

Methodology Guidelines
Introduction . iv

1. Object Oriented Design Using SDL . 1
Requirements on the Access Control System. 2

Description of the System to be Built. 2
Textual Requirements. 3
Use Cases . 5
Object Model . 7

System Analysis of the Access Control System. 8
Analysis Object Model: Basic Version . 8
The Analysis Use Case Model . 10
Analysis Object Model: Enhanced Version . 11

Object Oriented Design of the Access Control System . 13
System Design . 13
Object Design . 13
Version 1: Block Types and Process Types . 13
Version 2: Procedures, Specialization and Packages . 19
Specialization: Adding/Redefining Properties . 27
Packages . 39

2. Data Types . 41
Introduction . 42

Using SDL Data Types. 42
Predefined Sorts . 44
User Defined Sorts . 62
Literals . 80
Operators . 81
Default Value . 82
Generators. 83

Using C/C++ in SDL . 84
Introduction . 84
Workflow . 84
Import Specification . 101
Accessing C/C++ Constructs not Fully Supported by CPP2SDL 102

C Specific Package ctypes . 108
Different Int Types and Float . 109
Charstar, Voidstar, Voidstarstar . 109
The Carray Generator . 110
The Ref Generator . 111
April 2009 IBM Rational SDL and TTCN Suite 6.3 i

Using ASN.1 in SDL . 116
Organizing ASN.1 Modules in the SDL Suite . 116
Using ASN.1 Types in SDL . 119
Sharing Data between SDL and TTCN . 123

3. Using SDL Extensions . 127
Own and ORef Generators . 128

Introduction . 128
Basic Properties of the Own Generator . 128
Definition of Own Generator . 130
The ORef Generator . 132
Run-Time Errors. 133
Implicit Type Conversions . 134

Algorithms in SDL . 137
Compound Statement . 138
Local Variables. 139
Statements. 139
Grammar for the Algorithmic Extensions . 146
Algorithms in SDL Simulator/SDL Explorer . 147
Execution Performance in Applications . 148

4. Organizing a Project . 149
Introduction. 150

General . 150
Improved Support . 151

Diagram Binding . 152
Automatic Binding . 152
Manual Binding . 152
Source and Target Directories . 153

How to Manage the Diagrams in a Project. 155
Starting to Use RCS Together with an SDL System . 156
Using the SDL Suite and RCS in a Multi User Environment 158
Make Local Changes Global Using RCS . 159
Make Global Changes Local Using RCS . 160
Building and Populating a Work Area from RCS based Original Area 160
Endpoint Handling with RCS . 161
Simultaneous Editing of an SDL Diagram . 161

Using CM SYNERGY Together with an SDL System . 162
Introducing CM SYNERGY with the SDL Suite - Migration 162
Introducing CM SYNERGY with the SDL Suite - Set up your working

environment . 167
ii IBM Rational SDL and TTCN Suite 6.3 April 2009

Introducing CM SYNERGY with the SDL Suite - Day-to-Day Working with CM
SYNERGY . 168

Using ClearCase Together with an SDL System . 169
Introducing ClearCase with the SDL Suite – Checking in Files 169
Introducing ClearCase with the SDL Suite – Opening a System 170
April 2009 IBM Rational SDL and TTCN Suite 6.3 iii

iv IBM Rational SDL and TTCN Suite 6.3 April 2009

IBM Rational SDL Suite 6.3

Methodology Guidelines
This edition applies to IBM Rational SDL Suite 6.3 and IBM Rational TTCN Suite 6.3 and to all subsequent
releases and modifications until otherwise indicated in new editions.

Copyright Notice
© Copyright IBM Corporation 1993, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer the products,
services, or features discussed in this document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any reference to an IBM product, pro-
gram, or service is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send written license inquir-
ies to the following:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied war-
ranties in certain transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incur-
ring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange
of information between independently created programs and other programs (including this one) and (ii) the mu-
tual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, pay-
ment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent
agreement between us.
ii IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

Any performance data contained herein was determined in a controlled environment. Therefore, the results ob-
tained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the ca-
pabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.
If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Additional legal notices are described in the legal_information.html file that is included in your software instal-
lation.

Copyright License
This information contains sample application programs in source language, which illustrate programming tech-
niques on various operating platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or distributing application pro-
grams conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as
follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copy-
right IBM Corp. _enter the year or years_.

Trademarks
See http://www.ibm.com/legal/copytrade.html.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at www.ibm.com/legal/copy-
trade.html.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product or service names may be trademarks or service marks of others.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines iii

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

Introduction

About this Manual

This volume, Methodology Guidelines, contains some practical guide-
lines on how to use SDL and related notations in software development
using the SDL Suite.

The SDL-92 object oriented concepts are introduced, including convert-
ing an SDL-88 system into SDL-92. Some IBM Rational-specific ex-
tensions to SDL are described, as well as the handling of SDL, C and
ASN.1 data types in the SDL Suite. Finally, how to manage the diagram
files in a project that includes several project members is explained and
exemplified.

Documentation Overview

A general description of the documentation can be found in “Documen-
tation” on page viii in the Release Guide.

Typographic Conventions

The typographic conventions that are used in the documentation are de-
scribed in “Typographic Conventions” on page x in the Release Guide.

How to Contact Customer Support

Detailed contact information for IBM Rational Customer Support can
be found in “How to Contact Customer Support” on page iv in the Re-
lease Guide.
iv IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

April 2009 IBM Rational SD

Chapter
1 Object Oriented Design
Using SDL
This methodology chapter will take you into the world of object ori-
ented SDL, as introduced in the 1992 version of the language. It will
follow one case (a simple Access Control system) from the specifica-
tion to the final SDL design. A simple OO analysis (according to the
SOMT method) is performed, followed by an object oriented design
using SDL.

The object oriented SDL concepts are introduced step by step by
developing different versions of the Access Control system. The
first version will make use of the OO concepts block types and pro-
cess types only. The final version will use more advanced OO con-
cepts, such as inheritance (specialization), virtual types and type li-
braries (package diagrams).

Note that this chapter does not deal with all parts of the SOMT
method described in the SOMT Methodology Guidelines starting in
chapter 69 in the User’s Manual; it mainly focuses on the usage of
object oriented SDL in the design activities of SOMT.
L Suite 6.3 Methodology Guidelines mg-s0 1

Chapter 1 Object Oriented Design Using SDL
Requirements on the Access Control
System

This section should only be viewed as a background for the design of
the system and not as a description of a complete requirements analysis
phase.

Description of the System to be Built
This application is chosen because it is a good example of an embedded
system, with features that make it very suitable to be specified using
SDL and the object oriented extensions (introduced in the 1992 version
of the language).

The Access Control system is a system to control the access to a build-
ing. To enter the building, a user must have a registered card and a per-
sonal code (four digits). The device used for entering the card and per-
sonal code consists of a card reader, a keypad and a display.

The main characteristics of the system are:

• Moderate real-time demands

• Mostly signal oriented

• Simple data representation

• Simple interface to the environment (hardware)

• A non-distributed system

• Adding new features to the system can be achieved in an easy way
by adding new program logic, while the interface to the environ-
ment remains the same

• The system can be simulated in the host environment by using a
graphical user interface (see Figure 1).
2 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Requirements on the Access Control System
Textual Requirements
This description serves as an initial set of requirements. These require-
ments are normally collected and refined to a standardized form to make
the requirements analysis easier to deal with and each requirement eas-
ier to refer to. Only the initial set of requirements will be shown for this
simple example.

We will also focus only on the functional requirements and leave out the
non-functional requirements (like performance, reliability, availability,
etc.).

Basic Requirements

The hardware devices consists of the following components:

• An 8751 microcontroller

• 64 kilobytes of program memory (RAM or ROM)

Figure 1: Graphical interface to the Access Control system

On UNIX:

In Windows:
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 3

Chapter 1 Object Oriented Design Using SDL
• 64 kilobytes of data memory (RAM)

• A card reader for credit cards
The card reader reads track 2. Data is stored as 40 five-bit words ac-
cording to the most common standard.

• A keypad
The keys are organized according to normal telephone standard.
Valid keys are the digits 0-9. In the basic version, the function keys
“*” and “#” are not recognized.

• A display unit
The display unit can display 2 lines each consisting of 16 characters.

• 4 LEDs
Four light emitting diodes will indicate the status of the controlled
doors. Off = closed, on = open.

The system should be able to fulfill the following tasks for a user:

• Reading the code on the back of a standard credit card.

• Reading a personal code, consisting of 4 digits, typed from the key-
pad.

• Validate that the card and the personal code are registered.

• If the system is configured to control more than one door, give the
user the possibility to choose which door to open after the card and
code have been validated.

The system should be able to fulfill the following tasks for a system ad-
ministrator/supervisor:

• Registration of a user card and a personal code. Only one code is al-
lowed for each user card.

• Registration of the supervisor card at system startup time. Only one
supervisor card is allowed for each system.

General requirements:

• The system must be designed in such a way that it is easy, at system
generation time, to configure the system to handle from one to four
doors.
4 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Requirements on the Access Control System
Additional Requirements

The system should be able to fulfill the following tasks for a user:

• Displaying time.

• Displaying which category (see below) of card is valid in the current
situation.

The system should be able to fulfill the following tasks for a system ad-
ministrator/supervisor:

• Stopping the opening of one door (only the supervisor can open the
door after this).

• Stopping the opening of all doors (only the supervisor can open a
door after this).

• Removing the blocking of one or all the doors.

• Allowing free access through one or several doors.

• Specifying different categories of cards permitting different access
possibilities during a 24-hour period

• Displaying the time.

• Setting of the current time.

• Blocking a user card.

• Remove the blocking of a user card.

Use Cases
The most interesting functional requirements are described by a number
of use cases. These use cases describe the interaction between the sys-
tem and its environment and formalizes (to some extent) the functional
requirements.

The outside entities that communicate with the system are usually
called the actors of the use cases. Actors are often

• human users
• other systems
• hardware
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 5

Chapter 1 Object Oriented Design Using SDL
There are two different actors of the Access Control system that are rel-
evant (the hardware is not taken into account in this simple example):
user and supervisor.

• The user functions are the services available for all users, such as
reading the card code, reading the four digit personal code, etc.

• The supervisor functions are only available for suitable privileged
personnel (e.g. a supervisor) and perform services such as registra-
tion of a new card and code.

The use cases could be described either textually or by MSCs or by a
combination of the two notations. An example of a use case with the
user actor is the Open Door use case (described by the MSC OpenDoor
in Figure 2). The use case ends with the fulfillment of the goal of the
use case: the opening of the door.

Figure 2: Requirements use case OpenDoor

MSC OpenDoor

Actor

User

System

AccessControl

Display

'Insert card'

Card

Display

'Input code'

KeyStroke

'1'

KeyStroke

'2'

KeyStroke

'3'

KeyStroke

'4'

Open

1

6 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Requirements on the Access Control System
Use cases that describe requirements usually show only the interaction
between the actors and the system. When the use cases are refined in lat-
er activities, they can also express the inner behavior of the system.

Object Model
The requirements object model is a simple object model that relates the
known domain entities of an access control system and its environment.
The environment of the system could be anything that is related to the
system as long as it is relevant for understanding the problem, typically
the actors of the use cases that describe the wanted behavior of the sys-
tem. The objective of the model is to give a simple picture of the prob-
lem without going into details.

When elaborating the requirements object model into an analysis object
model, concern about the system properties rather than the real world
properties will affect the model. In the requirements activity, it is not
known what a certain class will result in or if it should be modeled at all.
When analyzing the requirements and the system to be built, classes can
be mapped to software entities, hardware entities or not mapped at all.

Figure 3: Requirements object model

CardReader

LocalPanel

Display KeyPad

CentralControl

Door

Entrance

CardCode

Employee

SuperVisor User

Office

DataBase

HasHasHasHasHasHasHasHasHasHasHasHasHas

HasHasHasHasHasHasHasHasHasHasHasHasHas

Works inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks inWorks in

Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with

Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
Communicates
with
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 7

Chapter 1 Object Oriented Design Using SDL
System Analysis of the Access Control
System

The system analysis is based on the results after analyzing the require-
ments and the problem domain on a high level. The models in the sys-
tem analysis focuses more on the internal structure of the system to be
built, without taking design decisions (or at least as few as possible).

Analysis Object Model: Basic Version
The inheritance concept is not used in the basic version because the in-
formation that needs to be modeled has a very simple structure. What
can be seen in Figure 4 is the aggregation and the association relations
between the classes and the attributes and operations for the individual
classes.

Compared to the requirements object model, the following changes
have been made:

• The actors are removed from the object model to simplify the read-
ing.

• Classes have been structured in a way that makes the mapping to an
SDL design easier. Especially the aggregation hierarchy is designed
with this in mind; the structure will basically be kept when making
an SDL design.

• Classes from the requirements object model that are redundant
(only introduced to increase the understanding of the problem) are
removed.

• A difference between active and passive objects has been taken into
account. The active objects have behavior while the passive objects
only have data structure and data manipulation. The classes in the
aggregation hierarchy are all active, while the classes in the infor-
mation structure are passive.

• Attributes and operations have been added to the classes.

• The analysis object model is structured into three parts, each part
showing a different view of the relationship between the classes:
containment, communication and information.
8 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 System Analysis of the Access Control System
Figure 4: The analysis object model of the Access Control system (basic version)

CardReader

Card

LocalPanel

Display

Display

KeyPad

KeyStroke

RegisteredCard

VaidateCard
VaidateCode
RegisterCardAndCode

Door

DoorTimeout
Status
MyNo

OpenDoor
CloseDoor

AccessControl

Controller

KeyTimeout
DisplayTimeout

ReadCard
ReadCode

Controller

ReadCard
ReadCode

Door

OpenDoor
CloseDoor

RegisteredCard

VaidateCard
VaidateCode
RegisterCardAndCode

CardDBType

ValidateCard
ValidateCode
RegisterCardAndCode

CardType

CardData
Code

*

Aggregation hierarchy

Information structure

Communication structure

CardList:CardDBType

1..*

1..*
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 9

Chapter 1 Object Oriented Design Using SDL
The Analysis Use Case Model
The following MSC describes the use case for opening a door and is a
part of the complete analysis use case model. The level of granularity
can either be very detailed (each involved leaf object is represented by
an MSC instance) or general (each subsystem of the aggregation hierar-
chy is described by an instance). This choice between readability and
expressiveness is dependent of the application area and design customs.
In this case, the subsystem representation was chosen (see Figure 2).

Figure 5: Analysis use case OpenDoor

MSC OpenDoor

Actor

User Lp:LocalPanel Rc:RegisteredCard Dr:Door

Display

'Insert card'

Card

'User card 1'

ValidateCard

'User card 1'

OK

Display

'Input code'

KeyStroke

'1'

KeyStroke

'2'

KeyStroke

'3'

KeyStroke

'4'

VaidateCode

(.'1','2','3','4'.)

OK

OpenDoor

Open

1

10 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 System Analysis of the Access Control System
Note that the MSC instances are, in fact, instances, i.e. they represent
objects. To indicate this, the naming of the instances include both an ob-
ject name and the correspondent class name.

It should also be noticed that all MSC messages do not map strictly to
class operations. In some cases, the operation is synchronous, that is de-
mands a return message. This return message is also described in the
MSC use case in Figure 2 (e.g. the operation ValidateCard is described
by the messages ValidateCard and OK).

Analysis Object Model: Enhanced Version
The following example is how an analysis of the additional requirement
of time handling can be performed. The addition of a clock function will
mainly add a new operation to the class Display (display of current
time). A new class Clock must also be introduced. The properties of this
class handle the clock and update the current time. Figure 6 describes
the enhanced analysis object model for the Access Control system.

When adding behavior, the other models must of course also be extend-
ed, including the internal textual requirements and the use case models
of the requirements and system analysis.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 11

Chapter 1 Object Oriented Design Using SDL
Figure 6: The analysis object model of the Access Control system
(extended version with time handling)

CardReader

Card

LocalPanel

DisplayWithTime

DisplayTime

KeyPad

KeyStroke

RegisteredCard

CardList:CardDBType

VaidateCard
VaidateCode
RegisterCardAndCode

Door

DoorTimeout
Status
MyNo

OpenDoor
CloseDoor

AccessControl

Controller

KeyTimeout
DisplayTimeout

ReadCard
ReadCode

Display

Display

Clock

CurrentTime
TimeResolution

SetTime

*

Aggregation hierarchy

Information structure

Communication structure

Controller

ReadCard
ReadCode

Door

OpenDoor
CloseDoor

RegisteredCard

VaidateCard
VaidateCode
RegisterCardAndCode

Clock

SetTime

CardDBType

ValidateCard
ValidateCode
RegisterCardAndCode

CardType

CardData
Code

*

12 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
Object Oriented Design of the Access
Control System

System Design
The system design activity aims at producing a design architecture and
to refine the use cases into use cases that could give a better help during
the detailed design. Another purpose for refining the use cases is to
make them suitable for verifying the design by means of the SDL Ex-
plorer functionality Verify MSC.

Since the goal of this methodology handbook is to describe the object
oriented features of SDL during the design, the description of a com-
plete system design has been left out.

Object Design
We will now introduce the new SDL concepts step by step.

• In the first version of the Access Control system we will only use
the new type concept for blocks and processes.

• In Version 2 we will make use of the new procedure concepts, such
as remote procedures, value returning procedures and global proce-
dures. We will also introduce the package concept, the specializa-
tion concept and the virtual concept.

Version 1: Block Types and Process Types
According to the analysis object model, the top class of the aggregation
hierarchy has been mapped to an SDL system. The leaf nodes of the ag-
gregation hierarchy have been mapped to processes and the classes be-
tween the top and the leave nodes have been SDL blocks. Note that even
if there are no classes between the top class and a leave class in an ag-
gregation chain, an SDL process still has to be contained in an SDL
block.

Six processes (CardReader, Controller, Display, Door, KeyPad and
RegisteredCard) have been identified from the analysis object model
and three blocks (LocalPanel, Doors and RegisteredCard) have been
created in order to preserve the structure described by the aggregation
hierarchy of the analysis object model (see Figure 7).
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 13

Chapter 1 Object Oriented Design Using SDL
Block Types and Process Types

A type definition can be placed anywhere in a system. For this example,
the choice was to place them on the system level so that they will have
maximum visibility. Normally, they would have been placed in separate
packages to support parallel editing and analysis of the separate sub-
systems (block types).

To place a type at a high level (in a system or package) means that they
can be instantiated anywhere where they are visible, and also be used
for specialization anywhere in the system.

Figure 7: System diagram AccessControlOOA

System AccessControlOOA InteractionPage(4)

CardReader Display
Door

Registered_
Card

KeyPad Controller

LocalPanel Doors RegisteredCard

Dr(NOOFDOORS):
Doors

Lp:
LocalPanel

Rc:
RegisteredCard

A B

DrEnv

Open,
Close

LpDr

OpenDoor,
DoorNo

DoorId,
Display

DLpEnvIn

KeyStroke,
Card

A

B
lprc

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Ok,NOk,
Register,
Registered,
NotRegistered

C

LpEnvOut

Display

A

14 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
Block Type LocalPanel

Even if the types are placed on the same level, the structure is kept by
instantiating the types according to the analysis object model. This
means that the instantiation of the process types CardReader, Display,
KeyPad and Controller is made inside the block type LocalPanel (see
Figure 8).

Figure 8: The block type LocalPanel

Block Type LocalPanel 1(1)

Cl:
Controller

Cr:
CardReader

Dl:
Display

Kp:
KeyPad

B
ValidateCard,
ValidateCode,
StopValidate,
RegisterCard_
AndCode

Ok,NOk,
Register,
Registered,
Not_
Registered

ClRc

Ok,NOk,
Register,
Registered,
Not_
Registered

BD

Open_
Door,
DoorNo

DoorId,
Display

 ClDr

DoorId,
Display

D
C

A E

ClDl

Display

CrCl

ReadCard

B A

KpCl

ReadCode

A

A B

DlEnv

Display

B

EnvCr

Card

A
A

Card,
Key_
Stroke

C Display

EnvKp

KeyStroke

A

ValidateCard,
ValidateCode,
StopValidate,
RegisterCard_
AndCode

Open_
Door,
DoorNo
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 15

Chapter 1 Object Oriented Design Using SDL
Block Type RegisteredCard

The block type RegisteredCard will only contain an instance of the pro-
cess type RegisteredCard. It is perfectly legal in SDL to use the same
name for a block type and a process type because they are of different
entity classes (see Figure 9).

The Classes CardDBType and CardType

As previously mentioned there are classes that will mainly contain data
and data manipulation operations. The classes CardDBType and Card-
Type are of this type and they are implemented in the design as abstract
data types. The data type CardDbType has a number of operators de-
fined to validate a card and a code, and to register a new card and a new
code. These operators are implemented in-line, as “C” functions (see
Figure 10).

Figure 9: The block type RegisteredCard

Block Type RegisteredCard 1(1)

Rc:
RegisteredCard

A

Ok,NOk,
Register,
Registered,
Not_

ValidateCard,
ValidateCode,
StopValidate,
RegisterCard_

ClRc
A

AndCode

Registered

Ok,NOk,
Register,
Registered,
Not_
Registered

ValidateCard,
ValidateCode,
StopValidate,
RegisterCard_
AndCode
16 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
An instance of the type CardDbType is declared in the process type
RegisteredCard. The operations ValidateCard, ValidateCode and
RegisterCardAndCode for the class RegisteredCard are now imple-
mented as operators for the data type CardDbType (see Figure 11).

Figure 10: The data types CardType and CardDbType

 NEWTYPE CardType
 STRUCT
 CardData Charstring;
 Code CodeArray;
 ENDNEWTYPE CardType;
 NEWTYPE CardDbType
 array(Index,CardType)
 ADDING
 LITERALS
 NewDb;
 OPERATORS
 ValidateCard:Charstring,CardDbType->ValCardResType;
 ValidateCode:CardType,CardDbType->ValCodeResType;
 ListFull:CardDbType->Boolean;
 RegisterCardAndCode:CardType,CardDbType->CardDbType;
 /*#ADT(B)
 #BODY
 #ifndef XNOPROTO
 extern #(CardDbType) #(NewDb) (void)
 #else
 extern #(CardDbType) #(NewDb) ()
 #endif
 {
 return(yMake_#(CardDbType)(yMake_#(CardType)(“V\0”,
 yMake_#(CodeArray)(‘0’))));
 }

 */
 ENDNEWTYPE;
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 17

Chapter 1 Object Oriented Design Using SDL
Block Type Doors and Process Type Door

A requirement for the Access Control system is that it should be able to
control up to four doors. In our object oriented SDL design, this can be
accomplished by creating a block set of the block type Doors. The Syn-
onym NOOFDOORS is by default 1 but can be assigned any value be-
tween 1 and 4. Block type Doors consists of an instance of the process
type Door. To follow the OO analysis, the process type Door will con-
trol how long a door should be opened (attribute DoorTimeOut) and
also the opening and closing of a door (operations OpenDoor and
CloseDoor).

Figure 11: Call of operators inside the Process RegisteredCard

Process Type RegisteredCard ValidateCard(3)

DCL
CardData Charstring,
CodeData CodeArray,
CardList CardDbType:=NewDb,
TmpCard CardType,
ValCardResult ValCardResType,
ValCodeResult ValCodeResType;

idle

ValidateCard(CardData)

ValCardResult:=ValidateCard(CardData,CardList)

ValCardResult

Ok NOk

CardOk CardNOk
18 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
Version 2: Procedures, Specialization and
Packages
A general rule when designing an SDL process is to keep the transitions
as short as possible. Using procedures is often the solution.

The Use of Procedures in Version 1

In the first version procedures are frequently used and we shall now take
a look at two of them, namely RegisterCard and ReadCode. Both are de-
clared and called by the Controller process.

Procedure RegisterCard

This procedure is called when a new card should be registered (user
cards or the supervisor’s credit card). The function of this procedure is
as follows:

• First it calls the procedure ReadCode to read the four user digits in
the user’s code.

• In the case of a successful return from the ReadCode
(ReadCodeResult=Successful), send a request for the registration of
a new card (signal RegisterCardAndCode) to the process
RegisteredCard.

• Wait for the result of the Registration (return signals Registered or
NotRegistered) and return (see Figure 12).
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 19

Chapter 1 Object Oriented Design Using SDL
Procedure ReadCode

This is a procedure to read four digits from the keypad. The digits read
will be stored in an array named CodeData. If four digits are successful-
ly received, the ReadCodeResult is assigned “Successful”, and a return
to the calling process or procedure will take place.

Figure 12: Procedure RegisterCard

;FPAR
 IN/OUT CodeData CodeArray,
 IN/OUT ReadCodeResult ReadCodeResultType,
 CardData Charstring;

Procedure RegisterCard 1(1)

ReadCode

ReadCodeResult)

ReadCodeResult

RegisterCard

CodeData)

WaitRegistered

NotRegistered

Display(
'Not Registered')

Registered

Display(
'Registered')

StopValidate

FlashMessage

SuccessFul
TimedOut

AndCode(CardData,

('Timeout')

VIA E VIA E

(CodeData,
20 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
This procedure is called both by the procedure RegisterCard and by the
process Controller in the sequence of validating card and code (see
Figure 13).

Figure 13: Procedure ReadCode

;FPAR
IN/OUT CodeData CodeArray,
IN/OUT ReadCodeResult ReadCodeResultType;

Procedure ReadCode 1(1)

DCL
KeyIndex

set(now+

KeyTimer)

WaitKeyPressed

KeyTimer

KeyIndex:=1

ReadCode_

ReadCode(Key)

CodeData(KeyIndex):=

KeyIndex:=KeyIndex+1

KeyIndex>

Reset

KeyIndex:=1,
ReadCode
SuccessFul

set(now+

KeyTimer)

-

true

false

Integer:=1;

KEYTIMEOUT, (KeyTimer)

Result:=

Key,

KEYTIMEOUT,

Result:=
TimedOut KEYMAX
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 21

Chapter 1 Object Oriented Design Using SDL
Remote Procedures and Value Returning Procedures

The idea in version 2 is to move the procedure RegisterCard from the
process Controller to the process RegisterCard. There are two reasons
for doing this:

1. This is the most natural place for it, because this procedure is called
whenever a card is to be registered.

2. No signals have to be exchanged between process Controller and
process RegisterCard to announce when to start and stop the regis-
tration procedure.

The procedure ReadCode must also be moved, because there will be a
deadlock situation when the RegisterCard procedure calls the
ReadCode procedure.

The ReadCode procedure can be placed in the KeyPad process and
FlashMessage (another procedure also called by the RegisterCard) can
be placed in the Display process.

Remote Procedures in SDL

Normally a procedure can only be called from the declaring process (or
procedure) but by declaring it as EXPORTED it can be called from any
process or procedure in the system. The remote procedure concept is
modeled with an exchange of signals.

The Save Concept

The service process (the process with the EXPORTED procedure) can
only handle a remote procedure call when it is in a state. If it is essential
that a process is not interrupted with a remote procedure call in certain
states, it is possible to use the SAVE symbol to save the call and handle
it in a later state. This will mean that you cannot be sure that a remote
procedure call will be handled directly. The model for the calling pro-
cess is also that a new implicit state is introduced for each remote pro-

Note:

When a process calls a remote procedure, it enters a new implicit
state where it will wait for an (implicit) return signal indicating that
the procedure call has been executed. Any new signals, including
calls to remote procedures, will be saved. This can easily lead to
deadlock situations!
22 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
cedure call. The process will remain in this state until the remote proce-
dure call is handled and executed.

How to Declare an Exported Procedure

1. Declare it as EXPORTED in the procedure heading.

2. Make an import procedure specification in each process/procedure
that wants to call the remote procedure.

3. Introduce the name and signature (FPAR) of exported and imported
procedures by making a remote procedure definition. This could be
done in the system diagram, in a block diagram or inside a package.
This declaration determines the visibility of the remote procedure
by placing it in a certain scope.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 23

Chapter 1 Object Oriented Design Using SDL
Figure 14: Declaration of a remote procedure

System AccessControlOOA InteractionPage(4)

Lp:
LocalPanel

Dr(NOOFDOORS):
Doors

Rc:
RegisteredCard

Doors

Controller

RegisteredCardLocalPanel

CardReader Display

KeyPad
Registered_
Card DoorLock

Door

LpEnvIn

KeyStroke,
Card

A

LpEnvOut

Display

C

LpDr

OpenDoor,
DoorNo

DoorId,
Display

D

A
DrEnv

Open,
Close

B

lprc

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Ok,NOk,
Register,
Registered,
NotRegistered

B

A

REMOTE PROCEDURE
RegisterCard;
;FPAR
IN/OUT CodeArray,
IN/OUT
ReadCodeResultType
,
IN Charstring;
REMOTE PROCEDURE
ReadCode;

........

.........

Process Type RegisteredCard ValidateCard(3)

DCL
CardData Charstring,
CodeData CodeArray,
CardList CardDbType:=NewDb,
TmpCard CardType,
ValCardResult ValCardResType,
ValCodeResult ValCodeResType,
StopValidateFlag,
RegisterCardAndCodeFlag Boolean;

IMPORTED PROCEDURE FlashMessage;
;FPAR Charstring;
IMPORTED PROCEDURE ReadCode;
;FPAR
IN/OUT CodeArray;
Returns ReadCodeResultType;

RegisterCard

idle

ValidateCard(CardData)

ValCardResult:=ValidateCard(CardData,CardList)

ValCardResult

NOk

Idle

Ok

TmpCard!CardData:=CardData

WaitValCode

A

Ok,NOk,
Register,
Display

ValidateCard,
ValidateCode,
StopValidate

CardNOkCardOk

...
IMPORTED
PROCEDURE
ReadCode;
;FPAR
IN/OUT

Exported Procedure ReadCode 1(1)

;FPAR
IN/OUT CodeData CodeArray;
returns ReadCodeResult ReadCodeResultType;

DCL
KeyIndex Integer:=1;

set(now+KEYTIMEOUT,
KeyTimer)

WaitKeyPressed

KeyTimer

KeyIndex:=1

ReadCodeResult:=TimedOut

ReadCode(Key)

CodeData(KeyIndex):=Key,
KeyIndex:=KeyIndex+1

KeyIndex>KEYMAX

Reset(KeyTimer)

KeyIndex:=1,
ReadCodeResult:=SuccessFul

set(now+KEYTIMEOUT,
KeyTimer)

-

true

false

Exported Procedure ReadCode

;FPAR
 IN/OUT CodeData
CodeArray,
24 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
Value Returning Procedures in SDL

Any procedure can be called as a value returning procedure provided
the last parameter is of IN/OUT type. The recommended way is to de-
clare it as value returning if it is intended to be used as such. A call to a
value returning procedure can be used directly in an expression, e.g. in
an assignment (see Figure 15).

In version 2 we have declared the procedure ReadCode as a value re-
turning procedure, and it will return a ReadCodeResultType value. We
want to return this result from the procedure RegisterCard also, so we
save it in a variable. (See Figure 15.)

Figure 15: Use of value returning procedures

;FPAR
 IN/OUT CodeData CodeArray,
 IN/OUT ReadCodeResult ReadCodeResultType,
 IN CardData Charstring;

EXPORTED Procedure RegisterCard 1(1)

ReadCodeResult:=

ReadCodeResult

StopValidateFlag:= RegisterCardAnd_
CodeFlag:=true

TimedOut SuccessFul

Call
 ReadCode(CodeData)

 true
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 25

Chapter 1 Object Oriented Design Using SDL
Global Procedures in SDL

A procedure can also be defined globally in SDL. The conceptual model
is that a local copy of the procedure is created in each process where it
is called.

A Global Procedure for Sending a Signal

It is mostly the process Controller that displays messages. But the pro-
cedure RegisterCard (in process RegisteredCard) and the process Door
also send messages.

The process Controller acts as an intermediate conveyer of the signal
Display to the process Display in version 1. It is tempting to declare a
global procedure that can send any message on the signal Display, and
to call this procedure from process Display, process Door and the pro-
cedure RegisterCard. Unfortunately, this will not work. The reason is
the above mentioned model with the creation of an implicit local model
of the procedure. Calling the procedure from, for example, the process
Door will in fact result in sending the signal from the calling process.
Besides obscuring the signal sending, nothing will be gained by this; the
signal must still be declared on the outgoing channel, etc. An alternative
is of course to declare the procedure as an EXPORTED procedure and
call it as a Remote procedure, but the remote procedure concept should
be used with moderation and definitely not in this case, with the sole
purpose of hiding signal sending.

When to Use the Different Kinds of Procedures

Local Procedures

• To keep the transitions short in order to highlight the signal interac-
tions.

• To describe local routines.

Remote and Value Returning Procedures

• To make a local routine globally accessible.

• Use value returning procedures to simplify expressions.

• Use remote procedure calls instead of signals to access and manip-
ulate data.
26 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
Global Procedures

• An alternative to macros.

• An alternative to a remote procedure if there is no natural “owner”
of the procedure.

Specialization: Adding/Redefining Properties
One of the major benefits of using an object oriented language is the
possibility to, in a very simple and intuitive way, create new objects by
adding new properties to existing objects, or to redefine properties of
existing objects. This is what is commonly referred to as specialization.

In SDL, specialization of types can be accomplished in two ways:

• A subtype may add properties not defined in the supertype. One
may, for example, add new transitions to a process type1, add new
processes to a block type, etc.

• A subtype may redefine virtual types and virtual transitions defined
in the supertype. One may, for example, redefine the contents of a
transition in a process type, redefine the contents/structure of a
block type, etc.

Behavior (i.e. transitions) can be added to a process type using the add-
ing mechanism. For example, the process type TimeDisplay (Figure 16)
is a subtype of Display with the addition of a new transition. The key-
word INHERITS defines the new type DisplayTime as a subtype of Dis-
play, stating that all definitions inside the process type Display is inher-
ited by DisplayTime.

The gates A and B are dashed in order to indicate that they refer to the
gate definitions in the process type Display, with the addition of the sig-
nal DisplayTime.

1. SDL differs from most other object oriented languages in the sense that SDL of-
fers possibilities to specialize behavior specifications. In most other languages
this is accomplished by redefining virtual methods in subclasses; in SDL this is
easily accomplished by adding new transitions to a process type.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 27

Chapter 1 Object Oriented Design Using SDL
In some cases it may be necessary not only to add properties, but also to
redefine properties of a supertype. In Figure 16, the process type Door
has to be redefined in order to send the signals OpenDoor and Close-
Door respectively to the new process DoorOpener. Therefore, the cor-
responding transitions of Door have to be defined as virtual transitions,
as depicted in Figure 17.

Figure 16: The process type TimeDisplay

inherits Display;

Process Type DisplayTime 1(1)

DCL
CurrentTime Time;

-

DisplayTime
(CurrentTime)
via B

DisplayTime
(CurrentTime)

Idle

B

DisplayTime

A

DisplayTime
28 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
Then, in the definition of the new block type SpecialDoor, the corre-
sponding transitions of the process type Door are redefined as shown in
Figure 18.

Figure 17: The process type Door with virtual transitions

Process Type Door 1(2)

DCL
MyNo Integer;

Idle

Close(MyNo)

virtual
CloseDoor

WaitClose

Open(MyNo)

virtual
OpenDoor

Idle WaitClose

B

Open,
Close

A

OpenDoor,
CloseDoor,
DoorNo
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 29

Chapter 1 Object Oriented Design Using SDL
In addition to virtual transitions, it is also possible to specify start
transitions, saves, continuous signals, spontaneous transitions, priority
inputs, remote procedure inputs and remote procedure saves as virtual.
All of the above concepts have in common that they define how a tran-
sition should be initiated or if it should be initiated (Save). Furthermore,
a virtual save can be redefined into an input transition or vice versa.

Figure 18: The redefined process type Door

Redefined Process Type Door 1(1)

Idle

CloseDoor
to DoorOpener

Close(MyNo)

redefined
CloseDoor

WaitClose

OpenDoor
to DoorOpener

Open(MyNo)

redefined
OpenDoor

Idle WaitClose

C

OpenDoor,
CloseDoor
30 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
Example: Adding a Clock to the Access Control System

The Access Control system described in the previous sections can be
extended to contain a clock which holds the current time. The time is
displayed on the display in the format “HH:MM”, and the time can be
set from the panel by first entering a “#” followed by the time in the for-
mat “HHMM”.

After an analysis of the problem, e.g. using OOA as described earlier, it
is decided that the clock functionality is easiest realized by adding a
clock to the local panel. Each minute the clock sends the current time to
the controller, which displays the time on the display. Furthermore, the
controller is extended to cope with the setting of the time from the key
pad.

In order to apply the SDL concepts of specialization to this problem, the
original access control specification has to be slightly modified. Since
an access control system containing a clock can be regarded as a spe-
cialization of the original access control specification, it must be possi-
ble to inherit the properties of the original access control system when
defining the new system. Therefore, it is necessary that the original Ac-
cess Control system is defined as a system type (named
BaseAccessControl), as depicted in Figure 19.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 31

Chapter 1 Object Oriented Design Using SDL
Since the specialization of BaseAccessControl requires changes to the
block type LocalPanel, it is defined as virtual. For the same reason, the
process types used in the block type LocalPanel (i.e. CardReader,
Display, KeyPad and Controller) are all defined as virtual. Finally, for
reasons of clarity, the definitions of process types that previously where

Figure 19: The system type BaseAccessControl

System Type BaseAccessControl 4(4)

Lp:
LocalPanel

Dr(NOOFDOORS):
Doors

Rc:
RegisteredCard

Virtual
LocalPanel

Doors RegisteredCard

LpEnvIn

KeyStroke,
Card

A

LpDr

OpenDoor,
DoorNo

DoorId,
Display

D

A

DrEnv

Open,
Close

B

lprc

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Ok,NOk,
Register,
Registered,
NotRegistered

B

AlpEnvOut

Display

C

32 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
made on the system level are now made in the block types where they
are used.

Now, a definition of the access control system containing a clock
(named TimeAccessControl) can be based on the system type
BaseAccessControl, as depicted in Figure 20.

The system type TimeAccessControl inherits BaseAccessControl with
the addition of a new signal DisplayTime, which is sent from the block
Lp (of type LocalPanel) to the environment. Furthermore, the block
type LocalPanel is redefined in TimeAccessControl; as depicted in
Figure 21.

Figure 20: The system type TimeAccessControl

inherits BaseAccessControl;

System Type TimeAccessControl 1(1)

Signal
DisplayTime(Charstring);

Redefined
LocalPanel

Lp

LpEnvOut2

DisplayTime

D

April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 33

Chapter 1 Object Oriented Design Using SDL
LocalPanel is redefined to contain a process Clock which sends the sig-
nal DisplayTime to Cl (of type Controller) and receives the signal
SetTime from Cl. Furthermore, Cl is extended to send the signal
DisplayTime to Dl (of type Display), which in turn sends it on to the en-
vironment via gate C.

The redefinition of Display is straightforward. As depicted in Figure 22,
a new transition for the signal DisplayTime is added.

Figure 21: The redefined block type LocalPanel

REDEFINED Block Type LocalPanel 1(1)

SIGNAL
 SetTime(Charstring);

Redefined
Controller

Redefined
Display

Cl

DlClock(1,1)

C
DisplayTime

ClDl2

DisplayTime

DlEnv2

DisplayTime

ClClock

DisplayTime

SetTime

F

E

A

B

34 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
The redefinition of Controller (Figure 23 on page 36) involves two is-
sues: the addition of functionality to treat the signal DisplayTime, and
the addition of functionality to read a new time from the KeyPad and
correspondingly set the clock.

Figure 22: The redefined process type Display

REDEFINED Process Type Display
1(1)

DCL
 CurrTime Charstring; Idle

DisplayTime
(CurrTime)

CurrTime:=

DisplayTime
(CurrTime)
via B

-

A

B

DisplayTime

DisplayTime

CurrTime//' '//Message
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 35

Chapter 1 Object Oriented Design Using SDL
To cope with the signal DisplayTime, a transition is added to every state
that, upon receipt of DisplayTime, sends it on to the process Dl (via gate
E). Furthermore, a transition for the signal ReadCode is also added to
state Idle in order to realize the setting of the clock. If the key pressed
on the key pad is “#” then the new time is read (in the procedure
ReadTime). If the new time was read successfully, then the signal
SetTime is sent to the process Clock.

Finally, the process Clock is defined as depicted in Figure 24.

Figure 23: The redefined process type Controller

REDEFINED Process Type Controller 1(1)

DCL
 CurrTime, NewTime Charstring,
 ReadTimeResult ReadCodeResultType; ReadTime

*

DisplayTime
(CurrTime)

DisplayTime
(CurrTime)
via E

-

Idle

ReadCode
(Key)

Key =
'#'

Idle
ReadTime
(NewTime,

ReadTimeResult)

ReadTime_
Result

FlashMessage
('Timeout')

Idle

SetTime
(NewTime)

Idle

D

SetTime

Display_
Time

E

False True

TimedOut SuccessFul

Display_
Time
36 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
The variable CurrentTime of type Time, holds the current time in min-
utes. Every minute (duration 60), a timer expires which causes the vari-
able CurrentTime to be incremented by 1, and the signal DisplayTime
to be sent to process Cl. Receipt of the signal SetTime causes the vari-
able CurrentTime to be updated with the new value. Since the time out-
side process Clock (i.e. the parameter of the signals DisplayTime and
SetTime) is represented as a charstring, there is a need for functions
converting Time to Charstring and vice versa. These functions can be
defined in the following way:

Figure 24: The process Clock

Process Clock 2(2)

CurrentTime
:= 0

SET(NOW+Interval,T)

Idle

T

CurrentTime :=
CurrentTime +

Interval

DisplayTime
(TimeToString

SET(NOW+Interval,T)

-

SetTime
(TimeString)

Reset current
time

CurrentTime :=
StringToTime
(TimeString)

DisplayTime (TimeToString
(CurrentTime))

(CurrentTime))
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 37

Chapter 1 Object Oriented Design Using SDL
NEWTYPE TimeOperators
 LITERALS Dummy;
 OPERATORS
 TimeToString : Time -> Charstring;
 /* Converts time to Charstring. The result
 is on the form 'HH:MM' */
 /*#OP (B) */

 StringToTime : Charstring -> Time;
 /* Converts Charstring to Time. Assumes that
 the Charstring is on the form 'HHMM'. */
 /*#OP (B) */
/*#ADT (B)
#BODY

SDL_Charstring #(TimeToString)(T)
SDL_Time T;
{
 SDL_Charstring result:=NULL;
 int Hours, Minutes;
 char tmp1[4], tmp2[4];

 Hours = (T.s/60/60)%24;
 Minutes = (T.s/60)%60;
 tmp1[0]=’V’;
 tmp2[0]=’V’;
 sprintf(&(tmp1[1]),”%2ld”,Hours);
 sprintf(&(tmp2[1]), “%2ld”,Minutes);
 xAss_SDL_Charstring(&result,tmp1,XASS);
xAss_SDL_Charstring(&result,xConcat_SDL_Charstring(r
esult,xMkString_SDL_Charstring(‘:’)));
xAss_SDL_Charstring(&result,xConcat_SDL_Charstring(r
esult,tmp2));
 result[0]=’V’;
 if(Hours<10)
 result[1]=’0’;
 if(Minutes<10)
 result[4]=’0’;
 return result;
}

SDL_Time #(StringToTime)(C)
SDL_Charstring C;
{
 SDL_Time T;
 SDL_Charstring tmpstr;
 tmpstr=xSubString_SDL_Charstring(C,1,2);
 T.s = atoi(++tmpstr)*60*60;
 tmpstr=xSubString_SDL_Charstring(C,3,2);
 T.s = T.s + atoi(++tmpstr)*60;
 return T;
}
*/
ENDNEWTYPE;
38 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Object Oriented Design of the Access Control System
Packages
The concept of packages enables a mechanism to handle a collection of
different types. The different type definitions that are possible to define
in a package are:

• Diagram types (system type, block type, process type, service type
and procedure)

• Abstract data types and synonyms

• Signals and signal lists

The definitions in a package are included into the system (or into anoth-
er package) by a USE clause.

The SDL Analyzer supports semantic analysis for packages. This
means that large systems can be divided into several packages to enable
a more easy handling of large projects.

An important thing to remember is that it must be possible to analyze a
type where it is defined. This means that if a process type is placed in a
package, the data types and signals that the process type uses must also
be visible in the package. In Figure 25, the use of packages are exem-
plified.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 39

Chapter 1 Object Oriented Design Using SDL
Figure 25: The use of packages in the Access Control system

Package SystemTypes 2(2)

LocalPanel Doors RegisteredCard

USE SystemTypes;

System AccessControl 1(1)

Dr(NOOFDOORS):
Doors

Lp:
LocalPanel

Rc:
RegisteredCard

A

B

DrEnv

Open,
Close

LpDr

OpenDoor,
DoorNo

DoorId,
Display

D
LpEnvIn

KeyStroke,
Card

A

B

lprc

ValidateCard,
ValidateCode,
StopValidate,
RegisterCardAndCode

Ok,NOk,
Register,
Registered,
NotRegistered

C

lpEnvOut

Display

A

SYNTYPE CodeIndex=Integer
 CONSTANTS 1:KEYMAX
ENDSYNTYPE;

SYNTYPE ValidChar=Character
 CONSTANTS '0':'9','#'
ENDSYNTYPE;

SIGNAL
KeyStroke(Character),
Card(Charstring),
DoorNo(Integer),
DoorId,
OpenDoor,
CloseDoor,
Open(Integer),
40 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

April 2009 IBM Rational SD

Chapter
2 Data Types
This chapter describes how data types are handled in the SDL
Suite. An overview of all supported SDL data types is given, includ-
ing examples and guidelines. It is also explained how to use C/C++
and ASN.1, in combination with the SDL Suite.
L Suite 6.3 Methodology Guidelines mg-s0 41

Chapter 2 Data Types
Introduction
An important and often difficult aspect of system design and implemen-
tation is how to handle data in the system.

The SDL Suite offers several ways to use data:

• SDL-specific data types can be used

• Access to C/C++ data types and functions is supported

• ASN.1 data types can be used

This chapter gives an overview of all available data types, together with
some guidelines of how to use these different data types, illustrated with
a number of examples.

Using SDL Data Types
In this section, an overview is given of the data types that are available
in SDL. SDL contains a number of predefined data types. Based on
these predefined types it is possible to define user-specific data types.
Types, or according to SDL terminology, “sorts”, are defined using the
keywords newtype and endnewtype.

Example 1: Newtype definition ––––––––––––––––––––––––––––––––

newtype example1 struct
 a integer;
 b character;
endnewtype;

––

A newtype definition introduces a new distinct type, which is not com-
patible with any other type. So if we would have another newtype
otherexample with exactly the same definition as example1 above, it
would not be possible to assign a value of example1 to a variable of
otherexample.

It is also possible to introduce types, syntypes, that are compatible with
their base type, but contain restrictions on the allowed value set for the
type. Syntypes are defined using the keywords syntype and
endsyntype.
42 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
Example 2: Syntype definition–––––––––––––––––––––––––––––––––

syntype example2 = integer
 constants 0:10
endsyntype;

––

The syntype example2 is an integer type, but a variable of this type is
only allowed to contain values in the specified range 0 to 10. Such a
constant clause is called a range condition. The range check is per-
formed when the SDL system is interpreted. Without a range condition
a syntype definition just introduces a new name for the same sort.

For every sort or syntype defined in SDL, the following operators are
always defined:

• := (assignment)
• = (test for equality)
• /= (test for non-equality)

These operators are not mentioned among the available operators in the
rest of this section. Operators are defined in SDL by a type of algebra
according to the following example:

“+” : Integer, Integer -> Integer;
num : Character -> Integer;

The double quotes around the + indicate that this is an infix operator.
The above + takes two integer parameters and returns an integer value.
The second operator, num, is a prefix operator taking one Character and
returning an Integer value. The operators above can be called within ex-
pressions in, for example, task statements:

task i := i+1;
task n := num(’X’);

where it is assumed that i and n are integer variables. It is also allowed
to call an infix operator as a prefix operator:

task i := “+”(i, 1);

This means the same as i:= i+1.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 43

Chapter 2 Data Types
Predefined Sorts
The predefined sorts in SDL are defined in an appendix to the SDL Rec-
ommendation Z100. Some more predefined sorts are introduced in the
Recommendation Z105, where it is specified how ASN.1 is to be used
in SDL. These types should not be used if the SDL system must con-
form to Z.100. The SDL Suite also offers IBM Rational-specific opera-
tors for some types. These operators should not either be used if your
SDL system must be Z.100 compliant. The rest of this chapter describes
all predefined sorts. Unless stated otherwise, the sort is part of recom-
mendation Z.100.

Bit

The predefined Bit can only take two values, 0 and 1. Bit is defined in
Z.105 for the definition of bit strings, and is not part of Z.100. The op-
erators that are available for Bit values are:

"not" : Bit -> Bit
"and" : Bit, Bit -> Bit
"or" : Bit, Bit -> Bit
"xor" : Bit, Bit -> Bit
"=>" : Bit, Bit -> Bit

These operators are defined according to the following:

• not :
inverts the bit; 0 becomes 1 and 1 becomes 0,
not 0 gives 1, not 1 gives 0

• and :
if both parameters are 1, the result is 1, else it is 0,
0 and 0 gives 0, 0 and 1 gives 0, 1 and 1 gives 1

• or :
if both parameters are 0, the result is 0, else it is 1,
0 or 0 gives 0, 0 or 1 gives 1, 1 or 1 gives 1

• xor :
if parameters are different, the result is 1, else it is 0,
0 xor 0 gives 0, 0 xor 1 gives 1, 1 xor 1 gives 0

• => (implication) :
if first parameter is 1 and second is 0, the result is 0, else it is 1,
0 => 0 gives 1, 1 => 0 gives 0, 0 => 1 gives 1, 1 => 1
gives 1
44 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
The Bit type has most of its properties in common with the Boolean
type, which is discussed below. By replacing 0 with false and 1 with
true the sorts are identical.

Bit and Boolean should be used to represent properties in a system that
can only take two values, like on - off. In the choice between Bit and
Boolean, Boolean is recommended except if the property to be repre-
sented is about bits and the literals 0 and 1 are more adequate than
false and true.

Bit_string

The predefined sort Bit_string is used to represent a string or se-
quence of Bits. Bit_string is defined in Z.105 to support the ASN.1 BIT
STRING type, and is not part of Z.100. There is no limit on the number
of elements in the Bit_string.

The following operators are defined in Bit_string:

mkstring : Bit -> Bit_string
length : Bit_string -> Integer
first : Bit_string -> Bit
last : Bit_string -> Bit
"//" : Bit_string, Bit_string -> Bit_string
substring : Bit_string, Integer, Integer
 -> Bit_string
bitstr : Charstring -> Bit_string
hexstr : Charstring -> Bit_string
"not" : Bit_string -> Bit_string
"and" : Bit_string, Bit_string -> Bit_string
"or" : Bit_string, Bit_string -> Bit_string
"xor" : Bit_string, Bit_string -> Bit_string
"=>" : Bit_string, Bit_string -> Bit_string

These operators are defined as follows:

• mkstring :
This operator takes a Bit value and converts it to a Bit_string of
length 1.
mkstring (0) gives a Bit_string of one element, i.e. 0

• length :
The number of Bits in the Bit_string passed as parameter.
length (bitstr(’0110’)) = 4
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 45

Chapter 2 Data Types
• first :
The value of the first Bit in the Bit_string passed as parameter. If the
length of the Bit_string is 0, then it is an error to call the first oper-
ator.
first (bitstr (’10’)) = 1

• last :
The value of the last Bit in the Bit_string passed as parameter. If the
length of the Bit_string is 0, then it is an error to call the last opera-
tor.
last (bitstr (’10’)) = 0

• // (concatenation) :
The result is a Bit_string with all the elements in the first parameter,
followed by all the elements in the second parameter.
bitstr(’01’)//bitstr(’10’) = bitstr(’0110’)

• substring :
The result is a copy of a part of the Bit_string passed as first param-
eter. The copy starts at the index given as second parameter. The
first Bit has index 0. The length of the copy is specified by the third
parameter. It is an error to try to access elements outside of the true
length of the first parameter.
substring (bitstr(’0110’), 1, 2) = Bitstr(’11’)

• bitstr :
This IBM Rational-specific operator converts a charstring contain-
ing only characters 0 and 1, to a Bit_string with the same length and
with the Bit elements set to the corresponding values.

• hexstr :
This IBM Rational-specific operator converts a charstring contain-
ing HEX values (0 -9, A-F, a-f) to a Bit_string. Each HEX value is
converted to four Bit elements in the Bit_string.
hexstr(’a’) = bitstr(’1010’),

hexstr(’8f’) = bitstr(’10001111’)

• not :
The result is a Bit_string with the same length as the parameter,
where the not operator in the Bit sort has been applied to each ele-
ment, that is each element has been inverted.
not bitstr (’0110’) = bitstr (’1001’)
46 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
• and :
The result is a Bit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the and operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bits in the result (if any) are
set to 0.
bitstr(’01101’) and bitstr(’101’) = bitstr(’00100’)

• or :
The result is a Bit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the or operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bits in the result (if any) are
set to 1.
bitstr(’0110’) or bitstr(’00110’) = bitstr(’01111’)

• xor :
The result is a Bit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the xor operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bits in the result (if any) are
set to 1.
bitstr(’10100’) xor bitstr(’1001’) = bitstr(’00111’)

• => (implication) :
The result is a Bit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the => operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bits in the result (if any) are
set to 1.
bitstr (’1100’) => bitstr (’0101’) = bitstr (’0111’)
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 47

Chapter 2 Data Types
It is also possible to access Bit elements in a Bit_string by indexing a
Bit_string variable. Assume that B is a Bit_string variable. Then it is
possible to write:

task B(2) := B(3);

This would mean that Bit number 2 is assigned the value of Bit number
3 in the variable B. Is is an error to index a Bit_string outside of its
length.

Boolean

The newtype Boolean can only take two values, false and true. The
operators that are available for Boolean values are:

"not" : Boolean -> Boolean
"and" : Boolean, Boolean -> Boolean
"or" : Boolean, Boolean -> Boolean
"xor" : Boolean, Boolean -> Boolean
"=>" : Boolean, Boolean -> Boolean

These operators are defined according to the following:

• not :
inverts the value.

not false = true
not true = false

• and :
If both parameters are true then the result is true, else it is false.

false and false = false
false and true = false
true and false = false
true and true = true

• or :
If both parameters are false then the result is false, else it is true.

false or false = false
false or true = true
true or false = true
true or true = true

Note:

The first Bit in a Bit_string has index 0, whereas most other string
types in SDL start with index 1!
48 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
• xor :
If parameters are different then the result is true, else it is false.

false xor false = false
false xor true = true
true xor false = true
true xor true = false

• => (implication) :
If the first parameter is true and second is false then the result is
false, else it is true.

false => false = true
false => true = true
true => false = false
true => true = true

The Bit sort, discussed above, has most of its properties in common with
the Boolean sort. By replacing 0 with false and 1 with true the sorts
are identical. Normally it is recommended to use Boolean instead of Bit;
for a more detailed discussion see “Bit” on page 44.

Character

The character sort is used to represent the ASCII characters. The
printable characters have literals according to the following example:

’a’ ’-’ ’?’ ’2’ ’P’ ’’’’

Note that the character ’ is written twice in the literal. For the non-print-
able characters, specific literal names have been included in the Char-
acter sort. The following:

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1

correspond to the characters with number 0 to 31, while the literal

DEL

corresponds to the character number 127.

The operators available in the Character sort are:

"<" : Character, Character -> Boolean;
"<=" : Character, Character -> Boolean;
">" : Character, Character -> Boolean;
">=" : Character, Character -> Boolean;
num : Character -> Integer;
chr : Integer -> Character;
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 49

Chapter 2 Data Types
The interpretation of these operators are:

• <, <=, >, >= :
These relation operators work with the character numbers according
to the ASCII table.

• num :
This operator converts a Character value to its corresponding char-
acter number. For example: num(’A’) = 65

• chr :
This operator converts an Integer value to its corresponding charac-
ter. If the parameter is less than 0 or bigger than 255, it is first taken
modulo 256 (using the mod operator in sort Integer). For example:
chr(65) = ’A’

In Z.100 characters in the range 0 to 127 are supported. However IBM
Rational has introduced support for characters in the range 0 to 255.
This means two things

The operator num works modulo 256, not modulo 128 as it is defined in
Z.100.

The following literals (128 to 255) are added to the Character sort:

E_NUL, E_SOH, E_STX, E_ETX, E_EOT, E_ENQ, E_ACK, E_BEL,
E_BS, E_HT, E_LF, E_VT, E_FF, E_CR, E_SO, E_SI,
E_DLE, E_DC1, E_DC2, E_DC3, E_DC4, E_NAK, E_SYN, E_ETB,
E_CAN, E_EM, E_SUB, E_ESC, E_IS4, E_IS3, E_IS2, E_IS1,
' ', '¡', '¢', '£', '¤', '¥', '¦', '§',
'¨', '©', 'ª', '«', '¬', '-', '®', '¯',
'°', '±', '²', '³', '´', 'µ', '¶', '·',
'¸', '¹', 'º', '»', '¼', '½', '¾', '¿',
'À', 'Á', 'Â', 'Ã', 'Ä', 'Å', 'Æ', 'Ç',
'È', 'É', 'Ê', 'Ë', 'Ì', 'Í', 'Î', 'Ï',
'Ð', 'Ñ', 'Ò', 'Ó', 'Ô', 'Õ', 'Ö', '×',
'Ø', 'Ù', 'Ú', 'Û', 'Ü', 'Ý', 'Þ', 'ß',
'à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç',
'è', 'é', 'ê', 'ë', 'ì', 'í', 'î', 'ï',
'ð', 'ñ', 'ò', 'ó', 'ô', 'õ', 'ö', '÷',
'ø', 'ù', 'ú', 'û', 'ü', 'ý', 'þ', 'ÿ';

Charstring

The Charstring sort is used to represent strings or sequences of char-
acters. There is no limit for the length of a Charstring value. Charstring
literals are written as a sequence of characters enclosed between two
50 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
single quotes: ’abc’. If the Charstring should contain a quote (’) it
must be written twice.

’abcdef 0123’
’$%@^&’
’1’’2’’3’ /* denotes 1’2’3 */
’’ /* empty Charstring */

The following operators are available for Charstrings:

mkstring : Character -> Charstring;
length : Charstring -> Integer;
first : Charstring -> Character;
last : Charstring -> Character;
"//" : Charstring, Charstring -> Charstring;
substring : Charstring, Integer, Integer
 -> Charstring;

These operators are defined as follows:

• mkstring :
This operator takes one Character value and converts it to a Char-
string of length 1. For example: if c is a variable of type Character,
then mkstring(c) is a Charstring containing character c.

• length :
This operator takes a Charstring as parameter and returns its number
of characters.
length (’hello’) = 5

• first :
The value of the first Character in the Charstring passed as parame-
ter. If the length of the Charstring is 0, then it is an error to call the
first operator.
first (’hello’) = ’h’

• last :
The value of the last Character in the Charstring passed as parame-
ter. If the length of the Charstring is 0, then it is an error to call the
last operator.
last (’hello’) = ’o’

• // (concatenation) :
The result is a Charstring with all the elements in the first parameter,
followed by all the elements in the second parameter.
 ’he’ // ’llo’ = ’hello’.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 51

Chapter 2 Data Types
• substring :
The result is a copy of a part of the Charstring passed as first param-
eter. The copy starts at the index given as second parameter (Note:
first Character has index 1). The length of the copy is specified by
the third parameter. It is an error to try to access elements outside of
the true length of the first parameter.
substring (’hello’, 3, 2) = ’ll’

It is also possible to access Character elements in a Charstring by index-
ing a Charstring variable. Assume that C is a Charstring variable. Then
it is possible to write:

task C(2) := C(3);

This would mean that Character number 2 is assigned the value of Char-
acter number 3 in the variable C.

IA5String, NumericString, PrintableString, VisibleString

These Z.105 specific character string types are all syntypes of Char-
string with restrictions on the allowed Characters that may be contained
in a value. These sorts are mainly used as a counterpart of the ASN.1
types with the same names. The restrictions are:

• IA5String :
only NUL:DEL, i.e only characters in the range 0 to 127.

• NumericString :
only ’0’:’9’ and ’ ’

• PrintableString :
only 'A':'Z', 'a':'z', '0':'9', ' ', '''':')',
'+':'/', ':', '=', '?'

• VisibleString:
only ' ':'~'

It is recommended to use these types only in relation with ASN.1 or
TTCN. In other cases use Charstring.

Note:

The first Character in a Charstring has index 1.
52 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
Duration, Time

The Time and Duration sorts have their major application area in con-
nection with timers. The first parameter in a Set statement is the time
when the timer should expire. This value should be of sort Time.

Both Time and Duration have literals with the same syntax as real val-
ues. Example:

245.72 0.0032 43

The following operators are available in the Duration sort:

"+" : Duration, Duration -> Duration;
"-" : Duration -> Duration;
"-" : Duration, Duration -> Duration;
"*" : Duration, Real -> Duration;
"*" : Real, Duration -> Duration;
"/" : Duration, Real -> Duration;
">" : Duration, Duration -> Boolean;
"<" : Duration, Duration -> Boolean;
">=" : Duration, Duration -> Boolean;
"<=" : Duration, Duration -> Boolean;

The following operators are available in the Time sort:

"+" : Time, Duration -> Time;
"+" : Duration, Time -> Time;
"-" : Time, Duration -> Time;
"-" : Time, Time -> Duration;
"<" : Time, Time -> Boolean;
"<=" : Time, Time -> Boolean;
">" : Time, Time -> Boolean;
">=" : Time, Time -> Boolean;

The interpretation of these operators are rather straightforward, as they
correspond directly to the ordinary mathematical operators for real
numbers. There is one “operator” in SDL that returns a Time value; now
which returns the current global system time.

Time should be used to denote “a point in time”, while Duration should
be used to denote a “time interval”. SDL does not specify what the unit
of time is. In the SDL Suite, the time unit is usually 1 second.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 53

Chapter 2 Data Types
Example 3: Timers in SDL ––––––––––––––––––––––––––––––––––––

SET (now + 2.5, MyTimer)

After the above statement, SDL timer MyTimer will expire after 2.5
time units (usually seconds) from now.

––

You should note that according to SDL, Time and Duration (and Real)
possess the true mathematical properties of real numbers. In an imple-
mentation, however, there are of course limits on the range and preci-
sion of these values.

Integer, Natural

The Integer sort in SDL is used to represent the mathematical integers.
Natural is a syntype of Integer, allowing only integers greater than or
equal to zero.

Integer literals are defined using the ordinary integer syntax. Example:

0 5 173 1000000

Negative integers are obtained by using the unary - operator given be-
low. The following operators are defined in the Integer sort:

"-" : Integer -> Integer;
"+" : Integer, Integer -> Integer;
"-" : Integer, Integer -> Integer;
"*" : Integer, Integer -> Integer;
"/" : Integer, Integer -> Integer;
"mod" : Integer, Integer -> Integer;
"rem" : Integer, Integer -> Integer;
"<" : Integer, Integer -> Boolean;
">" : Integer, Integer -> Boolean;
"<=" : Integer, Integer -> Boolean;
">=" : Integer, Integer -> Boolean;
float : Integer -> Real;
fix : Real -> Integer;

The interpretation of these operators are given below:

• - (unary, i.e. one parameter) :
Negate a value, e.g. -5.

• +, -, * :
These operators correspond directly to their mathematical counter-
parts.
54 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
• / :
Integer division, e.g. 10/5 = 2, 14/5 = 2, -8/5 = -1

• mod, rem :

modulus and remainder at integer division. mod always returns a
positive value, while rem may return negative values, e.g.
14 mod 5 = 4, 14 rem 5 = 4, -14 mod 5 = 1, -14 rem 5

= -4

• <, <=, >, >= :
These operators correspond directly to their mathematical counter-
parts.

• float :

This operator converts an integer value to the corresponding Real
number, for example:
float (3) = 3.0

• fix :
This operator converts a real value to the corresponding Integer
number. It is performed by removing the decimal part of the Real
value.
fix(3.65) = 3, fix(-3.65) = -3

NULL

NULL is a sort coming from ASN.1, defined in Z.105. NULL does occur
rather frequently in older protocols specified with ASN.1. ASN.1 has
later been extended with better alternatives, so NULL should normally
not be used. The sort NULL only contains one value, NULL.

Object_identifier

The Z.105-specific sort Object_identifier also comes from ASN.1.
Object identifiers usually identify some globally well-known definition,
for example a protocol, or an encoding algorithm. Object identifiers are
often used in open-ended applications, for example in a protocol where
one party could say to the other “I support protocol version X”. “Proto-
col version X” could be identified by means of an object identifier.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 55

Chapter 2 Data Types
An Object_identifier value is a sequence of Natural values. This sort
contains one literal, emptystring, that is used to represent an
Object_identifier with length 0. The operators defined in this sort are:

mkstring : Natural -> Object_identifier
length : Object_identifier -> Integer
first : Object_identifier -> Natural
last : Object_identifier -> Natural
"//" : Object_identifier, Object_identifier
 -> Object_identifier
substring : Object_identifier, Integer, Integer
 -> Object_identifier
append : in/out Object_identifier, Natural;
(. .) : * Natural -> Object_identifier

These operators are defined as follows:

• mkstring :
This operator takes one Natural value and converts it to an
Object_identifier of length 1.
mkstring (8) gives an Object_identifier consisting of one ele-
ment, i.e. 8.

• length :
This operator takes an Object_identifier as parameter and returns its
number of object elements, i.e. Natural values.
length (mkstring (8)//mkstring(6)) = 2

length (emptystring) = 0

• first :
The value of the first Natural in the Object_identifier passed as pa-
rameter. If the length of the Object_identifier is 0, then it is an error
to call the first operator.
first (mkstring (8)//mkstring(6)) = 8

• last :
The value of the last Natural in the Object_identifier passed as pa-
rameter. If the length of the Object_identifier is 0, then it is an error
to call the last operator.
last (mkstring (8)//mkstring(6)) = 6

• // (concatenation) :
The result is a Object_identifier with all the elements in the first pa-
rameter, followed by all the elements in the second parameter.
mkstring (8) // mkstring (6) gives an Object_identifier of
two elements, 8 followed by 6.
56 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
• substring :
The result is a copy of a part of the Object_identifier passed as first
parameter. The copy starts at the index given as second parameter
(Note: first Natural has index 1). The length of the copy is specified
by the third parameter. It is an error to try to access elements outside
of the true length of the first parameter.
substring(mkstring(8)//mkstring(6),2,1) =mkstring(6)

• append :

append is an IBM Rational extension and can be used to add a new
component to the end of an existing Object_identifier. append takes
a variable as first parameter and a Natural value as second. The vari-
able is then updated to include the second parameter as last compo-
nent in the Object_identifier. The reason for introducing this opera-
tor is that:
task append(V, 12);

is much more efficient than performing the same calculation as
task V := V // mkstring(12);

• (. .):
The (. .) expression, which is an IBM Rational extension, is an
application of the implicit make operator. The make operator takes
a sequence of Natural values and returns an Object_identifier that
contains these value in the order they are given.
Obj_id_var := (. 1, 2, 3 .) would give an Object_identifier
containing 1, 2 and 3.

It is also possible to access the Natural elements in an Object_identifier
by indexing an Object_identifier variable. Assume that C is a
Object_identifier variable. Then it is possible to write:

task C(2) := C(3);

This would mean that the Natural at index 2 is assigned the value of the
Natural at index 3 in the variable C. Note that the first Natural in an

Caution!

The append operator does not check the size constraints on the
string.

The concat operator should be used instead if you want range
checks to be performed.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 57

Chapter 2 Data Types
Object_identifier has index 1. It is an error to index an Object_identifier
outside of its length.

Octet

The Z.105-specific sort Octet is used to represent eight-bit values, i.e.
values between 0 and 255. In C this would correspond to unsigned char.
There are no explicit literals for the Octet sort. Values can, however,
easily be constructed using the conversion operators i2o and o2i dis-
cussed below.

The following operators are defined in Octet:

"not" : Octet -> Octet;
"and" : Octet, Octet -> Octet;
"or" : Octet, Octet -> Octet;
"xor" : Octet, Octet -> Octet;
"=>" : Octet, Octet -> Octet;
"<" : Octet, Octet -> Boolean;
"<=" : Octet, Octet -> Boolean;
">" : Octet, Octet -> Boolean;
">=" : Octet, Octet -> Boolean;
shiftl : Octet, Integer -> Octet;
shiftr : Octet, Integer -> Octet;
"+" : Octet, Octet -> Octet;
"-" : Octet, Octet -> Octet;
"*" : Octet, Octet -> Octet;
"/" : Octet, Octet -> Octet;
"mod" : Octet, Octet -> Octet;
"rem" : Octet, Octet -> Octet;
i2o : Integer -> Octet;
o2i : Octet -> Integer;
bitstr : Charstring -> Octet;
hexstr : Charstring -> Octet;

The interpretation of these operators is as follows:

• not, and, or, xor, => :
Apply the corresponding Bit operator for each of the eight bits in the
Octet. For example:
not bitstr (’00110101’) = bitstr (’11001010’)

• <, <=, >, >= :
Ordinary relation operators for the Octet values.

• shiftl, shiftr :
These IBM Rational-specific operators are defined as left and right
shift in C, so shiftl(a,b) is defined as a<<b in C.
58 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
shiftl (bitstr(’1’), 4) = bitstr(’10000’)

shiftr (bitstr(’1010’), 2) = bitstr (’10’)

• +, -, *, /, mod, rem :
These operators are the mathematical corresponding operators. All
operations are, however, performed modulus 256.
i2o(250) + i2o(10) = i2o(4), o2i(i2o(4)-i2o(6)) = 254

• i2o :
This IBM Rational-specific operator converts an Integer value to
the corresponding Octet value.
i2o (128) = hexstr (’80’)

• o2i :
This IBM Rational-specific operator converts an Octet value to the
corresponding Integer value.
o2i (hexstr (’80’)) = 128

• bitstr :
This IBM Rational-specific operator converts a charstring contain-
ing eight Bit values (“0” and “1”) to an Octet value.
bitstr(’00000011’) = i2o(3)

• hexstr :
This IBM Rational-specific operator converts a charstring contain-
ing two HEX values (“0”-“9”, “a”- “f”, “A”- “F”) to an Octet value.
hexstr(’01’) = i2o(1), hexstr(’ff’) = i2o(255)

It is also possible to read the individual bits in an Octet value by index-
ing an Octet variable. The index should be in the range 0 to 7.

Octet_string

The Z.105-specific sort Octet_string represents a sequence of Octet
values. There is no limit on the length of the sequence. The operators
defined in the Octet_string sort are:

mkstring : Octet -> Octet_string;
length : Octet_string -> Integer;
first : Octet_string -> Octet;
last : Octet_string -> Octet;
"//" : Octet_string, Octet_string
 -> Octet_string;
substring : Octet_string, Integer, Integer
 -> Octet_string;
bitstr : Charstring -> Octet_string;
hexstr : Charstring -> Octet_string;
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 59

Chapter 2 Data Types
bit_string : Octet_string -> Bit_string;
octet_string : Bit_string -> Octet_string;

These operators are defined as follows:

• mkstring :
This operator takes an Octet value and converts it to a Octet_string
of length 1.
mkstring (i2o(10)) gives an Octet_string containing one ele-
ment.

• length :
The number of Octets in the Octet_string passed as parameter.
length (i2o (8)//i2o (6)) = 2

length (hexstr (’0f3d88’)) = 3

length (bitstr (’’)) = 0

• first :
The value of the first Octet in the Octet_string passed as parameter.
If the length of the Octet_string is 0, then it is an error to call the first
operator.
first (hexstr (’0f3d88’)) = hexstr(’0f’) (= i2o(15))

• last :
The value of the last Octet in the Octet_string passed as parameter.
If the length of the Octet_string is 0, then it is an error to call the last
operator.
last (hexstr (’0f3d88’)) = hexstr(’88’) (= i2o(136))

• // (concatenation) :
The result is an Octet_string with all the elements in the first param-
eter, followed by all the elements in the second parameter.
hexstr(’0f3d’)//hexstr(’884F’) = hexstr(’’0f3d884f’)

• substring :
The result is a copy of a part of the Octet_string passed as first pa-
rameter. The copy starts at the index given as the second parameter.
The length of the copy is specified by the third parameter. It is an
error to try to access elements outside of the true length of the first
parameter.
substring(hexstr(’0f3d889C’), 3, 2) = hexstr(’889c’)

• bitstr :
This IBM Rational-specific operator converts a charstring contain-
60 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
ing only characters 0 and 1, to an Octet_string with an appropriate
length and with the Octet elements set to the value defined in the se-
quences of eight bits. If the Charstring length is not a multiple of
eight, it is padded with zeros.
bitstr (’101’) = bitstr (’10100000’)

• hexstr :
This IBM Rational-specific operator converts a charstring contain-
ing HEX values (0 -9, A-F, a-f) to an Octet_string. Each pair of
HEX values are converted to one Octet element in the Octet_string.
If the Charstring length is not a multiple of two, it is padded with a
zero.
hexstr (’f’) = hexstr (’f0’)

• bit_string and octet_string :
These two operators convert values between Bit_string and
Octet_string.

It is also possible to access the Octet elements in an Octet_string by in-
dexing an Octet_string variable. Assume that C is an Octet_string vari-
able. Then it is possible to write:

task C(2) := C(3);

This would mean that the Octet at index 2 is assigned the value of Octet
at index 3 in the variable C. It is an error to index an Octet_string outside
of its length.

Pid

The sort Pid is used as a reference to process instances. Pid has only one
literal, Null. All other values are obtained from the SDL predefined
variables Self, Sender, Parent, and Offspring.

Real

Real is used to represent the mathematical real values. In an implemen-
tation there are of course always restrictions in size and precision of
such values. Examples of Real literals:

2.354 0.9834 23 1000023.001

Note:

The first Octet in an Octet_string has index 1.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 61

Chapter 2 Data Types
The operators defined in the Real sort are:

"-" : Real -> Real;
"+" : Real, Real -> Real;
"-" : Real, Real -> Real;
"*" : Real, Real -> Real;
"/" : Real, Real -> Real;
"<" : Real, Real -> Boolean;
">" : Real, Real -> Boolean;
"<=" : Real, Real -> Boolean;
">=" : Real, Real -> Boolean;

All these operators have their ordinary mathematical meaning.

User Defined Sorts
All the predefined sorts and syntypes discussed in the previous section
can be directly used in, for example, variable declarations. In many cir-
cumstances it is however suitable to introduce new sorts and syntypes
into a system to describe certain properties of the system. A user-de-
fined sort or syntype can be used in the unit where it is defined, and also
in all its subunits.

Syntypes

A syntype definition introduces a new type name which is fully compat-
ible with the base type. This means that a variable of the syntype may
be used in any position where a variable of the base type may be used.
The only difference is the range check in the syntype. One exception ex-
ists. The actual parameter that corresponds to a formal in/out parameter
must be of the same syntype as the formal parameter. Otherwise proper
range tests cannot be performed.

Syntypes are useful for:

• Introducing a new name for an existing type
• Introducing a new type that has the same properties as an existing

type, but with a restricted value range
• Defining index sorts used in arrays

Example 4: Syntype definition –––––––––––––––––––––––––––––––––

syntype smallint = integer
 constants 0:10
endsyntype;

––
62 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
In this example smallint is the new type name, integer is the base
type, and 0:10 is the range condition. Range conditions can be more
complex than the one above. It may consist of a list of conditions, where
each condition can be (assume X to be a suitable value):

• =X a single value X is allowed
• X same as =X
• /=X all values except X are allowed
• >X all values >X are allowed
• >=X all values >=X are allowed
• <X all values <X are allowed
• <=X all values <=X are allowed
• X:Y all values >=X and <=Y are allowed

Example 5: Syntype definition–––––––––––––––––––––––––––––––––

syntype strangeint = integer
 constants <-5, 0:3, 5, 8, >=13
endsyntype;

––

In this example all values <-5, 0, 1, 2, 3, 5, 8, >=13 are allowed.

The range check introduced in a syntype is tested in the following cases
(assuming that the variable, signal parameter, formal parameter in-
volved is defined as a syntype):

• Assignment to a variable
• Assigning a value to a signal parameter in an output (also for the im-

plicit signals used in connection with import and remote procedure
calls)

• Assigning a value to an IN parameter in a procedure call
• Assigning a value to a process parameter in a create request action
• Assigning a value to a variable in an input
• Assigning a value to an operator parameter (also for the operator re-

sult)
• Assigning a value to a timer parameter in set, reset, or active

Enumeration Sorts

An enumeration sort is a sort containing only the values enumerated in
the sort. If some property of the system can take a relatively small num-
ber of distinct values and each value has a name, an enumeration sort is
probably suitable to describe this property. Assume for example a key
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 63

Chapter 2 Data Types
with three positions; off, stand-by, and service-mode. A suitable sort to
describe this would be:

Example 6: Enumeration sort –––––––––––––––––––––––––––––––––

newtype KeyPosition
 literals Off, Stand_by, Service_mode
endnewtype;

––

A variable of sort KeyPosition can take any of the three values in the
literal list, but no other.

Struct

The struct concept in SDL can be used to make an aggregate of data that
belongs together. Similar features can be found in most programming
languages. In C, for example, it is also called struct, while in Pascal it is
the record concept that has these properties. If, for example, we would
like to describe a person and would like to give him a number of prop-
erties or attributes, such as name, address, and phone number, we can
write:

newtype Person struct
 Name Charstring;
 Address Charstring;
 PhoneNumber Charstring;
endnewtype;

A struct contains a number of components, each with a name and a type.
If we now define variables of this struct type,

dcl p1, p2 Person;

it is possible to work directly with complete struct values, like in assign-
ments, or in tests for equality. Also individual components in the struct
variable can be selected or changed.

task p1 := (. ’Peter’, ’Main Road, Smalltown’,
 ’+46 40 174700’ .);
task BoolVar := p1 = p2;
task p2 ! Name := ’John’;
task CharstringVar := p2 ! Name;

The first task is an assignment on the struct level. The right hand side,
i.e. the (. .) expression, is an application of the implicit make operator,
that is present in all structs. The make operator takes a value of the first
component sort, followed by a value of the second component sort, and
64 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
so on, and returns a struct value where the components are given the
corresponding values. In the example above, the component Name in
variable p1 is given the value ’Peter’. The second task shows a test for
equality between two struct expressions. The third and fourth task
shows how to access a component in a struct. A component is selected
by writing:

VariableName ! ComponentName

Such component selection can be performed both in a expression (then
usually called extract) and in the left hand side of an assignment (then
usually called modify).

Bit Fields

A bit field defines the size in bits for a struct component. This feature is
not part of the SDL Recommendation, but rather introduced by IBM
Rational to enable the generation of C bit fields from SDL. This means
that the syntax and semantics of bit fields follow the C counterpart very
much.

Example 7: Bit fields–––

newtype example struct
 a Integer : 4;
 b UnsignedInt : 2;
 c UnsignedInt : 1;
 : 0;
 d Integer : 4;
 e Integer;
endnewtype;

––

The following rules apply to bit fields:

• The meaning of the bit field size, i.e. the : X (where X is an integer
number) is the same as in C. When generating C code from SDL,
the : X is just copied to the C struct that is generated from the SDL
struct.

• : 0 in SDL is translated to int : 0 in C.
• As C only allows int and unsigned int for bit field components

the same rule is valid in SDL: only Integer and UnsignedInt
(from package ctypes) may be used.

Bit fields should only be used when it is necessary to generate C bit
fields from SDL. Bit fields should not be used as an alternative to syn-
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 65

Chapter 2 Data Types
types with a constants clause; the SDL Suite does not check violations
to the size of the bit fields.

Optional and Default values

To simplify the translation of ASN.1 types to SDL sorts, two new fea-
tures have been introduced into structs. Struct components can be op-
tional and they can have default values. Note that these features have
their major application area in connection with ASN.1 data types and
applying them in other situations is probably not a good idea, as they are
not standard SDL-96.

Example 8: Optional and default values –––––––––––––––––––––––––

newtype example struct
 a Integer optional;
 b Charstring;
 c Boolean := true;
 d Integer := 4;
 e Integer optional;
endnewtype;

––

The default values for component c and d, means that these components
are initialized to the given values.

An optional component may or may not be present in a struct value. Ini-
tially an optional component is not present. It becomes present when it
is assigned a value. It is an error to access a component that is not
present. It is possible to test if an optional component is present or not
by calling an implicit operator called

ComponentNamepresent

In the example above apresent(v) and epresent(v) can be used to
test whether components a and e are present or not, in the value stored
in variable v. A component that is present can be set to absent, i.e. not
present, again by calling the implicit operator

ComponentNameabsent

In the example above aabsent(v) and eabsent(v) can be used to set
the components to absent. Note that the absent operators are operators
without result.

Components with default values also have present and absent oper-
ators in the same way as optional components. They however do not
have the same semantics as for optional components. A component with
66 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
default value always has a value! Present and absent instead have to do
with encoding and decoding of ASN.1 values. A component that con-
tains its default value, i.e. is absent, is in some encoding schemes not en-
coded.

A component with default value is initialized with the default value and
has present equal to false. Present can for components with default val-
ues be seen as “is explicitly assigned some value”. This means that
when a component with default value is assigned a value, in an assign-
ment for example, present will become true (even if the component is
assigned the default value). The absent operator can be used to set the
component back to absent. This means that the absent operator performs
two things: assigns the component the default value and sets present to
false.

According to Z.105, the make operator for a struct does not include
components that are optional or contain a default value. Optional com-
ponents always become absent and components with default values are
always initialized with their default values. The struct example in the
previous example only contains one component that is not optional and
does not contain a default value. This means that a variable v of this type
can be assigned a struct value by:

task v := (. ‘hello’ .);

If we want to set the other components, this have to be performed in a
sequence of assignments after this assignment.

To simplify assigning a complete struct value to a struct in these cases,
IBM Rational provide an alternative interpretation of make for a struct.
You specify that you want to use this alternative interpretation of make
by selecting Generate > Analyze > Details > Semantic Analysis > In-
clude optional fields in make operator.

The alternative make always takes all components as parameters. By in-
serting an empty position you can specify that you want the component
not present or given its default value. By giving a value you specify the
value to be assigned to that component. Using the example above again
it is possible to write:

task v := (. 1, ‘hello’, , 10, .);

This means that the first, second, and fourth components are given ex-
plicit values, while the third and fifth becomes absent.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 67

Chapter 2 Data Types
Choice

The new concept choice is introduced into SDL as a means to represent
the ASN.1 concept CHOICE. This concept can also be very useful
while developing pure SDL data types. The choice in SDL can be seen
as a C union with an implicit tag field.

Example 9: Choice ––

newtype C1 choice
 a Integer;
 b Charstring;
 c Boolean;
endnewtype;

––

The example above shows a choice with three components. The inter-
pretation is that a variable of a choice type can only contain one of the
components at a time, so in the example above a value of C1 either con-
tains an Integer value, a Charstring value, or a Boolean value.

Example 10: Working with a choice type ––––––––––––––––––––––––

DCL var C1, charstr Charstring;

TASK var := a : 5; /* assign component a */
TASK var!b := ’hello’; /* assign component b
 (a becomes absent) */
TASK charstr := var!b; /* get component b */

––

The above example shows how to modify and extract components of a
choice type. In this respect, choice types are identical to struct types, ex-
cept the a:5 notation to denote choice values, whereas struct values are
described using (.).

Extracting a component of a choice type that is not present results in a
run-time error. Therefore it is necessary to be able to determine which
component is active in a particular value. For that purpose there are a
number of implicit operators defined for a choice.

var!present

where var is a variable of a choice type, returns a value which is the
name of the active component. This is made possible by introducing an
implicit enumeration type with literals with the same names as the
choice components. Note that this enumeration type is implicit and
68 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
should not be inserted by you. Given the example above, it is allowed
to test:

var!present = b

This is illustrated in Figure 26.

It is also possible to test if a certain component is active or not, by using
the implicit boolean operators ComponentNamepresent. To check if
component b in the example above is present it is thus possible to write:

bpresent(v)

The information about which component that is active can be accessed
using the present operators, but it is not possible to change it. This in-
formation is automatically updated when a component in a choice vari-
able is assigned a value.

The purpose of choice is to save memory or bandwidth. As it is known
that only one component at a time can contain a value, the compiler can
use overlay techniques to reduce the total memory for the type. Also
sending a choice value over a physical connection saves time, compared
to sending a corresponding struct.

The choice construct is IBM Rational-specific, and not part of recom-
mendation Z.105, so if you want to write portable SDL, you should not
use choice. Choice replaces the SDL Suite #UNION code generator di-
rective. It is recommended to replace #UNION directives by choice, as
the SDL Suite has better tool support for the latter.

Inherits

It is possible to create a new sort by inheriting information from another
sort. It is possible to specify which operators and literals that should be
inherited and it is then possible to add new operators and literals in the
new type.

Figure 26: Check which component of a choice is present

DCL
intvar Integer,
cstrvar Charstring,
boolvar Boolean;

var! check which
component is
present

intvar :=
var!a

cstrvar :=
var!b

boolvar :=
var!c

a b c

present
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 69

Chapter 2 Data Types
Note that it is not really possible to change the type in itself by using
inheritance. It is, for example, not possible to add a new component to
a struct when the struct is inherited.

Our experience with inheritance so far has been that it is not as useful
as it might seem in the beginning, and that sometimes the use of inher-
itance leads to the need of qualifiers in a lot of places, as many expres-
sions are no longer semantically valid.

Example 11: Inherits –––

newtype NewInteger inherits Integer
 operators all;
endnewtype;

––

In the example above a new type NewInteger is introduced. This type
is distinct from Integer, i.e. an Integer expression or variable is not al-
lowed where a NewInteger is expected, and a NewInteger expression
or variable is not allowed where an Integer is expected. Since in the ex-
ample all literals and operators are inherited, all the integer literals 0, 1,
2, ..., are also available as NewInteger literals. For operators it means
that all operators having Integer as parameter or result type are copied,
with the Integer parameter replaced with a NewInteger parameter. This
is true for all operators, not only those defined in the Integer sort, which
may give unexpected effects, which will be illustrated below.

Example 12: Inherited operators –––––––––––––––––––––––––––––––

The following operators are some of the operators having Integer as pa-
rameter or result type:

"+" : Integer, Integer -> Integer;
"-" : Integer -> Integer;
"mod" : Integer, Integer -> Integer;
length : Charstring -> Integer;

The type NewInteger defined above will inherit these and all the others
having integer as parameter or result type. Note that length is defined in
the Charstring sort.

"+" : NewInteger, NewInteger -> NewInteger;
"-" : NewInteger -> NewInteger;
"mod" : NewInteger, NewInteger -> NewInteger;
length : Charstring -> NewInteger;

––
70 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
With this NewInteger declaration, statements like

decision length(Charstring_Var) > 5;

are no longer correct in the SDL system. It is no longer possible to de-
termine the types in the expression above. It can either be the length re-
turning integer that is tested against an integer literal, or the length re-
turning a NewInteger value that is tested against a NewInteger literal.

It is possible to avoid this kind of problem by specifying explicitly the
operators that should be inherited.

Example 13: Inherits–––

newtype NewInteger inherits Integer
 operators ("+", "-", "*", "/")
endnewtype;

––

Now only the enumerated operators are inherited and the problem with
length that was discussed above will not occur.

A newtype which inherits another type does not inherit the default value
from the original type.

Predefined Generators

Array

The predefined generator Array takes two generator parameters, an in-
dex sort and a component sort. There are no restrictions in SDL on the
index and component sort.

Example 14: Array instantiation –––––––––––––––––––––––––––––––

newtype A1 Array(Character, Integer)
endnewtype;

––

The example above shows an instantiation of the Array generator with
Character as index sort and Integer as component sort. This means that
we now have created a data structure that contains one Integer value for
each possible Character value. To obtain the component value connect-
ed to a certain index value it is possible to index the array.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 71

Chapter 2 Data Types
Example 15: Using an array type–––––––––––––––––––––––––––––––

dcl Var_A1 A1; /* Assume sort in example above */

task Var_A1 := (. 3 .);
task Var_Integer := Var_A1(’a’);
task Var_A1(’x’) := 11;

decision Var_A1 = (. 11 .);
 (true) : ...
 ...
enddecision;

––

The example above shows how to work with arrays. First we have the
expression (. 3 .). This is an application of the make! operator de-
fined in all array instantiations. The purpose is to return an array value
with all components set to the value specified in make. The first task
above thus assigns the value 3 to all array components. Note that this is
an assignment of a complete array value.

In the second task the value of the array component at index ’a’ is ex-
tracted and assigned to the integer variable Var_Integer. In the third
task the value of the array component at index ’x’ is modified and giv-
en the new value 11. The second and third task show applications of the
operators extract! and modify! which are present in all array instantia-
tions. Note that the operators extract!, modify!, and make! can only be
used in the way shown in the example above. It is not allowed to directly
use the name of these operators.

In the last statement, the decision, an equal test for two array values is
performed. Equal and not equal are, as well as assignment, defined for
all sorts in SDL.

The typical usage of arrays is to define a fixed number of elements of
the same sort. Often a syntype of Integer is used for the index sort, as in
the following example, where an array of 11 Pids is defined with indices
0 to 10.

Example 16: Typical array definition––––––––––––––––––––––––––––

syntype indexsort = Integer
 constants 0:10
endsyntype;

newtype PidArray Array (indexsort, Pid)
endnewtype;

––
72 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
Unlike most ordinary programming languages, there are no restrictions
on the index sort in SDL. In most programming languages the index
type must define a finite range of values possible to enumerate. In C, for
example, the size of an array is specified as an integer constant, and the
indices in the array range from 0 to the (size-1). In SDL, however, there
are no such limits.

Example 17: Array with infinite number of elements. ––––––––––––––

newtype RealArr Array (Real, Real)
endnewtype;

––

Having Real as index type means that there is an infinite number of el-
ements in the array above. It has, however, the same properties as all
other arrays discussed above. This kind of more advanced arrays some-
times can be a very powerful concept that can be used for implementing,
for example, a mapping table between different entities.

Example 18: Array to implement a mapping table–––––––––––––––––

newtype CharstringToPid Array (Charstring, Pid)
endnewtype;

The above type can be used to map a Charstring representing a name to
a Pid value representing the corresponding process instance.

––

String

The String generator takes two generator parameters, the component
sort and the name of an empty string value. A value of a String type is
a sequence of component sort values. There is no restriction on the
length of the sequence. The predefined sort Charstring, for example, is
defined as an application of the String generator.

Example 19: String generator –––––––––––––––––––––––––––––––––

newtype S1 String(Integer, empty)
endnewtype;

––

Above, a String with Integer components is defined. An empty string, a
string with the length zero, is represented by the literal empty.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 73

Chapter 2 Data Types
The following operators are available in instantiations of String.

mkstring : Itemsort -> String
length : String -> Integer
first : String -> Itemsort
last : String -> Itemsort
"//" : String, String -> String
substring : String, Integer, Integer -> String
append : in/out String, Itemsort;
(. .) : * Itemsort -> String

In this enumeration of operators, String should be replaced by the string
newtype (S1 in the example above) and Itemsort should be replaced by
the component sort parameter (Integer in the example above). The op-
erators have the following behavior, with the examples based on type
String (Integer, empty):

• mkstring :
This operator takes one Itemsort value and converts it to a String of
length 1.
mkstring (-3) gives a string of one integer with value -3.

• length :
The number of elements, i.e. Itemsort values, in the String passed as
parameter.
length (empty) = 0, length(mkstring (2)) = 1

• first :
The value of the first Itemsort element in the String passed as pa-
rameter. If the length of the String is 0, then it is an error to call the
first operator.
first (mkstring (8) // mkstring (2)) = 8

• last :
The value of the last Itemsort element in the String passed as param-
eter. If the length of the String is 0, then it is an error to call the last
operator.
last (mkstring (8) // mkstring (2)) = 2

• // (concatenation) :
The result is a String with all the elements in the first parameter, fol-
lowed by all the elements in the second parameter.
mkstring (8) // mkstring(2) gives a string of two elements: 8
followed by 2.
74 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
• substring :
The result is a copy of a part of the String passed as first parameter.
The copy starts at the index given as second parameter (Note: first
Itemsort element has index 1). The length of the copy is specified
by the third parameter. It is an error to try to access elements outside
of the true length of the first parameter.
substring (mkstring (8) // mkstring(2), 2, 1)

= mkstring(2)

• append :

append is an IBM Rational extension and can be used to add a new
component to the end of an existing String. append takes a variable
as first parameter and a Itemsort value as second. The variable is
then updated to include the second parameter as last component in
the String. The reason for introducing this operator is that:
task append(V, Comp);

is much more efficient than performing the same calculation as
task V := V // mkstring(Comp);

• (. .):
The (. .) expression, which is an IBM Rational extension, is an
application of the implicit make operator that is present in all
strings. The make operator takes a sequence of Itemsort values and
returns a String that contains these value in the order they are given.
String_var := (. 1, 2, 3 .) would give a string containing 1,
2 and 3.

It is also possible to access Itemsort elements in a String by indexing a
String variable. Assume that C is a String instantiation variable. Then it
is possible to write:

task C(2) := C(3);

This would mean that Itemsort element number 2 is assigned the value
of Itemsort element number 3 in the variable C. NOTE that the first el-
ement in a String has index 1. It is an error to index a String outside of
its length.

The String generator can be used to build lists of items of the same type,
although some typical list operations are computationally quite expen-
sive, like inserting a new element in the middle of the list.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 75

Chapter 2 Data Types
Powerset

The Powerset generator takes one generator parameter, the item sort,
and implements a powerset over that sort. A Powerset value can be seen
as: for each possible value of the item sort it indicates whether that value
is member of the Powerset or not.

Powersets can often be used as an abstraction of other, more simple data
types. A 32-bit word seen as a bit pattern can be modeled as a Powerset
over a syntype of Integer with the range 0:31. If, for example, 7 is mem-
ber of the powerset this means that bit number 7 is set.

Example 20: Powerset generator–––––––––––––––––––––––––––––––

syntype SmallInteger = Integer
 constants 0:31
endsyntype;

newtype P1 Powerset(SmallInteger)
endnewtype;

––

The only literal for a powerset sort is empty, which represents a power-
set containing no elements. The following operators are available for a
powerset sort (replace Powerset with the name of the newtype, P1 in
the example above, and Itemsort with the Itemsort parameter,
SmallInteger in the example):

"in" : Itemsort, Powerset -> Boolean
incl : Itemsort, Powerset -> Powerset
incl : Itemsort, in/out Powerset;
del : Itemsort, Powerset -> Powerset
del : Itemsort, in/out Powerset;
length : Powerset -> Integer
take : Powerset -> Itemsort
take : Powerset, Integer -> Itemsort
"<" : Powerset, Powerset -> Boolean
">" : Powerset, Powerset -> Boolean
"<=" : Powerset, Powerset -> Boolean
">=" : Powerset, Powerset -> Boolean
"and" : Powerset, Powerset -> Powerset
"or" : Powerset, Powerset -> Powerset
(. .) : * Itemsort -> Powerset
76 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
These operators have the following interpretation (the examples are
based on newtype P1 of the above example, and it is supposed that vari-
able v0_1_2 of P1 contains elements 0, 1, and 2):

• in :
This operator tests if a certain value is member of the powerset or
not.
3 in incl (3, empty) gives true;
3 in v0_1_2 gives false, 0 in v0_1_2 gives true.

• incl :
Includes a value in the powerset. The result is a copy of the Power-
set parameter with the Itemsort parameter included. To include a
value that is already member of a powerset is a null-action.
incl (3, empty) gives a set with one element, 3,
incl (3, v0_1_2) gives a set with elements, 0, 1, 2, and 3.

• incl (second operator) :
This operator is an IBM Rational extensions added as it is more ef-
ficient than the standard incl. This operator updates a powerset vari-
able with a new component value.
task incl(3, v0_1_2); means the same as
task v0_1_2 := incl(3, v0_1_2);

• del :
Deletes a member in a powerset. The result is a copy of the Powerset
parameter with the Itemsort parameter deleted. To delete a value
that is not member of a powerset is a null-action.
del (0, v0_1_2) gives a set with element 1 and 2;
del (30, v0_1_2) = v0_1_2

• del (second operator) :
This operator is an IBM Rational extensions added as it is more ef-
ficient than the standard del operator. This operator updates a pow-
erset variable by removing a component value.
task del(3, v0_1_2); means the same as
task v0_1_2 := del(3, v0_1_2);

• length :
The number of elements in the powerset.
length (v0_1_2) = 3, length (empty) = 0
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 77

Chapter 2 Data Types
• take (one parameter) :
Returns one of the elements in the powerset, but it is not specified
which one.
take (v0_1_2) gives 0, 1, or 2 (unspecified which of these three)

• take (two parameters) :
Elements are implicitly numbered with in the powerset from 1 to
length(). The IBM Rational-specific take operator returns the ele-
ment with the number passed as second parameter. This operator
can be used to “loop” through all elements of the set, as is illustrated
in Figure 27.

• < :
A<B, is A a true subset of B
incl (2, empty) < v0_1_2 = true,

incl (30, empty) < v0_1_2 = false

• > :
A>B, is B a true subset of A

• <= :
A<=B, is A a subset of B

• >= :
A>=B, is B a subset of A

Figure 27: Computing the sum of all elements in a Powerset

DCL
i, sum Integer,
p1var P1;

i := 1,
sum := 0

i <= length
(p1var)

sum := sum +
take (p1var, i)

i := i+1

true
false
78 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
• and :
Returns the intersection of the parameters, i.e. a powerset with the
element members of both parameters.
incl (2, incl (4, empty)) and v0_1_2 gives a set with one
element, visually 2.

• or :
Returns the union of the parameters, i.e. a powerset with the element
members of any of the parameters.
incl (2, incl (4, empty)) or v0_1_2 gives a set with ele-
ments, 0, 1, 2, and 4.

• (. .):
The (. .) expression, which is an IBM Rational extension, is an
application of the implicit make operator, that is present in all pow-
ersets. The make operator takes a sequence of Itemsort values and
returns a Powerset that contains these values.
v0_1_2 := (. 1, 2, 3 .) would give a set including 1, 2 and 3.

Powerset resembles the Bag operator, and normally it is better to use
Powerset. See also the discussion in “Bag” on page 79.

Bag

The Z.105-specific generator Bag is almost the same as Powerset. The
only difference is that a bag can contain the same value several times.
In a Powerset a certain value is either member or not member of the set.
A Bag instantiation contains the literal empty and the same operators,
with the same behavior, as a Powerset instantiation. For details please
see “Powerset” on page 76.

A Bag contains one additional operator:

makebag : Itemsort -> Bag

• makebag :
Takes an Itemsort value and returns a Bag containing this value
(length = 1).

It is recommended to use Powerset instead of Bag, except in cases
where the number of instances of a value is important. Powerset is de-
fined in Z.100, and is therefore more portable. Bag is mainly part of the
predefined data types in order to support the ASN.1 SET OF construct.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 79

Chapter 2 Data Types
Ref, Own, Oref, Carray

These generators are IBM Rational extensions to make it possible to
work with pointers (Ref, Own, Oref) and with array with the same prop-
erties as in C.

Own and Oref is described in “Own and ORef Generators” on page 128
in chapter 3, Using SDL Extensions, while Ref and Carray is part of the
package ctypes described in “C Specific Package ctypes” on page 108.
The package ctypes also contains SDL versions of some simple C types,
which might be helpful in some cases.

Literals
Literals, i.e. named values, can be included in newtypes.

Example 21: Literals in struct newtype––––––––––––––––––––––––––

newtype Coordinates struct
 x integer;
 y integer;
 adding
 literals Origo, One;
endnewtype;

––

In this struct there are two named values (literals); Origo and One. The
only way in SDL to specify the values these literals represent is to use
axioms. Axioms can be given in a section in a newtype. This is not fur-
ther discussed here. The SDL to C compilers provide other ways to in-
sert the values of the literals. Please see the documentation in chapter
56, The Cadvanced/Cbasic SDL to C Compiler, in the User´s Manual.

The literals can be used in SDL actions in the same way as expressions.

Example 22: Use of literals––––––––––––––––––––––––––––––––––––

dcl C1 Coordinates;

task C1 := Origo;
decision C1 /= One;
...

––

Please note the differences in the interpretation of literals in the example
above and in the description of enumeration types, see “Enumeration
Sorts” on page 63. In an enumeration type each literal introduces a new
distinct value and the set of literals defines the possible values for the
80 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
type. In the struct example above, the type and the set of possible values
for the type is defined by the struct definition. The literals here only give
names on already existing values.

An alternative that might be more clear, is to use literals in the case of
an enumeration type and use operators without parameters (IBM Ratio-
nal extension) in other cases, like the struct above.

Operators
Operators can be added to a newtype in the same way as literals.

Example 23: Operators in struct newtype –––––––––––––––––––––––

newtype Coordinates struct
 x integer;
 y integer;
 adding
 operators
 “+” : Coordinates, Coordinates -> Coordinates;
 length : Coordinates -> Real;
endnewtype;

––

IBM Rational has extended the operators with a number of new features
to make them more flexible and to make it possible to have more effi-
cient implementations. Extensions:

• in/out parameters
• operators without parameters
• operators without result

Example 24: Operators–––––––––––––––––––––––––––––––––––––––

operators
 op1 : in/out Coordinates;
 op2 : -> Coordinates;
 op3 : ;

––

In the example above op1 takes one in/out parameter and has no result,
op2 has no parameters and returns a value of type Coordinates, while
op3 has neither parameters. nor result.

The behavior of operators can either be defined in axioms (as the literal
values) or in operator diagrams. An operator diagram is almost identical
to a value returning procedure (without states). An alternative to draw
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 81

Chapter 2 Data Types
the operator implementation as a diagram is to define it in textual form.
This might be appropriate as most operators performs calculations, and
does not have anything to do with process control or process communi-
cation. In this case the algorithmic extension described in “Compound
Statement” on page 138 in chapter 3, Using SDL Extensions could be of
great value.

Example 25: Operator implementations –––––––––––––––––––––––––

newtype Coordinates struct
 x integer;
 y integer;
 adding
 operators
 “+” : Coordinates, Coordinates -> Coordinates;
 operator “+” fpar a, b Coordinates
 returns Coordinates
 {
 dcl result Coordinates;
 result!x := a!x + b!x;
 result!y := a!y + b!y;
 return result;
 }
endnewtype;

––

In the SDL to C Compilers there is also the possibility to include imple-
mentations in the target language. The problem with this is that it is nec-
essary to know a lot more about the way the SDL to C Compilers trans-
late operators into C.

Default Value
In a newtype or syntype it is possible to insert a default clause stating
the default value to be given to all variables of this type.

Example 26: Default value in struct newtype –––––––––––––––––––––

newtype Coordinates struct
 x integer;
 y integer;
 default (. 0, 0 .);
endnewtype;

––

All variables of sort Coordinates will be given the initial value
(. 0, 0 .), except if an explicit default value is given for the variable
in the variable declaration.
82 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using SDL Data Types
Example 27: Explicit default value in variable declaration––––––––––

dcl
 C1 Coordinates := (. 1, 1 .),
 C2 Coordinates;

––

Here C1 has an explicit default value that is assigned at start-up. C2 will
have the default value specified in the newtype.

A newtype which inherits another type does not inherit the default value
from the original type.

Generators
It is possible in SDL to define generators with the same kind of proper-
ties as the pre-defined generators Array, String, Powerset, and Bag. As
this is a difficult task and the support from the code generators is limit-
ed, it is not recommended for a non-specialist to try to define a genera-
tor.

The possibility to use user defined generators in the SDL to C Compil-
ers is described in more detail in “Generators” on page 2718 in chapter
56, The Cadvanced/Cbasic SDL to C Compiler, in the User´s Manual.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 83

Chapter 2 Data Types
Using C/C++ in SDL

Introduction
To enable access to C or C++ declarations from an SDL specification,
translation rules from C/C++ to SDL have been developed, that specify
how C/C++ constructs may be represented in SDL. These translation
rules have been implemented in the SDL Suite’s CPP2SDL tool.
CPP2SDL supports the translation of both C and C++ declarations.

When using CPP2SDL, it is possible to access C/C++ declarations and
definitions in SDL. Figure 28 shows how CPP2SDL takes a set of
C/C++ header files and, optionally, an import specification as input.
Note that the import specification is only optional when CPP2SDL is
executed from the command line. When using the utility from the Orga-
nizer, an import specification is created with a default configuration. An
import specification holds CPP2SDL options, and may also specify
which declarations in the header files are to be translated. CPP2SDL
then translates the C/C++ declarations in the header files to SDL decla-
rations. These resulting SDL declarations are saved in a generated
SDL/PR file. See “Introduction” on page 762 in chapter 14, The
CPP2SDL Tool, in the User´s Manual for more details.

.

Workflow
The typical workflow involved when using CPP2SDL will be illustrated
with an example based on the AccessControl system. The example can
be found in \IBM\Rational\SDL_TTCN_Suite6.3/sdt/exam-

Figure 28: CPP2SDL input and output.

 .pr

.is

Import specification

 .h

C/C++ header
files

CPP2SDL

SDL/PR
84 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
ples/cpp_access. Please note that the example currently runs on Win-
dows only. However, the principles that are demonstrated are the same
on all platforms.

The AccessControl system controls the access to a building. The build-
ing has a user terminal consisting of a display, a card reader and a key-
pad. To get access to the building, a valid card has to be inserted and a
correct 4-digit code has to be typed.

In this version of the AccessControl system, information about cards
and valid codes is stored in an external database. The database will be
accessed through ODBC1, which is a commonly used C/C++ API for
accessing data from different kinds of databases.

The purpose of the example is to show how a C/C++ API can be access-
ed from SDL by means of the tools in the C/C++ Access. The example
covers the most important issues regarding the usage of the C/C++ Ac-
cess, and may serve as a basis for more advanced experiments.

The example described below is a walk-through of how to utilize
CPP2SDL from within the Organizer. The different development phas-
es illustrated are:

• A PR symbol is added to the Central process diagram.

• The PR symbol is refined to be an import specification, by double-
clicking it and setting the document type to C++ Import Specifica-
tion.

• A TRANSLATE section is added to the import specification, in which
we list the names of all C/C++ declarations we need to access.

• The import specification is then saved in a file, and the import spec-
ification symbol is thereby automatically connected to this file.

• We use the CPP2SDL Options dialog to set various options for the
import specification.

• Finally, we add a header file to be translated.

1.ODBC is a de facto standard on Windows, but it has also been imple-
mented on other platforms.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 85

Chapter 2 Data Types
Editing

The first step in accessing a C/C++ API from SDL is to insert a PR sym-
bol at the place in the SDL specification where the C/C++ declarations
of the API are to be used. The PR symbol represents the inclusion of an
SDL/PR file, in general. In C/C++ Access this mechanism is used to in-
clude the SDL/PR file that is generated by CPP2SDL.

In the AccessControl example, we insert a PR symbol named ODBC in
the process Central. The ODBC API is accessed from this process ex-
clusively, thereby maintaining the narrowest possible scope.

Normally, an import specification should be placed at the highest level
where declarations imported by the import specification are used. How-
ever, if C/C++ variables are imported, the import specification must be
placed in a scope where external SDL variables are allowed to be de-
clared.

When a PR symbol has been added in the SDL Editor it will initially ap-
pear in the Organizer as an unconnected reference, see Figure 30.

Note:

External variables cannot be declared at system or block level. They
can only be declared in processes, procedures, services or in opera-
tor diagrams.

Figure 29: The PR symbol in the SDL Editor

Figure 30: The unconnected PR symbol in the Organizer
86 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
By default, the Organizer assumes that an unconnected PR symbol is to
be connected to an ordinary user-defined SDL/PR file. In this case this
is not what we want. By double-clicking the PR symbol, either in the
SDL Editor or in the Organizer, an edit Document dialog is opened, see
Figure 31 on page 87. If we change the document type from SDL/PR to
C++ Import Specification, we specify that the SDL/PR file is generated
from a set of C++ header files.

Since we want to create a new import specification, we leave the Show
in editor check-box marked. If we already have an import specification
to be used, there are two methods of connecting it. The first approach is
to unmark all check-boxes and use the Connect command in the Orga-
nizer to connect to the existing import specification file. The second ap-
proach is to check the Copy existing file option and either browse for, or
input the path to, the existing import specification. When using this
method, it is necessary to view the file in the Text Editor, and then save
in order to connect it.

Note:

Ordinary PR symbols are connected to user-defined SDL/PR files,
while import specification symbols are connected to generated
SDL/PR files.

Figure 31: Edit the type of the PR symbol to be a C++ Import Specification
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 87

Chapter 2 Data Types
An import specification can be edited manually by means of the Text
Editor. However, an import specification can be left empty, and
CPP2SDL options set from within the Organizer at a later stage. This
will add a section called CPP2SDLOPTIONS where different options to
CPP2SDL are stored. Often an import specification will contain a
TRANSLATE section, with a list of the names of all declarations that you
wish to be made accessible in SDL. For more information, refer to “Im-
port Specification” on page 101.

In our case we add a TRANSLATE section with the names of all ODBC
functions and types that we will need to access from SDL. See
Figure 32.

When the import specification is saved to a file (called ODBC.is), the
Organizer will automatically connect the import specification symbol to
that file.

Figure 33 shows the connected import specification symbol.

TRANSLATE {

 SQLHENV
 SQLHDBC
 SQLHSTMT
 SQLRETURN
 SQLCHAR
 SQLINTEGER
 SQLSMALLINT
 SQLPOINTER

 SQLAllocHandle
 SQLSetEnvAttr
 SQLSetConnectAttr
 SQLConnect
 SQLBindCol
 SQLExecDirect
 SQLFetch
 SQLCloseCursor
 SQLFreeHandle
 SQLDisconnect
 SQLGetDiagRec

 unsigned char.[6]
 unsigned char.[64]
 unsigned char.[256]

 char.[256]

 strcpy
 strcat
}

Figure 32 The TRANSLATE section of the ODBC import specification
88 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
The next step is to set appropriate options for the translation of the
C/C++ declarations that are specified in the import specification. This
is best done by means of the CPP2SDL Options dialog (see Figure 34).
This dialog is opened by right-clicking on the import specification sym-
bol in the Organizer. For more detailed information about the CPP2SDL
options, see “The CPP2SDL Tool” on page 761 in chapter 14, The
CPP2SDL Tool, in the User´s Manual.

Figure 33: The connected import specification symbol in the Organizer

Figure 34: The CPP2SDL Options Dialog
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 89

Chapter 2 Data Types
The following options may be specified:

• Language

The language option specifies the input language, i.e. if C or C++
declarations shall be translated. If C is selected as input language,
CPP2SDL will assume that no C++ specific constructs are encoun-
tered in the input header files.

Note that this option determines if the import specification is a C or
C++ import specification. Refer to Figure 31 on page 87 where we
selected which type of import specification to use.

• Dialect

These check-boxes make it possible to specify what C/C++ dialects
that are to be supported by CPP2SDL. If no check-boxes are
marked, the ANSI C/C++ dialect is supported.

In our example we use the ODBC implementation from the Mi-
crosoft Foundation Classes, so we need support for the Microsoft
dialect.

• Run-Time Type Information

If this check-box is set, Run-Time Type Information (RTTI) is as-
sumed and dynamic casting is supported.

• Allow Object Slicing

Set this check-box if generated SDL cast operators are to support
slicing of C++ objects.

• Recognize SDL Sorts in Input

When this check-box is set, SDL sorts will be recognized in the in-
put.

• Preprocessor

The preprocessor to be used for preprocessing the input can be set
here. If no preprocessor is set, CPP2SDL will use Microsoft Visual
C/C++ Compiler (cl) in Windows and the standard C/C++ Prepro-
cessor (cpp) on UNIX.
90 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
• Preprocessor Options

The preprocessor options can be set in this field.

• Pointer, Array, Template, Keyword, Incomplete, Underscore

These fields specify the prefixes and suffixes that are used when
C/C++ names must be modified in the SDL translation.

• Generate SDL Representations for Fundamental Types

Set this check-box if SDL representations for fundamental C/C++
types are to be included in the translation. These SDL representa-
tions are defined in SDL/PR files, which are described in detail in
“SDL Library for Fundamental C/C++ Types” on page 848 in chap-
ter 14, The CPP2SDL Tool, in the User´s Manual.

• Only Generate Class Pointer Types when Necessary

When this check-box is set, CPP2SDL will optimize the generation
of class pointer types.

When appropriate CPP2SDL options have been set for an import spec-
ification, the next step is to add the C/C++ header files that are to be
translated. This is done by selecting the import specification and, in the
Edit menu, select Add Existing... Added header files will appear under
the import specification symbol in the Organizer, see Figure 35.

Note:

It is normally recommended to preprocess the input C/C++ headers
with a compiler rather than a plain preprocessor. The reason for this
is that a compiler may set several useful preprocessor defines.

Note:

If the SDL type representation option is set at several levels, this will
cause problems. SDL representations for fundamental types should
only be included at the highest level at which the types will be used.
For example, if two blocks in a system have import specifications
for accessing C/C++ declarations, SDL representations for funda-
mental C/C++ types should be included in the system, and not in the
blocks. This can be done by adding an empty import specification
without input headers at system level, that includes the SDL repre-
sentations for the fundamental C/C++ types.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 91

Chapter 2 Data Types
An arbitrary number of header files can be added to an import specifi-
cation. They will all be processed using the options that are specified for
the import specification. In the AccessControl example only one header
file is added (includes.h).

To see the contents of a header file double-click on its symbol in the Or-
ganizer. The Text Editor will then open and display the contents of the
header file. If this is done on the includes.h header, we see that it ac-
tually includes several other header files. The reason for using a wrap-
per header like includes.h instead of adding the interesting headers
under the import specification directly, is that we would like to avoid
hard-coding the path to these files. By using #include <file> state-
ments, and preprocessing the file with the Microsoft Visual C++ com-
piler, the location of these files will be known at compile-time.

Let us summarize what we have done in the example so far. We have
edited the SDL system by adding a PR symbol, changed the PR symbol
to an import specification, added a TRANSLATE listing the needed dec-
larations, saved the import specification connecting it to the system,
configured CPP2SDL using the options dialog, and adding the header
file to the system.

This concludes the editing phase. It is now time to analyze the system.

Analyzing

The SDL declarations that are generated by CPP2SDL must be ana-
lyzed as case-sensitive SDL. Before starting the Analyzer, a case-sensi-
tivity option must therefore be set:

• Select Tools in the Organizer and start the Preference Manager.

• In the Preference Manager, double-click on the SDT symbol and
set CaseSensitive to on (it is by default set to off).

Figure 35: Add header files to the import specification
92 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
The Analyzer will perform three major steps during the analysis of an
SDL system that contains C/C++ import specifications. During each
step a message will be printed in the Organizer Log window to indicate
the progress, see Figure 37.

Figure 36: Set case-sensitive SDL in the Preference Manager

Figure 37: The Organizer Log window for the analyze phase
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 93

Chapter 2 Data Types
1. SDL/GR to SDL/PR Conversion

The Analyzer requests the SDL Editor to perform an SDL/GR to
SDL/PR conversion. This means that all graphical SDL symbols are
converted to their textual representations. In particular, every PR
symbol will be represented by a #include ’filename.pr’ in the
SDL/PR, where filename.pr is the name of the file to which the
corresponding import specification is connected.

In our example we will thus get a #include ’ODBC.pr’ in the
SDL/PR representation of the process Central.

2. C/C++ to SDL Conversion

This step is performed once for each import specification in the sys-
tem. The header files associated with an import specification are
parsed and analyzed by CPP2SDL. Errors that are reported during
this phase may, for example, be due to differences in language sup-
port and inappropriate preprocessor settings. If so, you can set the
correct language dialect and suitable preprocessor options in the
CPP2SDL Options dialog. Syntax errors and some semantic errors
in the header files will also be checked for during this phase. For
more information about how CPP2SDL handles errors, see “Exam-
ple usage of some C/C++ functionality” on page 853 in chapter 14,
The CPP2SDL Tool, in the User´s Manual.
If no errors are found, CPP2SDL will generate an SDL/PR file with
the result of the translation. Finally, some warnings may be printed,
for example to notify that certain declarations for some reason could
not be translated.

In our example we get a file called ODBC.pr when this step is fin-
ished.

3. Syntactic and Semantic SDL Analysis

Note:

CPP2SDL is not as good as a C/C++ compiler when it comes to er-
ror detection and error reports. It is thus strongly recommended to
make sure that the header files are semantically correct by running
them through a compiler, before they are translated to SDL.
94 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
When all SDL/PR code has been generated the SDL Analyzer will
check for syntactic and semantic errors as usual. For example, it is
likely that many errors will be reported if case-sensitive SDL was
not set in the Preference Manager, see Figure 36. A common source
for errors is that SDL representations for fundamental types were;
not included at all, included at the wrong place in the SDL system,
or included many times in the same SDL scope entity.

Once we have got a clean analysis of the system, it is time to proceed
with code generation.

Generating

Code generation can be done either from the traditional Make dialog, or
from the more powerful tool SDL Targeting Expert. To generate code
for a system containing C or C++ import specifications, it is preferred
to use the Targeting Expert. For example, it is much easier to link-in the
object files that belong to the translated header files, using the Targeting
Expert. The Make dialog will in the near future be discontinued in favor
of the Targeting Expert.

A system that contains one or more C++ import specifications must be
translated to C++ rather than C code. An option to the Code Generator
controls whether C or C++ code is generated. This option is automati-
cally set by the Analyzer if there are one or more C++ import specifica-
tions present in the Organizer view.

To start the Targeting Expert, select Targeting Expert... in the Generate
menu in the Organizer. The Targeting Expert dialog will appear, see
Figure 38. For full information about all the settings and options provid-
ed by Targeting Expert, see chapter 59, The Targeting Expert, in the Us-
er´s Manual.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 95

Chapter 2 Data Types
When one or more C++ import specifications are present in the SDL
system, the Targeting Expert will issue a warning that a C++ compiler
is needed to compile the generated code (see Figure 38). Next, right-
click Component, select Simulations, and then Simulation. The compil-
er may be set by pressing the Compiler/Linker/Make icon, and then, un-
der the Compiler tab, locating the compiler executable. Here we may
also specify compiler options and preprocessor settings.

In the AccessControl example, you can use the C++ Microsoft Simula-
tion kernel, and the generated code can be compiled with the Microsoft
Visual C++ compiler.

Figure 38: The SDL Targeting Expert

Note:

Make sure that the settings made in the CPP2SDL Options dialog
for the preprocessor and preprocessor settings match the settings
made in the Targeting Expert.
96 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
To avoid getting loads of link errors, we also have to remember to link-
in several required Microsoft libraries (e.g. the Odbc32.lib library). This
is done under the Linker tab as shown in Figure 39. Simply add the file
to the List of files and save.

Now everything is ready for code generation. Press the Make or Full
Make buttons and the Targeting Expert will instruct the Analyzer to an-
alyze the SDL system (see “Analyzing” on page 92) and then invoke the
C or C++ Code Generator. Finally the generated code will be compiled
and linked as specified to create a simulator executable. Figure 40
shows what the Targeting Expert may look like when this has been
done.

Figure 39: Add libraries in the Targeting Expert
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 97

Chapter 2 Data Types
Simulating

Naturally, it is possible to simulate and debug a system on SDL level
even if it uses C or C++ declarations. The standard SDL simulator can
be used for this.

A simulator will automatically start when making from Targeting Ex-
pert. At other times than making to start a simulation of a system, select
SDL in the Tools menu in the Organizer or in the Targeting Expert. Then
select Simulator UI and the SDL Simulator user interface will start. To
load the simulator executable that was generated above, select File and
Open... in the SDL Simulator UI.

For the AccessControl example, two customized buttons are available
for the Simulator UI. They may be loaded by selecting Buttons and then
Load...The “GUI” button starts a GUI for the AccessControl system and
waits for you to single-step or go through the system by interacting with
the GUI. The “GUI+MSC” button also activates the GUI, and in addi-

Figure 40: Generating a simulator from the Targeting Expert
98 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
tion generates an MSC trace. In Figure 41 an example of an MSC trace
of the AccessControl system is shown.

The Simulator will treat C++ classes as C structs, but with the additional
possibility of invoking the constructors of the class. For example, when
the value of a C++ class, that is instantiated in SDL, is changed from the
Simulator, the following steps are performed:

• The Simulator pops up a dialog showing a list of available construc-
tors. For example:

0 /* No constructor */

1 /* C() */

or, for a class with a user-defined constructor,
0 /* No constructor */

2 /* C(int) */

Type the number for the constructor that are to be invoked, if any.

• If a constructor was selected, the Simulator will prompt for its actual
arguments.

Figure 41: MSC trace of the AccessControl system
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 99

Chapter 2 Data Types
• Finally, the Simulator allows public member variables to be explic-
itly set using either the SDL or ASN.1 syntax. For example:

(. 1, true, ’x’ .) SDL syntax

{mv1 1, mv2 true, mv3 ’x’} ASN.1 syntax

Note that the ASN.1 syntax is more flexible since it contains the
names of the member variables.

The steps for instantiating a C++ class from the Simulator (e.g. by send-
ing a signal containing a parameter of class type) are similar to the ones
shown above.

Summary of the AccessControl Example

The walk-through of the AccessControl example above has shown the
typical workflow when using the C/C++ Access.

• The SDL specification is edited by adding PR symbols to it, and
they are refined to become import specifications. C/C++ header
files are added under each import specification, and appropriate
translation options are set by means of the CPP2SDL Options dia-
log. A TRANSLATE section may also be added to the import specifi-
cation listing the names of the declarations to be translated.

• The SDL specification is analyzed as case-sensitive SDL. Errors in
the C/C++ headers or in the SDL specification are detected by
CPP2SDL or the SDL Analyzer respectively.

• C or C++ code is generated by using the Make dialog or, prefera-
bly, the Targeting Expert. The generated code is compiled and
linked together with additional object files.

• The SDL specification may be simulated using the Simulator UI.

Figure 42 below shows the Organizer view of how the AccessControl
system may look like when it is completed.
100 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
As can be seen in the figure, the Central process has one PR symbol that
has not been refined into an import specification. Instead this symbol is
connected to an ordinary SDL/PR file, macro.pr, that contains external
SDL synonyms that represent C/C++ macros that are needed in the calls
to the ODBC API. The sorts of these synonyms are imported by the
ODBC.is import specification. An alternative technique for accessing
C/C++ macros, based on the #CODE operator, is described in “Accessing
C/C++ Macros from SDL” on page 102.

Import Specification
The import specification is a text file written in a simple C/C++ style
syntax. You can specify exactly which declarations in the input header
files to access, by using an import specification. The specified subset of
the declarations is translated by CPP2SDL. The import specification
also enables access to e.g. class and function templates. For more infor-
mation about import specifications, see “Import Specifications” on page
776 in chapter 14, The CPP2SDL Tool, in the User´s Manual.

The example below shows a simple import specification where the
identifiers a_int, i_arr and func are made available in SDL.

Figure 42: Organizer view of the AccessControl system
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 101

Chapter 2 Data Types
Example 28: A simple import specification ––––––––––––––––––––––

TRANSLATE {
a_int
i_arr
func

}

––

If an identifier in an import specification refers to a declaration that de-
pends on other declarations, CPP2SDL will translate all these declara-
tions as well.

There are some more advanced constructs that can be used in an import
specification:

• Type Declarators

• Prototypes for Ellipsis Functions

For more information about these constructs, see “Advanced Import
Specifications” on page 779 in chapter 14, The CPP2SDL Tool, in the
User´s Manual.

Templates

By using the CPP2SDL tool, instantiations of template declarations are
supported.

To be able to instantiate a C++ template, CPP2SDL needs information
about its actual template arguments. This information is given in an im-
port specification.

The C++ template declaration is not itself translated to SDL. Instead an
instantiation of the template is mapped to SDL.

Accessing C/C++ Constructs not Fully
Supported by CPP2SDL

Accessing C/C++ Macros from SDL

Macros are used for conditional compilation, but can also be used for
other purposes:

• To define constants: #define PI 3.1415
102 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
• To define types: #define BYTE char

• To define functions: #define max(a,b) a>b?a:b

Macros are not part of the C or C++ languages and are therefore not
translated to SDL. Instead, the preprocessor expands all macros before
CPP2SDL perform the translation.

To be able to access macro constants from SDL, the implicit #CODE op-
erator or SYNONYM can be used, see example below.

Example 29: Constants defined as C++ macros ––––––––––––––––––

C++:

#define PI 3.1415;

SDL using #CODE:

dcl a double;

task a := #CODE(’PI’);

SDL using SYNONYM:

SYNONYM PI double = EXTERNAL ’C++’;

dcl a double;

task a := PI;

––

To be able to access macro definitions for types or functions, the macro
__CPP2SDL__ can be used. The __CPP2SDL__ macro is defined when
CPP2SDL executes, but not otherwise, and is used in a special header
file (called x.h in the examples below). This header file must then be
included in the set of header files that are translated by CPP2SDL.

The following examples illustrate how the __CPP2SDL__ macro can be
exploited to change C/C++ headers to make macro definitions for types
and functions available in SDL.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 103

Chapter 2 Data Types
Example 30: Macro “types” in C++ headers––––––––––––––––––––––

#define BYTE char

In the C++ fragment above, the macro BYTE is used as if it were a type.
The preprocessor will resolve all BYTE occurrences, which result in that
BYTE cannot be available in SDL. To avoid this, the definition of BYTE
can be changed to the following:

x.h:
#ifndef __CPP2SDL__
#ifdef BYTE
#undef BYTE
#endif
#define BYTE char
#else
typedef char BYTE;
#endif

The macro BYTE is now available as a type in SDL, since __CPP2SDL__
will be defined during the C++ to SDL translation. In the generated C++
code, BYTE is a macro, since __CPP2SDL__ will be undefined.

––

Example 31: Macro “functions” in C++ headers ––––––––––––––––––

#define max(a,b) a>b?a:b

By defining max as a macro, max can be used as if it were a function.
The macro max can be used for any type for which > is defined. The
following definition makes max available in SDL for char and int.

x.h:
#ifndef __CPP2SDL__
#ifdef max
#undef max
#endif
#define max(a,b) a>b?a:b
#else
int max(int a,int b);
char max(char a, char b);
#endif

With the above definition, max will be regarded as an operator by the
SDL system, since __CPP2SDL__ has been defined. When the C++
code generated from SDL is compiled, the C++ preprocessor will re-
solve the “function calls” to max, since the macro __CPP2SDL__ then
will be undefined.

––
104 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
Function Pointers

Function pointers are mapped to untyped pointers in SDL,
ptr_void(void*). This allows function pointers to be represented in
SDL. However, it is not possible to work with this SDL representation.
For example to call a function that the pointer points at or to assign the
function pointer with the address of an SDL operator, you have to do as
shown in the following example:

Example 32: Using function pointers –––––––––––––––––––––––––––

C++:

int func1(int i, int j);
int con_sum(int a, int b, int (*F)(int,int));

Import Specification:

TRANSLATE {
func1
con_sum
}

SDL:

NEWTYPE global_namespace_ImpSpec /*#NOTYPE*/
 OPERATORS
 con_sum : int, int, ptr_void -> int;
 func1 : int, int -> int;
ENDNEWTYPE global_namespace_ImpSpec; EXTERNAL ’C++’;

SDL using #CODE alternative 1:

dcl
 sum int,
 pfunc ptr_void;

task {
 pfunc := #CODE(’(void*) &func1’);
 sum := con_sum(1,4,#CODE(’(int (*)(int,int))
#(pfunc)’));
};

SDL using #CODE alternative 2:

dcl
 sum int;

task {
 sum := con_sum(1,4,#CODE(’&func1’));
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 105

Chapter 2 Data Types
};

––

Unsupported Overloaded Operators

In both C++ and SDL, there is a possibility to override predefined op-
erators. In the table below, the overloaded C++ operators that
CPP2SDL supports are listed.

.

Both shift operators and the less/greater operators in C++ are mapped to
< and > in SDL. This mapping implies that overloading is supported on
either < and > or << and >> in SDL. If both these operator pairs are

C++ operator Description SDL operator

+ (binary) Addition +

- (binary) Subtraction -

* (binary) Multiplication *

* (unary prefix) Dereference *>

/ (binary) Division /

% (binary) Modulo rem

! (unary prefix) Not not

< (binary) Less <

> (binary) Greater >

<< (binary) Left Shift <

>> (binary) Right Shift >

== (binary) Equal =

!= (binary) Not Equal /=

<= (binary) Less Equal <=

>= (binary) Greater Equal >=

&& (binary) And and

|| (binary) Or or
106 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using C/C++ in SDL
overloaded, CPP2SDL will issue a warning, and select the former pair
to be represented in SDL.

Overloaded operators, that are not supported by CPP2SDL, can be han-
dled using the operator #CODE.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 107

Chapter 2 Data Types
C Specific Package ctypes
IBM Rational offers a special package ctypes that contains data types
and generators that match C. It is described in detail in chapter 62, The
ADT Library, in the User´s Manual. The ctypes package should be
used in the following cases:

• if you want to use pointers in SDL
• if you need a data type that matches some specific C type (for ex-

ample short int) for which there is no corresponding SDL sort.
• if you use C headers directly in SDL In this case package ctypes

must be used.

The tables below list the data types and generators in ctypes and their
C counterparts.

The rest of this section explains how these data types and generators can
be used in SDL.

SDL Sort Corresponding C Type

ShortInt short int

LongInt long int

UnsignedShortInt unsigned short int

UnsignedInt unsigned int

UnsignedLongInt unsigned long int

Float float

Charstar char *

Voidstar void *

Voidstarstar void **

SDL Generator Corresponding C Declarator

Carray C array, i.e. []

Ref C pointer, i.e. *
108 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 C Specific Package ctypes
Different Int Types and Float
ShortInt, LongInt, UnsignedShortInt, UnsignedInt,
UnsignedLongInt are all defined as syntypes of Integer, so from an
SDL point of view, these data types are really the same, and the normal
Integer operators can be used on these types. The only difference is that
the code that is generated for these types is different. Float is defined
as a syntype of Real.

Charstar, Voidstar, Voidstarstar
Charstar represents character strings (i.e. char *) in C. Charstar is not
the same as the SDL predefined type Charstring! Charstar is useful
when accessing C functions and data types that use char *. In other
cases it is better to use Charstring instead (see also “Charstring” on page
50). Conversion operators between Charstar and Charstring are avail-
able (see below).

Voidstar corresponds to void * in C. This type should only be used
when accessing C functions that have void * parameters, or that return
void * (in which case it is advised to “cast” the result directly to anoth-
er type).

Voidstarstar corresponds to void ** in C. This type is used in com-
bination with the Free procedure described in “Using Pointers in SDL”
on page 112. In rare cases this type is also needed to access C functions.

The following conversion operators in ctypes are useful:

cstar2cstring : Charstar -> CharString;
cstring2cstar : CharString -> Charstar;
cstar2vstar : Charstar -> Voidstar;
vstar2cstar : Voidstar -> Charstar;
cstar2vstarstar : Charstar -> Voidstarstar;

These operators have the following behavior:

• cstar2cstring:
Converts a C string to an SDL Charstring. For example if variable v
of type Charstar contains the C string “hello world”, then
cstar2cstring(v) = ’hello world’.

• cstring2cstar:
Converts an SDL Charstring to a C string, i.e. the opposite of
cstar2cstring.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 109

Chapter 2 Data Types
• cstar2vstar:
Converts a Charstar to a Voidstar. This operator is sometimes useful
when calling C functions with void * parameters.

• vstar2cstar:
Converts a Voidstar to a Charstar. This operator can for example be
used if a C function returns void *, but the result should be “casted”
to a char *.

The Carray Generator
The generator Carray in package ctypes is useful to define arrays that
have the same properties as C arrays. Carray takes two generator param-
eters; an integer value and a component sort.

Example 33: Carray instantiation ––––––––––––––––––––––––––––––

newtype IntArr Carray(10, Integer)
endnewtype;

The defined type IntArr is an array of 10 integers with indices 0 to 9,
corresponding to the C type

typedef int IntArr[10];

––

Two operators are available on instantiations of Carray; modify! to
change one element of the array, and extract! to get the value of one el-
ement in the array. These operators are used in the same way as in nor-
mal SDL arrays, see “Array” on page 71. There is no (.) notation
provided for denoting values of whole CArrays.

 modify! : Carray, Integer, Itemsort -> Carray;
 extract! : Carray, Integer -> Itemsort;

Example 34: Use of Carray in SDL –––––––––––––––––––––––––––––

DCL v IntArr, i Integer;

TASK v(0) := 3; /* modifies one element */
TASK i := v(9); /* extracts one element */

––

If a C array is used as parameter of an operator, it will be passed by ad-
dress, just as in C. This makes it possible to write operators that change
the contents of the actual parameters. In standard SDL this would not be
possible.
110 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 C Specific Package ctypes
The Ref Generator
The generator Ref in package ctypes is used to define pointer types.
The following example illustrates how to use this generator.

Example 35: Defining a pointer type––––––––––––––––––––––––––––

newtype ptr Ref(Integer)
endnewtype;

The sort ptr is a pointer to Integer.

––

Standard SDL has no pointer types. Pointers have properties that cannot
be defined in normal SDL. Therefore they should be used very careful-
ly. Before explaining how to use the Ref generator, it is worthwhile to
list some of the dangers of using pointers in SDL.

Pointers Will Lead to Data Inconsistency

If more than one process can read/write to the same memory location by
means of pointers, data inconsistency can and will occur! Some exam-
ples:

• In a flight reservation system there is one seat left, and two reserva-
tion requests come in simultaneously. If pointers were used to check
the availability of seats, both requests might be approved! In litera-
ture this is called the “writers-writers problem”.

• A process may update some array variable. If at the same time an-
other process tries to read the variable by means of a pointer to the
array, the reading process may get a value were some elements of
the array are “new” while other elements are “old”, and the total re-
sult makes no sense. This is the classic “readers/writers problem”.

Even though tools such as the SDL Simulator and SDL Explorer will be
able to detect a number of errors regarding pointers, there are situations
that cannot be detected with these tools! This is because the Explorer
and Simulator assume a scheduling atomicity of at best one SDL sym-
bol at a time. This may not hold in target operating systems where one
process can be interrupted at any time (pre-emptive scheduling). If
pointers are used, data is totally unprotected, and data inconsistency
may occur, even though the Explorer did not discover any problems!
All these problems can be avoided by using SDL constructs for access-
ing data, like remote procedures and signal exchange.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 111

Chapter 2 Data Types
And if you do not obey this rule anyway: after passing a pointer, release
immediately the “old” pointer to prevent having several pointers to the
same data area. For example (for some pointer p):

OUTPUT Sig(p) TO ...;
TASK p := Null;

Pointers Are Unpredictable

If you have an SDL system that always works except during demonstra-
tions, then you have used pointers! Bugs with pointers may be very hard
to discover, as a system may (accidentally) behave correctly for a long
time, but then suddenly strange things may happen. Finding such bugs
may take very long time; in rare cases you might not find them at all!

Pointers Do Not Work in Real Distributed Systems

If an SDL system is “really” distributed, i.e. where processes have their
own memory space, it makes no sense to send a pointer to another pro-
cess, as the receiving process will not be able to do anything with it.
Therefore, by communicating pointers to other processes, limitations
are posed on the architecture of the target implementation.

Pointers Are Not Portable

The Ref generator and its operators are completely IBM Rational-spe-
cific. It is highly unlikely that SDL systems using pointers will run on
other SDL tools.

Using Pointers in SDL

If you still want to use pointers in SDL after all these warnings, this sec-
tion explains how to do this. A pointer type created by the Ref generator

Caution!

For the above stated reasons, never pass pointers to another pro-
cess! Not in an output, not in a remote procedure call, not in a create,
and not by exported/revealed variables!

Caution!

Bugs caused by pointers may be hard to find!
112 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 C Specific Package ctypes
always has a literal value Null (corresponds to NULL in C), which is also
the default value. The literal Alloc is used for the dynamic creation of
new memory. Examples are given later.

The following operators are available for Ref types:

“*>” : Ref, Itemsort -> Ref;
“*>” : Ref -> Itemsort;
“&” : Itemsort -> Ref;
make! : Itemsort -> Ref;
free : in/out Ref;
“+” : Ref, Integer -> Ref;
“-” : Ref, Integer -> Ref;
vstar2ref : Voidstar -> Ref;
ref2vstar : Ref -> Voidstar;
ref2vstarstar : Ref -> Voidstarstar;

Furthermore, the following procedure is defined:

procedure Free; fpar p Voidstarstar; external;

These operators can be used in the following way:

• *> (postfix operator):
Gets/changes the contents of a pointer. This is a postfix operator, so
p*> returns the contents of pointer p. In SDL terminology this is the
extract and modify operators for pointers.

• & (prefix operator):
Address-operator. This is a prefix operator, so &var returns a point-
er to variable var.

• make! or (. .)
This constructor allocates new memory and assigns the parameter to
make to the newly allocated memory.

• free

This operator takes a pointer variable, frees the memory it refers to
and sets the pointer variable to Null.

• +, -:
used to add/subtract an offset to/from an address. This can be useful
to access arrays in C. These operators are defined as in C, e.g. if p

Note:

It is up to the user to keep track of all dynamically allocated data ar-
eas and to free them when they are no longer needed.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 113

Chapter 2 Data Types
is a pointer to some struct, then p+1 points to the next struct (not to
byte p+1).

• vstar2ref:
Converts Voidstar to another pointer type. Should only be used to
“cast” the result of C functions that return a void *.

• ref2vstar:
Converts a pointer to Voidstar. This is useful when calling C func-
tions that have void * parameters.

• ref2vstarstar:
Returns the address of the pointer as a void **. This operator is
needed when calling the Free procedure.

• Procedure Free: (NOTE: use free operator above instead)
This procedure is used to release memory that has previously been
allocated with alloc. This procedure is only provided for backward
compatibility, use the free operator described above instead.

Example 36: Use of the Ref operators ––––––––––––––––––––––––––

NEWTYPE ptr Ref(Integer)
ENDNEWTYPE;

DCL p ptr,
 i, j Integer;

TASK p := alloc; /* creates dynamically a new
 integer; p points at it */
/* here it should be checked that p != Null */
TASK p*> := 10; /* changes contents of p */
CALL free(p); /* releases the integer */
TASK p := (. 10 .); /* allocate and set to 10 */
CALL free(p); /* releases the integer again */
TASK p := &i; /* p now points to i */
TASK p*> := 5; /* changes contents of p, i.e. also
 i is changed! */
TASK j := p*>; /* gets contents of p (=5) */

––

Using Linked Structures with Pointers

Pointers are useful when defining linked structures like lists or trees. In
this section we give an example of a linked list containing integer val-
ues. Figure 43 shows an SDL fragment with data type definitions for a
linked list, and part of a transition that actually builds a linked list. A list
114 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 C Specific Package ctypes
is represented by a pointer to an Item. Every Item contains a pointer
next to the next item in the list. In the last item of the list, next = Null.

Figure 44 shows an SDL fragment where the sum of all elements in a
list is computed. Note that this computation would never stop if there
would be an element that points back in the list, just to illustrate how
easy it is to make errors with pointers.

Figure 43: Building a linked list

Figure 44: Going through the list

newtypeIitem struct
 element Integer;
 next ItemPointer;
endnewtype;

newtype ItemPointer
 Ref (item)
endnewtype;

DCL
a Item,
list, help ItemPointer;

help := Alloc
dynamic
memory
allocation

help =
Null

 help*> :=
 (. 2, Null .)

assign value to the
contents of help

a!element := 1,
a!next := help

list := &a

falsetrue

DCL
iterator ItemPointer,
sum Integer;

iterator := list,
sum := 0

iterator = Null

sum := sum
+ iterator*>!element

iterator :=
iterator*>!next

false
true
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 115

Chapter 2 Data Types
Using ASN.1 in SDL
ASN.1 is a language for defining data types that is frequently used in
the specification and implementation of telecommunication systems.
ASN.1 is defined in ITU-T Recommendations X.680-X.683. Recom-
mendation Z.105 defines how ASN.1 can be used together with SDL. A
subset of Z.105 is implemented in the SDL Suite.

This chapter explains how ASN.1 data types can be used in SDL sys-
tems. The following items will be discussed:

• How to organize ASN.1 modules in the SDL Suite

• How to use ASN.1 data types in SDL

• How to share ASN.1 data between SDL and TTCN

Organizing ASN.1 Modules in the SDL Suite
It is recommended to have a special chapter for ASN.1 modules (for ex-
ample called ASN.1 Modules). If many ASN.1 modules are used, they
may be grouped into Organizer modules (which is not the same as
ASN.1 modules!), see “Module” on page 43 in chapter 2, The Organiz-
er, in the User´s Manual.

Figure 45 shows an example of the Organizer look of a chapter with two
Organizer modules containing ASN.1 modules.
116 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using ASN.1 in SDL
We will show with an example how to use an ASN.1 module in an SDL
system. Suppose we have an ASN.1 module MyModule in file
mymodule.asn:

MyModule DEFINITIONS ::=
BEGIN

Color ::= ENUMERATED { red(0), yellow(1), blue(2) }

END

This module contains one type definition, Color, that has three values,
red, yellow, and blue.

We first add a new diagram of type Text ASN.1 to the Organizer using
Edit/Add New (without showing it in the Editor) and we connect it to the
file mymodule.asn (using Edit/Connect). In order to use the ASN.1
module in SDL, we edit the system diagram and add use MyModule;
in the package reference clause, as is illustrated in Figure 46 below.

Figure 45: Example of ASN.1 modules in the Organizer
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 117

Chapter 2 Data Types
Figure 47 shows the resulting Organizer view. The symbol below the
MySDLSys system symbol is a dependency link that indicates that the
SDL system depends on an external ASN.1 module. Dependency links
for ASN.1 modules that are used by an SDL system were previously re-
quired by the Analyzer, but now only serve as comments and are option-
al.

If ASN.1 modules use other ASN.1 modules, dependency links between
the ASN.1 modules should be created.

Figure 46: Using an ASN.1 Module in SDL

Figure 47: Organizer View of SDL System Using ASN.1 Module

use MyModule;

System MySDLSys
118 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using ASN.1 in SDL
Using ASN.1 Types in SDL
After the above preparations, the data types in MyModule can be used in
SDL. As an example, we will make an SDL system that converts a char-
acter string to the corresponding color. This is done by two signals:

• Signal GetColor has ASN.1 type IA5String as a parameter.

• When this signal is sent to the SDL system, the SDL system will re-
ply with signal ReturnColor, that has a BOOLEAN parameter in-
dicating whether there is a color that matches the string, and a
Color parameter.

The system diagram including these signal definitions is shown in
Figure 48 below.

The MSC below illustrates how the system is intended to be used.

Figure 48: SDL system diagram

use MyModule;

System MySDLSys 1(1)

SIGNAL
GetColor (IA5String),
ReturnColor (Boolean, Color);

MyBlock
ColorInterface

ReturnColor GetColor
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 119

Chapter 2 Data Types
In order to know which values and which operators can be used on
ASN.1 types, it is necessary to look in “Translation of ASN.1 to SDL”
on page 704 in chapter 13, The ASN.1 Utilities, in the User´s Manual.

For example, Color is defined as an ENUMERATED type. By looking at
the mapping rules in “Enumerated Types” on page 716 in chapter 13,
The ASN.1 Utilities, in the User´s Manual, we see the list of operators
that can be used on Color. These are in this case num, <, <=, >, >=, pred,
succ, first, last, and also = and /=, which are always available.

Figure 49: MSC illustrating GetColor

MSC GetColor

env MySDLSys

GetColor

'blue'

ReturnColor

TRUE, blue

GetColor

'non-existing color'

ReturnColor

FALSE,
120 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using ASN.1 in SDL
Figure 50 shows a fragment of an SDL process that uses Color. It con-
tains a loop over all values of Color, and illustrates how to declare vari-
ables of Color, how to use Color in new SDL sort definitions, and how
to use the operators first, last, and succ. Some notes on the frag-
ment:

• The type ColorToString is used to convert a color to an IA5String.
In the fragment we do actually the opposite. An alternative solution
would be to have a StringToColor Array (IA5String, Color)
because then no loop would have been needed (see also “Array” on
page 71). However, the purpose of the example was to illustrate how
to loop through all elements.

Figure 50: Using the Color type in SDL

Process MyProc

/* array to map color to
 * IA5String */
newtype ColorToString
 Array (Color, IA5String)
endnewtype;

DCL
c Color,
name ColorToString,
found BOOLEAN,
str IA5String;

send result
back

name(red) := 'red',
name(yellow) := 'yellow',
name(blue) := 'blue'

idle

GetColor
(str)

find the color that
has the given name

c := first(red) c will become the
first element

found :=
name(c) = str

found or
c = last(c)

ReturnColor
(found, c)
TO Sender

c := Succ(c) try next
color

idle

true false
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 121

Chapter 2 Data Types
• Operator first in c := first(red) returns the element with the
lowest associated number. This ensures that we really get all ele-
ments when using the Succ operator. In this case we could just as
well have written c := red.

• Note also the use of the predefined ASN.1 type IA5String, which
is in fact a syntype of the predefined SDL sort Charstring.

Using Predefined ASN.1 Types in SDL

The predefined simple ASN.1 types can be used directly in SDL. In
most cases, the ASN.1 type has the same name in SDL, for example
ASN.1’s type NumericString is also called NumericString in SDL.
However, some predefined ASN.1 types contain white-space, like BIT
STRING. In SDL, the white-space is replaced with an underscore, so the
corresponding SDL sort is called BIT_STRING.

The operators on these predefined ASN.1 types are described in detail
in section “Using SDL Data Types” on page 42.

Using ASN.1 Encoding Rules with the SDL Suite

The ASN.1 constructs defined in ITU-T Recommendation X.690 and
X.691 are supported, which is explained in “ASN.1 Encoding and De-
coding in the SDL Suite” on page 2829 in chapter 58, ASN.1 Encoding
and De-coding in the SDL Suite, in the User´s Manual.
122 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using ASN.1 in SDL
Sharing Data between SDL and TTCN
One more advantage of ASN.1 is that TTCN is also based on this lan-
guage. By specifying the parameters of signals to and from the environ-
ment of the SDL system with ASN.1 data types, this information can be
re-used in the TTCN Suite for the specification of test cases for the sys-
tem.

This has the big advantage of making it easier to keep the SDL specifi-
cation consistent with the TTCN test specification.

The use of external ASN.1 in TTCN is covered in more detail in the
TTCN Suite manual. In this section we will briefly illustrate how to
share data between SDL and TTCN using TTCN Link.

Supposing we have to write a test suite for the SDL system with the
Colors example, we would add a new diagram – a TTCN Test Suite,
for example called ColorTest – to the Organizer. In this test suite we
want to use definitions from the ASN.1 module MyModule that contains
the Colors data type. For this purpose we need to set a dependency link
between the ASN.1 module and the test suite. We do this by selecting
the ASN.1 module in the Organizer. By using Generate/Dependencies
we connect it to the TTCN test suite ColorTest.

We can also use TTCN Link to generate declarations from SDL system
MySDLSys. For this purpose, it is easiest to associate the SDL system
with the TTCN test suite. This is done by selecting the SDL system di-
agram in the Organizer and associate it with the TTCN test suite using
Edit/Associate. The Organizer View for the test suite now looks as in
Figure 52 below:

Figure 51: Sharing ASN.1 definitions between SDL and TTCN

TTCN

ASN.1

SDL

usesuses
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 123

Chapter 2 Data Types
We can generate a TTCN Link executable for the SDL system by select-
ing the SDL system in the Organizer and using Generate/Make select
standard kernel TTCN Link. Now we can start the TTCN Suite by dou-
ble-clicking on test suite ColorTest. By using TTCN Link/Generate
Declarations, we can automatically generate the PCOs, ASP type defi-
nitions and ASN.1 type definitions. If we look at the result, we can see
that Color is present as an ASN.1 Type Definition by Reference. This
table is shown below.

Figure 52: Organizer view of a test suite that uses ASN.1

Figure 53: Resulting table in the TTCN Suite
124 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using ASN.1 in SDL
Now this data type can be used in creating test cases, in constraints, etc.
If at some point in time the definition of Color would be changed (for
example if we would add a new color), then, in order to update the test
suite accordingly, we can select the TTCN table for Color. In the Ana-
lyzer dialog, we should select both Enable Forced Analysis and Re-
trieve ASN.1 Definitions. Now the TTCN test suite will be updated with
the new definition for Color.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 125

Chapter 2 Data Types
126 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

April 2009 IBM Rational SD

Chapter
3 Using SDL Extensions
This chapter describes some of the extensions to SDL that are avail-
able in the SDL Suite, and that are not documented outside IBM
Rational.

The extensions covered here are the Own and ORef generators, and
the algorithmic extensions to SDL. There are other IBM Rational-
specific extensions to SDL supported in the SDL Suite, mainly con-
cerning data types, generators and operators. These extensions are
covered in chapter 2, Data Types.
L Suite 6.3 Methodology Guidelines mg-s0 127

Chapter 3 Using SDL Extensions
Own and ORef Generators

Introduction
A major problem to obtain fast applications generated from SDL is the
data model, that requires copying of data in a number of places. In an
interchange of a signal between two processes, the signal parameters are
first copied from the sending process to the signal and then again copied
from the signal to the receiver. If the two processes have access to com-
mon memory, it would be possible only to pass a reference to the data
via the signal, and in that way there would be no need to perform the
two copy actions.

The generator Ref can be used for this purpose (see “The Ref Genera-
tor” on page 111 in chapter 2, Data Types), but there is a number of im-
portant problems when using the Ref generator:

• The user has to deallocate memory when it is no longer used. If the
user forgets this in any circumstance, memory will be lost.

• It is easy to, intentionally or unintentionally, access the same mem-
ory from several process instances. This is very bad practice in real-
time programming (without protection for simultaneous access to
the memory) and might cause unwanted behavior. These kinds of
errors are usually very difficult to find.

Basic Properties of the Own Generator
The purpose of the Own generator is to solve the situation described
above, i.e. it should be possible to limit the number of copy operations
that are needed, at the same time as the user should not need to worry
about memory deallocation, and simultaneous access to the memory
from several processes should not be possible.

The basic property of the Own generator that makes this possible is that
only one Own pointer at a time can refer to the same memory. This vari-
able (of Own type) is referred to as the owner of the memory. Owner-
ship is passed to another variable by assignment.
128 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Own and ORef Generators
Example 37: Own variables –––––––––––––––––––––––––––––––––––

newtype Data struct
 a, b integer;
endnewtype;

newtype Own_Data Own(Data)
endnewtype;

dcl
 v1 Own_Data,
 v2 Own_Data;

task v1 := v2;

This assignment is interpreted as follows:

• If v1 refers to some memory this memory is deallocated.
• v1 is assigned the value of v2, i.e. refers to the same memory as v2.
• v2 is set to Null.

––

By this scheme the basic properties of the Own generator is preserved,
i.e. all memory no longer accessible is deallocated and there is only one
reference to the data.

To handle more complex cases, the order in which these operations are
performed is a bit more complicated. With the same types and variables
as in the example above and the procedure P, taking three Own_Data
parameters:

task v1 := P(v2, v1, v2);

we get the following execution:

Evaluation of the right-hand side is performed from left to right, i.e.
starts with the first actual parameter of P. The first formal parameter
of P is assigned the value of v2 and takes the ownership of this
memory. The variable v2 is assigned the value Null. The same thing
happens for the second formal parameter and the variable v1. The
third formal parameter of P get the value Null as v2 is Null at this
point.

Now the procedure P is called and its return value is obtained. Be-
fore assigning this value to the variable on the left hand side, i.e. to
v1, the memory currently referred to by v1 is deallocated. In this
case v1 is Null at this point as the second formal parameter of P al-
ready have taken the ownership of this memory. Last the variable v1
is assigned the value returned by P.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 129

Chapter 3 Using SDL Extensions
Ownership is, as can be seen in the example above, passed not only in
assignments, but in every case where the reference is assigned to some
other place. This happens for example in assignments, input, output, set,
reset, procedure call, and create. The only places where ownership is
not passed is:

• when the explicit copy function is used, for example
 task v1 := copy(v2);

• in import, export, and view operations, which are interpreted as con-
taining implicit copy operations.

• in calls to the standard functions ‘=’ and “/=”.

Note that copy(v2) is a “deep” copy, i.e. any Own pointers in the cop-
ied data structure are also copied. Otherwise we would end up with sev-
eral references to the same memory.

Definition of Own Generator
The Own generator is defined in SDL according to the following:

GENERATOR Own (TYPE Itemsort)
 LITERALS
 Null;
 OPERATORS
 "*>" : Own, ItemSort -> Own;
 "*>" : Own -> ItemSort;
 make! : ItemSort -> Own;
 DEFAULT Null;
ENDGENERATOR Own;

Basically the Own generator is a way to introduce pointers to allocated
memory. The Null value is as usual interpreted as “a reference to noth-
ing”. The operators “*>” are the Extract! and Modify! operators, i.e. the
way to reference or modify the memory referred to by the pointer. Using
the type and variables in the previous example the following statements
are correct:

task v1*>!a := 1;
task i := v2*>!b;
 /* integer assignment, i is integer variable */
task d := v2*>;
 /* struct level assignment, d is of type Data */

The “*>” operator have the same properties as the ‘*’ in C, i.e. “v1*>”
has the same meaning as “*v1” in C. To make the syntax a bit easier
130 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Own and ORef Generators
there is a possibility to let the SDL Analyzer implicitly insert the “*>”
in the expressions where it is needed. The example above would then
become:

task v1!a := 1;
task i := v2!b;
 /* integer assignment, i is integer variable */
task d := v2;
 /* struct level assignment, d is of type Data */

which is a bit easier to read. More details about the implicit type con-
versions can be found in “Implicit Type Conversions” on page 134.

Before it is possible to start working with components in the data refer-
enced by the Own pointer, the Own pointer must be initialized with a
complete value (default is Null as can be seen in the definition). The
Make! operator is a suitable way to initialize a variable. As usual the
concrete syntax for Make! is “(. x .)”, where x should be replaced by a
value of the ItemSort for the current Own pointer.

Example of intializations using the data definitions in the examples
above:

dcl v1 Own_Data := (. (. 1, 2 .) .);
task v1 := (. (. 5, 5 .) .);

The inner “(. .)” is for the constructing the struct value and the outer
“(. .)” is for the Own make! function. It is, however, possible to avoid
the double parentheses as there is an implicit type conversion from a
type T to Own(T), by implicitly inserting “(. .)” around a value of type
T. So the examples above could (and probably should) be written as

dcl v1 Own_Data := (. 1, 2 .);
task v1 := (. 5, 5 .);

Again, please see “Implicit Type Conversions” on page 134. The other
operations available for own pointers, apart from “*>” and make!, are
assignment, test for equality, and copy. The assign operator has already
been described above. Test for equality (‘=’ and “/=”) does NOT test for
pointer equality as two Own pointers cannot be equal. Instead equality
is “deep” equality, i.e. the values referred to by the Own pointers are
compared.

An implicit copy operator has been inserted for every type. It takes a
value and returns a copy of that value. For all types that are not Own
pointers or contain Own pointers, this operator is meaningless as it just
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 131

Chapter 3 Using SDL Extensions
returns the same value. For Own pointers or for structured values con-
taining Own pointers, the copy function, however, copies the values ref-
erenced by the Own pointers.

The ORef Generator
The ORef generator is intended to be used together with the Own gen-
erator to provide a way to temporary refer to owned data during some
algorithm, without affecting the ownership of the memory. If, for exam-
ple, Own pointers is used to create a linked list and we would like to
write a procedure that calculates the length of the list, then we need a
temporary pointer going through the list. If that pointer was a Own
pointer the list would be destroyed while we traverse the list, as there
may be only one Own pointer referring to the same memory.

Example 38: Own and ORef –––––––––––––––––––––––––––––––––––

newtype ListElem struct
 Data MyType;
 Next ListOwn;
endnewtype;

newtype ListOwn Own(ListElem)
endnewtype;
newtype ListRef ORef(ListElem)
endnewtype;

procedure ListLength; fpar Head ListRef;
returns integer;
dcl
 Temp ListRef,
 Len Integer;
start;
 task Len := 0, Temp := Head;
 again :
 decision Temp /= null;
 (true) :
 task Len := Len+1, Temp := Temp!Next;
 join again;
 (false) :
 enddecision;
 return Len;
endprocedure;

dcl
 MyList ListOwn,
 L integer;

task L := call ListLength(MyList);

––
132 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Own and ORef Generators
Note the use of the ListRef type both in the formal parameter Head and
in the local variable Temp. If Head would be of ListOwn type, the vari-
able MyList would be null after the call of ListLength, which is not what
we intended. If ListOwn was used as type for the variable Temp, as the
statement Temp := Temp!Next would unlink the complete list.

Another example of a typical application of ORef, is to introduce back-
ward pointer in a linked list, to make it doubly linked. If the forward
pointers are Own pointers then the backward pointers cannot be Own
pointers as then we would have two Own pointers on the same object.

The ORef generator is defined as:

GENERATOR ORef (TYPE Itemsort)
 LITERALS
 Null;
 OPERATORS
 "*>" : ORef, ItemSort -> ORef;
 "*>" : ORef -> ItemSort;
 "&" : ItemSort -> ORef;
 "=" : ORef, ItemSort -> Boolean;
 "=" : ItemSort, ORef -> Boolean;
 "/=" : ORef, ItemSort -> Boolean;
 "/=" : ItemSort, ORef -> Boolean;
 DEFAULT Null;
ENDGENERATOR;

Where “*>” is used for dereferencing and ‘&’ is an address operator.

Run-Time Errors
There are four situations, concerning Own and ORef, that can lead to a
run-time error. These situations are:

• Dereferencing of a null pointer.

• An ORef pointer that refers to an object that has been deallocated.

• An ORef pointer that refers to an object that is owned by another
process.

• A cycle of Own pointers is created, as this memory can never be
deallocated.

These problems are all found during simulation and validation, except
that if an ORef pointer refers to a data area that is first deallocated and
then allocated again, the ORef pointer is no longer invalid.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 133

Chapter 3 Using SDL Extensions
Examples of run-time error situations assuming the data types in the
previous section.

dcl
 L1, L2 ListOwn,
 R1, R2 ListRef,
 I Integer;

task
 L1 := null,
 R1 := null,
 L1!Data := 1,
 /* ERROR: Dereferencing of Null pointer */
 I := R1!Data;
 /* ERROR: Dereferencing of Null pointer */

task
 L1 := (. 1, null .),
 R1 := L1,
 L1 := null,
 I := R1!Data;
 /* ERROR: Reference to deallocated memory */

task
 L1 := (. 1, null .),
 R1 := L1;
output S(L1) to sender;
task
 I := R1!Data;
 /* ERROR: Reference to memory not owned by
 this process */

task
 L1 := (. 1, null .),
 L1!Next := (. 2, null .),
 L1!Next!Next := L1;
 /* ERROR: Loop of own pointers created */

Implicit Type Conversions
Note:

Implicit type conversions are by default off in the SDL Analyzer. It
can be turned on in the Analyze dialog in the Organizer. Implicit
type conversions will, however, influence the time needed for se-
mantic analysis. The more complex an expression is, the more effect
on time the implicit type conversions will have, as the number of
possibilities increases (often exponentially) with the length of the
expression.
134 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Own and ORef Generators
The purpose of the implicit type conversions is to simplify the use of the
Own generator. The code that operate on data structures should be the
same if you use a data structure T or if you use a own pointer to T,
own(T). The only thing that a user has to think about is if ownership
should be passed or if a copy should be made, when passing data to
somewhere else.

The implicit conversions never change the type of, for example, an as-
signment. If there is an assignment:

task R1 := L1;

no implicit type conversions are applied on R1, as that would change the
type of the assignment. Type conversions might be applied on L1 in the
right hand side, to obtain the correct type. In an assignment:

task Q(a) := ...;

the implicit type conversions might also be applied to the index expres-
sion, i.e. to a.

In a test for equality and in similar situations, e.g. in:

L1 = R1

implicit type conversions are first applied to the left expression, i.e. to
L1. If that yields a correct interpretation, that one is selected. Otherwise
implicit type conversions are tried on the right expression, i.e. to R1.

Assume a type T and a two generator instantiations Own_T = Own(T)
and ORef_T = ORef(T). Assume also the variables:

dcl
 t1 T,
 v1 Own_T,
 r1 ORef_T;

Then the following implicit type conversions are possible:

1. Own_T -> T, by v1 -> v1*>
2. T -> Own_T, by t1 -> (. t1 .)
3. Own_T -> ORef_T, by v1 -> demote(v1)
4. ORef_T -> Own_T, by r1 -> (. r1*> .)
5. T -> ORef_T, by t1 -> &t1
6. ORef_T -> T, by r1 -> r1*>
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 135

Chapter 3 Using SDL Extensions
Type conversions 1 and 6 make it possible to exclude “*>” in compo-
nent selections. Instead of writing

a*>!b*>(10)*>!c

it is possible to write

a!b(10)!c

This possibility also exists for ordinary Ref pointers.

Type conversion 2 makes it possible to assign an Own pointer a new
value of the Own pointer component type. If A is a Own pointer to a
struct containing two integers, then it is possible to write:

 A := (. 1, 2 .);

which means the same as

 A := (. (. 1, 2 .) .);

where the inner “(. .)” is the make! function for the struct and the outer
“(. .)” is the make! function for the Own pointer.

This possibility also exists for ordinary Ref pointers.

Type conversion 3 makes it possible to assign an ORef pointer to an
Own pointer. This is already used in the examples above, but is not di-
rectly possible, as an ORef and an Own pointer are two distinct types.
The demote operator converts a Own pointer to the corresponding
ORef pointer. (Corresponding means the first ORef with the same com-
ponent type in the same scope unit as the Own pointer type is defined).

Type conversion 4 makes it possible to construct a new Own value,
starting from a ORef value. The conversion is performed in two steps,
first going from ORef_T to T by applying conversion 6, and then from
T to Own_T by applying conversion 2.

Type conversion 5 makes it possible to let a ORef_T pointer refer to a
DCL variable by writing:

 task r1 := t1;

which means the same thing as

 task r1 := &t1;

where ‘&’ is the address operator (as in C).
136 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Algorithms in SDL
Algorithms in SDL
A former problem in SDL is the lack of support for writing algorithms.
For pure calculations, not involving communication, the graphical form
for SDL tends to become ordinary flow charts, which is usually not a
good way to describe advanced algorithms. Such, often large, parts of
an SDL diagram also hide other, from the SDL point-of-view, more im-
portant parts of the diagram, namely the state machine and the commu-
nication aspects.

The algorithmic extensions described here addresses these problems by
introducing the possibility to write algorithms in textual form within a
Task symbol, and also to define procedures and operators in textual
form in text symbols. There are two major advantages with this ap-
proach, compared to ordinary SDL:

• The algorithms are written in a compact form, similar to ordinary
programming languages, and will therefore not hide other important
aspects of an SDL diagram.

• The language used within the algorithms contains more powerful al-
gorithmic constructs than ordinary SDL, like if-then-else, and loop
statements.

In addition, the algorithmic extensions make it possible to now define
procedures and operators in textual form in text symbols in SDL/GR.

These algorithmic extensions to SDL have been approved by ITU Study
Group 10 to be incorporated into the official Master List of Changes that
will affect the next ITU recommendation for SDL. There are a few mi-
nor differences in the support for SDL algorithms in the SDL Suite
compared with the ITU definition – these are noted in the descriptions
below.

The constructs that are part of the extensions are:

• Compound Statement
• Local Variables
• If Statements
• Decision Statements
• Loop Statements
• Label Statements
• Jump Statements
• Empty Statements
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 137

Chapter 3 Using SDL Extensions
Compound Statement
The basic concept in the algorithmic extensions is the compound state-
ment. A compound statement starts with a ‘{’, which is followed by a
sequence of variable declarations and a sequence of statements, and it
then ends with a ‘}’.

A compound statement may be used in three places:

• as the contents of a TASK,
• as the body of a procedure or operator definition in a text symbol,
• as a statement within an enclosing compound statement.

Note also that the enclosing “{ }” should not be included in a Task sym-
bol in the SDL Editor. These braces will be added when the SDL system
is converted to SDL/PR for analysis.

Example 39 ––

Contents in Task symbol in SDL/GR:

a := b+1;
if (a>7) b := b+1;

Corresponding code in SDL/PR:

task {
 a := b+1;
 if (a>7) b := b+1;
};

Example 40 ––

A procedure in a text symbol in SDL/GR, or in SDL/PR:

procedure p fpar i integer returns integer
{
 if (i>0)
 i := i+1;
 else
 i := i-1;
 return i;
}

––

Note:

According to the ITU language definition the body of a procedure or
operator is allowed to be a statement. In the SDL Suite, however, a
compound statement is required. This means that if the body con-
sists of only one statement, the enclosing “{ }” are required anyhow.
138 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Algorithms in SDL
Local Variables
Within a compound statement it is allowed to define a number of local
variables. These variables will be created when the compound state-
ment is entered and will be destroyed when the compound statement is
left. The semantics of a compound statement is very much like a proce-
dure without parameters, which is defined and called at the place of the
compound statement.

A variable declaration within a compound statement looks that same as
ordinary variable declarations, except that “exported” and “revealed”
are not allowed. Example:

dcl
 a, b integer := 0,
 c boolean;

Statements
A statement within a compound statement my be of any of the following
types:

• compound statement
• output statement
• create statement
• set statement
• reset statement
• export statement
• return statement (only in procedures and operators)
• procedure call statement
• assignment statement
• if statement
• decision statement
• loop statement
• label statement
• jump statement
• empty statement

Note that each statement (and each variable declaration statement) ends
with a ‘;’. The following statement types use the same syntax as in or-
dinary SDL/PR:

output, create, set, reset, export, return, call, assignment
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 139

Chapter 3 Using SDL Extensions
Example 41: Ordinary SDL/PR statements –––––––––––––––––––––––

output s1(7) to sender;
output s2(true, v1) via sr1;
create p2(11);
set(now+5, t);
reset(t);
export(v1);
return a+3;
call prd1(a, 10);
a := a+1;

––

If Statements

The structure of an if statement is:

if (<Boolean expr>)
 <Statement>
else
 <Statement>

where the else part is optional. The Boolean expression is first calculat-
ed. If it has the value true, the first statement is executed, otherwise the
else statement, if present, is executed.

Example 42 ––

if (a>0)
 a := a+1;

if (a=0) {
 a := 100;
 b := b+1;
} else {
 a := a+1;
 b := 0;
}

If there are several possible if statements for an else path (the “dangling
else” problem), the innermost if is always selected.

Note:

According to the ITU language definition the keyword call in a
procedure call is optional. In the SDL Suite it is, however, required.
140 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Algorithms in SDL
Example 43 ––

if (a>0)
 if (b>0)
 a := a+1;
 else
 a := a-1;

means:

if (a>0) {
 if (b>0)
 a := a+1;
 else
 a := a-1;
}

––

Decision Statements

A decision statement has much in common with the ordinary decisions
found in SDL, i.e. it is a multi-branch statement. The major differences
between decision statements and ordinary statements is that all paths in
a decision statement ends at the enddecision.

Example 44 ––

decision (a) {
(1:10) : {call p(a); a := a-5;}
(<=0) : a := a+5;
else : a := a-5;
}

––

The decision question and the decision answers follows the same syntax
and semantics as in ordinary decisions. Following an answer there
should be a statement, which might be a compound statement.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 141

Chapter 3 Using SDL Extensions
Loop Statements

A loop statement is used to repeat the execution of a statement (or usu-
ally a compound statement), a number of times. The loop is controlled
by a loop variable, which either can be locally defined in the loop or de-
fined somewhere outside of the loop.

The loop control part contains three fields:

• the loop variable indicator with a start value,
• the loop test expression,
• the new loop variable value.

Example 45 ––

for (a := 1, a<10, a+1)
 sum := sum+a;

should be interpreted as (in C-like syntax):

a = 1;
while (a<10) {
 sum = sum+a;
 a = a+1;
}

––

Note the difference between SDL and C when it comes to the variable
update. In C this is a statement, in SDL it is an expression to be assigned
to the variable mentioned in the loop variable indicator.

In the loop variable indicator, either a new variable can be defined or a
previously defined variable can be used. Example:

for (a := 1, ...
for (dcl a integer := 1, ...

Other possibilities in loop statements:

• One or more of the loop control part fields can be empty. If, howev-
er the loop variable indicator (first field) is empty, then the loop
variable update field (third field) must also be empty. Example:

for (a := 1, , a+1) ..
for (, ,) ...

• A loop may contain several loop control parts. Example:

for (a := 1, a<10, a+1; b := 1, b<5, b+1)
 sum := sum+a+b;
142 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Algorithms in SDL
This should be interpreted as (in C like syntax):

a = 1;
b = 1;
while ((a<10) and (b<5)) {
 sum = sum+a;
 a = a+1;
 b = b+1;
}

• Break statements can be used to break out of a loop. See “Label
Statements” on page 143 and “Jump Statements” on page 144.

• A loop statement may end with a “then” statement, which is execut-
ed if the loop is terminated because of the loop test expression be-
comes false. The “then” statement is not executed if the loop is ter-
minated due to a break statement. Example:

ok := false;
for (a:=1, a<10, a+1) {
 sum := sum+arr(a);
 if (sum > limit) break;
}
then
 ok := true;

Label Statements

A label statement is just a label followed by a statement. These labels
are only of interest if the statement following the label is a loop state-
ment. The label name can be used in break statements (see below) to
break out of a loop statement. Example:

L:
for (i:=0, i<10, i+1)
 sum := sum+a(i);

Note:

There are no “join” or “goto” statements allowed in the algorithmic
extensions to SDL.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 143

Chapter 3 Using SDL Extensions
Jump Statements

Jump statements, i.e. break and continue, are used to change the ex-
ecution flow within a loop.

A continue statement, which only may occur within a loop, is defined
as: “skip the remaining part of the loop body and continue with updating
the loop variable to its next value.”

Example 46 ––

for (a:=1, a<10, a+1) {
 if (sum > limit) continue;
 sum := sum+arr(a);
}

should be interpreted as (in C like syntax):

a = 1;
while (a<10) {
 if (sum > limit) goto cont;
 sum = sum + arr[a];
cont :
 a = a+1;
}

––

A break statement can be used to stop the execution of the loop and di-
rectly goto the statement after the loop.

Example 47 ––

ok := false;
for (a:=1, a<10, a+1) {
 sum := sum+arr(a);
 if (sum > limit) break;
}
then
 ok := true;

should be interpreted as (in C like syntax):

ok = false;
a = 1;
while (a<10) {
 sum = sum + arr[a];
 if (sum > limit) goto brk;
 a = a+1;
}
ok = true;
brk:

––
144 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Algorithms in SDL
A break statement breaks out of the innermost loop statement. By using
labeled loop statements breaks out of outer loops can be achieved.

Example 48 ––

L: for (x:=1, x<10, x+1) {
 a := 0;
 for (y:=1, y<10, y+1) {
 a := a+y;
 if (call test(x,y)) break L;
 }
 }

The break statement in the inner loop breaks out from both loops as it
mentions the label for the outer loop.

––

Empty Statements

It is allowed to have an empty statement, represented by just writing
nothing. This is sometimes useful, for example as loop statement:

for (i:=1, Arr(i)/=0 and i<Limit, i+1) ;
 /* This loop sets i to the index of the first zero
 element in the Array Arr. */
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 145

Chapter 3 Using SDL Extensions
Grammar for the Algorithmic Extensions
Meta grammar:

‘dcl’, ‘)’, ‘;’ are examples of terminal symbols.

<Stmt>, <Name> are examples of non-terminal symbols.

::= means defined as.

$ means used for empty.

* means 0 or more occurencies.

+ means 1 or more occurencies.

| means or.

Start of Grammar ––

<CompoundStmt> ::=
 ‘{’ <VarDefStmt>* <Stmt>* ‘}’

<VarDefStmt> ::=
 ‘dcl’ <Name> (‘,’ <Name>)* <Sort> (‘:=’ <Expr> | $)
 (‘,’ <Name> (‘,’ <Name>)* <Sort> (‘:=’ <Expr> | $))*
 ‘;’

<Stmt> ::=
 <CompoundStmt> |
 <Outputx> ‘;’ |
 <CreateRequest> ‘;’ |
 <Setx> ‘;’ |
 <Resetx> ‘;’ |
 <Export> ‘;’ |
 <Return> ‘;’ |
 <ProcedureCall> ‘;’ |
 <IfStmt> |
 <LabelStmt> |
 <AssignmentStatement> ‘;’ |
 <DeciStmt> |
 <LoopStmt> |
 <JumpStmt> ‘;’ |
 <EmptyStmt> ‘;’

<IfStmt> ::=
 ‘if’ ‘(’ <Expr> ‘)’ <Stmt> (‘else’ <Stmt> | $)

<DecisionStmt> ::=
 ‘decision’ ‘(’ <Expr> ‘)’ ‘{’
 (<Answer> <Stmt>)+
 (‘else’ <Stmt> | $)
 ‘}’

146 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Algorithms in SDL
<Answer> ::= same as answer in ordinary decisions

<LoopStmt> ::=
 ‘for’ ‘(’ (<LoopClause> (‘;’ <LoopClause>)* | $) ‘)’
 <Stmt>
 (‘then’ <Stmt> | $)

<LoopClause> ::=
 (<LoopVarInd> | $) ‘,’ (<Expr> | $) ‘,’ (<Expr> | $)

<LoopVarInd> ::=
 ‘dcl’ <Name> <Sort> ‘:=’ <Expr> |
 <Identifier> (‘:=’ <Expr> | $)

<LabelStmt> ::=
 <Label> <Stmt>

<JumpStmt> ::=
 <Break> (<Name> / $) |
 <Continue>

<EmptyStmt> ::=
 $

End of Grammar –––

Algorithms in SDL Simulator/SDL Explorer
The textual trace in the SDL Simulator and the SDL Explorer for the
new algorithmic extensions will be according to the table below.

Statement Textual trace Comment

Compound No trace

If IF (true)
IF (false)

Decision DECISION Value: 7 Same trace as for ordinary de-
cisions

Loop LOOP variable b := 3
LOOP test TRUE
LOOP test FALSE

For loop variable assignments
For loop tests

Jump CONTINUE
BREAK
BREAK LoopName

Empty No trace
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 147

Chapter 3 Using SDL Extensions
A compound statement without variables declarations is seen as just a
sequence of statements, while a compound statement with variable dec-
larations is seen as a procedure call of a procedure with no name, with-
out parameters. However, no trace information is produced for this im-
plicit procedure call or procedure return.

When it comes to variables, these are available in the simulator interface
just in the same way as if compound statements where true procedures.
That is, the commands Up and Down can be used to view variables in
different scopes. Note that a variable defined in a loop variable indicator
introduces a scope of its own.

There is one exception of this general treatment of variables in local
scopes and that is procedures defined as a compound statement.

In this procedure:

procedure p
 fpar in/out a integer
{
 dcl b integer;
 ...
}

the parameter a and the variable b will be in the same scope, the pro-
cedure scope. For compound statements within the outermost procedure
scope the general rules above apply.

Execution Performance in Applications

Cadvanced

All concepts in the algorithmic extensions have efficient C implemen-
tations, except variable declarations in local scopes (including in a loop
variable indicator), as such compound statements will become SDL
procedure calls.

Cmicro

All concepts in the algorithmic extensions have efficient C implemen-
tations. Compound statements containing variables are implemented
using C block statements.
148 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

April 2009 IBM Rational SD

Chapter
4 Organizing a Project
This chapter explains how diagrams and other documents that can
be handled in the Organizer, may be managed in a project includ-
ing several project members. The functionality of the SDL Suite re-
lated to management of diagrams in a project environment is pro-
vided by the Organizer. A reference manual for the Organizer can
be found in chapter 2, The Organizer, in the User´s Manual.
L Suite 6.3 Methodology Guidelines mg-s0 149

Chapter 4 Organizing a Project
Introduction

General
Software development projects are typically staffed by a large number
of software engineers, each working simultaneously on different parts
of the same system. This requires careful coordination and version con-
trol of the different parts of the system. Normally, stable (well-defined)
versions of a system are stored in a central storage area (in this chapter
named the original area) accessible for each user. The original area is
typically either:

• A directory containing different versions of the system managed by
a version or revision control system, e.g. RCS, CM SYNERGY or
ClearCase.

• An ordered set of directories, where each directory represents one
version of the system and contains the information that has changed
as compared to the previous version. For example, version 1 of the
system PBX may be stored in the directory PBX-1 which contains
version 1 of all parts of the system PBX. Version 2 of the system
PBX is then stored in the directory PBX-2 which contains only the
parts of the system that has changed in comparison to PBX-1.

In addition, each project member may have his own work area where
he temporarily stores the parts of the system he is currently working on.
Furthermore, a project may also use a reference area which contains one
or more packages of information that are shared between different
projects.

This way of working is supported by the Organizer tool. It allows the
members of a project to work independently, but in a coordinated and
structured way. In particular, the tool supports:

• Individual customization of the user environment.

• Easy visualization of the SDL system's contents, in terms of SDL
packages and diagrams, Message Sequence Charts and physical
files.

• Updating of versions from each individual user's work area to the
shared original area.
150 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Introduction
• Copying of SDL diagrams and Message Sequence Charts between
different storage areas.

Improved Support
To facilitate the management of more complex projects, the SDL Suite
can be integrated to control systems that are used to manage versions
and revisions. Example of such systems are RCS, CM SYNERGY and
ClearCase. The Organizer can easily be customized in order to extend
the menus commands with support for “check-in”, “check-out” and
“update” operations. The extensions are defined in textual files that con-
tain the definitions of the names of the menus and commands, what op-
erations they will call in the control system, what objects are the subject
of the operation, etc.

The rest of this chapter is organized as follows:

• “Diagram Binding” on page 152 describes the principles for how di-
agrams and other documents are connected to files.

• “How to Manage the Diagrams in a Project” on page 155 describes
how the tools can be used to manage the SDL diagrams in a project
environment.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 151

Chapter 4 Organizing a Project
Diagram Binding
The Organizer provides the ability to manage the diagrams and other
documents that build up a project, without the need for an external ver-
sion or revision control system.

Important is that one diagram is represented by one file, and the map-
ping between diagrams and files are kept in the system file. The system
file is the file that is opened when issuing the Open command in the Or-
ganizer. The system file has by default the extension .sdt.

A diagram may be bound to a physical file using the Organizer by:

• Automatic Binding
• Manual Binding

Automatic Binding
Diagrams may be bound automatically when the diagram is saved for
the first time. The name of the physical file will by default be <diagram
name>.<ext>, where <diagram name> is the name of the diagram and
<ext> is a suggested extension of three letters indicating what type of
diagram is contained in the file. See “Save” on page 11 in chapter 1,
User Interface and Basic Operations, in the User´s Manual for informa-
tion on default file names and extensions.

Example 49 ––

The block diagram with the name DemonBlock will by default be
bound to the file demonblock.sbk

––

Manual Binding
Diagrams and files may be bound manually, on demand, via the com-
mand Connect. A file selection dialog appears and the selected diagram
may be connected to an existing file. Another possibility is to look for
the diagram file in a certain directory.
152 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Diagram Binding
When connecting a diagram, there is a possibility to automatically con-
nect all diagrams in a possible substructure, the Expand Substructure
option. The names of the files are not important when mapping files au-
tomatically, using this feature, since the diagram name is stored in the
file. What is important though, is the extension of the file name which
must correspond to the type of diagram stored in the file.

Source and Target Directories
Two settings in the Organizer are related to where diagrams are stored.
The two settings are:

• Source Directory
The directory where new diagrams are stored.

• Target Directory
The directory where generated files are stored. Generated files do
not include the source files, i.e. the files included in the Organizer
Diagram Structure.

The source directory and the target directory may be changed in the Or-
ganizer by using the Set Directories command. In the Set Directories di-
alog there is also an option to either show the absolute path to files, or
to show the path relative the Source directory. For a complete descrip-
tion of the functionality of this command, please see the “Set Directo-
ries” on page 71 in chapter 2, The Organizer, in the User´s Manual.

Figure 54: Connecting a diagram to an existing file
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 153

Chapter 4 Organizing a Project
This affects the way paths to files are stored in the system file:

• If the option Absolute file names is chosen, then the absolute path
will be stored in the system file.

• If the option Relative file names is chosen, then only the relative
path will be stored in the system file. This is important if the source
directory should be moveable, in which case this option should be
selected.

Figure 55: Specifying the Source and Target directories
154 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 How to Manage the Diagrams in a Project
How to Manage the Diagrams in a Project
One way to manage the diagrams in a project is to have the original area
managed by some external configuration or version control system, e.g.
RCS (Revision Control System), which is available on most computer
systems. In that case, every member of the project has his own work ar-
ea. In each work area, there is a system file (or perhaps multiple system
files, each one containing a different part of the system). All diagrams
in the system file are bound to files in the users’ work area. The relation-
ship between files in the users’ work area and files in the original area
is managed by the external configuration or version control system.

The rest of this section describes how to use RCS as a version control
system. For more information about SDL Suite/RCS Integration, see
Readme files in <inst dir>\examples\cm\win32\rcs\ or
<inst dir>/examples/cm/unix/rcs/. How to use CM SYNERGY
is described in “Using CM SYNERGY Together with an SDL System”
on page 162. How to instead use ClearCase is described in “Using CM
SYNERGY Together with an SDL System” on page 162.

The control is based on the following mechanisms:

• The locking functionality in RCS, by using the check in and check
out commands.

• The multi user support in the Organizer, facilitated by the Control
Unit Files.

• The possibility to add own menu commands to the SDL Suite, com-
mands that in this case should connect the Organizer to RCS.

Note:

The following instructions and descriptions only addresses a UNIX
system with the UNIX version of RCS.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 155

Chapter 4 Organizing a Project
Starting to Use RCS Together with an SDL
System
When handling of files managed by RCS is to be introduced for an ex-
isting SDL system, the following approach can be used:

1. Have all the files related to your system placed in one directory hi-
erarchy which we call the work area.

2. Set the Source Directory in the Organizer to the work area directory.

3. Now we create the original area for the system as the RCS file da-
tabase. The work area and the original area should have the same di-
rectory structure for a given diagram system. The original area will
contain the RCS directories that hold the revision files, but these di-
rectories are empty for now. (Note that the work area does not have
any RCS directories.)

Example 50: Work and original area for the DemonGame system––––

The work area has three directories:

• One for the files related to the system.

• One for each of the two blocks (GameBlock and DemonBlock):

demonblock gameblock system

demonblock:
demon.spr demonblock.sbk

gameblock:
game.spr gameblock.sbk main.spr

system:
demongame.msc demongame.ssy systemlevel.msc

The original area for the Demon Game system (created in a different
place in the file system) will then have the following structure:

RCS demonblock gameblock system

demongame/RCS:

demongame/demonblock:
RCS

demongame/demonblock/RCS:
156 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 How to Manage the Diagrams in a Project
demongame/gameblock:
RCS

demongame/gameblock/RCS:

demongame/system:
RCS

demongame/system/RCS:

––

4. Define the root directory of the original area (setenv rcsroot
<directoryname>) and load the RCS menu-set into the Organizer
(run $telelogic/sdt/examples/RCS/sdtrcs.mnu). A new
menu titled RCS appears in the Organizer menu bar.

– The RCS menu in the Organizer is an example of how check in
and check out can be done on one diagram and a hierarchy of di-
agrams. (The commands that are defined in the example could
easily be tailored to fit specific needs).

5. Check in the first version of each diagram file, using the Organizer
commands Recursive Check In or Check In.

– To visualize the results, make sure the file permissions are visi-
ble in the Organizer (Choose the View Options command in the
View menu and select the option File access permissions.

6. After a successful check in, the original area is now populated with
the RCS files.

Example 51: The Original Area, now populated ––––––––––––––––––

RCS demonblock gameblock system

RCS:

demonblock:
RCS

demonblock/RCS:
demon.spr,v demonblock.sbk,v

gameblock:
RCS

gameblock/RCS:
game.spr,v gameblock.sbk,v main.spr,v

system:
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 157

Chapter 4 Organizing a Project
RCS

system/RCS:
demongame.msc,v demongame.ssy,v
systemlevel.msc,v

––

Using the SDL Suite and RCS in a Multi User
Environment
If the system is developed by a group of developers it is useful to parti-
tion it and assign Control Unit Files, for the different partitions. For the
DemonGame example, let us assume that the DemonBlock is developed
by one developer and the GameBlock by another. The procedure here is
to create:

– a top level control unit file,
– a control unit file for the DemonGame system,
– a control unit file for the DemonBlock, and
– a control unit file for the GameBlock.

1. In order to assign a control unit file for an Organizer object we select
the object and execute the Configuration > Group File command
from the Edit menu.

2. When the four control units above are assigned, we save the system
from the Organizer (which also saves the control units on their re-
spective .scu files).

3. Now, we can check in the created .scu files. It is wise to have the
control unit file located in the same directory as the corresponding
object file.

Example 52: The Original Area with Control Unit Files –––––––––––––

The DemonGame original area with checked in control unit files:

RCS demonblock gameblock
system

alfa/RCS:
demongame.scu,v

alfa/demonblock:
RCS

alfa/demonblock/RCS:
DemonBlock.scu,v demon.spr,v
158 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 How to Manage the Diagrams in a Project
demonblock.sbk,v

alfa/gameblock:
RCS

alfa/gameblock/RCS:
GameBlock.scu,v game.spr,v gameblock.sbk,v
main.spr,v

alfa/system:
RCS

alfa/system/RCS:
DemonGame.scu,v demongame.ssy,v
demongame.msc,v systemlevel.msc,v

––

Make Local Changes Global Using RCS
When a user has made changes in files that have been checked out and
locked and wants to make these changes global for the complete project,
the following steps should be performed.

• Use Check In or Recursive Check In from the Organizer RCS menu,
on the diagrams that have been modified. Note that Recursive check
In will automatically handle control unit files as well.

Example 53: Adding a Diagram to the Control Unit and Saving –––––

Say that a new process diagram is added to the GameBlock:

1. The user must therefore check out the files gameblock.sbk and
GameBlock.scu.

2. With the SDL Editor, the diagram GameBlock is updated to contain
the new process reference symbol.

3. When saving from the Organizer, GameBlock.scu will automati-
cally be updated with the new process diagram file name. Note also
that all changes will be local to the partition of the diagram system
that represents the GameBlock and that no global update of the sys-
tem file is needed.

––
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 159

Chapter 4 Organizing a Project
Make Global Changes Local Using RCS
If a user is notified that there have been changes to the system, the fol-
lowing should be done in order to update the users’ local system:

• Use Check Out or Recursive Check Out to update the diagrams.

– From Example 53 above, if the GameBlock has been modified
a Recursive Check Out on the GameBlock object will bring in
the newest checked in version.

Building and Populating a Work Area from RCS
based Original Area
Say that we have an original area with its RCS directories containing the
checked in diagrams and the control unit files. A developer that is new
to the project wants to make a complete update of a system in his work
area to get an up-to-date view.

1. The developer must first create/update his work area directory tree.
The environment variable rcsroot should be defined to point to the
original area.

2. In an empty Organizer: the RCS menus are loaded (use for instance
the command $telelogic/sdt/examples/RCS/sdtrcs.mnu),
the Source Directory is set to the work area, and the top level control
unit file is associated with the SDT symbol (using the Organizer
Configuration > Group File command).

– Note that the top level control unit file must be assigned the cor-
rect file name that is checked in. For the DemonGame example,
the top level control unit file name would be DemonGame.scu in
the work area top directory.

3. To populate/update the work area, select the SDT symbol in the Or-
ganizer and perform Recursive Check Out.

4. The new developer saves the system file to get a personal view of
the diagram system.

– When saving the system file, the Organizer tries to save the top
level control unit file; this file is read-only and the Organizer
will hence issue an error message which can be disregarded.
160 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 How to Manage the Diagrams in a Project
Endpoint Handling with RCS
Presently there is one global link file (the master link file) that holds the
link information for a given system. A group of developers can coordi-
nate changes to this file with the help of the RCS check out and lock fa-
cility, where only one developer can update the file at a time. A local
link file is used for temporary storage of changes made to the endpoint
and link information, until the user decides to make his changes global.
Say we have checked in the first version of the link file into the original
area. In order to modify the link file, the procedure would follow these
guidelines:

1. Issue the command Add Local Link File in the RCS menu.

2. All changes to the endpoint and link information will now be stored
in the local link file, and the master link file will be left unchanged.

3. When it is time to update the global link information, check out the
master link file by issuing the command Check Out And Lock Link
File.

4. Issue the command Merge Local Link File, which will update the
master link file with the information from the local link file.

5. Check in the master link file by issuing the command Check In Link
File.

Simultaneous Editing of an SDL Diagram
There is a possibility for several users to work simultaneously on the
same SDL diagram by utilizing the commands Split and Join, available
in the Tools menu of the Organizer.

By the Split command, a diagram with several pages can be saved in
several files, with disjoint sets of pages, thus enabling several users to
edit them independently. The Join command simply merges two SDL
diagrams of the same kind.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 161

Chapter 4 Organizing a Project
Using CM SYNERGY Together with an SDL
System

This section describes one way of using the SDL Suite and CM SYN-
ERGY in an integrated way.

For more information about the SDL Suite/CM SYNERGY Integration
see the Readme file in the installation
<SDL Suite inst dir>\examples\cm\win32\cmsynergy\ or
<SDL Suite inst dir>/examples/cm/unix/cmsynergy/.

For a more general description of using a configuration or version con-
trol system, please see “How to Manage the Diagrams in a Project” on
page 155.

Introducing CM SYNERGY with the SDL Suite
- Migration
When handling of files by CM SYNERGY is to be applied on a system
being developed by the SDL Suite, the following approach can be used.

1. Make sure that all files (related to the system) are configured in one
directory hierarchy outside CM SYNERGY.

2. Install the CM SYNERGY menu into the Organizer. Add cmsyner-
gy.ini to your org-menus.ini file.

The SDL Suite will search for the org-menus.ini first in the di-
rectory where the SDL Suite was started, then in a directory pointed
to by the HOME environment variable and finally in the directory
in which the SDL Suite was installed.

If you do not already have a org-menus.ini file, the cmsyner-
gy.ini can serve as one. Just copy cmsynergy.ini to either your
HOME directory or to where you have the SDL Suite installed and
rename it to org-menus.ini. For more information on dynamic
menus, see “Defining Menus in the SDL Suite” on page 18 in chap-
ter 1, User Interface and Basic Operations. (The CM SYNERGY
menu that comes with the distribution of the SDL Suite is an exam-
ple and could be tailored by the user.)
162 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using CM SYNERGY Together with an SDL System
3. Set your path environment variable to include

– <CM SYNERGY inst dir>\bin or <CM SYNERGY inst
dir>/bin, and

– <SDL Suite inst dir>\bin\wini386 or <SDL Suite inst
dir>/bin.

This is necessary to be able to start the tools from each other direct-
ly.

4. Start the CM SYNERGY Client.

5. Change role to ccm_admin.

6. Display the Admin>Type Definition dialog to define an SDL file
type. Enter the following values:

Type Name: SDL
Description: Binary file
Super Type: binary
Initial Status: working
Require Task at:<none>

Verify Comment Existence on Promote / Check In: Off
Allow Update during Model Install: Off
Associate with a File in the File System: On
Can be a Product File: Off

Icon Color / Fil: binary.bmp
File Name Extension: .ssy

7. Display the Type>Modify File Operations dialog, and enter the fol-
lowing values:

(If necessary, replace sdt below with the command you use to start
SDL Suite. If the sdt script is not in your PATH, you should specify
a full path.)

Type Name: SDL
Description: Binary file
Command Templates:
Graphical User Interface:

Edit: sdt %file1
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 163

Chapter 4 Organizing a Project
View: sdt %file1
Compare: sdt -fg -grdiff %file1 %file2
Merge: sdt -fg -grdiff %file1 %file2 -mergeto %outfile

Command line interface:
Edit: sdt %file1
View: sdt %file1
Compare: sdt -fg -grdiff %file1 %file2
Merge: sdt -fg -grdiff %file1 %file2 -mergeto %outfile

Print:
Compare Attribute: source

8. Click OK.

9. Click Update Type.

10. Define a project file type (*.sdt) by entering the following values:

Type Name: SDT
Description: SDT project file
Super Type: ascii
Initial Status: working
Require Task at:<none>

Verify Comment Existence on Promote / Check In: Off
Allow Update during Model Install: Off
Associate with a File in the File System: On
Can be a Product File: Off

Icon Color / Fil: ascii.bmp
File Name Extension: .sdt

11. Display the Type>Modify File Operations dialog, and enter the fol-
lowing values:

(If necessary, replace sdt below with the command you use to start
SDL Suite. If the sdt script is not in your PATH, you should specify
a full path.)

Type Name: SDT
Description: SDT project file
164 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using CM SYNERGY Together with an SDL System
Command Templates:
Graphical User Interface:

Edit: sdt %file1
View: sdt %file1
Compare: %FAIL
Merge: %FAIL

Command line interface:
Edit: sdt %file1
View: sdt %file1
Compare: %FAIL
Merge: %FAIL

Print:
Compare Attribute: source

12. Click OK.

13. Click Update Type.

14. Close the dialog. (File>Close).

Now you have set up CM SYNERGY for SDL system diagram and
SDT project files.

15. To manage the other SDL diagram types select Tools>Migrate>Op-
tions>Set>Edit to open up the migrate rules file (migrate.rul) in
a text editor.

16. After the entry for your new type which should look something like
(might differ depending on platform):

MAP_FILE_TO_TYPE .*Ž[Ss][Ss][Yy]$ SDL # Created auto-
matically ...
MAP_FILE_TO_TYPE .*Ž[Ss][Dd][Tt]$ SDT # Created auto-
matically ...

add the following lines:

MAP_FILE_TO_TYPE .*Ž[Ss][Bb][Kk]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Pp][Rr]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Pp][Dd]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Uu][Nn]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Oo][Pp]$ SDL
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 165

Chapter 4 Organizing a Project
MAP_FILE_TO_TYPE .*Ž[Ss][Ss][Tt]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Bb][Tt]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Ss][Uu]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Pp][Tt]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Vv][Tt]$ SDL
MAP_FILE_TO_TYPE .*Ž[Ss][Ss][Vv]$ SDL
MAP_FILE_TO_TYPE .*Ž[Mm][Ss][Cc]$ SDL

and save the file. Be very careful with the syntax in this file as it is
sensitive to syntax errors. Close the open dialogs.

17. Use the Migrate facility to load the files into CM SYNERGY, via
Tools>Migrate.

– Put in the path to your Project directory in the From Directory
field, or use the browse button to locate them.

– In the Project field use the syntax ProjectName-Version, make
sure to set the version to a meaningful value.

– Next click on the menu item Options>Set>Set Object State
To>released and click OK.

– Windows only: To be able to change files you must set the op-
tion Make Copies Modifiable in Work Area Properties and then
click OK.

– To ensure that the correct files are being migrated it is suggested
that you click Preview. If the results are what you expected go
ahead and click Load.

Now you have a project that is baselined in a released state which
you can start to work from.

18. Each developer will now need to set up their own working environ-
ment before using CM SYNERGY with SDL Suite and TTCN
Suite.
166 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using CM SYNERGY Together with an SDL System
Introducing CM SYNERGY with the SDL Suite
- Set up your working environment
After the build manager has migrated your SDL system into CM SYN-
ERGY, each developer will need to set up their own CM SYNERGY
work-area. This should be done using the CM SYNERGY client to en-
sure that all the correct options are selected.

1. Select the correct project baseline for your SDL system as directed
by your build manger.

2. Check out your own personal working version of the project hierar-
chy using the correct options as directed by your build manager,
check out the system file (this will be your own personal version).

3. Load the CM SYNERGY menu into the Organizer <org-menus.ini>

Note:

You will normally only have to set up a working environment in this
way once for each major release of your software.
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 167

Chapter 4 Organizing a Project
Introducing CM SYNERGY with the SDL Suite
- Day-to-Day Working with CM SYNERGY
These steps assume that you will be using the (recommended) CM
SYNERGY Task Based-CM methodology. They may be executed from
the Organizer.

1. Select your SDL system and start CM SYNERGY from the Orga-
nizer.

2. Set your default task (also known as the current task), create one if
required.

3. Check out the file(s) you wish to work on.

4. Edit and test as required.

5. Check in your (default) task.

Note:

If you are working as part of a team you may pick up your col-
leagues’ latest work by selecting the top level directory and using
the Update command (from time to time you may need to do a full
update from the CM SYNERGY client - ask your build manager).
168 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using ClearCase Together with an SDL System
Using ClearCase Together with an SDL
System

This section describes one way of using the SDL Suite and ClearCase
in an integrated way. For more information about SDL Suite/ClearCase
Integration, see Readme files in
<inst dir>\examples\cm\win32\clearcase\ or
<inst dir>/examples/cm/unix/clearcase/.

For a more general description of using a configuration or version con-
trol system, please see “How to Manage the Diagrams in a Project” on
page 155.

Introducing ClearCase with the SDL Suite –
Checking in Files
When handling of files by ClearCase is to be applied on a system being
developed by the SDL Suite, the following approach can be used.

1. Make sure that all files (related to the system) are configured in one
directory hierarchy outside ClearCase. See the work area part in
Example 50 on page 156.

– Note that when working with ClearCase, the original area and
work area point to the same directory – the top level directory
for the diagram system.

2. Install the ClearCase menu into the Organizer. Please add clear-
case.ini to your org-menus.ini file. The SDL Suite will search for
the org-menus.ini first in the directory where the SDL Suite was
started, then in a directory pointed to by the HOME environment
variable and finally in the directory in which the SDL Suite was in-
stalled.If you do not already have a org-menus.ini file, the clear-
case.ini can serve as one. Just copy clearcase.ini to either your
HOME directory or to where you have the SDL Suite installed and
rename it to org-menus.ini. For more information on dynamic
menus, please see “Defining Menus in the SDL Suite” on page 18
in chapter 1, User Interface and Basic Operations. (The ClearCase
menu that comes with the distribution of the SDL Suite is an exam-
ple and could be tailored by the user.)
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 169

Chapter 4 Organizing a Project
3. Set an appropriate ClearCase view. Copy the system file to the top
level directory of the ClearCase file system. You may have to edit
it in order to remove the line defining SourceDirectory.

4. Open the system file to bring up the structural view of the system
(the diagrams are marked as invalid in the Organizer – this is OK for
now).

5. The MkDir for Object menu command can be used to create the di-
rectory structure in a ClearCase VOB. Select an object in the Orga-
nizer and execute the MkDir for Object menu command to create the
directory for the selected object in the ClearCase VOB.

6. Now you can populate the ClearCase directory structure with the di-
agram files, by copying the files from the directory in step 1. above.

7. Re-open the system file in the Organizer. All diagrams should now
be connected to their files.

8. Select the System File icon and do the Recursive MkElem menu
choice to create all the objects in the ClearCase VOB.

– Note that no ClearCase element is created for the system file.

9. Select the System File icon and the Recursive Check In will check
in all objects into the ClearCase VOB.

10. The directories must be checked in separately. Use the command
Check In Directory to do that.

The system file for the diagram system can be checked in but it is not
suitable for version control since the Organizer wants to update it in sit-
uations unrelated to revision changes. The system file should be regard-
ed as one developer’s personal view of the system being developed. On
the other hand, the top level control unit file should be checked in and
is suitable to be put under revision control.

Introducing ClearCase with the SDL Suite –
Opening a System
The top level control unit file allows to load the system into the Orga-
nizer if a user starts from scratch. Say that there is a checked in diagram
170 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

 Using ClearCase Together with an SDL System
system in a ClearCase VOB. A developer that wants to start working on
that diagram system has to do the following.

1. Mount the ClearCase VOB containing the diagram system.

2. Set the appropriate ClearCase view and start the SDL Suite in it on
a new system.

3. Load the ClearCase menu into the Organizer
$telelogic/sdt/examples/ClearCase/sdtcc.mnu

4. Set the Source Directory to the top level directory for the diagram
system.

5. Connect the top level control unit file with the System File icon and
run the Recursive Update ClearCase menu command. This loads
the system into the Organizer.

6. Save the system file. (The Organizer will warn that the top level
control unit file is read only but this can be disregarded.)
April 2009 IBM Rational SDL Suite 6.3 Methodology Guidelines mg-s0 171

Chapter 4 Organizing a Project
172 mg-s0 IBM Rational SDL Suite 6.3 Methodology Guidelines April 2009

A

Access Control system (example): 2
Algorithmic extensions to SDL: 137
Array (SDL generator): 71
ASN.1 encoding rules: 122
ASN.1, using in SDL: 116
B

Bag (SDL generator): 79
Bit (SDL sort): 44
Bit field (in SDL structs): 65
Bit_String (SDL sort): 45
Boolean (SDL sort): 48
BREAK statement (in SDL): 144
C

C, using in SDL: 84
CArray (SDL generator): 110
Character (SDL sort): 49
CharStar (SDL sort): 109
Charstring (SDL sort): 50
Choice (SDL): 68
CM Synergy, integrating with the SDL Suite: 162
Compound statement (in SDL): 138
Configuration management systems, integrating with the SDL Suite: 151
CONTINUE statement (in SDL): 144
Control unit files, using: 158
CPP2SDL: 84
ctypes package: 108
D

Data types (ASN.1 in SDL): 116
Data types (C in SDL): 84
Data types in SDL: 42
Decision statement (in SDL): 141
Default value (in SDL sorts): 82
Diagram, binding to physical file: 152
Duration (SDL sort): 53
E

Encoding rules (ASN.1): 122
Enumeration sorts (in SDL): 63
Exported procedure (SDL concept): 22
F

Files, binding to diagrams: 152
Float (SDL sort): 109
FOR statement (in SDL): 142
April 2009 IBM Rational SDL and TTCN Suite 6.3 173

G

Generators (in SDL): 71
H

H2SDL: 84
I

IA5String (SDL sort): 52
IF statement (in SDL): 140
Import specification: 101
Inherits (SDL sorts): 69
Integer (SDL sort): 54
J

Jump statements (in SDL): 144
L

Label statement (in SDL): 143
Literals (in SDL sorts): 80
Local link file: 161
Local variables (in SDL): 139
LongInt (SDL sort): 109
Loop statement (in SDL): 142
M

Master link file: 161
Multiuser support: 158
N

Natural (SDL sort): 54
Null (SDL sort): 55
NumericString (SDL sort): 52
O

Object_Identifier (SDL sort): 55
Object-orientation in SDL: 13
Octet (SDL sort): 58
Octet_String (SDL sort): 59
Operator diagrams: 81
Operators (in SDL sorts): 81
Original area (storage area): 150
P

Package (SDL concept): 39
PId (SDL sort): 61
Powerset (SDL generator): 76
PrintableString (SDL sort): 52
Procedures in SDL, usage: 19
Project organization in the SDL Suite: 150
174 IBM Rational SDL and TTCN Suite 6.3 April 2009

R

range condition (in SDL data types): 62
RCS, integrating with the SDL Suite: 156
Real (SDL sort): 61
Ref (SDL generator): 111
Remote procedure (SDL concept): 22
Revision control systems, integrating with the SDL Suite: 151
S

SDL algorithms: 137
ShortInt (SDL sort): 109
Simulation, textual trace: 147
Sorts in SDL: 42
Source directory, using: 153
Specialization (SDL concept): 27
String (SDL generator): 73
Struct (SDL): 64
Syntypes (in SDL): 62
T

Target directory, using: 153
Time (SDL sort): 53
Trace (Explorer): 147
Trace (Simulator), algorithms in SDL: 147
TTCN Link, sharing data between SDL and TTCN: 123
Type conversions, implicit in Analyzer: 134
U

UnsignedInt (SDL sort): 109
UnsignedLongInt (SDL sort): 109
UnsignedShortInt (SDL sort): 109
User-defined sorts (SDL): 62
V

Value-returning procedures (in SDL): 25
Version control systems, integrating with the SDL Suite: 151
VisibleString (SDL sort): 52
VoidStar (SDL sort): 109
VoidStarStar (SDL sort): 109
W

Work area (storage area): 150
April 2009 IBM Rational SDL and TTCN Suite 6.3 175

176 IBM Rational SDL and TTCN Suite 6.3 April 2009

	Methodology Guidelines
	IBM Rational SDL Suite 6.3
	Copyright Notice
	Introduction
	About this Manual
	Documentation Overview
	Typographic Conventions
	How to Contact Customer Support

	1 Object Oriented Design Using SDL
	Requirements on the Access Control System
	Description of the System to be Built
	Textual Requirements
	Basic Requirements
	Additional Requirements

	Use Cases
	Object Model

	System Analysis of the Access Control System
	Analysis Object Model: Basic Version
	The Analysis Use Case Model
	Analysis Object Model: Enhanced Version

	Object Oriented Design of the Access Control System
	System Design
	Object Design
	Version 1: Block Types and Process Types
	Block Types and Process Types

	Version 2: Procedures, Specialization and Packages
	The Use of Procedures in Version 1
	Remote Procedures and Value Returning Procedures
	Global Procedures in SDL
	When to Use the Different Kinds of Procedures

	Specialization: Adding/Redefining Properties
	Example: Adding a Clock to the Access Control System

	Packages

	2 Data Types
	Introduction
	Using SDL Data Types
	Predefined Sorts
	Bit
	Bit_string
	Boolean
	Character
	Charstring
	IA5String, NumericString, PrintableString, VisibleString
	Duration, Time
	Integer, Natural
	NULL
	Object_identifier
	Octet
	Octet_string
	Pid
	Real

	User Defined Sorts
	Syntypes
	Enumeration Sorts
	Struct
	Choice
	Inherits
	Predefined Generators

	Literals
	Operators
	Default Value
	Generators

	Using C/C++ in SDL
	Introduction
	Workflow
	Editing
	Analyzing
	Generating
	Simulating
	Summary of the AccessControl Example

	Import Specification
	Templates

	Accessing C/C++ Constructs not Fully Supported by CPP2SDL
	Accessing C/C++ Macros from SDL
	Function Pointers
	Unsupported Overloaded Operators

	C Specific Package ctypes
	Different Int Types and Float
	Charstar, Voidstar, Voidstarstar
	The Carray Generator
	The Ref Generator
	Pointers Will Lead to Data Inconsistency
	Pointers Are Unpredictable
	Pointers Do Not Work in Real Distributed Systems
	Pointers Are Not Portable
	Using Pointers in SDL
	Using Linked Structures with Pointers

	Using ASN.1 in SDL
	Organizing ASN.1 Modules in the SDL Suite
	Using ASN.1 Types in SDL
	Using Predefined ASN.1 Types in SDL
	Using ASN.1 Encoding Rules with the SDL Suite

	Sharing Data between SDL and TTCN

	3 Using SDL Extensions
	Own and ORef Generators
	Introduction
	Basic Properties of the Own Generator
	Definition of Own Generator
	The ORef Generator
	Run-Time Errors
	Implicit Type Conversions

	Algorithms in SDL
	Compound Statement
	Local Variables
	Statements
	If Statements
	Decision Statements
	Loop Statements
	Label Statements
	Jump Statements
	Empty Statements

	Grammar for the Algorithmic Extensions
	Algorithms in SDL Simulator/SDL Explorer
	Execution Performance in Applications
	Cadvanced
	Cmicro

	4 Organizing a Project
	Introduction
	General
	Improved Support

	Diagram Binding
	Automatic Binding
	Manual Binding
	Source and Target Directories

	How to Manage the Diagrams in a Project
	Starting to Use RCS Together with an SDL System
	Using the SDL Suite and RCS in a Multi User Environment
	Make Local Changes Global Using RCS
	Make Global Changes Local Using RCS
	Building and Populating a Work Area from RCS based Original Area
	Endpoint Handling with RCS
	Simultaneous Editing of an SDL Diagram

	Using CM SYNERGY Together with an SDL System
	Introducing CM SYNERGY with the SDL Suite - Migration
	Introducing CM SYNERGY with the SDL Suite - Set up your working environment
	Introducing CM SYNERGY with the SDL Suite - Day-to-Day Working with CM SYNERGY

	Using ClearCase Together with an SDL System
	Introducing ClearCase with the SDL Suite – Checking in Files
	Introducing ClearCase with the SDL Suite – Opening a System

