description

This function is expected to release the opaque handle that is assumed to rep-
resent a previously requested call operation.

t3pl_port_sut_call_abort

Request SUT to release the handle to the timed out call operation.

void t3pl_port_sut_call_abort
(void* handle,
 t3rt_context_t ctx);

Parameters

Description

This function is expected to release the opaque handle that is assumed to rep-
resent a previously requested call operation. Note the risk of encountering a
race condition here, as the call operation was not “officially” terminated
when this function is decided to be called, but may have managed to termi-
nate before this function is called anyway.

t3pl_port_sut_reply

Return a reply value to a previously received call.

void t3pl_port_sut_reply
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,

handle the handle previously returned by the
t3pl_port_sut_call function

handle the handle previously returned by the
t3pl_port_sut_call function

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 325

 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t return_value,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 unicast ‘reply’
operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but input parameters
are replaced with NULL values in the array.

t3pl_port_sut_reply_mc

Return a reply value to a previously received call.

void t3pl_port_sut_reply_mc
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t sut_address_list[],
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t return_value,
 t3rt_context_t ctx);

destination_port Address of destination previously mapped port

sut_address Encoded SUT address value

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

parameters An array of encoded parameter values – not NULL
terminated

return_value The encoded return value, if any

326 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 multicast
‘reply’ operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but input parameters
are replaced with NULL values in the array.

t3pl_port_sut_reply_bc

Return a reply value to a previously received call.

void t3pl_port_sut_reply_bc
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t parameters[],
 t3rt_binary_string_t return_value,
 t3rt_context_t ctx);

Parameters

destination_port Address of destination previously mapped port

sut_address_list NULL-terminated list of the encoded SUT address
values

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

parameters An array of encoded parameter values – not NULL
terminated

return_value The encoded return value, if any

destination_port Address of destination previously mapped port

caller_port Address of caller’s port

address Reserved parameter, should be NULL

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 327

Description

This function is called by the RTS when it executes a TTCN-3 broadcast
‘reply’ operation on a component port that has been mapped to a system port.

The parameters are in encoded form, that is, binary data, but input parameters
are replaced with NULL values in the array.

t3pl_port_sut_raise

Return an exception value to a previously received call.

void t3pl_port_sut_raise
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t sut_address,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t exception_value,
 t3rt_context_t ctx);

Parameters

signature_type The signature type, this specifies which function
was called

parameters An array of encoded parameter values – not NULL
terminated

return_value The encoded return value, if any

destination_port Address of destination previously mapped port

sut_address Encoded SUT address value

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

exception_value The encoded exception value

328 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This function is called by the RTS when it executes a TTCN-3 unicast ‘raise’
operation on a component port that has been mapped to a system port.

The exception value is provided in encoded form, that is, binary data.

t3pl_port_sut_raise_mc

Return an exception value to a previously received call.

void t3pl_port_sut_raise_mc
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t sut_address_list[],
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t exception_value,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 multicast
‘raise’ operation on a component port that has been mapped to a system port.

The exception value is provided in encoded form, that is, binary data.

t3pl_port_sut_raise_bc

Return an exception value to a previously received call.

destination_port Address of destination previously mapped port

sut_address_list NULL-terminated list of the encoded SUT address
values

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

exception_value The encoded exception value

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 329

void t3pl_port_sut_raise_bc
(t3rt_binary_string_t destination_port,
 t3rt_binary_string_t caller_port,
 t3rt_binary_string_t address,
 t3rt_type_t signature_type,
 t3rt_binary_string_t exception_value,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 broadcast
‘raise’ operation on a component port that has been mapped to a system port.

The exception value is provided in encoded form, that is, binary data.

t3pl_port_sut_action

Performs the SUT action (implicit send in TTCN-2).

void t3pl_port_sut_action
(t3rt_value_t string_or_template,
 t3rt_context_t ctx);

Parameters

Description

This function is called by the RTS when it executes a TTCN-3 “SUT action”
operation. Depending on what type of action is performed specified value
may represent character string or template value.

destination_port Address of destination previously mapped port

caller_port Address of caller’s port

address Reserved parameter, should be NULL

signature_type The signature type, this specifies which function
was called

exception_value The encoded exception value

string_or_templa
te

Character string or template value

330 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3pl_port_retrieve_system_port

Retrieves the system port address.

void t3pl_port_retrieve_system_port
(const char * system_port_name,
 long index,
 t3rt_binary_string_t system_port_address,
 t3rt_context_t ctx);

Parameters

Description

This function is called when mapping and unmapping a local port to a named
system port. It locates system (TSI) component port using given port name
and port array index and returns port address through ‘system_port_address’
output parameter.

t3pl_port_release_system_port

Releases the system port address.

void t3pl_port_release_system_port
(t3rt_binary_string_t system_port_address,
 t3rt_context_t ctx);

Parameters

Description

This function is called when unmapping a system port.

system_port_name Name of system (TSI) port (or port array)

index Index in port array (or -1 in case of scalar port)

system_port_addr
ess

Output parameter for system (TSI) port address

system_port_addr
ess

TSI port address

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 331

t3pl_port_map, t3pl_port_unmap

Maps and unmaps port

void t3pl_port_map
(t3rt_binary_string_t port_address,
 const char* system_port_name,
 long index,
 t3rt_context_t ctx);

void t3pl_port_unmap
(t3rt_binary_string_t port_address,
 t3rt_context_t ctx);

Parameters

Description

These functions are direct mappings of the TTCN-3 ‘map’ and ‘unmap’ op-
erations. ‘port_address’ represents port that is going to be mapped or un-
mapped. Multidimensional port arrays are not supported.

t3pl_component_get_system_control_port

Returns the port for controlling the system (TSI) component.

t3rt_binary_string_t t3pl_component_get_system_control_port
(t3rt_context_t ctx);

Description

This function is called whenever there is a need to get address of system
(TSI) component control port.

Return Value

Address of system (TSI) component control port.

port_address Container for mapped/unmapped port address

system_port_name Name of system port (or name of port array)

index Index in port array (or -1 for scalar port)

332 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3pl_component_set_system_component_type

Sets the component type of the system component.

void t3pl_component_set_system_component_type
(t3rt_type_t component_type,
 t3rt_context_t ctx);

Parameters

Description

This function is called when starting test case. It’s the right place to create
and initialize system component. It should create control port and all com-
munication ports. Use given component type to process all component fields
and perform necessary initialization. After leaving this function system com-
ponent should be ready for map and unmap operations.

t3pl_component_wait

Retrieve any input from the environment to put in ports or detect timeout.

t3rt_snapshot_return_t t3pl_component_wait
(double* real_time_wait,
 double* time_to_soonest_timeout,
 t3rt_context_t ctx);

Parameters

component_type Type of system (TSI) component

real_time_wait An inout timeout value stating the maximum time
we want to wait before the waiting should be inter-
rupted. It should be modified and set to the “time
left” after data has arrived.

This timeout value comes from real-time related
time-outs in difference to the declared timer.

time_to_soonest_
timeout

An inout timeout value stating the maximum time
the integration should to wait before the TTCN-3
timer will time out. It should be modified and set to
the “time left” after data has arrived.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 333

Description

Blocks the current component waiting for some external stimuli (that is,
some message received or timer timing out). This function will return infor-
mation if there was data received and/or a timeout occurred. In either case the
timeout values, real_time_wait and time_to_soonest_timeout must be up-
dated according to how long it really took.

The actual wait should not be longer than the least of the timeout values. The
reason for having two timeout values is that if the time scale for TTCN-3
timers is not equal to the real-time clock (for example, time is slowed down
or sped up), the integration is the only place where this is known and this
function must make adjustments to the time waited.

t3rt_duration_forever_c is a valid timeout value for both parameters
and if both parameters have this value the function should wait indefinitely.

If one (or both) of the timeout values is set to t3rt_duration_nowait_c,
the function should have polling semantics, just checking for existing
data/time-outs, not waiting.

Return Values

Returns information if data was received, and/or a timeout occurred.

t3pl_component_control

Processes and dispatches control messages.

t3pl_component_control(t3rt_context_t ctx);

Description

This function is called whenever it’s necessary to process control messages
in the incoming event queue without touching data messages. It differs from
the t3pl_component_wait in two ways: it processes only control messages
(i.e. messages received through control port) and it doesn’t block if there are
no messages.

334 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

PL Memory Functions

t3pl_memory_pre_initialize

Performs memory module pre-initialization.

void t3pl_memory_pre_initialize(int argc, char *argv[])

Parameters

Description

This function is called to perform pre-initialization of memory module. It’s
called before RTConf table initialization.

This function is called only once.

After a call to t3pl_memory_pre_initialize, the t3pl_memory_allocate func-
tion must be working.

t3pl_memory_initialize

Initializes/Resets memory module

void t3pl_memory_initialize (t3rt_context_t context);

Description

This function is called to initialize/reset memory module. It’s called after
RTConf and root module initialization.

When using TCI or GUI test management this function is called at initializa-
tion of every directly started test case and/or control part.

After a call to t3pl_memory_initialize, all memory primitives must be avail-
able.

argc Number of elements in the argv character string
array.

argv String array of command line parameters.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 335

t3pl_memory_finalize

Finalizes memory module

void t3pl_memory_finalize (t3rt_context_t context);

Description

This function is called to finalize memory module. No memory handling rou-
tines will be called after it.

t3pl_memory_allocate

Allocated memory block

void* t3pl_memory_allocate
(const t3rt_alloc_strategy_t strategy,
 const unsigned long size,
 t3rt_context_t context);

Parameters

Description

This function allocates ‘size’ number of bytes of memory.

Return value

Returns pointer to allocated memory or NULL if memory cannot be allo-
cated.

t3pl_memory_deallocate

Deallocates given memory block

void t3pl_memory_deallocate
(const t3rt_alloc_strategy_t strategy,
 void* mem,
 t3rt_context_t context);

strategy Memory allocation strategy.

size Size of allocated memory in bytes.

336 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This function deallocates given memory block. It’s not assumed that integra-
tion stores memory allocation strategy for each allocated block thus
‘strategy’ parameter is used to tell integration which strategy has been used
to allocate given memory block.

t3pl_memory_reallocate

Reallocates given memory block

void* t3pl_memory_reallocate
(const t3rt_alloc_strategy_t strategy,
 void* mem, const unsigned long new_size,
 t3rt_context_t context);

Parameters

Description

This function is called to resize existing memory block. The contents of the
result are unchanged up to the shorter of new and old sizes. New block may
be in a different location, i.e. it’s not guaranteed that pointer returned by
t3pl_memory_reallocate is the same as passed through ‘mem’ parameter.

strategy Memory allocation strategy of the given memory
block.

mem Pointer to the memory block to be deallocated.

strategy Memory allocation strategy of the given memory
block.

mem Pointer to the memory block to be reallocated.

new_size Size in bytes for the new memory block

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 337

PL Concurrency Functions

t3pl_concurrency_pre_initialize

Pre-initializes the concurrency module.

void t3pl_concurrency_pre_initialize
(int argc,
 char *argv[],
 t3rt_context_t ctx);

Parameters

Description

This function is called to perform pre-initialization of concurrency module.
It’s called before RTConf table is filled with user-provided values thus it
cannot rely on RTS configuration information.

This function is called only once.

t3pl_concurrency_initialize

Initializes/Resets the concurrency functionality.

void t3pl_concurrency_initialize (t3rt_context_t ctx);

Description

These should set the concurrency implementation of the integration into a
state where it is fully functional.

This function can rely on the contents of the RTS configuration information.

When using TCI or GUI test management this function is called at initializa-
tion of every directly started test case and/or control part.

argc Number of elements in the argv character string
array.

argv String array of command line parameters.

338 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3pl_concurrency_finalize

Finalizes concurrency module.

void t3pl_concurrency_finalize (t3rt_context_t ctx);

Description

This function is called to finalize all concurrency handling functionality. No
concurrency handling routines will be called after it.

t3pl_concurrency_start_separate_component

Called when a component has been started in a separate process.

void t3pl_concurrency_start_separate_component
(int argc,
 const char* argv[],
 t3rt_context_t ctx);

Parameters

Description

Start the first (non-CPC) component of the current process. This should com-
municate with the creator of this component and hand over the newly created
control port address of this component.

This function is supposed to end by calling the t3rt_component_main func-
tion with the newly created control port address of this component along with
the provided context.

t3pl_task_create

Create a port to control the task and a thread of execution executing the func-
tion t3rt_component_main.

void t3pl_task_create
(int argc,

argc Number of arguments in the argument vector
‘argv’.

argv The argument vector passed from the command
line when the process was created

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 339

 const char * argv[],
 t3rt_value_t component_value,
 t3rt_binary_string_t address,
 t3rt_context_t context);

Parameters

Description

This is a direct mapping from the TTCN-3 create operation. This function
creates the thread of execution, the control port of this component and ini-
tiates the component value with the control port address. After this operation,
the created component is fully initialized and in a state where it is listening
to its control port.

t3pl_task_setup

Initializes new component

void t3pl_task_setup
(t3rt_binary_string_t compaddr,
 t3rt_context_t context);

Parameters

Description

This function is called from the t3rt_component_main function in an attempt
to setup whatever is necessary for the component to communicate through its
ports. It is created after the control port has been created but before any other
port is created and before any communication between components is made.

argc Number of arguments in the argument vector
‘argv’.

argv The argument vector passed from the command
line when the process was created

component_value Inout value for the component.

address Inout parameter to be set to the address of the cre-
ated tasks control port.

compaddr Task control port address.

340 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3pl_task_id

Lookups task identifier

unsigned long t3pl_task_id();

Description

This function is used to lookup system dependent task identifier (e.g. process
or thread id or whatever). Note that this function does not receive reference
to context. Task identifier may be reused by other component after it’s termi-
nation, i.e. two components may have same id if they do not execute concur-
rently.

Return Value

Returns integer value that uniquely identifies task in the test suite. This func-
tion should return one and the same value each time component calls it.

t3pl_task_register_context

Registers context of the new task

void t3pl_task_register_context (t3rt_context_t context);

Description

This provides integration with the task context. It may be used to call RTS
routines that require context reference from inside the TRI functions that
doesn’t know about RTS context (e.g. triExternalFunction).

t3pl_task_kill

Force the task to stop executing.

void t3pl_task_kill
(t3rt_binary_string_t address,
 const bool shutdown_acknowledged,
 t3rt_context_t context);

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 341

Parameters

Description

This is called by a component in a thread that wants to kill a task running in
another thread. This function is called even if the task did shutdown ac-
cording to the normal shutdown procedure. This is done just to enable the im-
plementation to make necessary clean up.

t3pl_task_exit

Called to terminate this task.

void t3pl_task_exit
(t3rt_context_cleanup_function_t context_cleanup_f,
 t3rt_context_t context);

Parameters

Description
This is called by a component thread to exit normally with finalizing all
task objects. ‘context_cleanup_f’ function should be called right before
terminating task.

t3pl_sem_create

Creates new semaphore object

void* t3pl_sem_create
(unsigned int value,
 t3rt_context_t ctx);

address Address to the control port of the component exe-
cuting in this task that should be killed.

shutdown_acknowl
edged

Set to “true” if the component shut down according
to the normal shutdown procedure.

context_cleanup_
f

Address to the function that performs context final-
ization.

342 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description
This function creates new semaphore that guards ‘value’ instances of some
object. It means that ‘value’ threads may simultaneously acquire (lock)
semaphore. ‘value’ is the initial value for semaphore counter. It may be
equal to zero.

Return Value

Returns handle to the created semaphore or NULL if it cannot be created.

t3pl_sem_wait

Performs unlimited time waiting on semaphore

bool t3pl_sem_wait
(void *sem,
 t3rt_context_t ctx);

Parameters

Description
This function acquires (locks) semaphore. Each time this function is called
semaphore counter (that initially equals to ‘value’ parameter of
t3pl_sem_create function) is decremented. If the value of semaphore
counter equals to zero (before decremented) then the thread is put into sleep
state until one of other threads release semaphore by calling t3pl_sem_post.

Return Value

Returns true if semaphore has been acquired, false in case of error.

t3pl_sem_trywait

Tries to acquire (lock) semaphore without waiting

bool t3pl_sem_trywait

value Amount of available resources guarded by sema-
phore.

sem Handle to the semaphore.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 343

(void *sem,
 t3rt_context_t ctx);

Parameters

Description
This function tries to acquire (lock) semaphore. If semaphore counter is
greater than zero then behavior of this function is the same as
t3pl_sem_wait. If semaphore counter equals to zero then function returns
immediately without putting thread into sleep state. Semaphore is not
acquired in latter case.

Return Value

Returns true if semaphore has been acquired, false otherwise.

t3pl_sem_timedwait

Performs limited time waiting on semaphore.

bool t3pl_sem_trywait
(void *sem,
 double wait_seconds,
 t3rt_context_t ctx);

Parameters

Description
This function tries to acquire (lock) semaphore. If semaphore counter is
greater than zero then behavior of this function is the same as
t3pl_sem_wait. If semaphore counter equals to zero then function waits
specified amount of time for the semaphore to be released. If semaphore
cannot be acquired during the specified time then function aborts returning
false.

Return Value

Returns true if semaphore has been acquired, false otherwise.

sem Handle to the semaphore.

sem Handle to the semaphore.

wait_seconds Wait limit

344 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3pl_sem_post

Releases semaphore

bool t3pl_sem_post
(void *sem,
 t3rt_context_t ctx);

Parameters

Description
This function releases (unlocks) semaphore. Each time this function is
called semaphore counter (that initially equals to ‘value’ parameter of
t3pl_sem_create function) increments. If there were threads waiting for
semaphore in sleep state then one of them is awaken (thus decreasing
semaphore counter).

Return Value

Returns true if semaphore has been released, false in case of error.

t3pl_sem_destroy

Destroys semaphore object

bool t3pl_sem_destroy
(void *sem,
 t3rt_context_t ctx);

Parameters

Description
This function destroys given semaphore. All waiting threads (if any) are
released.

Return Value

Returns true if semaphore has been successfully destroyed, false in case of
error.

sem Handle to the semaphore.

sem Handle to the semaphore.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 345

User Defined Functions

t3ud_register_codecs

Function called in the initiation phase to enable registering of codecs sys-
tems.

void t3ud_register_codecs
(int argc,
 char * argv[],
 t3rt_context_t ctx);

Parameters

Description

This function should call the t3rt_codecs_register function to register a co-
decs system. More than one codecs system can be registered.

t3ud_register_log_mechanisms

Register a log mechanism.

void t3ud_register_log_mechanisms(int argc, char * argv[]);

Parameters

Description

This function should registers all user-defined log mechanisms by, for each
such mechanism, calling the t3rt_log_register_listener function.

argc Number of arguments in the argument vector
‘argv’.

argv The argument vector passed from the command
line when the process was created

argc Number of arguments in the argument vector
‘argv’.

argv The argument vector passed from the command
line when the process was created

346 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

t3ud_read_module_param

Function to read a given test suite parameter for a module.

bool t3ud_read_module_param
(const char * module_name,
 const char * param_name,
 t3rt_value_t value,
 t3rt_context_t ctx);

Parameters

Description

The read value should be stored in the provided value parameter by using the
provided inout value container. If the type of the value is needed (or any
value or type information), it can be accessed using the normal value and
type access functions.

If this function defines the requested module parameter no attempts to set the
parameters default value will be made.

The intended way to set module parameters is by using the command-line
switches -par and -parfile. This function is only necessary to implement
when a module parameter must be retrieved from a source where the com-
mand-line way is not sufficient.

Return Values

Returns true if the module parameter value was defined (set) by this function,
false otherwise.

t3ud_retreive_configuration

Retrieves any environment information and stores this in the RTS configura-
tion.

module_name The name of the module.

param_name Name of the module parameter

value Inout value container for the value to be read. This
is an instantiated value of the correct (expected)
type and the read value should be set (or assigned)
to it.

Platform Layer API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 347

void t3ud_retrieve_configuration(t3rt_context_t ctx);

Description

This is a place to set up any configuration information in the environment
into the RTS configuration storage using the function
“t3rt_rtconf_set_param” on page 298.

t3ud_make_timestamp

Function to build user-defined timestamp for event logging.

void t3ud_make_timestamp
(t3rt_binary_string_t timestamp,
 t3rt_context_t ctx);

Parameters

Description

This function should prepare ASCII-based timestamp exactly in the same
way as it should appear in execution log. Run-time system doesn’t perform
any transformations of the prepared timestamp and prints it as is. Binary
string is used as the container for the arbitrary length character string only.

Example 4

void t3ud_make_timestamp(t3rt_binary_string_t timestamp,
t3rt_context_t ctx)
{

struct timeb timebuffer;
char *timeline;
ftime(&timebuffer);
timeline = ctime(& (timebuffer.time));
t3rt_binary_string_append_nbytes(timestamp, timeline,
strlen(timeline)+1, ctx);

}

––

timestamp Inout binary string container for the ASCII times-
tamp. This is an allocated binary string which
should be filled with the valid ASCII timestamp.

348 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

None.

TRI API
This interface is defined according to TRI (ETSI ES 201 873-5 V3.2.1). See
this document for further details.

The TRI interface functions are divided into four parts as defined in ETSI ES
201 873-5 V3.2.1, depending how and where they are used. They can be im-
plemented by Rational Systems Tester (TE), the System Adaptor (SA) or the
Platform Adaptor (PA) and used from (that is, called by) the same parts. So,
the categories are:

• SA->TE

• PA->TE

• TE->SA

• TE->PA.

TRI Type Definitions

BinaryString

This is used for storing binary data, when handling encoded values, for
example.

The data field is an array of bytes, not a null-terminated (ASCII) string.
bits is the number of bits stored in the array and the aux field is for fu-
ture extensibility of TRI functionality.

struct
{
 unsigned char* data;
 long int bits;
 void* aux;
};

QualifiedName

A value of this type is used for any named object declared in the context
of a component, a type or a timer, and so on.

The moduleName and objectName fields are the TTCN-3 identifiers lit-
erally and the aux field is for future extensibility of TRI functionality.

struct

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 349

{
 char* moduleName;
 char* objectName;
 void* aux;
};

TriActionTemplate

An alias type for BinaryString representing an action template.

TriAddress

An alias type for BinaryString representing an address.

TriAddressList

The representation of a list of TriAddress. This type is used for multicast
communication in TRI.

No special values mark the end of addrList[]. The length field shall be
used to traverse this array properly.

typedef struct _TriAddressList
{
 TriAddress **addrList;
 long int length;
};

TriException

An alias type for BinaryString representing an exception.

TriFunctionId

An alias type for QualifiedName representing a function identifier.

TriMessage

An alias type for BinaryString representing an encoded value.

TriSignatureId

An alias type for QualifiedName representing a signature identifier.

TriTestCaseId

An alias type for QualifiedName representing a test case identifier.

TriTimerDuration

A double value representing a time duration.

TriTimerId

An alias type for BinaryString representing a unique timer identifier.

350 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Note
Pending ETSI statement on timer and snapshot semantics may influence fu-
ture representation.

TriStatus

This is the status returned by all TRI functions that says whether the func-
tion succeeded or failed. The value of the type is either TRI_Error or
TRI_OK.

Note
This is an unsigned integer type and all negative values are reserved for fu-
ture extension of TRI functionality.

TriComponentId

The representation of a component instance.

The compInst field is a unique “handle” for the component instance,
compName is the name of the component as provided in the “start” com-
ponent operation and compType is the name of the component type.

typedef struct _TriComponentId
{
BinaryString compInst;
char* compName;
QualifiedName compType;

};

TriComponentIdList

The representation of a list of TriComponentId. This type is used for mul-
ticast communication in TRI.

No special values mark the end of compIdList[]. The length field shall be
used to traverse this array properly.

typedef struct _TriComponentIdList
{
 TriComponentId **compIdList;
 long int length;
};

TriParameterPassingMode
typedef enum
{
 TRI_IN = 0,
 TRI_INOUT = 1,
 TRI_OUT = 2
};

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 351

TriParameter

The representation of an encoded parameter to functions.

typedef struct _TriParameter
{
 BinaryString par;
 TriParameterPassingMode mode;
};

TriParameterList

No special values mark the end of parList[]. The length field shall be used
to traverse this array properly.

typedef struct _TriParameterList
{
 TriParameter **parList;
 long int length;
};

TriPortId

compInst is for component instance. For a singular (non-array) declara-
tion, the portIndex value should be -1. The aux field is for future exten-
sibility of TRI functionality.

typedef struct _TriPortId
{
 TriComponentId compInst;
 char* portName;
 long int portIndex;
 QualifiedName portType;
 void* aux;
};

TriPortIdList

No special values mark the end of portIdList[]. The length field shall be
used to traverse this array properly.

typedef struct _TriPortIdList
{
 TriPortId **portIdList;
 long int length;
};

SA->TE Functions

These functions are provided by the TRI integration to be called from the SA.

352 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

triEnqueueMsg

Enqueues a message in the input queue of the given port.

void triEnqueueMsg
(const TriPortId *tsiPortId,
 const TriAddress *sutAddress,
 const TriComponentId *componentId,
 const TriMessage *receivedMessage);

Parameters

Description

This operation is called by the SA after it has received a message from the
SUT. It can only be used when tsiPortId has been either previously mapped
to a port of componentId or has been referenced in the previous triExe-
cuteTestCase statement.

In the invocation of a triEnqueueMessage operation receivedMessage shall
contain an encoded value.

This operation shall pass the message to the TE indicating the port of the
component componentId to which the TSI port tsiPortId is mapped.

The decoding of receivedMessage has to be done in the TE.

triEnqueueCall

Enqueues a call request in the input queue of the given procedure port.

void triEnqueueCall
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList);

tsiPortId identifier of the test system interface port via which
the message is enqueued by the SUT Adapter

sutAddress (optional) source address within the SUT

componentId identifier of the receiving test component

receivedMessage the encoded received message

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 353

Parameters

Description

This operation can be called by the SA after it has received a procedure call
from the SUT. It can only be used when tsiPortId has been either previously
mapped to a port of componentId or referenced in the previous triExe-
cuteTestCase statement.

In the invocation of a triEnqueueCall operation all in and inout procedure pa-
rameters contain encoded values. All out procedure parameters shall contain
the distinct value of null since they are only relevant in the reply on the pro-
cedure call but not in the procedure call itself.

The TE can enqueue this procedure call with the signature identifier signa-
tureId at the port of the component componentId to which the TSI port tsi-
PortId is mapped. The decoding of procedure parameters has to be done in
the TE.

No error shall be indicated by the TE in case the value of any out parameter
is non-null.

triEnqueueReply

Enqueues a reply to a call in the input queue of the given procedure port.

void TriEnqueueReply
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,

tsiPortId identifier of the test system interface port via which
the message is enqueued by the SUT Adapter

sutAddress (optional) source address within the SUT

componentId identifier of the receiving test component

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

354 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 const TriParameter* returnValue);

Parameters

Description

This operation can be called by the SA after it has received a reply from the
SUT. It can only be used when tsiPortId has been either previously mapped
to a port of componentId or referenced in the previous triExecuteTestCase
statement.

In the invocation of a triEnqueueReply operation all out and inout procedure
parameters and the return value contain encoded values. All in procedure pa-
rameters shall contain the distinct value of null since they are only of rele-
vance to the procedure call but not in the reply to the call.

If no return type has been defined for the procedure signature in the TTCN-
3 ATS, the distinct value null shall be used for the return value.

The TE can enqueue this reply to the procedure call with the signature iden-
tifier signatureId at the port of the component componentId to which the TSI
port tsiPortId is mapped. The decoding of the procedure parameters has to be
done within the TE.

No error shall be indicated by the TE in case the value of any in parameter or
a non-defined return value is non-null.

tsiPortId identifier of the test system interface port via which
the message is enqueued by the SUT Adapter

sutAddress (optional) source address within the SUT

componentId identifier of the receiving test component

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

returnValue (optional) encoded return value of the procedure
call

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 355

triEnqueueException

Enqueues an exception (raised during a call operation) in the input queue of
the given procedure port.

void TriEnqueueException
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriException* exception);

Parameters

Description

This operation can be called by the SA after it has received a reply from the
SUT. It can only be used when tsiPortId has been either previously mapped
to a port of componentId or referenced in the previous triExecuteTestCase
statement.

In the invocation of a triEnqueueException operation exception shall contain
an encoded value.

The TE can enqueue this exception for the procedure call with the signature
identifier signatureId at the port of the component componentId to which the
TSI port tsiPortId is mapped.

The decoding of the exception has to be done within the TE.

PA->TE Functions

These functions are provided by TRI integration to be called from the PA.

tsiPortId identifier of the test system interface port via which
the message is enqueued by the SUT Adapter

sutAddress (optional) source address within the SUT

componentId identifier of the receiving test component

signatureId identifier of the signature of the procedure call

exception the encoded exception

356 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

triTimeout

This operation is called by the PA when a timer has expired.

void triTimeout(const TriTimerId *timerId);

Parameters

Description

This operation is called by the PA after a timer, which has previously been
started using the triStartTimer operation, has expired, that is, it has reached
its maximum duration value.

The timeout with the timerId can be added to the timeout list in the TE. The
implementation of this operation in the TE has to be done in such a manner
that it addresses the different TTCN-3 semantics for timers defined in
TTCN-3.

TE->SA Functions

These functions are implemented in the SA part of the TRI implementation
and will be called from the TE.

triSAReset

This operation can be called by the TE at any time to reset the SA.

TriStatus triSAReset(void);

Description

The SA shall reset all communication means which it is maintaining, that is
reset static connections to the SUT, close dynamic connections to the SUT,
discard any pending messages or procedure calls, for example.

The triSAReset operation returns TRI_OK in case the operation has been
successfully performed, TRI_Error otherwise.

timerId Identifier of the timer instance.

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 357

Return Values

The return status of the triSAReset operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triExecuteTestcase

Called to prepare the TRI implementation that a test case is about to be exe-
cuted.

TriStatus triExecuteTestcase
(const TriTestCaseId *testCaseId,
 const TriPortIdList *tsiPortList);

Parameters

Description

This operation is called by the TE immediately before the execution of any
test case. The test case that is going to be executed is indicated by the
testCaseId. tsiPortList contains all ports that have been declared in the
definition of the system component for the test case, that is, the TSI ports. If
a system component has not been explicitly defined for the test case in the
TTCN-3 ATS then the tsiPortList contains all communication ports of the
MTC test component. The ports in tsiPortList are ordered as they appear in
the respective TTCN-3 component declaration.

The SA can set up any static connections to the SUT and initialize any com-
munication means for TSI ports.

The triExecuteTestcase operation returns TRI_OK in case the operation has
been successfully performed, TRI_Error otherwise.

Return Values

The return status of the triExecuteTestcase operation. The return status indi-
cates the local success (TRI_OK) or failure (TRI_Error) of the operation.

testCaseId Identifier of the test case that is going to be exe-
cuted.

tsiPortList A list of test system interface ports defined for the
test system.

358 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

triEndTestcase

Called immediately after the execution of any test case.

TriStatus triEndTestcase(void);

Description

This operation is called by the TE immediately after the execution of any test
case.

The SA can free resources, cease communication at system ports and to test
components.

The triEndTestCase operation returns TRI_OK in case the operation has
been successfully performed, TRI_Error otherwise.

Return Values

The return status of the triEndTestcase operation. The return status indicates
the local success (TRI_OK) or failure (TRI_Error) of the operation.

triMap

Called when a port needs to be mapped.

TriStatus triMap
(const TriPortId *compPortId,
 const TriPortId *tsiPortId);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 map operation.

The SA can establish a dynamic connection to the SUT for the referenced
TSI port.

compPortId Identifier of the test component port to be mapped.

tsiPortId Identifier of the test system interface port to be
mapped.

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 359

The triMap operation returns TRI_Error in case a connection could not be es-
tablished successfully, TRI_OK otherwise. The operation should return
TRI_OK in case no dynamic connection needs to be established by the test
system.

Return Values

The return status of the triMap operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

triUnmap

This operation is called by the TE when it executes any TTCN-3 unmap op-
eration.

TriStatus triUnmap
(const TriPortId *compPortId,
 const TriPortId *tsiPortId);

Parameters

Description

The SA shall close a dynamic connection to the SUT for the referenced TSI
port.

The triUnmap operation returns TRI_Error in case a connection could not be
closed successfully or no such connection has been established previously,
TRI_OK otherwise. The operation should return TRI_OK in case no dy-
namic connections have to be established by the test system.

Return Values

The return status of the triUnmap operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

compPortId Identifier of the test component port to be un-
mapped.

tsiPortId Identifier of the test system interface port to be un-
mapped.

360 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

triSend

Called when a message needs to be sent on a port to the single recipient.

TriStatus triSend
(const TriComponentId *componentId,
 const TriPortId *tsiPortId,
 const TriAddress *sutAddress,
 const TriMessage *sendMessage);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 unicast send
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 send operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI op-
eration call.

The SA can send the message to the SUT.

The triSend operation returns TRI_OK in case it has been completed suc-
cessfully. Otherwise TRI_Error shall be returned. Notice that the return value
TRI_OK does not imply that the SUT has received sendMessage.

Return Values

The return status of the triSend operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

componentId Identifier of the sending test component.

tsiPortId Identifier of the test system interface port via which
the message is sent to the SUT Adapter.

sutAddress (Optional) destination address within the SUT.

sendMessage The encoded message to be send.

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 361

triSendMC

Called when a message needs to be sent on a port to the multiple recipients.

TriStatus triSendMC
(const TriComponentId *componentId,
 const TriPortId *tsiPortId,
 const TriAddressList *sutAddresses,
 const TriMessage *sendMessage);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 multicast send
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 send operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI op-
eration call.

The SA can send the message to the SUT.

The triSendMC operation returns TRI_OK in case it has been completed suc-
cessfully. Otherwise TRI_Error shall be returned. Notice that the return value
TRI_OK does not imply that the SUT has received sendMessage.

Return Values

The return status of the triSendMC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

componentId Identifier of the sending test component.

tsiPortId Identifier of the test system interface port via which
the message is sent to the SUT Adapter.

sutAddresses (Optional) destination addresses within the SUT.

sendMessage The encoded message to be send.

362 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

triSendBC

Called when a message needs to be sent on a port to all recipients in a SUT.

TriStatus triSendBC
(const TriComponentId *componentId,
 const TriPortId *tsiPortId,
 const TriMessage *sendMessage);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 broadcast send
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 send operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI op-
eration call.

The SA can send the message to the SUT.

The triSendBC operation returns TRI_OK in case it has been completed suc-
cessfully. Otherwise TRI_Error shall be returned. Notice that the return value
TRI_OK does not imply that the SUT has received sendMessage.

Return Values

The return status of the triSendBC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triCall

Called when a procedure call needs to be made on a port to the single recip-
ient.

componentId Identifier of the sending test component.

tsiPortId Identifier of the test system interface port via which
the message is sent to the SUT Adapter.

sendMessage The encoded message to be send.

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 363

TriStatus triCall
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 unicast call
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 call operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All in and inout procedure parameters contain encoded values. All out pro-
cedure parameters shall contain the distinct value of null since they are only
of relevance in a reply to the procedure call but not in the procedure call it-
self.

The procedure parameters are the parameters specified in the TTCN-3 signa-
ture template. Their encoding has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation, the SA can initiate the procedure call corre-
sponding to the signature identifier signatureId and the TSI port tsiPortId.

componentId identifier of the test component issuing the proce-
dure call

tsiPortId identifier of the test system interface port via which
the procedure call is sent to the SUT Adapter

sutAddress (Optional) destination address within the SUT.

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

364 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

The triCall operation shall return without waiting for the return of the issued
procedure call. This might be achieved for example by spawning a new
thread or process. This handling of this procedure call is, however, dependent
on implementation of the TE.

This TRI operation returns TRI_OK on successful initiation of the procedure
call, TRI_Error otherwise. No error shall be indicated by the SA in case the
value of any out parameter is non-null. Notice that the return value of this
TRI operation does not make any statement about the success or failure of
the procedure call.

Note
An optional timeout value, which can be specified in the TTCN-3 ATS for a
call operation, is not included in the triCall operation signature. The TE is
responsible for addressing this issue by starting a timer for the TTCN-3 call
operation in the PA with a separate TRI operation call, that is, triStart-
Timer.

Return Values

The return status of the triCall operation. The return status indicates the local
success (TRI_OK) or failure (TRI_Error) of the operation.

triCallMC

Called when a procedure call needs to be made on a port to the multiple re-
cipients.

TriStatus triCall
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList);

Parameters

componentId identifier of the test component issuing the proce-
dure call

tsiPortId identifier of the test system interface port via which
the procedure call is sent to the SUT Adapter

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 365

Description

This operation is called by the TE when it executes a TTCN-3 multicast call
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 call operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All in and inout procedure parameters contain encoded values. All out pro-
cedure parameters shall contain the distinct value of null since they are only
of relevance in a reply to the procedure call but not in the procedure call it-
self.

The procedure parameters are the parameters specified in the TTCN-3 signa-
ture template. Their encoding has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation, the SA can initiate the procedure call corre-
sponding to the signature identifier signatureId and the TSI port tsiPortId.

The triCallMC operation shall return without waiting for the return of the is-
sued procedure call. This might be achieved for example by spawning a new
thread or process. This handling of this procedure call is, however, dependent
on implementation of the TE.

This TRI operation returns TRI_OK on successful initiation of the procedure
call, TRI_Error otherwise. No error shall be indicated by the SA in case the
value of any out parameter is non-null. Notice that the return value of this
TRI operation does not make any statement about the success or failure of
the procedure call.

sutAddresses (Optional) destination addresses within the SUT.

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

366 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Note
An optional timeout value, which can be specified in the TTCN-3 ATS for a
call operation, is not included in the triCallMC operation signature. The TE
is responsible for addressing this issue by starting a timer for the TTCN-3
call operation in the PA with a separate TRI operation call, that is, triStart-
Timer.

Return Values

The return status of the triCallMC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triCallBC

Called when a procedure call needs to be made on a port to all recipients in
a SUT.

TriStatus triCall
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList);

Parameters

componentId identifier of the test component issuing the proce-
dure call

tsiPortId identifier of the test system interface port via which
the procedure call is sent to the SUT Adapter

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 367

Description

This operation is called by the TE when it executes a TTCN-3 broadcast call
operation on a component port, which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 call operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All in and inout procedure parameters contain encoded values. All out pro-
cedure parameters shall contain the distinct value of null since they are only
of relevance in a reply to the procedure call but not in the procedure call it-
self.

The procedure parameters are the parameters specified in the TTCN-3 signa-
ture template. Their encoding has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation, the SA can initiate the procedure call corre-
sponding to the signature identifier signatureId and the TSI port tsiPortId.

The triCallBC operation shall return without waiting for the return of the is-
sued procedure call. This might be achieved for example by spawning a new
thread or process. This handling of this procedure call is, however, dependent
on implementation of the TE.

This TRI operation returns TRI_OK on successful initiation of the procedure
call, TRI_Error otherwise. No error shall be indicated by the SA in case the
value of any out parameter is non-null. Notice that the return value of this
TRI operation does not make any statement about the success or failure of
the procedure call.

Note
An optional timeout value, which can be specified in the TTCN-3 ATS for a
call operation, is not included in the triCallBC operation signature. The TE
is responsible for addressing this issue by starting a timer for the TTCN-3
call operation in the PA with a separate TRI operation call, that is, triStart-
Timer.

Return Values

The return status of the triCallBC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

368 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

triReply

Called when a reply (to a call operation) needs to be made on a port to the
single recipient.

TriStatus triReply
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 unicast reply
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 reply operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All out and inout procedure parameters and the return value contain encoded
values. All in procedure parameters shall contain the distinct value of null
since they are only of relevance to the procedure call but not in the reply to
the call.

componentId identifier of the replying test component

tsiPortId iidentifier of the test system interface port via
which the reply is sent to the SUT Adapter

sutAddress (Optional) destination address within the SUT.

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

returnValue (optional) encoded return value of the procedure
call

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 369

The parameterList contains procedure call parameters. These parameters are
the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

If no return type has been defined for the procedure signature in the TTCN-
3 ATS, the distinct value null shall be passed for the return value.

On invocation of this operation, the SA can issue the reply to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triReply operation will return TRI_OK on successful execution of this
operation, TRI_Error otherwise. No error shall be indicated by the SA in case
the value of any in parameter or a non-defined return value is non-null.

Return Values

The return status of the triReply operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triReplyMC

Called when a reply (to a call operation) needs to be made on a port to the
multiple recipients.

TriStatus triReplyMC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue);

Parameters

componentId identifier of the replying test component

tsiPortId iidentifier of the test system interface port via
which the reply is sent to the SUT Adapter

sutAddresses (Optional) destination addresses within the SUT.

370 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by the TE when it executes a TTCN-3 multicast reply
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 reply operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

All out and inout procedure parameters and the return value contain encoded
values. All in procedure parameters shall contain the distinct value of null
since they are only of relevance to the procedure call but not in the reply to
the call.

The parameterList contains procedure call parameters. These parameters are
the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

If no return type has been defined for the procedure signature in the TTCN-
3 ATS, the distinct value null shall be passed for the return value.

On invocation of this operation, the SA can issue the reply to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triReplyMC operation will return TRI_OK on successful execution of
this operation, TRI_Error otherwise. No error shall be indicated by the SA in
case the value of any in parameter or a non-defined return value is non-null.

Return Values

The return status of the triReplyMC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

returnValue (optional) encoded return value of the procedure
call

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 371

triReplyBC

Called when a reply (to a call operation) needs to be made on a port to all re-
cipients in a SUT.

TriStatus triReply
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue);

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 broadcast
reply operation on a component port which has been mapped to a TSI port.
This operation is called by the TE for all TTCN-3 reply operations if no
system component has been specified for a test case, that is, only an MTC
test component is created for a test case.

All out and inout procedure parameters and the return value contain encoded
values. All in procedure parameters shall contain the distinct value of null
since they are only of relevance to the procedure call but not in the reply to
the call.

The parameterList contains procedure call parameters. These parameters are
the parameters specified in the TTCN-3 signature template. Their encoding
has to be done in the TE prior to this TRI operation call.

componentId identifier of the replying test component

tsiPortId iidentifier of the test system interface port via
which the reply is sent to the SUT Adapter

signatureId identifier of the signature of the procedure call

parameterList A list of encoded parameters which are part of the
indicated signature. The parameters in parameter-
List are ordered as they appear in the TTCN-3 sig-
nature declaration.

returnValue (optional) encoded return value of the procedure
call

372 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

If no return type has been defined for the procedure signature in the TTCN-
3 ATS, the distinct value null shall be passed for the return value.

On invocation of this operation, the SA can issue the reply to a procedure call
corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triReplyBC operation will return TRI_OK on successful execution of
this operation, TRI_Error otherwise. No error shall be indicated by the SA in
case the value of any in parameter or a non-defined return value is non-null.

Return Values

The return status of the triReplyBC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triRaise

Called to raise an exception (during a call operation) on a port to the single
recipient.

TriStatus triRaise
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriException* exception);

Parameters

componentId identifier of the replying test component

tsiPortId identifier of the test system interface port via which
the reply is sent to the SUT Adapter

sutAddress (Optional) destination address within the SUT.

signatureId identifier of the signature of the procedure call

exception the encoded exception

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 373

Description

This operation is called by the TE when it executes a TTCN-3 unicast raise
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 raise operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation the SA can raise an exception to a procedure
call corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triRaise operation returns TRI_OK on successful execution of the oper-
ation, TRI_Error otherwise.

Return Values

The return status of the triRaise operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triRaiseMC

Called to raise an exception (during a call operation) on a port to the multiple
recipient.

TriStatus triRaiseMC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriException* exception);

Parameters

componentId identifier of the replying test component

tsiPortId identifier of the test system interface port via which
the reply is sent to the SUT Adapter

374 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by the TE when it executes a TTCN-3 multicast raise
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 raise operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation the SA can raise an exception to a procedure
call corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triRaiseMC operation returns TRI_OK on successful execution of the
operation, TRI_Error otherwise.

Return Values

The return status of the triRaiseMC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triRaiseBC

Called to raise an exception (during a call operation) on a port to all recipi-
ents in a SUT.

TriStatus triRaiseBC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriException* exception);

sutAddresses (Optional) destination addresses within the SUT.

signatureId identifier of the signature of the procedure call

exception the encoded exception

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 375

Parameters

Description

This operation is called by the TE when it executes a TTCN-3 broadcast raise
operation on a component port which has been mapped to a TSI port. This
operation is called by the TE for all TTCN-3 raise operations if no system
component has been specified for a test case, that is, only an MTC test com-
ponent is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI op-
eration call.

On invocation of this operation the SA can raise an exception to a procedure
call corresponding to the signature identifier signatureId and the TSI port tsi-
PortId.

The triRaiseBC operation returns TRI_OK on successful execution of the op-
eration, TRI_Error otherwise.

Return Values

The return status of the triRaiseBC operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triSUTActionInformal

This operation is called by the TE when it executes a TTCN-3 SUT action
operation, which only contains a string.

TriStatus triSUTActionInformal(char* description);

componentId identifier of the replying test component

tsiPortId identifier of the test system interface port via which
the reply is sent to the SUT Adapter

signatureId identifier of the signature of the procedure call

exception the encoded exception

376 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

On invocation of this operation the SA shall initiate the described actions to
be taken on the SUT, that is turn on, initialize, or send a message to the SUT,
for example.

The triSUTactionInformal operation returns TRI_OK on successful exe-
cution of the operation, TRI_Error otherwise. Notice that the return value of
this TRI operation does not make any statement about the success or failure
of the actions to be taken on the SUT.

Return Values

The return status of the triSUTactionInformal operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of the op-
eration.

triSUTActionTemplate

This operation is called by the TE when it executes a TTCN-3 SUT action
operation, which uses a template.

TriStatus triSUTActionTemplate(const TriActionTemplate*
templateValue);

Parameters

Description

The encoding of the action template value has to be done in the TE prior to
this TRI operation call.

On invocation of this operation the SA shall initiate the actions to be taken
on the SUT using the passed template value, turn on, initialize, or send a mes-
sage to the SUT, for example.

description An informal description of an action to be taken on
the SUT.

templateValue the encoded value of the action template

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 377

The triSUTactionTemplate operation returns TRI_OK on successful exe-
cution of the operation, TRI_Error otherwise. Notice that the return value of
this TRI operation does not make any statement about the success or failure
of the actions to be taken on the SUT.

Return Values

The return status of the triSUTactionTemplate operation. The return
status indicates the local success (TRI_OK) or failure (TRI_Error) of the op-
eration.

TE->PA Functions

These functions are implemented in the SA part of the TRI implementation
and will be called from the TE.

triPAReset

This operation can be called by the TE at any time to reset the PA.

TriStatus triPAReset(void);

Description

The PA shall reset all timing activities which it is currently performing, stop
all running timers, discard any pending time-outs of expired timers, for ex-
ample.

The triPAReset operation returns TRI_OK in case the operation has been
performed successfully, TRI_Error otherwise.

Return Values

The return status of the triPAReset operation. The return status indicates the
local success (TRI_OK) or failure (TRI_Error) of the operation.

triStartTimer

This operation is called by the TE when a timer needs to be started.

TriStatus triStartTimer
(const TriTimerId *timerId,
 TriTimerDuration timerDuration);

378 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

On invocation of this operation the PA shall start the indicated timer with the
indicated duration. The timer runs from the value zero (0.0) up to the max-
imum specified by timerDuration. Should the timer indicated by timerId al-
ready be running it is to be restarted. When the timer expires the PA will call
the triTimeout() operation with timerId.

The triStartTimer operation returns TRI_OK if the timer has been started
successfully, TRI_Error otherwise.

Return Values

The return status of the triStartTimer operation. The return status indicates
the local success (TRI_OK) or failure (TRI_Error) of the operation.

triStopTimer

This operation is called by the TE when a timer is to be stopped.

TriStatus triStopTimer(const TriTimerId *timerId);

Parameters

Description

On invocation of this operation the PA shall use the timerId to stop the indi-
cated timer instance. The stopping of an inactive timer, that is, a timer which
has not been started or has already expired, should have no effect.

The triStopTimer operation returns TRI_OK if the operation has been per-
formed successfully, TRI_Error otherwise. Notice that stopping an inactive
timer is a valid operation. In this case TRI_OK shall be returned.

timerId Identifier of the timer instance.

timerDuration Duration of the timer in seconds.

timerId Identifier of the timer instance.

TRI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 379

Return Values

The return status of the triStopTimer operation. The return status indicates
the local success (TRI_OK) or failure (TRI_Error) of the operation.

triReadTimer

This operation may be called by the TE when a TTCN-3 read timer operation
is to be executed on the indicated timer.

TriStatus triReadTimer
(const TriTimerId *timerId,
 TriTimerDuration *elapsedTime);

Parameters

Description

On invocation of this operation the PA shall use the timerId to access the time
that elapsed since this timer was started. The return value elapsedTime shall
be provided in seconds. The reading of an inactive timer, that is, a timer
which has not been started or already expired, shall return an elapsed time
value of zero.

The triReadTimer operation returns TRI_OK if the operation has been per-
formed successfully, TRI_Error otherwise.

Return Values

The return status of the triReadTimer operation. The return status indicates
the local success (TRI_OK) or failure (TRI_Error) of the operation.

triTimerRunning

This operation may be called by the TE when a TTCN-3 running timer oper-
ation is to be executed on the indicated timer.

TriStatus triTimerRunning
(const TriTimerId *timerId,

timerId Identifier of the timer instance.

elapsedTime Value of the time elapsed since the timer has been
started in seconds.

380 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

 unsigned char *running);

Parameters

Description

On invocation of this operation the PA shall use the timerId to access the
status of the timer. The operation sets running to the boolean value true if and
only if the timer is currently running.

The triTimerRunning operation returns TRI_OK if the status of the timer has
been successfully determined, TRI_Error otherwise.

Return Values

The return status of the triTimerRunning operation. The return status indi-
cates the local success (TRI_OK) or failure (TRI_Error) of the operation.

triExternalFunction

This operation is called by the TE when it executes a function which is de-
fined to be TTCN-3 external (that is, all non-external functions are imple-
mented within the TE).

TriStatus triExternalFunction
(const TriFunctionId *functionId,
 TriParameterList *parameterList,
 TriParameter *returnValue);

Parameters

timerId Identifier of the timer instance.

running Status of the timer.

functionId Identifier of the external function.

parameterList A list of encoded parameters for the indicated func-
tion. The parameters in parameterList are ordered
as they appear in the TTCN-3 function declaration.

returnValue (Optional) encoded return value.

TCI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 381

Description

In the invocation of a triExternalFunction operation by the TE, all in and
inout function parameters contain encoded values. All out function parame-
ters shall contain the distinct value of null since they are only of relevance in
the return from the external function but not in its invocation. No error shall
be indicated by the PA in case the value of any out parameter is non-null.

For each external function specified in the TTCN-3 ATS, the PA shall imple-
ment the behavior. On invocation of this operation the PA shall invoke the
function indicated by the identifier functionId. It shall access the specified in
and inout function parameters in parameterList, evaluate the external func-
tion using the values of these parameters, and compute values for inout and
out parameters in parameterList. The operation shall then return encoded
values for all inout and out function parameters, the distinct value of null for
all in parameters, and the encoded return value of the external function.

If no return type has been defined for this external function in the TTCN-3
ATS, the distinct value null shall be used for the latter.

The triExternalFunction operation returns TRI_OK if the PA completes the
evaluation of the external function successfully, TRI_Error otherwise.

Note
Whereas all other TRI operations are considered to be non-blocking, the
triExternalFunction operation is considered to be blocking. That means that
the operation shall not return before the indicated external function has
been fully evaluated. External functions have to be implemented carefully as
they could cause deadlock of test component execution or even the entire
test system implementation.

Return Values

The return status of the triExternalFunction operation. The return status indi-
cates the local success (TRI_OK) or failure (TRI_Error) of the operation.

TCI API

TCI type declarations

String

 String is a synonym for char*

382 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

TciVerdictValue

 TciVerdictValue is a synonym for unsigned long int.

 May take the value equal to the one of the following constants:

 TCI_VERDICT_NONE;
 TCI_VERDICT_PASS;
 TCI_VERDICT_INCONC;
 TCI_VERDICT_FAIL;
 TCI_VERDICT_ERROR;

TciObjidElemValue
This type is used for string and integer representations of object identi-
fier element.

typedef struct _TciObjidElemValue
{
String elem_as_ascii;
long int elem_as_number;

void* aux;
};

TciObjidValue

This type is used to represent a list of objid elements. No special values
mark the end of elements. The length field shall be used to traverse this
array properly.

typedef struct _TciObjidValue
{
long int length;
TciObjidElemValue *elements;

}*;

TciCharStringValue

This type is used to represent character string.

No special values mark the end of string. The length field shall be used
to traverse this array properly.

typedef struct _TciCharStringValue
{
unsigned long int length;
char* string;

}*;

TciUCValue

 Synonym for unsigned char[4]. Represents group, plane, row and
cell of universal character as defined in char (group, plane, row, cell)
format.

TCI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 383

TciUCReturnValue

 Synonym for unsigned char*. This type is used instead of Tci-
UCValue for return values in functions.

TciUCStringValue

This type is used for textual representation of universal character string.

No special values mark the end of string. The length field shall be used
to traverse this array properly.

typedef struct _TciUCStringValue
{
unsigned long int length;
TciUCValue *string;

}*;

TciModuleIdType

Synonym for QualifiedName. This type is used to represent module
name.

TciModuleIdListType

This type is used to represent the list of modules.

No special values mark the end of an idList. The length field shall be
used to traverse this array properly.

typedef struct _TciModuleIdListType
{
long int length;
TciModuleIdType *idList;

}*;

TciModuleParameterIdType

Synonym for QualifiedName. This type is used to represent the quali-
fied name of module parameter as defined in TTCN-3 ATS.

TciModuleParameterType

This type is used to represent the parameter name and the default value
of a module parameter.

typedef struct _TciModuleParameterType
{
TciModuleParameterIdType parName;
TciValue defaultValue;

};

TciModuleParameterListType

384 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

This type is used to represent the module parameters of a TTCN-3
module.

No special values mark the end of a modParList. The length field shall
be used to traverse this array properly.

typedef struct _TciModuleParameterListType
{
long int length;
TciModuleParameterType *modParList;

}*;

TciTestCaseIdType

Synonym for QualifiedName. This type is used to represent the quali-
fied name of test case as defined in TTCN-3 ATS.

TciTestCaseIdListType

This type is used to represent the list of test cases.

No special values mark the end of idList. The length field shall be
used to traverse this array properly.

typedef struct _TciTestCaseIdListType
{
long int length;
TciTestCaseIdType *idList;

}*;

TciTestCaseParameterIdType

Synonym for String. This type is used to represent the name of test case
formal parameter as defined in TTCN-3 ATS.

TciTestCaseParameterIdListType

This type is used to represent the list of test case formal parameter
names.

No special values mark the end of idList. The length field shall be
used to traverse this array properly.

typedef struct _TciTestCaseParameterIdListType
{
long int length;
TciTestCaseParameterIdType *idList;

}*;

TciParameterPassingModeType

This type is used to represent the passing mode of a test case parameter:
in, inout or out.

TCI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 385

typedef enum
{
TCI_IN_PAR,
TCI_INOUT_PAR,
TCI_OUT_PAR

};

TciParameterTypeType

This type is used to represent the type of a test case parameter as well
as its passing mode.

typedef struct _TciParameterTypeType
{
TciParameterPassingModeType parPassMode;
TciType parType;

};

TciParameterTypeListType

This type is used to represent the types and passing modes of all test
case formal parameters.

No special values mark the end of parList. The length field shall be used
to traverse this array properly.

typedef struct _TciParameterTypeListType
{
long int length;
TciParameterTypeType *parList;

}*;

TciParameterType

This type is used to represent the actual value of a test case parameter
as well as its passing mode.

typedef struct _TciParameterType
{
String parName;
TciParameterPassingModeType parPassMode;
TciValue parValue;

};

TciParameterListType

This type is used to represent the actual values of all test case parame-
ters.

No special values mark the end of parList. The length field shall be used
to traverse this array properly.

typedef struct _TciParameterListType

386 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

{
long int length;
TciParameterType *parList;

}*;

TciTestComponentKindType

This type is used to represent component kind: internal control compo-
nent, main test component, parallel test component or system compo-
nent.

typedef enum
{
TCI_CTRL_COMP,
TCI_MTC_COMP,
TCI_PTC_COMP,
TCI_SYS_COMP,
TCI_ALIVE_COMP

};

TciTypeClassType

This type is used to represent the all possible kinds of values that may
by handled in runtime.

typedef enum
{
TCI_ADDRESS_TYPE,
TCI_ANYTYPE_TYPE,
TCI_BITSTRING_TYPE,
TCI_BOOLEAN_TYPE,
TCI_CHAR_TYPE,
TCI_CHARSTRING_TYPE,
TCI_COMPONENT_TYPE,
TCI_ENUMERATED_TYPE,
TCI_FLOAT_TYPE,
TCI_HEXSTRING_TYPE,
TCI_INTEGER_TYPE,
TCI_OBJID_TYPE,
TCI_OCTETSTRING_TYPE,
TCI_RECORD_TYPE,
TCI_RECORD_OF_TYPE,
TCI_SET_TYPE,
TCI_SET_OF_TYPE,
TCI_UNION_TYPE,
TCI_UNIVERSAL_CHAR_TYPE,
TCI_UNIVERSAL_CHARSTRING_TYPE,
TCI_VERDICT_TYPE,
TCI_DEFAULT_TYPE,
TCI_PORT_TYPE,
TCI_TIMER_TYPE,
TCI_TEMPLATE_TYPE

};

TCI API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 387

ComponentStatus

This type is used to represent the component status.

typedef enum
{
inactiveC,
runningC,
stoppedC,
killedC

};

TimerStatus

This type is used to represent the timer status.

typedef enum
{
runningT,
inactiveT,
expiredT

};

PortStatus

This type is used to represent the port status.

typedef enum
{
startedP,
haltedP,
stoppedP

};

TciSignatureIdType

Synonym for QualifiedName. This type is used to represent the quali-
fied name of a procedure signature as defined in TTCN-3 ATS.

TciBehaviourIdType

Synonym for QualifiedName. This type is used to represent the quali-
fied name of a function or altstep as defined in TTCN-3 ATS.

TciValueList

This type is used to represent the list of values.

No special values mark the end of valueList. The length field shall be
used to traverse this array properly.

typedef struct _TciValueList
{
long int length;
TciValue *valueList;

}*;

388 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

TciValueDifference

This type is used to represent the difference between the value and tem-
plate.

It contains value, template and a meaningful description for the reason
of this difference

typedef struct _TciValueDifference
{
TciValue val;
TciValueTemplate tmpl;
String desc;

};

TciValueDifferenceList

This type is used to represent the list of difference between the value
and template.

No special values mark the end of diffList. The length field shall be
used to traverse this array properly.

typedef struct _TciValueDifferenceList
{
long int length;
TciValueDifference *diffList;

}*;

TCI Type Interface API

tciGetDefiningModule

Lookups the module identifier that defines a specified type.

TciModuleIdType tciGetDefiningModule(TciType typeId);

Parameters

Description

This operation may be called to lookup module identifier of the module in
which type is defined. If type is a TTCN-3 base type, e.g. boolean, integer,
etc. then distinct NULL value is returned.

typeId Identifier of the type instance.

TCI Type Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 389

Return Values

Returns the module identifier for the user-defined types, NULL for built-in
types.

tciGetName

Lookups the name of the specified type

String tciGetName(TciType typeId);

Parameters

Description

This operation may be called to lookup the name of the type as defined in
TTCN-3

abstract test suite specification.

Return Values

Returns the name of the type as defined in the TTCN-3 module

tciGetTypeClass

Lookups type class of the specified type

TciTypeClassType tciGetTypeClass(TciType typeId);

Parameters

Description

This operation may be called to lookup the type class of the type. Array types
are represented as types from RECORD_OF type class.

typeId Identifier of the type instance.

typeId Identifier of the type instance.

390 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Some of the type classes (DEFAULT, PORT, TIMER, TEMPLATE - for
formal template parameters) are not specified in the standard. These classes
were intentionally added in Rational Systems Tester since during testsuite
execution TCI TL may provide the values of above-mentioned type classes.
However there are no functions to process such values.

Return Values

Returns the type class of the respective type.

tciNewInstance

Creates new value of specified type

TciValue tciNewInstance(TciType typeId);

Parameters

Description

This operation may be called to instantiate new value of the specified type.

The initial value of the created value is undefined.

This function may be called only for types from the following type classes:

 BOOLEAN
 CHAR
 FLOAT
 UNIVERSAL_CHAR
 VERDICT
 ENUMERATED
 UNIVERSAL_CHARSTRING
 OBJID
 ADDRESS
 RECORD
 SET
 RECORD_OF
 SET_OF
 UNION
 ANYTYPE
 INTEGER
 BITSTRING
 CHARSTRING
 HEXSTRING

typeId Identifier of the type instance.

TCI Type Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 391

 OCTETSTRING

When called for type from other type classes tciNewInstance will produce
error and return NULL value.

Return Values

Returns a freshly created (not-initialized) value of the given type.

Returns NULL in case of error.

tciGetTypeEncoding

Lookups the encoding attribute of specified type

String tciGetTypeEncoding(TciType typeId);

Parameters

Description

This operation returns the type encoding attribute as defined in TTCN-3, if
any. If no encoding attribute is defined the distinct value NULL is returned.

Return Values

Returns the encoding attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

tciGetTypeEncodingVariant

Lookups the encoding attribute of specified type

String tciGetTypeEncodingVariant(TciType typeId);

Parameters

typeId Identifier of the type instance.

typeId Identifier of the type instance.

392 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation returns the type encoding variant attribute as defined in
TTCN-3, if any. If no encoding variant attribute is defined the distinct value
NULL is returned.

Return Values

Returns the encoding variant attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

tciGetTypeExtension

Lookups the extension attribute of specified type

String* tciGetTypeExtension(TciType typeId);

Parameters

Description

This operation returns the type encoding extension attribute as defined in
TTCN-3, if any. If no extension variant attribute is defined the distinct value
NULL is returned.

This function returns NULL terminated string array. It contains more than
one element for compound types. The first element in the array represents ex-
tension attribute for the type itself while subsequent elements represent ex-
tension attributes for the fields. Empty string (i.e. ““) denotes absence of ex-
tension attribute.

Return Values

Returns the extension attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

TCI Value Interface API
Generic operations

typeId Identifier of the type instance.

TCI Value Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 393

tciGetType

Lookups type identifier of the specified value

TciType tciGetType(TciValue valueId);

Parameters

Description

This operation may be called to lookup type identifier of the respective value.

Return Values

Returns the type of the specified value.

Returns NULL in case of error.

tciNotPresent

Checks whether specified value is 'omit'

unsigned char tciNotPresent(TciValue valueId);

Parameters

Description

This operation may be called to check whether respective value is omitted or
not. If valueId equals to NULL then value is also treated as omitted.

Return Values

Returns true if the specified value is 'omit' or NULL, false otherwise

tciGetValueEncoding

Lookups the encoding attribute of specified value

valueId Identifier of the value instance.

valueId Identifier of the value instance.

394 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

String tciGetValueEncoding(TciValue valueId);

Note
This function is not supported!

Parameters

Description

This operation returns the value encoding attribute as defined in TTCN-3, if
any. If no encoding attribute is defined the distinct value NULL is returned.

Return Values

Returns the encoding attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

tciGetValueEncodingVariant

Lookups the encoding attribute of specified value.

String tciGetValueEncodingVariant(TciValue valueId);

Note
This function is not supported!

Parameters

Description

This operation returns the value encoding variant attribute as defined in
TTCN-3, if any. If no encoding variant attribute is defined the distinct value
NULL is returned.

Return Values

Returns the encoding variant attribute as defined in the TTCN-3 module.

Returns NULL if attribute was not specified.

valueId Identifier of the value instance.

valueId Identifier of the value instance.

Integer Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 395

Integer Value Interface

tciGetIntAbs

Lookups absolute value of an integer as an ASCII string

String tciGetIntAbs(TciValue valueId);

Parameters

Description

This operation may be called to obtain absolute value of an integer value.

Absolute value is returned as an 10-base ASCII string. Since integer value
may be filled digit-by-digit there exist intermediate states in which integer
value has invalid contents. Using this function for such undefined values will
lead to error and NULL string will be returned.

Return Values

Returns the (10-base) integer absolute value as an ASCII string.

Returns NULL if specified value is not a valid integer value.

tciGetIntNumberOfDigits

Lookups the number of digits (length) of an integer value

unsigned long int tciGetIntNumberOfDigits(in TciValue
valueId);

Parameters

valueId Identifier of the value instance.

valueId Identifier of the value instance.

396 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation may be called to obtain the number of digits (the length in
other words) of an integer value. Number of digits of an integer value may
be changed by calling tciSetIntNumberOfDigits or setting digit using
tciSetIntDigit beyond the length of an integer.

Return Values

Returns the number of digits in an integer value.

tciGetIntSign

Lookups the sign (+/-) of an integer value

unsigned char tciGetIntSign(in TciValue valueId);

Parameters

Description

This operation may be called to obtain the sign of an integer value.

True corresponds to positive values and the zero.

False corresponds to the negative values.

Return Values

Returns true if the number is positive or zero, false otherwise

tciGetIntDigit

Lookups the digit of an integer value at specified position

unsigned char tciGetIntDigit(in TciValue valueId, unsigned
long int position);

valueId Identifier of the value instance.

Integer Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 397

Parameters

Description

This operation may be called to obtain the value of a digit at specified posi-
tion. Position '0' corresponds to the least significant digit of an integer. For
example, in a value '12345' position '0' corresponds to the digit '5'.

Return Values

Returns the value of the digit at specified position

tciSetIntAbs

Sets absolute value of an integer using ASCII string

void tciSetIntAbs(TciValue valueId, String absValue);

Parameters

Description

This operation may be called to set absolute value of an integer value.

Absolute value is specified using 10-base ASCII string.

Due to the limitations in Rational Systems Tester runtime system it's possible
to

specify only those values that fit into 64-bit signed integer.

Return Values

None

valueId Identifier of the value instance.

position Zero based offset from the least significant digit of
an integer

valueId Identifier of the value instance.

absValue 10-base ASCII string representing absolute integer
value

398 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tciSetIntNumberOfDigits

Sets the number of digits (length) in an integer value

void tciSetIntNumberOfDigits(in TciValue valueId, unsigned
long int nDigits);

Parameters

Description

This operation may be called to set the number of digits (the length in other
words) of an integer value. If specified number of digits is greater than cur-
rent length then integer is expanded and digits are marked as not-initialized.
If specified number of digits is lower then the current length of a value then
the value is truncated and all digits that lie beyond new length are lost.

Return Values

None

tciSetIntSign

Sets the sign (+/-) of an integer value

void tciSetIntSign(in TciValue valueId, unsigned char
sign);

Parameters

Description

This operation may be called to set the sign of an integer value.

True corresponds to positive values and the zero.

valueId Identifier of the value instance.

nDigits Number of digits to be set in an integer value

valueId Identifier of the value instance.

sign boolean value representing either '+' or '-

Float Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 399

False corresponds to the negative values.

Return Values

None

tciSetIntDigit

Lookups the digit of an integer value at specified position

void tciSetIntDigit(in TciValue valueId, unsigned long int
position, unsigned char digit);

Parameters

Description

This operation may be called to set the value of a digit at specified position.
Position '0' corresponds to the least significant digit of an integer. For ex-
ample, in a value '12345' position '0' corresponds to the digit '5'.

Return Values

None

Float Value Interface

tciGetFloatValue

Returns the float value of a specified value

double tciGetFloatValue(TciValue valueId);

valueId Identifier of the value instance.

position Zero based offset from the least significant digit of
an integer

digit The value to be set to the digit at the specified posi-
tion

400 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation may be called to obtain the float value of a specified value.

Return Values

Returns the float value of this TTCN-3 float

tciSetFloatValue

Sets the value to a specified float value

void tciSetFloatValue(TciValue valueId, double floatValue);

Parameters

Description

This operation may be called to set the value to a specified float value.

Return Values

None

Boolean Value Interface

tciGetBooleanValue

Returns the boolean value of a specified value

unsigned char tciGetBooleanValue(TciValue valueId);

valueId Identifier of the value instance.

valueId Identifier of the value instance.

floatValue The float value to assign to the specified value

Object Identifier Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 401

Parameters

Description

This operation may be called to obtain the boolean value of a specified value.

Return Values

Returns the boolean value of this TTCN-3 boolean

tciSetBooleanValue

Sets the value to a specified boolean value

void tciSetBooleanValue(TciValue valueId, unsigned char
booleanValue);

Parameters

Description

This operation may be called to set the value to a specified boolean value.

Return Values

None

Object Identifier Value Interface

tciGetTciObjidValue

Returns the objid value of a specified value

TciObjidValue tciGetTciObjidValue(TciValue valueId);

valueId Identifier of the value instance.

valueId Identifier of the value instance.

booleanValue The boolean value to assign to the specified value

402 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation may be called to obtain the objid value of a specified value.

Return Values

Returns the objid value of this TTCN-3 object identifier

tciSetObjidValue

Sets the value to a specified objid value

void tciSetObjidValue(TciValue valueId, TciObjidValue
objidValue);

Parameters

Description

This operation may be called to set the value to a specified objid value.

Return Values

None

Char Value Interface

tciGetCharValue

Returns the character value of a specified value

unsigned char tciGetCharValue(TciValue valueId);

valueId Identifier of the value instance.

valueId Identifier of the value instance.

objidValue The objid value that should be assigned to specified
value

Universal Char Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 403

Parameters

Description

This operation may be called to obtain the character value of a specified
value.

Return Values

Returns the character value of this TTCN-3 char

tciSetCharValue

Sets the value to a specified character value

void tciSetCharValue(TciValue valueId, unsigned char
charValue);

Parameters

Description

This operation may be called to set the value to a specified character value.

Return Values

None

Universal Char Value Interface

tciGetUniversalCharValue

Returns the universal character value of a specified value

TciUCReturnValue tciGetUniversalCharValue(TciValue

valueId Identifier of the value instance.

valueId Identifier of the value instance.

charValue The character value that should be assigned to spec-
ified value

404 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

valueId);

Parameters

Description

This operation may be called to obtain the universal character value of a
specified value. TciUCReturnValue type was introduced in Rational Sys-
tems Tester due to semantics of C programming language. Originally this
functions return the value of TciUCValue type but TciUCValue is defined as
fixed size array and C cannot return such arrays.

Return Values

Returns the universal character value of this TTCN-3 universal char

tciSetUniversalCharValue

Sets the value to a specified character value

void tciSetCharValue(TciValue valueId, TciUCValue
uniCharValue);

Parameters

Description

This operation may be called to set the value to a specified universal char-
acter value.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

uniCharValue Universal char value that should be assigned to
specified value

Charstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 405

Charstring Value Interface

tciGetCStringValue

Returns the character string of a specified value

TciCharStringValue tciGetCStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the character string of a specified
value.

Return Values

Returns the character string of this TTCN-3 charstring

tciSetCStringValue

Sets the value to a specified character string

void tciSetCStringValue(TciValue valueId,
TciCharStringValue charStrValue);

Parameters

Description

This operation may be called to set the value to a specified character string.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

charStrValue character string that should be assigned to specified
value

406 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tciGetCharstringValue

Returns the NULL terminated character string of a specified value

String tciGetCharstringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the NULL terminated character string
of a specified value.

Return Values

Returns the NULL terminated character string of this TTCN-3 charstring

tciSetCharstringValue

Sets the value to a specified NULL terminated character string

void tciSetCharstringValue(TciValue valueId, String
charStrValue);

Parameters

Description

This operation may be called to set the value to a specified NULL terminated
character string.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

charStrValue NULL terminated character string that should be
assigned to specified value

Charstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 407

tciGetCStringCharValue

Returns the character at specified position of charstring

unsigned char tciGetCStringCharValue(TciValue valueId,
unsigned long int position);

Parameters

Description

This operation may be called to obtain the character at specified position of
TTCN-3 charstring. Position 0 denotes the first char of the character string.
Valid values for position are from 0 to “length-1”. Characters are num-
bered from left to right.

Return Values

Returns the character at specified position of the TTCN-3 charstring

tciSetCStringCharValue

Sets the character at specified position of charstring

void tciSetCStringCharValue(TciValue valueId, unsigned long
int position, unsigned char charValue);

Parameters

valueId Identifier of the value instance.

position Zero based offset from the character string

valueId Identifier of the value instance.

position Zero based offset from the character string

charvalue character to be set

408 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation may be called to set the character at specified position of
TTCN-3 charstring. Position 0 denotes the first char of the character
string.Valid values for position are from 0 to “length-1”. Characters are
numbered from left to right.

Return Values

None

tciGetCStringLength

Returns the length of the specified charstring value

unsigned long int tciGetCStringLength(TciValue valueId);

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 charstring.
If specified value is omitted then zero is returned.

Return Values

Returns the length of the specified charstring value in chars.

Returns zero if value is 'omit'.

tciSetCStringLength

Sets the length of the specified charstring value

void tciSetCStringLength(TciValue valueId, unsigned long
int length);

valueId Identifier of the value instance.

Universal Charstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 409

Parameters

Description

This operation may be called to change the length of the TTCN-3 charstring.
If new length is greater than current one then string is padded with '\0' char-
acters. If new length is lower than current one then string is truncated.

Return Values

None

Universal Charstring Value Interface

tciGetUCStringValue

Returns the universal character string of a specified value

TciUCStringValue tciGetUCStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the textual representation of the uni-
versal character string of a specified value.

Return Values

Returns the textual representation of the universal character string of the
specified value.

valueId Identifier of the value instance.

length New length to be set to the specified charstring
value

valueId Identifier of the value instance.

410 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tciSetUCStringValue

Sets the value to a specified universal character string according to its textual
representation

void tciSetUCStringValue(TciValue valueId, TciUCStringValue
uniCharStrValue);

Parameters

Description

This operation may be called to set the value to a specified universal char-
acter string, which is defined by means of textual representation.

Return Values

None

tciGetUCStringCharValue

Returns the universal character at specified position of universal charstring.

TciUCReturnValue tciGetUCStringCharValue(TciValue valueId,
unsigned long int position);

Parameters

Description

This operation may be called to obtain the universal character at specified po-
sition of TTCN-3 universal charstring. Position 0 denotes the first universal
char of the universal character string. Valid values for position are from 0 to
“length-1”. Universal characters are numbered from left to right. TciU-
CReturnValue type was introduced in Rational Systems Tester due to seman-

valueId Identifier of the value instance.

uniCharStrValue Universal character string value that should be as-
signed to specified value

valueId Identifier of the value instance.

position Zero based offset from the character string

Universal Charstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 411

tics of C programming language. Originally this functions return the value of
TciUCValue type but a TciUCValue is defined as a fixed size array and C
cannot return such arrays.

Return Values

Returns the universal character at specified position of the TTCN-3 universal
charstring

tciSetUCStringCharValue

Sets the universal character at specified position of universal charstring

void tciSetUCStringCharValue(TciValue valueId, unsigned
long int position, TciUCValue uniCharValue);

Parameters

Description

This operation may be called to set the universal character at specified posi-
tion of TTCN-3 universal charstring. Position 0 denotes the first universal
char of the universal character string. Valid values for position are from 0 to
“length-1”. Universal characters are numbered from left to right.

Return Values

None

tciGetUCStringLength

Returns the length of the specified universal charstring value

unsigned long int tciGetUCStringLength(TciValue valueId);

valueId Identifier of the value instance.

position Zero based offset from the start of the string

uniCharValue Universal character to be set

412 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 universal
charstring in universal characters. If specified value is omitted then zero is
returned.

Return Values

Returns the length of the specified universal charstring value in universal
chars.

Returns zero if value is 'omit'.

tciSetUCStringLength

Sets the length of the specified universal charstring value

void tciSetUCStringLength(TciValue valueId, unsigned long
int length);

Parameters

Description

This operation may be called to change the length of the TTCN-3 charstring.
If new length is greater than current one then string is padded with 'char
(255,255,255,255)' universal characters. If new length is lower than current
one then string is truncated.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

Bitstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 413

Bitstring Value Interface

tciGetBStringValue

Returns the textual representation of the bit string of a specified value

String tciGetBStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the textual representation of the bit
string of a specified value. E.g. the textual representation of 0101 is '0101'B.
The textual representation of the empty TTCN-3 bitstring is ''B, with length
zero.

Return Values

Returns the textual representation of the bit string of this TTCN-3 bitstring

tciSetBStringValue

Sets the value to a specified bit string according to its textual representation.

void tciSetBStringValue(TciValue valueId, String
bitStrValue);

Parameters

Description

This operation may be called to set the value to a specified bit string ac-
cording to its textual representation. E.g. to assign bitstring 0101 the value of
bitStrValue formal parameter should be '0101'B

valueId Identifier of the value instance.

valueId Identifier of the value instance.

bitStrValue textual representation of the bit string that should be
assigned to specified value

414 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

None

tciGetBStringBitValue

Returns the bit (0 or 1) at specified position of bitstring

long int tciGetBStringBitValue(TciValue valueId, unsigned
long int position);

Parameters

Description

This operation may be called to obtain the bit (0 or 1) at specified position of
TTCN-3 bitstring. Position 0 denotes the first bit of the bit string. Valid
values for position are from 0 to “length-1”. Bits are numbered from left to
right.

Return Values

Returns the bit (0 or 1) at specified position of the TTCN-3 bitstring

tciSetBStringBitValue

Sets the bit (0 or 1) at specified position of bitstring

void tciSetBStringBitValue(TciValue valueId, unsigned long
int position, long int bitValue);

Parameters

valueId Identifier of the value instance.

position Zero based offset from the start of the string

valueId Identifier of the value instance.

position Zero based offset from the start of the hex string

bitValue bit (0 or 1) to be set

Bitstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 415

Description

This operation may be called to set the bit (0 or 1) at specified position of
TTCN-3 bitstring. Position 0 denotes the first bit of the bit string. Valid
values for position are from 0 to “length-1”. Bits are numbered from left to
right.

Return Values

None

tciGetBStringLength

Returns the length of the specified bitstring value

unsigned long int tciGetBStringLength(TciValue valueId);

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 bitstring.

If specified value is omitted then zero is returned.

Return Values

Returns the length of the specified bitstring value in bits.

Returns zero if value is 'omit'.

tciSetBStringLength

Sets the length of the specified bitstring value

void tciSetBStringLength(TciValue valueId, unsigned long
int length);

valueId Identifier of the value instance.

416 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation may be called to change the length of the TTCN-3 bitstring.

If new length is greater than current one then string is expanded and bits are
marked as not-initialized. If new length is lower than current one then string
is truncated.

Return Values

None

Octetstring Value Interface

tciGetOStringValue

Returns the textual representation of the octet string of a specified value

String tciGetOStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the textual representation of the octet
string of a specified value. E.g. the textual representation of 0xCAFFEE is
'CAFFEE'O. The textual representation of the empty TTCN-3 octetstring is
''O, while its length is zero.

Return Values

Returns the textual representation of the octet string of this TTCN-3 octet-
string

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

valueId Identifier of the value instance.

Octetstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 417

tciSetOStringValue

Sets the value to a specified octet string according to its textual representa-
tion.

void tciSetOStringValue(TciValue valueId, String
octStrValue);

Parameters

Description

This operation may be called to set the value to a specified octet string ac-
cording to its textual representation. E.g. to assign octetstring 0xABCD the
value of octStrValue formal parameter should be 'ABCD'O

Return Values

None

tciGetOStringOctetValue

Returns the octet (integer in range 0..255) at specified position of octetstring

long int tciGetOStringOctetValue(TciValue valueId, unsigned
long int position);

Parameters

valueId Identifier of the value instance.

position Zero based offset from the start of the hex string

octStrValue textual representation of the octet string that should
be assigned to specified value

valueId Identifier of the value instance.

position Zero based offset from the start of the string

418 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation may be called to obtain the octet (integer in range 0..255) at
specified position of TTCN-3 octetstring. Position 0 denotes the first octet of
the octet string. Valid values for position are from 0 to “length-1”. Octets
are numbered from left to right.

Return Values

Returns the octet (integer in range 0..255) at specified position of the TTCN-
3 octetstring

tciSetOStringOctetValue

Sets the octet (integer in range 0..255) at specified position of octetstring

void tciSetOStringOctetValue(TciValue valueId, unsigned
long int position, long int octValue);

Parameters

Description

This operation may be called to set the octet (integer in range 0..255) at spec-
ified position of TTCN-3 octetstring. Position 0 denotes the first octet of the
octet string. Valid values for position are from 0 to “length-1”. Octets are
numbered from left to right.

Return Values

None

tciGetOStringLength

Returns the length of the specified octetstring value

valueId Identifier of the value instance.

position Zero based offset from the start of the hex string

octValue octet (integer in range 0..255) to be set

Octetstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 419

unsigned long int tciGetOStringLength(TciValue valueId);

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 octetstring.
If specified value is omitted then zero is returned.

Return Values

Returns the length of the specified octetstring value in octets.

Returns zero if value is 'omit'.

tciSetOStringLength

Sets the length of the specified octetstring value

void tciSetOStringLength(TciValue valueId, unsigned long
int length);

Parameters

Description

This operation may be called to change the length of the TTCN-3 octetstring.
If new length is greater than current one then string is expanded and octets
are marked as not-initialized. If new length is lower than current one then
string is truncated.

Return Values

None

valueId Identifier of the value instance.

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

420 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Hexstring Value Interface

tciGetHStringValue

Returns the textual representation of the hex string of a specified value

String tciGetHStringValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the textual representation of the hex
string of a specified value. E.g. the textual representation of 0xAFFEE is
'AFFEE'H. The textual representation of the empty TTCN-3 hexstring is ''H,
while its length is zero.

Return Values

Returns the textual representation of the hex string of this TTCN-3 hexstring

tciSetHStringValue

Sets the value to a specified hex string according to its textual representation.

void tciSetHStringValue(TciValue valueId, String
hexStrValue);

Parameters

Description

This operation may be called to set the value to a specified hex string ac-
cording to its textual representation. E.g. to assign hexstring 0xABC the
value of hexStrValue formal parameter should be 'ABC'H

valueId Identifier of the value instance.

valueId Identifier of the value instance.

hexStrValue textual representation of the hex string that should
be assigned to specified value

Hexstring Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 421

Return Values

None

tciGetHStringHexValue

Returns the hexadecimal digit (integer in range 0..15) at specified position of
hexstring

long int tciGetHStringHexValue(TciValue valueId, unsigned
long int position);

Parameters

Description

This operation may be called to obtain the hex digit (integer in range 0..15)
at specified position of TTCN-3 hexstring. Position 0 denotes the first hex of
the hex string. Valid values for position are from 0 to “length-1”. Hex digits
are numbered from left to right.

Return Values

Returns the hexadecimal digit (integer in range 0..15) at specified position of
the TTCN-3 hexstring

tciSetHStringHexValue

Sets the hex digit (integer in range 0..15) at specified position of hexstring

void tciSetHStringHexValue(TciValue valueId, unsigned long
int position, long int hexValue);

Parameters

valueId Identifier of the value instance.

position zero based offset from the start of the hex string

valueId Identifier of the value instance.

position Zero based offset from the start of the hex string

hexValue Hex digit (integer in range 0..15) to be set

422 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation may be called to set the hex digit (integer in range 0..15) at
specified position of TTCN-3 hexstring. Position 0 denotes the first hex digit
of the hex string. Valid values for position are from 0 to “length-1”. Hex
digits are numbered from left to right.

Return Values

None

tciGetHStringLength

Returns the length of the specified hexstring value

unsigned long int tciGetHStringLength(TciValue valueId);

Parameters

Description

This operation may be called to obtain the length of the TTCN-3 hexstring.
If specified value is omitted then zero is returned.

Return Values

Returns the length of the specified hexstring value in hex digits.

Returns zero if value is 'omit'.

tciSetHStringLength

Sets the length of the specified hexstring value

void tciSetHStringLength(TciValue valueId, unsigned long
int length);

valueId Identifier of the value instance.

Record/Set Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 423

Parameters

Description

This operation may be called to change the length of the TTCN-3 hexstring.
If new length is greater than current one then string is expanded and hex
digits are marked as not-initialized. If new length is lower than current one
then string is truncated.

Return Values

None

Record/Set Value Interface

tciGetRecFieldValue

Returns the field value of specified record/set

TciValue tciGetRecFieldValue(TciValue valueId, String
fieldName);

Parameters

Description

This operation may be called to obtain the record/set field value by the
record/set field name. If no field with such name exists in record/set then
error is reported and NULL value is returned. It's allowed to use this function
against undefined record/set fields. In this case omitted value will be created
and returned.

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

valueId Identifier of the value instance.

fieldName Name of the record/set field

424 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

Returns the field value of specified record/set.

tciSetRecFieldValue

Sets the field value of specified record/set

void tciSetRecFieldValue(TciValue valueId, String
fieldName, TciValue fieldValueId);

Parameters

Description

This operation may be called to set the record/set field value by the record/set
field name. If no field with such name exists in record/set then error is re-
ported. When assigning field value runtime system creates copy of the passed
value (3rd parameter), thus it's possible to reuse passed field value in chain
of assignments (e.g. in a loop).

Return Values

None.

tciSetFieldOmitted

Marks the referenced optional field in a record/set as being omitted.

void tciSetFieldOmitted(TciValue valueId, String
fieldName);

Parameters

valueId Identifier of the value instance.

fieldName Name of the record/set field

fieldValueId identifier or the value instance to be assigned to
record/set field

valueId Identifier of the value instance.

fieldName Name of the record/set field

RecordOf/SetOf Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 425

Description

This operation may be called to omit the optional field in a record or set. If
no field with such name exists in record/set then error is reported. Calling this
operation for a mandatory field also results in error.

Return Values

None.

tciGetRecFieldNames

Returns the NULL terminated array of record/set field names

String* tciGetRecFieldNames(TciValue valueId);

Parameters

Description

This operation may be called to obtain the array of record/set field names.
The end of array is identified by NULL element. If record/set has no fields
then NULL is returned.

Return Values

Returns the NULL terminated array of record/set field names.

Returns NULL if record/set has no fields.

RecordOf/SetOf Value Interface

tciGetRecOfFieldValue

Returns the element value of record_of/set_of at specified position

TciValue tciGetRecOfFieldValue(TciValue valueId, unsigned
long int position);

valueId Identifier of the record/set value instance.

426 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation may be called to obtain the value of record_of/set_of ele-
ment at specified position. Valid position is between zero and length -1, for
other positions the distinct value NULL is returned. recordOf and SetOf
values will not be automatically expanded if position exceeds its lengths. It's
allowed to use this function against undefined record_of/set_of ele-
ments. In this case an uninitialized value will be created and returned.

Return Values

Returns the element value of record_of/set_of at specified position.

tciSetRecOfFieldValue

Sets the element value of record_of/set_of at specified position

void tciSetRecOfFieldValue(TciValue vecValueId, unsigned
long int position, TciValue elemValueId);

Parameters

Description

This operation may be called to set the record_of/set_of element value at
specified position. If position is greater than (length -1) the record of is ex-
tended to have the length (position + 1). The record of elements between the
original position at length and position - 1 are set to omit. When assigning

valueId Identifier of the record_of/set_of the value in-
stance.

position position of the element to return

vecValueId Identifier of the record_of/set_of the value in-
stance.

position position of the element to set

elemValueId identifier of the value instance to be assigned to
record_of/set_of element

RecordOf/SetOf Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 427

element value runtime system creates copy of the passed value (3rd param-
eter), thus it's possible to reuse passed element value in chain of assignments
(e.g. in a loop).

Return Values

None.

tciAppendRecOfFieldValue

Appends specified value to the record_of/set_of

void tciAppendRecOfFieldValue(TciValue vecValueId, TciValue
elemValueId);

Parameters

Description

This operation may be called to append the element to the end of
record_of/set_of, i.e. to set element value at position 'length'. When as-
signing element value runtime system creates copy of the passed value (2nd
parameter), thus it's possible to reuse passed element value in chain of as-
signments (e.g. in a loop).

Return Values

None.

tciGetRecOfElementType

Returns the type identifier of the element of the specified
record_of/set_of

TciType tciGetRecOfElementType(TciValue valueId);

vecValueId Identifier of the record_of/set_of the value in-
stance.

elemValueId identifier of the value instance to be appended to
record_of/set_of

428 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation may be called to lookup the element type of the
record_of/set_of.

Return Values

Returns the type identifier of the elements of the specified
record_of/set_of

tciGetRecOfLength

Returns the actual length of the specified record_of/set_of value

unsigned long int tciGetRecOfLength(TciValue valueId);

Parameters

Description

This operation may be called to lookup the actual length of the
record_of/set_of value.

Return Values

Returns the actual length of the specified record_of/set_of value

tciSetRecOfLength

Sets the length of the specified record_of/set_of value

void tciSetRecOfLength(TciValue valueId, unsigned long int
length);

valueId Identifier of the value instance.

valueId Identifier of the value instance.

Union/Anytype Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 429

Parameters

Description

This operation may be called to change the length of the record_of/set_of
value. If length is greater than the original length then record_of/set_of
is expanded and newly created elements are set as undefined. If length is less
than the original length then record_of/set_of is truncated to the specified
length.

Return Values

Returns the actual length of the specified record_of/set_of value

Union/Anytype Value Interface

tciGetUnionVariant

Returns the variant value of specified union/anytype

TciValue tciGetUnionVariant(TciValue valueId, String
variantName);

Parameters

Description

This operation may be called to obtain the union/anytype variant value that
is denoted by the variant name. If no variant was previously set or
variantName is not equal to the result of tciGetUnionPresentVariantName()
then variantName is selected as present variant and fresh uninitialized value

valueId Identifier of the value instance.

length New length to be set to the specified universal char-
string value

valueId Identifier of the union/anytype value instance.

variantName name of the union/anytype variant

430 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

is returned. The type of returned value corresponds to the union variant with
name equal to variantName. If no variant with such name exists in
union/anytype then error is reported and NULL value is returned.

Return Values

Returns the variant value of specified union/anytype denoted by
variantName

tciSetUnionVariant

Sets the variant value of specified union/anytype and assigns specified value
to it

void tciSetUnionVariant(TciValue valueId, String
variantName, TciValue variantValueId);

Parameters

Description

This operation may be called to set the union/anytype variant and assign a
value to it. Union/anytype variant is denoted by the specified variant name.
If no variant with such name exists in union/anytype then error is reported
and function returns without changing union/anytype state. When assigning
variant value runtime system creates copy of the passed value (3rd param-
eter), thus it's possible to reuse passed variant value in chain of assignments
(e.g. in a loop).

Return Values

None.

tciGetUnionPresentVariantName

Returns the name of the currently selected variant of specified union/anytype

valueId Identifier of the union/anytype value instance.

variantName name of the union/anytype variant

variantValueId identifier of the value instance to be assigned to
union/anytype variant

Union/Anytype Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 431

String tciGetUnionPresentVariantName(TciValue valueId);

Parameters

Description

This operation may be called to lookup the name of currently selected
union/anytype variant. If no variant was previously set then NULL is re-
turned.

Return Values

Returns the name of currently selected union/anytype variant.

Returns NULL if no variant selected.

tciGetUnionVariantNames

Returns the NULL terminated array of union/anytype variant names

String* tciGetUnionVariantNames(TciValue inst);

Parameters

Description

This operation may be called to obtain the array of union/anytype variant
names. The end of array is identified by NULL element. If union has no vari-
ants then NULL is returned. If the valueId represents the TTCN-3 anytype,
i.e. the type class of the type obtained by tciGetType is ANYTYPE, then the
array of all built-in and user-defined TTCN-3 type names is returned

Return Values

Returns the NULL terminated array of union/anytype variant names.

Returns NULL if union has no variants.

valueId Identifier of the union/anytype value instance.

valueId Identifier of the union/anytype value instance.

432 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Enumerated Value Interface

tciGetEnumValue

Returns the string identifier of the specified enumerated value

String tciGetEnumValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the string identifier of the enumerated
value. This identifier equals the identifier in the TTCN-3 specification.

Return Values

Returns the string identifier of the specified enumerated value.

Returns NULL if enumerated value is not assigned with one of the enumer-
ation choices.

tciSetEnumValue

Sets the enumerated value to a specified string identifier

void tciSetEnumValue(TciValue valueId, String enumValue);

Parameters

Description

This operation may be called to set the enumerated value to a specified string
identifier. String identifier should be equal to the one of the possible enumer-
ated choices. If enumValue is not an allowed value for this enumeration then
the operation is ignored.

valueId Identifier of the value instance.

valueId Identifier of the value instance.

enumValue string identifier, one of enumerated choices

Verdict Value Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 433

Return Values

None

Verdict Value Interface

tciGetVerdictValue

Returns verdict stored in the specified value

TciVerdictValue tciGetVerdictValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the verdict from the specified value.
Verdict is presented as an integer, which value denotes one of the possible
TTCN-3 verdicts. Returned integer equals to the one of the following con-
stants:

TCI_VERDICT_NONE, TCI_VERDICT_PASS,
TCI_VERDICT_INCONC, TCI_VERDICT_FAIL,
TCI_VERDICT_ERROR

Return Values

Returns the integer value that denotes one of the verdicts stored in the spec-
ified value

tciSetVerdictValue

Sets the verdict value to a specified verdict constant

void tciSetVerdictValue(TciValue valueId, TciVerdictValue
verdict);

valueId Identifier of the value instance.

434 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation may be called to set the verdict value to the one of possible
TTCN-3 verdicts. Verdict is presented as an integer, which value should be
equal to the one of the following constants:

TCI_VERDICT_NONE, TCI_VERDICT_PASS,
TCI_VERDICT_INCONC, TCI_VERDICT_FAIL,
TCI_VERDICT_ERROR

Return Values

None

Address Value Interface

tciGetAddressValue

Returns underlying value of the specified address value

TciValue tciGetAddressValue(TciValue valueId);

Parameters

Description

This operation may be called to obtain the underlying value of the specified
address value. Returned value is no longer of type class ADDRESS, but
rather of the actual type used for 'address' type representation.

valueId Identifier of the value instance.

verdict integer value that denotes one of the TTCN-3 ver-
dicts

valueId Identifier of the value instance.

TCI TE->CD Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 435

Return Values

Returns the underlying value of the specified address value. The type of the
returned value is the type that is used in user-defined address type specifiica-
tion.

tciSetAddressValue

Sets the underlying value of the specified address value

void tciSetAddressValue(TciValue addrValueId, TciValue
undValueId);

Parameters

Description

This operation may be called to set the underlying address value to the spec-
ified value. The type of undValueId should be the type that is used in user-
defined address type specification.

Return Values

None

TCI TE->CD Interface API

tciGetTypeForName

Lookups type identifier using specified type name.

TciType tciGetTypeForName(String typeName);

Parameters

addrValueId identifier of the address value instance

undValueId identifier of the value instance to be assigned to ad-
dress value

typeName name of type to look up

436 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation may be called to lookup type identifier using specified type
name. Built-in TTCN-3 types can be retrieved from the TE by using the
TTCN-3 keywords for the predefined types. In this case typeName denotes
to the basic TTCN-3 type like charstring, bitstring etc. User-defined
types as well as address and anytype types should be specified using fully
qualified names.

Return Values

Returns the type identifier for the built-in and user-defined types.

Returns the distinct value null if the requested type can not be returned.

tciGetIntegerType

Lookups type identifier for the predefined type integer.

TciType tciGetIntegerType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
integer.

Return Values

Returns the type identifier for the predefined type integer.

tciGetFloatType

Lookups type identifier for the predefined type float.

TciType tciGetFloatType();

Parameters

None

TCI TE->CD Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 437

Description

This operation may be called to lookup type identifier for the predefined type
float.

Return Values

Returns the type identifier for the predefined type float.

tciGetBooleanType

Lookups type identifier for the predefined type boolean.

TciType tciGetBooleanType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
boolean.

Return Values

Returns the type identifier for the predefined type boolean.

tciGetCharType

Lookups type identifier for the predefined type char.

TciType tciGetCharType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
char.

438 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

Returns the type identifier for the predefined type char.

tciGetUniversalCharType

Lookups type identifier for the predefined type universal char.

TciType tciGetUniversalCharType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
universal char.

Return Values

Returns the type identifier for the predefined type universal char.

tciGetObjidType

Lookups type identifier for the predefined type objid.

TciType tciGetObjidType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
objid.

Return Values

Returns the type identifier for the predefined type objid.

TCI TE->CD Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 439

tciGetCharstringType

Lookups type identifier for the predefined type charstring.

TciType tciGetCharstringType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
charstring.

Return Values

Returns the type identifier for the predefined type charstring.

tciGetUniversalCharstringType

Lookups type identifier for the predefined type universal charstring.

TciType tciGetUniversalCharstringType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
universal charstring.

Return Values

Returns the type identifier for the predefined type universal charstring.

tciGetHexstringType

Lookups type identifier for the predefined type hexstring.

TciType tciGetHexstringType();

440 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
hexstring.

Return Values

Returns the type identifier for the predefined type hexstring.

tciGetBitstringType

Lookups type identifier for the predefined type bitstring.

TciType tciGetBitstringType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
bitstring.

Return Values

Returns the type identifier for the predefined type bitstring.

tciGetOctetstringType

Lookups type identifier for the predefined type octetstring.

TciType tciGetOctetstringType();

Parameters

None

TCI TE->CD Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 441

Description

This operation may be called to lookup type identifier for the predefined type
octetstring.

Return Values

Returns the type identifier for the predefined type octetstring.

tciGetVerdictType

Lookups type identifier for the predefined type verdicttype.

TciType tciGetVerdictType();

Parameters

None

Description

This operation may be called to lookup type identifier for the predefined type
verdicttype.

Return Values

Returns the type identifier for the predefined type verdicttype..

tciErrorReq

Notifies the TE about non-recoverable error while encoding/decoding the
data

void tciErrorReq(String message);

Parameters

Description

This operation may be called to notify TE about an unrecoverable error situ-
ation within the CD and forward the error indication to the test management

message character string containing description of error

442 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

None.

TCI CD->TE Interface API

tciDecode

Decodes received data.

TciValue tciDecode(BinaryString message, TciType
decodingHypothesis);

Parameters

Description

This operations decodes message according to the encoding rules and returns
a TTCN-3 value. The decodingHypothesis shall be used to determine
whether the encoded value can be decoded. If an encoding rule is not self-
sufficient, i.e. if the encoded message does not inherently contain its type
decodingHypothesis shall be used. If the encoded value can be decoded
without the decoding hypothesis, the distinct NULL value shall be returned
if the type determined from the encoded message is not compatible with the
decoding hypothesis.

Return Values

Returns decoded value or NULL if decoding is not possible.

tciEncode

Encodes value to be sent.

BinaryString tciEncode(TciValue valueId);

message encoded data

decodingHypothesis Type identifier of expected type

TCI TE->TM Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 443

Parameters

Description

This operations encodes value according to encoding rules.

Return Values

Returns binary string containing encoded representation of the specified
value.

TCI TE->TM Interface API

tciRootModule

Selects specified module as root module.

void tciRootModule(String moduleId);

Parameters

Description

This operation selects the indicated module for execution through a subse-
quent call using tciStartTestCase or tciStartControl. A tciError will be is-
sued by the TE if no such module exists. This operation shall be used only if
neither the control part nor a test case is currently being executed.

Return Values

None.

tciGetModules

Lookups the list of all modules defined in the testsuite.

TciModuleIdListType tciGetModules();

valueId Value to be encoded

moduleId the name of module to be set as root

444 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

None

Description

This operation returns the list of all modules defined in the testsuite.

The modules are ordered as they appear in the TTCN-3 module.

Return Values

Returns the list of module names.

tciGetImportedModules

Lookups the list of all modules imported by the root module.

TciModuleIdListType tciGetImportedModules();

Parameters

None

Description

This operation returns the list of imported modules of the root module.

The modules are ordered as they appear in the TTCN-3 module.

If no imported module exist, an empty module list is returned.

If the TE cannot provide a list, the distinct NULL value is returned.

This operation shall be used only if a root module has been set before.

Return Values

Returns the list of module names.

tciGetModuleParameters

Lookups the list of module parameters of a specified module.
TciModuleParameterListType

TCI TE->TM Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 445

tciGetModuleParameters(TciModuleIdType moduleName);

Parameters

Description

This operation returns the list of module parameters of the identified module.
The parameters are ordered as they appear in the TTCN-3 module. If no
module parameters exist, an empty module parameter list is returned. If the
TE cannot provide a list, the distinct NULL value is returned. This operation
shall be used only if a root module has been set before.

Return Values

Returns the list of module parameters.

tciGetModuleParameterType

Returns the type identifier of a specified module parameter.

TciType tciGetModuleParameterType(TciModuleParameterIdType
modParId);

Parameters

Description

This operation returns the type of the specified module parameter. This may
be required if module parameter does not have default value. If the TE cannot
provide type, the distinct NULL value is returned. This operation shall be
used only if a root module has been set before.

Return Values

Returns the type identifier of a specified module parameter.

moduleName module name for which to return module parame-
ters

modParId fully qualified name of a module parameter

446 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tciGetTestCases

Lookups the list of test cases either defined or imported in root module.

TciTestCaseIdListType T3TCI(tciGetTestCases) ();

Parameters

None

Description

This operation returns the list of test cases that are either defined in or im-
ported into the root module. If no test cases exist, an empty test case list is
returned. If the TE cannot provide a list, the distinct NULL value is returned.
This operation shall be used only if a root module has been set before.

Return Values

Returns the list of test cases.

tciGetTestCaseParameters

Lookups the list of formal parameters types of a specified test case.

TciParameterTypeListType
tciGetTestCaseParameters(TciTestCaseIdType testCaseId);

Parameters

Description

This operation returns the list of parameter types of the given test case. The
parameter types are ordered as they appear in the TTCN-3 signature of the
test case. If no test case parameters exist, an empty parameter type list is re-
turned. If the TE cannot provide a list, the distinct NULL value is returned.
This operation shall be used only if a root module has been set before.

Return Values

Returns the list of test case formal parameters types.

testCaseId fully qualified test case name

TCI TE->TM Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 447

tciGetTestCaseParametersNames

Lookups the list of formal parameters names of a specified test case.

TciTestCaseParameterIdListType
tciGetTestCaseParametersNames(TciTestCaseIdType
testCaseId);

Parameters

Description

This operation returns the list of parameter names of the given test case. The
parameter names are ordered as they appear in the TTCN-3 signature of the
test case. If no test case parameters exist, an empty parameter name list is re-
turned. If the TE cannot provide a list, the distinct NULL value is returned.
This operation shall be used only if a root module has been set before.

Return Values

Returns the list of test case formal parameters names.

tciGetTestCaseTSI

Returns the list of system ports of a specified test case.

TriPortIdList tciGetTestCaseTSI(TciTestCaseIdType
testCaseId);

Parameters

Description

This operation returns the list of system ports of the given test case that have
been declared in the definition of the system component for the test case, i.e.
the TSI ports. If a system component has not been explicitly defined for the
test case, then the list contains all communication ports of the MTC test com-

testCaseId fully qualified test case name

testCaseId fully qualified test case name

448 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

ponent. The ports are ordered as they appear in the respective TTCN-3 com-
ponent type declaration. If no system ports exist, an empty port list is re-
turned. If the TE cannot provide a list, the distinct NULL value is returned.

This operation shall be used only if a root module has been set before.

Note
This operation is not supported

Return Values

Returns the list of test case system ports.

tciStartTestCase

Starts test case with the specified actual parameters.

void tciStartTestCase(TciTestCaseIdType testCaseId,
TciParameterListType parameterList);

Parameters

Description

This operation starts a test case in the currently selected module with the
given parameters. A tciError will be issued by the TE if no such test case
exists. All in and inout test case parameters in parameterList shall contain de-
fined values. All out test case parameters in parameterList shall contain the
distinct NULL value since they are only of relevance when the test case ter-
minates. This operation shall be used only if a root module has been set be-
fore. It is only a testCaseId for a test case that is declared in the currently
selected TTCN-3 module that shall pass. Test cases that are imported in a ref-
erenced module can not be started. To start imported test cases the referenced
(imported) module must be selected first using the tciRootModule opera-
tion

Return Values

None.

testCaseId fully qualified test case name

parameterList A list of actual test case parameters

TCI TE->TM Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 449

tciStopTestCase

Stops currently running test case.

void tciStopTestCase();

Parameters

None

Description

This operation stops the test case currently being executed. If the TE is not
executing a test case, the operation is ignored. If the control part is being ex-
ecuted, tciStopTestCase will stop execution of the currently executed test
case, i.e. the execution of the test case that has recently been indicated using
the provided operation tciTestCaseStarted. A possible executing control part
will continue execution as if the test case has stopped normally and returned
with verdict ERROR. This operation shall be used only if a root module has
been set before.

Return Values

None.

tciStartControl

Starts control part of the selected module.

TriComponentId tciStartControl();

Parameters

None

Description

This operation starts the control part of the selected module. The control part
starts TTCN-3 test cases as described in TTCN-3. While executing the con-
trol part the TE calls the provided operation tciTestCaseStarted and tciTest-
CaseTerminated for every test case that has been started and that has termi-

450 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

nated. After termination of the control part the TE calls the provided
operation tciControlTerminated. This operation shall be used only if a root
module has been set before.

Return Values

Returns the id of a component that executes started control part

tciStopControl

Stops currently executing control part.

void tciStopControl();

Parameters

None

Description

This operation stops execution of the control part. If no control part is cur-
rently being executed the operation is ignored. If a test case has been started
directly this will stop execution of the current test case as if tciStopTestCase
has been called. This operation shall be used only if a root module has been
set before.

Return Values

None.

TCI TM->TE Interface API

tciTestCaseStarted

Notifies that test case has been started.

void tciTestCaseStarted(TciTestCaseIdType testCaseId,
TciParameterListType parameterList, double timeout);

TCI TM->TE Interface API

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 451

Parameters

Description

This operation indicates to the test management that a test case with
testCaseId has been started. It will not be distinguished whether the test case
has been started explicitly using the required operation tciStartTestCase or
implicitly while executing the control part. Zero value in timeout indicates
that test case has been started without timeout.

Return Values

None.

tciTestCaseTerminated

Notifies that test case has been ended.

void tciTestCaseTerminated(TciValue verdict,
TciParameterListType parameterlist);

Parameters

Description

This operation indicates to the test management that a test case that has been
currently executed on the MTC has terminated with specified final ver-
dict.All out and inout test case parameters contain non NULL values. All in
test case parameters contain the distinct NULL value.

Return Values

None.

testCaseId fully qualified test case name

parameterList A list of actual test case parameters

timeout double value of test case timeout

verdict final test case verdict

parameterList list of test case parameters (inout and out have non
NULL values)

452 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tciControlTerminated

Notifies that control part has been ended.

void tciControlTerminated();

Parameters

None.

Description

This operation indicates to the test management that the control part of the
selected module has just terminated execution.

Return Values

None.

tciGetModulePar

Returns the value of a specified module parameter.

TciValue tciGetModulePar(TciModuleParameterIdType
parameterId);

Parameters

Description

The test management provides to the TE a value for the indicated module pa-
rameter. Every call of tciGetModulePar() should return the same value
throughout the execution of an explicitly started test case or throughout the
execution of a control part. If the management cannot provide a TTCN-3
value, the distinct NULL value should be returned.

Return Values

Returns the value of a specified module parameter.

parameterId fully qualified name of a module parameter.

Service Functions to TCI Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 453

Returns NULL if value cannot be determined.

tciError

Notifies about runtime error in TE.

void tciError(String message);

Parameters

Description

This operation indicates the occurrence of an unrecoverable error situation.
message contains a reason phrase that might be communicated to the test
system user. It is up to the test management to terminate execution of test
cases or control parts if running. The test management has to take explicit
measures to terminate test execution immediately.

Return Values

None.

Service Functions to TCI Interface

tciInit

Initializes TCI interface.

int tciInit(int argc, char *argv[]);

Parameters

message description of a runtime error

argc number of command line Parameters

argv string array of command line Parameters

454 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation performs general initialization of the TCI interface.Command
line parameters that have been passed to the main() function should be passed
to tciInit() as well. tciInit() should be called outside of any TTCN-3 RTS
functions. No TCI functions should be called prior to tciInit()

Return Values

Returns true on success, false otherwise.

tciMemoryAllocate

Allocates specified number of bytes in temporary memory area.

void *tciMemoryAllocate(unsigned long bytes);

Parameters

Description

This function allocates memory block in temporary memory area. It is just a
wrapper to t3rt_memory_temp_allocate() function that cannot be used inside
TCI functions due to the lack of access to context.

Return Values

Returns pointer to newly allocated memory.

Returns NULL if memory cannot be allocated.

tciStartTestsuiteServer

Main function that is called when test suite execution is controlled using Ra-
tional Systems Tester GUI.

int tciStartTestsuiteServer(int argc, char *argv[]);

Parameters

bytes amount of memory in bytes to be allocated

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 455

Description

This function initializes TCI interface and starts all internal servers that are
necessary to control test suite execution from Rational Systems Tester GUI.
This is a blocking function. It will return only when test suite (not certain test
case or control part) will be terminated. tciStartTestsuiteServer() should be
called outside of any TTCN-3 RTS functions. No TCI functions should be
called prior to tciStartTestsuiteServer()

Return Values

Returns true on success, false otherwise.

TCI TL->TE Interface

tliTcExecute

Logs execute test case request.

void tliTcExecute(String am, long int ts, String src, long
int line, TriComponentId c, TciTestCaseIdType tcId,
TciParameterListType pars, TriTimerDuration dur);

Parameters

argc number of command line Parameters

argv string array of command line Parameters

am An additional message

ts The time when the event is produced (in millisec-
onds since midnight)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

456 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the execute test case request.

Return Values

None.

tliTcStart

Logs start of a test case.

void tliTcStart(String am, long int ts, String src, long
int line, TriComponentId c, TciTestCaseIdType tcId,
TciParameterListType pars, TriTimerDuration dur);

Parameters

Description

This operation is called by TE to log the start of a test case. This event occurs
before the test case is started.

tcId The test case to be executed

pars The list of parameters required by the test case.

dur Duration of the execution

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

tcId The test case to be executed

pars The list of parameters required by the test case.

dur Duration of the execution

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 457

Return Values

None.

tliTcStop

Logs stop of a test case.

void tliTcStop(String am, long int ts, String src, long int
line, TriComponentId c);

Parameters

Description

This operation is called by TE to log the stop of a test case.

Return Values

None.

tliTcStarted

Logs start of a test case.

void tliTcStarted(String am, long int ts, String src, long
int line, TriComponentId c, TciTestCaseIdType tcId,
TciParameterListType pars, TriTimerDuration dur);

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

458 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation is called by TM to log the start of a test case. This event occurs
after the test case was started.

Return Values

None.

tliTcTerminated

Logs termination of a test case.

void tliTcTerminated(String am, long int ts, String src,
long int line, TriComponentId c, TciTestCaseIdType tcId,
TciParameterListType pars, TciValue outcome);

Parameters

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

tcId The test case to be executed

pars The list of parameters required by the test case.

dur Duration of the execution

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 459

Description

This operation is called by TM to log the termination of a test case. This
event occurs after the test case terminated.

Return Values

None.

tliCtrlStart

Logs start of the control part.

void tliCtrlStart(String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

Description

This operation is called by TE to log the start of the control part. This event
occurs before the control is started. If the control is not represented by a TRI
component, c is null.

c The component which produces this event

tcId The test case to be executed

pars The list of parameters required by the test case.

outcome The verdict of the test case

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

460 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

None.

tliCtrlStop

Logs stop of the control part.

void tliCtrlStop(String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

Description

This operation is called by TE to log the stop of the control part. This event
occurs before the control is stopped. If the control is not represented by a TRI
component, c is null.

Return Values

None.

tliCtrlTerminated

Logs termination of the control part.

void tliCtrlTerminated (String am, long int ts, String src,
long int line, TriComponentId c);

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 461

Parameters

Description

This operation is called by TM to log the termination of the control part. This
event occurs after the control has terminated. If the control is not represented
by a TRI component, c is null.

Return Values

None.

tliMSend_m

Logs unicast (point-to-point communication) send operation.

void tliMSend_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TciValue msgValue, TriAddress address, TriStatus
encoderFailure, TriMessage msg, TriStatus
transmissionFailure);

Parameters

am An additional message

ts The time when the event is produced (in millisec-
onds from process start)

src The source file of the test specification

line The line number where the request is performed

c The component which produces this event

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

462 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by SA to log a unicast send operation. This event oc-
curs after sending. This event is used for logging the communication with the
SUT.

Return Values

None.

tliMSend_m_BC

Logs broadcast send operation.

void tliMSend_m_BC(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TciValue msgValue, TriStatus encoderFailure,
TriMessage msg, TriStatus transmissionFailure);

Parameters

atPort The port via which the message is sent

toPort The port to which the message is sent

msgValue The value to be encoded and sent

address The address of the destination within the
SUT

encoderFailure The failure message which might occur at
encoding

msg The encoded message

transmissionFailure The failure message which might occur at
transmission

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 463

Description

This operation is called by SA to log a broadcast send operation. This event
occurs after sending. This event is used for logging the communication with
the SUT.

Return Values

None.

tliMSend_m_MC

Logs multicast send operation.

void tliMSend_m_MC(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TciValue msgValue, TriAddressList addresses,
TriStatus encoderFailure, TriMessage msg, TriStatus
transmissionFailure);

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPort The port to which the message is sent

msgValue The value to be encoded and sent

address The address of the destination within the
SUT

encoderFailure The failure message which might occur at
encoding

msg The encoded message

transmissionFailure The failure message which might occur at
transmission

464 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation is called by SA to log a multicast send operation. This event
occurs after sending. This event is used for logging the communication with
the SUT.

Return Values

None.

tliMSend_c

Logs unicast send operation.

void tliMSend_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TciValue msgValue, TriStatus transmissionFailure);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPort The port to which the message is sent

msgValue The value to be encoded and sent

addresses The addresses of the destination within the
SUT

encoderFailure The failure message which might occur at
encoding

msg The encoded message

transmissionFailure The failure message which might occur at
transmission

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 465

Parameters

Description

This operation is called by CH to log a unicast send operation. This event oc-
curs after sending. This event is used for logging the inter-component com-
munication.

Return Values

None.

tliMSend_c_BC

Logs broadcast send operation.

void tliMSend_c_BC(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortIdList
toPortList, TciValue msgValue, TriStatus
transmissionFailure);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPort The port to which the message is sent

msgValue The value to be encoded and sent

transmissionFailure The failure message which might occur at
transmission

466 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation is called by CH to log a broadcast send operation. This event
occurs after sending. This event is used for logging the inter-component
communication.

Return Values

None.

tliMSend_c_MC

Logs multicast send operation.

void tliMSend_c_MC(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortIdList
toPortList, TciValue msgValue, TriStatus
transmissionFailure);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPortList The ports to which the message is sent

msgValue The value to be encoded and sent

transmissionFailure The failure message which might occur at
transmission

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 467

Parameters

Description

This operation is called by CH to log a multicast send operation. This event
occurs after sending. This event is used for logging the inter-component
communication.

Return Values

None.

tliMDetected_m

Logs enqueuing of a message.

void tliMDetected_m(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriMessage msg, TriAddress address);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port via which the message is sent

toPortList The ports to which the message is sent

msgValue The value to be encoded and sent

transmissionFailure The failure message which might occur at
transmission

468 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation is called by SA to log the enqueuing of a message. This event
occurs after the message is enqueued. This event is used for logging the com-
munication with the SUT.

Return Values

None.

tliMDetected_c

Logs enqueuing of a message.

void tliMDetected_c(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TciValue msgValue);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port at which the message is detected

fromPort The port via which the message is sent

msg The encoded value enqueued into port

address The address of the source within the SUT

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 469

Parameters

Description

This operation is called by CH to log the enqueuing of a message. This event
occurs after the message is enqueued. This event is used for logging the inter-
component communication.

Return Values

None.

tliMMismatch_m

Logs mismatch of a template.

void tliMMismatch_m(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port, TciValue
msgValue, TciValueTemplate msgTmpl, TciValueDifferenceList
diffs, TriAddress address, TciValueTemplate addressTmpl);

Parameters

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

atPort The port at which the message is detected

fromPort The value enqueued into port

msgValue The value to be encoded and sent

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

470 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a template. This event
occurs after checking a template match. This event is used for logging the
communication with the SUT.

Return Values

None.

tliMMismatch_c

Logs mismatch of a template.

void tliMMismatch_c(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port, TciValue
msgValue, TciValueTemplate msgTmpl, TciValueDifferenceList
diffs, TriComponentId from, TciNonValueTemplate fromTmpl);

line The line number where the request is per-
formed

c The component which produces this event

port The port via which the message is received

msgValue The message which is checked against the
template

msgTmpl The template used to check the message
match

diffs The difference/the mismatch between mes-
sage and template

address The address of the source within the SUT

addressTmpl The expected address of the source within
the SUT

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 471

Parameters

Description

This operation is called by TE to log the mismatch of a template. This event
occurs after checking a template match. This event is used for logging the
inter-component communication.

Return Values

None.

tliMReceive_m

Logs receive of a message.

void tliMReceive_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port, TciValue
msgValue, TciValueTemplate msgTmpl, TriAddress address,
TciValueTemplate addressTmpl);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

port The port via which the message is received

msgValue The message which is checked against the
template

msgTmpl The template used to check the message
match

diffs The difference/the mismatch between mes-
sage and template

from The component which sent the message

fromTmpl The expected sender component

472 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation is called by TE to log the receive of a message. This event oc-
curs after checking a template match. This event is used for logging the com-
munication with SUT.

Return Values

None.

tliMReceive_c

Logs receive of a message.

void tliMReceive_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port, TciValue
msgValue, TciValueTemplate msgTmpl, TriComponentId from,
TciNonValueTemplate fromTmpl);

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

port The port via which the message is received

msgValue The message which is checked against the
template

msgTmpl The template used to check the message
match

address The address of the source within the SUT

addressTmpl The expected address of the source within
the SUT

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 473

Parameters

Description

This operation is called by TE to log the receive of a message. This event oc-
curs after checking a template match. This event is used for logging the inter-
component communication.

Return Values

None.

tliPrCall_m

Logs unicast call operation.

void tliPrCall_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciParameterListType
parsValue, TriAddress address, TriStatus encoderFailure,
TriParameterList pars, TriStatus transmissionFailure);

Parameters

am An additional message

ts The time when the event is produced (in mil-
liseconds from process start)

src The source file of the test specification

line The line number where the request is per-
formed

c The component which produces this event

port The port via which the message is received

msgValue The message which is checked against the
template

msgTmpl The template used to check the message
match

from The component which sent the message

fromTmpl The expected sender component

474 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by SA to log a unicast call operation. This event oc-
curs after call execution. This event is used for logging the communication
with the SUT.

Return Values

None.

tliPrCall_m_BC

Logs broadcast call operation.

void tliPrCall_m_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature,
TciParameterListType parsValue, TriStatus encoderFailure,
TriParameterList pars, TriStatus transmissionFailure);

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPort The port for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

address The address of the destination within the SUT.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded parameters.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 475

Parameters

Description

This operation is called by SA to log a broadcast call operation. This event
occurs after call execution. This event is used for logging the communication
with the SUT.

Return Values

None.

tliPrCall_m_MC

Logs multicast call operation.

void tliPrCall_m_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature,
TciParameterListType parsValue, TriAddressList addresses,
TriStatus encoderFailure, TriParameterList pars, TriStatus

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPort The port for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded parameters.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

476 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

transmissionFailure);

Parameters

Description

This operation is called by SA to log a multicast call operation. This event
occurs after call execution. This event is used for logging the communication
with the SUT.

Return Values

None.

tliPrCall_c

Logs unicast call operation.

void tliPrCall_c(String am, long int ts, String src, long

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPort The port for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

addresses The addresses of the destinations within the SUT.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded parameters.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 477

int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciParameterListType
parsValue, TriStatus transmissionFailure);

Parameters

Description

This operation is called by CH to log a unicast call operation. This event oc-
curs after call execution. This event is used for logging the inter-component
communication.

Return Values

None.

tliPrCall_c_BC

Logs broadcast call operation.

void tliPrCall_c_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciParameterListType parsValue, TriStatus
transmissionFailure);

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPort The port for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

478 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation is called by CH to log a broadcast call operation. This event
occurs after call execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

tliPrCall_c_MC

Logs multicast call operation.

void tliPrCall_c_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciParameterListType parsValue, TriStatus
transmissionFailure);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPortList List of ports for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 479

Description

This operation is called by CH to log a multicast call operation. This event
occurs after call execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

tliPrGetCallDetected_m

Logs getcall enqueue operation.

void tliPrGetCallDetected_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature,
TriParameterList pars, TriAddress address);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is invoked.

toPortList List of ports for which the call is invoked.

signature The signature of the called operation.

parsValue The parameters of the called operation.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

480 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by SA to log the getcall enqueue operation. This
event occurs after call is enqueued. This event is used for logging the com-
munication with the SUT.

Return Values

None.

tliPrGetCallDetected_c

Logs getcall enqueue operation.

void tliPrGetCallDetected_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature,
TciParameterListType parsValue);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is received.

fromPort The port via which the call is sent.

signature The signature of the detected call.

pars The encoded parameters of detected call.

address The address of the destination within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 481

Description

This operation is called by CH to log the getcall enqueue operation. This
event occurs after call is enqueued. This event is used for logging the inter-
component communication.

Return Values

None.

tliPrGetCallMismatch_m

Logs mismatch of a getcall.

void tliPrGetCallMismatch_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValueDifferenceList diff,
TriAddress address, TciValueTemplate addressTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the call is received.

fromPort The port via which the call is sent.

signature The signature of the called operation.

parsValue The parameters of detected call.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

482 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a getcall. This event
occurs after getcall is checked against a template. This event is used for
logging the communication with the SUT.

Return Values

None.

tliPrGetCallMismatch_c

Logs mismatch of a getcall.

void tliPrGetCallMismatch_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValueDifferenceList diffs,
TriComponentId from, TciNonValueTemplate fromTmpl);

Parameters

line The line number where the request is performed.

c The component which produces this event.

port The port via which the call is received.

signature The signature of the detected call.

parsValue The parameters of detected call.

parsTmpl The template used to check the parameter match.

diffs The difference/the mismatch between call and tem-
plate

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 483

Description

This operation is called by TE to log the mismatch of a getcall. This event
occurs after getcall is checked against a template. This event is used for
logging the inter-component communication.

Return Values

None.

tliPrGetCall_m

Logs getting a call.

void tliPrGetCall_m(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TriAddress address,
TciValueTemplate addressTmpl);

Parameters

line The line number where the request is performed.

c The component which produces this event.

port The port via which the call is received.

signature The signature of the detected call.

parsValue The parameters of detected call.

parsTmpl The template used to check the parameter match.

diffs The difference/the mismatch between message and
template

from The component which called the operation.

fromTmpl The expected calling component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

484 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log getting a call. This event occurs after
getcall has matched against a template. This event is used for logging the
communication with the SUT.

Return Values

None.

tliPrGetCall_c

Logs getting a call.

void tliPrGetCall_c(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TriComponentId from,
TciNonValueTemplate fromTmpl);

Parameters

line The line number where the request is performed.

c The component which produces this event.

port The port via which the call is received.

signature The signature of the detected call.

parsValue The parameters of detected call.

parsTmpl The template used to check the parameter match.

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 485

Description

This operation is called by TE to log getting a call. This event occurs after
getcall has matched against a template. This event is used for logging the
inter-component communication.

Return Values

None.

tliPrReply_m

Logs unicast reply operation.

void tliPrReply_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciValue parsValue,
TciValue replValue, TriAddress address, TriStatus
encoderFailure, TriParameterList pars, TriParameter repl,
TriStatus transmissionFailure);

Parameters

port The port via which the call is received.

signature The signature of the detected call.

parsValue The parameters of detected call.

parsTmpl The template used to check the parameter match.

from The component which called the operation.

fromTmpl The expected calling component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

486 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by SA to log a unicast reply operation. This event oc-
curs after reply execution. This event is used for logging the communication
with the SUT

Return Values

None.

tliPrReply_m_BC

Logs broadcast reply operation.

void tliPrReply_m_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature, TciValue
parsValue, TciValue replValue, TriStatus encoderFailure,
TriParameterList pars, TriParameter repl, TriStatus
transmissionFailure);

Parameters

toPort The port for which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

address The address of the destination within the SUT.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded signature parameters relating to the
reply.

repl The encoded reply.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 487

Description

This operation is called by SA to log a broadcast reply operation. This event
occurs after reply execution. This event is used for logging the communica-
tion with the SUT

Return Values

None.

tliPrReply_m_MC

Logs multicast reply operation.

void tliPrReply_m_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPort The port for which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded signature parameters relating to the
reply.

repl The encoded reply.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

488 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

TriPortId toPort, TriSignatureId signature, TciValue
parsValue, TciValue replValue, TriAddressList addresses,
TriStatus encoderFailure, TriParameterList pars,
TriParameter repl, TriStatus transmissionFailure);

Parameters

Description

This operation is called by SA to log a multicast reply operation. This event
occurs after reply execution. This event is used for logging the communica-
tion with the SUT

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPort The port for which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

addresses The addresses of the destinations within the SUT.

encoderFailure The failure message which might occur at en-
coding.

pars The encoded signature parameters relating to the
reply.

repl The encoded reply.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 489

Return Values

None.

tliPrReply_c

Logs unicast reply operation.

void tliPrReply_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciValue parsValue,
TciValue replValue, TriStatus transmissionFailure);

Parameters

Description

This operation is called by CH to log a unicast reply operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPort The port for which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

490 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tliPrReply_c_BC

Logs broadcast reply operation.

void tliPrReply_c_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciValue parsValue, TciValue replValue, TriStatus
transmissionFailure);

Parameters

Description

This operation is called by CH to log a broadcast reply operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPortList List of ports to which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 491

tliPrReply_c_MC

Logs multicast reply operation.

void tliPrReply_c_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciValue parsValue, TciValue replValue, TriStatus
transmissionFailure);

Parameters

Description

This operation is called by CH to log a multicast reply operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the reply is sent.

toPortList List of ports to which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The reply to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

492 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tliPrGetReplyDetected_m

Logs getreply enqueue operation.

void tliPrGetReplyDetected_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TriParameterList pars,
TriParameter repl, TriAddress address);

Parameters

Description

This operation is called by SA to log the getreply enqueue operation. This
event occurs after getreply is enqueued. This event is used for logging the
communication with the SUT.

Note
getreply is a TTCN-3 port operation. When a reply to previously made
procedure call is received from a communication channel it is added to the
port queue. Later the runtime system will extract it from the port queue (in a
first-in-first-out order), then generate other events like “reply matched tem-
plate”. The function tliPrGetReplyDetected_m() is intended to log the re-
ceive of a reply and its addition to the port queue.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port to which the reply is enqueued.

fromPort The port from which the reply is sent.

signature The signature relating to the reply.

pars The encoded signature parameters relating to the
reply.

repl The received encoded reply.

address The address of the source within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 493

Return Values

None.

tliPrGetReplyDetected_c

Logs getreply enqueue operation.

void tliPrGetReplyDetected_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature,
TciParameterListType parsValue, TciValue replValue);

Parameters

Description

This operation is called by CH to log the getreply enqueue operation. This
event occurs after getreply is enqueued. This event is used for logging the
inter-component communication.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port to which the reply is enqueued.

fromPort The port from which the reply is sent.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

replValue The received reply.

494 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tliPrGetReplyMismatch_m

Logs mismatch of a getreply operation.

void tliPrGetReplyMismatch_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValue replValue,
TciValueTemplate replyTmpl, TciValueDifferenceList diffs,
TriAddress address, TciValueTemplate addressTmpl);

Parameters

Description

This operation is called by TE to log the mismatch of a getreply operation.
This event occurs after getreply is checked against a template. This event
is used for logging the communication with SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the reply is received.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

parsTmpl The signature template relating to the reply.

replValue The received reply.

replyTmpl The template used to check the reply match.

diffs The difference/the mismatch between reply and
template

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 495

Return Values

None.

tliPrGetReplyMismatch_c

Logs mismatch of a getreply operation.

void tliPrGetReplyMismatch_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValue replValue,
TciValueTemplate replyTmpl, TciValueDifferenceList diffs,
TriComponentId from, TciNonValueTemplate fromTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the reply is received.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

parsTmpl The signature template relating to the reply.

repl The received reply.

replyTmpl The template used to check the reply match.

diffs The difference/the mismatch between reply and
template

from The component which sent the reply.

fromTmpl The expected replying component.

496 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a getreply operation.
This event occurs after getreply is checked against a template. This event
is used for logging the inter-component communication.

Return Values

None.

tliPrGetReply_m

Logs getting a reply.

void tliPrGetReply_m(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValue replValue,
TciValueTemplate replyTmpl, TriAddress address,
TciValueTemplate addressTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the reply is received.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

parsTmpl The signature template relating to the reply.

replValue The received reply.

replyTmpl The template used to check the reply match.

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 497

Description

This operation is called by TE to log getting a reply. This event occurs after
getreply is checked against a template. This event is used for logging the
communication with SUT.

Return Values

None.

tliPrGetReply_c

Logs getting a reply.

void tliPrGetReply_c(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciParameterListType parsValue,
TciValueTemplate parsTmpl, TciValue replValue,
TciValueTemplate replyTmpl, TriComponentId from,
TciNonValueTemplate fromTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the reply is received.

signature The signature relating to the reply.

parsValue The signature parameters relating to the reply.

parsTmpl The signature template relating to the reply.

replValue The received reply.

replyTmpl The template used to check the reply match.

from The component which sent the reply.

fromTmpl The expected replying component.

498 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log getting a reply. This event occurs after
getreply is checked against a template. This event is used for logging the
inter-component communication.

Return Values

None.

tliPrRaise_m

Logs unicast raise operation.

void tliPrRaise_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciParameterListType
parsValue, TciValue excValue, TriAddress address, TriStatus
encoderFailure, TriException exc, TriStatus
transmissionFailure);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the exception is sent.

toPort The port to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

address The address of the destination within the SUT.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 499

Description

This operation is called by SA to log a unicast raise operation. This event oc-
curs after reply execution. This event is used for logging the communication
with the SUT.

Return Values

None.

tliPrRaise_m_BC

Logs broadcast raise operation.

void tliPrRaise_m_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature,
TciParameterListType parsValue, TciValue excValue,
TriStatus encoderFailure, TriException exc, TriStatus
transmissionFailure);

Parameters

encoderFailure The failure message which might occur at en-
coding.

exc The encoded exception.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the exception is sent.

toPort The port to which the exception is sent.

signature The signature relating to the exception.

500 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by SA to log a broadcast raise operation. This event
occurs after reply execution. This event is used for logging the communica-
tion with the SUT.

Return Values

None.

tliPrRaise_m_MC

Logs multicast raise operation.

void tliPrRaise_m_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortId toPort, TriSignatureId signature,
TciParameterListType parsValue, TciValue excValue,
TriAddressList addresses, TriStatus encoderFailure,
TriException exc, TriStatus transmissionFailure);

Parameters

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

encoderFailure The failure message which might occur at en-
coding.

exc The encoded exception.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the exception is sent.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 501

Description

This operation is called by SA to log a multicast raise operation. This event
occurs after reply execution. This event is used for logging the communica-
tion with the SUT.

Return Values

None.

tliPrRaise_c

Logs unicast raise operation.

void tliPrRaise_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId atPort, TriPortId
toPort, TriSignatureId signature, TciParameterListType
parsValue, TciValue excValue, TriStatus
transmissionFailure);

Parameters

toPort The port to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

addresses The addresses of the destinations within the SUT.

encoderFailure The failure message which might occur at en-
coding.

exc The encoded exception.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

502 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by CH to log a unicast raise operation. This event oc-
curs after reply execution. This event is used for logging the inter-component
communication.

Return Values

None.

tliPrRaise_c_BC

Logs broadcast raise operation.

void tliPrRaise_c_BC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciParameterListType parsValue, TciValue excValue,
TriStatus transmissionFailure);

Parameters

line The line number where the request is performed.

c The component which produces this event.

atPort The port via which the exception is sent.

toPort The port to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 503

Description

This operation is called by CH to log a broadcast raise operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

tliPrRaise_c_MC

Logs multicast raise operation.

void tliPrRaise_c_MC(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId atPort,
TriPortIdList toPortList, TriSignatureId signature,
TciParameterListType parsValue, TciValue excValue,
TriStatus transmissionFailure);

Parameters

c The component which produces this event.

atPort The port via which the exception is sent.

toPortList List of ports to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

504 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by CH to log a multicast raise operation. This event
occurs after reply execution. This event is used for logging the inter-compo-
nent communication.

Return Values

None.

tliPrCatchDetected_m

Logs catch enqueue operation.

void tliPrCatchDetected_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature, TriException
exc, TriAddress address);

Parameters

atPort The port via which the exception is sent.

toPortList List of ports to which the exception is sent.

signature The signature relating to the exception.

parsValue The signature parameters relating to the exception.

excValue The exception to be sent.

transmissionFail
ure

The failure message which might occur at transmis-
sion.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port to which the exception is enqueued.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 505

Description

This operation is called by SA to log the catch enqueue operation. This event
occurs after catch is enqueued. This event is used for logging the communi-
cation with the SUT.

Return Values

None.

tliPrCatchDetected_c

Logs catch enqueue operation.

void tliPrCatchDetected_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId atPort,
TriPortId fromPort, TriSignatureId signature, TciValue
excValue, TriAddress address);

Parameters

fromPort The port from which the exception is sent.

signature The signature relating to the exception.

exc The caught exception.

address The address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

atPort The port to which the exception is enqueued.

fromPort The port from which the exception is sent.

506 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by CH to log the catch enqueue operation. This event
occurs after catch is enqueued. This event is used for logging the inter-com-
ponent communication.

Return Values

None.

tliPrCatchMismatch_m

Logs mismatch of a catch operation.

void tliPrCatchMismatch_m(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciValue excValue,
TciValueTemplate excTmpl, TciValueDifferenceList diffs,
TriAddress address, TciValueTemplate addressTmpl);

Parameters

signature The signature relating to the exception.

excValue The caught exception.

address The address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

excValue The received exception.

excTmpl The template used to check the exception match.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 507

Description

This operation is called by TE to log the mismatch of a catch operation. This
event occurs after catch is checked against a template. This event is used for
logging the communication with SUT.

Return Values

None.

tliPrCatchMismatch_c

Logs mismatch of a catch operation.

void tliPrCatchMismatch_c(String am, long int ts, String
src, long int line, TriComponentId c, TriPortId port,
TriSignatureId signature, TciValue excValue,
TciValueTemplate excTmpl, TciValueDifferenceList diffs,
TriComponentId from, TciNonValueTemplate fromTmpl);

Parameters

diffs The difference/the mismatch between exception
and template

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

excValue The received exception.

excTmpl The template used to check the exception match.

508 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a catch operation. This
event occurs after catch is checked against a template. This event is used for
logging the inter-component communication.

Return Values

None.

tliPrCatch_m

Logs catching an exception.

void tliPrCatch_m(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port, TriSignatureId
signature, TciValue excValue, TciValueTemplate excTmpl,
TriAddress address, TciValueTemplate addressTmpl);

Parameters

diffs The difference/the mismatch between exception
and template

from The component which sent the reply.

fromTmpl The expected replying component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

excValue The received exception.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 509

Description

This operation is called by SA to log catching an exception. This event oc-
curs after catch is checked against a template. This event is used for logging
the communication with SUT.

Return Values

None.

tliPrCatch_c

Logs catching an exception.

void tliPrCatch_c(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port, TriSignatureId
signature, TciValue excValue, TciValueTemplate excTmpl,
TriComponentId from, TciNonValueTemplate fromTmpl);

Parameters

excTmpl The template used to check the exception match.

address The address of the source within the SUT.

addressTmpl The expected address of the source within the SUT.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

excValue The received exception.

510 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by CH to log catching an exception. This event oc-
curs after catch is checked against a template. This event is used for logging
the inter-component communication.

Return Values

None.

tliPrCatchTimeoutDetected

Logs detection of a catch timeout.

void tliPrCatchTimeoutDetected(String am, long int ts,
String src, long int line, TriComponentId c, TriPortId
port, TriSignatureId signature);

Parameters

Description

This operation is called by PA to log the detection of a catch timeout. This
event occurs after the timeout is enqueued.

excTmpl The template used to check the exception match.

from The component which sent the reply.

fromTmpl The expected replying component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line the line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 511

Return Values

None.

tliPrCatchTimeout

Logs catching a timeout.

void tliPrCatchTimeout (String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port,
TriSignatureId signature);

Parameters

Description

This operation is called by TE to log catching a timeout. This event occurs
after the catch timeout has been performed.

Return Values

None.

tliCCreate

Logs create component operation.

void tliCCreate(String am, long int ts, String src, long
int line, TriComponentId c, TriComponentId comp, String
name, unsigned char alive);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port via which the exception is received.

signature The signature relating to the exception.

512 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the create component operation. This
event occurs after component creation.

Return Values

None.

tliCStart

Logs start component operation.

void tliCStart(String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp,
TciBehaviourIdType beh, TciParameterListType pars);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is created.

name Name of the created component.

alive Signals whether component is alive.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 513

Description

This operation is called by TE to log the start component operation. This
event occurs after component start.

Return Values

None.

tliCRunning

Logs running component operation.

void tliCRunning(String am, long int ts, String src, long
int line, TriComponentId c, TriComponentId comp,
ComponentStatus status);

Parameters

Description

This operation is called by TE to log the running component operation. This
event occurs after component running.

comp The component which is started.

beh The behavior being started on the component.

pars The parameters of the started behavior.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is checked to be running.

status The status of this component.

514 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

None.

tliCAlive

Logs alive component operation.

void tliCAlive(String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp,
ComponentStatus status);

Parameters

Description

This operation is called by TE to log the alive component operation. This
event occurs after component alive.

Return Values

None.

tliCStop

Logs stop component operation.

void tliCStop(String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is checked to be running.

status The status of this component.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 515

Description

This operation is called by TE to log the stop component operation. This
event occurs after component stop.

Return Values

None.

tliCKill

Logs kill component operation.

void tliCKill(String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is stopped.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is stopped.

516 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the kill component operation. This event
occurs after component kill.

Return Values

None.

tliCDoneMismatch

Logs mismatch of a done component operation.

void tliCDoneMismatch(String am, long int ts, String src,
long int line, TriComponentId c, TriComponentId comp,
TciNonValueTemplate compTmpl);

Parameters

Description

This operation is called by TE to log the mismatch of a done component op-
eration. This event occurs after done is checked against a template.

Return Values

None.

tliCDone

Logs done component operation.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The first component which is not yet done.

compTmpl The template used to check the done match.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 517

void tliCDone (String am, long int ts, String src, long int
line, TriComponentId c, TriComponentId comp,
TciNonValueTemplate compTmpl);

Parameters

Description

This operation is called by TE to log the done component operation. This
event occurs after the done operation.

Return Values

None.

tliCKilledMismatch

Logs mismatch of a killed component operation.

void tliCKilledMismatch(String am, long int ts, String src,
long int line, TriComponentId c, TriComponentId comp,
TciNonValueTemplate compTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is done.

compTmpl The template used to check the done match.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

518 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the mismatch of a killed component op-
eration. This event occurs after killed is checked against a template.

Return Values

None.

tliCKilled

Logs killed component operation.

void tliCKilled (String am, long int ts, String src, long
int line, TriComponentId c, TriComponentId comp,
TciNonValueTemplate compTmpl);

Parameters

Description

This operation is called by TE to log the killed component operation. This
event occurs after the killed operation.

line The line number where the request is performed.

c The component which produces this event.

comp The first component which is not yet killed.

compTmpl The template used to check the done match.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

comp The component which is killed.

compTmpl The template used to check the done match.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 519

Return Values

None.

tliCTerminated

Logs termination of a component.

void tliCTerminated(String am, long int ts, String src,
long int line, TriComponentId c, TriComponentId comp,
TciValue verdict);

Parameters

Description

This operation is called by TE to log the termination of a component. This
event occurs after the termination of the component.

Return Values

None.

tliPConnect

Logs connect operation.

void tliPConnect(String am, long int ts, String src, long
int line, TriComponentId c, TriPortId port1, TriPortId
port2);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

verdict The verdict of the component.

520 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by CH to log the connect operation. This event oc-
curs after the connect operation.

Return Values

None.

tliPDisconnect

Logs disconnect operation.

void tliPDisconnect(String am, long int ts, String src,
long int line, TriComponentId c, TriPortId port1, TriPortId
port2);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port1 The first port to be connected.

port2 The second port to be connected.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 521

Description

This operation is called by CH to log the disconnect operation. This event oc-
curs after the disconnect operation.

Return Values

None.

tliPMap

Logs map operation.

void tliPMap(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port1, TriPortId port2);

Parameters

Description

This operation is called by SA to log the map operation. This event occurs
after the map operation.

c The component which produces this event.

port1 The first port to be disconnected.

port2 The second port to be disconnected.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port1 The first port to be mapped.

port2 The second port to be mapped.

522 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

None.

tliPUnmap

Logs an un-map operation.

void tliPUnmap(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port1, TriPortId port2);

Parameters

Description

This operation is called by SA to log an un-map operation. This event occurs
after the un-map operation.

Return Values

None.

tliPClear

Logs port clear operation.

void tliPClear(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port1 The first port to be unmapped.

port2 The second port to be unmapped.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 523

Description

This operation is called by TE to log the port clear operation. This event oc-
curs after the port clear operation.

Return Values

None.

tliPStart

Logs port start operation.

void tliPStart(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port to be cleared.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port to be started.

524 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log the port start operation. This event oc-
curs after the port start operation.

Return Values

None.

tliPStop

Logs port stop operation.

void tliPStop(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port);

Parameters

Description

This operation is called by TE to log the port stop operation. This event oc-
curs after the port stop operation.

Return Values

None.

tliPHalt

Logs port halt operation.

void tliPHalt(String am, long int ts, String src, long int
line, TriComponentId c, TriPortId port);

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port to be stopped.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 525

Parameters

Description

This operation is called by TE to log the port halt operation. This event oc-
curs after the port halt operation.

Return Values

None.

tliEncode

Logs encode operation.

void tliEncode(String am, long int ts, String src, long int
line, TriComponentId c, TciValue val, TriStatus
encoderFailure, TriMessage msg, String codec);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

port The port to be stopped.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

value The value to be encoded.

526 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by CD to log the encode operation.

Return Values

None.

tliDecode

Logs decode operation.

void tliDecode(String am, long int ts, String src, long int
line, TriComponentId c, TciValue val, TriStatus
decoderFailure, TriMessage msg, String codec);

Parameters

encoderFailure The failure message which might occur at en-
coding.

msg The encoded value.

codec The used encoder.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

msg The value to be decoded.

decoderFailure The failure message which might occur at de-
coding.

value The decoded value.

codec The used decoder.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 527

Description

This operation is called by CD to log the decode operation.

Return Values

None.

tliTTimeoutDetected

Logs detection of a timeout.

void tliTTimeoutDetected(String am, long int ts, String
src, long int line, TriComponentId c, TriTimerId timer);

Parameters

Description

This operation is called by PA to log the detection of a timeout. This event
occurs after timeout is enqueued.

Return Values

None.

tliTTimeoutMismatch

Logs timeout mismatch.

void tliTTimeoutMismatch(String am, long int ts, String
src, long int line, TriComponentId c, TriTimerId timer,
TciNonValueTemplate timerTmpl);

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The timer that timed out.

528 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Parameters

Description

This operation is called by TE to log a timeout mismatch. This event occurs
after a timeout match failed.

Return Values

None.

tliTTimeout

Logs timeout match.

void tliTTimeoutMismatch(String am, long int ts, String
src, long int line, TriComponentId c, TciNonValueTemplate
timerTmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The first timer which is not yet stopped.

timerTmpl The timer template that did not match.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 529

Description

This operation is called by TE to log a timeout match. This event occurs after
a timeout matched.

Return Values

None.

tliTStart

Logs start of a timer.

void tliTStart(String am, long int ts, String src, long int
line, TriComponentId c, TriTimerId timer, TriTimerDuration
dur);

Parameters

Description

This operation is called by PA to log the start of a timer. This event occurs
after the start timer operation.

c The component which produces this event.

timer The timer which timed out.

timerTmpl The timer template that matched.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The timer that is started.

dur The timer duration.

530 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

None.

tliTStop

Logs stop of a timer.

void tliTStop(String am, long int ts, String src, long int
line, TriComponentId c, TriTimerId timer, TriTimerDuration
dur);

Parameters

Description

This operation is called by PA to log the stop of a timer. This event occurs
after the stop timer operation.

Return Values

None.

tliTRead

Logs reading of a timer.

void tliTRead(String am, long int ts, String src, long int
line, TriComponentId c, TriTimerId timer, TriTimerDuration
elapsed);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The timer that is stopped.

dur Timer duration at the moment of stopping it.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 531

Description

This operation is called by PA to log the reading of a timer. This event occurs
after the read timer operation.

Return Values

None.

tliTRunning

Logs running timer operation.

void tliTRunning(String am, long int ts, String src, long
int line, TriComponentId c, TriTimerId timer, TimerStatus
status);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

timer The timer that is started.

elapsed The elapsed time of the timer.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

532 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by PA to log the running timer operation. This event
occurs after the running timer operation.

Return Values

None.

tliSEnter

Logs entering of a scope.

void tliSEnter(String am, long int ts, String src, long int
line, TriComponentId c, QualifiedName name,
TciParameterListType parsValue, String kind);

Parameters

Description

This operation is called by TE to log the entering of a scope. This event oc-
curs after the scope has been entered.

c The component which produces this event.

timer The timer which is checked to be running.

status The status of this component.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

name The name of the scope.

parsValue The parameters of the scope.

kind The kind of the scope.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 533

Return Values

None.

tliSLeave

Logs leaving of a scope.

void tliSLeave(String am, long int ts, String src, long int
line, TriComponentId c, QualifiedName name,
TciParameterListType parsValue, TciValue val, String kind);

Parameters

Description

This operation is called by TE to log the leaving of a scope. This event occurs
after the scope has been left.

Return Values

None.

tliVar

Logs modification of the value of a variable.

void tliVar(String am, long int ts, String src, long int

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

name The name of the scope.

val The return value of the scope.

parsValue Values of formal parameters when leaving scope.

kind The kind of the scope.

534 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

line, TriComponentId c, QualifiedName name, TciValue
varValue);

Parameters

Description

This operation is called by TE to log the modification of the value of a vari-
able. This event occurs after the values have been changed.

Return Values

None.

tliModulePar

Logs value of a module parameter.

void tliModulePar(String am, long int ts, String src, long
int line, TriComponentId c, QualifiedName name, TciValue
parValue);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

name The name of the variable.

varValue The new value of the variable.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 535

Description

This operation is called by TE to log the value of a module parameter. This
event occurs after the access to the value of a module parameter.

Return Values

None.

tliGetVerdict

Logs a getverdict operation.

void tliGetVerdict(String am, long int ts, String src, long
int line, TriComponentId c, TciValue verdict);

Parameters

Description

This operation is called by TE to log the getverdict operation. This event
occurs after the getverdict operation.

Return Values

None.

c The component which produces this event.

name The name of the module parameter.

parValue The value of the module parameter.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

verdict The current value of the local verdict.

536 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tliSetVerdict

Logs setverdict operation.

void tliSetVerdict(String am, long int ts, String src, long
int line, TriComponentId c, TciValue verdict);

Parameters

Description

This operation is called by TE to log the setverdict operation. This event
occurs after the setverdict operation.

Return Values

None.

tliLog

Logs TTCN-3 statement log.

void tliLog (String am, long int ts, String src, long int
line, TriComponentId c, String log);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

verdict The value to be set to the local verdict.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 537

Description

This operation is called by TM to log the TTCN-3 statement log. This event
occurs after the TTCN-3 log operation.

Return Values

None.

tliAEnter

Logs entering an alt.

void tliAEnter(String am, long int ts, String src, long int
line, TriComponentId c);

Parameters

Description

This operation is called by TE to log entering an alt. This event occurs after
an alt has been entered.

Return Values

None.

line The line number where the request is performed.

c The component which produces this event.

log Value to be logged.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

538 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tliALeave

Logs leaving an alt.

void tliALeave(String am, long int ts, String src, long int
line, TriComponentId c);

Parameters

Description

This operation is called by TE to log leaving an alt. This event occurs after
the alt has been leaved.

Return Values

None.

tliANomatch

Logs a no-match of an alt.

void tliANomatch (String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 539

Description

This operation is called by TE to log the no-match of an alt. This event occurs
after the alt has not matched.

Return Values

None.

tliARepeat

Logs repeating an alt.

void tliARepeat(String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

Description

This operation is called by TE to log repeating an alt. This event occurs when
the alt is been repeated.

Return Values

None.

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

540 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

tliADefaults

Logs entering the default section.

void tliADefaults(String am, long int ts, String src, long
int line, TriComponentId c);

Parameters

Description

This operation is called by TE to log entering the default section. This event
occurs after the default section has been entered.

Return Values

None.

tliAActivate

Logs activation of a default.

void tliAActivate(String am, long int ts, String src, long
int line, TriComponentId c, QualifiedName name,
TciParameterListType pars, TciValue ref);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 541

Description

This operation is called by TE to log the activation of a default. This event
occurs after the default activation.

Return Values

None.

tliADeactivate

Logs deactivation of a default.

void tliADeactivate(String am, long int ts, String src,
long int line, TriComponentId c, TciValue ref);

Parameters

Description

This operation is called by TE to log the deactivation of a default. This event
occurs after the default deactivation.

line The line number where the request is performed.

c The component which produces this event.

name The name of the default.

pars The parameter of the default.

ref The resulting default reference.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

ref The resulting default reference.

542 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Return Values

None.

tliAWait

Logs that the component awaits events for a new snapshot.

void tliAWait(String am, long ts, String src, long line,
TriComponentId c);

Parameters

Description

This operation is called by TE to log that the component awaits events for a
new snapshot.

Return Values

None.

tliAction

Logs the SUT action statement.

void tliAction(String am, long ts, String src, long line,
TriComponentId c, String action);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

TCI TL->TE Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 543

Description

This operation is called by TE to log that the SUT action statement.

Return Values

None.

tliMatch

Logs the successfully executed match operation.

void tliMatch(String am, long ts, String src, long line,
TriComponentId c, TciValue expr, TciValueTemplate tmpl);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

action SUT action string.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

expr The value which is matched.

tmpl The template which is used in matching operation.

544 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation is called by TE to log successfully executed match operation.

Return Values

None.

tliMatchMismatch

Logs the unsuccessfully executed match operation - mismatch occurred .

void tliMatchMismatch(String am, long ts, String src, long
line, TriComponentId c, TciValue expr, TciValueTemplate
tmpl, TciValueDifferenceList diffs);

Parameters

Description

This operation is called by TE to log unsuccessfully executed match opera-
tion - mismatch occurred.

Return Values

None.

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

expr The value which is matched.

tmpl The template which is used in matching operation.

diffs List of differences between value and template.

TCI Template Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 545

tliInfo

Logs additional test suite execution information.

void tliInfo(String am, long ts, String src, long line,
TriComponentId c, long int level, String info);

Parameters

Description

This operation is used to log additional information during test execution.
The generation of this event is tool dependent as well as the usage of the pa-
rameters level and info.

Return Values

None.

TCI Template Interface

tciIsOmitValueTemplate

Checks whether specified template is 'omit'

unsigned char tciIsOmitValueTemplate(TciValueTemplate
templateId);

Parameters

am An additional message.

ts The time when the event is produced (in millisec-
onds from process start).

src The source file of the test specification.

line The line number where the request is performed.

c The component which produces this event.

level Severity of the informal message

info Text information

546 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation may be called to check whether template represent 'omit'
value template or not.

Return Values

Returns 'true' if specified template represents 'omit' value template, false oth-
erwise.

tciIsAnyValueTemplate

Checks whether specified template is '?'

unsigned char tciIsAnyValueTemplate(TciValueTemplate
templateId);

Parameters

Description

This operation may be called to check whether template represent any ('?')
value template or not.

Return Values

Returns 'true' if specified template represents any ('?') value template, false
otherwise.

tciIsAnyOrOmitValueTemplate

Checks whether specified template is '*'

unsigned char tciIsAnyOrOmitValueTemplate(TciValueTemplate
templateId);

Parameters

templateId identifier of the value template instance

templateId identifier of the value template instance

TCI Template Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 547

Description

This operation may be called to check whether template represent any or
omit ('*') value template or not.

Return Values

Returns 'true' if specified template represents any or omit ('*') value template,
false otherwise.

tciGetValueTemplateDef

Returns string representation of the template definition

String tciGetValueTemplateDef(TciValueTemplate templateId);

Parameters

Description

This operation may be called to obtain string representation of a value tem-
plate definition.

Return Values

Returns string representation of the template definition for specified value
template

tciIsAnyNonValueTemplate

Checks whether specified template is 'any <instance>'

unsigned char tciIsAnyNonValueTemplate(TciNonValueTemplate
inst);

Parameters

templateId identifier of the value template instance

templateId identifier of the value template instance

548 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

Description

This operation may be called to check whether template represent any ('any
<instance>') non-value template or not.

Return Values

Returns 'true' if specified template represents any ('any <instance>') non-
value template, false otherwise.

tciIsAllNonValueTemplate

Checks whether specified template is 'all <instance>'

unsigned char tciIsAllNonValueTemplate(TciNonValueTemplate
inst);

Parameters

Description

This operation may be called to check whether template represent any ('all
<instance>') non-value template or not.

Return Values

Returns 'true' if specified template represents any ('all <instance>') non-value
template, false otherwise.

tciGetNonValueTemplateDef

Returns string representation of the template definition

String tciGetNonValueTemplateDef(TciNonValueTemplate
templateId);

Parameters

templateId identifier of the value template instance

templateId identifier of the non-value template instance

TCI Template Interface

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 549

Description

This operation may be called to obtain string representation of a non-value
template definition.

Return Values

Returns string representation of the template definition for specified non-
value template

templateId identifier of the non-value template instance

550 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Chapter 7: Runtime System APIs

June 2009 IBM Rational Systems Tester 3.3 Technical Integration Guide 551

8
Glossary

A

Adaptation

Synonym: “Integration” on page 556

Analyze

To verify the syntactic and semantic correctness in selected test suites.

ASN.1

Abstract Syntax Notation 1.

An ITU standard – X.680-X.683, http://www.itu.int/ITU-T/study-
groups/com07/asn1recs.html – commonly used to describe protocol
data structures.

Asynchronous Communication

Synonym: “Message Based Communication” on page 557

ATS

Abstract Test Suite, a test specification written in an abstract notation
(TTCN-3 for example) containing all definitions required to make an
Executable Test Suite.

Synonym: “Test Suite” on page 564.

http://www.itu.int/ITU-T/studygroups/com07/asn1recs.html
http://www.itu.int/ITU-T/studygroups/com07/asn1recs.html

552 IBM Rational Systems Tester 3.3 Technical Integration Guide June 2009

Chapter 8: Glossary

AST

Abstract Syntax Tree.

An Abstract Syntax Tree is the structural representation of the parser
input, where each node represents the grammar terminals of the parsed
code.

B

BER

Basic Encoding Rules. BER are the original rules for taking an ASN.1
data type, and turning it into a sequence of bits and bytes. BER uses a
form of encoding commonly known as Tag-Length-Value. Each item is
encoded as a tag, indicating what type it is, a length indicating the size
of the object, and a value, which contains the actual contents of the ob-
ject.

An ITU standard – X.690, http://www.itu.int/ITU-T/study-
groups/com07/asn1recs.html – describes the ASN.1 basic encoding
rules.

BNF

Backus-Naur Form, a context-free grammar defining the syntax of a
language in terms of tokens and production rules.

See also: “EBNF” on page 554

Bookmark

Enables you to mark frequently accessed lines in your source file.

C

Codecs Systems

Conceptually, a set of encoder and decoder functions that implement
certain encoding rules.

A codecs system is plugged into the runtime system during initialization
to provide the necessary encoding and decoding services needed for any
kind of communication.

http://www.itu.int/ITU-T/studygroups/com07/asn1recs.html
http://www.itu.int/ITU-T/studygroups/com07/asn1recs.html

June 2009 IBM Rational Systems Tester 3.3 Technical Integration Guide 553

Compiling

In Rational Systems Tester: Analyzing a test suite and generating
ANSI-C code from it, using the options set in Settings on the Project
menu.

Communication Port

TTCN-3 entity for communication between test components and SUT,
or between test components. Ports must be defined as message-based,
procedure-based or a mixture of the two.

Synonym: “Port” on page 559

Component Reference

Unique references to test components created during the execution of a
test case including component type information.

Configuration

When you modify project settings (for analysis, code generation, exe-
cution, etc), they will be saved in the active configuration. A project
may contain several configurations, associated with different settings.

Control Part

Synonym: “Module Control Part” on page 558

D

Data Types

There are four kinds of TTCN-3 data types: Basic types, Basic string
types, User-defined structured types, and Special configuration types.

Synonym: Type.

See also: “Imported Data Types” on page 556

Decoding

Result of a conversion from a given transfer syntax to the tool specific
value representation.

Definitions Part

Synonym: “Module Definitions Part” on page 558

554 IBM Rational Systems Tester 3.3 Technical Integration Guide June 2009

Chapter 8: Glossary

DTD

Document Type Definition. Defines the legal building blocks of an
XML document, and the document structure with a list of legal ele-
ments. A DTD can be declared within an XML document or in an ex-
ternal document, referenced from the XML document.

See also: “XML” on page 566

E

EBNF

The Extended Backus-Naur Form (ISO 14977,
http://www.cl.cam.ac.uk/~mgk25/iso-ebnf.html).

The Extended BNF adds context sensitivity and regular expressions to
BNF, making it more expressive.

See also: “BNF” on page 552

Editing Area

Area in which you can view and edit different files, such as TTCN-3 or
HTML files for example.

Editor

There are two different editors available in Rational Systems Tester:
one for TTCN-3 files with extended functionality, and one text editor
for ASN.1 files, text files, and so on.

Encoding

Result of a conversion from a tool specific value representation to a
given transfer syntax.

Entity

TTCN-3 language element such as types, variables, and so on.

Entity List

List of entities, displayed when you press CTRL + SPACEBAR in the
TTCN-3 editor.

http://www.cl.cam.ac.uk/~mgk25/iso-ebnf.html
http://www.cl.cam.ac.uk/~mgk25/iso-ebnf.html

June 2009 IBM Rational Systems Tester 3.3 Technical Integration Guide 555

ETS

Executable Test Suite, the concrete application derived from the ATS.

See also: “Test Suite” on page 564

ETSI

European Telecommunications Standards Institute,
http://www.etsi.org/.

ETSI is a non-profit organization whose mission is to produce telecom-
munications standards.

Event Channel

A conceptual entity in the runtime system, through which log events are
distributed to active log mechanisms.

Execute Test

To execute test cases in an ETS.

Synonym: Run test

See also “ETS” on page 555

F

File View

View of the file structure of all files in a workspace.

Represented as a tab in the workspace window.

G

GCI Interface

Generic Compiler Interpreter Interface.

An API describing vendor and user specific responsibilities in the cre-
ation of TTCN-2 executable test suites.

Go To

Enables you to jump quickly to several different items, such as book-
marks or lines, in one or several TTCN-3 files.

http://www.etsi.org/

556 IBM Rational Systems Tester 3.3 Technical Integration Guide June 2009

Chapter 8: Glossary

Group

Different language elements can be grouped in the module definitions
part. Groups may be nested, that is, groups can contain other groups.

All identifiers of declarations in a group, including nested groups, must
be unique.

H

HTML

Hypertext Markup Language is the set of markup symbols or codes in-
serted in a file intended for display on a World Wide Web browser page.

I

ICS

Implementation Conformance Statement.

IDL

IDL (interface definition language) is a generic term for a language that
lets a program or object written in one language communicate with an-
other program written in an unknown language, ISO/IEC 14750:1999.

Imported Data Types

Types imported to a TTCN-3 module via the import statement.

Info Channel

A conceptual entity in the runtime system, through which text messages
are distributed to active log mechanisms.

Integration

An implementation of the connection between the executable test suite
and the SUT.

Synonym: Adaptation.

June 2009 IBM Rational Systems Tester 3.3 Technical Integration Guide 557

ITU

The International Telecommunication Union,
http://www.itu.int/home/index.html, is an international organization
within the United Nations System where governments and the private
sector coordinate global telecom networks and services.

IUT

Implementation Under Test.

Synonym: SUT.

IXIT

Implementation eXtra Information for Testing.

J

K

L

Language Element

An entity in the language TTCN-3, for example module, data type, and
test case.

M

Message Based Communication

The sending of a message is not related to the reception.

Synonym: “Asynchronous Communication” on page 551

Module

Top-level language element in TTCN-3. A module cannot be structured
into sub-modules. A module can import definitions from other modules.

A TTCN-3 module can contain a definitions part and a control part. A
test case is defined in the definitions part and called, executed, in the
control part.

http://www.itu.int/home/index.html

558 IBM Rational Systems Tester 3.3 Technical Integration Guide June 2009

Chapter 8: Glossary

Module Control Part

Describes the execution order of the actual test cases.

Synonym: Control Part

Module Definitions Part

Contains all module definitions.

Synonym: Definitions Part

MSC

Message Sequence Charts.

An ITU standard – Z.120, http://www.itu.int/rec/recommenda-
tion.asp?type=items&lang=E&parent=T-REC-Z.120-199911-I – de-
scribing a graphical notation for the visualization of events in distrib-
uted systems.

MSC Viewer

Feature in Rational Systems Tester allowing you to use and view MSCs
in your project.

MTC

Main Test Component.

Every test case contains one and only one MTC. Behavior defined in the
body of a test case is the behavior of the MTC. The MTC type is defined
in the test case header. An MTC is created automatically when a test
case is executed.

N

O

Output Window

Window in which you can view logs, error messages, warnings, and so
on.

http://www.itu.int/rec/recommendation.asp?type=items&lang=E&parent=T-REC-Z.120-199911-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=E&parent=T-REC-Z.120-199911-I

June 2009 IBM Rational Systems Tester 3.3 Technical Integration Guide 559

Outline View

View of the structure of all language elements in a TTCN-3 file, dis-
played linearly.

Represented as an additional pane in the TTCN-3 editor.

P

PA

The Platform Adaptor is the part of the TRI implementation that is re-
sponsible for handling timers and external functions (that is, imple-
ments triStartTimer and so on). This is an entity that is provided by the
customer.

PER

Packed Encoding Rules. PER use a different style of encoding than
BER. Instead of using a generic style of encoding that encodes all types
in a uniform way, the PER specialize the encoding based on the data
type to generate much more compact representations.

An ITU standard – X.691, http://www.itu.int/ITU-T/study-
groups/com17/languages/index.html – describes the ASN.1 packed en-
coding rules.

PICS

Protocol Implementation Conformance Statement.

PIXIT

Protocol Implementation eXtra Information for Testing.

Platform Layer

The adaptation implementation that needs to be implemented by the
customer to provide necessary functionality for the platform dependent
parts of the ETS execution

Port

Synonym: “Communication Port” on page 553

http://www.itu.int/ITU-T/studygroups/com17/languages/index.html
http://www.itu.int/ITU-T/studygroups/com17/languages/index.html

560 IBM Rational Systems Tester 3.3 Technical Integration Guide June 2009

Chapter 8: Glossary

Procedure Based Communication

A remote procedure call, RPC, is performed between two components
where the flow of control is transferred from the caller to the one being
called (that is, the caller blocks until return of call) during execution of
the call.

NOTE: Procedure based communication in TTCN-3 can be non-
blocking as well. In this case the return value (if any) must be explicitly
received by means of the getreply operation

Synonym: “Synchronous Communication” on page 562

Procedure Signature

Synonym: “Signature” on page 562

Project

A structured representation of all user files, such as TTCN-3, ASN.1,
makefiles, and C files. A project is included in a workspace.

PTC

Parallel Test Component, a runtime entity executing parts of the testing
behavior, communicating with the MTC and/or the SUT.

A PTC potentially runs on a different machine than the MTC and does
not share memory with other components.

Q

R

Regular Expressions

A regular expression is an expression that defines a lexical string pattern
in terms of a set of matching rules defined by a formal grammar.

Run Test

Synonym: “Execute Test” on page 555

June 2009 IBM Rational Systems Tester 3.3 Technical Integration Guide 561

Runtime Context

An opaque runtime system object that is passed around through the ex-
ecution of the ETS in order to provide a necessary execution environ-
ment. Each component has its own runtime context object.

Runtime Engine

Synonym: “Runtime System” on page 561

Runtime Layer

Part of the runtime system API that provides necessary services to gen-
erated code and to an integration implementation.

Runtime System

Provides the operational functions needed by the ETS.

Synonym: Runtime Engine

Runtime System Objects

Entities that are instantiated during the execution of the ETS, which can
be accessed by the different parts of an integration implementation.

S

SA

The System Adaptor is the part of the TRI implementation that is re-
sponsible for communication with the SUT (that is, implements triSend,
etc). This is an entity that is provided by the customer.

SCC

Microsoft Common Source Code Control API.

Synonym: SCC API or SCCI

SDL

Specification and Description Language.

An ITU standard – Z.100, http://www.itu.int/rec/recommenda-
tion.asp?type=items&lang=E&parent=T-REC-Z.100-199303-S – de-
scribing a graphical notation for the specification and description of dis-
tributed real-time systems

http://www.itu.int/rec/recommendation.asp?type=items&lang=E&parent=T-REC-Z.100-199303-S
http://www.itu.int/rec/recommendation.asp?type=items&lang=E&parent=T-REC-Z.100-199303-S

562 IBM Rational Systems Tester 3.3 Technical Integration Guide June 2009

Chapter 8: Glossary

Signature

Language element used to define the signature or format of function
calls that are later used in testing that involves synchronous communi-
cation

Synonym: Procedure Signatures

Standard I/O

Standard input/output. The predefined input/output channels (stdin and
stdout) that every process is initialized with.

Standard Toolbar

Displays a collection of easy-to-use buttons that represent well-known
commands.

Status bar

Area in Rational Systems Tester where status and information, line
number for example, is displayed.

stdout

Synonym: “Standard I/O” on page 562

Structured View

Hierarchical view of a test suite, sorted by language elements.

Represented as a tab in the workspace window.

SUT

System Under Test.

Synonym: “IUT” on page 557

Symbol Table

A statically generated symbol table that contains entries for the declared
entities (for example types, constants, test cases, and so on) in the test
suite. There is one symbol table generated for each TTCN-3 module.

Synchronous Communication

Synonym: “Procedure Based Communication” on page 560

June 2009 IBM Rational Systems Tester 3.3 Technical Integration Guide 563

T

Tcl

Tool Command Language

Tcl is an interpreted script language developed and maintained by Sun
Laboratories. Tcl is comparable to JavaScript, Microsoft's Visual Basic,
and similar. Used in the Script Wizard.

Templates

TTCN-3 construction that allows you to specify the instantiation of data
in both synchronous and asynchronous communication.

In its simplest form a template can be compared to a value (send tem-
plates must contain real values). In a more advanced form, a template
allows you to specify matching information for received data (only al-
lowed for receive constraints). Templates can in its most powerful form
also be parameterized to provide maximum expression power.

Test Case

Definition of the intended test, a defined limited set of actions per-
formed to verify certain requirements set on the SUT.

In TTCN-3 terms, a test case is a special kind of function.

Test Component

Entity on which test behavior is executed. A test component often con-
tains local declarations and a list of ports used by the component. Test
components can be connected with other components and with a test
system interface.

The Main Test Component (MTC) is created automatically when a test
case starts, all other test components, that is, Parallel Test Components
(PTC), are created explicitly by using the operation create.

Test Configuration

Consists of a set of inter-connected test components with well-defined
communication ports and an explicit test system interface which defines
the borders of the test system.

564 IBM Rational Systems Tester 3.3 Technical Integration Guide June 2009

Chapter 8: Glossary

A test configuration can consist of one, and only one, MTC. At the start
of each test case the test configuration is reset.

Test Schedule

List of test cases, and order in which they are executed.

Test Suite

The informal name for ATS or ETS. If the term denotes ATS or ETS
depends on the context, but usually it is ATS.

Synonym: “ATS” on page 551

See also: “ETS” on page 555

TRI

TTCN-3 Runtime Interface.

An ETSI technical report, ETSI ES 201 873-5 V3.2.1, describing the
vendor and user specific responsibilities in the creation of TTCN-3 ex-
ecutable test suites.

TSI

Test System Interface.

Test component that provides mapping of the ports available in the (ab-
stract) TTCN-3 test system to those offered by a real test system.

TTCN-2

Tree and Tabular Combined Notation.

A formal language for specification of test cases. The latest version of
TTCN is TTCN-3.

TTCN-3

Testing and Test Control Notation, the latest version of TTCN.

Type

Synonym: “Data Types” on page 553

June 2009 IBM Rational Systems Tester 3.3 Technical Integration Guide 565

U

UML

Unified Modeling Language.

A language for specifying, visualizing, constructing, and documenting
the artifacts of software systems, as well as for business modeling and
other non-software systems.

V

Verdict

Outcome of the execution of a test. The verdict can have five different
values: pass, fail, inconclusive, none, and error.

Pass: Expected behavior is correct.

Fail: Expected behavior is incorrect.

Inconclusive: Expected behavior is neither correct nor incorrect.

None: When a test component is instantiated, its local verdict object is
created and set to this value. This verdict cannot be set by the user.

Error: A runtime error has occurred. This verdict cannot be set by the
user.

Views

Graphical representation of data in Rational Systems Tester. In the
workspace window, the structured view and the file view are displayed
as tabs.

In the text editor, the outline view is available when editing TTCN-3.

W

Workspace

A container where you store and work with projects.

566 IBM Rational Systems Tester 3.3 Technical Integration Guide June 2009

Chapter 8: Glossary

Workspace Window

Window in which the File View and Structured View facilitates the
work with files, projects, and workspaces.

X

XML

Extensible Markup Language. XML is a simplified version of, and
compatible with, SGML. The XML syntax is also similar to HTML, but
while HTML describes how a page looks and acts, XML describes what
the words in a document are.

An XML document that conforms to a DTD is referred to as a valid
XML document. A well-formed XML document is an XML document
that simply follows the XML syntax rules and no DTD is involved.

See also: “DTD” on page 554

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 567

Index of Functions

) .269
t3pl_call_external_function 309
t3pl_communication_finalize315
t3pl_communication_initialize314
t3pl_communication_pre_initialize 314
t3pl_component_control333
t3pl_component_get_system_control_port 331
t3pl_component_set_system_component_type

332
t3pl_component_wait332
t3pl_concurrency_finalize 338
t3pl_concurrency_initialize 337
t3pl_concurrency_pre_initialize337
t3pl_concurrency_start_separate_component .

338
t3pl_general_control_terminated309
t3pl_general_postprocess_testcase307
t3pl_general_prepare_testcase307
t3pl_general_testcase_terminated 308
t3pl_memory_allocate 335
t3pl_memory_deallocate 335
t3pl_memory_finalize 335
t3pl_memory_initialize 334
t3pl_memory_pre_initialize334
t3pl_memory_reallocate336
t3pl_port_clear .317
t3pl_port_component_send 318
t3pl_port_create .315
t3pl_port_create_control_port 315
t3pl_port_create_control_port_for_cpc . . .315
t3pl_port_destroy .317
t3pl_port_halt .317
t3pl_port_map, t3pl_port_unmap331
t3pl_port_release_system_port330
t3pl_port_retrieve_system_port330
t3pl_port_start .316
t3pl_port_stop .316
t3pl_port_sut_action329
t3pl_port_sut_call .320
t3pl_port_sut_call_abort324

t3pl_port_sut_call_bc 322
t3pl_port_sut_call_done 323
t3pl_port_sut_call_mc 321
t3pl_port_sut_raise 327
t3pl_port_sut_raise_bc 328
t3pl_port_sut_raise_mc 328
t3pl_port_sut_reply 324
t3pl_port_sut_reply_bc 326
t3pl_port_sut_reply_mc 325
t3pl_port_sut_send 318
t3pl_port_sut_send_bc 320
t3pl_port_sut_send_mc 319
t3pl_sem_create . 341
t3pl_sem_destroy 344
t3pl_sem_init . 341
t3pl_sem_post . 344
t3pl_sem_trywait . 342
t3pl_sem_wait . 342
t3pl_task_create . 338
t3pl_task_exit . 341
t3pl_task_id . 340
t3pl_task_kill . 340
t3pl_task_register_context 340
t3pl_task_setup . 339
t3pl_time_finalize 311
t3pl_time_initialize 310
t3pl_time_pre_initialize 310
t3pl_timer_create . 311
t3pl_timer_decode 313
t3pl_timer_delete . 311
t3pl_timer_read . 312
t3pl_timer_start . 312
t3pl_timer_stop . 312
t3rt_abort . 283
t3rt_and4b . 114
t3rt_binary_string_allocate 261
t3rt_binary_string_append,

t3rt_binary_string_append_1byte,
t3rt_binary_string_append_2bytes,
t3rt_binary_string_append_4bytes,

568 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Index of Functions

t3rt_binary_string_append_nbytes,
t3rt_binary_string_append_nbits,
t3rt_binary_string_append_from_iter . . 266

t3rt_binary_string_assign 265
t3rt_binary_string_clear 264
t3rt_binary_string_construct 263
t3rt_binary_string_copy 263
t3rt_binary_string_deallocate 262
t3rt_binary_string_deallocate_all 262
t3rt_binary_string_is_equal 265
t3rt_binary_string_length 264
t3rt_binary_string_pad 265
t3rt_binary_string_set_at 269
t3rt_binary_string_start 269
t3rt_bit2hex . 131
t3rt_bit2int . 119
t3rt_bit2oct . 132
t3rt_bit2str . 127
t3rt_bstring_iter_at_end,

t3rt_bstring_iter_at_start 272
t3rt_bstring_iter_backward_nbits 270
t3rt_bstring_iter_bits_to_byte_boundary . 272
t3rt_bstring_iter_forward_nbits 270
t3rt_bstring_iter_get_bits,

t3rt_bstring_iter_get_1byte,
t3rt_bstring_iter_get_2bytes,
t3rt_bstring_iter_get_4bytes,
t3rt_bstring_iter_get_nbytes,
t3rt_bstring_iter_get_nbits 273

t3rt_bstring_iter_is_at_boundary 271
t3rt_bstring_iter_is_bit_set 273
t3rt_bstring_iter_next_byte 271
t3rt_bstring_iter_remaining_room 268
t3rt_char2int . 122
t3rt_char2oct . 130
t3rt_char2wchar . 249
t3rt_codecs_register 276
t3rt_component_element 145
t3rt_component_get_local_verdict 145
t3rt_component_main 143
t3rt_component_mtc 144
t3rt_component_self 144
t3rt_component_set_local_verdict 145
t3rt_component_system 144
t3rt_concatenate . 111
t3rt_context_get_component_address 300
t3rt_context_get_component_name 300

t3rt_context_get_component_type 300
t3rt_decode . 277
t3rt_decomp . 136
t3rt_encode . 276
t3rt_encoding_attr_get_specifier 69
t3rt_encoding_attr_is_override 69
t3rt_epsilon_double 301
t3rt_exit . 283
t3rt_find_element 293
t3rt_float2int . 135
t3rt_format_char_string,

t3rt_format_wide_string 260
t3rt_hex2bit . 132
t3rt_hex2int . 119
t3rt_hex2oct . 131
t3rt_hex2str . 128
t3rt_int2bit . 123
t3rt_int2char . 126
t3rt_int2float . 134
t3rt_int2hex . 124
t3rt_int2oct . 124
t3rt_int2str . 125
t3rt_int2unichar . 126
t3rt_int2wchar . 249
t3rt_is_equal . 112
t3rt_is_greater . 112
t3rt_is_lesser . 113
t3rt_ischosen . 110
t3rt_ispresent . 110
t3rt_lengthof . 138
t3rt_log . 141
t3rt_log_event . 179
t3rt_log_event_kind_string 180
t3rt_log_event_to_all 179
t3rt_log_extract_alternative_activated_event .

241
t3rt_log_extract_alternative_deactivated_event

. 242
t3rt_log_extract_altstep_call 247
t3rt_log_extract_call_detected 196
t3rt_log_extract_call_failed 192
t3rt_log_extract_call_failed_bc 194
t3rt_log_extract_call_failed_mc 193
t3rt_log_extract_call_initiated 189
t3rt_log_extract_call_initiated_bc 191
t3rt_log_extract_call_initiated_mc 190
t3rt_log_extract_call_timed_out 195

Index of Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 569

t3rt_log_extract_component_created222
t3rt_log_extract_component_is_alive 223
t3rt_log_extract_component_is_running . .223
t3rt_log_extract_component_killed224
t3rt_log_extract_component_started 222
t3rt_log_extract_component_stopped 224
t3rt_log_extract_done_check_failed 225
t3rt_log_extract_done_check_succeeded . .225
t3rt_log_extract_exception_detected211
t3rt_log_extract_exception_raised205
t3rt_log_extract_exception_raised_bc207
t3rt_log_extract_exception_raised_mc . . .206
t3rt_log_extract_external_function_call . .246
t3rt_log_extract_function_call246
t3rt_log_extract_kill_check_failed226
t3rt_log_extract_kill_check_succeeded . . .226
t3rt_log_extract_local_verdict_changed . .233
t3rt_log_extract_local_verdict_queried . . .233
t3rt_log_extract_message_decode_failed .243
t3rt_log_extract_message_decoded242
t3rt_log_extract_message_detected186
t3rt_log_extract_message_discarded188
t3rt_log_extract_message_encode_failed .244
t3rt_log_extract_message_encoded243
t3rt_log_extract_message_sent 180
t3rt_log_extract_message_sent_bc182
t3rt_log_extract_message_sent_failed183
t3rt_log_extract_message_sent_failed_bc .185
t3rt_log_extract_message_sent_failed_mc 184
t3rt_log_extract_message_sent_mc181
t3rt_log_extract_port_cleared 232
t3rt_log_extract_port_connected 227
t3rt_log_extract_port_disabled231
t3rt_log_extract_port_disconnected228
t3rt_log_extract_port_enabled231
t3rt_log_extract_port_halted 232
t3rt_log_extract_port_mapped229
t3rt_log_extract_port_unmapped230
t3rt_log_extract_raise_failed 208
t3rt_log_extract_raise_failed_bc 210
t3rt_log_extract_raise_failed_mc209
t3rt_log_extract_reply_detected203
t3rt_log_extract_reply_failed200
t3rt_log_extract_reply_failed_bc203
t3rt_log_extract_reply_failed_mc 201
t3rt_log_extract_reply_sent_bc 200
t3rt_log_extract_reply_sent_mc199

t3rt_log_extract_scope_changed 240
t3rt_log_extract_scope_entered 239
t3rt_log_extract_scope_left 240
t3rt_log_extract_sender_mismatch 215
t3rt_log_extract_sut_action 216
t3rt_log_extract_template_match_failed . . 234
t3rt_log_extract_template_mismatch 234
t3rt_log_extract_test_case_verdict 238
t3rt_log_extract_testcase_ended 237
t3rt_log_extract_testcase_error 238
t3rt_log_extract_testcase_started 236
t3rt_log_extract_testcase_timed_out 237
t3rt_log_extract_text_message_string 245
t3rt_log_extract_text_message_widestring 245
t3rt_log_extract_timeout_detected 220
t3rt_log_extract_timeout_exception_detected

213
t3rt_log_extract_timeout_mismatch 221
t3rt_log_extract_timeout_received 221
t3rt_log_extract_timer_is_running 219
t3rt_log_extract_timer_read 218
t3rt_log_extract_timer_started 216
t3rt_log_extract_timer_stopped 217
t3rt_log_extract_variable_modified 239
t3rt_log_get_auxiliary 175
t3rt_log_get_log_mechanism 175
t3rt_log_is_concentrator 176
t3rt_log_mechanism_get_auxiliary 174
t3rt_log_mechanism_set_auxiliary 173
t3rt_log_message_kind_name 176
t3rt_log_register_listener 172
t3rt_log_set_auxiliary 174
t3rt_log_string . 176
t3rt_log_string_to_all 177
t3rt_log_wide_string 177
t3rt_log_wide_string_to_all 178
t3rt_memory_temp_allocate 286
t3rt_memory_temp_begin 284
t3rt_memory_temp_clear 285
t3rt_memory_temp_end 284
t3rt_mod . 140
t3rt_not4b . 114
t3rt_oct2bit . 134
t3rt_oct2char . 129
t3rt_oct2hex . 133
t3rt_oct2int . 120
t3rt_oct2str . 128

570 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Index of Functions

t3rt_or4b . 115
t3rt_port_insert_call 147
t3rt_port_insert_exception 149
t3rt_port_insert_message 146
t3rt_port_insert_reply 148
t3rt_quad2wchar . 249
t3rt_regexp_regexp 141
t3rt_register_default_logging 299
t3rt_register_provided_logging 299
t3rt_rem . 140
t3rt_replace . 137
t3rt_report_error . 280
t3rt_report_fatal_system_error 281
t3rt_rnd . 135
t3rt_root_module_name 294
t3rt_rotateleft . 116
t3rt_rotateright . 117
t3rt_rtconf_get_param 298
t3rt_rtconf_set_param 298
t3rt_run_test_suite 282
t3rt_set_epsilon_double 301
t3rt_shiftleft . 117
t3rt_shiftright . 118
t3rt_sizeof . 139
t3rt_sizeoftype . 139
t3rt_source_location_file_line 291
t3rt_source_location_file_name 291
t3rt_source_location_is_ttcn3 292
t3rt_source_location_module_name 289
t3rt_source_location_scope_arguments . . . 290
t3rt_source_location_scope_kind 290
t3rt_source_location_scope_name 290
t3rt_str2float . 121
t3rt_str2int . 120
t3rt_str2oct . 129
t3rt_substr . 137
t3rt_symbol_table_entry_attribute 296
t3rt_symbol_table_entry_auxiliary 297
t3rt_symbol_table_entry_function 296
t3rt_symbol_table_entry_kind 294
t3rt_symbol_table_entry_name 294
t3rt_symbol_table_entry_type 295
t3rt_symbol_table_entry_value 295
t3rt_targetcode_location_get 288
t3rt_targetcode_location_pop 288
t3rt_targetcode_location_push 287
t3rt_targetcode_location_set_line 288

t3rt_tci_decode . 279
t3rt_tci_encode . 278
t3rt_template_description 72
t3rt_timer_timed_out 142
t3rt_type_array_base_index 70
t3rt_type_array_contained_type 71
t3rt_type_array_size 70
t3rt_type_check . 52
t3rt_type_encode_attribute 67
t3rt_type_enum_name_by_index 62
t3rt_type_enum_name_by_number 63
t3rt_type_enum_named_values_count 61
t3rt_type_enum_number_by_index 62
t3rt_type_enum_number_by_name 63
t3rt_type_field_count 57
t3rt_type_field_encode_attribute_by_index 64
t3rt_type_field_encode_attribute_by_name 64
t3rt_type_field_index 58
t3rt_type_field_name 58
t3rt_type_field_properties 60
t3rt_type_field_type 59
t3rt_type_field_variant_attribute_by_index 65
t3rt_type_field_variant_attribute_by_name 64
t3rt_type_get_decoder 75
t3rt_type_get_encoder 74
t3rt_type_instantiate_named_value 52
t3rt_type_instantiate_value 50
t3rt_type_is_equal 53
t3rt_type_kind . 54
t3rt_type_module,

t3rt_type_definition_module 56
t3rt_type_name, t3rt_type_definition_name 55
t3rt_type_parent . 54
t3rt_type_qualified_name 56
t3rt_type_set_decoder 73
t3rt_type_set_encoder 73
t3rt_type_template_base_type 71
t3rt_type_variant_attribute 67
t3rt_unichar2int . 122
t3rt_value_add_objectid_element 108
t3rt_value_add_vector_element 106
t3rt_value_allocation_strategy 83
t3rt_value_assign . 96
t3rt_value_assign_string_element 98
t3rt_value_assign_vector_element 97
t3rt_value_check . 109
t3rt_value_copy . 76

Index of Functions

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 571

t3rt_value_delete .80
t3rt_value_field_by_index86
t3rt_value_field_by_name 87
t3rt_value_get_binary_string94
t3rt_value_get_boolean 92
t3rt_value_get_char 92
t3rt_value_get_enum_name91
t3rt_value_get_enum_number 90
t3rt_value_get_float91
t3rt_value_get_integer 90
t3rt_value_get_objectid_element96
t3rt_value_get_port_address 95
t3rt_value_get_string 93
t3rt_value_get_universal_charstring_string .94
t3rt_value_get_verdict 95
t3rt_value_is_dynamic_template78
t3rt_value_is_initialized80
t3rt_value_kind .81
t3rt_value_label .82
t3rt_value_parent .77
t3rt_value_remove_vector_element107
t3rt_value_set_binary_string 106
t3rt_value_set_boolean99
t3rt_value_set_char 102
t3rt_value_set_enum 100
t3rt_value_set_float 101
t3rt_value_set_integer 99
t3rt_value_set_label82
t3rt_value_set_omit 108
t3rt_value_set_string 103
t3rt_value_set_union_alternative_by_index 78
t3rt_value_set_union_alternative_by_name .79
t3rt_value_set_vector_empty85
t3rt_value_set_vector_size85
t3rt_value_set_verdict 101
t3rt_value_string_element 88
t3rt_value_string_length83
t3rt_value_type .81
t3rt_value_union_index 89
t3rt_value_union_value 89
t3rt_value_vector_element87
t3rt_value_vector_size84
t3rt_verdict_string 109
t3rt_wchar_cmp .250
t3rt_wchar2int .247
t3rt_wchar2quad .248
t3rt_wide_string_allocate253

t3rt_wide_string_append 259
t3rt_wide_string_assign 259
t3rt_wide_string_construct_from_ascii . . . 254
t3rt_wide_string_construct_from_wchar . 255
t3rt_wide_string_content 258
t3rt_wide_string_copy 257
t3rt_wide_string_deallocate 254
t3rt_wide_string_element 253
t3rt_wide_string_is_equal 258
t3rt_wide_string_length 258
t3rt_wide_string_rotateleft 251
t3rt_wide_string_rotateright 251
t3rt_wide_string_set 256
t3rt_wide_string_set_ascii 256
t3rt_wide_string_set_element 252
t3rt_wide_string_set_element_to_ascii_char .

252
t3rt_wide_string_set_wchar_array 257
t3rt_xor4b . 115
t3ud_make_timestamp 347
t3ud_read_module_param 346
t3ud_register_codecs 345
t3ud_register_log_mechanisms 345
t3ud_retreive_configuration 346
triCall . 362
triCallBC . 366
triCallMC . 364
triEndTestcase . 358
triEnqueueCall . 352
triEnqueueException 355
triEnqueueMsg . 352
triEnqueueReply . 353
triExecuteTestcase 357
triExternalFunction 380
triMap . 358
triPAReset . 377
triRaise . 372
triRaiseBC . 373, 374
triReadTimer . 379
triReply . 368
triReplyBC . 371
triReplyMC . 369
triSAReset . 356
triSend . 360
triStartTimer . 377
triStopTimer . 378
triSUTActionInformal 375

572 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Index of Functions

triSUTActionTemplate 376
triTimeout . 356
triTimerRunning . 379
triUnmap . 359

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 573

Index of Types

B
BinaryString .348

Q
QualifiedName .348

T
t3rt_alloc_strategy_t283
t3rt_binary_string_iter_t261
t3rt_binary_string_t.261
t3rt_codecs_init_function_t.275
t3rt_codecs_result_t 275
t3rt_codecs_setup_function_t275
t3rt_context_t .48
t3rt_control_part_function_t281
t3rt_decoder_function_t 275
t3rt_encoder_function_t 275
t3rt_encoding_attr_t 50
t3rt_error_description_t.280
t3rt_field_properties_t.50
t3rt_log_event_kind_t150
t3rt_log_mechanism_close_function_t150
t3rt_log_mechanism_finalize_function_t . .149
t3rt_log_mechanism_init_function_t 149
t3rt_log_mechanism_log_event_function_t150
t3rt_log_mechanism_open_function_t150
t3rt_log_mechanism_version_t150
t3rt_log_message_kind_t 150
t3rt_log_t .151
t3rt_long_integer_t .50
t3rt_memory_scope_t283
t3rt_module_register_function_t.281
t3rt_scope_kind_t .287
t3rt_snapshot_return_t.281
t3rt_source_location_t.287
t3rt_symbol_entry_kind_t292
t3rt_symbol_entry_t 292
t3rt_timer_handle_t142
t3rt_timer_state_t .142

t3rt_type_kind_t . 50
t3rt_type_t . 49
t3rt_unsigned_long_integer_t 50
t3rt_value_t . 76
t3rt_verdict_t . 76
t3rt_wide_char_t . 247
t3rt_wide_string_t 247
TriActionTemplate 349
TriAddress . 349
TriAddressList . 349
TriComponentId . 350
TriComponentIdList. 350
TriException. 349
TriFunctionId . 349
TriMessage . 349
TriParameter. 351
TriParameterList . 351
TriParameterPassingMode 350
TriPortId . 351
TriPortIdList. 351
TriSignatureId . 349
TriStatus . 350
TriTestCaseId . 349
TriTimerDuration. 349
TriTimerId . 349

574 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Index of Types

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 575

Index

A
abstract test suite

definition of .551
active timers

in TRI integration 16
analyzing

definition of .551
ASN.1

definition of .551
AST

definition of .552
asynchronous

communication 17
asynchronous communication

definition of .551
ATS

definition of .551

B
BER

definition of .552
binary string

support for .46
BNF

definition of .552
bookmarks

definition of .552
built-in log mechanisms

source tracking .7

C
codecs systems

definition of .552
description of .9
encoding/decoding 42
to register .43

communication
in example integration 28
in TRI integration 17

communication functions
list of . 18

communication ports
definition of . 553

compiling
definition of . 553

component distribution
description of . 25
single process . 25

component reference
definition of . 553

concurrency
in example integration 29
in TRI integration 20

concurrency functions
list of . 21

configuration
of the runtime system 7

configurations
definition of . 553

control part
See module control part

control part component
control ports . 27
description of . 24

control ports
description of . 27

CPC
See control part component

D
data types

definition of . 553
decoding

definition of . 553
codecs systems . 9
functions . 42

definitions part
See module definitions part

576 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Index

DTD
definition of . 554

E
EBNF

definition of . 554
editing area

definition of . 554
editors

definition of . 554
encoding

definition of . 554
codecs systems . 9
functions . 42

entities
definition of . 554

entity list
definition of . 554

ETS
definition of . 555
illustration of . 4

ETSI
definition of . 555

event channel
definition of . 555

example integration
adjust integration 9
communication 28
concurrency . 29
description of . 28
general . 28
memory handling 29
timers . 28

executing
source tracking . 7

executing tests
definition of . 555

execution environment
description of . 6

F
File View

definition of . 555

G
GCI

definition of . 555
general

in example integration 28
in provided TRI integration 15

generated code
compiler result . 5

go to
definition of . 555

group
definition of . 556

H
HTML

definition of . 556

I
ICS

definition of . 556
IDL

definition of . 556
implement functions

in integration . 9
implementation

of execution threads 6
implementing

non-TRI integration 9
imported data types

definition of . 556
info channel

definition of . 556
initialization

of integration modules 7
phases . 7

integrations
definition of . 556
description of . 8
provided example 9, 28
timers . 15
TRI . 12

internationalization
support for . 10
wide string support 46

ITU
definition of . 557

Index

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 577

IUT
See SUT

IXIT
definition of .557

L
language element

definition of .557
localization

support for .10
log mechanisms

description of .32
in the runtime system 10
to implement .32
to register .34

logging
mechanisms .10

M
master test component

definition of .558
memory allocation

permanent .6
temporary .6

memory functions
list of .22

memory handling .6
description of .6
in example integration 29
in TRI integration 22

memory primitives
in an integration .8

message based communication
definition of .557

module control part
definition of .558

module definitions part
definition of .558

modules
definition of .557

MSC
definition of .558

MSC viewers
definition of .558

MTC
definition of .558

N
non-TRI integrations

to implement . 9

O
outline view

definition of . 559
output area

definition of . 558

P
PA

definition of . 559
in TRI integration 8
TRI integrations 12

passive timers
in TRI integration 16

PER
definition of . 559

permanent memory allocation 6
PICS

definition of . 559
PIXIT

definition of . 559
platform layer

definition of . 559
description of . 5
integration modules 14
interface . 8

ports
in TRI integration 17
See communication port

pre-defined log event
list of . 35

procedure based communication
definition of . 560

procedure signatures
definition of 560, 562

projects
definition of . 560

PTC
definition of . 560

R
regular expressions

definition of . 560

578 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Index

RTS
See runtime system

running tests
See executing tests 555
definition of . 555

runtime context
definition of . 561
description of . 23

runtime engine
See runtime system

runtime layer
definition of . 561
description of . 5

runtime system
definition of . 561
codecs systems . 9
configuration . 7
description of . 5
execution environment 6
logging . 10

runtime system objects
definition of . 561

S
SA

definition of . 561
in TRI integration 8
TRI integrations 12

SCC
definition of . 561

SDL
definition of . 561

signatures
definition of . 562

source location. See source tracking
source tracking

after execution . 7
standard I/O

definition of . 562
status bar

definition of . 562
stdout

definition of . 562
storage facility

in the runtime system 7
Structured View

definition of . 562

SUT
definition of . 562
See also IUT

symbol table
definition of . 562
description of . 23

synchronous
communication 17

synchronous communication
See procedure based communication

T
t3pl_sem_timedwait 343
t3rt_binary_string_append 266
t3rt_binary_string_append_1byte 266
t3rt_binary_string_append_2bytes 266
t3rt_binary_string_append_4bytes 266
t3rt_binary_string_append_bits 266
t3rt_binary_string_append_from_iter . . . 266
t3rt_binary_string_append_nbits 266
t3rt_binary_string_append_nbytes 266
t3rt_binary_string_deallocate 262
t3rt_binary_string_deallocate_all 262
t3rt_bstring_iter_at_end 272
t3rt_bstring_iter_at_start 272
t3rt_bstring_iter_get_1byte 273
t3rt_bstring_iter_get_2bytes 273
t3rt_bstring_iter_get_4bytes 273
t3rt_bstring_iter_get_bits 273
t3rt_bstring_iter_get_nbits 273
t3rt_bstring_iter_get_nbytes 273
t3rt_component_mute 146
t3rt_format_char_string 260
t3rt_format_wide_string 260
t3rt_log_extract_call_found 197
t3rt_log_extract_call_received 197
t3rt_log_extract_exception_caught 212
t3rt_log_extract_exception_found 212
t3rt_log_extract_message_found 187
t3rt_log_extract_message_received 187
t3rt_log_extract_reply_found 204
t3rt_log_extract_reply_received 204
t3rt_log_extract_reply_sent 198
t3rt_log_extract_timeout_exception_caught

214
t3rt_log_extract_timeout_exception_found .

Index

June 2009 IBM Rational Systems Tester 3.3 Technical Integration 579

214
t3rt_source_tracking_top 289
t3rt_type_definition_module 56
t3rt_type_definition_name 55
t3rt_type_display_attribute 68
t3rt_type_extension_attribute 68
t3rt_type_field_display_attribute_by_index .

66
t3rt_type_field_display_attribute_by_name . .

65
t3rt_type_field_extension_attribute_by_index

67
t3rt_type_field_extension_attribute_by_name

66
t3rt_type_field_variant_attribute_by_index . .

65
t3rt_type_field_variant_attribute_by_name . .

64
t3rt_type_module .56
t3rt_type_name .55
t3rt_type_variant_attribute 67
t3rt_value_get_char 92
t3rt_value_get_universal_char 93
t3rt_value_set_universal_char 104
t3rt_value_set_universal_char_to_ascii . .104
t3rt_value_set_universal_charstring 105
t3rt_value_set_universal_charstring_from_wc

har_array .105
t3rt_value_set_universal_charstring_to_ascii

105
t3rt_value_to_string 302
t3rt_value_to_wide_string 302
task concurrency

in an integration .8
Tcl

definition of .563
templates

definition of .563
temporary memory allocation

memory handling 6
temporary menory allocation 6
test cases

definition of .563
test components

definition of .563
test configurations

definition of .563

test schedules
definition of . 564

test suites
definition of . 564
abstract . 551
executable . 555

time-outs
detection of . 16

timer functions
list of . 16

timers
active and passive 16
in an integration 8
in example integration 28
in provided TRI integration 15

toolbars
definition of . 562

TRI
definition of . 564
description of . 12

TRI integration
communication 17
concurrency . 20
implementation of 13
memory handling 22
modules . 14
provided . 8

TSI
definition of . 564

TTCN
definition of . 564

TTCN-3
definition of . 564
corresponding C code 5

types
definition of . 553

U
UML

definition of . 565

V
verdicts

definition of . 565
views

definition of . 565

580 IBM Rational Systems Tester 3.3 Technical Integration June 2009

Index

W
wide string

support for . 46
workspace window

definition of . 566
workspaces

definition of . 565

X
XML

definition of . 566

	Copyrights
	Copyright Notice

	Introduction
	About This Document

	ETS Architecture
	ETS Architecture Overview
	TTCN-3 ATS Generated Code
	Runtime System
	Execution Environment
	Memory Handling
	Pre-initialization, Initialization and Finalization
	Configurability
	Source Tracking

	Integrations
	Codecs Systems
	Logging

	Internationalization and Localization

	Integrations
	TRI Based Integrations
	Implementation Information/Hints

	PL Based Integrations
	PL Integration Modules
	General
	Timers
	Communication
	Concurrency
	Memory

	Runtime System Details
	Runtime Context
	Symbol Table
	Control Part Component (CPC)
	Component Distribution
	Control Ports

	Example Integration
	General
	Timers
	Communication
	Concurrency
	Memory
	Components
	Semaphores
	Event queue

	Log Mechanisms
	Log Mechanisms Overview
	Implementing Log Mechanisms
	Init and Finalize
	Open and Close
	Log Event

	Registering a Log Mechanism

	Pre-Defined Log Events

	Codecs Systems
	Codecs Systems Overview
	Encoder and Decoder Functions
	Registering a Codecs System

	Miscellaneous
	Binary String Support
	Wide String Support

	Runtime System APIs
	Runtime Layer API
	RTL Type Definitions
	t3rt_context_t

	RTL Type Functions
	RTL Type Related Type Definition
	t3rt_type_instantiate_value
	Parameters
	Description
	Example Usage
	Return Values

	t3rt_type_instantiate_named_value
	Parameters
	Description

	t3rt_type_check
	Parameters
	Description
	Return Values

	t3rt_type_is_equal
	Parameters
	Description
	Return Values

	t3rt_type_kind
	Parameters
	Description
	Return Value

	t3rt_type_parent
	Parameters
	Description
	Return Value

	t3rt_type_name, t3rt_type_definition_name
	Parameters
	Description
	Return Values

	t3rt_type_module, t3rt_type_definition_module
	Parameters
	Description
	Return Values

	t3rt_type_qualified_name
	Parameters
	Description
	Return Values

	t3rt_type_field_count
	Parameters
	Description
	Return Values

	t3rt_type_field_name
	Parameters
	Description
	Return Values

	t3rt_type_field_index
	Parameters
	Description
	Return Values

	t3rt_type_field_type
	Parameters
	Description
	Return Values

	t3rt_type_field_properties
	Parameters
	Description
	Return Values

	t3rt_type_enum_named_values_count
	Parameters
	Return Values

	t3rt_type_enum_name_by_index
	Parameters
	Return Values

	t3rt_type_enum_number_by_index
	Parameters
	Return Values

	t3rt_type_enum_name_by_number
	Parameters
	Return Values

	t3rt_type_enum_number_by_name
	Parameters
	Return Values

	t3rt_type_field_encode_attribute_by_name
	Parameters
	Return Values

	t3rt_type_field_encode_attribute_by_index
	Parameters
	Return Values

	t3rt_type_field_variant_attribute_by_name
	Parameters
	Return Values

	t3rt_type_field_variant_attribute_by_index
	Parameters
	Return Values

	t3rt_type_field_display_attribute_by_name
	Parameters
	Return Values

	t3rt_type_field_display_attribute_by_index
	Parameters
	Return Values

	t3rt_type_field_extension_attribute_by_name
	Parameters
	Return Values

	t3rt_type_field_extension_attribute_by_index
	Parameters
	Return Values

	t3rt_type_encode_attribute
	Parameters
	Return Values

	t3rt_type_variant_attribute
	Parameters
	Return Values

	t3rt_type_display_attribute
	Parameters
	Return Values

	t3rt_type_extension_attribute
	Parameters
	Return Values

	t3rt_encoding_attr_get_specifier
	Parameters
	Description
	Return Values

	t3rt_encoding_attr_is_override
	Parameters
	Description
	Return Values

	t3rt_type_array_size
	Parameters
	Description
	Return Values

	t3rt_type_array_base_index
	Parameters
	Description
	Return Values

	t3rt_type_array_contained_type
	Parameters
	Description
	Return Values

	t3rt_type_template_base_type
	Parameters
	Description
	Return Values

	t3rt_template_description
	Parameters
	Description
	Return Values

	t3rt_type_set_encoder
	Parameters
	Description

	t3rt_type_set_decoder
	Parameters
	Description

	t3rt_type_get_encoder
	Parameters
	Description
	Return Values

	t3rt_type_get_decoder
	Parameters
	Description
	Return Values

	RTL Value Functions
	RTL Value Related Type Definitions
	t3rt_value_copy
	Parameters
	Description
	Return Values

	t3rt_value_parent
	Parameters
	Description
	Example Usage
	Return Values

	t3rt_value_is_dynamic_template
	Parameters
	Description
	Return Values

	t3rt_value_set_union_alternative_by_index
	Parameters
	Description
	Return Values

	t3rt_value_set_union_alternative_by_name
	Parameters
	Description
	Return Values

	t3rt_value_delete
	Parameters
	Description

	t3rt_value_is_initialized
	Parameters
	Description
	Return Values

	t3rt_value_kind
	Parameters
	Description
	Return Values

	t3rt_value_type
	Parameters
	Return Values

	t3rt_value_set_label
	Parameters
	Description

	t3rt_value_label
	Parameters
	Description
	Return Values

	t3rt_value_allocation_strategy
	Parameters
	Description
	Return Values

	t3rt_value_string_length
	Parameters
	Description
	Return Values

	t3rt_value_vector_size
	Parameters
	Description
	Return Values

	t3rt_value_set_vector_size
	Parameters
	Description

	t3rt_value_set_vector_empty
	Parameters
	Description

	t3rt_value_field_by_index
	Parameters
	Description
	Return Values

	t3rt_value_field_by_name
	Parameters
	Description
	Return Values

	t3rt_value_vector_element
	Parameters
	Description
	Return Values

	t3rt_value_string_element
	Parameters
	Description

	t3rt_value_union_value
	Parameters
	Description
	Return Values

	t3rt_value_union_index
	Parameters
	Description
	Return Values

	t3rt_value_get_integer
	Parameters
	Description

	t3rt_value_get_enum_number
	Parameters
	Description

	t3rt_value_get_enum_name
	Parameters
	Description

	t3rt_value_get_float
	Parameters
	Description

	t3rt_value_get_boolean
	Parameters
	Description

	t3rt_value_get_char
	Parameters
	Description

	t3rt_value_get_string
	Parameters
	Description

	t3rt_value_get_universal_char
	Parameters
	Description

	t3rt_value_get_universal_charstring
	Parameters
	Description

	t3rt_value_get_binary_string
	Parameters
	Description

	t3rt_value_get_verdict
	Parameters
	Description

	t3rt_value_get_port_address
	Parameters
	Description

	t3rt_value_get_objectid_element
	Parameters
	Description
	Return Values

	t3rt_value_assign
	Parameters
	Description

	t3rt_value_assign_vector_element
	Parameters
	Description

	t3rt_value_assign_string_element
	Parameters
	Description

	t3rt_value_set_integer
	Parameters
	Description
	Return Values

	t3rt_value_set_boolean
	Parameters
	Description
	Return Values

	t3rt_value_set_enum
	Parameters
	Description
	Return Values

	t3rt_value_set_float
	Parameters
	Description
	Return Values

	t3rt_value_set_verdict
	Parameters
	Description
	Return Values

	t3rt_value_set_char
	Parameters
	Description
	Return Values

	t3rt_value_set_string
	Parameters
	Description
	Return Values

	t3rt_value_set_universal_char
	t3rt_value_set_universal_char, t3rt_value_set_universal_char_to_ascii
	Parameters
	Description
	Return Values

	t3rt_value_set_universal_charstring
	t3rt_value_set_universal_charstring, t3rt_value_set_universal_charstring_to_ascii, t3rt_value_set_universal_charstring_from_wchar_array
	Parameters
	Description
	Return Values

	t3rt_value_set_binary_string
	Parameters
	Description
	Return Values

	t3rt_value_add_vector_element
	Parameters
	Description
	Return Values

	t3rt_value_remove_vector_element
	Parameters
	Description

	t3rt_value_add_objectid_element
	Parameters
	Description
	Return Values

	t3rt_value_set_omit
	Parameters
	Description

	t3rt_verdict_string
	Parameters
	Description
	Return Values

	t3rt_value_check
	Description
	Return Values

	RTL Predefined Operations Functions
	t3rt_ispresent
	Parameters
	Description
	Return Values

	t3rt_ischosen
	Parameters
	Description
	Return Values

	t3rt_concatenate
	Parameters
	Description
	Return Values

	t3rt_is_equal
	Parameters
	Description
	Return Values

	t3rt_is_greater
	Parameters
	Description
	Return Values

	t3rt_is_lesser
	Parameters
	Description
	Return Values

	t3rt_not4b
	Parameters
	Description
	Return Values

	t3rt_and4b
	Parameters
	Description
	Return Values

	t3rt_or4b
	Parameters
	Description
	Return Values

	t3rt_xor4b
	Parameters
	Description
	Return Values

	t3rt_rotateleft
	Parameters
	Description
	Return Values

	t3rt_rotateright
	Parameters
	Description
	Return Values

	t3rt_shiftleft
	Parameters
	Description
	Return Values

	t3rt_shiftright
	Parameters
	Description
	Return Values

	t3rt_bit2int
	Parameters
	Description
	Return Values

	t3rt_hex2int
	Parameters
	Description
	Return Values

	t3rt_oct2int
	Parameters
	Description
	Return Values

	t3rt_str2int
	Parameters
	Description
	Return Values

	t3rt_str2float
	Parameters
	Description
	Return Values

	t3rt_char2int
	Parameters
	Description
	Return Values

	t3rt_unichar2int
	Parameters
	Description
	Return Values

	t3rt_int2bit
	Parameters
	Description
	Return Values

	t3rt_int2hex
	Parameters
	Description
	Return Values

	t3rt_int2oct
	Parameters
	Description
	Return Values

	t3rt_int2str
	Parameters
	Description
	Return Values

	t3rt_int2char
	Parameters
	Description
	Return Values

	t3rt_int2unichar
	Parameters
	Description
	Return Values

	t3rt_bit2str
	Parameters
	Description
	Return Values

	t3rt_hex2str
	Parameters
	Description
	Return Values

	t3rt_oct2str
	Parameters
	Description
	Return Values

	t3rt_str2oct
	Parameters
	Description
	Return Values

	t3rt_oct2char
	Parameters
	Description
	Return Values

	t3rt_char2oct
	Parameters
	Description
	Return Values

	t3rt_bit2hex
	Parameters
	Description
	Return Values

	t3rt_hex2oct
	Parameters
	Description
	Return Values

	t3rt_bit2oct
	Parameters
	Description
	Return Values

	t3rt_hex2bit
	Parameters
	Description
	Return Values

	t3rt_oct2hex
	Parameters
	Description
	Return Values

	t3rt_oct2bit
	Parameters
	Description
	Return Values

	t3rt_int2float
	Parameters
	Description
	Return Values

	t3rt_float2int
	Parameters
	Description
	Return Values

	t3rt_rnd
	Parameters
	Description
	Return Values

	t3rt_decomp
	Parameters
	Description
	Return Values

	t3rt_substr
	Parameters
	Description
	Return Values

	t3rt_replace
	Parameters
	Description
	Return Values

	t3rt_lengthof
	Parameters
	Description
	Return Values

	t3rt_sizeof
	Parameters
	Description
	Return Values

	t3rt_sizeoftype
	Parameters
	Description
	Return Values

	t3rt_mod
	Parameters
	Description
	Return Values

	t3rt_rem
	Parameters
	Description
	Return Values

	t3rt_log
	Parameters
	Description

	t3rt_regexp_regexp
	Parameters
	Description
	Return Values

	RTL Timer Functions
	RTL Timer Related Type Definitions
	t3rt_timer_timed_out
	Parameters
	Description

	RTL Component Functions
	t3rt_component_main
	Parameters
	Description

	t3rt_component_self
	Description
	Return values

	t3rt_component_mtc
	Description
	Return values

	t3rt_component_system
	Description
	Return values

	t3rt_component_set_local_verdict
	Parameters
	Description

	t3rt_component_get_local_verdict
	Description
	Return Values

	t3rt_component_element
	Parameters
	Description
	Return Values

	t3rt_component_mute
	Parameters
	Description

	RTL Port Functions
	t3rt_port_insert_message
	Parameters
	Description

	t3rt_port_insert_call
	Parameters
	Description

	t3rt_port_insert_reply
	Parameters
	Description

	t3rt_port_insert_exception
	Parameters
	Description

	RTL Log Functions
	RTL Log Related Type Definitions
	Events generated in RTS
	Message Sent
	SUT Message Sent
	Message Sent Failed
	SUT Message Sent Failed
	Message Detected
	SUT Message Detected
	Message Received
	SUT Message Received
	Message Found
	SUT Message Found
	Message Discarded
	SUT Message Discarded
	Call Initiated
	SUT Call Initiated
	Call Failed
	SUT Call Failed
	Call Timed Out
	SUT Call Timed Out
	Call Detected
	SUT Call Detected
	Call Received
	SUT Call Received
	Call Found
	SUT Call Found
	Reply Sent
	SUT Reply Sent
	Reply Failed
	SUT Reply Failed
	Reply Detected
	SUT Reply Detected
	Reply Received
	SUT Reply Received
	Reply Found
	SUT Reply Found
	Exception Raised
	SUT Exception Raised
	Raise Failed
	SUT Raise Failed
	Exception Detected
	SUT Exception Detected
	Exception Caught
	SUT Exception Caught
	Exception Found
	SUT Exception Found
	Timeout Exception Detected
	SUT Timeout Exception Detected
	Timeout Exception Caught
	SUT Timeout Exception Caught
	Timeout Exception Found
	SUT Timeout Exception Found
	SUT Action Performed
	Timer Started
	Timer Stopped
	Timer Read
	Timer Is Running Check Performed
	Timer Timeout Detected
	Timer Timed Out Check Succeeded
	Timer Timed Out Check Failed
	Component Created
	Component Started
	Component Is Running Check Performed
	Component Is Alive Check Performed
	Component Stopped
	Component Killed
	Component Terminated
	Component Done Check Succeeded
	Component Done Check Failed
	Component Killed Check Succeeded
	Component Killed Check Failed
	Port Connected
	Port Disconnected
	Port Mapped
	Port Unmapped
	Port Enabled
	Port Disabled
	Port Halted
	Port Cleared
	Scope Entered
	Scope Changed
	Scope Left
	Alternative Activated
	Alternative Deactivated
	Local Verdict Set
	Local Verdict Read
	Variable Modified
	Function called
	External Function Called
	Altstep Called
	Template Match Failed
	Template Match Begin
	Template Match End
	Template Mismatch
	Test case started
	Test case ended
	Test case timed out
	Test case verdict
	Test case error
	Information Message
	Warning Message
	Error Message
	Debug Message
	TTCN-3 Message
	Data Encoded
	Data Encoding Failed
	Data Decoded
	Data Decoding Failed
	Alt Statement Entered
	Alt Statement Left
	Alternative Rejected
	Else Alternative Entered
	Defaults Processing Started
	Repeat Encountered
	Alt Statement Waits New Events
	Sender Mismatch

	RTS Log Handling Functions
	t3rt_log_register_listener
	Parameters
	Description

	t3rt_log_mechanism_set_auxiliary
	Parameters
	Description

	t3rt_log_mechanism_get_auxiliary
	Parameters
	Description
	Return Values

	t3rt_log_set_auxiliary
	Parameters
	Description

	t3rt_log_get_auxiliary
	Parameters
	Description
	Return Values

	t3rt_log_get_log_mechanism
	Parameters
	Return Values

	t3rt_log_message_kind_name
	Parameters
	Return Values

	t3rt_log_is_concentrator
	t3rt_log_string
	Parameters
	Description

	t3rt_log_string_to_all
	Parameters
	Description

	t3rt_log_wide_string
	Parameters
	Description

	t3rt_log_wide_string_to_all
	Parameters
	Description

	t3rt_log_event
	Parameters
	Description

	t3rt_log_event_to_all
	Parameters
	Description

	t3rt_log_event_kind_string
	Parameters
	Description
	Return Values

	t3rt_log_extract_message_sent
	Parameters
	Description

	t3rt_log_extract_message_sent_mc
	Parameters
	Description

	t3rt_log_extract_message_sent_bc
	Parameters
	Description

	t3rt_log_extract_message_sent_failed
	Parameters
	Description

	t3rt_log_extract_message_sent_failed_mc
	Parameters
	Description

	t3rt_log_extract_message_sent_failed_bc
	Parameters
	Description

	t3rt_log_extract_message_detected
	Parameters
	Description

	t3rt_log_extract_message_received, t3rt_log_extract_message_found
	Parameters
	Description

	t3rt_log_extract_message_discarded
	Parameters
	Description

	t3rt_log_extract_call_initiated
	Parameters
	Description

	t3rt_log_extract_call_initiated_mc
	Parameters
	Description

	t3rt_log_extract_call_initiated_bc
	Parameters
	Description

	t3rt_log_extract_call_failed
	Parameters
	Description

	t3rt_log_extract_call_failed_mc
	Parameters
	Description

	t3rt_log_extract_call_failed_bc
	Parameters
	Description

	t3rt_log_extract_call_timed_out
	Parameters
	Description

	t3rt_log_extract_call_detected
	Parameters
	Description

	t3rt_log_extract_call_received, t3rt_log_extract_call_found
	Parameters
	Description

	t3rt_log_extract_reply_sent
	Parameters
	Description

	t3rt_log_extract_reply_sent_mc
	Parameters
	Description

	t3rt_log_extract_reply_sent_bc
	Parameters
	Description

	t3rt_log_extract_reply_failed
	Parameters
	Description

	t3rt_log_extract_reply_failed_mc
	Parameters
	Description

	t3rt_log_extract_reply_failed_bc
	Parameters
	Description

	t3rt_log_extract_reply_detected
	Parameters
	Description

	t3rt_log_extract_reply_received, t3rt_log_extract_reply_found
	Parameters
	Description

	t3rt_log_extract_exception_raised
	Parameters
	Description

	t3rt_log_extract_exception_raised_mc
	Parameters
	Description

	t3rt_log_extract_exception_raised_bc
	Parameters
	Description

	t3rt_log_extract_raise_failed
	Parameters
	Description

	t3rt_log_extract_raise_failed_mc
	Parameters
	Description

	t3rt_log_extract_raise_failed_bc
	Parameters
	Description

	t3rt_log_extract_exception_detected
	Parameters
	Description

	t3rt_log_extract_exception_caught, t3rt_log_extract_exception_found
	Parameters
	Description

	t3rt_log_extract_timeout_exception_detected
	Parameters
	Description

	t3rt_log_extract_timeout_exception_caught, t3rt_log_extract_timeout_exception_found
	Parameters
	Description

	t3rt_log_extract_sender_mismatch
	Parameters
	Description

	t3rt_log_extract_sut_action
	Parameters
	Description

	t3rt_log_extract_timer_started
	Parameters
	Description

	t3rt_log_extract_timer_stopped
	Parameters
	Description

	t3rt_log_extract_timer_read
	Parameters
	Description

	t3rt_log_extract_timer_is_running
	Parameters
	Description

	t3rt_log_extract_timeout_detected
	Parameters
	Description

	t3rt_log_extract_timeout_received
	Parameters
	Description

	t3rt_log_extract_timeout_mismatch
	Parameters
	Description

	t3rt_log_extract_component_created
	Parameters
	Description

	t3rt_log_extract_component_started
	Parameters
	Description

	t3rt_log_extract_component_is_running
	Parameters
	Description

	t3rt_log_extract_component_is_alive
	Parameters
	Description

	t3rt_log_extract_component_stopped
	Parameters
	Description

	t3rt_log_extract_component_killed
	Parameters
	Description

	t3rt_log_extract_done_check_succeeded
	Parameters
	Description

	t3rt_log_extract_done_check_failed
	Parameters
	Description

	t3rt_log_extract_kill_check_succeeded
	Parameters
	Description

	t3rt_log_extract_kill_check_failed
	Parameters
	Description

	t3rt_log_extract_port_connected
	Parameters
	Description

	t3rt_log_extract_port_disconnected
	Parameters
	Description

	t3rt_log_extract_port_mapped
	Parameters
	Description

	t3rt_log_extract_port_unmapped
	Parameters
	Description

	t3rt_log_extract_port_enabled
	Parameters
	Description

	t3rt_log_extract_port_disabled
	Parameters
	Description

	t3rt_log_extract_port_halted
	Parameters
	Description

	t3rt_log_extract_port_cleared
	Parameters
	Description

	t3rt_log_extract_local_verdict_changed
	Parameters
	Description

	t3rt_log_extract_local_verdict_queried
	Parameters
	Description

	t3rt_log_extract_template_match_failed
	Parameters
	Description

	t3rt_log_extract_template_mismatch
	Parameters
	Description

	t3rt_log_extract_template_match_begin
	Parameters
	Description

	t3rt_log_extract_template_match_end
	Parameters
	Description

	t3rt_log_extract_testcase_started
	Parameters
	Description

	t3rt_log_extract_testcase_ended
	Parameters
	Description

	t3rt_log_extract_testcase_timed_out
	Parameters
	Description

	t3rt_log_extract_testcase_error
	Parameters
	Description

	t3rt_log_extract_test_case_verdict
	Parameters
	Description

	t3rt_log_extract_variable_modified
	Parameters
	Description

	t3rt_log_extract_scope_entered
	Parameters
	Description

	t3rt_log_extract_scope_changed
	Parameters
	Description

	t3rt_log_extract_scope_left
	Parameters
	Description

	t3rt_log_extract_alternative_activated_event
	Parameters
	Description

	t3rt_log_extract_alternative_deactivated_event
	Parameters
	Description

	t3rt_log_extract_message_decoded
	Parameters
	Description

	t3rt_log_extract_message_decode_failed
	Parameters
	Description

	t3rt_log_extract_message_encoded
	Parameters
	Description

	t3rt_log_extract_message_encode_failed
	Parameters
	Description

	t3rt_log_extract_text_message_string
	Parameters
	Description

	t3rt_log_extract_text_message_widestring
	Parameters
	Description

	t3rt_log_extract_function_call
	Parameters
	Description

	t3rt_log_extract_external_function_call
	Parameters
	Description

	t3rt_log_extract_altstep_call
	Parameters
	Description

	RTL Wide String Functions
	RTL Wide String Related Type Definitions
	t3rt_wchar2int
	Parameters
	Description

	t3rt_wchar2quad
	Parameters
	Description

	t3rt_char2wchar
	Parameters
	Description

	t3rt_int2wchar
	Parameters
	Description

	t3rt_quad2wchar
	Parameters
	Description

	t3rt_wchar_cmp
	Parameters
	Description
	Return Values

	t3rt_wide_string_rotateleft
	Parameters
	Description
	Return Values

	t3rt_wide_string_rotateright
	Parameters
	Description
	Return Values

	t3rt_wide_string_set_element
	Parameters
	Description

	t3rt_wide_string_set_element_to_ascii_char
	Parameters
	Description

	t3rt_wide_string_element
	Parameters
	Description

	t3rt_wide_string_allocate
	Parameters
	Description
	Return Values

	t3rt_wide_string_deallocate
	Parameters
	Description

	t3rt_wide_string_construct_from_ascii
	Parameters
	Description
	Return Values

	t3rt_wide_string_construct_from_wchar
	Parameters
	Description
	Return Values

	t3rt_wide_string_set
	Parameters
	Description

	t3rt_wide_string_set_ascii
	Parameters
	Description

	t3rt_wide_string_set_wchar_array
	Parameters
	Description

	t3rt_wide_string_copy
	Parameters
	Return Values

	t3rt_wide_string_length
	Parameters
	Return Values

	t3rt_wide_string_is_equal
	Parameters
	Description
	Return Values

	t3rt_wide_string_content
	Parameters
	Description
	Return Values

	t3rt_wide_string_assign
	Parameters
	Description

	t3rt_wide_string_append
	Parameters
	Description

	t3rt_format_char_string, t3rt_format_wide_string
	Parameters
	Description

	RTL Binary String Functions
	RTL Binary String Related Type Definitions
	t3rt_binary_string_allocate
	Parameters
	Description
	Return Values

	t3rt_binary_string_deallocate
	Parameters
	Description

	t3rt_binary_string_deallocate_all
	Parameters
	Description

	t3rt_binary_string_construct
	Parameters
	Description
	Return Values

	t3rt_binary_string_copy
	Parameters
	Return Values

	t3rt_binary_string_clear
	Parameters
	Description

	t3rt_binary_string_length
	Parameters
	Return Values

	t3rt_binary_string_is_equal
	Parameters
	Return Values

	t3rt_binary_string_pad
	Parameters
	Description

	t3rt_binary_string_assign
	Parameters
	Description

	t3rt_binary_string_append
	t3rt_binary_string_append, t3rt_binary_string_append_1byte, t3rt_binary_string_append_2bytes, t3rt_binary_string_append_4bytes, ...
	Parameters
	Description

	t3rt_bstring_iter_remaining_room
	Parameters
	Return Values

	t3rt_binary_string_start
	Parameters
	Description
	Example Usage

	t3rt_binary_string_set_at
	Parameters
	Description

	t3rt_bstring_iter_forward_nbits
	Parameters
	Description

	t3rt_bstring_iter_backward_nbits
	Parameters
	Description

	t3rt_bstring_iter_next_byte
	Parameters
	Description

	t3rt_bstring_iter_is_at_boundary
	Parameters
	Description
	Return Values

	t3rt_bstring_iter_bits_to_byte_boundary
	Parameters
	Return Values

	t3rt_bstring_iter_at_end, t3rt_bstring_iter_at_start
	Parameters
	Return Values

	t3rt_bstring_iter_is_bit_set
	Parameters
	Return Values

	t3rt_bstring_iter_get_bits
	t3rt_bstring_iter_get_bits, t3rt_bstring_iter_get_1byte, t3rt_bstring_iter_get_2bytes, t3rt_bstring_iter_get_4bytes, t3rt_bstring_iter_get_nbytes, t3rt_bstring_iter_get_nbits
	Parameters
	Description
	Return Values

	RTL Codecs Functions
	RTL Codecs Related Type Definitions
	t3rt_codecs_register
	Parameters

	t3rt_encode
	Parameters
	Description
	Return Values

	t3rt_decode
	Parameters
	Description
	Return Values

	t3rt_tci_encode
	Parameters
	Description
	Return Values

	t3rt_tci_decode
	Parameters
	Description
	Return Values

	RTL Error Handling Functions
	RTL Error Handling Related Type Definitions
	t3rt_report_error
	Parameters
	Description

	t3rt_report_fatal_system_error
	Parameters
	Description

	RTL Execution Control
	RTL Execution Control Related Type Definitions
	t3rt_run_test_suite
	Parameters
	Description

	t3rt_exit
	Description

	t3rt_abort
	Description

	RTL Memory Functions
	RTL Memory Related Type Definitions
	t3rt_memory_temp_begin
	Parameters
	Description
	Example Usage

	t3rt_memory_temp_end
	Parameters
	Description
	Example Usage

	t3rt_memory_temp_clear
	Parameters
	Description
	Example Usage

	t3rt_memory_temp_allocate
	Parameters
	Description
	Return Values

	RTL Source Tracking Functions
	RTL Source Tracking Related Type Definitions
	t3rt_targetcode_location_push
	Parameters
	Description

	t3rt_targetcode_location_set_line
	Parameters
	Description

	t3rt_targetcode_location_pop
	Description

	t3rt_targetcode_location_get
	Description
	Return Values

	t3rt_source_tracking_top
	Description
	Return Values

	t3rt_source_location_module_name
	Parameters
	Return Values

	t3rt_source_location_scope_name
	Parameters
	Return Values

	t3rt_source_location_scope_arguments
	Parameters
	Return Values

	t3rt_source_location_scope_kind
	Parameters
	Return Values

	t3rt_source_location_file_name
	Parameters
	Return Values

	t3rt_source_location_file_line
	Parameters
	Return Values

	t3rt_source_location_is_ttcn3
	Parameters
	Return Values

	RTL Symbol Table Functions
	RTL Symbol Table Related Type Definitions
	t3rt_find_element
	Parameters
	Description
	Return Value

	t3rt_root_module_name
	Description
	Return Values

	t3rt_symbol_table_entry_name
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_kind
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_type
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_value
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_function
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_attribute
	Parameters
	Description
	Return Value

	t3rt_symbol_table_entry_auxiliary
	Parameters
	Description
	Return Value

	RTL Miscellaneous Functions
	t3rt_rtconf_get_param
	Parameters
	Description
	Return Values

	t3rt_rtconf_set_param
	Parameters
	Description

	t3rt_register_default_logging
	Description

	t3rt_register_provided_logging
	Description

	t3rt_context_get_component_type
	Description
	Return Value

	t3rt_context_get_component_address
	Description
	Return Value

	t3rt_context_get_component_name
	Description
	Return Value

	t3rt_set_epsilon_double
	Parameters
	Description

	t3rt_epsilon_double
	Description
	Return Value

	t3rt_value_to_string, t3rt_value_to_wide_string
	Parameters
	Description
	Return Values

	RTL Function for Generated Code Only
	Platform Layer API
	PL General Functions
	t3pl_general_prepare_testcase
	Parameters
	Description

	t3pl_general_postprocess_testcase
	Parameters
	Description

	t3pl_general_testcase_terminated
	Parameters
	Description

	t3pl_general_control_terminated
	Parameters
	Description

	t3pl_call_external_function
	Parameters
	Description

	PL Timer Functions
	t3pl_time_pre_initialize
	Parameters
	Description

	t3pl_time_initialize
	Description

	t3pl_time_finalize
	Description

	t3pl_timer_create
	Parameters
	Description

	t3pl_timer_delete
	Parameters
	Description

	t3pl_timer_start
	Parameters
	Description

	t3pl_timer_stop
	Parameters
	Description

	t3pl_timer_read
	Parameters
	Description
	Return Value

	t3pl_timer_decode
	Parameters
	Description
	Return Value

	PL Communication Functions
	t3pl_communication_pre_initialize
	Parameters
	Description

	t3pl_communication_initialize
	Description

	t3pl_communication_finalize
	Description

	t3pl_port_create
	Parameters
	Description

	t3pl_port_create_control_port_for_cpc
	Parameters
	Description

	t3pl_port_start
	Parameters
	Description

	t3pl_port_stop
	Parameters
	Description

	t3pl_port_halt
	Parameters
	Description

	t3pl_port_destroy
	Parameters
	Description

	t3pl_port_clear
	Parameters
	Description

	t3pl_port_component_send
	Parameters
	Description

	t3pl_port_sut_send
	Parameters
	Description

	t3pl_port_sut_send_mc
	Parameters
	Description

	t3pl_port_sut_send_bc
	Parameters
	Description

	t3pl_port_sut_call
	Parameters
	Description
	Return Values

	t3pl_port_sut_call_mc
	Parameters
	Description
	Return Values

	t3pl_port_sut_call_bc
	Parameters
	Description
	Return Values

	t3pl_port_sut_call_done
	Parameters
	Description

	t3pl_port_sut_call_abort
	Parameters
	Description

	t3pl_port_sut_reply
	Parameters
	Description

	t3pl_port_sut_reply_mc
	Parameters
	Description

	t3pl_port_sut_reply_bc
	Parameters
	Description

	t3pl_port_sut_raise
	Parameters
	Description

	t3pl_port_sut_raise_mc
	Parameters
	Description

	t3pl_port_sut_raise_bc
	Parameters
	Description

	t3pl_port_sut_action
	Parameters
	Description

	t3pl_port_retrieve_system_port
	Parameters
	Description

	t3pl_port_release_system_port
	Parameters
	Description

	t3pl_port_map, t3pl_port_unmap
	Parameters
	Description

	t3pl_component_get_system_control_port
	Description
	Return Value

	t3pl_component_set_system_component_type
	Parameters
	Description

	t3pl_component_wait
	Parameters
	Description
	Return Values

	t3pl_component_control
	Description

	PL Memory Functions
	t3pl_memory_pre_initialize
	Parameters
	Description

	t3pl_memory_initialize
	Description

	t3pl_memory_finalize
	Description

	t3pl_memory_allocate
	Parameters
	Description
	Return value

	t3pl_memory_deallocate
	Parameters
	Description

	t3pl_memory_reallocate
	Parameters
	Description

	PL Concurrency Functions
	t3pl_concurrency_pre_initialize
	Parameters
	Description

	t3pl_concurrency_initialize
	Description

	t3pl_concurrency_finalize
	Description

	t3pl_concurrency_start_separate_component
	Parameters
	Description

	t3pl_task_create
	Parameters
	Description

	t3pl_task_setup
	Parameters
	Description

	t3pl_task_id
	Description
	Return Value

	t3pl_task_register_context
	Description

	t3pl_task_kill
	Parameters
	Description

	t3pl_task_exit
	Parameters
	Description

	t3pl_sem_create
	Parameters
	Description
	Return Value

	t3pl_sem_wait
	Parameters
	Description
	Return Value

	t3pl_sem_trywait
	Parameters
	Description
	Return Value

	t3pl_sem_timedwait
	Parameters
	Description
	Return Value

	t3pl_sem_post
	Parameters
	Description
	Return Value

	t3pl_sem_destroy
	Parameters
	Description
	Return Value

	User Defined Functions
	t3ud_register_codecs
	Parameters
	Description

	t3ud_register_log_mechanisms
	Parameters
	Description

	t3ud_read_module_param
	Parameters
	Description
	Return Values

	t3ud_retreive_configuration
	Description

	t3ud_make_timestamp
	Parameters
	Description
	Return Values

	TRI API
	TRI Type Definitions
	SA->TE Functions
	triEnqueueMsg
	Parameters
	Description

	triEnqueueCall
	Parameters
	Description

	triEnqueueReply
	Parameters
	Description

	triEnqueueException
	Parameters
	Description

	PA->TE Functions
	triTimeout
	Parameters
	Description

	TE->SA Functions
	triSAReset
	Description
	Return Values

	triExecuteTestcase
	Parameters
	Description
	Return Values

	triEndTestcase
	Description
	Return Values

	triMap
	Parameters
	Description
	Return Values

	triUnmap
	Parameters
	Description
	Return Values

	triSend
	Parameters
	Description
	Return Values

	triSendMC
	Parameters
	Description
	Return Values

	triSendBC
	Parameters
	Description
	Return Values

	triCall
	Parameters
	Description
	Return Values

	triCallMC
	Parameters
	Description
	Return Values

	triCallBC
	Parameters
	Description
	Return Values

	triReply
	Parameters
	Description
	Return Values

	triReplyMC
	Parameters
	Description
	Return Values

	triReplyBC
	Parameters
	Description
	Return Values

	triRaise
	Parameters
	Description
	Return Values

	triRaiseMC
	Parameters
	Description
	Return Values

	triRaiseBC
	Parameters
	Description
	Return Values

	triSUTActionInformal
	Parameters
	Description
	Return Values

	triSUTActionTemplate
	Parameters
	Description
	Return Values

	TE->PA Functions
	triPAReset
	Description
	Return Values

	triStartTimer
	Parameters
	Description
	Return Values

	triStopTimer
	Parameters
	Description
	Return Values

	triReadTimer
	Parameters
	Description
	Return Values

	triTimerRunning
	Parameters
	Description
	Return Values

	triExternalFunction
	Parameters
	Description
	Return Values

	TCI API
	TCI type declarations

	TCI Type Interface API
	tciGetDefiningModule
	Parameters
	Description
	Return Values

	tciGetName
	Parameters
	Description
	Return Values

	tciGetTypeClass
	Parameters
	Description
	Return Values
	Returns the type class of the respective type.

	tciNewInstance
	Parameters
	Description
	Return Values

	tciGetTypeEncoding
	Parameters
	Description
	Return Values

	tciGetTypeEncodingVariant
	Parameters
	Description
	Return Values

	tciGetTypeExtension
	Parameters
	Description
	Return Values

	TCI Value Interface API
	tciGetType
	Parameters
	Description
	Return Values

	tciNotPresent
	Parameters
	Description
	Return Values

	tciGetValueEncoding
	Parameters
	Description
	Return Values

	tciGetValueEncodingVariant
	Parameters
	Description
	Return Values

	Integer Value Interface
	tciGetIntAbs
	Parameters
	Description
	Return Values

	tciGetIntNumberOfDigits
	Parameters
	Description
	Return Values

	tciGetIntSign
	Parameters
	Description
	Return Values

	tciGetIntDigit
	Parameters
	Description
	Return Values

	tciSetIntAbs
	Parameters
	Description
	Return Values

	tciSetIntNumberOfDigits
	Parameters
	Description
	Return Values

	tciSetIntSign
	Parameters
	Description
	Return Values

	tciSetIntDigit
	Parameters
	Description
	Return Values

	Float Value Interface
	tciGetFloatValue
	Parameters
	Description
	Return Values

	tciSetFloatValue
	Parameters
	Description
	Return Values

	Boolean Value Interface
	tciGetBooleanValue
	Parameters
	Description
	Return Values

	tciSetBooleanValue
	Parameters
	Description
	Return Values

	Object Identifier Value Interface
	tciGetTciObjidValue
	Parameters
	Description
	Return Values

	tciSetObjidValue
	Parameters
	Description
	Return Values

	Char Value Interface
	tciGetCharValue
	Parameters
	Description
	Return Values

	tciSetCharValue
	Parameters
	Description
	Return Values

	Universal Char Value Interface
	tciGetUniversalCharValue
	Parameters
	Description
	Return Values

	tciSetUniversalCharValue
	Parameters
	Description
	Return Values

	Charstring Value Interface
	tciGetCStringValue
	Parameters
	Description
	Return Values

	tciSetCStringValue
	Parameters
	Description
	Return Values

	tciGetCharstringValue
	Parameters
	Description
	Return Values

	tciSetCharstringValue
	Parameters
	Description
	Return Values

	tciGetCStringCharValue
	Parameters
	Description
	Return Values

	tciSetCStringCharValue
	Parameters
	Description
	Return Values

	tciGetCStringLength
	Parameters
	Description
	Return Values

	tciSetCStringLength
	Parameters
	Description
	Return Values

	Universal Charstring Value Interface
	tciGetUCStringValue
	Parameters
	Description
	Return Values

	tciSetUCStringValue
	Parameters
	Description
	Return Values

	tciGetUCStringCharValue
	Parameters
	Description
	Return Values

	tciSetUCStringCharValue
	Parameters
	Description
	Return Values

	tciGetUCStringLength
	Parameters
	Description
	Return Values

	tciSetUCStringLength
	Parameters
	Description
	Return Values

	Bitstring Value Interface
	tciGetBStringValue
	Parameters
	Description
	Return Values

	tciSetBStringValue
	Parameters
	Description
	Return Values

	tciGetBStringBitValue
	Parameters
	Description
	Return Values

	tciSetBStringBitValue
	Parameters
	Description
	Return Values

	tciGetBStringLength
	Parameters
	Description
	Return Values

	tciSetBStringLength
	Parameters
	Description
	Return Values

	Octetstring Value Interface
	tciGetOStringValue
	Parameters
	Description
	Return Values

	tciSetOStringValue
	Parameters
	Description
	Return Values

	tciGetOStringOctetValue
	Parameters
	Description
	Return Values

	tciSetOStringOctetValue
	Parameters
	Description
	Return Values

	tciGetOStringLength
	Parameters
	Description
	Return Values

	tciSetOStringLength
	Parameters
	Description
	Return Values

	Hexstring Value Interface
	tciGetHStringValue
	Parameters
	Description
	Return Values

	tciSetHStringValue
	Parameters
	Description
	Return Values

	tciGetHStringHexValue
	Parameters
	Description
	Return Values

	tciSetHStringHexValue
	Parameters
	Description
	Return Values

	tciGetHStringLength
	Parameters
	Description
	Return Values

	tciSetHStringLength
	Parameters
	Description
	Return Values

	Record/Set Value Interface
	tciGetRecFieldValue
	Parameters
	Description
	Return Values

	tciSetRecFieldValue
	Parameters
	Description
	Return Values

	tciSetFieldOmitted
	Parameters
	Description
	Return Values

	tciGetRecFieldNames
	Parameters
	Description
	Return Values

	RecordOf/SetOf Value Interface
	tciGetRecOfFieldValue
	Parameters
	Description
	Return Values

	tciSetRecOfFieldValue
	Parameters
	Description
	Return Values

	tciAppendRecOfFieldValue
	Parameters
	Description
	Return Values

	tciGetRecOfElementType
	Parameters
	Description
	Return Values

	tciGetRecOfLength
	Parameters
	Description
	Return Values

	tciSetRecOfLength
	Parameters
	Description
	Return Values

	Union/Anytype Value Interface
	tciGetUnionVariant
	Parameters
	Description
	Return Values

	tciSetUnionVariant
	Parameters
	Description
	Return Values

	tciGetUnionPresentVariantName
	Parameters
	Description
	Return Values

	tciGetUnionVariantNames
	Parameters
	Description
	Return Values

	Enumerated Value Interface
	tciGetEnumValue
	Parameters
	Description
	Return Values

	tciSetEnumValue
	Parameters
	Description
	Return Values

	Verdict Value Interface
	tciGetVerdictValue
	Parameters
	Description
	Return Values

	tciSetVerdictValue
	Parameters
	Description
	Return Values

	Address Value Interface
	tciGetAddressValue
	Parameters
	Description
	Return Values

	tciSetAddressValue
	Parameters
	Description
	Return Values

	TCI TE->CD Interface API
	tciGetTypeForName
	Parameters
	Description
	Return Values

	tciGetIntegerType
	Parameters
	Description
	Return Values

	tciGetFloatType
	Parameters
	Description
	Return Values

	tciGetBooleanType
	Parameters
	Description
	Return Values

	tciGetCharType
	Parameters
	Description
	Return Values

	tciGetUniversalCharType
	Parameters
	Description
	Return Values

	tciGetObjidType
	Parameters
	Description
	Return Values

	tciGetCharstringType
	Parameters
	Description
	Return Values

	tciGetUniversalCharstringType
	Parameters
	Description
	Return Values

	tciGetHexstringType
	Parameters
	Description
	Return Values

	tciGetBitstringType
	Parameters
	Description
	Return Values

	tciGetOctetstringType
	Parameters
	Description
	Return Values

	tciGetVerdictType
	Parameters
	Description
	Return Values

	tciErrorReq
	Parameters
	Description
	Return Values

	TCI CD->TE Interface API
	tciDecode
	Parameters
	Description
	Return Values

	tciEncode
	Parameters
	Description
	Return Values

	TCI TE->TM Interface API
	tciRootModule
	Parameters
	Description
	Return Values

	tciGetModules
	Parameters
	Description
	Return Values

	tciGetImportedModules
	Parameters
	Description
	Return Values

	tciGetModuleParameters
	Lookups the list of module parameters of a specified module.
	Parameters
	Description
	Return Values

	tciGetModuleParameterType
	Parameters
	Description
	Return Values

	tciGetTestCases
	Parameters
	Description
	Return Values

	tciGetTestCaseParameters
	Parameters
	Description
	Return Values

	tciGetTestCaseParametersNames
	Parameters
	Description
	Return Values

	tciGetTestCaseTSI
	Parameters
	Description
	Return Values

	tciStartTestCase
	Parameters
	Description
	Return Values

	tciStopTestCase
	Parameters
	Description
	Return Values

	tciStartControl
	Parameters
	Description
	Return Values

	tciStopControl
	Parameters
	Description
	Return Values

	TCI TM->TE Interface API
	tciTestCaseStarted
	Parameters
	Description
	Return Values

	tciTestCaseTerminated
	Parameters
	Description
	Return Values

	tciControlTerminated
	Parameters
	Description
	Return Values

	tciGetModulePar
	Parameters
	Description
	Return Values

	tciError
	Parameters
	Description
	Return Values

	Service Functions to TCI Interface
	tciInit
	Description
	Return Values

	tciMemoryAllocate
	Description
	Return Values

	tciStartTestsuiteServer
	Description
	Return Values

	TCI TL->TE Interface
	tliTcExecute
	Parameters
	Description
	Return Values

	tliTcStart
	Parameters
	Description
	Return Values

	tliTcStop
	Parameters
	Description
	Return Values

	tliTcStarted
	Parameters
	Description
	Return Values

	tliTcTerminated
	Parameters
	Description
	Return Values

	tliCtrlStart
	Parameters
	Description
	Return Values

	tliCtrlStop
	Parameters
	Description
	Return Values

	tliCtrlTerminated
	Parameters
	Description
	Return Values

	tliMSend_m
	Parameters
	Description
	Return Values

	tliMSend_m_BC
	Parameters
	Description
	Return Values

	tliMSend_m_MC
	Parameters
	Description
	Return Values

	tliMSend_c
	Parameters
	Description
	Return Values

	tliMSend_c_BC
	Parameters
	Description
	Return Values

	tliMSend_c_MC
	Parameters
	Description
	Return Values

	tliMDetected_m
	Parameters
	Description
	Return Values

	tliMDetected_c
	Parameters
	Description
	Return Values

	tliMMismatch_m
	Parameters
	Description
	Return Values

	tliMMismatch_c
	Parameters
	Description
	Return Values

	tliMReceive_m
	Parameters
	Description
	Return Values

	tliMReceive_c
	Parameters
	Description
	Return Values

	tliPrCall_m
	Description
	Return Values

	tliPrCall_m_BC
	Description
	Return Values

	tliPrCall_m_MC
	Description
	Return Values

	tliPrCall_c
	Description
	Return Values

	tliPrCall_c_BC
	Description
	Return Values

	tliPrCall_c_MC
	Description
	Return Values

	tliPrGetCallDetected_m
	Description
	Return Values

	tliPrGetCallDetected_c
	Description
	Return Values

	tliPrGetCallMismatch_m
	Description
	Return Values

	tliPrGetCallMismatch_c
	Description
	Return Values

	tliPrGetCall_m
	Description
	Return Values

	tliPrGetCall_c
	Description
	Return Values

	tliPrReply_m
	Description
	Return Values

	tliPrReply_m_BC
	Description
	Return Values

	tliPrReply_m_MC
	Description
	Return Values

	tliPrReply_c
	Description
	Return Values

	tliPrReply_c_BC
	Description
	Return Values

	tliPrReply_c_MC
	Description
	Return Values

	tliPrGetReplyDetected_m
	Description
	Return Values

	tliPrGetReplyDetected_c
	Description
	Return Values

	tliPrGetReplyMismatch_m
	Description
	Return Values

	tliPrGetReplyMismatch_c
	Description
	Return Values

	tliPrGetReply_m
	Description
	Return Values

	tliPrGetReply_c
	Description
	Return Values

	tliPrRaise_m
	Description
	Return Values

	tliPrRaise_m_BC
	Description
	Return Values

	tliPrRaise_m_MC
	Description
	Return Values

	tliPrRaise_c
	Description
	Return Values

	tliPrRaise_c_BC
	Description
	Return Values

	tliPrRaise_c_MC
	Description
	Return Values

	tliPrCatchDetected_m
	Description
	Return Values

	tliPrCatchDetected_c
	Description
	Return Values

	tliPrCatchMismatch_m
	Description
	Return Values

	tliPrCatchMismatch_c
	Description
	Return Values

	tliPrCatch_m
	Description
	Return Values

	tliPrCatch_c
	Description
	Return Values

	tliPrCatchTimeoutDetected
	Parameters
	Description
	Return Values

	tliPrCatchTimeout
	Description
	Return Values

	tliCCreate
	Description
	Return Values

	tliCStart
	Description
	Return Values

	tliCRunning
	Description
	Return Values

	tliCAlive
	Description
	Return Values

	tliCStop
	Description
	Return Values

	tliCKill
	Description
	Return Values

	tliCDoneMismatch
	Description
	Return Values

	tliCDone
	Description
	Return Values

	tliCKilledMismatch
	Description
	Return Values

	tliCKilled
	Description
	Return Values

	tliCTerminated
	Description
	Return Values

	tliPConnect
	Description
	Return Values

	tliPDisconnect
	Description
	Return Values

	tliPMap
	Description
	Return Values

	tliPUnmap
	Description
	Return Values

	tliPClear
	Description
	Return Values

	tliPStart
	Description
	Return Values

	tliPStop
	Description
	Return Values

	tliPHalt
	Description
	Return Values

	tliEncode
	Description
	Return Values

	tliDecode
	Description
	Return Values

	tliTTimeoutDetected
	Description
	Return Values

	tliTTimeoutMismatch
	Description
	Return Values

	tliTTimeout
	Description
	Return Values

	tliTStart
	Description
	Return Values

	tliTStop
	Description
	Return Values

	tliTRead
	Description
	Return Values

	tliTRunning
	Description
	Return Values

	tliSEnter
	Description
	Return Values

	tliSLeave
	Description
	Return Values

	tliVar
	Description
	Return Values

	tliModulePar
	Description
	Return Values

	tliGetVerdict
	Description
	Return Values

	tliSetVerdict
	Description
	Return Values

	tliLog
	Description
	Return Values

	tliAEnter
	Description
	Return Values

	tliALeave
	Description
	Return Values

	tliANomatch
	Description
	Return Values

	tliARepeat
	Description
	Return Values

	tliADefaults
	Description
	Return Values

	tliAActivate
	Description
	Return Values

	tliADeactivate
	Description
	Return Values

	tliAWait
	Description
	Return Values

	tliAction
	Description
	Return Values

	tliMatch
	Description
	Return Values

	tliMatchMismatch
	Description
	Return Values

	tliInfo
	Description
	Return Values

	TCI Template Interface
	tciIsOmitValueTemplate
	Description
	Return Values

	tciIsAnyValueTemplate
	Description
	Return Values

	tciIsAnyOrOmitValueTemplate
	Description
	Return Values

	tciGetValueTemplateDef
	Description
	Return Values

	tciIsAnyNonValueTemplate
	Description
	Return Values

	tciIsAllNonValueTemplate
	Description
	Return Values

	tciGetNonValueTemplateDef
	Description
	Return Values

	Glossary
	Index of Functions
	Index of Types
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

